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Preface

This volume contains the proceedings of the 22nd International Conference on
Automated Deduction (CADE-22). The conference was hosted by the School of
Computer Science at McGill University, Montreal, Canada, during August 2–7,
2009. CADE is the major forum for the presentation of research in all aspects
of automated deduction. Within this general topic the conference is devoted
to foundations, applications, implementations and practical experiences. CADE
was founded in 1974 when it was held in Argonne, USA. Since then CADE has
been organized first on a bi-annual basis mostly and since 1996 on an annual
basis, in 2001, 2004, 2004, 2006 and 2008 as a constituent of IJCAR.

This year the Program Committee selected 32 technical contributions out of
77 initial submissions. Of the selected papers 27 were regular papers and 5 were
system papers. Each paper was refereed by at least three reviewers on its signif-
icance, technical quality, originality, quality of presentation and relevance to the
conference. The refereeing process and the Program Committee meeting were
conducted electronically via the Internet using the EasyChair conference man-
agement system. The program included three invited lectures by distinguished
experts in the area: Instantiation-Based Automated Reasoning: From Theory to
Practice by Konstantin Korovin (The University of Manchester, UK), Integrated
Reasoning and Proof Choice Point Selection in the Jahob System: Mechanisms
for Program Survival by Martin Rinard (Massachusetts Institute of Technology,
USA), and Building Theorem Provers by Mark Stickel (SRI International, USA).
In addition, the conference included a two-day program of a diverse range of
workshops and tutorials. Two system competitions were held during the confer-
ence: The CADE ATP System Competition (CASC) organized by Geoff Sutcliffe,
and The Satisfiability Modulo Theories Competition (SMT-COMP) organized by
Clark Barrett, Morgan Deters, Albert Oliveras and Aaron Stump.

The papers in these proceedings cover a diversity of logics, extending from
classical propositional logic, first-order logic and higher-order logic, to non-
classical logics including intuitionistic logic, modal logic, temporal logic and
dynamic logic. Also covered are theories, extending from various theories of arith-
metic to equational theories and algebra. Many of the papers are on methods
using superposition, resolution, SAT, SMT, instance-based approaches, tableaux
and term rewriting but also hierarchical reasoning and the inverse method, or
combinations of some of these. The most salient issues include, for example,
termination and decidability, completeness, combinations, interpolant computa-
tion, model building, practical aspects and implementations of fully automated
theorem provers. Considerable impetus comes from applications, most notably
analysis and verification of programs and security protocols, and the provision
and support of various automated reasoning tasks.



VI Preface

The CADE-22 Program Committee was part of the Herbrand Award Com-
mittee, which additionally consisted of the previous award winners of the last
ten years and the Trustees of CADE Inc. The committee has decided to present
the Herbrand Award for Distinguished Contributions to Automated Reasoning
to Deepak Kapur in recognition of his seminal contributions to several areas of
automated deduction including inductive theorem proving, term rewriting, uni-
fication theory, integration and combination of decision procedures, lemma and
loop invariant generation, as well as his work in computer algebra, which helped
to bridge the gap between the two areas.

I would like to thank the many people without whom the conference would
not have been possible. First, I would like to thank all authors who submitted
papers, all participants of the conference as well as the invited keynote speakers,
the tutorial speakers, the workshop organizers and the system competition orga-
nizers for their contributions. I am very grateful to the members of the Program
Committee and the external reviewers for carefully reviewing and selecting the
papers. We are all indebted to Andrei Voronkov for providing EasyChair and his
support during the discussion phase of the submissions. I also thank the Trustees
of CADE Inc. for their advice and support.

Special thanks go to the members of the local organization team in the School
of Computer Science at McGill University for their tremendous amount of ef-
fort, especially Maja Frydrychowicz, who did outstanding work. Moreover, I am
extremely grateful to Aaron Stump, the Workshop Chair, Carsten Schürmann,
the Publicity Chair, and of course Brigitte Pientka, who as Conference Chair
was involved in almost every aspect of the organization of the conference.

Finally, it is my pleasure to acknowledge the generous support by the School
of Computer Science and the Faculty of Science at McGill University, and Mi-
crosoft Research.

May 2009 Renate Schmidt
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Bariş Sertkaya
Jakob Grue Simonsen
Michael Stevens
Umberto Straccia
Lutz Straßburger
Boontawee Suntisrivaraporn
Naoyuki Tamura
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Integrated Reasoning and Proof Choice Point
Selection in the Jahob System –

Mechanisms for Program Survival

Martin Rinard

Department of Electrical Engineering and Computer Science
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
32 Vassar Street, 32-G744

Cambridge, Massachusetts 02139
rinard@mit.edu

Abstract. In recent years researchers have developed a wide range of
powerful automated reasoning systems. We have leveraged these systems
to build Jahob, a program specification, analysis, and verification system.
In contrast to many such systems, which use a monolithic reasoning ap-
proach, Jahob provides a general integrated reasoning framework, which
enables multiple automated reasoning systems to work together to prove
the desired program correctness properties.

We have used Jahob to prove the full functional correctness of a collec-
tion of linked data structure implementations. The automated reasoning
systems are able to automatically perform the vast majority of the rea-
soning steps required for this verification. But there are some complex
verification conditions that they fail to prove. We have therefore devel-
oped a proof language, integrated into the underlying imperative Java
programming language, that developers can use to control key choice
points in the proof search space. Once the developer has resolved these
choice points, the automated reasoning systems are able to complete the
verification. This approach appropriately leverages both the developer’s
insight into the high-level structure of the proof and the ability of the
automated reasoning systems to perform the mechanical steps required
to prove the verification conditions.

Building on Jahob’s success with this challenging program verifica-
tion problem, we contemplate the possibility of verifying the complete
absence of fatal errors in large software systems. We envision combining
simple techniques that analyze the vast majority of the program with
heavyweight techniques that analyze those more sophisticated parts of
the program that may require arbitrarily sophisticated reasoning. Modu-
larity mechanisms such as abstract data types enable the sound division
of the program for this purpose. The goal is not a completely correct pro-
gram, but a program that can survive any remaining errors to continue
to provide acceptable service.

R.A. Schmidt (Ed.): CADE 2009, LNAI 5663, pp. 1–16, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 M. Rinard

1 Introduction

Data structure consistency is a critical program correctness property. Indeed,
it is often directly related to the meaningful survival of the program. As long
as a program preserves the integrity of its core data structures, it is usually
able to execute through errors to continue to provide acceptable (although not
necessarily perfect) service to its users [1,2,3,4,5,6,7].

We have developed a general program specification and verification system,
Jahob, and used Jahob to verify, for the first time, the full functional correctness
of a collection of linked data structure implementations [8,9,10]. This verification
constitutes a key step towards the goal of statically ensuring data structure
consistency — part of the verification process is ensuring that individual data
structure implementations preserve invariants that capture key internal data
structure consistency constraints.

1.1 Integrated Reasoning

To verify the full functional correctness of linked data structure implementa-
tions, Jahob must work with sophisticated properties such as transitive closure,
lambda abstraction, quantified invariants, and numerical relationships involving
the sizes of various data structure components. The diversity and complexity
of the resulting verification conditions makes the use of a single monolithic rea-
soning system counterproductive. Instead, Jahob uses integrated reasoning —
it implements a general framework that enables arbitrary reasoning systems
to interoperate to prove the complex verification conditions that arise in this
context [8,10]. The success of integrated reasoning depends on two techniques:

– Splitting: Jahob splits verification conditions into equivalent conjunctions
of subformulas and processes each subformula independently. Splitting en-
ables Jahob to take a single formula that requires many kinds of reasoning,
divide the formula up into subformulas (each of which requires only a single
kind of reasoning), then apply multiple different reasoning systems as appro-
priate to solve the subformulas. The result is that Jahob is able to leverage
the combined power of an arbitrary number of reasoning systems to solve
complex formulas.

– Formula Approximation: In general, each reasoning system will have its
own restrictions on the set of formulas that it will accept as input. Several
formula approximation techniques make it possible to successfully deploy
a diverse set of reasoning systems together within a single unified reason-
ing framework. These approximation techniques accept higher-order logic
formulas and create equivalent or semantically stronger formulas accepted
by specialized decision procedures, provers, and other automated reasoning
systems.

Our approximation techniques rewrite equalities over complex types such
as functions, apply beta reduction, and express set operations using first-
order quantification. They also soundly approximate constructs not directly
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Fig. 1. Integrated Reasoning in the Jahob System

supported by a given specialized reasoning system, typically by replacing
problematic constructs with logically stronger and simpler approximations.

Together, these techniques make it possible to productively apply arbitrary col-
lections of specialized reasoning systems to complex higher-order logic formulas.
Jahob contains a simple syntactic prover, interfaces to first-order provers (SPASS
[11] and E [12]), an interface to SMT provers (CVC3 [13,14] and Z3 [15,16]), an in-
terface to MONA [17,18], an interface to the BAPA decision procedure [19,20], and
interfaces to interactive theorem provers (Isabelle [21] and Coq [22]) (see
Figure 1). The interactive theorem prover interfaces make it possible for Jahob
to, when necessary, leverage human insight to prove arbitrarily complex formulas
requiring arbitrarily sophisticated reasoning.

The reason integrated reasoning is so appropriate for our program verification
tasks is the diversity of the generated verification conditions. The vast majority
of the formulas in these verification conditions are well within the reach of even
quite simple decision procedures. But there are always a few complex formulas
that require sophisticated techniques. Integrated reasoning makes it possible for
Jahob to apply multiple reasoning systems as appropriate: simple, fast solvers
for simple formulas, and arbitrarily sophisticated (and therefore arbitrarily un-
scalable) solvers for complex formulas, and, if absolutely necessary, interactive
theorem proving.
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In recent years the automated reasoning community has developed a range
of very powerful reasoning systems. We have found integrated reasoning to be
an effective way to productively apply the combined power of these reasoning
systems to verify complex and important program correctness properties. One
particularly important aspect of integrated reasoning is its ability to leverage
arbitrarily specialized reasoning systems that are designed to operate within
arbitrarily narrow domains. The tight focus of these reasoning systems makes
them irrelevant for the vast majority of the reasoning steps that Jahob must
perform. But they are critical in enabling Jahob to deal effectively with the
full range of properties that arise in the verification of sophisticated linked data
structure implementations (and, we expect, will arise in other ambitious program
verification efforts). Jahob’s integrated reasoning technique makes it possible for
these kinds of reasoning systems to make a productive contribution within a
larger program analysis and verification system.

1.2 Proof Choice Point Selection

In our experience, automated reasoning systems encounter difficulties proving
verification conditions when the corresponding proof search spaces have key
choice points (such as quantifier instantiations, case splits, selection of induction
hypotheses, and lemma decompositions) that the reasoning systems are unable
to resolve in any relevant amount of time.

We have therefore developed a proof language that enables developers to re-
solve these key choice points [9]. Because this proof language is integrated into
the underlying imperative programming language (Java), it enables develop-
ers to stay within a familiar conceptual framework as they work with choice
points to shape the overall structure of the path through the proof search space.
The automated reasoning systems in Jahob are then able to leverage this high-
level guidance to perform all of the remaining proof steps. This approach ap-
propriately leverages the complementary capabilities of the developers and the
automated reasoning systems. Developers usually have the insight required to
effectively shape the high-level structure of the correctness proof; automated rea-
soning systems excel at the detailed symbolic manipulation required to leverage
the guidance to complete the proof.

Given the substantial reasoning capabilities of current reasoning systems and
the rate at which these reasoning capabilities are improving, we expect technolo-
gies (such as the Jahob integrated proof language) that are designed to leverage
high-level developer insight into the proof process to become increasingly viable.
And because these techniques can significantly reduce the effort required to ob-
tain a given result, we expect them to be increasingly deployed across a wide
range of automated reasoning scenarios.

1.3 Program Survival

Data structure consistency provides, by itself, no guarantee that the program
as a whole will execute correctly. Indeed, given the difficulty of obtaining full
program correctness specifications (and, more fundamentally, the fact that no
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one can state precisely what most large software systems should do), we expect
full program verification to remain beyond reach for the foreseeable future.

But it is possible, however, to systematically identify all of the errors that
could cause a program to fail outright. And because standard techniques such
as testing can deliver programs that operate reliably on almost all inputs, the
elimination of fatal errors is a key step towards obtaining software systems that
can survive the inevitable remaining errors to continue to deliver acceptable
service.

We have developed a set of (in most cases quite simple) dynamic techniques
that, together, enable programs to survive virtually all errors [1,2,3,4,5,6,7]. The
experimental results show that these techniques are surprisingly effective in en-
abling programs to survive otherwise fatal errors so that they can continue to
provide effective service to users.

1.4 Static Verification of Survival Properties

In this paper we explore the possibility of using program analysis and verification
technology to statically guarantee the absence of fatal errors in software systems.
A recurring theme is that relatively simple and scalable techniques that can
operate effectively across large parts of the program should be sufficient to verify
the absence of fatal errors in almost all of the program.

But there will always be (for reasons of efficiency and desired functionality)
complex parts of the program that are difficult if not impossible to analyze using
these techniques. For these parts of the program we advocate the use of sophisti-
cated heavyweight program analysis and verification techniques that potentially
involve the developer, in some cases quite intimately, in the verification process.
We see two keys to the success of this approach:

– Modularity: It is practical to apply heavyweight reasoning techniques only
to a feasibly sized region of the program. Modularity mechanisms (such as
abstract data types) that restrict the regions of the program to which these
techniques must be applied are essential to the success of this approach.

– Developer Interaction: We have found both integrated reasoning and
proof choice point selection to play critical roles in enabling successful data
structure consistency proofs. Given the quite sophisticated properties that
will inevitably arise, we believe that both of these techniques will also prove
to be critical to the verification of other survival properties.

For any particular program correctness property, there is a temptation to de-
velop specification languages and verification techniques that are tailored to that
property. We have chosen, in contrast, to use a general purpose specification and
verification approach. The disadvantage of this general approach is that for any
specific property it can require more developer specification and verification ef-
fort than an approach tailored for that property. But the range of properties that
our general approach can address justifies the engineering effort required to build
a powerful and versatile reasoning system that the developer can use to specify
and verify virtually any desired property. In particular, the system can usu-
ally smoothly extend to handle unforeseen extensions of the original properties.
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Tailored approaches, in contrast, usually have difficulty supporting unforeseen
extensions, in which case the developer is left with no good specification and
verification alternative at all.

We focus on the static verification of several properties that are especially
relevant to program survival: data structure consistency, the absence of memory
errors such as null pointer dereferences and out of bounds accesses, the absence
of memory leaks, and control flow properties such as the absence of infinite
loops. In all of these cases, with the exception of memory leaks, we expect a
dual analysis approach to be effective in making it possible to statically verify
the desired property. In particular, we expect simple and scalable techniques
to suffice for the vast majority of the program, with standard encapsulation
mechanisms such as abstract data types providing the modularity properties
required to apply heavyweight techniques successfully to those feasibly small
regions of the program that require such techniques. While the current focus is
on verifying complex properties in targeted parts of the program, in the longer
run we expect the construction of effective scalable analyses for the simpler
properties that must hold across large regions of the program to prove to be the
more challenging problem.

2 Dynamic Techniques

Before considering static verification techniques for survival properties, we first
review our experience with a collection of dynamic survival techniques. We ob-
tained these techniques by analyzing the different ways that programs could
fail, then developing a simple technique that enables the program to survive
each class of failures.

In comparison with the static techniques considered in this paper, the great
advantage of these dynamic techniques is their simplicity — instead of relying on
potentially quite heavyweight program analysis and verification technology, the
techniques simply change the semantics of the underlying model of computation
to completely eliminate the targeted class of failures. The insight here is that
standard models of computation are unforgiving and brittle — the unstated
assumption is that because programs should be perfect, the developer should
bear all of the responsibility for making the program execute successfully. Our
new models of computation, in contrast, acknowledge that although developers
make mistakes, these mistakes need not be fatal in the context of a more forgiving
model of computation that works harder to make the program succeed. Our
experimental results show that the resulting nonstandard models of computation
can be quite effective in practice in enabling programs to execute effectively
through situations that would cause them to fail with standard brittle models
of computation.

2.1 Failure-Oblivious Computing

Programs that use failure-oblivious computing check each memory access (either
statically or dynamically) for memory errors. On write memory errors (for ex-
ample, an out of bounds write or write via a null pointer), the program simply
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discards the write. On read memory errors, the program simply makes up a value
to return as the result of the read [4]. In effect, this technique changes the se-
mantics of the underlying programming language to make every memory access
that the program can ever execute succeed. Experimental results indicate that,
in practice, this technique enables programs to successfully survive otherwise
fatal memory errors. And it provides an absolute guarantee that a memory error
will never terminate the execution. Discarding out of bounds writes also helps
eliminate data structure corruption errors that would otherwise occur on out of
bounds writes. The standard way to apply failure-oblivious computing is to use
a compiler to introduce the memory error checks (although it is, in principle,
possible to apply the technique at the binary or even hardware level [23]).

Note that throwing exceptions on memory errors in the hope of invoking a
developer-provided exception handler that can recover from the error is usually
totally ineffective. In practice, the exception usually propagates up to the top-
level exception handler, which terminates the program. And in general, it can be
difficult for developers to provide effective exception handlers for unanticipated
exceptions. Most memory errors are, of course, unanticipated — after all, if the
developer had thought a memory error could occur, he or she would have written
different code in the first place.

2.2 Loop Termination

Infinite loops threaten the survival of the program because they deny parts of the
program access to a resource (the program counter) that they need to execute
successfully. The following bounded loop technique completely eliminates infinite
loops [24]:1

– Training: Execute the program for several training runs. For each loop,
record the observed maximum — i.e., the maximum number of iterations
the loop performed during any training run.

– Iteration Bound: Select a slack factor (typically a number around several
thousand) and, for each loop, compute an iteration bound — i.e., the slack
factor times the observed maximum for that loop. If the loop never executed
during the training runs, simply use the maximum iteration bound for loops
that did execute during training runs.

– Iteration Bound Enforcement: If necessary, transform the program
to add an explicit loop counter to each loop. During production runs, use
the loop counter to exit the loop whenever the number of iterations exceeds
the iteration bound. If the loop exits after executing more iterations than the

1 Of course, any program that is designed to execute for an unbounded period of time
must have at least one unbounded loop (or other form of unbounded execution such
as unbounded recursion). For example, many event-driven programs have an event-
processing loop that waits for an event to come in, processes the event, then returns
back to the top of the loop to wait for the next event. It is relatively straightforward
for the developer to identify these loops and for the system to not apply the infinite
loop termination technique to these loops.
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observed maximum number of iterations from the training runs but fewer
iterations than the iteration bound, update the iteration bound to be the
slack factor times the number of iterations from the current execution of the
loop.

2.3 Cyclic Memory Allocation

Like infinite loops, memory leaks are a form of unbounded resource consumption
that enable one component to exhaust resources required for the program to
survive. It is possible to completely eliminate memory leaks by allocating a fixed
size buffer for each memory allocation site, then allocating objects cyclically out
of that buffer [24]. Specifically, the nth object allocated at each site is allocated
in slot n mod s, where s is the number of objects in the buffer. If the program
only accesses at most the last s objects allocated at the corresponding site, this
transformation does not affect the correctness of the program.

The potential disadvantage of cyclic memory allocation is that it may allocate
multiple live objects in the same slot. The result is that writes to one object will
overwrite other objects allocated in that same slot. Our experimental results
indicate that overlaying live objects in this way typically causes the program
to gracefully degrade rather than fail [24]. We attribute this property, in part,
to the fact that the transformation (typically) preserves the type safety of the
program.

2.4 Data Structure Repair

In the presence of failure-oblivious computing corrupted data structures are, by
themselves, incapable of causing an outright program failure. They can, how-
ever, significantly disrupt the execution of the program and make it difficult for
the program to execute acceptably. Data structure repair, which is designed to
restore important consistency properties to damaged data structures, can signif-
icantly improve the ability of the program to deliver acceptable results [1,6,7].
We have found that this result holds even when the repair is unable to com-
pletely reconstruct information originally stored in the data structure (typically
because the data structure corruption error destroyed the information before the
repair was invoked).

3 Data Structure Consistency

Our experience with data structure repair and failure-oblivious computing shows
that data structure consistency can be a critical component of meaningful pro-
gram survival. We propose a multistage approach to the static verification of
data structure consistency. The first stage is to obtain fully verified implemen-
tations of standard abstract data types. This goal has been largely achieved in
Jahob program verification system [9,8,10]. The second stage is to verify proper-
ties that involve multiple abstract data types. Building on verified abstract data
type implementations, the Hob project made significant progress towards this
goal [25,26,27,28], but challenges still remain.
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3.1 Jahob

Jahob is a general program verification system with a powerful specification
language based on higher-order logic. Because the specifications take the form
of specialized comments, it is possible to use standard Java implementation
frameworks to execute specified programs. Given these specifications, the Jahob
implementation processes the program to generate verification conditions. It
then uses its underlying integrated reasoning system to prove these verification
conditions.

3.2 The Jahob Specification Language

Jahob specifications use primitive types (such as integers and booleans), sets,
and relations to characterize the abstract state of the data structure. A verified
abstraction function establishes the correspondence between the concrete values
that exist when the program executes (the implementation directly manipulates
these values) and the abstract state in the specification (which exists only for ver-
ification purposes). Method contracts, class invariants, and annotations within
method bodies use classical higher-order logic to express the desired properties
of the data structure interface and implementation.

Specification Variables. In addition to concrete Java variables, Jahob sup-
ports specification variables, which do not exist during program execution but
are useful to specify the behavior of methods without revealing the underly-
ing data structure representation. In addition to other purposes, developers use
specification variables to identify the abstract state of data structure implemen-
tations. Abstraction functions specify the connection between the concrete Java
variables and the corresponding specification variables.

Method Contracts. A method contract in Jahob contains three parts: 1) a
precondition, written as a requires clause, stating the properties of the program
state and parameter values that must hold before a method is invoked; 2) a frame
condition, written as a modifies clause, listing the components of the state that
the method may modify (the remaining components remain unchanged); and 3)
a postcondition, written as an ensures clause, describing the state at the end of
the method (possibly defined relative to the parameters and state at the entry
of the method). Jahob uses method contracts for assume/guarantee reasoning in
the standard way. When analyzing a method m, Jahob assumes m’s precondition
and checks that m satisfies its postcondition and the frame condition. Dually,
when analyzing a call to m, Jahob checks that the precondition of m holds,
assumes that the values of state components from the frame condition of m
change subject only to the postcondition of m, and that state components not
in the frame condition of m remain unchanged. Public methods omit changes
to the private state of their enclosing class and instead use public specification
variables to describe how they change the state.
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Class Invariants. A class invariant can be thought of as a boolean-valued
specification variable that Jahob implicitly conjoins with the preconditions and
postconditions of public methods. The developer can declare an invariant as
private or public (the default annotation is private). Typically, a class invariant is
private and is visible only inside the implementation of the class. Jahob conjoins
the private class invariants of a class C to the preconditions and postconditions
of methods declared in C. To ensure soundness in the presence of callbacks,
Jahob also conjoins each private class invariant of class C to each reentrant call
to a method m declared in a different class D. This policy ensures that the
invariant C will hold if D.m (either directly or indirectly) invokes a method in
C. To make an invariant F with label l hold less often than given by this policy,
the developer can write F as b→ I for some specification variable b. To make F
hold more often, the developer can use assertions with the shorthand (theinv l)
that expand into F .

Loop Invariants. The developer states a loop invariant of a while loop imme-
diately after the while keyword using the keyword invariant (or inv for short).
Each loop invariant must hold before the loop condition and be preserved by
each iteration of the loop. The developer can omit conditions that depend only
on variables not modified in the loop — Jahob uses a simple syntactic analysis
to conclude that the loop preserves such conditions.

3.3 The Jahob Integrated Proof Language

Conceptually, most reasoning systems search a proof space — they start with
a set of known facts and axioms, then (at a high level) search the resulting
proof space in an attempt to discover a proof of the desired consequent fact. We
have found that, in practice, when automated reasoning systems fail, they fail
because there are key choice points in the proof search space that are difficult
for them to resolve successfully. We have therefore developed a proof language,
integrated into the underlying imperative programming language, that enables
the developer to resolve such choice points [9]. Examples of such choice points
include lemma decompositions, case splits, universal quantifier instantiations,
and witness identification for existentially quantified facts. We have also aug-
mented the language with constructs that allow developers to structure proofs
by contradiction and induction.

Although we focus on the constructs that developers use to resolve choice
points, Jahob provides a full range of proof constructs. Developers can therefore
provide as much or as little guidance as desired. It is even possible for a developer
to use the integrated proof language to explicitly perform every step of the proof.

Finally, Jahob provides a construct that enables developers to deal with a
pragmatic problem that arises with modern reasoning systems. In practice, these
reasoning systems are very sensitive to the assumption base — the assumptions
from which to prove the desired consequent fact. If the assumption base is too
large or contains too many irrelevant assumptions, the search space becomes too
difficult for the reasoning system to search effectively and it fails to find a proof.
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Jahob therefore allows developers to name and identify a set of assumptions
for the reasoning systems to use when attempting to prove a specific fact. The
resulting precise identification of a minimal assumption base can often enable the
reasoning systems to prove desired facts without any additional assistance. This
capability can be especially important when verifying complex data structures
(because the reasoning systems place many properties into the assumption base
during the course of the verification).

3.4 Verification Condition Generation and Integrated Reasoning

Jahob produces verification conditions by simplifying the Java code and trans-
forming it into extended guarded commands, then desugaring extended guarded
commands into simple guarded commands, and finally generating verification
conditions from simple guarded commands in a standard way [10,8]. It then
splits the verification conditions into subformulas and, with the aid of formula
approximation, uses the integrated automated reasoning systems to prove the
subformulas [10,8]. It runs each automated reasoning system with a timeout and,
on multicore machines, supports the invocation of multiple automated reasoning
systems in parallel to prove a given subformula. Our current system verifies most
of our data structure implementations within several minutes [8]. Our binary
search tree implementation, with a verification time of an hour and forty-five
minutes (primarily because of time spent in the MONA decision procedure), is
an outlier.

3.5 Hob

Certain data structure consistency properties involve multiple data structures.
The goal of the Hob project was to develop techniques for statically verifying
such properties. Hob worked with set abstractions — it modelled the state of
each data structure as an abstract set of objects. Developers could then use
a standard set algebra (involving the boolean operators along with operations
such as set inclusion and set difference) to state the desired consistency proper-
ties [25,26,27,28].

Although Hob contained techniques for verifying the consistency of individual
data structure implementations, in the long run a more effective approach would
be to first use a system like Jahob to verify the full functional correctness of
individual data structure implementations, then use a more scalable system like
Hob to verify properties involving multiple data structures. The Hob verification
would, of course, work with the interfaces for the individual data structures
(these interfaces would be verified by Jahob or a system like Jahob), not the
data structure implementations. This approach would appropriately leverage
the relative strengths of the two systems.

Our experience with Hob indicates that sets of objects provide a particularly
compelling abstraction. In many domains it is possible to model user-level con-
cepts with sets of objects; in these domains the resulting Hob specifications often
capture properties that are directly relevant to the user. This relevance stands



12 M. Rinard

in stark contrast to standard specifications, which tend to focus heavily on in-
ternal implementation details as opposed to high-level concepts that are directly
meaningful to users.

Extending Hob to support relations would significantly increase its expressive-
ness and utility. This extension would enable Hob to support more sophisticated
consistency constraints — for example, that one data structure contains every
object in the domain of a map implemented by another data structure. The chal-
lenge with this extension is developing the scalable analyses required to verify
these more expressive constraints.

3.6 Self-defending Data Structures

Many verification approaches (including Jahob and Hob) use assume/guarantee
reasoning. Each procedure has a precondition that it assumes is true upon en-
try. It is the responsibility of the client to ensure that the precondition holds.
Each procedure also has a postcondition, which the procedure implementation
guarantees to be true assuming that the precondition holds upon entry to the
procedure. Encapsulated invariants capture the key consistency properties.

With this approach, the data structure consistency depends both on the im-
plementation and on the client — if the client fails to satisfy a precondition, there
is no guarantee that the implementation will preserve any encapsulated invari-
ants. Moreover, the standard preconditions for many abstract data types are
often quite complicated and difficult to verify with the kind of scalable analyses
required to successfully verify that clients correctly satisfy the preconditions.

We therefore advocate the use of self-defending data structures with empty
preconditions (such data structures can, of course, have encapsulated invari-
ants). Self-defending data structures contain all of the checks required to ensure
that they remain consistent regardless of client behavior. The advantage is that
such data structures completely eliminate the need for client analyses in the
verification of the consistency of individual data structures.

4 Infinite Loops

In the last several years researchers have developed a set of techniques for stati-
cally verifying that loops terminate [29]. We expect that, in general, researchers
will be able to develop techniques that are effective in proving that the vast ma-
jority of loops terminate. But we also expect certain kinds of loops to continue
to be beyond the reach of any practically deployable lightweight static analysis.
Two examples of such loops are loops that operate on linked data structures (the
termination of these loops may depend on complex data structure consistency
properties) and loops whose termination depends on the convergence of complex
numerical algorithms.

Given the tractable size of abstract data types, we advocate the use of heavy-
weight formal reasoning techniques (much like those that the Jahob system sup-
ports) to prove termination properties. Because abstract data types are standard,
widely used components, they can justify large formal reasoning efforts.
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We anticipate that a similar approach would work for many numerical al-
gorithms. But formal reasoning techniques for numerical algorithms are less
developed than those for more discrete or symbolic algorithms. And in many
cases properties such as termination depend on subtle mathematical properties
of discretized representations of continuous quantities. It is unclear the extent to
which formally verified termination proofs will become practical for widespread
use. One potential solution is simply to place a predetermined bound on the
number of iterations of each loop (in a manner similar to the loop termination
technique described above in Section 2.2).

5 General Control Flow Anomalies

Infinite loops are a special case of more general control flow anomalies that can
prevent the program from executing components required to provide acceptable
service. For example, many event-driven programs have an event processing loop.
In many cases it may be worthwhile to develop static analyses that reason about
the control flow to prove that every execution will, in a finite amount of time,
return back to the top of the event processing loop. We anticipate that the
major complication (to the extent that there is one) will be reasoning about
the behavior of the program in the face of exceptions and explicit program
exits. Developer-provided assertions and safety checks can be especially counter-
productive in this context. Developers are often overly conservative about the
conditions they check — in our experience, programs are often able to survive
violations of checks that developers have added to terminate the program in the
face of unexpected executing conditions or state changes. One straightforward
approach is to simply excise all calls to primitives that terminate the program [3].

6 Memory Errors

Reasonably simple and usable augmented type systems exist that are capable of
statically guaranteeing the absence of null pointer dereferences [30]. Statically
verifying the absence of out of bounds array accesses is a much more challenging
and complex task, in large part because of the need to reason about (poten-
tially complex) array indexing expressions [31]. Once again, we expect the most
productive approach to involve isolating complex array indexing computations
inside abstract data types or similar modules, then using potentially heavyweight
sophisticated reasoning techniques to prove the absence of array bounds viola-
tions. With this approach, simpler and more scalable techniques should be able
to verify the absence of array bounds violations in the remaining parts of the
code.

7 Memory Leaks

Statically verifying the absence of memory leaks given standard program se-
mantics is, with current program analysis and verification technology, the most
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challenging task we consider in this paper. Techniques exist for finding certain
classes of leaks in array-based data structure implementations [32]. Modified es-
cape analyses should also be able to find leaks that occur when the program
takes certain exceptional execution paths [33]. A key difficulty is that objects
may remain reachable in linked data structures with the data structure inter-
face enabling invocation sequences that can cause the computation to access
the objects. But in some cases, because of restricted usage patterns in the data
structure clients, these invocation sequences can never actually occur in the pro-
gram as a whole. We are aware of no static analysis or verification techniques
that are designed to operate successfully in this scenario. The difficulty of devel-
oping such techniques would depend heavily on the characteristics of the usage
patterns that occur in practice.

8 Conclusion

Program survival is a key consideration in a world in which full program verifica-
tion is unrealistic. Statically verifying key survival properties will involve scalable
static analyses that operate over the vast majority of the program working in
combination with sophisticated program verification technologies that leverage
both heavyweight automated reasoning techniques and developer intervention
to prove complex survival properties in targeted regions of the program. These
technologies promise to significantly enhance our ability to deliver software sys-
tems that can successfully execute through errors to provide acceptable service
to users.
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23. Witchel, E., Rhee, J., Asanović, K.: Mondrix: Memory isolation for linux using
mondriaan memory protection. In: 20th ACM Symposium on Operating Systems
Principles (SOSP-20) (2005)

24. Nguyen, H.H., Rinard, M.: Detecting and eliminating memory leaks using cyclic
memory allocation. In: Proceedings of the 2007 International Symposium on Mem-
ory Management (2007)

25. Lam, P., Kuncak, V., Rinard, M.: Cross-cutting techniques in program specifica-
tion and analysis. In: 4th International Conference on Aspect-Oriented Software
Development (AOSD 2005) (2005)

www.SMT-LIB.org
http://dx.doi.org/10.1007/s10817-006-9042-1


16 M. Rinard

26. Kuncak, V., Lam, P., Zee, K., Rinard, M.: Modular pluggable analyses for data
structure consistency. IEEE Transactions on Software Engineering 32(12) (Decem-
ber 2006)

27. Lam, P., Kuncak, V., Rinard, M.: Generalized typestate checking for data structure
consistency. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 430–447.
Springer, Heidelberg (2005)

28. Lam, P.: The Hob System for Verifying Software Design Properties. PhD thesis,
Massachusetts Institute of Technology (February 2007)

29. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
Proceedings of the ACM SIGPLAN 2006 Conference on Programming Language
Design and Implementation (PLDI 2006) (June 2006)

30. Papi, M.M., Ali, M., Correa Jr., T.L., Perkins, J.H., Ernst, M.D.: Practical plug-
gable types for java. In: Proceedings of the 2008 International Symposium on Soft-
ware Testing and Analysis, Seattle, WA (July 2008)

31. Rugina, R., Rinard, M.C.: Symbolic bounds analysis of pointers, array indices, and
accessed memory regions. ACM Trans. Program. Lang. Syst. 27(2) (2005)

32. Shaham, R., Kolodner, E., Sagiv, S.: Automatic removal of array memory leaks in
java. In: Watt, D.A. (ed.) CC 2000. LNCS, vol. 1781, p. 50. Springer, Heidelberg
(2000)

33. Whaley, J., Rinard, M.: Compositional pointer and escape analysis for Java pro-
grams. In: OOPSLA, Denver (November 1999)



Superposition and Model Evolution Combined

Peter Baumgartner1 and Uwe Waldmann2

1 NICTA� and Australian National University, Canberra, Australia
Peter.Baumgartner@nicta.com.au

2 MPI für Informatik, Saarbrücken, Germany
uwe@mpi-inf.mpg.de

Abstract. We present a new calculus for first-order theorem proving
with equality, ME+Sup, which generalizes both the Superposition cal-
culus and the Model Evolution calculus (with equality) by integrating
their inference rules and redundancy criteria in a non-trivial way. The
main motivation is to combine the advantageous features of both—rather
complementary—calculi in a single framework. For instance, Model Evo-
lution, as a lifted version of the propositional DPLL procedure, con-
tributes a non-ground splitting rule that effectively permits to split a
clause into non variable disjoint subclauses. In the paper we present the
calculus in detail. Our main result is its completeness under semantically
justified redundancy criteria and simplification rules.

1 Introduction

We present a new calculus for first-order theorem proving with equality, ME+Sup,
which generalizes both the Superposition calculus and the Model Evolution calcu-
lus (with equality), MEE. It integrates the inference rules of Superposition and of
Model Evolution in a non-trivial way while preserving the individual semantically-
based redundancy criteria. The inference rules are controlled by a rather flexible
labelling function on atoms. This permits non-trivial combinations where infer-
ence rule applicability is disjoint, but pure forms of both calculi can be (trivially)
configured, too.

On a research-methodological level, this paper attempts to bridge the gap be-
tween instance-based methods (per MEE) and Resolution methods (per Superpo-
sition). Both methods are rather successful, for instance in terms of performance
of implemented systems at the annual CASC theorem proving competition. How-
ever, they currently stand rather separated. They provide decision procedure for
different sub-classes of first-order logic, and their inference rules are incompat-
ible, too. For instance, subsumption deletion can be used with instance-based
methods in only a limited way.

The main motivation for this work is to combine the advantages of both calculi
in a single framework. Technically, ME+Sup can be seen as an extension of the
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essential Model Evolution inference rules by Superposition inference rules. Alter-
natively, ME+Sup can be seen to extend Superposition with a new splitting rule
that permits, as a special case, to split a clause into non variable disjoint sub-
clauses, which is interesting, e.g., to obtain a decision procedure for function-free
clause logic. It seems not too difficult to extend current Superposition theorem
provers with the new splitting rule, in particular those that already provide in-
frastructure for a weaker form of splitting (such as SPASS [6]). Finally, another
motivation for this work is to simplify the presentation of MEE by aligning it
with the better-known superposition framework. The following clause set is pro-
totypical for the intended applications of ME+Sup (function symbols are typeset
in sans-serif and variables in italics).

(1) x≤ z∨¬(x≤ y)∨¬(y≤ z) (4) select(store(a, i,e), i)≈ e
(2) x≤ y∨ y≤ x (5) select(store(a, i,e), j)≈ select(a, j)∨ i≈ j
(3) x≈ y∨¬(x≤ y)∨¬(y≤ x) (6) i≤ j∨¬(select(a0, i)≤ select(a0, j))

The clauses (1)-(3) axiomatize a total order, clauses (4)-(5) axiomatize ar-
rays, and clause (6) says that the array a0 is sorted and that there are no
duplicates in a0 (the converse of (6), ¬(i ≤ j) ∨ select(a0, i) ≤ select(a0, j), is
entailed by (1)-(3),(6)). This clause set is satisfiable, but Superposition equipped
with standard redundancy criteria (with or without selection of negative literals)
does not terminate on these clauses. This is, essentially, because the length of
the clauses derived cannot be bounded.The clauses (1) and (2) are enough to
cause non-termination, and MEE does not terminate on (1)-(6) either. However,
ME+Sup does terminate when all ≤-atoms are labelled as “split atoms” and all
other atoms are “superposition atoms”.1 Intuitively, the ME-part of ME+Sup
takes care of computing a model for the split atoms through a context, the main
data structure of ME to represent interpretations, and the Superposition part
of ME+Sup takes care of (implicitly) computing a model for the superposition
atoms.

To demonstrate how ME+Sup can be used to effectively provide a new split-
ting rule for Superposition consider the clauses (1) and (2) from above. Let us
now “split” clause (1) into two non-variable disjoint clauses by introducing a
name s:

(1a) x ≤ z ∨ ¬(x ≤ y) ∨ ¬s(y, z) (1b) s(y, z) ∨ ¬(y ≤ z)

Now declare all ≤-atoms as superposition atoms and all s-atoms as split atoms.
Further, all s-atoms must be strictly greater than all ≤-atoms (this can be
achieved using standard orderings and using a two-sorted signature). In effect
then, resolution and factoring inferences are all blocked on clauses that contain
s-literals, as the usual maximality restrictions for resolution and factorisation
apply in ME+Sup, too. Therefore, only factorisation is applicable, to clause (2),
yielding x ≤ x. The only inference rule that is applicable now is Neg-U-Res,
1 In general, split atoms can be equations, too, and the signatures of the split and the

superposition atoms need not be disjoint. We intended to keep the examples simple.
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which gives ¬(y ≤ z) · ¬s(y, z). (This is a constrained clause, a pair C ·Γ , where
C is a clause and the constraints Γ are split atoms or their negation.) That is,
s(y, z) has been shifted into the constraint part, put aside for later processing
by ME rules. The literal ¬(y ≤ z) is now maximal in ¬(y ≤ z) · ¬s(y, z), and
resolution between this clause and (2) gives z ≤ y · ¬s(y, z). Similarly, resolu-
tion between ¬(y ≤ z) · ¬s(y, z) and x ≤ x gives the constrained empty clause
�·¬s(x, x). This does not make a refutation, because a model that assigns true to
s(x, x), and hence falsifies the constraint, has not been excluded. Indeed, to con-
strained empty clauses the ME-style split rule is applicable, resulting in two cases
(contexts), with s(x, x) and ¬s(x, x), respectively. Notice this is a non-ground
splitting. The derivation stops at this point, as no inference rule is applicable,
and s(x, x) specifies a model. The other case with ¬s(x, x) can be used to derive
the empty clause � · ∅, which stands for “false”.

Related Work. ME+Sup subsumes the Superposition calculus [2] and its redun-
dancy concept and also the essentials of propositional DPLL, that is, split and
unit propagation. Model Evolution [3] and Model Evolution with Equality [4]
are not completely covered, though, since universal literals and some optional
inference rules are missing. The model construction that we use has some simi-
larity with the one used for Constraint Superposition [5], where one also starts
with constructing a model for reduced instances and later extends this to the
full clause set provided that this is constraint-free.

2 Formal Preliminaries

We consider signatures Σ comprised of a binary predicate symbol ≈ (equality),
and a finite set of function symbols of given arity (constants are 0-ary function
symbols). We also need a denumerable set of variables X disjoint from Σ. Terms
(over Σ and X) are defined as usual. If t is a term we denote by Var(t) the set
of t’s variables. A term t is ground iff Var(t) = ∅. A substitution is a mapping
of variables to terms that is the identity almost everywhere. We write {x1 �→
t1, . . . , xn �→ tn} for the substitution that maps the variable xi to the term ti,
for i = 1, . . . , n. The application of a substitution to a term t is written as tσ. A
renaming is a substitution that is a bijection of X onto itself. We write s � t,
iff there is a substitution σ such that sσ = t.2 We say that s is a variant of
t, and write s ∼ t, iff s � t and t � s. We write s � t if s � t but s �∼ t.
The notation s[t]p means that the term t occurs in the term s at position p, as
usual. The index p is left away when not important or clear from the context.
Because equality is the only predicate symbol, an atom is always an equation
s ≈ t, which is identified with the multiset {s, t}. Consequently, equations are
treated symmetrically, as s ≈ t and t ≈ s denote the same multiset. A literal
is an atom (a positive literal) or the negation of an atom (a negative literal).
Negative literals are generally written s �≈ t instead of ¬(s ≈ t). In the examples
below we often write a non-equational literal like P (t1, . . . , tn), which is meant
2 Note that many authors would write s � t in this case.
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to stand for the equation P (t1, . . . , tn) ≈ tt, where tt is a fresh constant that is
smaller than all other terms, and similarly for negative literals. We write L to
denote the complement of a literal L, i.e. A = ¬A and ¬A = A, for any atom A.
A clause is a multiset of literals {L1, . . . , Ln}, generally written as a disjunction
L1 ∨ · · · ∨ Ln. We write L ∨C to denote the clause {L} ∪ C. The empty clause
is written as �. All the notions on substitutions above are extended from terms
to atoms, literals and clauses in the obvious way.

Orderings. We suppose as given a reduction ordering 	 that is total on ground
Σ-terms.3 Following usual techniques [2,5, e.g.], it is extended to an ordering on
literals by taking a positive literal s ≈ t as the multiset {s, t}, a negative literal
s �≈ t as the multiset {s, s, t, t} and using the extension of 	 to multisets of terms
to compare literals. Similarly, clauses are compared by the multiset extension of
the ordering on literals. All these (strict, partial) orderings will be denoted by
the same symbol, 	. The non-strict orderings 
 are defined as s 
 t iff s 	 t or
s = t. We say that a literal L is maximal (strictly maximal) in a clause L ∨ C
iff there is no K ∈ C with K 	 L (K 
 L).

Rewrite Systems. A (rewrite) rule is an expression of the form l → r where l
and r are terms. A rewrite system is a set of rewrite rules. We say that a rewrite
system R is ordered by 	 iff l 	 r, for every rule l → r ∈ R. In this paper
we consider only (ground) rewrite systems that are ordered by 	. A term t is
reducible by l → r iff t = t[l]p for some position p, and t is reducible wrt. R if
it is reducible by some rule in R. The notion irreducible means “not reducible”.
A rewrite system R is left-reduced (fully reduced) iff for every rule l → r ∈ R, l
is (l and r are) irreducible wrt. R \ {l → r}. In other words, in a fully reduced
rewrite system no rule is reducible by another rule, neither its left hand side nor
its right hand side.

Interpretations. A (Herbrand) interpretation I is a set of ground atoms—exactly
those that are true in the interpretation. Validity of ground literals, ground
clauses, and clause sets in a Herbrand interpretation is defined as usual. We
write I |= F to denote the fact that I satisfies F , where F is a ground literal or
a clause (set), which stands for the set of all its ground instances (of all clauses
in the set). An E-interpretation is an interpretation that is also a congruence
relation on the ground terms. If I is an interpretation, we denote by I� the
smallest congruence relation on all ground terms that includes I, which is an E-
interpretation. We say that I E-satisfies F iff I� |= F . We say that F E-entails
F ′, written F |= F ′, iff every E-interpretation that satisfies F also satisfies F ′.

The above notions are applied to ground rewrite systems instead of interpre-
tations by taking the rules as equations. We write R� |= F and mean {l ≈ r |
l → r ∈ R}� |= F . It is well-know that any left-reduced (and hence any fully

3 A reduction ordering is a strict partial ordering that is well-founded and is closed
unter context i.e., s � s′ implies t[s] � t[s′] for all terms t, and liftable, i.e., s � t
implies sδ � tδ for every term s and t and substitution δ.
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reduced) ordered rewrite system R is convergent,4 see e.g. [1]) and that any
ground equation s ≈ t is E-satisfied by R, i.e., R� |= s ≈ t if and only if s and t
have the same (unique) normal form wrt. R.

Labelling Function. Broadly speaking, ME+Sup combines inference rules from
the Superposition calculus and inference rules resembling those of Model Evolu-
tion, but for each atom only a subset of the full set of inference rules is usable.
This is controlled by assuming a labelling function that partitions the set of pos-
itive ground atoms into two sets, the split atoms and the superposition atoms.5

We say a (possibly non-ground) atom is a split atom (superposition atom) iff at
least one ground instance is a split atom (superposition atom).

Thus, while a ground atom is either one or the other, the distinction is blurred
for non-ground atoms. From a practical point of view, to avoid overlap between
the ME and the superposition inference rules, it is desirable to keep the (non-
ground) split atoms and superposition atoms as separate as possible.

The separation into split atoms and superposition atoms is quite flexible. No
assumptions regarding disjointness of their underlying signatures or ordering
assumptions between their elements are required. For instance, one may declare
all ground atoms up to a certain term depth as split atoms. Even the set of non-
ground split atoms is finite then, modulo renaming. As will become clear, the
contexts evolved by the Model Evolution part of ME+Sup are finite then, which
might be interesting, e.g., to finitely represent (parts of) a counter-example for
non-theorems.

3 Contexts

Contexts have been introduced in [3] as the main data structure in the Model
Evolution calculus to represent interpretations; they have been adapted to the
equality case in [4], but here we work with the original definition, which is simpler
and more practical. More formally, when l and r are terms, a rewrite literal is
a rule l → r or its negation ¬(l → r), the latter generally written as l �→ r. By
treating → as a predicate symbol, all operations defined on equational literals
apply to rewrite literals as well. In particular, l → r = l �→ r and l �→ r = l → r.
If clear from the context, we use the term “literal” to refer to equational literals
as introduced earlier or to rewrite literals.

A context is a set of rewrite literals that also contains a pseudo-literal ¬x,
for some variable x. In examples we omit writing ¬x and instead implicitly
assume it is present. A non-equational literal P (t1, . . . , tn) in a context stands
for P (t1, . . . , tn) → tt, and similarly for negative literals. Where L is a rewrite
literal and Λ a context, we write L ∈∼ Λ if L is a variant of a literal in Λ. A
rewrite literal L is contradictory with a context Λ iff L ∈∼ Λ. A context Λ is
contradictory iff it contains a rewrite literal that is contradictory with Λ. For
4 A rewrite system is convergent iff it is confluent and terminating.
5 Notice that with the symmetric treatment of equations, l ≈ r is a split atom if and

only if r ≈ l is, and similarly for superposition atoms.
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instance, if Λ = {f(x) → a, f(x) �→ x} then f(y) �→ a and f(y) → y are
contradictory with Λ, while f(a) → a, a �→ f(x) and f(x) → y are not. From
now on we assume that all contexts are non-contradictory. This is justified by
the fact that the ME+Sup calculus defined below can derive non-contradictory
contexts only.

A context stands for its produced literals, defined as follows:

Definition 3.1 (Productivity [3]). Let L be a rewrite literal and Λ a context.
A rewrite literal K produces L in Λ iff K � L and there is no K ′ ∈ Λ such
that K � K ′ � L. The context Λ produces L iff it contains a literal K that
produces L in Λ, and Λ produces a multiset Γ of rewrite literals iff Λ produces
each L ∈ Γ .

For instance, the context Λ above produces f(b) → a, f(a) → a and f(a) �→ a,
but Λ produces neither f(a) → b nor a → f(x).

For the model construction in Section 7 we will need the set of positive ground
rewrite rules produced byΛ,ΠΛ :={l→ r |Λ produces l→ r and l→ r is ground}.
For instance, if Λ = {f(x) → x} and Σ consists of a constant a and the unary
function symbol f then ΠΛ = {f(a) → a, f(f(a)) → f(a), . . .}. We note that
productivity of rewrite literals corresponding to split atoms only is relevant for
the calculus.

4 Constrained Clauses

Let C = L1∨· · ·∨Ln be a clause, let Γ = {K1, . . . ,Km} be a multiset of rewrite
literals such that no Ki is of the form x → t, where x is a variable and t is a
term. The expression C · Γ is called a constrained clause (with constraint Γ ),
and we generally write C ·K1, . . . ,Km instead of C ·{K1, . . . ,Km}. The notation
C · Γ,K means C · Γ ∪ {K}.6

Applying a substitution σ to C · Γ , written as (C · Γ )σ, means to apply σ to
C and all literals in Γ . A constrained clause C ·Γ is ground iff both C and Γ are
ground. For a set of constrained clauses Φ, Φgr is the set of all ground instances
of all elements in Φ.

Constraints are compared in a similar way as clauses by taking the multi-
set extension of a (any) total ordering on ground rewrite literals. Constrained
clauses then are compared lexicographically, using first the clause ordering in-
troduced earlier to compare the clause components, and then using the ordering
on constraints. Again we use the symbol 	 to denote this (strict) ordering on
constrained clauses. It follows with well-known results that 	 is total on ground
constrained clauses. Observe that this definition has the desirable property that
proper subsumption among constrained clauses is always order-decreasing (the
subsuming constrained clause is smaller).

For the soundness proof of ME+Sup we need the clausal form of a constrained
clause C · Γ = L1 ∨ · · · ∨ Lm · l1 → r1, . . . , lk → rk, lk+1 �→ rk+1, . . . , ln �→ rn,
6 As will become clear later, literals x → t can never occur in constraints, because, in

essence, paramodulation into variables is unnecessary.
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which is the ordinary clause L1 ∨ · · · ∨ Lm ∨ l1 �≈ ri ∨ · · · ∨ lk �≈ rk ∨ lk+1 ≈
rk+1 ∨ · · · ∨ ln ≈ rn and which we denote by (C · Γ )c. From a completeness
perspective, however, a different reading of constrained clauses is appropriate.
The clause part C of a (ground) constrained clause C · Γ is evaluated in an
E-interpretation I, whereas the literals in Γ are evaluated wrt. a context Λ in
terms of productivity. The following definition makes this precise.

We say that a ground constraint Γ consists of split rewrite literals iff l ≈ r is
a split atom and l 	 r, for every l → r ∈ Γ or l �→ r ∈ Γ . A possibly non-ground
constraint Γ consists of split rewrite literals if some ground instance of Γ does.

Definition 4.1 (Satisfiaction of Constrained Clauses). Let Λ be a context,
I an E-Interpretation and C · Γ a ground constrained clause. We say that Λ
satisfies Γ and write Λ |= Γ iff Γ consists of split rewrite literals and Λ produces
Γ . We say that the pair (Λ, I) satisfies C · Γ and write Λ, I |= C · Γ iff Λ �|= Γ
or I |= C.

The pair (Λ, I) satisfies a possibly non-ground constrained clause (set) F , written
as Λ, I |= F iff (Λ, I) satisfies all ground instances of (all elements in) F . For
a set of constrained clauses Φ we say that Φ entails C · Γ wrt. Λ, and write
Φ |=Λ C · Γ iff for every E-interpretation I it holds Λ, I �|= Φ or Λ, I |= C · Γ .

The definitions above are also applied to pairs (Λ,R), where R is a
rewrite system, by implicitly taking (Λ,R�). Indeed, in the main applications
of Definition 4.1 such a rewrite system R will be determined by the model
construction in Section 7 below.

Example 4.2. Let Λ = {f(x) → x, f(c) �→ c}, R = {f(a) → a, f(b) → b}
and C · Γ = f(f(a)) ≈ x · f(x) → x. Let γa = {x �→ a}, γb = {x �→ b}
and γc = {x �→ c}. Suppose that all (ground) atoms are split atoms. Notice
that Γγa, Γγb and Γγc consist of split rewrite literals. Then, R |= Γγa, as Λ
produces {f(a) → a} and so we need to check R� |= f(f(a)) ≈ a, which is the
case, to conclude Λ,R |= (C · Γ )γa. As R |= Γγb but R� �|= f(f(a)) ≈ b we have
Λ,R �|= (C · Γ )γa. Finally, Λ does not produce {f(c) → c}, and with Λ �|= Γγc it
follows Λ,R |= (C · Γ )γc.

5 Inference Rules on Constrained Clauses

We are going to define several inference rules on constrained clauses, which will
be embedded into the ME+Sup calculus below.

Ref
s �≈ t ∨ C · Γ

(C · Γ )σ

where (i) σ is a mgu of s and t, and (ii) (s �≈ t)σ is maximal in (s �≈ t ∨C)σ.
The next three rules combine a rewrite literal, which will be taken from a

current context, and a constrained clause, which will be taken from a current
clause set.

U-Sup-Neg
l → r s[u]p �≈ t ∨ C · Γ
(s[r]p �≈ t ∨ C · Γ, l → r)σ
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where (i) σ is a mgu of l and u, (ii) u is not a variable, (iii) (l ≈ r)σ is a split
atom, (iv) rσ �
 lσ, (v) tσ �
 sσ, and (vi) (s �≈ t)σ is maximal in (s �≈ t ∨ C)σ.

U-Sup-Pos
l → r s[u]p ≈ t ∨C · Γ
(s[r]p ≈ t ∨ C · Γ, l → r)σ

where (i) σ is a mgu of l and u, (ii) u is not a variable, (iii) (l ≈ r)σ is a split
atom, (iv) rσ �
 lσ, and if (s ≈ t)σ is a split atom then (v-a) (s ≈ t)σ is maximal
in (s ≈ t∨C)σ else (v-b) tσ �
 sσ and (s ≈ t)σ is strictly maximal in (s ≈ t∨C)σ,
and (vi) if lσ = sσ then rσ �
 tσ.

U-Sup-Pos and U-Sup-Neg are the only rules that create new rewrite literals
(l → r)σ in the constraint part (Sup-Neg and Sup-Pos below only merge existing
constraints). Notice that because u is not a variable, in both cases lσ is not a
variable, even if l is. It follows easily that all expressions C · Γ derivable by the
calculus are constrained clauses.

Neg-U-Res
¬A s ≈ t ∨C · Γ

(C · Γ, s �→ t)σ

where ¬A is a pseudo literal ¬x or a negative rewrite literal l �→ r, and (i)
(s ≈ t)σ is a split atom, (ii) σ is a mgu of A and s → t, (iii) (s ≈ t)σ is a split
atom, (iv) tσ �
 sσ, and (v) (s ≈ t)σ is maximal in (s ≈ t ∨ C)σ.

The following three rules are intended to be applied to clauses from a current
clause set. To formulate them we need one more definition: let l ≈ r be an
equation and C = x1 ≈ t1 ∨ · · · ∨ xn ≈ tn a (possibly empty) clause of positive
literals, where xi is a variable and ti a term, for all i = 1, . . . , n. We say that a
substitution π merges C with l ≈ r iff π is an mgu of l, x1, . . . , xn, rπ �
 lπ, and
tiπ �
 lπ.

Sup-Neg
l ≈ r ∨C′ · Γ ′ s[u]p �≈ t ∨ C · Γ

(s[r]p �≈ t ∨ C ∨ C′ · Γ, Γ ′)σπ
where (i) σ is a mgu of l and u, (ii) u is not a variable, (iii) π merges x1 ≈
t1 ∨ · · · ∨ xn ≈ tn ⊆ C′σ with (l ≈ r)σ, (iv) {x1, . . . , xn} ⊆ Var(Γ ′σ), (v)
(l ≈ r)σ is a superposition atom, (vi) rσπ �
 lσπ, (vii) (l ≈ r)σπ is strictly
maximal in (l ≈ r ∨ C′)σπ, (viii) tσ �
 sσ, and (ix) (s �≈ t)σ is maximal in
(s �≈ t ∨ C)σ.

The need for merge substitutions is demonstrated in Example 7.4 below.

Sup-Pos
l ≈ r ∨ C′ · Γ ′ s[u]p ≈ t ∨ C · Γ

(s[r]p ≈ t ∨ C ∨C′ · Γ, Γ ′)σπ
where (i) σ is a mgu of l and u, (ii) u is not a variable, (iii) π merges x1 ≈
t1 ∨ · · · ∨ xn ≈ tn ⊆ C′σ with (l ≈ r)σ, (iv) {x1, . . . , xn} ⊆ Var(Γ ′σ), (v)
(l ≈ r)σ is a superposition atom, (vi) rσπ �
 lσπ, (vii) (l ≈ r)σπ is strictly
maximal in (l ≈ r ∨C′)σπ, and if (s ≈ t)σ is a split atom then (viii-a) (s ≈ t)σ
is maximal in (s ≈ t∨C)σ else (viii-b) tσ �
 sσ and (s ≈ t)σ is strictly maximal
in (s ≈ t ∨ C)σ.
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Notice that (s ≈ t)σ could be both a split atom and a superposition atom. In
this case the weaker condition (viii-a) is used to take care of a ground instance of
a Sup-Pos inference applied to a split atom, which requires the weaker condition.

In both Sup-Neg and Sup-Pos inference rules we assume the additional con-
dition Cσπ �
 Dσπ, where by C and D we mean their left and right premise,
respectively.

Fact
l ≈ r ∨ s ≈ t ∨ C · Γ

(l ≈ t ∨ r �≈ t ∨C · Γ )σ

where (i) σ is an mgu of l and s, (ii) (l ≈ r)σ is a superposition atom, (iii)
(l ≈ r)σ is maximal in (l ≈ r ∨ s ≈ t ∨ C)σ, (iv) rσ �
 lσ, and (v) tσ �
 sσ.

In each of the inference rules above we assume the additional condition that
Γσ (Γσπ and Γ ′σπ in case of Sup-Neg or Sup-Pos) consists of split rewrite
literals.

An inference system ι is a set of inference rules. By an ι inference we mean
an instance of an inference rule from ι such that all conditions are satisfied. An
inference is ground if all its premises and the conclusion are ground.

The base inference system ιBase consists of Ref, Fact, U-Sup-Neg, U-Sup-Pos,
Neg-U-Res, Sup-Neg and Sup-Pos. If from a given ιBase inference a ground ιBase
inference results by applying a substitution γ to all premises and the conclusion,
we call the resulting ground inference a ground instance via γ (of the ιBase
inference). This is not always the case, as, e.g., ordering constraints can become
unsatisfiable after application of γ. An important consequence of the ordering
restrictions stated with the inference rules is that the conclusion of a ground
ιBase inference is always strictly smaller than the right or only premise.

6 Inference Rules on Sequents

Sequents are the main objects manipulated by the ME+Sup calculus. A sequent
is a pair Λ  Φ where Λ is a context and Φ is a set of constrained clauses. The
following inference rules extend the inference rules ιBase above to sequents.

Deduce
Λ  Φ

Λ  Φ,C · Γ

if one of the following cases applies:

– C · Γ is the conclusion of a Ref or Fact inference with a premise from Φ.
– C · Γ is the conclusion of a U-Sup-Neg, U-Sup-Pos or Neg-U-Res inference

with a right premise from Φ and a left premise K ∈ Λ that produces Kσ in
Λ, where σ is the mgu used in that inference.

– C ·Γ is the conclusion of a Sup-Neg or Sup-Pos inference with both premises
from Φ.
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In each case the second or only premise of the underlying ιBase inference is called
the selected clause (of a Deduce inference). In inferences involving two premises,
a fresh variant of the, say, right premise is taken, so that the two premises are
variable disjoint.

Split
Λ  Φ

Λ, K  Φ Λ, K  Φ

if there is a constrained clause � ·Γ ∈ Φ such that (i) K ∈ Γ , (ii) s ≈ t is a split
atom, where K = s → t or K = s �→ t, and (iii) neither K nor K is contradictory
with Λ. A Split inference is productive if Λ produces Γ ; the clause � ·Γ is called
the selected clause (of the Split inference).

The intuition behind Split is to make a constrained empty clause � · Γ true,
which is false when Λ produces Γ (in the sense of Definition 4.1). This is achieved
by adding K to the current context. For example, if Λ = {P (a, y),¬P (x, b)}
and � · Γ = � · P (a, b) then a (productive) Split inference will give {P (a, y),
¬P (x, b),¬P (a, b)}, which no longer produces P (a, b). Intuitively, the calculus
tries to “repair” the current context towards a model for a constrained empty
clause.

Notice that a Split inference can never add a rewrite to a context that already
contains a variant of it or its complement, as this would contradict condition
(iii).7 Because of the latter property the calculus will never derive contradictory
contexts.

Close
Λ  Φ

Λ  Φ,� · ∅
if there is a constrained clause � ·Γ ∈ Φ such that L ∈∼ Λ for every L ∈ Γ . The
clause � · Γ is called the selected clause (of a Close inference) and the variants
of the L’s in Λ are the closing literals. A sequent Λ  Φ is closed if Φ contains
� · ∅. The purpose of Close is to abandon a sequent that cannot be “repaired”.

The ιME+Sup inference system consists of the rules Deduce, Split and Close.
In the introduction we mentioned that the ME+Sup calculus can be configured

to obtain a pure Superposition or a pure Model Evolution calculus (with equal-
ity). For the former, every ground atom is to be labelled as a superposition atom.
Then, the only inference rules in effect are Ref, Sup-Neg, Sup-Pos and Fact, all of
which are standard inference rules of the Superposition calculus. Furthermore,
under the reasonable assumption that the input clauses are constraint-free, all
derivable contexts will be {¬x}, and also the constraints in all derivable clauses
will be empty. In consequence, not even Close is applicable (unless the clause
set in the premise already contains � · ∅). In contrast, if all atoms are labelled
as split atoms, then the only inference rules in effect are Ref,U-Sup-Neg, U-Sup-
Pos, Neg-U-Res, Split and Close. The resulting calculus is similar to the MEE
calculus [4] but not quite the same. On the one hand, MEE features universal
7 The Deduce rule and the Close rule could be strengthened to exclude adding variants

to the clause sets in the conclusion. We ignore this (trivial) aspect.
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variables, a practically important improvement, which ME+Sup does not (yet)
have. On the other hand, MEE needs to compute additional unifiers, for instance
in the counterpart to the Close rule, which are not necessary in ME+Sup.

7 Model Construction

To obtain the completeness result for ME+Sup we associate to a sequent Λ  Φ
a convergent left-reduced rewrite system RΛ � Φ. The general technique is taken
from the completeness proof of the Superposition calculus [2,5] and adapted to
our needs. One difference is that ME+Sup requires the construction of a fully
reduced rewrite system for its split atoms, whereas for the superposition atoms a
left-reduced rewrite system is sufficient. Another difference is that certain aspects
of lifting must be reflected already for the model generation. For the latter, we
need a preliminary definition.

Definition 7.1 (Relevant Instance wrt. (Λ,R)). Let Λ be a context, R a
rewrite system, and γ a ground substitution for a constrained clause C · Γ . We
say that (C · Γ )γ8 is a relevant instance (of C · Γ ) wrt. (Λ,R) iff

(i) Γγ consists of rewrite split literals,
(ii) Λ produces Γ and Λ produces Γγ by the same literals (see below), and
(iii) (Var(C) ∩ Var(Γ ))γ is irreducible wrt. R.

In the previous definition, item (ii) is to be understood to say that, for each
L ∈ Γ , there is a literal K ∈ Λ that produces both L and Lγ in Λ.

Notice that in order for C · Γ to have relevant instances it is not necessary
that C · Γ is taken from a specific clause set. Notice also that for a clause with
an empty constraint all its instances are relevant.

Example 7.2. If Λ = {P (x), a → b,¬P (b)}, R = {a → b} and C ·Γ = x ≈ b∨x ≈
d ·P (x) then the substitution γ = {x �→ a} gives a ground instance that satisfies
condition (ii) but not (iii). With the substitution γ = {x �→ c} both (ii) and
(iii) are satisfied, and with γ = {x �→ b} the condition (ii) is not satisfied but
(iii) is. If Λ = {P (a)} then � · P (x) does not have relevant instances (although
Λ produces the ground constraint P (a)) because Λ does not produce P (x). The
calculus needs to make sure that such “irrelevant” constrained clauses need not
be considered, as (in particular) Close cannot be applied to, say, {P (a)}  �·P (x)
although {P (a)}, ∅ �|= � · P (x). ��

For a given sequent Λ  Φ, where Φ does not contain �·∅, we define by induction
on the clause ordering 	 sets of rewrite rules εC and RC , for every C ∈ Φgr ∪ ΠΛ.
Here, for the purpose of comparing (positive) rewrite literals, l → r is taken as
the constrained clause l ≈ r · ⊥, where ⊥ is a fresh symbol that is considered

8 Strictly speaking, the definition works with pairs (C ·Γ, γ) instead of ground instances
(C · Γ )γ, but this causes no problems as γ will always be clear from the context.
Similarly in other definitions below.
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smaller than the empty multiset. This way, 	 is a total ordering on Φgr ∪ ΠΛ.
For instance (l ≈ r · ∅) 	 l → r as (l ≈ r · ∅) 	 (l ≈ r · ⊥), as ∅ 	 ⊥.

Assume that εD has already been defined for all D ∈ Φgr ∪ ΠΛ with C 	 D
and let RC =

⋃
C�D εD. The set εC is defined differently depending on the type

of C. If C is rewrite literal l → r ∈ ΠΛ then let εl→r = {l → r} if

1. l ≈ r is a split atom,
2. l 	 r, and
3. l and r are irreducible wrt. Rl→r.

Otherwise εl→r = ∅. If C is a constrained clause C · Γ ∈ Φgr then let εC·Γ =
{s → t} if

1. C = s ≈ t ∨D,
2. s ≈ t is strictly maximal in C,
3. s ≈ t is a superposition atom,
4. s 	 t,

5. C · Γ is a relevant instance of a con-
strained clause C′ · Γ ′ ∈ Φ wrt.
(Λ,RC·Γ ),

6. R�
C·Γ �|= C,

7. (RC·Γ ∪ {s → t})� �|= D, and
8. s is irreducible wrt. RC·Γ .

Otherwise εC·Γ = ∅.
Finally, R =

⋃
C εC . If εl→r = {l → r} then we say that l → r generates l → r

in R. If εC·Γ = {l → r} then we say that C · Γ generates l → r in R via C′ · Γ ′.
Often we write RΛ � Φ instead of R to make clear that R is constructed from
Φgr ∪ ΠΛ.

It is not difficult to show that R is a left-reduced rewrite system and the
rules contributed by ΠΛ are even fully reduced wrt. R. Since 	 is a well-founded
ordering, R is a convergent rewrite system.

Notice that the evaluation of condition 5 for εC·Γ refers to the context Λ,
which is fixed prior to the model construction, and the rewrite system RC·Γ
constructed so far. The definition can be seen to work in a hierarchical way, by
first building the set of those constrained clauses from Φgr whose constraints are
produced in Λ, and then generating R from that set, which involves checking
irreducibility of substitutions wrt. RC·Γ .

Example 7.3. Let Λ = {a → x, b → c, a �→ c}, Φ = ∅ and assume that all
equations are split atoms. With a 	 b 	 c the induced rewrite system R is
{b → c}. To see why, observe that the candidate rule a → c is not included in
R, as Λ does not produce a → c, and that the other candidate a → b, although
produced in Λ, is reducible by the smaller rule b → c. Had we chosen to omit in
the definition of εC·Γ the condition “r is irreducible wrt. Rl→r” 9 the construction
would have given R = {a → b, b → c}. This leads to the undesirable situation
that a constrained clause, say, a �≈ c ·∅ is falsified by R�. But the calculus cannot
modify Λ to revert this situation, and to detect the inconsistency (ordered)
paramodulation into variables would be needed.
9 This condition is absent in the model construction for superposition atoms. Its

presence explains why paramodulation into smaller sides of positive split literals
in clauses is necessary.
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Example 7.4. Let a 	 b 	 c, Λ = {P (x),¬P (b),¬P (c)} and C · Γ = y ≈
b ∨ x ≈ c · P (x) be the only clause in Φ. Then the instance a ≈ b ∨ a ≈ c · P (a)
generates a → b in R. This is, because a ≈ b ∨ a ≈ c · P (a) is relevant instance
of y ≈ b ∨ x ≈ c · P (x) wrt. (Λ,RC·Γ ) = (Λ, ∅). Let γ = {x �→ a, y �→ a} be
the corresponding ground substitution. Now, a (ground) inference with (C ·Γ )γ
as the left premise and a relevant instance of a clause as the right premise will
possibly not preserve relevancy. This is, because the conclusion, say, Cγ, can be
bigger than the left premise (C ·Γ )γ (even if the right premise is bigger than the
left premise, which is safe to assume) and this way xγ could be reducible wrt.
RCγ . For instance, if the right premise is f(a) �≈ f(b) · ∅ then a Sup-Neg inference
yields C = f(b) �≈ f(b) ∨ x ≈ c · P (x). But Cγ = f(b) �≈ f(b) ∨ a ≈ c · P (a) is
not a relevant instance wrt. Λ, as xγ = a is reducible wrt. RCγ = {a → b}. This
is a problem from the completeness perspective, because the calculus needs to
reduce relevant instances of clauses that are false (in a certain interpretation) to
smaller relevant instances. The suggested Sup-Neg step would thus not work in
this case. The problem is avoided by a different Sup-Neg inference with a merge
substitution:

Sup-Neg
y ≈ b ∨ x ≈ c · P (x) f(a) �≈ f(b) · ∅

f(b) �≈ f(b) ∨ a ≈ c · P (a)

where σ = {y �→ a} and π = {x �→ a}. Then, f(b) �≈ f(b) ∨ a ≈ c · P (a) is a
relevant instance (of itself) wrt. Λ. It can be shown that situations like the one
above are the only critical ones and that relevancy can always be preserved by
a merge substitution. ��

8 Redundancy, Saturation and Static Completeness

To define concepts of redundancy we need a specific notion of relevant instances
that takes the model construction into account. We extend Definition 7.1 and say
that (C ·Γ )γ is a relevant instance of C ·Γ wrt. Λ iff (C ·Γ )γ is a relevant instance
of C · Γ wrt. (Λ,R(C·Γ )γ). Relevancy of an instance (C · Γ )γ wrt. Λ thus does
not depend on rules from R\R(C·Γ )γ . When Φ is a set of constrained clauses, let
ΦΛ = {(C · Γ )γ | C · Γ ∈ Φ and (C · Γ )γ is a relevant instance of C · Γ wrt. Λ}.
Let Λ  Φ be a sequent and D a ground constrained clause. Define ΦΛ

D = {C ·Γ ∈
ΦΛ | D 	 C ·Γ} as the set of relevant instances wrt. Λ of all constrained clauses
from Φ that are all smaller wrt. 	 than D.

We say that a ground constrained clause C · Γ is redundant wrt. Λ  Φ and
D iff ΦΛ

D |=Λ C · Γ , that is, iff C · Γ is entailed wrt. Λ by relevant instances wrt.
Λ of clauses in Φ that are smaller than D. We say that C · Γ is redundant wrt.
Λ  Φ iff C · Γ is redundant wrt. Λ  Φ and C · Γ .

The previous definitions are essential to prove completeness but difficult to
directly exploit in practice. The following, related definition is more practical, as
it refers to a context Λ only by checking if ground rewrite literals are contained,
a property that is preserved as Λ grows.

For a context Λ let grd(Λ) denote the set of all ground literals in Λ.
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Definition 8.1 (Universal Redundancy). Let Λ  Φ be a sequent, D a
ground constrained clause, and γ a ground substitution for a constrained clause
C ·Γ . We say that (C ·Γ )γ is universally redundant wrt. Λ  Φ and D, iff there
exists an L ∈ Γ such that Lγ ∈ grd(Λ), or there exist ground instances (Ci ·Γi)γi

of constrained clauses Ci · Γi ∈ Φ such that (i) if L ∈ Γi, then L ∈ grd(Λ) or
there exists a K ∈ Γ such that L ∼ K and Lγi = Kγ, (ii) D 	 (Ci · Γi)γi for
every i, (iii) C1γ1 . . .Cnγn |= Cγ, and (iv) if x ∈ Var(Ci) ∩ Var(Γi), then there
exists a y ∈ Var(C) ∩ Var(Γ ) such that xγi = yγ.

We say that (C ·Γ )γ is universally redundant wrt. Λ  Φ, iff (C ·Γ )γ is universally
redundant wrt. Λ  Φ and (C ·Γ )γ, and we say that C ·Γ is universally redundant
wrt. Λ  Φ iff (C · Γ )γ is universally redundant wrt. Λ  Φ, for every ground
substitution γ for C · Γ .

For instance, when A is a ground literal, any (possibly non-ground) clause of
the form C · A,Γ is universally redundant wrt. every Λ  Φ such that A ∈ Λ.
Dually, C ·A,Γ is universally redundant wrt. every Λ  Φ such that A ∈ Λ and
C · Γ ∈ Φ. Correspondingly, the simplification rule defined below can be used
to delete C · A,Γ if A ∈ Λ, and if A ∈ Λ then C · A,Γ can be simplified to
C · Γ . This generalizes corresponding simplification rules by unit clauses in the
propositional DPLL-procedure.

Also, a constrained clause C · Γ ′ is universally redundant wrt. any sequent
containing a constrained clause C ·Γ such that Γ ⊂ Γ ′. This can be exploited to
finitely bound the number of derivable constrained clauses under certain condi-
tions. For instance, if the clause parts cannot grow in length, e.g., by disabling
superposition by labelling all atoms as split atoms, and if the term depth is lim-
ited, too, e.g., for Bernays-Schönfinkel formulas, then ME+Sup derivations can
be finitely bounded, too.

Proposition 8.2. If C · Γ is universally redundant wrt. Λ  Φ, then every
relevant instance of C · Γ wrt. Λ is redundant wrt. Λ  Φ.

Proposition 8.2 explains the relationship between the two concepts of redundancy
above. Because the completeness proof needs to consider relevant, non-redundant
(ground) instances only, Proposition 8.2 then justifies that the calculus need not
work with universally redundant clauses. More specifically, referring to the no-
tion of derivation trees formally defined in Section 9 below, it can be shown
that a clause that is universally redundant at some node of the derivation tree
will remain universally redundant in all successor nodes, that all its relevant
ground instances are redundant (and therefore cannot be minimal counterexam-
ples in the model construction), and that its ground instances cannot generate
rewrite rules. Consequently, a universally redundant clause can be deleted from a
clause set without endangering refutational completeness. We emphasize that for
clauses with empty constraints, universal redundancy coincides with the classical
notion of redundancy for the Superposition calculus.

Definition 8.3 (Universally Redundant ιME+Sup Inference). Let Λ  Φ
and Λ′  Φ′ be sequents. A ιME+Sup inference with premise Λ  Φ and selected
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clause C · Γ ∈ Φ is universally redundant wrt. Λ′  Φ′ iff for every ground
substitution γ, (C · Γ )γ is universally redundant wrt. Λ′  Φ′, or the following
holds, depending on the inference rule applied:

Deduce: One of the following holds:
(i) Applying γ to all premises and the conclusion C′ · Γ ′ of the underlying

ιME+Sup inference does not result in a ground instance via γ of this
ιME+Sup inference.

(ii) (C′ · Γ ′)γ is universally redundant wrt. Λ′  Φ′ and (C · Γ )γ.
(iii) In case of Sup-Neg or Sup-Pos, where C′′ · Γ ′′ is the left premise, (C′′ ·

Γ ′′)γ is universally redundant wrt. Λ′  Φ′.
Split: C · Γ = � · Γ and Λ′ does not produce Γ .
Close: C · Γ = � · ∅ ∈ Φ′.

It is not difficult to show that actually carrying out an inference renders it
universally redundant in the resulting sequent. With a view to implementation,
this indicates that effective proof procedures for ME+Sup indeed exist.

Finally, a sequent Λ  Φ is saturated iff every ιME+Sup inference with premise
Λ  Φ is universally redundant wrt. Λ  Φ.

Theorem 8.4 (Static Completeness). If Λ  Φ is a saturated sequent with a
non-contradictory context Λ and � ·∅ /∈ Φ then the induced rewrite system RΛ � Φ

satisfies all relevant instances of all clauses in Φ wrt. Λ , i.e., Λ,RΛ � Φ |= ΦΛ.
Moreover, if Ψ is a clause set and Φ includes Ψ , i.e., {D · ∅ | D ∈ Ψ} ⊆ Φ, then
R�

Λ � Φ |= Ψ .

The stronger statement Λ,RΛ � Φ |= Φ does in general not follow, as (Λ,RΛ � Φ)
possibly falsifies a non-relevant ground instance of a constrained clause in Φ. An
example is the sequent Λ  Φ = P (f(x)), f(a) → a  � · P (f(x)), f(x) → x.
Observe that Close is not applicable. Further, Λ does not produce the constraint
{P (f(x)), f(x) → x} and hence the Split application with selected clause � ·
P (f(x)), f(x) → x is universally redundant wrt. Λ  Φ. Altogether, Λ  Φ is
saturated. However, Λ,RΛ � Φ �|= � ·P (f(a)), f(a) → a as Λ |= {P (f(a)), f(a) →
a} and no rewrite system satisfies �. Hence Λ,RΛ � Φ �|= � · P (f(x)), f(x) →
x. But this does not violate Theorem 8.4, as � · P (f(a)), f(a) → a is not a
relevant instance of � · P (f(x)), f(x) → x. Although x{x �→ a} is irreducible
wrt. R�·P (f(a)),f(a)→a = ∅, Λ does not produce f(x) → x, and hence does not
produce {P (f(x)), f(x) → x} and {P (f(a)), f(a) → a} by the same literals.

9 Derivations with Simplification

To make derivation in ME+Sup practical the universal redundancy criteria de-
fined above should be made available not only to avoid inferences, but also
to, e.g., delete universally redundant clauses that come up in derivations. The
following generic simplification rule covers many practical cases.

Simp
Λ  Φ,C · Γ
Λ  Φ,C′ · Γ ′
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if (i) C · Γ is universally redundant wrt. Λ  Φ,C′ · Γ ′, and (ii) (Λc)a ∪ (Φ ∪
{C · Γ})c |= (C′ · Γ ′)c.

The Simp rule generalizes the widely-used simplification rules of the Superpo-
sition calculus, such as deletion of trivial equations t �≈ t from clauses, demodu-
lation with unit clauses and (non-proper) subsumption; these rules immediately
carry over to ME+Sup as long as all involved clauses have empty constraints.
Also, as said above, the usual unit propagation rules of the (propositional) DPLL
procedure are covered in a more general form. As ME+Sup is intended as a gen-
eralization of propositional DPLL (among others), it is mandatory to provide
this feature.

Condition (ii) is needed for soundness. The ·a-operator uniformly replaces each
variable in each (unit) clause by a constant a. This way, all splits are effectively
over complementary propositional literals.

Derivations. The purpose of the ME+Sup calculus is to build for a given clause
set a derivation tree over sequents all of whose branches end in a closed sequent
iff the clause set is unsatisfiable. Formally, we consider ordered trees T = (N,E)
where N and E are the sets of nodes and edges of T, respectively, and the nodes
N are labelled with sequents. Often we will identify a node’s label with the node
itself.

Derivation trees T (of a set {C1, . . . , Cn} of clauses) are defined inductively
as follows: an initial tree is a derivation tree, i.e., a tree T with a root node only
that is labeled with the sequent ¬x  C1 · ∅, . . . , Cn · ∅; if T is a derivation tree,
N is a leaf node of T and T′ is a tree obtained from T by adding one or two child
nodes to N so that N is the premise of an ιME+Sup inference, a Simp inference
or a Cancel inference, and the child node(s) is (are) its conclusion(s), then T′

is derivation tree. In this case we say that T′ is derived from T. A derivation
(of {C1, . . . , Cn}) is a possibly infinite sequence of derivation trees that starts
with an initial tree and all subsequent derivation trees are derived from their
immediate predecessor. Each derivation D = ((Ni,Ei))i<κ, where κ ∈ N ∪ {ω},
determines a limit tree (

⋃
i<κ Ni,

⋃
i<κ Ei). It is easy to show that a limit tree

of a derivation D is indeed a tree. But note that it will not be a derivation tree
unless D is finite.

Now let T be the limit tree of some derivation, let B = (Ni)i<κ be a branch
in T with κ nodes, and let Λi  Φi be the sequent labeling node Ni, for all
i < κ. Define ΛB =

⋃
i<κ

⋂
i≤j<κ Λj

10 and ΦB =
⋃

i<κ

⋂
i≤j<κ Φj , the sets of

persistent context literals and persistent clauses, respectively. These two sets can
be combined to obtain the limit sequent ΛB  ΦB (of T).

As usual, the completeness of ME+Sup relies on a suitable notion of fairness,
which is defined in terms of exhausted branches. When we say that “X is not
persistent” we mean that X is not among the persistent context literals or X is
not among the persistent clauses, depending on whether X is a rewrite literal or
a constrained clause.

10 The definition of ΛB is slightly more general as needed. Currently, there are no
inference rules to delete context elements, and so ΛB is always

⋃
i<κ Λi.
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Definition 9.1 (Exhausted Branch). Let T be a limit tree and B = (Ni)i<κ

a branch in T with κ nodes. For all i < κ, let Λi  Φi be the sequent labeling
node Ni. The branch B is exhausted iff

(i) for all i < κ, every ιME+Sup inference with premise Λi  Φi and a persistent
selected clause and a persistent left premise (in case of Deduce) is universally
redundant wrt. Λj  Φj, for some j < κ with j ≥ i, and

(ii) � · ∅ /∈ ΦB

A limit tree of a derivation is fair iff it is a refutation tree that is, a finite tree
all of whose leafs contain � · ∅ in the constrained clause part of their sequent, or
it has an exhausted branch. A derivation is fair iff its limit tree is fair.

Notice that if in condition (i) in the above definition the selected clause or the
left premise (in case of Deduce) is universally redundant wrt. Λi  Φi, then the
ιME+Sup inference is already redundant wrt. Λi  Φi. In other words, inferences
with a universally redundant premise need not be carried out.

Proposition 9.2 (Exhausted Branches are Saturated). If B is an ex-
hausted branch of a limit tree of a fair derivation then ΛB  ΦB is saturated.

Proposition 9.2 is instrumental in the proof of our main result, which is the
following.

Theorem 9.3 (Completeness). Let Ψ be a clause set and T be the limit tree
of a fair derivation of Ψ . If T is not a refutation tree then Ψ is satisfiable; more
specifically, for every exhausted branch B of T with limit sequent ΛB  ΦB and
induced rewrite system RB = RΛB � ΦB it holds ΛB, RB |= (ΦB)ΛB and R�

B |= Ψ .

The ME+Sup calculus is also sound. The idea behind the soundness proof is to
conceptually replace every variable in every literal in all contexts by a constant,
say, a. This results in a refutation tree where all splits are over complementary
propositional literals. Regarding Close inferences, any closing clause will still be
closing after instantiating all its variables in the same way. Furthermore, observe
that the Ref, Sup-Neg, Sup-Pos and Fact inference rules are sound in the standard
sense by taking the clausal forms of the premises and the conclusions. For the
remaining ιBase inference rules U-Sup-Pos, U-Sup-Neg and Neg-U-Res this is even
simpler as the constraint in the conclusion contains the left premise (they are
strongly sound). The soundness of Simp follows from its condition (ii). This way,
a set of ground instances can be identified that demonstrates the unsatisfiability
of the input clause set whenever a refutation exists. A formal completeness proof
can be carried out as for the MEE calculus [4].

10 Conclusions

Our main result is the completeness of the new ME+Sup calculus. On the the-
oretical side, we plan to investigate how it can be exploited to obtain decision
procedures for fragments of first-order logic that are beyond the scope of current
superposition or instance-based methods. Ultimately, we will need an implemen-
tation to see how the labelling function is best exploited in practice for general
refutational theorem proving.
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Abstract. Applications in software verification often require deter-
mining the satisfiability of first-order formulæ with respect to some
background theories. During development, conjectures are usually false.
Therefore, it is desirable to have a theorem prover that terminates on
satisfiable instances. Satisfiability Modulo Theories (SMT) solvers have
proven highly scalable, efficient and suitable for integrated theory rea-
soning. Superposition-based inference systems are strong at reasoning
with equalities, universally quantified variables, and Horn clauses. We de-
scribe a calculus that tightly integrates Superposition and SMT solvers.
The combination is refutationally complete if background theory sym-
bols only occur in ground formulæ, and non-ground clauses are variable
inactive. Termination is enforced by introducing additional axioms as
hypotheses. The calculus detects any unsoundness introduced by these
axioms and recovers from it.

1 Introduction

Applications in software verification have benefited greatly from recent advances
in automated reasoning. Applications in this field often require determining the
satisfiability of first-order formulæ with respect to some background theories. In
numerous contexts in software verification, quantifiers are needed. For example,
they are used for capturing frame conditions over loops, axiomatizing type sys-
tems, summarizing auxiliary invariants over heaps, and for supplying axioms of
theories that are not already equipped with decision procedures for ground for-
mulæ. Thus, many verification problems consist in determining the satisfiability
of a set of formulæR�P modulo a background theory T , whereR is a set of non-
ground clauses without occurrences of T -symbols, and P is a large ground formula
(or set of ground clauses) that may contain T -symbols. The set of formulæR can
be viewed as the axiomatization of an application specific theory. The background
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theory T is a combination of general-purpose theories commonly used in hardware
and software verification, such as linear arithmetic and bit-vectors.

Satisfiability Modulo Theories (SMT) solvers have proven highly scalable,
efficient and suitable for integrated theory reasoning. Most SMT solvers are
restricted to ground formulæ, and integrate the Davis-Putnam-Logemann-
Loveland procedure (DPLL) with satellite Ti-solvers for ground satisfiability
problems in special theories Ti, 1 ≤ i ≤ n, so that T =

⋃n
i=1 Ti. In compar-

ison, superposition-based inference systems (SP) are strong at reasoning with
equalities, universally quantified variables, and Horn clauses. Moreover, SP was
proved to terminate and hence to be a satisfiability procedure for several theories
of data structures [1,2,5].

The DPLL(Γ + T ) calculus [11] integrates an SMT solver with an inference
system Γ that is sound and refutationally complete for first-order logic with
equality. The key to the integration is that the literals in the candidate model
built by the DPLL engine can occur as premises of Γ -inferences. In general,
the DPLL(Γ + T ) calculus is not refutationally complete when T is not empty,
even when T -symbols do not occur in R. For example, assume R = {x =
a ∨ x = b} and P = ∅, and the background theory T is arithmetic. The clause
{x = a ∨ x = b} implies that any model has at most two elements, which is
clearly incompatible with any model for arithmetic. A first contribution of this
paper are the conditions under which DPLL(Γ + T ) is refutationally complete
when T is not empty.

DPLL(Γ + T ) has to combine all the theories in T =
⋃n

i=1 Ti and R. Combi-
nation of theories in SMT solvers is usually done by the Nelson-Oppen scheme
[20], which requires that each Ti be stably infinite1 and its solvers capable of
generating all entailed disjunctions of equalities between constants. The second
requirement could be relaxed as in [12], if each Ti-solver were able to generate a
candidate model, which may not be the case in general for all Ti-solvers and for
Γ acting as R-solver. A second contribution of this work is to explain how to
apply known results on variable inactivity [1,8] to combine the built-in theories
T1, . . . , Tn and the axiomatized theory R in DPLL(Γ + T ).

In software verification, during development time, several conjectures are false
because of mistakes in the implementation or specification. Therefore, it is desir-
able to have a theorem prover that terminates on satisfiable instances. In general,
this is not a realistic goal since pure first-order logic is not decidable, and, even
worse, there is no sound and complete procedure for first-order logic formulæ of
linear arithmetic with uninterpreted functions [15]. Axioms such as transitivity
(¬(x � y) ∨ ¬(y � z) ∨ x � z) and monotonicity (¬(x � y) ∨ f(x) � f(y)) are
problematic for any resolution-basedΓ , since they tend to generate an unbounded
number of clauses, even with a selection function that selects negative literals to
prevent self-resolutions. Such axioms may arise in formalizations of type systems
for programming languages. The signature features a predicate � that represents
a subtype relationship, and a monadic function f that represents a type construc-
tor, such as Array-of. As an example, assume that the axiomatization contains a

1 Every Ti-satisfiable ground formula has a model with domain of infinite cardinality.
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monotonicity axiom ¬(x � y) ∨ f(x) � f(y). Resolution with negative selection
would generate an infinite sequence {f i(a) � f i(b)}i≥0 for each literal a � b in its
input. In practice, it is seldom the case that we need to go beyond f(a) � f(b) or
f2(a) � f2(b) to show satisfiability. A third and main contribution of this paper is
a new calculus that combines DPLL(Γ +T ) with unsound theorem proving [17] to
avoid such infinitary behaviors and obtain decision procedures for axiomatizations
relevant to software verification. The idea is to control the infinitary behavior by
using additional hypotheses/axioms, detect any unsoundness they may introduce
and recover from it.

2 Background

We employ basic notions from logic usually assumed in theorem proving. Let Σ
be a signature consisting of a set of function and predicate symbols, each with
its arity, denoted by arity(f), for symbol f . We call 0-arity function symbols
constant symbols, and use a, b, c and d for constants, f , g, h for non-constant
function symbols, and x, y, z for variables. We use � to denote the interpreted
predicate symbol for equality and Var(l) to denote the set of variables occurring
in a term or literal l. A first order Σ-theory is presented, or axiomatized, by a
set of Σ-sentences. We use the symbols T and R to denote such presentations.
Interpreted symbols are those symbols whose interpretation is restricted to the
models of a certain theory, whereas free or uninterpreted symbols are those
symbols whose interpretation is unrestricted.

A Σ-structure Φ consists of a non-empty universe |Φ| and an interpretation
for variables and symbols in Σ. For each symbol f in Σ, the interpretation of f is
denoted by Φ(f). For a function symbol f with arity(f) = n, the interpretation
Φ(f) is an n-ary function on |Φ| with range(Φ(f)) = {u | ∃v ∈ |Φ|, Φ(f)(v) =
u}. For a predicate symbol p with arity(p) = n, Φ(p) is a subset of |Φ|n. The
interpretation of a term t is denoted by Φ(t). If t is a variable or constant, Φ(t)
is an element in |Φ|. Otherwise, Φ(f(t1, . . . , tn)) = Φ(f)(Φ(t1), . . . , Φ(tn)). If S is
a set of terms, Φ(S) means the set {Φ(t) | t ∈ S}. Satisfaction Φ |= C is defined
as usual, and if Φ |= C, the structure Φ is said to be a model of C.

An inference system Γ is a set of inference rules. We consider an ordering-based
inference system, that assumes an ordering 	 on terms and literals, and uses it to
restrict expansion inferences and define contraction inferences. This ordering is a
complete simplification ordering (stable, monotone, with the subterm property,
hence well-founded, and total on ground terms and literals). An inference rule γ
with n premises is an n+1-ary relation on clauses. Each inference rule has a main
premise that yields the conclusion in the context of the other (side) premises.
For contraction rules, the main premise is reduced to the conclusion. Let I be
a mapping, called a model functor, that assigns to each set of ground clauses N
not containing � an interpretation IN , called the candidate model. An inference
system Γ has the reduction property for counterexamples, if for all sets N of
clauses and minimal counterexamples C for IN in N , there is an inference in Γ
from N with main premise C, side premises that are true in IN , and conclusion
D that is a smaller counterexample for IN than C.



38 M.P. Bonacina, C. Lynch, and L. de Moura

3 Variable Inactivity in DPLL(Γ + T )

In this section we will see how previous results from the rewrite-based approach
to satisfiability procedures [1,8] can be imported into the DPLL(Γ + T ) frame-
work to combine a built-in theory T and an axiomatized theory R. In a purely
rewrite-based approach there is no built-in theory and all axioms are part of the
input in R. The core of the methodology is to show that a first-order engine,
such as SP, is an R-satisfiability procedure, by showing that it is guaranteed to
terminate on R-satisfiability problems R�S, where S is a set of ground unit R-
clauses. Termination is modular: if SP terminates on Ri-satisfiability problems,
for 1 ≤ i ≤ n, it terminates also on R-satisfiability problems for R =

⋃n
i=1Ri,

provided the signatures of the Ri’s do not share function symbols, and all the
Ri’s are variable inactive [1]:

Definition 1. A clause C is variable-inactive if no maximal literal in C is an
equation t � x where x �∈ V ar(t). A set of clauses is variable-inactive if all its
clauses are.

Maximality is relative to the ordering 	 of Γ , which is required to be good,
meaning that t 	 c for all ground compound term t and constant c [1,6].

Definition 2. A theory presentation R is variable-inactive for an inference sys-
tem Γ if the limit S∞ of a fair Γ -derivation from S0 = R�S is variable-inactive,
where S is a set of ground unit R-clauses.

It was proved in [1] (cf. Thm. 4.5) that if R is variable-inactive, then it is stably-
infinite. This observation is a corollary of a result of [8] (cf. Lemma 5.2) that
says that if S0 is satisfiable, then S0 admits no infinite models if and only if the
limit S∞ of a fair SP-derivation from S0 contains a cardinality constraint, that
is, a clause containing only non-trivial (i.e., other than x � x) positive equations
between variables (e.g., y � x ∨ y � z). Such a clause is clearly not variable-
inactive. SP will reveal the lack of stable infiniteness by generating a cardinality
constraint.2 Thus, variable-inactivity is a sufficient condition for modularity of
termination, hence to combine theories in the rewrite-based approach, and for
stable-infiniteness, hence to mix combination of axiomatized theories as in the
rewrite-based approach with combination of built-in theories à la Nelson-Oppen,
as investigated also in [7] in a different setting.

In DPLL(Γ+T ) applied to a problemR�P modulo T , Γ deals only with non-
ground clauses and ground unit clauses, so that Γ works on an R-satisfiability
problem R � S, where S is a set of ground unit clauses. Thus, it makes sense
to apply the results from the rewrite-based approach to Γ seen as an R-solver.
DPLL(Γ+T ) needs to combine T1, . . . , Tn,R in the Nelson-Oppen scheme, which
requires that the theories do not share function symbols, are stably infinite and

2 Lemma 5.2 in [8] requires that the superposition-based inference system is invariant
with respect to renaming finitely many constants. Most inference systems satisfy
a stronger requirement, namely they allow signature extensions, e.g., to introduce
Skolem constants.
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each solver generates all entailed (disjunctions of) equalities between constants.
We assume that T1, . . . , Tn satisfy these requirements and that R does not share
function symbols with them. For stable infiniteness of R, we apply the above
result about variable inactivity implying stable infiniteness: in the new version
of Z3(SP), the SP engine is equipped with a test that detects the generation
of variable-inactive clauses, hence cardinality constraints, and discovers whether
R is not stably infinite. Such a test also excludes upfront a situation such as
R = {x = a ∨ x = b} of the example in Section 1. For the generation of
(disjunctions of) equalities between constants in R, we assume that the Γ engine
is fair, which ensures that every theorem is implied by some generated formulae.3

If contraction is also done systematically, only irredundant clauses generated by
Γ are kept and passed to the DPLL(T ) core.

The aforementioned results on variable inactivity were proved under the hy-
potheses that the ground unit clauses in S are R-clauses and equality is the
only predicate symbol. In the framework of DPLL(Γ + T ), ground clauses may
contain also T -symbols, and R may introduce predicate symbols other than
equality. We handle the first issue by purification, a standard step in the Nelson-
Oppen method, which separate occurrences of function symbols from different
signatures, by introducing new constant symbols (e.g., f(g(a)) � b, where f and
g belongs to different signatures, becomes f(c) � b ∧ g(a) � c, where c is new).
The initial set of ground clauses P is transformed in two disjoint sets P1 and P2,
where P1 contains only R-symbols and P2 only T -symbols. Since only constants
are introduced, the problem remains ground. We deal with the second issue by
representing an R-atom p(t1, . . . , tn) as fp(t1, . . . , tn) = �, where fp is a new
function symbols and � is a special constant.

Definition 3. A set of formulæ R� P is smooth with respect to a background
theory T =

⋃n
i=1 Ti, if the signatures of T1, . . . , Tn,R do not share function

symbols, R is variable inactive, and P is a set of ground formulæ P1�P2, where
P1 contains only R-symbols, and P2 only T -symbols.

This definition summarizes the problem requirements for the sequel.

4 Unsound Theorem Proving in DPLL(Γ + T )

In theorem proving applied to mathematics, most conjectures are true. Thus,
it is customary to sacrifice completeness for efficiency, and retain soundness,
which is necessary to attribute unsatisfiability to a set of clauses F if a proof is
found. A traditional example is deletion by weight [19], where clauses that are too
“heavy” are deleted. In theorem proving applied to verification, most conjectures
are false. Thus, it was suggested in [17] to sacrifice soundness for termination,
and retain completeness, which is necessary to establish satisfiability if a proof
is not found. Dually to deletion by weight, an unsound inference could suppress
literals in clauses that are too heavy.
3 Fairness guarantees that inferences are done systematically, in such a way that every

theorem has a minimal proof in the limit: see [4] for details.
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We consider a single unsound inference rule: adding an arbitrary clause C.
This rule is unsound because C may not be implied by F . This rule is simple, but
can simulate different kinds of unsound inferences. Suppose we want to suppress
the literals D in C ∨ D, then we can simply add C, which subsumes C ∨ D.
Suppose a clause C[t] contains a deep term t, and we want to replace it with
a constant a. We can accomplish this by adding t � a. The idea is to extend
DPLL(Γ + T ) with a reversible unsound inference rule. We say it is reversible,
because we track the consequences of the clauses added by this rule.

DPLL(Γ + T ) works on hypothetical clauses of the form H � C, where C is a
clause (i.e., a disjunction of literals), and H is the set of ground literals, from the
candidate model built by DPLL(Γ+T ), that C depends on, in the sense that they
were used as premises to infer C by Γ -inferences. The set of hypotheses should be
interpreted as a conjunction, and a hypothetical clause (l1∧ . . .∧ ln)�(l′1∨ . . . l′m)
should be interpreted as ¬l1∨ . . .∨¬ln∨ l′1∨ . . .∨ l′m. In this context, rather than
merely adding a clause C, the unsound inference rule introduces a hypothetical
clause �C� � C, where �C� is a new propositional variable that is used to track
the consequences of adding C. Note that the hypothetical clause �C� � C is
semantically equivalent to ¬�C�∨C. This clause does not change the satisfiability
of the input formula because �C� is a new propositional variable.

The DPLL(Γ + T ) calculus is described as a transition system [11]. States of
the transition system are of the form M ||F , where M is a sequence of assigned
literals, and F a set of hypothetical clauses. Intuitively, M represents a partial
assignment to ground literals, with their justifications, and therefore it represents
a partial model, or a set of candidate models. An assigned literal can be either a
decided literal or an implied literal. A decided literal represents a guess, and an
implied literal lC a literal l that was implied by a clause C. No assigned literal
occurs twice in M nor does it occur negated in M . If neither l nor ¬l appears in
M , then l is said to be undefined. The initial state is ||F0, where F0 is the set
{∅ � C | C ∈ R � P}. During conflict resolution, we also use states of the form
M ||F ||C, where C is a ground clause. In the following, clauses(F ) denotes the
set {C | H �C ∈ F}, M |=P C indicates that M propositionally satisfies C, and
if C is the clause l1∨. . .∨ln, then ¬C is the formula ¬l1∧. . .∧¬ln. We use lits(M)
to denote the set of assigned literals, ngclauses(F ) for the subset of non-ground
clauses of clauses(F ), and clauses�(M ||F ) for ngclauses(F ) ∪ lits(M). We also
write C instead of ∅ � C.

We extend the calculus with the rule UnsoundIntro. This rule introduces an
arbitrary clause C into F , and it adds the ground literal �C� to M , where �C�
is a new propositional variable used as a label for clause C. The idea is to record
the fact that we are guessing C.

UnsoundIntro

M ||F =⇒M �C� ||F, �C� � C if

⎧⎨
⎩

C �∈ clauses(F ),
�C� is new,
�C�,¬�C� �∈M,

where the side condition prevents the system from adding C, if it is already
known to be inconsistent with the partial model M .
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In order to combine the theories in T =
⋃n

i=1 Ti and R in the Nelson-Oppen
scheme, we need to communicate to R the (disjunctions of) equalities between
constants entailed by T and P . The next inference rule takes care of this re-
quirement, which we relax as in [12], because the Ti-solvers for linear arithmetic
and bit-vectors can build a specific candidate T -model for M , that we denote
by model(M). The idea is to inspect model(M) and propagate all the equalities
it implies, hedging that they are consistent with R. Since these equalities are
guesses, if one of them is inconsistent with R, backtracking will be used to fix
model(M). The rationale for this approach is practical: it is generally far less ex-
pensive to enumerate the equalities satisfied in a particular T -model than those
satisfied by all T -models consistent with M ; the number of equalities that really
matter is small in practice.

PropagateEq

M ||F =⇒M t � s ||F if

⎧⎪⎪⎨
⎪⎪⎩

t and s are ground,
t, s occur in F,
(t � s) is undefined in M,
model(M)(t) = model(M)(s).

The basic and theory propagation rules of DPLL(Γ + T ) are repeated from
[11] in Figure 1.

The interface with the inference system Γ is realized by the Deduce rule:
assume γ is an inference rule of Γ with n premises, {H1 � C1, . . . , Hm � Cm} is
a set of hypothetical clauses in F , {lm+1, . . . , ln} is a set of assigned literals in
M , and H(γ) denotes the set H1 ∪ . . . ∪Hm ∪ {lm+1, . . . , ln}; then γ is applied
to the set of premises P(γ) = {C1, . . . , Cm, lm+1, . . . , ln}, and the conclusion
C(γ) is added to F as H(γ) � C(γ). The hypotheses of the clauses Hi � Ci are
hidden from the inference rules in Γ . Our Deduce rule is slightly different from
its predecessor, named Deduce� in [11]: Deduce� allowed Γ to use as premises
non-ground clauses and ground unit clauses in clauses(F ), whereas our Deduce
allows it to use only non-ground clauses in clauses(F ). This is a consequence
of the addition of PropagateEq, which adds the relevant ground unit clauses
directly to M , so that Γ finds them in lits(M). This is also the reason why
we let PropagateEq add equalities between ground terms and not only between
constants.

We say a hypothetical clause H � C is in conflict if every literal in C is
complementary to an assigned literal. The Conflict rule converts a hypothetical
conflict clause H�C into a regular clause by negating its hypotheses, and puts the
DPLL(Γ+T ) system in conflict resolution mode. The Explain rule unfolds literals
from conflict clauses that were produced by unit propagation. Any clause derived
by Explain can be added to F by the Learn rule, because it is a logical consequence
of the original set of clauses. The rule Backjump drives the DPLL(Γ +T ) system
back from conflict resolution to search mode, and it unassigns at least one decided
literal (l′ in the rule definition). All hypothetical clauses H � C which contain
hypotheses that will be unassigned by the Backjump rule are deleted. Note that
a learnt clause D may contain ¬�C�. In this case, the clause D is recording the
context where guessing the clause C is unsound.
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Decide

M ||F =⇒M l ||F if

8<
:

l is ground,

l or ¬l occurs in F,

l is undefined in M.

UnitPropagate

M ||F, H � (C ∨ l) =⇒M lH�(C∨l) ||F, H � (C ∨ l) if

8<
:

l is ground,

M |=P ¬C,

l is undefined in M.

Deduce

M ||F =⇒M ||F, H(γ) � C(γ) if

8<
:

γ ∈ Γ,

P(γ) ⊆ clauses�(M ||F ),
C(γ) �∈ clauses(F ).

Conflict

M ||F, H � C =⇒M ||F, H � C || ¬H ∨ C if M |=P ¬C

Explain

M ||F ||C ∨ l̄ =⇒M ||F || ¬H ∨ D ∨ C if lH�(D∨l) ∈ M

Learn

M ||F ||C =⇒M ||F, C ||C if C �∈ clauses(F )
Backjump

M l′ M ′ ||F ||C ∨ l =⇒M lC∨l ||F
′ if

8>><
>>:

M |=P ¬C,

l is undefined in M,

F ′ =
j

H � C ∈ F |
H ∩ lits(l′ M ′) = ∅

ff

Unsat

M ||F ||� =⇒ unsat

T-Propagate

M ||F =⇒M l(¬l1∨...∨¬ln∨l) ||F if

8>><
>>:

l is ground and occurs in F,

l is undefined in M,

l1, . . . , ln ∈ lits(M),
l1, . . . , ln |=T l.

T-Conflict

M ||F =⇒M ||F || ¬l1 ∨ . . . ∨ ¬ln if

j
l1, . . . , ln ∈ lits(M),
l1, . . . , ln |=T false.

Fig. 1. Basic and theory propagation rules

It was proved in [11] that DPLL(Γ + T ) is refutationally complete when T is
empty. We prove a stronger result for the case where T is not empty. We say a
state M ||F is saturated if the only applicable rule is UnsoundIntro.

Theorem 1. If the initial set of clauses S = R � P is smooth, and Γ has
the reduction property for counterexamples, whenever M ||F is saturated, S is
satisfiable modulo the background theory T .

All inference systems considered in the rest of this paper satisfy the reduction
property for counterexamples.

We assign an inference depth to every clause in clauses(F ) and literal in
lits(M). Intuitively, the inference depth of a clause C indicates the depth of
the derivation needed to produce C. More precisely, all clauses in the original
set of clauses have inference depth 0. If a clause C is produced using the Deduce
rule, and n is the maximum inference depth of the premises, then the inference
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depth of C is n + 1. The inference depth of a literal lC in M is equal to the
inference depth of C. If l is a decided literal, and n is the minimum inference
depth of the clauses in F that contain l, then the inference depth of l is n. We
say DPLL(Γ + T ) is 〈kd, ku〉-bounded if Deduce is restricted to premises with
inference depth < kd, and UnsoundIntro can only be applied ku times.

Theorem 2. 〈kd, ku〉-bounded DPLL(Γ + T ) always terminates.

A state M ||F is stuck at kd if the only applicable rules are UnsoundIntro and
Deduce, and Deduce is only applicable to premises with inference depth ≥ kd.
Theorem 2 suggests a simple saturation strategy where the bounds kd and ku

are increased whenever the procedure reaches a blocked state.
We use U to denote a sequence of “unsound axioms” introduced by Unsound-

Intro. In the next section, we investigate some examples where DPLL(Γ + T )
is a decision procedure for a smooth set of formulæ S. This is accomplished by
showing that for some sequence of “unsound axioms” U , there are kd and ku,
such that 〈kd, ku〉-bounded DPLL(Γ+T ) is guaranteed to terminate in the unsat
state, whenever S is unsatisfiable, and in a state M ||F which is not stuck at kd,
whenever S is satisfiable.

Due to space limitations, we refer to [11] for the contraction inference rules of
DPLL(Γ +T ). DPLL(Γ +T ) assigns a scope level to each literal in M . The scope
level of a literal l, level(l), in M l M ′, is equal to the number of decided literals
in M l. The level of a set of literals H is level(H) = max{level(l) | l ∈ H}. A
contraction rule γ from Γ is generalized to hypothetical clauses as follows: given
a main premise H�C, and side premises H2 �C2, . . . , Hm �Cm, and lm+1, . . . , ln,
taken from F and lits(M), respectively, let H ′ = H2 ∪ . . .∪Hm ∪{lm+1, . . . , ln}.
Assume that γ applies to the premises C,C2, . . . , Cm, lm+1, . . . , ln. If level(H) ≥
level(H ′), we claim it is safe to delete H �C. In contrast, if level(H) < level(H ′),
then it is only safe to disable the clause H � C until level(H ′) is backjumped. A
disabled clause is not deleted, but it is not used as premise until it is re-enabled.

Example 1. LetR be {¬(x � y)∨¬(y � z)∨x � z, ¬(x � y)∨f(x) � f(y)}, and
P be {a � b, a � f(c), ¬(a � c)}. Assume Γ features Resolution, Superposition
and Simplification. If UnsoundIntro adds �f(x) � x��f(x) � x, the monotonicity
axiom and a � f(c) get rewritten. Note that �f(x) � x� is a decision literal,
and level(�f(x) � x�) = 1. Thus, the rewriting step only disables a � f(c),
and adds �f(x) � x� � a � c to F . Resolution generates the conflict clause
�f(x) � x� � �. Using the conflict resolution rules, the literal ¬�f(x) � x� is
added to M , preventing DPLL(Γ + T ) from guessing f(x) � x again. Next, if
UnsoundIntro adds �f(f(x)) � x��f(f(x)) � x, monotonicity and a � b produce
only f(a) � f(b), while monotonicity and a � f(c) produce only f(a) � f(f(c)),
which is disabled and replaced by �f(f(x)) = x��f(a) � c. Then, DPLL(Γ +T )
reaches a saturated state, and satisfiability is detected.

Example 2. LetR be {¬(x � y)∨¬(y � z)∨x � z}, P be {a � b1, b2 � c, ¬(a �
c), b1 ≤ b2, b1 > b2−1}, and T be the theory of linear integer arithmetic. Assume
Γ is Hyperresolution, Superposition and Simplification. UnitPropagate adds the
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literals of P to M . In the model model(M) maintained by the linear arithmetic
solver, model(M)(b1) = model(M)(b2). Thus, PropagateEq guesses the equation
b1 � b2. Say b2 	 b1: Simplification rewrites b2 � c to b1 � c. Hyperresolution
derives a � c from a � b1, b1 � c and transitivity, so that an inconsistency is
detected. DPLL(Γ +T ) backtracks and adds ¬(b1 � b2) to M . T-Conflict detects
the inconsistency between this literal and {b1 ≤ b2, b1 > b2 − 1}. The conflict
resolution rules are applied again and the empty clause is produced.

5 Essentially Finite Theories

We say a structure Φ is essentially finite with respect to the function symbol
f if Φ(f) has finite range. Essential finiteness is slightly weaker than finiteness,
because it admits an infinite domain provided the range of Φ(f) is finite.

Theorem 3. If Φ is an essentially finite structure with respect to a monadic
function symbol f , then there exist k1, k2, k1 �= k2, such that Φ |= fk1(x) �
fk2(x).

Proof. For all v ∈ |Φ|, we call f -chain starting at v, the sequence:

v = Φ(f)0(v), Φ(f)1(v), Φ(f)2(v), . . . , Φ(f)i(v), . . .

Since Φ(f) has finite range, there exist q1, q2, with q1 �= q2, such that Φ(f)q1(v) =
Φ(f)q2(v). Say that q1 > q2. Then we call size, denoted sz(Φ, f, v), and prefix, de-
noted pr(Φ, f, v), of the f -chain starting at v, the smallest q1 and q2, respectively,
such that Φ(f)q1(v) = Φ(f)q2 (v) and q1 > q2. We term lasso, denoted ls(Φ, f, v),
of the f -chain starting at v, the difference between size and prefix, that is,
ls(Φ, f, v) = sz(Φ, f, v) − pr(Φ, f, v). We say that Φ(f)n(v) is in the lasso of the
f -chain starting at v, if n ≥ pr(Φ, f, v). Clearly, for all elements u in the lasso of
the f -chain starting at v, Φ(f)m(u) = u, when m = ls(Φ, f, v). Also, for all mul-
tiples of the lasso, that is, for all l = h · ls(Φ, f, v) for some h > 0, Φ(f)l(u) = u.
Let p = max{pr(Φ, f, v) | v ∈ range(Φ(f))} + 1 and l = lcm{ls(Φ, f, v) | v ∈
range(Φ(f))}, where lcm abbreviates least common multiple. We claim that
Φ |= fp+l(x) � fp(x), that is, k1 = p + l and k2 = p. By way of contradic-
tion, assume that for some v ∈ |Φ|, Φ(f)p+l(v) �= Φ(f)p(v). Take the f -chain
starting at v: Φ(f)p(v) is in the lasso of this chain, because p ≥ pr(Φ, f, v). Since
l is a multiple of ls(Φ, f, v), we have Φ(f)p+l(v) = Φ(f)l(Φ(f)p(v)) = Φ(f)p(v),
a contradiction. �

Example 3. Let Φ be a structure such that |Φ| = {v0, v1, v2, . . . , v9, . . .}, and let
Φ(f) be the function defined by the following mapping: {v0 �→ v1, v1 �→ v2, v2 �→
v3, v3 �→ v4, v4 �→ v2, v5 �→ v6, v6 �→ v7, v7 �→ v8, v8 �→ v5, ∗ �→ v9}, where ∗
stands for any other element. The f -chain starting at v0 has pr(Φ, f, v0) = 2,
sz(Φ, f, v0) = 5 and ls(Φ, f, v0) = 3. The f -chain starting at v5 has pr(Φ, f, v5) =
0, sz(Φ, f, v5) = 4 and ls(Φ, f, v5) = 4. Then, p = 2+1 = 3, l = 12, k1 = p+l = 15
and k2 = p = 3, and Φ |= f15(x) � f3(x).
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To identify classes of problems for which DPLL(Γ + T ) is a decision procedure,
we focus on theories R that satisfy either one of the following properties:

Definition 4. R has the finite model property, if for all sets P of ground R-
clauses, such that R� P is satisfiable, R� P has a model Φ with finite |Φ|.

Definition 5. Let R be a presentation whose signature contains a single
monadic function symbol f . R is essentially finite, if for all sets P of ground R-
clauses, such that R�P is satisfiable, R�P has a model Φ, such that range(Φ(f))
is finite.

We show that essentially finite theories can give rise to decision procedures if
clause length is bounded.

Theorem 4. Let R be an essentially finite theory and P a set of ground clauses.
Let Γ be a rewrite-based inference system. Consider a DPLL(Γ + T ) procedure
where UnsoundIntro progressively adds all equations of the form f j(x) � fk(x)
with j > k. Then DPLL(Γ + T ) is a decision procedure for the satisfiability
modulo T of smooth problems in the form R � P if there exists an n such that
no clause created contains more than n literals.

Proof. If R�P is unsatisfiable, then by completeness DPLL(Γ +T ) will generate
the empty clause when kd becomes large enough. If R� P is satisfiable, choose
ku large enough to contain the axiom fk1(x) � fk2(x) as given in Theorem 3.
We need to prove that if kd is large enough, DPLL(Γ + T ) will not get stuck at
kd. To do that, we prove that only a finite number of clauses are generated for
unbounded kd for the given ku. The axiom fk1(x) � fk2(x) is oriented into the
rewrite rule fk1(x) → fk2(x). This guarantees that no term fk(t) with k > k1
is kept. Since no clause can contain more than n literals, only a finite number of
clauses can be derived for an unbounded kd. �

Assume that Γ is Superposition with negative selection plus Hyperresolution4. If
R is Horn, Superposition is Unit Superposition, which does not increase clause
length, and Hyperresolution only generates positive unit clauses, so that no
clause containing more than n literals can be produced. If R is a set of nonequal-
ity clauses with no more than two literals each, and Γ is Resolution plus Simpli-
fication (to apply fk1(x) → fk2(x)), then all generated clauses contain at most
two literals. To give further examples, we need the following:

Definition 6. A clause C = ¬l1∨. . .∨¬ln∨ln+1∨. . .∨ln+m is ground-preserving
if
⋃n+m

j=n+1 Var(lj) ⊆
⋃n

j=1 Var(lj). A set is ground-preserving if all its clauses
are.

In a ground-preserving5 set the only positive clauses are ground. If R is ground-
preserving, Hyperresolution only generates ground clauses; Superposition with
4 Hyperresolution is realized by Resolution with negative selection rule.
5 This notion is a weakening of that of “positive variable dominated” clause of Defi-

nition 3.18 in [9].
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negative selection yields either ground clauses or ground-preserving clauses with
decreasing number of variable positions, so that no new non-ground terms can
be created, and only finitely many non-ground ground-preserving clauses can be
derived. If R is also essentially finite, the depth of terms is limited by Simpli-
fication by fk1(x) → fk2(x), so that only finitely many ground clauses can be
generated. Below, we show that some specific theories relevant to the axiom-
atization of type systems in programming languages are essentially finite and
satisfy the properties of Theorem 4. Given the axioms

Reflexivity x � x (1)
Transitivity ¬(x � y) ∨ ¬(y � z) ∨ x � z (2)

Anti-Symmetry ¬(x � y) ∨ ¬(y � x) ∨ x � y (3)
Monotonicity ¬(x � y) ∨ f(x) � f(y) (4)
Tree-Property ¬(z � x) ∨ ¬(z � y) ∨ x � y ∨ y � x (5)

MI = {(1), (2), (3), (4)} presents a type system with multiple inheritance, and
SI = MI � {(5)} presents a type system with single inheritance, where � is the
subtype relationship and f is a type constructor.

Theorem 5. SI has the finite model property hence it is essentially finite.

Proof. Assume SI � P is satisfiable, and let Φ be a model for it. It is sufficient
to show there is a finite model Φ′. Let TP be the set of subterms of terms in P,
and VP be the set Φ(TP ). Since P is finite and ground, VP is finite. Let |Φ′| be
VP ∪ {r}, where r is an element not in VP . Then, we define Φ′(�)(v1, v2) as:

r = v2 or (v1, v2) ∈ Φ(�)

Intuitively, r is a new maximal element. 〈|Φ′|, Φ′(�)〉 is a poset and Φ′(�) satisfies
the Tree-Property. Now, we define an auxiliary function g : |Φ′|→ |Φ′| as:

g(v) =
{

Φ(f)(v) if f(t) ∈ TP , and Φ(t) = v;
r otherwise.

Let domf , the relevant domain of f , be the set {Φ(t) | f(t) ∈ TP } ∪ {r}. With a
small abuse of notation, we use v � w to denote (v, w) ∈ Φ′(�). Then, we define
Φ′(f)(v) as g(w), where w is an element in |Φ′| such that v � w, w ∈ domf , and
for all w′, v � w′ and w′ ∈ domf imply w � w′. This function is well defined
because Φ′(�) satisfies the Tree-Property, r is the maximal element of |Φ′|, and
r ∈ domf . Moreover, Φ′(f) is monotonic with respect to Φ′(�). �

Definition 7. Let 〈A,�〉 be a poset. The Dedekind-MacNeille completion [18]
of 〈A,�〉 is the unique complete lattice 〈B,�〉 satisfying the following properties.

– There is an injection α from A to B such that: v1 � v2 iff α(v1) � α(v2),
– Every subset of B has a greatest (least) lower bound, and
– B is finite if A is finite. Actually, B is a subset of 2A.
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Theorem 6. MI has the finite model property hence it is essentially finite.

Proof. The construction used for SI does not work for MI, because without the
Tree-Property the w in the definition of Φ′(f)(v) may not be unique for a given v.
First, we define an auxiliary structure Φ0 such that |Φ0| = VP , Φ0(�) = Φ(�)|VP ,
and Φ0(f) is defined as:

Φ0(f)(v) =
{

Φ(f)(v) if f(t) ∈ TP , and Φ(t) = v,
w otherwise,

where w is some element of VP . Note that 〈VP , Φ0(�)〉 is a poset. Let domf be
the set {Φ(t) | f(t) ∈ TP }. Then, following [10] we use the Dedekind-MacNeille
completion to complete 〈VP , Φ0(�)〉 into a complete lattice 〈B,�〉. We use glb(S)
to denote the greatest lower bound of a subset S of B. Now, we define a finite
model Φ′ for MI � P with domain |Φ′| = B, in the following way:

Φ′(c) = α(Φ0(c)) for every constant c in TP ,
Φ′(�) = �,

Φ′(f)(v) = glb({α(Φ0(f)(w)) | w ∈ VP , w ∈ domf , v � α(w)}).

The function Φ′(f) is monotonic with respect to Φ′(�). The structure Φ′ satisfies
P because for every term t in TP , we have Φ′(t) = α(Φ(t)). Moreover, the �-
literals in P are satisfied because the lattice 〈B,�〉 is a Dedekind-MacNeille
completion of Φ0 which is a restriction of Φ. �

Now we show that DPLL(Γ + T ) with the UnsoundIntro rule is a decision pro-
cedure for MI and SI.

Theorem 7. Let P be a set of ground clauses. Let Γ be Hyperresolution plus
Superposition and Simplification. Consider a DPLL(Γ +T ) procedure where Un-
soundIntro progressively adds all equations of the form f j(x) � fk(x) with j > k.
Then DPLL(Γ + T ) is a decision procedure for the satisfiability modulo T of
smooth problems in the form MI � P .

Proof. Since MI is essentially finite, we only need to show that we never generate
a clause with more than n literals. This follows from the fact that MI is a Horn
theory. �

Theorem 8. Let P be a set of ground clauses. Let Γ be Hyperresolution plus
Superposition and Simplification. Consider a DPLL(Γ +T ) procedure where Un-
soundIntro progressively adds all equations of the form f j(x) � fk(x) with j > k.
Then DPLL(Γ + T ) is a decision procedure for the satisfiability modulo T of
smooth problems in the form SI � P .

Proof. Since SI is essentially finite, we need to show that only finitely many
clauses can be generated. SI is not Horn, because of Tree-Property, and it is not
ground-preserving, because of Reflexivity. Since all the axioms besides Reflex-
ivity are ground-preserving, any inference will yield either a ground clause or a
non-ground ground-preserving clause with fewer variable positions. We just need
to consider a Hyperresolution which includes Reflexivity. All those inferences
either yield a tautology, a subsumed clause, or a ground clause. �
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In Spec# [3], the axiomatization of the type system also contains the axioms
TR = {¬(g(x) � null), h(g(x)) � x}, where the function g represents the type
representative of some type. The first axiom states that the representative is
never the constant null, and the second states that g has an inverse, hence it is
injective. Note that any model of TR must be infinite.

Theorem 9. Let P be a set of ground clauses. Let Γ be Hyperresolution plus
Superposition and Simplification. Consider a DPLL(Γ +T ) procedure where Un-
soundIntro progressively adds all equations of the form f j(x) � fk(x) with j > k.
Then DPLL(Γ + T ) is a decision procedure for the satisfiability modulo T of
smooth problems in the form MI � TR � P and SI � TR � P .

Proof. Γ applied to TR and ground equations only generates ground equations
of non-increasing depth, hence it terminates. Since MI (SI) and TR do not share
function symbols and are variable inactive, Γ terminates also on their union. �

6 Discussion

The DPLL(Γ +T ) system integrates DPLL(T ) with a generic first-order engine
Γ to combine the strengths of DPLL, efficient solvers for special theories such
as linear arithmetic, and first-order reasoning based on superposition and reso-
lution. The study in [6] was concerned with using the first-order engine alone as
decision procedure, without integrating an SMT-solver. In the method of [7], the
first-order engine is used as a pre-processor to compile the theoryR and reduce it
to a theory that DPLL(T ) alone can handle. Thus, it is a two-stage approach. In
DPLL(Γ + T ) the first-order engine is tightly integrated within DPLL(T ). The
downside of such a tight integration was that refutational completeness had not
been established, except in the case where the background theory T is empty. In
this paper we advanced the DPLL(Γ + T ) approach by giving conditions under
which it is refutationally complete when T is not empty.

Then, we introduced a new calculus that combines DPLL(Γ+T ) with unsound
theorem proving. The purpose is to try to enforce termination by introducing
additional axioms as hypothesis. A framework for unsound theorem proving was
originally given in [17] along with some examples. In the current paper we have
provided a mechanism for the prover to detect any unsoundness introduced by
the added axioms and recover from it, and we have instantiated the framework
with concrete examples for which unsound theorem proving becomes a decision
procedure. Some of these examples include monotonicity axioms. Another ap-
proach to handle such axioms is locality: for instance, extending a theory with
a monotonicity axiom is a local extension [22,16]. However, in the applications
that motivate our research, there is no guarantee that all relevant instances of
T �R � P can be seen as hierarchies of local extensions.

Directions for future work include extensions to more presentations, including,
for instance, cases where the signature of R features also non-monadic function
symbols (e.g., to cover axioms such as y � x∧ u � v ⇒ map(x, u) � map(y, v)).
Another open issue is some duplication of reasoning on ground unit clauses in
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DPLL(Γ+T ), due to the fact that ground unit clauses are seen by both Γ and the
congruence closure (CC) algorithm within DPLL(T ). Using the CC algorithm
to compute the completion of the set of ground equations [14,21], and pass the
resulting canonical system to Γ , would not solve the problem entirely, because
this solution is not incremental, as the addition of a single ground equation
requires recomputing the canonical system.

The class of formulæ that can be decided using DPLL(Γ + T ) with un-
sound inferences includes axiomatizations of type systems, used in tools such
as ESC/Java [13] and Spec# [3], which is significant evidence of the relevance
of this work to applications.

Acknowledgments. Part of this work initiated during a visit of the first author
with the Software Reliability Group of Microsoft Research in Redmond.
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Abstract. The design of decision procedures for combinations of theo-
ries sharing some arithmetic fragment is a challenging problem in ver-
ification. One possible solution is to apply a combination method à la
Nelson-Oppen, like the one developed by Ghilardi for unions of non-
disjoint theories. We show how to apply this non-disjoint combination
method with the theory of abelian groups as shared theory. We con-
sider the completeness and the effectiveness of this non-disjoint combi-
nation method. For the completeness, we show that the theory of abelian
groups can be embedded into a theory admitting quantifier elimination.
For achieving effectiveness, we rely on a superposition calculus modulo
abelian groups that is shown complete for theories of practical interest
in verification.

1 Introduction

Decision procedures are the basic engines of the verification tools used to check
the satisfiability of formulae modulo background theories, which may include
axiomatizations of standard data-types such lists, arrays, bit-vectors, etc. Nowa-
days, there is a growing interest in applying theorem provers to construct de-
cision procedures for theories of interest in verification [2,1,8,4]. The problem
of incorporating some reasoning modulo arithmetic properties inside theorem
provers is particularly challenging. Many works are concerned with the problem
of building-in certain equational axioms, starting from the seminal contribu-
tions by Plotkin [21] and by Peterson and Stickel [20]. The case of Associativity-
Commutativity has been extensively investigated since it appears in many
equational theories, and among them, the theory of abelian groups is a very
good candidate as fragment of arithmetic. Recently, the standard superposition
calculus [19] has been extended to a superposition calculus modulo the built-
in theory of abelian groups [12]. This work paves the way for the application
of a superposition calculus modulo a fragment of arithmetic to build decision
procedures of practical interest in verification. However, practical problems are
often expressed in a combination of theories where the fragment of arithmetic is
shared by all the other theories involved. In this case the classical Nelson-Oppen
combination method cannot be applied since the theories share some arithmetic
operators. An extension of the Nelson-Oppen combination method to the non-
disjoint case has been proposed in [11]. This non-disjoint combination framework
has been recently applied to the theory of Integer Offsets [18]. In this paper, our
aim is to consider a more expressive fragment by studying the case of abelian
groups.

R.A. Schmidt (Ed.): CADE 2009, LNAI 5663, pp. 51–66, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The contributions of the paper are twofold. First, we show that abelian groups
satisfy all the properties required to prove the completeness, the termination and
the effectiveness of the non-disjoint extension of the Nelson-Oppen combination
method. To prove the completeness, we show the existence of an extension of
the theory of abelian groups having quantifier elimination and that behaves the
same w.r.t. the satisfiability of constraints. Second, we identify a class of theories
that extend the theory of abelian groups and for which a simplified constraint-
free (but many-sorted) version of the superposition calculus introduced in [12] is
proved to be complete. This superposition calculus allows us to obtain effective
decision procedures that can be plugged into the non-disjoint extension of the
Nelson-Oppen combination method.

This paper is organized as follows. Section 2 briefly introduces the main con-
cepts and the non-disjoint combination framework. In Section 3, we show some
very useful properties in order to use the theory of abelian groups, namely AG,
in the non-disjoint combination framework, especially we prove the quantifier
elimination of a theory that is an extension of AG. In Section 4, we present a
calculus modulo AG. In Section 5, we show its refutational completeness and we
study how this calculus may lead to combinable decision procedures. Examples
are given in Section 6. We conclude with some final remarks in Section 7. Most
of the proofs are omitted and can be found in [17].

2 Preliminaries

We consider a many-sorted language. A signature Σ is a set of sorts, functions
and predicate symbols (each endowed with the corresponding arity and sort).
We assume that, for each sort s, the equality “=s” is a logical constant that
does not occur in Σ and that is always interpreted as the identity relation over
(the interpretation of) s; moreover, as a notational convention, we will often
omit the subscript and we will shorten = and �= with ��. Again, as a matter of
convention, we denote with Σa the signature obtained from Σ by adding a set
a of new constants (each of them again equipped with its sort), and with tθ the
application of a substitution θ to a term t. Σ-atoms, Σ-literals, Σ-clauses, and
Σ-formulae are defined in the usual way, i.e. they must respect the arities of
function and predicate symbols and the variables occurring in them must also
be equipped with sorts (well-sortedness). The empty clause is denoted by �. A
set of Σ-literals is called a Σ-constraint. Terms, literals, clauses and formulae
are called ground whenever no variable appears in them; sentences are formulae
in which free variables do not occur.

From the semantic side, we have the standard notion of a Σ-structure M: it
consists of non-empty pairwise disjoint domains Ms for every sort s and a sort-
and arity-matching interpretation I of the function and predicate symbols from
Σ. The truth of a Σ-formula in M is defined in any one of the standard ways.
If Σ0 ⊆ Σ is a subsignature of Σ and if M is a Σ-structure, the Σ0-reduct of
M is the Σ0-structure M|Σ0 obtained from M by forgetting the interpretation
of the symbols from Σ \Σ0.
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A collection of Σ-sentences is a Σ-theory, and a Σ-theory T admits (or has)
quantifier elimination iff for every formula ϕ(x) there is a quantifier-free formula
(over the same free variables x) ϕ′(x) such that T |= ϕ(x) ↔ ϕ′(x).

In this paper, we are concerned with the (constraint) satisfiability problem for
a theory T , which is the problem of deciding whether a Σ-constraint is satisfiable
in a model of T . Notice that a constraint may contain variables: since these
variables may be equivalently replaced by free constants, we can reformulate
the constraint satisfiability problem as the problem of deciding whether a finite
conjunction of ground literals in a simply expanded signature Σa is true in a
Σa -structure whose Σ-reduct is a model of T .

2.1 A Brief Overview on Non-disjoint Combination

Let us consider now the constraint satisfiability problem w.r.t. a theory T that
is the union of the two theories T1 ∪ T2, and let us suppose that we have at
our disposal two decision procedures for the constraint satisfiability problem
w.r.t. T1 and T2 respectively. It is known (cf. [5]) that such a problem without
any other assumption on T1 and T2 is undecidable; nevertheless, the following
theorem holds:

Theorem 1 ([11]). Consider two theories T1, T2 in signatures Σ1, Σ2 such that:

1. both T1, T2 have a decidable constraint satisfiability problem;
2. there is some universal theory T0 in the signature Σ0 := Σ1 ∩Σ2 such that:

(a) T1, T2 are both T0-compatible;
(b) T1, T2 are both effectively Noetherian extensions of T0.

Then the (Σ1 ∪ Σ2)-theory T1 ∪ T2 also has a decidable constraint satisfiability
problem.

The procedure underlying Theorem 1 basically extends the Nelson-Oppen com-
bination method [16] to theories over non disjoint signatures, thus lifting the
decidability of the constraint satisfiability problem from the component theories
to their union.

The requirement (2a) of T0-compatibility over the theories T1 and T2 means
that there is a Σ0-theory T ∗0 such that (i) T0 ⊆ T �

0 ; (ii) T �
0 has quantifier elimi-

nation; (iii) every Σ0-constraint which is satisfiable in a model of T0 is satisfiable
also in a model of T �

0 ; and (iv) every Σi-constraint which is satisfiable in a model
of Ti is satisfiable also in a model of T �

0 ∪Ti, for i = 1, 2. This requirement guar-
antees the completeness of the combination procedure underlying Theorem 1
and generalizes the stable infiniteness requirement used for the completeness of
the original Nelson-Oppen combination procedure.

The requirement (2b) on T1, T2 of being effectively Noetherian extensions of
T0 means the following: first of all (i) T0 is Noetherian, i.e., for every finite set
of free constants a, every infinite ascending chain Θ1 ⊆ Θ2 ⊆ · · · ⊆ Θn ⊆ · · ·
of sets of ground Σ

a
0 -atoms is eventually constant modulo T0, i.e. there is a Θn

in the chain such that T0 ∪ Θn |= Θm, for every natural number m. Moreover,
we require to be capable to (ii) compute T0-bases for both T1 and T2, meaning
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that, given a finite set Γi of ground clauses (built out of symbols from Σi and
possibly further free constants) and a finite set of free constants a, we can always
compute a finite set Δi of positive ground Σ

a
0 -clauses such that (a) Ti∪Γi |= C,

for all C ∈ Δi and (b) if Ti∪Γi |= D then T0∪Δi |= D, for every positive ground
Σ

a
0 -clause D (i = 1, 2). Note that if Γi is Ti-unsatisfiable then w.l.o.g. Δi = {�}.

Intuitively, the Noetherianity of T0 means that, fixed a finite set of constants,
there exists only a finite number of atoms that are not redundant when reasoning
modulo T0; on the other hand, the capability of computing T0-bases means that,
for every set Γi of ground Σ

a
i -literals, it is possible to compute a finite “complete

set” of logical consequences of Γi over Σ0; these consequences over the shared
signature are exchanged between the satisfiability procedures of T1 and T2 in
the loop of the combination procedure à la Nelson-Oppen, whose termination is
ensured by the Noetherianity of T0.

The combination procedure is depicted below, where Γi denotes a set of ground
literals built out of symbols of Σi (for i = 1, 2), a set of shared free constants a
and possibly further free constants.

Algorithm 1. Extending Nelson-Oppen
1. If T0-basisTi(Γi) = Δi and � /∈ Δi for each i ∈ {1, 2}, then

1.1. For each D ∈ Δi such that Tj ∪ Γj �|= D, (i �= j), add D to Γj

1.2. If Γ1 or Γ2 has been changed in 1.1, then rerun 1.
Else return “unsatisfiable”

2. If this step is reached, return “satisfiable”.

In what follows we see how to apply this combination algorithm in order
to show the decidability of the constraint satisfiability problem for the union
of theories that share the theory of abelian groups, denoted from now on by
AG. To this aim, we first show that AG is Noetherian (Section 3.2). Second,
we exhibit a theory AG∗ ⊇ AG that admits quantifier-elimination and whose
behaviour w.r.t. the satisfiability of constraints is the same of AG (Section 3.3).
Third, we see how to construct effectively Noetherian extensions of AG by using
a superposition calculus (Section 5.1).

3 The Theory of Abelian Groups

In this section we focus on some properties that are particularly useful when
trying to apply Theorem 1 to a combination of theories sharing AG.

AG rules the behaviour of the binary function symbol +, of the unary function
symbol − and of the constant 0. More precisely, ΣAG := {0 : ag,− : ag →
ag,+ : ag× ag → ag}, and AG is axiomatized as follows:

∀x, y, z (x + y) + z = x + (y + z) ∀x, y x + y = y + x
∀x x + 0 = x ∀x x + (−x) = 0
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From now on, given an expansion of ΣAG, a generic term of sort ag will be
written as n1t1 + · · · + nktk, where ti is a term whose root symbol is different
both from + and −, t1− t2 is a shortening for t1 +(−t2), and niti is a shortening
for ti + · · ·+ ti (ni)-times if ni is a positive integer, or −ti− · · · − ti (−ni)-times
if ni is negative.

3.1 Unification in Abelian Groups

We will consider a superposition calculus using unification in AG with free sym-
bols, which is known to be finitary [6]. In the following, we restrict ourselves to
particular AG-unification problems with free symbols in which no variables of
sort ag occur. By using a straightforward many-sorted extension of the Baader-
Schulz combination procedure [3], one can show that an AG-equality checker
is sufficient to construct a complete set of unifiers for these particular AG-
unification problems with free symbols. Moreover, the following holds:

Lemma 1. Let Γ be a AG-unification problem with free symbols in which no
variable of sort ag occurs, and let CSUAG(Γ ) be a complete set of AG-unifiers
of Γ . For any μ ∈ CSUAG(Γ ), we have that 1.) V Ran(μ) ⊆ V ar(Γ ), and
that, 2.) for any AG-unifier σ of Γ such that Dom(σ) = V ar(Γ ), there exists
μ ∈ CSUAG(Γ ) such that σ =AG μ(σ|V Ran(μ)).

3.2 Noetherianity of Abelian Groups

Let us start by proving the Noetherianity of AG; the problem of discovering
effective Noetherian extensions of AG will be addressed in Section 5.1, after the
introduction of an appropriate superposition calculus (Section 4).

Proposition 1. AG is Noetherian.

Proof. Note that any equation is AG-equivalent to (�)
∑k

i=1 niai =
∑h

j=1 mjbj ,
where ai, bj are free constants in a ∪ b and ni,mj are positive integers, so we
can restrict ourselves to chains of sets of equations of the kind (�). Theorem 3.11
in [7] shows that AC is Noetherian, where AC is the theory of an associative
and commutative + (thus ΣAC = {+}). From the definition of Noetherianity
it follows that, if T is a Noetherian Σ-theory, any other Σ-theory T ′ such that
T ⊆ T ′ is Noetherian, too. Clearly, the set of sentences over ΣAC implied by
AG extends AC; hence any ascending chain of sets of equations of the kind (�)
is eventually constant modulo AG, too.

In order to apply Theorem 1 to a combination of theories that share AG, we need
to find an extension of AG that admits quantifier elimination and such that any
constraint is satisfiable w.r.t. such an extension iff it is already satisfiable w.r.t.
AG. A first, natural candidate would be AG itself. Unfortunately it is not the
case: more precisely, it is known that AG cannot admit quantifier elimination
(Theorem A.1.4 in [13]). On the other hand, it is possible to find an extension
AG∗ with the required properties: AG∗ is the theory of divisible abelian groups
with infinitely many elements of each finite order.
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3.3 An Extension of Abelian Groups Having Quantifier Elimination

Let Dn := ∀x∃y ny = x, let On(x) := nx = 0 and let Lm,n := ∃y1, y2, . . . , ym∧
i�=j yi �= yj ∧

∧m
i=1 On(yi), for n,m ∈ N. Dn expresses the fact that each

element is divisible by n, On(x) expresses that the element x is of order n, and
Lm,n expresses the fact that there exist at least m elements of order n. The
theory AG∗ of divisible abelian groups with infinitely many elements of each
finite order can be thus axiomatized by AG ∪ {Dn}n>1 ∪ {Lm,n}m>0,n>1.

Now, instead of showing directly that AG∗ admits quantifier elimination and
satisfies exactly the same constraints that are satisfiable w.r.t. AG, we rely on a
different approach. Let us start by introducing some more notions about struc-
tures and their properties. Given a Σ-structure M = (M, I), let ΣM be the
signature where we add to Σ constant symbols m for each element of M . The
diagram Δ(M) of M is the set of all the ground ΣM -literals that are true in
M. Given two Σ-structures M = (M, I) and N = (N,J ), a Σ-embedding (or,
simply, an embedding) between M and N is a mapping μ : M → N among
the corresponding support sets satisfying, for all the ΣM -atoms ψ, the condition
M |= ψ iff N |= ψ (here M is regarded as a ΣM -structure, by interpreting each
additional constant a ∈ M into itself, and N is regarded as a ΣM -structure by
interpreting each additional constant a ∈ M into μ(a)). If M ⊆ N and if the
embedding μ : M → N is just the identity inclusion M ⊆ N , we say that M
is a substructure of N . If it happens that, given three models of T : A, M, N
and two embeddings f : A → M and g : A → N , there always exists another
model of T , H, and two embeddings h : M → H and k : N → H such that
the composition f ◦ h = g ◦ k, we say that T has the amalgamation property.
Finally if, given a Σ-theory T and a model M for T , it happens that, for each
Σ-sentence ψ, M |= ψ if and only if T |= ψ, then we say that T is a complete
theory.

Now, in [13], Exercise 8 page 380, it is stated that AG∗ is the so-called model
companion of the theory AG, meaning that (i) for each model M of AG∗ the
theory AG∗∪Δ(M) is a complete theory, (ii) every constraint that is satisfiable
in a model of AG is satisfiable in a model of AG∗ and (iii) every constraint
that is satisfiable in a model of AG∗ is satisfiable in a model of AG (of course,
since AG ⊂ AG∗, condition (iii) gets trivial, but we report here for sake of
completeness). At this point, since the behaviour of AG and AG∗ is the same
w.r.t. the satisfiability of constraints, the only condition that remains to be
verified is that AG∗ admits quantifier elimination. But:
Theorem 2. AG has the amalgamation property.

Corollary 1. AG∗ admits quantifier elimination.

Proof. In [10] it is shown that, if T is a universal theory and T ∗ is a model-
companion of T , then the following are equivalent:

(i) T ∗ has quantifier elimination;
(ii) T has the amalgamation property.

Since AG has the amalgamation property, and AG∗ is the model-companion of
AG, we have that AG∗ has quantifier elimination.
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4 A Calculus for Abelian Groups

In [12] the authors give a superposition calculus in which the reasoning about
elements of an abelian group is completely built-in. Our aim is to elaborate that
calculus so that it provides a decision procedure for the satisfiability problem
modulo theories modelling interesting data structures and extending AG. More
precisely, we want to produce a calculus able to check the satisfiability, in the
models of AG, of clauses in the shape Ax(T ) ∪ G, where Ax(T ) is a set of unit
clauses, not necessarily ground, formalizing the behaviour of some data structure,
and G is a set of ground literals. To that purpose, we eliminate the constraints
from the calculus and we use a many-sorted language that extends the signature
of the theory of abelian groups ΣAG by additional function symbols. Moreover,
we will adopt from now on the following assumption: we will consider only

unit clauses with no occurrence of variables of sort ag. (∗)

Let us start to see more in detail the notations and the concepts used in the
rules of the calculus.

First of all, we will reason over terms modulo an AG-rewriting system: quoting
[12], the system RAG consists of the rules (i) x + 0 → 0, (ii) −x + x → 0, (iii)
−(−x) → 0, (iv) −0 → 0, (v) −(x+y) → (−x)+(−y). Moreover, rewriting w.r.t.
RAG is considered modulo AC, namely the associativity and the commutativity
of the +, thus, when rewriting →RAG , we mean the relation =AC−→RAG=AC .
The normal form of a term t w.r.t. RAG will be often written as AG-nf(t),
and two terms t1 and t2 are equal modulo AG iff AG-nf(t1) =AC AG-nf(t2).
Accordingly, we say that a substitution σ is in AG-normal form whenever all the
terms occurring in the codomain of σ are in AG-normal form.

Moreover, we will consider an order 	 over terms that is total, well-founded,
strict on ground terms and such that 1. 	 is AC-compatible, meaning that
s′ =AC s 	 t =AC t′ implies s′ 	 t′, 2. 	 orients all the rules of RAG, meaning
that lσ 	 rσ for every rule l → r of RAG and all the grounding substitutions σ;
3. 	 is monotonic on ground terms, meaning that for all ground terms s, t, u,
u[s]p 	 u[t]p whenever s 	 t. An ordering satisfying all the requirements above
can be easily obtained considering an RPO ordering with a total precedence 	Σ

on the symbols of the signature Σ such that f 	Σ − 	Σ + 	Σ 0 for all symbols
f in Σ and such that all the symbols have a lexicographic status, except +,
whose status is multiset (see [9], where, in order to compare two terms, the arity
of + is considered variable, but always greater than 1).

As a last convention, with a little abuse of notation, we will call summand
any term whose root symbol is different from both + and −, notwithstanding
its sort. In this way a generic term can be written in the shape n1t1 + · · ·+nktk
(if it is of sort different from ag, it simply boils down to t1).

Now, we are ready to describe the calculus. We will rely basically on three
rules, Direct AG-superposition, Inverse AG-superposition and Reflection, and, as
in [12], we will apply the rules only in case the premises satisfy certain conditions
as explained in the following. Moreover, from now on we assume that all the
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literals will be eagerly maintained in AG-normal form, meaning that they will
be maintained as (dis)equations between terms in AG-normal form.

Orientation for the left premises of direct AG-superposition. Let l = r be an equa-
tion; if it is on the sort AG, then it can be equivalently rewritten into e = 0.
Thus the term e is a term of the form n1t1 + n2t2 + · · · + nptp, where the ti
are non variable distinct summands, and the ni’s are non zero integers. By split-
ting the summands into two disjoint sets, the equation e = 0 can be rewritten as
n1t1 + · · · + nktk = −nk+1tk+1 − · · · − nptp. In the following, we will call any
equation over ag in that form an orientation for e = 0. If l = r is an equation over
a sort different from ag, then an orientation of l = r will be either l = r or r = l.

Orientation for the left premises of inverse AG-superposition. Let e = 0 be an
equation over the sort ag. If e or −e is a term of the form s + e′, where s is
a summand that occurs positively and e′ is a generic term, then −s = e′ is an
inverse orientation for e = 0.

Splitting of the right premises for direct AG-superposition. Let t be a non-
variable subterm of either r or s in the literal r �� s; moreover, if s is of sort
ag, we can freely assume that s is 0. If t is of sort ag, we ask that t is not
immediately under + nor under −, and that the root of t is different from −.
Thus, we can imagine that t is of the kind n1s1 + · · · + npsp + t′, where all si

are distinct summands, all ni are positive integers and t′ contains only negative
summands. In this case, t1 + t2 is a splitting for t if t1 is a term of the form
k1s1 + · · ·+kpsp, where 0 ≤ ki ≤ ni, and t2 is (n1−k1)s1 + · · ·+(np−kp)sp + t′.
If t is not over the sort ag, then the only splitting admissible for t is t itself.

Splitting of the right premises for inverse AG-superposition. Let t be a non
variable subterm of either r or s in the literal r �� s; moreover, if s is of sort ag,
we can freely assume that s is 0. Let t be of sort ag, and let t be not immediately
below + nor −. If t is of the form −s + t′, where s is a summand, then t1 + t2
is an inverse splitting for t if t1 is −s and t2 is t′.

AG-superposition rules. In the left premise l = r of the direct AG-superposition
rule, it is assumed that l = r is an orientation of the literal. Similarly, in the right
premise,D[t1+t2]p denotes thatD|p is a non-variable term that is not immediately
below + or − with a splitting t1 + t2. Similarly, in the inverse AG-superposition
rule, l = r and D|p denote inverse orientation and splitting, respectively. The
inference system, denoted by SPAG, is made of the following rules:

Direct AG-superposition
l = r D[t1 + t2]p

(D[r + t2]p)μi
(i)

Inverse AG-superposition
l = r D[t1 + t2]p

(D[r + t2]p)μi
(ii)

Reflection
u′ �= u

� (iii)
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The condition (i) is that μi is a most general solution of the AG-unification
problem l =AG t1; moreover the inference has to be performed whenever there is
a ground instantiation of μi, θ, s.t., if nu = s is the AG-normal form of (l = r)μiθ
and D′[nu]q is the AG-normal form of (D[t1+t2]p)μiθ in which, in position q, nu
appears as subterm, then (a) u 	 s, (b) nu appears as subterm of the maximal
term in D′.

The condition (ii) is that μi is a most general solution of the AG-unification
problem l =AG t1; moreover the inference has to be performed whenever there
is a ground instantiation of μi, θ, s.t., if −u = s is the AG-normal form of
(l = r)μiθ and D′[−u]q is the AG-normal form of (D[t1 + t2]p)μiθ in which, in
position q, −u appears as subterm, then (a) either u is the maximal summand
in s or u 	 s, (b) −u appears as subterm of the maximal term in D′.

The condition (iii) is that the AG-unification problem u =AG u′ has a solution
(and � is the syntactic convention for the empty clause).

Moreover, we assume that, after each inference step, the newly-derived literal
is normalized modulo AG.

We point out that, thanks to Lemma 1(1.) and to our assumption (∗), at any
step of a saturation no variable of sort ag is introduced, thus the resulting satu-
rated set will consist of literals in which no variable of sort ag occurs. Moreover,
we can note that the conditions on the inferences are, in general, far from being
obvious to check. However, for our purposes, we will often perform inferences
involving at least one ground literal. In that case, verifying all the conditions
becomes easier.

5 Refutational Completeness of SPAG

In order to prove the refutational completeness of the calculus presented above,
we will adapt the model generation technique presented in [12]. The idea behind
this technique consists in associating to any saturated set of literals that does
not contain the empty clause a model of terms identified modulo a rewriting
system, the latter being built according to some of the equations in the saturated
set. Even if in our calculus no constrained literal will appear, in order to build
the model of terms we will rely only on ground instances of the literals in the
saturation that are irreducible. Moving from [12] and extending to the many-
sorted case, we say that:

Definition 1. An equation s = t is in one-sided form whenever, (a) if s and t
are of sort ag, the equation is in the form e = 0, and e is in AG-normal form;
(b) if s and t are not of sort ag, both s and t are in AG-normal form.

Whereas an equation over a sort different from ag has a unique one-sided form,
an equation over the sort ag has two AG-equivalent one-sided forms, but in what
follows it does not matter which of the two will be considered. Thus, from now
on, when we will refer to equations, we will always assume that the equations
are in one-sided form.
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Definition 2. Let s be a term, σ be a grounding substitution such that both
σ and s are in AG-normal form. Moreover, let R be a ground term rewriting
system. We will say that the maxredR(sσ) is

– 0, if AG-nf(sσ) is R-irreducible;
– maxPS, where PS is the following set of terms (ordered w.r.t. 	):

PS :={u is a summand | for some term v and some n in Z ,AG-nf(sσ) is
of the form nu + v and nu is R-reducible}.

Definition 3. 1 Let s be a term in which no variable of sort ag occurs, let σ
be a grounding substitution such that both s and σ are in AG-normal form, and
let R be a ground TRS. The pair (s, σ) is irreducible w.r.t. R whenever:

– AG-nf(sσ) is R-irreducible, or
– if AG-nf(sσ) is R-reducible, let u be the maxredR(sσ). Then, (s, σ) is irre-

ducible if s is not a variable and, for each term of the form t = f(t1, . . . , tn)
such that s is of the form t+ v or −t+ v or t and such that u 
 AG-nf(tσ),
each (ti, σ) is irreducible.

If L is a literal, the pair (L, σ) is irreducible w.r.t. R:

– if L is an (dis)equation whose one-sided form is of the form e �� 0, then
(e, σ) is irreducible w.r.t. R;

– if L is an (dis)equation whose one-sided form is of the form s �� t, both (s, σ)
and (t, σ) are irreducible w.r.t. R.

Before going on with the description of all the ingredients that are needed in
order to show the completeness of the calculus, we want to point out a property
that will be useful in the following.

Proposition 2. Let s be a term in which no variable of sort ag occurs, let σ
be a grounding substitution such that both s and σ are in AG-normal form, and
let R be a ground TRS such that (s, σ) is irreducible w.r.t. R. Moreover, let
σ =AG μπ, where π is another grounding substitution in AG-normal form and
μ is a substitution that does not have variables of sort ag in its range. Then
(sμ, π) is still irreducible w.r.t. R.

To extract, from a given set of ground literals, a term rewriting system, we first
of all transform all the equations in reductive normal form (see [12]):

Definition 4. A ground literal s �� t in AG-normal form is in reductive form
whenever s is of the form nu, t is the form n1v1 + · · ·+ nkvk and n > 0, ni are
non-zero integers, u and vi are summands with u 	 vi.

Of course, if s and t are of sort different from ag, the definition above simply
says that s 	 t; moreover, it is always possible, given an equation, to obtain
an equivalent one in reductive normal form. Now, a term rewriting system is
obtained as follows:
1 Here we are adapting, in case of absence of variables of sort ag, the definition

of recursive irreducibility of [12], but in our context the two notions of recursive
irreducibility and irreducibility are collapsing.
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Definition 5. Let S be a set of literals, let L be an equation with a ground
instance Lσ, let G be the reductive form of Lσ: G ≡ nu = r. Then G generates
the rule nu → r if the following conditions are satisfied:

(i) (RG ∪AG) �|= G;
(ii) u 	 r;
(iii) nu is RG-irreducible;
(iv) (L, σ) is irreducible w.r.t. RG.

where RG is the set of rules generated by the reductive forms of the ground
instances of S that are smaller than G w.r.t. 	. Moreover, if n > 1, then also
the rule −u → (n− 1)u− r is generated.

Now, exactly as in [12], we associate to a generic set of literals saturated under the
rules of our calculus and that does not contain the empty clause, S, a structure
I that is an AG-model for S. I is the equality Herbrand interpretation defined
as the congruence on ground terms generated by RS ∪AG, where RS is the set
of rules generated by S according to Definition 5. Since we are in a many-sorted
context, the domain of I consists of different sets, one for each sort; since the
rewriting rules in RS ∪ AG are sort-preserving, the congruence on the ground
terms is well-defined. Applying the same kind of arguments used to prove Lemma
10 in [12], we have that RS ∪AG is terminating and confluent, and it still holds
that I |= s = t iff s →∗

RS∪RAG
τ ←∗

RS∪RAG
t for some term τ . To show that I is

really an AG-model for S, we can prove the following lemma:

Lemma 2. Let S be the closure under the calculus of a set of literals S0, and let
us assume that the empty clause does not belong to S. Let I be the model of terms
derived from S as described above, and let IrRS (S) be the set of ground instances
Lσ of L in S such that (L, σ) is irreducible w.r.t. RS. Then (1) I |= IrRS (S)
implies that I |= S, and (2) I |= IrRS (S).

From the lemma above, it follows immediately:

Theorem 3. The calculus SPAG is refutational complete for any set of literals
that do not contain variables of sort ag.

5.1 Computing AG-Bases

Let us go back, for the moment, to Theorem 1, and especially to condition (2b)
that states that, in order to apply a combination procedure à la Nelson-Oppen
to a pair of theories T1 and T2 sharing AG, we have to ensure that T1 and T2 are
effectively Noetherian extensions of AG, i.e. we have to ensure the capability of
computing AG-bases for T1 and T2. Let us suppose that Ti is a Σi-theory (for
i = 1, 2) whose set of axioms is described by a finite number of unit clauses.

Now, for i = 1, 2, let Γi be a set of ground literals over an expansion of
Σi ⊇ ΣAG with the finite sets of fresh constants a, bi, and suppose to perform
a saturation w.r.t. SPAG adopting an RPO ordering in which the precedence is
f 	 a 	 − 	 + 	 0 for every function symbol f in Σ

bi

i different from +,−, 0,
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every constant a in a and that all the symbols have a lexicographic status, except
+, whose status is multiset. Relying on the refutational completeness of SPAG,
Proposition 3 shows how SPAG can be used in order to ensure that T1 and T2
are effectively Noetherian extensions of AG:

Proposition 3. Let S be a finite saturation of Ti∪Γi w.r.t SPAG not containing
the empty clause and suppose that, in every equation e = 0 containing at least
one of the constants a in a as summand, the maximal summand is not unifiable
with any other summand in e. Then the set Δi of all the ground equations over
Σ

a
AG in S is an AG-basis for Ti w.r.t. a (i = 1, 2).

6 Some Examples

Theorem 3 guarantees that SPAG is refutational complete, thus, if we want to
turn it into a decision procedure for the constraint satisfiability problem w.r.t.
a theory of the kind T ∪ AG, it is sufficient to prove that any saturation under
the rules of SPAG of a set of ground literals and the axioms of T is finite. Let
us show some examples in which this is actually the case.

Lists with Length. The theory of lists with length can be seen as the union of the
theories TL ∪ T
 ∪AG, with TL being the theory of lists and T
 being the theory
that axiomatizes the behaviour of the function for the length; more formally:

TL has the many-sorted signature of the theory of lists: ΣL is the set of function
symbols {nil : lists, car : lists → elem, cdr : lists → lists, cons : elem×
lists → lists} plus the predicate symbol atom : lists, and it is axiomatized
as follows:

∀x ¬atom(x) ⇒ cons(car(x), cdr(x)) = x
∀x, y car(cons(x, y)) = x ∀x, y ¬atom(cons(x, y))
∀x, y cdr(cons(x, y)) = y atom(nil)

T
 is the theory that gives the axioms for the function length � : lists → ag

and the constant (1 : ag): �(nil) = 0; ∀x, y �(cons(x, y)) = �(y) + 1; 1 �= 0

Applying some standard reasoning (see, e.g. [18]), we can substitute TL with
the set of the purely equational axioms of TL, say TL′, and enrich a bit the
set of literals G to a set of literals G′ in such a way TL ∪ T
 ∪ AG ∪ G is
equisatisfiable to TL′ ∪ T
 ∪AG ∪G′. Let us choose as ordering an RPO with a
total precedence 	 such that all the symbols have a lexicographic status, except
+, whose status is multiset, and such that it respects the following requirements:
(a) cons 	 cdr 	 car 	 c 	 e 	 � for every constant c of sort lists and every
constant e of sort elem; (b) � 	 g 	 − 	 + 	 0 for every constant g of sort ag.

Proposition 4. For any set G of ground literals, any saturation of TL′ ∪T
∪G′

w.r.t. SPAG is finite.
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Trees with Size. Let us reason about trees and their size. We can propose a
formalization in which we need to reason about a theory of the kind TT ∪Tsize∪
AG, where TT rules the behaviour of the trees and Tsize constraints the behaviour
of a function that returns the number of nodes of a tree. Thus we have:

TT has the mono-sorted signature ΣT := {E : trees, binL : trees → trees,

binR : trees → trees, bin : trees × trees → trees}, and it is axioma-
tized as follows:

∀x, y binL(bin(x, y)) = x ∀x, y binR(bin(x, y)) = y
∀x bin(binL(x), binR(x)) = x

Tsize is the theory that gives the axioms for the function size : trees → ag:
size(E) = 0; ∀x, y size(bin(x, y)) = size(x) + size(y)

Let us now put as ordering an RPO with a total precedence 	 on the symbols
of the signature such that all the symbols have a lexicographic status, except +,
whose status is multiset, and such that it respects the following requirements:
(a) bin 	 binR 	 binL 	 c 	 size for every constant c of sort trees; (b) size 	
g 	 − 	 + 	 0 for every constant g of sort ag.

Proposition 5. For any set G of ground literals, any saturation of TT∪Tsize∪G
w.r.t. SPAG is finite.

Application (Algorithm 2.8 in [25]: Left-Rotation of trees) Using the procedure
induced by the calculus SPAG, it is possible to verify, e.g. that the input tree x
and the output tree y have the same size:

1. t := x; 2. y := binR(t); 3. binR(t) := binL(y); 4. binL(y) := t; 5. Return y
In order to check that the size of x is exactly the one of y, we check for

unsatisfiability modulo TT ∪Tsize∪AG the following constraint (see, again [25]):

binR(t′) = binL(binR(x′)) ∧ binL(t′) = binL(x′) ∧ binL(y′) = t′

∧ binR(y′) = binR(binR(x′)) ∧ size(x′) �= size(y′)

where x′, y′ and t′ are fresh constants that identify the trees on which the algo-
rithm applies.

6.1 Applying the Combination Framework

In the section above we have shown some examples of theories that extend the
theory of abelian groups and whose constraint satisfiability problem is decidable.
We have proved that AG can be enlarged to AG∗ and AG and AG∗ behave the
same w.r.t. the satisfiability of constraints; moreover we have checked that AG is
a Noetherian theory. To guarantee now that the theories that have been studied
can be combined together it is sufficient to show that they fully satisfy the
requirement of being AG-compatible and effectively Noetherian extension of AG
(requirements (2a) and (2b) of Theorem 1). The AG-compatibility both of lists
with length and trees with size is easily ensured observing that a constraint is
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satisfied w.r.t. TL∪T
∪AG iff it is satisfied w.r.t. TL∪T
∪AG∗ and, analogously,
any constraint is satisfiable w.r.t. TT ∪Tsize∪AG iff it is w.r.t. TT ∪Tsize∪AG∗.

Moreover, checking the shape of the saturations produced, it is immediate to
see that all the hypotheses required by Proposition 3 are satisfied when con-
sidering both the cases of lists with length and trees with size, turning SPAG

not only into a decision procedure for the constraint satisfiability problem, but
also into an effective method for deriving complete sets of logical consequences
over the signature of abelian groups (namely, the AG-bases). This implies that
also the requirement (2b) of being effectively Noetherian extensions of abelian
groups is fulfilled for both lists with length and trees with size. To sum up, we
have proved that the theories presented so far can be combined preserving the
decidability of the constraint satisfiability problem.

7 Conclusion

The problem of integrating a reasoning modulo arithmetic properties into the
superposition calculus has been variously studied, and different solutions have
been proposed, both giving the possibility of reasoning modulo the linear rational
arithmetic ([14]) and relying on an over-approximation of arithmetic via abelian
groups ([12,22]) or divisible abelian groups ([23,24]).

We have focused on the second kind of approach, giving an original solution
to the satisfiability problem in combinations of theories sharing the theory of
abelian groups. We have shown that in this case all the requirements to apply
the non-disjoint combination method are satisfied, and we have considered an
appropriate superposition calculus modulo abelian groups in order to derive
satisfiability procedures. This calculus relies on a non trivial adaptation the one
proposed in [12]: We consider a many-sorted and constraint-free version of the
calculus, in which we use a restricted form of unification in abelian groups with
free symbols, and in which only literals are involved. Under these assumptions we
have proved that the calculus is refutationally complete, but, as a side remark,
we notice that the same kind of proof works also in case the rules are extended
to deal with Horn clauses and also, exactly as it happens in [12], after the
introduction of an appropriate rule for the Factoring, to deal with general clauses.
Our focus on the unit clause case is justified by our interest in the application to
particular theories whose formalization is actually through axioms of that form.

It is worth noticing that two combination methods are involved in our ap-
proach: the method for unification problems [3] and the non-disjoint extension
of Nelson-Oppen for satisfiability problems [11].

The framework for the non-disjoint combination used here cannot be applied,
as it is, to the case where we consider a combination of theories sharing the
Presburger arithmetic, because the latter is not Noetherian. Another framework,
able to guarantee the termination of the resulting procedure on all the inputs,
should be designed for that case.

We envision several directions for future work. As a first direction, we would
like to relax current restrictions on theories and saturation types to apply ef-
fectively the calculus in the non-disjoint combination method. At the moment,
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since the presence of variables of sort ag in the clauses is not allowed, the results
in [18] are not subsumed by the present paper. That restriction is justified by
technical reasons: an important issue would be to discard it, enlarging in this
way the applicability of our results. As a second direction we foresee, it would
be interesting to find general methods to ensure the termination of the calculus
by developing, for instance, an automatic meta-saturation method [15], or by
considering a variable-inactivity condition [1]. Finally, it would be interesting
to study how our calculus can be integrated into Satisfiability Modulo Theories
solvers, by exploiting for instance the general framework developed in [4].
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Locality Results for Certain Extensions of
Theories with Bridging Functions

Viorica Sofronie-Stokkermans

Max-Planck-Institut für Informatik, Campus E 1.4, Saarbrücken, Germany

Abstract. We study possibilities of reasoning about extensions of base
theories with functions which satisfy certain recursion (or homomor-
phism) properties. Our focus is on emphasizing possibilities of hierarchi-
cal and modular reasoning in such extensions and combinations thereof.
We present practical applications in verification and cryptography.

1 Introduction

In this paper we study possibilities of reasoning in extensions of theories with
functions which satisfy certain recursion (or homomorphism) axioms. This type
of axioms is very important in verification – for instance in situations in
which we need to reason about functions defined by certain forms of primitive
recursion – and in cryptography, where one may need to model homomorphism
axioms of the form ∀x, y, z(encodez(x ∗ y) = encodez(x) ∗ encodez(y)). Decision
procedures for recursive data structures exist. In [13], Oppen gave a PTIME deci-
sion procedure for absolutely free data structures based on bidirectional closure;
methods which use rewriting and/or basic equational reasoning were given e.g.
by Barrett et al. [2] and Bonacina and Echenim [3]. Some extensions of theories
with recursively defined functions and homomorphisms have also been studied.
In [1], Armando, Rusinowitch, and Ranise give a decision procedure for a theory
of homomorphisms. In [18], Zhang, Manna and Sipma give a decision procedure
for the extension of a theory of term structures with a recursively defined length
function. In [8] tail recursive definitions are studied. It is proved that tail recur-
sive definitions can be expressed by shallow axioms and therefore define so-called
“stably local extensions”. Locality properties have also been studied in a series
of papers on the analysis of cryptographic protocols (cf. e.g. [4,5,6]).

In this paper we show that many extensions with recursive definitions (or with
generalized homomorphism properties) satisfy locality conditions. This allows us
to significantly extend existing results on reasoning about functions defined using
certain forms of recursion, or satisfying homomorphism properties [1,8,18], and
at the same time shows how powerful and widely applicable the concept of local
theory (extension) is in automated reasoning. As a by-product, the methods we
use provide a possibility of presenting in a different light (and in a different form)
locality phenomena studied in cryptography in [4,5,6]; we believe that they will
allow to better separate rewriting from proving, and thus to give simpler proofs.
The main results are summarized below:

R.A. Schmidt (Ed.): CADE 2009, LNAI 5663, pp. 67–83, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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– We show that the theory of absolutely free constructors is local, and locality
is preserved also in the presence of selectors. These results are consistent
with existing decision procedures for this theory [13] which use a variant of
bi-directional closure in a graph formed starting from the subterms of the
set of clauses whose satisfiability is being checked.

– We show that, under certain assumptions, extensions of the theory of abso-
lutely free constructors with functions satisfying a certain type of recursion
axioms satisfy locality properties, and show that for functions with values in
an ordered domain we can combine recursive definitions with boundedness
axioms without sacrificing locality. We also address the problem of only con-
sidering models whose data part is the initial term algebra of such theories.

– We analyze conditions which ensure that similar results can be obtained if we
relax some assumptions about the absolute freeness of the underlying theory
of data types, and illustrate the ideas on an example from cryptography.

The locality results we establish allow us to reduce the task of reasoning about
the class of recursive functions we consider to reasoning in the underlying the-
ory of data structures (possibly combined with the theories associated with the
co-domains of the recursive functions).
Structure of the paper. In Section 2 we present the results on local theory exten-
sions and hierarchical reasoning in local theory extensions needed in the paper.
We start Section 3 by considering theories of absolutely free data structures, and
extensions of such theories with selectors. We then consider additional functions
defined using a certain type of recursion axioms (possibly having values in a
different – e.g. numeric – domain). We show that in these cases locality results
can be established. In Section 4 we show that similar results can be obtained if
we relax some assumptions about the absolute freeness of the underlying theory
of data types, and illustrate the results on a simple example from cryptography.

2 Preliminaries

We will consider theories over possibly many-sorted signatures Π = (S,Σ,Pred),
where S is a set of sorts, Σ a set of function symbols, and Pred a set of predicate
symbols. For each function f ∈ Σ (resp. predicate P ∈ Pred), we denote by
a(f) = s1, . . . , sn → s (resp. a(P ) = s1, . . . , sn) its arity, where s1, . . . , sn, s ∈ S,
and n ≥ 0. In the one-sorted case we will simply write a(f) = n (resp. a(P ) = n).

First-order theories are sets of formulae (closed under logical consequence),
typically the set of all consequences of a set of axioms. When referring to a theory,
we can also consider the set of all its models. We here consider theories specified
by their sets of axioms, but – usually when talking about local extensions of a
theory – we will refer to a theory, and mean the set of all its models.

The notion of local theory was introduced by Givan and McAllester [9,10].
They studied sets K of Horn clauses with the property that, for any ground
Horn clause C, K |= C only if already K[C] |= C (where K[C] is the set of
instances of K in which all terms are subterms of ground terms in K or C).
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Theory Extensions. We here also consider extensions of theories, in which the
signature is extended by new function symbols (i.e. we assume that the set of
predicate symbols remains unchanged in the extension). Let T0 be an arbitrary
theory with signature Π0 = (S,Σ0,Pred). We consider extensions T1 of T0 with
signature Π = (S,Σ,Pred), where the set of function symbols is Σ = Σ0∪Σ1. We
assume that T1 is obtained from T0 by adding a set K of (universally quantified)
clauses in the signature Π .

Partial Models. Let Π = (S,Σ,Pred). A partial Π-structure is a structure
({As}s∈S , {fA}f∈Σ, {PA}P∈Pred) in which for every f∈Σ, with a(f)=s1, . . .,
sn→s, fA is a (possibly partially defined) function from As1 × · · · ×Asn to As,
and for every P ∈ Pred with arity a(P ) = s1 . . . sn, PA ⊆ As1×· · ·×Asn . A weak
Π-embedding between partial structures A = ({As}s∈S, {fA}f∈Σ, {PA}P∈Pred)
and B = ({Bs}s∈S , {fB}f∈Σ, {PB}P∈Pred) is an S-sorted family i = (is)s∈S

of injective maps is : As → Bs which is an embedding w.r.t. Pred, s.t. if
a(f) = s1, . . . , sn → s and fA(a1, . . . , an) is defined then fB(is1(a1), . . . , isn(an))
is defined and is(fA(a1, . . ., an))=fB(is1(a1), . . ., isn(an)).

We now define truth and satisfiability in partial structures of Π-literals and
(sets of) clauses with variables in a set X . If A is a partial structure, β : X → A
is a valuation1 and L = (¬)P (t1, . . . , tn) is a literal (with P ∈ Pred∪{=}) we say
that (A, β) |=w L if (i) either β(ti) are all defined and (¬)PA(β(t1), . . . , β(tn)) is
true in A, or (ii) β(ti) is not defined for some argument ti of P . Weak satisfaction
of clauses ((A, β) |=w C) is defined in the usual way. A is a weak partial model
of a set K of clauses if (A, β)|=wC for every β : X→A and every clause C ∈ K.
A weak partial model of T0 ∪K is a weak partial model of K whose reduct to Π0
is a total model of T0.

Local Theory Extensions. Consider the following condition (in what follows
we refer to sets G of ground clauses and assume that they are in the signature
Πc = (S,Σ ∪Σc,Pred), where Σc is a set of new constants):

(Loc) For every finite set G of ground clauses T1∪G |=⊥ iff T0∪K[G]∪G
has no weak partial model with all terms in st(K, G) defined

where if T is a set of terms, K[T ] is the set of instances of K in which all terms
starting with a symbol in Σ1 are in T , and K[G] := K[st(K, G)], where st(K, G)
is the family of all subterms of ground terms in K or G.

We say that an extension T0 ⊆ T1 is local if it satisfies condition (Loc). We say
that it is local for clauses with a property P if it satisfies the locality conditions for
all ground clauses G with property P . A more general locality condition (ELoc)
refers to situations when K consists of formulae (Φ(x1, . . . , xn)∨C(x1, . . . , xn)),
where Φ(x1, . . . , xn) is a first-order Π0-formula with free variables x1, . . . , xn,
and C(x1, . . . , xn) is a clause in the signature Π . The free variables x1, . . . , xn

of such an axiom are considered to be universally quantified [14].

1 We denote the canonical extension to terms of a valuation β : X→A again by β.
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(ELoc) For every formula Γ = Γ0 ∪G, where Γ0 is a Πc
0-sentence and G is

a finite set of ground Πc-clauses, T1 ∪ Γ |=⊥ iff T0 ∪ K[G] ∪ Γ has
no weak partial model in which all terms in st(K, G) are defined.

A more general notion, namely Ψ -locality of a theory extension (in which the
instances to be considered are described by a closure operation Ψ) is introduced
in [11]. Let K be a set of clauses. Let ΨK be a closure operation associating with
any set T of ground terms a set ΨK(T ) of ground terms such that all ground
subterms in K and T are in ΨK(T ). Let ΨK(G) := ΨK(st(K, G)). We say that the
extension T0 ⊆ T0 ∪ K is Ψ -local if it satisfies:
(LocΨ ) for every finite set G of ground clauses, T0∪K∪G|=⊥ iff T0∪K[ΨK(G)]∪G

has no weak partial model in which all terms in ΨK(G) are defined.

(ELocΨ ) is defined analogously. In (Ψ -)local theories and extensions satisfying
(ELocΨ ), hierarchical reasoning is possible.

Theorem 1 ([14,11]). Let K be a set of clauses. Assume that T0 ⊆ T1 = T0∪K
is a Ψ -local theory extension, and that for every finite set T of terms ΨK(T ) is
finite. For any set G of ground clauses, let K0 ∪ G0 ∪ Def be obtained from
K[ΨK(G)]∪G by flattening and purification2. Then the following are equivalent:

(1) G is satisfiable w.r.t. T1.
(2) T0∪K[ΨK(G)]∪G has a partial model with all terms in st(K, G) defined.
(3) T0 ∪ K0 ∪G0 ∪ Con[G]0 has a (total) model, where

Con[G]0 = {
n∧

i=1

ci = di → c = d | f(c1, . . . , cn) = c, f(d1, . . . , dn)=d ∈ Def}.

Theorem 1 allows us to transfer decidability and complexity results from the
theory T0 to the theory T1:

Theorem 2 ([14]). Assume that the extension T0 ⊆ T1 satisfies condition
(LocΨ) – where Ψ has the property that Ψ(T ) is finite for every finite T – and
that every variable in any clause of K occurs below some function symbol from
Σ1. If testing satisfiability of ground clauses in T0 is decidable, then so is testing
satisfiability of ground clauses in T1. Assume that the complexity of testing the
satisfiability w.r.t. T0 of a set of ground clauses of size m can be described by a
function g(m). Let G be a set of T1-clauses such that ΨK(G) has size n. Then the
complexity of checking the satisfiability of G w.r.t. T1 is of order g(nk), where k
is the maximum number of free variables in a clause in K (but at least 2).
2 K[ΨK(G)]∪G can be flattened and purified by introducing, in a bottom-up manner,

new constants ct for subterms t = f(g1, . . . , gn) with f ∈ Σ1, gi ground Σ0∪Σc-terms
(where Σc is a set of constants which contains the constants introduced by flattening,
resp. purification), together with corresponding definitions ct = t. We obtain a set
of clauses K0 ∪ G0 ∪ Def, where Def consists of ground unit clauses of the form
f(g1, . . . , gn) = c, where f ∈ Σ1, c is a constant, g1, . . . , gn are ground Σ0∪Σc-terms,
and K0 and G0 are Σ0∪Σc-clauses. Flattening and purification preserve satisfiability
and unsatisfiability w.r.t. total algebras, and w.r.t. partial algebras in which all
ground subterms which are flattened are defined [14]. In what follows, we explicitly
indicate the sorts of the constraints in Def by using indices, i.e. Def=

⋃
s∈S Defs.
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Examples of Local Extensions. The locality of an extension can either be
proved directly, or by proving embeddability of partial into total models.

Theorem 3 ([14,16,11,17]). The following theory extensions are local:

(1) Any extension of a theory with free function symbols;
(2) Extensions of any base theory T0 with functions satisfying axioms of the form

GBounded(f)
∧n

i=1(φi(x) → si ≤ f(x) ≤ ti)

where Π0 contains a sort s for which a reflexive binary relation ≤ exists, si, ti
are Σ0-terms of sort s and φi are Π0-formulae s.t. for i �= j, φi ∧ φj |=T0⊥,
and T0 |= ∀x(φi(x) → si(x) ≤ ti(x)).

3 Functions on Absolutely Free Data Structures

Let AbsFreeΣ0 = (
⋃

c∈Σ0
(Injc) ∪ (Acycc)) ∪

⋃
c,d∈Σ

c �=d
Disjoint(c, d), where:

(Injc) c(x1, . . . , xn) = c(y1, . . . , yn) →
n∧

i=1

xi = yi

(Acycc) c(t1, . . . , tn) �= x if x occurs in some ti

Disjoint(c, d) c(x1, . . . , xn) �= d(y1, . . . , yk) if c �= d

Note that (Acycc) is an axiom schema (representing an infinite set of axioms).

Theorem 4. The following theories are local:

(a) The theory AbsFreeΣ0 of absolutely free constructors in Σ0.
(b) Any theory AbsFreeΣ0\Σ obtained from AbsFreeΣ0 by dropping the acyclicity

condition for a set Σ ⊆ Σ0 of constructors.
(c) T ∪ Sel(Σ′), where T is one of the theories in (a) or (b), and Sel(Σ′) =⋃

c∈Σ′
⋃n

i=1 Sel(sc
i , c) axiomatizes a family of selectors sc

1, . . . , s
c
n, where n =

a(c), corresponding to constructors c ∈ Σ′ ⊆ Σ0. Here,

Sel(si, c) ∀x, x1, . . . , xn x = c(x1, . . . , xn) → si(x) = xi.

In addition, K = AbsFreeΣ0 ∪ Sel(Σ0) ∪ IsC, where

(IsC) ∀x
∨

c∈Σ0

x = c(sc
1(x), . . . , sc

a(c)(x))

has the property that for every set G of ground Σ0 ∪ Sel ∪ Σc-clauses (where
Σc is a set of additional constants), K ∧ G |=⊥ iff K[Ψ(G)] ∧ G |=⊥, where
Ψ(G) = st(G) ∪

⋃
a∈Σc∩st(G)

⋃
c∈Σ0

({sc
i(a) | 1≤i≤a(c)}∪{c(sc

1(a), . . . , sc
n(a))}).

Proof : This is proved by showing that every weak partial model of the axioms
for (a)–(c) weakly embeds into a total model of the axioms. The locality then
follows from the link between embeddability and locality established in [7]. �

The reduction to the pure theory of equality made possible by Theorem 4 is very
similar to Oppen’s method [13] for deciding satisfiability of ground formulae for
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free recursive data structures by bi-directional closure. Quantifier elimination
(cf. [13]) followed by the reduction enabled by Theorem 4 can be used to obtain
a decision procedure for the first-order theory of absolutely free constructors
axiomatized by AbsFreeΣ0 ∪ Sel(Σ0) ∪ IsC.

We consider extensions of AbsFreeΣ0 with new function symbols, possibly with
codomain of a different sort, i.e. theories over the signature S={d, s1, . . ., sn},
where d is the “data” sort; we do not impose any restriction on the nature of
the sorts in si (some may be equal to d). The function symbols are:

– constructors c∈Σ (arity dn→d), and corresponding selectors sc
i (arity d→d);

– all functions Σsi in the signature of the theory of sort si, for i = 1, . . . , n;
– for every 1 ≤ i ≤ n, a set Σi of functions of sort d → si.

In what follows we will analyze certain such extensions for which decision proce-
dures for ground satisfiability exist3. We assume for simplicity that S = {d, s}.

3.1 A Class of Recursively Defined Functions

Let S = {d, s}, where d is the “data” sort and s is a different sort (output sort
for some of the recursively defined functions).

Let Ts be a theory of sort s. We consider extensions of the disjoint combination
of AbsFreeΣ0 and Ts with functions in a set Σ = Σ1 ∪ Σ2, where the functions
in Σ1 have arity d → d and those in Σ2 have arity d → s. If f has sort d → b,
with b ∈ S, we denote its output sort b by o(f). Let Σo(f) be Σ0 if o(f) = d, or
Σs if o(f) = s, and To(f) be the theory AbsFreeΣ0 if o(f) = d, or Ts if o(f) = s.
For every f ∈ Σ we assume that a subset Σr(f) ⊆ Σ0 is specified (a set of
constructors for which recursion axioms for f exist).

We consider theories of the form T = AbsFreeΣ0 ∪ Ts ∪ RecΣ , where RecΣ =⋃
f∈Σ Recf is a set of axioms of the form:

Recf

{
f(k) = kf

f(c(x1, . . . , xn)) = gc,f(f(x1), . . . , f(xn))

where k, c range over all constructors in Σr(f) ⊆ Σ0, with a(k) = 0, a(c) = n,
kf are ground Σo(f)-terms and the functions gc,f are expressible by Σo(f)-terms.

We also consider extensions with a new set of functions satisfying definitions
by guarded recursion of the form Recg

Σ =
⋃

f∈Σ Recg
f :

Recg
f

⎧⎪⎪⎨
⎪⎪⎩

f(k) = kf

f(c(x1, . . . , xn)) =

⎧⎨
⎩

gc,f
1 (f(x1), . . . , f(xn)) if φ1(f(x1), . . . , f(xn))

. . .

gc,f
k (f(x1), . . . , f(xn)) if φk(f(x1), . . . , f(xn))

3 In this paper we only focus on the problem of checking the satisfiability of sets of
ground clauses, although it appears that when adding axiom IsC decision procedures
for larger fragments can be obtained using arguments similar to those used in [18].
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where k, c range over all constructors in Σr(f) ⊆ Σ0, with a(k) = 0, a(c) = n,
kf are ground Σo(f)-terms and the functions gc,f

i are expressible by Σo(f)-terms,
and φi(x1, . . . , xn) are Σo(f)-formulae with free variables x1, . . . , xn, where φi ∧
φj |=To(f)⊥ for i �= j.

Definition 1. A definition of type Recf is exhaustive if Σr(f) = Σ0 (i.e. Recf

contains recursive definitions for terms starting with any c∈Σ0). A definition of
type Recg

f is exhaustive if Σr(f)=Σ0 and for every definition, the disjoint guards
φ1, . . ., φn are exhaustive, i.e. To(f)|=∀xφ1(x)∨. . .∨φn(x). Quasi-exhaustive defi-
nitions are defined similarly, by allowing that Σ0\Σr(f) may consist of constants.

Example 5. Let Σ0 = {c0, c} with a(c0) = 0, a(c) = n. Let T0 = AbsFreeΣ0 ∪Ts

be the disjoint, many-sorted combination of the theory AbsFreeΣ0 (sort d) and
Tnum, the theory of natural numbers with addition (sort num).

(1) A size function can be axiomatized by Recsize:{
size(c0) = 1

size(c(x1, . . . , xn)) = 1 + size(x1) + · · ·+ size(xn)

(2) A depth function can be axiomatized by the following definition Recg
depth (of

type Recg due to max):{
depth(c0) = 1

depth(c(x1, . . . , xn)) = 1 + max{depth(x1), . . . , depth(xn)}

Example 6. Let Σ0={c0, d0, c} with a(c0) = a(d0) = 0, a(c) = n, and let T0 =
AbsFreeΣ0 ∪ Bool be the disjoint combination of the theories AbsFreeΣ0 (sort d)
and Bool, having as model the two-element Boolean algebra B2=({t, f},�,�,¬)
(sort bool) with a function hasc0 with output of sort bool, defined by Rechasc0

:⎧⎨
⎩

hasc0(c0) = t
hasc0(d0) = f

hasc0(c(x1, . . . , xn)) =
⊔n

i=1 hasc0(xi) (
⊔

is the supremum operation in B2).

Problem. We analyze the problem of testing satisfiability of conjunctions G of
ground unit Σ0∪Σ1∪Σ2∪Σc-clauses, where Σc is a set of new constants:

(AbsFreeΣ0 ∪ Ts ∪ Rec[g]
Σ1
∪ Rec[g]

Σ2
) ∧G |=⊥

(If Σ2=∅, Ts can be omitted.) In what follows we use the abbreviations Σ =
Σ1∪Σ2, Recg

Σ = Recg
Σ1
∪Recg

Σ2
, and RecΣ = RecΣ1∪RecΣ2 .

The form of the ground formulae to be considered can be simplified as follows:

Lemma 7. For every set G of ground unit Σ0 ∪ Σ ∪ Σc-clauses there exists a
set G′ of Σ-flat ground unit Σ0 ∪Σ ∪Σ′

c-clauses (where Σc ⊆ Σ′
c) of the form

G′ = Cs ∧CΣ0 ∧ CΣ ∧NCΣ′
c
,

where Cs is a set of (unit) Σs-clauses (if Σ2 �= ∅) and CΣ0 , CΣ , NCΣ′
c

are
(possibly empty) conjunctions of literals of the form:
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CΣ0: c= c′ and c �= c, where c, c′ ∈ Σ0, nullary;
CΣ: (¬)f(td)= t′, where f∈Σ1∪Σ2, td is a Σ0∪Σ′

c-term, t′ a Σo(f)∪Σ′
c-term;

(¬)f(td)= f ′(t′d), where f, g ∈ Σ2, and td, t
′
d are Σ0 ∪Σ′

c-terms;
NCΣ′

c
: td �= t′d, where td, t

′
d are Σ0 ∪Σ′

c-terms;

such that G and G′ are equisatisfiable w.r.t. AbsFreeΣ0 ∪ Ts ∪ K for any set of
clauses K axiomatizing the properties of the functions in Σ.

Remark 8. If K=RecΣ we can ensure that, for every literal in CΣ , td (t′d) either
starts with a constructor c �∈ Σr(f) (resp. c �∈ Σr(f ′)) or is equal to some a ∈ Σ′

c.
If the definition of f ∈ Σ is exhaustive (resp. quasi-exhaustive), we can ensure
that the only occurrence of f in G′ is at the root of a term, in terms of the form
f(a), where a ∈ Σc (resp., if Recf is quasi-exhaustive, a ∈ Σc∪(Σ0\Σr(f))). We
can ensure that each such f(a) occurs in at most one positive clause by replacing
any conjunction f(a)= t1∧f(a)= t2 with f(a)= t1∧t1 = t2. f(a)= t1∧f(a) �= t2
can also be replaced with the (equisatisfiable) conjunction: f(a)= t1 ∧ t1 �= t2.

We make the following assumptions:

Assumption 1: Either Σ1 = ∅, or else Σ1 �= ∅ and RecΣ1 is quasi-exhaustive.
Assumption 2: G is a set of ground unit clauses with the property that any

occurrence of a function symbol in Σ1 is in positive unit clauses of G of
the form f(a) = t, with a ∈ Σc ∪ (Σ0\Σr(f)), and G does not contain any
equalities between Σ0 ∪ Σc-terms. (By Remark 8, we can assume w.l.o.g.
that for all f ∈ Σ1 and a ∈ Σc ∪ (Σ0\Σr(f)), f(a) occurs in at most one
positive unit clause of G of the form f(a) = t.)

Theorem 9. If Assumption 1 holds, then:

(1) AbsFreeΣ0 ∪ Ts ∪ RecΣ2 is a Ψ -local extension of AbsFreeΣ0 ∪ Ts;
(2) If RecΣ1 is quasi-exhaustive, then AbsFreeΣ0 ∪ Ts ∪ RecΣ1 ∪ RecΣ2 satisfies

the Ψ -locality conditions of an extension of AbsFreeΣ0 ∪ Ts for every set G
of unit clauses which satisfy Assumption 2;

where Ψ associates with any set T of ground terms the smallest set which contains
T and if f(c(t1, . . . , tn))∈Ψ(T ) and c∈Σr(f) then f(ti)∈Ψ(T ) for i = 1, . . . , n.

Similar results hold for extensions with Recg
Σ (under similar assumptions) pro-

vided the guards φi in the recursive definitions of functions in Σ1 are positive.
The results can even be extended to recursive definitions of the form ERec[g]

f :⎧⎪⎪⎨
⎪⎪⎩

f(k, x) = kf (x)

f(c(x1, . . . , xn), x) =

⎧⎨
⎩

gc,f
1 (f(x1, x), . . . , f(xn, x), x) if φ1(f(x1), . . . , f(xn))

. . .

gc,f
k (f(x1, x), . . . , f(xn, x), x) if φk(f(x1), . . . , f(xn))

where k, c range over Σr(f), a(k) = 0, a(c) = n, kf (x) are Σo(f)-terms with free
variable x, gc,f

i are functions expressible as Σo(f)-terms, and φi(x1, . . . , xn) are
Σo(f)-formulae with free variables x1, . . . , xn, s.t. φi ∧ φj |=To(f)⊥ for i �= j.
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Note: We can actually prove a variant of ELocΨ , in which we can allow first-
order Σs-constraints in (E)Recg

Σ and in G.

Example 10. Let Σ0 = {c0, d0, c}, where c is a binary constructor and c0, d0
are nullary. Consider the recursive definition Rechasc0

of the function hasc0 in
Example 6. We want to show that AbsFreeΣ0 ∪ Bool ∪ Rechasc0

|= G1 where

G1 = ∀x(hasc0(x)=t ∧ z1=c(y1, c(x1, x)) ∧ z1=c(y2, y3) → hasc0(y3)=t)
G = ¬G1 = (hasc0(a)=t ∧ c1=c(b1, c(a1, a)) ∧ c1=c(b2, b3) ∧ hasc0(b3)=f),

where Σc = {a, a1, b1, b2, b3, c1}. We transform G as explained in Lemma 7 by
inferring all equalities entailed by the equalities between constructor terms in G;
if ai = aj (resp. ai = c(a1, . . . , an)) is entailed we replace ai with aj (resp. with
c(a1, . . . , an)). We obtain the equisatisfiable set of ground clauses:

G′ = (hasc0(a)=t ∧ hasc0(c(a1, a))=f).

(AbsFreeΣ0 ∪Bool∪Rechasc0
)∪G′ |=⊥ iff (AbsFreeΣ0 ∪Bool)∪Rechasc0

[Ψ(G′)]∪
G′ |=⊥, where Ψ(G′) = {hasc0(c(a1, a)), hasc0(a1), hasc0(a)} by Theorem 9. After
purification we obtain:

Defbool G0 ∧ Rechasc0
[Ψ(G)]0

hasc0(a1)= h1 ∧ hasc0(a)= h2 ∧ hasc0(c(a1, a))= h3 h2 = t ∧ h3 = f ∧ h3 =h1 � h2

We immediately obtain a contradiction in Bool, without needing to consider Con0
or a further reduction to a satisfiability test w.r.t. AbsFreeΣ0 .

Combining Recursive Definitions with Boundedness. We analyze the
locality of combinations of Rec[g]

Σ with boundedness axioms, of the type:

Bounded(f) ∀x(t1 ≤ f(x) ≤ t2)

Theorem 11. Assume that ≤ is a partial order in all models of Ts, a(f) =
d → s, t1, t2 are Σs-terms with Ts |= t1 ≤ t2, and all functions gc,f

i used in the
definition of f have the property:

∀x1, . . . , xn(
n∧

i=1

t1 ≤ xi ≤ t2 → t1 ≤ gc,f
i (x1, . . . , xn) ≤ t2), where n = a(c).

If Assumption 1 holds then AbsFreeΣ0∪Ts∪Rec[g]
f ∪Bounded is a Ψ -local extension

of AbsFreeΣ0 ∪ Ts, where Ψ is defined as in Theorem 9.

Proof : The conditions on the functions gc,f
i ensure that in the completion process

used in Theorem 9 the corresponding properties of f can be guaranteed. �

Example 12. (1) We want to check whether AbsFreeΣ0 ∪ Z ∪ Recdepth entails

G1 =∀x1, x2, x3, x4 (depth(x1) ≤ depth(x2) ∧ depth(x4) ≤ depth(x3) ∧ x4 =c(x2)
→ depth(d(x1, e(x2, c

′))) ≤ depth(e(x4, x3))),
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where Σ0 contains the constructors c′ (nullary), c (unary), and d, e (binary).
By Ψ -locality, this can be reduced to testing the satisfiability of the following
conjunction of ground clauses containing the additional constants:

Σc = {a1, a2, a3, a4, d1, d2, d3, d4, e1, e2, e3, g1, g2, g3, c
′
2, d

′
2}

(below we present the flattened and purified form), where G = ¬G1:

Defd Defnum G0d G0num Recdepth[Ψ(G)]0
d(a1, e2) = e1 depth(ai) = di(i = 1− 4) a4 = c′2 d1 ≤ d2 g1 = 1 + max{d1, g2}
e(a2, c

′) = e2 depth(ei) = gi(i = 1, 2, 3) d4 ≤ d3 g2 = 1 + max{d2, 1}
e(a4, a3) = e3 depth(c′2) = d′2 g1 �≤ g3 g3 = 1 + max{d4, d3}
c(a2) = c′2 d′2 = 1 + d2

Let Con0 consist of all the instances of congruence axioms for c, d, e and depth.
G0∪Recdepth[Ψ(G)]0∪Con0 is satisfiable in AbsFreeΣ0∪Z. A satisfying assignment
is: d1 = d2 = 0 and d′2 = d4 = d3 = 1 (d′2 and d4 need to be equal due to Con0
because c′2 = a4; and d4 ≤ d3). g2 = 1+max{0, 1} = 2, g1 = 1+max{d1, g2} = 3
and g3 = 1 + max{d4, d3} = 1 + d4 = 2. Thus, AbsFreeΣ0 ∪ Z ∪ Recdepth �|= G1.

(2) We now show that AbsFreeΣ0 ∪ Z ∪ Recdepth ∪ Bounded(depth) |= G1, where

Bounded(depth) ∀x(depth(x) ≥ 1).

By Theorem 11, we only need to consider the instances of Bounded(depth) con-
taining terms in Defnum, i.e. the constraints di ≥ 1 for i ∈ {1, . . . , 4}; gi ≥ 1 for
i ∈ {1, . . . , 3} and d′2 ≥ 1. Con0 can be used to derive d4 = d′2. We obtain:
g1 = 1+max{d1, g2} = 1+max{d1, 1+max{d2, 1}} = 1+max{d1, 1+d2} = 2+d2
g3 = 1+max{d4, d3} = 1+d3 ≥ 1 + d4 = 1 + d′2 = 2 + d2.

which together with g1 �≤ g3 yields a contradiction.

3.2 Restricting to Term-Generated Algebras

The apparent paradox in the first part of Example 12 is due to the fact that
the axiomatization of AbsFreeΣ0 makes it possible to consider models in which
the constants in Σc are not interpreted as ground Σ0-terms. We would like to
consider only models for which the support Ad of sort d is the set TΣ0(∅) of
ground Σ0-terms (we will refer to them as term generated models)4. We will
assume that the axiomatization of the recursive functions contains a family of
constraints {C(a) | a ∈ Σc} expressed in first order logic on the values the
function needs to take on any element in Σc with the property:

(TG) C(a) iff there exists t ∈ TΣ0(∅) such that for all f ∈ Σ2, f(a) = f(t).

4 For expressing this, we can use axiom IsC (cf. Theorem 4) or the axiom used in [18]:
(IsConstr)∀x

∨
c∈Σ0

Isc(x) where Isc(x) = ∃x1, . . . , xn : x = c(x1, . . . , xn).
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Example 13. Some examples are presented below:

(1) Assume Σ2 = {size} (the size function over absolutely free algebras with
set of constructors {ci | 1 ≤ i ≤ n} with arities a(ci)). The following size
constraints have the desired property (cf. also [18]):

C(a) = ∃x1, . . . , xn(size(a) = (
n∑

i=1

a(ci) ∗ xi) + 1).

To prove this, note that for every term t, size(t) = (
∑n

i=1 a(ci)∗n(ci, t)+1),
where n(ci, t) is the number of times ci occurs in t. Thus, if there exists t
such that size(t) = size(a), then C(a) is true. Conversely, if C(a) is true
size(a) = size(t) for every term with xi occurrences of the constructor ci for
i = 1, ..., n.

(2) Consider the depth function (with output sort int) over absolutely free alge-
bras with set of constructors {ci | 1 ≤ i ≤ n}. Then C(a) := depth(a) ≥ 1.

In what follows we will assume that Σ1 = ∅.

Theorem 14. Assume that for every a ∈ Σc, a set C(a) of constraints satisfying
condition (TG) exists. Then AbsFreeΣ0 ∪ Ts ∪ Rec[g]

Σ2
∪
⋃

a∈Σc
C(a) is a Ψ -local

extension of AbsFreec ∪ Ts, where Ψ is defined as in Theorem 9.

Note: As in Theorem 9, we can prove, in fact, ELocΨ -locality. Hence, the pos-
sibility that C(a) may be a first-order formula of sort s is not a problem.

In order to guarantee that we test satisfiability w.r.t. term generated models, in
general we have to add, in addition to the constraints C(a), for every function
symbol f ∈ Σ2, additional counting constraints describing, for every x ∈ As,
the maximal number of distinct terms t in TΣ0(∅) with f(t) = x. If Σ0 contains
infinitely many nullary constructors the number of distinct terms t in TΣ0(∅)
with f(t) = x is infinite, so no counting constraints need to be imposed.

Counting constraints are important if Σ0 contains only finitely many nullary
constructors and if the set G of ground unit clauses we consider contains negative
(unit) Σ0 ∪ Σc-clauses. For the sake of simplicity, we here only consider sets G
of unit ground clauses which contain only negative (unit) clauses of sort s.

Lemma 15. Assume that Σ1=∅ and for every a∈Σc there exists a set C(a) of
constraints such that condition (TG) holds. The following are equivalent for any
set G of unit Σ0∪Σ2∪Σc-clauses in which all negative literals have all sort s.

(1) There exists a term-generated model A = (TΣ0(∅), As, {fA}f∈Σ2, {aA}a∈Σc)
of AbsFreeΣ0 ∪ Ts ∪ Rec[g]

Σ2
and G.

(2) There exists a model F = (TΣ0(Σc), As, {fF}f∈Σ2, {aF }a∈Σc) of AbsFreeΣ0∪
Ts ∪ Rec[g]

Σ2
∪
⋃

a∈Σc
C(a) and G, where for every a ∈ Σc, aF = a.

(3) There exists a model A = (Ad, As, {fA}f∈Σ2, {aA}a∈Σc) of AbsFreeΣ0 ∪ Ts ∪
Rec[g]

Σ2
∪
⋃

a∈Σc
C(a) and G.
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From Theorem 14 and Lemma 15 it follows that for every set G of ground unit
clauses in which all negative (unit) clauses consist of literals of sort s, testing
whether there exists a term-generated model of AbsFreeΣ0∪Ts∪Rec[g]

Σ2
and G can

be done by computing Rec[g]
Σ2

[Ψ(G)] and then reducing the problem hierarchically
to a satisfiability test w.r.t. AbsFreeΣ0 ∪ Ts.

Example 16. Example 12 provides an example of a ground clause G for which
AbsFreeΣ0∪Z∪Recdepth �|= G, and AbsFreeΣ0∪Z∪Recdepth∧Bounded(depth) |= G.
Example 12(2) shows that AbsFreeΣ0∪Z∪Recdepth∪

⋃
a∈Const(G) C(a)|=G, i.e. (by

Lemma 15), G is true in every term-generated model of AbsFreeΣ0∪Z∪Recdepth.

Similar results can be obtained if we relax the restriction on occurrences of
negative clauses in G. If the set of nullary constructors in Σ0 is infinite the
extension is easy; otherwise we need to use equality completion and add counting
constraints as done e.g. in [18] (assuming that there exist counting constraints
expressible in first-order logic for the recursive definitions we consider).

4 More General Data Structures

We will now extend the results above to more general data structures. Consider a
signature consisting of a set Σ0 of constructors (including a set C of constants).
Let E be an additional set of identities between Σ0-terms.

Example 17. Let Σ0 = {c, c0}, where c is a binary constructor and c0 is a
constant. We can impose that E includes one or more of the following equations:

(A) c(c(x, y), z) = c(x, c(y, z)) (associativity)
(C) c(x, y) = c(y, x) (commutativity)
(I) c(x, x) = x (idempotence)
(N) c(x, x) = c0 (nilpotence)

We consider many-sorted extensions of the theory defined by E with functions
in Σ = Σ1∪Σ2, and sorts S = {d, s}, where the functions in Σ1 have sort d → d,
those in Σ2 have sort d → s, and the functions in Σ satisfy additional axioms
of the form RecΣ and ERecΣ as defined in Section 3.1.5 We therefore consider
two-sorted theories of the form E ∪Ts ∪ (E)RecΣ, where Ts is a theory of sort s.
We make the following assumptions:

Assumption 3: We assume that:
(a) The equations in E only contain constructors c with c ∈

⋂
f∈Σ Σr(f).

(b) For every ∀x t(x) = s(x) ∈ E and every f ∈ Σ1 ∪ Σ2 let t′(x) (resp.
s′(x)) be the Σo(f)-term obtained by replacing every constructor c ∈ Σ0

with the term-generated function6 gc,f . Then for every f ∈ Σ1, E |=
∀x t′(x) = s′(x), and for every f ∈ Σ2, Ts |= ∀x t′(x) = s′(x).

5 We restrict to unguarded recursive definitions of type RecΣ and ERecΣ to simplify
the presentation. Similar results can be obtained for definitions of the type Rec

g
Σ

and ERec
g
Σ , with minor changes in Assumption 3.

6 gc,f is the function (expressible as a Σo(f)-term) from the definition
f(c(x1, . . . , xn)) = gc,f (f(x1), . . . , f(xn)) in Recf .
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Example 18. Consider the extension of the theory of one binary associative
and/or commutative function c with the size function defined as in Example 5(1).
Then

size(c(x, y)) = gc
size(size(x), size(y)), where gc

size(x, y) = 1 + x + y.

Note that gc
size is associative and commutative, so Assumption 3 holds.

gc
size(g

c
size(x, y), z) = 1+(1+x+y)+z = 1+x+(1+y+z) = gc

size(x, g
c
size(y, z));

gc
size(x, y) = 1+x+y = 1+y+x = gc

size(y, x).

Example 19. Assume that Σ0 only contains the binary constructor c satisfying
a set E of axioms containing some of the axioms {(A), (C), (I)} in Example 17.
Let enck be a new function symbol (modeling encoding with key k) satisfying

Recenc enck(c(x, y)) = c(enck(x), enck(y)).

It is easy to see that gc
enc = c and hence Assumption 3 is satisfied.

In what follows we assume that Assumption 3 holds, and that RecΣ1 is quasi-
exhaustive. Note that in the presence of axioms such as associativity, the univer-
sal (Horn) theory of E itself may be undecidable. We will therefore only consider
the simpler proof task of checking whether

E ∪ [E]Rec[g]
Σ1
∪ [E]Rec[g]

Σ2
|= G1,

where G1 is a ground Σ ∪Σ1 ∪Σ2-clause of the form

l∧
k=1

gk(ck) = tdk ∧
n∧

i=1

fi(tdi ) = tsi ∧
m∧

j=1

fj(tdj ) = f ′j(t
′d
j ) → f(td) = ts (1)

where gk ∈ Σ1, ck ∈ Σ0\Σr(gk), fi, f
′
i , f are functions in Σ2 (with output sort s

different from d), tdk, t
′d
k , td are ground Σ0-terms, and tsk, t

′s
k , ts are Σs-terms. We

additionally assume that for every g ∈ Σ1 and every c ∈ Σ0\Σr(g), g(c) occurs
at most once in the premise of G.

Remark. If RecΣ2 is quasi-exhaustive, G is equisatisfiable with a clause in which
every occurrence of f ∈ Σ2 is in a term of the form f(c), with c ∈ Σ0\Σr(f).

Theorem 20. Assume that RecΣ1 , RecΣ2 are quasi-exhaustive and Assumption
3 holds. The following are equivalent for any set G of Σ0∪Σ-clauses of form (1):

(1) E ∪ RecΣ1 ∪ Ts ∪ RecΣ2 |= G.
(2) G is true in all models A = (Ad, As, {fA}f∈Σ) of E ∪ RecΣ1 ∪ Ts ∪ RecΣ2 .
(3) G is true in allmodelsF = (TΣ0(∅)/≡E, As, {fA}f∈Σ)ofE∪Ts∪RecΣ1∪RecΣ2 .
(4) G is true in all weak partial models F = (TΣ0(∅)/≡E, As, {fA}f∈Σ) of

E∪Ts∪(RecΣ1∪RecΣ1)[Ψ(G)] in which all terms in Ψ(G) are defined.

Similar results can also be obtained for definitions of type Recg
Σ or ERec[g]

Σ .
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Note: We can impose boundedness conditions on the recursively defined
functions without affecting locality (as for absolutely free constructors). 7

4.1 An Example Inspired from Cryptography

In this section we illustrate the ideas on an example inspired by the treatment
of a Dolev-Yao security protocol considered in [4] (cf. also Examples 17 and 19).
Let Σ0 = {c} ∪ C, where c is a binary constructor, and let enc be a binary
function. We analyze the following situations:

(1) c satisfies a set E of axioms and enc is a free binary function. By Theorem 3,
the extension of E with the free function enc is a local extension of E.

(2) c is an absolutely free constructor, and enc satisfies the recursive definition:

(ERecenc) ∀x, y, z enc(c(x, y), z) = c(enc(x, z), enc(y, z)).

By Theorem 9, the extension AbsFreec⊆AbsFreec∪ERecenc satisfies the Ψ -
locality condition for all clauses satisfying Assumption 2 (with Ψ as in The-
orem 9).

(3) If c is associative (resp. commutative) and enc satisfies axiom ERecenc then
Assumption 3 is satisfied, so, by Theorem 20, E ∪ ERecenc satisfies the con-
dition of a Ψ -local extension of E for all clauses of type (1).

Formalizing the Intruder Deduction Problem. We now formalize the ver-
sion of the deduction system of the Dolev and Yao protocol given in [4]. Let E
be the set of identities which specify the properties of the constructors in Σ0.
We use the following chain of successive theory extensions:

E ⊆ E ∪ ERecenc ⊆ E ∪ ERecenc ∪ Bool ∪ Recg
known,

where known has sort d → bool and Recg
known consists of the following axioms:

∀x, y known(c(x, y)) = known(x) � known(y)
∀x, y known(y) = t → known(enc(x, y)) = known(x)

Intruder deduction problem. The general statement of the intruder deduction
problem is: “Given a finite set T of messages and a message m, is it possible to
retrieve m from T ?”.

Encoding the intruder deduction problem. The finite set of known messages, T =
{t1, . . . , tn}, where ti are groundΣ0∪{enc}-terms, is encoded as

∧n
i=1 known(ti)=t.

With this encoding, the intruder deduction problem becomes:
“Test whether E∪Recenc∪Bool∪Recknown |=

∧n
i=1 known(ti)=t → known(m)=t.”

7 We can also consider axioms which link the values of functions f2 ∈ Σ2 and f1 ∈ Σ1

on the constants, such as e.g. “f2(f1(c))=ts” if we consider clauses G in which if
f1(c)=t occurs then t=c′, where c′ is a constant constructor not in Σr(f2). In the
case of Σ1-functions defined by ERec we can consider additional axioms of the form:
φ(f2(x))→f2(f1(c, x))=t′s, where t′s is a ground term of sort s either containing f2

(and of the form f2(c′)) or a pure Σs-term.
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Example 21. We illustrate the hierarchical reasoning method we propose on the
following example: Assume that E = {(C)} and the intruder knows the messages
c(a, b) and enc(c(c(e, f), e), c(b, a)). We check if he can retrieve c(f, e), i.e. if

G : (known(c(a, b))=t)∧(known(enc(c(c(e, f), e), c(b, a)))=t)∧(known(c(f, e))=f)

is unsatisfiable w.r.t. E∪Bool∪ERecenc∪Recg
known. G is equisatisfiable with a set

G′ of clauses obtained by applying all the definitions in ERecenc and Recg
known:

G′ : (known(enc(e, c(b, a))) � known(enc(f, c(b, a))) � known(enc(e, c(b, a)))=t)
∧ (known(a) � known(b)=t) ∧ (known(f) � known(e)=f).

By Theorem 20, we know that E ∪ Recenc ∪ Bool ∪ Recknown ∧ G′ |=⊥ iff E ∪
Recenc ∪ Bool ∪ Recknown[Ψ(G′)] ∧G′ |=⊥ . The reduction is illustrated below:

Defbool G′
0 ∧ Recknown[Ψ(G′)]0

k1 = known(a) k5 = known(enc(e, c(b, a))) k1 
 k2 = t k7 = k2 
 k1

k2 = known(b) k6 = known(enc(f, c(b, a))) k3 
 k4 = f k7 = t → k5 = k3

k3 = known(e) k7 = known(c(b, a)) k5 
 k6 
 k5 = t k7 = t → k6 = k4

k4 = known(f)

(We ignored Con0.) The contradiction in Bool can be detected immediately.

5 Conclusion

We showed that many extensions with recursive definitions (which can be seen
as generalized homomorphism properties) satisfy locality conditions. This allows
us to reduce the task of reasoning about the class of recursive functions we con-
sider to reasoning in the underlying theory of data structures (possibly combined
with the theories attached to the co-domains of the additional functions). We
illustrated the ideas on several examples (including one inspired from cryptogra-
phy). The main advantage of the method we use consists in the fact that it has
the potential of completely separating the task of reasoning about the recursive
definitions from the task of reasoning about the underlying data structures. We
believe that these ideas will make the automatic verification of certain prop-
erties of recursive programs or of cryptographic protocols much easier, and we
plan to make a detailed study of applications to cryptography in future work.
An implementation of the method for hierarchical reasoning in local theory ex-
tensions is available at www.mpi-inf.mpg.de/∼ihlemann/software/index.html (cf.
also [12]). In various test runs it turned out to be extremely efficient, and can
be used as a decision procedure for local theory extensions. We plan to extend
the program to handle the theory extensions considered in this paper; we expect
that this will not pose any problems. There are other classes of bridging func-
tions – such as, for instance, cardinality functions for finite sets and measure
functions for subsets of R (for instance intervals) – which turn out to satisfy
similar locality properties. We plan to present such phenomena in a separate
paper.
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Abstract. The recent quest for tractable logic-based languages arising
from the field of bio-medical ontologies has raised a lot of attention on
lightweight (i.e. less expressive but tractable) description logics, like EL
and its family. To this extent, automated reasoning techniques in these
logics have been developed for computing not only concept subsump-
tions, but also to pinpoint the set of axioms causing each subsumption.
In this paper we build on previous work from the literature and we pro-
pose and investigate a simple and novel approach for axiom pinpointing
for the logic EL+. The idea is to encode the classification of an ontology
into a Horn propositional formula, and to exploit the power of Boolean
Constraint Propagation and Conflict Analysis from modern SAT solvers
to compute concept subsumptions and to perform axiom pinpointing. A
preliminary empirical evaluation confirms the potential of the approach.

1 Motivations and Goals

The recent quest for tractable logic-based languages arising from the field of
bio-medical ontologies has attracted a lot of attention on lightweight (i.e. less
expressive but tractable) description logics, like EL and its family [1,3,5,2]. In
particular, the logic EL+ [3,5] extends EL and is of particular relevance due
to its algorithmic properties and due to its capability of expressing several
important and widely-used bio-medical ontologies, such as Snomed-CT [16],
NCI [15], GeneOntology [7] and the majority of Galen [12]. In fact in
EL+ not only standard logic problems such as concept subsumption (e.g., “is
Amputation-of-Finger a subconcept of Amputation-of-Arm in the ontology
Snomed-CT?” [6]), but also more sophisticated logic problems such as ax-
iom pinpointing (e.g., “Find a minimal set of axioms in Snomed-CT which
are responsible of the fact that Amputation-of-Finger is a subconcept of
Amputation-of-Arm” [6]) are tractable. Importantly, the problem of axiom pin-
pointing in EL+ is of great interest for debugging complex bio-medical ontologies
(see, e.g., [6]). To this extent, the problems of concept subsumption and axiom
pinpointing in EL+ have been thoroughly investigated, and efficient algorithms
� The first author is partly supported by SRC under GRC Custom Research Project
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for these two functionalities have been implemented and tested with success on
large ontologies, including Snomed-CT (see e.g. [3,5,6]).

In this paper we build on previous work from the literature of EL+ reasoning
[3,5,6] and of SAT/SMT [11,17,8,9], and propose a simple and novel approach
for (concept subsumption and) axiom pinpointing in EL+ (and hence in its sub-
logics EL and ELH). In a nutshell, the idea is to generate polynomial-size Horn
propositional formulas representing part or all the deduction steps performed
by the classification algorithms of [3,5], and to manipulate them by exploiting
the functionalities of modern conflict-driven SAT/SMT solvers —like Boolean
Constraint Propagation (BCP) [11], conflict analysis under assumptions [11,8],
and all-SMT [9]. In particular, we show that from an ontology T it is possible
to generate in polynomial time Horn propositional formulas φT , φone

T and φall
T (po)

of increasing size s.t., for every pair of primitive concepts Ci, Di:

(i) concept subsumption is performed by one run of BCP on φT or φone
T ;

(ii) one (non-minimal) set of axioms responsible for the derivation of Ci �T Di

(nMinA) is computed by one run of BCP and conflict analysis on φone
T or φall

T (po);
(iii) one minimal such set (MinA) is computed by iterating process (ii) on φall

T (po)
for an amount of times up-to-linear in the size of the first nMinA found;
(iv) the same task of (iii) can also be computed by iteratively applying process (ii)
on an up-to-linear sequence of increasingly-smaller formulas φone

T ,φone
S1

,...φone
Sk

;
(v) all MinAs can be enumerated by means of all-SMT techniques on φall

T (po),
using step (iii) as a subroutine.

It is worth noticing that (i) and (ii) are instantaneous even with huge φT , φone
T

and φall
T (po), and that (v) requires building a polynomial-size formula φall

T (po), in
contrast to the exponential-size formula required by the all-MinAs process of [5].

We have implemented a prototype tool and performed a preliminary empirical
evaluation on the available ontologies, whose results confirm the potential of our
novel approach. For lack of space we omit many details and optimizations of our
procedures, which can be found in an extended version of this paper [14].

Content. In §2 we provide the necessary background on EL+ reasoning and
on conflict-driven SAT solving; in §3 we present our SAT-based procedures for
concept subsumption, one-MinA extraction and all-MinAs enumeration; in §4 we
discuss our techniques and compare them with those in [5]; in §5 we present our
preliminary empirical evaluation, in §6 we draw some conclusions and outline
directions for future research.

2 Background
2.1 Classification, Subsumption and Axiom Pinpointing in EL+

The Logic EL+. The description logic EL+ belongs to the EL family, a group
of lightweight description logics which allow for conjunctions, existential restric-
tions and support TBox of GCIs (general concept inclusions) [3]; EL+ extends
EL adding complex role inclusion axioms. In more details, the concept descrip-
tions in EL+ are inductively defined through the constructors listed in the upper



86 R. Sebastiani and M. Vescovi

half of Table 1, starting from a set of primitive concepts and a set of primitive
roles. (We use the uppercase letters X , Xi, Y , Yi, to denote generic concepts,
the uppercase letters C, Ci, D, Di, E, Ei to denote concept names and the
lowercase letters r, ri, s to denote role names.) An EL+ TBox (or ontology) is
a finite set of general concept inclusion (GCI) and role inclusion (RI) axioms as
defined in the lower half of Table 1. Given a TBox T , we denote with PCT the
set of the primitive concepts for T , i.e. the smallest set of concepts containing:
(i) the top concept �; (ii) all concept names used in T . We denote with PRT the
set of the primitive roles for T , i.e. the set of all the role names used in T . We
use the expression X≡Y as an abbreviation of the two GCIs X�Y and Y �X .

The semantics of EL+ is defined in terms of interpretations. An interpretation
I is a couple I = (ΔI , ·I), where ΔI is the domain, i.e. a non-empty set of
individuals, and ·I is the interpretation function which maps each concept name
C to a set CI ⊆ ΔI and maps each role name r to a binary relation rI ⊆
ΔI ×ΔI . In the right-most column of Table 1 the inductive extensions of ·I to
arbitrary concept descriptions are defined. An interpretation I is a model of a
given TBox T if and only if the conditions in the Semantics column of Table 1
are respected for every GCI and RI axiom in T . A TBox T ′ is a conservative
extension of the TBox T if every model of T ′ is also a model of T , and every
model of T can be extended to a model of T ′ by appropriately defining the
interpretations of the additional concept and role names.

A concept Y subsumes a concept X w.r.t. the TBox T , written X �T Y , iff
XI ⊆ Y I for every model I of T . The computation of all subsumption relations
between concept names occurring in T is called classification of T . Subsumption
and classification in EL+ can be performed in polynomial time [1,5].

Normalization. In EL+ it is convenient to establish and work with a normal
form of the input problem, which helps to make explanations, proofs, reasoning
rules and algorithms simpler and more general. Usually the following normal
form for the EL+ TBoxes is considered [1,3,4,5]:

(C1 � ... � Ck) � D, k ≥ 1 C � ∃r.D ∃r.C � D (1)
r1 ◦ · · · ◦ rn � s, n ≥ 1 (2)

s.t. C1, ..., Ck, D ∈ PCT and r1, ..., rn, s ∈ PRT . A TBox T can be turned into a
normalized TBox T ′ that is a conservative extension of T [1], by introducing new
concept names. In a nutshell, normalization consists in substituting all instances

Table 1. Syntax and semantics of EL+

Syntax Semantics
top � ΔI

conjunction X 
 Y XI ∩ Y I

existential restriction ∃r.X {x ∈ ΔI | ∃y ∈ ΔI : (x, y) ∈ rI ∧ y ∈ XI}
general concept inclusion X � Y XI ⊆ Y I

role inclusion r1 ◦ · · · ◦ rn � s rI1 ◦ · · · ◦ rIk ⊆ sI
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of complex concepts of the forms ∃r.C and C1� ...�Ck with fresh concept names
(namely, C′ and C′′), and adding the axioms C′ � ∃r.C [resp. ∃r.C � C′] and
C′′ � C1, ..., C

′′ � Ck [resp. (C1 � ... � Ck) � C′′] for every substitution in the
right [resp. left] part of an axiom. This transformation can be done in linear
time and the size of T ′ is linear w.r.t. that of T [1]. We call normal concept of
a normal TBox T ′ every non-conjunctive concept description occurring in the
concept inclusions of T ′; we call NCT ′ the set of all the normal concepts of T ′.

Concept Subsumption in EL+. Given a normalized TBox T over the set
of primitive concepts PCT and the set of primitive roles PRT , the subsumption
algorithm for EL+ [5] generates and extends a set A of assertions through the
completion rules defined in Table 2. (By “assertion” we mean every known or
deduced subsumption relation between normal concepts of the TBox T .) The
algorithm starts with the initial set A = {ai ∈ T |ai is a GCI} ∪ {C � C|C ∈
PCT }∪{C��|C∈PCT } and extends A using the rules of Table 2 until no more
assertions can be added. (Notice that a rule is applied only if it extends A.)

In [1] the soundness and completeness of the algorithm are proved, together
with the fact that the algorithm terminates after polynomially-many rule appli-
cations, each of which can be performed in polynomial time.

Once a complete classification of the normalized TBox is computed and stored
in some ad-hoc data structure, if C,D ∈ PCT , then C �T D iff the pair C,D
can be retrieved from the latter structure. The problem of computing X �T Y
s.t. X,Y �∈ PCT can be reduced to that of computing C �T ∪{C�X,Y�D} D, s.t.
C and D are two new concept names.

Axiom Pinpointing in EL+. We consider Ci, Di ∈ PCT s.t. Ci �T Di. We
call S s.t. S ⊆ T a (possibly non-minimal) axiom set for T wrt. Ci � Di, written
nMinA, if Ci �S Di; we call an nMinA S a minimal axiom set for Ci � Di,
written MinA, if Ci ��S′ Di for every S′ s.t. S′ ⊂ S.

Baader et al. [5] proposed a technique for computing all MinAs for T wrt.
Ci �T Di, which is based on building from a classification of T a pinpointing for-
mula (namely ΦCi�T Di), which is a monotone propositional formula on the set of
propositional variablesPT def= {s[axj] |axj ∈ T } s.t., for everyO ⊆ T ,O is a MinA
wrt. Ci �T Di iff {s[axk] |axk ∈ O} is a minimal valuation of ΦCi�T Di . Thus,

Table 2. Completion rules of the concept subsumption algorithm for EL+. A rule reads
as follows: if the assertions/axioms in the left column belong to A, the GCI/RI of the
central column belongs to T , and the assertion of the right column is not already in
A, then the assertion of the right column is added to A.

Subsumption assertions (. . . ∈ A) TBox’s axioms (. . . ∈ T ) ... added to A
X � C1, X � C2, ... X � Ck k ≥ 1 C1 
 · · · 
 Ck � D X � D

X � C C � ∃r.D X � ∃r.D

X � ∃r.E, E � C ∃r.C � D X � D

X � ∃r.D r � s X � ∃s.D

X � ∃r1.E1, ..., En−1 � ∃rn.D n ≥ 1 r1 ◦ · · · ◦ rn � s X � ∃s.D
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the all-MinAs algorithm in [5] consists of (i) building ΦCi�T Di and (ii) comput-
ing all minimal valuations of ΦCi�T Di . According to [5], however, this algorithm
has serious limitations in terms of complexity: first, the algorithm for generating
ΦCi�T Di requires intermediate logical checks, each of them involving the solution
of an NP-complete problem; second, the size of ΦCi�T Di can be exponential wrt.
that of T . More generally, [5] proved also that there is no output-polynomial al-
gorithm for computing all MinAs (unless P=NP). (To the best of our knowledge,
there is no publicly-available implementation of the all-MinAs algorithm above.)
Consequently, [5] concentrated the effort on finding polynomial algorithms for
finding one MinA at a time, proposing a linear-search minimization algorithm
which allowed for finding MinAs for full-Galen efficiently. This technique was
further improved in [6] by means of a binary-search minimization algorithm, and
by a novel algorithm exploiting the notion of reachability-modules, which allowed
to find efficiently MinAs for the much bigger Snomed-CT ontology. We refer
the readers to [5,6] for a detailed description.

2.2 Basics on Conflict-Driven SAT Solving

Notation. We assume the standard syntactic and semantic notions of propo-
sitional logic (including the standard notions of formula, atom, literal, CNF
formula, Horn formula, truth assignment, clause, unit clause). We represent a
truth assignment μ as a conjunction of literals

∧
i li (or analogously as a set of

literals {li}i) with the intended meaning that a positive [resp. negative] literal
pi means that pi is assigned to true [resp. false]. Notationally, we often write
clauses as implications: “(

∧
i li) → (

∨
j lj)” for “

∨
i ¬li ∨

∨
j lj”; also, if η is a

conjunction of literals
∧

i li, we write ¬η for the clause
∨

i ¬li, and vice versa.

Conflict-Driven SAT Solving. The schema of a modern conflict-driven
DPLL SAT solver is shown in Figure 1 [11,17]. The propositional formula ϕ
is in CNF; the assignment μ is initially empty, and it is updated in a stack-based
manner.

In the main loop, decide_next_branch(ϕ, μ) (line 12.) chooses an unas-
signed literal l from ϕ according to some heuristic criterion, and adds it to μ.

1. SatValue DPLL (formula ϕ, assignment μ)
2. while (1)
3. while (1)
4. status = bcp(ϕ, μ);
5. if (status == sat)
6. return sat;
7. else if (status == conflict)
8. blevel = analyze_conflict(ϕ, μ);
9. if (blevel == 0) return unsat;
10. else backtrack(blevel,ϕ, μ);
11. else break;
12. decide_next_branch(ϕ, μ);

Fig. 1. Schema of a conflict-driven DPLL SAT solver
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(This operation is called decision, l is called decision literal and the number of
decision literals in μ after this operation is called the decision level of l.) In the
inner loop, bcp(ϕ, μ) iteratively deduces literals l from the current assignment
and updates ϕ and μ accordingly; this step is repeated until either μ satisfies
ϕ, or μ falsifies ϕ, or no more literals can be deduced, returning sat, conflict
and unknown respectively. In the first case, DPLL returns sat. In the second case,
analyze_conflict(ϕ, μ) detects the subset η of μ which caused the conflict
(conflict set) and the decision level blevel to backtrack. (This process is called
conflict analysis, and is described in more details below.) If blevel is 0, then
a conflict exists even without branching, so that DPLL returns unsat. Otherwise,
backtrack(blevel, ϕ, μ) adds the blocking clause ¬η to ϕ (learning) and back-
tracks up to blevel (backjumping), popping out of μ all literals whose decision
level is greater than blevel, and updating ϕ accordingly. In the third case, DPLL
exits the inner loop, looking for the next decision.

bcp is based on Boolean Constraint Propagation. (BCP), that is, the iterative
application of unit propagation: if a unit clause l occurs in ϕ, then l is added to
μ, all negative occurrences of l are declared false and all clauses with positive
occurrences of l are declared satisfied. Current SAT solvers include extremely
fast implementations of bcp based on the two-watched-literal scheme [11]. Notice
that a complete run of bcp requires an amount of steps which is at most linear in
the number of clauses containing the negation of some of the propagated literals.

analyze_conflict works as follows (see, e.g., [11,17]). Each literal is tagged
with its decision level, that is, the literal corresponding to the nth decision and
the literals derived by unit-propagation after that decision are labeled with n;
each non-decision literal l in μ is also tagged by a link to the clause ψl causing its
unit-propagation (called the antecedent clause of l). When a clause ψ is falsified
by the current assignment —in which case we say that a conflict occurs and
ψ is the conflicting clause— a conflict clause ψ′ is computed from ψ s.t. ψ′

contains only one literal lu which has been assigned at the last decision level. ψ′
is computed starting from ψ′ = ψ by iteratively resolving ψ′ with the antecedent
clause ψl of some literal l in ψ′ (typically the last-assigned literal in ψ′, see [17]),
until some stop criterion is met. E.g., with the Decision Scheme, ψ′ must contain
only decision literals, including the last-assigned one.

If ϕ is a Horn formula, then one single run of bcp is sufficient to decide the
satisfiability of ϕ. In fact, if bcp(ϕ, {}) returns conflict, then ϕ is unsatisfiable;
otherwise ϕ is satisfiable because, since all unit clauses have been removed from
ϕ, all remaining clauses contain at least one negative literal, so that assigning
all unassigned literals to false satisfies ϕ.

Conflict-Driven SAT Solving Under Assumptions. The schema in
Figure 1 can be adapted to check also the satisfiability of a CNF propositional
formula ϕ under a set of assumptions L def= {l1, ..., lk}. (From a purely-logical
viewpoint, this corresponds to check the satisfiability of

∧
li∈L li∧ϕ.) This works

as follows: l1, ..., lk are initially assigned to true, they are tagged as decision lit-
erals and added to μ, then the decision level is reset to 0 and DPLL enters the
external loop. If

∧
li∈L li∧ϕ is consistent, then DPLL returns sat; otherwise, DPLL
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eventually backtracks up to level 0 and then stops, returning conflict. Impor-
tantly, if analyze_conflict uses the Decision Scheme mentioned above, then
the final conflict clause will be in the form

∨
lj∈L′ ¬lj s.t. L′ is the (possibly

much smaller) subset of L which actually caused the inconsistency revealed by
the SAT solver (i.e., s.t.

∧
lj∈L′ lj ∧ ϕ is inconsistent). In fact, at the very last

branch, analyze_conflict will iteratively resolve the conflicting clause with
the antecedent clauses of the unit-propagated literals until only decision literals
are left: since this conflict has caused a backtrack up to level 0, these literals are
necessarily all part of L.

This technique is very useful in some situations. First, sometimes one needs
checking the satisfiability of a (possibly very big) formula ϕ under many different
sets of assumptions L1, ...,LN . If this is the case, instead of running DPLL on∧

li∈Lj
li ∧ ϕ for every Lj —which means parsing the formulas and initializing

DPLL from scratch each time— it is sufficient to parse ϕ and initialize DPLL only
once, and run the search under the different sets of assumptions L1, ...,LN . This
is particularly important when parsing and initialization times are relevant wrt.
solving times. In particular, if ϕ is a Horn formula, solving ϕ under assumptions
requires only one run of bcp, whose computational cost depends linearly only on
the clauses where the unit-propagated literals occur.

Second, this technique can be used in association with the use of selector
variables: all the clauses ψi of ϕ can be substituted by the corresponding clauses
si → ψi, all sis being fresh variables, which are initially assumed to be true (i.e.,
L = {si |ψi ∈ ϕ}). If ϕ is unsatisfiable, then the final conflict clause will be
of the form

∨
sj∈L′ ¬sj , s.t. {ψj |sj ∈ L′} is the actual subset of clauses which

caused the inconsistency of ϕ. This technique is used to compute unsatisfiable
cores of CNF propositional formulas [10].

3 Axiom Pinpointing via Horn SAT and Conflict Analysis

We assume that T is the result of a normalization process, as described in §2.1.
(We will consider the issue of normalization at the end of §3.2.)

3.1 Classification and Concept Subsumption via Horn SAT Solving

We consider the problem of concept subsumption. We build a Horn propositional
formula φT representing the classification of the input ontology T . A basic en-
coding works as follows. For every normalized concept X in NCT we introduce
exactly one uniquely-associated fresh Boolean variable p[X]. We initially set φT
to the empty set of clauses. We run the classification algorithm of §2.1: for every
non-trivial1 axiom or assertion ai of the form (1) which is added to A, we add
to φT one clause EL+2sat(ai) of the form

(p[C1] ∧ ... ∧ p[Ck]) → p[D], k ≥ 1 p[C] → p[∃r.D] p[∃r.C] → p[D] (3)

1 We do not encode axioms of the form C � C and C � � because they generate valid
clauses p[C] → p[C] and p[C] → �.
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respectively. Notice that (3) are non-unit Horn clauses with one positive literal
(hereafter definite Horn clauses). It follows straightforwardly that C �T D if
and only if the Horn formula φT ∧ p[C] ∧ ¬p[D] is unsatisfiable, for every pair of
concepts C, D in PCT . In fact, by construction, the clause p[C] → p[D] is in φT
if and only if C �T D. Notice that φT is polynomial wrt. the size of T , since
the algorithm of §2.1 terminates after a polynomial number of rule applications.
A more compact encoding is described in [14].

Once φT has been generated, in order to perform concept subsumption
we exploit the techniques of conflict-driven SAT solving under assumptions
described in §2.2: once φT is parsed and DPLL is initialized, each subsump-
tion query Ci �T Di corresponds to solving φT under the assumption list
Li

def= {¬p[Di], p[Ci]}. This corresponds to one run of bcp: since φT contains the
clause p[Ci] → p[Di], bcp stops as soon as ¬p[Di] and p[Ci] are unit-propagated.

3.2 Computing Single and All MinAs via Conflict Analysis

We consider the general problem of generating MinAs. We build another Horn
propositional formula φall

T representing the complete classification DAG of the
input normalized ontology T .2 The size of φall

T is polynomial wrt. that of T .

Building the Formula φall
T . For every normalized concept X in NCT we in-

troduce exactly one uniquely-associated fresh Boolean variable p[X]; further (se-
lector) Boolean variables will be introduced, through the steps of the algorithm,
to uniquely represent axioms and assertions. We initially set φall

T to the empty
set of clauses. Then we run an extended version of the classification algorithm
of §2.1:

1. for every RI axiom ai we introduce the axiom selector variable s[ai]; for every
GCI axiom ai of the form C � C or C � �, s[ai] is the “true” constant �;

2. for every non-trivial GCI axiom ai we add to φall
T a clause of the form

s[ai] → EL+2sat(ai) (4)

s.t. s[ai] is the axiom selector variable for ai and EL+2sat(ai) is the encoding
in (3);

3. for every application of a rule (namely r) generating some assertion gen(r)
(namely ai) which was not yet present in A (and thus adding ai to A), we
add to φall

T a clause (4) and a clause of the form

(
∧

aj∈ ant(r)

s[aj ]) → s[ai] (5)

s.t. s[ai] (that is s[gen(r)]) is the selector variable for ai and ant(r) are the
antecedents of ai wrt. rule r (that is, the assertions and the RI or GCI axiom
in the left and central columns of Table 2 for rule r respectively);

2 Here “complete” means “including also the rule applications generating already-
generated assertions”.
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4. for every application of a rule (namely r) generating some assertion gen(r)
(namely ai) which was already present in A (and thus not adding ai to A),
we add to φall

T only a clause of the form (5).

In order to ensure termination, we perform step 3. and 4. in a queue-based man-
ner, which assures that every possible distinct (i.e. with different antecedents)
rule application is applied only once. Following this idea, in [14] we show that
the extended algorithm requires a polynomial amount of steps wrt. the size of
T and that φall

T is polynomial in the size of T .
Notice that (4) and (5) are definite Horn clauses since all (3) are definite Horn

clauses. (We call (4) and (5) assertion clauses and rule clauses respectively.)
Notice also that step 4. is novel wrt. the classification algorithm of §2.1.

It follows straighforwardly that, for every S ⊆ T and for every pair of con-
cepts C, D in PCT , C �S D if and only if φall

T ∧
∧

ai∈S s[ai] ∧ p[C] ∧ ¬p[D] is
unsatisfiable. In fact, C �S D if and only if there exists a sequence or rule ap-
plications r1, ..., rk generating C � D from S. If (and only if) this is the case,
by construction φall

T contains the clause s[C�D] → (p[C] → p[D]) (4) and all the
clauses (5) corresponding to all rule applications r ∈ {r1, ..., rk}. This means
that

∧
ai∈S s[ai] ∧ p[C] ∧ ¬p[D] forces the unit-propagation of s[C�D], p[C] and

¬p[D], which falsify the clause (4) above. (See [14] for details.)

Computing One MinA. Once φall
T is generated, in order to compute one

MinA, we can exploit the techniques of conflict-driven SAT solving under
assumptions described in §2.2. After φall

T is parsed and DPLL is initialized,
each query Ci �T Di corresponds to solving φall

T under the assumption list
Li

def= {¬p[Di], p[Ci]} ∪ {s[ai] |ai ∈ T }. This corresponds to a single run of bcp
and one run of analyze_conflict, whose cost depends linearly only on the
clauses where the unit-propagated literals occur. (Actually, if bcp does not re-
turn conflict, then sat is returned without even performing conflict analysis.)
If bcp returns conflict, as explained in §2.2, then analyze_conflict produces
a conflict clause ψCi,Di

T ∗
def= p[Di] ∨ ¬p[Ci] ∨

∨
ai∈T ∗ ¬s[ai] s.t. T ∗ is an nMinA

wrt. Ci �T Di. In fact, the presence of both ¬p[Di] and p[Ci] in Li is necessary
for causing the conflict, so that, due to the Decision Scheme, the conflict set
necessarily contains both of them.

Notice that T ∗ may not be minimal. In order to minimize it, we can apply
the SAT-based variant of the linear minimization algorithm of [5] in Figure 2.
(We assume that φall

T has been parsed and DPLL has been initialized, and that
φall
T has been solved under the assumption list Li above, producing the conflict

clause ψCi,Di

T ∗ and hence the nMinA T ∗; then lin-extract-MinADPLL(Ci, Di,
T ∗, φall

T ) is invoked.) In a nutshell, the algorithm tries to remove one-by-one
the axioms ajs in T ∗, each time checking whether the reduced axiom set S \{aj}
is still such that Ci �S\{aj} Di. As before, each call to DPLLUnderAssumptions
requires only one run of bcp. This schema can be improved as follows: if
DPLLUnderAssumptions performs also conflict analysis and returns (the con-
flict clause corresponding to) an nMinA S′ s.t. S′ ⊂ S \ {ai}, then S is assigned
to S′ and all axioms in (S \ {aj}) \ S′ will not be selected in next loops. As
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an alternative choice, one can implement instead (a SAT-based version of) the
binary-search variant of the minimization algorithm (see e.g. [6]).

It is important to notice that the formula φall
T is never updated: in order to

check Ci �S\{aj} Di, it suffices to drop s[aj] from the assumption list. The latter
fact makes (the encoding of) the axiom aj useless for bcp to falsify the clause
encoding Ci �T Di, so that DPLLUnderAssumptions returns unsat if and only if
a different falsifying chain of unit-propagations can be found, corresponding to
a different sequence of rule applications generating Ci �T Di. Notice that this
fact is made possible by step 4. of the encoding, which allows for encoding all
alternative sequences of rule applications generating the same assertions.

We also notice that one straightforward variant to this technique, which is
feasible since typically |T ∗| $ |T |, is to compute another formula φall

T ∗ from
scratch and to feed it to the algorithm of Figure 2 instead of φall

T .
One very important remark is in order. During pinpointing the only clause of

type (4) in φall
T which is involved in the conflict analysis process is s[Ci�T Di] →

(p[Ci] → p[Di]), which reduces to the unit clause ¬s[Ci�T Di] after the unit-
propagation of the assumption literals ¬p[Di], p[Ci]. Thus, one may want to
decouple pinpointing from classification/subsumption, and produce a reduced
“pinpointing-only” version of φall

T , namely φall
T (po). The encoding of φall

T (po) works
like that of φall

T , except that no clause (4) is added to φall
T (po). Thus each

query Ci �T Di corresponds to solving φall
T (po) under the assumption list

Li
def= {¬s[Ci�T Di]} ∪ {s[ai] |ai ∈ T }, so that the algorithm for pinpointing is

changed only in the fact that φall
T (po) and {¬s[Ci�T Di]} are used instead of φall

T
and {¬p[Di], p[Ci]} respectively. Thus, w.l.o.g. in the remaining part of this sec-
tion we will reason using φall

T (po) and {¬s[Ci�T Di]}. (The same results, however,
can be obtained using φall

T and {¬p[Di], p[Ci]} instead.)

Computing All MinAs. We describe a way of generating all MinAs wrt.
Ci �T Di from φall

T (po) and {¬s[Ci�T Di]}. In a nutshell, the idea is to assume
{¬s[Ci�T Di]} and to enumerate all possible minimal truth assignments on the
axiom selector variables in PT def= {s[axj] |axj ∈ T } which cause the inconsistency
of the formula φall

T (po). This is implemented by means of a variant of the all-SMT
technique in [9]. A naive version of this technique is described as follows.

We consider a propositional CNF formula ϕ on the variables in {s[Ci�T Di]}∪
PT . ϕ is initially set to �. One top-level instance of DPLL (namely DPLL1) is
used to enumerate a complete set of truth assignments {μk}k on the axiom se-
lector variables in PT which satisfy ϕ under the assumption of ¬s[Ci�T Di]. Every
time that a novel assignment μk is generated, {¬s[Ci�T Di]} ∪ μk is passed to an
ad-hoc “T -solver” checking whether it causes the inconsistency of the formula
φall
T (po). If this is the case, then the T -solver returns conflict and a minimal subset
{¬s[Ci�T Di]}∪{s[axj ] |axj ∈ T ∗k }, s.t. T ∗k is a MinA, which caused such inconsis-
tency. ψ∗k

def= s[Ci�T Di] ∨
∨

axj∈T ∗
k
¬s[axj ] is then added to ϕ as a blocking clause

and it is used as a conflict clause for driving next backjumping step. Otherwise,
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AxiomSet lin-extract-MinADPLL(Concept Ci, Di, AxiomSet T ∗, formula φall
T )

1. S = T ∗;
2. for each axiom aj in T ∗

3. L = {¬p[Di], p[Ci]} ∪ {s[ai] |ai ∈ S \ {aj}};
4. if (DPLLUnderAssumptions(φall

T ,L) == unsat)
5. S = S \ {aj};
6. return S;

Fig. 2. SAT-based variant of the linear MinA-extracting algorithm in [5]

T -solver returns sat, and DPLL1 uses s[Ci�T Di] ∨ ¬μk as a “fake” conflict clause,
which is added to ϕ as a blocking clause and is used as a conflict clause for driv-
ing next backjumping step. The process terminates when backtrack back-jumps
to blevel zero. The set of all MinAs T ∗k are returned as output.

The T -solver is the procedure described in the previous paragraph “Compute
one MinA” (with φall

T (po), {¬s[Ci�T Di]} instead of φall
T , {¬p[Di], p[Ci]}), using a

second instance of DPLL, namely DPLL2. As before, we assume φall
T (po) is parsed

and DPLL2 is initialized only once, before the whole process starts.
In [14] we explain this naive procedure with more details and show that it

returns all MinAs wrt. Ci �T Di.
One important improvement to the naive procedure above is that of exploiting

early pruning and theory propagation, two well-known techniques from SMT (see,
e.g., [13]). The T -solver is invoked also on partial assignments μk on PT : if this
causes the unit-propagation of one (or more) ¬s[axj ] s.t. s[axj] ∈ PT and s[axj] is
unassigned, then the antecedent clause of¬s[axj ] can be fed to analyze_conflict
in DPLL2, which returns the clause s[Ci�T Di]∨¬μ′k s.t.μ′k ⊆ μk and¬s[Ci�T Di]∧μ′k
causes the propagation of ¬s[axj ]. (As before, we assume that analyze_conflict
uses the Decision Scheme.) Intuitively, this is equivalent to say that, if¬s[Ci�T Di]∧
μk∧s[axj ] is passed to the T -solver, then it would return conflict and the T -conflict
clause ψ∗k

def= s[Ci�T Di] ∨¬μ′k ∨¬s[axj]. Thus μ′k ∧ s[axi] represents a non-minimal
set of axioms causing the inconsistency of φall

T (po), which can be further minimized
by the algorithm of Figure 2, as described above.

One problem of the naive procedure above, regardless of early pruning and
theory propagation, is that adding to ϕ a “fake” blocking clause (namely ¬ηk)
each time a new satisfying truth assignment ηk is found may cause an exponential
blowup of ϕ. As shown in [9], this problem can be overcome by exploiting conflict
analysis techniques. Each time a model ηk is found, it is possible to consider ¬ηk

as a conflicting clause to feed to analyze_conflict and to perform conflict-
driven backjumping as if the blocking clause ¬ηk belonged to the clause set;
importantly, it is not necessary to add permanently the conflicting clause ¬ηk to
ϕ as a blocking clause, and it is sufficient to keep the conflict clause resulting
from conflict analysis only as long as it is active.3

3 We say that a clause is currently active if it occurs in the implication graph, that is,
if it is the antecendent clause of some literal in the current assignment. (See [17]).
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In [9] it is proved that this technique terminates and allows for enumerating all
models. (Notice that the generation of blocking clauses ψ∗k representing MinAs
is not affected, since in this case we add ψ∗k to ϕ as blocking clause.) The only
potential drawback of this technique is that some models may be found more
than once. However, according to the empirical evaluation in [9], this events
appears to be rare and it has very low impact on performances, which are much
better than those of the naive version.

We refer the reader to [9] and [14] for more detailed explanations of all-SMT
and of our procedure respectively.

Computing One MinA Using a Much Smaller Formula. Although poly-
nomial, φall

T /φall
T (po) may be huge for very-big ontologies T like Snomed-CT.

For these situations, we propose here a variant of the one-MinA procedure using
the much smaller formula φone

T (which is an improved SAT-based version of the
simplified one-MinA algorithm of [5]).4 φone

T is computed like φall
T , except that

step 4. is never performed, so that only one deduction of each assertion is com-
puted. This is sufficient, however, to compute one non-minimal axiom set T ∗
by one run of bcp and analyze_conflict, as seen before. Since φone

T does not
represent all deductions of Ci �T Di, we cannot use the algorithm in Figure 2
to minimize it. However, since typically T ∗ $ T , one can cheaply compute φone

T ∗

and run a variant of the algorithm in Figure 2 in which at each loop a novel
formula φone

S\{ai} is computed and fed to DPLLUnderAssumptions together with
the updated L. One further variant is to compute instead φall

T ∗(po) and feed it to
the algorithm in Figure 2.

Handling Normalization. The normalized TBox T def= {ax1, ..., axN} can
result from normalizing the non-normal one T̂ def= {âx1, ..., âxN̂} by means of the
process hinted in §2.1. |T | is O(|T̂ |). Each original axiom ˆaxi is converted into
a set of normalized axioms {axi1, ..., axiki}, and each axiom axiki can be reused
in the conversion of several original axioms âxj1, ..., âxjkj . In order to handle
non-normal TBoxes T̂ , we adopt one variant of the technique in [5]: for every
ˆaxi, we add to φall

T (po) [resp. φall
T ] the set of clauses {s[ ˆaxi] → s[axi1], ..., s[ ˆaxi] →

s[axiki
]}, and then we use PT̂

def= {s[âx1], ..., s[âxN̂ ]} as the novel set of axiom
selector variables for the one-MinA and all-MinAs algorithms described above.
Thus analyze_conflict finds conflict clauses in terms of variables in PT̂ rather
than in PT . Since PT̂ is typically smaller than PT , this may cause a significant
reduction in search for DPLL1 in the all-MinAs procedure. (Hereafter we will call
T the input TBox, no matter whether normal or not.)

4 Discussion

By comparing the pinpointing formula ΦCi�T Di of [5] (see also §2.1) with
φall
T (po), and by analyzing the way they are built and used, we highlight the

4 We prefer considering φone
T rather the corresponding formula φone

T (po) since it fits
better with an optimization described in [14].
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following differences: (i) ΦCi�T Di is built only on axiom selector variables in
PT def= {s[axj] |axj ∈ T }, whilst φall

T (po) is build on all selector variables in

PA def= {s[aj] |aj ∈ A} (i.e., of both axioms and inferred assertions); (ii) the
size of ΦCi�T Di and the time to compute it are worst-case exponential in |T | [5],
whilst the size of φall

T (po) and the time to compute it are worst-case polynomial
in |T |; (iii) the algorithm for generating ΦCi�T Di in [5] requires intermediate
logical checks, whilst the algorithm for building φall

T (po) does not; (iv) each MinA
is a model of ΦCi�T Di , whilst it is (the projection to PT of) a counter-model
of φall

T (po). Moreover, our process can reason directly in terms of (the selector
variables of) the input axioms, no matter whether normal or not.

In accordance with Theorem 5 in [5], also our approach is not output-
polynomial, because in our proposed all-MinAs procedure even the enumeration
of a polynomial amount of MinAs may require exploring an exponential amount
of possible truth assignments. In our proposed approach, however, the potential
exponentiality is completely relegated to the final step of our approach, i.e. to
our variant of the all-SMT search, since the construction of the SAT formula
is polynomial. Thus we can build φall

T (po) once and then, for each Ci �T Di

of interest, run the all-SMT procedure until either it terminates or a given
timeout is reached: in the latter case, we can collect the MinAs generated so
far. (Notice that the fact that DPLL1 selects positive axiom selector variables
first tends to anticipate the enumeration of over-constrained assignments wrt. to
that of under-constrained ones, so that it is more likely that counter-models, and
thus MinAs, are enumerated during the first part of the search.) With the all-
MinAs algorithm of [5], it may take an exponential amount of time to build the
pinpointing formula ΦCi�T Di before starting the enumeration of the MinAs.

As far as the generation of each single MinA of §3.2 is concerned, another
interesting feature of our approach relates to the minimization algorithm of
Figure 2: we notice that, once φall

T (po) is generated, in order to evaluate different
subsets S \ {aj} of the axiom sets, it suffices to assume different selector vari-
ables, without modifying the formula, and perform one run of bcp. Similarly,
if we want to compute one or all MinAs for different deduced assertion, e.g.
C1 �T D1, . . . , Cj �T Dj , . . ., we do not need recomputing φall

T (po) each time, we
just need assuming (i.e. querying) each time a different axiom selector variable,
e.g. respectively: ¬s[C1�T D1], . . . ,¬s[Cj�T Dj ], . . ..

5 Empirical Evaluation

In order to test the feasibility of our approach, we have implemented an early-
prototype version of the procedures of §3 (hereafter referred as EL+

SAT) which
does not yet include all optimizations described here and in [14], and we per-
formed a preliminary empirical evaluation of EL+

SAT on the ontologies of §1.5

5 The first four ontologies are available at http://lat.inf.tu-dresden.de/~meng/
toyont.html; Snomed-CT’09 is courtesy of IHTSDO http://www.ihtsdo.org/

http://lat.inf.tu-dresden.de/~meng/toyont.html
http://lat.inf.tu-dresden.de/~meng/toyont.html
http://www.ihtsdo.org/
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We have implemented EL+
SAT in C++, modifying the code of the SAT solver

MiniSat2.0 070721 [8]. All tests have been run on a biprocessor dual-core ma-
chine Intel Xeon 3.00GHz with 4GB RAM on Linux RedHat 2.6.9-11, ex-
cept for φone

T (po) of Snomed-CT’09 which is processed on a Intel Xeon 2.66
GHz machine with 16 GB RAM on Debian Linux 2.6.18-6-amd64.6

The results of the evaluation are presented in Table 3. The first block reports
the data of each ontology. The second and third blocks report respectively the
size of the encoded formula, in terms of variable and clause number, and the CPU

Table 3. “XeN” is “X · 10N ”. CPU times are in seconds.

Ontology

# of prim. concepts 2748 20465 27652 23135 310075
# of orig. axioms 4379 20466 46800 36544 310025
# of norm. axioms 8740 29897 46800 81340 857459
# of role names 413 1 50 949 62
# of role axioms 442 1 0 1014 12
Size (var#|clause#)
φT 5.4e3|1.8e4 2.2e4|4.2e4 3.2e4|4.7e4 4.8e4|7.3e5 5.3e5|8.4e6
φone
T 2.3e4|2.7e4 5.5e4|5.4e4 7.8e4|4.7e4 7.3e5|1.4e6 8.4e6|1.6e7

φall
T (po) 1.7e5|2.2e5 2.1e5|2.6e5 2.9e5|3.0e5 5.3e6|1.2e7 2.6e7|8.4e7

Encode time
φT 0.65 2.37 2.98 35.28 3753.04
φone
T 2.06 4.15 6.19 68.94 4069.84

φall
T (po) 1.17 1.56 2.37 178.41 198476.59

Load time
φT 0.11 0.37 1.01 1.93 21.16
φone
T 0.18 0.55 1.17 5.95 59.88

Subsumption (on 105)
φT 0.00002 0.00002 0.00003 0.00003 0.00004
φone
T 0.00003 0.00002 0.00003 0.00004 0.00008

nMinA φone
T (on 5000) 0.00012 0.00027 0.00042 0.00369 0.05938

MinA φone
T (on 100)

− Load time 0.175 0.387 0.694 6.443 63.324
− Extract time 0.066 0.082 0.214 0.303 3.280
− DPLL Search time 0.004 0.004 0.002 0.010 0.093
MinA φall

T (po) (on 100)
− Load time 1.061 1.385 1.370 39.551 150.697
− DPLL Search time 0.023 0.027 0.036 0.331 0.351
allMinA φall

T (po)(on 30)
− 50% #MinA/time 1/1.50 1/1.76 4/1.79 3/53.40 15/274.70
− 90% #MinA/time 2/1.59 4/2.11 6/1.86 9/63.61 32/493.61
− 100% #MinA/time 2/1.64 8/2.79 9/2.89 15/150.95 40/588.33

6 EL+SAT is available from http://disi.unitn.it/~rseba/elsat/

http://disi.unitn.it/~rseba/elsat/
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time taken to compute them.7 The fourth block reports the time taken to load
the formulas and to initialize DPLL. The fifth block reports the average time (on
100000 sample queries) required by computing subsumptions.8 (Notice that φT
and φone

T must be loaded and DPLL must be initialized only once for all queries.)
The sixth block reports the same data for the computation of one nMinA, on
5000 sample queries.9 (Loading times are the same as above.) The seventh block
reports the average times on 100 samples required to compute one MinA with
φone
T .10 The eighth block reports the average times on 100 samples required to

compute one MinA with φall
T (po). The ninth block reports the results (50th, 90th

and 100th percentiles) of running the all-MinAs procedure on 30 samples, each
with a timeout of 1000s (loading included), and counting the number of MinAs
generated and the time taken until the last MinA is generated.11

Although still very preliminary, these empirical results allow us to notice a few
facts: (i) once the formulas are loaded, concept subsumption and computation of
nMinAs are instantaneous, even with very-big formulas φT and φone

T ; (ii) in the
computation of single MinAs, with both φone

T and φall
T (po), DPLL search times

are very low or even negligible: most time is taken by loading the main formula
(which can be performed only once for all) and by extracting the information
from intermediate results. Notice that EL+

SAT succeeded in computing some
MinAs even with the huge ontology Snomed-CT’09; (iii) although no sample
concluded the full enumeration within the timeout of 1000s, the all-MinAs pro-
cedure allowed for enumerating a set of MinAs. Remarkably, all MinAs are all
found in the very first part of the search, as expected.

6 Ongoing and Future Work

The current implementation of EL+
SAT is still very naive to many extents. We

plan to implement an optimized version of EL+
SAT, including all techniques and

optimizations presented here and in [14]. (We plan to investigate and implement
also a SAT-based versions of the techniques based on reachability modules of [6].)
Then we plan to perform a very-extensive empirical analysis of the optimized
tools; we also plan to implement a user-friendly GUI for EL+

SAT so that to make
7 The classification alone (excluding the time taken in encoding the problem and in

computing the additional rule clauses for pinpointing) required respectively: 0.60,
2.24, 2.84, 34.06 and 3738.82 seconds for φT , 0.99, 2.63, 4.13, 41.19 and 3893.20
seconds for φone

T . In the case of φall
T (po) the times are not distinguishable.

8 The queries have been generated randomly, extracting about 2000 primitive concept
names from each ontology and then randomly selecting 100000 queries from all the
possible combinations of these concept names.

9 We chose the first 5000 “unsatisfiable” queries we encounter when analyzing all the
possible pairwise combinations of primitive concept names of each ontology.

10 The queries are selected randomly from the 5000 samples introduced above.
11 First, we sort the assertions computed for each ontology wrt. the number of oc-

currences as implicate in rule clauses then, following this order, we pick with a
probability of 0.25 (to avoid queries which are too similar) the 30 sample assertions
to be queried.
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it usable by domain experts. Research-wise, we plan to investigate alternative
sets of completion rules, which may be more suitable for producing smaller φall

T (po)
formulas, and to extend our techniques to richer logics.
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Abstract. This paper is concerned with the problem of checking whether a given
subset Γ of an unsatisfiable Boolean CNF formula Σ takes part in the basic
causes of the inconsistency of Σ. More precisely, an original approach is intro-
duced to check whether Γ overlaps with at least one minimally unsatisfiable sub-
set (MUS) of Σ. In the positive case, it intends to compute and deliver one such
MUS. The approach re-expresses the problem within an evolving coarser-grained
framework where clusters of clauses of Σ are formed and examined according to
their levels of mutual conflicts when they are interpreted as basic interacting enti-
ties. It then progressively refines the framework and the solution by splitting most
promising clusters and pruning the useless ones until either some maximal pre-
set computational resources are exhausted, or a final solution is discovered. The
viability and the usefulness of the approach are illustrated through benchmarks
experimentations.

1 Introduction

These last years, various research studies have concentrated on explaining why a SAT
instance is inconsistent in terms of minimal subsets of clauses that are actually conflict-
ing. Indeed, although some SAT solvers (e.g. [1,2]) can deliver the trace of a proof of
inconsistency, this trace is often not guaranteed to deliver a set of conflicting clauses
that would become consistent if any of its clauses was dropped. Accordingly, several
recent contributions have investigated various computational issues about computing
Minimal Unsatisfiable Subsets (in short, MUSes) of unsatisfiable SAT instances ([3,4],
see [5] for a recent survey). From a worst-case complexity analysis, several major is-
sues arise. First, an n-clauses SAT instance Σ can exhibit Cn/2

n MUSes in the worst
case. Then, checking whether a given formula belongs to the set of MUSes of another
CNF formula or not is a

∑p
2-hard problem [6]. However, approaches to compute one

MUS that appear viable in many circumstances have been proposed [7,8]. In order to
circumvent the possibly exponential number of MUSes in Σ, variant problems have
been defined and addressed in the literature, like the problem of computing a so-called
cover of MUSes, which is a subset of clauses that contains enough minimal sources
of conflicts to explain all unrelated reasons leading to the inconsistency of Σ, without
computing all MUSes of Σ [8]. Finally, algorithms to compute the complete sets of

R.A. Schmidt (Ed.): CADE 2009, LNAI 5663, pp. 100–115, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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MUSes of Σ have also been proposed and shown viable [12,11], at least to some extent
due to the possible combinatorial blow-up.

When a user is faced with an unsatisfiable SAT instance, she (he) can have some
beliefs about which subset Γ of clauses is actually causing the conflicts within Σ. In
this respect, she (he) might want to check whether her (his) beliefs are grounded or
not. Apart from the situation where Σ \ Γ is satisfiable, she (he) might wish to check
whether Γ shares a non-empty set-theoretical intersection with at least one MUS of Σ.
In the positive case, she (he) might wish to be delivered such an MUS as well. Cur-
rent techniques to find and compute MUSes do not accommodate those wishes without
computing all MUSes of Σ.

An original approach is introduced in the paper to address those issues, without
computing all MUSes of Σ. To circumvent the high worst-case complexity (at least,
to some extent), it re-expresses the problem within an evolving coarser-grained frame-
work where clusters of clauses of Σ are formed and examined according to their levels
of mutual conflicts when they are interpreted as basic interacting entities. It then pro-
gressively refines the framework and the solution by splitting most promising clusters
and pruning useless ones until either some maximal preset computational resources are
exhausted, or a final solution is discovered. Interestingly, the levels of mutual conflicts
between clusters are measured using a form of Shapley’s values [9].

The paper is organized as follows. In the next Section, formal preliminaries are
provided, together with basic definitions and properties about MUSes and Shapley’s
measure of conflicting information. The main principles guiding the approach are de-
scribed in Section 3. The sketch of the any-time algorithm is provided in Section 4,
while the empirical results are given and discussed in Section 5. Main other relevant
works are then described before paths for future research are provided.

2 Logical Preliminaries, MUSes and Shapley’s Measure

2.1 Logical Preliminaries and SAT

Let L be the propositional language of formulas defined in the usual inductive way from
a set P of propositional symbols (represented using plain letters like a, b, c, etc.), the
Boolean constants � and ⊥, and the standard connectives ¬, ∧, ∨, ⇒ and ⇔. A SAT
instance is a propositional formula in conjunctive normal form (CNF for short), i.e. a
conjunction (often represented through a set) of clauses, where a clause is a disjunction
(also often represented as a set) of literals, a literal being a possibly negated proposi-
tional variable. In the following, plain letters like l,m, n, etc. will be used to represent
formulas of L. Upper-case Greek letters like Δ,Γ, etc. will be used to represent sets of
clauses, and lower-case ones like α, β, γ etc. to represent clauses.

SAT is the canonic NP-complete decision problem consisting in checking whether
a SAT instance is satisfiable or not. In the following, the words satisfiable (resp. unsat-
isfiable) and consistent (resp. inconsistent) are used indifferently. Along the paper, Σ is
an unsatisfiable SAT instance and Γ is a set of clauses s.t. Γ ⊂ Σ.
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a

¬b
¬a ∨ b ¬a ∨ c ∨ d

¬d

b ∨ ¬c

¬d ∨ e

a ∨ ¬c ∨ ¬e

Fig. 1. MUSes of Σ from Example 1

2.2 MUSes of a SAT Instance

An MUS of an unsatisfiable SAT instance Σ is an unsatisfiable subset of clauses of Σ
that cannot be made smaller without restoring its satisfiability. An MUS thus represents
a minimal cause of inconsistency, expressed by means of conflicting clauses.

Definition 1. A set of clauses Γ is a Minimally Unsatisfiable Subset (MUS) of Σ iff

1. Γ ⊆ Σ
2. Γ is unsatisfiable
3. ∀Δ ⊂ Γ , Δ is satisfiable.

The following example illustrates that MUSes can overlap one another.

Example 1. Let Σ = {¬d∨ e, b∨¬c, ¬d, ¬a∨ b, a, a∨¬c∨¬e, ¬a∨ c∨ d, ¬b}.
Σ is unsatisfiable and contains 2 MUSes which are illustrated in Figure 1, namely
{a, ¬a ∨ b, ¬b} and {b ∨ ¬c, ¬d, a, ¬a ∨ c ∨ d, ¬b}.

This example also illustrates how clauses in Σ can play various roles w.r.t. the unsatisfi-
ability of Σ. Following [10], clauses that belong to all MUSes of Σ are necessary (w.r.t.
the unsatisfiability of Σ). Removing any necessary clause from Σ restores consistency.
Potentially necessary clauses of Σ belong to at least one MUS of Σ but not to all of
them: removing one potentially necessary clause does not restore the consistency of Σ.
Clauses that do not belong to any of those two categories (i.e. clauses belonging to no
MUS at all) are called never necessary. Removing any combination of never necessary
clauses cannot restore consistency. Obviously enough, an unsatisfiable SAT instance
does not always contain necessary clauses since it can exhibit non-overlapping MUSes.

Example 1 (cont’d). In this example, both clauses “a” and “¬b” are necessary w.r.t.
the inconsistency of Σ, “¬d ∨ e” and “a ∨ ¬c ∨ ¬e” are never necessary whereas all
the other clauses of Σ are potentially necessary.

Numerous approaches have been proposed to extract one MUS from Σ [5]. However,
these approaches cannot take into account a priori conditions stating that this MUS
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should overlap with Γ . Accordingly, in order to find such an overlapping MUS using
the best current available techniques, one must resort to tools like [11,12] that compute
all MUSes of Σ. Note that the most powerful of these techniques compute the Maximal
Satisfiable Subsets (MSSes) of Σ [11] as a first necessary step, and then derive MUSes
as hitting-sets of all the MSSes. Accordingly, these techniques are hardly tractable and
cannot be used for many large and difficult SAT instances, even when the actual number
of MUSes is not too large.

2.3 Shapley’s Measure of Inconsistency

There exist various studies about the possible levels of inconsistency within a set of for-
mulas. In the following, one form of Shapley’s measure [9] of inconsistency proposed
in [13] will be used. It can be formulated as follows.

Shapley’s inconsistency measure of a clause α in a SAT instance Σ delivers a score
that takes the number of MUSes of Σ containing α into account, as well as the size of
each of these MUSes, enabling the involvement or “importance” of the clauses within
each source of inconsistency to be considered, too.

Definition 2. [13] Let Σ be a SAT instance and α ∈ Σ. Let ∪MUSΣ
be the set of all

MUSes of Σ. The measure of inconsistency MI of α in Σ, noted MI (Σ,α), is defined
as

MI (Σ,α) =
∑

{Δs.t.Δ∈∪MUSΣ
and α∈Δ}

1
|Δ|

Properties of such a measure are investigated in [13]. Roughly, a clause that takes part
in many conflicts is assigned a higher score, while at the same time a clause that occurs
in a large MUS is given a lower score than a clause that occurs in an MUS containing a
smaller number of clauses.

Example 2. Considering the CNF Σ of Example 1, we have:

– MI (Σ,¬a ∨ b) = 1/3
– MI (Σ, b ∨ ¬c) = 1/5
– MI (Σ,¬d ∨ e) = 0
– MI (Σ, a) = MI (Σ,¬b) = 1/3 + 1/5 = 8/15

In the following, this measure will be extended to characterize the conflict levels be-
tween conjunctive formulas.

3 Main Principles Underlying the Approach

3.1 Problem Definition

A set of Boolean clauses Γ actually participates in the inconsistency of a SAT instance
Σ when Γ contains at least one clause that belongs to at least one MUS of Σ, namely
a clause that is necessary or potentially necessary w.r.t. the inconsistency of Σ. In the
positive case, Γ is said to participate in the inconsistency of Σ and the goal is to deliver
one such MUS. More formally:
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Definition 3. Let ∪MUSΣ be the set of MUSes of a set of Boolean clauses Σ and let
Γ be a set of Boolean clauses, too. Γ participates in the inconsistency of Σ iff ∃α ∈
Γ, ∃Δ ∈ ∪MUSΣ s.t. α ∈ Δ.

Clearly enough, if Γ contains at least one necessary clause w.r.t. the inconsistency of Σ
then Γ participates in the inconsistency of Σ. In this specific case, checking participation
in inconsistency requires at most k calls to a SAT solver, where k is the number of clauses
ofΓ , since there existsα inΓ s.t.Σ\{α} is satisfiable. Moreover, any MUS ofΣ overlaps
with Γ and provides a solution to the problem. However, in the general case, whether at
least one necessary clause w.r.t. the satisfiability of Σ exists or not within Γ is unknown.

3.2 Using Clusters to Move to a Simplified Level

Accordingly, and in order to circumvent to some extent the high-level computational
complexity of the problem, the approach in this paper resorts to a strategy that consists
in partitioning Σ into a prefixed m number of subsets of clauses, called clusters, as a
first step.

Definition 4. Let Σ be a SAT instance. An m-clustering of clauses Π of Σ is a partition
of Σ into m subsets Πj where j ∈ [1..m]. Πj is called the jth cluster of Σ (w.r.t. the
clustering Π of Σ).

For convenience reasons, the same notation Πj will be used to represent both the set
of clauses forming the jth cluster of Σ and the conjunctive formula made of those
clauses. Also, a set-theoretical union of clusters will be identified as the conjunction of
the clauses that they contain.

All the clauses inside a cluster are then considered conjunctively to deliver a formula
that is interpreted as being an indivisible interacting entity within Σ. The clauses of Γ
are treated in the same way to form an additional conjunctive formula. At this point
the initial problem is moved to a coarser-grained one that consists in checking how the
conjunctive formula of Γ treated as a whole takes part in the inconsistency of the new
representation of Σ that is now made of m individual subformulas that are considered
as basic interacting entities.

3.3 From MUSes to MUSCes

As the problem is moved to a framework where inconsistency is analysed using clusters
as basic interacting entities, the MUS concept should be adapted accordingly, giving rise
to a concept of Minimally Unsatisfiable Set of Clusters for a clustering Π (MUSCΠ for
short) of Σ.

Definition 5. Let Σ be a SAT instance and Π an m-clustering of clauses of Σ. A Min-
imally Unsatisfiable Set of Clusters for Π (MUSCΠ for short) MΠ of Σ is a set of
clusters s.t.:

1. MΠ ⊆ Π
2. MΠ is unsatisfiable
3. ∀Φ ∈MΠ , MΠ \ {Φ} is satisfiable
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a

b ∨ d

¬a

c ∨ ¬d

¬f ∨ d

¬e ∨ ¬f

a ∨ ¬c ∨ d

¬b ∨ ¬e

a ∨ d

b ∨ ¬c

f

¬b ∨ ¬c

b ∨ d ∨ f

e

➊

➋

➌

➍

➎

Fig. 2. MUSes of Σ from Example 3

The set of MUSCΠ of Σ is noted ∪MUSCΠ .

The standard MUS concept is a particular instantiation of the MUSC one, where each
cluster is actually one clause. Accordingly, MUSes represent the finest-grained level of
abstraction in order to explain inconsistency of Σ by means of contradicting clauses.
The MUSC concept allows more coarser-grained clusterings to be used, as ensured by
the following property.

Let us consider the clauses that we want to prove they are involved in the incon-
sistency of Σ. When those clauses appear in an MUSCΠ of Σ (for some clustering
Π), they also participate in the inconsistency of Σ when this issue is represented at the
lowest level of abstraction, namely at the level of clauses. More formally:

Proposition 1. Let Σ be a SAT instance, Π an m-clustering of Σ and MΠ an MUSCΠ

of Σ. If Πi ∈MΠ then ∃α ∈ Πi, ∃Ψ ∈ ∪MUSΣ s.t. α ∈ Ψ .

Such a problem transformation exhibits interesting features from a computational point
of view that will be exploited by the approach. But there is no free lunch. As the new
problem is a simplification of the initial one, some MUSes might disappear in the pro-
cess. However, this simplification remains compatible with the initial goal and an algo-
rithm will be proposed that is sound and complete in the sense that it always delivers
an MUS of Σ overlapping with Γ , whenever this one exists and enough computational
resources are provided.

Example 3. Let Σ consists of 14 clauses, as depicted in Figure 2, forming 9 MUSes.
For example, when the participation of the clauses “¬a” and “c∨¬d” in the inconsis-
tency of Σ needs to be checked and, in the positive case, when a corresponding MUS
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needs to be extracted, computing the exhaustive set of MUSes can appear necessary in
the worst case. Let us cluster the clauses in the way depicted in Figure 2, giving rise to
5 clusters; the cluster ➌ is the set of clauses Γ accordingly to our previous notation. At
this level of abstraction, only 3 MUSCΠ remain, i.e. M1 = {➊,➌}, M2 = {➋,➌,➍}
and M3 = {➋,➍,➎}, using the labels of clusters represented in the Figure. This clus-
tering limits the number of entities that are sources of inconsistency and that need to
be considered in order to prove the membership of one of the two clauses “¬a” and
“c ∨ ¬d” to an MUS of Σ.

This example illustrates the interest in clustering clauses in that it can avoid the need of
extracting all MUSes in order to answer the question of the existence of an overlapping
MUS. However, if the clauses are clustered and do not appear in an MUSC (for some
clustering Π), this does not entail that they do not participate in the inconsistency of the
formula at the clauses level.

Proposition 2. Let Σ be a SAT instance, Π an m-clustering of Σ and Πi ∈ Π . Propo-
sition 1 ensures that:

if (∃MΠ ∈ ∪MUSCΠ s.t. Πi ∈MΠ ) then (∃α ∈ Πi, ∃Ψ ∈ ∪MUSΣ s.t. α ∈ Ψ )

The converse does not hold.

Accordingly, the fact that a cluster does not appear in any MUSC does not imply that
no one of its clauses is not involved in an MUS of the considered instance. This is
illustrated by the following example:

Example 4. Let Σ = {¬c,¬a, b ∨ c, a,¬b}. Σ exhibits 2 MUSes: MUS1
Σ = {¬a, a}

and MUS2
Σ = {¬b, b ∨ c,¬c}. Let us now consider a clustering Π of Σ s.t. Π1 =

{¬b, a}, Π2 = {¬a, b ∨ c} and Π3 = {¬c}. Considering a table where each column
represents a cluster and each line represents an MUS of Σ, we get:

Π1 Π2 Π3

MUS1
Σ a ¬a

MUS2
Σ ¬b b ∨ c ¬c

At this level of abstraction, the only MUSCΠ is {Π1, Π2}, capturing MUS1
Σ . How-

ever, MUS2
Σ is not represented in this unique MUSCΠ , since its clauses are splitted in

each cluster of Π . Particularly, this clustering does not permit the involvement of “¬c”
in the inconsistency of Σ to be shown.

Accordingly, a form of “subsumption” phenomenon between causes of inconsistency
can occur when clauses are clustered in such a way. On the one hand, the number of
detectable MUSes in Σ can decrease accordingly, and a subsequent process could be
allowed to focus on selected remaining ones only. On the other hand, it should be en-
sured that too much information relevant to the inconsistency of Σ is not hidden in the
process, making the goal of finding an overlapping MUS impossible to reach, although
such an MUS would exist. To some extent, the last example also illustrates that the
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way according to which the clusters are formed and thus how MUSes are disseminated
amongst clusters can drastically influence the efficiency of the approach.

3.4 Measuring Conflicts amongst MUSCses

The measure of inconsistency is based on a form of Shapley’s values described in Sec-
tion 2.3, which needs to be adapted as follows to consider clusters as basic interacting
entities.

Definition 6. Let Σ be a SAT instance and Π an m-clustering of Σ. The measure of
inconsistency MI of a cluster Πi of Π is defined as follows:

MI (Πi) =
∑

{M|M∈∪MUSCΠ
and Πi∈M}

1
|M |

Once the set of MUSCes has been extracted, this measure can be computed in polyno-
mial time.

Example 5. Let Σ be the SAT instance and Π be a clustering corresponding to Exam-
ple 3. We have:

– MI (Π1) = 1/2
– MI (Π2) = MI (Π4) = 2× 1/3 = 2/3
– MI (Π3) = 1/2 + 1/3 = 5/6
– MI (Π5) = 1/3

The cluster that exhibits the highest score is Π3. This is partly due to the fact that
Π3 belongs to 2 MUSCes. Π2 and Π4 also appear inside two MUSCes, but each of
them only represents a third of both sources of conflict, whereas Π3 is involved in an
MUSC made of 2 clusters. The role of this latter cluster is thus very important in this
source of conflict.

3.5 Initiating the Process

In order to form the initial clustering of clauses, a cheap scoring heuristic is used to
estimate for each clause α of Σ its probability of belonging to at least one MUS of
Σ. This heuristic exploits a failed local-search for satisfiability of Σ and a so-called
concept of critical clause that takes a relevant partial neighborhood of each explored
interpretation into account [8].

Σ is divided into a preset number m of clusters in the following way. The |Σ\Γ |
m

clauses of Σ \ Γ that exhibit the highest scores are (probably) taking part in a number
of conflicts and their presence in Σ could be the cause of many MUSes. They are
assembled to form the Π1 cluster. The remaining clauses of Σ \ Γ are then sorted in
the same manner according to their scores to deliver the remaining m− 1 clusters of Π
and to provide a m-clustering of Σ \ Γ . The clauses of Γ are then conjuncted together
to yield a m+1th cluster, noted ΠΓ . Accordingly, a m+1-clustering of Σ is obtained.
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3.6 Analysing the Conflicts at the Clusters Level

Each cluster is thus interpreted as a conjunctive formula and the interaction between
these entities is analysed in terms of mutually contradicting (sets of) clusters. This con-
flict analysis is intended to prune the problem by rejecting clusters that are not conflict-
ing with Γ , and in concentrating on the clusters that are most conflicting with Γ . The
exhaustive set of MUSCes of this clustering (i.e. ∪MUSCΠ ) is thus computed and three
different cases might occur:

1. Global inconsistency: a form of global inconsistency occurs at the level of clusters
when for every cluster Πi (i ∈ [1..m]) of the m-clustering Π , Π \ Πi is consis-
tent. Such a situation occurs when at least one clause of each cluster is needed to
form a conflict. The clustering does not provide any other useful information. The
parameter m is increased to obtain a finer-grained clustering. Note that this situa-
tion does not require a lot of computational ressources to be spent, since the current
clustering contains only one MUSC and a linear number of maximal satisfiable sets
of cluster need to be checked.

2. Γ appears in at least one conflict: some minimal conflicts can be detected between
clusters, and at least one such conflict involves the ΠΓ cluster formed with Γ . More
precisely, ∃M ∈ ∪MUSCΠ s.t. ΠΓ ∈ M . The idea is to focus on such an MUSC
since it involves the proof that some clauses in Γ minimally conflict with Σ. More
precisely, there exists an MUS of Σ that necessarily contains clauses of Γ and
clauses occurring in the other clusters of the MUSC. Accordingly, the current set
of clauses can be pruned by dropping all clauses that are occurring in clusters not
present in this particular MUSC.

3. Γ does not appear in any conflict: some minimal conflicts can be detected between
clusters but no such conflict involves the cluster formed with Γ . More precisely,
�M ∈ ∪MUSCΠ s.t. ΠΓ ∈ M . In such a situation, a refinement of the cluster-
ing is undertaken by splitting its most conflicting current cluster, using a measure
that is described in paragraph 3.4. A prefixed number of clusters with the highest
scores are splitted, motivated by the heuristic that they should be the most probable
ones that could include and hide a number of other sources of inconsistency, and
hopefully MUSes in which Γ is involved.

3.7 Iterating and Ending the Process

The clustering is thus modified following one of the three possible situations described
above, allowing the approach to increase the number of clusters, split and focus on most
promising subparts of Σ, mainly. This process is iterated. Accordingly, a |Σ|-clustering
(i.e. a clustering where each cluster is actually a single clause) can be obtained in a
finite time, corresponding to the “classical” computation of exhaustive approaches, on
a reduced number of clauses of Σ. Actually, when the current size of the cluster that
is most conflicting with Γ becomes manageable to envision the computation of all the
MUSes of the set-theoretical union of Γ with Σ, such a computation is performed.
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Algorithm 1.The look4MUS algorithm.
Input:
Σ: a CNF
Γ : a CNF s.t. Γ ⊂ Σ
m: size of the initial clustering
inc: size of increment of the clustering (global inconsistency case)
s: number of clusters to split (local inconsistency case)
Output: An MUS of Σ overlapping Γ when such a MUS exists, ∅ otherwise
begin1

SΣ ←− scoreClauses(Σ) ;2

Π ←− clusterClauses(Σ \ Γ , SΣ , m) ∪{Γ} ;3

∪MUSCΠ ←− HYCAM*(Π) ;4

if Π is a |Σ|-clustering then5

if ∃M ∈ ∪MUSCΠ s.t. Γ ⊆M then return M ;6

else return ∅ ;7

else8

if ∀Πi ∈ Π,Σ \Πi is satisfiable then9

// global inconsistency
return look4MUS(Σ, Γ , m + inc, inc, s) ;10

else11

while �M ∈ ∪MUSCΠ s.t. Γ ∈M do12

// local inconsistency
Π ′ ←− ∅ ;13

for j ∈ [1..s] do14

Πbest ←− ∅ ;15

foreach Πi ∈ Π s.t. Π �= Γ do16

if MI(Πi,∪MUSCΠ )>MI(Πbest ,∪MUSCΠ ) then17

Πbest ←− Πi ;
Π ←− Π \Πbest ;18

Π ′ ←− Π ′ ∪ clusterClauses(Πbest , SΣ , 2) ;19

Π ←− Π ∪Π ′ ;20

∪MUSCΠ ←− HYCAM*(Π) ;21

MΓ ←− selectOneMUSC(∪MUSCΠ ,Γ ) ;22

return look4MUS(MΓ , Γ , m, inc, s) ;23

end24

One interesting feature of this approach thus lies in its any-time property: whenever
a preset amount of computing resources is exhausted, it can provide the user with the
current solution, namely the currently focused subpart of Σ that is conflicting with
Γ . The proposed approach based on those ideas is described in the next Section and
sketched in Algorithm 1.
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Function scoreClauses
Input: Σ: a CNF
Output: A score vector of clauses of Σ
begin1

for each clause c of Σ do2

SΣ(c)←− 0;3

I ←− a random assignment of each variable of Σ ;4

while a preset maximum of steps is reached do5

for each clause c of Σ do6

if c is critical w.r.t I in Σ then7

SΣ(c) + + ;8

I ←− I ′ s.t. I and I ′ differs exactly by one assignment of a Boolean variable ;9

return SΣ ;10

end11

Function clusterClauses
Input: Σ: a CNF, SΣ : a score vector, m: the size of the clustering
Output: A m-clustering of Σ
begin1

Π ←− ∅ ;2

for i ∈ [1..m− 1] do3

Πi ←− the ( |Σ|m )th clauses with the highest scores in Σ ;4

Π ←− Π ∪ {Πi} ;5

Σ ←− Σ \Πi ;6

Π ←− Π ∪ {Σ} ;7

return Π ;8

end9

4 Main Algorithm

In this section, the reader is provided with a sketch of the Algorithm. For convenience
reasons, specific cases that are handled in the actual implementation (e.g. situations
where Γ is inconsistent or where Σ is consistent) are not described. Also, it does not
include the presentation of a syntactic preprocessing that removes all occurrences of
identical clauses of Σ but one (left in Γ whenever possible), allowing the number of
MUSes to be reduced exponentially. Such situations are important to handle in practice
in order to avoid pathological cases: they are simple to implement and do not offer
original algorithmic interest. The algorithm also refers to the HYCAM technique, that
allows the exhaustive set of MUSes of a SAT instance to be computed. Actually, a new
version of HYCAM that is able to deal with clusters of clauses has been implemented
and used in the experimental study. We do detail the internal algorithmic techniques of
HYCAM* which is just a cluster-oriented version of the algorithm presented in [12]. Let
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Function selectOneMUSC
Input: ∪MUSCΠ : the set of MUSC w.r.t. Π , Γ : a CNF
Output: An MUSC of ∪MUSCΠ containing Γ
begin1

MΓ ←− Π ;2

foreach M s.t. M ∈ ∪MUSCΠ do3

if Γ ⊆ M and |M | < |MΓ | then4

MΓ ←− M ;5

return MΓ ;6

end7

Function MI
Input: Πi: an element of the clustering Π , ∪MUSCΠ : the set of MUSCΠ

Output: The measure of inconsistency of Πi w.r.t. Π
begin1

mi ←− 0 ;2

foreach MUSC Π ∈ ∪MUSCΠ do3

if Πi ∈ MUSC Π then4

mi ←− mi + 1
|MUSCΠ | ;5

return mi ;6

end7

us focus on the different steps of the approach depicted in Algorithm 1. The approach
takes as input a CNF Σ together with a subpart Γ of Σ. Moreover, it also needs 3
positive integer parameters, namely m, inc and s.

First, a local search is run for heuristically scoring the clauses w.r.t. their “con-
straintness” within Σ. More precisely, scores of all clauses are initially set to 0. During
the local search process, scores of clauses which are critical [8] w.r.t. the current ex-
plored interpretation are increased. Roughly, a clause is critical if it is falsified by the
current interpretation and if any neighbor interpretation that satisfies this clause falsi-
fies another clause previously satisfied. Hence, a prefixed number of interpretations is
explored by the local search, giving rise to a score for each clause of the CNF (see
function scoreClause for more details).

Then, clauses are clustered (line 1) into Π , invoking the clusterClauses func-
tion. This function consists in conjuncting clauses that exhibit the highest scores to form
a first cluster, then the remaining highest-scored clauses to form a second cluster, etc.
until m clusters are delivered. Next, the modified version of HYCAM, noted HYCAM*
(line 1), is called to compute all MUSCs of Π .

Now, ∪MUSCΠ has been computed and several cases are possible. Either Π is glob-
ally inconsistent (lines 1-1): at this stage, no information can be exploited to find a
subset of conflicting clauses with Γ (see Section 3.6.1) and the clustering is refined by
adding inc more clusters (in the sketch of the algorithm, this is done through a recur-
sive call to look4MUS). Another case occurs when some local inconsistency within the
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clustering is detected. Here, either Γ is involved in at least one local inconsistency ex-
hibited by the procedure (see Section 3.6.2), or no one of them contains Γ (see Section
3.6.3). Actually, while Γ is not involved in any local MUSC of Π (lines 1-1), the s most
conflicting clusters of Π (w.r.t. the Shapley value in MI function) are split to attempt to
reveal sources of conflict involving Γ . When such local inconsistencies are exhibited,
one MUSC MΓ containing Γ is selected (function selectOneMUSC, which chooses
the MUSC that contains the least possible number of clauses). The computation contin-
ues only considering the MΓ CNF, which is a subformula of Σ that contains one MUS
involving Γ .

Unless the preset amount of computing time is exhausted, the algorithm can only
terminate in lines 1 or 1, when each cluster is actually a single clause (|Σ|-clustering).
At this point, a “classical” call to HYCAM is performed, delivering either MUSes (the
“MUSC” line 1 is actually an MUS since each cluster is a clause) containing infor-
mation from Γ , or proving that no such MUS exists. In the actual implementation, a
|Σ|-clustering does not need to be reached in order to call the HYCAM procedure: when
the current number of clusters is close enough to the number of clauses (i.e. when
m < 2× |Σ|), then the procedure is ended up with an HYCAM call.

Moreover, let us note that once line 22 is reached, an approximation of the original
problem has been computed. Consequently, the algorithm could be terminated at any
time with an approximated solution. The actual implementation is provided with an any-
time feature in the sense that the approach delivers the current considered subformula
conflicting with Γ when the preset amount of computing resources is exhausted.

5 Experimental Results

A C implementation of the algorithm has been completed. As a case study, the following
values have been selected as parameters: m = 30, inc = 10 and s = m

10 . The algorithm
has been run on various SAT benchmarks from http://www.satcompetition.
org. All the experimentations have been conducted on Intel Xeon 3GHz under Linux
CentOS 4.1. (kernel 2.6.9) with a RAM limit of 2GB.

As a case study again, for each SAT instance it has been attempted to show that the
subformula made of the clauses that are occurring at the 1st, 3rd, 5th and 7th positions
within the standard DIMACS CNF-format file was participating in the inconsistency
of the instance, and find an MUS overlapping with this set. A sample of the results
are reported in Table 1. For each result, we report the name of the tested benchmark
together with its number of variables (#var) and clauses (#cla). In addition, the size
of the specific wanted MUS (#claMUS ) in term of number of clauses and the time (in
second) needed to extract it are also proposed.

This table shows that specific large (and thus difficult to extract) MUSes can be ef-
ficiently extracted from SAT instances. Note that the exhaustive set of MSSes of most
of these instances cannot be delivered in reasonable time with neither CAMUS [11] nor
HYCAM [12]. Thus, preexisting approaches cannot answer the question about the in-
volvement of Γ in the inconsistency of Σ.

On the contrary, clustering clauses in order to hide sources of inconsistency and
focus on the ones involving the wanted clauses proved valuable in practice. While no

http://www.satcompetition.org
http://www.satcompetition.org
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Table 1. Extracting one MUS of Σ overlapping with Γ : sample of experimental results

name #var #cla #claMUS time
1dlx_c_mc_ex_bp_f 776 3725 1440 705
bf0432-007 1040 3668 1223 119
bf1355-075 2180 6778 151 22
bf1355-638 2177 6768 154 21
bf2670-001 1393 3434 134 8
dp05u04 1571 3902 820 1254
dp06u05 2359 6053 1105 2508
ezfact16_1 193 1113 319 28
ezfact16_2 193 1113 365 43
ezfact16_3 193 1113 297 31
ezfact16_10 193 1113 415 54

approach was able to answer this query for various realistic problems, the approach in
this paper drastically reduced the computational effort by limiting the combinatorial
explosion of the number of MUSes. For instance, the dp05u04 and dp06u05 prob-
lems (encoding the dining philosophers problem à la bounded model checking) contain
a number of MUSes large enough to prevent them from being computed (or even enu-
merated) using the current available technology. look4MUS succeeds to compute one
of the wished minimal sources of inconsistency -without extracting all of them- in 20
and 42 minutes, respectively. The situation is similar for other considered CNFs. For the
ezfact16_* factorization circuits family, an explanation involving parlicular clauses
can be delivered in less than 1 minute while exhaustive approaches show their limits
with such problems. Obviously enough, the considered benchmarks are smaller than
the very large CNFs containing tens of thousand clauses that can now be solved by the
best SAT solvers. Nevertheless, for some of those instances, thanks to its any-time fea-
ture, the procedure was able to iterate several times and compute MUSCes, delivering
a subformula conflicting with Γ .

6 Other Relevant Works

Existing approaches to compute MUSes and address the specific problem investigated
in this paper have been described in previous sections. Let us simply emphasize here
that this piece of work involves a form of abstraction to reduce the computational cost
of the initial problem. Moreover, due to its any-time property, it can be used as an
approximation technique. In this respect, a large number of abstraction and approxima-
tion techniques have been proposed to address various problems related to propositional
logic but that are different from the issue addressed in this paper. Let us mention some
of them.

A seminal paper about the approximation of inference in propositional logic using
limited ressources is [14]. Also, approximate clausal entailment relationships where
any step of the computation is decided in polytime have been proposed in [15,16], and
extended to full classical logic in [17]. For an overview about propositional
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approximations, the reader is refered to [18]. Finally, let us note that approximation
of coherent-based reasoning has also been studied extensively in e.g. [19] and [20].

Finally, the idea of clustering clauses has already been proposed in the context of
high-level constraints encoded within clauses [11]. Moreover, cases where no clause of
Γ is involved in the inconsistency of the instance appear to be the worst case of the al-
gorithm. However, if Γ is exclusively composed of never necessary clauses, then Γ can
be satisfied by an autarky [21], defined as a partial interpretation satisfying each clause
having one literal assigned. An algorithm [22] has been recently proposed for finding
autarkies by modifying the CNF formula and considering an optimization problem.

7 Conclusions and Future Works

In this paper, an original “abstract-and-refine” technique for checking whether a set of
clauses overlaps with at least one minimal unsatisfiable subset of a SAT instance has
been described. Such an issue can prove useful when a user needs to restore the con-
sistency of a CNF formula and has (or can get) some hints about where the conflicting
clauses are located in the formula.

The approach proves orders of magnitude more efficiently than existing approaches,
thanks to its step-by-step abstraction and reformulation paradigm. Especially, it does not
require the whole set of MUSes of the instance to be computed. Another feature of the
approach lies in its any-time character, allowing “rough” solutions to be provided when
the preset computational resources are exhausted.

Interesting paths for future reseach include the investigation of several possible vari-
ants for the approach. For instance, a crucial point lies in the way according to which
the clauses are clustered. Although the failed local-search heuristic and the concept of
critical clauses proved to be efficient, it could be fruitful to investigate other forms of
interactions between clauses in order to form clusters. Particularly, various techniques
have been proposed to divide SAT instances into subinstances, and it would be interest-
ing to study the viability of such approaches to form clusters. In addition, this study was
focused on the “flat” Boolean framework where all clauses share a same importance.
Users may have some qualitative or quantitative preferences about the information con-
tained in Σ. In this case, they might want to extract the MUSC that best fits those
preferences. In the future, we plan to investigate those issues.
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Abstract. The Thousands of Problems for Theorem Provers (TPTP)
problem library is the basis of a well established infrastructure supporting
research, development, and deployment of first-order Automated Theo-
rem Proving (ATP) systems. Recently, the TPTP has been extended to
include problems in higher-order logic, with corresponding infrastructure
and resources. This paper describes the practical progress that has been
made towards the goal of TPTP support for higher-order ATP systems.

1 Motivation and History

There is a well established infrastructure that supports research, development,
and deployment of first-order Automated Theorem Proving (ATP) systems,
stemming from the Thousands of Problems for Theorem Provers (TPTP) prob-
lem library [38]. This infrastructure includes the problem library itself, the TPTP
language [36], the SZS ontologies [35], the Thousands of Solutions from Theorem
Provers (TSTP) solution library, various tools associated with the libraries [34],
and the CADE ATP System Competition (CASC) [37]. This infrastructure has
been central to the progress that has been made in the development of high
performance first-order ATP systems.

Until recently there has been no corresponding support in higher-order logic.
In 2008, work commenced on extending the TPTP to include problems in higher-
order logic, and developing the corresponding infrastructure and resources. These
efforts aim to have an analogous impact on the development of higher-order ATP
systems. The key steps have been:
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– Development of the Typed Higher-order Form (THF) part of the TPTP
language, compatible with the existing first-order forms (FOF and CNF).

– Collecting THF problems, for the TPTP.
– Building TPTP infrastructure for THF problems.
– Finding and implementing ATP systems for higher-order logic.
– Collecting ATP systems’ solutions to the THF problems, for the TSTP.
– Planning for a THF division of CASC.

These topics are described in this paper.

2 The Higher-Order TPTP

The development of the higher-order part of the TPTP involved three of the
steps identified in the introduction: development of the Typed Higher-order Form
(THF) part of the TPTP language, collecting THF problems for the TPTP, and
building TPTP infrastructure for THF problems. These steps are described in
this section.

2.1 The Typed Higher-Order Form (THF) Language

The TPTP language is a human-readable, easily machine-parsable, flexible and
extensible language, suitable for writing both ATP problems and solutions. A
particular feature of the TPTP language, which has been maintained in the THF
part, is Prolog compatibility. As a result the development of reasoning software
(for TPTP data) in Prolog has a low entry barrier [36]. The top level building
blocks of the TPTP language are include directives and annotated formulae. In-
clude directives are used mainly in problem files to include the contents of axiom
files. Annotated formulae have the form:

language(name, role, formula, source, useful info).
The languages supported are first-order form (fof), clause normal form (cnf),
and now typed higher-order form (thf). The role gives the user semantics of
the formula, e.g., axiom, lemma, type, definition, conjecture, and hence de-
fines its use in an ATP system. The logical formula uses a consistent and easily
understood notation, and uses only standard ASCII characters.

The THF language for logical formulae is a syntactically conservative
extension of the existing first-order TPTP language, adding constructs for
higher-order logic. Maintaining a consistent style between the first-order and
higher-order languages allows easy adoption of the new higher-order language,
through reuse or adaptation of existing infrastructure for processing TPTP for-
mat data, e.g., parsers, pretty-printing tools, system testing harnesses, and out-
put processors. The THF language has been divided into three layers: THF0,
THF, and THFX. The THF0 core language is based on Church’s simple type
theory, and provides the commonly used and accepted aspects of a higher-order
logic language [13]. The full THF language drops the differentiation between
terms and types, thus providing a significantly richer type system, and adds the
ability to reason about types. It additionally offers more term constructs, more
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type constructs, and more connectives. The extended THFX language adds con-
structs that are “syntactic sugar”, but are usefully expressive. Initially the TPTP
will contain higher-order problems in only THF0, to allow users to adopt the lan-
guage without being swamped by the richness of the full THF language. The full
THF language definition is available from the TPTP web site, www.tptp.org.

Figures 1 and 2 show an example of a TPTP problem file in THF0.
The thf annotated formulae in Figure 1 illustrate common constructs in the
THF0 language. The constructs that are not part of the first-order TPTP lan-
guage are:

– The typing of constants and quantified variables. THF requires that all sym-
bols be typed. Constants are globally typed in an annotated formula with
role type, and variables are locally typed in their quantification (thus re-
quiring all variables to be quantified).

– $tType for the collection of all types.
– $i and $o for the types of individuals and propositions. $i is non-empty,

and may be finite or infinite.
– > for (right associative) function types.
– ^ as the lambda binder.
– @ for (left associative) application.

Additional THF constructs, not shown in the example, are:

– The use of connectives as terms (THF0), e.g.,
(& @ $false) = (^ [P:$o] : $false)

– !! and ?? for the Π (forall) and Σ (exists) operators (THF0), e.g.,
((!! (p)) & (!! (q))) = (! [X:$i] : (( p @ X) & (q @ X)))

– !> and ?* for Π (dependent product) and Σ (sum) types (THF), e.g.,
cons: !> [N:nat] : ($i > (list @ N) > (list @ (succ @ N)))

– [ ] for tuples (THF), e.g.,
make triple = ^ [X:$i,Y:$i:,Z:$i] : [X,Y,Z]

– * and + for simple product and sum (disjoint union) types (THF), e.g.,
roots: quadratic > (($real * $real) + $real + undef)

– := as a connective for global definitions, and as a binder and separator for
local definitions (ala letrec) (THFX), e.g.,

apply twice:= ^ [F:$o > $o,X:$o] : (F @ (F @ X))
defines apply twice with global scope, and

:= [NN:= (apply twice @ ~)] : (NN = (apply twice @ NN))
has NN defined with local (the formula) scope.

– --> as the sequent connective (THFX), e.g., [p,q,r] --> [s,t]

The choice of semantics for THF problems is of interest, as, unlike the first-
order case, there are different options [6,7]. For THF0 the default is Henkin
semantics with extensionality (without choice or description). The default se-
mantics of the higher THF layers have not been fixed yet, since this choice will
be dependent on which systems adopt the higher-order TPTP.

www.tptp.org
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%------------------------------------------------------------------------------
%----Include simple maths definitions and axioms
include(’Axioms/LCL008^0.ax’).
%------------------------------------------------------------------------------
thf(a,type,(

a: $tType )).

thf(p,type,(
p: ( a > $i > $o ) > $i > $o )).

thf(g,type,(
g: a > $i > $o )).

thf(e,type,(
e: ( a > $i > $o ) > a > $i > $o )).

thf(r,type,(
r: $i > $i > $o )).

thf(mall_aio,type,(
mall_aio: ( ( a > $i > $o ) > $i > $o ) > $i > $o )).

thf(mall_a,type,(
mall_a: ( a > $i > $o ) > $i > $o )).

thf(mall_aio,definition,
( mall_aio
= ( ^ [P: ( a > $i > $o ) > $i > $o,W: $i] :

! [X: a > $i > $o] :
( P @ X @ W ) ) )).

thf(mall_a,definition,
( mall_a
= ( ^ [P: a > $i > $o,W: $i] :

! [X: a] :
( P @ X @ W ) ) )).

thf(positiveness,axiom,
( mvalid
@ ( mall_aio

@ ^ [X: a > $i > $o] :
( mimpl @ ( mnot @ ( p @ X ) )
@ ( p
@ ^ [Z: a] :

( mnot @ ( X @ Z ) ) ) ) ) )).

thf(g,definition,
( g
= ( ^ [Z: a] :

( mall_aio
@ ^ [X: a > $i > $o] :

( mimpl @ ( p @ X ) @ ( X @ Z ) ) ) ) )).

thf(e,definition,
( e
= ( ^ [X: a > $i > $o,Z: a] :

( mall_aio
@ ^ [Y: a > $i > $o] :

( mimpl @ ( Y @ Z )
@ ( mbox @ r

@ ( mall_a
@ ^ [W: a] :

( mimpl @ ( X @ W ) @ ( Y @ W ) ) ) ) ) ) ) )).

thf(thm,conjecture,
( mvalid
@ ( mall_a

@ ^ [Z: a] :
( mimpl @ ( g @ Z ) @ ( e @ g @ Z ) ) ) )).

%------------------------------------------------------------------------------

Fig. 1. LCL634^1 formulae
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%------------------------------------------------------------------------------

% File : LCL634^1 : TPTP v3.7.0. Released v3.6.0.

% Domain : Logical Calculi

% Problem : Goedel’s ontological argument on the existence of God

% Version : [Ben08] axioms : Especial.

% English :

% Refs : [Fit00] Fitting (2000), Higher-Order Modal Logic - A Sketch

% : [Ben08] Benzmueller (2008), Email to G. Sutcliffe

% Source : [Ben08]

% Names : Fitting-HOLML-Ex-God-alternative-b [Ben08]

% Status : Theorem

% Rating : 1.00 v3.7.0

% Syntax : Number of formulae : 48 ( 3 unit; 27 type; 19 defn)

% Number of atoms : 323 ( 19 equality; 60 variable)

% Maximal formula depth : 13 ( 5 average)

% Number of connectives : 71 ( 3 ~; 1 |; 2 &; 64 @)

% ( 0 <=>; 1 =>; 0 <=; 0 <~>)

% ( 0 ~|; 0 ~&; 0 !!; 0 ??)

% Number of type conns : 118 ( 118 >; 0 *; 0 +)

% Number of symbols : 28 ( 27 :; 0 :=)

% Number of variables : 51 ( 2 sgn; 6 !; 4 ?; 41 ^)

% ( 51 :; 0 :=; 0 !>; 0 ?*)

% Comments :

%------------------------------------------------------------------------------

Fig. 2. LCL634^1 header

The first section of each TPTP problem file is a header that contains infor-
mation for the user. Figure 2 shows the header for the annotated formulae of
Figure 1. This information is not for use by ATP systems. It is divided into
four parts. The first part identifies and describes the problem, the second part
provides information about occurrences of the problem in the literature and else-
where, the third part gives the problem’s status as an SZS ontology value [35]
and a table of syntactic measurements made on the problem, and the last part
contains general comments about the problem. The status value is for the default
semantics – Henkin semantics with extensionality. If the status is known to be
different for other semantics, e.g., without functional/Boolean extensionality, or
with addition of choice or description, this is provided on subsequent lines, with
the modified semantics noted.

2.2 Collecting THF Problems, for the TPTP

The THF problems collected in the second half of 2008 and first quarter of 2009
were part of TPTP v3.7.0, which was released on 8th March 2009. This was a
beta release of the THF part of the TPTP, and contained higher-order problems
in only the THF0 language. There were 1275 THF problem versions, stemming
from 852 abstract problems, in nine domains:

– ALG - 50 problems. These are problems concerning higher-order abstract
syntax, encoded in higher-order logic [19].
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– GRA - 93 problems. These are problems about Ramsey numbers, some of
which are open in the mathematics community.

– LCL - 56 problems. These are of modal logic problems that have been encoded
in higher-order logic.

– NUM - 221 problems. These are mostly theorems from Jutting’s AUTOMATH
formalization [40] of the well known Landau book [24]. These are also some
Church numeral problems.

– PUZ - 5 problems. These are “knights and knaves” problems.
– SET and SEU - 749 problems. Many of these are ”standard” problems in

set theory that have TPTP versions in first-order logic. This allows for an
evaluation of the relative benefits of the different encodings with respect to
ATP systems for the logics [14]. There is also a significant group of problems
in dependently typed set theory [17], and a group of interesting problems
about binary relations.

– SWV - 37 problems. The two main groups of problems are (i) security problems
in access control logic, initially encoded in modal logic, and subsequently
encoded in higher-order logic [9], and (ii) problems about security in an
authorization logic that can be converted via modal logic to higher-order
logic [20].

– SYN - 59 problems. These are simple problems designed to test properties of
higher-order ATP systems [6].

1038 of the problems (81%) contain equality. 1172 of the problems (92%) are
known or believed to be theorems, 28 (2%) are known or believed to be non-
theorems, and the remaining 75 problems (6%) have unknown status. Table 1
provides some further detailed statistics about the problems.

Table 1. Statistics for THF problems

Min Max Avg Median
Number of formulae 1 749 118 16
% of unit formulae 0% 60% 24% 27%
Number of atoms 2 7624 1176 219
% of equality atoms 0% 33% 5% 6%
in problems with equality 1% 33% 7% 7%

% of variable atoms 0% 82% 33% 33%
Avg atoms per formula 1.8 998.0 50.0 8.0
Number of symbols 1 390 66 12
Number of variables 0 1189 182 31

ˆ 0 175 22 5
! 0 1067 150 11
? 0 45 10 2

Number of connectives 0 4591 677 73
Number of type connectives 0 354 62 28
Maximal formula depth 2 351 67 14
Average formula depth 2 350 16 6
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2.3 TPTP Infrastructure for THF Problems

The first-order TPTP provides a range of resources to support use of the problem
library [34]. Many of these resources are immediately applicable to the higher-
order setting, while some have required changes for the new features of the THF
language.

From a TPTP user perspective, the TPTP2X utility distributed with the
TPTP will initially be most useful for manipulating THF problems. TPTP2X
has been extended to read, manipulate, and output (pretty print) data in the
full THF language. Additionally, format modules for outputting problems in the
Tps [4], Twelf [28], OmDoc [23], Isabelle [27], and S-expression formats have
been implemented. The TPTP4X tool has also been extended to read, manipu-
late, and output data in the THF0 language, and will be extended to the full
THF language.

The SystemOnTPTP utility for running ATP systems and tools on TPTP
problems and solutions has been updated to deal with THF data, including use
of the new higher-order formats output by TPTP2X. The online interface to Sys-
temOnTPTP (www.tptp.org/cgi-bin/SystemOnTPTP) has also been updated
to deal with THF data, and includes ATP systems and tools for THF data.

Internally, an important resource is the Twelf-based type checking of THF
problems, implemented by exporting a problem in Twelf format, and submitting
the result to the Twelf tool - see [13] for details.

The BNF based parsers for the TPTP [41] naturally parse the full THF
language, and the lex/yacc files used to build these parsers are freely
available.

3 Collecting Solutions to THF Problems, for the TSTP

The Thousands of Solutions from Theorem Provers (TSTP) solution library, the
“flip side” of the TPTP, is a corpus of contemporary ATP systems’ solutions to
the TPTP problems. A major use of the TSTP is for ATP system developers
to examine solutions to problems, and thus understand how they can be solved.
The TSTP is built using a harness that calls the SystemOnTPTP utility, and
thus leverages many aspects of the TPTP infrastructure for THF data.

Four higher-order ATP systems, LEO-II 0.99a, Tps 3.0, and two automated
versions of Isabelle 2008 (one - IsabelleP - trying to prove theorems, the other -
IsabelleM - trying to find (counter-)models), have been run over the 1275 THF
problems in TPTP v3.7.0, and their results added to the TSTP. The systems
are described in Section 4. Table 2 tabulates the numbers of problems solved.
The “Any”, “All”, and “None” rows are with respect to to the three theorem
provers. All the runs were done on 2.80GHz computers with 1GB memory and
running the Linux operating system, with a 600s CPU limit.

The results show that the GRA Ramsey number problems are very
difficult - this was expected. For the remaining domains the problems pose inter-
esting challenges for the ATP systems, and the differences between the systems
lead to different problems being solved, including some that are solved uniquely
by each of the systems.

www.tptp.org/cgi-bin/SystemOnTPTP
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Table 2. Results for THF problems

ALG GRA LCL NUM PUZ SE? SWV SYN Total Unique
Problems 50 93 61 221 5 749 37 59 1275
LEO-II 0.99a 34 0 48 181 3 401 19 42 725 127
IsabelleP 2008 0 0 0 197 5 361 1 30 594 74
Tps 3.0 10 0 40 150 3 285 9 35 532 6
Any 32 0 50 203 5 490 20 52 843 207
All 0 0 0 134 2 214 0 22 372
None 18 93 12 18 0 259 17 15 432
IsabelleM 2008 0 0 1 0 0 0 0 8 9

4 Higher-Order ATP for the TPTP

Research and development of computer-supported reasoning for higher-order
logic has been in progress for as long as that for first-order logic. It is clear that
the computational issues in the higher-order setting are significantly harder than
those in first-order. Problems such as the undecidability of higher-order unifica-
tion, the handling of equality and extensionality reasoning, and the instantiation
of set variables, have hampered the development of effective higher-order auto-
mated reasoning. Thus, while there are many interactive proof assistants based
on some form of higher-order logic [43], there are few automated systems for
higher-order logic. This section describes the three (fully automatic) higher-order
ATP systems that we know of.

4.1 LEO-II

LEO-II [12] is a resolution based higher-order ATP system. It is the successor of
LEO [8], which was implemented in LISP and hardwired to the OMEGA proof
assistant [32]. LEO-II is implemented in Objective Caml, and is freely available
from http://www.ags.uni-sb.de/~leo/ under a BSD-like licence.

LEO-II is designed to cooperate with specialist systems for fragments of
higher-order logic. The idea is to combine the strengths of the different systems:
LEO-II predominantly addresses higher-order aspects in its reasoning process,
with the aim of quickly removing higher-order clauses from the search space,
and turning them into first-order clauses that can be refuted with a first-order
ATP system. Currently, LEO-II is capable of cooperating with the first-order
ATP systems E [31], SPASS [42], and Vampire [30].

In addition to a fully automatic mode, LEO-II provides an interactive mode
[11]. This mode supports debugging and inspection of the search space, and also
the tutoring of resolution based higher-order theorem proving to students. The
interactive mode and the automatic mode can be interleaved.

LEO-II directly parses THF0 input. THF0 is the only input syntax supported by
LEO-II. The THF problem collection has been a valuable testbed in this respect,
providing examples that exposed intricacies of the LEO-II parser. Some prob-
lems revealed differing precedences for logical connectives in THF0 and LEO-II.

http://www.ags.uni-sb.de/~leo/
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Instead of generating parsing errors these examples led to different semantic
interpretations. An example is the tautologous axiom ! [X:$o]:(~(X) | X).
Due to mistaken operator precedences, LEO-II used to (mis)read this axiom as
! [X:$o]:(~(X | X)).

Communication between LEO-II and the cooperating first-order ATP system uses
TPTP standards. LEO-II’s clause set generally consists of higher-order clauses
that are processed with LEO-II’s calculus rules. Some of the clauses in LEO-II’s
search space additionally attain a special status: they are first-order clauses mod-
ulo the application of an appropriate transformation function. The default trans-
formation is Hurd’s fully typed translation [22]. LEO-II’s extensional higher-
order resolution approach enhances standard resolution proof search with specific
extensionality rules that generate more and more essentially first-order clauses
from higher-order ones. LEO-II is often too weak to find a refutation amongst
the steadily growing set of essentially first-order clauses on its own. Therefore,
LEO-II launches the cooperating first-order ATP system every n iterations of
its (standard) resolution proof search loop (currently n = 10). The subproblem
passed to the first-order ATP system is written in the TPTP language. If the
first-order ATP system finds a refutation and communicates its success to LEO-
II in the standard SZS format: SZS status Unsatisfiable. LEO-II analyzes
this answer and recognizes the reference to unsatisfiablity in the SZS ontology.
LEO-II stops the proof search and reports that the problem is a theorem, in the
standard SZS format: SZS status Theorem.

Debugging of LEO-II benefits from the examples in the TPTP library. Several
bugs in LEO-II, beyond the parsing bugs described above, have been detected
through use of the TPTP library. These include problems in the translation
from higher-order to first-order form, and accidentally omitted type checks in
the higher-order unification algorithm. The library has thus provided an excellent
basis for finding and curing various “Kinderkrankheiten” that a new ATP system
inevitably experiences.

Future work includes further exploitation of TPTP infrastructure. An important
step will be the integration of TPTP format proofs output by the cooperating
first-order ATP system into LEO-II’s higher-order resolution proofs. The goal is
to produce a single, coherent proof in the TPTP language.

4.2 Tps

Tps [4] is a higher-order theorem proving system that has been developed under
the supervision of Peter B. Andrews since the 1980s. Theorems can be proven
in Tps either interactively or automatically. Some of the key ingredients of the
automated search procedures of Tps are mating search [2] (which is similar
to Bibel’s connection method [15]), Miller’s expansion trees [25], and Huet’s
higher-order pre-unification [21]. In essence, the goal of each search procedure is
to find an appropriate set of connections (i.e., a complete mating), and to find
appropriate instantiations for certain variables [3].



Progress in the Development of Automated Theorem 125

In Tps there are flags that can be set to affect the behavior of automated
search. A collection of flag settings is called a mode. The mode determines
which particular search procedure will be used, as well as how the exploration
of the search space should be ordered. Over 500 modes are available in the
Tps library. The two modes considered in this paper are MS98-FO-MODE and
BASIC-MS04-2-MODE.

The mode MS98-FO-MODE uses a search procedure MS98-1, implemented by
Matthew Bishop [16]. The procedure precomputes components (compatible sets
of connections) and then attempts to combine the components to construct a
complete mating. This approach enables Tps to solve a number of problems
that were too hard for earlier search procedures. MS98-1 and all earlier search
procedures are based on Miller’s expansion trees. Consequently, the procedures
attempt to find proofs that do not use extensionality, i.e., these search procedures
can prove theorems of only elementary type theory [1].

The mode BASIC-MS04-2-MODE uses a search procedure MS04-2, implemented
by Chad Brown [18]. Unlike MS98-1, MS04-2 can find proofs of theorems requir-
ing extensionality. MS04-2 is the only Tps search procedure that is complete
relative to Henkin semantics [18]. The procedure is based on extensional ex-
pansion DAGs, a generalization of Miller’s expansion trees. The trees become
DAGs because connections can generate new nodes that are children of the two
connected nodes. For theorems that do not require extensionality, this extra
complication can expand the search space unnecessarily. Also, MS04-2 relies on
backtracking in a way MS98-1 does not.

As the two Tps modes have quite different capabilities, and it is expected that
any proofs found by either mode will be found quickly, running the two modes
in competition parallel is a simple way of obtaining greater coverage. A simple
perl script has ben used to do this, running two copies of Tps in parallel as
separate UNIX processes, one for each of the modes. As soon as either process
finds a proof, the script terminates the other. It was this competition parallel
version of Tps that produced the 532 proofs noted in Table 2. Analysis of the
system’s outputs shows that the parallelism is effective, with the two modes each
solving about half of the problems (first). This indicates that the TPTP has a
good balance of problems with respect to these two Tps modes. A new strategy
scheduling version of Tps is currently being developed, which will run many
more modes, but in sequence to avoid memory contention.

4.3 IsabelleP and IsabelleM

Isabelle [27] is a well known proof assistant for higher-order logic. It is normally
used interactively through the Proof General interface [5]. In this mode it is
possible to apply various automated tactics that attempt to solve the current
goal without further user interaction. Examples of these tactics are blast, auto,
and metis. It is (a little known fact that it is) also possible to run Isabelle from
the command line, passing in a theory file with a lemma to solve. Finally, Isabelle
theory files can include ML code to be executed when the file is processed. These
three features have been combined to implement a fully automatic Isabelle, using
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the nine tactics simp, blast, auto, metis, fast, fastsimp, best, force, and
meson. The TPTP2X Isabelle format module outputs a THF problem in Isabelle
HOL syntax, augmented with ML code that (i) runs the nine tactics in sequence,
each with a CPU time limit, until one succeeds or all fail, and (ii) reports the
result and proof (if found) using the SZS standards. A perl script is used to
insert the CPU time limit (equally divided over the nine tactics) into TPTP2X’s
Isabelle format output, and then run the command line isabelle-process on
the resulting theory file. The complete system is named IsabelleP in Table 2.

While it was probably never intended to use Isabelle as a fully automatic
system, this simple automation provides useful capability. It solves 74 problems
that neither LEO-II nor Tps can solve. The strategy scheduling is effective,
with eight of the modes contributing solutions. Over 400 of the 594 solutions are
found by one of the first two tactics used - simp or blast, and more than another
100 by one of the next three tactics - auto, metis, or fast. Further research
and development of this automated Isabelle will inevitably lead to improved
performance.

The ability of Isabelle to find (counter-)models using the refute command
has also been integrated into an automatic system, called IsabelleM in Table 2.
This provides the TPTP with capability to confirm the satisfiability of axiom
sets, and the countersatisfiability of non-theorems. It has been useful for exposing
errors in some THF problem encodings. It is planned to extend IsabelleM to also
use the (the newly developed) nitpick command for model finding.

5 Cunning Plans for the Future

CASC: The CADE ATP System Competition (CASC) [37] is held annually at
each CADE (or IJCAR, of which CADE is a constituent) conference. CASC eval-
uates the performance of sound, fully automatic, ATP systems – it is the world
championship for such systems. CASC has been a catalyst for impressive im-
provements in ATP, stimulating both theoretical and implementation advances
[26]. The addition of a THF division to CASC is planned as a natural way to
provide the same stimulation for the development of higher-order ATP systems.
The first THF division of CASC will be part of CASC-22 at CADE-22. While
the primary purpose of CASC is a public evaluation of the relative capabilities
of ATP systems, it is important that the THF division should strongly focus
on the other aims of CASC: to stimulate ATP research in general, to stimulate
ATP research towards autonomous systems, to motivate implementation of ro-
bust ATP systems, to provide an inspiring environment for personal interaction
between ATP researchers, and to expose ATP systems within and beyond the
ATP community.

THF and THFX: Currently the TPTP contains problems in only the core
THF0 fragment of the THF language. As ATP developers and users adopt the
language, it is anticipated that demand for the richer features of the full THF
language and the extended THFX language will quickly emerge. In prepara-
tion for this demand the THF and THFX languages have already been defined,
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problems in these languages are being collected, and TPTP infrastructure for
processing these problems is being developed. Thus the higher-order TPTP ex-
pects to be able to meet the expectations of the community, hence encouraging
uptake of the THF language and use of the TPTP problems as a common basis
for system evaluation.

6 Conclusion

This paper has described the significant practical progress that has been made
towards developing the TPTP and associated infrastructure for automated rea-
soning in higher-order logic. An alpha-release of the TPTP (v3.6.0) with higher-
order problems was made on 25th December 2008 (a Christmas present), a beta-
release (v3.7.0) was made on 8th March 2009, and the first full release (v4.0.0)
will be made in August 2009.

The core work of collecting THF problems is proceeding. Significant new con-
tributions have come from the export of the Tps problem library [4] to THF0,
and from a higher-order encoding [10] of problems from the Intuitionistic Logic
Theorem Proving (ILTP) library [29]. TPTP v4.0.0 will have over 2500 THF
problems.

Current work on the TPTP infrastructure is extending the Java parser for the
TPTP language to read the THF language. This in turn will allow use of Java
based tools, e.g., IDV [39], for manipulating THF data. The semantic derivation
verifier GDV [33] is being updated to verify proofs that include formulae in the
THF language.

A key goal of this work is to stimulate the development of ATP systems for
higher-order logic - there are many potential applications for such systems. ATP
systems that output proofs are particularly important, allowing proof verifica-
tion. In the long term we hope to see burgeoning research and development of
ATP for higher-order logic, with a richness similar to first-order ATP, with many
ATP systems, common usage in applications, meta-systems, etc.
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Abstract. This system description provides an overview of H-PILoT
(Hierarchical Proving by Instantiation in Local Theory extensions), a
program for hierarchical reasoning in extensions of logical theories with
functions axiomatized by a set of clauses. H-PILoT reduces deduction
problems in the theory extension to deduction problems in the base the-
ory. Specialized provers and standard SMT solvers can be used for test-
ing the satisfiability of the formulae obtained after the reduction. For
local theory extensions this hierarchical reduction is sound and complete
and – if the formulae obtained this way belong to a fragment decidable
in the base theory – H-PILoT provides a decision procedure for test-
ing satisfiability of ground formulae, and can also be used for model
generation.

Keywords: local theory extensions, hierarchical reasoning.

1 Introduction

H-PILoT (Hierarchical Proving by Instantiation in Local Theory extensions)
is an implementation of the method for hierarchical reasoning in local theory
extensions presented in [6,10,12]: it reduces the task of checking the satisfiability
of a (ground) formula over the extension of a theory with additional function
symbols subject to certain axioms (a set of clauses) to the task of checking the
satisfiability of a formula over the base theory. The idea is to replace the set of
clauses which axiomatize the properties of the extension functions by a finite set
of instances thereof. This reduction is polynomial in the size of the initial set of
clauses and is always sound. It is complete in the case of so-called local extensions
[10]; in this case, it provides a decision procedure for the universal theory of the
theory extension if the clauses obtained by the hierarchical reduction belong to
a fragment decidable in the base theory. The satisfiability of the reduced set of
clauses is then checked with a specialized prover for the base theory.

State of the art SMT provers such as CVC3, Yices and Z3 [1,5,3] are very effi-
cient for testing the satisfiability of ground formulae over standard theories, but
use heuristics in the presence of universally quantified formulae, hence cannot
detect satisfiability of such formulae. H-PILoT recognizes a class of local axioma-
tizations, performs the instantiation and hands in a ground problem to the SMT
provers or other specialized provers, for which they are know to terminate with
a yes/no answer, so it can be used as a tool for steering standard SMT provers,
in order to provide decision procedures in the case of local theory extensions.

R.A. Schmidt (Ed.): CADE 2009, LNAI 5663, pp. 131–139, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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H-PILoT can also be used for generating models of satisfiable formulae; and even
more, it can be coupled to programs with graphic facilities to provide graphical
representations of these models. Being a decision procedure for many theories
important in verification, H-PILoT is extremely helpful for deciding truth or
satisfiability in a large variety of verification problems.

2 Description of the H-PILoT Implementation

H-PILoT is an implementation of the method for hierarchical reasoning in local
theory extensions presented in [6,10,11,12]. H-PILoT is implemented in Ocaml.
The system (with manual and examples) can be downloaded from www.mpi-inf.
mpg.de/~ihlemann/software/. Its general structure is presented in Figure 1.

2.1 Theoretical Background

Let T0 be a Σ0-theory. We consider extensions T1 = T0 ∪ K of T0 with function
symbols in a set Σ1 (extension functions) whose properties are axiomatized by
a set K of Σ0 ∪Σ1-clauses. Let Σc be an additional set of constants.

Task. Let G be a set of ground Σ0∪Σ1∪Σc-clauses. We want to check whether
or not G is satisfiable w.r.t. T0 ∪ K.

Method. Let K[G] be the set of those instances of K in which every subterm
starting with an extension function is a ground subterm already appearing in
K or G. If G is unsatisfiable w.r.t. T0 ∪ K[G] then it is also unsatisfiable w.r.t.
T0 ∪ K. The converse is not necessarily true. We say that the extension T0 ∪ K
of T0 is local if for each set G of ground clauses, G is unsatisfiable w.r.t. T0 ∪K
if and only if K[G] ∪G has no partial Σ0 ∪Σ1-model whose Σ0-reduct is a total
model of T0 and in which all Σ1-terms of K and G are defined.

Theorem 1 ([10]). Assume that the extension T0 ⊆ T1 = T0 ∪ K is local and
let G be a set of ground clauses. Let K0 ∪G0 ∪D be the purified form of K ∪G
obtained by introducing fresh constants for the Σ1-terms, adding their definitions
d ≈ f(t) to D, and replacing f(t) in G and K[G] by d. (Then Σ1-functions occur
only in D in unit clauses of the form d ≈ f(t).) The following are equivalent.

1. T0 ∪ K ∪G has a (total) model.
2. T0 ∪ K[G] ∪ G has a partial model where all subterms of K and G and all

Σ0-functions are defined.
3. T0 ∪ K0 ∪G0 ∪ Con0 has a total model, where

Con0 := {
∧n

i=1 ci ≈ di → c ≈ d | f(c1, ..., cn) ≈ c, f(d1, ..., dn) ≈ d ∈ D}.

A variant of this notion, namely Ψ -locality, was also studied, where the set of
instances to be taken into account is K[Ψ(G)], where Ψ is a closure operator
which may add a (finite) number of new terms to the subterms of G. We also
analyzed a generalized version of locality, in which the clauses in K and the set
G of ground clauses are allowed to contain first-order Σ0-formulae.

www.mpi-inf.mpg.de/~ihlemann/software/
www.mpi-inf.mpg.de/~ihlemann/software/
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Examples of Local Extensions. Among the theory extensions which we
proved to be local or Ψ -local in previous work are:

– theories of pointers with stored scalar information in the nodes [8,7];
– theories of arrays with integer indices, and elements in a given theory [2,7];
– theories of functions (e.g. over an ordered domain, or over a numerical

domain) satisfying e.g. monotonicity or boundedness conditions [10,14];
– various combinations of such extensions [12,7].

We can also consider successive extensions of theories: T0 ⊆ T0 ∪ K1 ⊆ · · · ⊆
T0 ∪K1 ∪ · · · ∪Kn. If every variable in Ki occurs below a function symbol in Σi,
this reduction process can be iterated [7].

2.2 Preprocessing

H-PILoT receives as input a many-sorted specification of the signature; a speci-
fication of the hierarchy of local extensions to be considered; an axiomatization
K of the theory extension(s); a set G of ground clauses containing possibly ad-
ditional constants. H-PILoT allows the following pre-processing functionality:

Translation to Clause Form. H-PILoT provides a translator to clause normal
form (CNF) for ease of use. First-order formulas can be given as input; H-PILoT
translates them into CNF.1

Flattening/Linearization. Methods for recognizing local theory extensions
usually require that the clauses in the set K extending the base theory are
flat and linear2. If the flags -linearize and/or -flatten are used then the input is
flattened and/or linearized. H-PILoT allows the user to enter a more readable
non-flattened version and will perform the flattening and linearization of K.

Recognizing Syntactic Criteria which Imply Locality. Examples of lo-
cal extensions include those mentioned in Section 2.1 (and also iterations and
combinations thereof). In the pre-processing phase H-PILoT analyzes the input
clauses to check whether they are in one of these fragments.

– If the flag - array is on: checks if the input is in the array property fragment[2];
– if the keyword “pointer” is detected: checks if the input is in the pointer

fragment in [8] and possibly adds premises of the form “t �= null”.

If the answer is “yes”, we know that the extensions we consider are local, i.e.
that H-PILoT can be used as a decision procedure. We are currently extending
the procedure to recognize “free”, “monotone” and “bounded” functions.

1 In the present implementation, the CNF translator does not provide the full function-
ality of FLOTTER [9], but is powerful enough for most applications. (An optimized
CNF translator is being implemented.)

2 Flatness means that extension functions may not be nested; linearity means that
variables may occur only in the same extension term (which may appear repeatedly).
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2.3 Main Algorithm

The main algorithm hierarchically reduces a decision problem in a theory exten-
sion to a decision problem in the base theory.

extension
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ext.
clauses
ground?

update K, G
linearize

quit

prover
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parse

no

yes
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local?

all
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Fig. 1. H-PILoT Structure

Given a set of clauses K and a ground formula G,
the algorithm we use carries out a hierarchical re-
duction of G to a set of formulae in the base theory,
cf. Theorem 1. It then hands over the new problem
to a dedicated prover such as Yices, CVC3 or Z3.
H-PILoT is also coupled with Redlog (for handling
non-linear real arithmetic) and with SPASS3.

Loop. For a chain of local extensions:

T0 ⊆ T1 = T0 ∪ K1 ⊆ T2 = T0 ∪ K1 ∪K2

⊆ ... ⊆ Tn = T0 ∪K1 ∪ ... ∪ Kn.

a satisfiability check w.r.t. the last extension can be
reduced (in n steps) to a satisfiability check w.r.t.
T0. The only caveat is that at each step the re-
duced clauses K0

i ∪ G0 ∪ Con0 need to be ground.
Groundness is assured if each variable in a clause
appears at least once under an extension function.
In that case, we know that at each reduction step
the total clause size only grows polynomially in
the size of Ψ(G) [10]. H-PILoT allows the user to
specify a chain of extensions by tagging the exten-
sion functions with their place in the chain (e.g.,
if f belongs to K3 but not to K1 ∪ K2 it is de-
clared as level 3). Let i = n. As long as the ex-
tension level i > 0, we compute Ki[G] (Ki[Ψ(G)]
in case of arrays). If no separation of the exten-
sion symbols is required, we stop here (the result will be passed to an exter-
nal prover). Otherwise, we perform the hierarchical reduction in Theorem 1 by
purifying Ki and G (to K0

i , G
0 resp.) and by adding corresponding instances

of the congruence axioms Coni. To prepare for the next iteration, we trans-
form the clauses into the form ∀x.Φ ∨ Ki (compute prenex form, skolemize). If
Ki[G]/K0

i is not ground, we quit with a corresponding message. Otherwise we
set: G′ := K0

i ∧ G0 ∧ Coni, T ′0 := T0 \ {Ki−1},K′ := Ki−1. We flatten and lin-
earize K′ and decrease i. If level i = 0 is reached, we exit the main loop and G′

is handed to an external prover4.

3 H-PILoT only calls one of these solvers once.
4 Completeness is guaranteed if all extensions are known to be local and if each re-

duction step produces a set of ground clauses for the next step.
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2.4 Post-processing

Depending on the answer of the external provers to the satisfiability problem
Gn, we can infer whether the initial set G of clauses was satisfiable or not.

– If Gn is unsatisfiable w.r.t. T0 then we know that G is unsatisfiable.
– If Gn is satisfiable, but H-PILoT failed to detect, and the user did not assert

the locality of the sets of clauses used in the axiomatization, its answer is
“unknown”.

– If Gn is satisfiable and H-PILoT detected the locality of the axiomatization,
then the answer is “satisfiable”. In this case, H-PILoT takes advantage of
the ability of SMT-solvers to provide counter-examples for the satisfiable set
Gn of ground clauses and specifies a counter-example of G by translating the
basic SMT-model of the reduced query to a model of the original query5.
The counter-examples can be graphically displayed using Mathematica. This
is currently done separately; an integration with Mathematica is planned for
the future.

3 System Evaluation

We have used H-PILoT on a variety of local extensions and on chains of local ex-
tensions. The flags that we used are described in the manual (see www.mpi-inf.
mpg.de/~ihlemann/software/). An overview of the tests we made is given in
sections 3.1 and 3.2. In analyzing them, we distinguish between satisfiable and
unsatisfiable problems.

Unsatisfiable Problems. For simple unsatisfiable problems, there hardly is
any difference in run-time whether one uses H-PILoT or an SMT-solver di-
rectly.6 When we consider chains of extensions the picture changes dramatically.
On one test example (array insert), checking an invariant of an array insertion
algorithm, which used a chain of two local extensions, Yices performed consider-
ably slower than H-PILoT: The original problem took Yices 318.22s to solve. The
hierarchical reduction yielded 113 clauses of the background theory (integers),
proved unsatisfiable by Yices in 0.07s.

Satisfiable Problems. For satisfiable problems over local theory extensions,
H-PILoT always provides the right answer. In local extensions, H-PILoT is a
decision procedure whereas completeness of other SMT-solvers is not guaranteed.
In the test runs, Yices either ran out of memory or took more than 6 hours when
given any of the unreduced problems. This even was the case for small problems,
e.g. problems over the reals with less than ten clauses. With H-PILoT as a front
end, Yices solved all the satisfiable problems in less than a second.
5 This improves readability greatly, especially when we have a chain of extensions.
6 This is due to the fact that a good SMT-solver uses the heuristic of trying out all the

occurring ground terms as instantiations of universal quantifiers. For local extensions
this is always sufficient to derive a contradiction.

www.mpi-inf. mpg.de/~ihlemann/software/
www.mpi-inf. mpg.de/~ihlemann/software/
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3.1 Test Runs for H-PILoT

We analyzed the following examples7:

array insert. Insertion of an element into a sorted integer array. Arrays are
definitional extensions here.

array insert (∃). Insertion of an element into a sorted integer array. Arrays
are definitional extensions here. Alternate version with (implicit) existential
quantifier.

array insert (linear). Linear version of array insert.
array insert real. Like array insert but with an array of reals.
array insert real (linear). Linear version of array insert real.
update process priorities (∀∃). Updating of priorities of processes. This is

an example of extended locality: We have a ∀∃-clause.
list1. Made up example of integer lists. Some arithmetic is required
chain1. Simple test for chains of extensions (plus transitivity).
chain2. Simple test for chains of extensions (plus transitivity and arithmetic).
double array insert. Problem of the array property fragment [2]. (A sorted

array is updated twice.)
mono. Two monotone functions over integers/reals for SMT solver.
mono for distributive lattices.R. Two monotone functions over a distribu-

tive lattice. The axioms for a distributive lattice are stated together with
the definition of a relation R: R(x, y) :⇔ x∧ y = x. Monotonicity of f (resp.
of g) is given in terms of R: R(x, y) → R(f(x), f(y)). Flag -freeType must
be used.

mono for distributive lattices. Same as mono for distributive lattices.R
except that no relation R is defined. Monotonicity of the two functions f, g is
directly given: x∧ y = x → f(x) ∧ f(y) = f(x). (Much harder than defining
R.) Flag -freeType must be used.

mono for poset. Two monotone functions over a poset with poset axioms.
Same as mono, except the order modeled by a relation R. Flag -freeType
should be used.

mono for total order. Same as mono except linearity is an axiom.This makes
no difference unless SPASS is used.

own. Simple test for monotone function.
mvLogic/mv1.sat. Example for MV-algebras. The �Lukasiewicz connectives

can be defined in terms of the (real) operations +,−,≤. Linearity is
deducible from axioms.

mvLogic/mv2. Example for MV-algebras. The �Lukasiewicz connectives can be
defined in terms of +,−,≤. The BL axiom is deducible.

mvLogic/bl1. Example forMV-algebraswithBL axiom (redundantly) included.
The �Lukasiewicz connectives can be defined in terms of +,−,≤.

mvLogic/example 6.1. Example forMV-algebraswithmonotone andbounded
function. The �Lukasiewicz connectives can be defined in terms of +,−,≤.

RBC simple. Example with train controller.
RBC variable2. Example with train controller.
7 The satisfiable variant of a problem carries the suffix “.sat”.
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3.2 Test Results

Name status #cl. H-PILoT H-PILoT yices
+ yices + yices

stop at K[G]
array insert (implicit ∃) Unsat 310 0.29 0.06 0.36
array insert (implicit ∃).sat Sat 196 0.13 0.04 time out
array insert Unsat 113 0.07 0.03 318.221

array insert (linear version) Unsat 113 0.07 0.03 7970.532

array insert.sat Sat 111 0.07 0.03 time out
array insert real Unsat 113 0.07 0.03 360.001

array insert real (linear) Unsat 113 0.07 0.03 7930.002

array insert real.sat Sat 111 0.07 0.03 time out
update process priorities Unsat 45 0.02 0.02 0.03
update process priorities.sat Sat 37 0.02 0.02 unkown
list1 Unsat 18 0.02 0.01 0.02
list1.sat Sat 18 0.02 0.01 unknown
chain1 Unsat 22 0.01 0.01 0.02
chain2 Unsat 46 0.02 0.02 0.02
mono Unsat 20 0.01 0.01 0.01
mono.sat Sat 20 0.01 0.01 unknown
mono for distributive lattices.R Unsat 27 0.22 0.06 0.03
mono for distributive lattices.R.sat Sat 27 unknown∗ unknown∗ unknown
mono for distributive lattices Unsat 17 0.01 0.01 0.02
mono for distributive lattices.sat Sat 17 0.01 0.01 unknown
mono for poset Unsat 20 0.02 0.02 0.02
mono for poset.sat Sat 20 unknown∗ unknown∗ unknown
mono for total order Unsat 20 0.02 0.02 0.02
own Unsat 16 0.01 0.01 0.01
mvLogic/mv1 Unsat 10 0.01 0.01 0.02
mvLogic/mv1.sat Sat 8 0.01 0.01 unknown
mvLogic/mv2 Unsat 8 0.01 0.01 0.06
mvLogic/bl1 Unsat 22 0.02 0.01 0.03
mvLogic/example 6.1 Unsat 10 0.01 0.01 0.03
mvLogic/example 6.1.sat Sat 10 0.01 0.01 unknown
RBC simple Unsat 42 0.03 0.02 0.03
double array insert Unsat 606 1.16 0.20 0.07
double array insert Sat 605 1.10 0.20 unknown
RBC simple.sat Sat 40 0.03 0.02 out. mem.
RBC variable2 Unsat 137 0.08 0.04 0.04
RBC variable2.sat Sat 136 0.08 0.04 out. mem.
User + sys times (in s). Run on an Intel Xeon 3 GHz, 512 K-byte cache.
Median of 100 runs (entries marked with 1: 10 runs; marked with 2: 3 runs).
The third column lists the number of clauses produced; “unknown” means
Yices answer was “unknown”, “out. mem.” means out of memory and time
out was set at 6h. For an explanation of “unknown∗” see below.

(*) The answer “unknown” for the satisfiable example with monotone functions over
distributive lattices/posets (H-Pilot followed by Yices) is due to the fact that Yices
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cannot handle the universal axioms of distributive lattices/posets. A translation of
such problems to SAT provides a decision procedure (cf. [10] and also [15]).
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Abstract. SPASS is an automated theorem prover for full first-order
logic with equality and a number of non-classical logics. This system
description provides an overview of our recent developments in SPASS 3.5
including subterm contextual rewriting, improved split backtracking, a
significantly faster FLOTTER implementation with additional control
flags, completely symmetric implementation of forward and backward
redundancy criteria, faster parsing with improved support for big files,
faster and extended sort module, and support for include commands
in input files. Finally, SPASS 3.5 can now parse files in TPTP syntax,
comes with a new converter tptp2dfg and is distributed under a BSD
style license.

1 Introduction

Spass is an automated theorem prover for full first-order logic with equality and
a number of non-classical logics. This system description provides an overview of
our recent developments in Spass version 3.5 compared to version 3.0 [WSH+07].

One important change in the use of Spass when moving from Spass version 3.0
to Spass version 3.5 is the change from a GPL to a BSD style license. We have
been asked by several companies for this change and now eventually did it.
Actually, it took some effort as it required the (re)implementation of several
Spass modules as we were so far relying on some code distributed under a GPL
license, for example the command line parser up to version 3.0. Starting from
Spass version 3.5 it will be distributed under a “non-virulent” BSD style license.

The most important enhancements based on advances in theory are subterm
contextual rewriting (Section 2) and improved split backtracking (Section 3).

Important enhancements based on further (re)implementations are a signifi-
cantly faster FLOTTER procedure with more control on reduction during CNF
translation (Section 4), faster parsing with support for big files, a faster and ex-
tended sort module, support for include commands in Spass input files, support
for the TPTP input problem syntax and a new tool tptp2dfg (Section 5).

In the subsequent sections we will explain our enhancements in more de-
tail and also provide experimental data. All experiments were carried out on
the TPTP version 3.2.0 [SS98] and performed on Opteron 2.4GHz computers
running Linux with a 300 second time limit for each problem.
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c© Springer-Verlag Berlin Heidelberg 2009



SPASS Version 3.5 141

2 Subterm Contextual Rewriting

Contextual rewriting is a powerful reduction rule generalizing standard unit
equational rewriting to equational rewriting under “conditions”. For example,
consider the two clauses

P (x) → f(x) ≈ x S(g(a)), a ≈ b, P (b) → R(f(a))

where we write clauses in implication form [Wei01]. Now in order to rewrite
R(f(a)) in the second clause to R(a) using the equation f(x) ≈ x of the first
clause with matcher σ = {x �→ a}, we have to show that P (x)σ is entailed by the
context of the second clause S(g(a)), a ≈ b, P (b), i.e., |= S(g(a)), a ≈ b, P (b) →
P (x)σ. This obviously holds, so we can replace S(g(a)), a ≈ b, P (b) → R(f(a))
by S(g(a)), a ≈ b, P (b) → R(a) via a contextual rewriting application of P (x) →
f(x) ≈ x. This step can not be performed by standard unit equational rewriting.
Clauses of the form Γ → Δ, s ≈ t occur, e.g., often in problems from software
verification where the execution of a function call represented by the term s
may depend on some conditions represented in Γ , Δ. Then contextual rewriting
simulates conditional execution. In case a clause set N is saturated, for all clauses
of the above form s ≈ t is strictly maximal in the clause, s is strictly larger
than t and s contains all variables occurring in Γ , Δ, and t, then contextual
rewriting can be used to effectively decide validity of any ground clause with
respect to the ordering based minimal model of N [GS92]. Translated to the
above software verification scenario it means that in such a setting contextual
rewriting effectively computes any function from N .

Contextual rewriting [BG94] was first implemented in the SATURATE sys-
tem [GN94] but never matured. It turned out to be very useful for a bunch of
examples, but the rule has to be turned off in general, because often the prover
does not return in reasonable time from even a single contextual rewriting appli-
cation test. Compared to this work, we have instantiated the contextual rewriting
rule to subterm contextual rewriting and have implemented it in a much more
sophisticated way. Our new rule is robust in the sense that invoking this rule in
Spass on the overall TPTP [SS98] results in an overall gain of solved problems.

The reduction rule Subterm Contextual Rewriting [WW08] is defined as fol-
lows. As already said, we write clauses in implication notation Γ → Δ denoting
that the conjunction of all atoms in Γ implies the disjunction of all atoms in Δ.
As usual ≺ is a reduction ordering total on ground terms. Let N be a clause set,
C,D ∈ N , σ be a substitution then the reductions

R D = Γ1 → Δ1, s ≈ t C = Γ2, u[sσ] ≈ v → Δ2

Γ1 → Δ1, s ≈ t
Γ2, u[tσ] ≈ v → Δ2

R D = Γ1 → Δ1, s ≈ t C = Γ2 → Δ2, u[sσ] ≈ v

Γ1 → Δ1, s ≈ t
Γ2 → Δ2, u[tσ] ≈ v
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where the following conditions are satisfied (i) sσ 	 tσ, (ii) C 	 Dσ, (iii) τ
maps all variables from C,Dσ to fresh Skolem constants, (iv) (Γ2 → A)τ is
ground subterm redundant in N for all A in Γ1σ, (v) (A → Δ2)τ is ground
subterm redundant in N for all A in Δ1σ, are subterm contextual rewriting
reductions.

A ground clause Γ → Δ is ground subterm redundant in N if there are ground
instances C1σ1, . . . , Cnσn of clauses from N such that all codomain terms of
the σi are subterms of Γ → Δ, the clauses (Ciσi) ≺ (Γ → Δ) for all i, and
C1σ1, . . . , Cnσn |= Γ → Δ.

Subterm contextual rewriting is an instance of the general contextual rewriting
rule. In particular, the recursive conditions (iv) and (v) are tested with respect
to ground clauses of the form Γ → Δ and only smaller ground clauses Ciσi. The
smaller ground clauses Ciσi, considered for the test, are build by instantiating
clauses from N only with ground terms from Γ → Δ. We actually implemented
these conditions by a recursive call to the reduction machinery of Spass includ-
ing subterm contextual rewriting where we simply treat the variables in (Γ2 →
A), (A → Δ2) as fresh Skolem constants. This has the important advantage
that the side condition clauses don’t need to be explicitly instantiated (by τ).
On the other hand we needed to extend our ordering computation algorithms
to deal with particular variables as constants. Further details can be found
in [WW08].

Even under these restrictions, our first implementation of the subterm con-
textual rewriting rule lost more examples on the overall TPTP than it won.
A careful inspection of several runs showed that in particular a lot of time is
wasted by testing the same failing terms for contextual rewriting again and again.
Therefore, we decided to introduce fault caching as a form of (negative) dynamic
programming. Whenever subterm contextual rewriting is tested for applicability
on some term sσ and the test fails, we store sσ in an index. Then all subsequent
tests first look into the index and only if the top term to be reduced is not
contained, the conditions for the rule are evaluated. Of course, this is an approx-
imation of the rule as some potential applications are lost. However, it turned
out that at least with respect to the TPTP, Spass with subterm contextual
rewriting with fault caching solves more examples than Spass without.

Subterm contextual rewriting can be controlled by the forward and backward
rewriting flags -RFRew and -RBRew where starting from a value of 3 the rule is
activated. Further details can be found in the Spass man page.

Comparing Spass version 3.0 with Spass version 3.5 with activated subterm
contextual rewriting (set flags -RFRew=4 -RBRew=3 -RTaut=2) yields an overall
gain of 31 problems on the TPTP (actually 108 losses and 139 wins). The losses
are partly due to the additional time needed for subterm contextual rewriting,
partly due to a differently spanned search space. Eventually Spass with subterm
contextual rewriting solved 6 “open” TPTP problems (rating 1.0): SWC261+1,
SWC308+1, SWC329+1, SWC335+1, SWC342+1, and SWC345+1. For this
experiment we deactivated the advanced split backtracking introduced in the
next section and used the split backtracking of Spass version 3.0.
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3 Improved Split Backtracking

The splitting rule implementation of Spass until version 3.0 already contains
a form of intelligent backtracking via branch condensing. For each clause we
store in a bitfield the splits it depends on. If an empty clause is derived then
all splits that did not contribute to the empty clause, easily checked from the
empty clause’s split bitfield, are removed by branch condensing.

We recently refined the splitting calculus [FW08] by storing with each split
the bitfield of an empty clause after backtracking one of its branches. If now the
second branch is also refuted then this information can be propagated upwards in
the split tree by combining the bitfields of sibling branches or subtrees. Any splits
that neither contributed to left nor to the right empty clause can be undone. It
turns out that this refinement saves a remarkable number of splits on the TPTP
problems.

On the average on all TPTP problems where Spass performs splitting and
which are solved both by version 3.0 and version 3.5, version 3.5 does 783 splits
whereas version 3.0 performs 916 splits per problem. This means a saving of
14%. Furthermore, due to splitting Spass 3.5 solves 28 more problems from the
TPTP. Actually it loses 21 problems and wins 49 problems. For these experi-
ments subterm contextual rewriting was not activated so that only the effect of
the new split backtracking implementation shows up.

4 Improvements to FLOTTER

FLOTTER is the powerful CNF transformation procedure of Spass. In partic-
ular, it contains sophisticated transformation rules such as optimized Skolem-
ization [NW01] which actually require the computation of proofs during CNF
transformation. For larger problems these techniques may actually consume so
much time that FLOTTER does not terminate in an acceptable amount of time.

Therefore, we both improved the implementation of crucial FLOTTER parts
with respect to large problems and added further flags that can be used to restrict
sophisticated reductions during CNF transformation. The new flags -CNFSub
and -CNFCon control the usage of subsumption and condensing during CNF
transformation, respectively. The new flag -CNFRedTimeLimit can be used to
set an overall time limit on all reductions performed in FLOTTER during CNF
translation.

5 Further Enhancements

Faster Parsing: Until Spass version 3.0 the overall input machinery was de-
veloped for “small” input files. Due to our own and our customers interest in
“large” problems, e.g., expressing real-world finite domain theories, we have reim-
plemented the overall Spass parsing technology. We now can parse a 60 MB file
in less than 10 seconds and build the CNF for a 1 MB input file like SEU410+2
from TPTP version 3.5.0 with full FLOTTER CNF translation and reduction
in about 30 seconds.
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TPTP Input Syntax Support. Starting from Spass version 3.5 we support
TPTP input files via the new flag -TPTP. As TPTP input files may contain
include commands, they are resolved by looking in the local directory or the
value of the TPTP environment variable.

Include Commands. Spass input files may now also contain include directives.
They are resolved at parse time and include files are looked up in the local
directory as well as in the directory bound to the SPASSINPUTS environment
variable.

tptp2dfg. The new tool tptp2dfg translates input files from TPTP into Spass

syntax. Includes can either be expanded or translated into Spass include direc-
tives controlled by the flag -include.

Sort Module. In Spass sorts are used for soft typing and sort simplification
reductions [Wei96, GMW97, Wei01]. For example, a clause S(f(a)), Γ → Δ is
reduced to Γ → Δ in the presence of the clauses → S(a) and S(x) → S(f(x)). We
reimplemented the module such that it is now about 10-times faster and extended
its scope. For example, the new module reduces a clause S(x), T (x), Γ → Δ
where x does not occur in Γ , Δ to Γ → Δ in the presence of the three clauses
→ S(a), S(x) → S(f(x)), and → T (f(a)).

Symmetric Reduction: Until Spass version 3.0 some of the more sophisticated
rewrite reductions were only implemented in the forward direction [Wei01]. We
now added also the backward direction for all reduction rules.

6 Future Work

There are five major directions for future improvements. Firstly, we will con-
tinue integrating results on the superposition theory into Spass. We are cur-
rently working on integrating support for transitive relations and refinements
thereof [BG94] and will shortly start implementing particular techniques for fi-
nite domain problems [HW07]. Secondly, we will continue our work on hierarchic
combinations, in particular with the theory of linear arithmetic. Thirdly, we are
planning a reimplementation of a reasonable portion of the Spass basic mod-
ules in order to save memory consumption at run time, gaining further speed
and simplifying structures that have been grown during the meanwhile 15 years
of Spass development. Fourthly, we are working on the theory and implemen-
tation of a specific Spass version for reasoning in large ontologies. Fifthly, we
will integrate support for model generation and minimal model reasoning into
Spass [HW09].

Spass version 3.5 is available from its homepage
http://www.spass-prover.org/

Acknowledgments. We thank Geoff Sutcliffe for his persistent support for
implementing parsing of the TPTP input syntax and our reviewers for their
valuable comments.
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Abstract. An extension of the superposition-based E-prover [8] is de-
scribed. The extension allows terms with integer exponents [3] in the
input language. Obviously, this possibility increases the capabilities of
the E-prover particularly for preventing non-termination.

1 Introduction
Term schematisations allow one to denote infinite sequences of iterated terms,
which frequently occur in many symbolic computation procedures (in particu-
lar in proof procedures). The number of iterations is part of the term syntax
and may be a variable. In some cases, the capability to denote such sequences
avoids non termination [6]. For instance the clause set {even(0 ), ∀x .even(x ) ⇒
even(s(s(x )))} can be replaced by the unit clause ∀n.even(s2n(0 )).

There exists a hierarchy of term schematisation languages, with different
expressive powers. They mainly differ from each other by the class of in-
ductive contexts that can be handled. The original formalism [2] allows only
ground contexts with no nested iterations. [3] extends the language to any in-
ductive context, provided that the inductive path is unique. [7] showed how
to get rid of this last condition, allowing for instance sequences of the form
a, f(a, a), f(f(a, a), f(a, a)), . . .. Finally, the most powerful language of primal
grammars [4] handles contexts depending on the iteration rank (as in the se-
quence [], [0], [s(0), 0], [s(s(0)), s(0), 0], . . .). Unification is decidable for all these
languages, thus they can be included in most symbolic computation procedures,
in particular in first-order theorem provers. This significantly extends the ex-
pressive power of the input language.

In this paper we describe the first (to the best of our knowledge) system to
perform inferences on clauses containing term schematisations. As the new prover
is an extension of the E-prover [8], we have called it Dei (for Deduction with the
E-prover and I-terms). The E-prover has been chosen as a starting point because
it is well-known, widely distributed and efficient. Our system uses the language
of terms with integer exponents [3] also called I-terms. This formalism is a good
compromise between expressive power and simplicity: the ρ-terms [2] are easier

R.A. Schmidt (Ed.): CADE 2009, LNAI 5663, pp. 146–150, 2009.
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to handle but lack expressivity and the primal grammars are very expressive
but harder to use in practice (one has to define rewrite systems “outside” the
iterated terms, moreover the unification algorithm is rather complex).

We hope that this work, by allowing practical experimentations, will promote
the use of term schematisation languages in automated deduction and will al-
low further investigations (potential applications, better understanding of the
formalisms etc.).

2 Terms with Integer Exponents (I-Terms)

We briefly recall the definition of terms with integer exponents (see [3] for de-
tails). We assume that three sets of symbols are given: function symbols Σ,
standard variables V and arithmetic variables VN . Let & be a special symbol,
called the “hole”. This symbol denotes the changing part of a context.

The set of terms with one hole T� and the set of terms with integer exponents
TI (or I-terms) are the smallest sets satisfying the following conditions: (i) & ∈ T�
and V ⊆ TI . (ii) If t1, . . . , tn ∈ TI , t′i ∈ T� and f ∈ Σ then f(t1, . . . , tn) ∈ TI and
f(t1, . . . , ti−1, t

′
i, ti+1, . . . , tn) ∈ T�. (iii) If t ∈ T�, t �= &, s ∈ TI and n ∈ VN ∪ N

then tn.s ∈ TI . An I-term of the last form is called an N -term. I-terms can
be naturally incorporated as arguments of literals. A clause built on I-terms is
called an I-clause.

The semantics of I-terms are specified by the following rewrite system: {t0.s →
s, tn+1.s → t{& ← tn.s}}. These rules obviously rewrite every ground I-term t
to a (unique) standard term, denoted by t↓. The value of t in an interpretation I
is the same as the value of t↓. This allows one to assign a value to every ground
term, hence to evaluate every ground clause. The semantics is extended to the
non ground case by interpreting a clause set as the set of its ground instances
(variables in VN are mapped to natural numbers).

3 The Dei System

The Dei system is freely available from the webpage: http://capp.imag.fr/
dei.html. It is based on the 0.999− 004 ”Longview2” release of E-Prover. The
extension as for E-Prover is written in ANSI C, using the gcc compiler (the 4.2.4
version) and was successfully tested on a GNU Linux x86 platform (Ubuntu 8.04
Hardy Heron).

In order to preserve modularity and allow further extensions, we have tried
to restrict as much as possible the modifications in the original code. Additional
data structures have been designed to represent linear Diophantine expressions
and the algorithm of [3] for unifying I-terms has been implemented. The Polylib
library [5] is used for solving arithmetic constraints. About 4000 lines of code
have been added to the E-prover (excluding the Polylib library). Modifications
have been necessary in various parts of the code: term sharing handling, term
definitions, input/output algorithms and inference machine. As unification of I-
terms gives in general several maximal unifiers, many changes in the code were
needed to take into account this important new feature.
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3.1 Input Syntax

The syntax has been kept almost identical to the one of the E-prover. All options
are supported. An N -term tn.s is denoted by $iterm(t,s)^{n}, where $iterm is
a reserved keyword. @ denotes the hole &. Exponents can be any linear diophan-
tine expression, which makes the language more flexible than using variables
only (as it is done in [3] to simplify theoretical work). For instance the I-term
even(&)2n(0 ) of page 1 is encoded by $iterm(even(@),0)^{ n+n }. This flexi-
bility also has the advantage that all the arithmetic constraints can be expressed
in the terms themselves, which avoids having to use constrained clauses (for in-
stance the clause p(fn(&).0) with constraint ∃m.n = m + m can be denoted by
p(f2×m(&).0). Arithmetic expressions must only occur in an exponent (e.g. the
term g(n, f(&)n.a) is not allowed).

The arithmetic variables are interpreted by non-zero natural numbers. This
assumption slightly simplifies some steps of the unification algorithm. For in-
stance the occur check rule (x = t) → false can be applied as usual, whereas it
would not be correct if t contains exponents that can be interpreted as 0, for
instance f(x, &)n.a = x has a solution, namely {n �→ 0, x �→ a}.

3.2 Inferences

All the inference rules of the E-prover (i.e. the SP calculus) are supported. Ob-
viously, correctness is preserved. The calculus is complete for non equational
I-clause sets (it is easy to see that one can “lift” the ground derivations to I-
clauses). However, it is no more complete in general for equational I-clauses (this
does not depend on the strategy). A simple counterexample proving this is the
following: {p(f(a, &)n.b,¬p(c), f(a, b) ≈ d, f(a, d) ≈ c} is clearly unsatisfiable
(it suffices to replace n by 2 in the first clause) but the superposition calculus
generates only the clause p(d). This is due to the fact that superposition can
be applied at an arbitrary deep position in the standard terms denoted by an
N -term – in particular at positions not occurring in the N -term. Allowing su-
perposition at arbitrary deep positions in an N -term is possible, but this would
make the inference rule infinitary (and inefficient). This has been avoided in Dei,
for practical reasons. The calculus is still complete for some subclasses, e.g. if the
superposition rule cannot be applied along iterated paths (of course, the formal
definition of these classes is outside the scope of the present system description).

The usual term orderings (KBO or LPO) have been adapted in order to be
applied on I-terms (it is obvious that they are not compatible with unfolding1).
The simplification and redundancy rules are supported, but using an incomplete
matching algorithm (thus Dei miss some simplifications). This is due to the
fact that the matching is harder to perform on I-terms than in standard terms.
In particular, the indexing techniques used by the E-prover (e.g. the perfect
discrimination trees) cannot be directly applied.

1 Of course the orderings can be defined as usual at the ground level i.e. on the standard
terms obtained by instantiating arithmetic variables, but this does not help because
there exist an infinite number of ground instances.
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The term sharing is maintained except in the exponent part of the
term (only the variable(s) are shared). For example if we consider the
terms $iterm(s(@),0)^{N1}, $iterm(s(@),0)^{N2}, $iterm(s(@),0)^{N1}
and $iterm(s(@),0)^{2.N1} the splay tree will be the following one:

Fig. 1. The splay tree

4 A Short Example

We show Dei at work on the following set of clauses:

{p(f(x1, g(x2, &))n, s(&)n) ∨
¬p′(x3), p′(a), q(g(x1, f(x2, &))n.g(x3, x2), s(&)m(0)) ∨

¬q′(x3), q′(b), r(g(y, x), z) ∨ ¬p(x, z),¬q(x, y) ∨ ¬r(x, y)}.

This little example has been constructed to illustrate the possibilities of the
language (contexts containing variables, shared arithmetic variables etc.). The
reader can check that it is unsatisfiable. Dei constructs the following refutation
(due to space restriction we use the lowest level of verbosity):

#p1(a) <- .

#

#q1(b) <- .

#

#r(g(X1,X2),X3) <- p(X2,X3).

#

# <- r(X1,X2), q(X1,X2).

#

#p($iterm(f(X1,g(X2,@)),X3)^{0+1.X4},$iterm(s(@),0)^{0+1.X4}) <- p1(X3).

#

#p($iterm(f(X2,g(X3,@)),a)^{0+1.X1},$iterm(s(@),0)^{0+1.X1}) <- .

#

#r(g(X5,$iterm(f(X2,g(X3,@)),a)^{0+1.X1}),$iterm(s(@),0)^{0+1.X1}) <- .

#

#q($iterm(g(X1,f(X2,@)),g(X3,X2))^{0+1.X4},$iterm(s(@),0)^{0+1.X4})

<- q1(X3).

#
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#q($iterm(g(X2,f(X3,@)),g(b,X3))^{0+1.X1},$iterm(s(@),0)^{0+1.X1}) <- .

#

#r(g(X6,$iterm(f(X2,g(X3,@)),X4)^{0+1.X1}),$iterm(s(@),0)^{0+1.X1})

<- p1(X4).

#

# <- r($iterm(g(X2,f(X3,@)),g(b,X3))^{0+1.X1},$iterm(s(@),0)^{0+1.X1}).

Of course, I-terms can be “encoded” into first-order logic (by adding the se-
mantic axioms in Section 2 in the clause set). However, a system as Dei with
built-in I-terms handling allows one to encompass some deductive steps in the
unification algorithm, which reduces the length of the proofs, improves the read-
ability and the termination behavior. I-terms are especially useful for satisfia-
bility detection.

5 Future Work
Future work includes the extension of Dei to more expressive term schema-
tisation languages (such as the primal grammars [4] or the terms with several
holes [7]) and the adaptation to these languages of the reasoning techniques that
are commonly used by successful deduction systems (in particular the indexing
techniques). We are presently working on an extension of the discrimination
trees handling I-terms. Designing a superposition calculus that is complete on
I-clauses is a problem that also deserves to be investigated.

In order to fully benefit of the expressive power of I-terms, we also plan
to implement additional inference rules to generate automatically I-terms from
standard clauses (as in [7,6]). The use of inductive reasoning techniques (in
connection with the system presented in [1]) will also be investigated.
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Abstract. This article describes the first public version of the satisfiabil-
ity modulo theory (SMT) solver veriT. It is open-source, proof-producing,
and complete for quantifier-free formulas with uninterpreted functions
and difference logic on real numbers and integers.

1 Introduction

We present the satisfiability modulo theory (SMT) solver veriT, a joint work
of University of Nancy, INRIA (Nancy, France) and Federal University of Rio
Grande do Norte (Natal, Brazil). veriT provides an open, trustable and rea-
sonably efficient decision procedure for the logic of unquantified formulas over
uninterpreted symbols, difference logic over integer and real numbers, and the
combination thereof. This corresponds to the logics identified as QF IDL, QF
RDL, QF UF and QF UFIDL in the SMT-LIB benchmarks [15,3]. veriT also
includes quantifier reasoning capabilities through the integration of a first-order
prover and quantifier instantiation heuristics. Finally, veriT has proof-production
capabilities; it outputs proofs that may be used or checked by external tools.

veriT is incremental, i.e. after each satisfiability check, new formulas can be
added conjunctively to the already checked set of formulas. The input format
is the SMT-LIB language [15], but veriT can also be used as a library with
an API following the guidelines of [12]. The tool is open-source and distributed
under the BSD licence at http://www.verit-solver.org. Internally, the solver
is organized to be easily extended by plugging new decision procedures in a
Nelson-Oppen like combination schema. Although not (yet) as fast as the solvers
performing best in the SMT competition [3], veriT has a decent efficiency. We
thus claim that it can already be useful in verification platforms where an open-
source license, extensibility, and proof certification are important.

Selected features of the veriT solver and an experimental evaluation of its
efficiency are presented in Section 2 and 3, respectively. Future developments
are described in Section 4.
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2 System Description

The reasoning core of veriT uses a SAT solver [9] to produce models of the
Boolean abstraction of the input formula. Such propositional assignments are
given to a so-called theory reasoner, responsible for verifying if they are models
in the background theory. This theory reasoner is a fully incremental combination
of decision procedures à la Nelson and Oppen, where non-convexity of theories
is handled using the model-equality propagation technique [7] which integrates
model-based guessing [5] in a classical Nelson-Oppen equality exchange. Equality
propagation is controlled by the congruence closure algorithm.

The remainder of this section describes some special features of veriT:
integration of a third-party first-order prover, extension of the input language
with macro definitions, and production of proofs certifying the produced
results.

2.1 Integrating a First-Order Prover

As a particular feature inherited from its predecessor haRVey [8] and, to comple-
ment very simple instantiation heuristics, the veriT solver includes a first-order
logic (FOL) superposition prover. However, veriT greatly improves the integra-
tion of the FOL prover with the other decision procedures, notably with con-
gruence closure. Indeed, the first-order prover is seen within the combination à
la Nelson-Oppen as a “decision procedure” that takes an arbitrary FOL theory
as a parameter. However, due to the cost of running the FOL prover and to its
non-incremental nature (when used as a black box), this procedure is called in
last resort. A FOL theory is computed from the quantified sub-formulas in the
assignment, abstracting ground sub-terms in order to minimize the number of
relevant symbols in the theory. In addition, information from congruence clo-
sure is used to abstract all subterms in the assignment that do not contain such
relevant symbols.

The prover may deduce that the given set of formulas is unsatisfiable. In that
case, the deduction tree is parsed to obtain the relevant unsatisfiable subset of
the input. A conflict clause is then built using this set and, again, information
from the congruence closure data structures. Since the prover is given an upper
limit of resources, it always terminates. If the prover terminates without proving
the unsatisfaibility of the given set of formulas, ground equalities and deduced
ground clauses are identified and propagated back to veriT.

In many cases where the superposition calculus is a decision procedure [2]
for the theory represented by the quantified formulas, our technique simulates a
Nelson-Oppen combination with on-the-fly purification. It has been shown that
first-order generic provers may perform quite well even compared to dedicated
decision procedures (see for instance [1]). Currently, the E-prover [16] is used as
the first-order prover, and we plan to include Spass [18], which provides better
sort handling. Fine-tuning the interplay between the instantiation heuristics and
the e-prover is essential for efficiency and remains to be done.
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2.2 Macros

The input format for veriT is the SMT-LIB language extended with macro defi-
nitions. This syntactic sugar is particularly useful for instance to write formulas
containing simple sets constructions (see Figure 1). After β-reduction, and after
rewriting equalities between predicates and functions (for instance, if p and q
are unary predicates, p = q is rewritten as ∀x . p(x) ≡ q(x)), the obtained for-
mula is first-order. Such formulas may contain quantifiers but, if no function is
used, they belong to the Bernays-Schönfinkel-Ramsey fragment (the Bernays-
Schönfinkel class with equality) which is decidable. veriT can use the embedded
FOL prover as a decision procedure for this fragment. In many more intricate
cases [10], the resulting formula still belongs to a decidable fragment, but the de-
cision procedure may become very expensive. To be practical, such cases require
heuristics that have not yet been implemented in veriT.

This macro feature is indeed used in tools (e.g. CRefine [14]) that generate
verification conditions for formal developments in set-based modelling languages,
such as Circus [4], and that integrate veriT as a verification engine to discharge
these proof obligations.

(benchmark SET008_3p

:logic UNKNOWN

:extrasorts (ELMT)

:extrapreds ((B ELMT) (C ELMT))

:extramacros

((emptyset (lambda (?v ELMT) . false))

(intersection (lambda (?p (ELMT boolean)) (?q (ELMT boolean)) .

(lambda (?x ELMT) . (and (?p ?x) (?q ?x)))))

(difference (lambda (?p (ELMT boolean)) (?q (ELMT boolean)) .

(lambda (?x ELMT) . (and (?p ?x) (not (?q ?x)))))))

:formula (not (= (intersection (difference B C) C) emptyset)))

Fig. 1. A simple example with the macro capability

2.3 Proofs

Proof production has two goals. First, this feature increases the confidence in the
tool, the proofs being checked by an independent module inside veriT. Second,
skeptical proof assistants can use such traces to reconstruct proofs of formulas
discharged by veriT (see [11]).

In Figure 2, we give an example of a very simple formula, and the proof output
by veriT. Each line states a fact that can be assumed to hold. It is identified by a
number, followed by a list starting with a label identifying the rule used to deduce
the fact, followed by a clause, and optionally ended by numerical parameters.
In our context, a clause is a disjunctive list of formulas (not literals), maybe
containing a sole formula. The numerical parameters depend on the rule, and
may be either identifiers of previous clauses (e.g. in the resolution rule), or other
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(benchmark example

:logic QF_UF

:extrafuns ((a U) (b U) (c U) (f U U))

:extrapreds ((p U))

:formula (and (= a c) (= b c)

(or (not (= (f a) (f b)))

(and (p a) (not (p b))))))

1:(input ((and (= a c) (= b c)

(or (not (= (f a) (f b))) (and (p a) (not (p b)))))))

2:(and ((= a c)) 1 0)

3:(and ((= b c)) 1 1)

4:(and ((or (not (= (f a) (f b))) (and (p a) (not (p b))))) 1 2)

5:(and_pos ((not (and (p a) (not (p b)))) (p a)) 0)

6:(and_pos ((not (and (p a) (not (p b)))) (not (p b))) 1)

7:(or ((not (= (f a) (f b))) (and (p a) (not (p b)))) 4)

8:(eq_congruent ((not (= b a)) (= (f a) (f b))))

9:(eq_transitive ((not (= b c)) (not (= a c)) (= b a)))

10:(resolution ((= (f a) (f b)) (not (= b c)) (not (= a c))) 8 9)

11:(resolution ((= (f a) (f b))) 10 2 3)

12:(resolution ((and (p a) (not (p b)))) 7 11)

13:(resolution ((p a)) 5 12)

14:(resolution ((not (p b))) 6 12)

15:(eq_congruent_pred ((not (= b a)) (p b) (not (p a))))

16:(eq_transitive ((not (= b c)) (not (= a c)) (= b a)))

17:(resolution ((p b) (not (p a)) (not (= b c)) (not (= a c))) 15 16)

18:(resolution () 17 2 3 13 14)

Fig. 2. A simple example with its proof

place information. As an example, the and rule (for instance the second line
in Figure 2: (and ((= a c)) 1 0)) takes two numerical parameters. The first
numerical parameter refers to the clause C in a previous numbered rule (i.e.
1 refers to the clause in the input rule, at line 1). This clause C is unit and
is hence represented as a list of one formula (the whole input formula in our
example), and this formula is a conjunction a0 ∧ · · · ∧ an. Obviously, each sub-
formula a0, . . .an is a consequence of C, and the second parameter just gives the
identifier of the formula in the new clause, i.e. the second numerical parameter
in rule at line 2 indicates the formula at position 0 in the input.

veriT already provides proof production for formulas with arbitrary Boolean
structure and uninterpreted functions, and is being extended to linear arith-
metics. The first line is the input. Every other fact is either a consequence of
previous ones, or is a tautology. The input formula being unsatisfiable, the last
deduced fact is the empty clause. In the example, lines 2 to 7 account for the
conjunctive normal form transformation. Lines 8, 9, 15, and 16 are tautologies
related to the theory of equality. The remaining facts are deduced by resolution
from the other ones.
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Since every proof-related information is handled through a unique module
inside veriT, any proof format for SMT (for instance [17,6]) can be adopted as
soon as it becomes a standard. Although our previous experiments [11] showed
that the proof size was not the bottleneck for the cooperation with skeptical
proof assistants, the implementation of techniques to greatly reduce the size of
our proof traces is planned.

3 Experimental Evaluation

We evaluated veriT, CVC3 and Z3 (both using the latest available version in
February 2009) against the SMT-LIB benchmarks for QF IDL, QF RDL, QF UF
and QF UFIDL (June 2008 version) using an Intel(R) Pentium(R) 4 CPU at
3.00 GHz with 1 GiB of RAM and a timeout of 120 seconds. The following table
presents, for each solver, the number of completed benchmarks.

Solver QF UF QF UFIDL QF IDL QF RDL all
(6656) (432) (1673) (204) (8965)

veriT 6323 332 918 100 7673
CVC3 6378 278 802 45 7503
Z3 6608 419 1511 158 8696

This clearly shows that, although veriT is not yet as efficient as competition
winning tools [3], its efficiency is decent. The proof production capability of veriT
does not come at a cost on efficiency.

4 Future Work

veriT is a new SMT-solver that provides an open framework to generate certi-
fiable proofs without sacrificing too much efficiency. The future developments
will notably include features related to efficiency and expressiveness. Consider-
ing efficiency aspects, the tool does not yet implement theory propagation [13],
a technique that is known to greatly improve the efficiency of SMT solvers. Con-
cerning expressiveness, the linear arithmetic decision procedure currently only
handles difference logic; we are now developing a reasoning engine for linear
arithmetic based on the Simplex method, which will extend completeness to full
linear arithmetic. Quantifier reasoning will be improved by including new in-
stantiation heuristics, as well as adding support for patterns guiding quantifier
instantiations. We also plan to integrate the proof production capabilities of the
embedded FOL prover with that of veriT.

Finally, we are working on the application of veriT to formal development
efforts, mainly of concurrent systems. In that context, the ability to handle sets
is very helpful; a major objective is to improve the support for such constructions.

Acknowledgments. We would like to thank Stephan Merz for his comments
and guidance. The ancestor of the veriT solver, haRVey, was initiated by the
third author and Silvio Ranise, to whom we are indebted of several ideas used
in veriT. We are also grateful to the anonymous reviewers for their remarks.
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Divvy: An ATP Meta-system
Based on Axiom Relevance Ordering

Alex Roederer, Yury Puzis, and Geoff Sutcliffe�
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Abstract. This paper describes two syntactic relevance orderings on
the axioms available for proving a given conjecture, and an ATP meta-
system that uses the orderings to select axioms to use in proof attempts.
The system has been evaluated, and the results show that it is effective.

1 Motivation, History, and Overview

In recent years there has been growing demand for Automated Theorem Proving
(ATP) in large theories. A large theory is one that has many functors and pred-
icates, has many axioms of which typically only a few are required for the proof
of a theorem, and many theorems to be proved using the axioms. Examples of
large theories that are in a form, or have been translated to a form, suitable for
ATP include the SUMO ontology, the Cyc knowledge base, the Mizar mathe-
matical library, the YAGO knowledge base, WordNet, and the MeSH vocabulary
thesaurus.

Large theories pose challenges for ATP systems, which are different from the
challenges of small theories. These include parsing and building data structures
for the large numbers of formulae, loading and preprocessing the axioms only
once, selecting axioms that are likely to be used for proving a given conjecture,
and extracting heuristics and lemmas from proofs to improve subsequent perfor-
mance. The work described in this paper addresses the issue of selecting axioms
from a large theory, to obtain a proof of a conjecture. The aim is to select as
few axioms as possible, but enough to obtain a proof. There have been previ-
ous efforts in this direction, including abstraction-based techniques [1], analysis
of possible inference chains from the conjecture [6], axiom selection based on
symbol count [10], axiom selection based on symbol overlap [5], axiom selec-
tion based on models of the formulae [7], and axiom selection based on machine
learning from previous proofs [11]. In all cases, the general approach has been
to order the axioms according to their relevance to the conjecture, and then
use or select axioms with respect to the ordering. A system that selects axioms,
i.e., the non-selected axioms are made unavailable, typically iterates a process of
selecting axioms, executing an ATP system to try find a proof, and if the ATP
system is unsuccessful (within the resource limits imposed) looping to make a
new selection. A common feature of previous efforts is that they start with the

� Currently at the Automation of Logic group, Max Planck Institut für Informatik.
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axioms at the top of the relevance ordering, and work their way down. This
is somewhat fragile, because the system performs poorly if just one necessary
axiom is placed low in the ordering.

This paper describes two syntactic relevance orderings on the axioms available
for proving a given conjecture, and an ATP meta-system called Divvy that selects
axioms with respect to an ordering. Divvy uses a dividing approach that “starts
in the middle”, thus overcoming some of the fragility experienced by approaches
that “start at the top”. The combined system has been evaluated, and the results
show that it is effective.

2 Two Syntactic Relevance Orderings

2.1 Ordering Based on Symbol Overlap

This relevance measure is based on the intuitive notion of whether or not formu-
lae are “talking about the same things”. This is measured in terms of the extent
to which the formulae use the same predicate and function symbols.

First, the contextual direct relevance between all formulae pairs F1, F2 ∈ S =
Axioms ∪ {Conjecture} is measured by

∑
s∈(sym(F1)∩sym(F2))

(
1− |{f :f∈S,s∈sym(f)}|

|S|

)
|sym(F1) ∪ sym(F2)|

where sym(F ) is the set of function and predicate symbols occurring in F . The
numerator sums the symbol weights for the symbols that occur in both F1 and
F2, where the weight is 0 for symbols that occur in all formulae in S, and higher
(approaching 1) for symbols that occur in fewer formulae. This sum is scaled by
the number of unique symbols in F1 and F2, to produce a value in the range 0 to
1. (This a variant of the Jaccard similarity coefficient [4].) Next, the contextual
path relevance of every path Fa = F1 · F2 · . . . · Fn = Fc from an axiom Fa

to the conjecture Fc is calculated as the smallest contextual direct relevance in
the path, divided by the length of the path. This captures the intuition that
a path is only as strong as its weakest link, and that relevance decreases with
distance. Finally, the contextual indirect relevance between Fa and Fc is taken
as the maximal contextual path relevance over all paths connecting Fa to Fc.
(The latter two steps are implemented together using Dijkstra’s algorithm.)

There are several adaptations of this basic measure, including different ways of
weighting symbols, taking variables into account, and different options for treat-
ing predicate and function symbols separately. The basic and adapted measures
have been implemented in C++, as the Prophet tool. It is available for use in the
SystemB4TPTP interface, at http://www.tptp.org/cgi-bin/SystemB4TPTP.

2.2 Ordering Based on Latent Semantic Analysis

Latent Semantic Analysis (LSA) is a technique for analysing of relationships
between documents, using the terms they contain [3]. LSA has been used to

http://www.tptp.org/cgi-bin/SystemB4TPTP
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compute the relevance of axioms to a conjecture by treating the formulae as
documents, and the predicate and function symbols as the terms they contain.

The computation of axiom relevance using LSA is a three step process. First,
a relationship strength between every pair of symbols is computed. An initial
relationship strength is computed based on the co-occurrences of the symbols
in the formulae, and the total number of formulae containing the symbols (like
the numerator of Prophet’s contextual direct relevance). The final relationship
strength is computed by repeatedly combining the existing relationship strength
with the relationship strengths between each of the two symbols and each other
symbol, i.e., taking into account transitive relationships between symbols. Sec-
ond, a relationship strength vector is computed for each formula. The vector has
an entry for each symbol. A symbol’s entry is the sum, across all other symbols,
of the product of the relationship strength between the two symbols, and the
number of occurrences of the other symbol in the formula (so that other sym-
bols that do not occur in the formula make no contribution to the vector entry).
Finally, the relevance of each axiom to the conjecture is computed as the dot
product of their symbol relationship strength vectors.

The LSA approach to computing axiom relevance has been implemented in
C, as the Automated Prophesier of Relevance Incorporating Latent Semantics
(APRILS) tool. It is available for use through the SystemB4TPTP interface.

APRILS has been evaluated against Prophet by comparing their relevance or-
derings of the axioms for 1337 TPTP problems for which EP has found a proof.
Their highest ranks of an axiom used in the proof of each problem were com-
pared - a higher rank is worse. APRILS did better than Prophet for 654 (49%) of
the problems, and tied for 301 (23%) of the problems. Most of the ties were on
problems containing few axioms. APRILS’ methods are better suited for problems
with large numbers of axioms, which contain more semantic information.

3 The Divvy ATP Meta-system

The Divvy ATP meta-system uses a relevance ordering to select subsets of the
axioms available for proving a given conjecture, and attempts to prove the conjec-
ture from the selected axioms. The basic idea is very simple - start by selecting
the top half of the axioms (in the ordering), and try prove the conjecture. If
the conjecture is proved then stop. If the conjecture is countersatisfiable1 with
respect to the selected axioms, then more axioms are needed. If nothing is estab-
lished about the conjecture, e.g., because the proof attempt reached a resource
limit, then fewer or more axioms are needed. The top quarter, and then the top
three quarters, of the axioms are then considered. If neither of those produce a
proof, the top eighth, three eighths, five eighths, and seven eighths, are selected.
This continues, selecting an odd number of sixteenths, thirtysecondths, etc., un-
til a granularity limit (halves, quarters, eighths, etc.), or global resource limit,

1 Countersatisfiable is an SZS ontology status value [9], meaning that the conjecture
is not provable from the axioms.
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is reached. In all cases, selection of fewer axioms than the maximal number that
has led to a countersatisfiable result is rejected.

The basic process is improved by several optimizations. First, a proof attempt
using all the axioms can be made before the dividing and selecting starts. Second,
the user can specify a maximal number of axioms to ever be selected, and only
that number of axioms is considered from the relevance ordered list. Third, before
each proof attempt, model finders can be run to try show that the conjecture
is countersatisfiable with respect to the selected axioms. This aims to avoid
proof attempts that fail, and to raise the maximal number that has led to a
countersatisfiable result. Fourth, the proof attempts can use an ATP system that
only establishes an assurance of the existence of a proof, and ultimately an ATP
system that outputs a full proof is run on the conjecture and selected axioms.
Fifth, the user can specify the ATP systems to be used for proof assurance, proof
finding, and model finding. Sixth, and most relevant, the user can specify the
tool to be used for computing the relevance ordering for the axioms.

CPU limits are imposed on the initial ATP system run using all axioms, the
model finding runs, the individual ATP systems runs using selected axioms,
and the overall process. The CPU limit on the individual ATP systems runs is
dynamically adjusted to take into account the minimal number of axioms that
must be selected (based on countersatisfiable results).

Divvy is implemented in C, and relies heavily on the TPTP world infrastruc-
ture for manipulating the formulae, running the relevance measuring tool, and
running the ATP systems. It is available for use through the SystemOnTPTP
interface at http://www.tptp.org/cgi-bin/SystemOnTPTP.

4 Evaluation

Divvy, using Prophet and APRILS, has been evaluated on the MPTP challenge
problems. These are two sets of 252 problems extracted from the Mizar math-
ematical library by the MPTP process. The problems in the “Bushy” set have
the axioms that the MPTP process determines might be necessary for a proof.
While the MPTP process tries to minimize this set, each problem contains many
unnecessary axioms. The problems in the “Chainy” set have all preceding Mizar
knowledge as axioms, i.e., there are very many unnecessary axioms. The MPTP
challenge problems, and results for some well known ATP systems, are available
at http://www.tptp.org/Challenges/MPTPChallenge/.

Divvy was configured to use the E 1.0 ATP system [8] to establish the exis-
tence of proofs, Paradox 3.0 [2] to establish countersatisfiability, and EP 1.0 to
ultimately produce the proofs. Some testing was also done using Fampire instead
of E. Fampire 1.3 is the plain ATP system with the best results on the MPTP
challenge. While the results using Fampire are of interest, the full evaluation was
done using E because of its availability and stable high performance as a mono-
lithic ATP system. (Fampire, in contrast, is a little known and undocumented
system.) An overall CPU limit of 300s was imposed, and an initial ATYP system
run using all axioms was done with a 60s CPU limit, i.e., leaving at least 240s

http://www.tptp.org/cgi-bin/SystemOnTPTP
http://www.tptp.org/Challenges/MPTPChallenge/
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Table 1. Divvy results for the MPTP challenge problems, for various axiom orderings

System Bushy Chainy
Total <60s >60s Total <60s >60s

E 141 139 2 91 80 11
Divvy(E)+Original 163 139 24 80 80 0
Divvy(E)+Reverse 151 141 10 92 82 10
Divvy(E)+Prophet-indirect 170 137 33 113 81 32
Divvy(E)+Prophet-direct 175 137 38 118 81 37
Divvy(E)+APRILS 180 140 40 117 80 37
Fampire 191 165 26 126 78 48
Divvy(F)+APRILS 186 165 21 132 68 64

for ATP system runs using selected axioms. All axioms were always available for
selection, and the dividing was done down to a granularity of eighths. The test-
ing was done on a 2.8GHz Intel Xeon computer with 1GB memory, and running
Linux 2.6.

Table 1 tabulates the results. The “E” and “Fampire” rows give the results for
E and Fampire alone. The “Divvy(System)+Ordering” rows give the results for
Divvy using either the E or Fampire system to establish the existence of a proof,
and the axioms ordered either as they are in the original problem, the reverse of
the original problem, or according to the relevance values computed by Prophet
or APRILS. The “<60s” and “>60s” columns give the number of problems solved
in less than and more than 60s. For the “Divvy” rows this separates the problems
solved in the initial ATP system run using all axioms from those that benefited
from the axiom selection. Note that the number solved in less than 60s is not
constant across the “Divvy(E)” rows, due to the reordering of the axioms.

The results show that the basic Divvy idea, despite its simplicity, takes effective
advantage of axiom ordering. The fact that Divvy improves on E without any
axiom ordering indicates that the original order of the axioms in the MPTP
challenge problems is better than random - more relevant axioms already occur
earlier in the problems, thanks to the nature of the MPTP process. This is
confirmed by the reduced performance using the axioms in reverse order. The
successive improvements obtained by adding explicit axiom orderings shows that
Prophet and APRILS do compute meaningful axiom relevance. The improvement
from the original ordering to APRILS’ ordering is 10% - a non-trivial improvement
for these challenging problems. When Fampire is used as the underlying ATP
system, the reduced performance of Divvy on the Bushy problems is believed
to be an artifact of Fampire’s strategy scheduling, which works effectively only
with a reasonably large CPU limit (e.g., around 300s). When Fampire is used
in Divvy, with Divvy being given an overall CPU limit of 300s, the individual
ATP system runs receive relatively small CPU limits, typically less than 50s.
The significantly larger number of unnecessary axioms in the Chainy problems
makes the relevance ordering and axiom selection more valuable for Fampire.
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5 Conclusion

This work and implemented system have shown that axiom ordering in con-
junction with axiom selection is an effective technique for proving theorems in
large theories. The syntactic orderings presented in this paper have been shown
to be meaningful, and are available for use in other contexts. The Divvy ATP
meta-system has shown that “starting in the middle” is a useful way of selecting
axioms, and can be used with any meaningful axiom ordering. Current work is
focussing on optimizing the accuracy and runtime performance of APRILS.
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Instantiation-based automated reasoning aims at combining the efficiency of
propositional SAT and SMT technologies with the expressiveness of first-order
logic. Propositional SAT and SMT solvers are probably the most successful rea-
soners applied to real-world problems, due to extremely efficient propositional
methods and optimized implementations. However, the expressiveness of first-
order logic is essential in many applications ranging from formal verification
of software and hardware to knowledge representation and querying. Therefore,
there is a growing demand to integrate efficient propositional and more generally
ground reasoning modulo theories into first-order reasoning.

The basic idea behind instantiation-based reasoning is to interleave smart
generation of instances of first-order formulae with propositional type reasoning.
Instantiation-based methods can be divided into two major categories: (i) fine-
grained interleaving of instantiation with efficient propositional inference rules,
and (ii) modular combination of instantiation and propositional reasoning. Ex-
amples from the first category include the disconnection calculus (DCTP) [8,24],
which combines instance generation with an efficient tableau data structure, and
the model evolution calculus (ME) [6], which interleaves instance generation with
DPLL style reasoning. Both DCTP and ME methods have advanced implemen-
tations DCTP [33] and Darwin [3], respectively.

Our approach to instantiation-based reasoning [15,21] falls into the second
category, where propositional reasoning is integrated in a modular fashion and
was inspired by work on hyper-linking and its extensions (see [23,31,18]). The
main advantage of the modular combination is that it allows one to use off-the-
shelf SAT/SMT solvers in the context of first-order reasoning. One of our main
goals was to develop a flexible theoretical framework, called Inst-Gen, for modu-
lar combination of instantiation with propositional reasoning and more generally
with ground reasoning modulo theories. This framework provides methods for
proving completeness of instantiation calculi, powerful redundancy elimination
criteria and flexible saturation strategies. All these ingredients are crucial for
developing reasoning systems which can be used in practical applications. We
also show that most of the powerful machinery developed in the resolution-based
framework can be suitably adapted for the Inst-Gen method.

Based on these theoretical results we have developed and implemented an
automated reasoning system, called iProver [22]. iProver features state-of-the-
art implementation techniques such as unification and simplification indexes;
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semantically-guided inferences based on propositional models; redundancy elim-
ination based on dismatching constraints, blocking of non-proper instantiations
and global subsumption. For propositional reasoning iProver uses an optimised
SAT solver MiniSat [12]. For efficient equational and theory reasoning, we are
currently integrating (joint work with C. Sticksel) state-of-the-art SMT solvers
CVC3 [1] and Z3 [11] into iProver.

One of the major success stories of instantiation-based methods is in reason-
ing with the effectively propositional (EPR) fragment of first-order logic, also
called the Bernays-Schönfinkel class. All known instantiation-based methods are
decision procedures for the EPR fragment. Recently it was shown that the EPR
fragment has a number of applications in areas such as bounded model check-
ing, planning, logic programming and knowledge representation [28,30,19,13].
As witnessed by the CASC competition [34] instantiation-based methods con-
siderably outperform other methods in the EPR division. The importance of
the EPR fragment triggered the development of a number of dedicated methods
[10,29,5], but they have not yet been extensively evaluated and compared with
general-purpose instantiation-based methods.

There are many challenges remaining in the area of instantiation-based rea-
soning. Let me just mention some of them. The first challenge is the integration
of theory reasoning and, in particular, reasoning with real and integer arithmetic.
There are results on the integration of equational reasoning [25,16,7] and some
initial results on the integration of theory reasoning [17,4], but these should be
considerably extended to cover more problems coming from applications.

The second challenge is combining instantiation-based methods with other
reasoning methods such as resolution. Refinements of resolution are decision pro-
cedures for many important fragments of first-order logic including the guarded
fragment and fragments corresponding to translations of various modal and
description logics (see e.g., [14,32,20]). It is a natural progression to combine
instantiation-based methods with resolution in order to obtain efficient reason-
ing methods for combinations of the EPR fragment and fragments decidable by
resolution (note that in general, the resulting fragments can be undecidable).

The third challenge is in applying instantiation-based methods in reasoning
with large theories. There is growing interest using first-order reasoning sys-
tems in problems involving large theories and, in particular, large knowledge-
bases [26]. Initial experiments show that the performance of instantiation-based
methods on such problems is promising but more research is needed in this area.

The fourth challenge is in applying instantiation-based methods to model
finding. Instantiation-based methods are designed mainly to prove validity of
first-order formulae. In many applications the dual problem of proving satisfi-
ability of first-order formulae, or model finding, is equally important. Recently
it was shown that the problem of finite model finding for first-order logic can
be reduced to the satisfiability problem in the EPR fragment [2,27]. There-
fore, instantiation-based methods can be naturally used for finite model finding
and such capabilities are incorporated into Darwin and iProver. Already finding
models with small domain sizes is a challenging problem due to enormous search
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spaces. Symmetry reduction is one of the main methods used to reduce redun-
dant computations in model finders (see e.g., [9,2]). More research is required
to develop powerful symmetry reductions in the context of instantiation-based
methods. Finally, little is known about model finding in the case of very large
models or infinite models.

To conclude, instantiation-based reasoning is a rapidly developing area with
high potential and exciting research challenges.
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Abstract. The problem of computing Craig interpolants in SMT has
recently received a lot of interest, mainly for its applications in formal
verification. Efficient algorithms for interpolant generation have been
presented for some theories of interest –including that of equality and un-
interpreted functions (EUF),linear arithmetic over the rationals (LA(Q)),
and some fragments of linear arithmetic over the integers (LA(Z))– and
they are successfully used within model checking tools.

In this paper we address the problem of computing interpolants in the
theory of Unit-Two-Variable-Per-Inequality (UT VPI). This theory is a
very useful fragment of LA(Z), since it is expressive enough to encode
many hardware and software verification queries while still admitting a
polynomial time decision procedure.

We present an efficient graph-based algorithm for interpolant genera-
tion in UT VPI, which exploits the power of modern SMT techniques. We
have implemented our new algorithm within the MathSAT SMT solver.
Our experimental evaluation demonstrates both the efficiency and the
usefulness of the new algorithm.

1 Motivations and Goals

Given two formulas A and B such that A∧B is inconsistent, a Craig interpolant
(simply “interpolant” hereafter) for (A,B) is a formula I s.t. A entails I, I ∧B
is inconsistent, and all uninterpreted symbols of I occur in both A and B. Since
the seminal work of McMillan [17], interpolation has been recognized to be a
substantial tool for formal verification. For instance, in the context of software
model checking based on counter-example-guided-abstraction-refinement (CE-
GAR), interpolants of quantifier-free formulas in suitable theories are computed
for automatically refining abstractions in order to rule out spurious counterex-
amples (see, e.g. [8,11,19]). This technique is used by state-of-the-art software
model checkers like, e.g., Blast [2] and Impact [19]. Consequently, the problem
of computing interpolants in SMT has received a lot of interest in the last years
(e.g., [18,26,12,22,13,5,10,3,14]).
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In the recent years, efficient algorithms and tools for interpolant generation
for quantifier-free formulas in SMT have been presented for some theories of
interest, including that of equality and uninterpreted functions (EUF) [18,14],
linear arithmetic over the rationals (LA(Q)) [18,22,5], and for their combination
[26,25,5,3]. In many applications, however, the domain of rational numbers is of-
ten inadequate for representing variables, which could be represented much more
precisely in the integer domain (see, e.g., [7,15]). Unfortunately, the computation
of interpolants in the theory of linear arithmetic over the integers (LA(Z)) raises
many more problems than LA(Q), and in fact there is no known and efficient
algorithm for computing interpolants in LA(Z). The only known algorithm is
based on quantifier elimination, which is typically prohibitively expensive, and
also requires the introduction of divisibility predicates. Therefore, it is useful to
investigate interpolation for fragments of LA(Z), simple enough to be treated
efficiently, although general enough to allow for encoding a significant amount
of verification problems. To this extent, Jain, Clarke and Grunberg [10] pro-
posed efficient algorithms for computing interpolants for conjunctions of linear
Diophantine equations and disequations and for conjunctions of linear modular
equations, and showed that these algorithms enabled the verification of sim-
ple programs which could not be previously checked by CEGAR-based model
checkers.

In this paper, we move along the same track of Jain et al. [10], and we tackle
the problem of computing interpolants in another important fragment of LA(Z),
the theory of Unit-Two-Variable-Per-Inequality (UT VPI). In UT VPI a formula
is a Boolean combination of atoms in the form (0 ≤ ax1 + bx2 + k), where xi

are variables over Z, k is an integer constant, and a, b ∈ {−1, 0, 1}. UT VPI is a
very interesting theory: it generalizes the well-known Difference Logic (DL(Z))
(where the a and b coefficient are forced to the 1 and −1 values, respectively),
and it is one of the most expressive fragments of LA(Z) with a polynomial de-
cision procedure [9]. (In fact, it is sufficient to extend the fragment to contain
three unit variables, or to add non-unit coefficients, to make the decision prob-
lems NP-complete.) UT VPI is also a very useful fragment of LA(Z), since it
allows to naturally express the queries occurring in many hardware and software
verification problems [1,24].

The problem of satisfiability modulo UT VPI can be tackled following the
approach proposed in [20,16], where the consistency check of a conjunction of
UT VPI constraints is based on an encoding into DL. This allows for the use
of very efficient graph-based decision procedures for DL [21,6]: these algorithms
have a O(n·m) time complexity for problems with n variables and m constraints,
and are extremely fast in practice. In addition, they have all the features required
for a tight integration within a modern SMT solver: incrementalitly and back-
trackability, construction of minimal conflict sets, and deduction of unassigned
literals (see [23] for a survey).

The contribution of this paper is the first interpolation algorithm for UT VPI.
The algorithm follows the decision procedure for UT VPI, working in two phases.
In the first phase, it checks whether the conjunction of UT VPI constraints
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is inconsistent in the rational domain (UT VPI(Q)). If so, an interpolant is
obtained with a generalization of the graph-based algorithm for DL [5]. The
second phase is entered if the problem is consistent in the rational domain,
but inconsistent in the integer domain. The second phase is also based on the
analysis of the graph resulting from the encoding into DL. However, unlike with
DL(Q) and DL(Z), the problem of interpolant generation on UT VPI(Z) is by
no means a straightforward variant of that in UT VPI(Q), and several cases
must be covered.

The proposed algorithm has the following merits. First, it generates inter-
polants that are within UT VPI. This is important for applications where the
computed interpolants are iteratively combined with the original problem, such
as in interpolation-based bounded model checking [17]. Second, the approach
can be easily implemented on top of a modern SMT procedure for UT VPI, and
runs with very limited overhead.

We have implemented our new algorithm within the MathSAT SMT solver
[4], and performed experiments in order to evaluate both its efficiency and its
usefulness. Our results demonstrate not only that our specialized UT VPI(Q) al-
gorithm is faster and generates smaller interpolants than general LA(Q) interpo-
lation procedures (and thus is interesting in itself), but also that our UT VPI(Z)
algorithm can be useful for the verification of software model checking problems
which require reasoning on the integers, and which could not be proved before
by the Blast software model checker [2], due to the approximation resulting
from its use of LA(Q) interpolation procedures.

Content of the Paper. In §2 we provide the necessary background knowledge
on SMT and interpolant generation in SMT. In §3 we present our novel graph-
based interpolant technique for UT VPI(Q), whilst in §4 we show how to extend
it to the case of UT VPI over Z. In §5 we report some empirical results. In §6
we draw some conclusions, and outline directions for future research.

2 Background

Satisfiability Modulo Theory – SMT. Our setting is standard first order
logic. We use the standard notions of theory, satisfiability, validity, logical con-
sequence. We call Satisfiability Modulo (the) Theory T , SMT (T ), the problem
of deciding the satisfiability of quantifier-free formulas wrt. a background theory
T . 1 Given a theory T , we write φ |=T ψ (or simply φ |= ψ) to denote that
the formula ψ is a logical consequence of φ in the theory T . With φ � ψ we
denote that all uninterpreted (in T ) symbols of φ appear in ψ. Without loss of
generality, we also assume that the formulas are in Conjunctive Normal Form
(CNF). If C is a clause, C ↓ B is the clause obtained from C by removing all the
literals whose atoms do not occur in B, and C \B that obtained by removing all
the literals whose atoms do occur in B. With a little abuse of notation, we might

1 The general definition of SMT deals also with quantified formulas. Nevertheless, in
this paper we restrict our interest to quantifier-free formulas.
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sometimes denote conjunctions of literals l1∧ . . .∧ ln as sets {l1, . . . , ln} and vice
versa. If η is a the set {l1, . . . , ln}, we might write ¬η to mean ¬l1 ∨ . . . ∨ ¬ln.

We call T -solver a procedure that decides the consistency of a conjunction
of literals in T . If S is a set of literals in T , we call T -conflict set w.r.t. S any
subset η of S which is inconsistent in T . We call ¬η a T -lemma (notice that ¬η
is a T -valid clause). Given a set of clauses S

def= {C1, . . . , Cn} and a clause C, we
call a resolution proof that

∧
i Ci |=T C a DAG P such that:

1. C is the root of P ;
2. the leaves of P are either elements of S or T -lemmas;
3. each non-leaf node C′ has two parents Cp1 and Cp2 such that Cp1 is in the

form p ∨ φ1, Cp2 is in the form ¬p ∨ φ2, and C′ is φ1 ∨ φ2. The atom p is
called the pivot of Cp1 and Cp2 .

If C is the empty clause (denoted with ⊥), then P is a resolution proof of
unsatisfiability (or resolution refutation) for

∧
i Ci.

A standard technique for solving the SMT(T ) problem is to integrate a DPLL-
based SAT solver and a T -solver in a lazy manner (see, e.g., [23] for a detailed
description). DPLL is used as an enumerator of truth assignments for the propo-
sitional abstraction of the input formula. At each step, the set of T -literals in
the current assignment is sent to the T -solver to be checked for consistency in T .
If S is inconsistent, the T -solver returns a conflict set η, and the corresponding
T -lemma ¬η is added as a blocking clause in DPLL, and used to drive the back-
jump mechanism. With a small modification of the embedded DPLL engine, a
lazy SMT solver can also be used to generate a resolution proof of unsatisfiability,
where the leaf T -lemmas are (some of) those returned by the T -solver.

Interpolation in SMT. We consider the SMT (T ) problem for some back-
ground theory T . Given an ordered pair (A,B) of formulas such that A∧B |=T
⊥, a Craig interpolant (simply “interpolant” hereafter) is a formula I s.t. (i)
A |=T I, (ii) I ∧B is T -inconsistent, and (iii) I � A and I � B.

Following [18], an interpolant for (A,B) is constructed from a resolution proof
of unsatisfiability of A∧B, generated as outlined above. The algorithm works by
computing a formula IC for each clause in the resolution refutation, such that
the formula I⊥ associated to the empty root clause is the computed interpolant.
The algorithm can be described as follows:

Algorithm 1. Interpolant generation for SMT (T )

1. Generate a proof of unsatisfiability P for A ∧B.
2. For every T -lemma ¬η occurring in P , generate an interpolant I¬η for

(η \B, η ↓ B).
3. For every input clause C in P , set IC to C ↓ B if C ∈ A, and to � if C ∈ B.
4. For every inner node C of P obtained by resolution from C1

def= p ∨ φ1 and
C2

def= ¬p ∨ φ2, set IC to IC1 ∨ IC2 if p does not occur in B, and to IC1 ∧ IC2

otherwise.
5. Output I⊥ as an interpolant for (A,B).
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Notice that Step 2. of the algorithm is the only part which depends on the
theory T , so that the problem of interpolant generation in SMT (T ) reduces to
that of finding interpolants for negations of T -lemmas, that is, for conjunctions
of T -literals in the given theory T . Therefore, in the rest of the paper, we shall
present algorithms for conjunctions/sets of literals only, which can be extended
to general formulas by simply “plugging” them into the above algorithm. More-
over, we shall assume that when computing an interpolant for an inconsistent
conjunction A ∧ B, neither A nor B is inconsistent in itself. In such cases, in
fact, the interpolant would simply be ⊥ and � respectively.

Graph-Based Interpolation for Difference Logic. The theory of Difference
Logic (DL) is a fragment of the theory of linear arithmetic in which all atoms
are inequalities of the form (0 ≤ y− x+ c), where x and y are variables and c is
an integer constant. 2 Many SMT solvers use dedicated, graph-based algorithms
for checking the consistency of a set of DL atoms [6,21]. Intuitively, a set φ of
DL atoms induces a graph G(φ) whose vertices are the variables of the atoms,
and there exists an edge x

c−→ y for every (0 ≤ y − x + c) ∈ φ. φ is inconsistent
if and only if G(φ) has a cycle of negative weight.

In [5] we extended the graph-based approach to generate interpolants. Con-
sider the interpolation problem (A,B) where A and B are sets of inequalities
as above, and let C be (the set of atoms in) a negative cycle in the graph
corresponding to A ∪ B. Since we are assuming that neither A nor B is in-
consistent, the edges in the cycle can be partitioned in subsets of A and B.
We call a maximal A-path of C a path x1

c1−→ . . .
cn−1−−−→ xn such that (i)

xi
ci−→ xi+1 ∈ A, and (ii) C contains x′

c′−→ x1 and xn
c′′−→ x′′ that are in B.

The variables x1 and xn of a maximal A-path x1 � xn are called end-point
variables.

Let the summary constraint of a maximal A-path x1
c1−→ . . .

cn−1−−−→ xn be the
inequality 0 ≤ xn − x1 +

∑n−1
i=1 ci. The conjunction of summary constraints of

the maximal A-paths of C is an interpolant for (A,B) [5].

3 Graph-Based Interpolation for UT VPI(Q)

We analyze first the simpler case of UT VPI(Q). Miné [20] showed that it is
possible to encode a set of UT VPI(Q) constraints into a DL(Q) one in a
satisfiability-preserving way. The encoding works as follows. We use xi to de-
note variables in the UT VPI(Q) domain and u, v for variables in the DL(Q)
domain. For every variable xi, we introduce two distinct variables x+

i and x−i .
We introduce a mapping Υ from DL(Q) variables to UT VPI(Q) signed vari-
ables, such that Υ (x+

i ) = xi and Υ (x−i ) = −xi. Υ extends to (sets of) constraints

2 Notice that a conjunction of non-strict difference inequalities has a solution in the
integer domain if and only if it has a solution in the rational domain, so that in this
context we make no distinction between DL(Q) and DL(Z).
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UT VPI(Q) constraints DL(Q) constraints
(0 ≤ x1 − x2 + k) (0 ≤ x+

1 − x+
2 + k), (0 ≤ x−

2 − x−
1 + k)

(0 ≤ −x1 − x2 + k) (0 ≤ x−
1 − x+

2 + k), (0 ≤ x−
2 − x+

1 + k)
(0 ≤ x1 + x2 + k) (0 ≤ x+

1 − x−
2 + k), (0 ≤ x+

2 − x−
1 + k)

(0 ≤ −x1 + k) (0 ≤ x−
1 − x+

1 + 2 · k)
(0 ≤ x1 + k) (0 ≤ x+

1 − x−
1 + 2 · k)

Fig. 1. The conversion map from UT VPI(Q) to DL(Q) [20,16]

in the natural way. We say that (x+
i )− = x−i and (x−i )− = x+

i . We say that the
constraints (0 ≤ u − v) and (0 ≤ (v)− − (u)−) s.t. u, v ∈ {x+

i , x−i }i are dual.
We encode each UT VPI constraint into the conjunction of two dual DL(Q)
constraints, as represented in Figure 1. For each DL(Q) constraint (0 ≤ v− u+
k), (0 ≤ Υ (v) − Υ (u) + k) is the corresponding UT VPI(Q) constraint. Notice
that the two dual DL(Q) constraints are just different representations of the
original UT VPI(Q) constraint. (The two dual constraints encoding a single-
variable constraint are identical, so that their conjunction is collapsed into one
constraint only.) The resulting set of constraints is satisfiable in DL(Q) if and
only if the original one is satisfiable in UT VPI(Q) [20,16].

Consider the pair (A,B) where A and B are sets of UT VPI(Q) constraints.
We apply the map of Figure 1 and we encode (A,B) into a DL(Q) pair (A′, B′),
and build the constraint graph G(A′ ∧B′). If G(A′ ∧B′) has no negative cycle,
we can conclude that A′ ∧ B′ is DL(Q)-consistent, and hence that A ∧ B is
UT VPI(Q)-consistent. Otherwise, A′ ∧ B′ is DL(Q)-inconsistent, and hence
A∧B is UT VPI(Q)-inconsistent. In fact, we observe that for any set of DL(Q)
constraints {C1, . . . , Cn, C} resulting from the encoding of some UT VPI(Q)
constraints, if

∧n
i=1 Ci |=DL(Q) C then

∧n
i=1 Υ (Ci) |=UT VPI(Q) Υ (C).

When A ∧ B is inconsistent, we can generate an UT VPI(Q)-interpolant by
extending the graph-based approach used for DL(Q). We consider a negative-
weight cycle of G(A′ ∧ B′), and we build an interpolant I ′ in DL(Q) by means
of the graph-based interpolation technique described in §2. We claim that the
UT VPI(Q) formula I

def= Υ (I ′) is an interpolant for (A,B). The proof is as
follows. (i) I ′ is a conjunction of summary constraints, so it is in the form

∧
i Ci.

Therefore A′ |=DL(Q) Ci for all i, and so by the observation above A |=UT VPI(Q)
Υ (Ci). Hence, A |=UT VPI(Q) I. (ii) From the DL(Q)-inconsistency of I ′ ∧B′ we
immediately derive that I ∧B is UT VPI(Q)-inconsistent. (iii) I � A and I � B
derive from I ′ � A′ and I ′ � B′ by the definitions of Υ and the map of Figure 1.

Example 1. Consider the following sets of UT VPI(Q) constraints:

A = {(0 ≤ −x2 − x1 + 3), (0 ≤ x1 + x3 + 1),
(0 ≤ −x3 − x4 − 6), (0 ≤ x5 + x4 + 1)}

B = {(0 ≤ x2 + x3 + 3), (0 ≤ x6 − x5 − 1), (0 ≤ x4 − x6 + 4)}
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negative cycle

maximal A−paths

−5

−2

1 1 4 4

−6 133 −1

−6 133 −1

x−1 x+
2 x−3 x+

4 x−5 x−6

x+
6x+

5x−4x+
3x−2x+

1

A′

B′

Fig. 2. The constraint graph of Example 1. (We represent only one negative cycle with
its corresponding A-paths, because the other is dual.)

By the map of Figure 1, they are converted into the following sets of DL(Q)
constraints:

A′ = {(0 ≤ x−1 − x+
2 + 3), (0 ≤ x−2 − x+

1 + 3),

(0 ≤ x+
3 − x−1 + 1), (0 ≤ x+

1 − x−3 + 1),

(0 ≤ x−4 − x+
3 − 6), (0 ≤ x−3 − x+

4 − 6),

(0 ≤ x+
4 − x−5 + 1), (0 ≤ x+

5 − x−4 + 1)}

B′ = {(0 ≤ x+
3 − x−2 + 3), (0 ≤ x+

2 − x−3 + 3),

(0 ≤ x+
6 − x+

5 − 1), (0 ≤ x−5 − x−6 − 1),

(0 ≤ x+
4 − x+

6 + 4), (0 ≤ x−6 − x−4 + 4)}

whose conjunction corresponds to the constraint graph of Figure 2. This graph
has a negative cycle

C′
def= x+

2
3−→ x−1

1−→ x+
3

−6−−→ x−4
4−→ x−6

−1−−→ x−5
1−→ x+

4
−6−−→ x−3

3−→ x+
2 .

Thus, A ∧ B is inconsistent in UT VPI(Q). From the negative cycle C′ we can
extract the set of A′-paths {x+

2
−2−−→ x−4 , x−5

−5−−→ x−3 }, corresponding to the
formula I ′

def= (0 ≤ x−4 − x+
2 − 2)∧ (0 ≤ x−3 − x−5 − 5), which is an interpolant for

(A′, B′). I ′ is thus mapped back into I
def= (0 ≤ −x2−x4−2)∧ (0 ≤ x5−x3−5),

which is an interpolant for (A,B).

4 Graph-Based Interpolation for UT VPI(Z)

In order to deal with the more complex case of UT VPI(Z) (hereafter simply
UT VPI), we adopt a layered approach [23]. First, we check the consistency in
UT VPI(Q) using the technique of [20]. If this results in an inconsistency, we
compute an UT VPI(Q)-interpolant as described in §3. Clearly, this is also an
interpolant in UT VPI: condition (iii) is obvious, and conditions (i) and (ii)
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follow immediately from the fact that if an UT VPI-formula is inconsistent over
the rationals then it is inconsistent also over the integers.

If the UT VPI(Q)-procedure does not detect an inconsistency, we check the
consistency in UT VPI using the algorithm proposed by Lahiri and Musuvathi
in [16], which extends the ideas of [20] to the integer domain. In particular, it
gives necessary and sufficient conditions to decide unsatisfiability by detecting
particular kinds of zero-weight cycles in the induced DL constraint graph. This
procedure works in O(n·m) time and O(n+m) space, m and n being the number
of constraints and variables respectively, which improves the previous O(n2 ·m)
time and O(n2) space complexity of the previous procedure by Jaffar et al. [9].

We build on top of this algorithm and we extend the graph-based approach of
§3 for producing interpolants also in UT VPI. In particular, we use the following
reformulation of a result of [16].

Theorem 1. Let φ be a conjunction of UT VPI constraints s.t. φ is satisfiable
in UT VPI(Q). Then φ is unsatisfiable in UT VPI iff the constraint graph G(φ)
generated from φ has a cycle C of weight 0 containing two vertices x+

i and x−i
s.t. the weight of the path x−i � x+

i along C is odd.

The “only if” part is a corollary of lemmas 1, 2 and 4 in [16]. The “if” comes
straightforwardly from the analysis done in [16], whose main intuitions we recall
in what follows. Assume the constraint graph G(φ) generated from φ has one
cycle C of weight 0 containing two vertices x+

i and x−i s.t. the weight of the
path x−i � x+

i along C is 2k + 1 for some integer value k. (Since C has weight
0, the weight of the other path x+

i � x−i along C is −2k − 1.) Then, the paths
x−i � x+

i and x+
i � x−i contain at least two constraints, because otherwise their

weight would be even (see the last two lines of Figure 1). Then, x−i � x+
i is

in the form x−i � v
n−→ x+

i , for some v and n. From x−i � v, we can derive
the summary constraint (0 ≤ v − x−i + (2k + 1 − n)), which corresponds to the
UT VPI constraint (0 ≤ Υ (v) + xi + (2k + 1 − n)). (This corresponds to l − 2
applications of the Transitive rule of [16], l being the number of constraints
in x−i � x+

i .) Then, by observing that the UT VPI constraint corresponding to
v

n−→ x+
i is (0 ≤ xi − Υ (v) + n), we can apply the Tightening rule of [16] to

obtain (0 ≤ xi+)(2k+1−n+n)/2*), which is equivalent to (0 ≤ xi+k). Similarly,
from x+

i � x−i we can obtain (0 ≤ −xi−k−1), and thus an inconsistency using
the Contradiction rule of [16].

Consider a pair (A,B) of UT VPI constraints such that A ∧ B is consistent
in UT VPI(Q) but inconsistent in UT VPI. By Theorem 1, the constraint graph
G(A′ ∧B′) has a cycle C of weight 0 containing two vertices x+

i and x−i s.t. the
weight of the paths x−i � x+

i and x+
i � x−i along C are 2k + 1 and −2k − 1

respectively, for some value k ∈ Z. Our algorithm computes an interpolant for
(A,B) from the cycle C. Let CA and CB be the subsets of the edges in C
corresponding to constraints in A′ and B′ respectively. We have to distinguish
four distinct sub-cases.
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Fig. 3. UT VPI interpolation, Case 1
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Fig. 4. UT VPI interpolation, Case 2

Case 1. xi occurs in B but not in A. Consequently, x+
i and x−i occur in B′ but

not in A′, and hence they occur in CB but not in CA. Let I ′ be the conjunction of
the summary constraints of the maximal CA-paths, and let I be the conjunction
of the corresponding UT VPI constraints. We show that I is an interpolant for
(A,B). (i) By construction, A |=UT VPI I, as in §3. (ii) The constraints in I ′

and CB form a cycle matching the hypotheses of Theorem 1, from which I ∧B
is UT VPI-inconsistent. (iii) We notice that every variable x+

j , x−j occurring in
the conjunction of the summary constraints is an end-point variable, so that
I ′ � CA and I ′ � CB , and thus I � A and I � B.

Example 2. Consider the following set of constraints:

S={(0 ≤ x1 − x2 + 4), (0 ≤ −x2 − x3 − 5), (0 ≤ x2 + x6 − 4), (0 ≤ x5 + x2 + 3),
(0 ≤ −x1 + x3 + 2), (0 ≤ −x6 − x4), (0 ≤ x4 − x5)},

partitioned into A and B as follows:

A

⎧⎨
⎩

(0 ≤ x3 − x1 + 2)
(0 ≤ −x6 − x4)
(0 ≤ x4 − x5)

B

⎧⎪⎪⎨
⎪⎪⎩

(0 ≤ x1 − x2 + 4)
(0 ≤ −x2 − x3 − 5)
(0 ≤ x2 + x6 − 4)
(0 ≤ x5 + x2 + 3)

Figure 3 shows a zero-weight cycle C in G(A′∧B′) such that the paths x−2 � x+
2

and x+
2 � x−2 have an odd weight (−1 and 1 resp.) Therefore, by Theorem 1,

A ∧ B is UT VPI-inconsistent. The two summary constraints of the maximal
CA paths are (0 ≤ x−6 − x+

5 ) and (0 ≤ x+
3 − x+

1 + 2). It is easy to see that
I = (0 ≤ −x6 − x5) ∧ (0 ≤ x3 − x1 + 2) is an UT VPI-interpolant for (A,B).

Case 2. xi occurs in both A and B. Consequently, x+
i and x−i occur in both

A′ and B′. If neither x+
i nor x−i is such that both the incoming and outgoing

edges belong to CA, then the cycle obtained by replacing each maximal CA-path
with its summary constraint still contains both x+

i and x−i , so we can apply the
same process of Case 1. Otherwise, if both the incoming and outgoing edges of x+

i
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belong to CA, then we split the maximal CA-path u1
c1−→ . . .

ck−→ x+
i

ck+1−−−→ . . .
cn−→

un containing x+
i into the two parts which are separated by x+

i : u1
c1−→ . . .

ck−→ x+
i

and x+
i

ck+1−−−→ . . .
cn−→ un. We do the same for x−i . Let I ′ be the conjunction of

the resulting summary constraints, and let I be corresponding set of UT VPI
constraints. We show that I is an interpolant for (A,B). (i) As with Case 1, again,
A |=UT VPI I. (ii) Since we split the maximal CA paths as described above, the
constraints in I ′ and CB form a cycle matching the hypotheses of Theorem 1,
from which I ∧ B is UT VPI-inconsistent. (iii) x+

i , x−i occur in both A′ and B′

by hypothesis, and every other variable x+
j , x−j occurring in the conjunction of

the summary constraints is an end-point variable, so that I ′ � CA and I ′ � CB ,
and thus I � A and I � B.

Example 3. Consider again the set of constraints S of Example 2, partitioned
into A and B as follows:

A

⎧⎪⎪⎨
⎪⎪⎩

(0 ≤ x3 − x1 + 2)
(0 ≤ −x6 − x4)
(0 ≤ x2 + x6 − 4)
(0 ≤ x1 − x2 + 4)

B

⎧⎨
⎩

(0 ≤ −x2 − x3 − 5)
(0 ≤ x5 + x2 + 3)
(0 ≤ x4 − x5)

and the zero-weight cycle C of G(A′ ∧B′) shown in Figure 4. As in the previous
example, there is a path x−2 � x+

2 of weight −1 and a path x+
2 � x−2 of weight 1.

In this case there is only one maximal CA path, namely x+
4 � x+

3 . Since the cycle
obtained by replacing it with its summary constraint (0 ≤ x+

3 −x+
4 +2) does not

contain x+
2 , we split x+

4 � x+
3 into two paths, x+

4 � x+
2 and x+

2 � x+
3 , whose

summary constraints are (0 ≤ x+
2 − x+

4 − 4) and (0 ≤ x+
3 − x+

2 + 6) respectively.
By replacing the two paths above with the two summary constraints, we get a
zero-weight cycle which still contains the two odd paths x−2 � x+

2 and x+
2 � x−2 .

Therefore, I def= (0 ≤ x2−x4− 4)∧ (0 ≤ x3−x2 +6) is an interpolant for (A,B).
Notice that the UT VPI-formula J

def= (0 ≤ x3 − x4 + 2) corresponding to the
summary constraint of the maximal CA path x+

4 � x+
3 is not an interpolant,

since J ∧ B is not UT VPI-inconsistent. In fact, if we replace the maximal CA

path x+
4 � x+

3 with the summary constraint x+
4

2−→ x+
3 , the cycle we obtain has

still weight zero, but it contains no odd path between two variables x+
i and x−i .

Case 3. xi occurs in A but not in B, and one of the paths x+
i � x−i or x−i � x+

i

in C contains only constraints of CA. In this case, x+
i and x−i occur in A′ but

not in B′. Suppose that x−i � x+
i consists only of constraints of CA (the case

x+
i � x−i is analogous). Let 2k+1 be the weight of the path x−i � x+

i (which is
odd by hypothesis), and let C be the cycle obtained by replacing such path with
the edge x−i

2k−→ x+
i in C. In the following, we call such a replacement tightening

summarization. Since C has weight zero, C has negative weight. Let CP be
the set of DL-constraints in the path x−i � x+

i . Let I ′ be the DL-interpolant
computed from C for (CA \ CP ∪ {(0 ≤ x+

i − x−i + 2k)}, CB), and let I be the
corresponding UT VPI formula. We show that I is an interpolant for (A,B).
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Fig. 5. UT VPI interpolation, Case 3
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Fig. 6. UT VPI interpolation, Case 4

(i) Let P be the set of UT VPI constraints in the path x−i � x+
i . Since the

weight 2k + 1 of such path is odd, we have that P |=UT VPI (0 ≤ xi + k) (cf.
page 174). Since P ⊆ A, therefore, A |=UT VPI (0 ≤ xi + k). By observing that
(0 ≤ x+

i − x−i + 2k) is the DL-constraint corresponding to (0 ≤ xi + k) we
conclude that CA \ CP ∪ (0 ≤ x+

i − x−i + 2k) |=DL I ′ implies that A \ P ∪ (0 ≤
xi + k) |=UT VPI I, and so that A |=UT VPI I.

(ii) Since all the constraints in CB occur in C, we have that B∧ I is UT VPI-
inconsistent.

(iii) Since by hypothesis all the constraints in the path x−i � x+
i occur in CA,

from I ′ � (CA \CP ∪ {(0 ≤ x+
i − x−i + 2k)}) we have that I � A. Finally, since

all the constraints in CB occur in C, we have that I � B.

Example 4. Consider again the set S of constraints of Example 2, this time
partitioned into A and B as follows:

A

⎧⎪⎪⎨
⎪⎪⎩

(0 ≤ x1 − x2 + 4)
(0 ≤ x3 − x1 + 2)
(0 ≤ −x2 − x3 − 5)
(0 ≤ x2 + x6 − 4)

B

⎧⎨
⎩

(0 ≤ x5 + x2 + 3)
(0 ≤ −x6 − x4)
(0 ≤ x4 − x5)

Figure 5 shows a zero-weight cycle C of G(A′∧B′). The only maximal CA path is
x−6 � x−2 . Since the path x+

2 � x−2 has weight 1, we can add the tightening edge
x+

2
1−1−−→ x−2 to G(A′∧B′) (shown in dots and dashes in Figure 5), corresponding

to the constraint (0 ≤ x−2 − x+
2 ). Since all constraints in the path x+

2 � x−2
belong to A′, A′ |= (0 ≤ x−2 − x+

2 ). Moreover, the cycle obtained by replacing
the path x+

2 � x−2 with the tightening edge x+
2

0−→ x−2 has a negative weight
(−1). Therefore, we can generate a DL-interpolant I ′

def= (0 ≤ x−2 −x−6 − 4) from
such cycle, which corresponds to the UT VPI-interpolant I def= (0 ≤ −x2+x6−4).

Notice that, similarly to Example 3, also in this case we cannot obtain an
interpolant from the summary constraint (0 ≤ x−2 − x−6 − 3) of the maximal CA

path x−6 � x−2 , as (0 ≤ −x2 + x6 − 3) ∧B is not UT VPI-inconsistent.
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Case 4: xi occurs in A but not in B, and neither the path x+
i � x−i nor the path

x−i � x+
i in C consists only of constraints of CA. As in the previous case, x+

i

and x−i occur in A′ but not in B′, and hence they occur in CA but not in CB. In
this case, however, we can apply a tightening summarization neither to x+

i � x−i
nor to x−i � x+

i , since none of the two paths consists only of constraints of CA.
We can, however, perform a conditional tightening summarization as follows. Let
CP

A and CP
B be the sets of constraints of CA and CB respectively occurring in

the path x−i � x+
i , and let C

P

A and C
P

B be the sets of summary constraints of

maximal paths in CP
A and CP

B . From C
P

A ∪ C
P

B, we can derive x−i
2k−→ x+

i (cf.
Case 3), where 2k+1 is the weight of the path x−i � x+

i . Therefore, C
P

A∪C
P

B |=
(0 ≤ x+

i − x−i + 2k), and thus C
P

A |= C
P

B → (0 ≤ x+
i − x−i + 2k). We say that

(0 ≤ x+
i − x−i + 2k) is the summary constraint for x−i � x+

i conditioned to C
P

B.
Using conditional tightening summarization, we generate an interpolant as

follows. By replacing the path x−i � x+
i with x−i

2k−→ x+
i , we obtain a negative-

weight cycle C, as in Case 3. Let I ′ be the DL-interpolant computed from C
for (CA \CP

A ∪ {(0 ≤ x+
i − x−i + 2k)}, CB \CP

B ), and let I be the corresponding
UT VPI formula. Finally, let PB be the conjunction of UT VPI constraints
corresponding to C

P

B. We show that (PB → I) is an interpolant for (A,B).
(i) We know that CA \ CP

A ∪ {(0 ≤ x+
i − x−i + 2k)} |= I ′, because I ′ is a

DL-interpolant. Moreover, C
P

A ∪C
P

B |= (0 ≤ x+
i − x−i + 2k), and so CP

A ∪C
P

B |=
(0 ≤ x+

i − x−i + 2k). Therefore, CA ∪ C
P

B |= I ′, and thus A ∪ PB |=UT VPI I,
from which A |=UT VPI (PB → I).

(ii) Since I ′ is a DL-interpolant for (CA\CP
A ∪{(0 ≤ x+

i −x−i +2k)}, CB \CP
B ),

I ′ ∧ (CB \CP
B ) is DL-inconsistent, and thus I ∧B is UT VPI-inconsistent. Since

by construction B |=UT VPI PB , (PB → I) ∧B is UT VPI-inconsistent.
(iii) From I ′ � CB \CP

B we have that I � B, and from I ′ � CA \CP
A ∪ {(0 ≤

x+
i −x−i +2k)} that I � A. Moreover, all the variables occurring in the constraints

in C
P

B are end-point variables, so that C
P

B � CA and C
P

B � CB, and thus PB � A
and PB � B. Therefore, (PB → I) � A and (PB → I) � B.

Example 5. We partition the set S of constraints of Example 2 into A and B as
follows:

A

⎧⎪⎪⎨
⎪⎪⎩

(0 ≤ x1 − x2 + 4)
(0 ≤ −x2 − x3 − 5)
(0 ≤ x5 + x2 + 3)
(0 ≤ x2 + x6 − 4)

B

⎧⎨
⎩

(0 ≤ x3 − x1 + 2)
(0 ≤ −x6 − x4)
(0 ≤ x4 − x5)

Consider the zero-weight cycle C of G(A′ ∧B′) shown in Figure 6. In this case,
neither the path x+

2 � x−2 nor the path x−2 � x+
2 consists only of constraints

of A′, and thus we cannot use any of the two tightening edges x+
2

1−1−−→ x−2 and
x−2

−1−1−−−−→ x+
2 directly for computing an interpolant. However, we can compute

the summary x−2
−2−−→ x+

2 for x−2 � x+
2 conditioned to x+

5
0−→ x−6 , which is the

summary constraint of the B-path x+
5 � x−6 , and whose corresponding UT VPI
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constraint is (0 ≤ −x6−x5). By replacing the path x−2 � x+
2 with such summary,

we obtain a negative-weight cycle C, from which we generate the DL-interpolant
(0 ≤ x+

1 −x+
3 −3), corresponding to the UT VPI formula (0 ≤ x1−x3−3). There-

fore, the generated UT VPI-interpolant is (0 ≤ −x6 − x5) → (0 ≤ x1 − x3 − 3).
As in Example 4, notice that we cannot generate an interpolant from the

conjunction of summary constraints of maximal CA paths, since the formula we
obtain (i.e. (0 ≤ x1 + x6) ∧ (0 ≤ x5 − x3 − 2)) is not inconsistent with B.

5 Experimental Evaluation

We have implemented the algorithm described in the previous sections within
our SMT solver MathSAT [4]. The assessment of the procedure can not be
carried out by means of a direct comparison, since there exists no other system
able to interpolate over UT VPI(Z). In order to assess both the efficiency and
the usefulness of the procedure, we have performed two kinds of experiments, one
on interpolation over UT VPI(Q), and one on the application of interpolation
for UT VPI(Z) to software model checking.

The programs and benchmark instances used are available at http://disi.

unitn.it/~griggio/papers/cade09_itp_utvpi.tar.gz. All the tests have been
performed on 2.66 GHz Intel Xeon machines, with 16 GB of RAM and 6 MB of
cache, running Linux. For each instance, we used a time limit of 20 minutes and
a memory limit of 2 GB.

Comparison with LA(Q) Interpolation. In the first part of our experi-
ments, we compare our novel UT VPI(Q) interpolation algorithm with our im-
plementation of a state-of-the-art LA(Q) interpolation algorithm [5], in order
to evaluate its efficiency. Both algorithms are implemented within MathSAT,
and thus they share the same environment (same DPLL engine, same search
strategy, same optimizations, etc.). This ensures that the comparison is fair.

We have randomly generated several UT VPI(Q) interpolation problems of
varying size and difficulty, and run both algorithms. The results are collected in
Figure 7. The scatter plots show that the UT VPI(Q) solver clearly outperforms
the LA(Q) solver (sometimes by more than an order of magnitude), thus justify-
ing the interest for the subclass. Furthermore, it can be seen that the computed
interpolants, in addition to being within UT VPI(Q), are generally smaller, both
in terms of nodes in the formula DAG and in number of atoms.

UT VPI Interpolation in Software Model Checking. In the second part
of our experiments, we evaluate the usefulness of the UT VPI interpolation pro-
cedure in the context of software model checking based on the counterexample-
guided abstraction refinement (CEGAR) paradigm. This is one of the most suc-
cessful applications of interpolation in formal verification [8]: in this setting,
interpolants are used to automatically refine abstractions when spurious error
traces are generated. A spurious error trace is an execution of the abstract pro-
gram that leads to an error, but does not correspond to any execution of the

http://disi.unitn.it/~griggio/papers/cade09_itp_utvpi.tar.gz
http://disi.unitn.it/~griggio/papers/cade09_itp_utvpi.tar.gz
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concrete program. The interpolation procedure receives as input formulas cor-
responding to such spurious error traces, which are typically conjunctions of
literals, and the interpolants generated are used to prevent the same spurious
error trace from being generated again in the future. This technique is used for
example by the software model checker Blast, whose description in [2] we refer
to for the details.

Due to the limitations of current interpolation procedures,3 when computing
interpolants program variables are interpreted over the rationals even if in the
program they have an integral type. This makes it impossible to compute inter-
polants for spurious error traces which are inconsistent because of the violation
of the integrality constraints on the variables. When this happens, automatic
abstraction refinement cannot be performed, and the verification of the program
fails.

We have written a collection of small C programs which cannot be verified by
Blast because the interpolation procedures that it uses ([3,18,22]) do not han-
dle integrality constraints. When using MathSAT as interpolation procedure
instead, Blast could successfully verify all the programs.

Example 6. Consider the simple C program on the right.4
In the process of proving that the ERROR label is not
reachable, Blast generates the following spurious coun-
terexample:

y = ∗; x = y; z = 1− y; (x == z); ERROR,

which corresponds to the following formula ξ:

ξ
def= (x = y) ∧ (z = 1− y) ∧ (x = z)

In order to refine the abstraction, Blast asks the in-
terpolation procedure to compute an interpolant for the
following partition of ξ into (A,B):

main() {
int x, y, z;

while (*) {
y = *;

x = y;

z = 1 - y;

if (x == z) {
ERROR: ;

}
}

}

(x = y) ∧ (z = 1− y)︸ ︷︷ ︸
A

∧ (x = z)︸ ︷︷ ︸
B

.

ξ is unsatisfiable in Z, but satisfiable in Q. Therefore, interpolation procedures
that work on the rationals are not able to compute the interpolant, causing
Blast to fail. Using the UT VPI interpolation algorithm, instead, MathSAT

computes the following interpolant:5

I
def= (0 ≤ x + z − 1) ∧ (0 ≤ −x− z + 1),

with which Blast can refine the abstraction and successfully prove that the
ERROR label is not reachable.
3 With the exception of [10], which however is limited to equations and modular

equations, and cannot handle inequalities.
4 A ’*’ indicates a nondeterministic value.
5 After rewriting equalities (x1 = x2 + c) into (0 ≤ x1 − x2 + c) ∧ (0 ≤ x2 − x1 − c).
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Fig. 7. Comparison between UT VPI(Q) and LA(Q) interpolation within MathSAT

6 Conclusions

In this paper we have tackled the problem of generating interpolants in SMT for
the theory of Unit-Two-Variable-Per-Inequality (UT VPI), an important frag-
ment of linear arithmetic. Our approach results in interpolants that are within
the same theory, and it can be easily implemented on top of efficient graph-based
procedures used in many state-of-the-art SMT solvers. Our work covers both the
case of rationals, where we experimentally demonstrate the efficiency over a gen-
eral purpose procedure for LA(Q), as well as the case of integers, up to now an
open problem. In the future, we plan to tackle the full-blown case of interpolation
for LA(Z), where the UT VPI procedure can be used as a component in a lay-
ered approach [23], and to apply SMT-based interpolation procedures in various
verification settings, including counterexample guided abstraction refinement.
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Abstract. We give a method for modular generation of ground in-
terpolants in modern SMT solvers supporting multiple theories. Our
method uses a novel algorithm to modify the proof tree obtained from
an unsatifiability run of the solver into a proof tree without occurrences
of troublesome “uncolorable” literals. An interpolant can then be read-
ily generated using existing procedures. The principal advantage of our
method is that it places few restrictions (none for convex theories) on
the search strategy of the solver. Consequently, it is straightforward to
implement and enables more efficient interpolating SMT solvers. In the
presence of non-convex theories our method is incomplete, but still more
general than previous methods.

1 Introduction

Given mutually inconsistent formulas F and G in some logic, an interpolant I
is a formula such that: (i) F |= I; (ii) G, I |= false; and (iii) the non-logical
symbols in I occur in both F and G. In [13], McMillan presented an algorithm
for propositional interpolation and described a complete procedure for model-
checking finite-state systems. In this method, interpolants are used to derive
property-driven overapproximations of reachable state sets from unsatisfiable
symbolic traces. This technique has proven to be efficient in practice, and the
recipe in [13] is used as a starting point in many finite-state model checkers.

A natural desire is to extend interpolation-based methods to decidable frag-
ments of richer logics, for use in applications such as software model checking.
Most solvers for satisfiability modulo theories (SMT) employ a propositional SAT
solver in cooperation with theory-specific decision procedures (theory solvers) to
solve queries in the combined language. The promise of interpolating SMT solvers
has been demonstrated by the use of FOCI [14] for model-checking C programs
[10,15]. However, their development has not been nearly as widespread as for the
propositional case; we know of only two other interpolating SMT solvers [6,3].

The quick adoption of propositional interpolation is in large part due to the
simplicity of the propositional interpolation algorithm. It requires a SAT solver
enhanced only with the capability to produce a resolution refutation for unsat-
isfiable formulas. The interpolant is computed by a simple recursive function on
resolution proofs. The published solutions for SMT interpolation, on the other
hand, either describe an ad hoc solver for a specific collection of theories, or
require significant modifications in more general SMT solvers to limit them suf-
ficiently for the described method to work. In this paper we present a simple

R.A. Schmidt (Ed.): CADE 2009, LNAI 5663, pp. 183–198, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



184 A. Goel, S. Krstić, and C. Tinelli

algorithm for interpolant generation from refutations produced by SMT solvers,
while placing minimal restrictions on the solvers’ search strategy.

Related Work. In the seminal work [14], McMillan produced a proof system for
the ground theory of linear arithmetic with uninterpreted functions and showed
how to generate interpolants from such proofs. Yorsh and Musuvathi [18] ex-
tended the approach to general combinations of theories that are individually
interpolant-generating. These authors were the first to isolate the important
requirement that the theories be equality-interpolating: if a theory solver can
derive x=y from F ∧ G, where x occurs only in F and y occurs only in G
(“uncolorable equality”), then it must be able to derive x=t and t=y for some
term t in the language common to F and G. There are two shortcomings to
their approach. Firstly, it requires the generation and propagation of equality-
interpolating terms on the fly, thus imposing an overhead during the search
procedure of the SMT solver. Secondly, it requires theory solvers to be equality-
propagating. As noted in [8], equality propagation can take the majority of time
in some decision procedures for little gain. Indeed, modern SMT solvers let the
SAT solver split on equalities and either forgo equality propagation completely
(delayed theory combination (DTC) [4]) or use it sparingly (model-based theory
combination [7]).

The MathSAT [6] and CSIsat [3] tools avoid the problem of on-the-fly cre-
ation of equality interpolants; they create only those equality interpolants that
are needed for a series of local proof transformations that modify refutations
produced by their solvers into the form suitable for deriving interpolants. The
authors of [6] identify the class of ie-local refutations which are amenable to such
transformations. However, the search strategy in both tools is restricted. CSIsat

requires equality-propagating decision procedures, while MathSAT simulates
equality propagation with heuristics to restrict delayed theory combination.

The interpolation algorithms in all these methods and ours rely on theory-
specific interpolation procedures such as those in [14,17,6,9].

Contributions. We define almost-colorable refutations and present a two-phase
algorithm for the generation of interpolants from such refutations. In the first
phase, the almost-colorable refutation is transformed into a colorable refutation.
The interpolant is then derived from the colorable refutation in the second phase.

There are several advantages to our approach. The class of almost-colorable
refutations is more general than the class of ie-local refutations. We show that for
the case of convex theories, any search strategy for an SMT solver will produce
almost-colorable refutations as long as the theory solvers satisfy the reasonable
requirement of not generating lemmas with redundant equalities. In the more
general case with non-convex theories, we require the SAT solver not to split on
uncolorable equalities. This compromises the completeness of the SMT solver,
but enables us to interpolate for a larger set of formulas than [18] since we
do allow splitting on colorable equalities. We also show that for a subset of
almost-colorable refutations (including ie-local ones), our colorability algorithm
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produces refutations whose size, measured by the number of nodes in a tree
representation, is at most twice the size of the input refutation.

Outline. In §2, we review and define the necessary material, including the con-
cepts of proof trees modulo a given collection of theories and a given set S of
input clauses. We also define colorability of proof trees with respect to a parti-
tion S = A ∪ B of the input clause set and recall the algorithm that produces
an interpolant for A,B from a given colorable proof tree. In §3, we define the
class P(A,B) of almost-colorable proof trees and prove in Theorem 2 that each
proof tree from this class can be transformed into a colorable one. We also give
a detailed description of the coloring transformation algorithm. In §4, we define
nodpll

pf , a transition system for abstractly describing modern SMT solvers,
and prove in Theorem 4 that it produces almost-colorable proof trees when the
theories are convex, or if splitting on uncolorable equalities is disallowed.

2 Preliminaries

2.1 Syntax

We will use the standard terminology. A signature is a set of function symbols
plus a set of predicate symbols. Terms are built using variables and free constants
by recursive application of function symbols. Atoms are applications of predicate
symbols to terms. Atoms and their negations are literals. A (quantifier-free)
formula is a boolean combination of atoms. A term or a formula is ground if it
has no occurrences of variables. See [2] for more details.

A (ground) clause is a set of ground literals. Clause γ is a resolvent of clauses
α and β if there is an atom p such that α = α′�p, β = β′�¬p and γ = α′∪β′. We
call p the atom resolved upon. We say that γ is a merge [1] of any common literal
in α′ and β′. We use � to denote disjoint union and, to avoid clutter, we write l
for the singleton {l}. We will not distinguish between the clause {l1, . . . , ln} and
the disjunction l1 ∨ · · · ∨ ln.

2.2 Resolution Proof Trees

A tree is a finite directed graph with a root node that is reachable from every
other node, and every other node has exactly one outgoing edge. Leaves are
nodes with no incoming edges. In a binary tree every internal (i.e. non-leaf)
node n has exactly two incoming edges connecting n with its parents.

A resolution proof tree (or just proof tree) is a binary tree together with a
mapping that associates with each node n a ground clause �n� so that the clause
at each internal node of the tree is a resolvent of the clauses of the node’s parents.
The atom resolved upon at the node n is called the pivot at n. If P is a proof
tree, we will write �P � for the clause associated with the root of P . A refutation
is any proof tree P such that �P � is the empty clause.

We will write P = 〈P1, l, P2〉 when P1 and P2 are the subtrees of P rooted at
the parent nodes of the root of P , l is the literal resolved upon at the root of P ,
and l ∈ �P1�, ¬l ∈ �P2�. Note that 〈P1, l, P2〉 and 〈P2,¬l, P1〉 represent the same
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proof tree. When using 〈P1, l, P2〉 to define P1, P2 we will assume, without loss
of generality, that l is an atom.

Lemma 1. If P = 〈P1, l, P2〉, then �P1� ⊆ �P � ∪ l and �P2� ⊆ �P � ∪ ¬l.

2.3 Theories

A signature Σ defines the class of Σ-models. A Σ-theory is a set T of Σ-models.
A ground Σ-formula φ is T -satisfiable if there is a model of T and an assignment
of elements of the model to free constants that make φ true. We write S |=T φ
when φ is true in all T -models that satisfy each formula in the set S, for all
assignments to free constants (and abbreviate ∅ |=T φ with |=T φ). If Σ1, . . . , Σn

are disjoint signatures, and Ti is a Σi-theory (i = 1, . . . , n), then there is a well-
defined (Σ1 + · · ·+ Σn)-theory T1 + · · ·+ Tn. For more details, see [2].

Let S be a finite set of input clauses and T1 + · · ·+Tn be a fixed disjoint union
of theories. A clause γ such that |=Ti γ is called a theory lemma, or a Ti-lemma
to be specific. We define a (T1, . . . , Tn)-proof tree from S to be any proof tree in
which the clause �n� for every leaf n is either an input clause or a theory lemma.
It is straightforward to show that S |=T1+···+Tn �P �, if P is a (T1, . . . , Tn)-proof
tree from S.

When the input set of clauses is given as a union S = A ∪ B, we will use
the following coloring terminology. A term or literal will be called A-colorable if
all non-logical symbols that occur in it also occur in A. We define B-colorable
similarly. A term or literal that is both A- and B-colorable will be called AB-
colored. A term or literal that is A-colorable (resp. B-colorable) but not AB-
colored is A-colored (resp. B-colored). A term or literal is colorable if it is A- or
B-colorable, and is uncolorable otherwise. A clause is colorable if every literal
occurring in it is colorable. Define the splitting γ = γ\B � γ↓B of any colorable
clause γ into subclauses γ\B and γ↓B consisting of A-colored and B-colorable
literals in γ respectively. A (T1, . . . , Tn)-proof tree from A ∪ B is colorable if
every literal occurring in it is colorable. A node in a proof tree is critical if it is
an internal node and its pivot is uncolorable.

A theory T is ground interpolating if for every pair of sets A,B of ground
clauses such that A,B |=T false, there exists an AB-colored ground formula
φ (a ground T -interpolant for A,B) such that A |=T φ and B, φ |=T false.
A computable function itpT (A,B) that computes a ground T -interpolant for
any given input sets A and B of literals1 will be called a ground interpolation
procedure for T . Such a procedure can be extended to a procedure that computes
ground interpolants for arbitrary sets A and B of ground clauses (not just sets
of literals); see [14,6] and the special case n = 1 of Theorem 1 below.

A theory T is equality interpolating [18] if for every T -lemma γ � x=y such
that γ is colorable and x=y is uncolorable, there exists an AB-colored term
z such that |=T γ ∪ x=z and |=T γ ∪ z=y. The term z is called an equality
interpolant for the clause γ � x=y. It is shown in [18] that not all theories are
equality interpolating, but the commonly used ones are.
1 More precisely, A and B are sets of one-literal clauses.
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2.4 Deriving Interpolants from Colorable Proof Trees

It is possible to produce a ground interpolant for A,B from any colorable
(T1, . . . , Tn)-refutation P from A∪B, if each Ti has a ground interpolation pro-
cedure, itpi. Define IP by:

IP =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

itpi(¬�P �\B ,¬�P �↓B) if �P � is a Ti-lemma
�P �↓B if �P � ∈ A

true if �P � ∈ B

IP1 ∨ IP2 if P = 〈P1, l, P2〉 and l is A-colored
IP1 ∧ IP2 if P = 〈P1, l, P2〉 and l is B-colorable

Theorem 1 ([14,6]). If P is a colorable (T1, . . . , Tn)-refutation from A ∪ B,
then IP is a ground interpolant for A,B.

Proof. By induction on the number of nodes in P , (i) A |=T1+···+Tn IP ∨ �P �\B ,
(ii) B, IP |=T1+···+Tn �P �↓B , and (iii) IP is AB-colored. �

Note that IP as defined here is not unique because the conditions for the cases
are not mutually exclusive. For our purposes, this is inconsequential. Note also
that this definition is obtained from the propositional interpolation algorithm of
[13] by the addition of the first case (for theory lemmas).

2.5 Modifying Proof Trees

When �P ′� ⊆ �P �, we say that P ′ is stronger than P , and that P is weaker than
P ′. Clearly, any proof tree stronger than a refutation is also a refutation.

We will use a simple, typically unnamed, construction to strengthen a proof,
given strengthened subproofs [1]. Let P = stitch(P1, l, P2) be specified as follows:
if l ∈ �P1� and ¬l ∈ �P2�, then P = 〈P1, l, P2〉; if l /∈ �P1� then P = P1; otherwise
P = P2. Thus, stitch attempts to resolve two given proof trees over a specified
literal, returning one of the input trees when resolution is not possible.

Lemma 2. Let P1, P2 be arbitrary proof trees, l be an arbitrary literal and α,
β be arbitrary clauses.

(i) If �P1� ⊆ α ∪ l and �P2� ⊆ β ∪ ¬l, then �stitch(P1, l, P2)� ⊆ α ∪ β.
(ii) If 〈P1, l, P2〉 is defined and the proof trees P ′1 and P ′2 are stronger than P1

and P2 respectively, then stitch(P ′1, l, P
′
2) is stronger than 〈P1, l, P2〉.

Another way of strengthening proof trees is by changing the order of pivots.
If P = 〈〈P1, l1, P2〉, l2, P3〉 and P ′ = stitch(stitch(P1, l2, P3), l1, stitch(P2, l2, P3)),
we say then that P ′ is obtained from P by a raising the pivot l2 over l1 [11]; see
also Exchange Lemma 4.1.3 of [5].

Lemma 3. Let P and P ′ be as above. Then:

(i) P ′ is stronger than P .
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(ii) If l1 �= l2 and l1 �= ¬l2, then P ′ = 〈stitch(P1, l2, P3), l1, stitch(P2, l2, P3)〉.

Inductive proofs based on node counts will rely on the simple facts in the follow-
ing lemma. Here and in the sequel, |P | denotes the number of nodes in P and
|P |c denotes the number of critical nodes in P .

Lemma 4. Let P1 and P2 be arbitrary proof trees and l be an arbitrary literal.
Let ε be 1 if l is uncolorable and 0 otherwise.

(i) If 〈P1, l, P2〉 is defined then |〈P1, l, P2〉| = |P1|+ |P2|+ 1 and |〈P1, l, P2〉|c =
|P1|c + |P2|c + ε;

(ii) |stitch(P1, l, P2)| ≤ |P1|+ |P2|+ 1 and |stitch(P1, l, P2)|c ≤ |P1|c + |P2|c + ε.

3 Obtaining Colorable Refutations

Theorem 1 tells us how to derive ground interpolants from colorable refutations.
In this section, we show how and under what conditions it is possible to obtain
colorable refutations from those produced by an SMT solver.

3.1 Prelude

As argued in §4, the only literals occurring in proof trees produced by SMT
solvers, under standard assumptions, are (colorable) literals occurring in the
input set A ∪ B or (dis)equalities between terms that occur in A ∪ B. Thus,
the only uncolorable atoms are equalities x=y, where x is A-colored and y is
B-colored.

Figure 1 shows the basic transformation that removes one such equality from
a proof tree. It uses equality interpolation (§2.3) to replace a lemma α ∨ x=y
containing the uncolorable equality x=y with two colorable lemmas α∨x=z and
α ∨ z=y. Occurrences of the corresponding disequality x �= y are then split into
x �= z ∨ z �= y. This transformation can be applied repeatedly, under appropriate
conditions discussed below, to eliminate all uncolorable equalities.

α ∨ x=y

�����
��

x 
= y ∨ β

�����
��

α ∨ β

����������

α ∨ z=y

�����
��

x 
= z ∨ z 
= y ∨ β

�����
��

α ∨ x=z

������� x 
= z ∨ α ∨ β

�����
��

α ∨ β

Fig. 1. Basic transformation to eliminate an uncolorable equality x=y

Clearly, we have to assume that all theories be equality interpolating. Ad-
ditionally, the use of equality interpolation imposes a hard constraint on the
proof trees modifiable by the basic transformation above: there must be at most
one uncolorable equality in each leaf clause (see Figure 2). This restriction will
define the class of almost-colorable refutations. Note that if all the theories are
convex then the restriction causes no loss of generality. In a convex theory, if
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α ∨ x = y ∨ x′ = y′

������ x′ 
= y′ ∨ β

������

α ∨ β ∨ x = y

�����
��

x 
= y ∨ γ

�����
��

α ∨ β ∨ γ

Fig. 2. Equality interpolation cannot be applied to the theory lemma α∨x=y ∨x′=y′

with two uncolorable equalities

α∨ x=y ∨ x′=y′ is a lemma, then either α∨ x=y or α∨ x′=y′ must be a lemma
as well.

The method of [6] employs the basic transformation to eliminate all uncol-
orable equalities from ie-local refutations—those in which all uncolorable equal-
ities are resolved before other literals. However, as witnessed by the example in
Figure 3, ie-locality is not a necessary condition for the applicability of the basic
transformation.

x 
= y ∨ β ∨ l

�����
��

¬l ∨ x 
= y ∨ γ

�����
��

α ∨ x=y

�����
��

x 
= y ∨ β ∨ γ

�����
��

α ∨ β ∨ γ

����������

x 
= z ∨ z 
= y ∨ β ∨ l

�����
��

¬l ∨ x 
= z ∨ z 
= y ∨ γ

�����
��

α ∨ z=y

�����
��

x 
= z ∨ z 
= y ∨ β ∨ γ

�����
��

α ∨ x=z

������� x 
= z ∨ α ∨ β ∨ γ

�����
��

α ∨ β ∨ γ

Fig. 3. Basic transformation applied to remove the uncolorable equality x=y from a
non-ie-local proof. The literal l is assumed colorable.

The real difficulty with producing colorable refutations from uncolorable ones
is not the lack of ie-locality, but merges of uncolorable equalities. The example
on the left in Figure 4 merges the equality x=y from two leaves. If we perform
equality interpolation on only one of the two occurrences of this equality in
a leaf, we get a strictly weaker proof with the uncolorable equality x=y still
in the derived clause. If we perform equality interpolation on both occurrences
and obtain distinct equality interpolants, then also the modified proof is strictly
weaker than the original, irrespective of how we split the disequality x �= y.

α ∨ x=y ∨ l

�����
��

¬l ∨ β ∨ x=y

�����
��

α ∨ β ∨ x=y

�����
��

x 
= y ∨ γ

�����
��

α ∨ β ∨ γ

����������

α ∨ x=y ∨ l

�����
� x 
= y ∨ γ

�����
�

¬l ∨ β ∨ x=y

���
���

x 
= y ∨ γ

�����
�

α ∨ γ ∨ l

�������� ¬l ∨ β ∨ γ

��������

α ∨ β ∨ γ

Fig. 4. Raising the merged pivot x=y eliminates the merge

It can be shown that refutations that are almost-colorable and ie-local contain
no merges of uncolorable equalities. For this reason, the approach of [6] insists on
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ie-locality. We place no such restriction, prefering to eliminate the problematic
merges by changing the order of pivots as shown in Figure 4.

3.2 The Colorability Theorem

Let P(A,B) be the set of all (T1, . . . , Tn)-proof trees from A∪B which use only
theory lemmas satisfying the following conditions:

(col1) every uncolorable literal in the lemma is an equality or a disequality
(col2) at most one literal in the lemma is an uncolorable equality

We will call proofs in P(A,B) almost-colorable. Clearly, all colorable proof trees
from A ∪B are also almost-colorable.

Theorem 2. Let the theories T1, . . . , Tn be equality-interpolating. If P(A,B)
contains a refutation, then it contains a colorable refutation.

Proof. Since every literal that occurs in a refutation must be resolved upon at
some node, the existence of an uncolorable (dis)equality in a refutation implies
the existence of a critical node in it. Thus, to prove the theorem, it suffices
to show that there exists a refutation with no critical nodes. We will estab-
lish this by proving the following more general statement: If P ∈ P(A,B) has
no uncolorable disequalities in its clause �P �, then there exists a stronger proof
tree P ′ ∈ P(A,B) with no critical nodes. We prove this claim by well-founded
induction over the relation ≺ defined by:

P ≺ Q iff |P |c < |Q|c or |P |c = |Q|c and |P | < |Q|.

The proof breaks down into five cases. In all cases, it is easily verified that the
offered proof tree P ′ belongs to P(A,B), either directly or using the simple fact
that 〈P1, l, P2〉 ∈ P(A,B) if and only if P1, P2 ∈ P(A,B). So, we will focus only
on verifying that P ′ is stronger than P and has no critical nodes.

Case 1: P is a single node. We can take P ′ to be P , which has no internal nodes
and, hence, no critical nodes.

Case 2: P = 〈P1, l, P2〉. We assume, without loss of generality, that l is an atom.
Lemma 1 implies that there are no uncolorable disequalities in �P1� and by
Lemma 4 we infer that P1 ≺ P . Thus, the induction hypothesis applies to P1
ensuring the existence of a proof tree P ′1 that is stronger than P1 and has no
critical nodes. If there are no critical nodes in P1, then we will let P ′1 be P1.

Case 2.1: l /∈ �P ′1�. We can take P ′ to be P ′1, which has no critical nodes. Since
P ′1 is stronger than P1 and l �∈ �P ′1�, it follows by Lemma 1 that P ′1 is stronger
than P .

Case 2.2: l ∈ �P ′1�.

Case 2.2.1: l is colorable. Lemma 1 then implies that there are no uncolorable
disequalities in �P2�. Since P2 ≺ P by Lemma 4, from the induction hypothesis
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we obtain a proof tree P ′2 that is stronger than P2 and contains no critical nodes.
Let P ′ = stitch(P ′1, l, P

′
2). Since l is colorable, it follows from Lemma 4 that P ′

does not contain any critical nodes, either. It also follows, by Lemma 2, that P ′

is stronger than P .

Case 2.2.2: l is uncolorable. By property (col1), we have that l is an uncolorable
equality x=y. We can infer from the absence of uncolorable disequalities in �P �
and Lemma 1 that x �= y is the only uncolorable disequality in P2.

Case 2.2.2.1: P ′1 is a single node. Let �P ′1� = γ � (x=y). We know that there are
no uncolorable disequalities in �P ′1�. This, together with uncolorability of x=y
and the fact P ′1 ∈ P(A,B), implies that all the literals in γ are colorable. Now,
�P ′1� must be a theory lemma because x=y is not colorable. Since our theories
are assumed to be equality-interpolating, there exists an equality interpolant z
for the clause �P ′1�. Let Qx be the single-node proof tree with �Qx� = γ ∪ (x=z)
and let Qy be the single-node proof tree with �Qy� = γ ∪ (z=y). Note that Qx

and Qy are colorable and, since they have no internal nodes, they have no critical
nodes either.

Let �P2� = δ � (x �= y). From Lemma 5 below, we obtain a proof tree P ∗2 ∈
P(A,B) such that |P ∗2 |c ≤ |P2|c and �P ∗2 � ⊆ δ ∪ {x �= z, z �= y}. Since x �= y is
the only uncolorable disequality in �P2�, and the disequalities x �= z and z �= y
are colorable, there can be no uncolorable disequalities in �P ∗2 �. Since the root is
a critical node in P , we have by Lemma 4 that |P2|c < |P |c. Thus, the induction
hypothesis applies to P ∗2 , yielding a proof tree P ′2 stronger than P ∗2 and without
critical nodes. We take P ′ to be stitch(Qx

1 , x=z, stitch(Qy
1 , z=y, P ′2)). By Lemma 4

there are no critical nodes in P ′. Since �P ′� ⊆ γ ∪ δ, P ′ is stronger than P .

Case 2.2.2.2: P ′1 = 〈P11, l
′, P12〉. Since there are no critical nodes in P ′1 and no

uncolorable disequalities in �P ′1�, it follows that the literal l′ is colorable and,
from Lemma 1, that there are no uncolorable disequalities in �P11� and �P12�.
Let P † = 〈P ′1, x=y, P2〉. Note that P † is well-defined (since x=y ∈ �P ′1�) and
stronger than P (by Lemma 2). Note also that x=y differs from l′ and ¬l′ since
l′ is colorable and x=y is uncolorable. We raise the pivot x=y over l′ in P † to get
P ‡ = stitch(Q1, l

′, Q2), where Qi = stitch(P1i, x=y, P2) (i = 1, 2). By Lemma 3,
we have P ‡ = 〈Q1, l

′, Q2〉.
We now show that the induction hypothesis applies to Qi (i = 1, 2). Since

x �= y ∈ �P2�, we have that Qi is either P1i or 〈P1i, x=y, P2〉. Since x �= y is the
only uncolorable disequality in �P2� and there are no uncolorable disequalities
in �P1i�, we can infer using Lemma 2 that there are no uncolorable disequalities
in �Qi�. We also have (by Lemma 4) that |Qi|c ≤ 1 + |P ′1|c + |P2|c = 1 + |P2|c
and |P |c = 1 + |P1|c + |P2|c. Thus, |Qi|c ≤ |P |c. Moreover, if |Qi|c = |P |c then
we must have |P1|c = 0, in which case P ′1 is P1 (see Case 2.2) and by Lemma 4,
we have |Qi| < |P |. It follows that Qi ≺ P .

Thus, we have proof trees Q′
i that have no critical nodes and are stronger

than Qi. We take P ′ to be stitch(Q′
1, l

′, Q′
2). There are no critical nodes in P ′

(Lemma 4) and P ′ is stronger than P ‡ (Lemma 2), which in turn is stronger
than P † (Lemma 3), which, as we have already noticed, is stronger than P . �
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Lemma 5. Let P be a proof in P(A,B), x �= y be an uncolorable disequality
and z be an arbitrary term. Then, there exists P ∗ ∈ P(A,B) such that:

(i) �P ∗� ⊆ �P � ∪ {x �= z, z �= y}� {x �= y};
(ii) |P ∗|c ≤ |P |c.

Proof. We argue by induction on the number of nodes in P .

Case 1: x �= y does not occur in �P �. Take P ∗ to be P .

Case 2: �P � = δ � (x �= y).

Case 2.1: P is a single node. The uncolorability of x �= y implies that �P � is a
theory lemma. Take P ∗ be the single node with �P ∗� = δ ∪ {x �= z, z �= y}. By
the transitivity of equality, �P ∗� is also a theory lemma.

Case 2.2: P = 〈P1, l, P2〉. We know from Lemma 1 that �P1� ⊆ δ ∪ {x �= y, l}
and �P2� ⊆ δ ∪ {x �= y,¬l}. By the induction hypothesis, there exist P ∗1 and P ∗2
such that �P ∗1 � ⊆ δ ∪ {x �= z, z �= y, l}, �P ∗2 � ⊆ δ ∪ {x �= z, z �= y,¬l} and P ∗1 , P ∗2
have no more critical nodes than P1, P2 respectively. Let P ∗ = stitch(P ∗1 , l, P

∗
2 ).

It follows from Lemma 2 that �P ∗� ⊆ δ ∪ {x �= z, z �= y}. Finally, by Lemma 4,
|P ∗|c ≤ ε + |P ∗1 |c + |P ∗2 |c ≤ ε + |P1|c + |P2|c = |P |c, for suitable ε ∈ {0, 1}. �

3.3 The Colorability Algorithm

The proofs of Theorem 2 and Lemma 5 are constructive and directly lead
to Algorithm 1 and Algorithm 2. The algorithms use the following functions:
is lit colorable tests if a literal is colorable; eq interp computes an equality inter-
polant for the input clause; node creates a single-node proof annotated with the
given clause.

Merges of uncolorable equalities have the potential to exponentially blow-up
the size of mk colorable(P ) because raising an uncolorable-equality pivot doubles
the right subproof, as in Figure 4. The following result guarantees linear growth
in the absence of these problematic merges.

Theorem 3. If P is a refutation in P(A,B) such that there are no merges of
uncolorable equalities in P , then |mk colorable(P )| ≤ 2 · |P |.

Proof. We will prove the following more general statement: Let P be a proof in
P(A,B) such that there are no uncolorable equalities in �P � and no merges of
uncolorable equalities in P . Let P ′ = mk colorable(P ). Then:

(i) |P ′| ≤ 2 · |P |;
(ii) If P = 〈P1, l, P2〉 and P1 has no critical nodes, then |P ′| ≤ |P1|+2 · |P2|+3.

We will use the easily proven facts that |split(P, x �= y, z)| ≤ |P | and that if there
are no critical nodes in P , then mk colorable(P ) = P . The proof will follow the
structure of the proof of Theorem 2.
Case 1: Trivial.
Case 2.1: We have |P ′| = |P ′1|.
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Algorithm 1. mk colorable(P )
1: if |P | = 1 then (∗Case 1 ∗)
2: P ′ ← P
3: else (∗Case 2 ∗)
4: let P be 〈P1, l, P2〉
5: P ′

1 ← mk colorable(P1)
6: if l /∈ �P ′

1� then (∗Case 2.1 ∗)
7: P ′ ← P ′

1

8: else (∗Case 2.2 ∗)
9: if is lit colorable(l) then (∗Case 2.2.1 ∗)

10: P ′
2 ← mk colorable(P2)

11: P ′ ← stitch(P ′
1, l, P

′
2)

12: else (∗Case 2.2.2 ∗)
13: let l be x=y
14: if |P ′

1| = 1 then (∗Case 2.2.2.1 ∗)
15: let �P ′

1� be γ � x=y
16: z ← eq interp(γ � x=y)
17: Qx ← node(γ ∪ x=z)
18: Qy ← node(γ ∪ z=y)
19: P ∗

2 ← split(P2, x 
= y, z)
20: P ′

2 ← mk colorable(P ∗
2 )

21: P ′ ← stitch(Qx, x=z, stitch(Qy, z=y,P ′
2))

22: else (∗Case 2.2.2.2 ∗)
23: let P ′

1 be 〈P11, l
′, P12〉

24: Q1 ← stitch(P11, x=y, P2)
25: Q2 ← stitch(P12, x=y, P2)
26: Q′

1 ← mk colorable(Q1)
27: Q′

2 ← mk colorable(Q2)
28: P ′ ← stitch(Q′

1, l
′, Q′

2)
29: return P ′

Algorithm 2. split(P, x �= y, z)
1: if x 
= y /∈ �P � then (∗Case 1 ∗)
2: P ∗ ← P
3: else (∗Case 2 ∗)
4: let �P � be δ � (x 
= y)
5: if |P | = 1 then (∗Case 2.1 ∗)
6: P ∗ ← node(δ ∪ {x 
= z, z 
= y})
7: else (∗Case 2.2 ∗)
8: let P be 〈P1, l, P2〉
9: P ∗

1 ← split(P1, x 
= y, z)
10: P ∗

2 ← split(P2, x 
= y, z)
11: P ∗ ← stitch(P ∗

1 , l, P ∗
2 )

12: return P ∗

(i) By the induction hypothesis, |P ′1| ≤ 2 · |P1|. But |P1| < |P |.
(ii) If P1 has no critical nodes, then P ′1 = P1.
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Case 2.2.1:

(i) |P ′| ≤ |P ′1|+ |P ′2|+ 1 ≤ 2 · |P1|+ 2 · |P2|+ 1 = 2 · (|P1|+ |P2|) + 1. We have
|P | = |P1|+ |P2|+ 1. Thus, |P ′| ≤ 2 · (|P | − 1) + 1 < 2 · |P |.

(ii) If P1 has no critical nodes, then P ′1 = P1. Thus, |P ′| ≤ |P1| + |P ′2| + 1 ≤
|P1|+ 2 · |P2|+ 1.

Case 2.2.2.1:

(i) |P ′| ≤ |Qx| + |Qy| + |P ′2| + 2. We have |Qx| = |Qy| = 1, and by induction
hypothesis, |P ′2| ≤ 2 · |P ∗2 | ≤ 2 · |P2|. Thus |P ′| ≤ 2 · |P2|+ 4. We also know
that |P2| ≤ |P | − 2. Thus |P ′| ≤ 2 · |P |.

(ii) If P1 has no critical nodes, then P ′1 = P1. The assumption for this case is
that |P ′1| = 1. Thus, |P ′| ≤ |P ′2|+ 4 ≤ |P1|+ 2 · |P2|+ 3.

Case 2.2.2.2: Without loss of generality, assume x=y /∈ �P11� and x=y ∈ �P12�.
Thus, Q1 = P11 and Q2 = 〈P12, l, P2〉.

(i) |P ′| ≤ |Q′
1| + |Q′

2| + 1. Note that there are no critical nodes in either P11
or in P12. Thus, Q′

1 = P11 and |Q′
2| ≤ |P12| + 2 · |P2| + 3. Thus, |P ′| ≤

|P11|+ |P12|+ 2 · |P2|+ 3 = |P ′1|+ 2 · |P2|+ 2 ≤ 2 · (|P1|+ |P2|+ 1) = 2 · |P |.
(ii) Assume no critical nodes in P1. Then P ′1 = P1 = 〈P11, l, P12〉. Also, P11 and

P12 have no critical nodes and Q′
1 = P11, |Q′

2| ≤ |P12|+ 2 · |P2|+ 3. Thus,
|P ′| ≤ |Q′

1|+ |Q′
2|+ 1 ≤ |P11|+ |P12|+ 2 · |P2|+ 3 + 1 = |P1|+ 2 · |P2|+ 3.�

More substantial complexity analysis is left for future work. Our algorithms can
be easily modified (by memoization) to operate on proof DAGs instead on proof
trees. It would be particularly interesting to understand the complexity of these
optimized versions.

4 Almost-Colorable Refutations from SMT Solvers

Modern SMT solvers integrate a SAT solver and several solvers for specific the-
ories. An abstract model of an SMT solver that covers the essentials of the
cooperation algorithm is given in [12] in the form of a transition system called
nodpll (Nelson-Oppen with DPLL), which in turn is an elaboration of the
abstract system dpll(T ) of [16].

In this section, starting with a simplified (more abstract) version of the system
nodpll described in [12], we obtain the system nodpll

pf which tracks the
derivations of all conflict clauses and thus produces (T1, . . . , Tn)-refutations when
it finds that the input set of clauses is inconsistent.

The main parameters of the system nodpll
pf are theories T1, . . . , Tn with

disjoint signatures Σ1, . . . , Σn. The union signature and the union theory will
be denoted Σ and T respectively. Additional parameters of nodpll

pf are a set
L of Σ-literals and a set E of equalities between Σ-terms. Intuitively, the set L
consists of literals that the SAT solver can decide on, and E is the set of equalities
that theory solvers may share without sharing them with the SAT solver. It is
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not required that L and E be disjoint. (In extensions of the system, one can
also promote L and E from parameters to system variables, adding rules to grow
them dynamically.)

nodpll
pf is a transition system over states of the form 〈P,M,C〉 where (i)

P is a set of proof trees over Σ-clauses; (ii) M is a checkpointed sequence, any
element of which is either the special symbol �, or a literal from L ∪ E; (iii) C,
the state’s conflict proof tree, is either a proof tree for a clause that is a subset
of L ∪ E, or the special symbol none, denoting the absence of conflict.

As before, we use the notation node(γ) for the proof tree with a single node
whose associated clause is γ.

The input to nodpll
pf is a set S of ground T -clauses. With a given S, the ini-

tialization procedure specifies the sets L and E, and an initial state of nodpll
pf .

The initial state naturally has P = {node(γ) | γ ∈ S}, M equal to the empty
sequence, and C = none. As for the parameter literal sets L and E, there are
two main options. To define them, let LS denote the set of all literals that occur
in S, and let ES be the set of all equalities between distinct terms that occur
in S. For Nelson-Oppen initialization, we take L = L±1

S and E = ES . For DTC
initialization, we take L = L±1

S ∪E±1
S and E = ∅. (The notation X±1 stands for

the set that contains the literals of X and their negations.) To be general, we
will assume only that L ⊆ L±1

S ∪ E±1
S and E ⊆ ES .

The transition rules of nodpll
pf are given in Figure 5. The index i ranges over

{0, . . . , n}. The symbol |=i stands for the theory entailment |=Ti in the case when
i > 0. For i = 0, the symbol stands for the propositional entailment from a single
clause of P. More precisely, the condition M |=0 l in the rule Infer0 stands for
“there exist a proof tree P ∈ P such that �P � = {¬l1, . . . ,¬lk, l} and l1, . . . , lk ∈

Decide
l ∈ L l,¬l /∈ M

M := M � l

Inferi
l ∈ L ∪ E M |=i l l,¬l /∈ M

M := M l

Conflicti
C = none l1, . . . , lk ∈ M l1, . . . , lk |=i false k > 0

C := pfi{¬l1, . . . ,¬ll}

Explaini
¬l ∈ �C� l1, . . . , lk ≺M l l1, . . . , lk |=i l

C := 〈pfi{¬l1, · · · ,¬lk, l}, l, C〉

Learn
�C� ⊆ L C /∈ P

P := P ∪ {C}

Backjump
C ∈ P �C� = {l, l1, . . . , lk} level l1, . . . , level lk ≤ m < level l

C := none M := M[m] ¬l

Fig. 5. Rules of nodpll
pf . Above each line is the rule’s guard, below is its action.
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M”. Similarly, l1, . . . , lk |=0 false and l1, . . . , lk |=0 l in the rules Conflict0 and
Explain0 stand for the existence of P ∈ P satisfying �P � = {¬l1, . . . ,¬lk} and
�P � = {¬l1, . . . ,¬lk, l} respectively.

When i > 0, the notation pfiγ is synonymous with node(γ). As for pf0γ, it is
used only in rules Conflict0 and Explain0, and it stands for a proof tree P ∈ P
such that �P � = γ. In view of the definitions in the previous paragraph, such a
proof tree P always exists.

The number of occurrences of � in M is the current decision level. Thus, we
can write M = M〈0〉 � M〈1〉 � · · ·� M〈d〉, where d is the current decision level,
and � does not occur in any M〈k〉. It is an invariant that for every k > 0, M〈k〉

is non-empty. The first element of M〈k〉 (k > 0) is the kth decision literal of M.
By M[k], where 0 ≤ k ≤ d, we denote the prefix M〈0〉 � · · ·� M〈k〉 of M.

The rule Explaini uses the notation l ≺M l′; by definition, this means that both
literals are in M and the (unique) occurrence of l precedes in M the (unique)
occurrence of l′. For correctness of this definition, we need to know that any
literal can occur at most once in M, which is another easily verified invariant of
nodpll

pf . Finally, the function level used in the Backjump rule is defined only
for literals that occur in M; for these literals level l = k holds if l occurs in M〈k〉.

A nodpll
pf execution is a finite or infinite sequence s0, s1, . . . such that s0

is an initial state and each state si+1 is obtained from si by the application of
one of the transition rules of the system. We can prove the following lemma by
induction on the length of execution sequences.

Lemma 6. If nodpll
pf is given a clause set S as input, then, in any state, C

is either none or a (T1, . . . , Tn)-proof tree from S.

The results of [12] for the original nodpll system apply to nodpll
pf as well,

with straightforward modifications of the proofs. Specifically, one can prove that
the system nodpll

pf is terminating: every execution is finite and ends in a
state in which C = none or �C� = ∅. The soundness of nodpll

pf is actually a
consequence of Lemma 6: if the system reaches a state in which C is a refutation
(�C� = ∅), then S is T -unsatisfiable. There are two completeness results: 2 if
on an input S the system terminates in a state in which C = none, then S is
T -satisfiable, provided (i) the system is given the Nelson-Oppen initialization,
and all the Ti are convex; or (ii) the system is given the DTC initialization.

Consider now the colorability of proof trees C of our system. The initialization
assumption L ⊆ L±1

S ∪ E±1
S and colorability of all literals in LS (each of them

occurs in A or in B) imply that the only uncolorable literals in L∪E are equalities
from ES or their negations. Thus, proof trees C always satisfy the property (col1).

One way to satisfy (col2) is to ensure that all literals in L are colorable;
for instance, by initializing the system with L being the union of L±1

S and all
colorable (dis)equalities from E±1

S . To see that (col2) holds in this case, note
first that (by induction) all uncolorable literals in M are equalities from E � L.
This ensures the clause of C introduced by Conflicti contains no uncolorable

2 In the context of [12], we assume that the theories are parametric; for the classical
first-order combination, we need to assume that the theories are stably-infinite [2].
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equalities, and clauses introduced by Explaini contain at most one uncolorable
equality. Thus, (col2) is satisfied, but note that the restriction we put on L makes
nodpll

pf potentially incomplete.
Another way to guarantee proof trees C satisfying (col2) is to run the system

nodpll
pf with the following convexity restriction: allow rule Conflicti to fire

only when at most one of the literals l1, . . . , lk is a disequality and allow rule
Explaini to fire only when none of the literals l1, . . . , lk is a disequality. It is easy
to see that if all theories Ti are convex, then the convexity restriction does not
jeopardize the completeness of nodpll

pf .

Theorem 4. Suppose S = A ∪ B is given as input to nodpll
pf . Suppose, in

addition, that either (a) the system is run with the convexity restriction; or
(b) the system is initialized so that all literals in L are colorable. Then, in all
reachable states, the proof tree C is in P(A,B).

Proof. Sketched in the preceding paragraphs. �

5 Conclusion

We have presented a simple approach for the generation of ground interpolants by
SMT solvers supporting multiple theories. Our main contribution is an algorithm
that transforms any almost-colorable refutation into one that is colorable and
thus suitable for straigthforward interpolant extraction using known algorithms.

The definition of almost-colorable refutations is minimally demanding. We
show that modern SMT solvers can produce such refutations with the slightest
restrictions on their search strategy. What constitutes a good search strategy for
interpolation remains an open question, but by being more general than previous
approaches, we enable the design of more efficient interpolating SMT solvers.

The colorability algorithm uses a sequence of elementary proof transforma-
tions to convert an almost-colorable refutation into a colorable one. There is some
flexibility in the order in which these transformations are applied. Our particular
choice of the colorability algorithm ensures that for a subset of almost-colorable
refutations—including the class of ie-local refutations that could be used with
previous methods for ground interpolation—we at most double the size of the in-
put tree. In practice, however, proofs are represented compactly as DAGs. More
work is required to understand the effect of various transformation choices on
DAG size.

Acknowledgment. We thank Alexander Fuchs, Jim Grundy and anonymous re-
viewers for suggestions that helped improve the paper.

References

1. Andrews, P.B.: Resolution with merging. J. ACM 15(3), 367–381 (1968)
2. Barrett, C., et al.: Satisfiability Modulo Theories. In: Biere, A., et al. (eds.) Hand-

book of Satisfiability, pp. 825–885. IOS Press, Amsterdam (2009)



198 A. Goel, S. Krstić, and C. Tinelli
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Abstract. We prove several results related to local proofs, interpolation and su-
perposition calculus and discuss their use in predicate abstraction and invariant
generation. Our proofs and results suggest that symbol-eliminating inferences
may be an interesting alternative to interpolation.

1 Introduction

The study of interpolation in connection to verification has been pioneered by McMillan
in connection with model checking [16], and by McMillan [17] and Henzinger et.al. [7]
in connection with predicate abstraction. A number of papers appeared later discussing
generation of interpolants for various theories and their use in verification, for example
invariant generation [25,8,10,23,22,18,2].

In this paper we discuss interpolation and its use in verification. We start with pre-
liminaries in Section 2. In Section 3 we define so-called local derivations and prove
a general form of a result announced in [8], namely that interpolants can be extracted
from proofs of special form (so-called local proofs) in arbitrary theories and inference
systems sound for these theories. We also show that interpolants extracted from such
proofs are boolean combinations of conclusions of so-called symbol-eliminating infer-
ences. By observing that a similar form of symbol elimination turned out to be useful
for generating complex quantified invariants in [13] and that interpolants obtained from
proofs seem to be better for predicate abstraction and invariant generation than those
obtained by quantifier elimination, we conclude that symbol elimination can be a key
concept for applications in verification.

Further, in Section 4 we consider interpolation for inference systems dealing with
universal formulas. We point out that a result announced in [18] is incorrect by giving
a counterexample. We also further study the superposition inference system and show
that, when we use a certain family of orderings, all ground proofs are local. This gives
us a way of extracting interpolants from ground superposition proofs. We extend this
result to the LASCA calculus of [12], which gives us a new procedure for generating
interpolants for the quantifier-free theory of uninterpreted functions and linear ratio-
nal arithmetic. Finally, in Section 5 we investigate the use of interpolants in invariant
generation.
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2 Preliminaries

We will deal with the standard first-order predicate logic with equality. The equality
symbol will be denoted by �; instead of writing ¬(s � t) we will simply write s ��
t. We allow all standard boolean connectives and quantifiers in the language and, in
addition, assume that it contains the logical constants � for always true and ⊥ for
always false formulas.

We will denote formulas by A,B,C,D, terms by r, s, t, variables by x, y, z, con-
stants by a, b, c and function symbols by f, g, possibly with indices. Let A be a formula
with free variables x̄, then ∀A (respectively, ∃A) denotes the formula (∀x̄)A (respec-
tively, (∃x̄)A). A formula is called closed, or a sentence, if it has no free variables.
We call a symbol a predicate symbol, a function symbol or a constant. Thus, variables
are not symbols. We consider equality � part of the language, that is, equality is not
a symbol. A formula or a term is called ground if it has no occurrences of variables.
A formula is called universal if it has the form (∀x̄)A, where A is quantifier-free. We
write C1, . . . , Cn  C to denote that the formula C1 ∧ . . . ∧ C1 → C is a tautology.
Note that C1, . . . , Cn, C may contain free variables.

A signature is any finite set of symbols. The signature of a formula A is the set of
all symbols occurring in this formula. For example, the signature of f(x) � a is {f, a}.
The language of a formula A, denoted by LA, is the set of all formulas built from the
symbols occurring in A, that is formulas whose signatures are subsets of the signature
of A.

Theorem 1 (Craig’s Interpolation Theorem [3]). Let A,B be closed formulas and
let A  B. Then there exists a closed formula I ∈ LA∩LB such that A  I and I  B.

In other words, every symbol occurring in I also occurs in both A and B. Every formula
I satisfying this theorem will be called an interpolant of A and B.

Let us emphasise that Craig’s Interpolation Theorem 1 makes no restriction on the
signatures of A and B. There is a stronger version of the interpolation property proved
in [15] (see also [19]) and formulated below.

Theorem 2 (Lyndon’s Interpolation Theorem). Let A,B be closed formulas and let
A  B. Then there exists a closed formula I ∈ LA ∩ LB such that A  I and I  B.
Moreover, every predicate symbol occurring positively (respectively, negatively) in I ,
occurs positively (respectively, negatively), in both A and B.

By inspecting proofs of the two mentioned interpolation theorems one can also conclude
that in the case when A and B are ground, they also have a ground interpolant; we will
use this property later.

We call a theory any set of closed formulas. If T is a theory, we write C1, . . . , Cn T

C to denote that the formula C1 ∧ . . . ∧ C1 → C holds in all models of T . In fact,
our notion of theory corresponds to the notion of axiomatisable theory in logic. When
we work with a theory T , we call symbols occurring in T interpreted while all other
symbols uninterpreted.

Note that Craig’s interpolation also holds for theories in the following sense.
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Theorem 3. Let A,B be formulas and let A T B. Then there exists a formula I such
that

1. A T I and I  B;
2. every uninterpreted symbol of I occurs both in A and B;
3. every interpreted symbol of I occurs in B.

Likewise, there exists a formula I such that

1. A  I and I T B;
2. every uninterpreted symbol of I occurs both in A and B;
3. every interpreted symbol of I occurs in A.

Proof. We start with proving the first part. By A T B and compactness there exists a
finite number of formulas T ′ ⊆ T such that A, T ′  B. Denote by C the conjunction
of formulas in T ′, then we have A ∧ C  B. By Craig’s interpolation theorem 1 there
exists a formula I whose symbols occur both in A ∧C and B such that A ∧C  I and
I  B. Let us prove that I satisfies all conditions of the theorem. Note that A ∧ C  I
implies A T I , so the first condition is satisfied. Now take any uninterpreted symbol
of I . Note that it cannot occur in C, since all symbols in C are interpreted, so it occurs
in A, and so in both A and B. The condition on interpreted symbols is obvious since all
symbols occurring in I also occur in B.

The second part is proved similarly, in this case take Craig’s interpolant of A and
C → B. �

The proof of Theorem 3 is similar to a proof in [10]. It is interesting that this formulation
of interpolation is not symmetric with respect to A and B since it does not state A T I
and I T B: only one of the implications A → I and I → B should be a theorem of T
while the other one is a tautology in first-order logic. Thus, theory reasoning is required
only to show one of these implications.

In the sequel we will be interested in the interpolation property with respect to a given
theory T . For this reason, we will use T instead of  and relativise all definitions to
T . To be precise, we call an interpolant of A and B any formula I with the properties
A T I and I T B.

If E is a set of expressions, for example, formulas, and constants c1, . . . , cn do not
occur in E, then we say that c1, . . . , cn are fresh for E. We will less formally simply say
fresh constants when E is the set of all expressions considered in the current context.

There is a series of papers on using interpolants in model checking and verification
starting with [16]. Unfortunately, in some of these papers the notion of interpolant has
been changed. Although the change seems to be minor, it affects Lyndon’s interpolation
property and also does not let one use interpolation for formulas with free variables.
Namely [17,18] call an interpolant of A and B any formula I such that A  I and
B ∧ I is unsatisfiable. To avoid any confusion between the two notions of interpolant
we introduce the following notion. We call a reverse interpolant of A and B any formula
I such that A T I and I, B T ⊥. It is not hard to argue that reverse interpolants for
A and B are exactly interpolants of A and ¬B and that, when B is closed, reverse
interpolants are exactly interpolants in the sense of [17,18].
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3 Inference Systems and Local Derivation

In this section we will recall some terminology related to inference systems. It is com-
monly used in the theory of resolution and superposition [1,20]; we do not restrict
ourselves to the superposition calculus.

Definition 1. An inference rule is an n-ary relation on formulas, where n ≥ 0. The
elements of such a relation are called inferences and usually written as

A1 . . . An

A
.

The formulas A1, . . . , An are called the premises, and the formula A the conclusion, of
this inference. An inference system is a set of inference rules. An axiom of an inference
system is any conclusion of an inference with 0 premises.

Any inferences with 0 premises and a conclusion A will be written without the bar,
simply as A.

A derivation in an inference system is a tree built from inferences in this inference
system. If the root of this derivation is A, then we say it is a derivation of A. A derivation
of A is called a proof of A if it is finite and all leaves in the derivation are axioms. A
formula A is called provable in I if it has a proof. We say that a derivation of A is
from assumptions A1, . . . , Am if the derivation is finite and every leaf in it is either
an axiom or one of the formulas A1, . . . , Am. A formula A is said to be derivable
from assumptions A1, . . . , Am if there exists a derivation of A from A1, . . . , Am. A
refutation is a derivation of ⊥. �

Note that a proof is a derivation from the empty set of assumptions. Any derivation
from a set of assumptions S can be considered as a derivation from any larger set of
assumptions S′ ⊇ S.

Let us now fix two sentences A and B. In the sequel we assume A and B to be
fixed and give all definitions relative to A and B. Denote by L the intersection of the
languages of A and B, that is, LA ∩ LB . We call signature symbols occurring both in
A and B clean and all other signature symbols dirty. For a formula C, we say that C is
clean if C ∈ L, otherwise we say that C is dirty. In other words, clean formulas contain
only clean symbols and every dirty formula contains at least one dirty symbol.

Definition 2 (AB-derivation). Let us call an AB-derivation any derivation Π
satisfying the following conditions.

(AB1) For every leaf C of Π one of following conditions holds:
1. A T ∀C and C ∈ LA or
2. B T ∀C and C ∈ LB .

(AB2) For every inference

C1 . . . Cn

C

of Π we have ∀C1, . . . , ∀Cn T ∀C.
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We will refer to property (AB2) as soundness. �
We will be interested in finding reverse interpolants of A and B. The case LA ⊆ LB is
obvious, since in this case A is a reverse interpolant of A and B. Likewise, if LB ⊆ LA,
then ¬B is a reverse interpolant of A and B. For this reason, in the sequel we assume
that LA �⊆ LB and LB �⊆ LA, that is, both A and B contain dirty symbols.

We are especially interested in a special kind of derivation introduced in [8] and
called local (or sometimes called split-proofs). The definition of a local derivation is
relative to formulas A and B.

Definition 3 (Local AB-derivation). An inference

C1 . . . Cn

C

in an AB-derivation is called local if the following two conditions hold.

(L1) Either {C1, . . . , Cn, C} ⊆ LA or {C1, . . . , Cn, C} ⊆ LB .
(L2) If all of the formulas C1, . . . , Cn are clean, then C is clean, too.

A derivation is called local if so is every inference of this derivation. �
In other words, (L1) says that either all premises and the conclusion are in the language
of A or all of them are in the language of B. Condition (L2) is natural (inferences
should not introduce irrelevant symbols) but it is absent in other work. This condition
is essential for us since without it the proof of our key Lemma 2 does not go through.

Papers [8,18] claim that from a local AB-refutation one can extract a reverse inter-
polant for A and B. Moreover, the proofs of these papers imply that the interpolant is
universal when both A and B are universal and ground when both A and B are ground.
However, the proofs of these properties use unsound arguments. First, the proof for the
ground case from [8] uses an argument that for a sound inference

C1 . . . Cn

C

the set of formulas C1, . . . , Cn,¬C is propositionally unsatisfiable and then refers to
a result on interpolation for propositional derivations from [16]. Unfortunately, this
argument cannot be used: for example, the ground formula a �� a is unsatisfiable in
the theory of equality but not propositionally unsatisfiable. Second, the proof for the
universal case in [18] refers to the ground case, but one cannot use this reduction since
substituting terms for variables in non-ground local derivations may give a non-local
derivation. Let us give an example showing that the result for the universal case is
incorrect.

Example 1. Let A be the formula a �� b and B the formula ∀x(x � c). Then a, b, c are
dirty symbols and there is no clean symbol. The following is a local refutation in the
superposition calculus:

x � c y � c
x � y a �� b

y �� b

⊥
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One possible reverse interpolant of A and B is ∃x∃y(x �� y), however, this reverse in-
terpolant is not universal. Let us show that there exist no universal reverse interpolant of
A and B. Suppose, by contradiction, that such a reverse interpolant exists. Then it has
the form ∀x1 . . .∀xnI(x1, . . . , xn), where I(x1, . . . , xn) is a quantifier-free formula,
x1, . . . , xn are the only variables of I(x1, . . . , xn), and I(x1, . . . , xn) does not contain
a, b. Take fresh constants c1, . . . , cn, then we have a �� b  I(c1, . . . , cn). By Craig’s
interpolation applied to ground formulas there exists a ground reverse interpolant J of
a �� b and I(c1, . . . , cn). By the conditions on the signature of J , J can contain no sym-
bols. Therefore J is either equivalent to ⊥ or equivalent to �. The former is impossible
since we do not have a �� b  ⊥, hence J is equivalent to�. But then I(c1, . . . , cn) is a
tautology. Since the constants ci’s are fresh, ∀x1 . . . ∀xnI(x1, . . . , xn) is also a tautol-
ogy. But we have ∀x1 . . . ∀xnI(x1, . . . , xn), ∀x(x � y)  ⊥, so ∀x(x � y)  ⊥ too.
This contradicts the obvious observation that ∀x(x � y) has models. �

Below we will prove a general result on extracting interpolants from local refutations
from which the ground case will follow. Moreover, in Section 4 we note that in the
ground case, if we use the superposition calculus and a certain family of orderings,
all superposition proofs are local, so an arbitrary superposition prover can be used for
finding interpolants for ground formulas.

The proofs of our results will also show the structure of interpolants extracted from
refutations. Any such interpolant is a boolean combination of some key inferences of
the refutation, called symbol-eliminating inferences. This suggests that in addition to
studying interpolants one can study symbol elimination in proofs.

Consider any AB-derivation Π . Note that by the soundness condition (AB2) we can
replace every formula C occurring in this derivation by its universal closure ∀C and
obtain an AB-derivation Π ′ where inferences are only done on closed formulas. We
will call such derivations Π ′ closed.

We want to show how one can extract interpolants from local proofs and also inves-
tigate the structure of such interpolants. To this end, we will prove key Lemma 2 about
local proofs and introduce a notion that will be used to characterise interpolants. Let Π
be a local AB-derivation and C a formula occurring in Π . We say that C is justified by
A (respectively by B) in Π if C is clean and one of the following conditions hold:

(J1) C is a leaf of Π and A T C.
(J2) C is a conclusion of an inference in Π of the form

C1 · · · Cn

C
,

such that for some k ∈ {1, . . . , n} the formula Ck is dirty and Ck ∈ LA (respec-
tively, Ck ∈ LB).

Note that the fact that C is justified by A does not necessarily imply that A T C. Yet,
the derivation of any such formula C uses at least one formula derived from A (see the
proof of the following lemma).

Let us introduce a key notion of symbol-eliminating inference. We call a symbol-
eliminating inference any inference of the form described in (J1) or (J2). That is, a



Interpolation and Symbol Elimination 205

symbol-eliminating inference is an inference having a clean conclusion and either no
premises at all, as in (J1), or at least one dirty premise, as in (J2). The name is due to
the fact that the inference of (J2) has at least one dirty symbol occurring in premises
and this symbol is “eliminated” in the conclusion. In the case of (J1) one can use the
following explanation. Suppose, for example, that C in (J1) is justified by A. The we
can consider C as derived from A by an inference

A
C

,

which also “eliminates” a dirty symbol occurring in A.

Lemma 1. Let Π be a local AB-derivation. Further, let C be a clean formula such that
C is justified by A in Π and C is not a leaf of Π . Take the largest sub-derivation Π ′ of
Π with the following properties:

1. The last inference of Π ′ is an inference of C satisfying (J2).
2. All formulas in Π ′ are in the language LA.

Then for every leaf C′ of Π ′ one of the following conditions hold:

1. C′ is clean and justified by B.
2. C′ ∈ LA and A T C′.

The same holds if we swap A and B in the conditions.

Proof. First, consider the case when C′ is dirty. Since every formula in Π ′ is in the
language LA, then C′ is in the language LA too, but not in LB . Consider two cases. If
C′ is also a leaf of Π , then by (L2) and (AB1) we have A T C′ and we are done. If C′

is not a leaf of Π , consider the inference of C′ in Π . Since Π is local, all premises of this
inference are in the language LA, so the inference must be in Π ′, which contradicts the
assumptions that C′ is a leaf of Π ′ and that Π ′ is the largest sub-derivation satisfying
(1) and (2).

It remains to consider the case when C′ is clean. If A T C′, then (since C′ ∈
LA) we are done. If A � C′, then there exists an inference of C′ in Π from some
premises C1, . . . , Cn. If all these premises are in the language LA, then the inference
itself belongs to Π ′, which contradicts the assumptions that C′ is a leaf of Π ′ and that
Π ′ is the largest sub-derivation satisfying (1) and (2). Therefore, at least one of the
premises is dirty and belongs to LB , then C′ is justified by B and we are done. �

Note that in the sub-derivation Π ′ of this lemma every leaf is a conclusion of a symbol-
eliminating inference.

Our aim now is to show how one can extract an interpolant from a local derivation. To
this end we will first generalise the notion of interpolant by relativising it to a quantifier-
free formula C.

Definition 4 (C-interpolant). Let C be a quantifier-free formula. A formula I is called
a C-interpolant of A and B if it has the following properties.
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(C1) Every free variable of I is also a variable of C.
(C2) I is clean;
(C3) ¬C,A T I;
(C4) I, B T C. �

Note that the notion of reverse interpolant is a special case of the notion of C-interpolant.
Indeed, take C to be ⊥: then we have A T I and I, B T ⊥.

Lemma 2. Let Π be a local closed AB-derivation of a clean formula C. Then there ex-
ists a C-interpolant of A and B. Moreover, this C-interpolant is a boolean combination
of conclusions of symbol-eliminating inferences of Π .

Proof. The proof is by induction on the number of inferences in Π . If Π consists of
a single formula C, then by property (AB1) of AB-derivation we should consider the
following cases: A T C (so C is justified by A) and B T C (so C is justified by
B). Consider the first case. We claim that C is a C-interpolant. Indeed, (C1) and (C2)
are obvious since I coincides with C. (C3) becomes ¬C,A T C and is implied by
A T C. Finally, (C4) becomes C,B T C and holds trivially.

For the second case we claim that ¬C is a C-interpolant. Indeed, (C1) and (C2) are
obvious as in the previous case. (C3) becomes ¬C,A T ¬C and is trivial. Finally,
(C4) becomes ¬C,B T C and is implied by B T C.

Now suppose that Π consists of more than one formula. Consider the last inference
of the derivation

C1 · · · Cn

C
.

Let S be the set of formulas {C1, . . . , Cn}. Let us consider the following three cases.

1. S contains a dirty formula and S ⊆ LA (note that in this case C is justified by A);
2. S contains a dirty formula and S ⊆ LB (in this case C is justified by B).
3. S ⊆ L (that is, all premises of the inference are clean);

By the property (L1) of local derivations, these three cases cover all possibilities. We
will show how to build a C-interpolant in each of the cases.
Case 1 (C is justified by A). Consider the largest sub-derivation Π ′ of Π deriving C
and satisfying Lemma 1. This sub-derivation has zero or more clean leaves C1, . . . , Cn

justified by B and one or more leaves in the languageLA implied by A. Without loss of
generality we assume that there is exactly one leaf D of the latter kind (if there is more
than one, we can take their conjunction as D). By the soundness property of derivations
we have C1, . . . , Cn, D T C, which implies C1, . . . , Cn, A T C. By the induction
hypothesis, for all j = 1, . . . , n one can build a Cj -interpolant Ij of A and B satisfying
the conditions of the lemma. We claim that

I
def= (C1 ∨ I1) ∧ . . . ∧ (Cn ∨ In) ∧ ¬(C1 ∧ . . . ∧Cn)

is a C-interpolant of A and B. We have to prove ¬C,A T I and I, B T C. Since
each Ij is a Cj-interpolant of A and B, we have A T Cj ∨ Ij , for all j = 1, . . . , n.
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In addition, we have C1, . . . , Cn, A T C, and so ¬C,A T ¬(C1 ∧ . . . ∧ Cn). This
proves ¬C,A T I .

It remains to prove I, B T C. We will prove a stronger property I, B T ⊥. By
the induction hypothesis we have Ij , B T Cj , for all j = 1, . . . , n. But I  Ij ∨ Cj ,
hence I, B T Cj for all j = 1, . . . , n. Finally, we have I  ¬(C1 ∧ . . . ∧ Cn), which
yields I, B T ⊥.

Note that I in this proof is a boolean combination of C1, . . . , Cn, I1, . . . , In, which
implies that it is a boolean combination of conclusions of symbol-eliminating
inferences.
Case 2 (C is justified by B). Consider the largest sub-derivation Π ′ of Π deriving C
and satisfying Lemma 1. This sub-derivation has zero or more clean leaves C1, . . . , Cn

justified by A and one or more leaves in the language LB implied by B. As in the
previous case, we assume that there is exactly one leaf D of the latter kind. By the
induction hypothesis, for all j = 1, . . . , n one can build a Cj-interpolant Ij of A and B
satisfying the conditions of the lemma. We claim that

I
def= (C1 ∨ I1) ∧ . . . ∧ (Cn ∨ In)

is a C-interpolant of A and B. The proof is similar to case 1.
Case 3 (All Premises are Clean). In this case one can build a C-interpolant as in the
previous cases by replacing D by �. �
This lemma implies the following key result.

Theorem 4. Let Π be a closed local AB-refutation. Then one can extract from Π in
linear time a reverse interpolant I of A and B. This reverse interpolant is a boolean
combination of conclusions of symbol-eliminating inferences of Π . �
When we speak about “linear time” in this theorem we mean that we build a dag rep-
resentation of the interpolant. As a corollary of this theorem we obtain the following
one.

Theorem 5. Let Π be a closed local AB-refutation. Then one can extract from Π in
linear time a reverse interpolant I of A and B. This interpolant is ground if all formulas
in Π are ground. �
If all formulas in the derivation are universal, the reverse interpolant is a boolean combi-
nation of universal formulas but not necessarily a universal formula. Example 1 shows
that this result cannot be improved, since there may be no universal reverse interpolant
even when all formulas in the local derivation are universal.

It is interesting to consider the use of interpolants in verification in view of this the-
orem. Most papers on the use of interpolation outside of propositional logic do not use
the interpolant per se, but use the set of atoms occurring in some interpolant extracted
from a proof [8]. Theorem 4 says that this set of atoms is exactly the set of atoms
occurring in the conclusions of symbol-eliminating inferences. There is also a strong
evidence that symbol elimination is a key to finding loop invariants [13]. This poses an
interesting problem of studying symbol elimination in various theories. More precisely,
given formulas A and B, we are interested in formulas C such that C is a conclusion of
a symbol-eliminating inference in a derivation from A and B.
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4 Superposition and Interpolation

In this section we investigate extraction of interpolants from superposition refutations.
This is motivated by potential applications of such interpolants to verification. We con-
sider only ground formulas and two kinds of superposition calculus: the standard one
and its extension LASCA from [12].

We have already pointed out using Example 1 that the result on extracting inter-
polants from superposition proofs in [18] is incorrect. The flaw in the proofs of this
paper is as follows. It cites (without proof) the following property of the superposition
calculus: if a clause C is implied by a saturated set of clauses S, then C is implied by
a subset of S consisting of clauses strictly smaller than C. This property does not hold
even if we use the subset consisting of clauses smaller than or equal to C. For example,
the set consisting of a single clause f(a) �� f(b) is saturated and a �� b follows from it
but a �� b is strictly smaller than f(a) �� f(b) in all simplification orderings.

In the rest of this section, unless stated otherwise, we assume to deal with ground
formulas only. A detailed description of the superposition calculus can be found in
[20], see [20,12] for more details. The calculus LASCA [12] for ground linear rational
arithmetic and uninterpreted functions is given in Figure 1. It is a two-sorted theory and
uses the symbol = for equality on the sort of rationals and the symbol � for equality
on the second sort. In all rules we have the condition l 	 r. The standard superposition
calculus for ground formulas can be obtained from LASCA by

• removing all arithmetical rules;
• replacing equality modulo AC =AC by the syntactic equality.
• Replacing the ⊥-elimination rule with the equality resolution rule

s �� s ∨ C

C
.

Let us call a simplification ordering 	 on ground terms separating if each dirty
ground term is greater in this ordering than any clean ground term. It is not hard to argue
that such orderings exists. For example, both the Knuth-Bendix [11] and the LPO [9]
families of orderings can be made into separating orderings using the following ideas. In
the case of KBO one should use ordinal-based KBO of [14], make every dirty symbol of
weight w have weight wω and preserve the weights of clean symbols. Then the weight
of every dirty ground term will be at least ω and the weight of every clean ground
term will be finite. Likewise, for LPO we should make all dirty symbols have higher
precedence than any clean symbol. Note that in practice KBO (with finite weights) and
LPO and the only orderings used in theorem provers.1

Theorem 6. If 	 is separating, then every AB-derivation in LASCA is local.

Proof. We will prove by induction that every inference in an AB-derivation is local.
Note that this implies that every clause in this inference has either only symbols in LA

or only symbols in LB .

1 Vampire [21] uses KBO where predicates may have weights greater than ω.
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Ordered Paramodulation:

C ∨ l � r L[l′]p ∨D

C ∨D ∨ L[r]p

(i) l =AC l′,
(ii) (l � r) � C.

Equality Factoring:

C ∨ t′ � s′ ∨ t � s

C ∨ s 
� s′ ∨ t � s′

(i) t =AC t′,
(ii) (t � s) � C ∨ t′ � s′.

Gaussian Elimination:

C ∨ l = r L[l′]p ∨D

C ∨D ∨ L[r]p

(i) l =AC l′,
(ii) (l = r) � C.

Theory Equality Factoring:

C ∨ l′ = r′ ∨ l = r

C ∨ r > r′ ∨ r′ > r ∨ l = r′

(i) l =AC l′,
(ii) (l = r) � C ∨ l′ = r′.

Fourier-Motzkin Elimination:

C ∨ l > r −l′ > r′ ∨D

C ∨D ∨ −r′ > r

(i) l =AC l′,
(ii) (l > r) � C,

(iii) there is no l′′ > r′′ ∈ C such that l′′ =AC l
(iv) (−l′ > r′) � D
(v) there is no −l′′ > r′′ ∈ D such that l′′ =AC l.

Inequality Factoring (InF1):

C ∨ ±l′ > r′ ∨ ±l > r

C ∨ r > r′ ∨ ±l > r

(i) l =AC l′,
(ii) (±l > r) � C ∨ ±l′ > r′.

Inequality Factoring (InF2):

C ∨ ±l′ > r′ ∨ ±l > r

C ∨ r′ > r ∨ ±l > r′

(i) l =AC l′,
(ii) (±l > r) � C ∨ ±l′ > r′.

⊥-Elimination:

C ∨ ⊥
C

(i) C contains only �,⊥ literals.

Fig. 1. Linear Arithmetic Superposition Calculus (LASCA) for ground clauses
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We will only consider the ordered paramodulation rule:
Ordered Paramodulation:

C ∨ l � r L[l′]p ∨D

C ∨D ∨ L[r]p

(i) l =AC l′,
(ii) (l � r) � C.

The proof for all other rules is similar.
By the induction hypothesis both premises have either only symbols in LA or only

symbols in LB . Note that if the left premise is clean, then the inference is local: indeed,
all symbols occurring in the conclusion also occur in premises. Suppose that the left
premise is dirty. Without loss of generality we assume that it belongs to LA. Note that
the conditions l 	 r and (l � r) 	 C guarantee that l is the greatest term in the left
premise: this implies that l contains a dirty symbol. But the right premise contains a
term l′ that is AC-equal to l, so l′ contains this symbol too. Hence, the right premise
cannot contain dirty symbols occurring in B and so the inference is local. �

Theorems 4 and 6 yield a new algorithm for generating interpolants in the combination
of linear rational arithmetic and superposition calculus. Namely, one should search for
proofs in LASCA using a separating ordering and then extract interpolants from them.

5 Interpolation and Invariant Generation

In this section we discuss the use of interpolants in invariant generation for proving loop
properties. For proving an assertion for a program containing loops one needs to find
loop invariants. Jhala and McMillan [8] propose the following technique for extracting
predicates used in loop invariants. Suppose that P (s̄) is a post-condition to be proved,
where s̄ is the set of state variables of the program; the program variables are also
considered as constants in a first-order language. One can generate one or more loop
unrollings and consider the corresponding set of paths, each path leading from an initial
state to a state where P (s̄) must hold. Take any such path π, which uses n transitions
represented by quantifier-free formulas

T1(s̄, s̄′), . . . , Tn(s̄, s̄′).

Let Q(s̄) be a formula representing the set of initial states. Then one can write the
(ground) formula

Q(s̄0) ∧ T1(s̄0, s̄1) ∧ . . . ∧ Tn(s̄n−1, s̄n) ∧ ¬P (s̄n), (1)

expressing that we can follow the path π from an initial state to a state satisfying the
negation of P (s̄n). If (1) is satisfiable, then the path gives a counterexample for the
post-condition P (s̄n). Otherwise (1) is unsatisfiable, so it should have some kind of
refutation. For simplicity consider the case when n = 1, then (1) becomes

Q(s̄0) ∧ T1(s̄0, s̄1) ∧ ¬P (s̄1).

This is a formula containing constants referring to two states. Note that the reverse
interpolant of Q(s̄0)∧T1(s̄0, s̄1) and¬P (s̄1) is a state formula using only the constants
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s̄1. It is proposed to generate such a reverse interpolant from the proof and try to build
an invariant state formula from the collection of atoms occurring in interpolants for
all paths. It turns out that this approach works well in practice, however notice that
what is used in the invariant is not the interpolant but only atoms occurring in it. We
know that, for local proofs, these atoms are exactly those occurring in conclusions of
symbol-eliminating inferences. Jhala and McMillan [8] define a more general notion of
interpolant referring to a sequence of formulas; we can reformulate all results of this
section for this more general notion too.

Let us make a few observations suggesting that symbol elimination is another in-
teresting property in this context. Note that [8] defines signatures in such a way that
all symbols apart from the state constants are clean. Therefore a reverse interpolant is
always sought for a pair of formulas A(s̄0, s̄1) and B(s̄1), where s̄0 are the only dirty
symbols.

Theorem 7. The formula I defined as ∃x̄A(x̄, s̄1) is a reverse interpolant of A(s̄0, s̄1)
and B(s̄1). Moreover, it is the strongest interpolant of these formulas, that is, for every
other interpolant I ′ we have I T I ′. �

The strongest reverse interpolant I from this theorem is not a ground formula. How-
ever, if T has quantifier elimination, one can obtain an equivalent ground formula by
quantifier elimination. A similar observation is made by Kapur et.al. [10]. This implies,
for example, that the Fourier-Motzkin variable elimination procedure gives interpolants
for the theory of linear rational arithmetic. One can also note that the interpolant I of
Theorem 7 represents the image of the set of all states under the transition having A as
its symbolic representation. The interesting point is that in practice the image turned out
to be not a good formula for generating invariants, see e.g. [16], so it is only interpolants
extracted from refutations that proved to be useful in verification and model checking.

Let us also point out that an interesting related notion has recently been introduced
by Gulwani and Musuvathi [6]. Namely, they call a cover of ∃x̄A(x̄, s̄1) the strongest
ground formula C such that ∃x̄A(x̄, s̄1) T C. In general covers do not necessarily
exist. Evidently, in a theory with quantifier elimination every formula has a cover. Gul-
wani and Musuvathi [6] show that there are theories having no quantifier elimination
property but having the cover property, that is every existential formula has a cover. It
is not hard to argue that the notion of cover captures all ground interpolants:

Theorem 8. Suppose that ∃x̄A(x̄, s̄1) has a cover I . If A(s̄0, s̄1) and B(s̄1) have a
ground interpolant I ′, then I is also a ground interpolant of these formulas and we have
I  I ′. �

6 Related Work

Most of the existing approaches for generating interpolants, for example Henzinger
et.al. [7], McMillan [17], Jhala and McMillan [8] require explicit construction of res-
olution proofs in the combined theory of linear arithmetic with uninterpreted function
symbols. Interpolants are then derived from these proofs. Their method of extraction is
quite complex compared to ours, especially when equality reasoning is involved.
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Cimatti, Griggio and Sebastiani [2] show how to extract interpolants in the combined
theory of linear arithmetic with uninterpreted function symbols. The interpolants are
extracted from proofs produced by an SMT solver.

Unlike the aforementioned works, Rybalchenko and Sofronie-Stokkermans [22] do
not require a priori constructed proofs. Instead, they reduce the problem of generating
interpolants in the combination of the theories of linear arithmetic with uninterpreted
functions to solving constraints in these theories in the hierarchical style of [23]. An ap-
proach for constructing interpolants in combinations of theories over disjoint signatures
is proposed by Yorsh and Musuvathi [25]. Note that [25,22] do not present experiments
of whether interpolants generated using their methods are useful for verification.

Kapur, Majumdar and Zarba [10] discuss connections of interpolation to quantifier
elimination. Some of their results have been cited here.

7 Conclusion

Our results suggest that local proofs and symbol-eliminating inferences can be an in-
teresting alternative to interpolation. Note that one can search for local proofs even for
theories not having the interpolation property. For example, the theory of arrays does
not have this property [10] but there exists a simple axiomatisation of arrays that can be
used in a superposition prover [24,4,5]. This would give an (incomplete) procedure for
generating interpolants or finding symbol-eliminating proofs in the combination of the
theories of uninterpreted functions, linear rational arithmetic and arrays. The procedure
adds an axiomatisation of arrays to the non-ground version of LASCA and searches for
local proofs in the resulting theory. We believe it is an interesting direction for future
research.

Acknowledgments. We thank Konstantin Korovin for stimulating discussions.
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Abstract. In this paper, we investigate the asymptotic complexity of
various predicate abstraction problems relative to the asymptotic com-
plexity of checking an annotated program in a given assertion logic. Un-
like previous approaches, we pose the predicate abstraction problem as
a decision problem, instead of the traditional inference problem. For as-
sertion logics closed under weakest (liberal) precondition and Boolean
connectives, we show two restrictions of the predicate abstraction prob-
lem where the two complexities match. The restrictions correspond to the
case of monomial and clausal abstraction. For these restrictions, we show
a symbolic encoding that reduces the predicate abstraction problem to
checking the satisfiability of a single formula whose size is polynomial in
the size of the program and the set of predicates. We also provide a new
iterative algorithm for solving the clausal abstraction problem that can
be seen as the dual of the Houdini algorithm for solving the monomial
abstraction problem.

1 Introduction

Predicate abstraction [8] is a method for constructing inductive invariants for
programs or transition systems over a given set of predicates P . It has been
an enabling technique for several automated hardware and software verification
tools. SLAM [1], BLAST [11] use predicate abstraction to construct invariants
for sequential software programs. Predicate abstraction has also been used in
tools for verifying hardware descriptions [12] and distributed algorithms [14].
Although predicate abstraction is an instance of the more general theory of
abstract interpretation [5], it differs from most other abstract interpretation
techniques (e.g. for numeric domains [6], shape analysis [17]) in that it does not
require a fixed abstract domain; it is parameterized by decision procedures for
the assertion logic in which the predicates are expressed.

Most previous work on predicate abstraction has been concerned with con-
structing an inductive invariant over a set of predicates P using abstract inter-
pretation techniques. A (finite) abstract domain over the predicates is defined
and the program is executed over the abstract domain until the set of abstract
states do not change. At that point, the abstract state can be shown to be
an inductive invariant. These techniques are usually eager in that the induc-
tive invariant is computed without recourse to the property of interest. The
property directedness is somewhat recovered using various forms of refinements
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(e.g. counterexample-guided [13,3,11], or proof-guided [10] refinements) by vary-
ing the set of predicates. However, these techniques do not usually address the
problem for the case of a fixed set of predicates.

In this paper, we study the problem of predicate abstraction as a decision
problem. For a given program Prog(pre, post , body)

{pre}
while (∗) do body
{post}

where pre and post are assertions, body is loop-free code, and a set of predicates
P , we are interested in the question:

Does there exist a loop invariant I over P such that program Prog can
be proved correct?

We define this decision problem to be InferPA(Prog ,P). By posing the prob-
lem as a decision problem, we do not have to adhere to any particular way to
construct the loop invariant I (say using abstract interpretation), and it allows
us to study the complexity of the problem. Besides, the problem formulation
requires us to search for only those I that can prove the program. This problem
formulation has been first proposed in the context of the annotation inference
problem in ESC/Java [7] for a restricted case, and more recently by Gulwani et
al. [9]. Although the latter has the same motivation as our work, they do not
study the complexity of the predicate abstraction problems.

In this paper, we study the asymptotic complexity of the decision problem
InferPA(Prog ,P) relative to the decision problem Check (Prog , I) which checks
if I is a loop invariant that proves the program correct. Throughout the pa-
per, we assume that the assertion logic of assertions in pre, post and predicates
in P is closed under weakest (liberal) precondition predicate transformer wp,
and also closed under Boolean connectives. The assertion logic determines the
logic in which Check (Prog , I) is expressed. We are also most interested in logics
for which the decision problem is Co-NP complete— this captures a majority
of the assertion logics for which efficient decision procedures have been imple-
mented using Satisfiability Modulo Theories (SMT) solvers [20]. In addition to
propositional logic, this includes the useful theories of uninterpreted functions,
arithmetic, select-update arrays, inductive datatypes, and more recently logics
about linked lists [15] and types in programs [4].

For such assertion logics, we show that if checking Check (Prog , I) is in
PSPACE, then checking InferPA(Prog ,P) is PSPACE complete. We also
study the problem of template abstraction [19,21] where the user provides a for-
mula J with some free Boolean variablesW , and is interested in finding whether
there is a valuation σW of W such that Check (Prog , J [σW/W ]) is true. We call
this decision problem InferTempl (Prog , J,W), and show InferTempl(Prog , J,W)
is ΣP

2 complete (NPNP complete), when Check (Prog , I) is in Co-NP.
Given that the general problem of predicate or template abstraction can be

much more complex than checking Check (Prog , I), we focus on two restrictions:
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– InferMonome(Prog ,P): Given a set of predicates P , does there exist aR ⊆ P
such that Check (Prog ,

∧
p∈R p) is true, and

– InferClause(Prog ,P): Given a set of predicates P , does there exist a R ⊆ P
such that Check (Prog ,

∨
p∈R p) is true.

These problems can also be seen as restrictions on the template abstraction
problem. For example, the problem InferMonome(Prog ,P) can also be inter-
preted as InferTempl(Prog , J,W) where J is restricted as (

∧
p∈P bp =⇒ p) and

W = {bp|p ∈ P}.
We show that for both InferMonome(Prog ,P) and InferClause(Prog ,P), the

complexity of the decision problem matches the complexity of Check (Prog , I).
For instance, when the complexity of Check (Prog , I) is Co-NP complete, both
InferMonome(Prog ,P) and InferClause(Prog ,P) are Co-NP complete. We ob-
tain these results by providing a symbolic encoding of both problems into logical
formulas, such that the logical formulas are satisfiable if and only if the infer-
ence problems return false. The interesting part is that these logical formulas
are polynomially bounded in Prog and P .

The symbolic encoding of the inference problems also provides algorithms
to answer these decision problems, in addition to establishing the complexity
results. In the process, we also describe a new iterative algorithm for check-
ing InferClause(Prog ,P) that can be seen as the dual of an existing algorithm
Houdini [7] that checks InferMonome(Prog ,P).

2 Background

We describe some background on programs and their correctness, assertion log-
ics, weakest liberal preconditions, and motivate the inference problems.

2.1 A Simple Programming Language for Loop-Free Programs

Figure 1 describes a simple programming language SimpPL for loop-free pro-
grams. The language supports scalar variables Scalars and mutable maps or
arrays Maps . The language supports arithmetic operations on scalar expressions
Expr and select-update reasoning for array expressions MapExpr . The symbols
sel and upd are interepreted symbols for selecting from or updating an array.
The operation havoc assigns a type-consistent (scalar or map) arbitrary value
to its argument. s; t denotes the sequential composition of two statements s and
t, s & t denotes a non-deterministic choice to either execute statements in s
or t. This statement along with the assume models conditional statements. For
example, the statement if (e) {s} is desugared into {assume e; s} & assume ¬e.

The assertion language in Formula is extensible and contains the theories
for equality, arithmetic, arrays, and is closed under Boolean connectives. Any
formula φ ∈ Formula can be interpreted as a set of states of a program that
satisfy φ. For any s ∈ Stmt , and φ ∈ Formula, the weakest liberal precondition
wp(s, φ) corresponds to a formula such that from any state in wp(s, φ), the
statement s does not fail any assertions and any terminating execution ends in
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x, y ∈ Scalars
X, Y ∈ Maps
e ∈ Expr ::= x | c | e± e | sel(E, e)
E ∈ MapExpr ::= X | upd(E, e, e)
s, t ∈ Stmt ::= skip | assert φ | assume φ | x := e | X := E

havoc x | havoc X | s; s | s � s

φ, ψ ∈ Formula ::= e ≤ e |φ ∧ φ | ¬φ | . . .

Fig. 1. A simple programming language SimpPL and an extensible assertion logic
Formula

wp(skip, φ) = φ
wp(assert ψ, φ) = ψ ∧ φ
wp(assume ψ, φ) = ψ =⇒ φ
wp(x := e, φ) = φ[e/x]
wp(X := E, φ) = φ[E/X]

wp(havoc x, φ) = φ[v/x]
wp(havoc X, φ) = φ[V/X]
wp(s; t, φ) = wp(s,wp(t, φ))
wp(s � t, φ) = wp(s, φ) ∧ wp(t, φ)

Fig. 2. Weakest liberal precondition for the logic without any extensions. Here v and
V represent fresh symbols.

a state satisfying φ. For our assertion logic (without any extensions), Figure 2
shows the wp for statements in the programming language. For more complex
extensions to the assertion logic (e.g. [15]), the rule for wp(X := E, φ) is more
complex. Although applying wp can result in an exponential blowup in the size
of a program, standard methods generate a linear-sized formula that preserves
validity by performing static single assignment (SSA) and introducing auxiliary
variables [2].

We say that the assertion logic is closed under wp (for SimpPL) when for
any φ ∈ Formula and for any s ∈ Stmt , wp(s, φ) ∈ Formula. In the rest of the
paper, we will abstract from the details of the particular assertion logic, with
the following restrictions on the assertion logic:

– the assertion logic is closed under Boolean connectives (i.e. subsumes propo-
sitional logic).

– the assertion logic is closed under wp.
– wp distributes over ∧, i.e., wp(s, φ ∧ ψ) ≡ wp(s, φ) ∧ wp(s, ψ).

A model M assigns a type-consistent valuation to symbols in a formula. Any
model assigns the standard values for interpreted symbols such as =, +, −, sel,
upd, and assigns an integer value to symbols in Scalars and function values
to symbols in Maps . For a given model M, we say that the model satisfies a
formula φ ∈ Formula (written as M |= φ) if and only if the result of evaluating
φ in M is true; in such a case, we say that φ is satisfiable. We use |= φ to denote
that φ is valid when φ is satisfiable for any model.

Definition 1. For any φ, ψ ∈ Formula and s ∈ Stmt, the Floyd-Hoare triple
{φ} s {ψ} holds if and only if the logical formula φ =⇒ wp(s, ψ) is valid.
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Intuitively, the Floyd-Hoare triple {φ} s {ψ} captures the specification that from
a state satisfying φ, no execution of s fails any assertions and every terminating
execution ends in a state satisfying ψ. Given our assumptions on the assertion
logic Formula, checking the correctness of a program in SimpPL reduces to
checking validity in the assertion logic.

2.2 Loops and Loop Invariants

Having defined the semantics of loop-free code blocks, consider the following class
of programs Prog(pre, post , body) below (ignore the annotation {inv I} initially)
where pre, post ∈ Formula and body ∈ Stmt :

{pre}
while (∗){inv I} do body
{post}

Since this program can have unbounded computations due to the while loop,
generating a verification condition requires a loop invariant. This is indicated by
inv annotation. The loop invariant I is a formula in Formula. The Floyd-Hoare
triple for Prog holds if and only if there exists a loop invariant I such that the
three formula are valid:

|= pre =⇒ I
|= I =⇒ wp(body , I)
|= I =⇒ post

For any such program Prog(pre, post , body), we define Check (Prog , I) to return
true if and only if all the three formulas are valid. Intuitively, Check (Prog , I)
checks whether the supplied loop invariant I holds on entry to the loop, is pre-
served by an arbitrary loop iteration and implies the postcondition.

We now define the decision problem that corresponds to inferring the loop in-
variant I for Prog . For a given program Prog(pre, post , body), Infer(Prog) returns
true if and only if there exists a formula I ∈ Formula such that Check (Prog , I)
is true.

Although Check (Prog , I) is efficiently decidable for our programming lan-
guage for a rich class of assertions (including the one shown in Figure 1), check-
ing Infer(Prog) is undecidable even when Prog consists of only scalar integer
variables and include arithmetic operations — one can encode the reachability
problem for a two counter machine, checking which is undecidable. Therefore,
most approaches search for I within some restricted space. Predicate abstraction
is one such technique that searches for an I within a finite space.

3 Complexity of Predicate and Template Abstraction

In this section, we study the complexity of two inference techniques (relative to
the complexity of Check (Prog , I)) that search for loop invariants over a finite
space:
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1. The first technique is based on predicate abstraction, where the loop invariant
is searched over Boolean combination of an input set of predicates.

2. The second technique is based on templates, where the loop invariant is
searched over the valuations of a set of free Boolean variables in a candidate
template assertion.

3.1 Predicate Abstraction

Predicate abstraction [8], an instance of the more general theory of abstract in-
terpretation [5], is a mechanism to make the Infer (Prog) problem more tractable
by searching for I over restricted formulas. In predicate abstraction, in addition
to Prog , we are given a set of predicates P = {p1, . . . , pn} where pi ∈ Formula.
Throughout this paper, we assume that the set P is closed under negation, i.e.,
if p ∈ P then ¬p ∈ P . Instead of looking for a loop invariant I over arbitrary
formulas, predicate abstraction restricts the search to those formulas that are
a Boolean combination (using ∨ or ∧) over the predicates in P . More formally,
for a program Prog(pre, post , body) and a set of predicates P , InferPA(Prog ,P)
returns true if and only if there exists a formula I ∈ Formula which is a Boolean
combination over P such that Check (Prog , I) is true.

Theorem 1. If checking Check(Prog , I) is in PSPACE in the size of Prog
and I, then checking InferPA(Prog ,P) is PSPACE complete in the size of Prog
and P.

Proof sketch. Showing that InferPA(Prog ,P) is PSPACE hard is easy. We can
encode the reachability problem for a propositional transition system (which is
PSPACE complete) into InferPA(Prog ,P) by encoding the transition system
as Prog , and setting P to be the set of state variables in the transition system.

To show that InferPA(Prog ,P) is in PSPACE, we will provide a non-
deterministic algorithm for checking if ¬post can be reached by an abstract
interpretation of the program {pre} while (∗) do body {post} over the set of
predicates in P . Moreover, the algorithm will only use polynomial space in Prog
and P .

The abstract state of the program corresponds to an evaluation of the pred-
icates in P to {true, false}. The algorithm performs an abstract run of size
upto 2|P| to determine if ¬post can be reachable starting from pre. The non-
deterministic algorithm returns false if and only if some abstract run ends up in
a state satisfying ¬post .

We need to store two successive states in a run and the length of the run,
both of which only require linear space over the inputs. Moreover, to check that
an abstract state is a successor of another, one needs to make a query to check
that there is some concrete transition in Prog between the concretizations of the
two abstract states — this can be done in PSPACE since the decision problem
is in PSPACE. ��
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3.2 Template Abstraction

In template abstraction [18,9,21], the user provides a template formula J ∈
FormulaW in addition to Prog(pre, post , body), where

– W = {w1, w2, . . . , wm} is a set of Boolean valued symbols, and
– FormulaW extends Formula to contain formulas whose symbols range over

both state variables (Scalars and Maps) and W .

Given J , the goal is to infer a loop invariant I by searching over the different
valuations of the symbols in W .

For a set of symbols X , let σX denote an assignment of values of appropriate
types to each symbols in X . For any expression e and an assignment σX , e[σX/X ]
replaces a symbol x ∈ X in e with σX(x). For a program Prog and a template
J ∈ FormulaW , InferTempl(Prog , J,W) returns true if and only if there exists
an assignment σW to the symbols inW such that Check (Prog , J [σW/W ]) is true.

Example 1. Consider the simple program {x = 0∧y = 10} while (y �= 0) do x :=
x+1; y := y−1; {x = 10}. In our language, the program would be written as {x =
0∧y = 10} while (∗) do assume y �= 0;x := x+1; y := y−1; {y = 0 =⇒ x = 10}.
A potential loop invariant that proves the program is x+y = 10. A template J for
which InferTempl(Prog , J,W) is true is (w1 =⇒ x + y = 10)∧(w2 =⇒ x = y).
Clearly, for the assignment σw1 = true and σw2 = false, the template is a loop
invariant.

The complexity class ΣP
2 contains all problems that can be solved in NP using

an NP oracle.

Theorem 2. If checking Check(Prog , I) is in Co-NP in the size of Prog and I,
then checking InferTempl(Prog , J,W) is ΣP

2 complete in Prog, J , and W.

Proof. The problem is in ΣP
2 because we can non-deterministically guess an

assignment of W and check if the resulting J is an inductive invariant. The NP
oracle used in this case is a checker for ¬Check (Prog , I).

On the other hand, one can formulate InferTempl(Prog , J,W) as the formula
∃W .Check (Prog , J). Given a quantified Boolean formula (QBF) ∃X.∀Y.φ(X,Y )
where φ is quantifier-free, for which checking the validity is ΣP

2 complete, we
can encode it to InferTempl(Prog , J,W), by constructing pre = post = true,
body = skip, W = X and J = φ(X,Y ). ��
Having shown that the complexity of both predicate abstraction and template
abstraction are considerably harder than checking an annotated program, we
will focus on two restricted versions of the abstraction problem for monomials
and clauses. As mentioned in the introduction, these problems can be seen as
restrictions of either predicate abstraction or template abstraction.

4 Monomial Abstraction

For any set R ⊆ P , a monome over R is the formula
∧

p∈R p. For a set of
predicates P , let us define InferMonome(Prog ,P) to return true if and only if
there exists R ⊆ P such that Check (Prog ,

∧
p∈R p) is true.
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4.1 Houdini Algorithm

Figure 3 describes an algorithm FindInv for solving the InferMonome problem.
Initially, ignore the shaded regions of the algorithm. The algorithm iteratively
prunes the set of predicates in the invariant starting from P , removing a predi-
cate whenever RemovesPredicate holds. The algorithm terminates with a FAIL
when FailsCheck holds, denoting that there is no monomial invariant that sat-
isfies the postcondition post . On the other hand, the algorithm terminates with
SUCCESS (R) when it finds an invariant. It is easy to see that the procedure
FindInvAux terminates within a recursion depth of |P| since its argument R
monotonically decreases along any call chain.

Lemma 1. The procedure FindInv(P) satisfies the following:

1. FindInv (P) returns FAIL if and only if InferMonome(Prog ,P) is false.
2. If FindInv (P) returns SUCCESS (R), then for any S ⊆ P such that

Check (Prog ,
∧

p∈S p), we have S ⊆ R.

The algorithm is a variant of the Houdini algorithm in ESC/Java [7], where
RemovesPredicate considers each predicate p in isolation instead of the conjunc-
tion (

∧
q∈S q). The Houdini algorithm solves the InferMonome(Prog ,P) problem

with at most |P| number of theorem prover calls. However, this only provides
an upper bound on the complexity of the problem. For example, making |P|
number of queries to a Co-NP complete oracle (a theorem prover) does not

FailsCheck(S ,M)
�
= M |= (

∧
q∈S q) ∧ ¬post

RemovesPredicate(S ,M, p)
�
= ∨M |= pre ∧ ¬p
∨M |= (

∧
q∈S q) ∧ ¬wp(body , p)

proc FindInvAux (R)
if (exists a model M s.t. FailsCheck(R,M))
Mguess ←M;
return FAIL;

if (exists q ∈ R and model M s.t. RemovesPredicate(R,M, q))
Mguess ←M;
Qguess+1 ← Qguess ∪ {q};
guess ← guess + 1;
return FindInvAux (R \ {q});

return SUCCESS (R);

proc FindInv(P)
guess ← 1;
Qguess ← {};
FindInvAux (P);

Fig. 3. Procedure to construct either a monomial invariant or a witness to show its
absence. The shaded lines represent extensions for computing the witness.
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establish that the complexity of the inference problem is Co-NP complete; it
only establishes that the upper bound of the complexity is PNP.

In the next subsection, we provide a model-theoretic justification for the cor-
rectness of FindInv . Our construction will provide insight into the complexity
of InferMonome(Prog ,P) relative to the complexity of Check (Prog , I).

4.2 A Model-Theoretic Proof of FindInv

For a guess ∈ N, an indexed set of models {Mi}i, an indexed set of sets of
predicates {Qi}i, we define a predicate NoMonomeInv (P , guess , {Mi}i, {Qi}i),
that is true if and only if:

1. 1 ≤ guess ≤ |P|+ 1, and
2. Q1 = {}, and
3. For 1 ≤ i < guess , Qi+1 \ Qi = {pi} for some pi ∈ P , and
4. For each 1 ≤ i < guess, and for pi ∈ Qi+1 \ Qi, either Mi |= pre ∧ ¬pi or
Mi |= (

∧
p∈P\Qi

p) ∧ ¬wp(body , pi), and
5. Mguess |= (

∧
p∈P\Qguess

p) ∧ ¬post .

The following three lemmas, whose proofs are given in the appendix, establish the
connection between the InferMonome problem, the NoMonomeInv predicate,
and the FindInv algorithm.

Lemma 2. If FindInv (P) returns FAIL, then NoMonomeInv (P , guess , {Mi}i,
{Qi}i)holds on the values computed by the procedure.

Lemma 3. If NoMonomeInv(P , guess, {Mi}i, {Qi}i) holds for some guess ∈
N, a set of models M1, . . . ,Mguess, and sets of predicates Q1, . . . ,Qguess , then
InferMonome(Prog ,P) is false.

Lemma 4. If FindInv (P) returns SUCCESS (R), then Check (Prog ,
∧

p∈R p) is
true, and therefore InferMonome(Prog ,P) is true.

The proofs of these lemmas requires the use of the additional shaded lines in
the Figure 3, which compute the witness to show that no monomial invariant
suffices to prove the program. Together, these three lemmas allow us to conclude
that InferMonome(Prog ,P) is false iff NoMonomeInv (P , guess , {Mi}i, {Qi}i)
holds for some guess ∈ N, a set of models M1, . . . ,Mguess, sets of predicates
Q1, . . . ,Qguess. This fact is used to define the symbolic encoding of the problem
InferMonome(Prog ,P) in the next subsection.

4.3 Symbolic Encoding and Complexity of InferMonome(Prog , P)

In this section, we provide a symbolic encoding of InferMonome(Prog ,P). That
is, given a program Prog(pre, post , body) and a set of predicates P , we will con-
struct a formula SymbInferMonome(Prog ,P) which is satisfiable if and only if
InferMonome(Prog ,P) is false. The formula can be seen as a symbolic encoding
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of an iterative version of the FindInv algorithm that symbolically captures all ex-
ecutions of the algorithm for any input. Finally, we will use the encoding to relate
the complexity of InferMonome(Prog ,P) to the complexity of Check (Prog , I).

The following notations are used:

– The set of predicates is P , and n = |P|
– For any formula φ, φi represents the formula with any variable x is replaced

with a fresh variable xi. We will use this for each predicate p ∈ P , pre, post
and wp(body , p).

– The symbols bj
p for a predicate p denotes that the predicate p was removed

from consideration for the invariant in the j-th iteration.

For each p ∈ P and i ∈ [1, n + 1], we define

present i
p
�
=
∧

j∈[0,i) ¬bj
p

For each i ∈ [1, n], we define

iter i
�
= ∨ prei ∧

∧
p∈P(bi

p =⇒ ¬pi)
∨
∧

p∈P((present i
p =⇒ pi) ∧ (bi

p =⇒ ¬wp(body , p)i))

For each i ∈ [1, n + 1], we define

check i
�
=
∧

p∈P (present i
p =⇒ pi) ∧ ¬post i

Finally, the desired symbolic encoding SymbInferMonome(Prog ,P) is the fol-
lowing formula:

∧ 1 ≤ guess ≤ n + 1
∧
∧

p∈P ¬b0p
∧ (
∧

i∈[1,n] i < guess =⇒ Σp∈Pb
i
p = 1) ∧ (

∧
p∈P Σi∈[1,n](i ≤ guess ∧ bi

p) ≤ 1)
∧
∧

i∈[1,n] i < guess =⇒ iter i

∧
∧

i∈[1,n+1] i = guess =⇒ check i

To get some intuition behind the formula, observe that each of the five con-
juncts in this formula resembles closely the five conjuncts in the definition of
NoMonomeInv (P , guess, {Mi}i, {Qi}i). The symbols shared across the differ-
ent i ∈ [1, n + 1] are the bi

p symbols and guess. This is similar to the definition
of NoMonomeInv (P , guess, {Mi}i, {Qi}i), where the different models in {Mi}i

only agree on the evaluation of the sets Qi and guess. The role of the bi
p variable

is precisely to encode the sets Qi+1; bi
p = true denotes that {p} = Qi+1 \Qi. The

second conjunct denotes that Q1 = {} where no predicate has been removed.
The third conjunct has two parts. The first part i < guess =⇒ Σp∈Pb

i
p = 1

denotes that Qi+1 and Qi differ by exactly one predicate, for any i < guess .
The second part

∧
p∈P Σi∈[1,n](i ≤ guess ∧ bi

p) ≤ 1 denotes that a predicate is
removed at most once in any one of the guess iterations. Similarly, the fourth
conjunct justifies the removal of the predicate in Qi+1 \ Qi.
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Theorem 3. The formula SymbInferMonome(Prog ,P) is satisfiable if and only
if InferMonome(Prog ,P) is false.

Proof sketch. We provide a proof sketch in this paper.
“ =⇒ ”: Let us assume that SymbInferMonome(Prog ,P) is satisfiable. Given

a satisfying model M to SymbInferMonome(Prog ,P), one can split M into a
set of models {Mi}i where Mi assigns values to the i-th copy of the variables
in φi, only agreeing on the values of bi

p and guess . Also, the valuation of the bi
p

can be used to construct the sets Qi; Qi+1 ← Qi ∪ {p} when bi
p is true in M.

“⇐=”: Let us assume that InferMonome(Prog ,P) returns false. Then by
Lemma 2, we can construct a model M by the union of the models {Mi}i,
and construct an evaluation for bi

p as follows: If Qi+1 \ Qi = {p}, then as-
sign bi

p to true. In all other cases, assign bi
p to be false. The model M satisfies

SymbInferMonome(Prog ,P). ��

Theorem 4. For an assertion logic closed under wp and Boolean connectives, the
complexity of InferMonome(Prog ,P) matches the complexity of Check (Prog , I).

Proof sketch. Since SymbInferMonome(Prog ,P) results in a formula which is
polynomial in P and the size of wp(body , p) for any predicate p ∈ P , the com-
plexity of checking the satisfiability of SymbInferMonome(Prog ,P) is simply the
complexity of checking assertions in the assertion logic in which Check (Prog , I)
is expressed. ��

Corollary 1. If the decision problem for Check(Prog , I) is Co-NP complete,
then the decision problem for InferMonome(Prog ,P) is Co-NP complete.

The encoding SymbInferMonome(Prog ,P) can also be seen as an alternative
algorithm for the InferMonome(Prog ,P) problem. However, when the formula
SymbInferMonome(Prog ,P) is unsatisfiable, it does not readily provide us with
the invariant I. We believe this can be extracted from the unsatisfiable core, and
we are currently working on it.

5 Clausal Abstraction

For any set R ⊆ P , a clause over R is the formula
∨

p∈R p. For a program
Prog(pre, post , body) and a set of predicates P , let us define InferClause(Prog ,P)
to return true if and only if there exists a R ⊆ P such that Check (Prog ,

∨
p∈R p)

is true.

5.1 Dual Houdini Algorithm

First, let us describe an algorithm for solving the InferClause(Prog ,P) problem.
Recall that the Houdini algorithm for solving the InferMonome(Prog ,P) prob-
lem starts with the conjunction of all predicates in P and iteratively removes
predicates until a fixpoint is reached. Conversely, the dual Houdini algorithm
starts with the disjunction of all predicates in P and removes predicates until a
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fixpoint is reached. The algorithm invokes FindInv(P) (in Figure 3), only this
time using the following definitions of FailsCheck and RemovesPredicate macros:

FailsCheck (S,M)
�
= M |= (

∧
q∈S ¬q) ∧ pre

RemovesPredicate(S,M, p) �= ∨M |= ¬post ∧ p
∨M |= ¬wp(body ,

∨
q∈S q) ∧ p

In the remainder of this section, we let FindInv(P) denote the algorithm with the
above definitions of FailsCheck (S,M) and RemovesPredicate(S,M, p), rather
than those given in Figure 3.

Theorem 5. The procedure FindInv(P) enjoys the following properties:

1. FindInv (P) returns FAIL if and only if InferClause(Prog ,P) is false.
2. If FindInv (P) returns SUCCESS (R), then for any S ⊆ P such that

Check (Prog ,
∨

p∈S p), we have S ⊆ R.

The theorem signifies that the dual Houdini constructs the weakest clause I that
satisfies Check (Prog , I), as opposed to Houdini, which computes the strongest
monome I that satisfies Check (Prog , I). This is not surprising because Houdini
solves the problem in the forward direction starting from pre, whereas the dual
algorithm solves the problem backwards staring from post .

The structure of the rest of the section is similar to Section 4. For brevity, we
mostly state the analogues of lemmas, theorems and symbolic encoding in the
next two subsections, without details of the proofs.

5.2 Model-Theoretic Proof

For a guess ∈ N, an indexed set of models {Mi}i, an indexed set of sets of
predicates {Qi}i, we define a predicate NoClauseInv (P , guess , {Mi}i, {Qi}i),
that is true if and only if the following conditions hold:

1. 1 ≤ guess ≤ |P|+ 1,
2. Q1 = {},
3. For 1 ≤ i < guess , Qi+1 \ Qi = {pi} for some pi ∈ P ,
4. For each 1 ≤ i < guess , and for pi ∈ Qi+1 \ Qi, either Mi |= ¬post ∧ pi or
Mi |= ¬wp(body ,

∨
p∈P\Qi

p) ∧ pi, and
5. Mguess |= (

∧
p∈P\Qguess

¬p) ∧ pre.

The following three lemmas establish the connection between the InferClause
problem, the NoClauseInv predicate, and the FindInv algorithm.

Lemma 5. If FindInv (P) returns FAIL, then NoMonomeInv (P , guess , {Mi}i,
{Qi}i)holds on the values computed by the procedure.

Lemma 6. If NoClauseInv(P , guess, {Mi}i, {Qi}i) holds for some guess ∈ N,
a set of models M1, . . . ,Mguess, and sets of predicates Q1, . . . ,Qguess , then
InferClause(Prog ,P) is false.

Lemma 7. If FindInv (P) returns SUCCESS (R), then Check (Prog ,
∨

p∈R p) is
true, and therefore InferClause(Prog ,P) is true.
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5.3 Symbolic Encoding

Similar to the monomial abstraction, we define the SymbInferClause(Prog ,P)
which is satisfiable if and only if InferClause(Prog ,P) returns false. The symbolic
encoding for clausal abstraction retains the structure of the symbolic encoding for
monomial abstraction. The only difference is that the definitions of the predicates
iter i and check i change as follows:

For each i ∈ [1, n], we define

iter i
�
= ∨ ¬post i ∧

∧
p∈P(bi

p =⇒ pi)
∨ ¬wp(s,

∨
p∈P present i

p ∧ p)i ∧
∧

p∈P(bi
p =⇒ pi)

For each i ∈ [1, n + 1], we define

check i
�
=
∧

p∈P(present i
p =⇒ ¬pi) ∧ prei

Finally, the analogues of Theorem 3, Theorem 4, and Corollary 1 can be shown
for the clausal abstraction as well.

Theorem 6. The formula SymbInferClause(Prog ,P) is satisfiable if and only
if InferClause(Prog ,P) is false.

Theorem 7. For an assertion logic closed under wp and Boolean connectives,
the complexity of InferClause(Prog ,P)matches the complexity of Check (Prog , I).

Corollary 2. If the decision problem for Check(Prog , I) is Co-NP complete,
then the decision problem for InferClause(Prog ,P) is Co-NP complete.

6 Conclusions

Formulation of predicate abstraction as a decision problem allows us to infer an-
notations for programs in a property guided manner, by leveraging off-the-shelf
and efficient verification condition generators. In this work, we have studied the
complexity of the decision problem of predicate abstraction relative to the com-
plexity of checking an annotated program. The monomial and clausal restrictions
considered in this paper are motivated by practical applications, where most in-
variants are monomes and a handful of clauses [16]. We have also provided a
new algorithm for solving the InferClause(Prog , I) problem.

There are several questions that are still unanswered. We would like to con-
struct an invariant from the unsatisfiable core, when the symbolic encoding of
the InferMonome(Prog ,P) or InferClause(Prog ,P) returns unsatisfiable. It is
also not clear what the complexity is for inferring invariants that are either a
disjunction of up to c monomes, or a conjunction of up to c clauses, for a fixed
constant c.
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Appendix

Proof of Lemma 2

Proof. The first four conditions of NoMonomeInv (P , guess , {Mi}i, {Qi}i) are
easily satisfied by construction. The fifth condition can be shown by observing
that Qguess ∪R = P is a precondition to FindInvAux . ��

Proof of Lemma 3

Proof. Let us assume that there exists guess, {Mi}i∈[1,guess], {Qi}i∈[1,guess] sat-
isfying NoMonomeInv (P , guess , {Mi}i, {Qi}i). We will show that in such a case,
InferMonome(Prog ,P) returns false.

We will prove this by contradiction. Let us assume that there is a R ⊆ P such
that Check (Prog ,

∧
p∈R p) holds. Let I =

∧
p∈R p. We claim thatR∩Qguess = {}.

We will prove this by induction on i for 1 ≤ i ≤ guess , showing R ∩ Qi = {}.
The base case for i = 1 holds vacuously since Q1 = {}. Let us assume that the
induction hypothesis holds for all j ≤ i. Consider the set {pi} = Qi+1 \ Qi. We
show that pi cannot be in R. Consider the two cases how pi gets removed.

– If Mi |= pre ∧ ¬pi, then we know that �|= pre =⇒ pi. If pi ∈ R, then
|= pre =⇒ pi, which is a contradiction.

– On the other hand, supposeMi |= (
∧

p∈P\Qi
p)∧¬wp(body , pi). By induction

hypothesis, we know that R∩ Qi = {}, therefore R ⊆ P \ Qi. This implies
Mi |= (

∧
p∈R p) ∧ ¬wp(body , pi). If pi ∈ R, then we can conclude that

Mi |= (
∧

p∈R p)∧¬(
∧

p∈R wp(body , p)). Since wp distributes over ∧, we have∧
p∈R wp(body , p)) = wp(body ,

∧
p∈R p) and thus Mi |= I ∧ ¬wp(body , I).

Since I satisfies Check (Prog , I), we have arrived at a contradiction.

Having shown that R ∩ Qguess = {}, we know that R ⊆ P \ Qguess . Since
Mguess |= (

∧
p∈P\Qguess

p) ∧ ¬post , it implies that Mguess |= (
∧

p∈R p) ∧ ¬post ,
which in turn implies �|= I =⇒ post , which contradicts our assumption that
Check (Prog , I). ��

Proof of Lemma 4

Proof. Let FindInvAux return SUCCESS (R) for an argumentR to FindInvAux .
Since both the if branches are not taken, all the following conditions hold:

http://goedel.cs.uiowa.edu/smtlib/
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1. |= (
∧

q∈R q) =⇒ post .
2. For each q ∈ R, |= pre =⇒ q, and therefore |= pre =⇒ (

∧
q∈R q).

3. For each q ∈ R, |= (
∧

p∈R p) =⇒ wp(body , q). Since wp distributes over ∧,
this implies |= (

∧
p∈R p) =⇒ wp(body , (

∧
p∈R p)).

These conditions mean that Check (Prog ,
∧

q∈R q) holds. ��

Proof of Lemma 1

Proof. Part (1) is proved easily by combining Lemmas 2, 3, and 4.
To prove part (2), we establish the following precondition for FindInvAux

procedure: For any set of predicates S ⊆ P such that Check (Prog ,
∧

p∈S p)
holds, S ∩ Qguess = {}. The proof follows by induction on guess similar to
the proof of Lemma 3. Similarly, R ∪ Qguess = P is another precondition for
FindInvAux . Therefore, whenever FindInvAux returns SUCCESS (R), (

∧
p∈R p)

is the strongest monomial invariant over P that satisfies the program. ��
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Abstract. The inverse method is a generic proof search procedure applicable
to non-classical logics satisfying cut elimination and the subformula property.
In this paper we describe a general architecture and several high-level optimiza-
tions that enable its efficient implementation. Some of these rely on logic-specific
properties, such as polarization and focusing, which have been shown to hold
in a wide range of non-classical logics. Others, such as rule subsumption and
recursive backward subsumption apply in general. We empirically evaluate our
techniques on first-order intuitionistic logic with our implementation Imogen and
demonstrate a substantial improvement over all other existing intuitionistic theo-
rem provers on problems from the ILTP problem library.

1 Introduction

The inverse method [11,6] uses forward saturation, generalizing resolution to non-
classical logics satisfying the subformula property and cut elimination. Focusing [1,10]
reduces the search space in a sequent calculus by restricting the application of inference
rules based on the polarities [9] of the connectives and atomic formulas. In this paper
we describe a framework for reasoning in such logics, and exhibit a concrete imple-
mentation of a theorem prover for intuitionistic predicate logic. The implementation,
called Imogen,1 is by some measure the most effective first order intuitionistic theorem
prover: On the ILTP library of intuitionistic challenge problems [16], a collection of in-
tuitionistic problems similar to the well known TPTP [17] library, Imogen solves over
150 more problems than its closest competitor.

This work continues a line of research on building efficient theorem provers for non-
classical logics using the inverse method, following Tammet [18] (for intuitionistic and
linear logic), Linprover [4,3] (for intuitionistic linear logic), and the early propositional
version of Imogen [12].

There are two primary contributions of this paper. On the logical side, explicit po-
larization of a given input formula determines basic characteristics of the search space.
The ability to choose from different polarizations of a formula, refining ideas from
Chaudhuri et al. [5], allows for logically motivated optimizations that do not compro-
mise soundness or completeness. On the implementation side, our architecture provides
a clean interface between the specification of basic logical inference (the front end) on
one side and saturating proof search (the back end) on the other. This separation allows

1 Imogen is available at http://www.cs.cmu.edu/˜seanmcl/research/imogen/

R.A. Schmidt (Ed.): CADE 2009, LNAI 5663, pp. 230–244, 2009.
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for both theory-specific optimizations in the front end and logic-independent optimiza-
tions in the back end. As examples of the later, we present two simple but novel re-
dundancy elimination techniques: inference rule subsumption and recursive backward
subsumption.

2 A Polarized Sequent Calculus

We can limit the search space of the inverse method by searching only for focused
proofs [1]. In this section we give the rules for the (ground) backward polarized se-
quent calculus. This ground calculus will then be lifted to a free variable calculus and
proof search will proceed in the forward direction, from the initial sequents to the goal,
following the inverse method recipe [6]. One novelty of our approach is the use of
explicit polarization in formulas that syntactically mark the polarity of the atoms and
connectives. We first describe polarized formulas, and then show the backward sequent
calculus.

2.1 Polarized Formulas

A connective is positive if its left rule in the sequent calculus is invertible and negative
if its right rule is invertible. As shown below, our proof search fundamentally depends
on the polarity of connectives. In intuitionistic logic, the status of conjunction and truth
is ambiguous in the sense that they are both positive and negative, while their status in
linear logic is uniquely determined. We therefore syntactically distinguish positive and
negative formulas with so-called shift operators [9] explicitly coercing between them.
Even though we use the notation of linear logic, the behavior of the connectives is not
linear.

In the following, the meta-variable P ranges over atomic formulas which have the
form p(t1, . . . , tn) for predicates p. Note also that both in formulas and sequents, the
signs are not actual syntax but mnemonic guides to the reader.

Positive formulas A+ ::= P+ | A+ ⊗A+ | 1 | A+ ⊕A+ | 0 | ∃x. A+ | ↓A−

Negative formulas A− ::= P− | A− & A− | � | A+ � A− | ∀x. A− | ↑A+

The translation A− of an (unpolarized) formula F in intuitionistic logic is nondeter-
ministic, subject only to the constraints that the erasure defined below coincides with
the original formula (|A−| = F ) and all predicates are assigned a consistent polarity.

For example, the formula ((p ∨ r) ∧ (q ⊃ r)) ⊃ (p ⊃ q) ⊃ r can be interpreted as
any of the following polarized formulas (among others):

((↓p− ⊕ ↓r−)⊗ ↓(↓q− � r−)) � (↓(↓p− � q−) � r−)

↓↑((↓p− ⊕ ↓r−)⊗ ↓(↓q− � r−)) � (↓↑↓(↓p− � q−) � r−)

↓(↑(p+ ⊕ r+) & (q+ � ↑r+)) � (↓(p+ � ↑q+) � ↑r+)

Shift operators have highest binding precedence in our presentation of the examples.
As we will see from the inference rules given below, the choice of translation determines
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|A+ ⊕B+| = |A+| ∨ |B+| |0| = ⊥ |1| = �
|A+ ⊗B+| = |A+| ∧ |B+| |↓A−| = |A−| |P+| = P
|A−&B−| = |A−| ∧ |B−| |�| = � |P−| = P
|A+ � B−| = |A+| ⊃ |B−| |↑A+| = |A+|
|∀x. A−| = ∀x. |A−| |∃x. A+| = ∃x. |A+|

Fig. 1. Erasure of polarized formulas

the search behavior on the resulting polarized formula. Different choices can lead to
search spaces with radically different structure [5,12].

2.2 Backward Polarized Sequent Calculus

The backward calculus is a refinement of Gentzen’s LJ that eliminates don’t-care non-
deterministic choices, and manages don’t-know nondeterminism by chaining such in-
ferences in sequence. Andreoli was the first to define this focusing strategy and prove
it complete [1] for linear logic. Similar proofs for other logics soon followed [8,10,19],
demonstrating that polarization and focusing can be applied to optimize search in a
wide variety of logics.

The polarized calculus is defined via four mutually recursive judgments. In the judg-
ments, we separate the antecedents into positive and negative zones. We write Γ for
an unordered collection of negative formulas or positive atoms. Dually, C stands for a
positive formula or a negative atom.

The first two judgments concern formulas with invertible rules on the right and left.
Together, the two judgments form the inversion phase of focusing. In the rules RA-∀
and LA-∃, a is a new parameter.2

The context Δ+ is consists entirely of positive formulas and is ordered so that
inference rules can only be applied to the rightmost formula, eliminating don’t-care
nondeterminism.

Γ ; Δ+ =⇒ A−; · (Right Inversion)

Γ ; Δ+ =⇒ ·; P−

Γ ; Δ+ =⇒ P−; ·
RA-Atom

Γ ; Δ+ =⇒ A−
1 ; · Γ ; Δ+ =⇒ A−

2 ; ·
Γ ; Δ+ =⇒ A−

1 &A−
2 ; ·

RA-&

Γ ;Δ+, A+
1 =⇒ A−

2 ; ·
Γ ;Δ+ =⇒ A+

1 � A−
2 ; ·

RA-�
Γ ; Δ+ =⇒ �; ·

RA-�

Γ ; Δ+ =⇒ A(a)−; ·
Γ ;Δ+ =⇒ ∀x. A(x)−; ·

RA-∀a
Γ ; Δ+ =⇒ ·; A+

Γ ; Δ+ =⇒ ↑A+; ·
RA-↑

Γ ; Δ+ =⇒ ·; C (Left Inversion)

2 In our calculus, parameters differ syntactically from term variables, and are thus slightly differ-
ent than the eigenvariables found in other presentations of the inverse method. A formalization
of parameters and their effect on unification can be found in Chaudhuri [3].
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Γ, P+; Δ+ =⇒ ·; C
Γ ;Δ+, P+ =⇒ ·; C

LA-Atom
Γ ; Δ+, A+

1 , A+
2 =⇒ ·; C

Γ ; Δ+, A+
1 ⊗ A+

2 =⇒ ·; C
LA-⊗

Γ ; Δ+, A(a)+ =⇒ ·; C
Γ ;Δ+,∃x. A(x)+ =⇒ ·; C

LA-∃a
Γ ;Δ+, A+

1 =⇒ ·; C Γ ; Δ+, A+
2 =⇒ ·; C

Γ ; Δ+, A+
1 ⊕ A+

2 =⇒ ·; C
LA-⊕

Γ ; Δ+ =⇒ ·; C
Γ ; Δ+, 1 =⇒ ·; C

LA-1
Γ ; Δ+, 0 =⇒ ·; C

LA-0
Γ, A−; Δ+ =⇒ ·; C
Γ ; Δ+, ↓A− =⇒ ·; C

LA-↓

The next two judgments are concerned with non-invertible rules. These two judgments
make up the focusing phase.

Γ � A+ (Right Focusing)

Γ, P+ � P+
RS-Atom

Γ � A+
1 Γ � A+

2

Γ � A+
1 ⊗ A+

2

RS-⊗
Γ � 1

RS-1

Γ � A+
1

Γ � A+
1 ⊕A+

2

RS-⊕1
Γ � A+

2

Γ � A+
1 ⊕A+

2

RS-⊕2
No rule for 0

Γ � A(t)+

Γ � ∃x. A+
RS-∃

Γ ; · =⇒ A−; ·
Γ � ↓A− RS-↓

Γ ; A− � C (Left Focusing)

Γ ; P− � P− LS-Atom
Γ ; A−

1 � C

Γ ;A−
1 &A−

2 � C
LS-&1

Γ ;A−
2 � C

Γ ; A−
1 &A−

2 � C
LS-&2

No rule for �

Γ � A+
1 Γ ; A−

2 � C

Γ ; A+
1 � A−

2 � C
LS-�

Γ ;A(t)− � C

Γ ;∀x. A− � C
LS-∀

Γ ;A+ =⇒ ·; C
Γ ; ↑A+ � C

LS-↑

Backward search for a proof of A− starts with an inversion from ·; · =⇒ A−; ·. The
proof then alternates between focusing and inversion phases. Call a focusing phase
followed by an inversion phase a block. The boundary between blocks is of particular
importance. The sequents at the boundary have the form Γ ; · =⇒ ·;C. We call such
sequents stable. There are two rules that control the phase changes at stable sequents
(the block boundaries).

Γ � A+

Γ ; · =⇒ ·; A+
FocusR

Γ, A−; A− � C

Γ, A−; · =⇒ ·; C
FocusL

An example of a backward derivation highlighting the block structure, is shown in
Figure 2. a, b, and c are negative atoms. The elided sections are deterministic applica-
tion of the above rules. Note that the nondeterminism occurs only at block boundaries.
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↓(↓a � b) � c, ↓a � b, a; a � ·; a
LS-Atom

↓(↓a � b) � c, ↓a � b, a; . =⇒ a; ·
FocusL

↓(↓a � b) � c, ↓a � b, a; · � ↓a; ·
RS-↓ .

.

.

↓(↓a � b) � c, ↓a � b, a; ↓a � b � ·; b
LS-�

↓(↓a � b) � c, ↓a � b, a; · =⇒ ·; b
FocusL

.

.

.
.
.
.

↓(↓a � b) � c, ↓a � b; ↓(↓a � b) � c � ·; c
LS-�

↓(↓a � b) � c, ↓a � b; · =⇒ ·; c
FocusL

.

.

.

.
; ↓(↓(↓a � b) � c) =⇒ ↓(↓a � b) � c; ·

; =⇒ ↓(↓(↓a � b) � c) � ↓(↓a � b) � c; · RA-�

Fig. 2. Backward proof, with blocks

Theorem 1. [10] If there exists an intuitionistic derivation of A, then for any polariza-
tion A− of A, there exists a focused derivation of ·; · =⇒ A−; ·.

2.3 Synthetic Connectives and Derived Rules

We have already observed that backward proofs have the property that the proof is
broken into blocks, with stable sequents at the boundary. The only rules applicable to
stable sequents are the rules that select a formula on which to focus. It is the formulas
occurring in stable sequents that form the primary objects of our further inquiry.

It helps to think of such formulas, abstracted over their free variables, as synthetic
connectives [2]. Define the synthetic connectives of a formula A as all subformulas of
A that could appear in stable sequents in a focused backward proof. In a change of
perspective, we can consider each block of a proof as the application of a left or right
rule for a synthetic connective. The rules operating on synthetic connectives are derived
from the rules for its constituent formulas. We can thus consider a backward proof as a
proof using only these synthetic (derived) rules. Each derived rule then corresponds to
a block of the original proof.

Since we need only consider stable sequents and synthetic connectives, we can sim-
plify notation, and ignore the (empty) positive left and negative right zones in the de-
rived rules. Write Γ ; · =⇒ ·;C as Γ =⇒ C. As a further simplification, we can give
formulas a predicate label and abstract over its free variables. This labeling technique is
described in detail in Degtyarev and Voronkov [6]. For the remainder, we assume this
labeling has been carried out. Define an atomic formula as either a label or a predicate
applied to a (possibly empty) list of terms. After labeling, our sequents consist entirely
of atomic formulas.

Example 1. In Figure 2, frame boxes surround the three blocks of the proof. The syn-
thetic connectives are a, ↓a � b and ↓(↓a � b) � c. There is a single derived rule for
each synthetic connective (though this is not the case in general). We implicitly carry
the principal formula of a left rule to all of its premises.
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Γ, a =⇒ a
Syn1

Γ =⇒ a
Γ, ↓a � b =⇒ b

Syn2
Γ, a =⇒ b

Γ, ↓(↓a � b) � c =⇒ c
Syn3

These rules correspond to the blocks shown in Figure 2. Corresponding labeled rules
for L1 = ↓a � b and L2 = ↓(↓a � b) � c are

Γ, a =⇒ a
Syn1

Γ =⇒ a
Γ, L1 =⇒ b

Syn2
Γ, a =⇒ b

Γ, L2 =⇒ c
Syn3

Then the blocks of the proof from Figure 2 can be compressed to the succinct

L1, L2, a =⇒ a
Syn1

L1, L2, a =⇒ b
Syn2

L1, L2 =⇒ c
Syn3

3 The Polarized Inverse Method

In the previous section we developed a system for focused backwards proofs. We first
described backward focused proofs because the inference rules are simpler and the re-
lation to the semantics, e.g., natural deduction, is more direct. We will now invert the
backward calculus, allowing us to understand synthetic inference rules in the forward
direction. The inverse method has a number of advantages over backward methods. The
most important is that derived sequents in the inverse method are independent entities.
That is, their free variables are quantified locally outside the sequent. In contrast, back-
ward sequents are only valid in a global context: Variables are quantified over the entire
proof object. This difference makes determining non-theoremhood (via saturation) and
redundancy elimination (via subsumption) easier for the inverse method.

3.1 Forward Rules

Recall the following rules from the backward (unfocused) intuitionistic sequent
calculus:

Γ, a =⇒ a
Init

Γ,⊥ =⇒ A
⊥-L

Γ =⇒ A Γ =⇒ B
Γ =⇒ A ∧B

∧-R

Interpreting these rules for forward search shows some difficulties. In the forward di-
rection we want to guess neither the context Γ , nor the formula A in the ⊥-L rule. We
therefore allow the succedent to be empty, and ignore Γ in such initial sequents. The
analogous forward sequents have the form

a −→ a Init ⊥ −→ · ⊥-L
Γ1 −→ A Γ2 −→ B

Γ1 ∪ Γ2 −→ A ∧B
∧-R

A forward sequent stands for all of its weakening and substitution instances. This
new form of sequent requires a more complicated notion of matching (or applying)
inference rules. We now define the operations necessary for proof search in the forward
polarized sequent calculus lifted [6] to free variables. We assume the reader is familiar
with the usual notions of substitutions and most general unifiers.
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Definition 1 (Forward Sequents). A forward sequent has the form Γ −→ C where
Γ is a set of atomic formulas and C is either the empty set or a set containing a single
atomic formula. It is written Γ −→ A in the case that C = {A}, or Γ −→ · in case
C = ∅. The set Γ consists of the antecedents, and C is called the succedent.

The variables of a sequent are implicitly universally quantified outside the sequent. This
means every time a sequent is used, we have to rename its variables to be fresh. We will
apply such renamings tacitly.

Definition 2 (Inference rules). An inference rule with name id,

H1 . . . Hn

Q
idΠ

has premises H1, . . . , Hn and conclusion Q, all of which are sequents. Π is a set of
parameters (the fixed parameters) that are introduced during the inversion phase. In-
ference rules are schematic in their variables, which can range over formulas or terms.

Matching. Given some known sequents, we wish to derive new sequents using the
inference rules. The process of inferring new sequents from known sequents using in-
ference rules is called matching. First note that we must take into account the parameters
introduced by the rule to ensure the eigenvariable condition. Consider the rule

−→ p(x, a)
−→ ∃x. ∀y. p(x, y)

Ra

We must ensure when matching rule R to sequent Δ −→ δ that parameter a does not
occur in Δ. Moreover, x must not be unified with any term containing a. We will define
matching by cases depending on whether the consequent of the conclusion is empty or
not. Let vars(t) denote the free variables of term t.

Definition 3 (Rule Matching 1). Sequents Δ1 −→ δ1, . . . , Δn −→ δn match rule

Γ1 −→ A1 · · · Γn −→ An

Γ −→ A
RΠ

with substitution θ if the following conditions hold for all 1 ≤ i ≤ n.

1. Either δiθ = Aiθ or δi = ·.
2. The parameters Πθ do not occur in Δiθ \ Γiθ.
3. The parameters Πθ do not occur in vars(Γi, Ai)θ
4. For any two parameters a, b ∈ Π , aθ �= bθ

In that case, the resulting sequent is

Γθ ∪ (Δ1θ \ Γ1θ) ∪ . . . ∪ (Δnθ \ Γnθ) −→ Aθ

If there is a premise with an empty succedent in the rule, then the conclusion also has an
empty succedent. In this case, we can rearrange the premises so that the first k premises
have an empty antecedent. Then we can use the following definition of matching.
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Definition 4 (Rule Matching 2). Sequents Δ1 −→ δ1, . . . , Δn −→ δn match rule

Γ1 −→ · · · · Γk −→ · Γk+1 −→ Ak+1 · · · Γn −→ An

Γ −→ · RΠ

if there exists a substitution θ such that

1. The parameters Πθ do not occur in Δiθ \ Γiθ.
2. The parameters Πθ do not occur in vars(Γi, Ai)θ
3. For any two parameters a, b ∈ Π , aθ �= bθ

and one of the following conditions holds:

1. – For all 1 ≤ i ≤ k, δi = ·.
– For all k + 1 ≤ i ≤ n, δi = · or δiθ = Aiθ.

In this case the resulting sequent is

Γθ ∪ (Δ1θ \ Γ1θ) ∪ . . . ∪ (Δnθ \ Γnθ) −→ ·

2. – There exists 1 ≤ i ≤ k, δiθ = Aθ.
– For all 1 ≤ i ≤ k, δi = · or δiθ = Aθ.
– For all k + 1 ≤ i ≤ n, δi = · or δiθ = Aiθ.

In this case the resulting sequent is

Γθ ∪ (Δ1θ \ Γ1θ) ∪ . . . ∪ (Δnθ \ Γnθ) −→ Aθ

The definition of matching assures that the forward application simulates a backward
rule application. Since we always combine unused premises in the same way, in the rest
of the paper we omit the contexts Γ in forward inference rules.

Example 2. If the synthetic connective is L1 = ↓(((∃y. ↓p(y)) � ∀x. (p(x) & q(x)))
on the right, then the backward and forward synthetic rules are

Γ, p(a) =⇒ p(b) Γ, p(a) =⇒ q(b)
Γ =⇒ L1

Syna,b

p(a) −→ p(b) p(a) −→ q(b)
−→ L1

Syna,b

3.2 Proof Search

Before we can turn our observations into a method for proof search, we need two more
crucial definitions. First, the inverse method cannot in general prove a given sequent
exactly, but sometimes only a stronger form of it. This is captured by the subsumption
relation.

Definition 5 (Subsumption). A sequent Γ1 −→ C1 subsumes a sequent Γ2 −→ C2
if there exists a substitution θ such that |Γ1θ| = |Γ1| (i.e., θ does not contract Γ1) and
Γ1θ ⊆ Γ2 and C1θ ⊆ C2. Write Q � Q′ if Q subsumes Q′.
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Suppose Q � Q′ and we are trying to prove Q′. Since weakening is an admissible
rule in the backward calculus, given a backward proof D of Q, we could modify D by
weakening, yielding a proof of Q′.

The second definition comes from the following observation. It is not the case that
(p(X,Y ), p(Y,X) −→ g) � (p(Z,Z) −→ g), even though (p(Z,Z) −→ g)
is identical to (p(X,Y ), p(Y,X) −→ g) under substitution {X �→ Z, Y �→ Z}.
(Remember that we maintain the premises as a set.) Since a sequent stands for its sub-
stitution instances, we should be able to infer the latter sequent. This consideration
motivates the definition of contraction:

Definition 6 (Contraction). Γθ,A1θ −→ Cθ is a contraction instance of a sequent
Γ,A1, A2 −→ C if θ is the most general unifier of A1, A2.

Now we have the basic operations necessary to define forward search using the polar-
ized inverse method. We begin with a negative polarized input formula A−. We first
decompose the problem into stable sequents by applying the backward rules, inverting
the sequent ·; · =⇒ A−; ·. The leaves of the backward inversion are stable sequents.
Each stable sequent is solved independently. (This is why the bottom portion of Fig-
ure 2 is not contained in a block.) For each stable sequent, we determine the sequent’s
synthetic formulas, and generate the corresponding derived rules. We begin with a se-
quent database containing the initial sequents, those synthetic rules with no premises.
We repeatedly match the synthetic rules to known sequents in the forward direction.
The resulting matches, along with all of their contraction instances, are added to the
database. We continue in this way until we either generate a sequent that subsumes the
goal, or until the database is saturated, that is, any further inference would only add se-
quents subsumed by something already in the database. Due to the undecidability of the
problem, if the goal is not provable, it is possible that the database will never saturate.

Theorem 2 (Completeness). If there exists a (ground) backward focused derivation of
a polarized formula A, then such a derivation can be constructed using the polarized
inverse method.

Proof. Analogous to the corresponding proof in Chaudhuri [3]. �

4 An Implementation Framework

We turn now to our implementation, called Imogen. The implementation is designed
as two distinct modules, referred to respectively as the front end and the back end.
The front end deals with the specifics of a particular logic and focusing strategy. It
takes a formula as input and returns the initial stable sequents, and for each sequent a
complete set of synthetic inference rules and initial sequents. The back end maintains a
database of known sequents, and applies the rules to the database using a fair strategy,
generating new sequents. It stops when it finds a sequent that subsumes the goal, or
when the database is saturated.

This design makes it possible to use the same back end for different logics. While
Imogen now only supports two front ends, intuitionistic first-order logic and an opti-
mized front end for the propositional fragment, it would be straightforward to extend
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to other logics. We are currently in the process of adding front ends for first-order logic
with constraints, and first-order logic with induction.

4.1 The Front End: Rule Generation and Matching

The front end has two distinct tasks. The first is to generate the initial rules and sequents
given an input formula and a focusing strategy. This is achieved by, for each synthetic
connective, evaluating the inference rules of Section 2 in the backward direction. Each
block of a potential backward proof becomes an inference rule.

The second is to define the main functions outlined in the last section: subsump-
tion, contraction, and rule matching. Subsumption can be an expensive operation, but is
straightforward to implement. Contraction can be problematic because if a sequent has
many antecedents with the same label or predicate symbol, there can be an exponen-
tial number of contraction instances. In such cases, it is not uncommon for Imogen to
generate tens of thousands of contraction instances of a single sequent.

To implement the function match of Definition 3, we use the technique of partial
rule application. Instead of having a fixed rule set and matching all the hypotheses
simultaneously, we have an expanding rule set, and match one premise at a time. The
match of a rule with n premises yields a new residual rule with n− 1 premises.

Example 3. Matching rule and sequent

p(X,Y ) −→ q(X,Y ) q(X,Y ) −→ ·
r(X,Y ) −→ · q(Z, c), p(c, Z) −→ q(c, Z)

yields the new inference rule

q(c, Y ) −→ ·
q(Y, c), r(c, Y ) −→ ·

Matching the new rule against q(c, d) −→ q(d, d) yields the new sequent
q(d, c), r(c, d) −→ q(d, d).

Similar to contraction, if both a rule and sequent have multiple instances of the same
label or predicate, matching can produce an inordinate number of new rules or sequents.

4.2 The Back End: Rule Application and Subsumption

The back end takes the initial sequents and rules from the front end, along with the
definitions of matching, subsumption and contraction. Then it uses a modified form of
the Otter loop to search for proofs.

The Otter Loop. The “Otter loop” is a general strategy for automated reasoning using
forward inference. In our version, there are two databases of sequents, called kept and
active, and two databases of rules (because of our partial rule matching strategy) also
so named. The active sequents (AS), consist of all the sequents that have already been
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matched to rules in active rules (AR). Symmetrically, the active rules are the rules that
have been matched to the active sequents. The other databases, the kept rules (KR) and
sequents (KS), have not yet been considered for matching. A step of the loop proceeds
as follows, as shown in the figure below. Imogen chooses either a kept sequent or a kept
rule according to some fair strategy. Suppose it chooses a sequent. Then we are in the
situation in diagram. The sequent is added to the active sequents, and then is matched to
all active rules. This matching will generate new sequents (when the matched rule has
a single premise), and new rules (when the matched rule has multiple premises). The
new rules and sequents are added to the respective kept databases. A symmetric process
occurs when choosing a kept rule.

4.3 Subsumption

Redundancy elimination is an important part of an efficient implementation of the po-
larized inverse method. Imogen performs subsumption in a variety of ways. The first
is forward subsumption: New sequents generated during the matching process that are
subsumed by existing sequents are never added to the kept database. Another form of
subsumption occurs when a new sequent subsumes an existing active or kept sequent.
There are two forms of backward subsumption in Imogen. The first, simply called back-
ward subsumption is where we delete the subsumed sequent from the database. In re-
cursive backward subsumption we delete not only the subsumed sequent, but all of that
sequent’s descendents except those justifying the subsuming sequent. The idea is that
Imogen, with the new, stronger sequent, will eventually recreate equal or stronger forms
of the rules and sequents that were deleted. A final version of subsumption is called rule
subsumption. Rule subsumption occurs when a new sequent subsumes the conclusion
of an inference rule. In this case, whatever the content of the premises, the resulting
conclusion would be forward subsumed, as matching only instantiates variables and
adds to the antecedents. Thus, such a rule can be safely deleted.

Theorem 3. If there exists a derivation of A, then there exists a derivation that respects
forward, backward, and rule subsumption.

Proof. For forward and backward subsumption, the proof is analogous to the one given
by Degtyarev and Voronkov [6]. Since each sequent that could be generated by a sub-
sumed rule would itself be subsumed, their argument extends easily to our
framework. �
For recursive backward subsumption, while the soundness is clear, it is not as easy to
see that our strategy is still complete.

Theorem 4. Recursive backward subsumption is nondeterministically complete. That
is, if the database saturates without subsuming the goal, then the goal can not be
derived.

Proof. For every recursively deleted sequent we either retain a stronger sequent, or we
retain the possibility to recreate a stronger sequent. For the database to be saturated, we
must have subsumed or recreated all the deleted sequents. �
This is enough to obtain the correctness of our prover. By soundness (and, in addition,
through an independently verifiable natural deduction proof object) we have a proof
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when the goal is subsumed. If the database is saturated without subsuming the goal,
there cannot be a proof. We conjecture that recursive backward subsumption is also
complete in the stronger sense that if there is a proof we could in principle always find
it (since rule and sequent selection are fair), but we do not at present have a rigorous
proof.

Besides fairness, the proofs of completeness under the various forms of redundancy
elimination rely mainly on the following property of the (derived) rules used in the
forward direction: If the premise of a rule is subsumed, either the conclusion is already
subsumed or we can re-apply the rule and obtain a new conclusion which subsumes the
old one.

4.4 Other Features

The back end implements a few other notable features. In a backward proof the an-
tecedents of the goal sequent will occur in every sequent in the proof after the initial
stabilization phase. We can globalize these antecedents [5], which reduces the space
required to store sequents and avoids unnecessary operations on them. Imogen imple-
ments a variety of term indexing algorithms [7], including path and substitution tree
indexing to quickly retrieve elements of the databases. Experimental results show that
in our case path indexing is more efficient than substitution tree indexing. The back
end also maintains a descendent graph of the rules and sequents. This graph is used by
the front end to reconstruct a natural deduction proof term that can be checked by an
external tool.

5 Performance Evaluation

We now give some performance statistics and internal comparisons of the effects of
different optimizations. All of the Imogen statistics from this paper are from a 2.4 Ghz
Intel Macintosh, Darwin 9.6.0, with 2Gb of memory. Imogen is written in Standard ML,
and is compiled with MLton.

ILTP. We evaluated Imogen on ILTP, the Intuitionistic Logic Theorem Proving li-
brary [16]. The statistics from the ILTP website [15] are shown below. Currently the
library gives detailed results for 6 intuitionistic theorem provers on 2550 problems,
with a time limit of 10 minutes. The other provers from ILTP use various optimizations
of backward search. The non-Imogen statistics were run on a Xeon 3.4 GHz Linux,
Mandrake 10.2. The amount of memory is not given on the website. The first Imogen
statistic assign negative polarity to all atoms, which is the default behavior. The final
bar, marked Imogen*, assigns negative polarity to all atoms, tries to prove it for 60
seconds and reverts to the default assignment if neither proof nor refutation has been
found.

Note that, as usual, there are many theorems backwards methods can solve instantly
that Imogen can not solve, and vice versa. We only display total numbers due to space
constraints. The ILTP authors will include Imogen statistics in the next release of their
library. Besides solving the most total problems, Imogen does much better than other
provers at disproving non-theorems. This is a similar result to Imogen’s intuitionis-
tic propositional theorem prover described in McLaughlin and Pfenning [12]. Overall,
iLeanCoP solved 690 problems, while Imogen solved 784 and Imogen* 857.
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Subsumption. The following table shows the performance of Imogen with different
settings for subsumption. The first three columns are for backward subsumption set-
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6 Conclusion

In this paper we presented a basis for forward reasoning using the polarized inverse
method, and demonstrated its practical effectiveness in the case of intuitionistic logic. In
related work, Pientka et. al. [14] describe an experimental implementation of a focused
inverse method for LF. Chaudhuri [3] describes a focused inverse method prover for
linear logic. Earlier work is by Tammet [18] who describes an implementation of a for-
ward intuitionistic theorem prover. We did not compare Imogen to his system because
it is not part of ILTP. According to the ILTP website [15], the existing implementation,
called Gandalf, is unsound.

Our work is by no means complete. While the current implementation is flexible
with polarities, finding an optimal assignment of polarities needs to be studied. We now
have only simple-minded heuristics for selecting the polarity of atoms, conjunctions,
and inserting shifts. It is known, for instance [5], that using positive atoms simulates
backward chaining in the inverse method. In our experiments however, we find that
Imogen performs poorly on some problems that backchaining solves quickly. Given
the dramatic effect of such choices in propositional logic [12], this promises significant
potential for improvement.

Another optimization to consider would be to determine a subordination relation
on propositions [13]. This would prune the search space by deleting or strengthening
sequents of the form Γ, p −→ q if no proof of q could depend on a proof of p as
determined by the subordination relation.
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Abstract. In this paper, we present a refined resolution-based calculus
for Computation Tree Logic (CTL). The calculus requires a polynomial
time computable transformation of an arbitrary CTL formula to an equi-
satisfiable clausal normal form formulated in an extension of CTL with
indexed existential path quantifiers. The calculus itself consists of a set of
resolution rules which can be used as the basis for an EXPTIME decision
procedure for the satisfiability problem of CTL. We prove soundness and
completeness of the calculus. In addition, we introduce CTL-RP, our
implementation of the calculus as well as some experimental results.

1 Introduction

Computation Tree Logic (CTL) [7] is a propositional branching-time temporal
logic whose underlying model of time is a choice of possibilities branching into
future. There are many important applications that can be represented and
verified in CTL such as digital circuit verification [8], and the analysis of real
time and concurrent systems [15].

The calculus R�,S
CTL for CTL introduced in this paper is a refinement of an earlier

resolution calculus [5] for CTL. It involves transformation to a normal form, called
Separated Normal Form with Global Clauses for CTL, SNFg

CTL for short, and the
application of step and eventuality resolution rules dealing with constraints on
next states and on future states, respectively. We have improved the earlier cal-
culus [5] in the following aspects. A technique introduced in [5] is the use of indices
as part of a CTL normal form. We give a formal interpretation of indices and for-
mal semantics for the indexed normal form, SNFg

CTL, which is missing from [5].
An ordering and a selection function are introduced into the calculus which al-
low us to prune the search space of our prover. We show that our calculus R�,S

CTL is
sound, complete and terminating. Furthermore, using our completeness proof we
can show that two eventuality resolution rules in [5] are redundant. Adetailed com-
plexity analysis of the calculus is provided, which is absent for the earlier calculus.
Finally, we have implemented R�,S

CTL in our theorem prover CTL-RP whereas no
implementation was provided for the earlier calculus in [5]. We also present some
experimental results for CTL-RP in this paper.

The rest of this paper is organised as follows. We first present the syntax
and semantics of CTL in Section 2 and then introduce a normal form for CTL,
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R.A. Schmidt (Ed.): CADE 2009, LNAI 5663, pp. 245–260, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



246 L. Zhang, U. Hustadt, and C. Dixon

SNFg
CTL, in Section 3. In Section 4 the calculus R�,S

CTL is presented. We provide
proofs for soundness and completeness of R�,S

CTL in Section 5. Section 6 discusses
our theorem prover CTL-RP and the comparison between CTL-RP and a tableau
theorem prover for CTL. Finally, related work is discussed and conclusions are
drawn in Section 7.

2 Syntax and Semantics of CTL

In this paper, we use the syntax and semantics of CTL introduced by Clarke and
Emerson in [7]. The language of CTL is based on a set of atomic propositions
PPL; propositional constants, true and false, and boolean operators, ∧,∨,⇒,
and ¬ (∧ and ∨ are associative and commutative); temporal operators � (always
in the future), � (at the next moment in time), � (eventually in the future),
U (until), and W (unless); and path quantifiers A (for all future paths) and E
(for some future path).

The set of (well-formed) formulae of CTL is inductively defined as follows:
true and false as well as all atomic propositions in PPL are CTL formulae; if
ϕ and ψ are CTL formulae, then so are ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ ⇒ ψ), A�ϕ,
A�ϕ, A�ϕ, A(ϕU ψ), A(ϕW ψ), E�ϕ, E�ϕ, E�ϕ, E(ϕU ψ), and E(ϕW ψ).

Formulae of CTL over PPL are interpreted in model structures, M = 〈S,R,L〉,
where S is a set of states ; R is a total binary accessibility relation over S; and
L : S → 2PPL is an interpretation function mapping each state to the set of atomic
propositions true at that state. An infinite path χsi is an infinite sequence of
states si, si+1, si+2, . . . such that for every j ≥ i, (sj , sj+1) ∈ R.

The satisfaction relation |= between a pair consisting of a model structure
M and a state si ∈ S, and a CTL formula is inductively defined as follows:

〈M, si〉 |= true 〈M, si〉 �|= false
〈M, si〉 |= p iff p ∈ L(si) for an atomic proposition p ∈ PPL

〈M, si〉 |= ¬ϕ iff 〈M, si〉 �|= ϕ
〈M, si〉 |= (ϕ ∨ ψ) iff 〈M, si〉 |= ϕ or 〈M, si〉 |= ψ
〈M, si〉 |= E�ψ iff there exists a path χsi such that 〈M, si+1〉 |= ψ
〈M, si〉 |= A(ϕU ψ) iff for every path χsi there exists sj ∈ χsi such that

〈M, sj〉 |= ψ and for every sk ∈ χsi , if i ≤ k < j
then 〈M, sk〉 |= ϕ

〈M, si〉 |= E(ϕU ψ) iff there exists a path χsi and there exists sj ∈ χsi

such that 〈M, sj〉 |= ψ and for every sk ∈ χsi ,
if i ≤ k < j then 〈M, sk〉 |= ϕ

In addition, we use the usual equivalences to define the semantics of ∧, ⇒ and
other boolean operators, and the following equivalences to define the remaining
operators of CTL.

A�ϕ ≡ A(trueU ϕ) E�ϕ ≡ E(trueU ϕ)
A�ϕ ≡ ¬E�¬ϕ E�ϕ ≡ ¬A�¬ϕ

A(ϕW ψ) ≡ ¬E(¬ψ U (¬ϕ ∧ ¬ψ)) E(ϕW ψ) ≡ ¬A(¬ψ U (¬ϕ ∧ ¬ψ))
A�ϕ ≡ ¬E�¬ϕ
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3 Normal Form

Our calculus R�,S
CTL operates on formulae in a clausal normal form, called Sep-

arated Normal Form with Global Clauses for CTL, denoted by SNFg
CTL. The

language of SNFg
CTL clauses is defined over an extension of CTL in which we la-

bel existential path quantifiers with an index ind taken from a countably infinite
index set Ind and it consists of formulae of the following form.

A�(start ⇒
∨k

j=1 mj) (initial clause)

A�(true ⇒
∨k

j=1 mj) (global clause)

A�(
∧n

i=1 li ⇒ A�∨k
j=1 mj) (A-step clause)

A�(
∧n

i=1 li ⇒ E〈ind〉�∨k
j=1 mj) (E-step clause)

A�(
∧n

i=1 li ⇒ A�l) (A-sometime clause)

A�(
∧n

i=1 li ⇒ E〈ind〉�l) (E-sometime clause)

where k ≥ 0, n > 0, start is a propositional constant, li (1 ≤ i ≤ n), mj (1 ≤
j ≤ k) and l are literals, that is, atomic propositions or their negation, and ind
is an element of Ind. As all clauses are of the form A�(P ⇒ D) we often simply
write P ⇒ D instead. We call a clause which is either an initial, a global, an
A-step, or an E-step clause a determinate clause. The formula A�(¬)l is called
an A-eventuality and the formula E〈ind〉�(¬)l is called an E-eventuality.

To provide a semantics for SNFg
CTL, we extend model structures 〈S,R,L〉 to

〈S,R,L, [ ], s0〉 where s0 is an element of S and [ ] : Ind → 2(S×S) maps every
index ind ∈ Ind to a successor function [ind] which is a total functional relation
on S and a subset of R, that is, for every s ∈ S, there exists only one state
s′ ∈ S, (s, s′) ∈ [ind] and (s, s′) ∈ R. An infinite path χ

〈ind〉
si is an infinite se-

quence of states si, si+1, si+2, . . . such that for every j ≥ i, (sj , sj+1) ∈ [ind].
The semantics of SNFg

CTL is then defined as shown below as an extension of
the semantics of CTL defined in Section 2. Although the operators E〈ind〉�,
E〈ind〉 U and E〈ind〉W do not appear in the normal form, we state their seman-
tics, because they occur in the normal form transformation. (The semantics of
the remaining operators is analogous to that given previously but in the extended
model structure 〈S,R,L, [ ], s0〉.)

〈M, si〉 |= start iff si = s0

〈M, si〉 |= E〈ind〉�ψ iff there exists a path χ
〈ind〉
si such that 〈M, si+1〉 |= ψ

〈M, si〉 |= E〈ind〉�ψ iff 〈M, si〉 |= E〈ind〉(trueU ψ)
〈M, si〉 |= E〈ind〉�ψ iff there exists a path χ

〈ind〉
si and for every sj ∈ χ

〈ind〉
si

if i ≤ j, then 〈M, sj〉 |= ψ

〈M, si〉 |= E〈ind〉(ϕU ψ) iff there exists a pathχ
〈ind〉
si and there exists sj ∈ χ

〈ind〉
si

such that 〈M, sj〉 |= ψ and for every sk ∈ χ
〈ind〉
si ,

if i ≤ k < j, then 〈M, sk〉 |= ϕ
〈M, si〉 |= E〈ind〉(ϕW ψ) iff 〈M, si〉 |= E〈ind〉�ϕ or 〈M, si〉 |= E〈ind〉(ϕU ψ)
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A SNFg
CTL formula ϕ is satisfiable in a model structure M = 〈S,R,L, [ ], s0〉,

iff M, s0 |= ϕ and ϕ is called satisfiable iff there exists a model structure M such
that ϕ is satisfied in M .

We have defined a set of transformation rules which allows us to transform
an arbitrary CTL formula into an equi-satisfiable set of SNFg

CTL clauses [19].
The transformation rules are similar to those in [5,12], but modified to al-
low for global clauses. Basically, we use the following techniques to transform
CTL formulae into SNFg

CTL: introduce new indices into E path quantifiers; re-
name complex subformulae by new atomic propositions and link the truth of
the new atomic proposition to the truth of the subformula it is renaming; re-
move combinations of temporal operators which are not allowed to appear in
SNFg

CTL clauses using their semantic definition in terms of other operators.
Two examples of transformation rules are the following: (i) A�(q ⇒ E�ϕ)
is transformed into A�(q ⇒ E〈ind〉�ϕ), where ind is a new index, thus as-
signing an index to an E� operator; (ii) A�(q1 ⇒ E〈ind〉(q2 U q3)) is trans-
formed into A�(q1 ⇒ q3 ∨ (q2 ∧ p)), A�(p ⇒ E〈ind〉�(q3 ∨ (q2 ∧ p))) and
A�(q1 ⇒ E〈ind〉�q3), thereby eliminating an occurrence of the E〈ind〉 U op-
erator. The two former formulae are not in SNFg

CTL yet and require further
transformations.

Theorem 1 (Normal form). Every CTL formula ϕ can be transformed into
an equi-satisfiable set T of SNFg

CTL clauses with at most a linear increase in the
size of the problem.

4 The Clausal Resolution Calculus R�,S
CTL

The resolution calculus R�,S
CTL consists of two types of resolution rules, step res-

olution rules, SRES1 to SRES8, and eventuality resolution rules, ERES1 and
ERES2, as well as two rewrite rules, RW1 and RW2.

Motivated by refinements of propositional and first-order resolution [4], we
restrict the applicability of step resolution rules by means of an atom ordering
and a selection function. An atom ordering for R�,S

CTL is a well-founded and total
ordering 	 on the set PPL. The ordering 	 is extended to literals by identifying
each positive literal p with the singleton multiset {p} and each negative literal
¬p with the multiset {p, p} and comparing such multisets of atoms by using the
multiset extension of 	. Doing so, ¬p is greater than p, but smaller than any
literal q or ¬q with q 	 p.

A literal l is (strictly) maximal with respect to a propositional disjunction C
iff for every literal l′ in C, l′ �	 l (l′ �
 l).

A selection function is a function S mapping every propositional disjunction
C to a possibly empty subset S(C) of the negative literals occurring in C. If
l ∈ S(C) for a disjunction C, then we say that l is selected in C.

In the following presentation of the rules of R�,S
CTL, ind is an index in Ind, P

and Q are conjunctions of literals, C and D are disjunctions of literals, neither
of which contain duplicate literals, and l is a literal.
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SRES1
P ⇒ A�(C ∨ l)
Q ⇒ A�(D ∨ ¬l)

P ∧Q ⇒ A�(C ∨D)

SRES2
P ⇒ E〈ind〉�(C ∨ l)
Q ⇒ A�(D ∨ ¬l)

P ∧Q ⇒ E〈ind〉�(C ∨D)

SRES3
P ⇒ E〈ind〉�(C ∨ l)
Q ⇒ E〈ind〉�(D ∨ ¬l)

P ∧Q ⇒ E〈ind〉�(C ∨D)

SRES4
start ⇒ C ∨ l
start ⇒ D ∨ ¬l
start ⇒ C ∨D

SRES5
true ⇒ C ∨ l
start ⇒ D ∨ ¬l
start ⇒ C ∨D

SRES6
true ⇒ C ∨ l

Q ⇒ A�(D ∨ ¬l)
Q ⇒ A�(C ∨D)

SRES7
true ⇒ C ∨ l

Q ⇒ E〈ind〉�(D ∨ ¬l)
Q ⇒ E〈ind〉�(C ∨D)

SRES8
true ⇒ C ∨ l
true ⇒ D ∨ ¬l
true ⇒ C ∨D

A step resolution rule, SRES1 to SRES8, is only applicable if one of the following
two conditions is satisfied:
(C1) if l is a positive literal, then (i) l must be strictly maximal with respect to

C and no literal is selected in C ∨ l, and (ii) ¬l must be selected in D∨¬l
or no literal is selected in D ∨¬l and ¬l is maximal with respect to D; or

(C2) if l is a negative literal, then (i) l must be selected in C ∨ l or no literal is
selected in C ∨ l and l is maximal with respect to C, and (ii) ¬l must be
strictly maximal with respect to D and no literal is selected in D ∨ ¬l.

Note that these two conditions are identical modulo the polarity of l. If l in
C ∨ l and ¬l in D∨¬l satisfy condition (C1) or condition (C2), then we say that
l is eligible in C ∨ l and ¬l is eligible in D ∨ ¬l.

The rewrite rules RW1 and RW2 are defined as follows:

RW1
∧n

i=1 mi ⇒ A�false −→ true ⇒
∨n

i=1 ¬mi

RW2
∧n

i=1 mi ⇒ E〈ind〉�false −→ true ⇒
∨n

i=1 ¬mi

where n ≥ 1 and each mi, 1 ≤ i ≤ n, is a literal.

The intuition of the eventuality resolution rule ERES1 below is to resolve an
eventuality A�¬l, which states that �¬l is true on all paths, with a set of
SNFg

CTL clauses which together, provided that their combined left-hand sides
were satisfied, imply that �l holds on (at least) one path.

ERES1
P † ⇒ E�E�l
Q ⇒ A�¬l
Q ⇒ A(¬(P †)W ¬l)
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where P † ⇒ E�E�l represents a set, ΛE�, of SNFg
CTL clauses

P 1
1 ⇒ ∗C1

1 Pn
1 ⇒ ∗Cn

1...
...

P 1
m1

⇒ ∗C1
m1

· · · Pn
mn

⇒ ∗Cn
mn

with each ∗ either being empty or being an operator in {A�} ∪ {E〈ind〉� |
ind ∈ Ind} and for every i, 1 ≤ i ≤ n, (i) (

∧mi

j=1 Ci
j) ⇒ l and (ii) (

∧mi

j=1 Ci
j) ⇒

(
∨n

i=1
∧mi

j=1 P i
j ) are provable. Furthermore, P † =

∨n
i=1

∧mi

j=1 P i
j . Conditions (i)

and (ii) ensure that the set ΛE� of SNFg
CTL clauses implies P † ⇒ E�E�l.

Note that the conclusion of ERES1 is not stated in normal form. To present
the conclusion of ERES1 in normal form, we use a new atomic proposition wA

¬l

uniquely associated with the eventuality A�¬l. Then the conclusion of ERES1
can be represented by the following set of SNFg

CTL clauses:

{wA
¬l ⇒ A�(¬l ∨

∨mi

j=1 ¬P i
j ) | 1 ≤ i ≤ n}

∪ {true ⇒ ¬Q ∨ ¬l ∨
∨mi

j=1 ¬P i
j | 1 ≤ i ≤ n}

∪ {true ⇒ ¬Q ∨ ¬l ∨ wA
¬l, wA

¬l ⇒ A�(¬l ∨ wA
¬l)}.

The use of a proposition wA
¬l uniquely associated with the eventuality A�¬l

is important for the termination of our procedure. It allows us to represent all
resolvents by ERES1 using a fixed set of propositions depending only on the
initial set of clauses, i.e., n different A-eventualities in the initial set of clauses
require at most n new atomic propositions to represent resolvents by ERES1.

Similar to ERES1, the intuition underlying the ERES2 rule is to resolve an
eventuality E〈ind〉�¬l, which states that �¬l is true on the path χ

〈ind〉
si , with a

set of SNFg
CTL clauses which together, provided that their combined left-hand

sides were true, imply that �l holds on the path χ
〈ind〉
si+1 .

ERES2
P † ⇒ E〈ind〉�(E〈ind〉�l)
Q ⇒ E〈ind〉�¬l
Q ⇒ E〈ind〉(¬(P †)W ¬l)

where P † ⇒ E〈ind〉�(E〈ind〉�l) represents a set, Λind
E� , of SNFg

CTL clauses which
is analogous to the set ΛE� but each ∗ is either empty or an operator in
{A�,E〈ind〉�} and for every i, 1 ≤ i ≤ n, (i) (

∧mi

j=1 Ci
j) ⇒ l and (ii) (

∧mi

j=1 Ci
j) ⇒

(
∨n

i=1
∧mi

j=1 P i
j ) are provable. Furthermore, P † =

∨n
i=1

∧mi

j=1 P i
j . Again, condi-

tions (i) and (ii) ensure that the set Λind
E� of SNFg

CTL clauses implies the formula
P † ⇒ E〈ind〉�(E〈ind〉�l).

Similarly, we use an atomic proposition wind
¬l uniquely associated with

E〈ind〉�¬l to represent the resolvent of ERES2 as the following set of SNFg
CTL

clauses:
{wind

¬l ⇒ E〈ind〉�(¬l ∨
∨mi

j=1 ¬P i
j ) | 1 ≤ i ≤ n}

∪ {true ⇒ ¬Q ∨ ¬l ∨
∨mi

j=1 ¬P i
j | 1 ≤ i ≤ n}

∪ {true ⇒ ¬Q ∨ ¬l ∨ wind
¬l , wind

¬l ⇒ E〈ind〉�(¬l ∨ wind
¬l )}.



A Refined Resolution Calculus for CTL 251

As for ERES1, the use of atomic propositions uniquely associated with E-
eventualities allows us to represent all resolvents by ERES2 using a fixed set of
atomic propositions depending only on the initial set of clauses.

The expensive part of applying ERES1 and ERES2 is finding sets of A-step,
E-step and global clauses which can serve as premises for these rules, that is,
for a given literal l stemming from some eventuality, to find sets of SNFg

CTL
clauses ΛE�, satisfying conditions (i) and (ii), or Λind

E� , satisfying conditions (i)
and (ii). Such sets of SNFg

CTL clauses are also called E-loops in l and the formula∨n
i=1

∧mi

j=1 P i
j is called a loop formula. Algorithms to find such loops are described

in [6].
A derivation from a finite set T of SNFg

CTL clauses by R�,S
CTL is a sequence

T0, T1, T2, . . . of sets of clauses such that T = T0 and Ti+1 = Ti ∪ Ri where Ri

is a set of clauses obtained as the conclusion of the application of a resolution
rule to premises in Ti. A refutation of T (by R�,S

CTL) is a derivation from T such
that for some i ≥ 0, Ti contains a contradiction, where a contradiction is either
the formula true ⇒ false or start ⇒ false. A derivation terminates iff either a
contradiction is derived or if no new clauses can be derived by further application
of resolution rules.

5 Properties of R�,S
CTL

The calculus R�,S
CTL is sound, complete and terminating. First, we show that R�,S

CTL
is sound.

Theorem 2 (Soundness of R�,S
CTL). Let T be a set of SNFg

CTL clauses. If there
is a refutation of T by R�,S

CTL, then T is unsatisfiable.

Proof. The soundness of SRES1 to SRES4, ERES1 and ERES2 has been estab-
lished in [5]. So we only need to prove the soundness of SRES5 to SRES8, RW1
and RW2.

Let T0, T1, . . . , Tn be a derivation from a set of SNFg
CTL clauses T = T0 by

the calculus R�,S
CTL. We will show by induction over the length of the derivation

that if T0 is satisfiable, then so is Tn.
For T0 = T , the claim obviously holds. Now, consider the step of the derivation

in which we derive Ti+1 from Ti for some i ≥ 0. Assume Ti is satisfiable and
M = 〈S,R,L, [ ], s0〉 is a model structure satisfying Ti.

Assume A�(true ⇒ C ∨ l) and A�(start ⇒ D ∨ ¬l) are in Ti. Let Ti+1 be
obtained by an application of SRES5 to A�(true ⇒ C ∨ l) and A�(start ⇒
D ∨ ¬l), i.e., Ti+1 = Ti ∪ {A�(start ⇒ C ∨D)}. We show that M also satisfies
Ti+1. Consider an arbitrary state s ∈ S. If s is not s0, then obviously 〈M, s〉 |=
start ⇒ C ∨D. Assume the state s is s0. From 〈M, s〉 |= A�(true ⇒ C ∨ l) and
〈M, s〉 |= A�(start ⇒ D∨¬l) and the semantics of A�, true, ⇒ and start, we
obtain 〈M, s〉 |= C ∨ l and 〈M, s〉 |= D ∨ ¬l. Then we conclude 〈M, s〉 |= C ∨D.
As s is s0, then from the semantics of start we have 〈M, s〉 |= start ⇒ C ∨D.
Since start ⇒ C ∨ D holds in s0 and all other states, from the semantics of
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A� we conclude 〈M, s〉 |= A�(start ⇒ C ∨D). Thus the model structure M
satisfies Ti+1, Ti+1 is satisfiable and SRES5 is sound. For rules SRES6 to SRES8,
the proofs are analogous to that for SRES5.

Regarding RW1, from the semantics of A� and false we obtain that the
formula A�(∧n

i=1Qi ⇒ A�false) is true iff A�(∧n
i=1Qi ⇒ false) is true. This

formula is propositionally equivalent to A�(∨n
i=1¬Qi) which in turn, by the

semantics of ⇒ and true, is equivalent to A�(true ⇒ ∨n
i=1¬Qi). The proof for

RW2 is similar. ��

Our proof of the completeness of R�,S
CTL makes use of (reduced) labelled behaviour

graphs, which will be defined below. These graphs can be seen as finite repre-
sentations of the set of all models of a set of SNFg

CTL clauses.

Definition 1 (Labelled behaviour graph). Let T be a set of SNFg
CTL clauses

and Ind(T ) be the set of indices occurring in T . If Ind(T ) is empty, then let
Ind(T ) = {ind}, where ind is an arbitrary index in Ind. Given T and Ind(T ), we
construct a finite directed graph H = (N,E), called a labelled behaviour graph
for T .

A node n = (V,EA, EE) in H is a triple, where V,EA, EE are constructed as
follows. Let V be a valuation of propositions occurring in T . Let EA be a subset
of {l | Q ⇒ A�l ∈ T } and EE be a subset of {l〈ind〉 | Q ⇒ E〈ind〉�l ∈ T }.
Informally EA and EE contain eventualities that need to be satisfied either in
the current node or some node reachable from the current node.

To define the set of edges E of H we use the following auxiliary definitions.
Let n = (V,EA, EE) be a node in N . Let RA(n, T ) = {D | Q ⇒ A�D ∈ T, and
V |= Q}. Note if V does not satisfy the left-hand side of any A-step clause (i.e.
RA(n, T ) = ∅), then there are no constraints from A-step clauses on the next
node of the node n and any valuation satisfies RA(n, T ). Let Rind(n, T ) = {D |
Q ⇒ E〈ind〉�D ∈ T and V |= Q}. Let Rg(T ) = {D | true ⇒ D ∈ T }.

Let functions EvA(V, T ) and EvE(V, T ) be defined as EvA(V, T ) = {l | Q ⇒
A�l ∈ T and V |= Q} and EvE(V, T ) = {l〈ind〉 | Q ⇒ E〈ind〉�l ∈ T , and
V |= Q}, respectively.

Let functions UnsatA(EA, V ) and Unsatind(EE , V ) be defined as UnsatA(EA, V )
= {l | l ∈ EA and V �|= l} and Unsatind(EE , V ) = {l〈ind〉 | l〈ind〉 ∈ EE and V �|= l},
respectively.

Then E contains an edge labelled by ind from a node (V,EA, EE) to a node
(V ′, E′

A, E′
E) iff V ′ satisfies the set RA(n, T ) ∪ Rind(n, T ) ∪ Rg(T ), E′

A =
UnsatA(EA, V ) ∪ EvA(V ′, T ) and E′

E = Unsatind(EE , V ) ∪ EvE(V ′, T ).
Let R0(T ) = {D | start ⇒ D ∈ T }. Then any node (V,EA, EE), where V

satisfies the set R0(T ) ∪ Rg(T ), EA = EvA(V, T ) and EE = EvE(V, T ), is an
initial node of H. The labelled behaviour graph for a set of SNFg

CTL clauses T
is the set of nodes and edges reachable from the initial nodes.

To determine whether T is satisfiable and to be able to construct a CTL model
structure from a labelled behaviour graph H for T , some nodes and subgraphs
of H may have to be deleted. To this end we need to define one type of nodes
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and two types of subgraphs which cannot contribute to the construction of a
CTL model structure from H .

Definition 2 (Terminal node). A node n in a labelled behaviour graph for
T is a terminal node iff there exists an index ind ∈ Ind(T ) such that no edges
labelled with ind depart from n.

Definition 3 (ind-labelled terminal subgraph for l〈ind〉). For a labelled
behaviour graph (N,E) for T , a subgraph (N ′, E′) is an ind-labelled terminal
subgraph for l〈ind〉 of (N,E) iff
(ITS1) N ′ ⊆ N and E′ ⊆ E;
(ITS2) for all nodes n, n′ ∈ N and edges (n, ind′, n′) ∈ E, n′ ∈ N ′ and

(n, ind′, n′) ∈ E′ iff n ∈ N ′ and ind = ind′; and
(ITS3) for every node n = (V,EA, EE) ∈ N ′, l〈ind〉 ∈ EE and V |= ¬l.

Definition 4 (Terminal subgraph for l). For a labelled behaviour graph
(N,E) for T , a subgraph (N ′, E′) is a terminal subgraph for l of (N,E) iff
(TS1) N ′ ⊆ N and E′ ⊆ E;
(TS2) for every node n ∈ N ′ there exists some index ind ∈ Ind(T ) such that

for all edges (n, ind, n′) ∈ E, n′ ∈ N ′ and (n, ind, n′) ∈ E′; and
(TS3) for every node n = (V,EA, EE) ∈ N ′, l ∈ EA and V |= ¬l.

Figure 1 shows an example of an ind-labelled terminal subgraph for q〈ind〉 con-
sisting of n1, n2, n3, where ind = 2, and an example of a terminal subgraph for
p consisting of n1, n3, n4. (We assume the set of indices in the clause set T for
this labelled behaviour graph is Ind(T ) = {1, 2}.)

Using the three definitions above, we are able to define a new type of behaviour
graphs, namely reduced labelled behaviour graphs.

Definition 5 (Reduced labelled behaviour graph). Given a labelled be-
haviour graph H = (N,E) for a set of SNFg

CTL clauses T , then the reduced
labelled behaviour graph for T is the result of exhaustively applying the follow-
ing deletion rules to H.

Key

a
q〈2〉 q〈2〉p

b, p

c
q〈2〉

d
p p

1, 2 2

2 21

1 1

n2

n3

1

V

1

2n4

EA EE

n1

Fig. 1. A 2-labelled terminal subgraph for q〈2〉 consisting of n1, n2, n3 and a terminal
subgraph for p consisting of n1, n3, n4
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1. If n ∈ N is a terminal node with respect to an index in Ind(T ), then delete
n and every edge into or out of n.

2. If there is an ind-labelled terminal subgraph (N ′, E′) for l〈ind〉 of H such that
ind ∈ Ind(T ) and Q ⇒ E〈ind〉�l ∈ T , then delete every node n ∈ N ′ and
every edge into or out of nodes in N ′.

3. If there is a terminal subgraph (N ′, E′) for l of H such that Q ⇒ A�l ∈ T ,
then delete every node n ∈ N ′ and every edge into or out of nodes in N ′.

Lemma 1. A set of SNFg
CTL clauses T is unsatisfiable if and only if its reduced

labelled behaviour graph H is empty.

Proof (Sketch). We start by showing the ‘if’ part. If T is satisfiable, then there
is a model structure M = 〈S,R,L, [ ], s0〉 satisfying T . We construct a labelled
behaviour graph H = (N,E) for T and inductively define a mapping h from M
to H . Let PT be the set of atomic propositions occurring in T . As the model
structure M satisfies the clause set T , L(s0) must satisfy R0(T ) ∪ Rg(T ), which
means there must be an initial node n0 = (V0, EA0 , EE0) in H , where V0 =
L(s0)∩PT , EA0 = EvA(V0, T ) and EE0 = EvE(V0, T ), and we define h(s0) = n0.

Next, we assume that h(si) = ni = (Vi, EAi , EEi) is in H and (si, si+1) ∈
[ind]. As the model structure M satisfies T , L(si+1) must satisfy RA(ni, T ) ∪
Rind(ni, T )∪Rg(T ), which means there must be a node ni+1=(Vi+1, EAi+1 , EEi+1)
in H , where Vi+1 = L(si+1) ∩ PT , EAi+1 = EvA(Vi+1, T ) ∪ UnsatA(EAi , Vi),
EEi+1 = EvE(Vi+1, T ) ∪ Unsatind(EEi , Vi), and we define h(si+1) = ni+1. By
the construction of the behaviour graph, the edge (h(si), ind, h(si+1)) is in H .
Therefore, for every state s ∈ S, the node h(s) is in H and for every pair
(si, si+1) ∈ R, i ≥ 0, the edge (h(si), h(si+1)) is in H . So, the graph HM =
(NM , EM ) such that NM = {h(s) | s ∈ S} and EM = {(h(si), ind, h(si+1)) |
(si, si+1) ∈ [ind], ind ∈ Ind(T ), si, si+1 ∈ S} is a subgraph of H . Then we are
able to show that HM is finite and no deletion rules are applicable to HM , so
the labelled behaviour graph H for T cannot be reduced to an empty graph.

For the ‘only if’ part of the proof we need some additional definitions. By
RP (sn) we denote a reverse path consisting of a finite sequence sn, sn−1, . . . , s0 of
states in S and for every i, 0 ≤ i ≤ n−1, (si, si+1) ∈ R. If n = (V,EA, EE) ∈ N ,
let the function cs(n) return a state s of a CTL model structure such that
L(s) = V .

Assume that the reduced labelled behaviour graph H = (N,E) of T is non-
empty, then we inductively construct a CTL model structure M =〈S,R,L, [ ], s0〉
from H and a mapping h from M to H . The state s0 of M is given by s0 = cs(n0),
where n0 is an arbitrary initial node in H , and we define h(s0) = n0.

Suppose we have constructed the state si for M and RP (si) = si, si−1, . . . , s0.
Then our task is to choose for each index ind ∈ Ind(T ) a pair (si, si+1) ∈
[ind] for M . Assume h(si) = n and n has k ind-successors {n1, n2, . . . , nk}(k >
0 as otherwise n would be a terminal node in H). Let SRP be the set {sj |
sj−1, sj ∈ RP (si), h(sj−1) = n, h(sj) ∈ {n1, n2, . . . , nk} and (sj−1, sj) ∈ [ind]}.
We construct si+1 as follows:
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– if the set SRP is empty, then si+1 = cs(n1);
– else, let s ∈ SSP be the state such that the distance between si and s is

the shortest among all the distances between si and a state in SRP and
h(s) = nm ∈ {n1, n2, . . . , nk}, 1 ≤ m ≤ k, then
• si+1 = cs(nm+1), if m �= k;
• si+1 = cs(n1), if m = k.

By this algorithm, for an arbitrary path χs0 , if a node n is infinitely often
used to construct states s ∈ χs0 and the index ind is infinitely often used to
construct the next states of s on χs0 , then ind-successors of the node n are fairly
chosen. This construction ensures that all eventualities will be satisfied in M .

Following the instructions we provided and using a breadth-first order for the
construction, from the state s0, a CTL model structure M is constructed from
H , which satisfies T . ��

Theorem 3 (Completeness of R�,S
CTL). If a set T of SNFg

CTL clauses is un-
satisfiable, then T has a refutation using the resolution rules SRES1 to SRES8,
ERES1 and ERES2 and the rewrite rules RW1 and RW2.

Proof (Sketch). Let T be an unsatisfiable set of SNFg
CTL clauses. The proof

proceeds by induction on the sequence of applications of the deletion rules to
the labelled behaviour graph of T . If the unreduced labelled behaviour graph is
empty then we can obtain a refutation by applying step resolution rules SRES4,
SRES5 and SRES8. Now suppose the labelled behaviour graph H is non-empty.
The reduced labelled behaviour graph must be empty by Lemma 1, so there
must be a node that can be deleted from H .

We show that for every application of a deletion rule to a behaviour graph
H of T resulting in a smaller graph H ′′, there is a derivation from T by R�,S

CTL
resulting in a set T ′ such that the behaviour graph H ′ for T ′ is a strict subgraph
of H ′′. In particular, we can prove that the first deletion rule corresponds to
a series of step resolution inferences by SRES1 to SRES8 deriving a clause of
the form true ⇒ false, P ⇒ A�false or Q ⇒ E〈ind〉�false. The rewrite rules
RW1 and RW2 will replace P ⇒ A�false and Q ⇒ E〈ind〉�false by the simpler
clauses true ⇒ ¬P and true ⇒ ¬Q, respectively. We can show that removal
of ind-labelled terminal subgraphs, i.e., the second deletion rule, and terminal
subgraphs, i.e., the third deletion rule, corresponds to applications of ERES2
and ERES1, respectively.

Therefore, if T is unsatisfiable, then the reduced labelled behaviour graph
Hred for T is empty and the sequence of applications of the deletion rules which
reduces the labelled behaviour graph H for T to an empty Hred can be used to
construct a refutation in R�,S

CTL. ��

The full completeness proof can be found in [19]. In addition to our completeness
proof, there is also a proof to show that two eventuality resolution rules TRES1
and TRES2 of the earlier resolution calculus for CTL [5], are redundant. These
rules are similar to ERES1 and ERES2 except their first premise uses A rather
than E operators. A detailed explanation can be found in [19].
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Theorem 4. Any derivation from a set T of SNFg
CTL clauses by the calculus

R�,S
CTL terminates.

Proof. Let T be constructed from a set P of n atomic propositions and a set Ind
of m indices. Then the number of SNFg

CTL clauses constructed from P and Ind
is finite. We can have at most 22n initial clauses, 22n global clauses, 24n A-step
clauses, m ·24n E-step clauses, n ·22n+1 A-sometime clauses, and m ·n ·22n+1 E-
sometime clauses. In total, there could be at most (m+1)24n+(m·n+n+1)22n+1

different SNFg
CTL clauses. Any derivation from a set of SNFg

CTL clauses by the
calculus R�,S

CTL will terminate when either no more new clauses can be derived
or a contradiction is obtained. Since there is only a finitely bounded number of
different SNFg

CTL clauses, one of these two conditions will eventually be true. ��

Next we consider the complexity of R�,S
CTL.

Theorem 5. The complexity of a R�,S
CTL-based decision procedure is in EXP-

TIME.

Proof. Assume a set of SNFg
CTL clauses is constructed from a set P of n propo-

sitions and a set Ind of m indices. The cost of deciding whether a step resolution
rule can be applied to two determinate clauses is A = 4n + 1 in the worst case,
provided we can compute S(C) in linear time, compare literals in constant time
and check the identity of indices in constant time. From the proof of Theorem 4,
we know the number of determinate clauses is at most B = 22n+22n+24n+m·24n.
Therefore, to naively compute a new clause from an application of some step res-
olution rule, we might need to look at C = B(B−1)

2 combinations of two clauses
and the associated cost is (C · A). Moreover, to decide whether the resolvent is
a new clause or not, we need to compare the resolvent with at most B clauses
and the cost is D = B · (A + 4n2). In the worst case, where each pair of clauses
generates a resolvent but the resolvent already exists and only the last pair of
clauses gives a new clause, to gain a new clause from an application of some step
resolution rule, the complexity is of the order (C · A · D), that is, EXPTIME.

To compute a new clause from an application of some eventuality resolution
rule, the complexity depends on the complexity of the so-called CTL loop search
algorithm which computes premises for the eventuality resolution rules [6]. The
CTL loop search algorithm is a variation of the PLTL loop search algorithm [9]
which has been shown to be in EXPTIME and we can show that the complexity
of the CTL loop search algorithm from [6] is also in EXPTIME. Generally speak-
ing, each iteration of the CTL loop search algorithm is a saturation of the clause
set, which is in EXPTIME, and there may be an exponential number of itera-
tions required. Since a new clause is produced by an application of either step
resolution or eventuality resolution, the complexity of generating a new clause
is of the order EXPTIME. According to the proof of Theorem 4, there can be
at most (m+ 1)24n + (m · n + n + 1)22n+1 different SNFg

CTL clauses. Therefore,
the complexity of saturating a set of SNFg

CTL clauses and thereby deciding its
satisfiability is in EXPTIME. ��
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6 Implementation and Experiments

We have implemented the transformation from CTL to SNFg
CTL and the calculus

R�,S
CTL in the prover CTL-RP. The implementation of R�,S

CTL follows the approach
used in [13] to implement a resolution calculus for PLTL. In particular, we
transform all SNFg

CTL clauses except A- and E-sometime clauses into first-order
clauses. Then we are able to use first-order ordered resolution with selection
to emulate step resolution. With respect to the eventuality resolution rules we
have implemented the E-loop search algorithm in [19]. We again compute the
results of applications of the eventuality resolution rules in the form of first-
order clauses. To implement first-order ordered resolution with selection, we
reuse the implementation provided by the first-order theorem prover SPASS
3.0 [16,18]. Regarding redundancy elimination, we adopt the following techniques
from SPASS: tautology deletion, forward subsumption, backward subsumption
and a modified version of matching replacement resolution. A formal description
of the approach and related proofs are presented in detail in [19].

Besides CTL-RP, there is only one other CTL theorem prover that we know
of, namely a CTL module for the Tableau Workbench (TWB) [1]. The Tableau
Workbench is a general framework for building automated theorem provers for
arbitrary propositional logics. It provides a number of pre-defined provers for a
wide range of logics, for example, propositional logic, linear-time temporal logic
and CTL. Regarding CTL, it implements a so-called one-pass tableau calculus
for this logic which results in double-EXPTIME decision procedure [2]. Therefore
the complexity of this CTL decision procedure is higher than the complexity of
CTL-RP, which is EXPTIME. It should be noted that the prime aim of TWB
is not efficiency.

There is no established way to evaluate the performance of CTL decision pro-
cedures nor is there a repository or random generator of CTL formulae that one
might use for such an evaluation. We have therefore created three sets of bench-
mark formulae that we have used to compare CTL-RP version 00.09 with TWB
version 3.4. The comparison was performed on a Linux PC with an Intel Core
2 E6400 CPU@2.13 GHz and 3GB main memory, using the Fedora 9 operating
system.

Table 1. Performance of CTL-RP and TWB on sample CTL equivalences

CTL equivalence CTL-RP TWB
1. A�p ≡ ¬E�¬p 0.008s 0.005s
2. E�p ≡ ¬A�¬p 0.008s 0.004s
3. E�(p ∨ q) ≡ E�p ∨E�q 0.005s 0.005s
4. A�p ≡ ¬E�¬p 0.004s 0.006s
5. E(pU q) ≡ q ∨ (p ∧ E�E(pU q)) 0.049s 0.005s
6. A(pU q) ≡ q ∨ (p ∧A�A(pU q)) 0.068s 0.005s
7. E�p ≡ E(true U p) 0.010s 0.008s
8. A�p ≡ A(true U p) 0.010s 0.008s
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The first set of benchmark formulae, CTL-BF1, consists of eight well-known
equivalences between temporal formulae taken from [10]. The CTL equivalences
themselves and the CPU time required by TWB and CTL-RP to prove each of
them is shown in Table 1.

Both systems easily prove each of the formulae in less then 0.1 seconds, how-
ever, with TWB being significantly faster on two of the formulae.

We obtain the second set of benchmarks by randomly generating formulae con-
sisting of a specification of a state transition system and properties of the system
to be verified. In particular, let a state specification be a conjunction of literals li,
1 ≤ i ≤ 4, with each li being an element of {ai,¬ai}. Let a transition specification
be a CTL formula in the form A�(s ⇒ A�(

∨n
i=1 si)) or A�(s ⇒ E�(

∨n
i=1 si)),

where n is a randomly generated number between 1 and 3, and s and each si,
1 ≤ i ≤ n is a randomly generated state specification. Furthermore, let a property
specification be a CTL formula of the form ∗(

∨n
i=1 si), where ∗ is a randomly

chosen element of {A�,E�,A�,E�,A�,E�} or (
∨n

i=1 si)∗ (
∨m

i=1 sj), where ∗
is a randomly chosen element of {AU ,EU }, n and m are randomly generated
numbers between 1 and 2, and each si and sj , 1 ≤ i ≤ n, 1 ≤ j ≤ m, is a ran-
domly generated state specification. CTL-BF2 consists of one hundred formulae
with each formula being a conjunction (set) of 30 transition specifications and
5 property specifications. All one hundred formula are unsatisfiable. Figure 2
shows a graph indicating the CPU time in seconds required by TWB and CTL-
RP to establish the unsatisfiability of each benchmark formula in CTL-BF2. For
CTL-RP, each of the 100 benchmark formulae was solved in less than one CPU
second. TWB, on the other hand, required more time for most of benchmark for-
mulae and was not able to solve 21 of the benchmark formulae in less than 200
CPU seconds each, which was the time limit imposed for both provers. The re-
sults on CTL-BF2 show that CTL-RP can provide a proof for each benchmark

Fig. 2. Performance on the second set of benchmark formulae CTL-BF2
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Table 2. Performance of CTL-RP and TWB on CTL-BF3

Property CTL-RP TWB
1 1.39s -
2 192.86s -
3 326.02s -

formula in a reasonable time with the vast majority of formulae being solved
in less than 0.50 seconds. In contrast, the performance of TWB is much more
variable, with a high percentage of formulae not being solved.

The last set of benchmarks, CTL-BF3, is based on a protocol specification.
Following the description of a network protocol, the Alternating Bit Protocol,
in [14], we have specified this protocol in CTL and specified and verified the
following three of its properties by CTL-RP and TWB.

1. A(iU a0) 2. A�(a0 ⇒ A(a0 U a1)) 3. A�(a1 ⇒ A(a1 U a0))

where i represents that the receiver is in the starting state of the finite state tran-
sition system that represents the receiver’s behaviour according to the protocol;
a0 represents that the receiver sends an acknowledgement with control bit 0; and
a1 represents that the receiver sends an acknowledgement with control bit 1.

While CTL-RP was able to establish the validity of each of the three bench-
mark formulae, as indicated in Table 2, TWB did not terminate within 20 hours
of CPU time.

7 Related Work and Conclusions

CTL [10] was introduced by Emerson et al in the 1980s and now is a well-
known branching-time temporal logic for the specification and verification of
computational systems. Approaches to the satisfiability problem in CTL include
automata techniques [17], tableau calculi [2,11] and a resolution calculus [5],
developed by Bolotov.

Bolotov’s calculus for CTL is based on the ideas underlying a resolution cal-
culus for PLTL [12], which is implemented in the theorem prover TRP++ [13]
using first-order techniques. Here, we have provided a refined clausal resolution
calculus R�,S

CTL for CTL, based on [5]. Compared with [5], we provide a formal
semantics for indices and SNFg

CTL. Moreover, we use an ordering and a selec-
tion function to restrict the applicability of step resolution rules and we have
fewer eventuality resolution rules. We present a new completeness proof based
on behaviour graphs. Our completeness proof demonstrates a closer relationship
between applications of resolution rules and deletions on behaviour graphs. The
proof shows that the additional eventuality resolution rules in [5], which are the
most costly rules, are redundant. In addition, we prove that the complexity of a
R�,S

CTL-based decision procedure for CTL is EXPTIME. We have compared our
implementation CTL-RP with another theorem prover, TWB, and the experi-
mental results show good performance of CTL-RP. In future work, we plan to
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create a scalable family of benchmarks and investigate more complicated specifi-
cation and verification problems. Also, we intend to extend our clausal resolution
calculus R�,S

CTL to other logics close to CTL, for example, ATL [3].
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Abstract. Ordered fine-grained resolution with selection is a sound
and complete resolution-based calculus for monodic first-order temporal
logic. The inference rules of the calculus are based on standard resolution
between different types of temporal clauses on one hand and inference
rules with semi-decidable applicability conditions that handle eventuali-
ties on the other hand. In this paper we illustrate how the combination
of these two different types of inference rules can lead to unfair deriva-
tions in practice. We also present an inference procedure that allows us
to construct fair derivations and prove its refutational completeness. We
conclude with some experimental results obtained with the implementa-
tion of the new procedure in the theorem prover TSPASS.

1 Introduction

Temporal logics have long been considered as appropriate formal languages for
specifying important computational properties in computer science and artificial
intelligence [5]. However, while various propositional temporal logics have been
used very successfully in this context, the same has not been true to the same
extent for first-order temporal logic. One reason is that first-order temporal logic
is not even semi-decidable, which limits its usefulness for verification purposes.
A prominent fragment of first-order temporal logic which has the completeness
property is the monodic fragment [8]. Besides completeness, monodic first-order
temporal logic enjoys a number of other beneficial properties, e.g. the existence
of non-trivial decidable subclasses, complete reasoning procedures, etc.

A first resolution-based calculus for monodic first-order temporal logic was
introduced in [3]. A more machine-oriented version, the fine-grained first-order
temporal resolution calculus, was described in [12]. Subsequently, a refinement
of fine-grained temporal resolution, the ordered fine-grained temporal resolution
with selection calculus, was presented in [10].

Essentially, the inference rules of ordered fine-grained resolution with selec-
tion can be classified into two different categories. The majority of the rules
are based on standard first-order resolution between different types of temporal
clauses. The remaining inference rules reflect the induction principle that holds
for monodic temporal logic over a flow of time isomorphic to the natural numbers.
� The work of the second author was supported by EPSRC grant EP/D060451/1.
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The applicability of the rules in this second category is only semi-decidable. Con-
sequently, fair derivations, i.e. derivations in which every non-redundant clause
that is derivable from a given clause set is eventually derived, cannot be guar-
anteed in practice as the applicability check for an inference rule of the second
category might not terminate.

In this paper we present an inference procedure that can construct fair deriva-
tions for reasoning in monodic first-order temporal logic and we prove its refu-
tational completeness. The paper is organized as follows. In Section 2 we briefly
recall the syntax and semantics of monodic first-order temporal logic. The or-
dered fine-grained resolution with selection calculus is presented in Section 3, and
the new inference procedure is introduced in Section 4. Then, the refutational
completeness of the new procedure is shown in Section 5. Finally, in Section 6 we
briefly discuss the implementation of the new inference procedure in the theorem
prover TSPASS and present some experimental results.

2 First-Order Temporal Logic

We assume the reader to be familiar with first-order logic and associated notions,
including, for example, terms and substitutions.

Then, the language of First-Order (Linear Time) Temporal Logic, FOTL, is
an extension of classical first-order logic by temporal operators for a discrete
linear model of time (i.e. isomorphic to N). The signature of FOTL (without
equality and function symbols) is composed of a countably infinite set X of
variables x0, x1, . . . , a countably infinite set of constants c0, c1, . . . , a non-
empty set of predicate symbols P , P0, . . . , each with a fixed arity ≥ 0, the
propositional operators � (true), ¬, ∨, the quantifiers ∃xi and ∀xi, and the
temporal operators (‘always in the future’), ♦ (‘eventually in the future’), ©
(‘at the next moment’), U (‘until’) and W (‘weak until’) (see e.g. [5]). We also
use ⊥ (false), ∧, and ⇒ as additional operators, defined using �, ¬, and ∨ in the
usual way. The set of FOTL formulae is defined as follows: � is a FOTL formula;
if P is an n-ary predicate symbol and t1, . . . , tn are variables or constants, then
P (t1, . . . , tn) is an atomic FOTL formula; if ϕ and ψ are FOTL formulae, then
so are ¬ϕ, ϕ ∨ ψ, ∃xϕ, ∀xϕ, ϕ, ♦ϕ, ©ϕ, ϕUψ, and ϕWψ. Free and bound
variables of a formula are defined in the standard way, as well as the notions
of open and closed formulae. For a given formula ϕ, we write ϕ(x1, . . . , xn) to
indicate that all the free variables of ϕ are among x1, . . . , xn. As usual, a literal
is either an atomic formula or its negation, and a proposition is a predicate of
arity 0.

Formulae of this logic are interpreted over structures M = (Dn, In)n∈N that
associate with each element n of N, representing a moment in time, a first-order
structure Mn = (Dn, In) with its own non-empty domain Dn and interpreta-
tion In. An assignment a is a function from the set of variables to

⋃
n∈N Dn. The

application of an assignment to formulae, predicates, constants and variables is
defined in the standard way, in particular, a(c) = c for every constant c. The
definition of the truth relation Mn |=a ϕ (only for those a such that a(x) ∈ Dn

for every variable x) is given in Fig. 1.
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Mn |=a �
Mn |=a P (t1, . . . , tn) iff (In(a(t1)), . . . , In(a(tn))) ∈ In(P )
Mn |=a ¬ϕ iff not Mn |=a ϕ
Mn |=a ϕ ∨ ψ iff Mn |=a ϕ or Mn |=a ψ
Mn |=a ∃xϕ iff Mn |=b ϕ for some assignment b that may differ

from a only in x and such that b(x) ∈ Dn

Mn |=a ∀xϕ iff Mn |=b ϕ for every assignment b that may differ
from a only in x and such that b(x) ∈ Dn

Mn |=a ©ϕ iff Mn+1 |=a ϕ
Mn |=a ♦ϕ iff there exists m ≥ n such that Mm |=a ϕ
Mn |=a ϕ iff for all m ≥ n, Mm |=a ϕ
Mn |=a ϕ U ψ iff there exists m ≥ n such that Mm |=a ψ and

Mi |=a ϕ for every i, n ≤ i < m
Mn |=a ϕ W ψ iff Mn |=a ϕ U ψ or Mn |=a ϕ

Fig. 1. Truth-relation for first-order temporal logic

In this paper we make the expanding domain assumption, that is, Dn ⊆ Dm

if n < m, and we assume that the interpretation of constants is rigid, that is,
In(c) = Im(c) for all n,m ∈ N.

A structure M = (Dn, In)n∈N is said to be a model for a formula ϕ if and
only if for every assignment a with a(x) ∈ D0 for every variable x it holds that
M0 |=a ϕ. A formula is satisfiable if and only there exists a model for ϕ. A
formula ϕ is valid if and only if every temporal structure M = (Dn, In)n∈N is a
model for ϕ.

The set of valid formulae of this logic is not recursively enumerable. However,
the set of valid monodic formulae is known to be finitely axiomatisable [15]. A
formula ϕ of FOTL is called monodic if any subformula of ϕ of the form ©ψ,

ψ, ♦ψ, ψ1 Uψ2, or ψ1 Wψ2 contains at most one free variable. For example,
the formulae ∃x ∀yP (x, y) and ∀x P (c, x) are monodic, whereas the formula
∀x∃y(Q(x, y) ⇒ Q(x, y)) is not monodic.

Every monodic temporal formula can be transformed into an equi-satisfiable
normal form, called divided separated normal form (DSNF) [12].

Definition 1. A monodic temporal problem P in divided separated normal form
(DSNF) is a quadruple 〈U , I,S, E〉, where the universal part U and the initial part
I are finite sets of first-order formulae; the step part S is a finite set of clauses of
the form p ⇒©q, where p and q are propositions, and P (x) ⇒©Q(x), where P
and Q are unary predicate symbols and x is a variable; and the eventuality part
E is a finite set of formulae of the form ♦L(x) (a non-ground eventuality clause)
and ♦l (a ground eventuality clause), where l is an at most unary ground literal
and L(x) is a unary non-ground literal with the variable x as its only argument.

We associate with each monodic temporal problem P = 〈U , I,S, E〉 the monodic
FOTL formula I∧ U∧ ∀xS∧ ∀xE . When we talk about particular properties
of a temporal problem (e.g., satisfiability, validity, logical consequences, etc) we
refer to properties of this associated formula.
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The transformation to DSNF is based on a renaming and unwinding technique
which substitutes non-atomic subformulae by atomic formulae with new predi-
cate symbols and replaces temporal operators by their fixed point definitions as
described, for example, in [6].

Theorem 1 (see [4], Theorem 3.4). Any monodic formula in first-order tem-
poral logic can be transformed into an equi-satisfiable monodic temporal problem
in DSNF with at most a linear increase in the size of the problem.

The main purpose of the divided separated normal form is to cleanly separate
different temporal aspects of a FOTL formula from each other. For the resolution
calculus in this paper we will need to go one step further by transforming the
universal and initial part of a monodic temporal problem into clause normal
form.

Definition 2. Let P = 〈U , I,S, E〉 be a monodic temporal problem. The clausi-
fication Cls(P) of P is a quadruple 〈U ′, I ′,S′, E ′〉 such that U ′ is a set of clauses,
called universal clauses, obtained by clausification of U ; I ′ is a set of clauses,
called initial clauses, obtained by clausification of I; S′ is the smallest set of
step clauses such that all step clauses from S are in S′ and for every non-ground
step clause P (x) ⇒©L(x) in S and every constant c occurring in P, the clause
P (c) ⇒©L(c) is in S′; E ′ is the smallest set of eventuality clauses such that all
eventuality clauses from E are in E ′ and for every non-ground eventuality clause
♦L(x) in E and every constant c occurring in P, the eventuality clause ♦L(c) is
in E ′.

One has to note that new constants and, especially, function symbols of an
arbitrary arity can be introduced during the Skolemization process. As a conse-
quence it is not possible in general to instantiate every variable that occurs in
the original problem with all the constants and function symbols. On the other
hand, the variables occurring in the step and eventuality clauses have to be in-
stantiated with the constants that are present in the original problem (before
Skolemization) in order to ensure the completeness of the calculus presented in
Section 3.

Clause equality up to variable renaming is denoted by the symbol =X ; sim-
ilarly, the symbols ⊆X and =X are used to represent clause set inclusion and
clause set equality up to variable renaming (of individual clauses).

A tautology is either an initial or universal clause of the form C ∨ L ∨ ¬L,
or a step clause of the form C ⇒ ©(D ∨ L ∨ ¬L). Step clauses of the latter
form can be derived by the calculus defined in the subsequent section. For a
set of clauses N (or a temporal problem) we denote by taut(N ) the set of all
the tautological clauses contained in the set N . In what follows U denotes the
(current) universal part of a monodic temporal problem P.

In the next section we recall the ordered fine-grained resolution with selec-
tion calculus first presented in [10]. A version of the calculus without ordering
restrictions and selection functions was introduced first in [11].
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3 Ordered Fine-Grained Resolution with Selection

We assume that we are given an atom ordering 	, that is, a strict partial ordering
on ground atoms which is well-founded and total, and a selection function S
which maps any first-order clause C to a (possibly empty) subset of its negative
literals and which is instance compatible:

Definition 3. We say that a selection function S is instance compatible if and
only if for every clause C, for every substitution σ and for every literal l ∈ Cσ
it holds that l ∈ S(Cσ) ⇐⇒ ∃ l′ ∈ S(C) : l′σ = l.

The atom ordering 	 is extended to ground literals by ¬A 	 A and (¬)A 	 (¬)B
if and only if A 	 B. The ordering is extended on the non-ground level as follows:
for two arbitrary literals L and L′, L 	 L′ if and only if Lσ 	 L′σ for every
grounding substitution σ. A literal L is called (strictly) maximal w.r.t. a clause
C if and only if there is no literal L′ ∈ C with L′ 	 L (L′ 
 L). A literal L is
eligible in a clause L ∨C for a substitution σ if either it is selected in L ∨C, or
otherwise no literal is selected in C and Lσ is maximal w.r.t. Cσ.

The atom ordering 	 and the selection function S are used to restrict the
applicability of the deduction rules of fine-grained resolution as follows. We also
assume that the clauses used as premises for the different resolution-based in-
ference rules are made variable disjoint beforehand.

(1) First-order ordered resolution with selection between two universal clauses

C1 ∨A ¬B ∨ C2

(C1 ∨ C2)σ

if σ is the most general unifier of A and B, A is eligible in (C1 ∨ A) for σ,
and ¬B is eligible in (¬B ∨ C2) for σ. The result is a universal clause.

(2) First-order ordered positive factoring with selection

C1 ∨A ∨B

(C1 ∨A)σ

if σ is the most general unifier of A and B, and A is eligible in (C1 ∨A∨B)
for σ. The result is again a universal clause.

(3) First-order ordered resolution with selection between an initial and a uni-
versal clause, between two initial clauses, and ordered positive factoring with
selection on an initial clause. These are defined in analogy to the two deduc-
tion rules above with the only difference that the result is an initial clause.

(4) Ordered fine-grained step resolution with selection.

C1 ⇒©(D1 ∨A) C2 ⇒©(D2 ∨ ¬B)
(C1 ∧ C2)σ ⇒©(D1 ∨D2)σ

where C1 ⇒©(D1∨A) and C2 ⇒©(D2∨¬B) are step clauses, σ is a most
general unifier of the atoms A and B such that σ does not map variables
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from C1 or C2 into a constant or a functional term, A is eligible in (D1 ∨A)
for σ, and ¬B is eligible in (D2 ∨ ¬B) for σ.

C1 ⇒©(D1 ∨A) D2 ∨ ¬B
C1σ ⇒©(D1 ∨D2)σ

where C1 ⇒ ©(D1 ∨ A) is a step clause, D2 ∨ ¬B is a universal clause,
and σ is a most general unifier of the atoms A and B such that σ does not
map variables from C1 into a constant or a functional term, A is eligible in
(D1 ∨ A) for σ, and ¬B is eligible in (D2 ∨ ¬B) for σ. There also exists a
similar rule where the positive literal A is contained in a universal clause
and the negative literal ¬B in a step clause.

(5) Ordered fine-grained positive step factoring with selection.

C ⇒©(D ∨A ∨B)
Cσ ⇒©(D ∨A)σ

where σ is a most general unifier of the atoms A and B such that σ does not
map variables from C into a constant or a functional term, and A is eligible
in (D ∨A ∨B) for σ.

(6) Clause conversion. A step clause of the form C ⇒ ©⊥ is rewritten to the
universal clause ¬C.
Step clauses of the form C ⇒ ©⊥ will also be called terminating or final
step clauses.

(7) Duplicate literal elimination in left-hand sides of terminating step clauses.
A clause of the form (C ∧A ∧A) ⇒©⊥ yields the clause (C ∧A) ⇒©⊥.

(8) Eventuality resolution rule w.r.t. U :

∀x(A1(x) ⇒©B1(x)) · · · ∀x(An(x) ⇒©Bn(x)) ♦L(x)
∀x
∧n

i=1 ¬Ai(x)
(♦Ures) ,

where ∀x(Ai(x) ⇒ ©Bi(x)) are formulae computed from the set of step
clauses such that for every i, 1 ≤ i ≤ n, the loop side conditions ∀x(U ∧
Bi(x) ⇒ ¬L(x)) and ∀x(U ∧ Bi(x) ⇒

∨n
j=1(Aj(x))) are valid.1

The set of full merged step clauses, satisfying the loop side conditions, is
called a loop in ♦L(x) and the formula

∨n
j=1Aj(x) is called a loop formula.

More details can be found in [10].
(9) Ground eventuality resolution rule w.r.t. U :

A1 ⇒©B1 · · · An ⇒©Bn ♦l∧n
i=1 ¬Ai

(♦Ures) ,

where Ai ⇒©Bi are ground formulae computed from the set of step clauses
such that for every i, 1 ≤ i ≤ n, the loop side conditions U ∧ Bi |= ¬l and
U ∧ Bi |=

∨n
j=1Aj are valid. The notions of ground loop and ground loop

formula are defined similarly to the case above.

1 In the case U |= ∀x¬L(x), the degenerate clause, � ⇒ ©�, can be considered as a
premise of this rule; the conclusion of the rule is then ¬�.
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Function FG-BFS
Input: A set of universal clauses U and a set of step clauses S , saturated

by ordered fine-grained resolution with selection, and an eventuality
clause ♦L(x) ∈ E , where L(x) is unary literal.

Output: A formula H(x) with at most one free variable.
Method: (1) Let H0(x) = true; M0 = ∅; i = 0

(2) Let Ni+1 = U ∪ {P (cl) ⇒ ©M(cl) | original P (x) ⇒ ©M(x) ∈
S } ∪ {true ⇒©(¬Hi(cl) ∨ L(cl))}. Apply the rules of ordered fine-
grained resolution with selection except the clause conversion rule to
Ni+1. If we obtain a contradiction, then return the loop true (in this
case ∀x¬L(x) is implied by the universal part).
Otherwise let Mi+1 = {Cj ⇒ ©⊥}n

j=1 be the set of all new termi-
nating step clauses in the saturation of Ni+1.

(3) If Mi+1 = ∅, return false; else let Hi+1(x) =
∨n

j=1(∃̃Cj){cl → x}
(4) If ∀x(Hi(x)⇒ Hi+1(x)), return Hi+1(x).
(5) i = i + 1; goto 2.

Note: The constant cl is a fresh constant used for loop search only

Fig. 2. Breadth-first Search Algorithm Using Fine-grained Step Resolution

Rules (1) to (7), also called rules of fine-grained step resolution, are either
identical or closely related to the deduction rules of ordered first-order resolution
with selection; a fact that we exploit in our implementation of the calculus.

Loop formulae, which are required for applications of the rules (8) and (9),
can be computed by the fine-grained breadth-first search algorithm (FG-BFS),
depicted in Fig. 2. The process of running the FG-BFS algorithm is called loop
search.

Let ordered fine-grained resolution with selection be the calculus consisting of
the rules (1) to (7) above, together with the ground and non-ground eventuality
resolution rules described above, i.e. rules (8) and (9). We denote this calculus
by IS,�

FG
.

Definition 4 (Derivation). A (linear) derivation Δ (in IS,�
FG ) from the clausi-

fication Cls(P) of a monodic temporal problem P is a sequence of tuples Δ =
〈U1, I1,S1, E〉, 〈U2, I2,S2, E〉, . . . such that each tuple at an index i + 1 is ob-
tained from the tuple at the index i by adding the conclusion of an application of
one of the inference rules of IS,�

FG
to premises from the sets Ui, Ii, Si to that set,

with the other sets as well as E remaining unchanged2. The derivation Δ will
also be denoted by a sequence of clauses C1, C2, . . . where each clause Ci is either
contained in the problem 〈U1, I1,S1, E〉 or is newly obtained in the inference step
that derived the problem 〈Ui, Ii,Si, E〉.

A derivation Δ such that the empty clause is an element of a Ui ∪Ii is called
a (IS,�

FG
-)refutation of 〈U1, I1,S1, E〉.

2 In an application of ground eventuality or eventuality resolution rule, the set U in
the definition of the rule refers to Ui.
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A derivation Δ is fair if and only if for each clause C which can be derived
from premises in 〈

⋃
i≥1 Ui,

⋃
i≥1 Ii,

⋃
i≥1 Si, E〉 there exists an index j such that C

occurs in 〈Uj , Ij ,Sj , E〉.
A set of temporal clauses N is said to be saturated under ordered fine-grained

resolution with selection if and only if the resulting clauses from all the possible
inferences under the rules of ordered fine-grained resolution with selection are
already contained in the set N .

Ordered fine-grained resolution with selection is sound and complete monodic
temporal problems over expanding domains as stated in the following theorem.

Theorem 2 (see [10], Theorem 5). Let P be a monodic temporal problem.
Let 	 be an atom ordering and S an instance compatible selection function.
Then P is unsatisfiable iff there exists a IS,�

FG
-refutation of Cls(P). Moreover, P

is unsatisfiable iff any fair IS,�
FG -derivation is a refutation of Cls(P).

4 Constructing Fair Derivations

As stated in Theorem 2, any fair derivation from a clausified monodic tem-
poral problem will eventually include a monodic temporal problem containing
the empty clause. However, due to the presence of the ground and non-ground
eventuality resolution rules in our calculus, constructing a fair derivation is a
non-trivial problem. The validity of the side conditions of loop formulae, i.e.
∀x(U ∧ Bi(x) ⇒ ¬L(x)) and ∀x(U ∧ Bi(x) ⇒

∨n
j=1(Aj(x))) in the non-ground

case, is only semi-decidable. Thus, the construction of a derivation could poten-
tially ‘get stuck’ while checking these side conditions.

The use of the FG-BFS algorithm to systematically search for (ground) loop
formulae does not solve the problem related to the semi-decidability of the side
conditions used in the eventuality resolution rules. In step (2) of the algorithm
we need to saturate the set of universal and step clauses Ni+1 using the rules
of fine-grained step resolution except the clause conversion rule. This saturation
process may not terminate even if for a given eventuality clause ♦L(x) ∈ E or
♦l ∈ E and the set of current universal and step clauses no loop formula exists.
Thus, FG-BFS also cannot guarantee fairness.

If one tries to solve the fairness problem by delaying the application of the
eventuality resolution rules as long as possible, then one faces the problem that
the saturation process under the rules of fine-grained step resolution may not
terminate even if the original monodic temporal problem is unsatisfiable. Conse-
quently, the strategy of executing the FG-BFS algorithm only after the original
temporal problem has been saturated under fine-grained resolution may still lead
to unfairness.

We can thus see that achieving fairness in derivations is not a trivial task
and that it can only be accomplished if the two potentially non-terminating
types of saturations, which are the regular saturation under ordered fine-grained
resolution with selection on one hand, and the saturations required for loop
search on the other hand, are not executed sequentially. We hence propose a
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Initialization
〈U , I,S ,E〉 =⇒ N | ∅ | ∅ where

N = U ∪ I ∪ S ∪ {P (cl) ⇒©M(cl) | P (x)⇒©M(x) ∈ S }
∪ { sL

0 ⇒©L(cl) | ♦L(x) ∈ E }
Tautology Deletion

N ∪ {C} |P |O =⇒ N |P |O if C is a tautology

Forward Subsumption
N ∪ {C} |P |O =⇒ N |P |O if some clause in P ∪O subsumes C

Backward Subsumption
N |P ∪ {C} |O =⇒ N |P |O
N |P |O ∪ {C} =⇒ N |P |O if some clause in N properly subsumes C

Clause Processing
N ∪ {C} |P |O =⇒ N |P ∪ {C} |O if none of the previous rules applies

Loop Search Contradiction
∅ | P ∪ {sL

i ⇒©⊥} |O =⇒ {⊥} |P |O ∪ {sL
i ⇒©⊥} for some i, L

Next Loop Search Iteration
∅ | P ∪ {sL

i ∧ C ⇒©⊥} |O =⇒
{sL

i+1 ⇒©¬C ∨L(cl)} | P |O ∪ {sL
i ∧C ⇒©⊥} for some i, L and C 
= ∅

Clause Conversion
∅ | P ∪ {C ⇒©⊥} |O =⇒ { ¬C} | P |O ∪ {C ⇒©⊥} where no sL

i ∈ C

Regular Inference Computation
∅ | P ∪ {C} |O =⇒ N |P |O ∪ {C} if none of the previous rule applies and

where N = ResT(C,O)
Loop Testing

∅ | P |O =⇒ N |P |O where

N = { ∀x¬HL
i+1(x) | for all i, L with |= ∀x(HL

i (x)⇔ HL
i+1(x)) }

and HL
i (x) :=

∨
{(∃̃Cj){cl → x} | sL

i ∧ Cj ⇒©⊥ ∈ P ∪ O} for all i, L

Fig. 3. Fair inference procedure

way of combining these two types of saturations into one ‘global’ saturation
process.

The first step towards a procedure which guarantees the construction of a
fair derivation is based on an idea introduced in [7] for improving the efficiency
of loop search in propositional linear-time temporal logic. It suggests a minor
modification of the loop search algorithm. In step (2) of the algorithm we now
add the clauses which result from clausification of the formula CL

i+1 = sL
i+1 ⇒

©(¬Hi(cl) ∨ L(cl)) to Ni+1, where sL
i+1 is a proposition uniquely associated

with index i+1 and the eventuality clause ♦L(x) for which we search for a loop.
The proposition sL

i+1 acts as a marker for these clauses which are generated
purely as a means to conduct the search. As there are only negative occurrences
of sL

i+1, the application of inference rules to these clauses will ‘propagate’ the
proposition to all clauses we derive from CL

i+1. This also means that Mi+1 can
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now be defined as the set of all clauses of the form sL
i+1∧Cj ⇒©false. While this

makes the construction of Mi+1 operationally easier compared to FG-BFS, it
does not fundamentally change the algorithm. However, the FG-BFS algorithm
allows us to take advantage of the following observations. Within iterations of
the steps (2)–(5) of the algorithm, the clauses in the various sets Ni+1 are now
separated by the ‘marker’ sL

i+1. Thus, instead of using different sets Ni+1 we can
use a single set T which is simply extended in each iteration of the steps (2)–
(5). Furthermore, we can keep the set T between different calls of the FG-BFS
procedure and also between repeated calls of FG-BFS for the same eventuality
clause ♦L(x) ∈ E . Finally, if we restrict the clause conversion rule so that it
cannot be applied to any clause containing a ‘marker’ sL

i , then there is no reason
to separate the clauses in T from those in the current monodic temporal problem
in clausified form stored by the prover. Fig. 3 depicts the inference procedure
based on these considerations in the presentation style of [1]. The inference
procedure operates on states (N |P |O) that are constructed from an initial
temporal problem P = 〈U , I,S, E〉.

A state (N |P |O) consists of three sets of clauses N (the set of new clauses),
P (the set of clauses that still have to be processed) and O (the set of old
clauses). The set N collects the newly-derived clauses and the set O contains
all the clauses that have already been used as premises in inference steps (or
can never be used as premises). Finally, the set P contains all the clauses that
still need to be considered as premises. In the initial state (N0 | ∅ | ∅) constructed
by the ‘initialization’ rule, the sets P , O are empty and the set N0 contains
all the clauses contained in a temporal problem P = 〈U , I,S, E〉. Additionally,
as motivated above, all the clauses required for loop search are added to N0.
Subsequent states are obtained by applying one of the other inference rules
depicted in Fig. 3 on a given state.

The rules ‘tautology deletion’, ‘forward subsumption’ and ‘backward sub-
sumption’ perform reduction on the clause sets. ‘Tautology deletion’ removes
tautological clauses from set of newly-derived clauses N . ‘Forward subsump-
tion’ and ‘backward subsumption’ eliminate clauses that have been subsumed
by other clauses. Finally, the ‘clause processing’ rule is responsible for moving a
clause that has survived the previous reduction steps to the set P . Once no fur-
ther reductions are possible, additional clauses can be derived by the following
inference rules.

For the ‘loop search contradiction’ rule note that the presence of sL
i ⇒ ©⊥

in P indicates that we can apply the non-ground eventuality resolution rule,
resulting in the conclusion ∀x¬�, which is contradictory. The empty clause
is then added as set N and the clause sL

i ⇒ ©⊥ is moved to the set of old
clauses O. If the set P contains a clause sL

i ∧ C ⇒ ©⊥ for some i, L and
C �= ∅, then such a clause would be part of the set Ni in the FG-BFS procedure,
which is used to define the formula Hi+1(x), which in turn is used to define the
clauses in Mi+1. Here, we directly define the one clause of Mi+1 which derives
from sL

i ∧ C ⇒ ©⊥ and add it as newly-derived clause set. Finally, if a clause
C ⇒ ©⊥ (without a marker sL

i ) is contained in the set P , such a clause is a
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suitable premise for the application of the clause conversion rule and we add the
universal clause(s) ¬C as newly-derived clause set. The clause C ⇒ ©⊥ is
moved to the set O.

In the case where the set P contains a clause C that is not handled by one
of the previous rules, we compute the set ResT(C,O), which consists of all the
conclusions derivable from the clause C with itself and with the clauses in O
by the rules (1) to (5) and (7). The computed clauses are then added to the
next state as set N and the clause C is moved to the set of old clauses O. The
remaining rule ‘loop testing’ is responsible for checking the loop side condition.
First, the formulae HL

i are computed for all eventuality clauses ♦L(x) ∈ E and all
indices i used to create some marker sL

i in the set P ∪O. We then check whether
the loop condition ∀x(HL

i (x) ⇔ HL
i+1(x)) holds for every i and every L. If so,

an application of the non-ground eventuality resolution rule is possible and we
compute the conclusion of the application and add it to the setN . This concludes
the description of the fair inference procedure.

In order for the inference procedure shown in Fig. 3 to remain complete
two inference rules have to be added to ordered fine-grained resolution with
selection: the rule of arbitrary factoring in left-hand sides of terminating step
clauses and the rule of arbitrary factoring in (at most) monadic negative univer-
sal clauses. The calculus ordered fine-grained resolution with selection extended
by the two rules introduced above will be called subsumption compatible ordered
fine-grained resolution with selection and will be denoted by IS,�

FG,Sub .
Furthermore, the completeness proof of the inference procedure shown in

Fig. 3 also depends on special properties of the selection function. We require
the selection function to be subsumption compatible, as defined below.

Definition 5. We say that a selection function S is subsumption compatible
if and only if for every substitution σ and for every two clauses C and D with
Cσ ⊆ D it holds for every literal L ∈ D that L ∈ S(D) ⇐⇒ Lσ ∈ S(C).

There are three important observations to be made about the ‘loop testing’
rule. First, we can observe that HL

i (x) and HL
i+1(x) are monadic first-order

formulae. Thus, the validity of the loop condition is a decidable problem. Sec-
ond, in FG-BFS, in order to establish whether ∀x(HL

i (x) ⇔ HL
i+1(x)) is valid

we only need to test whether ∀x(HL
i (x) ⇒ HL

i+1(x)) holds as the implication
∀x(HL

i+1(x) ⇒ HL
i (x)) is always valid by the construction of HL

i (x) and HL
i+1(x)

in these procedures. However, in the context of the inference procedure in Fig. 3
this is no longer the case and we need to test both implications. Finally, when-
ever the loop condition holds, we have indeed found a loop formula, although
it may not be equivalent to a formula returned by FG-BFS. We will see that
eventually an equivalent formula will be computed by the procedure in Fig. 3.

We conclude this section by stating the refutational completeness of subsump-
tion compatible ordered fine-grained resolution with selection.

Theorem 3. Let P be a monodic temporal problem. Let 	 be an atom ordering
and S a subsumption compatible selection function. Then P is unsatisfiable iff
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there exists a IS,�
FG,Sub

-refutation of Cls(P). Moreover, P is unsatisfiable iff any
fair IS,�

FG,Sub
-derivation is a refutation of Cls(P).

5 Refutational Completeness

The proof of refutational completeness for the inference procedure shown in
Fig. 3 is based on showing that for every non-tautological clause D which can
be derived by subsumption-complete ordered fine-grained with selection from
a temporal problem P there exists a clause C that is derived by the fair infer-
ence procedure in Fig. 3 started on the same temporal problem P such that C
subsumes D, i.e. C ≤s D.

For terminating step clauses or universal clauses C(⇒ ©⊥) and D(⇒ ©⊥)
we define C ≤s D iff there exists a substitution σ with Cσ ⊆ D. Note that it
is possible to extend the subsumption relation on the other types of temporal
clauses and retain the compatibility with the inference rules of our calculus.

For the completeness proof we assume that the fair inference procedure actu-
ally does not terminate whenever the empty clause has been derived but contin-
ues to derive clauses instead.

Definition 6 (Derivation). A derivation Δ produced by the inference proce-
dure shown in Fig. 3 from a temporal problem P = 〈U , I,S, E〉 is a sequence
of states 〈U , I,S, E〉 =⇒ N0 | P0 | O0 =⇒ N1 | P1 | O1 =⇒ N2 | P2 | O2 =⇒ . . .
where each state (Ni | Pi | Oi), i ≥ 0, results from an application of an inference
rule shown in Fig. 3 on the state (Ni−1 | Pi−1 | Oi−1) iff i > 0 or on 〈U , I,S, E〉.

If Ni = ∅ and Pi =∅ for an index i ∈ N, we define (Ni | Pi | Oi) = (Nj | Pj | Oj)
for every j ≥ i.

A derivation Δ is said to be fair if and only if
⋃∞

i=0
⋂∞

j≥i Pj = ∅ and, whenever
possible, every application of the ‘regular inference computation’ rule is eventu-
ally followed by an application of the ‘loop testing’ rule.

Throughout this section we assume that P= 〈U , I,S, E〉 is a clausified monodic
temporal problem and that Δ = (Ni | Pi | Oi)i∈N is a fair derivation produced
by the inference procedure shown in Fig. 3 from the temporal problem P.

The first lemma shows that non-tautological clauses which do not originate
from loop search are subsumed by clauses derived by the fair inference procedure.

Lemma 1. Let Δ = (Ni | Pi | Oi)i∈N be a fair derivation produced by the infer-
ence procedure shown in Fig. 3 from the temporal problem P. Let Δ′ = D1, . . . ,Dn

be a derivation produced by subsumption complete ordered fine-grained resolution
with selection from the temporal problem P without applying the eventuality res-
olution rules and such that for every clause D ∈ U ∪ I ∪ S with D �∈ taut(P)
there exists a clause C ∈

⋃∞
i=0Oi with C ≤s D.

Then it holds for every i with 1 ≤ i ≤ n that

Di /∈ taut(P) ⇒ ∃ j ∈ N ∃ Ci ∈ Oj : Ci ≤s Di
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Proof. Similar to the first-order case, by induction on i and by using the fairness
of the derivation Δ. ��

The remainder of the proofs are now concerned with showing that non-tautological
clauses stemming from loop search are also subsumed by clauses derived by the
fair inference procedure. The next two lemmata are crucial for the completeness
proof.

For two clauses C and D we write C ∗f D to indicate that either C = D or
that D results from the clause C through repetitive applications of the arbitrary
factoring rule. By LT(S) we denote the constant flooding of the step clauses
contained in the set S with the loop search constant cl, i.e. LT(S) = S∪{P (cl) ⇒
©Q(cl) | P (x) ⇒©Q(x) ∈ S }.

Lemma 2. Let C ⇒ ©⊥ and D1 ⇒ ©⊥, . . . , Dn ⇒ ©⊥ be terminating
step clauses derived by subsumption complete ordered fine-grained resolution
with selection from sets P ∪ LT(S) ∪ Cls(true ⇒ ©(¬Hi(cl) ∨ L(cl))) and
P ∪ LT(S) ∪ Cls(true ⇒ ©(¬Hj(cl) ∨ L(cl))), respectively, as in the FG-BFS
algorithm for (arbitrary) iterations i and j.

In addition let the formula ∀x((∃̃C){cl �→ x} ⇒
∨n

j=1 (∃̃Dj){cl �→ x}) be
valid. Then there exists an index k with 1 ≤ k ≤ n and a clause D such that
Dk ∗f D ∧D ≤s C.

Proof. Based on analysing the refutation of the formula ¬∀x((∃̃C){cl �→ x} ⇒∨n
j=1 (∃̃Dj){cl �→ x}) by regular first-order resolution. ��

Lemma 3. Let M and M′ be sets of terminating step clauses derived by sub-
sumption complete ordered fine-grained resolution with selection from from sets
P ∪ LT(S) ∪ Cls(true ⇒ ©(¬Hi(cl) ∨ L(cl))) and P ∪ LT(S) ∪ Cls(true ⇒
©(¬Hj(cl) ∨ L(cl))), respectively, as in the FG-BFS algorithm for (arbitrary)
iterations i and j. We also assume that the sets M and M′ are closed un-
der the application of the (unordered) factoring rule. Finally, let N = {C1 ⇒
©⊥, . . . , Cm ⇒ ©⊥} ⊆ M and N ′ = {D1 ⇒ ©⊥, . . . , Dn ⇒ ©⊥} ⊆ M′ be
the sets of all the minimal step clauses with respect to the relation ≤s contained
in the sets M and M′, respectively.

Then the following statements are equivalent:
(i) N =X N ′

(ii) the formula ∀x(
∨m

i=1 (∃̃Ci){cl �→ x}⇔
∨n

j=1 (∃̃Dj){cl �→ x}) is valid
(iii) ∀ i, 1 ≤ i ≤ m ∃ j, 1 ≤ j ≤ n : Dj ≤s Ci and ∀ j, 1 ≤ i ≤ n ∃ i, 1 ≤ j ≤

m : Ci ≤s Dj

Proof. The implication (i) ⇒ (ii) is obvious. By Lemma 2 and by closedness
under factoring inferences the implication (ii) ⇒ (iii) holds. For the remaining
implication (iii) ⇒ (i) let C ⇒ ©⊥ ∈ N . It then follows from the assumptions
that there exists a step clause D ⇒ ©⊥ ∈ N ′ such that D ≤s C. We obtain
again from the assumptions that there exists a step clause C′ ⇒ © ∈ N with
C′ ≤s D. Thus, we can conclude that there exists a variable renaming σ with
Cσ = D and Cσ ⇒ ©⊥ ∈ N ′ as otherwise there would exist a step clause
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C′ ⇒ ©⊥ ∈ M with C′ <s C, which would contradict the minimality of the
step clause C ⇒©⊥.

The inclusion N ′ ⊆X N can be shown analogously. ��

Lemma 3 shows that the equivalence test between the monadic formulae
HL

i (x) and HL
i+1(x) in the ‘loop testing’ rule can replaced by a test for mu-

tual subsumption of terminating step clauses. Lemma 3 can also be used to
prove further properties of the loop search algorithm. For example, it can be
shown that the sets of minimal clauses with respect to the subsumption rela-
tion remain unchanged in subsequent iterations (up to variable renaming) once
the loop search condition has been fulfilled and the algorithm has been kept
iterating.

It is also possible to show that for any derivation of the fair inference pro-
cedure there exists an iteration index which contains all the universal clauses
that can ever be derived by either loop search or the clause conversion rule. The
rationale behind this observation is the finite number of step clauses that are
contained in the original temporal problem. Consequently, for any execution of
the loop search algorithm (for an arbitrary eventuality) and for any iteration
it can be established that there exists an iteration index for a run of the fair
inference procedure in which the same terminating step clauses (up to variable
renaming) are derived unless they were subsumed by other clauses. Moreover,
due to Lemma 3 the loop condition will eventually be achieved in the fair in-
ference procedure as it is equivalent to the equality of the sets containing the
minimal clauses with respect to the subsumption relation ≤s. Note that the ter-
minating loop search clauses might be derived in a different order than with the
loop search algorithm.

Based on these observations we can now state the refutational completeness
of the inference procedure shown in Fig. 3.

Theorem 4. Let P = 〈U0, I,S, E〉 be a clausified monodic temporal problem.
Let 	 be an atom ordering and S a subsumption compatible selection function.
Additionally, let Δ = (Ni | Pi | Oi)i∈N be a fair derivation produced by the in-
ference procedure shown in Fig. 3 from the temporal problem P using the atom
ordering 	 and selection function S. Then it holds that:

P is unsatisfiable iff ⊥ ∈
⋃∞

j=0Oj

6 Implementation

The inference procedure depicted in Fig. 3 has been implemented in the auto-
mated theorem prover TSPASS3, which is based on the first-order resolution
prover SPASS 3.0 [14]. It has to be noted that TSPASS currently does not allow
the use of selection functions. A full description of the implementation can be
found in [13].

We have analyzed the practical performance of TSPASS 0.91-0.15 on different
temporal problems and found it to be competitive with TeMP [9]. TeMP is an
3 http://www.csc.liv.ac.uk/~{}{}michel/software/tspass/

http://www.csc.liv.ac.uk/~{ }{}michel/software/tspass/
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earlier implementation of ordered fine-grained resolution with selection based on
a sequential architecture in which loop searches are performed only after the
considered clause sets have been saturated under fine-grained step resolution.
TeMP uses the first-order theorem prover Vampire as inference kernel for the
saturations under fine-grained step resolution.

The experimental setting was as follows. The experiments were run on a PC
equipped with an Intel Core 2 E6400 CPU and 3 GB of main memory. An
execution timeout of 12 minutes was imposed on each problem. For TeMP the
input problems were first transformed into its clausal input form and then TeMP
was started on this clausal input without any additional settings. TSPASS was
instructed to perform subsumption-based loop search testing.

Table 1 shows the satisfiability status, the number of clauses generated and
the median CPU time in seconds over three different runs of TeMP and TSPASS
for the specification of five representative examples (out of 39) on simple for-
aging robots and some associated properties. The specification results from a
novel application of monodic first-order temporal logic in the verification of the
behaviour of robot swarms. The use of FOTL allows us to verify properties for
a potentially infinite number of robots contained in the swarms. Further details
can be found in [2]. Problem 0 represents the specification of the robot transi-
tion system, and the remaining problems verify some properties of the transition
system. Each of these problems contains at least seven eventualities. TeMP and
TSPASS both terminate on the satisfiable problem 0, but TeMP cannot solve the
unsatisfiable problem 2 within the given time limit. Problem 2 seems to exhibit
the fairness problems of TeMP as it remains ‘stuck’ whilst saturating a temporal
clause set under ordered fine-grained resolution with selection. Due to the way
TeMP computes the number of generated clauses, i.e. the clause statistics are
only updated whenever Vampire returns from a saturation process, we cannot
easily give the number of clauses generated on problem 2 as the total number of
clauses is not available in TeMP itself.

Moreover, on average TeMP derives more clauses and requires more execution
time than TSPASS, except for problem 12. We attribute this observation to the
subsumption-based loop search test in TSPASS and to the fact that inferences
in TSPASS which have been computed once for a loop search instance do not
have to be computed again for further loop search saturations. Further details
and more examples can be found in [13].

Table 1. Results obtained for the robot specification examples

Problem
Clauses Generated Time

Result
TeMP TSPASS TeMP TSPASS

0 19611 5707 0.482s 0.383s Satisfiable
1 21812 833 0.523s 0.080s Unsatisfiable
2 - 4834 - 0.371s Unsatisfiable
12 689 793 0.035s 0.078s Unsatisfiable
18 32395 5262 0.967s 0.387s Unsatisfiable
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7 Conclusion
We have presented a fair inference procedure for reasoning in monodic first-
order temporal logic based on the ordered fine-grained resolution with selection
calculus. The calculus originally contains rules with semi-decidable applicability
conditions, which are realised by a loop-search algorithm computing saturations
under ordered fine-grained step resolution with selection. The design of the new
inference procedure is based on integrating the saturation steps related to loop
search, which may not terminate, into the main saturation process. Consequently,
fair derivations can be obtained as the different saturations required for fine-
grained step resolution and loop search are no longer performed sequentially.
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Termination Analysis of Imperative Programs�
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Abstract. An approach based on term rewriting techniques for the au-
tomated termination analysis of imperative programs operating on in-
tegers is presented. An imperative program is transformed into rewrite
rules with constraints from quantifier-free Presburger arithmetic. Any
computation in the imperative program corresponds to a rewrite se-
quence, and termination of the rewrite system thus implies termination
of the imperative program. Termination of the rewrite system is analyzed
using a decision procedure for Presburger arithmetic that identifies possi-
ble chains of rewrite rules, and automatically generated polynomial inter-
pretations are used to show finiteness of such chains. An implementation
of the approach has been evaluated on a large collection of imperative
programs, thus demonstrating its effectiveness and practicality.

1 Introduction

Methods for automatically proving termination of imperative programs operat-
ing on integers have received increased attention recently. The most commonly
used automatic method for this is based on linear ranking functions which lin-
early combine the values of the program variables in a given state [2,5,6,27,28].
It was shown in [29] that termination of a simple class of linear programs consist-
ing of a single loop is decidable. More recently, the combination of abstraction
refinement and linear ranking functions has been considered [9,10,4]. The tool
Terminator [11], developed at Microsoft Research and based on this idea, has
reportedly been used for showing termination of device drivers.

On the other hand, termination analysis for term rewrite systems (TRSs) has
been investigated extensively [30]. In this paper, techniques based on ideas from
the term rewriting literature are used in order to show termination of imperative
programs operating on integers. This is done by translating imperative programs
into constrained term rewrite systems based on Presburger arithmetic (PA-based
TRS), where the constraints are relations on program variables expressed as
quantifier-free formulas from Presburger arithmetic. This way, computations of
the imperative program are simulated by rewrite sequences, and termination of
the PA-based TRS implies termination of the imperative program.
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It is then shown that a PA-based TRS is terminating if and only if it does not
admit infinite chains built from the rewrite rules. In order to show absence of infi-
nite chains, termination processors are introduced. Here, a termination processor
transform a “complex” termination problem into a set of “simpler” termination
problems. This general approach for proving termination stems from the de-
pendency pair framework for ordinary TRSs [19]. The present paper introduces
several such termination processors for PA-based TRSs that are based on ideas
from the term rewriting literature [24,1,14]. The first termination processor uses
a decision procedure for Presburger arithmetic to identify possible chains. For
this, it is determined which rules from a PA-based TRS may follow each other
in a chain. Once possible chains are identified, well-founded relations based on
polynomial interpretations are used to show that these chains are finite. A fur-
ther termination processor can be used to combine two PA-based rewrite rules
that may follow each other in a chain into a single PA-based rewrite rule. In
particular, the constraints of these two rewrite rules are propagated.

The approach presented in this paper is very intuitive. Indeed, it has been
successfully introduced in graduate level classes on the theory of programming
languages and static program analysis. The students in these classes do typically
not have previous knowledge of term rewriting or termination methods based on
linear ranking functions [2,5,6,27,28].

The approach has been implemented in the termination tool pasta. An
empirical evaluation on a collection of examples taken from recent papers on
the termination analysis of imperative programs [2,3,4,5,6,9,10,27,28] shows the
practicality of the method. The only non-trivial part of an implementation is the
automatic generation of well-founded relations using polynomial interpretations
[24] since the constraints of the PA-based rewrite rules need to be taken into
consideration. Current methods developed in the term rewriting literature [8,16]
do not support constraints, thus requiring the development of a new method.1

The paper is organized as follows. Sect. 2 introduces PA-based TRSs. The
translation of imperative programs into PA-based TRSs is discussed in Sect. 3.
Next, Sect. 4 introduces chains and shows that a PA-based TRS is terminating iff
it does not admit infinite chains. Furthermore, a framework for showing termina-
tion by transforming a PA-based TRS into a set of simpler PA-based TRSs using
termination processors is introduced. Sect. 5 discusses a termination processor
that uses a decision procedure for Presburger arithmetic to identify possible
chains. Well-founded relations based on polynomial interpretations are intro-
duced in Sect. 6 and a termination processor that combines PA-based rewrite
rules and propagates their constraints is given in Sect. 7. Finally, Sect. 8 outlines
the implementation of the termination tool pasta. This includes a method for
the automatic generation of polynomial interpretations as discussed above. Sect.
9 concludes and presents an empirical evaluation of pasta. The proofs omitted
from this version and the examples used for the empirical evaluation of pasta
can be found in [15].

1 The method presented in [17] is similar to the method of this paper. Indeed, the
method of [17] was partially derived from the method presented here.
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2 PA-Based TRSs

In order to model integers, the function symbols from FPA = {0, 1,+,−} with
types 0, 1 : int, + : int × int → int, and − : int → int are used. Terms
built from these function symbols and a disjoint set V of variables are called
PA-terms. This paper uses a simplified, more natural notation for PA-terms,
i.e., the PA-term (x + (−(y + y))) + (1 + (1 + 1)) will be written as x− 2y + 3.

Then, FPA is extended by finitely many function symbols f with types int×
. . . × int → univ, where univ is a type distinct from int. The set containing
these function symbols is denoted by F , and T (F ,FPA,V) denotes the set of
terms of the form f(s1, . . . , sn) where f ∈ F and s1, . . . , sn are PA-terms. Notice
that nesting of function symbols from F is not permitted, thus resulting in a
simple term structure. This simple structure is nonetheless sufficient for modeling
imperative programs. A substitution is a mapping from variables to PA-terms.

Next, recall the syntax and semantics of PA-constraints, i.e., quantifier-free
formulas from Presburger arithmetic. An atomic PA-constraint has the form
s � t, s ≥ t, or s > t for PA-terms s, t. The set of PA-constraints is the closure
of the set of atomic PA-constraints under � (truth), ⊥ (falsity), ¬ (negation),
and ∧ (conjunction). The Boolean connectives ∨, ⇒, and ⇔ are defined as
usual. PA-constraints of the form s < t and s ≤ t are used to stand for t > s
and t ≥ s, respectively. Also, s �� t stands for ¬(s � t), and similarly for
the other predicates. PA-constraints have the expected semantics, where a PA-
constraint is PA-valid iff it is true for all ground instantiations of its variables
and PA-satisfiable iff it is true for some ground instantiation of its variables.
Notice that PA-validity and PA-satisfiability are decidable. For PA-terms s, t,
writing s �PA t is a shorthand for “s � t is PA-valid”. Similarly, for terms
s, t ∈ T (F ,FPA,V), s �PA t iff s = f(s1, . . . , sn) and t = f(t1, . . . , tn) such that
si �PA ti for all 1 ≤ i ≤ n.

Definition 1 (PA-Based Rewrite Rules). A PA-based rewrite rule has the
form l → r�C� where l, r ∈ T (F ,FPA,V) and C is a PA-constraint. Thus, l and
r have the form f(s1, . . . , sn) where f ∈ F and s1, . . . , sn are PA-terms.

The constraint � is omitted in a PA-based rewrite rule l → r���. A PA-based
term rewrite system (PA-based TRS) R is a finite set of PA-based rewrite rules.
The rewrite relation of a PA-based TRS requires that the constraint of the
PA-based rewrite rule is PA-valid after being instantiated by the matching sub-
stitution. Notice that reductions are only possible at the root position.

Definition 2 (Rewrite Relation). Let s →PA\R t iff there exist l → r�C� ∈
R and a substitution σ such that s �PA lσ, Cσ is PA-valid, and t = rσ.2

2 The use of s �PA lσ is due to the representation of integers and is needed to, e.g.,
identify the terms 0 and −1 + 1. This is only needed if l contains the same variable
more than once or uses pattern-matching. If l has the form f(x1, . . . , xn) for pairwise
distinct variables, then s �PA lσ can be replaced by s = lσ. The left-hand sides of
the PA-based TRSs obtained from imperative programs in Sect. 3 have this form.
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Example 3. Using the PA-based rewrite rule eval(x, y) → eval(x + 1, y)�x < y�,
the term eval(−1, 1) can be reduced using the substitution σ = {x �→ −1, y �→ 1}
since eval(−1, 1) = eval(x, y)σ and (x < y)σ = (−1 < 1) is PA-valid. Therefore,
eval(−1, 1) →PA\R eval(−1+1, 1). The term eval(−1+1, 1) can be reduced once
more, resulting in eval(−1 + 1 + 1, 1), which cannot be reduced anymore. ♦

3 Translating Imperative Programs into PA-Based TRSs

In this paper, a simple imperative programming language where programs are
formed according to the following grammar is considered.3

prog ::= stmt

stmt ::= skip | assign | stmt; stmt | if (cond) {stmt} else {stmt}

| while (cond) {stmt} | break | continue | either {stmt} or {stmt}

cond ::= “PA-constraints”
assign ::= (var1, . . . , vark) := (exp1, . . . , expk) for some k ≥ 1

exp ::= “linear arithmetic expressions”

The constructs in this programming language have the standard (operational)
semantics, i.e., skip is a do-nothing statement, break aborts execution of the
innermost while-loop surrounding it, and continue aborts the current iteration
of the innermost while-loop surrounding it and immediately starts the next
iteration. The either-statement denotes a nondeterministic choice. For the PA-
constraints in cond, conjunction is written as &&, disjunction is written as ||, and
negation is written as !. It is assumed that every parallel assignment statement
contains each variable of the program at most once on its left-hand side. A
parallel assignment statement (x1,...,xk) := (e1,...,ek) with k = 1 is also
written x1 := e1, and x++ abbreviates x := x + 1. Similarly, x-- abbreviates
x := x - 1.

Translations from imperative programs into functional form (or rewrite rules)
is “folklore”, going back at least to McCarthy’s work in the early 1960s [25].
The main idea for this is to model the state transformations occurring in the
imperative program by suitable rewrite rules. Since PA-based TRSs support
the conditions of while-loops and if-statements, a translation is particularly
simple for them. It proceeds as follows, where it is assumed that the program
uses the variables x1, . . . , xn and that the program contains m control points (i.e.,
program entry, while-loops and if-statements4). Then the ith control point in
the program is assigned a function symbol evali : int× . . . × int → univ with
n arguments. W.l.o.g. it can be assumed that each straight-line code segment
between control points is a single assignment statement, skip, or empty.

For all 1 ≤ i, j ≤ m such that the jth control point can be reached from
the ith control point by a straight-line code segment, each such straight-line
code segment gives rise to a PA-based rewrite rule of the form evali(. . .) →
evalj(. . .)�C� where the constraint C is determined as follows. If the ith control

3 Several extension of the programming language are considered in [15].
4 For termination purposes it is not necessary to consider the program exit.
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point is a while-loop, then C is the condition of the while-loop or the negated
condition of the while-loop, depending on whether the loop body is entered to
reach the jth control point or not. Similarly, if the ith control point is an if-
statement, then C is the condition or the negated condition of the if-statement,
depending on whether the then- or the else-branch is taken.5

If the straight-line code segment is a skip-statement or empty, then the
rewrite rule is evali(x1, . . . , xn) → evalj(x1, . . . , xn)�C�. If the straight-line code
segment is a parallel assignment statement (xi1,...,xik

) := (ei1,...,eik
),

then the rewrite rule is evali(x1, . . . , xn) → evalj(e1, . . . , en)�C� where eh = eil

if xh = xil
for some il and eh = xh otherwise. Notice that the arguments to evali

on the left-hand side are thus pairwise distinct variables.

Example 4. Using this translation, the following is obtained.
while (x > 0 && y > 0) {

if (x > y) {

while (x > 0) {

x--;

y++

}

} else {

while (y > 0) {

y--;

x++

}

}

}

eval1(x, y)→ eval2(x, y) �x > 0 ∧ y > 0 ∧ x > y� (1)

eval1(x, y)→ eval3(x, y) �x > 0 ∧ y > 0 ∧ x 
> y� (2)

eval2(x, y)→ eval2(x− 1, y + 1) �x > 0� (3)

eval2(x, y)→ eval1(x, y) �x 
> 0� (4)

eval3(x, y)→ eval3(x + 1, y − 1) �y > 0� (5)

eval3(x, y)→ eval1(x, y) �y 
> 0� (6)

Here, the outer while-loop is the first control point and the inner while-loop are
the second and third control points, i.e., the optimization mentioned in Footnote
5 has been used. This PA-based TRS is used as a running example. ♦

The following theorem is based on the observation that any state transition of the
imperative program can be simulated by a rewrite sequence. Thus, termination of
the imperative program is implied by termination of the PA-based TRS obtained
from it.

Theorem 5. LetP be an imperative program. Then the above translation produces
a PA-based TRS RP such that P is terminating if RP is terminating.6

5 It is also possible to combine the control point of an if-statement with its (textually)
preceding control point. Then C is the conjunction of the constraints obtained from
these two control points.

6 To see that the converse is not true in general, consider the (artificial) imperative
program x := 0; while (x > 0) { x++ }. Then the PA-based TRS generated from
this program consists of eval1(x)→ eval2(0) and eval2(x)→ eval2(x + 1)�x > 0� and
is thus non-terminating. Here, the observation that the loop is never entered has not
been utilized. Using static program analysis, this kind of information can be obtained
automatically, cf. Sect. 9. Then, the imperative program would be translated into
the PA-based TRS consisting of eval1(x)→ eval2(0) and eval2(x)→ eval2(x+1)�x >
1 ∧ ⊥�, which is terminating.
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4 Characterizing Termination of PA-Based TRSs

In order to verify termination of PA-based TRSs, the notion of chains is used. In-
tuitively, a chain represents a possible sequence of rule applications in a reduction
w.r.t. →PA\R. In the following, it is always assumed that different (occurrences
of) PA-based rewrite rules are variable-disjoint, and that the domain of a sub-
stitution may be infinite. This allows for a single substitution in the following
definition. Recall that →PA\R is only applied at the root position of a term, thus
resulting in a definition of chains that is simpler than the corresponding notion
needed in dependency pair methods [1,14].

Definition 6 (R-Chains). Let R be a PA-based TRS. A (possibly infinite)
sequence of PA-based rewrite rules l1 → r1�C1�, l2 → r2�C2�, . . . from R is an
R-chain iff there exists a substitution σ such that riσ �PA li+1σ and Ciσ is
PA-valid for all i ≥ 1.

Example 7. Continuing Ex. 4, the R-chain

eval1(x, y) → eval2(x, y) �x > 0 ∧ y > 0 ∧ x > y�
eval2(x′, y′) → eval2(x′ − 1, y′ + 1) �x′ > 0�

eval2(x′′, y′′) → eval2(x′′ − 1, y′′ + 1) �x′′ > 0�
eval2(x′′′, y′′′) → eval1(x′′′, y′′′) �x′′′ �> 0�

can be built by considering the substitution σ = {x �→ 2, x′ �→ 2, x′′ �→ 1, x′′′ �→
0, y �→ 1, y′ �→ 1, y′′ �→ 2, y′′′ �→ 3}. ♦

Using the notion of R-chains, the following characterization of termination of
a PA-based TRS R is immediate. This corresponds to the soundness and com-
pleteness theorem for dependency pairs [1,14].

Theorem 8. Let R be a PA-based TRS. Then R is terminating if and only if
there are no infinite R-chains.

In the next sections, various techniques for showing termination of PA-based
TRSs are developed. These techniques are stated independently of each other
in the form of termination processors, following the dependency pair framework
for ordinary term rewriting [19] and for term rewriting with built-in numbers
[14]. The main motivation for this approach is that it allows to combine different
termination techniques in a flexible manner since it typically does not suffice to
just use a single technique in a successful termination proof.

Termination processors are used to transform a PA-based TRS into a (finite)
set of simpler PA-based TRSs for which termination is (hopefully) easier to
show. A termination processor Proc is sound iff for all PA-based TRSs R, R
is terminating whenever all PA-based TRSs in Proc(R) are terminating. Notice
that Proc(R) = {R} is possible. This can be interpreted as a failure of Proc and
indicates that a different termination processor should be applied.

Using sound termination processors, a termination proof of a PA-based TRS
R then consists of the recursive application of these processors. If all PA-based
TRSs obtained in this process are transformed into ∅, then R is terminating.
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5 Termination Graphs

Notice that a PA-based TRS R may give rise to infinitely many different R-
chains. This section introduces a method that represents these infinitely many
chains in a finite graph. Then, each R-chain (and thus each computation path in
the imperative program) corresponds to a path in this graph. By considering the
strongly connected components of this graph, it then becomes possible to decom-
pose a PA-based TRS into several independent PA-based TRSs by determining
which PA-based rewrite rules may follow each other in a chain.7

The termination processor based on this idea uses termination graphs. This
notion corresponds to the notion of dependency graphs used [1,14].

Definition 9 (Termination Graphs). For a PA-based TRS R, the nodes of
the R-termination graph TG(R) are the rules from R and there is an arc from
l1 → r1�C1� to l2 → r2�C2� iff l1 → r1�C1�, l2 → r2�C2� is an R-chain.

In contrast to [1,14], it is decidable whether there is an arc from l1 → r1�C1� to
l2 → r2�C2�. Let r1 = f(s1, . . . , sn) and l2 = g(t1, . . . , tm). If f �= g then there
is no arc. Otherwise, n = m and there is an arc between the PA-based rewrite
rules iff there is a substitution σ such that s1σ � t1σ∧ . . . snσ � tnσ∧C1σ∧C2σ
is PA-valid, i.e., iff s1 � t1 ∧ . . . sn � tn ∧ C1 ∧ C2 is PA-satisfiable.

A set R′ ⊆ R of PA-based rewrite rules is a strongly connected subgraph
(SCS) of TG(R) iff for all PA-based rewrite rules l1 → r1�C1� and l2 → r2�C2�
from R′ there exists a non-empty path from l1 → r1�C1� to l2 → r2�C2� that
only traverses PA-based rewrite rules from R′. An SCS is a strongly connected
component (SCC) if it is not a proper subset of any other SCS. Since every
infinite R-chain contains an infinite tail that stays within one SCS of TG(R), it
is sufficient to prove the absence of infinite chains for each SCC separately.

Theorem 10 (Processor Based on Termination Graphs). The termina-
tion processor with Proc(R) = {R1, . . . ,Rn}, where R1, . . . ,Rn are the SCCs of
TG(R), is sound.8

Example 11. Continuing Ex. 4, the PA-based TRS {(1)− (6)} gives rise to the
following termination graph.

(1) (3) (4) (2) (5) (6)

The termination graph contains two SCC and the termination processor of Thm.
10 returns the PA-based TRSs {(3)} and {(5)}, which can be handled indepen-
dently of each other. ♦
7 Notice that this fundamentally differs from control flow graphs as used in, e.g., [5,6].

The edges in the control flow graph correspond to the rewrite rules in R. Thus, the
termination graph determines which edges in the control flow graph may follow each
other in an execution of the program.

8 Notice, in particular, that Proc(∅) = ∅. Also, notice that PA-based rewrite rules
with unsatisfiable constraints are not connected to any PA-based rewrite rule and
do thus not occur in any SCC.
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6 PA-Polynomial Interpretations

In this section, well-founded relations on terms are considered and it is shown
that PA-based rewrite rules may be deleted from a PA-based TRS if their left-
hand side is strictly “bigger” than their right-hand side. This corresponds to the
use of reduction pairs in dependency pair methods [1,14]. A promising way for
the generation of well-founded relations is the use of polynomial interpretations
[24]. In contrast to [24], PA-based TRSs allow for the use of polynomial inter-
pretations with coefficients from Z. In the term rewriting literature, polynomial
interpretations with coefficients from Z have been used in [21,20,14,17].

A PA-polynomial interpretation maps each symbol f ∈ F to a polynomial
over Z such that Pol(f) ∈ Z[x1, . . . , xn] if f has n arguments. The mapping
Pol is then extended to terms from T (F ,FPA,V) by letting [f(t1, . . . , tn)]Pol =
Pol(f)(t1, . . . , tn) for all f ∈ F . For this, notice that PA-terms can already be
interpreted as (linear) polynomials. Now PA-polynomial interpretations generate
relations on terms as follows. Here, [s]Pol ≥ 0 is needed for well-foundedness.

Definition 12 (	Pol and �Pol). Let Pol be a PA-polynomial interpretation,
let s, t ∈ T (F ,FPA,V), and let C be a PA-constraint. Then

– s 	C
Pol t iff ∀∗. C ⇒ [s]Pol ≥ 0 and ∀∗. C ⇒ [s]Pol > [t]Pol are true in the

integers, where, ∀∗ denotes the universal closure of the formula.
– s �C

Pol t iff ∀∗. C ⇒ [s]Pol ≥ [t]Pol is true in the integers.

Using PA-polynomial interpretations, PA-based rewrite rules l → r�C� with
l 	C

Pol r can be removed from a PA-based TRS if all remaining PA-based rewrite
rules l′ → r′�C′� satisfy l′ �C′

Pol r
′.

Theorem 13 (Processor Based on PA-Polynomial Interpretations). Let
Pol be a PA-polynomial interpretation and let Proc be the termination processor
with Proc(R) =

• {R−R′}, if R′ ⊆ R such that
– l 	C

Pol r for all l → r�C� ∈ R′, and
– l �C

Pol r for all l → r�C� ∈ R−R′.
• {R}, otherwise.

Then Proc is sound.

Example 14. Continuing Ex. 11, recall the PA-based TRSs {(3)} and {(5)} that
can be handled independently of each other. For the PA-based TRS {(3)}, a
PA-polynomial interpretation with Pol(eval2) = x1 can be used. With this in-
terpretation, eval2(x, y) 	�x>0�

Pol eval2(x − 1, y + 1) since ∀x. x > 0 ⇒ x ≥ 0 and
∀x. x > 0 ⇒ x > x − 1 are true in the integers. Applying the termination pro-
cessor of Thm. 13, the first PA-based TRS is thus transformed into the trivial
PA-based TRS ∅. The second PA-based TRS can be handled similarly using a
PA-polynomial interpretation with Pol(eval3) = x2. ♦
If Pol(f) is a linear polynomial for all f ∈ F , then it is decidable whether l 	C

Pol r
or l �C

Pol r. A method for the automatic generation of suitable PA-polynomial
interpretations is presented in Sect. 8.
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7 Chaining

It is possible to replace a PA-based rewrite rule l → r�C� by a set of new PA-
based rewrite rules that are formed by chaining l → r�C� to the PA-based rewrite
rules that may follow it in an infinite chain.9 This way, further information about
the possible substitutions used in a chain can be obtained. Chaining of PA-based
rewrite rules corresponds to executing bigger parts of the imperative program at
once, spanning several control points. Within this section, it is assumed that all
PA-based rewrite rules have the form f(x1, . . . , xn) → r�C�, where x1, . . . , xn

are pairwise distinct variables. Recall that the PA-based rewrite rules generated
by the translation from Sect. 3 satisfy this requirement.

Example 15. Consider the following imperative program and the PA-based TRS
generated from it.

while (x > z) {

while (y > z) {

y--

}

x--

}

eval1(x, y, z)→ eval2(x, y, z) �x > z� (7)

eval2(x, y, z)→ eval2(x, y − 1, z) �y > z� (8)

eval2(x, y, z)→ eval1(x− 1, y, z) �y 
> z� (9)

The PA-based TRS {(7), (8), (9)} is transformed into {(7), (9)} using a PA-
polynomial interpretation with Pol(eval1) = Pol(eval2) = x2−x3. The PA-based
TRS {(7), (9)} cannot be handled by the techniques presented so far. Notice that
in any chain, each occurrence of the PA-based rewrite rule (7) is followed by an
occurrence of the PA-based rewrite rule (9). Thus, (7) may be replaced by a
new PA-based rewrite rule that simulates an application of (7) followed by an
application of (9). This new PA-based rewrite rule is

eval1(x, y, z) → eval1(x− 1, y, z) �x > z ∧ y �> z� (7.9)

The PA-based TRS {(7.9), (9)} is first transformed into the PA-based TRS
{(7.9)} using the termination graph. Then, the PA-based TRS {(7.9)} can be
handled using a PA-polynomial interpretation with Pol(eval1) = x1 − x3. ♦
Formally, this idea can be stated as the following termination processor. In prac-
tice, its main use is the propagation of PA-constraints. Notice that chaining of
PA-based rewrite rules is easily possible if the left-hand sides have the form
f(x1, . . . , xn). Also, notice that the rule l → f(s1, . . . , sn)�C� is replaced by the
rules that are obtained by chaining.

Theorem 16 (Processor Based on Chaining). The termination processor
with Proc(R) = {R1∪R2} is sound, where, for a rule l → f(s1, . . . , sn)�C� ∈ R,
R1 = R−{l → f(s1, . . . , sn)�C�} and R2 = {l → r′μ�C∧C′μ� | f(x1, . . . , xn) →
r′�C′� ∈ R, μ = {x1 �→ s1, . . . , xn �→ sn}}.
9 Dually, it is possible to consider the PA-based rewrite rules that may precede it.

Notice that chaining conceptually differs from the use of conditional constraints in
[20,17]. There, conditional constraints are solely used for the generation of reduction
pairs. Chaining is independent of reduction pairs and transforms a PA-based TRS.
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8 Implementation

In order to show the practicality of the proposed approach, the termination
analysis method for PA-based TRSs has been implemented in the tool pasta
(PA-based Term Rewrite System Termination Analyzer). While an implemen-
tation in an existing termination tool for TRSs such as AProVE [18] or TTT2 [23]
would also be possible, an implementation from scratch more clearly demon-
strates that the approach can easily be implemented. pasta has been written
in OCaml and consists of about 1500 lines of code. The whole implementation
took less than 30 person-hours to complete. An empirical evaluation shows that
pasta is very successful and efficient.

8.1 General Overview

The first decision that has to be made is the order in which the termination
processors from Sections 5–7 are applied. For this, the loop given below is used.

Here, SCC is the termination proces-
todo := SCC(R)
while todo 
= ∅ do
P := pick-and-remove(todo)
P ′ := polo(P)
if P = P ′ then
P ′ := chain(P)
if P = P ′ then

return “Failure”
end if

end if
todo := todo ∪ SCC(P ′)

end while
return “Termination shown”

sor of Thm. 10 that returns the SCCs of
the termination graph, polo is the termi-
nation processor of Thm. 13 using lin-
ear PA-polynomial interpretations that
deletes PA-based rewrite rules which are
decreasing w.r.t. 	Pol , and chain is the
termination processor of Thm. 16 that
combines PA-based rewrite rules.

SCC builds the termination graph us-
ing a decision procedure for PA-satisfi-
ability. Then, the standard graph algo-
rithm is used to compute the SCCs. In

pasta, the library ocamlgraph10 [7] is used for graph manipulations, and the
SMT solver yices11 [13] is used as a decision procedure for PA-satisfiability.
The most non-trivial part of the implementation is the function polo for the
automatic generation of (linear) PA-polynomial interpretations.

8.2 Generation of PA-Polynomial Interpretations

For the automatic generation, a linear parametric PA-polynomial interpretation
is used, i.e., an interpretation where the coefficients of the polynomials are not
integers but parameters that have to be determined. Thus, Pol(f) = a1x1 + . . .+
anxn + c for each function symbol f with n arguments, where the ai and c are
parameters that have to be determined.

In this section, it is assumed that the constraints of all PA-based rewrite rules
are conjunctions of atomic PA-constraints. This can be achieved by a conversion
into disjunctive normal form (DNF) and the introduction of one rewrite rule
10 Freely available from http://ocamlgraph.lri.fr/
11 Available from http://yices.csl.sri.com/
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for each dual clause in this DNF.12 Recall that the termination processor of
Thm. 13 operating on a PA-based TRS R aims at generating a PA-polynomial
interpretation Pol such that

• ∀∗. C ⇒ [l]Pol − [r]Pol > 0 and ∀∗. C ⇒ [l]Pol ≥ 0 are true in the integers
for all l → r�C� ∈ R′ for some non-empty R′ ⊆ R and

• ∀∗. C ⇒ [l]Pol − [r]Pol ≥ 0 is true in the integers for all l → r�C� ∈ R−R′

Notice that [l]Pol and [l]Pol − [r]Pol are linear parametric polynomials, i.e., poly-
nomials over the variables whose coefficients are linear polynomials over the
parameters. Here, linearity of the coefficients is due to the fact that function
symbols from F do not occur nested in terms. For instance, if [l] = eval(x, x)
and Pol(eval) = ax1 + bx2 + c, then [l]Pol = (a + b)x + c.

In order to determine the parameters such that ∀∗. C ⇒ [l]Pol − [r]Pol ≥
0 is true in the integers for all l → r�C� ∈ R, sufficient conditions on the
parameters are derived and it is checked whether these conditions are satisfiable.
The derivation of conditions is done independently for each of the PA-based
rewrite rules, but the check for satisfiability of the conditions has to consider
all PA-based rewrite rules since they need to be oriented using the same PA-
polynomial interpretation.

For a single PA-based rewrite rule l → r�C�, the conditions on the parameters
are obtained as follows, where p = [l]Pol − [r]Pol :

1. C is transformed into a conjunction of atomic PA-constraints of the form∑n
i=1 aixi + c ≥ 0 where a1, . . . , an, c ∈ Z.

2. Use the PA-constraints from step 1 to derive upper and/or lower bounds on
the variables in p.

3. Use the bounds from step 2 to derive conditions on the parameters.

A similar method for the generation of polynomial interpretations in the presence
on conditions is presented in [17]. Indeed, the main inference rule A used in [17]
has been derived from the rules Express+ and Express− used in step 2 of the
method presented here.

Step 1: Transformation of C. This is straightforward: s � t is transformed into
s − t ≥ 0 and t − s ≥ 0, s ≥ t is transformed into s − t ≥ 0, and s > t is
transformed into s− t− 1 ≥ 0.

Step 2: Deriving upper and/or lower bounds. The PA-constraints obtained after
step 1 might already contain upper and/or lower bounds on the variables, where
a lower bound has the form x+c ≥ 0 and an upper bound has the from−x+c ≥ 0
for some c ∈ Z. Otherwise, it might be possible to obtain such bounds as follows.

An atomic constraint of the form ax + c ≥ 0 with a �= 0, 1,−1 that contains
only one variable gives a bound on that variable that can be obtained by dividing

12 Recall that a formula in DNF is a disjunction of conjunctions. The conjunctions are
called dual clauses.



288 S. Falke and D. Kapur

by |a| and rounding. For example, the PA-constraint 2x + 3 ≥ 0 is transformed
into x + 1 ≥ 0, and −3x− 2 ≥ 0 is transformed into −x− 1 ≥ 0.

An atomic PA-constraint with more than one variable can be used to express
a variable x occurring with coefficient 1 in terms of the other variables and a fresh
slack variable w with w ≥ 0. This allows to eliminate x from the polynomial p
and at the same time gives the lower bound 0 on the slack variable w. For
example, x− 2y ≥ 0 can be used to eliminate the variable x by replacing it with
2y + w. Similar reasoning applies if the variable x occurs with coefficient −1.

These ideas are formalized in the transformation rules given below that op-
erate on triples 〈C1, C2, q〉 where C1 and C2 are sets of atomic PA-constraints
and q is a linear parametric polynomial. Here, C1 only contains PA-constraints
of the form ±xi + c ≥ 0 giving upper and/or lower bounds on the variable xi

and C2 contains arbitrary atomic PA-constraints. The initial triple is 〈∅, C, p〉.

〈C1, C2 � {aixi + c ≥ 0}, q〉
Strengthen if ai 
= 0

〈C1 ∪
{

ai
|ai|xi + % c

|ai|& ≥ 0
}

, C2, q〉

〈C1, C2 �
{∑n

i=1 aixi + c ≥ 0
}

, q〉
Express+

if aj = 1 and σ substitutes
xj by −

∑
i�=j aixi − c + w

for a fresh slack variable w
〈C1 ∪ {w ≥ 0}, C2σ, qσ〉

〈C1, C2 �
{∑n

i=1 aixi + c ≥ 0
}

, q〉
Express−

if aj = −1 and σ substitutes
xj by

∑
i�=j aixi + c− w

for a fresh slack variable w
〈C1 ∪ {w ≥ 0}, C2σ, qσ〉

Step 3: Deriving conditions on the parameters. After finishing step 2, a final
triple 〈C1, C2, q〉 is obtained. If C1 contains more than one bound on a variable
xi, then it suffices to consider the maximal lower bound and the minimal upper
bound. The bounds in C1 are used in combination with absolute positiveness [22]
in order to obtain conditions on the parameters that make q =

∑n
i=1 pixi + p0

non-negative for all instantiations satisfying C1 ∪ C2.
If C1 contains a lower bound of the form xj + c ≥ 0 for the variable xj , then

notice that q =
∑n

i=1 pixi + p0 can also be written as q =
∑

i�=j pixi + pj(xj +
c)+ p0− pjc. Since xj + c ≥ 0 is assumed, the absolute positiveness test requires
pj ≥ 0 as a condition on pj .13 Similarly, if −xj + c ≥ 0 occurs in C1, then q can
be written as q =

∑
i�=j pixi− pj(−xj + c)+ p0 + pjc and −pj ≥ 0 is obtained as

a condition on pj . If C1 does not contain any upper or lower bound on a variable
xj , then pj = 0 is obtained by the absolute positiveness test. After all variables
of q have been processed in this fashion, it additionally needs to be required that
the constant term of the final polynomial is non-negative as well.

13 Alternatively, reasoning similar to rules Express+ can be used, i.e., if C1 contains
xj + c ≥ 0, then xj could be replaced by −c + w, where w ≥ 0. Both methods
produce the same conditions on the parameters.
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For example, if C1 = {x+1 ≥ 0, −y− 1 ≥ 0} and q = (a+ b)x+ by+ c, then
q can also be written as q = (a+ b)(x + 1)− b(−y− 1) + c− (a+ b)− b and the
absolute positiveness test requires a + b ≥ 0, −b ≥ 0, and c− a− 2b ≥ 0.

Summarizing this method, the following algorithm is used in order to obtain
conditions D on the parameters. Here, sign(C) is 1 if C is of the form xi + c ≥ 0
and −1 if C is of the form −xi + c ≥ 0.

D := true

r := p0

for 1 ≤ i ≤ n do
take constraint C of the form ±xi + c ≥ 0 from C1

if none such C exists then
D := D ∧ pi = 0

else
D := D ∧ sign(C) · pi ≥ 0
r := r − sign(C) · c · pi

end if
end for
D := D ∧ r ≥ 0

Automatically finding strictly decreasing rules. For the termination processor
of Thm. 13, it also has to be ensured that R′ is non-empty, i.e., that at least
one PA-based rewrite rule is decreasing w.r.t. 	Pol . Let l → r�C� be a PA-
based rewrite rule that should satisfy l 	C

Pol r. Then, ∀∗. C ⇒ [l]Pol ≥ 0 gives
rise to conditions D1 on the parameters as above. The second condition, i.e.,
∀∗. C ⇒ [l]Pol − [r]Pol > 0, gives rise to conditions D2 just as above, with the
only difference that the last line of the algorithm now requires r > 0.

Given a set of rules {l1 → r1�C1�, . . . , ln → rn�Cn�}, the final constraint on
the parameters is then

∧n
i=1 D

i∧
∨n

i=1(D
i
1∧Di

2) where the Di are obtained from
∀∗. Ci ⇒ [li]Pol − [ri]Pol ≥ 0, the Di

1 are obtained from ∀∗. Ci ⇒ [li]Pol ≥ 0, and
the Di

2 are obtained from ∀∗. Ci ⇒ [li]Pol − [ri]Pol > 0. This constraint can be
given to a witness-producing decision procedure for PA-satisfiability in order to
obtain values for the parameters. R′ can then be obtained.

Example 17. The method is illustrated on the termination problem {(8)} from
Ex. 15 consisting of the rewrite rule eval2(x, y, z) → eval2(x, y−1, z) �y > z�. For
this, a parametric PA-polynomial interpretation with Pol(eval2) = ax1 + bx2 +
cx3 +d is used, where a, b, c, d are parameters that need to be determined. Thus,
the goal is to instantiate the parameters in such a way that eval2(x, y, z) 	�y>z�

Pol
eval2(x, y − 1, z), i.e., such that ∀x, y, z. y > z ⇒ [eval2(x, y, z)]Pol ≥ 0 and
∀x, y, z. y > z ⇒ [eval2(x, y, z)]Pol − [eval2(x, y − 1, z)]Pol > 0 are true in the in-
tegers. Notice that [eval2(x, y, z)]Pol = ax+by+cz+d and [eval2(x, y−1, z)]Pol =
ax + by + cz − b + d. Therefore, [eval2(x, y, z)]Pol − [eval2(x, y − 1, z)]Pol = b.

For the first formula, the constraint y > z is transformed into y − z − 1 ≥ 0
in step 1. In step 2, the transformation rules from above are applied to the triple
〈∅, {y − z − 1 ≥ 0}, ax + by + cz + d〉. Using the Express+-rule with σ = {y �→
z + w + 1}, the triple 〈{w ≥ 0}, ∅, ax + (b + c)z + bw + b + d〉 is obtained and
step 3 gives a = 0∧ b+ c = 0∧ b ≥ 0∧ b+d ≥ 0 as conditions on the parameters.
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For the second formula from above, b > 0 is immediately obtained as a
condition. The final constraint on the parameters is thus a = 0∧ b+ c = 0∧ b ≥
0 ∧ b + d ≥ 0 ∧ b > 0. This constraint is satisfiable and yices returns the
witness values a = 0, b = 1, c = −1, d = 0, giving rise to the PA-polynomial
interpretation Pol(eval2) = x2 − x3 already considered in Ex. 15. ♦

A potential relationship between the method presented in this section and meth-
ods for the generation of linear ranking functions based on Farka’s Lemma [5,6]
has been pointed out to us. While time constraints did not permit us to inves-
tigate this further, we would like to point out that the proposed method for the
generation of linear PA-polynomial interpretations extends to the generation of
non-linear PA-polyonial interpretations, while it is unclear whether the methods
of [5,6] can be extended to the generation of non-linear ranking functions since
Farka’s Lemma does not extend to the non-linear case.

9 Conclusions and Future Work

This paper has proposed a method for showing termination of imperative pro-
grams operating on integers that is based on ideas from the term rewriting lit-
erature. For this, a translation from imperative programs into constrained term
rewrite systems operating on integers has been introduced. Then, techniques for
showing termination of such PA-based TRSs have been developed.

An implementation of this approach has been evaluated on a collection of 40
examples that were taken from various places, including several recent papers
on the termination of imperative programs [2,3,4,5,6,9,10,27,28]. The collection
of examples includes “classical” algorithms such as binary search, bubblesort,
heapsort, and the computation of the greatest common divisor. Twelve out of
these 40 examples (e.g., the heapsort example from [12]) require simple invari-
ants on the program variables (such as “a variable is always non-negative”) or
simple reasoning of the kind “if variables do not change between control points,
then relations that are true for them at the first control point are still true at
the second control point” for a successful termination proof. This kind of infor-
mation can be obtained automatically using static program analysis tools such
as Interproc14 [26]. The translation into PA-based TRSs from Sect. 3 can im-
mediately use this information by adding it to the constraints of the generated
rewrite rules.

The tool pasta has been able to show termination of all examples fully
automatically, on average taking less than 0.05 seconds15 for each example, with
the longest time being a little less than a third of a second. Thus, pasta shows
the practicality and effectiveness of the proposed approach on a collection of
“typical” examples. For comparison, the tool AProVE Integer [17] was run on the
same collection of examples with a timeout of 60 seconds for each example. A
summary of the results in given below, including the run-times for the classical
14 Freely available from http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-

forge/interproc/
15 All times were obtained on a 2.2 GHz AMD AthlonTM with 2 GB main memory.
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algorithms mentioned above. Notice that pasta is orders of magnitude faster
and slightly more powerful than AProVE Integer.

pasta AProVE Integer

Successful proofs 40 38
Binary Search 0.284s 10.76s
Bubblesort 0.042s 1.72s
Heapsort 0.318s 50.12s
Greatest Common Divisor 0.032s 8.45s
Total time for all 40 examples 1.910s 323.09s
Average time 0.048s 8.08s

Notice that an empirical comparison with the methods of [2,3,4,5,6,9,10,27,28] is
not possible since implementations of those methods are not publicly available.
The examples, detailed results, the termination proofs generated by pasta, and
the tool pasta itself are available at http://www.cs.unm.edu/~spf/pasta/.

There are several directions for extending the work presented in this pa-
per. Since PA-based TRSs are limited to Presburger arithmetic, an extension to
non-linear arithmetic should be considered. Then, the constraint language be-
comes undecidable, but SMT-solvers such as yices [13] still provide incomplete
methods. The only termination processor that relies on the decidability of the
constraints is the termination graph, but incomplete methods would still result
in a sound method since an over-approximation of the real termination graph
would be computed. The method for the automatic generation of polynomial in-
terpretations requires some extension to non-linear constraints, or alternatively
the method proposed in [17] could be used. Furthermore, the imperative lan-
guage should be extended to support functions. This can be done at the price of
loosing the simple term structure in PA-based rewrite rules, thus requiring the
unrestricted dependency pair method [1,14] for proving termination.

Acknowledgements. We thank the anonymous reviewers for valuable
comments.
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22. Hong, H., Jakuš, D.: Testing positiveness of polynomials. JAR 21, 23–38 (1998)
23. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2.

In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg
(2009)



A Term Rewriting Approach to the Automated Termination Analysis 293

24. Lankford, D.: On proving term rewriting systems are Noetherian. Memo MTP-3,
Mathematics Department, Louisiana Tech. University, Ruston (1979)

25. McCarthy, J.: Recursive functions of symbolic expressions and their computation
by machine, part I. CACM 3(4), 184–195 (1960)

26. Miné, A.: Weakly Relational Numerical Abstract Domains. PhD thesis, École Poly-
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Abstract. Polynomial constraint-solving plays a prominent role in
several areas of engineering and software verification. In particular, poly-
nomial constraint solving has a long and successful history in the develop-
ment of tools for proving termination of programs. Well-known and very
efficient techniques, like SAT algorithms and tools, have been recently
proposed and used for implementing polynomial constraint solving al-
gorithms through appropriate encodings. However, powerful techniques
like the ones provided by the SMT (SAT modulo theories) approach for
linear arithmetic constraints (over the rationals) are underexplored to
date. In this paper we show that the use of these techniques for develop-
ing polynomial constraint solvers outperforms the best existing solvers
and provides a new and powerful approach for implementing better and
more general solvers for termination provers.

Keywords: Constraint solving, polynomial constraints, SAT modulo
theories, termination, program analysis.

1 Introduction

Polynomial (non-linear) constraints are present in many application domains,
like program analysis or the analysis of hybrid systems. In particular, polynomial
constraint solving has a long and successful history in the development of tools
for proving termination of programs and especially in the proof of termination
of symbolic programs as well as rewrite systems (see e.g. [5,12,15,18,21]). In this
setting, recent works have shown that solving polynomial constraints over the
reals can improve the power of termination provers [11,19].

In this paper, we are interested in developing non-linear arithmetic constraint
solvers that can find solutions over finite subsets of the integers or the reals
(although in fact, we restrict ourselves to rational numbers). Even though there
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might be other applications, our decisions are guided by the use of our solvers in-
side state-of-the-art automatic termination provers (e.g., AProVE [13], CiME [4],
MU-TERM [17], TTT [16], . . . ). For this particular application, our solvers must
be always sound, i.e. we cannot provide a wrong solution. Completeness, when
the solution domain is finite, is also desirable since it shows the strength of the
solver. The solvers we present in this paper are all sound and complete for any
given finite solution domain.

There have been some recent works providing new implementations of solvers
for polynomial constraints that outperform previous existing solvers [5]. These
new solvers are implemented by translating the problem into SAT [10,11] or into
CSP [19]. Following the success of the translation into SAT, it is reasonable to
consider whether there is a better target language than propositional logic to
keep as much as possible the arithmetic structure of the source language1. In this
line we propose a simple method for solving non-linear polynomial constraints
over the integers and the reals by considering finite subdomains of integer and
real numbers and translating the constraints into SAT modulo linear (integer
or real) arithmetic [7], i.e. satisfiability of quantifier-free boolean combinations
of linear equalities, inequalities and disequalities. An interesting feature of this
approach (in contrast to the SAT-based treatment of [10,11]) is that we can
handle domains with negative values for free. The use of negative values can be
useful in termination proofs as shown in e.g. [9,15,16,18].

The resulting problem can be solved by taking off-the-shelf any of the state-
of-the-art solvers for SAT modulo Theories (SMT) that handles linear (real or
integer) arithmetic (e.g. Barcelogic [3], Yices [6] or Z3 [20]). The efficiency of
these tools is one of the keys for the success of our approach. The resulting solvers
we obtain are faster and more flexible in handling different solution domains than
all their predecessors. To show their performance we have compared our solvers
with the ones used inside AProVE, based on SAT translation, and the ones used
in MU-TERM, based on CSP. This comparison is really fair since for both AProVE
and MU-TERM we have been provided with versions of the systems that can use
different polynomial constraint solvers as a black box, giving us the opportunity
to check the real performance of our solvers compared to the ones in use.

Linearization has also been considered for (non-linear) pseudo-boolean con-
straints in the literature2. However, this is a simpler case of linearization as it
coincides with polynomial constraints over the domain {0, 1}, where products of
variables are always in {0, 1} as well.

Although our aim is to provide solvers for termination tools, our constraint
solvers have shown to be very effective for relatively small solution domains, per-
forming better, for some domains, than specialized solvers like HySAT [8] based
on interval analysis using an SMT approach. Therefore, our results may have in

1 An obvious possibility is the use of the first-order theory of real closed fields which
was proved decidable by Tarski. In practice, though, this is unfeasible due to the
complexity of the related algorithms (see [2] for a recent account).

2 See http://www.cril.univ-artois.fr/PB07/coding.html, the webpage of the
Pseudo-Boolean Evaluation 2007.
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the future a wider application, as this kind of constraints is also considered for
instance in the analysis of hybrid systems [14].

Another interesting feature is that our approach can handle general boolean
formulas over non-linear inequalities, which can be very useful for improving the
performance of termination tools. For instance, one can delegate to the SAT
engine the decisions on the different options that produce a correct termination
proof, which is known to be one of the strong points of SAT solvers.

Altogether, we believe that our solvers can have both an immediate and a
future impact on termination tools.

The paper is structured as follows. Our method is described in Section 2
and Section 3 is devoted to implementation features and experiments. Some
conclusions and future work are given in Section 4.

2 Translation from Non-linear to Linear Constraints

As said, the constraints we have to solve are quantifier-free propositional for-
mulas over non-linear arithmetic. Hence, we move from SAT modulo non-linear
arithmetic, for which there are no suitable solvers, to SAT modulo linear arith-
metic, for which fast solvers exist. As usual, in the following, by non-linear
arithmetic we mean polynomial arithmetic not restricted to the linear case.

Definition 1. A non-linear monomial is an expression vp1
1 . . . vpm

m where m > 0
and pi > 0 for all i ∈ {1 . . .m} and vi �= vj for all i, j ∈ {1 . . .m}, i �= j.

A non-linear arithmetic formula is a propositional formula, where atoms are
of the form

Σ1≤i≤n ci ·Mi �� k

where �� ∈ {=,≥, >,≤, <}, k is an integer or a rational number, every Mi is a
non-linear monomial and every ci is an integer or a rational number.

In the following, we assume that we have a fresh set of variables XM containing
a variable xM for every monomial M of the form vp1

1 · . . . · vpm
m that can be built

out of the variables v1 . . . vm. By C[c ·M ] we denote that c ·M occurs in the
constraint C and, by C[c · x] we ambiguously denote that the monomial M has
been replaced by x.

Now, we describe two transformations from non-linear to linear constraints.
We consider two kinds of domains: integer intervals and finite sets of rational
numbers.

2.1 Integer Intervals

First, we consider solution domains consisting of integer intervals, i.e. integers
in the domain {B1, . . . ,B2} for some lower bound B1 and upper bound B2. One
particular case that we will often use is when B1 is 0.

Example 1. Consider the atom:

2a3b− 5cd2e ≥ 0
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with B1 = 0 and B2 = 2. Then, the translation is done by adding variables xa3b,
yd2e and xcd2e, which represent a3 · b, d2 · e and c · yd2e respectively.

Linearizing, we obtain the following equisatisfiable constraint:
2xa3b − 5xcd2e ≥ 0
a = 0 → xa3b = 0 c = 0 → xcd2e = 0 d = 0 → yd2e = 0
a = 1 → xa3b = b c = 1 → xcd2e = yd2e d = 1 → yd2e = e
a = 2 → xa3b = 8b c = 2 → xcd2e = 2yd2e d = 2 → yd2e = 4e

0 ≤ a ≤ 2 0 ≤ c ≤ 2 0 ≤ d ≤ 2 0 ≤ b ≤ 2 0 ≤ e ≤ 2

In the following definition, the Abstraction rule linearizes the initial constraint,
while the following three rules linearize the equalities introduced by the abstrac-
tion. Linearization rules 1 and 2 remove a non-linear equality by adding new
linear formulas but without introducing new intermediate variables. In these
two rules, making a case analysis on one initial variable is enough to linearize.
Finally in rule Linearization 3 one variable of the monomial of some non-linear
equality is removed by adding a case analysis and a new equality with a smaller
monomial is obtained.

Definition 2. Let C be a constraint. The transformation rules are the following:

Abstraction:
C[c ·M ] =⇒ C[c · xM ] ∧ xM = M if M is not linear and c is a constant

Linearization 1:
C ∧ x = vpi

i =⇒ C ∧
∧B2

α=B1
(vi = α → x = αpi) if pi > 1

∧ B1 ≤ vi ≤ B2
Linearization 2:
C ∧ x = vpi

i · vj =⇒ C ∧
∧B2

α=B1
(vi = α → x = αpi · vj)

∧ B1 ≤ vi ≤ B2 ∧ B1 ≤ vj ≤ B2
Linearization 3:
C ∧ x = vpi

i ·M =⇒ C ∧
∧B2

α=B1
(vi = α → x = αpi · xM ) if M is not linear

∧ B1 ≤ vi ≤ B2 ∧ xM = M

Correctness and complexity. Since the rules above are terminating, we will
obtain a normal form after a finite number of steps. By a simple analysis of the
rules, we have that a constraint in normal form is linear; moreover, since the left
and the right hand sides of every rule are equisatisfiable, any normal form D of
an initial constraint C with respect to these rules is a linear constraint and C
and D are equisatisfiable. So our transformation provides a sound and complete
method for deciding non-linear constraints over integer intervals.

Regarding the size of the resulting formula, let N be B2 − B1 + 1, i.e. the
cardinality of the domain, and C be the problem to be linearized. Then the size
of the linearized formula is in O(N · size(C)), since, in the worst case, we add N
clauses for every variable in every monomial of C.
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2.2 Rationals as Integers

In this case, we consider the set of rational numbers { n
D | B1 ≤ n ≤ B2} which

are obtained by fixing the denominator D and bounding the numerator. For
instance taking D = 4 and the numerator in {0 . . . 16} we consider all rational
numbers in the set { 0

4 ,
1
4 , . . . ,

15
4 , 16

4 }. We denote this domain by B1..B2/D.
Then, we simply replace any variable x by x′

D for some fresh variable x′ and
eliminate denominators from the resulting constraint by multiplying as many
times as needed by D. As a result we obtain a constraint over the integers to be
solved in the integer interval domain of the numerator. It is straightforward to
show completeness of the transformation.

This translation turns out to be reasonably effective. The performance is
similar to the integer interval case, but depending on the size of D it works
worse due to the fact that the involved integer numbers become much larger.

We have also considered more general domains like the rational numbers ex-
pressed by k+ n

D with 0 ≤ n < D for a bounded k and a fixed D that can also be
transformed into constraints over bounded integers. Our experiments revealed
a bad trade-off between the gain in the expressiveness of the domain and the
performance of the SMT solver on the resulting constraints.

Similarly, we have studied domains of rational values of the form n
d with a

bounded numerator n and a bounded denominator d. In this case, in order to
solve the problem over the integers, every variable a is replaced by na

da
where

na and da are fresh integer variables. Due to the increase of the complexity of
the monomials after the elimination of denominators, there is an explosion in
the number of intermediate variables needed to linearize the constraint, which
finally cause a very poor performance of the linear arithmetic solver. This kind
of domains was also considered, with the same conclusion, in [11].

2.3 Finite Rational Domains

Now, we consider that the solution domain is a finite subset Q of the rational
numbers. The only difference with respect to the approach in Section 2.1 is that
the domain of the variables is described by a disjunction of equality literals.

Definition 3. Let C be a constraint. The transformation rules are the following:

Abstraction:
C[c ·M ] =⇒ C[c · xM ] ∧ xM = M if M is not linear and c is a constant

Linearization 1:
C ∧ x = vpi

i =⇒ C ∧
∧

α∈Q(vi = α → x = αpi) if pi > 1
∧
∨

α∈Q vi = α

Linearization 2:
C ∧ x = vpi

i · vj =⇒ C ∧
∧

α∈Q(vi = α → x = αpi · vj)
∧
∨

α∈Q vi = α ∧
∨

α∈Q vj = α

Linearization 3:
C ∧ x = xpi

i ·M =⇒ C ∧
∧

α∈Q(vi = α → x = αpi · xM ) if M is not linear
∧
∨

α∈Q vi = α ∧ xM = M
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Example 2. Consider the atom: 3abc− 4cd + 2a ≥ 0
with Q = {0, 1

2 , 1, 2} we have the following equisatisfiable linear constraint:

3xabc − 4xcd + 2a ≥ 0
a = 0 → xabc = 0 b = 0 → ybc = 0 c = 0 → xcd = 0
a = 1

2 → 2xabc = ybc b = 1
2 → 2ybc = c c = 1

2 → 2xcd = d
a = 1 → xabc = ybc b = 1 → ybc = c c = 1 → xcd = d
a = 2 → xabc = 2ybc b = 2 → ybc = 2c c = 2 → xcd = 2d

(a = 0 ∨ a = 1
2 ∨ a = 1 ∨ a = 2)

(c = 0 ∨ c = 1
2 ∨ c = 1 ∨ c = 2)

(b = 0 ∨ b = 1
2 ∨ b = 1 ∨ b = 2)

(d = 0 ∨ d = 1
2 ∨ d = 1 ∨ d = 2)

3 Implementation Features and Experiments

In this section, we present some implementation decisions we have taken when
implementing the general transformation rules given in previous sections that
are relevant for the performance of the SMT solver on the final formula.

3.1 Choosing Variables for Simplification

In every step of our transformation, some variable corresponding to a non-linear
expression, e.g. xab2c, is treated by choosing one of the original variables in its
expression, in this case a, b or c, and writing the value of the variable depending
on the different values of the original variable and the appropriate intermediate
variable.

Both decisions, namely which non-linear expression we handle first and which
original variable we take, have an important impact on the final solution. The
number of intermediate variables and thus the number of clauses in the final
formula are highly dependent on these decisions. Not surprisingly, in general, the
performance is improved when the number of intermediate variables is reduced.
A similar notion of intermediate variables (only representing products of two
variables), called product and square variables, and heuristics for choosing them
are also considered in [5].

Let us now formalize the problem of finding a minimal (wrt. cardinality) set
of intermediate variables for linearizing the initial constraint.

In this section, a non-linear monomial vk1
1 . . . v

kp
p , where all vi are assumed to

be different, is represented by a set of pairs M = {(v1, k1) . . . (vp, kp)}.
Now, we can define a closed set of non-linear monomials C for a given initial

set C0 of non-linear monomials, as a set fulfilling C0 ⊆ C and for every Mi ∈ C
we have that either

– Mi = {(v1, k1)}, or
– Mi = {(v1, k1), (v2, k2)} with k1 = 1 or k2 = 1, or
– there exists Mj ∈ C such that either:

• there is (v, k) ∈Mi and (v, k′) ∈Mj with k > k′ such that Mi\{(v, k)} =
Mj \ {(v, k′)}, or

• there is (v, k) ∈Mi such that Mi \ {(v, k)} = Mj.
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Lemma 1. Let C0 be the set of monomials of a non-linear formula F . If C is a
closed set of C0 then we can linearize F using the set of variables {xM |M ∈ C}.

Example 3. Let C0 be the set of non-linear monomials { ab2c3d , a2b2 , bde }.
A closed set of non-linear monomials required to linearize C0 could be C =
{ ab2c3d, a2b2, bde, ab2d, ab2, de }.

As said, we are interested in finding a minimal closed set C for C0. The deci-
sion version of this problem can be shown to be NP-complete. Thus finding a
minimal set of monomials can be, in general, too expensive as a subproblem of
our transformation algorithm. For this reason, we have implemented a greedy
algorithm that provides an approximation to this minimal solution.

Our experiments have shown that applying a reduction of intermediate vari-
ables produces a linear constraint that is, in general, easier to be checked by
the SMT solver. However, this impact is more important when considering in-
teger interval domains than when considering domains with rationals which are
expressed by a set of particular elements. In any case, further analysis on the
many different ways to implement efficient algorithms approximating the mini-
mal solution is still necessary.

3.2 Bounds for Intermediate Variables

As it usually happens in SAT translations, adding redundancy may help the
solver. In our case, we have observed that, in general, to improve the performance
of the solver it is convenient to add upper and lower bound constraints to all
intermediate variables. For instance, if we have a solution domain {0 . . .B} and
a monomial abc then for the variable xabc the constraint 0 ≤ xabc ≤ B3 is added.

Our experiments on integer intervals of the form {0 . . .B} have shown that
adding bounds for the intermediate variables has, in general, a positive impact.
This is not that clear when expressing domains as disjunctions of values.

3.3 Choosing Domains

In our particular application to termination of rewriting, it turned out that hav-
ing small domains suffices in general. For instance, when dealing with domains
of non-negative integer coefficients, only one more example can be proved by
considering an upper bound 7 instead of 4, and no more examples are proved
for the given time limit even considering bound 15 or 31. On the other hand,
increasing the bound increases the number of timeouts, losing some positive an-
swers as well. However in all cases, our experiments showed that our solver can
be used, with a reasonable performance, even with not so small bounds.

In the case of using rational solutions, again small domains are better, but in
this case making a right choice is a bit trickier, since there are many possibilities.
As a starting point, we have considered domains that can be handled by at least
one of the original solvers included in the tools we are using for our experiments.
Again, in all considered domains, our solver showed a very good performance,
behaving better in time and number of solved examples.
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For rationals we have considered several domains, but the best results were
obtained with the domain called Q4, which includes {0, 1, 2, 4, 1

2 ,
1
4}, and its

extension with the value 8, called Q4 + 8. Another interesting domain that is
treated with rationals as integers is the already mentioned 0..16/4. The domains
Q4 and Q4 + 8 cannot be handled by the version of the AProVE we have, while
the domain 0..16/4 and Q4 + 8 cannot be handled by the MU-TERM solver. We
report our experimental results on these domains in Sections 3.5 and 3.6.

3.4 Comparison with Existing Solvers

We provide a comparison of our solver with the solvers used inside AProVE and
MU-TERM. In order to do that, we have used a parameterized version of both
that can use different solvers provided by the user. In this way, we have been
able to test the performance and the impact of using our solvers instead of the
solvers that both systems are currently using.

As SMT solver for linear arithmetic, we use Yices 1.0.16, since it has shown
the best performance on the formulas we are producing. We have also tried
Barcelogic and Z3.

For our experiments we have considered the benchmarks included in the Ter-
mination Problems Data Base (TPDB; www.lri.fr/~marche/tpdb/), version
5.0, in the category of term rewriting systems (TRS). For the experiments using
AProVE, we have removed all examples that use special kinds of rewriting (basi-
cally, rewriting modulo an equational theory and conditional, relative and con-
text sensitive rewriting) since they cannot be handled by the simplified version of
AProVE we are using. We have performed experiments on a 2GHz 2GB Intel Core
Duo with a time limit of 60 seconds. Detailed information about the experiments
and our solver can be found in www.lsi.upc.edu/~albert/nonlinear.html.

The tables we have included split, for every experiment, the results (in num-
ber of problems and total running time in seconds) depending on whether the
answer is YES (then we have a termination proof), MAYBE (we cannot prove
termination) or KILLED (we have exceeded the time limit).

3.5 Experiments Using MU-TERM

We have used MU-TERM to generate the polynomial constraints which are sent
to the parameterized solver. The symbolic constraints for each termination prob-
lem are generated according to the Dependency Pairs technique [1] and using
polynomial interpretations over the integers and the rationals.

For integers we have tried the domain N4 which includes {0, 1, 2, 4} using
our SMT-based solver (with disjunction of values) and the CSP-based solver of
MU-TERM. To show that even when enlarging the domain, using integer intervals
instead of disjunction of values, our solver is faster, we have also considered the
integer interval domain B4 = N4∪{3}, for which the same number of examples
are solved in less time. For rationals, we have considered the domain Q4.

As can be seen in Figure 1, the results are far better using our solver than
using the CSP solver. In fact, with the domain Q4, there are 142 new problems
proved terminating and about 700 less problems killed.
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CSP N4 SMT N4 SMT B4 CSP Q4 SMT Q4

Total Time Total Time Total Time Total Time Total Time
YES 691 765 783 749 783 700 717 1118 873 1142
MAYBE 736 3892 1131 2483 1129 2691 437 2268 1000 3618
KILLED 559 72 74 832 113

Fig. 1. Experimental results with MU-TERM

3.6 Experiments Using AProVE

We have been provided with a simplified version of the AProVE tool, which is
parameterized by the solver. The system is also based on the dependency pair
method and generates polynomial constraints over the integers and the rational
numbers. As before, the constraints are sent to the solver which in turn returns
a solution if one is found.

BOUND 1 BOUND 2

SAT HySAT SMT SAT HySAT SMT

Total Time Total Time Total Time Total Time Total Time Total Time
YES 649 864 649 783 649 790 701 1360 697 1039 701 1191
MAYBE 1093 2289 1091 2259 1093 2233 1039 2449 1033 2818 1033 2225
KILLED 13 15 13 15 25 21

BOUND 4 BOUND 7

SAT HySAT SMT SAT HySAT SMT

Total Time Total Time Total Time Total Time Total Time Total Time
YES 705 1596 705 1446 710 1222 705 1762 702 1246 708 1357
MAYBE 1014 3551 967 4061 1019 2481 989 4224 871 4482 1008 2862
KILLED 36 83 26 61 182 39

Fig. 2. Experiments with integers in AProVE

In order to check not only the performance of our solver compared to the
AProVE original one, but also with some other existing solver for non-linear
arithmetic, we have included, in the case of integer domains, a comparison with
HySAT, a solver for non-linear arithmetic based on interval analysis. Although
HySAT can give, in general, wrong solutions (as said in its own documentation),
it has never happened to us when considering integers. Moreover, in the case of
integers, the comparison is completely fair since we send to HySAT exactly the
same constraint provided by AProVE adding only the declaration of the variables
with the integer interval under consideration (for instance, int [0,4] x). We
have included here the results using HySAT since all three solvers can handle
the same domains.

The results in Figure 2 show that, in general, HySAT is a little faster when
the answer is YES, but has a lot more KILLED problems. On the other hand,
our solver is in general faster than the SAT-based AProVE solver and always
faster in the overall runtime (without counting timeouts), starting very similar
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and increasing as the domain grows. This improvement is more significant if we
take into account that there is an important part of the process that is common
(namely the generation of constraints) independently of the solver. Moreover,
the number of KILLED problems by our solver is only bigger than or equal to
that of the SAT-based one for the smallest two domains but is always the lowest
from that point on and the difference grows as the domain is enlarged.

0..16/4 SAT HySAT SMT

Total Time Total Time Total Time
YES 797 3091 774 2088 824 2051
MAYBE 666 6605 508 3078 826 4380
KILLED 292 473 105

SMT Q4 Q4+8

Total Time Total Time
YES 833 1755 834 1867
MAYBE 876 2861 870 2910
KILLED 46 51

Fig. 3. Experiments with rationals in AProVE

Regarding the use of rationals, we can only compare the performance on do-
mains of rationals as integers with fixed denominator and a bounded numerator,
since this is the only case the original solver of our version of AProVE can han-
dle (more general domains are available in the full version of AProVE, but they
turned out to have a poorer performance). In particular, we have considered
the domain 0..16/4. Additionally, we have included the results of AProVE when
using our solver on the domain Q4 and Q4+8 since these are the domains which
overall produce the best results in number of YES.

As for integer intervals, Figure 3 shows that our solver has a better per-
formance, when comparable, than the other two solvers when using rationals.
Moreover, we obtain the best overall results when using our solver with rational
domains that are not handled by any other solver.

4 Conclusions

We have proposed a simple method for solving non-linear polynomial constraints
over finite domains of the integer and the rational numbers, which is based on
translating the constraints into SAT modulo linear (real or integer) arithmetic.
Our method can handle general boolean formulas and domains with negative
values for free, making them available for future improvements in termination
tools. By means of several experiments, our solvers are shown to be faster and
more flexible in handling different solution domains than all their predecessors.
Altogether, we believe that these results can have both an immediate and a
future impact on termination tools.

As future work, we want to analyze the usefulness of some features that the
SMT solvers usually have, like being incremental or backtrackable, to avoid re-
peated work when proving termination of a TRS.

Acknowledgments. We would like to thank Jürgen Giesl, Carsten Fuhs and
Karsten Behrmann for their very quick reaction in providing us with a version
of AProVE to be used in our experiments, and especially to Carsten for some
interesting and helpful discussion on possible useful extensions of the solver.
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Barcelogic SMT Solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 294–298. Springer, Heidelberg (2008)
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Building Theorem Provers
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Abstract. This talk discusses some of the challenges of building a usable
theorem prover. These include the chasm between theory and code, con-
flicting requirements, feature interaction, and competitive performance.
The talk draws on the speaker’s experiences with devising extensions of
resolution and building theorem provers that have been used as embed-
ded reasoners in various systems.

1 The British Museum Algorithm Reconsidered

One of the first automated theorem provers, Newell, Shaw, and Simon’s Logic
Theory Machine (LT) [22], proved theorems of propositional calculus in Prin-
cipia Mathematica. Its heuristic approach was contrasted with exhaustive search
referred to as “The British Museum Algorithm” in a suggestion of how not to
prove theorems:

The algorithm constructs all possible proofs in a systematic manner,
checking each time (1) to eliminate duplicates, and (2) to see if the
final theorem in the proof coincides with the expression to be proved.
With this algorithm the set of one-step proofs is identical with the set
of axioms (i.e., each axiom is a one-step proof of itself). The set of n
step proofs is obtained from the set of (n − 1)-step proofs by making
all permissable substitutions and replacements in the expressions of the
(n − 1)-step proofs, and by making all the permissable detachments of
pairs of expressions as permitted by the recursive definitions of proof.

A disadvantage of such exhaustive search is the large search space, but it can be
more useful in practice than generally recognized, as I will show.

A similar contemporary research enterprise is the use of automated theorem
provers to find original or better proofs in various propositional calculi [21, 45].
Many such proofs have been found using the condensed detachment rule of
inference:

(α → β) γ

βσ

where σ is the most general unifier of α and γ. This improves on the style of proof
in Principia Mathematica reproduced by LT. The separate operations of substi-
tution and detachment are combined into condensed detachment that uses unifi-
cation to create the most general result of detachment of substitution instances of
its premises (eliminating a need in LT for heuristics to create instances).

R.A. Schmidt (Ed.): CADE 2009, LNAI 5663, pp. 306–321, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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A typical problem is to prove that the formula BCI-Candidate 42: p → ((q →
r) → (((s → s) → (t → (p → q))) → (t → r))) is a single axiom of BCI logic,
which is defined by the axioms

B: (p → q) → ((r → p) → (r → q))
C: (p → (q → r)) → (q → (p → r))
I: p → p.

Dolph Ulrich identified the formula as a candidate for being a shortest single
axiom of BCI logic after eliminating the possibility of shorter single axioms and
proving that it is a theorem of BCI logic. Whether B, C, and I (or a known
single axiom) are provable from BCI-Candidate 42 by condensed detachment
was an open question.

This type of problem has often been solved with Otter [20], but this time
experiments by Wos led him to suggest it is not a single axiom. He writes in [43]

It is, in fact a theorem of BCI, but so far I have been unable to show
that it is strong enough to be a single axiom. I doubt it is, my suspicion
being based on the fact that, as it appears, all deducible theorems from
the formula contain an alphabetic variant of p → p.

In 2003, I wrote a function coder (condensed detacher) in Snark [35] to exhaus-
tively generate condensed detachment derivations in order of increasing length,
like the denigrated British Museum Algorithm. Two problems with breadth-first
search are the time needed to generate results and the memory needed to store
them. Depth-first iterative-deepening search [34, 12] eliminates the latter prob-
lem by storing only one derivation at a time with alternatives being tried by
backtracking. It simulates breadth-first search by doing a sequence of bounded
depth-first searches: first it exhaustively generates all derivations with one con-
densed detachment step, then all derivations with two condensed detachment
steps, etc. The first proof found will be a shortest one, computer memory needs
are limited by the size of a single derivation, and recomputation of earlier levels
of search is a fraction of the total search cost (since search space size grows
exponentially by level).

There are up to n!2 condensed detachment derivations of length n from a single
axiom. This can be reduced substantially by rejecting derivations in which

– the latest formula is the same as or an instance of an earlier formula in the
derivation (forward subsumption).

– the latest formula is a generalization of an earlier formula in the derivation,
unless the earlier formula is used to derive the latest (backward
subsumption).

– not all formulas are used in the final derivation. Backtrack if the number of
so far unused formulas is more than can be used as premises in the remaining
steps of the length-bounded derivation.

– steps appear in other than a single standard order. Use a total term ordering
to compare justifications of latest and next to latest steps.
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The search space remains huge, but the worst-case number of 9-step deriva-
tions, when every condensed detachment succeeds and subsumption never does,
is reduced from n!2 = 131, 681, 894, 400 to 97, 608, 831.1

Returning to the question of whether BCI-Candidate 42 is a single axiom of
BCI logic, coder discovered that every formula derivable in 8 or fewer condensed
detachment steps properly contains an alphabetic variant of p → p, but there
is a 9-step proof of (((p → q) → q) → r) → (p → r) (whose largest formula
contains 135 symbols and 34 distinct variables) and a 9-step proof of I (whose
largest formula contains 167 symbols and 42 variables).

Proofs with such large formulas are often difficult for Otter to find. Its
default search strategy uses formula size to order inferences. This is complete
in principle but incomplete in practice because large formulas are discarded to
conserve memory. Ordering by size is a technique so pervasive and successful
that one is liable to forget that it is a heuristic that may lead away from a short
proof, as it did here. Still, it is slightly mysterious why it works as well as it does.
It is fortunate that formulas that are too large to store are also rarely necessary
to find a proof. Why are large formulas so relatively useless?

To complete the proof that BCI-Candidate 42 is a single axiom, B and C
are each proved from it and (((p → q) → q) → r) → (p → r) in 7 steps. The
following open questions by Dolph Ulrich of whether formulas are single axioms
of BCI logic or BCK logic, which is defined by B, C, and K: p → (q → p),
have all been answered affirmatively by coder:

BCI-Cand. 19: (p → q) → (((((r → r) → (s → p)) → q) → t) → (s → t))
BCI-Cand. 42: p → ((q → r) → (((s → s) → (t → (p → q))) → (t → r)))
BCI-Cand. 48: ((((p → p) → (q → r)) → s) → t) → ((r → s) → (q → t))
BCK-Cand. 3: (p → ((q → r) → s)) → (r → ((t → p) → (t → s)))
BCK-Cand. 7: p → ((q → ((r → p) → s)) → ((t → q) → (t → s)))
BCK-Cand. 8: p → ((q → (p → r)) → (((s → t) → q) → (t → r)))
BCK-Cand. 12: (p → (q → r)) → (q → (((s → t) → p) → (t → r)))

Although I expect the British Museum Algorithm to often fail to prove theorems
in a reasonable amount of time, these successes illustrate its value in the “Arsenal
of Weapons” [42] for theorem proving.

Theorem provers are usually incomplete in practice. Proofs, if they exist,
may not be found for various reasons such as time limits, memory limits, or
incomplete combinations of restrictions and strategies. coder’s completeness is
usually limited only by time. A theorem prover with more options and heuristics
may succeed more often, but when it fails, more causes of incompleteness can
leave the user in a quandary about what to change to improve chances for success.
With coder, only more—maybe impossibly more—patience is required.

1 Newell, Shaw, and Simon’s best guess of how many proofs would have to be generated
to include proofs of all theorems of Chapter 2 of Principia Mathematica might be
one hundred million. This is a much less formidable number now after fifty years of
progress in computer technology.
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2 Pttp, Another Simple Complete Theorem Prover

The Prolog Technology Theorem Prover (Pttp) offers the same promise of com-
pleteness as Snark’s coder, but is not specialized to condensed detachment.
Pttp is goal-oriented, and it is capable of a very high inference rate. coder
enumerates forward-reasoning derivations in order of length by depth-first
iterative-deepening search. Pttp does much the same except the derivations
are incomplete backward-reasoning ones.

Prolog is a logic programming language that has the standard theorem-proving
functions of resolution and unification, in restricted form, as its basic operations.
The high inference rate of Prolog systems makes it worthwhile to examine how
Prolog implementation techniques can be used to improve the performance of
automated theorem provers.

Prolog has three huge deficiencies as a theorem prover:

– its unification algorithm is unsound and possibly nonterminating.
– its search strategy is incomplete.
– its inference system is incomplete for non-Horn clauses.

Pttp [32] represents a particular approach to preserving as much as possible
the character and performance of an implementation of a Prolog system while
overcoming these deficiencies.

A simple and effective means of doing this is to transform clauses of theorem-
proving problems to executable Prolog clauses [33]. Three transformations are
used:

– A transformation for sound unification renames variables in clause heads,
linearizing them, so that the “occur check” problem cannot occur while uni-
fying a clause head and a goal. Remaining unification steps are placed in
the body of the clause where they are performed by a built-in predicate that
does sound unification with the occur check.

– A transformation for complete depth-bounded search adds depth-bound ar-
guments to each predicate and depth-bound test and decrement operations
to the bodies of nonunit clauses. A driver predicate can then be used to
control depth-first iterative-deepening search.

– A transformation for complete model elimination (ME) inference adds an
argument for the list of ancestor goals to each predicate and adds ancestor-
list update operations to the bodies of nonunit clauses; clauses are added
to perform ME reduction and pruning operations. Prolog inference plus
the ME reduction operation, which succeeds if a goal is unifiable with the
complement of an ancestor goal, is complete for non-Horn clauses.

Pttp is basically Loveland’s model elimination (ME) theorem-proving proce-
dure [15, 16] implemented in the same manner as Prolog.

Pttp is one of the fastest theorem provers in existence when evaluated by
its inference rate and performance on easy problems. At SRI, it was used to
solve reasoning problems in robot planning and natural-language-understanding
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systems. Amir and Maynard-Zhang used Pttp as the embedded reasoner for a
logic-based subsumption architecture [1].

Wos et al. [44] argue persuasively that subsumption to control redundancy
in the search space is indispensable when solving hard problems, thus making
Pttp generally unsuitable, because Prolog and Pttp lack subsumption and
their implementations largely preclude it. Subsumption requires storage of de-
rived clauses and comparison of old and new derived clauses to see if one sub-
sumes another. Derived clauses are not stored in Prolog and Pttp. Instead,
they are implicitly represented, one at a time on the stack, and are destroyed on
backtracking. The absence of subsumption is the result of a deliberate trade-off
between high speed inference and architectural simplicity versus greater control
of redundancy and more complex implementation but it makes it difficult for
Pttp to solve hard problems.2

An advantage of Pttp is that the ME procedure is in effect a highly restricted
form of resolution that is compatible with the set of support strategy:3 it is
goal-oriented.

As with Prolog, Pttp’s goal-oriented backward chaining from the theorem to
be proved is important in applications in which there are many irrelevant axioms,
such as planning, natural-language understanding, and deductive databases. The
advantage of being goal-oriented can be overstated though. While pure for-
ward reasoning may generate many irrelevant but true conclusions, pure back-
ward reasoning may generate many unprovable but relevant subgoals. Backward
reasoning is as blind to the premises as forward reasoning is to the goal.

Models could conceivably be used to eliminate unprovable goals. Not naively,
however, because proving C by Pttp from ¬A ∨ C, ¬B ∨ C, A ∨ B, ¬C ∨ A,
¬C ∨ B, which has model {A,B,C}, requires expansion of subgoal ¬A or ¬B,
which are false in the model.

The theorem proving methods of coder and Pttp are particularly amenable
to being implemented in a functional programming language for parallel execu-
tion. This is increasingly important as recent microprocessor development has
focused more on increasing the number of cores than on speed.

3 Building Applications with Theorem Provers

Much of my work in building theorem provers has involved their use in applica-
tions for robot planning, natural-language understanding, question answering,
etc. For this, the single inference method approach of a Pttp is not always

2 It can be difficult to anticipate what will be hard for a particular theorem prover.
One of Wos el al.’s challenges for theorem provers without subsumption, Theorem 4,
is provable by Pttp. The Otter proof took 29,486 seconds on a Sun 3. André
Marien was first to use Pttp to prove it on a Sun 3/50 in 14,351 seconds in 1989.
Pttp now takes 193 seconds on a 2.8 GHz Mac Pro.

3 The model elimination procedure (or linear resolution) arguably provides an answer
to Basic Research Problem #1, extending the set of support strategy, in [41] but is
unsatisfyingly incompatible with the usual subsumption.
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enough; it lacks equality reasoning, for example. Resolution and paramodulation
calculi provide more options to enable solution of difficult problems. My and my
collaborators’ (notably Richard Waldinger) attitude is that difficult problems
will often not be immediately solvable with acceptable performance, but will
instead require customizing the axioms and options to the problem and per-
haps even extending the theorem prover. It is hoped that this customization
and extension generalizes well to other problems in the same domain so that the
axioms, options, and theorem prover combine into an effective domain-specific
reasoner.

Snark is a theorem prover meant to support this sort of activity. Taken as
a whole, the applications can be regarded as hybrid reasoning systems because
Snark often uses procedural attachment and other features instead of axioms
to rewrite terms or resolve away literals. For example, a proof may include calls
on a geographic database or a biological computation tool. Snark is written
in Lisp, which is not only a superb language for writing symbolic applications,
but is well suited as an extension language for procedural attachment code and
as a scripting language for controlling Snark and allows for easy embedding
in (Lisp-based) applications. Snark uses standard Lisp representations for con-
stant (symbol, number, and string) and list terms, which eliminates the need
for translation to and from a nonstandard internal representation across the
procedural attachment boundary.

Snark has been applied most often to deductive question answering, which
is described in the next section adapted from [39]. The following sections mostly
relate to extensions or their challenges and complications.

4 Deductive Question Answering

Deductive question answering, the extraction of answers to questions from
machine-discovered proofs, is the poor cousin of program synthesis. It involves
much of the same technology—theorem proving and answer extraction—but
the bar is lower. Instead of constructing a general program to meet a given
specification for any input—the program synthesis problem—we need only con-
struct answers for specific inputs; question answering is a special case of program
synthesis. Since the input is known, there is less emphasis on case analysis (to
construct conditional programs) and mathematical induction (to construct loop-
ing constructs), those bugbears of theorem proving that are central to general
program synthesis.

Slagle’s Deducom [28] obtained answers from resolution proofs; knowledge
was encoded in a knowledge base of logical axioms (the subject domain theory),
the question was treated as a conjecture, a theorem prover attempted to prove
that the conjecture followed from the axioms of the theory, and an answer to
the question was extracted from the proof. The answer-extraction method was
based on keeping track of how existentially quantied variables in the conjecture
were instantiated in the course of the proof.

The qa3 program [11] of Green, Yates, and Raphael integrated answer extrac-
tion with theorem proving via the answer literal. Chang and Lee [5] and Manna
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and Waldinger [18] introduced improved methods for conditional and looping an-
swer construction. Answer extraction became a standard feature of automated
resolution theorem provers, such as Otter and Snark, and was also the ba-
sis for logic programming systems, in which a special-purpose theorem prover
served as an interpreter for programs encoded as axioms.

The Amphion system [17, 36] for answering questions posed by NASA plan-
etary astronomers computed an answer by extracting from a Snark proof a
straight-line program composed of procedures from a subroutine library; be-
cause the program contained no conditionals and no loops, it was possible for
Amphion to construct programs that were dozens of instructions long, com-
pletely automatically. Software composed by Amphion has been used for the
planning of photography in the Cassini mission to Saturn.

While traditional question-answering systems stored all their knowledge as
axioms in a formal language, this proves impractical when answers depend on
large, constantly changing external data sources; a procedural-attachment mech-
anism allows external data and software sources to be consulted by a theorem
prover while the proof is underway. As a consequence, relatively little informa-
tion needs to be encoded in the subject domain theory; it can be acquired if and
when needed. While external sources may not adhere to any standard representa-
tional conventions, procedural attachment allows the theorem prover to invoke
software sources that translate data in the form produced by one source into
that required by another. Procedural attachment is particularly applicable to
Semantic Web applications, in which some of the external sources are Web sites,
whose capabilities can be advertised by axioms in the subject domain theory.

SRI employed a natural-language front end and Snark equipped with proce-
dural attachment to answer questions posed by an intelligence analyst (Quark)
or an Earth systems scientist (GeoLogica) [38].

Recent efforts include BioDeducta for deductive question answering in molec-
ular biology [27]. Questions expressed in logical form are treated as conjectures
and proved by Snark from a biological subject domain theory; access to multiple
biological data and software resources is provided by procedural attachment.

Snark produces a detailed refutation proof as well as the answer. Proofs
can be a source for precise explanations and justifications for the answers that
could be invaluable for assuring their correctness and documenting how they
were obtained.

5 Goal-Orientedness, an Elusive Goal

A critical issue for these application is that the reasoning must be substantially
goal-oriented to be feasible. This continues to be the largest single unsolved
problem in using Snark in these applications. The difficulty arises from incom-
patibilities between goal-orientedness and preferred reasoning methods.

Equality reasoning using term orderings is too effective to ignore, but it is
incompatible with the set of support restriction. Relaxed or lazy paramodula-
tion [29] theoretically provides a solution to this problem and for tableau provers
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like Pttp as well [23]. How effective these methods are in practice has yet to be
determined.

Constraint propagation algorithms, used in Snark for temporal and spatial
reasoning, also lack goal-orientedness.

6 Indexing, a Necessary Evil

Indexing [26, 10] is expensive in time and space but is indispensable for high
performance resolution theorem provers.4 Indexing is also costly because per-
formance may depend on using more than one type of indexing. For example,
Snark uses both discrimination tree indexing, which is fast for retrieving gener-
alizations of terms during forward subsumption and rewriting, and path index-
ing, which is fast for retrieving instances of terms during backward subsumption
and rewriting. This increases memory use, index insertion and deletion time,
and implementation effort.

But there is a conflict between performance and extensibility. Indexing is a
huge impediment to building theories into theorem provers. For example, adding
associative-commutative (AC) unification requires extension of indexing. A quick
and dirty solution, used in Snark, is to abbreviate terms headed by an AC
function f by just f for indexing. However, this does not work for building in
equations with different head symbols.

Building in theories that interpret relation symbols as in theory resolution and
chain resolution [31, 7, 37] requires similar accommodation by indexing: pairs of
literals with different relation symbols and with the same or different polarity
may resolve or subsume.

7 Procedural Attachment, Get Someone Else to Do It

Procedural attachment is an essential ingredient of deductive question answering
applications of Snark. Lisp code can be attached to function or relation symbols.
During rewriting and resolution operations, this code can be used to compute
values and substitutions in place of equality rewrites and complementary literals
in other clauses.

Procedural attachment is often used to rewrite terms or atoms: code for the
$$sum function will rewrite ($$sum 1 1) to 2 and code for the equality relation
will rewrite (= a a) to true and (= 1 2) to false.5

This mechanism is easy to implement and use, and often works as well as
hoped for, but it is a form of deliberately incomplete reasoning. Ordinary term

4 Tableau provers like Pttp may be able to perform well without much indexing. The
number of formulas available for inference is limited by a hopefully small number of
input formulas and shallow branches in the tableau.

5 I use Snark’s native Lisp S-expression syntax here. Snark treats numbers and
strings as constructors or unique names that are unequal by definition to other
constructors.
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rewriting is incomplete; it must be backed up by paramodulation for complete
reasoning but this is absent in the case of procedural attachments. Although
(= ($$sum 1 1) 2) can be rewritten to true, (= ($$sum x 1) 2) cannot be
solved.

The intent of procedural attachment for functions like $$sum is to simulate the
use of an infinite set of equalities (= ($$sum 0 0) 0), (= ($$sum 0 1) 1), etc.
but these equalities are to be used only for rewriting and not for paramodulation
because ($$sum x 1) would have an infinite number of paramodulants.

It is up to the user’s care or luck that terms with procedural attachments
are sufficiently instantiated to be rewritten when they have to be. A speculative
solution is to purify expressions with procedurally attached functions so that
unification can succeed in the absence of rewriting that will only happen later.
For example, (= ($$sum x 1) 2) would be replaced (= y 2) with the added
constraint (= y ($$sum x 1)) that must be satisfied eventually. This raises a
further question of whether the theorem prover should be doing arithmetic or
algebra. If the former, no proof of (= ($$sum x 1) 2) will be found unless x is
instantiated to a number. Adding algebraic constraints would increase the theo-
rem prover’s capabilities, but would be an unbounded additional implementation
requirement unless there is an effective way to use an existing computer algebra
system.

Another cautionary note is that procedural attachment may introduce sym-
bols that were not present in the original problem. These must be accommodated
by term ordering and indexing and maybe even the search strategy. The axioms

(p 0)
(forall (x) (implies (p x) (p (s x))))

can produce an infinite sequence of formulas of the form (p (s ... (s 0)
...))), and ordering formulas for inference by size is a fair search strategy
but

(p 0)
(forall (x) (implies (p x) (p ($$sum x 1))))

can produce an infinite sequence of formulas (p 1), (p 2), etc. that may all
be preferred for their size to other formulas resulting in an unfair (incomplete)
search strategy.

Besides code for procedurally attached rewriting, Snark provides for proce-
dural attachments to relation symbols to simulate resolution with all the tuples
in the relation.

A major reason to use procedural attachment is to help Snark avoid doing
types of reasoning that resolution theorem provers are poor at but that are easy
for database systems, for example. Problems like “Alice’s children are Bill, Bob,
and Bruce. How many children does Alice have?” are difficult and similar in
character to subproblems in applications that use Snark. To be able to give a
definite answer to this problem, one has to make the closed world assumption
(there are no other children of Alice) and the unique names assumption (Bill,
Bob, and Bruce or all different). The formulation of the problem includes
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(forall (x) (iff (childof Alice x)
(or (= x Bill) (x Bob) (x Bruce))))

(not (= Bill Bob))
(not (= Bill Bruce))
(not (= Bob Bruce))

The inequalities can be omitted in Snark if strings "Bill", "Bob", and "Bruce"
are used. These are assumed to be distinct so that equations of them will
be rewritten to false. The representation is more concise and more easily
reasoned with, but some incompleteness has been introduced: (exists (x)
(not (= x "Bill"))) cannot be answered because the ability to enumerate
terms unequal to "Bill" has been lost.

If the question were “Does Alice have (exactly) 3 children?”, this could be
augmented by formulas, resembling in character pigeonhole principle problems,
that test whether there are 3 but not 4 distinct children of Alice. But the “How
many” question suggests a need to collect the children in a set and compute
the size of the set, which is easy for a database system but hard for a theorem
prover. Counting is even more challenging for a theorem prover when we are
counting x that satisfy some condition P (x) where P is a complex formula, with
connectives, quantifiers, etc.

The same procedurally attached literals may occur in many clauses generated
during a search for a proof. Unless the procedural attachment is very cheap to
compute, its results should be cached for later use so that the search will not
be impeded and the information provider will not be burdened by duplicate
requests.

8 Sorts, Hybrid Reasoning Made Easy

Applications often require reasoning about taxonomies, which can be done very
effectively with specialized description logic reasoners [4, 2].

Taxonomic reasoning can combined with resolution theorem proving by in-
cluding taxonomic literals in clauses and permitting pairs of literals to be re-
solved if they are inconsistent (or conditionally inconsistent) according to the
taxonomic reasoner. For example, the clauses

(man Socrates)
(forall (x) (implies (human x) (mortal x)))
(not (mortal Socrates))

can be refuted because the positive occurrence of man and negative occurrence
of human are inconsistent (after unifying x and Socrates) if the fact that all men
are human is part of a built-in taxonomic theory.

Theory resolution [31] is a general method for this idea of extending procedural
attachment to sets of literals. Chain resolution [37] is a recent proposal for build-
ing in theories of binary clauses (an early example is Dixon’s Z-resolution [7]).
Tautology checking, factoring, and subsumption as well as resolution must all be
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extended. A serious complication is that extending resolution and subsumption
requires modification of indexing so that clauses with taxonomically relevant but
not syntactically matching literals will be retrieved for inference.

An extremely useful subset of the capability of incorporating taxonomic rea-
soning into a theorem prover can be obtained more easily by using sorted logic
instead of standard unsorted logic [40, 9]. With sorted logics, theories can be
expressed more concisely, reasoning can be more efficient, answers can be more
general, and requiring axioms to be well-sorted reduces errors.6

For example, the clauses

(forall ((x :sort human)) (mortal x))
(not (mortal Socrates))

can be refuted in a sort theory that includes the declarations that Socrates is a
man and all men are human.

I call this reasoning with rather than reasoning about taxonomic information.
Socrates can be declared to be a man and the consequences of that can be
derived, but that Socrates is a man cannot be derived (by satisfying the defining
conditions for being a man).

Snark uses sorted reasoning with several simplifying assumptions that allow
for easy implementation and a simple interface to the sort reasoner:

– Sorts are nonempty.
– The sort of a term is determined by its head symbol.
– If s1 and s2 are two different sorts, then either

1. s1 and s2 have no common elements,
2. s1 is a subsort of s2,
3. s2 is a subsort of s1, or
4. there is a sort s3 that exactly contains their intersection.

Unification is restricted so that a variable can only be bound to a term of the
same sort or a subsort. When unifying variables x1 and x2 of sorts s1 and s2, in
Case 4, x1 and x2 are both bound to a new variable x3 of sort s3. Paramodulation
and rewriting are restricted to replace terms only by terms of the same sort or
a subsort.

Argument sorts can be declared for functions and relations so that only well-
sorted formulas can be input. The restrictions on unification, paramodulation,
and rewriting ensure that derived clauses are well-sorted.

Snark has a simple but useful and fast sort reasoner that allows declaration
of subsorts, sort intersections, and emptiness of intersections. But the simple
interface makes it rather easy to substitute a more powerful description logic
reasoner for it.

6 We have found this to be a major benefit when developing theories for deductive
question answering applications.
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9 AC Unification, the Long Road to Full Use

Associative-commutative (AC) functions occur frequently in theories and are
poorly handled by theorem provers without special treatment. But even the
conceptually simple idea of substituting AC unification for ordinary unification
has many ramifications for theorem provers that require a startling amount of
theoretical and implementation effort.

An AC unification algorithm was first developed in 1975 [30], but not proved
complete until 1984 [8]. It has proven to be quite useful, notably contributing to
McCune’s proof that all Robbins algebras are Boolean [19].

But developing and implementing a special unification algorithm is not enough
for its full use. The architecture of the theorem prover must support a unification
algorithm produce more than one unifier. It is important to be able to index AC
terms efficiently. There is a complex and never implemented AC-discrimination
tree method [26]. For Snark at least it would be helpful to have an AC com-
patible extension of path indexing as well.

Rewriting and paramodulation with AC functions require extended rewrites
[24]. A rewrite f(s1, . . . , sn) → t with AC function f must usually be accompa-
nied by an extended rewrite f(s1, . . . , sn, x) → f(t, x). For example, the rewrite
f(g(x), x) → e is not applicable to f(g(a), a, b, c), but its extended rewrite is.

Term ordering is a contemporary necessity for effective equality reasoning,
but the usual term orderings are incompatible with AC functions. AC compat-
ible term orderings have now been developed, but they are much more work
to implement than the orderings on which they are based. Snark has an im-
plementation of the AC compatible extension of recursive path ordering [25]
but its exponential behavior is sometimes a serious problem in practice. An AC
compatible extension of Knuth-Bendix ordering is claimed to overcome this de-
ficiency [13]. Because recursive path ordering and Knuth-Bendix ordering can
each orient some systems of equations that the other cannot, it is important that
users be given the choice, but this increases the cost of special treatment of AC
functions.

Supporting bag (unordered list) or set datatypes may be more important
for applications than AC per se. There is a temptation to use AC unification
for bags and AC1 unification for sets. But bag(x, y, z), the flattened form of
bag(x, bag(y, z)) with AC function bag, is not a suitable representation for the
3-element bag with elements x, y, and z because it does not allow proper nesting
of bags. If x = bag(u, v) then bag(x, y, z) = bag(u, v, y, z) instead of a bag whose
elements are bag(u, v), y, and z. Basing the theory of bag or sets on union
operations is more reasonable. The equations

bagunion(x, bagunion(y, z)) = bagunion(bagunion(x, y), z)
bagunion(x, y) = bagunion(y, x)

are valid but the arguments of the AC bagunion function are expected to be bags,
not elements. This problem can be overcome by wrapping elements in singleton
bag constructors so that bagunion(x, y) means the union of bags x and y and
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bagunion(bag(x), bag(y)) means the bag whose elements are x and y. However,
this is cumbersome if one is mainly interested in bags and their elements, not
their unions.

Just as lists are conventionally represented in theorem provers by means cons
and nil, an attractive alternative approach [6] is to represent bags by means
of bagcons and emptybag so that bagcons(x, bagcons(y, bagcons(z, emptybag)))
represents the 3-element bag with elements x, y, and z. Instead of being AC, the
function bagcons has the property

bagcons(x, bagcons(y, z)) = bagcons(y, bagcons(x, z)).

And like cons, bagcons can have a variable as its second argument to represent
bags with unspecified additional elements. This representation provides for useful
operations on bags without the cost (or benefit) of complete bag reasoning with
unions and should be easier to accommodate in indexing and ordering than AC
functions.

Sets are often even more useful than bags and can be treated in a similar
fashion [6]. However, sets pose additional problems unless inequality of elements
can be assumed or determined. For example, setcons(x, setcons(y, emptyset)) =
setcons(y, emptyset) if x = y. Only bag unification has been implemented in
Snark.

Incorporation of specialized reasoning for other equational theories requires
similar attention to make them fully effective.

10 Conclusion

Some theorem provers like Snark’s coder for condensed detachment problems
and Pttp’s implementation of the model elimination procedure are complete,
fast, easy to implement, sometimes surprisingly successful, but also quite limited.

Resolution and paramodulation offer a large range of options and opportunities
for extension to support the reasoning required by applications such as deductive
question answering. Fundamental difficulties like the incompatibility of paramod-
ulation and set of support and the need to adapt indexing to changes in how terms
and formulas match make maintaining completeness and performance very chal-
lenging. Simple additions like AC unification can require large changes throughout
the theorem prover to indexing, rewriting, and term ordering.

On a more positive note, occasionally a powerful reasoning technique can be
added easily. This is the case for sorted resolution and paramodulation. I believe
this may be the quickest and best way to add taxonomic reasoning.

Theorem prover implementation is harder than it needs to be. Algorithms in
the literature are described concisely and mathematically to facilitate proofs of
correctness rather than provide guides to efficient implementation. A good exam-
ple is that the standard presention of lexical recursive path orderings encourages
an inefficient implementation with exponential behavior [14]. To devise an effi-
cient one is left as an exercise in [3]. Another example of valuing pedagogical
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simplicity over implementation reality is the presentation of ordered resolution
and paramodulation as if equality is the only relation.

I believe that executable code in high-level languages like Lisp, ML, or Python
can communicate algorithms as well as pseudocode etc., be less subject to am-
biguity or misinterpretation, and provide a reference against which to test new
implementations for correctness and performance.

Although theorem prover code is available, there is sadly little reuse of com-
ponents. Theorem provers have many components that require substantial the-
oretical and implementation effort. Many of these are so interdependent and
tightly coupled that they must be developed in concert. But when tasks are
more easily separated, such as CNF conversion, relevancy testing, extracting
sort theories, and deciding what inference rules to use, it is undesirable for them
to be implemented independently, often suboptimally, in many theorem provers.
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Abstract. Current techniques and tools for automated termination
analysis of term rewrite systems (TRSs) are already very powerful. How-
ever, they fail for algorithms whose termination is essentially due to
an inductive argument. Therefore, we show how to couple the depen-
dency pair method for TRS termination with inductive theorem prov-
ing. As confirmed by the implementation of our new approach in the
tool AProVE, now TRS termination techniques are also successful on
this important class of algorithms.

1 Introduction

There are many powerful techniques and tools to prove termination of TRSs au-
tomatically. Moreover, TRS tools are also very successful in termination analysis
of real programming languages like, e.g., Haskell and Prolog [12,31]. To measure
their performance, there is an annual International Competition of Termination
Provers,1 where the tools compete on a large data base of TRSs. Nevertheless,
there exist natural algorithms like the following one where all these tools fail.

Example 1. Consider the following TRS Rsort.

ge(x, 0) → true eq(0, 0) → true

ge(0, s(y)) → false eq(s(x), 0) → false

ge(s(x), s(y)) → ge(x, y) eq(0, s(y)) → false

eq(s(x), s(y)) → eq(x, y)
max(nil) → 0

max(co(x,nil)) → x if1(true, x, y, xs) → max(co(x, xs))
max(co(x, co(y, xs))) → if1(ge(x, y), x, y, xs) if1(false, x, y, xs) → max(co(y, xs))

del(x,nil) → nil if2(true, x, y, xs) → xs
del(x, co(y, xs)) → if2(eq(x, y), x, y, xs) if2(false, x, y, xs) → co(y,del(x, xs))

sort(nil) → nil

sort(co(x, xs)) → co( max(co(x, xs)), sort(del( max(co(x, xs)), co(x, xs) )) )
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Here, numbers are represented with 0 and s (for the successor function) and lists
are represented with nil (for the empty list) and co (for list insertion). For any list
xs, max(xs) computes its maximum (where max(nil) is 0), and del(n, xs) deletes
the first occurrence of n from the list xs. If n does not occur in xs, then del(n, xs)
returns xs . Algorithms like max and del are often expressed with conditions.
Such conditional rules can be automatically transformed into unconditional ones
(cf. e.g. [27]) and we already did this transformation in our example. To sort
a non-empty list ys (i.e., a list of the form “co(x, xs)”), sort(ys) reduces to
“co(max(ys), sort(del(max(ys), ys))”. So sort(ys) starts with the maximum of ys
and then sort is called recursively on the list that results from ys by deleting the
first occurrence of its maximum. Note that

every non-empty list contains its maximum. (1)

Hence, the list del(max(ys), ys) is shorter than ys and thus, Rsort is terminating.

So (1) is the main argument needed for termination of Rsort. Thus, when trying
to prove termination of TRSs like Rsort automatically, one faces 2 problems:

(a) One has to detect the main argument needed for termination and one has to
find out that the TRS is terminating provided that this argument is valid.

(b) One has to prove that the argument detected in (a) is valid.

In our example, (1) requires a non-trivial induction proof that relies on
the max- and del-rules. Such proofs cannot be done by TRS termination
techniques, but they could be performed by state-of-the-art inductive theorem
provers [4,5,7,8,20,21,33,34,36]. So to solve Problem (b), we would like to couple
termination techniques for TRSs (like the dependency pair (DP) method which
is implemented in virtually every current TRS termination tool) with an induc-
tive theorem prover. Ideally, this prover should perform the validity proof in (b)
fully automatically, but of course it is also possible to have user interaction here.
However, it still remains to solve Problem (a). Thus, one has to extend the TRS
termination techniques such that they can automatically synthesize an argument
like (1) and find out that this argument is sufficient in order to complete the
termination proof. This is the subject of the current paper.

There is already work on applying inductive reasoning in termination proofs.
Some approaches like [6,15,16,28] integrate special forms of inductive reasoning
into the termination method itself. These approaches are successful on certain
forms of algorithms, but they cannot handle examples like Ex. 1 where one needs
more general forms of inductive reasoning. Therefore, in this paper our goal is to
couple the termination method with an arbitrary (black-box) inductive theorem
prover which may use any kind of proof techniques.

There exist also approaches like [5,10,22,25,32] where a full inductive theorem
prover is used to perform the whole termination proof of a functional program.
Such approaches could potentially handle algorithms like Ex. 1 and indeed, Ex. 1
is similar to an algorithm from [10,32]. In general, to prove termination one has
to solve two tasks: (i) one has to synthesize suitable well-founded orders and
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(ii) one has to prove that recursive calls decrease w.r.t. these orders. If there is
just an inductive theorem prover available for the termination proof, then for
Task (i) one can only use a fixed small set of orders or otherwise, ask the user
to provide suitable well-founded orders manually. Moreover, then Task (ii) has
to be tackled by the full theorem prover which may often pose problems for au-
tomation. In contrast, there are many TRS techniques and tools available that
are extremely powerful for Task (i) and that offer several specialized methods to
perform Task (ii) fully automatically in a very efficient way. So in most cases, no
inductive theorem prover is needed for Task (ii). Nevertheless, there exist impor-
tant algorithms (like Rsort) where Task (ii) indeed requires inductive theorem
proving. Thus, we propose to use the “best of both worlds”, i.e., to apply TRS
techniques whenever possible, but to use an inductive theorem prover for those
parts where it is needed.

After recapitulating the DP method in Sect. 2, in Sect. 3 we present the main
idea for our improvement. To make this improvement powerful in practice, we
need the new result that innermost termination of many-sorted term rewriting
and of unsorted term rewriting is equivalent. We expect that this observation will
be useful also for other applications in term rewriting, since TRSs are usually
considered to be unsorted. We use this result in Sect. 4 where we show how the
DP method can be coupled with inductive theorem proving in order to prove
termination of TRSs like Rsort automatically.

We implemented our new technique in the termination prover AProVE [13].
Here, we used a small inductive theorem prover inspired by [5,7,21,33,34,36]
which had already been implemented in AProVE before. Although this inductive
theorem prover is less powerful than the more elaborated full theorem provers
in the literature, it suffices for many of those inductive arguments that typically
arise in termination proofs. This is confirmed by the experimental evaluation of
our contributions in Sect. 5. Note that the results of this paper allow to couple
any termination prover implementing DPs with any inductive theorem prover.
Thus, by using a more powerful inductive theorem prover than the one integrated
in AProVE, the power of the resulting tool could even be increased further.

2 Dependency Pairs

We assume familiarity with term rewriting [3] and briefly recapitulate the DP
method. See e.g. [2,11,14,18,19] for further motivations and extensions.

Definition 2 (Dependency Pairs). For a TRS R, the defined symbols DR
are the root symbols of left-hand sides of rules. All other function symbols are
called constructors. For every defined symbol f ∈ DR, we introduce a fresh tuple
symbol f � with the same arity. To ease readability, we often write F instead of f �,
etc. If t = f(t1, . . . , tn) with f ∈ DR, we write t� for f �(t1, . . . , tn). If � → r ∈ R
and t is a subterm of r with defined root symbol, then the rule �� → t� is a
dependency pair of R. The set of all dependency pairs of R is denoted DP(R).

We get the following set DP(Rsort), where GE is ge’s tuple symbol, etc.
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GE(s(x), s(y)) → GE(x, y) (2)
EQ(s(x), s(y)) → EQ(x, y) (3)

MAX(co(x, co(y, xs))) → IF1(ge(x, y), x, y, xs) (4)
MAX(co(x, co(y, xs))) → GE(x, y) (5)

IF1(true, x, y, xs) → MAX(co(x, xs)) (6)
IF1(false, x, y, xs) → MAX(co(y, xs)) (7)
DEL(x, co(y, xs)) → IF2(eq(x, y), x, y, xs) (8)
DEL(x, co(y, xs)) → EQ(x, y) (9)
IF2(false, x, y, xs) → DEL(x, xs) (10)
SORT(co(x, xs)) → SORT(del(max(co(x, xs)), co(x, xs))) (11)
SORT(co(x, xs)) → DEL(max(co(x, xs)), co(x, xs)) (12)
SORT(co(x, xs)) → MAX(co(x, xs)) (13)

In this paper, we only regard the innermost rewrite relation i→ and prove inner-
most termination, since techniques for innermost termination are considerably
more powerful than those for full termination. For large classes of TRSs (e.g.,
TRSs resulting from programming languages [12,31] or non-overlapping TRSs
like Ex. 1), innermost termination is sufficient for termination.

For 2 TRSs P and R (where P usually consists of DPs), an innermost (P ,R)-
chain is a sequence of (variable-renamed) pairs s1 → t1, s2 → t2, . . . from P such
that there is a substitution σ (with possibly infinite domain) where tiσ

i→∗
R si+1σ

and siσ is in normal form w.r.t. R, for all i.2 The main result on DPs states that
R is innermost terminating iff there is no infinite innermost (DP(R),R)-chain.

As an example for a chain, consider “(11), (11)”, i.e.,

SORT(co(x , xs )) → SORT(del(max(co(x , xs )), co(x , xs ))),
SORT(co(x′, xs ′)) → SORT(del(max(co(x′, xs ′)), co(x′, xs ′))).

Indeed, if σ(x) = σ(x′) = 0, σ(xs) = co(s(0), nil), and σ(xs ′) = nil, then

SORT(del(max(co(x, xs)), co(x, xs)))σ i→∗
Rsort

SORT(co(x′, xs ′))σ.

Termination techniques are now called DP processors and they operate on pairs
of TRSs (P ,R) (which are called DP problems).3 Formally, a DP processor Proc
takes a DP problem as input and returns a set of new DP problems which then
have to be solved instead. A processor Proc is sound if for all DP problems (P ,R)
with an infinite innermost (P ,R)-chain there is also a (P ′,R′) ∈ Proc( (P ,R) )
with an infinite innermost (P ′,R′)-chain. Soundness of a DP processor is re-
quired to prove innermost termination and in particular, to conclude that there
is no infinite innermost (P ,R)-chain if Proc( (P ,R) ) = ∅.

So innermost termination proofs in the DP framework start with the initial
problem (DP(R),R). Then the problem is simplified repeatedly by sound DP

2 All results of the present paper also hold if one regards minimal instead of ordinary
innermost chains, i.e., chains where all tiσ are innermost terminating.

3 To ease readability we use a simpler definition of DP problems than [11], since this
simple definition suffices for the presentation of the new results of this paper.
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processors. If all DP problems have been simplified to ∅, then innermost termi-
nation is proved. Thm. 3-5 recapitulate three of the most important processors.

Thm. 3 allows us to replace the TRS R in a DP problem (P ,R) by the usable
rules. These include all rules that can be used to reduce the terms in right-hand
sides of P when their variables are instantiated with normal forms.

Theorem 3 (Usable Rule Processor [2,11]). Let R be a TRS. For any
function symbol f , let Rls(f) = {� → r ∈ R | root(�) = f}. For any term t, the
usable rules U(t) are the smallest set such that

• U(x) = ∅ for every variable x and
• U(f(t1, . . . , tn)) = Rls(f) ∪

⋃

→r∈Rls(f) U(r) ∪

⋃n
i=1 U(ti)

For a TRS P, its usable rules are U(P) =
⋃

s→t∈P U(t). Then the following DP
processor Proc is sound: Proc( (P ,R) ) = { (P , U(P)) }.

In Ex. 1, this processor transforms the initial DP problem (DP(Rsort),Rsort)
into (DP(Rsort),R′sort). R′sort is Rsort without the two sort-rules, since sort does
not occur in the right-hand side of any DP and thus, its rules are not usable.

The next processor decomposes a DP problem into several sub-problems. To
this end, one determines which pairs can follow each other in innermost chains
by constructing an innermost dependency graph. For a DP problem (P ,R), the
nodes of the innermost dependency graph are the pairs of P , and there is an arc
from s → t to v → w iff s → t, v → w is an innermost (P ,R)-chain. The graph
obtained in our example is depicted on the side.
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In general, the innermost dependency graph is not
computable, but there exist many techniques to over-
approximate this graph automatically, cf. e.g. [2,18].
In our example, these estimations would even yield
the exact innermost dependency graph.

A set P ′ �= ∅ of DPs is a cycle if for every s→ t,
v → w ∈ P ′, there is a non-empty path from
s → t to v → w traversing only pairs of
P ′. A cycle P ′ is a (non-trivial) strongly con-
nected component (SCC) if P ′ is not a proper subset of another cycle.
The next processor allows us to prove termination separately for each SCC.

Theorem 4 (Dependency Graph Processor [2,11]). The following DP pro-
cessor Proc is sound: Proc( (P ,R) ) = {(P1,R), . . . , (Pn,R)}, where P1, . . . ,
Pn are the SCCs of the innermost dependency graph.

Our graph has the SCCs P1 = {(2)}, P2 = {(3)}, P3 = {(4), (6), (7)}, P4 =
{(8), (10)}, P5 = {(11)}. Thus, (DP(Rsort),R′sort) is transformed into the 5 new
DP problems (Pi,R′sort) for 1 ≤ i ≤ 5 that have to be solved instead. For all
problems except ({(11)},R′sort) this is easily possible by the DP processors of this
section (and this can also be done automatically by current termination tools).
Therefore, we now concentrate on the remaining DP problem ({(11)},R′sort).
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A reduction pair (�,	) consists of a stable monotonic quasi-order � and a
stable well-founded order 	, where � and 	 are compatible (i.e., � ◦ 	 ◦ �
⊆ 	). For a DP problem (P ,R), the following processor requires that all DPs in
P are strictly or weakly decreasing and all rules R are weakly decreasing. Then
one can delete all strictly decreasing DPs. Note that both TRSs and relations
can be seen as sets of pairs of terms. Thus, P \	 denotes {s → t ∈ P | s �	 t}.

Theorem 5 (Reduction Pair Processor [2,11,18]). Let (�,	) be a reduc-
tion pair. Then the following DP processor Proc is sound.

Proc( (P ,R) ) =
{
{ (P \	,R) }, if P ⊆ �∪ 	 and R ⊆ �
{ (P ,R) }, otherwise

For the problem ({(11)},R′sort), we search for a reduction pair where (11) is
strictly decreasing (w.r.t. 	) and the rules in R′sort are weakly decreasing (w.r.t.
�). However, this is not satisfied by the orders available in current termination
tools. That is not surprising, because termination of this DP problem essentially
relies on the argument (1) that every non-empty list contains its maximum.

3 Many-Sorted Rewriting

Recall that our goal is to prove the absence of infinite innermost (P ,R)-chains.
Each such chain would correspond to a reduction of the following form

s1σ →P t1σ
i→!
R s2σ →P t2σ

i→!
R s3σ →P t3σ

i→!
R . . .

where si → ti are variable-renamed DPs from P and “ i→!
R” denotes zero or more

reduction steps to a normal form. The reduction pair processor ensures

s1σ (�) t1σ � s2σ (�) t2σ � s3σ (�) t3σ � . . .

Hence, strictly decreasing DPs (i.e., where siσ 	 tiσ) cannot occur infinitely
often in innermost chains and thus, they can be removed from the DP problem.

However, instead of requiring a strict decrease when going from the left-hand
side siσ of a DP to the right-hand side tiσ, it would also be sufficient to require
a strict decrease when going from the right-hand side tiσ to the next left-hand
side si+1σ. In other words, if every reduction of tiσ to normal form makes the
term strictly smaller w.r.t. 	, then we would have tiσ 	 si+1σ. Hence, then the
DP si → ti cannot occur infinitely often and could be removed from the DP
problem. Our goal is to formulate a new processor based on this idea.

So essentially, we can remove a DP s → t from the DP problem, if

for every normal substitution σ, tσ i→!
R q implies tσ 	 q. (14)

In addition, all DPs and rules still have to be weakly decreasing. A substitution
σ is called normal iff σ(x) is in normal form w.r.t. R for all variables x.
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So to remove (11) from the remaining DP problem ({(11)},R′sort) of Ex. 1
with the criterion above, we have to use a reduction pair satisfying (14). Here, t
is the right-hand side of (11), i.e., t = SORT(del(max(co(x, xs)), co(x, xs))).

Now we will weaken the requirement (14) step by step to obtain a condition
amenable to automation. The current requirement (14) is still unnecessarily hard.
For instance, in our example we also have to regard substitutions like σ(x) =
σ(xs) = true and require that tσ 	 q holds, although intuitively, here x stands for
a natural number and xs stands for a list (and not a Boolean value). We will show
that one does not have to require (14) for all normal substitutions, but only for
“well-typed” ones. The reason is that if there is an infinite innermost reduction,
then there is also an infinite innermost reduction of “well-typed” terms.

First, we make precise what we mean by “well-typed”. Recall that up to now
we regarded ordinary TRSs over untyped signatures F . The following definition
shows how to extend such signatures by (monomorphic) types, cf. e.g. [35].

Definition 6 (Typing). Let F be an (untyped) signature. A many-sorted sig-
nature F ′ is a typed variant of F if it contains the same function symbols as F ,
with the same arities. So f is a symbol of F with arity n iff f is a symbol of F ′
with a type of the form τ1 × . . . × τn → τ . Similarly, a typed variant V ′ of the
set of variables V contains the same variables as V, but now every variable has
a sort τ . We always assume that for every sort τ , V ′ contains infinitely many
variables of sort τ . A term over F and V is well typed w.r.t. F ′ and V ′ iff

• t is a variable (of some type τ in V ′) or
• t = f(t1, . . . , tn) with n ≥ 0, where all ti are well typed and have some type

τi, and where f has type τ1 × . . .× τn → τ in F ′. Then t has type τ .

We only permit typed variants F ′ where there exist well-typed ground terms of
types τ1, . . . , τn over F ′, whenever some f ∈ F ′ has type τ1 × . . .× τn → τ .4

A TRS R over5 F and V is well typed w.r.t. F ′ and V ′ if for all � → r ∈ R,
we have that � and r are well typed and that they have the same type.6

For any TRS R over a signature F , one can use a standard type inference
algorithm to compute a typed variant F ′ of F automatically such that R is well
typed. Of course, a trivial solution is to use a many-sorted signature with just
one sort (then every term and every TRS are trivially well typed). But to make
our approach more powerful, it is advantageous to use the most general typed
variant where R is well typed instead. Here, the set of terms is decomposed into
as many sorts as possible. Then fewer terms are considered to be “well typed”
and hence, the condition (14) has to be required for fewer substitutions σ.

For example, let F = {0, s, true, false, nil, co, ge, eq,max, if1, del, if2, SORT}. To
make {(11)} ∪ R′sort well typed, we obtain the typed variant F ′ of F with the
sorts nat, bool, list, and tuple. Here the function symbols have the following types.
4 This is not a restriction, as one can simply add new constants to F and F ′.
5 Note that F may well contain function symbols that do not occur in R.
6 W.l.o.g., here one may rename the variables in every rule. Then it is not a problem

if the variable x is used with type τ1 in one rule and with type τ2 in another rule.
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0 : nat ge, eq : nat× nat → bool
s : nat → nat max : list → nat

true, false : bool if1, if2 : bool× nat× nat× list → list
nil : list SORT : list → tuple

co, del : nat× list → list

Now we show that innermost termination is a persistent property, i.e., a TRS
is innermost terminating iff it is innermost terminating on well-typed terms.
Here, one can use any typed variant where the TRS is well typed. As noted
by [26], persistence of innermost termination follows from results of [30], but to
our knowledge, it has never been explicitly stated or applied in the literature
before. Note that in contrast to innermost termination, full termination is only
persistent for very restricted classes of TRSs, cf. [35].

Theorem 7 (Persistence). Let R be a TRS over F and V and let R be well
typed w.r.t. the typed variants F ′ and V ′. R is innermost terminating for all
well-typed terms w.r.t. F ′ and V ′ iff R is innermost terminating (for all terms).

Proof. For persistence, it suffices to show component closedness and sorted modu-
larity [30]. A property is component closed if (a) ⇔ (b) holds for all TRSs R.

(a) →R has the property for all terms
(b) for every equivalence class Cl w.r.t. ↔∗

R, the restriction of →R to Cl has the
property

Innermost termination is clearly component closed, since all terms occurring in
an innermost reduction are from the same equivalence class.

A property is sorted modular if (c) and (d) are equivalent for all TRSs R1
and R2 forming a disjoint combination. So each Ri is a TRS over Fi and V , F ′i
and V ′ are typed variants of Fi and V where Ri is well typed, and F1 ∩F2 = ∅.

(c) for both i, Ri has the property for all well-typed terms w.r.t. F ′i and V ′
(d) R1 ∪R2 has the property for all well-typed terms w.r.t. F ′1 ∪ F ′2 and V ′

For innermost termination, (d) ⇒ (c) is trivial. To show (c) ⇒ (d), we adapt the
proof for (unsorted) modularity of innermost termination in [17]. Assume there
is a well-typed term t over F ′1∪F ′2 and V ′ with infinite innermostR1∪R2-reduc-
tion. Then there is also a minimal such term (its proper subterms are innermost
terminating w.r.t. R1 ∪R2). The reduction has the form t i→∗

R1∪R2
t1

i→R1∪R2

t2
i→R1∪R2

. . . where the step from t1 to t2 is the first root step. Such a root
step must exist since t is minimal. Due to the innermost strategy, all proper
subterms of t1 are in R1 ∪ R2-normal form. W.l.o.g., let root(t1) ∈ F1. Then
t1 = C[s1, . . . , sm] with m ≥ 0, where C is a context without symbols from F2
and the roots of s1, . . . , sm are from F2. Since s1, . . . , sm are irreducible, the
reduction from t1 onwards is an R1-reduction, i.e., t1

i→R1
t2

i→R1
. . . Let tj

result from tj by replacing s1, . . . , sm by fresh variables7 x1, . . . , xm. Thus, the
tj are well-typed terms over F ′1 and V ′ with t1

i→R1
t2

i→R1
. . . which shows

that t1 starts an infinite innermost R1-reduction. ��
7 Recall that V ′ has infinitely many variables for every sort.
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We expect that there exist several points where Thm. 7 could simplify innermost
termination proofs.8 In this paper, we use Thm. 7 to weaken the condition (14)
required to remove a DP from a DP problem (P ,R). Now one can use any typed
variant where P ∪R is well typed. To remove s → t from P , it suffices if

for every normal σ where tσ is well typed, tσ i→!
R q implies tσ 	 q. (15)

4 Coupling DPs and Inductive Theorem Proving

Condition (15) is still too hard, because up to now, tσ does not have to be ground.
We show (in Thm. 12) that for DP problems (P ,R) satisfying suitable non-over-
lappingness requirements and where R is already innermost terminating, (15)
can be relaxed to ground substitutions σ. Then s → t can be removed from P if

for every normal substitution σ where tσ is a well-typed ground term,
tσ i→!

R q implies tσ 	 q. (16)

Example 8. Innermost termination of R is really needed to replace (15) by (16).
To see this, consider the DP problem (P ,R) with P = {F(x) → F(x)} and the
non-innermost terminating TRS R = {a → a}.9 Let F = {F, a}. We use a typed
variant F ′ where F : τ1 → τ2 and a : τ1. For the right-hand side t = F(x) of
the DP, the only well-typed ground instantiation is F(a). Since this term has no
normal form q, the condition (16) holds. Nevertheless, it is not sound to remove
the only DP from P , since F(x1) → F(x1), F(x2) → F(x2), . . . is an infinite
innermost (P ,R)-chain (but there is no infinite innermost ground chain).

To see the reason for the non-overlappingness requirement, consider (P ,R)
with P = {F(f(x)) → F(f(x))} and R = {f(a) → a}. Now F = {F, f, a} and in
the typed variant we have F : τ1 → τ2, f : τ1 → τ1, and a : τ1. For the right-hand
side t = F(f(x)) of the DP, the only well-typed ground instantiations are F(fn(a))
with n ≥ 1. If we take the embedding order 	emb, then all well-typed ground
instantiations of t are 	emb-greater than their normal form F(a). So Condition
(16) would allow us to remove the only DP from P . But again, this is unsound,
since there is an infinite innermost (P ,R)-chain (but no such ground chain).

To prove a condition like (16), we replace (16) by the following condition (17),
which is easier to check. Here, we require that for all instantiations tσ as above,
every reduction of tσ to its normal form uses a strictly decreasing rule � → r
(i.e., a rule with � 	 r) on a strongly monotonic position π. A position π in a
term u is strongly monotonic w.r.t. 	 iff t1 	 t2 implies u[t1]π 	 u[t2]π for all
terms t1 and t2. So to remove s → t from P , now it suffices if

8 E.g., by Thm. 7 one could switch to termination methods like [24] exploiting sorts.
9 One cannot assume that DP problems (P ,R) always have a specific form, e.g., that
P includes A → A whenever R includes a → a. The reason is that a DP problem
(P ,R) can result from arbitrary DP processors that were applied before. Hence, one
really has to make sure that processors are sound for arbitrary DP problems (P ,R).
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for every normal substitution σ where tσ is a well-typed ground term,
every reduction “tσ i→!

R q” has the form

tσ i→∗
R s[�δ]π i→R s[rδ]π i→!

R q

for a rule � → r ∈ R where � 	 r
and where the position π in s is strongly monotonic w.r.t. 	.10

(17)

For example, for Rsort’s termination proof one may use a reduction pair (�,	)
based on a polynomial interpretation [9,23]. A polynomial interpretation Pol
maps every n-ary function symbol f to a polynomial fPol over n variables
x1, . . . , xn with coefficients from N. This mapping is extended to terms by
[x]Pol = x for all variables x and [f(t1, . . . , tn)]Pol = fPol([t1]Pol, . . . , [tn]Pol).
Now s 	Pol t (resp. s �Pol t) iff [s]Pol > [t]Pol (resp. [s]Pol ≥ [t]Pol) holds for
all instantiations of the variables with natural numbers. For instance, consider
the interpretation Pol1 with

0Pol1 = nilPol1 = truePol1 = falsePol1 = gePol1 = eqPol1 = 0 sPol1 = 1 + x1
coPol1 = 1 + x1 + x2 maxPol1 = x1
if1Pol1 = 1 + x2 + x3 + x4 delPol1 = x2
if2Pol1 = 1 + x3 + x4 SORTPol1 = x1

When using the reduction pair (�Pol1 ,	Pol1), the DP (11) and all rules of
R′sort are weakly decreasing. Moreover, then Condition (17) is indeed satis-
fied for the right-hand side t of (11). To see this, note that in every reduc-
tion tσ i→!

R q where tσ is a well-typed ground term, eventually one has to
apply the rule “if2(true, x, y, xs) → xs” which is strictly decreasing w.r.t. 	Pol1 .
This rule is used by the del-algorithm to delete an element, i.e., to reduce
the length of the list. Moreover, the rule is used within a context of the form
SORT(co(..., co(..., . . . co(...,�)))). Note that the polynomial SORTPol1 resp.
coPol1 is strongly monotonic in its first resp. second argument. Thus, the strictly
decreasing rule is indeed used on a strongly monotonic position.

To check automatically whether every reduction of tσ to normal form uses a
strictly decreasing rule on a strongly monotonic position, we add new rules and
function symbols to the TRSR which results in an extended TRSR�. Moreover,
for every term u we define a corresponding term u�. For non-overlapping TRSs
R, we have the following property, cf. Lemma 10: if u� i→∗

R� tt, then for every
reduction u i→!

R q, we have u 	 q. We now explain how to construct R�.

10 In special cases, condition (17) can be automated by k-times narrowing the DP s → t
[14]. However, this only works if for any substitution σ, the reduction tσ i→∗

R s[�δ]π
is shorter than a fixed number k. So it fails for TRSs like Rsort where termination
relies on an inductive property. Here, the reduction

SORT(del(max(co(x, xs)), co(x, xs)))σ i→∗
Rsort

SORT(if2(true, . . . , . . .))

can be arbitrarily long, depending on σ. Therefore, narrowing the DP (11) a fixed
number of times does not help.
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For every f ∈ DR, we introduce a new symbol f�. Now f�(u1, ..., un) should
reduce to tt in the new TRS R� whenever the reduction of f(u1, ..., un) in
the original TRS R uses a strictly decreasing rule on a strongly monotonic
position. Thus, if a rule f(�1, ..., �n) → r of R was strictly decreasing (i.e.,
f(�1, ..., �n) 	 r), then we add the rule f�(�1, ..., �n) → tt in R�. Otherwise, a
strictly decreasing rule will be used on a strongly monotonic position to reduce an
instance of f(�1, . . . , �n) if this holds for the corresponding instance of the right-
hand side r. Hence, then we add the rule f�(�1, ..., �n) → r� in R� instead. It
remains to define u� for any term u over the signature of R. If u = f(u1, ..., un),
then we regard the subterms on the strongly monotonic positions of u and check
whether their reduction uses a strictly decreasing rule. For any n-ary symbol f ,
let mon�(f) contain those positions from {1, . . . , n} where the term f(x1, ..., xn)
is strongly monotonic. If mon�(f) = {i1, . . . , im}, then for u = f(u1, ..., un) we
obtain u� = u�i1 ∨ . . . ∨ u�im

, if f is a constructor. If f is defined, then a strictly
decreasing rule could also be applied on the root position of u. Hence, then we
have u� = u�i1∨. . .∨u�im

∨f�(u1, ..., un). Of course,R� also contains appropriate
rules for the disjunction “∨”.11 The empty disjunction is represented by ff.

Definition 9 (R�). Let 	 be an order on terms and let R be a TRS over F
and V. We extend F to a new signature F� = F � {f� | f ∈ DR} � {tt,ff,∨}.
For any term u over F and V, we define the term u� over F� and V:

u� =

⎧⎨
⎩
∨

i∈mon�(f) u�i , if u = f(u1, . . . , un) and f /∈ DR∨
i∈mon�(f) u�i ∨ f�(u1, . . . , un), if u = f(u1, . . . , un) and f ∈ DR

ff, if u ∈ V

Moreover, we define R� = {f�(�1, ..., �n) → tt | f(�1, ..., �n) → r ∈ R ∩ 	}
∪ {f�(�1, ..., �n) → r� | f(�1, ..., �n) → r ∈ R \ 	}
∪ R ∪ {tt ∨ b → tt, ff ∨ b → b}.

In our example, the only rules of R′sort which are strictly decreasing w.r.t. 	Pol1

are the last two max-rules and the rule “if2(true, x, y, xs) → xs”. So according
to Def. 9, the TRS R′�Pol1

sort contains R′sort ∪ {tt ∨ b → tt, ff ∨ b → b} and the
following rules. Here, we already simplified disjunctions of the form “ff ∨ t” or
“t ∨ ff” to t. To ease readability, we wrote “ge�” instead of “ge�Pol1”, etc.

ge	(x, 0) → ff eq	(0, 0) → ff

ge	(0, s(y)) → ff eq	(s(x), 0) → ff

ge	(s(x), s(y)) → ge	(x, y) eq	(0, s(y)) → ff

eq	(s(x), s(y)) → eq	(x, y)
max	(nil) → ff

max	(co(x, nil)) → tt if	1 (true, x, y, xs) → max	(co(x, xs))
max	(co(x, co(y, xs))) → tt if	1 (false, x, y, xs) → max	(co(y, xs))

del	(x, nil) → ff if	2 (true, x, y, xs) → tt

del	(x, co(y, xs)) → if	2 (eq(x, y), x, y, xs) if	2 (false, x, y, xs) → del	(x, xs)

11 It suffices to include just the rules “tt ∨ b → tt” and “ff ∨ b → b”, since R	 is only
used for inductive proofs and “b∨tt = tt” and “b∨ff = b” are inductive consequences.
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Lemma 10 (Soundness of R�). Let (�,	) be a reduction pair and let R be
a non-overlapping TRS over F and V with R ⊆ �. For any terms u and q over
F and V with u� i→∗

R� tt and u i→!
R q, we have u 	 q.

Proof. We use induction on the lexicographic combination of the length of the
reduction u i→!

R q and of the structure of u.
First let u be a variable. Here, u� = ff and thus, u� i→∗

R� tt is impossible.
Now let u = f(u1, ..., un). The reduction u i→!

R q starts with u = f(u1, ..., un)
i→∗
R� f(q1, ..., qn) where the reductions ui

i→!
R qi are at most as long as u i→!

R q.
If there is a j ∈ mon�(f) with u�j

i→∗
R� tt, then uj 	 qj by induction hypothesis.

So u=f(u1, ..., uj , ..., un)	f(u1, ..., qj , ..., un)�f(q1, ..., qj , ..., qn)�q, as R⊆�.
Otherwise, u� i→∗

R� tt means that f�(u1, . . . , un) i→∗
R� tt. As R ⊆ R�, we

have f�(u1, . . . , un) i→∗
R� f�(q1, . . . , qn). Since R is non-overlapping, R� is

non-overlapping as well. This implies confluence of i→R� , cf. [29]. Hence, we also
get f�(q1, . . . , qn) i→∗

R� tt. There is a rule f(�1, . . . , �n) → r ∈ R and a normal
substitution δ with f�(q1, . . . , qn) = f(�1, . . . , �n)δ i→R rδ i→!

R q. Note that the
qi only contain symbols of F . Thus, as the qi are normal forms w.r.t. R, they
are also normal forms w.r.t. R�. Therefore, as R� is non-overlapping, the only
rule of R� applicable to f�(q1, . . . , qn) is the one resulting from f(�1, . . . , �n) →
r ∈ R. If f(�1, . . . , �n) 	 r, then that rule would be “f�(�1, . . . , �n) → tt” and

u = f(u1, . . . , un) � f(q1, . . . , qn) = f(�1, . . . , �n)δ 	 rδ � q.

Otherwise, the rule is “f�(�1, ..., �n) → r�”, i.e., f�(q1, ..., qn) = f�(�1, ..., �n)δ
i→R� r�δ i→∗

R� tt. Since the reduction rδ i→!
R q is shorter than the original

reduction u i→!
R q, the induction hypothesis implies rδ 	 q. Thus,

u = f(u1, . . . , un) � f(q1, . . . , qn) = f(�1, . . . , �n)δ � rδ 	 q. ��

With Lemma 10, the condition (17) needed to remove a DP from a DP problem
can again be reformulated. To remove s → t from P , now it suffices if

for every normal substitution σ where tσ is a well-typed ground term,
we have t�σ i→∗

R� tt. (18)

So in our example, to remove the DP (11) using the reduction pair (�Pol1 ,
	Pol1), we require “t�Pol1σ i→∗

R′
�Pol1

sort

tt”, where t is the right-hand side of (11),

i.e., t = SORT(del(max(co(x, xs)), co(x, xs))). Since mon�Pol1
(SORT) = {1},

mon�Pol1
(del)={2}, mon�Pol1

(co)={1, 2}, and x�Pol1 = xs�Pol1 = ff, t�Pol1 is
del�Pol1 (max(co(x, xs)), co(x, xs)) when simplifying disjunctions with ff. So to
remove (11), we require the following for all normal substitutions σ where tσ is
well typed and ground.12

del�Pol1 (max(co(x, xs)), co(x, xs))σ i→∗
R′

�Pol1
sort

tt (19)

12 Note that the restriction to well-typed ground terms is crucial. Indeed, (19) does not
hold for non-ground or non-well-typed substitutions like σ(x) = σ(xs) = true.
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Note that the rules for del�Pol1 (given before Lemma 10) compute the mem-
ber -function. In other words, del�Pol1 (x, xs) holds iff x occurs in the list xs .
Thus, (19) is equivalent to the main termination argument (1) of Ex. 1, i.e., to
the observation that every non-empty list contains its maximum. Thus, now we
can detect and express termination arguments like (1) within the DP framework.

Our goal is to use inductive theorem provers to verify arguments like (1) or,
equivalently, to verify conditions like (18). Indeed, (18) corresponds to the ques-
tion whether a suitable conjecture is inductively valid [4,5,7,8,20,21,33,34,36].

Definition 11 (Inductive Validity). Let R be a TRS and let s, t be terms over
F and V. We say that t = s is inductively valid in R (denoted R |=ind t = s)
iff there exist typed variants F ′ and V ′ such that R, t, s are well typed where t
and s have the same type, and such that tσ i↔∗

R sσ holds for all substitutions σ
over F ′ where tσ and sσ are well-typed ground terms. To make the specific typed
variants explicit, we also write “R |=F ′,V′

ind t = s”.

Of course, in general R |=ind t = s is undecidable, but it can often be proved
automatically by inductive theorem provers. By reformulating Condition (18),
we now obtain that in a DP problem (P ,R), s → t can be removed from P if

R� |=ind t� = tt. (20)

Of course, in addition all DPs P and all rules R have to be weakly decreasing.
Now we formulate a new DP processor based on Condition (20). Recall that

to derive (20) we required a non-overlappingness condition and innermost ter-
mination of R. (These requirements ensure that it suffices to regard only ground
instantiations when proving that reductions of tσ to normal form are strictly
decreasing, cf. Ex. 8. Moreover, non-overlappingness is needed for Lemma 10 to
make sure that t�σ i→∗

R� tt really guarantees that all reductions of tσ to normal
form are strictly decreasing. Non-overlappingness also ensures that t�σ i→∗

R� tt
in Condition (18) is equivalent to t�σ i↔∗

R� tt in Condition (20).)
To ensure innermost termination of R, the following processor transforms

(P ,R) not only into the new DP problem (P \{s → t},R), but it also generates
the problem (DP (R),R). Absence of infinite innermost (DP (R),R)-chains is
equivalent to innermost termination of R. Note that in practice R only contains
the usable rules of P (since one should have applied the usable rule processor of
Thm. 3 before). Then the DP problem (DP (R),R) means that the TRS consist-
ing just of the usable rules must be innermost terminating. An application of the
dependency graph processor of Thm. 4 will therefore transform (DP (R),R) into
DP problems that have already been generated before. So (except for algorithms
with nested or mutual recursion), the DP problem (DP (R),R) obtained by the
following processor does not lead to new proof obligations.

In Thm. 12, we restrict ourselves to DP problems (P ,R) with the tuple prop-
erty. This means that for all s → t ∈ P , root(s) and root(t) are tuple symbols
and tuple symbols neither occur anywhere else in s or t nor in R. This is al-
ways satisfied for the initial DP problem and it is maintained by almost all DP
processors in the literature (including all processors of this paper).
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Theorem 12 (Induction Processor). Let (�,	) be a reduction pair, let
(P ,R) have the tuple property, let R be non-overlapping and let there be no
critical pairs between R and P.13 Let F ′, V ′ be typed variants of P ∪ R’s sig-
nature such that P ∪ R is well typed. Then the following DP processor Proc is
sound.

Proc( (P ,R) ) =

⎧⎪⎨
⎪⎩
{ (P \ {s → t}, R), (DP(R), R) }, if R	 |=F′,V′

ind t	 = tt

and P∪R ⊆ �

{ (P ,R) }, otherwise

Proof. Suppose there is an infinite innermost (P ,R)-chain, i.e., P ∪ R is not
innermost terminating. By persistence of innermost termination (Thm. 7), there
is a well-typed term that is not innermost terminating w.r.t. P ∪R. Let q be a
minimal such term (i.e., q’s proper subterms are innermost terminating). Due to
the tuple property, w.l.o.g. q either contains no tuple symbol or q contains a tuple
symbol only at the root. In the first case, only R-rules can reduce q. Thus, R is
not innermost terminating and there is an infinite innermost (DP(R), R)-chain.

Now let R be innermost terminating. So root(q) is a tuple symbol and q con-
tains no further tuple symbol. Hence, in q’s infinite innermost P ∪R-reduction,
R-rules are only applied below the root and P-rules are only applied on the
root position. Moreover, there are infinitely many P-steps. Hence, this infinite
reduction corresponds to an infinite innermost (P ,R)-chain s1 → t1, s2 → t2, . . .
where tiσ

i→!
R si+1σ for all i and all occurring terms are well typed.

Next we show that due to innermost termination of R, there is even an in-
finite innermost (P ,R)-chain on well-typed ground terms. Let δ instantiate all
variables in s1σ by ground terms of the corresponding sort. (Recall that in any
typed variant there are such ground terms.) We define the normal substitution
σ′ such that σ′(x) is the R-normal form of xσδ for all variables x. This nor-
mal form must exist since R is innermost terminating and it is unique since
R is non-overlapping. Clearly, tiσ

i→∗
R si+1σ implies tiσδ →∗

R si+1σδ, i.e.,
tiσ

′ →∗
R si+1σ

′. As left-hand sides si of DPs do not overlap with rules of R,
all siσ

′ are in normal form. Due to non-overlappingness of R, si+1σ
′ is the only

normal form of tiσ
′ and thus, it can also be reached by innermost steps, i.e.,

tiσ
′ i→!

R si+1σ
′. Hence, there is an infinite innermost (P ,R)-chain on well-typed

ground terms.
If this chain does not contain infinitely many variable-renamed copies of the

DP s → t, then its tail is an infinite innermost (P\{s → t}, R)-chain. Otherwise,
si1 → ti1 , si2 → ti2 , . . . are variable-renamed copies of s → t and thus, ti1σ′, ti2σ′,
. . . are well-typed ground instantiations of t. As R� |=ind t� = tt, we have
(tijσ

′)� = t�ij
σ′ i→∗

R� tt for all j. Since tijσ
′ i→!

R sij+1σ
′, Lemma 10 implies

tijσ
′ 	 sij+1σ

′ for all (infinitely many) j. Moreover, siσ
′ � tiσ

′ and tiσ
′ � si+1σ

′

for all i, since P ∪R ⊆ �. This contradicts the well-foundedness of 	. ��

13 More precisely, for all v → w in P , non-variable subterms of v may not unify with
left-hand sides of rules from R (after variable renaming).
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In our example, we ended up with the DP problem ({(11)},R′sort). To remove
the DP (11) from the DP problem, we use an inductive theorem prover to prove

R′�Pol1
sort |=ind del�Pol1 (max(co(x, xs)), co(x, xs)) = tt, (21)

i.e., that every non-empty list contains its maximum. The tuple property and the
non-overlappingness requirements in Thm. 12 are clearly fulfilled. Moreover, all
rules decrease w.r.t. �Pol1 . Hence, the induction processor results in the trivial
problem (∅,R′sort) and the problem (DP(R′sort),R′sort) = ({(2), ..., (10)},R′sort).
The dependency graph processor transforms the latter problem into the problems
(Pi,R′sort) with 1 ≤ i ≤ 4 that had already been solved before, cf. Sect. 2. For
example, the induction prover in AProVE proves (21) automatically and thus, it
can easily perform the above proof and verify termination of the TRS Rsort.

5 Experiments and Conclusion

We introduced a new processor in the DP framework which can handle TRSs
that terminate because of inductive properties of their algorithms. This pro-
cessor automatically tries to extract these properties and transforms them into
conjectures which are passed to an inductive theorem prover for verification. To
obtain a powerful method, we showed that it suffices to prove these conjectures
only for well-typed terms, even though the original TRSs under examination are
untyped.

We implemented the new processor of Thm. 12 in our termination tool AProVE
[13] and coupled it with the small inductive theorem prover that was already
available in AProVE. To automate Thm. 12, AProVE selects a DP s → t and
searches for a reduction pair (�,	) which orients at least one rule of U(t) strictly
(on a strongly monotonic position). Then AProVE tests if t� = tt is inductively
valid. So in contrast to previous approaches that use inductive theorem provers
for termination analysis (cf. Sect. 1), our automation can search for arbitrary
reduction pairs instead of being restricted to a fixed small set of orders. The
search for the reduction pair is guided by the fact that there has to be a strictly
decreasing usable rule on a strongly monotonic position.

To demonstrate the power of our method, [1] features a collection of 19 typi-
cal TRSs where an inductive argument is needed for the termination proof. This
collection contains several TRSs computing classical arithmetical algorithms as
well as many TRSs with standard algorithms for list manipulation like sorting,
reversing, etc. The previous version of AProVE was the most powerful tool for
termination of term rewriting at the International Competition of Termination
Provers. Nevertheless, this previous AProVE version as well as all other tools in
the competition failed on all of these examples. In contrast, with a time limit
of 60 seconds per example, our new version of AProVE automatically proves
termination of 16 of them. At the same time, the new version of AProVE is as
successful as the previous one on the remaining examples of the Termination
Problem Data Base, which is the collection of examples used in the termina-
tion competition. Thus, the present paper is a substantial advance in automated
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termination proving, since it allows the first combination of powerful TRS ter-
mination tools with inductive theorem provers. For details on our experiments
and to access our implementation via a web-interface, we refer to [1].

Acknowledgements. We are very grateful to Aart Middeldorp and Hans Zan-
tema for suggesting the proof idea of Thm. 7 and for pointing us to [30].
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Abstract. The dependency pair framework is a powerful technique for
proving termination of rewrite systems. One of the most frequently used
methods within this framework is the dependency graph processor. In
this paper we improve this processor by incorporating right-hand sides
of forward closures. In combination with tree automata completion we
obtain an efficient processor which can be used instead of the dependency
graph approximations that are in common use in termination provers.

1 Introduction

Proving termination of term rewrite systems is a very active research area. Sev-
eral tools exist that perform this task automatically. The most powerful ones
are based on the dependency pair framework. This framework combines a great
variety of termination techniques in a modular way by means of dependency pair
processors. In this paper we are concerned with the dependency graph proces-
sor. It is one of the most important processors as it enables the decomposition
of termination problems into smaller subproblems. The processor requires the
computation of an over-approximation of the dependency graph. In the literature
several such approximations are proposed. Arts and Giesl [1] gave an effective
algorithm based on abstraction and unification. Kusakari and Toyama [20,21]
employed Huet and Lévy’s notion of ω-reduction to approximate dependency
graphs for AC-termination. Middeldorp [22] advocated the use of tree automata
techniques and in [23] improved the approximation of [1] by taking symmetry
into account. Giesl, Thiemann, and Schneider-Kamp [12] tightly coupled ab-
straction and unification, resulting in an improvement of [1] which is especially
suited for applicative systems.

In this paper we return to tree automata techniques. We show that tree au-
tomata completion is much more effective for approximating dependency graphs
than the method based on approximating the underlying rewrite system to en-
sure regularity preservation proposed in [22]. The dependency graph determines
whether dependency pairs can follow each other. It does not determine whether
dependency pairs follow each other infinitely often. We further show that by in-
corporating right-hand sides of forward closures [4,9], a technique that recently
became popular in connection with the match-bound technique [8,18], we can
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eliminate arcs from the (real) dependency graph. Experimental results confirm
the competitiveness of the resulting improved dependency graph processor.

The remainder of the paper is organized as follows. In Section 2 we recall some
basic facts about dependency graphs and processors. In Section 3 we employ tree
automata completion to approximate dependency graphs. Incorporating right-
hand sides of forward closures is the topic of Section 4. In Section 5 we compare
our approach with existing approximations of dependency graphs. Dependency
graphs for innermost termination are briefly addressed in Section 6. In Section 7
we report on the extensive experiments that we conducted.

2 Preliminaries

Familiarity with term rewriting [2] and tree automata [3] is assumed. Knowledge
of the dependency pair framework [11,25] and the match-bound technique [8,18]
will be helpful. Below we recall important definitions concerning the former
needed in the remainder of the paper. Throughout this paper we assume that
term rewrite systems are finite.

Let R be a term rewrite system (TRS for short) over a signature F . If l → r ∈
R and t is a subterm of r with a defined root symbol that is not a proper subterm
of l then l� → t� is a dependency pair of R. Here l� and t� denote the terms that
are obtained by marking the root symbols of l and t. In examples we use capital
letters to represent marked function symbols. The set of dependency pairs of R
is denoted by DP(R). A DP problem is a triple (P ,R,G) where P and R are
two TRSs and G ⊆ P ×P is a directed graph. A DP problem (P ,R,G) is called
finite if there are no infinite rewrite sequences of the form s1

ε−→α1 t1 →∗
R s2

ε−→α2

t2 →∗
R · · · such that all terms t1, t2, . . . are terminating with respect to R and

(αi, αi+1) ∈ G for all i � 1. Such an infinite sequence is said to be minimal.
The main result underlying the dependency pair approach states that a TRS
R is terminating if and only if the DP problem (DP(R),R,DP(R) × DP(R)) is
finite. The latter is shown by applying functions that take a DP problem as input
and return a set of DP problems as output, the so-called DP processors. These
processors must have the property that a DP problem is finite whenever all DP
problems returned by the processor are finite, which is known as soundness. To
use DP processors for establishing non-termination, they must additionally be
complete which means that if one of the DP problems returned by the processor
is not finite then the original DP problem is not finite.

Numerous DP processors have been developed. In this paper we are concerned
with the dependency graph processor. This is one of the most important pro-
cessors as it enables to decompose a DP problem into smaller subproblems. The
dependency graph processor determines which dependency pairs can follow each
other in infinite rewrite sequences. Following [25], we find it convenient to split
the processor into one which computes the graph and one which computes the
strongly connected components (SCCs). This separates the part that needs to be
approximated from the computable part and is important to properly describe
the experiments in Section 7 where we combine several graph approximations
before computing SCCs.
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Definition 1. The dependency graph processor maps a DP problem (P ,R,G)
to {(P ,R,G ∩ DG(P ,R))}. Here DG(P ,R) is the dependency graph of P and
R, which has the rules in P as nodes and there is an arc from s → t to u → v
if and only if there exist substitutions σ and τ such that tσ →∗

R uτ .

Example 2. Consider the DP problem (P ,R,G) with R consisting of the rewrite
rules f(g(x), y) → g(h(x, y)) and h(g(x), y) → f(g(a), h(x, y)), P = DP(R) con-
sisting of

1: F(g(x), y) → H(x, y) 2 : H(g(x), y) → F(g(a), h(x, y))
3 : H(g(x), y) → H(x, y)

and G = P ×P . Because H(g(x), y) is an instance of H(x, y) and F(g(a), h(x, y))
is an instance of F(g(x), y), DG(P ,R) has five arcs:

1 2 3

The dependency graph processor returns the new DP problem (P ,R,DG(P ,R)).

Definition 3. The SCC processor transforms a DP problem (P ,R,G) into
{(P1,R,G1), . . . , (Pn,R,Gn)}. Here P1, . . . ,Pn are the strongly connected
components of G and Gi = G ∩ (Pi × Pi) for every 1 	 i 	 n.

The following result is well-known [1,11,14,25].

Theorem 4. The dependency graph and SCC processors are sound and
complete. ��

We continue the previous example.

Example 5. The SCC processor does not make progress on the DP problem
(P ,R,DG(P ,R)) since the three nodes form a single SCC in the graph.

3 Tree Automata Completion

We start by recalling some basic facts and notation. A tree automaton A =
(F , Q,Qf , Δ) consists of a signature F , a finite set of states Q, a set of final states
Qf ⊆ Q, and a set of transitions Δ of the form f(q1, . . . , qn) → q with f an n-ary
function symbol in F and q, q1, . . . , qn ∈ Q. The language L(A) of A is the set of
ground terms t ∈ T (F) such that t →∗

Δ q for some q ∈ Qf . Let R be a TRS over
F . The set {t ∈ T (F) | s →∗

R t for some s ∈ L} of descendants of a set L ⊆ T (F)
of ground terms is denoted by →∗

R(L). We say that A is compatible with R and
L if L ⊆ L(A) and for each rewrite rule l → r ∈ R and state substitution
σ : Var(l) → Q such that lσ →∗

Δ q it holds that rσ →∗
Δ q. For left-linear R

it is known that →∗
R(L) ⊆ L(A) whenever A is compatible with R and L [6].

To obtain a similar result for non-left-linear TRSs, in [16] quasi-deterministic
automata were introduced. Let A = (F , Q,Qf , Δ) be a tree automaton. We say
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that a state p subsumes a state q if p is final when q is final and for all transitions
f(u1, . . . , q, . . . , un) → u ∈ Δ, the transition f(u1, . . . , p, . . . , un) → u belongs
to Δ. For a left-hand side l ∈ lhs(Δ) of a transition, the set {q | l → q ∈ Δ}
of possible right-hand sides is denoted by Q(l). The automaton A is said to be
quasi-deterministic if for every l ∈ lhs(Δ) there exists a state p ∈ Q(l) which
subsumes every other state in Q(l). In general, Q(l) may contain more than
one state that satisfies the above property. In the following we assume that
there is a unique designated state in Q(l), which we denote by pl. The set of all
designated states is denoted by Qd and the restriction of Δ to transition rules
l → q that satisfy q = pl is denoted by Δd. In [16] we showed that the tree
automaton induced by Δd is deterministic and accepts the same language as A.
For non-left-linear TRSs R we modify the above definition of compatibility by
demanding that the tree automatonA is quasi-deterministic and for each rewrite
rule l → r ∈ R and state substitution σ : Var(l) → Qd with lσ →∗

Δd
q it holds

that rσ →∗
Δ q.

Theorem 6 ([6,16]). Let R be a TRS, A a tree automaton, and L a set of
ground terms. If A is compatible with R and L then →∗

R(L) ⊆ L(A). ��

For two TRSs P and R the dependency graph DG(P ,R) contains an arc from
dependency pair α to dependency pair β if and only if there exist substitutions σ
and τ such that rhs(α)σ →∗

R lhs(β)τ . Without loss of generality we may assume
that rhs(α)σ and lhs(β)τ are ground terms. Hence there is no arc from α to β
if and only if Σ(lhs(β)) ∩→∗

R(Σ(rhs(α))) = ∅. Here Σ(t) denotes the set of
ground instances of t with respect to the signature consisting of a fresh constant
# together with all function symbols that appear in P∪Rminus the root symbols
of the left- and right-hand sides of P that do neither occur on positions below the
root in P nor inR.1 For an arbitrary term t and regular language L it is decidable
whether Σ(t)∩L = ∅—a result of Tison (see [22])—and hence we can check the
above condition by constructing a tree automaton that accepts →∗

R(Σ(rhs(α))).
Since this set is in general not regular, we compute an over-approximation with
the help of tree automata completion starting from an automaton that accepts
Σ(ren(rhs(α))). Here ren is the function that linearizes its argument by replacing
all occurrences of variables with fresh variables, which is needed to ensure the
regularity of Σ(ren(rhs(α))).

Definition 7. Let P and R be two TRSs, L a language, and α, β ∈ P. We say
that β is unreachable from α with respect to L if there is a tree automaton A
compatible with R and L ∩Σ(ren(rhs(α))) such that Σ(lhs(β)) ∩ L(A) = ∅.

The language L in the above definition allows us to refine the set of starting
terms Σ(ren(rhs(α))) which are considered in the computation of an arc from α
to β. In Section 4 we make use of L to remove arcs from the (real) dependency
graph. In the remainder of this section we always have L = Σ(ren(rhs(α))).

1 The fresh constant # is added to the signature to ensure that Σ(t) cannot be empty.
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Definition 8. The nodes of the c-dependency graph DGc(P ,R) are the rewrite
rules of P and there is no arc from α to β if and only if β is unreachable from
α with respect to Σ(ren(rhs(α))).

The c in the above definition refers to the fact that a compatible tree automaton
is constructed by tree automata completion.

Lemma 9. Let P and R be two TRSs. Then DGc(P ,R) ⊇ DG(P ,R).

Proof. Easy consequence of Theorem 6. ��

The general idea of tree automata completion [6,7,16] is to look for violations of
the compatibility requirement: lσ →∗

Δ q (lσ →∗
Δd

q) but not rσ →∗
Δ q for some

rewrite rule l → r ∈ R, state substitution σ : Var(l) → Q (σ : Var(l) → Qd), and
state q. This triggers the addition of new states and transitions to the current
automaton to ensure rσ →∗

Δ q. There are several ways to do this, ranging from
establishing a completely new path rσ →∗

Δ q to adding as few as possible new
transitions by reusing transitions from the current automaton. After rσ →∗

Δ q
has been established, we look for further compatibility violations. This process
is repeated until a compatible tree automaton is obtained, which may never
happen if new states are kept being added.

Example 10. We continue with our example. A tree automaton A, with final
state 2, that accepts Σ(H(x, y)) is easily constructed:

a → 1 f(1, 1) → 1 g(1) → 1 h(1, 1) → 1 H(1, 1) → 2

Because →∗
R(Σ(H(x, y))) = Σ(H(x, y)), the automaton is already compatible

with R and Σ(H(x, y)), so completion is trivial here. As H(g(a), a) is accepted
by A, DGc(P ,R) contains arcs from 1 and 3 to 2 and 3. Similarly, we can
construct a tree automaton B with final state 2 that is compatible with R and
Σ(F(g(a), h(x, y))):

a → 1 f(1, 1) → 1 F(3, 4) → 2 g(1) → 4 h(1, 1) → 1
a → 2 f(1, 1) → 4 g(1) → 1 g(2) → 3 h(1, 1) → 4

Because F(g(a), h(a, a)) is accepted by B, we obtain an arc from 2 to 1. Further
arcs do not exist.

It can be argued that the use of tree automata techniques for the DP problem
of Example 2 is a waste of resources because the dependency graph can also be
computed by just taking the root symbols of the dependency pairs into consid-
eration. However, in the next section we show that this radically changes when
taking right-hand sides of forward closures into account.

4 Incorporating Forward Closures

Given a DP problem (P ,R,G) and α, β ∈ P , an arc from α to β in the de-
pendency graph DG(P ,R) is an indication that β may follow α in an infinite
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sequence in P ∪R but not a sufficient condition because if the problem is finite
there are no infinite sequences whatsoever. What we would like to determine is
whether β can follow α infinitely many times in a minimal sequence. With the
existing approximations of the dependency graph, only local connections can be
tested. In this section we show that by using right-hand sides of forward closures,
we can sometimes delete arcs from the dependency graph which cannot occur
infinitely many times in minimal sequences.

When proving the termination of a TRS R that is non-overlapping or right-
linear it is sufficient to restrict attention to the set of right-hand sides of forward
closures [4,9]. This set is defined as the closure of the right-hand sides of the
rules in R under narrowing. Formally, given a set L of terms, RFC(L,R) is the
least extension of L such that t[r]pσ ∈ RFC(L,R) whenever t ∈ RFC(L,R) and
there exist a non-variable position p and a fresh variant l → r of a rewrite rule in
R with σ a most general unifier of t|p and l. In the sequel we write RFC(t,R) for
RFC({t},R). Furthermore, we restrict our attention to right-linear TRSs because
we cannot cope with non-right-linear TRSs during the construction of the set of
right-hand sides of forward closures [8].

Dershowitz [4] showed that a right-linear TRS R is terminating if and only
if R is terminating on RFC(rhs(R),R). In [17,18] we showed how to extend this
result to the dependency pairs setting.

Lemma 11. Let P and R be two right-linear TRSs and let α ∈ P. Then P ∪R
admits a minimal rewrite sequence with infinitely many α steps if and only if it
admits such a sequence starting from a term in RFC(rhs(α),P ∪R). ��

A careful inspection of the complicated proof of Lemma 11 given in [18] reveals
that the statement can be adapted to our needs. We say that dependency pair β
directly follows dependency pair α in a minimal sequence s1

ε−→α1 t1 →∗
R s2

ε−→α2

t2 →∗
R · · · if αi = α and αi+1 = β for some i � 1.

Lemma 12. Let P and R be two right-linear TRSs and let α, β ∈ P. The TRS
P∪R admits a minimal rewrite sequence in which infinitely many β steps directly
follow α steps if and only if it admits such a sequence starting from a term in
RFC(rhs(α),P ∪R). ��

Definition 13. Let P and R be two TRSs. The improved dependency graph of
P and R, denoted by IDG(P ,R), has the rules in P as nodes and there is an arc
from s → t to u → v if and only if there exist substitutions σ and τ such that
tσ →∗

R uτ and tσ ∈ Σ#(RFC(t,P ∪R)). Here Σ# is the operation that replaces
all variables by the fresh constant #.

Note that the use of Σ# in the above definition is essential. If we would re-
place Σ# by Σ then Σ(RFC(t,P ∪ R)) ⊇ Σ(t) because t ∈ RFC(t,P ∪ R) and
hence IDG(P ,R) = DG(P ,R). According to the following lemma the improved
dependency graph can be used whenever the participating TRSs are right-linear.
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Lemma 14. Let P and R be right-linear TRSs and α, β ∈ P. If there is a
minimal sequence in P ∪ R in which infinitely many β steps directly follow α
steps, then IDG(P ,R) admits an arc from α to β.

Proof. Assume that there is a minimal rewrite sequence

s1
ε−→P t1 →∗

R s2
ε−→P t2 →∗

R s3
ε−→P · · ·

in which infinitely many β steps directly follow α steps. According to Lemma 12
we may assume without loss of generality that s1 ∈ RFC(rhs(α),P ∪ R). Let
i � 1 such that si

ε−→α ti →∗
R si+1

ε−→β ti+1. Because RFC(rhs(α),P ∪R) is closed
under rewriting with respect to P and R we know that ti ∈ RFC(rhs(α),P ∪R).
We have ti = rhs(α)σ and si+1 = lhs(β)τ for some substitutions σ and τ . From
ti ∈ RFC(rhs(α),P ∪ R) we infer that tiθ ∈ Σ#(RFC(rhs(α),P ∪ R)) for the
substitution θ that replaces every variable by #. Due to the fact that rewriting
is closed under substitutions we have tiθ →∗

R si+1θ. Hence IDG(P ,R) contains
an arc from α to β. ��

The following example shows that it is essential to include P in the construction
of the set Σ#(RFC(t,P ∪R)) in the definition of IDG(P ,R).

Example 15. Consider the TRS R consisting of the rewrite rules f(x) → g(x),
g(a) → h(b), and h(x) → f(a) and the TRS P = DP(R) consisting of

F(x) → G(x) G(a) → H(b) H(x) → F(a)

The DP problem (P ,R,P × P) is not finite because it admits the loop

F(a) ε−→P G(a) ε−→P H(b) ε−→P F(a)

Let t = G(x). We have RFC(t,R) = {t} and hence Σ#(RFC(t,R)) = {G(#)}.
If we now replace Σ#(RFC(t,P ∪ R)) by Σ#(RFC(t,R)) in Definition 13, we
would conclude that IDG(P ,R) does not contain an arc from F(x) → G(x) to
G(a) → H(b) because G(#) is a normal form which is different from G(a). But
this makes the resulting DP problem (P ,R, IDG(P ,R)) finite.

Theorem 16. The improved dependency graph processor

(P ,R,G) �→
{
{(P ,R,G ∩ IDG(P ,R))} if P ∪R is right-linear
{(P ,R,G ∩ DG(P ,R))} otherwise

is sound and complete.

Proof. Soundness is an easy consequence of Lemma 14 and Theorem 4. Com-
pleteness follows from the inclusions G ∩ DG(P ,R) ⊆ G ⊇ G ∩ IDG(P ,R). ��

Example 17. We consider again the DP problem (P ,R,G) of Example 2. Let s =
H(x, y) and t = F(g(a), h(x, y)). We first compute RFC(s,P ∪R) and RFC(t,P ∪
R). The former set consists of H(x, y) together will all terms in RFC(t,P ∪ R).
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Each term contained in the latter set is an instance of F(g(a), x) or H(a, x). It
follows that each term in Σ#(RFC(s,P ∪R)) is a ground instance of F(g(a), x)
or H(a, x) or equal to H(#,#). Similarly, each term in Σ#(RFC(t,P ∪ R)) is a
ground instance of F(g(a), x) or H(a, x). Hence IDG(P ,R) contains an arc from
2 to 1. Further arcs do not exist because there are no substitution τ and term
u ∈ Σ#(RFC(s,P ∪ R)) such that u →∗

R H(g(x), y)τ . So IDG(P ,R) looks as
follows:

1 2 3

Therefore the improved dependency graph processor produces the new DP prob-
lem (P ,R, IDG(P ,R)). Since the above graph does not admit any SCCs, the SCC
processor yields the finite DP problem (P ,R,∅). Consequently,R is terminating.

Similar to DG(P ,R), IDG(P ,R) is not computable in general. We over-
approximate IDG(P ,R) by using tree automata completion as described in
Section 3.

Definition 18. Let P and R be two TRSs. The nodes of the c-improved depen-
dency graph IDGc(P ,R) are the rewrite rules of P and there is no arc from α to
β if and only if β is unreachable from α with respect to Σ#(RFC(rhs(α),P ∪R)).

Lemma 19. Let P and R be two TRSs. Then IDGc(P ,R) ⊇ IDG(P ,R).

Proof. Assume to the contrary that the claim does not hold. Then there are
rules s → t and u → v in P such that there is an arc from s → t to u → v
in IDG(P ,R) but not in IDGc(P ,R). By Definition 13 there are substitutions
σ and τ such that tσ ∈ L with L = Σ#(RFC(t,P ∪ R)) and tσ →∗

R uτ . Since
IDGc(P ,R) does not admit an arc from s → t to u → v, there is a tree automaton
A compatible with R and L∩Σ(ren(t)) such that Σ(u)∩L(A) = ∅. Theorem 6
yields →∗

R(L ∩ Σ(ren(t))) ⊆ L(A). From tσ ∈ L ∩ Σ(ren(t)) and tσ →∗
R uτ we

infer that uτ ∈ L(A), contradicting Σ(u) ∩ L(A) = ∅. ��

To compute IDGc(P ,R) we have to construct an intermediate tree automaton
that accepts RFC(rhs(α),P ∪ R). This can be done by using tree automata
completion as described in in [8,16]. We continue our leading example.

Example 20. We construct IDGc(P ,R) for the DP problem (P ,R,G) of Exam-
ple 17. Let s = H(x, y). A tree automaton A that is compatible with R and
Σ#(RFC(s,P ∪R)) ∩Σ(s) consists of the transitions

# → 1 g(3) → 4 f(4, 5) → 5 h(1, 1) → 5 H(1, 1) → 2
a → 3 g(6) → 5 h(3, 5) → 6 H(3, 5) → 2

with final state 2. Since A does not accept any ground instance of the term
H(g(x), y) we conclude that the rules 2 and 3 are unreachable from 1 and 3.
It remains to check whether there is any outgoing arc from rule 2. Let t =
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F(g(a), h(x, y)) be the right-hand side of 2. Similar as before we can construct a
tree automaton B with final state 5 and consisting of the transitions

# → 1 g(2) → 3 f(3, 4) → 4 h(1, 1) → 4
a → 2 g(6) → 4 F(3, 4) → 5 h(2, 4) → 6

which is compatible with R and Σ#(RFC(t,P ∪ R)) ∩ Σ(t). Since the instance
F(g(a), h(#,#)) of F(g(x), y) is accepted by B, IDGc(P ,R) contains an arc from
2 to 1. Further arcs do not exist. Hence IDGc(P ,R) coincides with IDG(P ,R).

5 Comparison

In the literature several over-approximations of the dependency graph are de-
scribed [1,12,21,22,23]. In this section we compare the tree automata approach
to approximate the processors of Definition 1 and Theorem 16 developed in
the preceding sections with the earlier tree automata approach of [22] as well
as the approximation used in tools like AProVE [10] and TTT2 [19], which is a
combination of ideas of [12] and [23]. We start by formally defining the latter.

Definition 21. Let P and R be two TRSs. The nodes of the estimated de-
pendency graph DGe(P ,R) are the rewrite rules of P and there is an arc from
s → t to u → v if and only if tcap(R, t) and u as well as t and tcap(R−1, u)
are unifiable. Here R−1 = {r → l | l → r ∈ R} and the function tcap(R, t)
is defined as f(tcap(R, t1), . . . , tcap(R, tn)) if t = f(t1, . . . , tn) and the term
f(tcap(R, t1), . . . , tcap(R, tn)) does not unify with any left-hand side of R. Oth-
erwise tcap(R, t) is a fresh variable.

The approach described in [22] to approximate dependency graphs based on tree
automata techniques relies on regularity preservation rather than completion.
Below we recall the relevant definitions. An approximation mapping is a mapping
φ from TRSs to TRSs such that →R ⊆ →∗

φ(R). We say that φ is regularity
preserving if ←∗

φ(R)(L) = {s ∈ T (F) | s →∗
φ(R) t for some t ∈ L} is regular for

all R and regular L. Here F is the signature of R.
The three approximation mappings s, nv, g are defined as follows: s(R) =

{ren(l) → x | l → r ∈ R and x is a fresh variable}, nv(R) = {ren(l) → ren(r) |
l → r ∈ R}, and g(R) is defined as any left-linear TRS that is obtained from R
by linearizing the left-hand sides and renaming the variables in the right-hand
sides that occur at a depth greater than 1 in the corresponding left-hand sides.
These mappings are known to be regularity preserving [5,24].

Definition 22. Let P and R be two TRSs and let φ be an approximation map-
ping. The nodes of the φ-approximated dependency graph DGφ(P ,R) are the
rewrite rules of P and there is an arc from s → t to u → v if and only if both
Σ(t) ∩←∗

φ(R)(Σ(ren(u))) �= ∅ and Σ(u) ∩←∗
φ(R−1)(Σ(ren(t))) �= ∅.

Lemma 23 ([12,22,23]). For TRSs P and R, DGe(P ,R) ⊇ DG(P ,R) and
DGs(P ,R) ⊇ DGnv(P ,R) ⊇ DGg(P ,R) ⊇ DG(P ,R). ��
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From Examples 2 and 20 it is obvious that neither DGe(P ,R) nor DGg(P ,R) sub-
sumes IDGc(P ,R). The converse depends very much on the approximation strat-
egy that is used; it can always happen that the completion procedure does not
terminate or that the over-approximation is too inexact. Nevertheless, there are
problems where DGe(P ,R) and DGs(P ,R) are properly contained in IDGc(P ,R).
An example is provided by the TRS consisting of the rules f(x, x) → f(a, g(x, b)),
f(a, g(x, x)) → f(a, a), and g(a, b) → b. The following example shows that neither
DGe(P ,R) nor DGg(P ,R) subsumes DGc(P ,R).

Example 24. Consider the TRSs R and P with R consisting of the rewrite rules
p(p(p(x))) → p(p(x)), f(x) → g(p(p(p(a)))), and g(p(p(s(x)))) → f(x) and P =
DP(R) consisting of

1: F(x) → G(p(p(p(a)))) 3 : F(x) → P(p(a)) 5 : G(p(p(s(x)))) → F(x)
2 : F(x) → P(p(p(a))) 4 : F(x) → P(a)

First we compute DGe(P ,R). It is clear that DGe(P ,R) contains arcs from 5
to 1, 2, 3, and 4. Furthermore, it contains an arc from 1 to 5 because the term
tcap(R,G(p(p(p(a))))) = G(y) unifies with G(p(p(s(x)))) and G(p(p(p(a)))) uni-
fies with tcap(R−1,G(p(p(s(x))))) = G(y). Further arcs do not exist and hence
DGe(P ,R) looks as follows:

51 4

2 3

Next we compute DGg(P ,R). Similarly as DGe(P ,R), DGg(P ,R) has arcs from
5 to 1, 2, 3, and 4. Furthermore DGg(P ,R) contains an arc from 1 to 5 be-
cause G(p(p(p(a)))) →g(R) G(p(p(s(a)))) ∈ Σ(G(p(p(s(x))))) by applying the
rewrite rule p(p(p(x))) → p(p(y)) and G(p(p(s(x)))) →g(R−1) G(p(p(p(a)))) ∈
{G(p(p(p(a))))} using the rule p(p(x)) → p(p(p(y))). Hence DGg(P ,R) coincides
with DGe(P ,R). The graph DGc(P ,R)

51 4

2 3

does not contain an arc from 1 to 5 because 5 is unreachable from 1. This is
certified by the following tree automaton A:

a → 1 p(1) → 2 p(2) → 3 p(2) → 4 p(3) → 4 G(4) → 5

with 5 as the only final state. Note that G(p(p(p(a)))) ∈ L(A), →∗
R(L(A)) =

L(A), and Σ(G(p(p(s(x))))) ∩ L(A) = ∅.

Concerning the converse direction, there are TRSs like f(a, b, x) → f(x, x, x)
such that DGe(P ,R) and DGnv(P ,R) are properly contained in DGc(P ,R). We
assume that this also holds for DGs(P ,R) although we did not succeed in finding
an example.
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6 Innermost Termination

In this section we sketch how the ideas presented in Sections 3 and 4 can be
extended to innermost termination. Let P and R be two TRSs and G ⊆ P × P
a directed graph. A minimal innermost rewrite sequence is an infinite rewrite
sequence of the form s1

i−→P t1
i−→∗
R s2

i−→P t2
i−→∗
R · · · such that si

ε−→ ti and
(αi, αi+1) ∈ G for all i � 1. Here i−→ denotes the innermost rewrite relation of
P∪R. A DP problem (P ,R,G) is called innermost finite if there are no minimal
innermost rewrite sequences.

Definition 25. Let P and R be two TRSs. The innermost dependency graph
of P and R, denoted by DGi(P ,R), has the rules in P as nodes and there is an
arc from s → t to u → v if and only if there exist substitutions σ and τ such
that tσ i−→∗

R uτ and sσ and uτ are normal forms with respect to R.

By incorporating right-hand sides of forward closures, arcs of the innermost
dependency graph can sometimes be eliminated. The only complication is that
innermost rewriting is not closed under substitutions. To overcome this problem,
we add a fresh unary function symbol besides the constant # to the signature
and assume that Σ#(RFC(t,P ∪ R)) denotes the set of ground terms that are
obtained from terms in RFC(t,P ∪ R) by instantiating the variables by terms
built from # and this unary function symbol.

Definition 26. Let P and R be two TRSs. The improved innermost depen-
dency graph of P and R, denoted by IDGi(P ,R), has the rules in P as nodes
and there is an arc from s → t to u → v if and only if there exist substitutions σ
and τ such that tσ i−→∗

R uτ , tσ ∈ Σ#(RFC(t,P ∪R)), and sσ and uτ are normal
forms with respect to R.

The following result corresponds to Lemma 14.

Lemma 27. Let P and R be right-linear TRSs and α, β ∈ P. If there is a
minimal innermost sequence in P ∪R in which infinitely many β steps directly
follow α steps then IDGi(P ,R) admits an arc from α to β. ��

We approximate (improved) innermost dependency graphs as discussed in Sec-
tion 3. In order to make use of the fact that sσ and uτ are normal forms with
respect to R, we restrict Σ(ren(t)) and Σ#(RFC(t,P ∪ R)) to the normalized
instances (i.e., ground instances that are obtained by substituting normal forms
for the variables) of ren(t), denoted by NF(ren(t),R). This is possible because
sσ →P tσ and σ is normalized as sσ is a normal form.

Definition 28. Let P and R be two TRSs. The nodes of the c-innermost de-
pendency graph DGi

c(P ,R) are the rewrite rules of P and there is no arc from
α to β if and only if β is unreachable from α with respect to NF(ren(rhs(α)),R).
The nodes of the c-improved innermost dependency graph IDGi

c(P ,R) are the
rewrite rules of P and there is no arc from α to β if and only if β is unreachable
from α with respect to Σ#(RFC(rhs(α),P ∪R)) ∩NF(ren(rhs(α)),R).



350 M. Korp and A. Middeldorp

Lemma 29. Let P and R be two TRSs. Then DGi
c(P ,R) ⊇ DGi(P ,R) and

IDGi
c(P ,R) ⊇ IDGi(P ,R).

Proof. Straightforward adaption of the proofs of Lemmata 9 and 19. ��

7 Experimental Results

The techniques described in the preceding sections are integrated in the termi-
nation prover TTT2. There are various ways to implement the (improved) depen-
dency graph processors, ranging from checking single arcs to computing SCCs in
between in order to reduce the number of arcs that have to be checked. The fol-
lowing procedure turned out to be the most efficient. For every term t ∈ rhs(P),
TTT2 constructs a tree automaton At that is compatible with R and �(t). Here
�(t) = Σ#(RFC(t,P∪R))∩Σ(ren(t)) if P∪R is right-linear and �(t) = Σ(ren(t))
otherwise. During that process it is checked if there is a term u ∈ lhs(P) and a
substitution σ such that uσ ∈ L(At). As soon as this condition evaluates to true,
we add an arc from s → t to u → v for all terms s and v such that s → t and
u → v are rules in P . This procedure is repeated until for all t ∈ rhs(P), either
At is compatible with R and �(t) or an arc was added from s → t to u → v for
all terms s and rules u → v ∈ P such that root(t) = root(u).

Another important point is the strategy used to solve compatibility viola-
tions. In TTT2 we establish paths as described in [16]. A disadvantage of this
strategy is that it can happen that the completion procedure does not terminate
because new states are kept being added. Hence we have to set a time limit on
the involved processors to avoid that the termination proving process does not
proceed beyond the calculation of (improved) dependency graphs. Alternatively
one could follow the approach described in [6]. However, our experiments showed
that the former approach produces better over-approximations.

Below we report on the experiments we performed with TTT2 on the 1331 TRSs
in the full termination category in version 5.0 of the Termination Problem Data
Base2 that satisfy the variable condition, i.e., Var(r) ⊆ Var(l) for each rewrite
rule l → r ∈ R. We used a workstation equipped with an Intel� Pentium� M
processor running at a CPU rate of 2 GHz and 1 GB of system memory. For all
experiments we used a 60 seconds time limit.3

For the results in Tables 1 and 2 we used the following (improved) dependency
graph processors:

t A simple and fast approximation of the dependency graph processor of The-
orem 4 using root comparisons to estimate the dependency graph; an arc is
added from α to β if the root symbols of rhs(α) and lhs(β) coincide.

2
http://www.termination-portal.org

3 Full experimental data, also covering the results on innermost termination in
Section 6, can be found at http://cl-informatik.uibk.ac.at/software/ttt2/

experiments/bdg.

http://www.termination-portal.org
http://cl-informatik.uibk.ac.at/software/ttt2/
experiments/bdg
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Table 1. Dependency graph approximations I (without poly)

without usable rules with usable rules
t e c r ∗ t e c r ∗

arcs removed 55 68 68 72 73 55 67 68 73 74
# SCCs 4416 4529 4218 3786 4161 4416 4532 4179 3680 4114
# rules 24404 22198 20519 19369 21196 24404 22233 20306 19033 21093
# successes 25 60 67 176 183 25 58 67 191 195
average time 105 190 411 365 211 133 224 491 434 242
# timeouts 2 2 60 78 2 2 2 60 81 2

Table 2. Dependency graph approximations I (with poly)

without usable rules with usable rules
t e c r ∗ t e c r ∗

# successes 454 494 493 528 548 454 491 492 529 548
average time 265 194 329 139 198 262 196 352 134 191
# timeouts 14 14 71 89 14 14 14 70 91 14

e The dependency graph processor with the estimation DGe(P ,R) described
in Section 5. This is the default dependency graph processor in TTT2 and
AProVE.

c The dependency graph processor with DGc(P ,R) of Definition 8.
r The improved dependency graph processor of Theorem 16 with IDGc(P ,R)

(DGc(P ,R)) for (non-)right-linear P ∪R.

After applying the above processors we use the SCC processor. In Table 2 this
is additionally followed by the reduction pair processor instantiated by linear
polynomial interpretations with 0/1 coefficients (poly for short) [13].

In the top half of Table 1 we list the average number of removed arcs (as
percentage of the complete graph), the number of SCCs, and the number of
rewrite rules in the computed SCCs. In the bottom half we list the number of
successful termination attempts, the average wall-clock time needed to compute
the graphs (measured in milliseconds), and the number of timeouts. In Table 2
polynomial interpretations are in effect and the average time now refers to the
time to prove termination.

The power of the new processors is apparent, although the difference with e
decreases when other DP processors are in place. An obvious disadvantage of
the new processors is the large number of timeouts. As explained earlier, this
is mostly due to the unbounded number of new states to resolve compatibility
violations during tree automata completion. Modern termination tools use a
variety of techniques to prove finiteness of DP problems. So it is in general more
important that the graph approximations used in the (improved) dependency
graph processor terminate quickly rather than that they are powerful. Since the
processors c and r seem to be quite fast when they terminate, an obvious idea is to
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Table 3. Dependency graph approximations II (without poly)

without usable rules with usable rules
c s nv g c s nv g

arcs removed 68 63 61 48 68 63 62 48
# SCCs 4218 2294 1828 96 4179 2323 1925 270
# rules 20519 6754 5046 140 20306 6631 5133 448
# successes 67 54 67 42 67 57 64 51
average time 411 3640 3463 6734 491 3114 3817 1966
# timeouts 60 263 372 1197 60 251 349 1068

Table 4. Dependency graph approximations II (with poly)

without usable rules with usable rules
c s nv g c s nv g

# successes 493 443 427 78 492 446 425 146
average time 329 2603 2143 5745 352 2396 2378 1180
# timeouts 71 264 375 1197 70 252 348 1069

equip each computation of a compatible tree automaton with a small time limit.
Another natural idea is to limit the number of allowed compatibility violations.
For instance, by reducing this number to 5 we can still prove termination of 141
TRSs with processor r while the number of timeouts is reduced from 78 to 21.
Another strategy is to combine different graph approximations. This is shown in
the columns of Tables 1 and 2 labeled ∗, which denotes the composition of t, e, c
and r with a time limit of 500 milliseconds each for the latter three. We remark
that the timeouts in the t and ∗ columns are solely due to the SCC processor.

A widely used approach to increase the power of DP processors is to consider
only those rewrite rules ofR which are usable [13,15]. When incorporating usable
rules into the processors mentioned above, we obtain the results in the second
half of Tables 1 and 2. It is interesting to observe that r (and by extension ∗)
is the only processor that benefits from usable rules. This is due to the right-
linearity condition in Definition 16, which obviates the addition of projection
rules to DP problems.

We also implemented the approximations based on tree automata and regular-
ity preservation described in Section 5. The results are summarized in Tables 3
and 4. It is apparent that these approximations are too time-consuming to be of
any use in automatic termination provers.

One advantage of more powerful (improved) dependency graph approxima-
tions is that termination proofs can get much simpler. This is implicitly illus-
trated in the experiments when polynomial interpretations are in effect; using
r produces the fastest termination proofs. This positive effect is also preserved
if more DP processors are in effect. By incorporating the new approximations
into the strategy of TTT2 used in the termination competition of 2008,4 TTT2 can

4
http://termcomp.uibk.ac.at

http://termcomp.uibk.ac.at
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additionally prove termination of the TRS TRCSR/ExProp7 Luc06 C.trs: Using
r, the number of arcs in the computed (improved) dependency graph is reduced
from 159 to 30, resulting in a decrease of the number of SCCs from 7 to 2.
This gives a speedup of about 500 milliseconds. In 2008, TTT2 could not prove
termination of this TRS because it exceeded its internal time limit of 5 seconds.

We conclude this section with the following small example.

Example 30. The TRS Endrullis/quadruple1 (R in the following) consists of
the following rewrite rule:

p(p(b(a(x)), y), p(z, u)) → p(p(b(z), a(a(b(y)))), p(u, x))

To prove termination of R using dependency pairs, we transform R into the
initial DP problem (P ,R,G) where P = DP(R) consists of the rewrite rules

1: P(p(b(a(x)), y), p(z, u)) → P(p(b(z), a(a(b(y)))), p(u, x))
2 : P(p(b(a(x)), y), p(z, u)) → P(b(z), a(a(b(y))))
3 : P(p(b(a(x)), y), p(z, u)) → P(u, x)

and G = P × P . Applying the improved dependency graph processor produces
the new DP problem (P ,R, IDGc(P ,R)) where IDGc(P ,R) looks as follows:

31 2

After deploying the SCC processor we are left with the single DP problem
({3},R, {(3, 3)}) which can easily shown to be finite by various DP processors.
Using poly, TTT2 needs about 14 milliseconds to prove termination of R. If we
use DGe(P ,R) instead of IDGc(P ,R), we do not make any progress by applying
the SCC processor and thus termination of R cannot be shown that easily. This
is reflected in the latest edition of the termination competition (2008): AProVE
combined a variety of processors to infer termination within 24.31 seconds, Jam-
box5 proved termination of R within 8.11 seconds by using linear matrix inter-
pretations up to dimension 3, and TTT2 used RFC match-bounds [18] to prove
termination within 143 milliseconds.
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niques. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI),
vol. 2083, pp. 593–610. Springer, Heidelberg (2001)

23. Middeldorp, A.: Approximations for strategies and termination. In: Proc. 2nd
WRS. ENTCS, vol. 70, pp. 1–20 (2002)

24. Nagaya, T., Toyama, Y.: Decidability for left-linear growing term rewriting sys-
tems. I&C 178(2), 499–514 (2002)

25. Thiemann, R.: The DP Framework for Proving Termination of Term Rewriting.
PhD thesis, RWTH Aachen (2007); available as technical report AIB-2007-17
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Abstract. In the symbolic analysis of security protocols, two classical
notions of knowledge, deducibility and indistinguishability, yield corre-
sponding decision problems. We propose a procedure for both problems
under arbitrary convergent equational theories. Our procedure termi-
nates on a wide range of equational theories. In particular, we obtain a
new decidability result for a theory we encountered when studying elec-
tronic voting protocols. We also provide a prototype implementation.

1 Introduction

Cryptographic protocols are small distributed programs that use cryptographic
primitives such as encryption and digital signatures to communicate securely
over a network. It is essential to gain as much confidence as possible in their
correctness. Therefore, symbolic methods have been developed to analyse such
protocols [4,18,20]. In these approaches, one of the most important aspects is to
be able to reason about the knowledge of the attacker.

Traditionally, the knowledge of the attacker is expressed in terms of deducibil-
ity (e.g. [20,10]). A message s (intuitively the secret) is said to be deducible from
a set of messages ϕ if an attacker is able to compute s from ϕ. To perform this
computation, the attacker is allowed, for example, to decrypt deducible messages
by deducible keys.

However, deducibility is not always sufficient. Consider for example the case
where a protocol participant sends over the network the encryption of one of the
constants “yes” or “no” (e.g. the value of a vote). Deducibility is not the right
notion of knowledge in this case, since both possible values (“yes” and “no”) are
indeed “known” to the attacker. In this case, a more adequate form of knowledge
is indistinguishability (e.g. [1]): is the attacker able to distinguish between two
transcripts of the protocol, one running with the value “yes” and the other one
running with the value “no”?

In symbolic approaches to cryptographic protocol analysis, the protocol mes-
sages and cryptographic primitives (e.g. encryption) are generally modeled using
a term algebra. This term algebra is interpreted modulo an equational theory.
Using equational theories provides a convenient and flexible framework for mod-
eling cryptographic primitives [15]. For instance, a simple equational theory for
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R.A. Schmidt (Ed.): CADE 2009, LNAI 5663, pp. 355–370, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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symmetric encryption can be specified by the equation dec(enc(x, y), y) = x.
This equation models the fact that decryption cancels out encryption when
the same key is used. Different equational theories can also be used to model
randomized encryption or even more complex primitives arising when study-
ing electronic voting protocols [16,5] or direct anonymous attestation [6]: blind
signatures, trapdoor commitments, zero-knowledge proofs, . . .

The two notions of knowledge that we consider do not take into account the
dynamic behavior of the protocol. Nevertheless, in order to establish that two
dynamic behaviors of a protocol are indistinguishable, an important subproblem
is to establish indistinguishability between the sequences of messages generated
by the protocol [20,2]. Indistinguishability, also called static equivalence in the
applied-pi calculus framework [2], plays an important role in the study of guess-
ing attacks (e.g. [13,7]), as well as for anonymity properties in e-voting protocols
(e.g. [16,5]). This was actually the starting point of this work. During the study
of e-voting protocols, we came across several equational theories for which we
needed to show static equivalence while no decision procedure for deduction or
static equivalence existed.

Our contributions. We provide a procedure for deduction and static equivalence
which is correct, in the sense that if it terminates it gives the right answer,
for any convergent equational theory. As deduction and static equivalence are
undecidable for this class of equational theories [1], the procedure does not always
terminate. However, we show that it does terminate for the class of subterm
convergent equational theories (already shown decidable in [1]) and several other
theories among which the theory of trapdoor commitment encountered in our
electronic voting case studies [16].

Our second contribution is an efficient prototype implementation of this
generic procedure. Our procedure relies on a simple fixed point computation
based on a few saturation rules, making it convenient to implement.

Related work. Many decision procedures have been proposed for deducibility (e.g.
[10,3,17]) under a variety of equational theories modeling encryption, digital
signatures, exclusive OR, and homomorphic operators. Several papers are also
devoted to the study of static equivalence. Most of these results introduce a
new procedure for each particular theory and even in the case of the general
decidability criterion given in [1,14], the algorithm underlying the proof has to
be adapted for each particular theory, depending on how the criterion is fulfilled.

The first generic algorithm that has been proposed handles subterm conver-
gent equational theories [1] and covers the classical theories for encryption and
signatures. This result is encompassed by the recent work of Baudet et al. [9]
in which the authors propose a generic procedure that works for any convergent
equational theory, but which may fail or not terminate. This procedure has been
implemented in the YAPA tool [8] and has been shown to terminate without
failure in several cases (e.g. subterm convergent theories and blind signatures).
However, due to its simple representation of deducible terms (represented by a
finite set of ground terms), the procedure fails on several interesting equational
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theories like the theory of trapdoor commitments. Our representation of de-
ducible terms overcomes this limitation by including terms with variables which
can be substituted by any deducible terms.

Due to a lack of space, the proofs are given in [12].

2 Formal Model

2.1 Term Algebras

As usual, messages will be modeled using a term algebra. Let F be a finite set of
function symbols coming with an arity function ar : F → N. Function symbols
of arity 0 are called constants. We consider several kind of atoms : an infinite set
of names N , an infinite set of variables X and a set of parameters P . Names are
used to represent keys, nonces and other data exchanged during a protocol run,
while variables are used as usual. Parameters act as global variables which are
used as pointers to messages exchanged during the protocol run. The essential
difference between parameters and variables is that parameters can never be
safely α-renamed.

The set of terms T (F ,A) built over F and the atoms in A is defined as

t, t1, . . . ::= term
| a atom a ∈ A
| f(t1, . . . , tk) application of symbol f ∈ F , ar(f) = k

A term t is said to be ground when t ∈ T (F ,N ). We assume the usual definitions
to manipulate terms. We write fn(t) (resp. var(t)) to represent the set of (free)
names (resp. variables) that occur in a term t and st(t) the set of its (syntactic)
subterms. This notation is extended to tuples and sets of terms in the usual way.
We denote by |t| the size of t defined as the number of symbols that occur in t
(variables do not count), and #T denotes the cardinality of the set T .

The set of positions of a term t is written pos(t) ⊆ N∗. If p is a position of t
then t|p denotes the subterm of t at the position p. The term t[u]p is obtained
from t by replacing the occurrence of t|p at position p with u. A context C is
a term with (1 or more) holes and we write C[t1, . . . tn] for the term obtained
by replacing these holes with the terms t1, . . . , tn. A context is public if it only
consists of function symbols and holes.

Substitutions are written σ = {x1 �→ t1, . . . , xn �→ tn} with dom(σ) =
{x1, . . . , xn}. The application of a substitution σ to a term t is written tσ. The
substitution σ is grounding for t if the resulting term tσ is ground. We use the
same notations for replacements of names and parameters by terms.

2.2 Equational Theories and Rewriting Systems

Equality between terms will generally be interpreted modulo an equational the-
ory. An equational theory E is defined by a set of equations M ∼ N with
M,N ∈ T (F ,X ). Equality modulo E , written =E , is defined to be the smallest
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equivalence relation on terms such that M =E N for all M ∼ N ∈ E and which
is closed under substitution of terms for variables and application of contexts.

It is often more convenient to manipulate rewriting systems than equational
theories. A rewriting systemR is a set of rewriting rules l → r where l, r ∈ T (F ,X )
and var(r) ⊆ var(l). A term t rewrites to t′ by R, denoted by t →R t′, if there
exists l → r ∈ R, a position p ∈ pos(t) and a substitution σ such that t|p = lσ
and t′ = t[rσ]p. We denote by →+

R the transitive closure of →R, →∗
R its reflexive

and transitive closure, and =R its reflexive, symmetric and transitive closure.
A rewrite system R is convergent if it is terminating, i.e. there is no infinite

chains u1 →R u2 →R . . ., and confluent, i.e. for every term u such that u →∗
R u1

and u →∗
R u2, there exists v such that u1 →∗

R v and u2 →∗
R v. A term u is in

R-normal form if there is no term u′ such that u →R u′. If u →∗
R u′ and u′ is

in R-normal form then u′ is an R-normal form of u. When this reduced form is
unique (in particular if R is convergent), we write u′ = u↓RE .

We are particularly interested in theories E that can be represented by a con-
vergent rewrite systemR, i.e. theories for which there exists a convergent rewrite
system R such that the two relations =R and =E coincide. Given an equational
theory E we define the corresponding rewriting system RE by orienting all equa-
tions in E from left to right, i.e., RE = {l → r | l ∼ r ∈ E}. We say that E is
convergent if RE is convergent.

Example 1. A classical equational theory modelling symmetric encryption is
Eenc = {dec(enc(x, y), y) ∼ x}.

As a running example we consider a slight extension of this theory modelling
malleable encryption

Emal = Eenc ∪ {mal(enc(x, y), z) ∼ enc(z, y)}.
This malleable encryption scheme allows one to arbitrarily change the plaintext
of an encryption. This theory certainly does not model a realistic encryption
scheme but it yields a simple example of a theory which illustrates well our
procedures. In particular all existing decision procedure we are aware of fail on
this example. The rewriting system REmal

is convergent.

From now on, we assume given a convergent equational theory E built over a
signature F and represented by the convergent rewriting system RE .

2.3 Deducibility and Static Equivalence

In order to describe the messages observed by an attacker, we consider the
following notion of frame that comes from the applied-pi calculus [2].

A frame ϕ is a sequence of messages u1, . . . , un meaning that the attacker
observed each of these messages in the given order. Furthermore, we distinguish
the names that the attacker knows from those that were freshly generated by
others and that are a priori unknown by the attacker. Formally, a frame is
defined as νñ.σ where ñ is its set of bound names, denoted by bn(ϕ), and a
replacement σ = {w1 �→ u1, . . . , wn �→ un}. The parameters w1, . . . , wn enable
us to refer to u1, . . . , un ∈ T (F ,N ). The domain dom(ϕ) of ϕ is {w1, . . . , wn}.
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Given terms M and N such that fn(M,N) ∩ ñ = ∅, we sometimes write
(M =E N)ϕ (resp. Mϕ) instead of Mσ =E Nσ (resp. Mσ).

Definition 1 (deducibility). Let ϕ be a frame. A ground term t is deducible
in E from ϕ, written ϕ E t, if there exists M ∈ T (F ,N ∪ dom(ϕ)), called the
recipe, such that fn(M) ∩ bn(ϕ) = ∅ and Mϕ =E t.

Deducibility does not always suffice for expressing the knowledge of an attacker.
For instance deducibility does not allow one to express indistinguishability be-
tween two sequences of messages. This is important when defining the confi-
dentiality of a vote or anonymity-like properties. This motivates the following
notion of static equivalence introduced in [2].

Definition 2 (static equivalence). Let ϕ1 and ϕ2 be two frames such that
bn(ϕ1) = bn(ϕ2). They are statically equivalent in E, written ϕ1 ≈E ϕ2, if

– dom(ϕ1) = dom(ϕ2)
– for all terms M,N ∈ T (F ,N ∪ dom(ϕ1)) such that fn(M,N) ∩ bn(ϕ1) = ∅

(M =E N)ϕ1 ⇔ (M =E N)ϕ2.

Example 2. Consider the two frames described below:
ϕ1 = νa, k.{w1 �→ enc(a, k)} and ϕ2 = νa, k.{w1 �→ enc(b, k)}.

We have that b and enc(c, k) are deducible from ϕ2 in Emal with recipes b and
mal(w1, c) respectively. We have that ϕ1 �≈Emal

ϕ2 since (w1 �=Emal
mal(w1, b))ϕ1

while (w1 =Emal
mal(w1, b))ϕ2. Note that ϕ1 ≈Eenc ϕ2 (in the theory Eenc).

3 Procedures for Deduction and Static Equivalence

In this section we describe our procedures for checking deducibility and static
equivalence on convergent equational theories. After some preliminary defini-
tions, we present the main part of our procedure, i.e. a set of saturation rules
used to reach a fixed point. Then, we show how to use this saturation procedure
to decide deducibility and static equivalence. Soundness and completeness of the
saturation procedure are stated in Theorem 1 and detailed in Section 4.

Since both problems are undecidable for arbitrary convergent equational the-
ories [1], our saturation procedure does not always terminate. In Section 5, we
exhibit (classes of) equational theories for which the saturation terminates.

3.1 Preliminary Definitions

The main objects that will be manipulated by our procedure are facts, which
are either deduction facts or equational facts.

Definition 3 (facts). A deduction fact (resp. an equational fact) is an expres-
sion denoted [U 
u | {X1 
 t1, . . . , Xn 
 tn}] (resp. [U ∼ V | {X1 
 t1, . . . , Xn 

tn}]) where Xi 
 ti (1 ≤ i ≤ n) are called the side conditions of the fact. More-
over, we assume that:
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– u, t1, . . . , tn ∈ T (F ,N ∪ X ) with var(u) ⊆ var(t1, . . . , tn);
– U, V ∈ T (F ,N ∪ X ∪ P) and X1, . . . , Xn ∈ X ;
– var(U, V,X1, . . . , Xn) ∩ var(u, t1, . . . , tn) = ∅.

We say that a fact is solved if ti ∈ X (1 ≤ i ≤ k). Otherwise, it is unsolved. A
deduction fact is well-formed if it is unsolved or if u �∈ X .

A fact makes a statement about a frame. We read [U
u | {X1
t1, . . . , Xn
tn}]
(resp. [U ∼ V | {X1
t1, . . . , Xn 
tn}]) as “u is deducible with recipe U (resp. U
is equal to V ) if ti is deducible with recipe Xi (for all 1 ≤ i ≤ n)”. For notational
convenience we sometimes omit curly braces for the set of side conditions and
write [U 
 u | X1 
 t1, . . . , Xn 
 tn]. When n = 0 we simply write [U 
 u] or
[U ∼ V ].

We say that two facts are equivalent if they are equal up to bijective renaming
of variables. In the following we implicitly suppose that all operations are carried
out modulo the equivalence classes. In particular set union will not add equiv-
alent facts and inclusion will test for equivalent facts. Also, we allow on-the-fly
renaming of variables in facts to avoid variable clashes.

We now introduce the notion of generation of a term t from a set of facts F.
Intuitively, we say that a term t is generated if it can be syntactically “deduced”
from F.

Definition 4 (generation). Let F be a finite set of well-formed deduction facts.
A term t is generated by F with recipe R, written F R t, if

1. either t = x ∈ X and R = x;
2. or there exist a solved fact [R0
t0 | X1
x1, . . . , Xn
xn] ∈ F, some terms Ri

for 1 ≤ i ≤ n and a substitution σ with dom(σ) ⊆ var(t0) such that t = t0σ,
R = R0[X1 �→ R1, . . . , Xk �→ Rk], and F Ri xiσ for every 1 ≤ i ≤ n.

A term t is generated by F, written F  t, if there exists R such that F R t.

From this definition follows a simple recursive algorithm for effectively deciding
whether F  t, providing also the recipe. Termination is ensured by the fact
that |xiσ| < |t| for every 1 ≤ i ≤ n. Note that using memoization we can obtain
an algorithm in polynomial time.

Given a finite set of equational facts E and terms M,N , we write E |= M ∼ N
if M ∼ N is a consequence, in the usual first order theory of equality, of

{Uσ ∼ V σ | [U ∼ V | X1 
 x1, . . . , Xk 
 xk] ∈ E} where σ = {Xi �→ xi}1≤i≤k.

Note that it may be the case that xi = xj for i �= j (whereas Xi �= Xj).

3.2 Saturation Procedure

We define for each fact its canonical form which is obtained by first applying rule
(1) and then rule (2) defined below. The idea is to ensure that each variable xi

occurs at most once in the side conditions and to get rid of those variables that
do not occur in t. Unsolved deduction facts are kept unchanged.
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(1)
[R 
 t | X1 
 x1, . . . , Xk 
 xk] {i, j} ⊆ {1, . . . , n} j �= i and xj = xi

[R[Xi �→ Xj ] 
 t | X1 
 x1, . . . , Xi−1 
 xi−1, Xi+1 
 xi+1, . . . , Xk 
 xk]

(2)
[R 
 t | X1 
 x1, . . . , Xk 
 xk] xi �∈ var(t)

[R 
 t | X1 
 x1, . . . , Xi−1 
 xi−1, Xi+1 
 xi+1, . . . , Xk 
 xk]

A knowledge base is a tuple (F,E) where F is a finite set of well-formed deduction
facts that are in canonical form and E a finite set of equational facts.

Definition 5 (update). Given a fact f = [R 
 t | X1 
 t1, . . . , Xn 
 tn] and a
knowledge base (F,E), the update of (F,E) by f, written (F,E)⊕ f, is defined as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(F ∪ {f′},E) if f is solved and F � t useful fact
where f′ is the canonical form of f

(F,E ∪ {[R′ ∼ R{Xi �→ ti}1≤i≤n}]) if f is solved and F  t useless fact
where F R′

t

(F ∪ {f},E) if f is not solved unsolved fact

The choice of the recipe R′ in the useless fact case is defined by the implemen-
tation. While this choice does not influence the correctness of the procedure,
it might influence its termination as we will see later. Note that, the result of
updating a knowledge base by a (possibly not well-formed and/or not canonical)
fact is again a knowledge base. Facts that are not well-formed will be captured
by the useless fact case, which adds an equational fact.

Initialisation. Given a frame ϕ = νñ.{w1 �→ t1, . . . , wn �→ tn}, our procedure
starts from an initial knowledge base associated to ϕ and defined as follows:

Init(ϕ) = (∅, ∅)⊕
1≤i≤n [wi 
 ti]⊕
n∈fn(ϕ) [n 
 n]⊕
f∈F [f(X1, . . . , Xk) 
 f(x1, . . . , xk) | X1 
 x1, . . . 
 Xk 
 xk]

Example 3. Consider the rewriting systemREmal
and ϕ2=νa, k.{w1 �→ enc(b, k)}.

The knowledge base Init(ϕ2) is made up of the following deduction facts:

[ w1 
 enc(b, k) | ∅] (f1) [ enc(Y1, Y2) 
 enc(y1, y2) | Y1 
 y1, Y2 
 y2] (f3)
[ b 
 b | ∅] (f2) [ dec(Y1, Y2) 
 dec(y1, y2) | Y1 
 y1, Y2 
 y2] (f4)

[ mal(Y1, Y2) 
 mal(y1, y2) | Y1 
 y1, Y2 
 y2] (f5)

Saturation. The main part of our procedure consists in saturating the knowledge
base Init(ϕ) by means of the transformation rules described in Figure 1. The rule
Narrowing is designed to apply a rewriting step on an existing deduction fact.
Intuitively, this rule allows us to get rid of the equational theory and nevertheless
ensure that the generation of deducible terms is complete. The rule F-Solving is
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Narrowing

f = [M 
 C[t] | X1 
 x1, . . . , Xk 
 xk] ∈ F, l → r ∈ RE
with t 
∈ X , σ = mgu(l, t) and var(f) ∩ var(l) = ∅.

(F, E) =⇒ (F, E)⊕ f0

where f0 = [M 
 (C[r])σ | X1 
 x1σ, . . . , Xk 
 xkσ].

F-Solving

f1 = [M 
 t | X0 
 t0, . . . , Xk 
 tk], f2 = [N 
 s | Y1 
 y1, . . . , Y� 
 y�] ∈ F

with t0 
∈ X , σ = mgu(s, t0) and var(f1) ∩ var(f2) = ∅.

(F, E) =⇒ (F, E)⊕ f0

where f0 = [M{X0 (→ N} 
 tσ | X1 
 t1σ, . . . , Xk 
 tkσ, Y1 
 y1σ, . . . , Y� 
 y�σ].

Unifying

f1 = [M 
 t | X1 
 x1, . . . , Xk 
 xk], f2 = [N 
 s | Y1 
 y1, . . . , Y� 
 y�] ∈ F

with σ = mgu(s, t) and var(f1) ∩ var(f2) = ∅.

(F, E) =⇒ (F, E ∪ {f0})
where f0 = [M ∼ N | {Xi 
 xiσ}1≤i≤k ∪ {Yi 
 yiσ}1≤i≤�].

E-Solving

f1 = [U ∼ V | Y 
 s, X1 
 t1, . . . , Xk 
 tk] ∈ E, f2 = [M 
 t | Y1 
 y1, . . . , Y� 
 y�} ∈ F

with s 
∈ X , σ = mgu(s, t) and var(f1) ∩ var(f2) = ∅.

(F, E) =⇒ (F, E ∪ {f0})
where f0 = [U{Y (→ M} ∼ V {Y (→ M} | {Xi 
 tiσ}1≤i≤k ∪ {Yi 
 yiσ}1≤i≤�].

Fig. 1. Saturation rules

used to instantiate an unsolved side condition of an existing deduction fact. Uni-
fying and E-Solving add equational facts which remember when different recipes
for the same term exist.

Note that this procedure may not terminate and that the fixed point may not
be unique.

We write =⇒∗ for the reflexive and transitive closure of =⇒.

Example 4. Continuing Example 3, we illustrate the saturation procedure. We
can apply the rule Narrowing on f4 and on the rewrite rule dec(enc(x, y), y) → x,
as well as on f5 and the rewrite rule mal(enc(x, y), z) → enc(z, y), thereby adding
the facts

[dec(Y1, Y2) 
 x | Y1 
 enc(x, y), Y2 
 y] (f6)
[mal(Y1, Y2) 
 enc(z, y) | Y1 
 enc(x, y), Y2 
 z] (f7)

The facts f6 and f7 are not solved and we can apply the rule F-Solving with f1,
thereby adding the facts:

[dec(w1, Y2) 
 b | Y2 
 k] (f8) [mal(w1, Y2) 
 enc(z, k) | Y2 
 z] (f9)
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Rule Unifying can be used on facts f1/f3, f3/f9 as well as f1/f9 to add equational
facts. This third case allows one to obtain f10 = [w1 ∼ mal(w1, Y2) | Y2 
 b]
which can be solved (using E-Solving with f2) to obtain f11 = [w1 ∼ mal(w1, b)].
Because of lack of space we do not detail the remaining rule applications. When
reaching a fixed point the knowledge base contains the solved facts f9 and f11 as
well as those in Init(ϕ2).

We now state the soundness and completeness of our transformation rules. The
technical lemmas used to prove this result are detailed in Section 4.

Theorem 1 (soundness and completeness). Let ϕ be a frame and (F,E) be
a saturated knowledge base such that Init(ϕ) =⇒∗ (F,E). Let t ∈ T (F ,N ) and

F+ = F ∪ {[n 
 n] | n ∈ fn(t) � bn(ϕ)}. We have that:

1. For all M ∈ T (F ,N ∪ dom(ϕ)) such that fn(M) ∩ bn(ϕ) = ∅, we have that

Mϕ =E t ⇔ ∃N, E |= M ∼ N and F+ N t↓RE

2. For all M,N ∈ T (F ,N ∪ dom(ϕ)) such that fn(M,N)∩bn(ϕ) = ∅, we have

(M =E N)ϕ ⇔ E |= M ∼ N.

3.3 Application to Deduction and Static Equivalence

Procedure for deduction. Let ϕ be a frame and t be a ground term. The procedure
for checking ϕ E t is described bellow. Its correctness is a direct consequence
of Theorem 1, Item 1.

1. Apply the saturation rules to obtain (if any) a saturated knowledge base
(F,E) such that Init(ϕ) =⇒∗ (F,E). Let F+ = F∪{[n
n] | n ∈ fn(t)�bn(ϕ)}.

2. Return yes if there exists N such that F+ N t↓RE (that is, the RE -normal
form of t is generated by F with recipe N); otherwise return no.

Example 5. We continue our running example. Let (F,E) be the knowledge base
obtained from Init(ϕ2) described in Example 4. We show that ϕ2  enc(c, k) and
ϕ2  b. Indeed we have that F ∪ {[c 
 c]} mal(w1,c) enc(c, k) using facts f9 and
[c 
 c], and F b b using fact f2.

Procedure for static equivalence. Let ϕ1 and ϕ2 be two frames. The procedure
for checking ϕ1 ≈E ϕ2 runs as follows:

1. Apply the transformation rules to obtain (if possible) two saturated knowl-
edge bases (Fi,Ei), i = 1, 2 such that Init(ϕi) =⇒∗ (Fi,Ei), i = 1, 2.

2. For {i, j}={1, 2}, for every solved fact [M ∼ N | X1 
 x1, . . . , Xk 
 xk] in Ei,
check if (M{X1 �→ x1, . . . , Xk �→ xk} =E N{X1 �→ x1, . . . , Xk �→ xk})ϕj .

3. If so return yes ; otherwise return no.
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Proof. (Sketch) If the algorithm returns no, then there exists an equation that
holds in one frame but not in the other; therefore, the two frames are not stati-
cally equivalent.

Assume that the algorithm returns yes. Let M ∼ N be an arbitrary equation
that holds in ϕ1. By Theorem 1, Item 2, we have that E1 |= M ∼ N . As all
equations in E1 also hold in ϕ2, and because E1 |= M ∼ N , it follows that
M ∼ N holds in ϕ2. We have shown that all equations that hold in ϕ1 also hold
in ϕ2. Similarly, all equations that hold in ϕ2 hold in ϕ1 and therefore the two
frames are statically equivalent. ��

Example 6. Consider again the frames ϕ1 and ϕ2 which are not statically equiv-
alent (see Example 2). Our procedure answers no since [mal(w1, b) ∼ w1] ∈ E2
whereas (mal (w1, b) �=Emal

w1)ϕ1.

4 Soundness and Completeness

In this section we give the key results to prove Theorem 1. The soundness of
our saturation procedure relies on Lemma 1 whereas its completeness is more
involved: the key propositions are stated below.

Intuitively Lemma 1 states that any ground term which can be generated is
indeed deducible. Similarly all equations which are consequences of the knowl-
edge base are true equations in the initial frame. The soundness of our saturation
procedure can be easily derived from this lemma.

Lemma 1 (soundness). Let ϕ be a frame and (F,E) be a knowledge base such
that Init(ϕ) =⇒∗ (F,E). Let t ∈ T (F ,N ), M,N ∈ T (F ,N ∪ dom(ϕ)) such that
fn(M,N) ∩ bn(ϕ) = ∅, and F+ = F∪{[n
n] | n ∈ fn(t)�bn(ϕ)}. We have that:

1. F+ M t ⇒ Mϕ =E t; and
2. E |= M ∼ N ⇒ (M =E N)ϕ.

We now give two propositions that are used to show the completeness of the satu-
ration rules. The first one states that whenever there exist two recipes to generate
a ground term from F then the equation on the two recipes is a consequence of E.

Proposition 1 (completeness, equation). Let (F,E) be a saturated knowl-
edge base, and M,N be two terms such that F M t and F N t for some ground
term t. Then, we have that E |= M ∼ N .

Next we show that whenever a ground term (not necessarily in normal form)
can be generated then its normal form can also be generated and there exists an
equation on the two recipes.

Proposition 2 (completeness, reduction). Let (F,E) be a saturated knowl-
edge base, M a term and t a ground term such that F M t and t↓RE �= t. Then
there exists M ′ and t′ such that F M ′

t′ with t →+
RE

t′ and E |= M ∼M ′.
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Relying on these propositions, we can show completeness of our saturation
procedure (i.e. ⇒ of Theorem 1).

1. To prove Item 1, we first observe that if t is deducible from ϕ modulo E then
F+ M ′

t0 for some M ′ and t0 such that E |= M ∼ M ′ and t0 →∗ t↓RE .
Actually M ′ differs from M by the fact that some public names that do not
occur in the knowledge base are replaced by fresh variables. Then, we rely
on Proposition 2 and we show the result by induction on t0 equipped with
the order < induced by the rewriting relation (t < t′ iff t →+ t′).

2. Now, to prove Item 2, we apply the result shown in item 1 on Mϕ =E t
and Nϕ =E t where t = Mϕ↓RE = Nϕ↓RE . We deduce that there exist M ′

and N ′ such that E |= M ∼M ′, F+ M ′
t, E |= N ∼ N ′, and F+ N ′

t. Then,
Proposition 1 allows one to deduce that E |= M ′ ∼ N ′, thus E |= M ∼ N .

5 Termination

As already announced the saturation process will not always terminate.

Example 7. Consider the convergent rewriting system consisting of the single
rule f(g(x)) → g(h(x)) and the frame φ = νa.{w1 �→ g(a)}. We have that

Init(ϕ) ⊇ {[w1 
 g(a)], [f(X) 
 f(x) | X 
 x]}.

By Narrowing we can add the fact f1 = [f(X) 
 g(h(x)) | X 
 g(x)]. Then we
can apply F-Solving to solve its side condition X 
 g(x) with the fact [w1 
 g(a)]
yielding the solved fact [f(w1) 
 g(h(a))]. Now, applying iteratively F-Solving
on f1 and the newly generated fact, we generate an infinity of solved facts of the
form [f(. . . f(w1) . . .) 
 g(h(. . .h(a) . . .))]. Intuitively, this happens because our
symbolic representation is unable to express that the function h can be nested
an unbounded number of times when it occurs under an application of g.

The same kind of limitation already exists in the procedure implemented in
YAPA [9]. However, our symbolic representation, that manipulates terms that
are not necessarily ground and facts with side conditions, allows us to go beyond
YAPA. We are able for instance to treat equational theories such as malleable
encryption and trapdoor commitment.

5.1 Generic Method for Proving Termination

We provide a generic method for proving termination, which we instantiate in
the following section on several examples.

In order to prove that the saturation algorithm terminates, we require that
the update function ⊕ be uniform: i.e., the same recipe R′ be used for all
useless solved deduction facts that have the same canonical form. Note that the
soundness and completeness of the algorithm does not depend on the
choice of the recipe R′ when updating the knowledge base with a useless fact
(cf. Definition 5).
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Definition 6 (projection). We define the projection of a deduction fact f =
[R
 t | X1 
 t1, . . . , Xn 
 tn] as f̂ = [t | {t1, . . . , tn}]. We extend the projection
to sets of facts F and define F̂ = {f̂ | f ∈ F}.
We identify projections which are equal up to bijective renaming of variables
and we sometimes omit braces for the side conditions.

Proposition 3 (generic termination). The saturation algorithm terminates
if ⊕ is uniform and there exist some functions Q, mf , me and some well-
founded orders <f and <e such that for all frames ϕ, and for all (F,E) such
that Init(ϕ) =⇒∗ (F,E), we have that:

1. {f̂ | f ∈ F and f is a solved deduction fact } ⊆ Q(ϕ) and Q(ϕ) is finite;
2. mf(f0) <f mf(f1) where f0, f1 are defined as in rule F-Solving;
3. me(f0) <e me(f1) where f0, f1 are defined as in rule E-Solving.

5.2 Applications

We now give several examples for which the saturation procedure indeed termi-
nates. For each of these theories the definition of the function Q relies on the
following notion of extended subterms.

Definition 7 (extended subterm). Let t be a term; its set of extended sub-
terms stRE (t) (w.r.t. E) is the smallest set such that:

1. t ∈ stRE (t),
2. f (t1, . . . , tk) ∈ stRE (t) implies t1, . . . , tk ∈ stRE (t),
3. t′ ∈ stRE (t) and t′ →RE t′′ implies t′′ ∈ stRE (t).

This notation is extended to frames in the usual way.

All the examples in this section rely on the same measures mf and me. Let
{X1 
 t1, . . . , Xn 
 tn} be the set of side conditions of a fact f. We define
mf(f) = (# var(t1, . . . , tn),

∑
1≤i≤n |ti|) and <f is the lexicographical order on

ordered pairs of integers. The measure me and the order <e are defined in the
same way.

We now present the class of subterm convergent equational theories as well
as the theories for malleable encryption and trap-door commitment.

Subterm Convergent Equational Theories. Abadi and Cortier [1] have
shown that deduction and static equivalence are decidable for subterm convergent
equational theories in polynomial time. We retrieve the same results with our
algorithm. An equational theory E is subterm convergent if RE is convergent
and for every rule l → r ∈ RE , we have that either r is a strict subterm of l, or r
is a ground term in RE -normal form.

The termination proof for this class relies on the function Q where Q(ϕ) is
defined as the smallest set that contains

1. [t | ∅], where t ∈ stRE (ϕ);
2. [f(x1, . . . , xk) | x1, . . . , xk], where ar(f) = k.
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Malleable Encryption. We also obtain termination for the equational the-
ory Emal described in Example 1. This is a toy example that does not fall in the
class studied in [1]. Indeed, this theory is not locally stable: the set of terms in
normal form deducible from a frame ϕ cannot always be obtained by applying
public contexts over a finite set (called sat(ϕ) in [1]) of ground terms.

As a witness consider the frame ϕ2 = νa, k.{w1 �→ enc(b, k} introduced in
Example 2. Among the terms that are deducible from ϕ2, we have those of
the form enc(t, k) where t represents any term deducible from ϕ2. From this
observation, it is easy to see that Emal is not locally stable.

Our procedure does not have this limitation. A prerequisite for termination
is that the set of terms in normal form deducible from a frame is exactly the set
of terms obtained by nesting in all possible ways a finite set of contexts. The
theory Emal falls in this class. In particular, for the frame ϕ2, our procedure
produces the fact f9 = [mal(w1, Y2) 
 enc(z, k) | Y2 
 z] allowing us to capture
all the terms of the form enc(t, k) by the means of a single deduction fact.

The termination proof relies on the function Q where Q(ϕ) is defined as the
smallest set that contains:

1. [t | ∅], for every t ∈ stRE (ϕ);
2. [f (x1, x2) | x1, x2], where f ∈ {enc, dec,mal};
3. [enc(x, t) | x], if there exists t′ such that enc(t′, t) ∈ stRE (ϕ).

Trap-Door Commitment. The following convergent equational theory Etd is
a model for trap-door commitment:

open(td(x, y, z), y) = x td(x2, f (x1, y, z, x2), z) = td(x1, y, z)
open(td(x1, y, z), f (x1, y, z, x2))=x2 f (x2, f (x1, y, z, x2), z, x3) = f (x1, y, z, x3)

As said in the introduction, we encountered this equational theory when studying
electronic voting protocols. The term td(m, r, td) models the commitment of the
message m under the key r using an additional trap-door td. Such a commitment
scheme allows a voter who has performed a commitment to open it in different
ways using its trap-door. Hence, trap-door bit commitment td(v, r, td) does not
bind the voter to the vote v. This is useful to ensure privacy-type properties in
e-voting and in particular receipt-freeness [19]. With such a scheme, even if a co-
ercer requires the voter to reveal his commitment, this does not give any useful
information to the coercer as the commitment can be viewed as the commitment
of any vote (depending on the key that will be used to open it).

For the same reason as Emal , the theory of trap-door commitment described
below cannot be handled by the algorithms described in [1,9]. Our termination
proof relies on the function Q where Q(ϕ) is the smallest set that contains:

1. [t | ∅], for every t ∈ stRE (ϕ);
2. [td(t1, r, tp) | ∅] such that f (t1, r, tp, t2) ∈ stRE (ϕ) for some t2;
3. [g(x1, . . . , xk) | x1, . . . , xk], where g ∈ {open , td , f } and ar(g) = k;
4. [f (t1, r, tp, x) | x], such that f (t1, r, tp, t2) ∈ stRE (ϕ) for some t2.

Termination of our procedure is also ensured for theories such as blind signature
and addition as defined in [1].
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5.3 Going beyond with Fair Strategies

In [1] decidability is also shown for an equational theory modeling homomorphic
encryption. For our procedure to terminate on this theory we use a particular
saturation strategy.

Homomorphic Encryption. We consider the theory Ehom of homomorphic
encryption that has been studied in [1,9].

fst(pair (x, y)) = x snd(pair (x, y)) = y dec(enc(x, y), y) = x
enc(pair (x, y), z) = pair (enc(x, z), enc(y, z))
dec(pair (x, y), z) = pair (dec(x, z), dec(y, z))

In general, our algorithm does not terminate under this equational theory. Con-
sider for instance the frame φ = νa, b.{w1 �→ pair (a, b)}. We have that:

Init(ϕ) ⊇ {[w1 
 pair (a, b)], [enc(X,Y ) 
 enc(x, y) | X 
 x, Y 
 y]}.

As in Example 7 we can obtain an unbounded number of solved facts whose
projections are of the form:

[pair (enc(. . . enc(a, z1) . . . , zn), enc(. . . enc(b, z1) . . . , zn)) | z1, . . . , zn].

However, we can guarantee termination by using a fair saturation strategy. We
say that a saturation strategy is fair if whenever a rule instance is enabled it will
eventually be taken.

Indeed in the above example using a fair strategy we will eventually add the
facts [fst(w1)
a] and [snd(w1)
b]. Now the “problematic” facts described above
become useless and are not added to the knowledge base anymore. One may note
that a fair strategy does not guarantee termination in Example 7 (intuitively,
because the function g is one-way and a is not deducible in that example).

The proof of termination will as for the previous theories define functions Q,
mf and me. The main argument of the proof is the observation that due to
fairness only a finite number of solved fact not in Q(ϕ) can be added.

6 Implementation

A C++ implementation of the procedures described in this paper is provided
in the KiSs (Knowledge in Security protocols) tool [11]. The tool implements
a uniform ⊕ and contains several optimizations. First, as the order of solving
side conditions is not important, we always solve the first unsolved side condi-
tion rather than considering all the combinations. We also use DAG represen-
tation of terms and specialized F-Solving and E-Solving rules for solving ground
side conditions. Indeed, by checking whether the side condition is generated or
not we know whether solving it will eventually produce a solved fact. Checking
generation takes only polynomial time. This makes the procedure terminate in
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polynomial time for subterm convergent equational theories, and the theories
Eblind , Emal and Etd .

The performance of the tool is comparable to the YAPA tool [8,9] and on most
examples the tool terminates in less than a second. In [9] a family of contrived
examples is presented to diminish the performance of YAPA, exploiting the fact
that YAPA does not implement DAG representations of terms and recipes, as
opposed to KiSs. As expected, KiSs indeed performs better on these examples.

Regarding termination, our procedure terminates on all examples of equa-
tional theories presented in [9]. In addition, our tool terminates on the theo-
ries Emal and Etd whereas YAPA does not. In [9] a class of equational theories
for which YAPA terminates is identified and it is not known whether our proce-
dure terminates. YAPA may also terminate on examples outside this class. Hence
the question whether termination of our procedures encompasses termination of
YAPA is still open.

7 Conclusion

We have proposed a procedure for deduction and for static equivalence for con-
vergent equational theories. Our procedure terminates for a wide range of equa-
tional theories. In particular, we obtain a new decidability result for the theory
of trapdoor commitment.

As future work, we indent to extend our approach in order to handle associa-
tive commutative operators (like xor) and the active case of the two problems.
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11. Ciobâcă, Ş.: KiSs (2009), http://www.lsv.ens-cachan.fr/~ciobaca/kiss
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Abstract. In functional programming languages the use of infinite
structures is common practice. For total correctness of programs deal-
ing with infinite structures one must guarantee that every finite part
of the result can be evaluated in finitely many steps. This is known as
productivity. For programming with infinite structures, productivity is
what termination in well-defined results is for programming with finite
structures.

Fractran is a simple Turing-complete programming language invented
by Conway. We prove that the question whether a Fractran program
halts on all positive integers is Π0

2-complete. In functional programming,
productivity typically is a property of individual terms with respect to
the inbuilt evaluation strategy. By encoding Fractran programs as spec-
ifications of infinite lists, we establish that this notion of productivity is
Π0

2-complete even for some of the most simple specifications. Therefore
it is harder than termination of individual terms. In addition, we explore
generalisations of the notion of productivity, and prove that their com-
putational complexity is in the analytical hierarchy, thus exceeding the
expressive power of first-order logic.

1 Introduction

For programming with infinite structures, productivity is what termination is for
programming with finite structures. In lazy functional programming languages
like Haskell, Miranda or Clean the use of data structures, whose intended seman-
tics is an infinite structure, is common practice. Programs dealing with such in-
finite structures can very well be terminating. For example, consider the Haskell
program implementing a version of Eratosthenes’ sieve:

prime n = primes !! (n-1)
primes = sieve [2..]
sieve (n:xs) = n:(sieve (filter (\m -> m ‘mod‘ n /= 0) xs))

where prime n returns the n-th prime number for every n ≥ 1. The func-
tion prime is terminating, despite the fact that it contains a call to the non-
terminating function primes which, in the limit, rewrites to the infinite list of

R.A. Schmidt (Ed.): CADE 2009, LNAI 5663, pp. 371–387, 2009.
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prime numbers in ascending order. To make this possible, the strategy with re-
spect to which the terms are evaluated is crucial. Obviously, we cannot fully
evaluate primes before extracting the n-th element. For this reason, lazy func-
tional languages typically use a form of outermost-needed rewriting where only
needed, finite parts of the infinite structure are evaluated, see for example [13].

Productivity captures the intuitive notion of unlimited progress, of ‘working’
programs producing values indefinitely, programs immune to livelock and dead-
lock, like primes above. A recursive specification is called productive if not only
can the specification be evaluated continually to build up an infinite normal
form, but this infinite expression is also meaningful in the sense that it repre-
sents an infinite object from the intended domain. The study of productivity (of
stream specifications in particular) was pioneered by Sijtsma [15]. More recently,
a decision algorithm for productivity of stream specifications from an expressive
syntactic format has been developed [6] and implemented [4].

We consider various variants of the notion of productivity and pinpoint their
computational complexity in the arithmetical and analytical hierarchy. In func-
tional programming, expressions are evaluated according to an inbuilt evaluation
strategy. This gives rise to productivity with respect to an evaluation strategy. We
show that this property is Π0

2-complete (for individual terms) using a standard
encoding of Turing machines into term rewriting systems. Next, we explore two
generalisations of this concept: strong and weak productivity. Strong productivity
requires every outermost-fair rewrite sequence to ‘end in’ a constructor normal
form, whereas weak productivity demands only the existence of a rewrite se-
quence to a constructor normal form. As it turns out, these properties are of
analytical complexity: Π1

1 and Σ1
1-complete, respectively.

Finally, we encode Fractran programs into stream specifications. In contrast
to the encoding of Turing machines, the resulting specifications are of a very
simple form and do not involve any computation on the elements of the stream.
We show that the uniform halting problem of Fractran programs is Π0

2-complete.
(Although Turing-completeness of Fractran is folklore, the exact complexity has
not yet been investigated before.) Consequently we obtain a strengthening of the
earlier mentioned Π0

2-completeness result for productivity.
Fractran [2] is a remarkably simple Turing-complete programming language

invented by the mathematician John Horton Conway. A Fractran program is a
finite list of fractions p1

q1
, . . . , pk

qk
. Starting with a positive integer n0, the algorithm

successively calculates ni+1 by multiplying ni with the first fraction that yields
an integer again. The algorithm halts if there is no such fraction.

To illustrate the algorithm we consider an example of Conway from [2]:

17
91

,
78
85

,
19
51

,
23
38

,
29
33

,
77
29

,
95
23

,
77
19

,
1
17

,
11
13

,
13
11

,
15
14

,
15
2
,
55
1

We start with n0 = 2. The leftmost fraction which yields an integer product
is 15

2 , and so n1 = 2 · 15
2 = 15. Then we get n2 = 15 · 55

1 = 825, etcetera. By
successive application of the algorithm, we obtain the following infinite sequence:

2, 15, 825, 725, 1925, 2275, 425, 390, 330, 290, 770, . . .
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Apart from 21, the powers of 2 occurring in this infinite sequence are 22, 23, 25, 27,
211, 213, 217, 219, . . ., where the exponents form the sequence of primes.

We translate Fractran programs to streams specifications in such a way that
the specification is productive if and only if the program halts on all n0 > 1.
Let us define the target format of this translation: the lazy stream format (LSF).
LSF consists of stream specifications of the form M → C[M] where C is a context
built solely from: one data element •, the stream constructor ‘:’, the functions
head(x : σ) → x and tail(x : σ) → σ, unary stream functions modn, and k-ary
stream functions zipk with the following defining rules, for every n, k ≥ 1:

modn(σ) → head(σ) : modn(tailn(σ))
zipk(σ1, σ2 . . . , σk) → head(σ1) : zipk(σ2, . . . , σk, tail(σ1))

(LSF)

By reducing the uniform halting problem of Fractran programs to productivity
of LSF, we get that productivity for LSF is Π0

2-complete.
This undecidability result stands in sharp contrast to the decidability of pro-

ductivity for the pure stream format (PSF, [6]). Let us elaborate on the difference
between these two formats. Examples of specifications in PSF are:

J → 0 : 1 : even(J) and Z → 0 : zip(even(Z), odd(Z)) ,

including the defining rules for the stream functions involved:

even(x : σ) → x : odd(σ) , odd(x : σ) → even(σ) , zip(x : σ, τ) → x : zip(τ, σ) ,

where zip ‘zips’ two streams alternatingly into one, and even (odd) returns a
stream consisting of the elements at its even (odd) positions. The specification
for Z produces the stream 0 : 0 : 0 : . . . of zeros, whereas the infinite normal form
of J is 0 : 1 : 0 : 0 : evenω, which is not a constructor normal form.

Excluded from PSF is the observation function on streams head(x : σ) → x.
This is for a good reason, as we shall see shortly. PSF is essentially layered:
data terms (terms of sort data) cannot be built using stream terms (terms of
sort stream). As soon as stream dependent data functions are admitted, the
complexity of the productivity problem of such an extended format is increased.
Indeed, as our Fractran translation shows, productivity of even the most simple
stream specifications is undecidable and Π0

2-hard. The problem with stream de-
pendent data functions is that they possibly create ‘look-ahead’: the evaluation
of the ‘current’ stream element may depend on the evaluation of ‘future’ stream
elements. To see this, consider an example from [15]:

Sn → 0 : Sn(n) : Sn

where for a term t of sort stream and n ∈ N, we write t(n) as a shorthand for
head(tailn(t)). If we take n to be an even number, then Sn is productive, whereas
it is unproductive for odd n.

A hint for the fact that it is Π0
2-hard to decide whether a lazy specification is

productive already comes from a simple encoding of the Collatz conjecture (also
known as the ‘3x+1-problem’ [12]) into a productivity problem. Without proof
we state: the Collatz conjecture is true if and if only the following specification
produces the infinite chain • : • : • : . . . of data elements •:



374 J. Endrullis, C. Grabmayer, and D. Hendriks

collatz → • : zip2(collatz,mod6(tail9(collatz))) (1)

In order to understand the operational difference between rules in PSF and rules
in LSF, consider the following two rules:

read(σ) → head(σ) : read(tail(σ)) (2)
read′(x : σ) → x : read′(σ) (3)

The functions defined by these rules are extensionally equivalent: they both im-
plement the identity function on fully developed streams. However, intensionally,
or operationally, there is a difference. A term read′(s) is a redex only in case s
is of the form u : t, whereas read(s) constitutes a redex for every stream term s,
and so head(s) can be undefined. The ‘lazy’ rule (2) postpones pattern matching.
Although in PSF we can define functions mod′n and zip′k extensionally equiva-
lent to modn and zipk, a pure version collatz′ of collatz in (1) above (using mod′6
and zip′2 instead) can easily be seen to be not productive (it produces two data
elements only), and to have no bearing on the Collatz conjecture.

Contribution and Overview. In Section 2 we show that the uniform halting prob-
lem of Fractran programs is Π0

2-complete. This is the problem of determining
whether a program terminates on all positive integers. Turing-completeness of
a computational model does not imply that the uniform halting problem in
the strong sense of termination on all configurations is Π0

2-complete. For ex-
ample, assume that we extend Turing machines with a special non-terminating
state. Then the computational model obtained can still compute every recursive
function. However, the uniform halting problem becomes trivial.

Our result is a strengthening of the result in [11] where it has been shown
that the generalised Collatz problem (GCP) is Π0

2-complete. This is because
every Fractran program P can easily be translated into a Collatz function f
such that the uniform halting problem for P is equivalent to the GCP for f . The
other direction is not immediate, since Fractran programs form a strict subset
of Collatz functions. We discuss this in more detail in Section 2.

In Section 3 we explore alternative definitions of productivity and make them
precise in the framework of term rewriting. These can be highly undecidable:
‘strong productivity’ turns out to be Π1

1-complete and ‘weak productivity’ is
Σ1

1-complete. Productivity of individual terms with respect to a computable
strategy, which is the notion used in functional programming, is Π0

2-complete.
In Section 4 we prove that productivity Π0

2-complete even for specifications
of the restricted LSF format. The new proof uses a simple encoding of Fractran
programs P into stream specifications of the form MP → C[MP ], in such a way
that MP is productive if and only if the program P halts on all inputs. The
resulting stream specifications are very simple compared to the ones resulting
from encoding of Turing machines employed in Section 3. Whereas the Turing
machine encoding essentially uses calculations on the elements of the list, the
specifications obtained from the Fractran encoding contain no operations on the
list elements. In particular, the domain of data elements is a singleton.
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Related Work. In [3] undecidability of different properties of first-order TRSs is
analysed. While the standard properties of TRSs turn out to be either Σ0

1- or
Π0

2-complete, the complexity of the dependency pair problems [1] is essentially
analytical: it is shown to be Π1

1-complete. We employ the latter result as a basis
for our Π1

1- and Σ1
1-completeness results for productivity.

Roşu [14] shows that equality of stream specifications is Π0
2-complete. We

remark that this result can be obtained as a corollary of our translation of
Fractran programs P to stream specifications MP . Stream specifications MP have
the stream • : • : . . . as unique solutions if and only if they are productive. Thus
Π0

2-completeness of productivity of these specifications implies Π0
2-completeness

of the stream equality problem MP = • : • : . . ..
One of the reviewers pointed us to recent work [7] of Grue Simonsen (not avail-

able at the time of writing) where Π0
2-completeness of productivity of orthogonal

stream specifications is shown. Theorem 3.5 below can be seen as a sharpening
of that result in that we consider general TRSs and productivity with respect to
arbitrary evaluation strategies. For orthogonal systems the evaluation strategy
is irrelevant as long as it is outermost-fair. Moreover we further strengthen the
result on orthogonal stream specifications by restricting the format to LSF.

2 Fractran

The one step computation of a Fractran program is a partial function.

Definition 2.1. Let P = p1
q1

, . . . , pk

qk
be a Fractran program. The partial func-

tion fP : N ⇀ N is defined for all n ∈ N by:

fP (n) =

{
n · pi

qi
where pi

qi
is the first fraction of P such that n · pi

qi
∈ N,

undefined if no such fraction exists.

We say that P halts on n ∈ N if there exists i ∈ N such that f i
P (n) = undefined.

For n,m ∈ N we write n →P m whenever m = fP (n).
The Fractran program for generating prime numbers, that we discussed in the
introduction, is non-terminating for all starting values n0, because the product
of any integer with 55

1 is an integer again. However, in general, termination of
Fractran programs is undecidable.

Theorem 2.2. The uniform halting problem for Fractran programs, that is, de-
ciding whether a program halts for every starting value n0 ∈ N>0, is Π0

2-complete.
A related result is obtained in [11] where it is shown that the generalised Collatz
problem (GCP) is Π0

2-complete, that is, the problem of deciding for a Collatz
function f whether for every integer x > 0 there exists i ∈ N such that f i(x) = 1.
A Collatz function f is a function f : N → N of the form:

f(n) =

⎧⎪⎨
⎪⎩

a0 · n + b0, if n ≡ 0 (mod p)
...

...
ap−1 · n + bp−1, if n ≡ p− 1 (mod p)

for some p ∈ N and rational numbers ai, bi such that f(n) ∈ N for all n ∈ N.



376 J. Endrullis, C. Grabmayer, and D. Hendriks

The result of [11] is an immediate corollary of Theorem 2.2. Every Fractran
program P is a Collatz function f ′P where f ′P is obtained from fP (see Defi-
nition 2.1) by replacing undefined with 1. We obtain the above representation
of Collatz functions simply by choosing for p the least common multiple of the
denominators of the fractions of P . We call a Fractran program P trivially im-
mortal if P contains a fraction with denominator 1 (an integer). Then for all not
trivially immortal P , P halts on all inputs if and only for all x > 0 there exists
i ∈ N such that f i

P (x) = 1. Using our result, this implies that GCP is Π0
2-hard.

Theorem 2.2 is a strengthening of the result in [11] since Fractran programs
are a strict subset of Collatz functions. If Fractran programs are represented as
Collatz functions directly, for all 0 ≤ i < p it holds either bi = 0, or ai = 0 and
bi = 1. Via such a translation Fractran programs are, e.g., not able to implement
the famous Collatz function C(2n) = n and C(2n + 1) = 6n + 4 (for all n ∈ N),
nor an easy function like f(2n) = 2n + 1 and f(2n + 1) = 2n (for all n ∈ N).

For the proof of Theorem 2.2 we devise a translation from Turing machines to
Fractran programs ([11] uses register machines) such that the resulting Fractran
program halts on all positive integers (n0 ≥ 1) if and only if the Turing machine is
terminating on all configurations. That is, we reduce the uniform halting problem
of Turing machines to the uniform halting problem of Fractran programs.

We briefly explain why we employ the uniform halting problem instead of the
problem of totality (termination on all inputs) of Turing machines, also known
as the initialised uniform halting problem. When translating a Turing machine
M to a Fractran program PM , start configurations (initialised configurations)
are mapped to a subset IM ⊆ N of Fractran inputs. Then from Π0

2-hardness of
the totality problem one can conclude Π0

2-hardness of the question whether PM

terminates on all numbers from IM . But this does not imply that the uniform
halting problem for Fractran programs is Π0

2-hard (termination on all natural
numbers n ∈ N). The numbers not in the target of the translation could make the
problem both harder as well as easier. A situation where extending the domain
of inputs makes the problem easier is: local confluence of TRSs is Π0

2-complete
for the set of ground terms, but only Σ0

1-complete for the set of all terms [3].
To keep the translation as simple we restrict to unary Turing machines having

only two symbols {0, 1} in their tape alphabet, 0 being the blank symbol.

Definition 2.3. A unary Turing machine M is a triple 〈Q, q0, δ〉, where Q is a
finite set of states, q0 ∈ Q the initial state, and δ : Q×{0, 1}⇀ Q×{0, 1}×{L,R}
a (partial) transition function. A configuration of M is a pair 〈q, tape〉 consisting
of a state q ∈ Q and the tape content tape : Z → {0, 1} such that the support
{n ∈ Z | tape(n) �= 0} is finite. The set of all configurations is denoted by
ConfM . We define the relation →M on the set of configurations ConfM as follows:
〈q, tape〉→M 〈q′, tape ′〉 whenever:

– δ(q, tape(0)) = 〈q′, f , L〉, tape ′(1) = f and ∀n �= 0. tape ′(n+1) = tape(n), or
– δ(q, tape(0)) = 〈q′, f , R〉, tape ′(−1) = f and ∀n �= 0. tape ′(n− 1) = tape(n).

We say that M halts (or terminates) on a configuration 〈q, tape〉 if the configu-
ration 〈q, tape〉 does not admit infinite →M rewrite sequences.
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The uniform halting problem of Turing machines is the problem of deciding
whether a given Turing machine M halts on all (initial or intermediate) config-
urations. The following theorem is a result of [8]:

Theorem 2.4. The uniform halting problem for Turing machines is Π0
2-complete.

This result carries over to unary Turing machines using a simulation based on a
straightforward encoding of tape symbols as blocks of zeros and ones (of equal
length), which are admissible configurations of unary Turing machines.

We now give a translation of Turing machines to Fractran programs. Without
loss of generality we restrict in the sequel to Turing machines M = 〈Q, q0, δ〉 for
which δ(q, x) = 〈q′, s′, d′〉 implies q �= q′. In case M does not fulfil this condition
then we can find an equivalent Turing machine M ′ = 〈Q ∪ Q#, q0, δ

′〉 where
Q# = {q# | q ∈ Q} and δ′ is defined by δ′(q, x) = 〈p#, s, d〉 and δ′(q#, x) =
〈p, s, d〉 for δ(q, x) = 〈p, s, d〉.
Definition 2.5. Let M = 〈Q, q0, δ〉 be a Turing machine. Let tape
, h, taper,
tape ′
, h′, tape ′r, mL,x, mR,x, copyx and pq for every q ∈ Q and x ∈ {0, 1} be
pairwise distinct prime numbers. The intuition behind these primes is:

– tape
 and taper represent the tape left and right of the head, respectively,
– h is the tape symbol in the cell currently scanned by the tape head,
– tape ′
, h

′, tape ′r store temporary tape content (when moving the head),
– mL,x, mR,x execute a left or right move of the head on the tape, respectively,
– copyx copies the temporary tape content back to the primary tape, and
– pq represent the states of the Turing machine.

The subscript x ∈ {0, 1} is used to have two primes for every action: in case an
action p takes more than one calculation step we cannot write p·...

p·... since then p
in numerator and denominator would cancel itself out. We define the Fractran
program PM to consist of the following fractions (listed in program order):

1
p · p′

for every p, p′ ∈ {mL,0, mL,1, mR,0, mR,1, copy0, copy1}
every p, p′ ∈ {pq | q ∈ Q} and p, p′ ∈ {h, h′} (4)

to get rid of illegal configurations,

mL,1−x · tape ′

mL,x · tape2




mL,1−x · tape ′2r
mL,x · taper

mL,1−x · tape ′r
mL,x · h′

mL,1−x · h
mL,x · tape


copy0

mL,x
(5)

with x ∈ {0, 1}, for moving the head left on the tape,

mR,1−x · tape ′r
mR,x · tape2

r

mR,1−x · tape ′2

mR,x · tape


mR,1−x · tape ′

mR,x · h′

mR,1−x · h
mR,x · taper

copy0

mR,x
(6)

with x ∈ {0, 1}, for moving the head right on the tape,

copy1−x · tape


copyx · tape ′

copy1−x · taper

copyx · tape ′r
1

copyx

(7)

with x ∈ {0, 1}, for copying the temporary tape back to the primary tape,
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pq′ · h′s′ ·md,0

pq · h
whenever δ(q, 1) = 〈q′, s′, d〉 (8)

1
pq · h

(for termination) for every q ∈ Q (9)

pq′ · h′s′ ·md,0

pq
whenever δ(q, 0) = 〈q′, s′, d〉 (10)

for the transitions of the Turing machine. Whenever we use variables in the
rules, e.g. x ∈ {0, 1}, then it is to be understood that instances of the same rule
are immediate successors in the sequence of fractions (the order of the instances
among each other is not crucial).

Example 2.6. Let M = 〈Q, a0, δ〉 be a Turing machine where Q = {a0, a1, b},
and the transition function is defined by δ(a0, 0) = 〈b, 1, R〉, δ(a1, 0) = 〈b, 1, R〉,
δ(a0, 1) = 〈a1, 0, R〉, δ(a1, 1) = 〈a0, 0, R〉, δ(b, 1) = 〈a0, 0, R〉, and we leave δ(b, 0)
undefined. That is, M moves to the right, converting zeros into ones and vice
versa, until it finds two consecutive zeros and terminates. Assume that M is
started on the configuration 1b1001, that is, the tape content 11001 in state
b with the head located on the second 1. In the Fractran program PM this
corresponds to n0 = pb · tape1


 · h1 · tape100
r as the start value where we represent

the exponents in binary notation for better readability. Started on n0 we obtain
the following calculation in PM :

pb · tape1

 · h1 · tape100

r (configuration 1b1001)

→(8) mR,0 · pa0 · tape1

 · tape100

r →2
(6;1st) mR,0 · pa0 · tape1


 · tape ′10r

→(6;2nd) mR,1 · pa0 · tape ′10
 · tape ′10r →(6;5th) copy0 · pa0 · tape ′10
 · tape ′10r

→2
(7;1st)→

2
(7;2nd)→(7;3rd) pa0 · tape10


 · tape10
r (configuration 10a001)

→(10) mR,0 · pb · tape10

 · h′1 · tape10

r →(6;1st) mR,1 · pb · tape10

 · h′1 · tape ′1r

→2
(6;2nd) mR,1 · pb · tape ′100
 · h′1 · tape ′1r →(6;3rd+5th) copy0 · pb · tape ′101
 · tape ′1r
→5

(7;1st)→(7;2nd)→(7;3rd) pb · tape101

 · tape1

r (configuration 101b01)

reaching a configuration where the Fractran program halts.

Definition 2.7. We translate configurations c = 〈q, tape〉 of Turing machines
M = 〈Q, q0, δ〉 to natural numbers (input values for Fractran programs). We
reuse the notation of Definition 2.5 and define:

nc = tapeL

 · pq · hH · tapeR

r

L =
∞∑

i=0

2i · tape(−1− i) H = tape(0) R =
∞∑

i=0

2i · tape(1 + i)
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Lemma 2.8. For every Turing machine M and configurations c1, c2 we have:

(i) if c1 →M c2 then nc1 →∗
PM

nc2 , and
(ii) if c1 is a →M normal form then nc1 →∗

PM
undefined.

Proofs of Lemma 2.8 and Theorem 2.2 can be found in [5].

3 What Is Productivity?

A program is productive if it evaluates to a finite or infinite constructor normal
form. This rather vague description leaves open several choices that can be made
to obtain a more formal definition. We explore several definitions and determine
the degree of undecidability for each of them. See [6] for more pointers to the
literature on productivity.

The following is a productive specification of the (infinite) stream of zeros:

zeros → 0 : zeros

Indeed, there exists only one maximal rewrite sequence from zeros and this ends
in the infinite constructor normal form 0 : 0 : 0 : . . .. Here and later we say that
a rewrite sequence ρ : t0 → t1 → t2 → . . . ends in a term s if either ρ is finite
with its last term being s, or ρ is infinite and then s is the limit of the sequence
of terms ti, i.e. s = limi→∞ ti. We consider only rewrite sequences starting from
finite terms, thus all terms occurring in ρ are finite. Nevertheless, the limit s
of the terms ti may be an infinite term. Note that, if ρ ends in a constructor
normal form, then every finite prefix will be evaluated after finitely many steps.

The following is a slightly modified specification of the stream of zeros:

zeros → 0 : id(zeros) id(σ) → σ

This specification is considered productive as well, although there are infinite
rewrite sequences that do not even end in a normal form, let alone in a construc-
tor normal form: e.g. by unfolding zeros only we get the limit term 0 : id(0 : id(0 :
id(. . .))). In general, normal forms can only be reached by outermost-fair rewrit-
ing sequences. A rewrite sequence ρ : t0 → t1 → t2 → . . . is outermost-fair [16] if
there is no tn containing an outermost redex which remains an outermost redex
infinitely long, and which is never contracted. For this reason it is natural to
consider productivity of terms with respect to outermost-fair strategies.

What about stream specifications that admit rewrite sequences to constructor
normal forms, but that also have divergent rewrite sequences:

maybe → 0 : maybe maybe → sink sink → sink

This example illustrates that, for non-orthogonal stream specifications, reach-
ability of a constructor normal form depends on the evaluation strategy. The
term maybe is only productive with respect to strategies that always apply the
first rule.
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For this reason we propose to think of productivity as a property of individ-
ual terms with respect to a given rewrite strategy. This reflects the situation in
functional programming, where expressions are evaluated according to an in-
built strategy. These strategies are usually based on a form of outermost-needed
rewriting with a priority order on the rules.

3.1 Productivity with Respect to Strategies

For term rewriting systems (TRSs) [16] we now fix definitions of the notions of
(history-free) strategy and history-aware strategy. Examples for the latter notion
are outermost-fair strategies, which typically have to take history into account.

Definition 3.1. Let R be a TRS with rewrite relation →R.
A strategy for →R is a relation � ⊆→R with the same normal forms as →R.
The history-aware rewrite relation →H,R for R is the binary relation on

Ter(Σ)× (R× N∗)∗ that is defined by:

〈s, hs〉→H,R 〈t, hs : 〈ρ, p〉〉⇐⇒ s → t via rule ρ ∈ R at position p .

We identify t ∈ Ter(Σ) with 〈t, ε〉, and for s, t ∈ Ter(Σ) we write s →H,R t
whenever 〈s, ε〉 →H,R 〈t, h〉 for some history h ∈ (R × N∗)∗. A history-aware
strategy for R is a strategy for →H,R.

A strategy � is deterministic if s � t and s � t′ implies t = t′. A strategy� is computable if the function mapping a term (a term/history pair) to its set
of �-successors is a total recursive function, after coding into natural numbers.

Remark 3.2. Our definition of strategy for a rewrite relation follows [17]. For
abstract rewriting systems, in which rewrite steps are first-class citizens, a def-
inition of strategy is given in [16, Ch. 9]. There, history-aware strategies for a
TRS R are defined in terms of ‘labellings’ for the ‘abstract rewriting system’
underlying R. While that approach is conceptually advantageous, our definition
of history-aware strategy is equally expressive.

Definition 3.3. A (TRS-indexed) family of strategies S is a function that as-
signs to every TRS R a set S(R) of strategies for R. We call such a family S of
strategies admissible if S(R) is non-empty for every orthogonal TRS R.

Now we give the definition of productivity with respect to a strategy.

Definition 3.4. A term t is called productive with respect to a strategy � if all
maximal � rewrite sequences starting from t end in a constructor normal form.

In the case of non-deterministic strategies we require here that all maximal
rewrite sequences end in a constructor normal form. Another possible choice
could be to require only the existence of one such rewrite sequence (see
Section 3.2). However, we think that productivity should be a practical notion.
Productivity of a term should entail that arbitrary finite parts of the constructor
normal form can indeed be evaluated. The mere requirement that a constructor
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normal form exists leaves open the possibility that such a normal form cannot
be approximated to every finite precision in a computable way.

For orthogonal TRSs outermost-fair (or fair) rewrite strategies are the natural
choice for investigating productivity because they guarantee to find (the unique)
infinitary constructor normal form whenever it exists (see [16]).

Pairs and finite lists of natural numbers can be encoded using the well-known
Gödel encoding. Likewise terms and finite TRSs over a countable set of variables
can be encoded. A TRS is called finite if its signature and set of rules are finite.
In the sequel we restrict to (families of) computable strategies, and assume that
strategies are represented by appropriate encodings.

Now we define the productivity problem in TRSs with respect to families of
computable strategies, and prove a Π0

2-completeness result.

Productivity Problem with respect to a family S of computable strategies.

Instance: Encodings of a finite TRS R, a strategy � ∈ S(R) and a term t.
Answer : ‘Yes’ if t is productive with respect to �, and ‘No’, otherwise.

Theorem 3.5. For every family of admissible, computable strategies S, the pro-
ductivity problem with respect to S is Π0

2-complete.

Proof. A Turing machine is called total (encodes a total function N → N) if it
halts on all inputs encoding natural numbers. The problem of deciding whether
a Turing machine is total is well-known to be Π0

2-complete, see [9]. Let M be
an arbitrary Turing machine. Employing the encoding of Turing machines into
orthogonal TRSs from [10], we can define a TRS RM that simulates M such that
for every n ∈ N it holds: every reduct of the term M(sn(0)) contains at most
one redex occurrence, and the term M(sn(0)) rewrites to 0 if and only if the
Turing machine M halts on the input n. Note that the rewrite sequence starting
from M(sn(0)) is deterministic. We extend the TRS RM to a TRS R′M with the
following rules:

go(0, x) → 0 : go(M(x), s(x))

and choose the term t = go(0, 0). Then R′M is orthogonal and by construction
every reduct of t contains at most one redex occurrence (consequently all strate-
gies for R coincide on every reduct of t). The term t is productive if and only
if M(sn(0)) rewrites to 0 for every n ∈ N which in turn holds if and only if the
Turing machine M is total. This concludes Π0

2-hardness.
For Π0

2-completeness let S be a family of computable strategies, R a TRS, � ∈
S(R) and t a term. Then productivity of t can be characterised as:

∀d ∈ N. ∃n ∈ N. every n-step �-reducts of t

is a constructor normal form up to depth d
($)

Since the strategy � is computable and finitely branching, all n-step reducts of t
can be computed. Obviously, if the formula ($) holds, then t is productive w.r.t.�. Conversely, assume that t is productive w.r.t. �. For showing ($), let d ∈ N
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be arbitrary. By productivity of t w.r.t. �, on every path in the reduction graph
of t w.r.t. � eventually a term with a constructor normal form up to depth d
is encountered. Since reduction graphs in TRSs always are finitely branching,
Koenig’s lemma implies that there exists an n ∈ N such that all terms on depth
greater or equal to n in the reduction graph of t are constructor prefixes of depth
at least d. Since d was arbitrary, ($) has been established. Because ($) is a Π0

2-
formula, the productivity problem with respect to S also belongs to Π0

2. ��

Theorem 3.5 implies that productivity is Π0
2-complete for orthogonal TRSs with

respect to outermost-fair rewriting. To see this, apply the theorem to the family
of strategies that assigns to every orthogonal TRS R the set of computable,
outermost-fair rewriting strategies for R, and ∅ to non-orthogonal TRSs.

The definition of productivity with respect to computable strategies reflects
the situation in functional programming. Nevertheless, we now investigate vari-
ants of this notion, and determine their respective computational complexity.

3.2 Strong Productivity

As already discussed, only outermost-fair rewrite sequences can reach a con-
structor normal form. Dropping the fine tuning device ‘strategies’, we obtain the
following stricter notion of productivity.

Definition 3.6. A term t is called strongly productive if all maximal outermost-
fair rewrite sequences starting from t end in a constructor normal form.

The definition requires all outermost-fair rewrite sequences to end in a construc-
tor normal form, including non-computable rewrite sequences. This catapults
productivity into a much higher class of undecidability: Π1

1, a class of the an-
alytical hierarchy. The analytical hierarchy continues the classification of the
arithmetical hierarchy using second order formulas. The computational complex-
ity of strong productivity therefore exceeds the expressive power of first-order
logic to define sets from recursive sets.

A well-known result of recursion theory states that for a given computable
relation > ⊆ N × N it is Π1

1-hard to decide whether > is well-founded, see [9].
Our proof is based on a construction from [3]. There a translation from Turing
machines M to TRSs RootM (which we explain below) together with a term tM
is given such that: tM is root-terminating (i.e., tM admits no rewrite sequences
containing an infinite number of root steps) if and only if the binary relation >M

encoded by M is well-founded. The TRS RootM consists of rules for simulating
the Turing machine M such that M(x, y) →∗ T iff x >M y holds (which basically
uses a standard encoding of Turing machines, see [10]), a rule:

run(T, ok(x), ok(y)) → run(M(x, y), ok(y), pickn)

and rules for randomly generating a natural number:

pickn → c(pickn) pickn → ok(0(�)) c(ok(x)) → ok(S(x)) .
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The term tM = run(T, pickn, pickn) admits a rewrite sequence containing in-
finitely many root steps if and only if >M is not well-founded. More precisely,
whenever there is an infinite decreasing sequence x1 >M x2 >M x3 >M . . ., then
tM admits a rewrite sequence run(T, pickn, pickn) →∗ run(T, ok(x1), ok(x2)) →
run(M(x1, x2), ok(x2), pickn) →∗ run(T, ok(x2), ok(x3)) →∗ . . .. We further note
that tM and all of its reducts contain exactly one occurrence of the symbol run,
namely at the root position.

Theorem 3.7. Strong productivity is Π1
1-complete.

Proof. For the proof of Π1
1-hardness, let M be a Turing machine. We extend the

TRS RootM from [3] with the rule run(x, y, z) → 0:run(x, y, z). As a consequence
the term run(T, pickn, pickn) is strongly productive if and only if >M is well-
founded (which is Π1

1-hard to decide). If >M is not well-founded, then by the
result in [3] tM admits a rewrite sequence containing infinitely many root steps
which obviously does not end in a constructor normal form. On the other hand if
>M is well-founded, then tM admits only finitely many root steps with respect to
RootM , and thus by outermost-fairness the freshly added rule has to be applied
infinitely often. This concludes Π1

1-hardness.
Rewrite sequences of length ω can be represented by functions r : N → N

where r(n) represents the n-th term of the sequence together with the position
and rule applied in step n. Then for all r (one universal ∀r function quantifier)
we have to check that r converges towards a constructor normal form whenever
r is outermost-fair; this can be checked by a first order formula. We refer to [3]
for the details of the encoding. Hence strong productivity is in Π1

1. ��

3.3 Weak Productivity

A natural counterpart to strong productivity is the notion of ‘weak produc-
tivity’: the existence of a rewrite sequence to a constructor normal form. Here
outermost-fairness does not need to be required, because rewrite sequences that
reach normal forms are always outermost-fair.

Definition 3.8. A term t is called weakly productive if there exists a rewrite
sequence starting from t that ends in a constructor normal form.

For non-orthogonal TRSs the practical relevance of this definition is questionable
since, in the absence of a computable strategy to reach normal forms, mere
knowledge that a term t is productive does typically not help to find a constructor
normal form of t. For orthogonal TRSs computable, normalising strategies exist,
but then also all of the variants of productivity coincide (see Section 3.4).

Theorem 3.9. Weak productivity is Σ1
1-complete.

Proof. For the proof of Σ1
1-hardness, let M be a Turing machine. We exchange

the rule run(T, ok(x), ok(y)) → run(M(x, y), ok(y), pickn) in the TRS RootM

from [3] by the rule run(T, ok(x), ok(y)) → 0 :run(M(x, y), ok(y), pickn). Then we
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obtain that the term run(T, pickn, pickn) is weakly productive if and only if >M

is not well-founded (which is Σ1
1-hard to decide). This concludes Π1

1-hardness.
The remainder of the proof proceeds analogously to the proof of Theorem 3.7,

except that we now have an existential function quantifier ∃r to quantify over
all rewrite sequences of length ω. Hence weak productivity is in Σ1

1. ��

3.4 Discussion

For orthogonal TRSs all of the variants of productivity coincide. That is, if
we restrict the first variant to computable outermost-fair strategies; as already
discussed, other strategies are not very reasonable. For orthogonal TRSs there
always exist computable outermost-fair strategies, and whenever for a term there
exists a constructor normal form, then it is unique and all outermost-fair rewrite
sequences will end in this unique constructor normal form.

This raises the question whether uniqueness of the constructor normal forms
should be part of the definition of productivity. We consider a specification of
the stream of random bits:

random → 0 : random random → 1 : random

Every rewrite sequence starting from random ends in a normal form. However,
these normal forms are not unique. In fact, there are uncountably many of
them. We did not include uniqueness of normal forms into the definition of pro-
ductivity since non-uniqueness only arises in non-orthogonal TRSs when using
non-deterministic strategies. However, one might want to require uniqueness of
normal forms even in the case of non-orthogonal TRSs.

Theorem 3.10. The problem of determining, for TRSs R and terms t in R,
whether t has a unique (finite or infinite) normal form is Π1

1-complete.

Proof. For Π1
1-hardness, we extend the TRS constructed in the proof of The-

orem 3.9 by the rules: start → run(T, pickn, pickn), run(x, y, z) → run(x, y, z),
start → ones, and ones → 1 : ones. Then start has a unique normal form if and
only if >M is well-founded. For Π1

1-completeness, we observe that the property
can be characterised by a Π1

1-formula: we quantify over two infinite rewrite se-
quences, and, in case both of them end in a normal form, we compare them.
Note that consecutive universal quantifiers can be compressed into one. ��

Let us consider the impact on computational complexity of taking up the condi-
tion of uniqueness of normal forms into the definition of productivity. Including
uniqueness of normal forms without considering the strategy would increase the
complexity of productivity with respect to a family of strategies to Π1

1. How-
ever, we think that doing so would be contrary to the spirit of the notion of
productivity. Uniqueness of normal forms should only be required for the nor-
mal forms reachable by the given (non-deterministic) strategy. But then the
complexity of productivity remains unchanged, Π0

2-complete. The complexity of
strong productivity remains unaltered, Π1

1-complete, when including uniqueness
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of normal forms. However, the degree of undecidability of weak productivity in-
creases. From the proofs of Theorems 3.9 and 3.10 it follows that the property
would then both be Σ1

1-hard and Π1
1-hard, then being in Δ1

1.

4 Productivity for Lazy Stream Specifications Is Π0
2

In this section we strengthen the undecidability result of Theorem 3.5 by showing
that the productivity problem is Π0

2-complete already for a very simple format
of stream specifications, namely the lazy stream format (LSF) introduced on
page 373. We do so by giving a translation from Fractran programs into LSF
and applying Theorem 2.2.

Definition 4.1. Let P = p1
q1

, . . . , pk

qk
be a Fractran program. Let d be the least

common multiple of the denominators of P , that is, d := lcm(q1, . . . , qk). Then
for n = 1, . . . , d define p′n = pi ·(d/qi) and bn = n · pi

qi
where pi

qi
is the first fraction

of P such that n · pi

qi
is an integer, and we let p′n and bn be undefined if no such

fraction exists. Then, the stream specification induced by P is a term rewriting
system RP = 〈ΣP , RP 〉 with:

ΣP = {•, : , head, tail, zipd,MP } ∪ {modp′
n
| p′n is defined}

and with RP consisting of the following rules:

MP → zipd(T1, . . . ,Td), where, for 1 ≤ n ≤ d, Tn is shorthand for:

Tn =

{
modp′

n
(tailbn−1(MP )) if p′n is defined,

• : modd(tailn−1(MP )) if p′n is undefined.

head(x : σ) → x modk(σ) → head(σ) : modk(tailk(σ))
tail(x : σ) → σ zipd(σ1, σ2 . . . , σd) → head(σ1) : zipd(σ2, . . . , σd, tail(σ1))

where x, σ, σi are variables.1

The rule for modn defines a stream function which takes from a given stream
σ all elements σ(i) with i ≡ 0 (mod n), and results in a stream consisting of
those elements in the original order. As we only need rules modp′

n
whenever p′n

is defined we need d such rules at most.
If p′n is undefined then it should be understood that m · p′n is undefined. For

n ∈ N let ϕ(n) denote the number from {1, . . . , d} with n ≡ ϕ(n) (mod d).

Lemma 4.2. For every n > 0 we have fP (n) = )(n− 1)/d* · p′ϕ(n) + bϕ(n).

Proof. Let n > 0. For every i ∈ {1, . . . , k} we have n · pi

qi
∈ N if and only if

ϕ(n) · pi

qi
∈ N, since n ≡ ϕ(n) mod d and d is a multiple of qi. Assume that fP (n)

1 Note that modd(tailn−1(zipd(T1, . . . , Td))) equals Tn, and so, in case p′
n is undefined,

we just have Tn = • :Tn. In order to have the simplest TRS possible (for the purpose
at hand), we did not want to use an extra symbol (•) and rule (•)→ • : (•).
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is defined. Then fP (n) = n·p′ϕ(n)/d = ()(n−1)/d*·d+((n−1) mod d)+1)·p′ϕ(n)/d

= )(n−1)/d*·p′ϕ(n)+ϕ(n)·pi/qi = )(n−1)/d*·p′ϕ(n)+bϕ(n). Otherwise whenever
fP (n) is undefined then p′ϕ(n) is undefined. ��

Lemma 4.3. Let P be a Fractran program. Then RP is productive for MP if
and only if P is terminating on all integers n > 0.

Proof. Let σ(n) be shorthand for head(tailn(σ)). It suffices to show for all n ∈ N:
MP (n) →∗ • if and only if P halts on n. For this purpose we show MP (n) →+ •
whenever fP (n+ 1) is undefined, and MP (n) →+ MP (fP (n+1)− 1), otherwise.
We have MP (n) →∗ Tϕ(n+1)()n/d*).

Assume that fP (n+1) is undefined. By Lemma 4.2 p′ϕ(n+1) is undefined, thus
thus MP (n) →∗ • whenever )n/d* = 0, and otherwise we have:

MP (n) →∗ Tϕ(n+1)()n/d*) →∗ modd(tailϕ(n+1)−1(MP ))()n/d* − 1) →∗ MP (n′)

where n′ = ()n/d* − 1) · d + ϕ(n + 1)− 1 = n− d. Clearly n ≡ n′ (mod d), and
then MP (n) →∗ • follows by induction on n.

Assume that fP (n + 1) is defined. By Lemma 4.2 p′ϕ(n+1) is defined and:

MP (n) →∗ Tϕ(n+1)()n/d*) →∗ modp′
ϕ(n+1)

(tailbϕ(n+1)−1(MP ))()n/d*)

and hence MP (n) →+ MP (n′) with n′ = )n/d* · p′ϕ(n+1) + bϕ(n+1) − 1. Then we
have n′ = fP (n + 1)− 1 by Lemma 4.2. ��

Theorem 4.4. The restriction of the productivity problem to stream specifica-
tions induced by Fractran programs and outermost-fair strategies is Π0

2-complete.

Proof. Since by Lemma 4.3 the uniform halting problem for Fractran programs
can be reduced to the problem here, Π0

2-hardness is a consequence of Theorem 2.2.
Π0

2-completeness follows from membership of the problem in Π0
2, which can be

established analogously as in the proof of Theorem 3.5. ��

Note that Theorem 4.4 also gives rise to an alternative proof for the Π0
2-hardness

part of Theorem 3.5, the result concerning the computational complexity of
productivity with respect to strategies.
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Abstract. We present Infinox, an automated tool for analyzing first-
order logic problems, aimed at showing finite unsatisfiability, i.e. the
absence of models with finite domains. Finite satisfiability is a semi-
decidable problem, which means that such a tool can never be complete.
Nevertheless, our hope is that Infinox be a complement to finite model
finders in practice. The implementation consists of several different proof
techniques for showing infinity of a set, each of which requires the iden-
tification of a function or a relation with particular properties. Infinox
enumerates candidates to such functions and relations, and subsequently
uses an automated theorem prover as a sub-procedure to try to prove
the resulting proof obligations. We have evaluated Infinox on the relevant
problems from the TPTP benchmark suite, with very promising results.

1 Introduction

Background and motivation. A typical situation where automated reasoning
tools for first-order logic are used is the following: A number of first-order proof
obligations are generated (either automatically or by a human), and need to be
validated by an automated theorem prover. An example of such a situation is
formal verification, where a list of proof obligations is generated from a model
of a system and a number of specifications.

Although the ultimate goal of such a project is to establish the validity of the
proof obligations, it is equally important to be able to disprove the obligations,
such that useful feedback can be provided and appropriate measures can be
taken.

In order to disprove first-order proof obligations, automated (counter-)model
finders can be used. Examples of such model finders are saturation-based model
finders (such as E [4] and SPASS [8]) and finite model finders (such as MACE
[3] and Paradox [1]). A problem with this approach is that, because of the semi-
decidability of first-order logic, for any choice of model finder, only a particular
class of models can be found. Thus, an undesirable gap is created by any com-
bination of a theorem prover and a model finder; there exist problems where
neither the theorem prover nor the model finder is able to give an answer (see
Fig. 1).

It is clear that the choice of model finder depends heavily on the kind of
application; for example, a finite model finder is useless on problems that are
satisfiable, but have no finite (counter-)models1.
1 By “finite model” we mean “model with a finite domain”.

R.A. Schmidt (Ed.): CADE 2009, LNAI 5663, pp. 388–403, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Decidability of sub-classes and the corresponding tools

Thus, we believe that it is desirable to have methods that for a given problem
can positively show that a given model finder can never find a model. Since finite
model finders are currently one of the most widely used tools for this purpose,
methods to disprove the existence of finite models are of particular interest.

The problem of showing that a given problem cannot have a finite model is
called finite unsatisfiability. Alas, as Trakhtenbrot showed [9], the problem of
finite satisfiability is semi-decidable, which means that we should never hope for
a complete solution to finite unsatisfiability, and thus the gap mentioned earlier
still exists (and will always exist). Nevertheless, we believe that methods that
solve this problem in practice are still possible and desirable to develop.

Other Applications. Other applications of a tool that is able to show finite
unsatisfiability are more direct. One example is group theory; some mathemati-
cians are interested in finding out if for certain given properties, there exist
finite groups. A finite model finder can positively establish the existence of such
groups, a tool for finite unsatisfiability can answer the question negatively.

Our Approach. We have built an automated tool, called Infinox, for showing
finite unsatisfiability of a given first-order theory. As far as we know, we are the
first to design and build a tool of this kind.

Based on a manually chosen proof principle, the tool generates a number of
candidate proof obligations, each of which implies the non-existence of a finite
model. An automated theorem-prover (with a time-out) is used on each such
candidate. If it succeeds, finite unsatisfiability is established; if it cannot prove
the validity of any of the candidates, the tool gives up.

Note that finite unsatisfiability means that if a model exists, its domain must
be infinite. We do not say anything about the actual existence of models. In
particular, any unsatisfiable theory is also finitely unsatisfiable.

Summary. The rest of the paper is organized as follows. In section 2 we introduce
a number of different proof principles for showing infinity of sets. In section 3, we
show how these principles are used in the implementation of our tool. In section
4 we present our experimental results and comparisons of the different methods.
Section 5 discusses future work, and section 6 concludes.
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2 Proof Principles for Showing Infinite Domains

In this section, we present several proof principles that can be used to show that
a given first-order theory T can only have models with infinite domains. Each
of these principles is later developed into an (automatic) algorithm, the details
of which are explained in the next section.

Each principle we present here is based on well-known methods for showing
that a given set D must be infinite. We adapt such a standard method to our
purpose by assuming that our theory T has a model, which consists of a domain
D and an interpretation I for each function and predicate symbol in the theory.

2.1 Functions That Are Injective and Not Surjective

Let us start with a simple example. Throughout the paper, we show examples
in clause-style, with capital letters (X , Y , Z, . . .) meaning universally quanti-
fied variables, and we assume that existentially quantified variables have been
skolemized.

Example 1. Consider the following theory T 1.

suc(X) �= 0 (1)
suc(X) = suc(Y ) ⇒ X = Y (2)

This theory is finitely unsatisfiable.

In order to realize why the theory T 1 cannot have a finite model consider the
following well-known lemma.

Lemma 1. Given a set D, if there exists a function f : D → D that is injective
and not surjective, then D must be infinite.

Since f is not surjective, there exists an a ∈ D such that f(x) �= a for any
x ∈ D. To show that D is infinite, we now construct the infinite sequence
a, f(a), f(f(a)), . . . , f i(a), . . .. Since f is injective, no two elements in the se-
quence can be equal to each other, because this would imply fk(a) = a for some
k > 0.

To connect the lemma to the example, we simply assume that there is a model
〈D, I〉 of the theory T 1. The interpretation for the symbol suc must be a function
I(suc) : D → D satisfying the axioms in T 1. According to axiom (2) this function
is injective, and according to axiom (1), this function is not surjective. Therefore,
the domain D must be infinite.

The proof principle used here is the basis for the first method presented in
section 3.

2.2 Generalizing Equality to Reflexive Relations

It is possible to generalize the above lemma, as the following variant on example
1 shows.
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Example 2. Consider the following theory T 2.

lte(X,X)
¬lte(suc(X), 0)

lte(suc(X), suc(Y )) ⇒ lte(X,Y )

This theory is finitely unsatisfiable.

To show that the theory T 2 cannot have finite models, we generalize lemma 1. The
key insight is that not all properties of equality are needed in order to construct
the infinite sequence in the proof of lemma 1.

Lemma 2. Given a set D, if there exists a function f : D → D and a reflexive
relation R ⊆ D ×D, such that f is injective w.r.t. R and not surjective w.r.t.
R, then D must be infinite.

A function f : D → D is injective w.r.t. a relation R iff. for all x and y ∈ D,
if R(f(x), f(y)) then also R(x, y). Similarly, a function f is surjective w.r.t. a
relation R iff. for all y ∈ D, there exists an x ∈ D such that R(f(x), y).

The proof of the lemma is very similar to the proof of lemma 1. Since f is not
surjective w.r.t. R, there exists an a ∈ D such that ¬R(f(x), a) for any x ∈ D.
We now construct the infinite sequence a, f(a), f(f(a)), . . . , f i(a), . . .. No two
elements in the sequence can be related to each other by R, because this would
imply R(fk(a), a) for some k > 0. And since R is reflexive, this means that no
two elements in the sequence can be equal to each other.

Here, to connect the lemma to the example, we again look at properties of
possible models 〈D, I〉 of the theory T 2. The symbol interpretations I(suc) and
I(lte) must respectively be a function and a relation that satisfy the conditions
of the lemma. Therefore, the domain D must be infinite for any model.

2.3 Functions That Are Surjective and Not Injective

There are other properties that functions can have that force infinity of models,
as the following example shows.

Example 3. In 1933, E.V. Huntington, presented the following axioms, as a basis
for boolean algebra:

plus(X,Y ) = plus(Y,X) (3)
plus(plus(X,Y ), Z) = plus(X, plus(Y, Z)) (4)

plus(neg(plus(neg(X), Y ))), neg(plus(neg(X), neg(Y )))) = X (5)

Huntington’s student Herbert Robbins conjectured that axiom (5) can be re-
placed with the following equation:

neg(plus(neg(plus(X,Y )), neg(plus(X, neg(Y ))))) = X (6)

Neither Huntington nor Robbins was able to find a proof or a counter-example,
a counter-example being a model of the theory T 3, consisting of the the axioms
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(3), (4), (5) of boolean algebra and the negation of Robbin’s conjecture (6). The
problem remained open until 1996, when EQP, an automated theorem prover
for equational logic, found a proof after eight days of computation [2]. Thus,
after great effort, (general) unsatisfiability of the theory T 3 was established. As
it turns out, showing finite unsatisfiability of this theory is much easier.

The theory T 3 does not contain any (obvious) functions represented by terms
from the signature that are injective but not surjective. However, we can find
functions with a different property.

Lemma 3. Given a set D, if there exists a function f : D → D, such that f is
surjective and not injective, then D must be infinite.

The proof goes as follows: Since f is surjective, there exist right-inverse functions
g (i.e. f(g(x)) = x for all x ∈ D). By construction, g must be injective. Also, g
cannot be surjective, because that would imply that g is also a left-inverse of f ,
and that f thus is injective. So, by applying lemma 1 to the function g, D must
be infinite.

It turns out to be easy to show that, for any model 〈D, I〉 of theory T 3, the
function I(neg) : D → D would have to be surjective but not injective, implying
that D must be infinite.

Unlike for the lemma about injective and non-surjective functions, there is no
obvious way to generalize equality to a more general relation in lemma 3. For
example, a reflexive relation is not enough, as shown by the following counter-
example:

Example 4. Consider the following theory T 4.

R(X,X)
R(f(g(X)), X)

R(f(a), c)
R(f(b), c)

a �= b

This theory is finitely satisfiable, even though f is a function that is surjective
and not injective w.r.t. the reflexive relation R.

2.4 Relations That Are Irreflexive, Transitive and Serial

The next proof principle we use in this paper only requires the existence of a
relation with certain properties.

Example 5. Consider the following theory T 5.

¬lt(X,X)
lt(X,Y ) ∧ lt(Y, Z) ⇒ lt(X,Z)

lt(X, suc(X))

This theory is finitely unsatisfiable.
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To realize why T 5 can not have finite models, consider the following lemma.

Lemma 4. Given a non-empty set D. If there exists a relation R : D×D, such
that R is irreflexive, transitive and serial, then D must be infinite.

A relation is serial if every point is related to some (other) point. To prove
the lemma, we can start in any point a0, and construct an infinite sequence
a0, a1, a2, . . . such that R(ai, ai+1) for all i ≥ 0, which we know we can do
because of seriality. Since R is transitive, we also know that R(ai, aj) for all
i < j. Because of irreflexivity, all ai must be different.

The lemma shows that for all models 〈D, I〉 of T 5, D must be infinite, because
I(lt) must be a relation on D ×D that is irreflexive, transitive and serial, and
D must be non-empty.

2.5 Infinite Subdomains

The following example shows how all proof principles we have seen up to now
can be generalized, leading to wider applicability.

Example 6. Consider the following theory T 6.

nat(0)
nat(X) ⇒ nat(suc(X))
nat(X) ⇒ suc(X) �= 0

nat(X) ∧ nat(Y ) ⇒ suc(X) = suc(Y ) ⇒ X = Y

This theory is finitely unsatisfiable.

In order to show infinity of a set, it is sufficient to show infinity of a subset. In
the example, none of the proof principles we have discussed so far are directly
applicable. But, given a model 〈D, I〉 of T 6, lemma 1 can be used to show
infinity of a subset of the domain D, namely the subset D′ = {x|I(nat)(x)}.
On the subset D′, I(suc) must be an injective, non-surjective function (but not
necessarily on the full domain D).

The subset generalization can be used to adapt any of the proof principles we
have seen in this section.

2.6 Summing Up

In this section, we have presented a number of proof principles for showing
infinity of a set, and how they can be applied to show that models of first-order
theories must be infinite. It turns out that these actually are all mathematically
equivalent. However, since we are interested in automating the process of showing
finite unsatisfiability, we are going to be forced to restrict the context in which
each principle can be applied, which leads to a range of complementary methods.

This list of chosen proof principles may seem, and indeed is, arbitrarily chosen.
There are many other proof principles that we could have added, or may add in
the future. We come back to this in section 5.
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3 Automating Finite Unsatisfiability

In this section, we show how the proof principles presented in the previous section
can be turned into the automated method that we have implemented in our tool
Infinox.

3.1 The Main Architecture

Our method works as follows. Given the choice of a proof principle, we have to
search for a function, a relation, or a combination thereof, with some desired
properties. For example, the second method from the previous section requires
us to find a function f and a relation R such that f is both injective and non-
surjective with respect to R.

The key idea behind realizing this as a implementable method, is that we
enumerate candidate combinations for these functions and relations (f,R), and
use an automated theorem prover (ATP) (in our case we chose E [4]) to try
to prove the desired properties (see figure 2). For example, using the second
method, the proof obligation we generate for a given theory T , and candidate
(f,R) is:

(
∧

T ) =⇒ (∀x. R(x, x))

∧ (∀xy. R(f(x), f(y)) ⇒ R(x, y))
∧ ¬(∀x∃y. R(f(x), y)

If the above formula can be proven, we know that the theory T cannot have any
finite models.

ATP systems are necessarily incomplete in the negative case, so in order to
use them as a sub-procedure, we need to set a time-out. The time-out needs to

Fig. 2. The architecture of the automated methods
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be long enough to produce meaningful results, and short enough to process the
relevant test cases within a reasonable time.

Using the key idea, moves us from mathematical reasoning about functions
and relations on the domain of the models, to automated reasoning about the
symbols in the theory, which is a syntactic process. Thus, we need to have a
syntactic representation for the functions and relations we are considering. A
natural choice is to use terms (with one variable X) to represent functions, and
literals (with two variables X and Y ) to represent relations.

Even though the lemmas in the previous section all can be read as if-and-only-
if, which suggests that a method based on them would be complete, the method
we actually implement is incomplete. The incompleteness stems from the fact
that we only consider functions, relations and subsets that can be syntactically
represented. This is the first (and main) choice we make in our implementation
where incompleteness is introduced.

3.2 Enumerating Functions and Relations

In the search for terms and literals that possess a certain property, the choice of
candidates is of utmost importance. In theory, there is an unbounded number
of possibilities that should be tested. In practice, in order to keep the process
managable, we restrict ourselves to a limited, finite subset of candidates. This is
the second choice that leads to incompleteness.

A suitable basis for candidate generation is the terms and literals that already
occur as subterms and literals in the theory. These provide a natural limitation,
and are intuitively more likely to match a specific pattern, compared to an
arbitrarily chosen term or literal.

We define the arity of a term or a literal to be the number of variable occur-
rences in the term or literal. For example, the term f(g(X), a) has arity 1, and
the literal P (f(X,Z)) has arity 2.

Simple Symbol Search. One basic enumeration method for terms that repre-
sent functions f is to take all subterms t(X) from the theory that have arity 1.
Similarly, enumerating literals that represent relations can be done by taking all
literals l(X,Y ) from the theory that have arity 2. (Variable occurrences other
than X or Y are appropriately renamed to either X or Y .)

Although this method works, it is very restrictive and can not solve many
problems (see section 4).

Greater Arities. We can augment the set of candidate terms and literals by
including the ones with greater arities, and using existential quantification to
quantify away the excessive variable occurrences to reduce the arity of the term
or the literal.

For example, when looking for a function with arity 1 that satisfies a property
φ, we might want to consider a term t(X,Y ) (containing two variable occur-
rences). The list of terms we consider in such a case is denoted t(∗, X), t(X, ∗)
and t(X,X). Here, ∗ means an existentially quantified variable, so that when
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we want to ask if the function represented by the term t(∗, X) satisfies φ, we
actually check:

∃A. φ[t(A,X)]

This idea can be generalized to terms and literals of greater arity. For example,
the terms we check when considering a term t(X,Y, Z) are t(X, ∗, ∗), t(∗, X, ∗),
t(∗, ∗, X), t(X,X, ∗), t(X, ∗, X), t(X,X, ∗), and t(X,X,X). Each ∗ occurrence
refers to a unique existentially quantified variable. For example, checking if
t(∗, ∗, X) satisfies φ amounts to checking:

∃AB. φ[t(A,B,X)]

This technique greatly improves the applicability of our methods.

3.3 Infinite Sub-domains

As explained in the previous section, any of our methods can be generalized by
searching for a subset of the domain that is infinite. Subsets can be syntactically
represented by literals with arity 1. Thus, the most general method based on in-
jective and non-surjective functions will have to find a combination of a function
f , a relation R and a subset S such that the right properties hold.

So far, we have implemented and evaluated the subset generalization only for
the method that looks for injective and non-surjective functions. To implement
this, we need to show the following property:

∀X. S(X) ⇒ S(f(X))
∧ ∀X. S(X) ⇒ R(X,X)
∧ ∀XY. S(X) ∧ S(Y ) ∧R(f(X), f(Y )) ⇒ R(X,Y )
∧ ¬(∀X. S(X) ⇒ ∃Y.S(Y ) ∧R(f(X), Y ))

In other words, we have to show that the subset S is closed under the function
f , and whenever we quantify in the requirements for reflexitivity, injectivity and
non-surjectivity, we do so only over the elements of the subset S.

3.4 Filtering

By blindly generating test cases, the search space grows very quickly. It is there-
fore desirable to filter out the combinations that, for some reason, are unsuitable.

For example, in the method that searches for injective and non-surjective
functions with respect to a relation, we can filter away all relations that are not
reflexive, before we even choose what function to combine it with. This reduces
the search space and makes a practical difference.

Similarly, when applying the above method to a subset of the domain, it is not
necessary to check all combinations of functions, relations and subsets. Instead,
we generate the candidate combinations in two steps; first, we collect all pairs of
functions f and subsets S, such that S is closed under f . Typically, only a few
subsets will be closed under some function, and thus a majority of the subsets



Automated Inference of Finite Unsatisfiability 397

will not be represented among these pairs. Second, we collect all pairs of relations
R and subsets S such that R is reflexive in S, for the S that are still left. In this
way, we reduce the candidate combinations to include only the triples (f,R, S)
where S is closed under f and R is reflexive in S.

3.5 Zooming

Often, it is not feasible to check all of the generated combinations of terms and
literals. The use of existential quantification extends the search space signifi-
cantly, making an exhaustive search impossible within a reasonable time limit.
This is especially the case for large theories containing many literals and sub-
terms.

Often, a very small subset of the axioms is responsible for the finite unsatisfia-
bility of the whole theory. We use a method that we call zooming to approximate
this subset. The aim is to be able to “zoom” in on the relevant part of the the-
ory, so that we only need to check the combinations of terms and literals found
in this smaller theory. In many cases, this significantly reduces the number of
candidate terms and literals to check. (We still use the whole theory to establish
the desired properties in the proving process.)

We start by creating a simple procedure to approximate if a given subtheory
is finitely satisfiable. We do this by using a finite model finder (in our case we
chose Paradox [1]); if we fail to find a finite model within a certain time limit,
we simply assume that there is no finite model for that subtheory.

Now, a given theory for which we have failed to find a finite model, can be
weakened by the removal of some of the axioms. If we cannot find a finite model
of this new theory, we can assume that the removed axioms were not responsible
for the absence of a finite model. We can continue removing axioms until we
reach a smallest axiom set for which a finite model cannot be found.

There are two risks involved using zooming. Firstly, it relies on the assumption
that if no finite model has been found within a set time limit, then no finite model
exists. Thus, we might zoom in on a part of the theory that does have a finite
model. The time limit used in the search for a finite model is thus a factor that
needs careful consideration! Secondly, we might successfully zoom in on a small
part of the theory without finite models, but it might be much harder to show
finite unsatisfiability for this subtheory. This typically happens when the original
theory belongs to the class of problems that Infinox can solve, but the subtheory
does not. Despite the risks involved, using zooming enables Infinox to solve a
large set of problems which would have been impossible to solve without.

4 Results

Infinox has been evaluated using problems from the TPTP Problem Library [6]
that we considered relevant. In this section, we will explain what problems we
chose, how Infinox performed overall on these problems, and how each of the
individual methods compared to the rest.
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4.1 Relevant Problems and Overall Results

To create the set of evaluation problems, we started with all problems from the
TPTP of April 2008. We excluded problems already identified as unsatisfiable,
since these are by definition finitely unsatisfiable. Problems identified as theo-
rems were also excluded, since these have unsatisfiable negations, and thus lack
counter-models. In the experimental evaluation, we also left out problems iden-
tified as satisfiable with known finite models, and countersatisfiable with known
finite countermodels, although we used these internally to test soundness.

The remaining 1272 problems have the following classification: Open (the ab-
stract problem has never been solved): 27 problems; Unknown (the problem has
never been solved by an ATP system): 1075 problems; Satisfiable (there exist
models of the axioms): 122 problems with no known finite model; and Counter-
satisfiable (there exist models of the negation of the conjecture): 48 problems
with no known finite counter-model.

The experiments were performed on a 2x Dual Core processor operating at 1
GHz, with a time-out of 15 minutes per proof method and problem, and a time-
out of two seconds for each call to E and Paradox. The exact proof methods
we used are listed in the next subsection. In total, Infinox classified 413 out of
the 1272 test problems as finitely unsatisfiable. (Note that the actual number of
the test problems that are finitely unsatisfiable is unknown!) The success rate is
thus at least 32%, divided over the following categories: Unknown: 388 (out of
1075); Open: 3 (out of 27); Satisfiable: 21 (out of 122); and CounterSatisfiable:
1 (out of 48).

4.2 Comparisons

Since there is no other tool similar to Infinox, there are no previous results to
compare with. Instead, we compare the performance of the different methods.
We are not only interested in the total number of successful tests of a method,
but also in what the given method contributes to the overall result; here we
are looking for the so-called State Of The Art Contributors (SOTAC) in the
terminology of CASC [5]; the methods that were able to classify problems that
no other method could.

For the purpose of readability, we introduce the following abbreviations for
the methods:

R. Search for functions that are injective and non-surjective w.r.t. a reflexive
relation.

RP. Search for functions that are injective and non-surjective w.r.t. a reflexive
relation, on a subdomain defined by a predicate.

SNI. Search for surjective and non-injective functions.
SR. Search for relations that are irreflexive, transitive and serial.

The letter “Z” appended to the above codes indicate the added use of zooming
to select test functions, relations and predicates.
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Zooming. We first investigate how zooming, as a way to select candidate func-
tions and relations, affects the result. The diagram below shows that zooming
significantly increases the ratio of classified problems. We compare the sets of
all problems classified by any of the listed methods, with and without the use of
zooming.

Using zooming, 318 additional problems are classified that could otherwise not
be classified within the time limit of 15 minutes. The zoomed versions fail on 41
out of the 95 problems that the plain methods classify successfully. The results
indicate that the use of zooming is in most cases preferrable. Still, its benefits
are not guaranteed, and it may be of value try the plain method when zooming
fails. As explained in section 3.5, a too short time-out setting for Paradox may
cause it to focus on the “wrong” sub-theory. On the other hand, with a too long
time-out, there might not be enough time to test all candidates.

Another interesting observation is that many problems with shared axiom sets
reduce to a common subset of axioms after zooming. When using zooming, it is
therefore necessary only to test one problem out of all problems that reduce to
the same “zoomed” theory. In this way, the number of tests performed involving
zooming could be reduced by over 75%.

Infinite Subsets. The next comparison involves the effect of using the infinite
subset principle. The diagram below shows how the use of subset predicates
affects the result. Since the subset principle has only been implemented for the
R method, we compare the set of problems classified by either of the methods
R and RZ with the set of problems classified by either of RP and RPZ.

We see that the intersection of the two sets is relatively small, and thus that
the two methods complement each other well. Ideally, they should be combined,
(which is easily done by adding the predicate p such that p(X) = true for all
X), however, combining several methods will generally require a longer global
time-out. The use of limiting predicates produced a somewhat better result,
with a total of 240 classified problems, compared to R and RZ, that classified
153 problems. Together, the two methods account for almost 90% of the total
number of classified problems.

Injective or Surjective Functions. The diagram below shows the contribu-
tion of the methods SNI and SNIZ to the overall result. In total, 69 problems are
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classified with these methods, out of which 39 were not classified by any other
method.

A reason that surjective and non-injective functions do not occur as frequently
as injective and non-surjective functions may be that we are limited to using
standard equality. With fewer test cases, we are less likely to come across a
term that fits our description. Another reason may be that the test problems
are initially constructed by people. It may be more intuitive to deal with a
certain kind of functions (injective and non-surjective) rather than the reverse
(non-injective and surjective), and thus these functions occur more frequently.

Serial Relations. In total SR and SRZ classify only 13 of the test problems.
Despite this, they classify 4 problems on which all other methods failed.

The reasons for the poor results of this method are unclear. Further generaliza-
tions of this method are desirable, possibly with longer time-outs for E. This
method should also be evaluated in combination with limiting predicates, which
is future work.

Reflexive Predicates. The added use of reflexive predicates as equality rela-
tion has shown to be a useful generalization. It accounts for 41 out of the 146
problems classified by RZ, and 13 out of the 235 problems classifed by RPZ.

Existentially Quantified Variables. Using existential quantification to gen-
erate terms and predicates has proved to be of major significance to the results.
In 104 out of the 146 problems classified by RZ, and 219 out of the 235 problems
classified by RPZ, the identified terms and/or predicates include variables that
are existentially quantified.

Summary. According to our results, the most successful of the described meth-
ods are the ones based on the search for functions that are injective and not
surjective, or surjective and not injective. Existential quantification has made a
major contribution to the results of all of the presented methods. While some
techniques have been more successful than others, all methods that we describe
here are SOTAC; they contribute to the overall result.
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5 Future Work

Naturally, since any automated solution to finite unsatisfiability will always be
incomplete, the room for improvement is without limit.

One possible enhancement to our methods is to refine the techniques of func-
tion and relation selection. One way in which this could be done is by introducing
new symbols with new axioms. For example, if it is known that a function f must
always have an inverse, one could introduce a new symbol finv, together with
axioms. The new symbol can then be used to construct more interesting terms.
For relations (and subsets) in particular, one could generalize the search from
literals to formulas with a boolean structure and even quantification.

In order to be able to manage complexity, with any extension of the search
space, limitations on the search space should also be introduced. Possible future
improvements include a more efficient and reliable zooming algorithm, and a
thorough analysis of what candidates are meaningful to test.

Another opportunity for improvement is the addition of new proof principles.
Related to this is our desire to generalize the existing ones into fewer, wider
applicable principles.

We are working on a domain-specific language to specify proof principles and
term and literal selection methods externally from the tool. This will allow users
to experiment with their own specialized principles.

Finally, we are also working on an extensive evaluation of each method,
something from which future implementations would benefit greatly. This kind
of information might for example be used to come up with a sensible auto-
matic strategy selection or orchestration. Part of this evaluation is an anal-
ysis of how the different time-outs should be balanced for the best possible
results. Right now, Infinox has three different time-out settings: The global
time-out (when does Infinox give up?), the theorem proving time-out (how
long time do we spend on each candidate?), and the finite model finder time-
out (used in zooming). Related to these is the choice of how many candidate
combinations do we check. Choosing these values is a delicate process that we
have not sufficiently mastered yet and something for which further study is
needed.

6 Conclusions

We have designed methods for automatic, but incomplete, detection of finite
unsatisfiability, and have implemented these methods in a tool called Infinox.
Our methods are a combination of a proof principle, which identifies properties
of a function (or a relation) that imply infinity of its domain, and a term selection
strategy which specifies what kinds of functions and relations we search for.

We have found 6 practically useful distinct proof principles, that turned out
to be complementary to each other. Also, each of these principles is a State Of
The Art Contributor when evaluated on the TPTP, although some more so than
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others. Furthermore, for the general success of the methods it turns out to be
important to use existential quantification to extend the search for functions and
relations, and to use zooming to limit the search.

Out of the relevant problems in the TPTP (the ones where it was not already
known whether or not a finite model exists), Infinox could automatically classify
over 32% as finitely unsatisfiable. Some of these were previously classified as
“Open” and many as “Unknown”, demonstrating that it is often easier to show
finite unsatisfiability than general unsatisfiability. One remarkable consequence
of Infinox is that “FinitelyUnsatisfiable” has now been added as a problem status
to the TSTP [7]. Since Infinox is the first tool of its kind, it is hard to compare
against alternative methods.

Limitations. Not surprisingly, there are many problems that are finitely un-
satisfiable where Infinox is incapable of giving an answer. These fall into three
different categories:

(1) Problems where we need to identify a function or a relation that cannot
be represented by a term or a literal. This limitation can be remedied (but
never fully) in two ways: (a) By extending the number of proof principles for
showing infinity; although mathematically these principles are all equivalent, in
practice there might be a term or a literal that fits one but not the other; (b) By
augmenting the representations for functions or literals, for example by some of
the methods mentioned in section 5.

(2) Problems where there exists a term or literal for the chosen proof principle,
but where this term is not among the set of candidates we try. The only remedy
here is to augment the set of candidates to try. However, augmenting the set
of candidates is often paired with a search space explosion that has to be dealt
with.

(3) Problems where we try the right term or literal for the chosen proof
principle, but where the theorem prover fails to validate the proof obligation.
This can be remedied by allowing more resources for the theorem prover, or by
trying different theorem provers.

Acknowledgments. We thank the anonymous referees for their helpful
comments.
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Abstract. Saturation-based calculi such as superposition can be suc-
cessfully instantiated to decision procedures for many decidable frag-
ments of first-order logic. In case of termination without generating
an empty clause, a saturated clause set implicitly represents a minimal
model for all clauses, based on the underlying term ordering of the super-
position calculus. In general, it is not decidable whether a ground atom,
a clause or even a formula holds in this minimal model of a satisfiable
saturated clause set.

We extend our superposition calculus for fixed domains with syntactic
disequality constraints in a non-equational setting. Based on this calcu-
lus, we present several new decidability results for validity in the minimal
model of a satisfiable finitely saturated clause set that in particular ex-
tend the decidability results known for ARM (Atomic Representations of
term Models) and DIG (Disjunctions of Implicit Generalizations) model
representations.

1 Introduction

Saturation-based calculi such as ordered resolution [2] or superposition [16] can
be successfully instantiated to decision procedures for many decidable fragments
of first-order logic [8,14,11]. Given a set N of clauses, saturation means the
exhaustive recursive application of all calculus inference rules up to redundancy
resulting in a potentially infinite clause set N∗. If the calculus is complete, either
N∗ contains the empty clause, meaning that N is unsatisfiable, or the set N∗

implicitly represents a unique minimal Herbrand model N∗
I produced by a model

generating operator out of N∗. The model generating operator is based on a
reduction ordering ≺ that is total on ground terms and also used to define the
redundancy notion and inference restrictions underlying a superposition calculus.

Given a model representation formalism for some clause set N , according
to [7,4], each model representation should ideally represent a unique single in-
terpretation, provide an atom test deciding ground atoms, support a formula
evaluation procedure deciding arbitrary formulae, and an algorithm deciding
equivalence of two model representations.

By definition, the superposition model generating operator produces a unique
minimal model N∗

I out of N∗ according to ≺. This satisfies the above uniqueness
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postulate. As first-order logic is semi-decidable, the saturated set N∗ may be in-
finite and hence decision procedures for properties of N∗

I are hard to find. Even if
N∗ is finite, any other properties like the ground atom test, formula evaluation,
and equivalence of models are still undecidable in general, showing the expres-
siveness of the saturation concept. For particular cases, more is known. The
atom test is decidable if N∗ is finite and all clauses Γ → Δ, s≈t ∈ N∗ are uni-
versally reductive, i.e., vars(Γ,Δ, t) ⊆ vars(s) and s is the strictly maximal term
in Γ → Δ, s≈t or a literal in Γ is selected [10]. This basically generalizes the well-
known decidability result of the word problem for convergent rewrite systems to
full clause representations. Even for a finite universally reductive clause set N∗,
clause evaluation (and therefore formula evaluation) and the model equivalence
of two such clause sets remain undecidable.

More specific resolution strategies produce forms of universally reductive sat-
urated clause sets with better decidability properties. An eager selection strategy
results in a hyper-resolution style saturation process where, starting with a Horn
clause set N , eventually all clauses contributing to the model N∗

I are positive
units. Such strategies decide, e.g., the clause classes VED and PVD [7,4]. The
positive unit clauses in N∗ represent so-called ARMs (Atomic Representations
of term Models). Saturations of resolution calculi with constraints [16,4] pro-
duce in a similar setting positive unit clauses with constraints. Restricted to
syntactic disequality constraints, the minimal model of the saturated clause set
can be represented as a DIG (Disjunctions of Implicit Generalizations). DIGs
generalize ARMs in that positive units may be further restricted by syntactic
disequations. In [9] it was shown that the expressive power of DIGs corresponds
to the one of so-called contexts used in the model evolution calculus [3] and that
the ground atom test as well as the clause evaluation test and the equivalence
test are decidable.

We extend the results of [9] for DIGs and ARMs to more expressive formulae
with quantifier alternations using saturation-based techniques. We first enhance
the non-equational part of our superposition calculus for fixed domains [12] with
syntactic disequations (Section 3). The result is an ordered resolution calculus
for fixed domains with syntactic disequations that is sound (Proposition 1) and
complete (Theorem 1). Given an ARM representation N∗, we show that

N∗
I |= ∀%x.∃%y.φ and N∗

I |= ∃%x.∀%y.φ

are both decidable, where φ is an arbitrary quantifier-free formula (Theorem 4).
For more expressive DIG representations N∗, we show among other results that

N∗
I |= ∀%x.∃%y.C and N∗

I |= ∃%x.∀%y.C′

are decidable for any clause C, and for any clause C′ in which no predicate
occurs both positively and negatively (Theorem 3). In order to cope with exis-
tential quantifiers in a minimal model semantics, we do not Skolemize but treat
existential quantifiers by additional constraints.

Missing proofs can be found in a technical report [13].
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2 Preliminaries

We build on the notions of [1,17] and shortly recall here the most important
concepts as well as the specific extensions needed for the new calculus.

Terms and Clauses. Let Σ = (P ,F) be a signature consisting of a finite set
P of predicate symbols of fixed arity and a finite set F of function symbols of
fixed arity, and let X ∪ V be an infinite set of variables such that X , V and
F are disjoint and V is finite. Elements of X are called universal variables and
denoted as x, y, z, and elements of V are called existential variables and denoted
as v, possibly indexed.

We denote by T (F , X ′) the set of all terms over F and X ′ ⊆ X ∪ V and by
T (F) the set of all ground terms over F . Throughout this article, we assume that
T (F) is non-empty. An equation or disequation is a multiset of two terms, usually
written as s�t or s ��t, respectively. A multiset s1�t1, . . . , sn�tn of equations is
often written as %s�%t. An atom over Σ is an expression of the form P (t1, . . . , tn),
where P ∈ P is a predicate symbol of arity n and t1, . . . , tn ∈ T (F , X) are terms.
To improve readability, atoms P (t1, . . . , tn) will often be denoted P (%t).

A clause is a pair of multisets of atoms, written Γ → Δ, interpreted as the
conjunction of all atoms in the antecedent Γ implying the disjunction of all atoms
in the succedent Δ. A clause is Horn if Δ contains at most one atom, and a unit
if Γ → Δ contains exactly one atom. The empty clause is denoted by �.

Constrained Clauses. A constraint α over Σ = (P ,F) (and V ) is a multiset
of equations v�t and disequations s ��t where v ∈ V and s, t ∈ T (F , X). We
denote the equations in α by α! and the disequations by α�!. We call α! the
positive part of α and say that α is positive if α = α!. A constraint is ground
if it does not contain any universal variables. A ground constraint is satisfiable
if (i) all of its equations are of the form v�t or t�t and (ii) it does not contain
a disequation of the form t ��t. This means that we interpret α as a conjunction
and � and �� as syntactic equality and disequality, respectively.

Let V = {v1, . . . , vn} with vi �= vj for i �= j. A constrained clause α ‖C
over Σ (and V ) consists of a constraint α and a clause C over Σ, such that
each vi appears exactly once in α and α! = v1�t1, . . . , vn�tn. The set of all
variables occurring in a constrained clause α ‖C is denoted by vars(α ‖C). A
constrained clause α ‖C is called ground if it does not contain any universal
variables, i.e. if vars(α ‖C) = V . We abbreviate α ‖C as α�! ‖C if vars(α!) ∩
(vars(α�!)∪vars(C)) = ∅ and no variable appears twice in α!. Such a constrained
clause is called unconstrained if α�! is empty. We regard clauses as a special case
of constrained clauses by identifying a clause C with ‖C.

Substitutions. A substitution σ is a map from X ∪ V to T (F , X) that acts as
the identity map on all but a finite number of variables. We (non-uniquely) write
σ : Y → Z if σ maps every variable in Y ⊆ X ∪ V to a term in Z ⊆ T (F , X)
and σ is the identity map on (X ∪ V ) \ Y . A substitution is identified with
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its extensions to terms, equations, atoms, and constrained clauses, where it is
applied to both constraint and clausal part.

The most general unifier of two terms s, t or two atoms A,B is denoted by
mgu(s, t) or mgu(A,B), respectively. If α1 and α2 are positive constraints of
the form α1 = v1�s1, . . . , vn�sn and α2 = v1�t1, . . . , vn�tn, then we write
mgu(α1, α2) for the most general simultaneous unifier of (s1, t1), . . . , (sn, tn).

Orderings. Any ordering≺ on atoms can be extended to clauses in the following
way. We consider clauses as multisets of occurrences of atoms. The occurrence of
an atom A in the antecedent is identified with the multiset {A,A}; the occurrence
of an atom A in the succedent is identified with the multiset {A}. Now we lift
≺ to atom occurrences as its multiset extension, and to clauses as the multiset
extension of this ordering on atom occurrences.

An occurrence of an atom A is maximal in a clause C if there is no occurrence
of an atom in C that is strictly greater with respect to ≺ than the occurrence of
A. It is strictly maximal in C if there is no other occurrence of an atom in C that
is greater than or equal to the occurrence of A with respect to ≺. Constrained
clauses are ordered by their clausal part, i.e. α ‖C ≺ β ‖D iff C ≺ D.1

Throughout this paper, we will assume a well-founded reduction ordering ≺
on atoms over Σ that is total on ground atoms.

Herbrand Interpretations. A Herbrand interpretation over the signature Σ
is a set of atoms over Σ. We recall from [1] the construction of the special Her-
brand interpretation NI derived from an unconstrained (and non-equational)
clause set N . If N is consistent and saturated with respect to a complete infer-
ence system (possibly using a literal selection function), then NI is a minimal
model of N with respect to set inclusion. Let ≺ be a well-founded reduction
ordering that is total on ground terms. We use induction on the clause order-
ing ≺ to define sets of atoms Prod(C), R(C) for ground clauses C over Σ. Let
Prod(C) = {A} (and we say that C produces A), if C = Γ → Δ,A is a ground
instance of a clause C′ ∈ N such that (i) no literal in Γ is selected, (ii) A
is a strictly maximal occurrence of an atom in C, (iii) A is not an element
of R(C), (iv) Γ ⊆ R(C), and (v) Δ ∩ R(C) = ∅. Otherwise Prod(C) = ∅.
In both cases, R(C) =

⋃
C�C′ Prod(C′). We define the interpretation NI as

NI =
⋃

C Prod(C). We will extend this construction of NI to constrained clauses
in Section 3.

Constrained Clause Sets and Their Models. Given a constrained clause
set N , a Herbrand interpretation M over Σ = (P ,F) is a model of N , written
M |= N , if and only if there is a substitution σ : V → T (F) such that for every
constrained clause α ‖C ∈ N and every substitution τ : vars(α ‖C)\V → T (F),

1 This ordering on constrained clauses differs from the one in [12]. Atoms there are
equational, requiring superposition into constraints and that constrained clauses
must also be ordered by their constraints. Constrained clauses here do not contain
equational atoms but only syntactic (dis-)equations, so this is not necessary.
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αστ being valid (i.e. satisfiable) implies that Cτ is true in M.2 If N is finite,
this is equivalent to the formula ∃%v.

∧
α ‖C∈N ∀%x.α → C being true in M, where

%x are the universal variables in α ‖C and � is interpreted as syntactic equality.3

N is Herbrand-satisfiable over Σ if it has a Herbrand model over Σ.
Let M and N be two (constrained or unconstrained) clause sets. We write

N |=Σ M if each Herbrand model of N over Σ is also a model of M , and we
write N |=Ind M if NI |= N and NI |= M .

Inferences, Redundancy and Derivations. An inference rule is a relation
on constrained clauses. Its elements are called inferences and written as

α1 ‖C1 . . . αk ‖Ck

α ‖C .
The constrained clauses α1 ‖C1, . . . , αk ‖Ck are called the premises and α ‖C
the conclusion of the inference. An inference calculus is a set of inference rules.

A ground constrained clause α ‖C is called redundant with respect to a
set N of constrained clauses if α is unsatisfiable or if there are ground in-
stances α1 ‖C1, . . . , αk ‖Ck of constrained clauses in N with satisfiable con-
straints and the common positive constraint part α!1 = . . . = α!k = α! such
that αi ‖Ci ≺ α ‖C for all i and C1, . . . , Ck |= C.4 A non-ground constrained
clause is redundant if all its ground instances are redundant.

Given an inference system, a ground inference is redundant with respect to
N if some premise is redundant, or if the conclusion is redundant, where the
maximal premise is used instead of the conclusion in the ordering constraint. A
non-ground inference is redundant if all its ground instances are redundant. A
constrained clause set N is saturated with respect to the inference system if each
inference with premises in N is redundant wrt. N .

A derivation is a finite or infinite sequence N0, N1, . . . of constrained clause
sets such that for each i, there is an inference with premises in Ni and conclusion
α ‖C that is not redundant wrt. Ni, such that Ni+1 = Ni∪{α ‖C}. A derivation
N0, N1, . . . is fair if every inference with premises in the constrained clause set
N∞ =

⋃
j

⋂
k≥j Nk is redundant with respect to

⋃
j Nj .

3 A Constrained Ordered Resolution Calculus

In [12], we introduced a superposition-based calculus to address the problem
whether N |=Σ ∀%x.∃%y.φ, where N is a set of unconstrained clauses and φ a
formula over Σ. There, both N and φ may contain equational atoms. The
basic idea is to express the negation ∃%x.∀%y.¬φ of the query as a constrained

2 When considering constrained clauses, the usual definition of the semantics of a
clause α ‖C (where all variables are universally quantified) in the literature is simply
the set of all ground instances Cσ such that σ is a solution of α (cf. [2,16]). This
definition does not meet our needs because we have existentially quantified variables,
and these interconnect all clauses in a given constrained clause set.

3 Finiteness of N is only required to ensure that the formula is also finite.
4 Note that |= and |=Σ agree on ground clauses.
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clause set N ′ where all constraints are positive and the constraint part en-
ables a special treatment of the existential variables without Skolemization.
For example, ∃x.∀y.¬P (x, y) corresponds to the constrained clause set N ′ =
{v�x ‖P (x, y) →}. If the saturation of N∪N ′ terminates, it is decidable whether
N ∪N ′ has a Herbrand model over Σ, i.e. whether N |=Σ ∀%x.∃%y.φ.

In our current setting with constrained clauses that contain only predicative
atoms, only two rules from the original calculus are needed. Extending these to
clauses with constraints containing both equations and disequations yields the
constrained ordered resolution calculus COR given by the following two inference
rules. The rules are defined with respect to a selection function that assigns to
each clause a possibly empty set of atom occurrences in its antecedent. Such
occurrences are called selected and every inference with this clause has to use a
selected atom.

Ordered Resolution:

α1 ‖Γ1 → Δ1, A1 α2 ‖Γ2, A2 → Δ2

(α1, α
�!
2 ‖Γ1, Γ2 → Δ1, Δ2)σ1σ2

where (i) σ1 = mgu(A1, A2), σ2 = mgu(α!1 σ1, α
!
2 σ1),5 (ii) no atom is se-

lected in Γ1 → Δ1, A1 and A1σ1σ2 strictly maximal in (Γ1 → Δ1, A1)σ1σ2,
and (iii) either A2 is selected in Γ2, A2 → Δ2, or no atom occurrence is
selected in Γ2, A2 → Δ2 and A2σ1σ2 is maximal in (Γ2, A2 → Δ2)σ1σ2.

Ordered Factoring:
α ‖Γ → Δ,A,A′

(α ‖Γ → Δ,A)σ

where (i) σ = mgu(A,A′) and (ii) no occurrence is selected in Γ → Δ,A,A′

and Aσ is maximal in (Γ → Δ,A,A′)σ.

Where not explicitly stated otherwise, we assume a selection function that selects
no occurrences at all.

We will now show that we can decide whether a finite constrained clause set
N that is saturated by COR has a Herbrand model over Σ and, if so, how to
construct such a model. As constrained clauses are an extension of unconstrained
clauses, the construction of a Herbrand model of N is strongly related to the
one from [1] for unconstrained clause sets as recalled in Section 2. The main
difference is that we now have to account for constraints before starting the
construction. To define a Herbrand interpretation NI of a set N of constrained
clauses over Σ, we proceed in two steps:

(1) Let V = {v1, . . . , vn} and let AN = {α | (α ‖�) ∈ N} be the set of all con-
straints of constrained clauses in N with empty clausal part. AN is covering

5 We unify α�
1 and α�

2 for efficiency reasons: Since equations are syntactic, if α�
1 and

α�
2 are not unifiable then any variable-free instance of α1, α2 is unsatisfiable anyway.
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(for Σ) if for every positive ground constraint β = %v�%t over Σ there is a
satisfiable ground instance α of a constraint in AN such that β = α!.

We define a constraint αN as follows: If AN is not covering, let αN =
%v�%t be a positive ground constraint that is not equal to the equational part
of any satisfiable ground instance of a constraint in AN .6 If AN is covering,
let αN be an arbitrary ground constraint. We will show that N is Herbrand-
unsatisfiable over Σ in this case.

(2) NI is defined as the Herbrand interpretation N ′
I associated to the (uncon-

strained) ground clause set

N ′ = {Cσ | (α ‖C) ∈ N and σ : vars(α ‖C) \ V → T (F)
and αNσ = α!σ and ασ is satisfiable} .

As an example consider the signature Σ = (∅, {0, s}), V = {v} and the two
constrained clause sets M = {v�0 ‖�, v�s(0) ‖�, v�s(s(0)) ‖�, . . .} and
N = {v�s(s(x)) ‖�}. Then AM is covering but AN is not, and we may choose
either {v�0} or {v�s(0)} for αN .

One easily sees that NI is independent of αN if all clauses in N are uncon-
strained. If moreover NI |= N , then NI one of the minimal models of N wrt. set
inclusion and we call NI the minimal model of N .

While it is well known how the second step in the construction of NI works,
it is not obvious that one can decide whether AN is covering and, if it is
not, effectively compute some αN . This is, however, possible for finite AN : Let
{x1, . . . , xm} ⊆ X be the set of universal variables appearing in AN . AN is cover-
ing if and only if the formula ∀x1, . . . , xm.

∧
α∈AN

¬α is satisfiable in T (F). Such
so-called disunification problems have been studied among others by Comon
and Lescanne [5], who gave a terminating algorithm that eliminates the uni-
versal quantifiers from this formula and transforms the initial problem into an
equivalent formula from which the set of solutions can easily be read off.

We will now show that Herbrand-satisfiability or unsatisfiability over Σ is
invariant under the application of inferences in COR and that a saturated con-
strained clause set N has a Herbrand model over Σ (namely NI) if and only if
AN is not covering.

Proposition 1 (Soundness). Let α ‖C be the conclusion of a COR inference
with premises in a set N of constrained clauses over Σ. Then N |=Σ N∪{α ‖C}.
As usual, the fairness of a derivation can be ensured by systematically adding
conclusions of non-redundant inferences, making these inferences redundant.

The following theorem relies on soundness, redundancy, and fairness rather
than on a concrete inference system. Hence its proof is exactly as in the un-
constrained case or in the case of the original fixed domain calculus (cf. [1,12]):

Proposition 2 (Saturation). Let N0, N1, . . . be a fair COR derivation. Then
the set N∗ =

⋃
j

⋂
k≥j Nk is saturated. N0 has a Herbrand model over Σ if and

only if N∗ does.
6 In contrast to [12], we do not have to impose any minimality requirements on αN .
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Now we express the Herbrand-satisfiability of N∗ over Σ in terms of the coverage
of AN∗ .

Proposition 3. Let N be a set of constrained clauses such that AN is covering.
Then N does not have any Herbrand model over Σ.

Proof. Let M be a Herbrand model of N over Σ = (P ,F). Then there is a
substitution σ : V → T (F) such that for every constrained clause α ‖C ∈ N
and every substitution τ : vars(α ‖C) \ V → T (F), if αστ is satisfiable then
M |= Cστ . Then the same holds for all constrained clauses α ‖� ∈ N . Since
M �|= �, this means that for all such constrained clauses and all τ , αστ is not
satisfiable, and so ασ is not satisfiable. Since every positive ground constraint
over Σ is of the form v1�v1σ, . . . , vn�vnσ for some substitution σ : V → T (F),
this means that AN is not covering. �

Proposition 4 (Σ-Completeness for Saturated Clause Sets). Let N be a
saturated set of constrained clauses over Σ such that AN is not covering for Σ.
Then NI |= N for any choice of αN .

Proof. Let αN = v1�t1, . . . , vn�tn and assume, contrary to the proposition, that
NI is not a model of N . Then there are α ‖C ∈ N and σ : vars(α ‖C) → T (F)
such that σ(vi) = ti for all i, ασ is satisfiable and NI �|= Cσ. Let Cσ be minimal
with these properties. We will refute this minimality. We proceed by a case
analysis of the position of selected or maximal literal occurrences in Cσ.

– Cσ does not contain any literal at all, i.e. C = �. Then the satisfiability of
ασ contradicts the choice of αN .

– C = Γ,A → Δ and Aσ is selected or Aσ is maximal and no literal is selected
in Cσ. Since NI �|= Cσ, we know that Aσ ∈ NI . The literal A must be
produced by a ground instance (β ‖Λ → Π,B)σ′ of a constrained clause in
N in which no literal is selected. Note that both ground constrained clauses
(α ‖C)σ and (β ‖Λ → Π,B)σ′ are not redundant with respect to N .

Because α!σ = β!σ′ = αNσ and because σ is a unifier of A and B, i.e.
an instance of σ1 := mgu(A,B), there is an inference by ordered resolution
as follows:

β ‖Λ → Π,B α ‖Γ,A → Δ

(α, β �! ‖Λ, Γ → Π,Δ)σ1σ2
σ2 = mgu(β�σ1, α

�σ1)

Looking at the ground instance δ ‖D = (α, β �! ‖Λ, Γ → Π,Δ)σ of the con-
clusion, we see that δ is satisfiable and NI �|= D.

On the other hand, as the inference is redundant, so is the constrained
clause δ ‖D, i.e. D follows from ground instances δ ‖Ci of constrained clauses
of N all of which are smaller than (α ‖C)σ. Because of the minimality of
Cσ, all Ci hold in NI . So NI |= D, which contradicts NI �|= D.

– C = Γ → Δ,A and Aσ is strictly maximal in Cσ. This is not possible,
since then either Cσ or a smaller clause must have produced Aσ, and hence
NI |= Cσ, which contradicts the choice of Cσ.



412 M. Horbach and C. Weidenbach

– No literal in C = Γ → Δ,A is selected and Aσ is maximal but not strictly
maximal in Cσ. Then Δ = Δ′, A′ such that A′σ = Aσ. So there is an infer-
ence by ordered factoring as follows:

α ‖Γ → Δ′, A,A′

(α ‖Γ → Δ′, A′)σ1
σ1 = mgu(s, s′)

As above, ασ is satisfiable and we can derive both NI |= (Γ → Δ′, A′)σ and
N �|= (Γ → Δ′, A′)σ, which is a contradiction. �

Combining Propositions 2, 3 and 4, we can conclude:

Theorem 1. Let N0, N1, . . . be a fair COR derivation. Then N∗ =
⋃

j

⋂
k≥j Nk

is saturated. Moreover, N0 has a Herbrand model over Σ if and only if AN∗ is
not covering.

4 Decidability of Model Equivalence and Formula
Entailment for DIGs

In Section 3, we showed how saturated sets of constrained clauses can be regarded
as (implicitly) representing certain Herbrand models. Other representations of
Herbrand models include sets of non-ground atoms or the more flexible so-called
disjunctions of implicit generalizations of Lassez and Marriott [15]. We show how
both types of representation can be seen as special cases of the representation
by saturated constrained clause sets.

Based on this view, we reprove that the equivalence of any given pair of
representations by disjunctions of implicit generalizations is decidable, and we
extend the known results on the decidability of clause and formula entailment
(cf. [9]). To do so, we translate a query M |= φ into a constrained clause set
that is Herbrand-unsatisfiable over a certain signature iff M |= φ holds. The
Herbrand-unsatisfiability can then be decided using the calculus COR.

Definition 1. An implicit generalization G over Σ is an expression of the form
A/{A1, . . . , An}, where A,A1, . . . , An are atoms over Σ. A set D of implicit
generalizations over Σ is called a DIG (disjunction of implicit generalizations).
A DIG D is called an atomic representation of a term model (ARM), if all
implicit generalizations in D are of the form A/{}.

The Herbrand model M({A/{A1, . . . , An}}) represented by a DIG consist-
ing of a single implicit generalization A/{A1, . . . , An} is exactly the set of all
atoms that are instances of the atom A but not of any Ai. The model M(D)
represented by a general DIG D = {G1, . . . , Gm} is the union of the models
M({G1}), . . . ,M({Gm}).

Example 1. Let D = {G1, G2} be a DIG over Σ = ({P}, {s, 0}), where 0 is a
constant, s is a unary function symbol, and the two implicit generalizations in
D are G1 = P (s(x), s(y))/{P (x, x)} and G2 = P (0, y)/{P (x, 0)}. The model
represented by D is M(D) = {P (t, t′) | t, t′ ∈ T ({s, 0}) and t �= t′ and t′ �= 0}.

Note that, without loss of generality, we may assume for each implicit general-
ization G = A/{A1, . . . , An} that all atoms A1, . . . , An are instances of A. If A
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is of the form P (%t), then we say that G is an implicit generalization over P . If
G1, . . . , Gn are implicit generalizations over P1, . . . , Pn, respectively, we say that
{G1, . . . , Gn} is a DIG over {P1, . . . , Pn}.

We will now translate each DIG D into a set R0(D) of constrained clauses
whose minimal model is M(D). The set R0(D) may also have other Herbrand
models, which means that in general |=Ind and |=Σ do not agree for R0(D).
Hence the calculus COR is not complete for M(D) based on R0(D) alone. We
use a predicate completion procedure that was proposed by Comon and Nieuwen-
huis [6] to enrich R0(D) by additional constrained clauses, such that the resulting
clause set R(D) has exactly one Herbrand model over the given signature.

In general, the completion procedure works as follows:7

(1) Let P be a predicate and let NP be a finite and saturated set of clauses over
Σ = (P ,F) such that all clauses in N are of the form Γ → Δ,P (%t), where
P (%t) is a strictly maximal literal occurrence. Combine all these clauses into
a single formula φP → P (%x) where

φP = ∃%y.
∨

Γ→Δ,P (�t)∈NP

(%x�%t ∧
∧

A∈Γ

A ∧
∧

B∈Δ

¬B) ,

the yi are the variables appearing in NP , and the xj are fresh variables.
(2) In the minimal model (NP )I , this formula is equivalent to ¬φP → ¬P (%x).

If all variables appearing in Γ → Δ,P (%t) also appear in P (%t), ¬φP can be
transformed using quantifier elimination [5] into an equivalent formula ψ
that does not contain any universal quantifiers. This quantifier elimination
procedure is the same that we used in Section 3 to decide the coverage of
constraint sets.

(3) This formula can in turn be written as a set N ′
P of constrained clauses. The

union NP ∪N ′
P is the completion of NP .

(4) If N is the union of several sets as in (1) defining different predicates, then
the completion of N is the union of N and all N ′

P , P ∈ P , where NP is the
set of all clauses in N having a strictly maximal literal P (%t).

Comon and Nieuwenhuis showed in [6, Lemma 47] that the minimal model of
a Herbrand-satisfiable unconstrained saturated clause set is also a model of its
completion. Moreover, the union of the original set and its conclusion has at
most one Herbrand-model over the given signature.8

Definition 2. For each DIG D, we define constrained clause sets R0(D) and
R(D) as follows. If D = {G1, . . . , Gn} is a DIG over {P}, let Ṗ1, P̌1, . . . Ṗn, P̌n

be fresh predicates. For each Gi, the predicate Ṗi will describe the left hand side
of Gi and serve as an over-approximation of P , and P̌i describes the right hand

7 For extended examples confer Example 2 later on.
8 In fact, the result by Comon and Nieuwenhuis requires that the input to the com-

pletion procedure is a Horn clause set. However, the proof is identical for clause sets
like R0(D) in which each clause contains a unique strictly maximal positive literal.
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side. For each implicit generalization Gi = P (%s)/{P (%s1), . . . , P (%sn)}, define an
auxiliary clause set R0(Gi) = {→Ṗi(%s), →P̌i(%s1), . . . , →P̌i(%sn)}. Then

R0(D) =
⋃

1≤i≤n

R0(Gi) ∪ {Ṗi(%x) → P̌i(%x), P (%x)} .

If D = D1 ∪ . . .∪Dm such that each Di is a DIG over a single predicate and Di

and Dj are DIGs over different predicates whenever i �= j, let

R0(D) = R0(D1) ∪ . . . ∪R0(Dm) .

We assume that fresh predicates are smaller wrt. ≺ than signature predicates
and that Ṗi ≺ Q̌j for all fresh predicates Ṗi and Q̌j. Finally, R(D) is defined as
the Comon-Nieuwenhuis completion of R0(D).

Note that each clause in R0(D) has a unique strictly maximal literal that is
positive. Hence R0(D) is saturated with respect to COR (with an empty selection
function) and (R0(D))I is a minimal Herbrand model of R0(D) over the extended
signature. Moreover, the completion procedure is really applicable to R0(D) and
the results of [6, Lemma 47] mentioned above apply here:

Lemma 1. Let D be a DIG over Σ = (P ,F) and let P ′ be the set of fresh
predicates in R0(D). Then R(D) has exactly one Herbrand model over Σ′ =
(P ∪ P ′,F), namely (R0(D))I .

Hence for every formula φ over Σ′, it holds that R(D) |=Ind φ′ iff R(D) |=Σ φ′

iff R(D) ∪ {¬φ} is Herbrand-unsatisfiable over Σ′.

Proposition 5 (Equivalence of D and R(D)). Let D be a DIG and let P (%t)
be a ground atom over Σ. Then M(D) |= P (%t) iff R(D) |=Σ P (%t).

Proof. Let D = {G1, . . . , Gm}. M(D) |= P (%t) holds iff there is a Gi such that
M({Gi}) |= P (%t). If we write Gi = P (%s)/{P (%s1), . . . , P (%sn)}, then this is equiv-
alent to P (%t) being an instance of P (%s) but not of any P (%sj). This is turn is
equivalent to R0({Gi}) |=Ind Ṗi(%t) and R0({Gi}) �|=Ind P̌i(%t). That this holds for
some i is equivalent to R0(D) |=Ind P (%t), or by Lemma 1 to R(D) |=Σ P (%t). �

Let us investigate the shape of the constrained clauses of R(D) more closely.
Consider first an implicit generalization G = P (%s)/{P (%s1), . . . , P (%sn)}. All con-
strained clauses in R0(G) are unconstrained units. The completion procedure
adds constrained unit clauses of the following forms:

α�! ‖ Ṗ (%t) →
α�! ‖ P̌ (%t) →

For a DIG D, R0(D) contains, in addition to clauses as just presented, only
clauses of the form Ṗ (%x) → P̌ (%x), P (%x), where P (%x) is the maximal literal oc-
currence. The only additional constrained clauses in R(D) come from the com-
pletion of signature predicates and are of the form

P (%x), P̌j1 (%x), . . . , P̌jm(%x) → Ṗjm+1(%x), . . . , Ṗjn(%x) ,
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where Ṗj1 , P̌j1 , . . . , Ṗjn , P̌jn are the fresh predicates introduced for P . Note that
all constrained non-unit clauses contain a unique literal that is maximal for all
instances of the constrained clause, namely P (%x).

Example 2. Consider the DIG D from Example 1. The sets R0(G1) and R0(G2)
consist of the following unconstrained clauses:

R0(G1) = {→ Ṗ1(s(x), s(y)), → P̌1(x, x)}
R0(G2) = {→ Ṗ2(0, y), → P̌2(x, 0)}

R0(D) additionally contains the unconstrained clauses

Ṗ1(x, y) → P̌1(x, y), P (x, y) and

Ṗ2(x, y) → P̌2(x, y), P (x, y) .

To compute R(D), we have to look at the sets of clauses defining the predicates
Ṗ1, Ṗ2, P̌1, P̌2, and P :

NṖ1
= {→ Ṗ1(s(x), s(y))} NP̌1

= {→ P̌1(x, x)}
NṖ2

= {→ Ṗ2(0, y)} NP̌2
= {→ P̌2(x, 0)}

NP = {Ṗ1(x, y) → P̌1(x, y), P (x, y) , Ṗ2(x, y) → P̌2(x, y), P (x, y)} .

The negation of Ṗ1 in the minimal model of R0(D) is obviously defined by
¬Ṗ1(x, y) ⇐⇒ ¬∃x′, y′.x�s(x′)∧y�s(y′). The quantifier elimination procedure
simplifies the right hand side to x�0 ∨ y�0. This results in the unconstrained
completion

N ′
Ṗ1

= {Ṗ1(0, y) →, Ṗ1(x, 0) →} .

Analogously, the negation of Ṗ1 in the minimal model of R0(D) is defined by
¬Ṗ1(x, y) ⇐⇒ x��y. The corresponding completion is not unconstrained:

N ′
P̌1

= {x��y ‖ P̌1(x, y) →}

Whenever the maximal literal of some input clause is non-linear, i.e. whenever a
variable appears twice in this literal, then such constraints consisting of disequa-
tions always appear. E.g. the completion of {→ Q(x, x, x)} adds the three clauses
x��y ‖Q(x, y, z) →, x��z ‖Q(x, y, z) →, and y ��z ‖Q(x, y, z) →. Such non-line-
arities are also the only reason for the appearance of constraint disequations.

The completions of Ṗ2 and P̌2 are computed analogously as

N ′
Ṗ2

= {Ṗ2(s(x), y) →} and

N ′
P̌2

= {P̌2(x, s(y)) →} .

For P , we have that ¬P (x, y) ⇐⇒ (¬Ṗ1(x, y)∨P̌1(x, y))∧(¬Ṗ2(x, y)∨P̌2(x, y)).
Rewriting the right hand side to its disjunctive normal form allows to translate
this definition into the following clause set:
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N ′
P = {P (x, y), P̌1(x, y), P̌2(x, y) → ,

P (x, y), P̌1(x, y) → Ṗ2(x, y) ,

P (x, y), P̌2(x, y) → Ṗ1(x, y) ,

P (x, y) → Ṗ1(x, y), Ṗ2(x, y)}

The set R(D) is then the union of R0(D) and all N ′
Q, Q ∈ {Ṗ1, Ṗ2, P̌1, P̌2, P}. �

Lemma 2. Let D be a DIG over Σ = (P ,F) and let P ′ be the set of fresh
predicates in R(D). Then the class of constrained clauses over (P ′,F) of the
following forms is closed under the inference rules of COR:
(1) α ‖C where C contains at most one literal
(2) α ‖ Ṗi(%t) → P̌i(%t)
(3) α ‖ P̌i1(%t), . . . , P̌ik

(%t), Ṗik+1(%t), . . . , Ṗil
(%t) → Ṗil+1(%t), . . . , Ṗim(%t)

where 0 ≤ k ≤ l ≤ m.
Moreover, the saturation of a finite set of such constrained clauses with COR
terminates.

Lemma 3. Let D be a DIG over Σ = (P ,F) and let P ′ be the set of fresh
predicates in R(D). If N is a set of constrained clauses over Σ containing at most
one literal each, then it is decidable whether R(D) ∪ N is Herbrand-satisfiable
over Σ′ = (P ∪ P ′,F).

Proof. Let M∗ be a saturation of M = R(D) ∪ N by the calculus COR. By
Theorem 1, Herbrand-unsatisfiability of M over Σ′ is equivalent to the coverage
of AM∗ , which is decidable if M∗ is finite.

To prove that M∗ is finite, we show that any derivation starting from M is fi-
nite. The only constrained clauses containing at least two literals and a predicate
symbol of P are of the form Ṗi(%x) → P (%x), P̌i(%x) or P (%x), P̌j1(%x), . . . , P̌jm(%x) →
Ṗjm+1(%x), . . . , Ṗjn(%x), where P ∈ P , Ṗj1 , P̌jn , . . . , Ṗjn , P̌jn ∈ P ′ are the fresh
predicates introduced for P , and P (%x) is the maximal literal occurrence in both
types of constrained clauses (cf. the remarks following Lemma 1). Since each in-
ference between constrained clauses containing predicate symbols of P reduces
the number of atoms featuring such a predicate, there are only finitely many
such inferences. The conclusion of an inference

‖ Ṗi(%x) → P (%x), P̌i(%x) ‖P (%x), P̌j1 (%x), . . . , P̌jm(%x) → Ṗjm+1(%x), . . . , Ṗjn(%x)

‖Γ → Δ

between two constrained clauses in R(D) using P ∈ P is a tautology (and
thus redundant), because either Ṗi(%x) or P̌i(%x) appears in both Γ and Δ. The
remaining derivable constrained clauses over (P ′, Σ) obey the restrictions of
Lemma 2, hence the saturation terminates.

With this preliminary work done, we can decide whether two DIGs represent the
same model:

Theorem 2 (DIG Equivalence). Equivalence of DIGs is decidable by satu-
ration with respect to COR.
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Proof. Let D,D′ be two DIGs. Because M(D) =
⋃

G∈DM({G}), and because
M(D) = M(D′) iff M(D) ⊆ M(D′) and M(D′) ⊆ M(D), it suffices to show
the decidability of M(D) ⊆M(D′) in the case where D consists of a single im-
plicit generalization G = P (%s)/{P (%sσ1), . . . , P (%sσn)}. Without loss of generality,
we assume that P (%s) and P (%sσ1), . . . , P (%sσn) do not share any variables.

Let x1, . . . , xm be the variables in P (%s) and let y1, . . . , yk be the variables in
P (%sσ1), . . . , P (%sσn). By Proposition 5,M(D) ⊆M(D′) holds iff R(D′) |=Σ P (%t)
for every atom P (%t) ∈M(D). Equivalently, R(D′)∪{∃%x.∀y.%x ��%xσ1∧. . .∧%x ��%xσn∧
¬P (%s)} does not have a Herbrand model over Σ, i.e. the same holds for the
constrained clause set R(D′) ∪ {%v�%x ‖P (s) →, %v�%xσ1 ‖�, . . . , %v�%xσn ‖�}.

By Lemma 3, this is decidable by means of the calculus COR. �

Example 3. The DIG D′ = {P (x, s(y))/P (s(x′), s(x′))} and the DIG D from
Examples 1 and 2 describe the same model. We only show thatM(D) ⊇M(D′).

Expressed as a satisfiability problem of constrained clauses, we have to check
whether R(D) ∪ {v1�x, v2�y ‖P (x, s(y)) →, v1�s(x′), v2�x′ ‖�} is Herbrand-
satisfiable over Σ. To do so, we saturate this set with respect to COR.

Since R(D) ∪ {v1�s(x′), v2�x′ ‖�} is saturated, all non-redundant infer-
ences use at least one descendant of v1�x, v2�y ‖P (x, s(y)) →. The following
constrained clauses can be derived. We index the new constrained clauses by
(0). . . (9). Each of these constrained clauses is derived from one clause in R(D)
(which is not given here) and another clause that is indicated by its index:

(0) v1�s(x′), v2�x′ ‖ �
(1) v1�x, v2�y ‖ P (x, s(y)) →
(2) v1�x, v2�y ‖ Ṗ1(x, s(y)) → P̌1(x, s(y)) derived from (1)
(3) v1�x, v2�y ‖ Ṗ2(x, s(y)) → P̌2(x, s(y)) derived from (1)
(4) v1�s(x), v2�y ‖ → P̌1(s(x), s(y)) derived from (2)
(5) v1�s(x), v2�y, x��s(y) ‖ Ṗ1(x, s(y)) → derived from (2)
(6) v1�x, v2�y, s(x)��s(y) ‖ � derived from (4) or (5)
(7) v1�0, v2�y ‖ → P̌2(0, s(y)) derived from (3)
(8) v1�x, v2�y ‖ Ṗ2(x, s(y)) → derived from (3)
(9) v1�0, v2�y ‖ � derived from (7) or (8)

No further non-redundant constrained clauses can be derived. The constraint
set {(v1�s(x′), v2�x′), (v1�s(x), v2�y, s(x)��s(y)), (v1�0, v2�y)} consisting of
the constraints of the constrained clauses (0), (6), and (9) is covering, which
means that the whole constrained clause set is Herbrand-unsatisfiable over Σ,
i.e. that M(D) ⊇M(D′). �

Apart from deciding equivalence of DIGs, we can decide for formulas from a
number of classes whether they are true in models represented by DIGs.

Theorem 3 (Decidability of DIG Formula Entailment). Let D be a DIG
and let φ be a quantifier-free formula over Σ with variables %x, %y. The following
problems are decidable:

(1) M(D) |= ∀%x.∃%y.φ is decidable if one of the following holds:
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(a) φ is a single clause
(b) φ is a conjunction of clauses of the form → Δ
(c) φ is a conjunction of clauses of the form Γ →
(d) φ is a conjunction of unit clauses where no predicate appears in both a

positive and a negative literal
(2) M(D) |= ∃%x.∀%y.φ is decidable if one of the following holds:

(a) φ is a conjunction of unit clauses
(b) φ is a conjunction of clauses of the form Γ →
(c) φ is a conjunction of clauses of the form → Δ
(d) φ is a clause where no predicate appears in both a positive and a negative

literal

Proof. We first consider the case (1a). Let Σ = (P ,F) and let P ′ be the set
of fresh predicates in R(D). Let C = A1, . . . , An → B1, . . . , Bm and let N =
{%v�%x ‖→ A1, . . . , %v�%x ‖→ An, %v�%x ‖B1 →, . . . , %v�%x ‖Bn →}. By Proposi-
tion 5, M(D) |= ∀%x.∃%y.C is equivalent to R(D) |=Ind ∀%x.∃%y.C. This in turn is
equivalent to the Herbrand-unsatisfiability of R(D)∪{∃%x.∀%y.¬C}, or equivalently
R(D) ∪N , over (P ∪ P ′,F). By Lemma 3, the latter is decidable.

The proofs for (1b)–(1d) are exactly analogous, using slight variations of
Lemma 3. The decidability of the problems (2a)–(2d) reduces to (1a)–(1d), re-
spectively, because M(D) |= ∃%x.∀%y.φ if and only if M(D) �|= ∀%x.∃%y.¬φ. �

The simple nature of atomic representations allows us to go one step further:

Theorem 4 (Decidability of ARM Formula Entailment). Let D be an
ARM over Σ and let φ be a quantifier-free formula over Σ with variables %x, %y.
It is decidable whether M(D) |= ∀%x.∃%y.φ and whether M(D) |= ∃%x.∀%y.φ.

Proof. We first show the decidability of M(D) |= ∀%x.∃%y.φ. Let Σ = (P ,F) and
let P ′ be the set of fresh predicates in R(D). We write ¬φ as an equivalent finite
set N¬φ of unconstrained clauses and set N = {(%v�%x ‖C) | C ∈ N¬φ}.

Each clause αi ‖Ci ∈ N is now separately narrowed using R(D), producing a
set Ni of constrained clauses. The simple structure of R(D) for ARMs guarantees
that this process terminates, and in particular that the set ANi of constraints of
empty clauses in Ni is finite. Because R(D) only has a single Herbrand model
over (P ∪P ′,F), Proposition 4 ensures that the union of the sets ANi is covering
iff M(D) �|= N¬φ, i.e. iff M(D) |= ∀%x.∃%y.φ.
M(D) |= ∃%x.∀%y.φ is decided analogously, without negating φ. �

5 Conclusion

We have extended the decidability results of [9] for ARMs to arbitrary formulas
with one quantifier alternation and for DIGs to several more restrictive formula
structures with one quantifier alternation.

Our approach has potential for further research. We restricted our attention to
a non-equational setting, whereas our initial fixed domain calculus [12] considers
equations as well. It is an open problem to what extend our results also hold in
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an equational setting. In [9], the finite and infinite (open) signature semantics for
DIGs was considered. Our results refer to the finite signature semantics where
actually only the signature symbols of a finite saturated set are considered in
the minimal model. It is not known what an infinite (further symbols) signature
semantics means to our approach. Finally, in [9] the question was raised what
happens if one considers more restrictive, e.g., linear DIGs. We know that lin-
ear DIGs require less effort in predicate completion but it is an open question
whether this has further effects on decidability (complexity) results.
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Abstract. We give a sound and complete tableau calculus for deciding the gen-
eral satisfiability problem of regular grammar logics with converse (REGc log-
ics). Tableaux of our calculus are defined as “and-or” graphs with global caching.
Our calculus extends the tableau calculus for regular grammar logics given by
Goré and Nguyen [11] by using a cut rule and existential automaton-modal oper-
ators to deal with converse. We use it to develop an EXPTIME (optimal) tableau
decision procedure for the general satisfiability problem of REGc logics. We
also briefly discuss optimizations for the procedure.

1 Introduction

Grammar logics were introduced by Fariñas del Cerro and Penttonen in [8] and have
been studied widely, e.g., in [2,4,6,11,23]. In [2], Baldoni et al. gave a prefixed tableau
calculus for grammar logics and used it to show that the general (uniform) satisfiabil-
ity problem1 of right linear grammar logics is decidable and the general satisfiability
problem of context-free grammar logics is undecidable. In [4], by using a transforma-
tion into the satisfiability problem of propositional dynamic logic (PDL), Demri proved
that the general satisfiability problem of regular grammar logics is EXPTIME-complete.
In [6], Demri and de Nivelle gave a translation of the satisfiability problem of grammar
logics with converse into the two-variable guarded fragment GF2 of first-order logic and
have shown that the general satisfiability problem of regular grammar logics with con-
verse is also EXPTIME-complete. In [11], Goré and Nguyen gave an EXPTIME tableau
decision procedure for the general satisfiability problem of regular grammar logics.

In this work we consider theorem proving in regular grammar logics with converse
(REGc logics). The class of these logics is large and contains many common and useful
modal logics. Here are some examples (see also [6]):

– All 15 basic monomodal logics obtained from K by adding an arbitrary combina-
tion of axioms D, T , B, 4, 5 are REGc logics.2 The multimodal versions of these
logics are also REGc logics.

� Supported by the MNiSW grants N N206 3982 33 and N N206 399334.
1 I.e., the specification of the logic is also given as an input of the problem.
2 See [6] for 10 of them. For the 5 remaining logics, use 〈σ〉� as global assumptions.

R.A. Schmidt (Ed.): CADE 2009, LNAI 5663, pp. 421–436, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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– The description logic SHI and its extension with complex role inclusion axioms
studied by Horrocks and Sattler in [18] are REGc logics. The whole class of reg-
ular grammar logics has also been studied, for example by Nguyen [23], as a class
of description logics. Note that the notion of complex role inclusion axiom given
in [18] is strictly less general than the notion of inclusion axiom (of the form
[σ]ϕ → [&1] . . . [&n]ϕ) of REGc logics. REGc can be treated as an extension
of the description logic SHI , which, when extended with number restrictions and
other concept constructors, would yield very expressive description logics.

– Regular modal logics of agent beliefs studied by Goré and Nguyen in [13] are
REGc logics. Those logics use only a simple form of axiom 5 for expressing neg-
ative introspection of single agents. Axioms of REGc can be used to express nega-
tive introspection of groups of agents.3 However, in contrast with the logics studied
in [13], cuts seem not eliminable for traditional (unlabeled) tableau calculi for the
whole class REGc.

There are two main approaches for theorem proving in modal logics: the direct ap-
proach, where one develops a theorem prover directly for the logic under consideration,
and the translation-based approach, where one translates the logic into some other logic
with developed proof techniques. The translation method proposed by Demri and de
Nivelle [6] for REGc logics is interesting from the theoretical point of view. It allows
one to establish the complexity and sheds new light on translation approach for modal
logics. On the other hand, as stated in [6], the direct approach has the advantage that
a specialized algorithm can make use of specific properties of the logic under consid-
eration, enabling optimizations that would not work in general.4 The direct approach
based on tableaux has been widely applied for modal logics [25,9,26,2,10,3], because
it allows many useful optimization techniques (see, e.g., [17,7,20]), some of which are
specific for tableaux.5

As far as we know, no tableau calculi have been developed for REGc logics. In
the preprint [5], Demri and de Nivelle gave (also) a translation of REGc logics into
CPDL (converse PDL). One can use that translation together with the tableau decision
procedure for CPDL given by De Giacomo and Massacci [3] for deciding REGc log-
ics. This method uses the translation approach and, additionally, has the disadvantage
that the formal decision procedure given in [3] for CPDL has non-optimal NEXPTIME

3 The general form ¬[σ1]ϕ → [σ2]¬[σ3]ϕ of axiom 5 can be expressed as [σ3]ψ → [σ1][σ2]ψ.
Here, σ1, σ2, and σ3 may represent groups of agents.

4 The first author has implemented a complexity-optimal tableau prover called TGC for the de-
scription logicALC with various optimizations (see Section 5.2). The prover can be extended
for deciding REGc logics in a natural way, using our calculus for REGc logics. Note that
complexity-optimal tableau decision procedures for EXPTIME modal/description logics are
very rare, and as far as we know and according to [1, page 26], no such procedures have
been implemented for REGc logics, CPDL, μ-calculus, or GF2. From our experience on op-
timizing TGC [20], sometimes a small modification may significantly increase or decrease the
performance of a prover. As a translation cannot be treated as a small modification, the direct
approach should not be neglected.

5 Not all optimization techniques proposed in [17,7,20] are particularly useful. Also, they cannot
be combined all together. But each of [17,7,20] proposes a number of specific good ideas for
optimizing tableau decision procedures.
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complexity. Although De Giacomo and Massacci [3] described also a transformation
of their NEXPTIME algorithm into an EXPTIME decision procedure for CPDL, the de-
scription is informal and unclear: the transformation is based on Pratt’s global caching
method formulated for PDL [25], but no global caching method has been formalized
and proved sound for labeled tableaux that allow modifying labels of ancestor nodes in
order to deal with converse.

In this work we develop a sound and complete tableau calculus for deciding the gen-
eral satisfiability problem of REGc logics. Our calculus is an extension of the tableau
calculus for regular grammar logics given by Goré and Nguyen in [11]. To deal with
converse, we use an analytic cut rule. Similarly as in [21,12], our cut rule is a kind
of “guessing the future” for nodes in traditional (unlabeled) tableaux. Besides, there is
a substantial difference comparing to [11]. Namely, while Goré and Nguyen introduced
only universal automaton-modal operators for regular grammar logics, using cuts to
deal with converse we have to use also existential automaton-modal operators. Conse-
quently, our calculus for REGc deals also with fulfilling “eventualities” (like operators
〈α∗〉 of PDL). For that we adopt the tableau method given by Pratt for PDL [25], but
with a more direct formulation. Our tableaux in REGc logics are “and-or” graphs con-
structed using traditional tableau rules and global caching. The idea of global caching
appeared in Pratt’s work [25] on PDL and has been formalized and proved sound by
Goré and Nguyen for traditional tableaux in a number of other modal and descrip-
tion logics [11,12,13,14]. Similarly as for PDL [25] but in contrast with [11,12,13,14],
checking satisfiability in REGc logics deals not only with the local consistency but also
with a global consistency property of the constructed “and-or” graph.

Using our calculus, we develop an EXPTIME (optimal) tableau decision procedure
for the general satisfiability problem of REGc logics, to which a number of useful
optimization techniques can be applied.

The rest of this paper is structured as follows. We give definitions for REGc logics
in Section 2, present our calculus in Section 3, prove its completeness in Section 4,
present our decision procedure and discuss optimizations for it in Section 5. Concluding
remarks are given in Section 6. Due to the lack of space, some proofs are presented only
in the full version [24] of this paper.

2 Preliminaries

2.1 Regular Semi-thue Systems

Let Σ+ be a finite set of symbols. For σ ∈ Σ+, we use σ to denote a fresh symbol,
called the converse of σ. We use notation Σ− = {σ | σ ∈ Σ+} and assume that

Σ− ∩ Σ+ = ∅. For & = σ ∈ Σ−, let &
def= σ. By an alphabet with converse we

understand Σ = Σ+ ∪Σ−.
A context-free semi-Thue system S overΣ consists of a set of context-free production

rules over alphabet Σ. So it is like a context free grammar, but it has no designated
start symbol and there is no distinction between terminal and non-terminal symbols.
We assume that for σ ∈ Σ, the word σ is derivable from σ by such a grammar. We
identify S with its set of production rules. We say that S is symmetric if, for every rule
σ → &1 . . . &k of S, the rule σ → &k . . . &1 also belongs to S.
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A context-free semi-Thue system S over Σ is called a regular semi-Thue system S
over Σ if, for every σ ∈ Σ, the set of words derivable from σ using the system is
a regular language over Σ. Similarly as in [6], we assume that any considered regular
semi-Thue system S is always given together with a mapping A that associates each
σ ∈ Σ with a finite automaton Aσ recognizing words derivable from σ using S. We call
A the mapping specifying the finite automata of S. Note that it is undecidable to check
whether a context-free semi-Thue system is regular since it is undecidable whether the
language generated by a linear grammar is regular [19].

Recall that a finite automaton A over alphabet Σ is a tuple 〈Σ,Q, I, δ, F 〉, where Q
is a finite set of states, I ⊆ Q is the set of initial states, δ ⊆ Q×Σ×Q is the transition
relation, and F ⊆ Q is the set of accepting states. A run of A on a word &1 . . . &k is
a finite sequence of states q0, q1, . . . , qk such that q0 ∈ I and δ(qi−1, &i, qi) holds for
every 1 ≤ i ≤ k. It is an accepting run if qk ∈ F . We say that A accepts a word w if
there exists an accepting run of A on w.

2.2 Regular Grammar Logics with Converse

Our language is based on a set Σ of modal indices, which is an alphabet with converse,
and a set Φ0 of propositions. Formulas of our primitive language are defined using the
following BNF grammar, with p ∈ Φ0 and σ ∈ Σ:

ϕ, ψ ::= � | ⊥ | p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ → ψ | [σ]ϕ | 〈σ〉ϕ

A formula is in negation normal form (NNF) if it does not contain → and uses ¬ only
before propositions. Every formula (of the primitive language) can be transformed to
an equivalent in NNF. By ϕ we denote the NNF of ¬ϕ.

A Kripke model is a tuple M = 〈W,R, h〉, where W is a non-empty set of possible
worlds, R is a function that maps each σ ∈ Σ to a binary relation Rσ on W (which is
called the accessibility relation for σ), and h is a function that maps each w ∈ W to
a set h(w) ⊆ Φ0 of propositions that are true at w. The structure is required to satisfy
the property that Rσ = R−σ = {(y, x) | (x, y) ∈ Rσ} for every σ ∈ Σ.

Given a Kripke model M = 〈W,R, h〉 and a world w ∈ W , the satisfaction rela-
tion |= is defined as usual for the classical connectives with two extra clauses for the
modalities as below:

M,w |= [σ]ϕ iff ∀v ∈W [Rσ(w, v)] implies M, v |= ϕ
M,w |= 〈σ〉ϕ iff ∃v ∈W [Rσ(w, v)] and M, v |= ϕ

We say that ϕ is satisfied at w in M (or M satisfies ϕ at w) if M,w |= ϕ. We say that
M satisfies a set X of formulas at w, denoted by M,w |= X , if M,w |= ϕ for all
ϕ ∈ X . We say that M validates X if M,w |= X for every world w of M .

Given two binary relations R1 and R2 over W , their relational composition

R1 ◦R2
def= {(x, y) | ∃z ∈W [R1(x, z) ∧ R2(z, y)]} is also a binary relation over W .

Let S be a symmetric regular semi-Thue system over Σ. The regular grammar logic
with converse corresponding to S, denoted by L(S), is characterized by the class of
admissible Kripke models M = 〈W,R, h〉 such that, for every rule σ → &1 . . . &k of S,
R�1 ◦ · · · ◦ R�k

⊆ Rσ. Such a structure is called an L-model, for L = L(S). We use
REGc to denote the class of regular grammar logics with converse.
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Let L be a REGc logic and X , Γ be finite sets of formulas. We say that X is L-
satisfiable w.r.t. the set Γ of global assumptions if there exists an L-model that validates
Γ and satisfies X at some possible world.

3 A Tableau Calculus for REGc

From now on, let S be a symmetric regular semi-Thue system over Σ, A be the mapping
specifying the finite automata of S, and L be the REGc logic corresponding to S. For
σ ∈ Σ, we write Aσ in the form 〈Σ,Qσ, Iσ, δσ, Fσ〉.

For the tableau calculus defined here we extend the primitive language with the aux-
iliary modal operators �σ , [Aσ, q] and 〈Aσ, q〉, where σ ∈ Σ and q is a state of Aσ .
In the extended language, if ϕ is a formula, then �σϕ, [Aσ, q]ϕ and 〈Aσ, q〉ϕ are also
formulas. The semantics of such formulas is defined as follows. Given a Kripke model
M = 〈W,R, h〉 and a world w ∈ W , define that

– M,w |= �σϕ if M,w |= [σ]ϕ;
– M,w |= [Aσ , q]ϕ (resp. M,w |= 〈Aσ, q〉ϕ) if M,wk |= ϕ for all (resp. some)

wk ∈ W such that there exist worlds w0 = w, w1, . . . , wk of M , with k ≥ 0, states
q0 = q, q1, . . . , qk of Aσ with qk ∈ Fσ , and a word &1 . . . &k over Σ such that
R�i(wi−1, wi) and δσ(qi−1, &i, qi) hold for all 1 ≤ i ≤ k.

The operators �σ and [Aσ, q] are universal modal operators, while 〈Aσ, q〉 is the exis-
tential modal operator dual to [Aσ, q]. Although �σϕ has the same semantics as [σ]ϕ,
the operator �σ behaves differently than [σ] in our calculus. The intuition of these aux-
iliary operators is as follows. Suppose that a word &1 . . . &n is derivable from σ using a
sequence of the rules of S, which may be arbitrarily long. Then R�1 ◦ · · · ◦ R�n ⊆ Rσ

holds for every L-model 〈W,R, h〉, and hence [σ]ϕ → [&1] . . . [&n]ϕ is L-valid for any
ϕ. So, having [σ]ϕ we may need to derive [&1] . . . [&n]ϕ. But n may be arbitrarily large
(as the sequence of applied production rules may be arbitrarily long) and the formula
may be too big. A solution for this problem is to use the finite automaton Aσ to con-
trol the behavior of [σ]. We treat [σ]ϕ as the conjunction of {[Aσ, q]ϕ | q ∈ Iσ}.
Having [Aσ, q]ϕ at a possible world u, if R�(u, v) and δσ(q, &, q′) hold then we can
add [Aσ, q

′]ϕ to v. We deal with this by deriving ��[Aσ, q
′]ϕ from [Aσ, q]ϕ when

δσ(q, &, q′) holds. We use �� here instead of [&] because the modal operator is needed
only for atomic &-transitions and we do not need to automatize �� as in the case of [&].6

Automaton-modal operators, especially universal ones, have previously been used, for
example, in [15,18,11,16,22].7

6 The operators �σ are introduced to simplify the rule (cut) given in Table 1 and make it more
intuitive. The use of �σ in the rules ([A]) and ([A]f ) is just for convenience. The rules ([A])
and ([A]f ) are eliminable (by modifying the rule (trans) appropriately).

7 We have tried to use universal modal operators indexed by a reversed finite automaton instead
of existential automaton-modal operators, but did not succeed with that. In the presence of
converse, the difficulty lies in that one can travel forward and backward along the skeleton
tree that unfolds the model under construction in an arbitrary way, making returns at different
possible worlds and continuing the travel from the current world many times before a final
return to the current world.
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For a set X of formulas, by psf(X) we denote the set of all formulas ϕ, ϕ of the
primitive language such that either ϕ ∈ X or ϕ is a subformula of some formula of X .
The closure clL(X) is defined as

clL(X) = psf(X) ∪ {[Aσ, q]ϕ,��[Aσ, q]ϕ, 〈Aσ , q〉ϕ,��〈Aσ, q〉ϕ, 〈&〉〈Aσ , q〉ϕ |
σ, & ∈ Σ, q ∈ Qσ, ϕ ∈ psf(X), and
([σ]ϕ ∈ psf(X) or [Aσ , q

′]ϕ ∈ X for some q′)}.

For σ ∈ Σ and q ∈ Qσ, define δσ(q) = {(&, q′) | (q, &, q′) ∈ δσ}.
Let X and Γ be finite sets of formulas in NNF of the primitive language. We define

now a tableau calculus CL for the problem of checking whether X is L-satisfiable w.r.t.
the set Γ of global assumptions.8

Tableau rules are written downwards, with a set of formulas above the line as the
premise and a number of sets of formulas below the line as the (possible) conclusions.
A k-ary tableau rule has k possible conclusions. A tableau rule is either an “or”-rule
or an “and”-rule. Possible conclusions of an “or”-rule are separated by ‘|’, while con-
clusions of an “and”-rule are separated/specified using ‘&’. If a rule is a unary rule or
an “and”-rule then its conclusions are “firm” and we ignore the word “possible”. An
“or”-rule has the meaning that, if the premise is L-satisfiable w.r.t. Γ then some of the
possible conclusions is also L-satisfiable w.r.t. Γ . On the other hand, an “and”-rule has
the meaning that, if the premise is L-satisfiable w.r.t. Γ then all of the conclusions are
also L-satisfiable w.r.t. Γ (possibly at different worlds of the model under construction).

We use Y to denote a set of formulas, and denote the set Y ∪ {ϕ} by Y, ϕ.
We define the tableau calculus CL w.r.t. a set Γ of global assumptions for the REGc

logic L to be the set of the tableau rules given in Table 1.
Notice that the premise of any rule among (∧), (∨), (aut), ([A]), ([A]f ), (cut) is a

subset of every possible conclusion of the rule. We assume that these rules are applica-
ble only when the premise is a proper subset of each of the possible conclusions. Such
rules are said to be monotonic.

The rule (trans) is the only “and”-rule and the only transitional rule. Instantiating
this rule, for example, to Y = {〈σ〉p, 〈σ〉q,�σr} and Γ = {s} we get two conclusions:
{p, r, s} and {q, r, s}. The other rules are “or”-rules, which are also called static rules.9

The intuition of the sorting of static/transitional is that the static rules keep us at the
same possible world of the model under construction, while each conclusion of the
transitional rule takes us to a new possible world.

For any rule of CL except (cut) and (trans), the distinguished formulas of the
premise are called the principal formulas of the rule. The principal formulas of the
rule (trans) are the formulas of the form 〈σ〉ϕ of the premise. The rule (cut) does not
have principal formulas.

The purpose of the restriction on the applicability of the rules (∧), (∨), (aut), ([A]),
([A]f ), (cut) is to guarantee that sequences of applications of static rules are always
finite. Note that none of the static rules creates a formula of the form 〈Aσ, q〉ϕ for the

8 We incorporate global assumptions in order to make a direct connection with description logic
(DL). The set of global assumptions plays the role of a TBox of DL. It is known that in some
DLs the TBox can be “internalized”, but the transformation approach is not practical.

9 Unary static rules can be treated either as “and”-rules or as “or”-rules.
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possible conclusions (provided that the premise is a subset of clL(X ∪Γ )). That is why
we do not make the rules (〈A〉) and (〈A〉f ) monotonic. The second reason of this is
that a formula of the form 〈Aσ, q〉ϕ must be “reduced” as a principal formula of (〈A〉)
or (〈A〉f ) because any one of the possible conclusions may play a key role in fulfilling
the eventuality expressed by the formula.

Table 1. Rules of the tableau calculus for REGc

(⊥0)
Y,⊥
⊥ (⊥)

Y, p,¬p

⊥

(∧)
Y, ϕ ∧ ψ

Y, ϕ ∧ ψ, ϕ, ψ
(∨)

Y, ϕ ∨ ψ

Y, ϕ ∨ ψ, ϕ | Y, ϕ ∨ ψ, ψ

(aut)
Y, [σ]ϕ

Y, [σ]ϕ, [Aσ, q1]ϕ, . . . , [Aσ, qk]ϕ
if Iσ = {q1, . . . , qk}

if δσ(q) = {(�1, q1), . . . , (�k, qk)} and q /∈ Fσ :

([A])
Y, [Aσ, q]ϕ

Y, [Aσ, q]ϕ, �	1 [Aσ, q1]ϕ, . . . , �	k [Aσ, qk]ϕ

(〈A〉) Y, 〈Aσ, q〉ϕ
Y, 〈�1〉〈Aσ, q1〉ϕ | . . . | Y, 〈�k〉〈Aσ, qk〉ϕ

if δσ(q) = {(�1, q1), . . . , (�k, qk)} and q ∈ Fσ :

([A]f )
Y, [Aσ, q]ϕ

Y, [Aσ, q]ϕ, �	1 [Aσ, q1]ϕ, . . . , �	k [Aσ, qk]ϕ, ϕ

(〈A〉f )
Y, 〈Aσ, q〉ϕ

Y, 〈�1〉〈Aσ, q1〉ϕ | . . . | Y, 〈�k〉〈Aσ, qk〉ϕ | Y, ϕ

(cut)
Y

Y, [Aσ, q]ϕ | Y, �	〈Aσ, q′〉ϕ

if Y contains a formula 〈�〉ψ, [Aσ, q′]ϕ belongs to clL(Y ∪ Γ ), and (q′, �, q) ∈ δσ

(trans)
Y

&{ ({ϕ} ∪ {ψ s.t. �σψ ∈ Y } ∪ Γ ) s.t. 〈σ〉ϕ ∈ Y }
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We assume the following preferences for the rules of CL: the rules (⊥0) and (⊥)
have the highest priority; unary static rules have a higher priority than non-unary static
rules; the rule (cut) has the lowest priority among static rules; all the static rules have
a higher priority than the transitional rule (trans).

An “and-or” graph for (X,Γ ) w.r.t. CL, also called a CL-tableau for (X,Γ ), is an
“and-or” graph defined as follows. The root of the graph has contents (i.e., is labeled by)
X∪Γ . For every node v of the graph, if a k-ary static rule δ is applicable to (the contents
of) v in the sense that an instance of δ has the contents of v as the premise and Z1, . . . ,
Zk as the possible conclusions, then choose such a rule accordingly to the preferences
and apply it to v to create k successors of v with contents Z1, . . . , Zk, respectively. If
the graph already contains a node with contents Zi then instead of creating a new node
with contents Zi as a successor of v we just connect v to that node. If no static rules but
the transitional rule (trans) is applicable to v then apply (trans) to v in a similar way,
where each edge (v, w) of the graph is caused by a principal formula of the application,
which is used as the label of the edge. If the rule applied to v is a static rule then v is
an “or”-node (as the rule is an “or”-rule). If the rule applied to v is the transitional rule
(trans) then v is an “and”-node (as (trans) is an “and”-rule). If no rule is applicable
to v then v is an end node. Note that each node is “expanded” only once (using one
rule). Also note that the graph is constructed using global caching [25,12,14] and each
of its nodes has unique contents. See [24] for an example of “and-or” graph.

Apart from monotonicity, notice also the other restrictions on the applicability
of (cut). Observe that, if L is essentially a regular grammar logic without converse
(in the sense that for every rule σ → &1 . . . &k of S either {σ, &1, . . . , &k} ⊆ Σ+ or
{σ, &1, . . . , &k} ⊆ Σ−) and the formulas of X ∪ Γ do not use modal indices from Σ−,
then the rule (cut) will never be used.

A marking of an “and-or” graph G is a subgraph G′ of G such that:

– The root of G is the root of G′.
– If v is a node of G′ and is an “or”-node of G then there exists at least one edge

(v, w) of G that is an edge of G′.
– If v is a node of G′ and is an “and”-node of G then every edge (v, w) of G is an

edge of G′.
– If (v, w) is an edge of G′ then v and w are nodes of G′.

Let G be an “and-or” graph for (X,Γ ) w.r.t. CL, G′ be a marking of G, v be a node
of G′, and 〈Aσ , q〉ϕ be a formula of the contents of v. A trace of 〈Aσ, q〉ϕ in G′ starting
from v is a sequence (v0, ϕ0), . . . , (vk, ϕk) such that:

– v0 = v and ϕ0 = 〈Aσ, q〉ϕ;
– for every 1 ≤ i ≤ k, (vi−1, vi) is an edge of G′;
– for every 1 ≤ i ≤ k, ϕi is a formula of the contents of vi such that:

• if ϕi−1 is not a principal formula of the tableau rule expanding vi−1 then the
rule must be a static rule and ϕi = ϕi−1,

• else if the rule is (〈A〉) or (〈A〉f ) then ϕi−1 is of the form 〈Aσ, q
′〉ϕ and ϕi is

the formula obtained from ϕi−1,
• else the rule is (trans), ϕi−1 is of the form 〈σ〉〈Aσ , q

′〉ϕ and is the label of
the edge (vi−1, vi) and ϕi = 〈Aσ, q

′〉ϕ.
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A trace (v0, ϕ0), . . . , (vk, ϕk) of 〈Aσ, q〉ϕ in G′ is called a �-realization in G′ for
〈Aσ, q〉ϕ at v0 if ϕk = ϕ.

A marking G′ of an “and-or” graph G is consistent if:

Local Consistency: G′ does not contain any node with contents {⊥};
Global Consistency: for every node v of G′, every formula of the form 〈Aσ, q〉ϕ of

the contents of v has a �-realization (starting from v) in G′.

Theorem 3.1 (Soundness and Completeness of CL). Let S be a symmetric regular
semi-Thue system over Σ, A be the mapping specifying the finite automata of S, and L
be the REGc logic corresponding to S. Let X and Γ be finite sets of formulas in NNF
of the primitive language, and G be an “and-or” graph for (X,Γ ) w.r.t. CL. Then X is
L-satisfiable w.r.t. the set Γ of global assumptions iff G has a consistent marking. �

The “only if” direction means soundness of CL, while the “if” direction means com-
pleteness of CL. See the full version [24] for the proof of soundness. The completeness
is proved by Lemma 4.2 given in the next section.

4 Proof of Completeness

We prove completeness of CL via model graphs. The technique has been used
in [26,10,21] for logics without induction rules (like the one of PDL). A model graph
is a tuple 〈W,R,H〉, where W is a set of nodes, R is a mapping that maps each σ ∈ Σ
to a binary relation Rσ on W , and H is a function that maps each node of W to a set
of formulas. We use model graphs merely as data structures, but we are interested in
“consistent” and “saturated” model graphs defined below.

Model graphs differ from “and-or” graphs in that a model graph contains only “and”-
nodes and its edges are labeled by accessibility relations. Roughly speaking, given an
“and-or” graph G with a consistent marking G′, to construct a model graph one can
stick together the nodes in a “saturation path” of a node of G′ to create a node for the
model graph. Details will be given later.

A trace of a formula 〈Aσ , q〉ϕ at a node in a model graph is defined analogously as
for the case of “and-or” graphs. Namely, given a model graph M = 〈W,R,H〉 and
a node v ∈ W , a trace of a formula 〈Aσ, q〉ϕ ∈ H(v) (starting from v) is a chain
(v0, ϕ0), . . . , (vk, ϕk) such that:

– v0 = v and ϕ0 = 〈Aσ, q〉ϕ;
– for every 1 ≤ i ≤ k, ϕi ∈ H(vi);
– for every 1 ≤ i ≤ k, if vi = vi−1 then:

• ϕi−1 is of the form 〈Aσ, q
′〉ϕ, and

• either ϕi = 〈&〉〈Aσ, q
′′〉ϕ for some & and q′′ such that δσ(q′, &, q′′)

• or ϕi = ϕ and q′ ∈ Fσ and i = k;
– for every 1 ≤ i ≤ k, if vi �= vi−1 then:

• ϕi−1 is of the form 〈&〉〈Aσ , q
′〉ϕ and ϕi = 〈Aσ, q

′〉ϕ and (vi−1, vi) ∈ R�.

A trace (v0, ϕ0), . . . , (vk, ϕk) of 〈Aσ , q〉ϕ in a model graph M is called a �-
realization for 〈Aσ, q〉ϕ at v0 if ϕk = ϕ.

Similarly as for markings of “and-or” graphs, we define that a model graph M =
〈W,R,H〉 is consistent if:
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Local Consistency: for every v ∈ W , H(v) contains neither ⊥ nor a clashing pair of
the form p, ¬p ;

Global Consistency: for every v ∈ W , every formula 〈Aσ, q〉ϕ of H(v) has a �-
realization (at v).

A model graphM = 〈W,R,H〉 is said to be CL-saturated if the following conditions
hold for every v ∈W :

– for every ϕ ∈ H(v):
• if ϕ = ψ ∧ ξ then {ψ, ξ} ⊂ H(v),
• if ϕ = ψ ∨ ξ then ψ ∈ H(v) or ξ ∈ H(v),
• if ϕ = 〈σ〉ψ then there exists w such that Rσ(v, w) and ψ ∈ H(w),
• if ϕ = [σ]ψ and Iσ = {q1, . . . , qk} then {[Aσ, q1]ψ, . . . , [Aσ, qk]ψ} ⊂ H(v),
• if ϕ = [Aσ, q]ψ and δσ(q) = {(&1, q1), . . . , (&k, qk)} then

{��1 [Aσ, q1]ψ, . . . , ��k
[Aσ, qk]ψ} ⊂ H(v),

• if ϕ = [Aσ, q]ψ and q ∈ Fσ then ψ ∈ H(v),
• if ϕ = �σψ and Rσ(v, w) holds then ψ ∈ H(w);

– if R�(v, w) holds and [Aσ, q
′]ϕ ∈ H(w) and (q′, &, q) ∈ δσ then [Aσ, q]ϕ ∈ H(v)

or ��〈Aσ, q
′〉ϕ ∈ H(v).

The last condition corresponds to the rule (cut). As shown in [24], it can be strength-
ened to “if R�(v, w) and [Aσ, q

′]ϕ ∈ H(w) and (q′, &, q) ∈ δσ then [Aσ, q]ϕ ∈ H(v)”.
Given a model graph M = 〈W,R,H〉, the L-model corresponding to M is the

Kripke model M ′ = 〈W,R′, h〉 such that:

– h(w) = {p ∈ Φ0 | p ∈ H(w)} for w ∈ W , and
– R′σ for σ ∈ Σ are the smallest binary relations on W such that:

• Rσ ⊆ R′σ and R′σ = (R′σ)− for every σ ∈ Σ, and
• if σ → &1 . . . &k ∈ S, where S is the symmetric regular semi-Thue system of

L, then R′�1
◦ · · · ◦R′�k

⊆ R′σ .

Lemma 4.1. Let X and Γ be finite sets of formulas in NNF of the primitive language,
and let M = 〈W,R,H〉 be a consistent and CL-saturated model graph such that
Γ ⊆ H(w) for all w ∈ W and X ⊆ H(τ) for some τ ∈ W . Then the L-model
M ′ corresponding to M validates Γ and satisfies X at τ .

See the full version [24] for the proof of this lemma.
Let G′ be a consistent marking of an “and-or” graph and let v be a node of G′.

A saturation path of v w.r.t. G′ is a finite sequence v0 = v, v1, . . . , vk of nodes of G′,
with k ≥ 0, such that, for every 0 ≤ i < k, vi is an “or”-node and (vi, vi+1) is an edge
of G′, and vk is an “and”-node. Observe that such a saturation path exists.

Lemma 4.2 (Completeness). Let X and Γ be finite sets of formulas in NNF of the
primitive language, G be an “and-or” graph for (X,Γ ) w.r.t. CL. Suppose that G has
a consistent marking G′. Then X is L-satisfiable w.r.t. the set Γ of global assumptions.

Proof. We construct a model graph M = 〈W,R,H〉 as follows:
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1. Let v0 be the root of G′ and v0, . . . , vk be a saturation path of v0 w.r.t. G′. Set
Rσ = ∅ for all σ ∈ Σ and set W = {τ}, where τ is a new node. Set H(τ) to
the sum of the contents of all v0, . . . , vk. Mark τ as unresolved and set f(τ) = vk.
(Each node of M will be marked either as unresolved or as resolved, and f will
map each node of M to an “and”-node of G′.)

2. While W contains unresolved nodes, take one unresolved node w0 and do:

(a) For every formula 〈&〉ϕ ∈ H(w0) do:

i. Let ϕ0 = 〈&〉ϕ and ϕ1 = ϕ.
ii. Let u0 = f(w0) and let u1 be the node of G′ such that the edge (u0, u1) is

labeled by ϕ0. (As a maintained property of f , ϕ0 belongs to the contents
of u0, and hence ϕ1 belongs to the contents of u1.)

iii. If ϕ is of the form 〈Aσ, q〉ψ then:

A. Let (u1, ϕ1), . . . , (ul, ϕl) be a �-realization in G′ for ϕ1 at u1.
B. Let ul, . . . , um be a saturation path of ul w.r.t. G′.

iv. Else let u1, . . . , um be a saturation path of u1 w.r.t. G′.
v. Let j0 = 0 < j1 < . . . < jn−1 < jn = m be all the indices such

that, for 0 ≤ j ≤ m, uj is an “and”-node of G iff j ∈ {j0, . . . , jn}. For
0 ≤ s ≤ n− 1, let 〈&s〉ϕjs+1 be the label of the edge (ujs , ujs+1) of G′.
(We have that &0 = &.)

vi. For 1 ≤ s ≤ n do:

A. Let Zs be the sum of the contents of the nodes ujs−1+1, . . . , ujs .
B. If there does not exist ws ∈ W such that H(ws) = Zs then: add

a new node ws to W , set H(ws) = Zs, mark ws as unresolved, and
set f(ws) = ujs .

C. Add the pair (ws−1, ws) to R�s−1 .

(b) Mark w0 as resolved.

As H is a one-to-one function and H(w) of each w ∈ W is a subset of the closure
clL(X ∪ Γ ), the above construction terminates and results in a finite model graph.

Observe that, in the above construction we transform the chain u0, . . . , um of nodes
of G′ to a chain w0, . . . , wn of nodes of M by sticking together nodes in every maximal
saturation path. Hence, M is CL-saturated and satisfies the local consistency property.
For w′0 ∈ W and 〈Aσ, q

′〉ψ ∈ H(w′0), the formula has a trace of length 2, whose
second pair is either (w′0, ψ) or (w0, 〈&〉〈Aσ , q〉ψ) for some w0, &, q. This together
with Step 2(a)iiiA implies that M satisfies the global consistency property. Hence, M
is a consistent and CL-saturated model graph.

Consider Step 1 of the construction. As the contents of v0 are X ∪ Γ , we have
that X ⊆ H(τ) and Γ ⊆ H(τ). Consider Step 2(a)vi of the construction, as ujs−1 is
an “and”-node and ujs−1+1 is a successor of ujs−1 that is created by the transitional
rule, the contents of ujs−1+1 contain Γ . Hence Γ ⊆ H(ws) for every ws ∈ W . By
Lemma 4.1, the Kripke model corresponding to M validates Γ and satisfies X at τ .
Hence, X is L-satisfiable w.r.t. Γ . �
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5 An ExpTime Tableau Decision Procedure for REGc

In this section, we present a simple EXPTIME tableau algorithm for checking L-
satisfiability of a given set X of formulas w.r.t. a given set Γ of global assumptions.
We also briefly discuss optimizations for the algorithm.

5.1 The Basic Algorithm

Let X and Γ be finite sets of formulas in NNF of the primitive language, G be an “and-
or” graph for (X,Γ ) w.r.t. CL, and G′ be a marking of G. The graph Gt of traces of G′

in G is defined as follows:

– nodes of Gt are pairs (v, ϕ), where v is a node of G and ϕ is a formula of the
contents of v,

– a pair ((v, ϕ), (w,ψ)) is an edge of Gt if v is a node of G′, ϕ is of the form 〈Aσ, q〉ξ
or 〈&〉〈Aσ , q〉ξ, and the sequence (v, ϕ), (w,ψ) is a fragment of a trace in G′.

A node (v, ϕ) of Gt is an end node if ϕ is a formula of the primitive language. A node
of Gt is productive if there is a path connecting it to an end node.

In Figure 1 we present Algorithm 1 for checking L-satisfiability of X w.r.t. Γ . The
algorithm starts by constructing an “and-or” graph G, with root v0, for (X,Γ ) w.r.t.
CL. After that it collects the nodes of G whose contents are L-unsatisfiable w.r.t. Γ .
Such nodes are said to be unsat and kept in the set UnsatNodes. Initially, if G con-
tains a node with contents {⊥} then the node is unsat. When a node or a number
of nodes become unsat, the algorithm propagates the status unsat backwards through
the “and-or” graph using the procedure updateUnsatNodes presented in Figure 1.
This procedure has property that, after calling it if the root v0 of G does not belong
to UnsatNodes then the maximal subgraph of G without nodes from UnsatNodes,
denoted by G′, is a marking of G. After each calling of updateUnsatNodes, the algo-
rithm finds the nodes of G′ that make the marking not satisfying the global consistency
property. Such a task is done by creating the graph Gt of traces of G′ in G and find-
ing nodes v of G′ such that the contents of v contain a formula of the form 〈Aσ, q〉ϕ
but (v, 〈Aσ , q〉ϕ) is not a productive node of Gt. If the set V of such nodes is empty
then G′ is a consistent marking (provided that v0 /∈ UnsatNodes) and the algorithm
stops with a positive answer. Otherwise, V is used to update UnsatNodes by calling
updateUnsatNodes(G,UnsatNodes, V ). After that call, if v0 ∈ UnsatNodes then
the algorithm stops with a negative answer, else the algorithm repeats the loop of col-
lecting unsat nodes. Note that we can construct Gt only the first time and update it
appropriately each time when UnsatNodes is changed.

Theorem 5.1. Let S be a symmetric regular semi-Thue system over Σ, A be the map-
ping specifying the finite automata of S, and L be the REGc logic corresponding to
S. Let X and Γ be finite sets of formulas in NNF of the primitive language. Then Al-
gorithm 1 is an EXPTIME decision procedure for checking whether X is L-satisfiable
w.r.t. the set Γ of global assumptions.

Proof (sketch). It is easy to show that the algorithm has the invariant that a consistent
marking of G cannot contain any node of UnsatNodes. The algorithm returns false
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Algorithm 1
Input: finite sets X and Γ of formulas in NNF of the primitive language,

the mapping A specifying the finite automata of the symmetric
regular semi-Thue system of the considered REGc logic L.

Output: true if X is L-satisfiable w.r.t. Γ , and false otherwise.

1. construct an “and-or” graph G, with root v0, for (X, Γ ) w.r.t. CL;
2. UnsatNodes := ∅;
3. if G contains a node v with contents {⊥} then

updateUnsatNodes(G,UnsatNodes, {v});
4. if v0 ∈ UnsatNodes then return false;
5. let G′ be the maximal subgraph of G without nodes from UnsatNodes;

(we have that G′ is a marking of G)
6. construct the graph Gt of traces of G′ in G;
7. while v0 /∈ UnsatNodes do:

(a) let V be the set of all nodes v of G′ such that the contents of v contain
a formula of the form 〈Aσ, q〉ϕ but (v, 〈Aσ, q〉ϕ) is not a productive node
of Gt;

(b) if V = ∅ then return true;
(c) updateUnsatNodes(G,UnsatNodes, V );
(d) if v0 ∈ UnsatNodes then return false;
(e) let G′ be the maximal subgraph of G without nodes from UnsatNodes;

(we have that G′ is a marking of G)
(f) update Gt to the graph of traces of G′ in G;

Procedure updateUnsatNodes(G,UnsatNodes, V )
Input: an “and-or” graph G and sets UnsatNodes, V of nodes of G,

where V contains new unsat nodes.
Output: a new set UnsatNodes.

1. UnsatNodes := UnsatNodes ∪ V ;
2. while V is not empty do:

(a) remove a node v from V ;
(b) for every father node u of v, if u /∈ UnsatNodes and either u is an

“and”-node or u is an “or”-node and all the successor nodes of u belong to
UnsatNodes then add u to both UnsatNodes and V ;

Fig. 1. An algorithm for checking L-satisfiability of X w.r.t. Γ

only when the root v0 belongs to UnsatNodes, i.e., only when G does not have any
consistent marking. At Step 7b, G′ is a marking of G that satisfies the local consistency
property. If at that step V = ∅ then it satisfies also the global consistency property and
is thus a consistent marking of G. That is, the algorithm returns true only when G has
a consistent marking. Therefore, by Theorem 3.1, Algorithm 1 is a decision procedure
for the considered problem. See [24] for a complexity analysis of the algorithm (for a
sketch of which, just note that the “and-or” graph is constructed using global caching,
and the contents of each node are a subset of clL(X ∪ Γ )). �
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5.2 Optimizations

Observe that Algorithm 1 first constructs an “and-or” graph and then checks whether
the graph contains a consistent marking. To speed up the performance these two tasks
can be done concurrently. For this we update the structures UnsatNodes, G′, Gt of the
algorithm “on-the-fly” during the construction of G. The main changes are as follows:

– During the construction of the “and-or” graph G, each node of G has status un-
expanded, expanded, unsat or sat. The initial status of a new node is unexpanded.
When a node is expanded, we change its status to expanded. The status of a node
changes to unsat (resp. sat) when there is an evidence that the contents of the node
are unsatisfiable (resp. satisfiable) w.r.t. Γ . When a node becomes unsat, we insert
it into the set UnsatNodes.

– When a node of G is expanded or G′ is modified, we update Gt appropriately.
– When a new node is created, if its contents contain ⊥ or a clashing pair ϕ, ϕ then

we change the status of the node to unsat. This is the implicit application of the
rule (⊥0) and a generalized form of the rule (⊥). Thus, we can drop the explicit
rules (⊥0) and (⊥). When a non-empty set V of nodes of G becomes unsat, we
call updateUnsatNodes(G,UnsatNodes, V ) to update the set UnsatNodes.

– When UnsatNodes is modified, we update G′ appropriately.
– Since Gt is not completed during the construction, when computing the set V

of nodes of G′ that cause G′ not satisfying the global consistency property as in
Step 7a of Algorithm 1 we treat a node (v, ϕ) of Gt also as an end-node if v has
status unexpanded or sat.10 We compute such a set V occasionally, accordingly to
some criteria, and when Gt has been completed. The computation is done by propa-
gating “productiveness” backward through the graph Gt. The nodes of the resulting
V become unsat .

During the construction of the “and-or” graph G, if a subgraph of G has been fully
expanded in the sense that none of its nodes has status unexpanded or has a descendant
node with status unexpanded then each node of the subgraph can be determined to be
unsat or sat regardlessly of the rest of G. That is, if a node of the subgraph cannot be
determined to be unsat by the operations described in the above list then we can set its
status to sat . This technique was proposed in [20].

Recently, the first author has implemented a tableau prover called TGC (Tableau
with Global Caching) [20] for checking consistency of a concept w.r.t. a TBox in the
description logicALC. He has developed and implemented for TGC a special set of op-
timizations that co-operates very well with global caching and various search strategies
on search spaces of the form “and-or” graph. Apart from search strategies and global
caching for nodes of the constructed “and-or” graph, TGC also uses other optimizations
like normalizing formulas, caching formulas using an efficient catalogue, simplification,
semantic branching, propagation of unsat in a local scale using unsat-cores and subset-
checking for parent nodes and brother nodes, as well as cutoffs. The test results of TGC
on the sets T98-sat and T98-kb of DL’98 Systems Comparison are comparable with the

10 Note that if v has status unexpanded (resp. sat) then (v, ϕ) may (resp. must) be a productive
node of Gt.
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test results of the best systems DLP-98 and FaCT-98 that took part in that comparison
(see [20]). One can say that the mentioned test sets are not representative for practical
applications, but the comparison at least shows that various optimization techniques can
be applied together with global caching to significantly increase efficiency of tableau
decision procedures for modal and description logics.

Most of the optimization techniques of TGC can be applied for our decision proce-
dure for REGc logics. There remains, however, the problem of cuts (not only of our
calculus), as they can make the search space very large. Despite that the applicability of
our rule (cut) is quite restricted, the rule is inflexible. It is possible that one can work
out a more sophisticated condition for the applicability of the rule (cut). On the im-
plementation level, we hope that depth-first search together with propagation of unsat
for parent/brother nodes and cutoffs significantly reduces the negative side effects of
cuts. If this is not the case, one can try to delay cuts in an appropriate way (preserving
completeness).

6 Conclusions

In this paper we have provided a sound and complete tableau calculus for deciding the
general satisfiability problem of REGc logics. The result is novel, since up to now no
tableau calculi have been fully developed for REGc logics. Using the calculus we have
provided a complexity-optimal tableau decision procedure for the mentioned problem,
to which a number of useful optimization techniques can be applied.

Extending our method, in the full version of this paper [24] we also develop an
EXPTIME tableau decision procedure not based on transformation for the problem of
checking consistency of an ABox w.r.t. a TBox in a REGc logic. In [24] we also prove
a new result that the data complexity of the instance checking problem in REGc logics
is coNP-complete.
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11. Goré, R., Nguyen, L.A.: A tableau system with automaton-labelled formulae for regular
grammar logics. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 138–
152. Springer, Heidelberg (2005)
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Abstract. We give an optimal (exptime), sound and complete tableau-
based algorithm for deciding satisfiability for propositional dynamic
logic. Our main contribution is a sound method to track unfulfilled even-
tualities “on the fly” which allows us to detect “bad loops” sooner rather
than in multiple subsequent passes. We achieve this by propagating and
updating the “status” of nodes throughout the underlying graph as soon
as is possible. We give sufficient details to enable an easy implementa-
tion by others. Preliminary experimental results from our unoptimised
OCaml implementation indicate that our algorithm is feasible.

1 Introduction

Propositional dynamic logic (PDL) is an important logic for reasoning about
programs [1]. Its formulae consist of traditional Boolean formulae plus “action
modalities” built from a finite set of atomic programs using sequential compo-
sition (; ), non-deterministic choice (∪), repetition (∗), and test (?). The satis-
fiability problem for PDL is exptime-complete [2]. Unlike exptime-complete
description logics with algorithms exhibiting good average-case behaviour, no
decision procedures for PDL-satisfiability are satisfactory from both a theoreti-
cal (soundness, completeness, optimality) and practical (average case behaviour)
viewpoint, as we briefly explain next.

Fischer and Ladner’s method [1] for PDL is impractical because it first con-
structs the set of all consistent subsets of the set of all subformulae of the given
formula, which always requires exponential time. Pratt’s optimal method [2] for
PDL initially builds a “pseudo-model” (graph) and then checks whether the
graph is a real model by making multiple passes that prune inconsistent nodes,
and prune nodes containing “eventualities” which cannot be fulfilled by the cur-
rent graph. Since an eventuality is detected as unfulfilled only in the pruning
phase, it can do needless work, as we show shortly. LoTREC, which is primar-
ily an educational tool, implements such a multi-pass method for PDL, but it
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is suboptimal (2exptime) because it treats disjunctions naively. Baader’s [3]
tableau-based decision procedure for essentially PDL without “test” is subopti-
mal (2exptime) and we cannot see how to extend it to “test”. DLP implements
this method restricted to test-free formulae where ∗ applies only to atomic pro-
grams (http://ect.bell-labs.com/who/pfps/dlp/). De Giacomo and Mas-
sacci [4] give a 2exptime algorithm for deciding converse PDL-satisfiability,
discuss ways to obtain optimality, but do not give an actual exptime algorithm.
The prover pdl-tableau (http://www.cs.man.ac.uk/~schmidt/pdl-tableau/)
implements a variation of this method restricted to formulae without nested star.

Theorem provers based on optimal automata-based methods [5] are still in
their infancy because good optimisations are not known [6]. Optimal game-
theoretic methods for fix-point logics are known [7], but the proof of decidability
relies heavily on non-determinism since the main goal is to prove a complexity
bound. Brünnler and Lange [8] give “focused” cut-free sequent calculi based
on these games, give proofs for PLTL and CTL in detail, and state without
giving details that their calculi extend to PDL. The obvious decision procedures
obtainable from their completeness proofs are suboptimal (2exptime) since their
underlying structure is a tree. We know of no resolution methods for PDL.

Here, we give an optimal, sound and complete tableau-based decision proce-
dure for PDL-satisfiability. Our main contribution is a sound method to track
unfulfilled eventualities “on the fly” which allows us to detect “bad loops” sooner
rather than in multiple subsequent passes. Essentially, we interleave the graph-
building and graph-pruning phases of Pratt’s method by propagating and up-
dating the “status” of nodes throughout the underlying graph as soon as is
possible, significantly extending a similar method for description logic ALC [9].
The additional technicalities are non-trivial. We present pseudo code rather
than traditional tableau rules because the “on the fly” nature of our algorithm
gives it a non-local flavour. Thus a set of traditional local tableau “completion
rules” would be cluttered by side-conditions to enforce the non-local aspects or
would require a complicated strategy of rule applications. Preliminary experi-
mental results from our unoptimised OCaml implementation (http://rsise.
anu.edu.au/~rpg/PDLGraphProver/) indicate that our algorithm is feasible.
Further work is to add the extensive array of optimisations which have proved
successful for practical tableau-based methods for description logics.

To see how Pratt’s method can do needless work, consider a formula 〈a〉ϕ∧〈b〉ψ
where ϕ is explored first, ϕ is unsatisfiable because of some unfulfillable even-
tuality, and ψ is a huge formula. Pratt’s method can only recognise unfulfillable
eventualities in the pruning phase. Thus it must expand ψ even though it is
unnecessary. By detecting unfulfilled eventualities “on the fly”, our algorithm
can recognise that ϕ is unsatisfiable before exploring ψ.

2 Syntax and Semantics

Definition 1. Let AFml and APrg be two disjoint and countably infinite sets
of propositional variables and atomic programs, respectively. The set Fml of all

http://ect.bell-labs.com/who/pfps/dlp/
http://www.cs.man.ac.uk/~schmidt/pdl-tableau/
http://rsise.anu.edu.au/~rpg/PDLGraphProver/
http://rsise.anu.edu.au/~rpg/PDLGraphProver/
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formulae and the set Prg of all programs are defined mutually inductively as
follows where a ∈ APrg and p ∈ AFml:

Prg γ ::= a | γ; γ | γ ∪ γ | γ∗ | ϕ?
Fml ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈γ〉ϕ | [γ]ϕ .

A 〈ap〉-formula is any formula 〈γ〉ϕ where γ ∈ APrg is an atomic program.

Implication (→) and equivalence (↔) are not part of the core language but can
be defined as usual. The size of a formula or a program is defined inductively by
adding the sizes of its direct subformulae and subprograms and adding one. In
the rest of the paper, let p ∈ AFml and a ∈ APrg.

Definition 2. A transition frame is a pair (W,R) where W is a non-empty
set of worlds and R : APrg → W × W is a function mapping each atomic
program a ∈ APrg to a binary relation Ra over W . A model (W,R, V ) is a
transition frame (W,R) and a valuation function V : AFml → 2W mapping each
propositional variable p ∈ AFml to a set V (p) of worlds.

Definition 3. Let M = (W,R, V ) be a model. The functions τM : Fml → 2W

and ρM : Prg → 2W×W are defined inductively as follows:
τM (p) := V (p) τM (¬ϕ) := W \ τM (ϕ)
τM (ϕ ∧ ψ) := τM (ϕ) ∩ τM (ψ) τM (ϕ ∨ ψ) := τM (ϕ) ∪ τM (ψ)
τM (〈γ〉ϕ) := {w | ∃v ∈W. (w, v) ∈ ρM (γ) & v ∈ τM (ϕ)}
τM ([γ]ϕ) := {w | ∀v ∈W. (w, v) ∈ ρM (γ) ⇒ v ∈ τM (ϕ)}
ρM (a) := Ra

ρM (γ ∪ δ) := ρM (γ) ∪ ρM (δ) ρM (ϕ?) := {(w,w) | w ∈ τM (ϕ)}
ρM (γ; δ) := {(w, v) | ∃u ∈W. (w, u) ∈ ρM (γ) & (u, v) ∈ ρM (δ)}
ρM (γ∗) :=

{
(w, v) | ∃k ∈ IN0.∃w0, . . . , wk ∈ W.

(
w0 = w & wk = v &

∀i ∈ {0, . . . , k − 1}. (wi, wi+1) ∈ ρM (γ)
)}

.
For w ∈W and ϕ ∈ Fml, we write M,w � ϕ iff w ∈ τM (ϕ).

Definition 4. A formula ϕ ∈ Fml is satisfiable iff there exists a model M =
(W,R, V ) and a world w ∈ W such that M,w � ϕ. A formula ϕ ∈ Fml is valid
iff ¬ϕ is unsatisfiable.

Definition 5. A formula ϕ ∈ Fml is in negation normal form if the symbol ¬
appears only immediately before propositional variables. For every ϕ ∈ Fml,
we can obtain a formula nnf(ϕ) in negation normal form by pushing negations
inward as far as possible such that ϕ ↔ nnf ϕ is valid. We define ∼ϕ := nnf(¬ϕ).

We categorise formulae as α- or β-formulae as shown in Table 1.

Proposition 6. In the notation of Table 1, the formulae of the form α ↔ α1∧α2
and β ↔ β1 ∨ β2 are valid.

Definition 7. For a given ϕ ∈ Fml the (infinite) set pre(ϕ) is defined as below.
Using it, we define the set Ev of all eventualities as:

pre(ϕ) := {ψ ∈ Fml | ∃k ∈ IN0. ∃γ1, . . . , γk ∈ Prg. ψ = 〈γ1〉 . . . 〈γk〉ϕ}

Ev :=
⋃

ϕ∈Δ

pre(ϕ) where Δ := {〈γ∗〉ψ | γ ∈ Prg & ψ ∈ Fml} .
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Table 1. Smullyan’s α- and β-notation to classify formulae

α ϕ ∧ ψ [γ ∪ δ]ϕ [γ∗]ϕ 〈ψ?〉ϕ 〈γ; δ〉ϕ [γ; δ]ϕ
α1 ϕ [γ]ϕ ϕ ϕ 〈γ〉〈δ〉ϕ [γ][δ]ϕ
α2 ψ [δ]ϕ [γ][γ∗]ϕ ψ

β ϕ ∨ ψ 〈γ ∪ δ〉ϕ 〈γ∗〉ϕ [ψ?]ϕ
β1 ϕ 〈γ〉ϕ ϕ ϕ

β2 ψ 〈δ〉ϕ 〈γ〉〈γ∗〉ϕ ∼ψ

Definition 8. Let X and Y be sets. We define X? := X�{⊥} where ⊥ indicates
the undefined value. If f : X → Y is a function and x ∈ X and y ∈ Y then
the function f [x �→ y] : X → Y is defined as f [x �→ y](x′) := y if x′ = x and
f [x �→ y](x′) := f(x′) if x′ �= x.

3 An Overview and Our Algorithm

Our algorithm starts at a root containing a given formula φ and builds an and-or
tree in a depth-first and left to right manner to try to build a model for φ. The
rules are based on the semantics of PDL and either add formulae to the current
world, or create a new world in the underlying model and add the appropriate
formulae to it. For a node x, the attribute Γx carries this set of formulae.

The strategy for rule applications is the usual one where we “saturate” a node
using the α/β-rules until they are no longer applicable, giving a “state” node s,
and then, for each 〈a〉ξ in s, we create an a-successor node containing {ξ} ∪Δ,
where Δ = {ψ | [a]ψ ∈ s}. These successors are saturated to produce new states
using the α/β-rules, and we create the successors of these new states, and so on.

Our strategy can produce infinite branches as the same node can be created
repeatedly on the same branch. We therefore “block” a node from being created
if this node exists already on any previous branch. For example, in Fig. 1, if the
node y′ already exists in the tree, say as node y, then we create a “backward”
edge from x to y (as shown) and do not create y′. If y′ does not duplicate an
existing node then we create y′ and add a “forward” edge from x to y′. Thus
our tableau is a tree of forward edges, with backward edges that either point
upwards from a node to a “forward-ancestor”, or point leftwards from one branch
to another. Cycles can arise only via backward edges to a forward-ancestor.

Our tableau must “fulfil” every formula of the form 〈δ〉ϕ in a node but only
eventualities, as defined in Def. 7, cause problems. If 〈δ〉ϕ is not an eventuality,
the α/β-rules reduce the size of the principal formula, ensuring fulfilment. If 〈δ〉ϕ
is an eventuality, the main problem is the β-rule for formulae of the form 〈γ∗〉ϕ.
Its left child reduces 〈γ∗〉ϕ to a strict subformula ϕ, but the right child “reduces”
it to 〈γ〉〈γ∗〉ϕ. If the left child is always inconsistent, this rule can “procrastinate”
an eventuality 〈γ∗〉ϕ indefinitely and never find a world which makes ϕ true. This
non-local property must be checked globally by tracking eventualities.

Consider Fig. 1, and suppose the current node x contains an eventuality ex. We
distinguish three cases. The first is that some path from x fulfils ex in the existing
tree. Else, the second case is that some path from x always procrastinates the
fulfilment of ex and hits a forward-ancestor of x on the current branch: e.g. the
path x, y, v, u, w, z. The forward-ancestor z contains some “reduction” ez of ex.
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Fig. 1. Tree constructed by our algorithm using forward (f) and backward edges (b)

The path from the root to the current node x contains the only currently existing
nodes which may need further expansion, and may allow z to fulfil ez at a later
stage, and hence fulfil ex. We call the pair (z, ez) a “potential rescuer” of ex

in Γx. The only remaining case is that ex ∈ Γx is unfulfilled, has no potential
rescuers, and hence can never become fulfilled later, so x can be “closed”. The
machinery to distinguish these three cases and compute, if needed, all currently
existing potential rescuers of every eventuality in Γx is described next.

A tableau node x also contains a status stsx. The value of stsx is the constant
closed if the node x is closed. Otherwise, the node is “open” and stsx contains a
function prs which maps each eventuality ex ∈ Γx to ⊥ or to a set of pairs (v, e)
where v is a forward-ancestor of x and e is an eventuality. The status of a node is
determined from those of its children once they have all been processed. A closed
child’s status is propagated as usual, but the propagation of the function prs from
open children is more complicated. We give details later, but the intuition is that
we must preserve the following invariant for each eventuality ex ∈ Γx:

if ex is fulfilled in the tree to the left of the path from the root to the
node x then prsx(ex) := ⊥, else prsx(ex) is exactly the set of all potential
rescuers of ex in the current tableau.

An eventuality ex ∈ Γx whose prsx(ex) becomes the empty set can never become
fulfilled later, so stsx := closed, thus covering the three cases as desired.

Whenever a node n gets a status closed, we interrupt the depth-first and left-
to-right traversal and invoke a separate procedure which explicitly propagates
this status transitively throughout the and-or graph rooted at n. For example,
if z gets closed then so will its backward-parent w, which may also close u and so
on. This update may break the invariant for some eventuality e in this subgraph
by interrupting the path from e to a node that fulfils e or to a potential rescuer
of e. We must therefore ensure that the update procedure re-establishes the
invariant in these cases by changing the appropriate prs entries. At the end of
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the update procedure, we resume the usual depth-first and left-to-right traversal
of the tree by returning the status of n to its forward-parent. This “on-the-fly”
nature guarantees that unfulfilled eventualities are detected as early as possible.

When our algorithm terminates, formula φ is satisfiable iff the root is open.

3.1 The Algorithm

Our algorithm builds a directed graph G consisting of nodes and three types
of directed edges: forward-, backward-, and update-edges. We first explain the
structure of G in more detail.

Definition 9. Let G = (V,E) be a graph where V is a set of nodes and E
is a set of directed edges. Each node x ∈ V has three attributes: Γx ⊆ Fml,
annx : Ev → Fml?, and stsx ∈ S? where S := {closed} ∪ {open(prs) | prs :
Ev → (P(V × Ev))?}. Each directed edge e ∈ E is either a forward- or a
backward- or an update-edge. If e is a forward- or backward-edge then it is labelled
with a label le ∈ Fml?.

When we say that x is a forward-ancestor of y we mean that x is an ancestor
of y when only the forward-edges of G are considered. Similarly for other graph
concepts like child and parent, and other edge types.

As indicated in Def. 9, some attributes of x may be undefined initially. Once
an attribute becomes defined in x, however, it will never become undefined again.

The attributes Γx and annx of a node x ∈ G are initialised at the creation
of x and are not changed afterwards. Together, they uniquely identify x, so
no two nodes in G have the same values for both attributes. The finite set Γx

contains the formulae which are assigned to x. The attribute annx annotates each
eventuality ϕ ∈ Γx, as long as it is not a 〈ap〉-formula. The value annx(ϕ) = ⊥
indicates that ϕ is not expanded in x, and annx(ϕ) = ϕ′ indicates that ϕ has
already been “reduced” to ϕ′ ∈ Γx. These annotations identify the fulfilling path
for eventualities. Note that annx is defined only for some eventualities in (the
finite set) Γx. Hence we can test whether annx and anny (for y ∈ V ) are equal.

The attribute stsx describes the status of x. It is initially undefined but be-
comes defined during the algorithm. Unlike all other attributes, its value may be
modified several times, but once it becomes closed, it will never change. The
value closed indicates that the node is not “annotated satisfiable”, an exten-
sion of satisfiability taking annotations into account. If no formula in a set is
annotated, “annotated satisfiable” and satisfiable coincide. A value open(prsx)
indicates that hope still exists that x is “annotated satisfiable”. The function prsx

contains information about each eventuality ϕ ∈ Γx as explained in the overview.
That is, prsx(ϕ) is either ⊥ or is the finite set of all potential rescuers for ϕ.
If (y, ψ) ∈ prsx(ϕ) then y is a forward-ancestor of x and ψ ∈ Γy. Like annx, the
function prsx is defined only for some eventualities in (the finite set) Γx.

As the algorithm proceeds, we might have to update stsx. For example, if
the status of a node y ∈ G is changed to closed, an eventuality ϕ ∈ Γx may
no longer be fulfilled in G. Moreover, if (y, ψ) ∈ prsx(ϕ) then (y, ψ) must be
removed from prsx(ϕ) since it now cannot help to fulfil ϕ and is therefore no



An Optimal On-the-Fly Tableau-Based Decision Procedure 443

longer a potential rescuer of ϕ. If prsx(ϕ) becomes empty, we know that ϕ cannot
be fulfilled in G ever. Hence x is unsatisfiable and its status is set to closed.

We insert forward- and backward-edges between two nodes x and y as ex-
plained in the overview. Note that y might be a forward- and backward-child
of x. In this case, the algorithm takes y as a forward-child of x. To track eventu-
alities, we label a forward- or backward-edge between a state and its child by the
〈ap〉-formula 〈a〉χ which creates this child. An update-edge from x to y indicates
that a status change of x might affect the status of y.

Definition 10. Let x, y ∈ G be nodes and ϕ ∈ Fml. We call x closed iff it
has stsx = closed and open iff it has stsx = open(prs) for some prs : Ev →
(P(V × Ev))?. In the latter case, we define prsx := prs.

Note that a node is either open, closed, or has an undefined status. Thus “not
closed” is not really equal to “open” as we pretended in the overview.

Definition 11. Let ann⊥ : Ev → Fml? and prs⊥ : Ev → (P(V × Ev))? be the
functions which are undefined everywhere. For a node x ∈ V and a label l ∈
Fml?, let getChild(x, l) be the node y ∈ V (if existent and unique) such that
there exists a forward- or backward-edge e ∈ E from x to y with le = l. For a
function prs : Ev → (P(V × Ev))?, a node x ∈ V , and an eventuality ϕ ∈ Ev,
we define the set reach(prs, x, ϕ) of eventualities as follows:

reach(prs, x, ϕ) :=
{
ψ ∈ Ev | ∃k ∈ IN0. ∃ϕ0, . . . , ϕk ∈ Ev.

(
ψ = ϕk &

(x, ϕ0) ∈ prs(ϕ) & ∀i ∈ {0, . . . , k − 1}. (x, ϕi+1) ∈ prs(ϕi)
)}

.

The function defer : V × Ev → Fml? is defined as follows:

defer(x, ϕ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ if ∃k ∈ IN0. ∃ϕ0, . . . , ϕk ∈ Fml.
(
ϕ0 = ϕ & ϕk = ψ &

∀i ∈ {0, . . . , k − 1}.
(
ϕi ∈ Ev & annx(ϕi) = ϕi+1

)
&(

ϕk /∈ Ev or annx(ϕk) = ⊥
))

⊥ otherwise.

The function getChild(x, l) retrieves a particular forward- or backward-child of x.
It is easy to see that we will only use it in the algorithm if it is well-defined.

Intuitively, the function reach(prs, x, ϕ) computes all eventualities which can
be “reached” from ϕ inside x according to prs. If a potential rescuer (x, ψ) is
contained in prs(ϕ), the potential rescuers of ψ are somehow relevant for ϕ at x.
Therefore ψ itself is relevant for ϕ at x. The function reach(prs, x, ϕ) computes
exactly the transitive closure of this relevance relation.

Intuitively, the function defer(x, ϕ) follows the “annx-chain”. That is, it com-
putes ϕ1 := annx(ϕ), ϕ2 := annx(ϕ1), and so on. There are two possible
outcomes. The first outcome is that we eventually encounter a ϕk which is ei-
ther not an eventuality or has annx(ϕk) = ⊥. Consequently, we cannot follow
the “annx-chain” any more. In this case we stop and return defer(x, ϕ) := ϕk.
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Procedure is-sat(φ) for testing whether a formula is satisfiable
Input: a formula φ ∈ Fml in negation normal form
Output: true iff φ is satisfiable

G := a new empty graph
r := build-graph({φ}, ann⊥,⊥,⊥)
return stsr �= closed

The second outcome is that we can follow the “annx-chain” indefinitely. Then,
as Γx is finite, there must exist a cycle ϕ0, . . . , ϕn, ϕ0 of eventualities such
that annx(ϕi) = ϕi+1 for all 0 ≤ i < n, and annx(ϕn) = ϕ0. In this case we say
that x (or Γx) contains an “at a world” cycle and return defer(x, ϕ) := ⊥.

Next we comment on all procedures given in pseudocode.

Procedure is-sat(φ) is invoked to determine whether a formula φ ∈ Fml in
negation normal form is satisfiable. It initialises the global variable G as the
empty graph and invokes build-graph with the singleton set {φ} and no anno-
tations. This is the only invocation of build-graph that is not initiated while
processing a node in G, so its final two arguments are ⊥. It returns “satisfiable”
iff the resulting node r ∈ G, with Γr = {φ}, is not closed in the final graph.

Procedure build-graph(Γ, ann, p, l) builds the graph G in a tree-like fashion as
explained in the overview and calls the procedures which compute the status of
the nodes. Remember that G is a global variable. The arguments of build-graph
are a set Γ , an annotation ann, the parent node p which invoked it, and a label l.
Note that p is undefined for the very first invocation. If there already exists a
node x in G with Γ and ann, we insert a backward-edge labelled with l from p
to x (if p is defined) and return x. Otherwise we create the desired node x ∈ G,
insert a forward-edge labelled with l from p to x (if p is defined), and process x
as described next. Each node has at most one forward-edge pointing to it.

If Γx contains an “at a world” cycle or a contradiction, we close x. For the
other cases, we assume implicitly that Γx does not contain either of these.

If Γ contains an α-formula α whose decompositions are not in Γ , or which
is an unannotated eventuality, we call x an α-node. We create a new set Γ ′ by
adding all decompositions of α to Γ . If α is an eventuality, we also create a new
annotation extending ann by mapping α to α1. Then we invoke build-graph
recursively and determine and set the status of x. Note that Γ ′ is strictly bigger
than Γ or α is an eventuality which is annotated in ann′ but not in ann.

If x is not an α-node and Γ contains a β-formula β such that neither of its
immediate subformulae is in Γ , or such that β is an unannotated eventuality, we
call x a β-node. For each decomposition βi we do the following. We create a new
set Γi by adding βi to Γ . If β is an eventuality, we also create a new annotation
which extends ann by mapping β to βi. Note that Γi is strictly bigger than Γ
or β is an eventuality which is annotated in ann′ but not in ann. We then invoke
build-graph recursively. In the end we determine and set the status of x.

If x is neither an α-node nor a β-node, it must be fully saturated and we call
it a state. For each 〈ap〉-formula 〈ai〉ϕi we create a new set Γi which contains ϕi
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Procedure build-graph(Γ, ann, p, l) for building the graph
Input: a set Γ ⊆ Fml, a function ann : Ev → Fml?, a node p ∈ V ?, and a

label l ∈ Fml?

Output: a node x ∈ V

if ∃x ∈ V. Γx = Γ & annx = ann then (∗ annotated set already exists in G ∗)
if p �= ⊥ then insert a backward-edge from p to x labelled with l in G

return x
else (∗ annotated set not in G yet ∗)

create new node x with Γx := Γ , annx := ann, and stsx := ⊥
insert x in G

if p �= ⊥ then insert a forward-edge from p to x labelled with l in G

if ∃ϕ ∈ Fml.(ϕ ∈ Ev & defer(x,ϕ) = ⊥) or {ϕ,∼ϕ} ⊆ Γ then
stsx := closed

else if ∃α ∈ Γ. {α1, . . . , αk} �⊆ Γ or (α ∈ Ev & ann(α) = ⊥) then
Γ ′ := Γ ∪ {α1, . . . , αk}
ann′ := if α ∈ Ev then ann[α �→ α1] else ann
build-graph(Γ ′ , ann′, x,⊥)
stsx := det-sts-β(x)

else if ∃β ∈ Γ. {β1, β2} ∩ Γ = ∅ or (β ∈ Ev & ann(β) = ⊥) then
for i ←− 1 to 2 do

Γi := Γ ∪ {βi}
anni := if β ∈ Ev then ann[β �→ βi] else ann
build-graph(Γi , anni, x,⊥)

stsx := det-sts-β(x)
else (∗ x is a state ∗)

let 〈a1〉ϕ1, . . . , 〈ak〉ϕk be all of the 〈ap〉-formulae in Γ

for i ←− 1 to k do
Γi := {ϕi} ∪ {ψ | [ai]ψ ∈ Γ}
build-graph(Γi , ann⊥, x, 〈ai〉ϕi)

stsx := det-sts-state(x)

if stsx = closed then
let y1, . . . , yk be all the nodes that are backward- or update-parents of x

for i ←− 1 to k do update(yi)
return x

and all ψ such that [ai]ψ ∈ Γ . We then invoke build-graph recursively. As none
of the eventualities in Γi is expanded, there are no annotations. In order to relate
the resulting node y to 〈ai〉ϕi, we label the edge from x to y with 〈ai〉ϕi. We
call y the successor of 〈ai〉ϕi. In the end we determine and set the status of x.

If x is closed, we update all nodes that depend on the status of x; except p,
whose status is undefined and which will use the result later. Finally we return x.
Note that if build-graph creates x via the main “else” then stsx must be either
open or closed but not ⊥. In particular, this applies to node r in is-sat.

Procedure det-sts-β(x) computes the status of an α- or a β-node x ∈ G.
For this task, an α-node can be seen as a β-node with exactly one child. If all
children of x are closed then x must also be closed. Otherwise we compute the set
of potential rescuers for each eventuality ϕ in Γx as follows. For each open child y′i
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Procedure det-sts-β(x) for determining the status of an α- or a β-node
Input: an α- or a β-node x ∈ V

Output: the new status of x

let y1, . . . , yk ∈ G be all the nodes that are forward- or backward-children of x

if ∀i ∈ {1, . . . , k}. stsyi = closed then return closed

else (∗ at least one child is not closed ∗)
let y′

1, . . . , y
′

l (1 ≤ l ≤ k) be all the children of x that are not closed
prs := prs⊥

foreach ϕ ∈ Γx ∩ Ev do
for i ←− 1 to l do

Λϕ,i := if y′

i is a forward-child of x then prs
y′

i
(ϕ)

else det-prs-child(x, y′

i, ϕ)

Λϕ := if ∃i ∈ {1, . . . , l}. Λϕ,i = ⊥ then ⊥ else
S

l

i=1 Λϕ,i

prs := prs[ϕ �→ Λϕ]
return filter(x, prs)

of x we determine the potential rescuers of ϕ which result from following y′i. We
do this by distinguishing whether y′i is a forward- or backward-child of x. If y′i is
a forward-child of x then prsy′

i
(ϕ) is just passed on. If y′i is a backward-child of x

then we invoke det-prs-child. If the set of potential rescuers corresponding
to some y′i is ⊥ then ϕ can currently be fulfilled via y′i and prsx(ϕ) is set to
undefined. Otherwise ϕ cannot be fulfilled in G, but each child returned a set of
potential rescuers, and the set of potential rescuers for ϕ is their union. Finally,
we treat potential rescuers of the form (x, χ) for some χ ∈ Ev by calling filter.

Procedure det-sts-state(x) computes the status of a state x ∈ V . We obtain
the successors for all 〈ap〉-formulae in Γx. If any successor is closed then x is
closed. Else we compute the potential rescuers for each eventuality in Γx as
follows. For each 〈ap〉-formula 〈ai〉ϕi which is an eventuality, we obtain its set
of potential rescuers by distinguishing whether its successor yi is a forward- or
backward-child of x. If yi is a forward-child of x then prsyi

(ϕi) is passed on
to 〈ai〉ϕi. If y is a backward-child of x, we invoke det-prs-child. For every
other eventuality ϕ, we determine ϕ′ := defer(x, ϕ). Note that ϕ′ is defined
because the state x cannot contain an “at a world” cycle by definition. If ϕ′ is
not an eventuality then ϕ is fulfilled in x and prs(ϕ) remains undefined. If ϕ′ is an
eventuality, it must be a 〈ap〉-formula as x is a state, so we set prs(ϕ) := prs(ϕ′).
Finally, we deal with potential rescuers in prs of the form (x, χ) for some χ ∈ Ev.

Procedure det-prs-child(x, y, ϕ) determines whether an eventuality ψ ∈ Γx,
which is not passed as an argument, can be fulfilled via y such that ϕ is part
of the corresponding fulfilling path; or else which potential rescuers ψ can reach
via y and ϕ. We assume that y and ϕ can “play a part” in fulfilling ψ. First,
if there is no edge from x to y in G, we insert an update-edge from x to y
in G because a status change of y might affect the status of x. If y is closed, it
cannot help to fulfil ψ as indicated by the empty set. If x = y or y is a forward-
ancestor of x then (y, ϕ) itself is a potential rescuer of x. Else, if ϕ can be
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Procedure det-sts-state(x) for determining the status of a state
Input: a state x ∈ V

Output: the new status of x

let 〈a1〉ϕ1, . . . , 〈ak〉ϕk be all of the 〈ap〉-formulae in Γx

for i ←− 1 to k do yi := getChild(x, 〈ai〉ϕi)
if ∃i ∈ {1, . . . , k}. stsyi = closed then return closed

else (∗ all children (if any) are not closed ∗)
prs := prs⊥

for i ←− 1 to k do
if ϕi ∈ Ev then

Λi := if yi is a forward-child of x then prs
yi

(ϕi)
else det-prs-child(x, yi, ϕi)

prs := prs[〈ai〉ϕi �→ Λi]

foreach ϕ ∈ Γx ∩ Ev such that ϕ is not a 〈ap〉-formula do
ϕ′ := defer(x, ϕ)
if ϕ′ ∈ Ev then prs := prs[ϕ �→ prs(ϕ′)]

return filter(x, prs)

fulfilled, i.e. prsy(ϕ) = ⊥, then ψ can be fulfilled too, so we return ⊥. Otherwise
we invoke the procedure recursively on all potential rescuers in prsy(ϕ). If at
least one of these invocations returns ⊥ then ψ can be fulfilled via y and ϕ and
the corresponding rescuer in prsy(ϕ). If all invocations return a set of potential
rescuers, the set of potential rescuers for ψ is their union.

Each invocation of det-prs-child can be uniquely assigned to the invocation
of det-sts-β or det-sts-state which (possibly indirectly) invoked it. To meet
our complexity bound, we require that under the same invocation of det-sts-β
or det-sts-state, the procedure det-prs-child is only executed at most once
for each argument triple. Instead of executing it a second time with the same
arguments, it uses the cached result of the first invocation. The second invocation
would return the same result and would not modify the graph.

Procedure filter(x, prs) deals with the potential rescuers for each eventuality
of a node x which are of the form (x, ψ) for some ψ ∈ Ev. The second argument of
filter is a provisional prs for x. If an eventuality ϕ ∈ Γx is currently fulfillable
in G there is nothing to be done, so let (x, ψ) ∈ prs(ϕ). If ψ = ϕ then (x, ϕ)
cannot be a potential rescuer for ϕ in x and should not appear in prs(ϕ). But
what about potential rescuers of the form (x, ψ) with ψ �= ϕ? Since we want the
nodes in the potential rescuers to be strict forward-ancestors of x, we cannot
keep (x, ψ) in prs(ϕ); but we cannot just ignore them either.

Intuitively (x, ψ) ∈ prs(ϕ) means that ϕ ∈ Γx can “reach” ψ ∈ Γx by following
a loop in G which starts at x and returns to x itself. Thus if ψ can be fulfilled
in G, so can ϕ; and all potential rescuers of ψ are also potential rescuers of ϕ. The
function reach(prs, x, ϕ) computes all eventualities in x which are “reachable”
from ϕ in the sense above, where transitivity is taken into account. That is, it
detects all self-loops from x to itself which are relevant for fulfilling ϕ. We add ϕ
as it is not in reach(prs, x, ϕ). If any of these eventualities is fulfilled in G then ϕ
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Procedure det-prs-child(x, y, ϕ) for passing a prs-entry of a backward-
child to a parent

Input: two nodes x, y ∈ V such that x = y or y is a forward-ancestor of x or
the status of y is defined already; and a formula ϕ ∈ Γy ∩ Ev

Output: undefined or a set of node-formula pairs
Remark: if det-prs-child(x, y,ϕ) has already been invoked before with

exactly the same arguments and under the same invocation of

det-sts-β or det-sts-state, the procedure is not executed a second
time but returns the cached result of the first invocation. We do not
model this behaviour explicitly in the pseudocode.

if there is no edge (of any type) from x to y in G then
insert an update-edge from x to y in G

if stsy = closed then return ∅
else if y is a forward-ancestor of x or y = x then return {(y, ϕ)}
else (∗ y is open because stsy �= closed and its status is defined already ∗)

if prsy(ϕ) = ⊥ then return ⊥

else (∗ prs
y
(ϕ) is defined ∗)

let (z1, ϕ1), . . . , (zk, ϕk) be all of the pairs in prsy(ϕ)
for i ←− 1 to k do Λi := det-prs-child(x, zi, ϕi)
if ∃j ∈ {1, . . . , k}. Λj = ⊥ then return ⊥ else return

S
k

i=1 Λi

Procedure filter(x,prs) for handling self-loops in G

Input: a node x ∈ V and a function prs : Ev → (P(V × Ev))?

Output: the new status of x

prs′ := prs⊥

foreach ϕ ∈ Γx ∩ Ev such that prs(ϕ) �= ⊥ do
Δ := {ϕ} ∪ reach(prs, x, ϕ)
if not ∃χ ∈ Δ. prs(χ) = ⊥ then

Λ :=
S

χ∈Δ

˘
(z, ψ) ∈ prs(χ) | z �= x

¯
prs′ := prs′[ϕ �→ Λ]

if ∃ϕ ∈ Γx ∩ Ev. prs′(ϕ) = ∅ then return closed else return open(prs′)

Procedure update(x) for propagating the status of nodes
Input: a node x ∈ V that has a defined status

if stsx �= closed then
sts := if x is an α- or a β-node then det-sts-β(x) else det-sts-state(x)
if stsx �= sts then

stsx := sts
let y1, . . . , yk be all the nodes that are forward-, backward- or
update-parents of x

for i ←− 1 to k do update(yi)
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can be fulfilled and is consequently undefined in the resulting prs′. Otherwise we
take all their potential rescuers which contain proper forward-ancestors of x.

If an eventuality ϕ ∈ Γx has the empty set of potential rescuers, x is closed.

Procedure update(x) propagates status changes through G. It recomputes the
status of a node x ∈ V . If the new status differs from its old one, it updates stsx

and invokes update recursively on all nodes whose status may be affected by
this change. A node that is not closed is either an α/β-node or a state.

Theorem 12 (Soundness, Completeness and Termination). Let φ ∈ Fml
be a formula in negation normal form of size n. The procedure is-sat(φ) ter-
minates, runs in exptime in n, and φ is satisfiable iff is-sat(φ) returns true.

4 A Fully Worked Example

Consider the valid formula 〈(a∗; b∗)∗〉p → 〈(a ∪ b)∗〉p. The full tableau for its
negation does not fit on one page, but its core subgraph is the tableau for the
unsatisfiable formula φ := 〈b〉〈b∗〉〈(a∗; b∗)∗〉p∧[(a∪b)∗]¬p. We therefore consider
the tableau for φ. To save space, we use the definitions in Table 2.

Figure 2 (almost) shows the corresponding graph G just before setting the sta-
tus of node (2). To save space, we (recursively) perform multiple α-expansions
inside nodes. Thus, there are no α-nodes in G. For example, the root node
contains φ, as well as its decompositions 〈b〉〈b∗〉ϕ1 and [(a ∪ b)∗]¬p, the decom-
positions of [(a∪ b)∗]¬p, and so on. Incidentally, Δ, and in particular {¬p}, is a
subset of the Γ -components of all nodes, reflecting the semantics of [(a∪ b)∗]¬p.

The function P13 maps ϕ3 and 〈a〉〈a∗〉〈b∗〉ϕ1 to {(8, ϕ3)} and is undefined
elsewhere. All other Pi in Fig. 2 map each eventuality in their correspond-
ing set to {(2, 〈b∗〉ϕ1)} and are undefined elsewhere. The nodes are labelled
in creation order. The annotation ann is given using “” in Γ . For example,
in node (3), we have Γ3 = { ϕ4, 〈(a∗; b∗)∗〉p } ∪Δ, and ann3 maps the eventu-
ality ϕ4 to 〈(a∗; b∗)∗〉p and is undefined elsewhere. The bottom line of a node
contains its status. Solid arrows represent forward-edges and dashed arrows rep-
resent backward-edges. There are no update-edges in this example. The label of
a forward- and backward-edge is only given if it is a formula and not ⊥.

Nodes (1), (2), (3), and (4) are created first, and (4) is closed because it
contains p and ¬p. Then (5) and (6) are created, but (6) is closed as it contains
an “at a world” cycle. Next, nodes (7) to (11) are created. Like (4), node (11) is
closed because of a contradiction. When trying to create the second child of (10),
we find that the requested node is already contained in G as (6). Hence we insert a
backward-edge from (10) to (6). Since both children of (10) are closed, node (10)

Table 2. Some definitions used in the example

ϕ1 := 〈(a∗; b∗)∗〉p ϕ2 := 〈a∗; b∗〉ϕ1

ϕ3 := 〈a∗〉〈b∗〉ϕ1 ϕ4 := 〈b∗〉ϕ1

Δ :=
{

[(a ∪ b)∗]¬p, p, [a ∪ b][(a ∪ b)∗]¬p, [a][(a ∪ b)∗]¬p, [b][(a ∪ b)∗]¬p
}
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(1) state
{ φ, 〈b〉〈b∗〉ϕ1 } ∪Δ

⊥

〈b〉〈b∗〉ϕ1 ��
(2) β-node
{ 〈b∗〉ϕ1 } ∪Δ

⊥

�������������������

��

(3) β-node
{ ϕ4  〈(a∗; b∗)∗〉p } ∪Δ

open(P3)

��

��

(14) state
{ ϕ4  〈b〉〈b∗〉ϕ1 } ∪Δ

open(P14)

〈b〉〈b∗〉ϕ1

���
�
�

(4) contradiction
{ ϕ4  ϕ1  p } ∪Δ

closed

(5) β-node
{ ϕ4  ϕ1  ϕ2  〈a∗〉〈b∗〉ϕ1 }

∪ Δ
open(P5)

��������������

��

(6) “at a world” cycle
{ ϕ4  ϕ1  ϕ2  ϕ3  ϕ4 }

∪ Δ
closed

(7) state
{ ϕ4  ϕ1  ϕ2  ϕ3 
〈a〉〈a∗〉〈b∗〉ϕ1 } ∪Δ

open(P7)

〈a〉〈a∗〉〈b∗〉ϕ1

����������������

(8) β-node
{ 〈a∗〉〈b∗〉ϕ1 } ∪Δ

open(P8)

��

�� (13) state
{ ϕ3  〈a〉〈a∗〉〈b∗〉ϕ1 } ∪Δ

open(P13)
〈a〉〈a∗〉〈b∗〉ϕ1

� � � � � �

(9) β-node
{ ϕ3  〈b∗〉ϕ1 } ∪Δ

open(P9)

��

��
(12) state
{ ϕ3  ϕ4  〈b〉〈b∗〉ϕ1 } ∪Δ

open(P12)

��

��

〈b〉〈b∗〉ϕ1

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
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�
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(10) β-node
{ ϕ3  ϕ4  〈(a∗; b∗)∗〉p } ∪Δ

closed

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
(11) contradiction
{ ϕ3  ϕ4  ϕ1  p } ∪Δ

closed

Fig. 2. An example: The graph G just before setting the status of node (2)
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itself is closed too via det-sts-β(10). Next, we create (12), which is a state. Its
requested child is already in G as (2), so we insert a backward-edge from (12)
to (2). The status of (2) is ⊥, in particular it is not closed, and (2) is a forward-
ancestor of (12). So we set the status of (12) to open(P12) via det-sts-state(12)
and det-prs-child(12, 2, 〈b∗〉ϕ1). Remember that P12 maps all eventualities
in Γ12 to {(2, 〈b∗〉ϕ1)}. The status is then propagated to (9).

Node (13) is conceptually similar to (12). When determining the status of (8)
via det-sts-β(8), node (8) “inherits” two potential rescuers for each eventual-
ity: (2, 〈b∗〉ϕ1) from (9) and (8, ϕ3) from (13). But (8, ϕ3) is removed by filter
since a node cannot be part of a potential rescuer of itself. The status is then
propagated to (7), (5), and (3). Node (14) is conceptually similar to (12). As
stated before, this is the moment at which G is shown in Fig. 2. When determin-
ing the status of (2) via det-sts-β(2), node (2) “inherits” only the potential
rescuer (2, 〈b∗〉ϕ1) from its children. Since (2, 〈b∗〉ϕ1) is removed by filter, the
eventuality 〈b∗〉ϕ1 has no potential rescuers. Hence we know that 〈b∗〉ϕ1 cannot
be fulfilled in G now or in the future, so (2) is closed via filter.

The subsequent invocation of update(2) closes all non-closed nodes in the
subgraph rooted at (2). Finally, the root (1) is closed via det-sts-state(1).

5 Implementation Issues and Experiments

For clarity, the description of our algorithm omits some immediate optimi-
sations. For example, once a state has a closed forward- or backward-child,
creating and exploring its remaining children is moot: see 〈a〉ϕ ∧ 〈b〉ψ in the in-
troduction. Our implementation in OCaml (http://rsise.anu.edu.au/~rpg/
PDLGraphProver/) includes this optimisation, but does not include most opti-
misations which have proved crucial in taming description logics [10].

As explained in the introduction, all existing implementations for PDL by
other authors are either educational tools (LoTREC), or do not handle the full
language (DLP, pdl-tableaux). Therefore, we compared our graph-based method
with our tree-based method [11] on randomly generated formulae. Their imple-
mentations share many basic data structures and the same (limited) optimisa-
tions. Thus they should differ mostly in their tree versus graph aspects.

Each randomly generated formula of size n contained at most n/20 proposi-
tional variables and n/20 atomic programs. The formulae were created by ran-
domly choosing a connective with equal probability and recursively creating the
subformulae or subprograms. If a connective had two subformulae/subprograms,
their sizes were chosen randomly so that the final formula had the desired size.

We randomly generated ten million formulae for each size 40, 50, . . . , 90 and
ran both provers on them. For each formula, we set a timeout of 10 seconds. If
a solver timed out, we took its running time for this formula to be the timeout,
that is 10 seconds. The results are given in Table 3. The lack of timeouts shows
that the graph method is clearly more stable. Ignoring stability, there is not much
difference in the running times for satisfiable formulae. But the graph method
is clearly superior for unsatisfiable formulae.

http://rsise.anu.edu.au/~rpg/PDLGraphProver/
http://rsise.anu.edu.au/~rpg/PDLGraphProver/
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Table 3. Average running time per 10,000 formulae (and number of timeouts if greater
than 0) for ten million randomly generated formulae of each size, shown separately for
satisfiable and unsatisfiable formulae

formulae size 40 50 60 70 80 90
satisfiable (%) 91.3% 91.1% 93.6% 93.5% 94.9% 94.9%
Graph (sat) 0.6s 0.8s 1.0s 1.2s 1.4s 1.6s
Tree (sat) 0.7s (2) 1.2s (23) 1.4s (22) 2.1s (62) 2.2s (46) 3.7s (151)

Graph (unsat) 0.6s 0.8s 1.0s 1.3s 1.6s 1.9s
Tree (unsat) 1.0s 5.7s (27) 7.9s (28) 22.8s (94) 29.6s (102) 52.8s (190)

On individual handcrafted examples, we sometimes observed that the tree-
based method was faster, even when it generated more nodes. We believe this is
because tracking eventualities in graphs requires more bookkeeping and updating
than in trees, and sometimes this bookkeeping is in vain when branches do not
share nodes. Another reason might be that the tree-based method requires less
space since it can discard previous branches.
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8. Brünnler, K., Lange, M.: Cut-free sequent systems for temporal logic. Journal of
Logic and Algebraic Programming 76(2), 216–225 (2008)
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Abstract. There are many works on the satisfiability problem for vari-
ous logics and constraint languages, such as SAT and Satisfiability Mod-
ulo Theories (SMT). On the other hand, the counting version of decision
problems is also quite important in automated reasoning. In this paper,
we study a counting version of SMT, i.e., how to compute the volume
of the solution space, given a set of Boolean combinations of linear con-
straints. The problem generalizes the model counting problem and the
volume computation problem for convex polytopes. It has potential ap-
plications to program analysis and verification, as well as approximate
reasoning, yet it has received little attention. We first give a straightfor-
ward method, and then propose an improved algorithm. We also describe
two ways of incorporating theory-level lemma learning technique into the
algorithm. They have been implemented, and some experimental results
are given. Through an example program, we show that our tool can be
used to compute how often a given program path is executed.

1 Introduction

The past decade has seen much interest in the satisfiability (SAT) problem,
i.e., determining whether a Boolean formula (in conjunctive normal form) is
satisfiable. It is a classical decision problem in propositional logic reasoning.
More recently, Satisfiability Modulo Theories (SMT), as an extension to SAT,
has received more and more attention [3,9,18,16,19]. Instead of Boolean formulas,
SMT checks the satisfiability of logical formulas with respect to combinations of
background theories (often expressed in classical first-order logic with equality).

On the other hand, the counting version of the decision problems is also quite
important in automated reasoning. For instance, the model counting problem,
i.e., counting the number of models of a propositional formula, is closely re-
lated to approximate reasoning [20,2]. It has been studied by various researchers,
especially in recent years. See for example, [14,2,23,22,1,8,13,21].
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The counting version of SMT has received less attention so far, although it
is also very important. It has potential applications in various areas, such as
program analysis and verification, as well as approximate reasoning. Suppose we
have a knowledge base or a formal description of some application, specified by
an SMT formula Φ, and we are given a formula ϕ such that neither ϕ nor ¬ϕ
is a logical consequence of Φ. Then it is reasonable to assume that, the more
models of Φ support ϕ, the more likely ϕ is true for the application.

There are various ways of analyzing programs statically. One class of analysis
techniques checks the program’s properties by processing individual paths in
the program’s flow graph. Not all paths in the graph correspond to program
executions. A path is called feasible if there are some initial data values for the
variables that can drive the program to be executed along that path. Otherwise,
the path is called infeasible. There are quite some works on path feasibility
analysis. A basic approach is to compute the path condition (which is a set of
constraints in the form of SMT instances), and decide whether it is satisfiable or
not. The program path is feasible if and only if the path condition is satisfiable. So
the path feasibility analysis problem is reduced to a constraint solving problem
[24,26].

Sometimes we can go one step further and ask how many data values satisfy
the path condition, which means how often the program path can be executed.
A path is a hot path if it is frequently executed. Identification of such paths is
necessary in some applications such as embedded systems.

In this paper, we study how to compute the volume of the solution space (or,
how to count the number of solutions), given a set of SMT instances (or more
precisely, Boolean combination of linear arithmetic constraints).

The paper is organized as follows. We first recall some basic concepts and give
some notations in the next section. In Section 3, we outline a straightforward
method, and then in Section 4 we propose an improved algorithm. We have im-
plemented the methods, and some experimental results are given in Section 5.
In Section 6 we describe the application of the techniques to program analy-
sis. Then we discuss some issues and mention some related works. Finally we
conclude the paper.

2 Background

This section describes some basic concepts and notations. We also mention some
existing techniques and tools that will be used later.

The main object of study in this paper can be regarded as an SMT instance
where the theory is restricted to the linear arithmetic theory. More specifically,
we study a set of constraints involving variables of various types (including
integers, reals and Booleans). There can be logical operators (like AND, OR)
and arithmetic operators (like addition, subtraction).

We use bi (i > 0) to denote Boolean variables, xj (j > 0), y, . . . to denote
numeric variables.

A simple example of constraints is x1 + x2 < x3. We call it a linear arith-
metic constraint (LAC), which is a comparison between two linear arithmetic
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expressions. Such a constraint can be denoted by a Boolean variable. A literal
is a Boolean variable or its negation. A clause is a disjunction of literals.

In this paper, a constraintφ is represented as a Boolean formula PSφ(b1, . . . , bn)
together with definitions in the form: bi ≡ expri1 op expri2. Here expri1 and expri2
are numeric expressions, op is a relational operator like ‘<’, ‘=’, etc. The Boolean
formula PSφ is the propositional skeleton of the constraint.

For a Boolean formula, a model is an assignment1 of truth values to all the
Boolean variables such that the formula is evaluated to TRUE. The satisfiability
problem is concerned with the existence of models, while the model counting
problem is to compute the number of models.

The SMT problem is a decision problem for logical formulas with respect
to combinations of background theories expressed in classical first-order logic
with equality. But the subject of this paper is how to compute the volume of
the solution space (or, how to count the number of solutions) for the formulas.
Obviously this problem generalizes both the model counting problem in the
propositional logic and the classical volume computation problem for convex
polytopes.

Generally speaking, a polytope is defined as the bounded intersection of
finitely many halfspaces/inequalities. Formally, it is usually described using the
H-representation {x|Ax ≤ b} (where A is a matrix of dimension m× d and b a
vector of dimension m). If x is a real vector, there are already some tools avail-
able to compute the continuous volume of a polytope. For example, vinci [6] is
such a tool, whose input is a set of linear inequalities over reals.

Sometimes we are interested in the number of integer points in the solution
space. Tools are also available for counting such points inside a bounded poly-
tope, e.g., azove [4] and LattE [17]. azove is a tool designed for counting and
enumeration of 0/1 vertices. That is to say, the domain of the variables is {0, 1}.
Given a polytope {x|Ax ≤ b}, all 0/1 points lying in it can be counted or enu-
merated. We extended the domain of each variable to {0, 1, ..., 2l− 1} so that it
can count or enumerate all integer points with word length l in the polytope.
LattE is a similar tool dedicated to the counting of lattice points inside convex
polytopes and the solution of integer programs. But all the parameters in the
matrix A and vector b should be integers.

3 A Straightforward Method

We know that an SMT(LAC) instance φ is satisfiable if there is an assignment
α to the Boolean variables in PSφ such that:

1. α propositionally satisfies φ, or formally α |= PSφ;
2. The conjunction of theory predicates under the assignment α, which is de-

noted by T̂ h(α), is consistent with respect to the addressed theory.

We call an assignment satisfying the above conditions a feasible assignment. To
check the satisfiability of a given formula, an SMT solver tries to find such an
assignment.
1 In this paper we represent an assignment as a set of literals.
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Given a formula φ, we denote the set of all its feasible assignments by Mod(φ).
When we talk about the volume of an assignment α, which is denoted by
volume(α), we refer to the volume of polytope corresponding to α. The vol-
ume of a formula φ, denoted by Vφ, is formally defined as follows:

Vφ =
∑

α∈Mod(φ)

volume(α)

An SMT solver typically combines SAT and theory-specific solving [16]. Most of
the state-of-the-art SMT solvers are built within the DPLL(T) architecture [12],
which can be adapted to compute the volume of a given formula. We ask the
SMT solver to find out all feasible assignments to formula φ, compute the volume
of each assignment and then add them up.

Algorithm 1
1: Vφ=0;
2: for each model α of PSφ do
3: if T̂ h(α) is consistent then
4: compute volume(α);
5: sum up the volume: Vφ += volume(α);
6: end if
7: end for
8: return Vφ;

4 Volume Computation in Bunches

4.1 The Basic Idea

In the straightforward approach, each time a feasible assignment is obtained, we
need to compute the volume of a conjunction of linear constraints corresponding
to the literals in the assignment. Since volume computation is a time-consuming
task, which is shown to be #P -hard by Dyer and Frieze [10], it is desirable to
reduce the number of calls to volume computation routines.

Given an assignment α to the Boolean variables in formula φ, concerning the
two conditions for feasible assignments, we distinguish four cases:

(i) α |= PSφ, and T̂ h(α) is consistent in the specific theory. (Here α is a feasible
assignment.)

(ii) α |= PSφ, while T̂ h(α) is inconsistent in the specific theory.
(iii) α falsifies φ propositionally, while T̂ h(α) is consistent in the specific theory.
(iv) α falsifies φ propositionally, and T̂ h(α) is inconsistent in the specific theory.

The volume of formula φ is the sum of volumes of all assignments in case (i).
When T̂ h(α) is inconsistent, as in case (ii) or case (iv), there is no solution to
T̂ h(α), and consequently volume(α) = 0. So when adding up the volume of feasi-
ble assignments, it will be safe to count in some theory-inconsistent assignments
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since they would not affect the total volume. At first glance it seems that these
zero-volume assignments would give rise to additional calls to volume computa-
tion routines. However, when properly selected, they can be combined with the
feasible assignments to form fewer assignments, reducing the number of volume
computations.

Definition 1. A set of full assignments S is called a bunch if there exists a
partial assignment αc such that for any full assignment α, α ∈ S ←→ αc ⊆ α.
αc is called the cube of S.

In other words, the assignments in a bunch S share a partial assignment αc,
and for the Boolean variables which are not assigned by the cube αc, these
assignments cover all possibilities of value combinations. The cardinality of S is
exactly 2n−|αc|, where n is the number of Boolean variables, and |αc| stands for
the size of αc.

For the assignments in a bunch, computing their total volume can be greatly
simplified, as the following proposition reveals:

Proposition 1. For a bunch S with the cube αc,
∑

α∈S volume(α)=volume(αc).

Consider the formula

φ = (((y + 3x < 1) → (30 < y)) ∨ (x ≤ 60)) ∧ ((30 < y) → ¬(x > 3) ∧ (x ≤ 60))

We first introduce a Boolean variable for each linear inequality and obtain its
propositional skeleton as follows:

PSφ = ((b1 → b2) ∨ b4) ∧ (b2 → ¬b3 ∧ b4)

where: ⎧⎪⎪⎨
⎪⎪⎩

b1 ≡ (y + 3x < 1);
b2 ≡ (30 < y);
b3 ≡ (x > 3);
b4 ≡ (x ≤ 60);

Using an SMT solver, we find out that there are seven feasible assignments.
Hence in the straightforward method, vinci is called seven times to compute
the volumes of the feasible assignments, and they are added up to get the total
volume of the formula. Here we list three of these assignments:

α1 = {¬b1,¬b2, b3,¬b4}
α2 = {¬b1,¬b2,¬b3, b4}
α3 = {¬b1,¬b2, b3, b4}

Now let’s consider another assignment: α4 = {¬b1,¬b2,¬b3,¬b4}. It is easy
to check that α4 satisfies PSφ, but T̂ h(α4) is inconsistent in linear arithmetic
theory. Thus volume(α4) = 0. Also, these four assignments form a bunch whose
cube is {¬b1,¬b2}. Noticing this, we have

volume(α1) + volume(α2) + volume(α3)
= volume(α1) + volume(α2) + volume(α3) + volume(α4)
= volume({¬b1,¬b2})
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As a result, we only need to call vinci once to compute the volume of cube
{¬(y + 3x < 1),¬(30 < y)} so as to obtain the total volume of α1, α2 and α3.
In contrast, without incorporating α4 and combining assignments, three calls to
vinci are needed.

Obviously, theory-inconsistent assignments, whether propositionally satisfy-
ing the formula or not, do not affect the total volume. This observation, to-
gether with Proposition 1, suggest a way to reduce number of calls to volume
computing procedure. That is, we first list all feasible assignments with the help
of an SMT solver and then make possible combinations to form bunches, count-
ing in some theory-inconsistent assignments whenever necessary. However, an
SMT solver doesn’t provide explicitly theory-inconsistent assignments. In order
to incorporate such assignments, extra calls to theory solvers are inevitable.

4.2 The Algorithm

Our method is based on the above idea. But rather than selecting theory-
inconsistent assignments and then making possible combinations as a postpro-
cessing step, we implemented it within the decision procedure of the SMT(LAC)
solver. A typical SMT solver does not provide deduction procedure with respect
to the specific theory for assignments that falsify the propositional skeleton of
the formula. Therefore, we have to ignore the assignments in case (iv). In other
words, the additional assignments possibly incorporated are those in case (ii).

A key point is that when the SMT solver finds a feasible assignment, we try
to obtain a smaller one which still propositionally satisfies the formula. It is
formally defined as follows:

Definition 2. Suppose α is a feasible assignment for formula φ. An assignment
αmc is called a minimum cube of α if

1. αmc ⊆ α and αmc |= PSφ.
2. ∀α′(α′ |= PSφ → α′ �⊂ αmc).

In fact, the minimum cube αmc of an assignment α is the cube of a bunch S
such that for any bunch S′, α ∈ S′ → S �⊂ S′. Any assignment in S also satisfies
PSφ because only part of it, say αmc, has evaluated PSφ to be true. As we
have explained before, it is pretty safe to count in such an assignment while
computing the total volume, regardless of its consistency in the specific theory.

For a feasible assignment α and its minimum cube αmc, from Proposition 1
we know that volume(αmc) includes volume(α), and possibly the volumes of
other feasible assignments. Thus it seems rewarding to compute volume(αmc)
instead of volume(α). Note that an assignment might have several minimum
cubes. Currently we use a simple method to find only one minimum cube. It
checks the redundancy of each literal contained in α sequentially. If α with a
literal li removed still evaluates PSφ to be true, then li is immediately deleted
from α, and the next literal is checked with respect to the modified α. It can be
easily proved that the final result is a minimum cube of the original assignment.

The SMT solving framework is adapted to compute the volume of a formula.
Each time a feasible assignment is found, its minimum cube is computed and the
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volume of the minimum cube is added to the total volume. Then the negation of
the minimum cube is added to the original formula so that a feasible assignment
would not be counted more than once. It is a blocking clause, ruling out all the
assignments in the bunch related to the minimum cube.

In a feasible assignment, some variables are decision variables, while others
get assigned by Boolean constraint propagation (BCP). These implied literals
need not be checked when finding the minimum cube of an assignment. (It will
be proved in Proposition 2.) The detailed algorithm is presented as Algorithm 2.

Algorithm 2. Volume Computation in Bunches
Boolean Formula PS = PSφ;
volume = 0;
while TRUE do

if BCP() == CONFLICT then
backtrack-level = AnalyzeConflict();
if backtrack-level < 0 then

return volume;
end if
backtrack to backtrack-level;

else
α = current assignment;
if α |= PS then

if T̂ h(α) is inconsistent then
backtrack to the latest decision variable;

else
for all literal li ∈ α do

if li is a decision variable or its negation then
α′ = α − {li};
if α′ |= PS then

α = α′;
end if

end if
end for
volume+=VOLcompute(α);
Add ¬α to PS;

end if
else

choose a Boolean variable and extend the current assignment;
end if

end if
end while

Proposition 2. Given a feasible assignment α and a literal li in α, if li is not a
decision variable or its negation, then it must appear in any minimum cube of α.

Proof. We prove it by contradiction. Suppose αmc is a minimum cube of α and
li �∈ αmc, then αmc can be extended to a full assignment α′, which is the same
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as α except that li is replaced with ¬li. Since α′−{¬li} = α−{li} together with
the current Boolean formula PS implies that li must be true, we know that α′

falsifies PS, and that αmc cannot be a minimum cube. ��

Theorem 1. Algorithm 2 computes the volume of formula φ.

Proof. Since the volume of a formula φ is the total volume of all feasible as-
signments, we shall show that: any feasible assignment to φ is counted into the
total volume exactly once, and no non-empty volume of an assignment that
propositionally falsifies φ is introduced.

Firstly, assume a feasible assignment α is missing while computing the volume
of φ. Denote the new Boolean formula when the program terminates by PS′.
Clearly PS′ = PSφ ∧ C, where C stands for all the blocking clauses. In fact,
C =

∧
¬c, where c ranges over all minimum cubes discovered by the algorithm.

Since α is missing, it cannot be obtained by extending any minimum cube c.
Thus we have α |= ¬c and further α |= C. As a feasible solution to φ, α propo-
sitionally satisfies φ, i.e., α |= PSφ. Therefore, we have α |= PS′, contradicting
the termination condition that there is no assignment that satisfies PS′.

Secondly, because of the blocking clauses, a feasible assignment would not be
counted more than once.

Finally, it is quite clear that a theory-consistent assignment which falsifies φ
propositionally can’t be extended from any minimum cube and is impossible to
be counted in while computing the total volume. ��

We would like to further clarify that

Proposition 3. The number of calls to volume computing procedure in Algo-
rithm 2 is not more than the straightforward method.

This is quite clear since each minimum cube represents at least one feasible
assignment, so the proof is omitted.

4.3 Incorporating Theory-Level Conflict-Driven Learning

Conflict-driven Learning with respect to the specific theory is an important
technique for efficient SMT solving. It has been adopted by most of the current
state-of-the-art SMT solvers [3,9,18]. When presenting Algorithm 2, we omit this
technique for clarity. In this subsection, we shall give a brief introduction to this
technique and explain that it can be easily integrated into the framework of our
algorithm.

It is known that efficient lemma learning based on conflict analysis contributes
greatly to modern SAT solvers. For an SMT solver which combines a DPLL-
style SAT solver and a decision procedure for a conjunctive fragment of a theory
T , lemma learning could go beyond the propositional level. When the decision
procedure discovers that the current assignment α is inconsistent in T , it tries to
explain the inconsistency, finding out the literals in α that lead to the conflict.
The disjunction of negations of these literals is then obtained and passed to the
SAT solver as a lemma. The lemma is learned by analyzing the inconsistency,



Volume Computation for Boolean Combination 461

and it prevents the same inconsistency from happening again. As a result, the
search space is pruned.

Here we study two methods for incorporating lemma learning technique into
Algorithm 2.

Method 1. Each time the current assignment α is found theory-inconsistent,
a lemma is derived and added to the current Boolean formula PS. The rest of
Algorithm 2 is unchanged. The modified algorithm is still correct. The proof
is similar to that of Theorem 1: Suppose a feasible assignment of φ, denoted
by α, is missing when the program terminates. At the termination the Boolean
formula PS′ consists of three parts: PSφ, blocking clauses C, and lemmas learned
from the theory inconsistencies LM . Since α is theory-consistent, for any lemma
cl ∈ LM we have α falsifies ¬cl or equivalently α |= cl. Consequently α |= LM .
From the proof of Theorem 1 we already know that α |= PSφ ∧ C, thus we
have α |= PS′. So α cannot be missing when the program terminates. The rest
of the proof is the same as that of Theorem 1. Furthermore, it is obvious that
Proposition 2 and Proposition 3 still hold.

Method 2. When some lemmas are learnt from theory inconsistency, instead
of adding them to the Boolean formula PS, we put them apart from PS. Hence
these lemmas participate in the process of finding a feasible assignment α, while
they do not affect finding a minimum cube of α. Proposition 2 no longer holds
in this situation. For a counterexample, consider the following formula:

φ = (x > 3 ∨ x < 6) ∧ (x < 6 ∨ x < 2) ∧ (x < 2)

Suppose the search procedure has made two decision assignments: x < 2, x > 3.
Since they are theory-inconsistent, a lemma ¬(x < 2) ∨ ¬(x > 3) is derived and
the program backtracks to the only decision assignment x < 2. Two literals,
¬(x > 3) and x < 6 are then implied by BCP. A feasible assignment is now
obtained, with a minimum cube {x < 2, x < 6}. Now the literal ¬(x > 3)
is neither a decision variable nor its negation, but it is not contained in the
minimum cube, contradicting Proposition 2. As a result, in this method, all
literals in the feasible assignment have to be checked for redundancy.

5 Implementation and Experimental Results

The algorithms were implemented on the basis of the SAT solver MiniSat
2.0 [11], which serves as the search engine for the Boolean structure of the
SMT(LAC) instance. The linear programming tool lp solve [5] is integrated
for deciding the consistency of a conjunction of linear constraints. When a min-
imum cube is obtained, the program calls vinci to compute the volume of the
corresponding polytope, or azove / LattE to count the number of integer points
in the polytope.

To study the effectiveness of the aforementioned techniques, we randomly
generated a number of SMT(LAC) instances whose propositional skeletons are
in CNF. Since vinci is very slow for polytopes in more than 8 dimensions, each
instance contains no more than 8 numeric variables.
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Table 1. Comparison of Algorithms

Algorithm 2 Algorithm 1
Method 1 Method 2

Instance P cls V Time (s) #calls Time (s) #calls Time (s) #calls
Ran1 8 50 4 0.01 19 0.02 19 0.03 41
Ran2 10 40 5 0.06 53 0.06 50 0.14 182
Ran3 15 40 5 5.35 57 2.36 47 11.12 188
Ran4 20 40 5 106.63 332 116.72 259 431.15 17158
Ran5 10 20 6 1.06 47 1.04 41 7.81 212
Ran6 10 50 6 1.07 74 2.08 74 5.32 247
Ran7 15 50 6 2.12 52 2.15 57 10.97 257
Ran8 7 40 7 1.01 16 1.01 16 2.77 39
Ran9 12 40 7 51.26 245 50.29 250 502.75 1224
Ran10 15 50 7 314.26 833 303.14 856 3872.70 5224
Ran11 20 50 7 214.13 158 143.11 140 1889.36 807
Ran12 10 20 8 13.04 39 12.04 37 150.92 235
Ran13 10 40 8 51.09 91 51.10 91 398.02 379
Ran14 16 80 8 1104.05 648 1074.48 669 4 hours 4273
P: number of linear constraints. cls: number of clauses.
V: number of numerical variables. #calls: number of calls to vinci.

We have implemented both methods for the theory-level conflict-driven learn-
ing mechanism described in subsection 4.3. We compare them with the straight-
forward approach on the random instances. The experimental results are given
in Table 1. The programs are run on an Intel 1.86GHZ Core Duo 2 PC with
Fedora 7 OS. For a problem instance with 7 or 8 numerical variables, if we use
azove, the running time will be too long. So the table only contains data for the
cases when vinci is called.

From Table 1 we can see that both the running time and the number of calls
are reduced with Algorithm 2, in some cases by an order of magnitude. However,
there is no clear winner between the two methods for lemma learning.

We have also tried some benchmark problems in SATLIB2. It turns out that
some SAT instances (e.g., Bejing) have so many solutions that the whole search
space cannot be exhausted in reasonable time. On the other hand, some other
instances have just a few solutions (even one solution per instance), or the so-
lutions are scattered in the multi-dimensional space. Table 1 does not include
data for the above instances.

6 Application to Program Analysis

In [25], we proposed a measure δ(P ) for a program path P . Intuitively, it denotes
the volume of the subspace in the input space of the program that corresponds
to the execution of path P ; or, in other words, the number of input data vectors

2 http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
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which drive the program to be executed along this path. Obviously, a special
case is that P is infeasible, and δ(P ) = 0.

For a simple example, see the following program:

int i, j;
if(i+j > 10)

j = 2;
else

j = 1;

The program has two paths, denoted by P1 and P2, which correspond to the
if-then branch and the else branch, respectively. The path conditions are
(i + j > 10) and (i + j ≤ 10).

Suppose the input variables i, j take values from the interval [1..10]. We can
compute that δ(P1) = 55, δ(P2) = 45. Now suppose the variables can take values
from a larger interval, e.g., [1..100]. Then we have δ(P1) = 9955, δ(P2) = 45. We
can see that the first path is executed much more frequently than the second
path, under reasonable assumptions of the input data space.

6.1 Execution Probability

For many paths, the path condition involves just a subset of the input vari-
ables. In such a case, we can preprocess the constraints, and remove the ir-
relevant variables first. This will reduce the dimension of the solution space
and also the volume computation time. The following is a contrived example of
programs:

int i, j;
int a[10], b[10];
for(i = 0; i < 10; i++)

for(j = 0; j < 10; j++)
if(a[i] < b[j])

return a[i];

There are many paths in the program’s flow graph. The following is the path
condition for one of them:

(a[0] ≥ b[0]) ∧ (a[0] ≥ b[1]) ∧ (a[0] < b[2])

The condition involves just 4 (among 20) array elements explicitly. So when com-
puting the δ value of the path, we omit the other 16 array elements, assuming
the input space is of 4 dimensions rather than 22 (20 array elements and i, j).
The computation is greatly simplified.

However, a problem arises when two paths involve different variables, since the
δ values are no longer comparable. We have to introduce another measurement,
namely execution probability. The execution probability of a path P , denoted by
XP(P ), is defined as δ(P ) divided by the volume of the involved data space.
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Suppose there are m variables in the path condition of P , and the range length
or domain size of the ith variable is li. We have

XP(P ) =
δ(P )∏
1≤i≤m li

.

6.2 A Practical Example

Now we describe our experiments with a real program, i.e., a function called
getop() which is taken from [15]. It has been used as an example in several
research papers on software testing. The function fetches the next operator or
operand for a calculator program. Its input variables are characters (except for
one integer variable). It has for-loops, while-loops, and if statements. The
conditional expressions in these statements contain logical operators. This makes
the path conditions a bit complex. The control flow graph is demonstrated in
Fig. 1. Each node in the graph represents a conditional expression or a block

1: c=getchar();

2: !(((c==32 || c==9) || c==10))

3: c=getchar();

4: !((c!=46 && (c<48 || c>57)))

5: RETURN: c;

6: s[0]=c; c=getchar(); i=1;

7: !((c>=48 && c<=57))

8: !(i<lim)

9: s[i]=c;

10: c=getchar(); _temp_var0=i; i=i+1;

11: !(c==46)

12: !(i<lim)

13: s[i]=c;

14: c=getchar(); _temp_var1=i; i=i+1;

15: !((c>=48 && c<=57))

16: !(i<lim)

17: s[i]=c;

18: c=getchar(); _temp_var2=i; i=i+1;

19: !(i<lim)

20: s[i]=0; RETURN: 1000;

22: NOP

23: !((c!=10 && c!=-1))

24: c=getchar();

25: _temp_var3=lim-1; s[_temp_var3]=0; RETURN: 9999;

27: END

Fig. 1. getop()
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of statements, as shown on the right hand side of Fig. 1. At a branching node,
the dotted arrow represents the true branch, and the solid arrow represents the
false branch. The flow graph and the expressions/blocks are produced by our
test generation tools. In this process, some auxiliary variables like _temp_var2
are introduced.

We obtained several paths from the program, and computed the path condi-
tion for each path. The execution probability of each path was computed by our
tool quickly. The running times are within 0.03 second.

In the experiment, we assume that each character variable is an integer, tak-
ing values from the range [0, 255]. We can see that some paths have a larger
probability of being executed, as compared with other paths. For example, see
the two paths: Path1 is 1 → 2 → 4 → 5 → 27 and Path2 is 1 → 2 → 4 → 7 →
11 → 19 → 20 → 27. With our tool, we found that XP(Path1) ≈ 0.945 and
XP(Path2) ≈ 0.021.

7 Related Works and Discussion

So far as we know, there is little work in the literature concerning volume compu-
tation for SMT. In contrast, counting the number of models for SAT has become
a hot topic in the AI community recently. However, some advanced model count-
ing techniques (e.g., component analysis [14] and caching [22]) cannot be used
directly here. The main reason is that the Boolean variables in the SMT formulas
are not independent of each other.

In the software engineering community, Buse and Weimer [7] proposed a
method for estimating path execution frequency. They give a statistical model,
which is based on syntactic features of the program’s source code. In contrast,
our approach uses semantic information in the program paths, and it can calcu-
late the exact probability of executing a path.

In our approach, the domain of linear arithmetic is separated from the logic
part. An alternative is to translate the fixed-length integer variables into Boolean
variables, and then using a pure Boolean logic approach. This should have some
advantages when the program to be analyzed has both arithmetic operations
and bit operations. However, its scalability deserves further investigation.

The main topic of our paper is the volume (or solution space size) of SMT
formulas. But as illustrated in the previous section, sometimes it is desirable to
talk about the probability of satisfying the formulas. So we can introduce the
notion of satisfying probability for a formula. Assume that each variable takes
values uniformly from its range. Given a formula φ, dividing Vφ by the size of
the whole space, we shall get the probability that φ could be satisfied, which is
denoted by P(φ).

We have been discussing how to compute Vφ assuming that the linear con-
straints in φ are restricted to one data type, either integer or real. Now we extend
our problem a bit further. Suppose there are two kinds of linear constraints in
the formula φ: some are defined over p integer variables with the domain size lI ,
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and the others are defined over q real variables with the range length lR. The
satisfying probability of φ is defined as follows:

P(φ) =
∑

α∈Mod(φ)

volume(αI)
lpI

× volume(αR)
lqR

where αI is the partial assignment to integer constraints, and αR to real con-
straints. It can be easily checked that this probability is well defined. Algorithm
2 can also be easily modified to compute P(φ).

If a linear constraint in formula φ involves both integer and real variables,
the explicit expression of P(φ) is not clear. Our algorithm is not applicable to
such cases, either. But we find that the volume of a polytope is quite close to
the number of integer points it contains except for some special cases. Thus in
practice, we can use type casting to unify the data types and get an approximate
result. Despite this, we consider this issue as an interesting problem, worthy of
further investigation.

8 Concluding Remarks

This paper studies the automatic computation of the volume (or solution space
size) of SMT instances. We proposed a non-trivial algorithm, and augmented it
with theory-level lemma learning technology. The algorithms have been imple-
mented, and some experimental results are presented.

In this paper, we focus on just one application of volume computation tech-
niques. Our experiences show that they can be used to compare program paths
with respect to their execution frequency, for real programs. We believe that the
techniques can be applied to other problems as well.

There are several ways in which the current approach might be improved.
Firstly, Algorithm 2 is an on-the-fly method. The bunches are derived as the
program runs, and the number of bunches is not predictable. It would be better
if there were a search strategy for finding a small number of bunches without
too much extra cost. Secondly, as we mentioned in Section 4, we are not able to
incorporate the assignments in case (iv) at present. We plan to devise a post-
processing technique to incorporate some of them when necessary. As a result,
some of the bunches might be combined. Finally, we will investigate the best
way of incorporating lemma learning into our framework.
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B-4000 Liège, Belgium
{boigelot,brusten}@montefiore.ulg.ac.be

2 Laboratoire Bordelais de Recherche en Informatique (LaBRI)
351, cours de la Libération

F-33405 Talence Cedex, France
leroux@labri.fr

Abstract. This work studies the properties of finite automata recogniz-
ing vectors with real components, encoded positionally in a given integer
numeration base. Such automata are used, in particular, as symbolic
data structures for representing sets definable in the first-order theory
〈R, Z, +,≤〉, i.e., the mixed additive arithmetic of integer and real vari-
ables. They also lead to a simple decision procedure for this arithmetic.

In previous work, it has been established that the sets definable in
〈R, Z, +,≤〉 can be handled by a restricted form of infinite-word au-
tomata, weak deterministic ones, regardless of the chosen numeration
base. In this paper, we address the reciprocal property, proving that
the sets of vectors that are simultaneously recognizable in all bases, by
either weak deterministic or Muller automata, are those definable in
〈R, Z, +,≤〉. This result can be seen as a generalization to the mixed
integer and real domain of Semenov’s theorem, which characterizes the
sets of integer vectors recognizable by finite automata in multiple bases.
It also extends to multidimensional vectors a similar property recently
established for sets of numbers.

As an additional contribution, the techniques used for obtaining our
main result lead to valuable insight into the internal structure of
automata recognizing sets of vectors definable in 〈R, Z, +,≤〉. This struc-
ture might be exploited in order to improve the efficiency of representa-
tion systems and decision procedures for this arithmetic.

� This work is supported by the Interuniversity Attraction Poles program MoVES of
the Belgian Federal Science Policy Office, by the grant 2.4530.02 of the Belgian Fund
for Scientific Research (F.R.S.-FNRS), and by the French project ANR-06-SETI-001
AVERISS.

�� Research fellow (”Aspirant”) of the Belgian Fund for Scientific Research (F.R.S.-
FNRS).

R.A. Schmidt (Ed.): CADE 2009, LNAI 5663, pp. 469–484, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



470 B. Boigelot, J. Brusten, and J. Leroux

1 Introduction

In the program analysis and verification field, one often faces the problem of
finding a suitable formalism for expressing the constraints to be satisfied by the
system configurations. Ideally, this formalism has to be decidable, while still
remaining expressive enough for handling the class of constraints needed by the
application. An example of such formalism is Presburger arithmetic, i.e., the first-
order additive theory of integers 〈Z, +,≤〉, which is widely used for reasoning
about programs manipulating integer variables. Presburger arithmetic is indeed
decidable [1,2], yet expressive enough for describing arbitrary linear constraints
as well as discrete periodicities [3].

A simple approach to deciding Presburger arithmetic consists in using finite
automata. It is indeed known that, using the positional notation for encoding
numbers and vectors into words, all Presburger-definable sets are mapped onto
regular languages and can thus be recognized by automata [2,3]. A Presburger
formula can be decided by recursively constructing an automaton recognizing its
solutions, and then checking whether this automaton accepts a nonempty lan-
guage. In some program verification applications, such automata, called Number
Decision Diagrams (NDDs) are actually used as data structures for representing
and manipulating symbolically the sets of program configurations that need to
be handled [4].

Although every subset of Zn that is Presburger-definable can be recognized by
a finite automaton, the reciprocal property does not hold. For instance, denot-
ing by r ∈ N>1 the base chosen for encoding numbers, the set {rk | k ∈ N},
which is not Presburger-definable, clearly corresponds to a regular language
and is thus recognizable. The well-known Cobham’s theorem states that, if
a set S ⊆ Z is simultaneously recognizable by finite automata in two bases
r, s ∈ N>1 that are multiplicatively independent, i.e., such that rp �= sq for all
p, q ∈ N>0, then S is Presburger definable [5]. This result has then been ex-
tended to subsets of Zn, with n > 0, i.e., sets of integer vectors, by Semenov [6].
As a corollary of Semenov’s theorem, the subsets of Zn that are recognizable by
finite automata in every base r ∈ N>1 are exactly those that are Presburger-
definable.

Quite recently, automata recognizing sets of numbers and vectors have been
generalized to the mixed integer and real domain [7]. In this setting, the base-r
encoding of numbers and vectors take the form of infinite words over the alphabet
{0, 1, . . . , r− 1, �}, where “�” is a separator symbol used for distinguishing their
integer and fractional parts. A Real Vector Automaton (RVA) recognizing a set
S ⊆ Rn is then an infinite-word automaton that accepts the encodings of the
elements of S.

It is worth stressing out that RVA are not only theoretical objects; they are
used as actual data structures in verification tools such as LASH for representing
symbolically the sets of configurations of programs relying on both integer and
real variables during their state-space exploration [8]. The decision tool LIRA
also uses RVA for representing the set of solutions of mixed real and integer
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arithmetic formulas [9]. For such applications, it is not sufficient to establish that
all sets of interest are representable by RVA and that all the needed operations
are computable on them, but also to obtain a symbolic representation system
that is concise enough for handling complex sets using a reasonable amount of
memory, and for which the manipulation algorithms are efficient. In particular,
this precludes the use of unrestricted infinite-word automata for describing RVA,
due to the difficulty of carrying out some operations such as set complementa-
tion [13]. It is therefore essential to define restricted forms of RVA that can be
efficiently handled, and to precisely characterize their expressiveness in order
to match the requirements of the intended applications. Another goal is to in-
vestigate whether the transition relation of these restricted RVA has structural
properties that can be exploited in order to represent them more efficiently.

In previous work, a result analogous to Cobham’s theorem has been obtained
for RVA: The sets S ⊆ R that are recognizable by RVA in two bases that do
not share the same set of prime factors1 are exactly those that are definable in
the first-order theory 〈R, Z, +,≤〉, i.e., the extension of Presburger arithmetic to
mixed integer and real variables [10]. This has an important consequence. One
indeed knows that the full expressive power of ω-regular languages is not needed
for representing the sets definable in 〈R, Z, +,≤〉, since those sets can be rec-
ognized by weak deterministic automata [11], a restricted class of infinite-word
automata that are much more easily manipulated algorithmically, and admit a
canonical form. It follows that the sets of reals that are recognizable by RVA in
every base r ∈ N>1 are exactly those that can be recognized by weak determin-
istic RVA.

This paper is aimed at extending this result to sets of vectors with a fixed
dimension, i.e., to subsets of Rn with n > 0. This can be seen as a general-
ization of Semenov’s theorem to real vectors. Precisely, we prove that the sets
S ⊆ Rn that are simultaneously recognizable by RVA in two bases that do not
share the same set of prime factors are those that are definable in 〈R, Z, +,≤〉.
From this result, it follows that the sets of vectors that are recognizable by
RVA in every base r ∈ N>1 are exactly those that can be recognized by weak
deterministic RVA. The same proof also establishes that the sets that are rec-
ognizable by weak deterministic RVA in two multiplicatively independent bases
are definable in 〈R, Z, +,≤〉 as well. Those results are significant for practical
applications, since they imply that weak deterministic automata can be used
for implementing RVA in all cases where the sets of vectors that are symboli-
cally represented are expressed as combinations of linear constraints and discrete
periodicities.

As an additional contribution, the techniques used for obtaining this result
give out valuable insight into the internal structure of RVA recognizing sets of
vectors definable in 〈R, Z, +,≤〉. It might be possible to exploit this structure in
order to improve the efficiency of symbolic representation systems and decision
procedures for that arithmetic.

1 As opposed to the integer case, it has been shown that the result does not hold for
multiplicatively independent bases [10].
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2 Preliminaries

2.1 Positional Encoding of Vectors

Let r ∈ N>1 be a base. The positional notation in base r encodes numbers
x ∈ R as infinite words of the form wI � wF over the finite alphabet Σr ∪ {�},
where Σr = {0, 1, . . . , r − 1}, and “�” is a separator symbol. The finite prefix
wI ∈ Σ+

r and the infinite suffix wF ∈ Σω
r respectively encode an integer and

a fractional part of x. In other words, wI encodes a number xI ∈ Z, and wF a
number xF ∈ [0, 1], such that xI + xF = x. Note that integer numbers admit
two decompositions into integer and fractional parts, e.g., x = 2 leads to both
xI = 2 and xF = 0, and xI = 1 and xF = 1.

An encoding wI of an integer part xI ∈ N is a word ap−1ap−2 . . . a0 ∈ Σ+
r ,

with p > 0, such that xI =
∑p−1

i=0 air
i. For signed numbers xI ∈ Z, the r’s-

complement representation is used, implying that the sign digit ap−1 is then
equal to 0 for positive (or zero) numbers, and to r − 1 for negative ones. For a
negative number, the value of xI becomes equal to −rp +

∑p−1
i=0 air

i. The length
p of encodings is not fixed, but chosen large enough for satisfying the constraint
−rp−1 ≤ xI < rp−1. Finally, an encoding wF of a fractional part xF ∈ [0, 1] is a
word b0b1 . . . ∈ Σω

r such that xF =
∑

i≥0 bir
−i.

This encoding scheme can be extended to vectors x = (x1, x2, . . . , xn) ∈ Rn,
with n > 0. The idea is to encode each component xi separately into a word
wi, but in such a way that these words share the same integer-part length. This
can always be achieved, for the sign digit of an encoding can be repeated at will
without altering the encoded value. One thus obtains a vector (w1, w2, . . . , wn)
of encodings in which the separator symbol “�” occurs at the same position in
each component. By reading those components synchronously one symbol at a
time, one eventually obtains an encoding of x as a single word wI � wF over the
n-dimensional alphabet Σn

r , augmented with a unique separator symbol “�”. For
each word w ∈ {0, r − 1}n(Σn

r )∗ � (Σn
r )ω, the vector x ∈ Rn encoded by w in

base r is denoted by [w]r .

2.2 Real Vector Automata

Consider a base r ∈ N>1 and a set S ⊆ Rn, with n > 0. Let L(S) ⊆ (Σn
r )+�(Σn

r )ω

denote the language formed by the encodings of the elements of S. If L(S) is
ω-regular, then any infinite-word automaton that accepts L(S) is a Real Vector
Automaton (RVA) recognizing S [7]. In this paper, in order to simplify some
developments thanks to their deterministic transition relation, we assume w.l.o.g.
that RVA take the form of Muller automata [12]. A set S ⊆ Rn that can be
recognized by a RVA in base r is said to be r-recognizable.

For practical applications as symbolic representations of sets, infinite-word au-
tomata are somehow problematic, since some of their manipulation algorithms
are known to be significantly costlier than their finite-word counterparts [13]. In
the case of RVA, its has been shown that the full expressive power of infinite-word
automata is not needed for recognizing the sets definable in the first-order theory
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〈R, Z, +,≤〉. Indeed, for any base r ∈ N>1, such sets can be recognized by weak
deterministic RVA [11]. A weak RVA representing a set S is a Büchi automaton
accepting L(S), such that each of its strongly connected components is either
globally accepting or globally non-accepting. Compared to general infinite-word
automata, weak deterministic ones are much more easily manipulated algorith-
mically. In addition, they admit a canonical form that simplifies comparison
operations between symbolically represented sets [14]. We will say that a set
S ⊆ Rn that can be recognized by a weak deterministic RVA in base r is weakly
r-recognizable.

2.3 Properties of Recognizable Sets

In the next sections, we study the properties of sets that are recognizable, or
weakly recognizable, in one or several bases. Such sets are characterized by the
following results.

Theorem 1 ([15]). Let n ∈ N>0 and r ∈ N>1. A set S ⊆ Rn is r-recognizable
iff it is definable in the first-order theory 〈R, Z, +,≤, Xr〉, where Xr ⊂ R3 is
a base-dependent predicate such that Xr(x, u, k) holds whenever u is an integer
power of r, and there exists an encoding of x in which the digit at the position
specified by u is equal to k.

Theorem 2 ([11]). Let n ∈ N>0 and r ∈ N>1. A set S ⊆ Rn is weakly r-
recognizable iff it is r-recognizable, and it belongs to the topological class Fσ ∩Gδ

of the metric topology over Rn induced by the Euclidean distance. This means
that the set has to be decomposable both into a countable union of closed sets,
and into a countable intersection of open sets.

In particular, it is known that every subset of Rn that is definable in the first-
order theory 〈R, Z, +,≤〉, i.e., the extension of Presburger arithmetic to mixed
integer and real variables, satisfies the hypotheses of Theorem 2, and it is there-
fore weakly recognizable in every base r ∈ N>1 [11].

The following theorems and lemmas introduce some operations and transfor-
mations that preserve the recognizable nature of sets.

Theorem 3. Let n ∈ N>0 be a dimension, and r, s ∈ N>1 be multiplicatively
dependent bases, i.e., such that rk = sl for some k, l ∈ N>0. A set S ⊆ Rn is
(resp. weakly) r-recognizable iff it is (resp. weakly) s-recognizable.

Proof sketch. From Theorems 1 and 2, it suffices to show that definability in
〈R, Z, +,≤, Xr〉 is equivalent to definability in 〈R, Z, +,≤, Xs〉. Furthermore,
since rk = sl, it actually suffices to establish that definability in 〈R, Z, +,≤, Xt〉
is equivalent to definability in 〈R, Z, +,≤, Xti〉 for all t ∈ N>1 and i ∈ N>0. An
encoding of a number x ∈ R in base ti can directly be turned into one of the
same number in base t by replacing each digit (belonging to the alphabet Σti)
into a sequence of i digits from Σt. The reciprocal operation is similar. It follows
that the predicate Xt can be defined in terms of Xti , and reciprocally. ��
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Theorem 3 states that (resp. weak) recognizability in bases that are multiplica-
tively dependent is equivalent to (resp. weak) recognizability in one of them. In
the sequel, we will thus only consider bases r and s that are multiplicatively
independent.

Lemma 1. Let n ∈ N>0, S1, S2 ⊆ Rn, and r ∈ N>1. If S1 and S2 are both
(resp. weakly) r-recognizable, then the sets S1 ∪S2, S1 ∩S2, S1 \S2 and S1×S2
are (resp. weakly) r-recognizable as well.

Proof sketch. The class of sets definable in 〈R, Z, +,≤, Xr〉 is closed under
Boolean and Cartesian operators. The same property holds for the topologi-
cal class Fσ ∩Gδ. The result then follows from Theorems 1 and 2. ��

Lemma 2. Let n ∈ N>0, r ∈ N>1, C ∈ Qn×n such that det(C) �= 0, and
a ∈ Qn. If a set S ⊆ Rn is (resp. weakly) r-recognizable, then the set CS + a is
(resp. weakly) r-recognizable as well.

Proof sketch. The proof is by similar arguments as in that of Lemma 1. Indeed,
the transformation x �→ Cx + a is definable in 〈R, Z, +,≤, Xr〉, and preserves
the topological class Fσ ∩Gδ. ��
It is worth mentioning that, in the statement of Lemma 2, it is essential to require
det(C) �= 0 as far as weak recognizability is concerned. Indeed, a transformation
x �→ Cx + a with a singular matrix C amounts to a projection, which generally
alters topological properties of sets. As an example, the set S = {(zrk, rk) |
k, z ∈ Z} belongs to Fσ ∩Gδ, and it is actually weakly r-recognizable, whereas
the set CS, with C = diag(1, 0), does not.

Although projection does not preserve weak recognizability, one can however
sometimes extract from a set a weak recognizable set of smaller dimension. This
operation is described by the following lemma.

Lemma 3. Let n, m ∈ N>0, r ∈ N>1. If two sets S1 ⊆ Rn and S2 ⊆ Rm are such
that S1 × S2 is weakly r-recognizable, then S1 and S2 are weakly r-recognizable
as well.

Proof sketch. The proof is by similar arguments as in that of Lemma 1. ��
Finally, the following result addresses the comparison of two recognizable sets.

Theorem 4. Let n ∈ N>0 and r ∈ N>1. Two r-recognizable sets S1, S2 ⊆ Rn

are equal iff they coincide over the rational vectors, i.e., iff S1 ∩ Qn = S2 ∩ Qn.

Proof sketch. The vectors in Qn are exactly those that are encoded by ultimately
periodic words, i.e., words of the form uvω with |v| ≥ 1. Two ω-regular languages
are equal iff they coincide over the ultimately periodic words [16]. ��
As a corollary, one can always extract a rational vector from a non-empty
r-recognizable set.
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3 Problem Reductions

Our main goal will be to prove that a set S ⊆ Rn that is recognizable or
weakly recognizable in two bases r and s that are multiplicatively independent,
with some possible additional restrictions on r and s, is necessarily definable in
〈R, Z, +,≤〉. In this section, we reduce this general problem to simpler ones.

3.1 Reduction to [0, 1]n

It is known that a set S ⊆ Rn that is r-recognizable can be decomposed into
a finite union S =

⋃
i(S

I
i + SF

i ), where the sets SI
i ⊆ Zn are non-empty and

pairwise disjoint, and the sets SF
i ⊆ [0, 1]n are non-empty and pairwise differ-

ent2 [17,10]. This decomposition of S into sets SI
i and SF

i is independent from
the base r. In addition, each set SI

i is recognizable by a finite-word automaton
in base r (operating only on the integer part of r-encodings), and each set SF

i is
(resp. weakly) r-recognizable if S is (resp. weakly) r-recognizable as well [17,10].

Consider two multiplicatively independent bases r and s, and a set S ⊆ Rn

that is both r- and s-recognizable. Applying Semenov’s theorem, one obtains
that the sets SI

i are definable in 〈Z, +,≤〉. It follows that, in order to prove that
S is definable in 〈R, Z, +,≤〉, it suffices to show that each set SF

i is definable in
〈R, +,≤, 1〉. Since this theory is closed under elimination of quantifiers [18], this
is equivalent to proving that each SF

i can be expressed as a Boolean combination
of linear constraints with rational coefficients.

We have therefore reduced our main problem from Rn to the simpler domain
[0, 1]n. From now on, we will stay within [0, 1]n and consider that RVA only
recognize the fractional part of encodings, their integer part being restricted to
zero. Formally, we introduce [w]r, with w ∈ (Σn

r )ω , as a shorthand for [0 � w]r .

3.2 Reduction to Product-Stable Sets

In order to be able to prove that the recognizability of a subset of [0, 1]n in
multiple bases leads to its definability in 〈R, +,≤, 1〉, we need to establish a link
between the arithmetical properties of this set, and the structure of automata
recognizing it.

Let n ∈ N>0, r ∈ N>1, and let S ⊆ [0, 1]n be a set recognized in base r by a
RVA A. We associate to each state q of A the language L(q) accepted from q,
as well as the set of vectors S(q) ⊆ [0, 1]n encoded by L(q), i.e., S(q) = {[w]r |
w ∈ L(q)}.

Recall that A is a (deterministic) Muller automaton. For each finite path
q

σ−→ q′ of A, the language L(q′) can be expressed as L(q′) = σ−1L(q) = {w ∈
(Σn

r )ω | σw ∈ L(q)}. Similarly, the set S(q′) can be expressed in terms of S(q).
Denoting by [σ]r the integer vector encoded by σ, i.e., [σ]r = [0σ � 0ω]r, we get

S(q′) =
{

x ∈ [0, 1]n | [σ]r + x

r|σ|
∈ S(q)

}
.

2 The property is actually known for the domain R, but straightforwardly generalizes
to Rn.
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From this relation and Lemmas 1 and 2, one obtains that S(q′) is (resp. weakly)
recognizable in all bases for which S(q) is (resp. weakly) recognizable.

Consider now the particular case q = q′, i.e., assume that the path labeled by
σ cycles from q to itself. The previous relation becomes

x ∈ S(q) ⇔ x ∈ [0, 1]n ∧ [σ]r + x

r|σ|
∈ S(q).

Remark that the transformation x �→ ([σ]r + x)/r|σ| admits the fixed point
x = [σ]r/(r|σ| − 1) = [σω]r ∈ [0, 1]n. Translating S(q) so as to move this fixed
point onto 0, one gets

x ∈ S(q)− [σω]r ⇔ x ∈ [0, 1]n − [σω]r ∧
x

r|σ|
∈ S(q)− [σω ]r.

This prompts the following definition, adapted from [10].

Definition 1. Let n ∈ N>0, v ∈ [0, 1]n ∩ Qn be a pivot, and f ∈ R≥1 be
a factor. A set S ⊆ [0, 1]n is f -product-stable with respect to the pivot v iff
∀x ∈ [0, 1]n − v : x ∈ S − v ⇔ (1/f)x ∈ S − v.

Intuitively, that a set is f -product-stable with respect to the pivot v means that
the set does not change when it magnified by the zoom factor f around the fixed
point v. Remark that this property is preserved by transformations of the form
x �→ Cx + a, with C ∈ Qn×n and a ∈ Qn, provided that [0, 1]n ⊆ C[0, 1]n + a,
and the new pivot v′ = Cv + a belongs to [0, 1]n.

In summary, if A recognizes the set S ⊆ [0, 1]n in base r, then each reachable
state q of A recognizes a set S(q) ⊆ [0, 1]n that is (resp.weakly) recognizable in
all bases for which S is (resp. weakly) recognizable. Furthermore, if there exists
a cycle q

σ→ q, then the set S(q) is r|σ|-product-stable with respect to the pivot
[σω]r. We have thus established a link between a structural property of A (the
presence of a cycle rooted at q) and an arithmetical property of S(q) (its product
stability).

The next step is to show that any recognizable set can be decomposed into a
combination of product-stable sets that can be considered individually.

Consider the set Q1 of states q of A from which there exists a cycle q
σ→ q,

with σ ∈ (Σn
r )+. Note that every infinite path of A eventually visits a state in

Q1. Let L be the language of words σi ∈ (Σn
r )∗ labeling finite paths π = q0

σi→ qi

such that q0 is the initial state of A, qi ∈ Q1, q′ �∈ Q1 for every state q′ distinct
from qi visited by π, and there is only one occurrence of qi in π. The language
L is finite, and it maps each σi ∈ L to a state qi of A. For each such qi, A
admits a cycle rooted at qi, hence there exists vi ∈ Qn ∩ [0, 1]n and li ∈ N>0
such that S(qi) is rli -product-stable with respect to the pivot vi. Note that each
S(qi) is (resp. weakly) recognizable in all bases for which S is (resp. weakly)
recognizable. Moreover, since S =

⋃
σi∈L(1/r|σi|)(S(qi) + [σi]r), we have that S

is definable in 〈R, +,≤, 1〉 if all the sets S(qi) are definable in the same theory.
It follows from this result that, in order to prove that the recognizability

of a set S ⊆ [0, 1]n in multiple bases implies its definability in 〈R, +,≤, 1〉, it
is sufficient to prove this property for sets S that are rl-product-stable, with
l ∈ N>0.
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4 Recognizability in Multiple Bases

In this section, we prove the following results, which generalize to Rn those
developed in [17,10].

Theorem 5. Let n ∈ N>0 be a dimension, and r, s ∈ N>1 be bases with different
sets of prime factors (i.e., such that there exists a prime factor of one that does
not divide the other). If a set S ⊆ [0, 1]n is both r- and s-recognizable, then it is
definable in 〈R, +,≤, 1〉.
Theorem 6. Let n ∈ N>0 be a dimension, and r, s ∈ N>1 be multiplicatively
independent bases. If a set S ⊆ [0, 1]n is both weakly r- and weakly s-recognizable,
then it is definable in 〈R, +,≤, 1〉.
Our approach is by induction on n. The case n = 1 is an immediate consequence
of [17,10]. It remains to address the inductive case where n ≥ 2, assuming that
Theorems 5 and 6 hold for smaller dimensions. Exploiting the results of Sec-
tion 3.2, we only consider w.l.o.g. sets S ⊆ [0, 1]n that are rl-product-stable for
some l ∈ N>0 and pivot v ∈ [0, 1]n ∩ Qn.

4.1 Using s-Recognizability

Consider a set S ⊆ [0, 1]n that is recognizable in two bases r, s ∈ N>1. Assume
that there exist l ∈ N>0 and v ∈ [0, 1]n ∩ Qn such that S is rl-product-stable
with respect to the pivot v. We show in this section that there exists an integer
l′ ∈ N>0 such that S is sl′ -product-stable as well.

We first consider the case v = 0. Let As be a RVA recognizing S in base s.
We assume w.l.o.g. that As has a complete transition relation, hence it admits
an ultimately cyclic path labeled by 0ω, which we denote

q0
0m

−→ [q 0l′

−→]ω,

where q0 is the initial state of As, m ∈ N and l′ ∈ N>0. By the same reasoning
as in Section 3.2, we obtain that the set S(q) encoded in base s by the language
L(q) accepted from q in As is both r- and s-recognizable. Moreover, S(q) is
sl′ -product-stable with respect to the pivot 0.

Since As is deterministic, it admits only one path from q0 to q labeled by 0m,
which leads to S(q) = smS ∩ [0, 1]n. From this relation, and the rl-product-
stability hypothesis on S, it follows that S(q) is rl-product-stable as well, with
respect to the pivot 0.

The set S(q) is thus both rl- and sl′-product-stable, with respect to the same
pivot 0. Let us show that these properties imply that S itself is both rl- and
sl′ -product-stable. By hypothesis, S is rl-product-stable with respect to 0. For
any x ∈ [0, 1]n and k ∈ N, we thus obtain

x ∈ S ⇔ 1
rlk

x ∈ S ⇔ s|σ
′|

rlk
x ∈ s|σ

′|S

⇔ s|σ
′|

rlk
x ∈ S(q),
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if k is chosen large enough to have rlk ≥ s|σ
′|. Since S(q) is sl′ -product-stable

with respect to 0, we get

s|σ
′|

rlk
x ∈ S(q) ⇔ s|σ

′|−l′

rlk
x ∈ S(q)

⇔ 1
rlksl′

x ∈ S ⇔ 1
sl′

x ∈ S.

proving that S is sl′ -product-stable with respect to v in the special case v = 0.
The general case v ∈ [0, 1]n ∩ Qn is obtained by decomposing S according

to the 2n possible positions of vectors in [0, 1]n with respect to v. For each
vector a ∈ {−1, 1}n we introduce the matrix Ma = diag(a), the set Da =
(v + MaRn

≥0) ∩ [0, 1]n and the set Sa = S ∩ Da. Each set Da is a Cartesian
product of intervals Da = I1 × · · · × In, where for all i ∈ {1, . . . , n},

Ii =
{

[vi, 1] if ai = 1,
[0, vi] if ai = −1.

The vectors a such that Da has a positive volume are identified by introducing
the set A of vectors a such that fi(vi) > 0 for any i ∈ {1, . . . , n}, where fi(vi)
denotes the length of the interval Ii, i.e

fi(vi) =
{

1− vi if ai = 1,
vi if ai = −1.

Since each zero volume set is included into at least one positive volume set, we
have

⋃
a∈A Da = [0, 1]n, which implies S =

⋃
a∈A Sa.

For each a ∈ A, the set Ma(Da − v) takes the form of the Cartesian product
[0, f1(v1)]×· · ·× [0, fn(vn)]. We can thus map the elements of Da onto [0, 1]n by
defining the transformation x �→ CaMa(x− v), where Ca = diag(1/f1(v1), . . . ,
1/fn(vn)).

We now consider, for each a ∈ A, the set S′a = CaMa(Sa − v). From the rl-
product-stability of S with respect to v, it follows that S′a is rl-product-stable
with respect to 0. By Lemmas 1 and 2, S′a inherits the recognizability properties
of S. Moreover, there exists l′a ∈ N>0 such that S′a is sl′a-product-stable with
respect to 0. From this property and the equality Sa = v + M−1

a C−1
a Sa, we

deduce that Sa is sl′a-product-stable with respect to v. From S =
⋃

a∈A Sa, it
then follows that S is sl′ -product-stable, where l′ = lcma∈A(l′a).

In summary, we have established that S, in addition to being rl-product-
stable by hypothesis, is sl′ -product-stable as well. It remains to show that these
properties, combined with our inductive hypotheses, imply that S is definable
in 〈R, +,≤, 1〉.

4.2 Exploiting Multiple Product Stabilities

We thus consider a set S ⊆ [0, 1]n and two bases r, s ∈ N>1, such that either r and
s are multiplicatively independent and S is weakly r- and weakly s-recognizable,
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or r and s do not share the same set of prime factors3 and S is r- and s-
recognizable. Using the results of Section 4.1, we assume that there exist l, l′ ∈
N>0 and v ∈ [0, 1]n ∩ Qn such that S is both rl- and sl′-product-stable with
respect to the pivot v. Our goal is to show that S is definable in 〈R, +,≤, 1〉.

We first prove the following property.

Property 1. For each x ∈ [0, 1]n ∩ Qn such that x �= v, let hv(x) denote the set
{v +λ(x−v) ∈ [0, 1]n | λ ∈ R>0}. We have either hv(x) ⊆ S, or hv(x) ∩ S = ∅.

Proof sketch. Consider x ∈ [0, 1]n ∩ Qn such that x �= v. The set hv(x) can be
expressed as an intersection of linear inequalities with rational coefficients, and
is thus weakly recognizable in all bases, as a consequence of Theorems 1 and 2.
From Lemma 1, it follows that the set S′ = S ∩ hv(x) is recognizable both in
bases r and s, by the same type of automaton as S. Besides, S′ is both rl- and
sl′ -product-stable with respect to the pivot v.

Let C ∈ Qn×n be a non-singular matrix such that C(x − v) = (1, 0, . . . , 0).
Note that the transformation y �→ Cy maps hv(x) onto a line segment that
is parallel to the first axis. From Lemmas 1 and 2, we have that the set S′′ =
C(S′ − v) ∩ [0, 1]n inherits the recognizability properties of S. Moreover, S′′ is
rl- and sl′ -product-stable with respect to the pivot 0.

Note that the set S′′ can be decomposed into S′′ = S′′′ ×{0}n−1, with S′′′ ⊆
[0, 1]. Applying Lemma 3, the set S′′′ has the same recognizability properties
as S hence, by the inductive hypotheses, it is definable in 〈R, +,≤, 1〉. In other
words, S′′′ is equal to a finite union of intervals with rational boundaries.

In addition, we know that S′′′ is rl- and sl′-product-stable with respect to
the pivot 0. Since r and s are multiplicatively independent, rl and sl′ are mul-
tiplicatively independent as well. By Kronecker’s approximation lemma, the set
{rlisl′j ∈]0, 1] | i, j ∈ Z} is dense in ]0, 1], as shown in [19,10]. It follows that if
1 ∈ S′′′ then S′′′ \{0} =]0, 1] and if 1 �∈ S′′′ then S′′′ \{0} = ∅. As a consequence,
hv(x) ∩ S is either empty, or equal to hv(x). ��
Intuitively, Property 1 hints at the fact that the set S has a conical structure.
We formalize this property by the following definition.

Definition 2. A set T ⊆ [0, 1]n is a conical set of vertex v ∈ [0, 1]n iff ∀x ∈
[0, 1]n, f ∈]0, 1] : x ∈ T ⇔ f(x− v) + v ∈ T .

In other words, a conical set is entirely determined by its vertex, and its intersec-
tion with the faces of the hypercube [0, 1]n. It follows that, in order to establish
that S is definable in 〈R, +,≤, 1〉, it suffices to show that this intersection is
definable in the same theory, and that S is a conical set. We have the following
results.

Property 2. For each i ∈ {1, 2, . . . , n} and λ ∈ {0, 1}, let Fλ,i = {x ∈ [0, 1]n |
xi = λ}. The set S ∩ Fλ,i is definable in 〈R, +,≤, 1〉.

3 Note that this constraint implies that r and s are multiplicatively independent.
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Proof sketch. Let i ∈ {1, 2, . . . , n} and λ ∈ {0, 1}. We first build the permutation
matrix C ∈ {0, 1}n×n such that Cx = (x1, . . . , xi−1, xi+1, . . . , xn, xi) for any
x = (x1, . . . , xn) ∈ Rn. The set Fλ,i is definable in 〈R, +,≤, 1〉, hence it is
weakly r-recognizable. From Lemmas 1 and 2, the set S′ = C(S ∩ Fλ,i) inherits
the recognizability properties of S. Moreover, we have S′ = S′′ × {λ}, where
S′′ ⊆ [0, 1]n−1 has the same recognizability properties as well, as a consequence
of Lemma 3. The result then follows from the inductive hypotheses. ��

Property 3. The set S is conical with respect to the vertex v.

Proof sketch. Let S′ be the intersection of S with the faces of the hypercube
[0, 1]n. We have established that S′ is definable in 〈R, +,≤, 1〉. The set S′ can
thus be expressed as a finite Boolean combination of linear constraints with
rational coefficients. As a consequence, there exists a set S′′ ⊆ [0, 1]n that is
definable in 〈R, +,≤, 1〉, conical with respect to the vertex v, and that coincides
with S′ over the faces of [0, 1]n and over the vertex v. Applying Property 1, we
obtain S′′ ∩ Qn = S ∩ Qn. From Theorem 4, we then have S = S′′. ��

5 Internal Structure of RVA

In Section 4, we have proved Theorems 5 and 6, which broadly state that if
a set S ⊆ [0, 1]n is recognizable or weakly recognizable in two bases r and
s that are sufficiently different, then this set is definable in 〈R, +,≤, 1〉. As a
corollary, such sets are then weakly recognizable in every base r ∈ N>1 [11].
This result is significant, since it establishes that the class of weak deterministic
automata is sufficient for representing all the sets that are recognizable by RVA
regardless of the numeration base. As mentioned earlier, the advantage of using
weak deterministic automata in actual applications comes from the fact that
these automata are basically as easy to handle algorithmically as finite-word
ones [20].

We now use Theorems 5 and 6, together with other results obtained in Sec-
tion 4, in order to get some insight into the internal structure of RVA recog-
nizing the subsets of [0, 1]n definable in 〈R, +,≤, 1〉. As explained in Section 3,
this is equivalent to studying the structure of RVA recognizing sets definable in
〈R, Z, +,≤〉, staying within the part of automata that reads the fractional part
of vectors (i.e., in the sub-automata whose initial states are the destinations of
transitions labeled by “�”).

Let n ∈ N>0 be a dimension, r ∈ N>1 be a base, and S ⊆ [0, 1]n be a set de-
finable in 〈R, +,≤, 1〉. We consider a weak and deterministic RVA A recognizing
S in base r. We assume w.l.o.g. that A is complete as well as minimal (in the
sense of [14]).

As observed in Section 3.2, for each state q of A, the set S(q) ⊆ [0, 1]n encoded
by the language L(q) accepted from q can be derived from S by a transformation
that is definable in 〈R, +,≤, 1〉. It follows that each S(q) is itself definable in that
theory.
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In addition, it has been established in Section 4.2 that, for the states q that
belong to non-trivial strongly connected components of A (i.e., such that there
exists at least one cycle from q to itself), the set S(q) is a conical set. It is
however worth noticing that the vertex of this conical set may not be uniquely
determined. For instance, every element of the conical set {(0, λ) | λ ∈ [0, 1]} is
one of its vertices. We have the following result.

Theorem 7. Let n ∈ N>0, and T ⊆ [0, 1]n be a conical set. The vertices of T
form a bounded affine space {v + ν1u1 + · · ·+ νmum ∈ [0, 1]n | ν1, . . . , νm ∈ R},
with m ∈ N and v, u1, . . . , um ∈ Rn.

Proof sketch. It is sufficient to prove that, if v1, v2 ∈ [0, 1]n are two distinct
vertices of T , then each point on the line segment L = {μv1+(1−μ)v2 ∈ [0, 1]n |
μ ∈ R } linking v1 and v2 is also a vertex of T . This can be achieved by showing
that T is invariant under any translation parallel to L that stays within [0, 1]n,
i.e., that x ∈ T ⇔ x + μ(v1 − v2) ∈ T for all x ∈ [0, 1]n and μ ∈ R such that
x + μ(v1 − v2) ∈ [0, 1]n.

Let x be an arbitrary vector in [0, 1]n. Consider an arbitrary value μ ∈ R≥0
such that x + μ(v1 − v2) ∈ [0, 1]n. (Note that restricting μ to be non negative
does not weaken the property.)

We define x′ = x + μ(v1 − v2) and f = 1/(1 + μ). Since T is a conical set
w.r.t. the vertex v1, we have x ∈ T if and only if f(x−v1)+v1 ∈ T . Exploiting
the conical structure of T w.r.t. the vertex v2, we then get x′ ∈ T if and only if
f(x′ − v2) + v2 ∈ T . By replacing x′ by x + μ(v1 − v2) we deduce the equality

f(x′ − v2) + v2 = f(x− v1) + v1

which yields x ∈ T ⇔ x′ ∈ T . ��
We are now ready to describe the structure of A: Its initial state is the root

of a (possibly empty) acyclic structure, composed of states belonging to trivial
strongly connected components, and leading to states q belonging to non-trivial
components. For each such state q, the set S(q) ⊆ [0, 1]n is conical. Such a set
is entirely characterized by the affine space containing its vertices, a Boolean
value stating whether these vertices belong or not to S(q), and the intersection
of the set with the 2n faces of the hypercube [0, 1]n. This intersection can be
expressed in terms of at most 2n subsets of [0, 1]n−1 (in the bottom case n = 1,
this degenerates into the two extremities of the interval [0, 1]), which are known
to be recognizable in 〈R, +,≤, 1〉.

Those observations could lead to a more efficient data structure for represent-
ing canonically the subsets of [0, 1]n that are definable in additive arithmetic.
For instance, RVA could be represented implicitly, by using BDDs for describing
their initial acyclic structure [21] and linking this structure to representations
of conical sets. These sets could be described by encoding separately the affine
space containing their vertices and the faces of their enclosing hypercube. These
faces could themselves be represented by the same type of structure applied to
subsets of [0, 1]n−1. The bottom layer of such a hierarchical representation would
correspond to individual rational numbers, which could be encoded explicitly.
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The detailed study of such a representation system, and its application to de-
cision procedures for 〈R, +,≤, 1〉 and 〈R, Z, +,≤〉, will be the subject of future
work.

6 Conclusions

In this paper, we have characterized the subsets of Rn, with n ∈ N>0, that are
recognizable by RVA, or weak deterministic RVA, in multiple bases. Precisely, we
have established that the sets that are either weakly recognizable in two multi-
plicatively independent bases, or recognizable in two bases that do not share the
same set of prime factors, are exactly those that are definable in the first-order
theory 〈R, Z, +,≤〉. These results were already known for the particular case
n = 1 [17,10]. They generalize to automata operating on real vectors Semenov’s
theorem, which states that the sets of integer vector that are recognizable in
multiplicatively independent bases are those that are definable in Presburger
arithmetic. The theory 〈R, Z, +,≤〉 can indeed be seen as an extension of Pres-
burger arithmetic to mixed integer and real variables [22]. It is worth mentioning
that, in the case of (non weak) recognizability, the condition on the numeration
bases cannot be replaced by multiplicative independence. Indeed, there exist
subsets of R that are simultaneously recognizable in two multiplicatively inde-
pendent bases, but without being definable in additive arithmetic [10].

An important corollary of our results is that every subset of Rn that is rec-
ognizable in every base r ∈ N>1 can be recognized by a weak deterministic au-
tomaton. This provides a theoretical justification to the use of these automata
for representing sets of integer and real vectors, in addition to their practical
advantages.

As an additional contribution, we have obtained interesting insight into the
structure of weak deterministic automata recognizing sets definable in the the-
ory 〈R, Z, +,≤〉. In future work, we will address the problem of exploiting this
structure in order to develop more efficient symbolic representation systems for
subsets of Rn, as well as an improved decision procedure for 〈R, Z, +,≤〉. Our aim
is to be able to benefit from the advantages of automata-based symbolic repre-
sentations, which mainly reside in their easy algorithmic manipulation and their
canonicity, while managing to avoid some of their drawbacks, such as the un-
necessarily large size of automata obtained from some classes of constraints [23].
This could be achievable by keeping a part of the transition relation of RVA
implicit. Such a representation would also simplify the problem of extracting
formulas from automata recognizing arithmetic sets [24,25].
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2. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc.
International Congress on Logic, Methodoloy and Philosophy of Science, pp. 1–12.
Stanford University Press, Stanford (1962)

3. Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets
of integers. Bulletin of the Belgian Mathematical Society 1(2), 191–238 (1994)

4. Boigelot, B.: Symbolic methods for exploring infinite state spaces. PhD thesis,
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1 Carnegie Mellon University, Pittsburgh, PA
aplatzer@cs.cmu.edu

2 University of Oldenburg, Germany
quesel@informatik.uni-oldenburg.de

3 Oxford University, Computing Laboratory, UK
Philipp.Ruemmer@comlab.ox.ac.uk

Abstract. Scalable handling of real arithmetic is a crucial part of the
verification of hybrid systems, mathematical algorithms, and mixed ana-
log/digital circuits. Despite substantial advances in verification tech-
nology, complexity issues with classical decision procedures are still a
major obstacle for formal verification of real-world applications, e.g.,
in automotive and avionic industries. To identify strengths and weak-
nesses, we examine state of the art symbolic techniques and implemen-
tations for the universal fragment of real-closed fields: approaches based
on quantifier elimination, Gröbner Bases, and semidefinite programming
for the Positivstellensatz. Within a uniform context of the verification
tool KeYmaera, we compare these approaches qualitatively and quanti-
tatively on verification benchmarks from hybrid systems, textbook algo-
rithms, and on geometric problems. Finally, we introduce a new decision
procedure combining Gröbner Bases and semidefinite programming for
the real Nullstellensatz that outperforms the individual approaches on
an interesting set of problems.

Keywords: Real-closed fields, decision procedures, hybrid systems,
software verification.

1 Introduction

The field of formal verification has the important ambition to check the behavior
of systems by either proving the correct functioning of the system or finding bugs
in its design. For several classes of systems that come from real-world domains,
reasoning about real quantities is an inherent aspect of the problem. This in-
cludes (i) embedded systems or complex physical systems, (ii) formal analysis
of mixed discrete/analog effects in chip design, or (iii) mathematical textbook
algorithms, numerical algorithms or floating point arithmetic in standard pro-
grams. For domains (i)–(ii), hybrid systems are a common model, i.e., systems
governed by interacting discrete and continuous transitions in the state space. In
these domains, the need for real arithmetic reasoning comes from the temporal
evolution of the continuous part of the state space, e.g., positions, velocities, ana-
log signals. For case (iii), real arithmetic occurs in the computations on program
data or are used as a first approximation for floating-point arithmetic.
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By a famous result due to Tarski [1], real arithmetic is decidable in the sense
that (the first-order theory of) real arithmetic is equivalent to the first-order
theory of real-closed fields, which is decidable by quantifier elimination (i.e., the
process of replacing quantified formulas equivalently by quantifier-free formulas).
Numerous algorithmic improvements have been made both for the handling of
basic real arithmetic and for specific verification procedures for the problem do-
mains (i)–(iii). However, for a large number of real-world systems, the underly-
ing problems in real arithmetic still have a prohibitive complexity for quantifier
elimination. Even numerical procedures for real arithmetic [2] suffer from the
curse of dimensionality limiting their scalability.

In this paper we compare three state of the art approaches to reasoning about
real-arithmetic in real-closed fields based on: quantifier elimination [3,4] Gröbner
Bases [5], and semidefinite programming [6] for the Positivstellensatz [7]. Quan-
tifier elimination is defined for full quantified (polynomial) nonlinear real arith-
metic. The other approaches are for the universal fragment, i.e., formulas with
a universal quantifier prefix. We discuss strengths and weaknesses of these ap-
proaches for formal verification and compare multiple algorithms and imple-
mentations on a set of benchmarks originating from real verification problems or
interesting instances of real arithmetic. To obtain representative experimental
results, we integrate all these approaches within a single uniform framework of
the automated theorem prover KeYmaera for hybrid systems [8].

Finally, we introduce a new decision procedure for the universal fragment of
real-closed fields that combines Gröbner Basis computations with semidefinite
programming for the real Nullstellensatz [7] to avoid the scalability issues with
semidefinite programming for the Positivstellensatz. Our algorithm outperforms
the other algorithms on an interesting set of benchmarks.

With the goal of finding out which approaches are most suitable for real world
verification problems, we provide an experimental evaluation for a wide range of
techniques for real arithmetic. We contrast multiple state of the art approaches
and different implementations:

1. Quantifier elimination for real-closed fields in Mathematica, QEPCAD B [9],
Redlog [10], and HOL Light [11];

2. Real arithmetic handling with Gröbner Bases using external procedures in
Mathematica, the Orbital library, and internally with KeYmaera proof rules;

3. Semidefinite programming relaxations [6] for the Positivstellensatz [7] using
the CSDP solver [12] in our own implementation and in HOL Light [13];

4. Our new algorithm combining Gröbner Bases and semidefinite programming
for the real Nulstellensatz [7] using CSDP [12] and the Orbital library.

In this paper, we consider problems in the continuous world of reals that arise
in real world verification problems, including hybrid systems analysis and pro-
gram verification. Our contributions are a systematic quantitative and quali-
tative comparison of multiple techniques for handling real arithmetic within a
uniform verification framework and the introduction of a novel decision proce-
dure for universal real arithmetic that combines Gröbner Bases with semidefinite
programming for the real Nullstellensatz. We further address the question how
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expensive various levels of confidence in real verification are in real examples: ex-
ternal (unverified) blackboxes, external blackboxes producing formally checkable
certificates, and internal formal reasoning within a proof system.

2 Overall Verification Approach

We briefly discuss our formal verification approach for hybrid systems and math-
ematical algorithms within the automated theorem prover KeYmaera [8]. It is an
implementation of a Gentzen-style sequent proof calculus for hybrid systems [14]
that uses deduction modulo decision procedures for handling real arithmetic. The
calculus works on sequents of the form φ1, . . . , φn  ψ1, . . . , ψm with the seman-
tics of the formula

∧n
i=1 φi →

∨m
i=1 ψi. Among several other rules, the calculus

transforms the propositional structure into a sequent representation.
The deduction modulo calculus of KeYmaera gives us a uniform context for

comparing the performance of multiple approaches and implementations for real
arithmetic. The input for KeYmaera is a formula given in differential dynamic
logic [14]. This logic extends first-order logic over real arithmetic by constructs
for reasoning about hybrid systems as well as real-valued mathematical algo-
rithms. For the verification task, the proof calculus transforms the input for-
mulas into first-order formulas over real-arithmetic. For details about the proof
rules of this transformation we refer to [14].

In this paper we address the question of handling the resulting real arith-
metic formulas. Although first-order logic over real arithmetic is decidable by
quantifier elimination [1] its complexity is doubly exponential in theory and can
be high in practice. The central point of this work is to examine the question
which approach to handling real arithmetic is best for which class of real world
examples. We further want to determine the computational cost for techniques
that provide formal proof certificates.

3 Methods for Handling Real Arithmetic

We survey different approaches to handling real arithmetic in background provers
for verification. We phrase these approaches in terms of reals for simplicity. Yet,
all subsequent theory in Sections 3–4 generalizes from R to real-closed fields.

In the sequel we assume the presence of standard rules for propositional con-
nectives. Such rules are not presented here, as propositional reasoning is or-
thogonal to the handling of arithmetic. The KeYmaera system uses classical
propositional sequent calculus rules; see [14,15] for details. To simplify the pre-
sentation, we further assume simple rules to normalise sequents that translate,
e.g., g ≤ f to f ≥ g, f �= g to ¬(f = g) and  f > g to f ≤ g  respectively.
We assume all inequalities to be moved to the antecedent in this way.

3.1 Gröbner Bases for Real Arithmetic

Gröbner bases [5] provide a sound but incomplete procedure for proving validity
of formulas in the universal fragment of equational first-order real arithmetic.
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Preliminaries. Let Q[X1, . . . , Xn] be the set of multivariate polynomials over the
indeterminates X1, . . . , Xn with coefficients in Q. A subset I ⊆ Q[X1, . . . , Xn]
is an ideal, iff I is a subgroup with respect to addition and

rx ∈ I, for all x ∈ I, r ∈ Q[X1, . . . , Xn] .

The ideal generated by a set G ⊆ Q[X1, . . . , Xn] is the smallest ideal I contain-
ing G, and is denoted by (G).

The notions of Gröbner bases and polynomial reductions are relative to an
admissible monomial order ≺, which is a strict well-order on monomials such
that uw ≺ vw whenever u ≺ v for arbitrary monomials u, v, w. Admissible orders
extend canonically to Q[X1, . . . , Xn] as a multiset order; see [5] for details. The
monomial order determines the leading term in multivariate polynomials, i.e.,
the maximal monomial with respect to ≺.

Definition 1 (Reduction). Let f, g ∈ Q[X1, . . . , Xn]. We say that f reduces to
g with respect to G ⊂ Q[X1, . . . , Xn] iff for some m ∈ N there are f0, f1, . . . , fm

in Q[X1, . . . , Xn] with f0 = f, fm = g such that, for all i, fi+1 = fi − higi

for some hi ∈ Q[X1, . . . , Xn], gi ∈ G, and fi+1 ≺ fi. We write g = redG f if, in
addition, g cannot be reduced further, i.e., there is no hm+1 ∈ Q[X1, . . . , Xn] and
gm+1 ∈ G with g − hm+1 gm+1 ≺ q.

Definition 2 (Gröbner basis). A finite subset G of an ideal I of Q[X1, .., Xn],
is called Gröbner basis iff I = (G) and redG f is unique for all polynomials f .
Further G is reduced if no g ∈ G can be reduced further with respect to G \ {g}.

There are several equivalent alternative formulations of this definition, for in-
stance that redG f = 0 iff f ∈ I. This means that Gröbner bases solve the ideal
membership problem and can, thus, directly be used as an (incomplete) proof
rule for equational arithmetic.

Gröbner Basis Eliminations. The most naive use of Gröbner bases for real arith-
metic is described by the rules A1, A2 in Fig. 1. The rule A1 closes a goal if the
ideal G generated by equations in the antecedent contains 1, which (by Hilbert’s
Nullstellensatz) implies that the equations do not have common solutions (i.e.,
are contradictory). Similarly, A2 can be applied if the sides f, g of an equation
in the succedent have the same remainder modulo G, which means f − g ∈ (G).

The scope of the rules can be extended by testing for radical membership
instead of ideal membership, which can prove problems like x2 = 0  x = 0 that
A2 cannot prove. The radical of an ideal I is the set

√
I =

∞⋃
i=1

{g ∈ Q[X1, . . . , Xn] : gi ∈ I} ⊇ I

Because the inclusion I ⊆
√

I can be strict (e.g.,
√

(x2) = (x)), testing for radical
membership is more liberal than ideal membership, while still being sound.

In practice, the rule A3, which is known as Rabinowitch’s trick, represents a
simple way of testing for radical membership. It is based on the observation that
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(A1)
∗

Γ, g1 = g̃1, . . . , gn = g̃n � Δ

(A2)
∗

Γ, g1 = g̃1, . . . , gn = g̃n � f = h, Δ

(A3)
Γ, (f − g)z = 1 � Δ

Γ � f = g,Δ

(A4)
Γ, f − g = z2 � Δ

Γ, f ≥ g � Δ

(A5)
Γ, (f − g)z2 = 1 � Δ

Γ, f > g � Δ

(A6)
Γ � 1 + s2

1 + · · · + s2
n = 0, Δ

Γ � Δ

In all rules, z is a fresh variable. With the Gröbner basis G of the ideal
(g1 − g̃1, . . . , gn − g̃n), rule A1 is applicable if redG 1 = 0, and A2 if redG f = redG h.
Rules similar to A2, A4 and A5 can be defined for inequalities in the succedent. In A6,
the polynomials s1, . . . , sn can be chosen arbitrarily.

Fig. 1. Rule schemata of Gröbner calculus rules

g ∈
√

I if and only if 1 ∈ (I ∪ {gz − 1}) (where z is a fresh indeterminate). The
latter property can be tested by first applying A3 and then A1.

Finally, inequalities can be translated to equations using A4, A5, which exploit
the fact that a real number is positive iff it is a square (A5 is an optimized
version including Rabinowitch’s trick). Combined with the rules A1, A2, this
encoding of inequalities is rather weak, and not able to derive simple facts like
a ≤ b ∧ b ≤ c → a ≤ c. It is, however, an important preprocessing step for the
complete procedure described in the next section (where we explain rule A6).

Proposition 1 (Soundness). The Gröbner basis rules in Fig. 1 are sound.
Rules A3, A4, A5 are even satisfiability-equivalent transformations, i.e., their
respective premisses and conclusions are satisfiability-equivalent. (See [16]).

The Gröbner basis approach gives a sound but incomplete overapproximation.
To see why Gröbner bases are incomplete for real arithmetic, consider the fol-
lowing. Gröbner bases are a general approach and do not take into account the
special properties of the reals. For instance, the sequent x2 = −1  is valid, i.e.,
the formula x2 = −1 is unsatisfiable over R, but the Gröbner basis of x2 + 1
is {x2 + 1} and, in fact, x2 = −1 is satisfiable over C but not over R.

Implementations. We compare three implementations of the Gröbner basis rules:

GM. The implementation provided by the Mathematica 7.0 computer algebra
system, which can be used as a reasoning back-end by KeYmaera.

GO. The implementation of Buchberger’s algorithm [5] in the open-source Java-
library Orbital (written by the first author of this paper).

GK. An implementation of Buchberger’s algorithm with (verified) proof rules
that are directly defined within KeYmaera. This procedure generalizes a cal-
culus for integer arithmetic [17] to the reals, and differs from GM and GO
in that it does not use the rules A3, A4, A5, but instead integrates the
Fourier-Motzkin variable elimination rule [18] to handle inequalities (which
is complete for linear arithmetic). This tight integration of the two proce-
dures can simplify terms in inequalities using Gröbner bases, and can feed
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equations derived by the Fourier-Motzkin procedure back to Buchberger’s
algorithm. We evaluate the benefits of this cooperation in Sect. 5. Since
our domain are the reals, we do not use the heuristic approach tailored to
nonlinear integer inequalities from [17].

3.2 A Complete Rule Using the Real Nullstellensatz

While the rules A1, A2, A3, A4, A5 only form an incomplete calculus for prob-
lems in real arithmetic, the situation is different over the complex numbers:
Hilbert’s Nullstellensatz tells that A1, A3 together yield a decision procedure
for universal equational problems in C. A corresponding result for real-closed
fields is Stengle’s real Nullstellensatz [7]; also see [13]:

Theorem 1 (Nullstellensatz [7] for real-closed fields). Let R be a real-
closed field (e.g., R = R) and G be a finite subset of R[X1, . . . , Xn]. Then the set
{x ∈ Rn : g(x) = 0 for all g ∈ G} is empty if and only if there are polynomi-
als s1, . . . , sm ∈ R[X1, . . . , Xn] such that 1 + s2

1 + · · ·+ s2
m ∈ (G). If, moreover,

G ⊆ �[X1, . . . , Xn], then also the polynomials s1, . . . , sm can be chosen among
the elements of �[X1, . . . , Xn].

This theorem leads to an extremely simple, yet complete, proof method for the
universal fragment of real arithmetic: in addition to the rules that we have already
discussed, we add rule A6 in Fig. 1 for injecting the equation 1 + s2

1 + · · ·+ s2
m = 0

into a proof goal. Any valid proof goal can then be closed in the following way:
(i) inequalities and equations in the succedent are turned into equations in the
antecedent with the help of A3, A4, A5, (ii) the witness 1 + s2

1 + · · ·+ s2
m due to

the real Nullstellensatz is generated using A6, and (iii) the goal is closed by the
Gröbner Basis computations with A2.

Corollary 1 (Completeness). Along with propositional rules, the rules in
Fig. 1 are complete for the universal fragment of real arithmetic.

Proof. Completeness follows from Theorem 1 using the satisfiability-equivalence
properties for the transformation by A3, A4, A5 according to Proposition 1. ��

The main difficulty with this calculus is obvious: it does not provide any guid-
ance for choosing the witness 1 + s2

1 + · · ·+ s2
m = 0. One technique to tackle the

required search is semidefinite programming, following the work based on Sten-
gle’s Positivstellensatz (Sect. 3.4) in [6,13]. We describe a new approach that
combines semidefinite programming with Gröbner bases in Sect. 4.

Example 1. In Fig. 2, we show a proof for the following implication (leaving out
propositional reasoning):

x ≥ y ∧ z ≥ 0 → xz ≥ yz. (1)

The inequalities x ≥ y and z ≥ 0 are turned into equations using A4. Proving
by contradiction (or using propositional rules), the conclusion xz ≥ yz is con-
sidered as an assumption yz > xz and subsequently eliminated with the help of
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∗
A2 x − y = a2, z = b2, (yz − xz)c2 = 1 � 1 + (abc)2 = 0
A6 x − y = a2, z = b2, (yz − xz)c2 = 1 �

A4,A5 x ≥ y, z ≥ 0, yz > xz �

Fig. 2. Example proof using the real Nullstellensatz

A5. Once this is done, we rely on an oracle to tell us the witness 1 + (abc)2,
which is introduced using A6. Finally, the proof can be closed by A2: the set
{a2 − x + y, b2 − z, xzc2 − yzc2 + 1} is a Gröbner basis representing the equa-
tions in the antecedent. The basis reduces the term 1 + (abc)2 to 0 as follows:

1 + a2b2c2 b2−z 1 + a2zc2 a2−x+y 1 + xzc2 − yzc2  0

3.3 Quantifier Elimination in Real-Closed Fields

A general method for handling quantified real arithmetic is based on the seminal
work by Tarski [1]. He showed that there is an algorithm computing a quantifier-
free formula that is equivalent to a given formula in (first-order) real arithmetic.

Theorem 2 (Quantifier elimination [1]). The first-order theory of reals (or
of real-closed fields) admits quantifier elimination, i.e., to each first-order for-
mula φ, a quantifier-free formula QE(φ) can be associated effectively that is
equivalent and has no additional free variables. Thus QE yields a decision proce-
dure for closed formulas when evaluating the remaining quantifier-free formulas.

Unlike the other approaches outlined in this paper, QE directly applies to full
nonlinear (polynomial) real arithmetic and not just to the universal fragment.
QE is also independent of propositional rules, except that computational effi-
ciency considerations advise to combine both [19].

Example 2. For instance, QE yields the following equivalence:

∃x (ax2 + bx + c = 0) ≡ a �= 0 ∧ b2 − 4ac ≥ 0 ∨ a = 0 ∧ (b = 0 → c = 0)

Tarski’s approach has been extended to practical algorithms [3,4], which are
quite sophisticated. Unfortunately, the complexity of QE is doubly exponential
in the number of quantifier alternations [20].

Implementations. We compare six implementations of QE in experiments:

QQ. Partial cylindrical algebraic decomposition (PCAD) [3] in QEPCADB [9];
QM. QE based on partial CAD [3] and validated numerics [21] in Mathematica;
QRc. Partial CAD [3] in Redlog [10];
QRs. Virtual substitution [4] in Redlog [10], falling back to QRc;
QC. Harrison’s implementation of Cohen-Hörmander quantifier elimination;
QH. Proof-producing quantifier elimination [11] in HOL Light.
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3.4 Semidefinite Programming for the Positivstellensatz

The Positivstellensatz for real-closed fields [7] is a generalisation of the real Null-
stellensatz. It gives rise to a sound and complete proof method for the universal
fragment of first-order real arithmetic that does not require the reductions A3,
A4, A5. The Positivstellensatz has recently been exploited in combination with
relaxations from semidefinite programming [6,13].

The multiplicative monoid mon(H) generated by H ⊆ R[X1, . . . , Xn] is the
set of finite products of elements of H (including the empty product 1). The
cone con(F ) generated by a set F ⊆ R[X1, . . . , Xn] is the smallest set contain-
ing F and squares s2 of arbitrary polynomials s ∈ R[X1, . . . , Xn] that is closed
under addition and multiplication. For more computational representations of
cones and ideals, we refer to [6,22].

Theorem 3 (Positivstellensatz [7] for real-closed fields). Let R be a real-
closed field (e.g., R = R) and F, G, H finite subsets of R[X1, . . . , Xn]. Then

{x ∈ Rn : f(x) ≥ 0 for all f ∈ F, g(x) = 0 f.a. g ∈ G, h(x) �= 0 f.a. h ∈ H}

is empty iff

there are s ∈ con(F ), g ∈ (G), m ∈ mon(H) such that s + g + m2 = 0 .

If, moreover, F, G, H ⊆ �[X1, . . . , Xn], then also the polynomials s, g, m can be
chosen among the elements of �[X1, . . . , Xn].

The polynomials s, g, m are polynomial infeasibility witnesses. For bounded de-
gree, witnesses s, g, m can be searched for using numerical semidefinite program-
ming [6] by parameterising the resulting polynomials. As (theoretical) degree
bounds exist for the certificate polynomials s, g, m, the Positivstellensatz yields
a decision procedure. These bounds are, however, at least triply exponential [6].
Thus, the approach advocated by Parrilo [6] is to increase the bound successively
and solve the existence of bounded degree witnesses due to the Positivstellensatz
by semidefinite programming [23].

As a simple corollary to Theorem 3 we have that A7 is a sound proof rule.

Corollary 2 (Soundness). The rule in Fig. 3 is sound.

In contrast to the rules in Fig. 1 the only additional transformation necessary for
rule A7 is a reduction from > to ≥ via f > g ↔ f ≥ g ∧ f �= g. All other trans-
formations follow from the propositional sequent calculus rules and the rewriting

(A7)
∗

f1 ≥ f̃1, . . . , fm ≥ f̃m, g1 = g̃1, . . . , gn = g̃n � h1 = h̃1, . . . , hl = h̃l

A7 is applicable iff s + g + m2 = 0 for some s ∈ con({f1 − f̃1, . . . , fm − f̃m}), some
g ∈ (g1 − g̃1, . . . , gn − g̃n), and some m ∈ mon({h1 − h̃1, . . . , hl − h̃l}).

Fig. 3. Rule schemata of Positivstellensatz calculus rules
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∗
A7x ≥ y, z ≥ 0, (yz − xz)c2 = 1 �
A5 x ≥ y, z ≥ 0, yz > xz �

Fig. 4. Example proof using the Positivstellensatz

rules described in the beginning of Sect. 3. Therefore, this approach does not in-
troduce new variables, as it does not need the rules A3 – A5. Alternatively, A5
can be used in place of the f > g axiomatisation as we show in the sequel.

Example 3. A proof for the implication (1) that uses the Positivstellensatz is
in Fig. 4. In contrast to the proof in Fig. 2, it is now unnecessary to eliminate
the inequalities x ≥ y and z ≥ 0, while the rule A5 has to be used for xz ≥ yz
(corresponding to yz > xz in the antecedent). A witness for the problem is:

c2 · (x − y) · z︸ ︷︷ ︸
s

+ (yz − xz)c2 − 1︸ ︷︷ ︸
g

+ 1︸︷︷︸
m2

= 0

The terms x− y and z in s stem from the inequalities in the sequent, while the
term g is derived from the equation.

Implementations. We compare two implementations using the semidefinite pro-
gramming optimization tool CSDP [12] to find witnesses for the Positivstellen-
satz:

PH. John Harrison’s implementation [13] in HOL Light.
PK. Our implementation within KeYmaera directly follows the approach pre-

sented by Parrilo [6] and Harrison [13]. We follow Parrilo’s enumeration of
polynomials without further optimization.

4 Gröbner Bases for the Real Nullstellensatz (GRN)

We describe a new approach to turn the complete calculus based on the real
Nullstellensatz (NSS, Theorem 1) into an effective proof procedure. While our
method is strongly inspired by, and in parts based on, semidefinite programming
for the Positivstellensatz (PSS, Theorem 3) [6,13], there are two main motiva-
tions to deviate from this approach: (i) the application of the PSS requires
reasoning about ideal membership (the set (G) in Theorem 3) and, thus, to
solve systems of polynomial equations. This is an incentive to integrate Gröbner
bases as a computational, efficient, and well-studied method to this end; (ii) the
PSS requires constructing three witnesses s, g, m simultaneously, which makes
it intricate to balance degree bounds and the number of parameters to be de-
termined by semidefinite programming. Using a combination of Gröbner basis
computations and the single witnesses of the real NSS, we avoid these issues.

In order to prove by NSS that a set G of polynomials does not have common
zeroes, we need to find polynomials s1, . . . , sm such that 1 + s2

1 + · · ·+ s2
m ∈ (G).
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We reduce this problem to a search for positive semidefinite matrices with the
help of the following lemma. A matrix X ∈ �k×k is called positive semidefinite
(PSD) if it is symmetric, and if xtXx ≥ 0 for each vector x ∈ �k. There is a
simple correspondence between PSD matrices and sums of squares:

Lemma 1. Suppose p ∈ �[X1, . . . , Xn]k is a vector of rational polynomials. The
following identities hold (for the proof see [16]):{

l∑
i=1

(cip)2 : l ∈ �, ci ∈ �k

}

=

{
l∑

i=1

αi(cip)2 : l ∈ �, αi ∈ �, αi ≥ 0, ci ∈ �k

}

=
{
ptXp : X ∈ �k×k positive semidefinite

}
By combining Lemma 1 with the NSS, we see that a set G of polynomials does
not have any common zeroes if and only if there is a vector p of polynomials
and a PSD matrix X ∈ �k×k such that 1 + ptXp ∈ (G). As the vector space of
polynomials is generated by monomials, it is sufficient to consider vectors p of
monomials.

Semidefinite programming [23] provides a simple method to determine such
matrices X . A semidefinite program (SDP) is an optimisation problem in terms
of traces (tr) of matrices:

maximise tr(CX)
subject to tr(AiX) = bi (for i ∈ {1, . . . , n}),
where X positive semidefinite

where Ai, C ∈ �k×k are symmetric matrices and bi ∈ �. Such optimisation prob-
lems can be solved efficiently using numerical convex optimization [23].

The key insight underlying our method is the following: by computing a
Gröbner basis B for the ideal (G), the NSS condition 1 + ptXp ∈ (G) can be
encoded as the linear side constraints tr(AiX) = bi (i ∈ {1, . . . , n}) of a semidefi-
nite program searching for X . To see this, note that both the expression 1 + ptXp
and the reduction redB(1 + ptXp) are linear in X . Because Gröbner bases de-
termine unique remainders, we therefore have 1 + ptXp ∈ (G) if and only if
redB(1 + ptXp) = 0. This equation is a linear constraint on X suitable for SDP.

To capture this observation formally, let Q be a symmetric k × k matrix of
parameters:

Q =

⎛
⎜⎜⎝

q1,1 q1,2 . . . q1,k

q1,2 q2,2 . . . q2,k

. . . . . . . . . . .
q1,k q2,k . . . qk,k

⎞
⎟⎟⎠

The polynomial 1 + ptQp is linear in Q and can be represented in the form
1 + ptQp = qtCm, where q = (q1,1, q1,2, . . . , qk,k)t is the vector of all the Q-
parameters, m = (m1, . . . , ms)t is a vector of monomials over X1, . . . , Xn (con-
taining, at least, 1 and all products pipj of components of p), and C ∈ �k2×s
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is a matrix. By computing the remainder qtDm = redB(qtCm) of this term for
a Gröbner basis B over Q[X1, . . . , Xn], we can construct the required side con-
straints:

Lemma 2. Suppose that the components of m are pairwise distinct, and that
qtCm and qtDm are two polynomials over Q[q1,1, q1,2, . . . , qk,k][X1, . . . , Xn] de-
fined by the matrices C, D ∈ Qk2×s, such that qtDm = redB(qtCm). Then the
following equation holds (see [16] for a proof):

{x ∈ Rk : redB(xtCm) = 0} = {x ∈ Rk : xtD = 0} (2)

Example 4. We return to the implication (1) proven in Fig. 2 by showing that the
polynomials B = {a2 − x + y, b2 − z, xzc2 − yzc2 + 1} have no common zeroes.
The witness 1 + (abc)2 used in the proof of Fig. 2 can be constructed systemati-
cally for a suitable set of basis monomials, say, p = (1, a2, abc)t. We need to find
a PSD matrix X ∈ Q3×3 such that 1 + ptXp ∈ (B). To do so, we compute the
reduction redB(1 + ptQp) for a symbolic 3× 3 parameter matrix Q:

redB(1 + ptQp)

= redB(1 + q1,112 + 2q1,2a
2 + 2q1,3abc + 2q2,3a

3bc + q3,3a
2b2c2)

= 1 + q1,1 − q3,3 + 2q1,2x− 2q1,2y + 2q1,3abc + 2q2,3abcx− 2q2,3abcy

By comparing coefficients, the constraints on Q for this polynomial to be 0 are:

1 + q1,1 − q3,3 = 0 −2q1,2 = 0 2q2,3 = 0
2q1,2 = 0 2q1,3 = 0 −2q2,3 = 0

A positive semidefinite solution of the constraints is q3,3 = 1 and qi,j = 0 for all
(i, j) �= (3, 3), which means 1 + ptQp = 1 + (abc)2.

Theorem 4 (Completeness). By enumerating all monomials for p succes-
sively, Gröbner bases for the real Nullstellensatz give a complete method for uni-
versal real arithmetic: If the original formula is valid, then, when p contains all
monomials of a sufficiently large degree, the corresponding semidefinite programs
will have a solution (the witness).

Proof. The proof is a combination of Lemma 2 with Corollary 1.

4.1 Discussion and Practical Considerations

Semidefinite programming turns the search for witnesses 1 + s2
1 + · · ·+ s2

m into
a (simpler) search for suitable basis monomials p. As the number of basis mono-
mials that need to be considered is finite (due to degree bounds on witnesses
[6]), this yields a theoretical decision procedure. Practically, we enumerate all
monomials with ascending degree. There might be more sophisticated methods,
however: the number of monomials that witnesses are actually built of is usu-
ally small, and it might be possible to locate likely candidates by analyzing the
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Gröbner basis B. In our experience, the number of basis monomials that are
considered before a solution is found (and thus the difficulty of a problem) de-
pends on (i) the number of variables in the polynomial ring, and (ii) the degree
of the leading monomials in the Gröbner basis.

Another issue is that implementations for semidefinite programming (like the
CSDP solver [12] used by us) are numerical and produce answers in floating point
arithmetic. To recover precise solutions in Q from such answers, we use a similar
approach as in [13]: We approximate floating point numbers to a certain preci-
sion by rationals (with the help of Stern-Brocot trees [24]), and check resulting
solution candidate for semidefiniteness. We increase the precision successively as
long as the solution candidate remains indefinite.

Optimizations. We found it essential to use preprocessing steps to reduce the
number of variables in a problem, such that the number of potential basis mono-
mials becomes tractable. Some heuristics are:

– If the Gröbner basis B contains a polynomial x + t such that x does not
occur in t, then x and the polynomial can be eliminated by simple rewriting.

– If B contains polynomials xy − 1 and xn + t such that xn does not divide
t, then x and the polynomial xy − 1 can be eliminated by multiplying each
polynomial in B (except xy − 1) with a power of y and reducing w.r.t. xy − 1.

– Polynomials α1m
2
1 + · · ·+ αnm2

n ∈ B such that αi > 0 for i ∈ {1, . . . , n} can
be replaced by the monomials m1, . . . , mn.

– If B contains a polynomial α0x
2 − α1m

2
1 − · · · − αnm2

n such that αi > 0 for
i ∈ {0, . . . , n} where x only occurs with even degree in B, then x can be
eliminated by rewriting and the polynomial can be removed.

The last two cases are surprisingly common, due to the encoding of inequalities
by quadratic terms performed by A4 and A5.

5 Experimental Results

We have integrated the techniques presented in Sect. 3–4 into KeYmaera. With
the various methods for real arithmetic integrated into a common framework and
real arithmetic examples from different domains, we have a solid base for our
experiments. The benchmarks1 are a collection of challenging arithmetic prob-
lems from the hybrid system world [25], the verification of invariant properties
for mathematical algorithms [26,27] and algebraic geometry [28], as well as a
smaller number of synthetic problems. For the examples with mixed quantifiers,
our setting applies QM to the existential quantifiers such that we can still gain
insight into the scalability of the approaches that are restricted to the universal
fragment on these examples. We run our experiments on a dual Intel Xeon E5430
(quad core with 2.66 GHz) and 32 gigabytes RAM.

1 Available along with KeYmaera from http://symbolaris.com/info/KeYmaera.html

http://symbolaris.com/info/KeYmaera.html
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Fig. 5. Examples solved per time

The experimental results [16] sum-
marized in Fig. 5 show that, for our
particular mix of examples, quantifier
elimination procedures are still faster
than recent approaches with semidef-
inite programming relaxations for
the Positivstellensatz, while Gröbner
bases alone have difficulties with
“real” problems. As expected, pro-
cedures tailored for real arithmetic
can solve substantially more cases
than Gröbner bases for general fields.
Gröbner bases that integrate Fourier-
Motzkin (GK) solve many more
problems.

Our combination, GRN, of Gröbner bases with the real Nullstellensatz is com-
petitive with quantifier elimination by partial CAD [3]. The experiments also
show that substantial performance improvements (QRs and QM) are still possi-
ble beyond partial CAD. Another interesting observation from the experiments
is that the Positivstellensatz (PH and PK) and our GRN approach complement
each other quite well. PH and GRN together can solve 84 out of 97 problems [16].

The experiments show that GM and GO are on a par. Further, QM and QRs

are very close, but clearly outperform QRc, QQ and QC both in runtime and
number of provable cases. QH is slower but competitive with the number of
examples solved by GK but does not yet perform as well as other QE imple-
mentations or GRN. The performance gap between PK and PH is surprising. In
part, it shows how important Harrison’s optimizations [13] of Parrilo’s work [6]
are, but may also be caused by different heuristics for recovering rationals from
floats and different enumeration orders for polynomials. This might indicate that
PK, indeed, gives a more objective comparison for GRN than PH, because PK
and GRN share exactly the same KeYmaera framework and rational recovering.
Our new GRN procedure is a clear win compared to PK. Inevitably, performance
depends on the system options and on the set of benchmarks.

6 Related Work

Nipkow [29] presented a formally verified implementations of quantifier elimina-
tion in an executable fragment of Isabelle/HOL, currently for linear real arith-
metic only. McLaughlin and Harrison [11] presented a nonverified but
proof-producing implementation of general quantifier elimination, so that the re-
sult of the procedure can be checked independently.

The sum of squares approach has been pioneered by Parrilo [6] and Harri-
son [13]. Harrison also gives optimizations for the univariate case.

Tiwari [30] presents an approach using Gröbner bases and sign conditions
on variables to produce unsatisfiability witnesses for nonlinear constraints. The
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approach depends on appropriate heuristic variable orderings that are formed
by successively introducing new variables for polynomial expressions following
certain heuristics (which may not terminate). Our work and that of Tiwari share
the combination of Gröbner bases with witness generation. Yet we follow semi-
definite programming for the real Nullstellensatz, whereas [30] uses heuristic
generation of polynomial witness expressions. Tiwari uses the Positivstellensatz
to prove refutational completeness but not as part of his technique.

RSolver [2] is a numerical approach for deciding validity of (robust instances
of) first-order formulas over real arithmetic extended with transcendental func-
tions. Unlike our work, this relies on numerical stability of the input formula.

MetiTarski [31] is an interesting approach for handling special functions using
a combination of resolution proving with simple QE procedures. Their focus is
on handling special functions not on handling real arithmetic.

Hunt et al. [32] describe the handling of nonlinear arithmetic in ACL2, which
is based on heuristic multiplication of inequalities in the style of (1) and yields an
incomplete method. The method is claimed to be empirically successful, though,
and can also be applied to nonlinear integer arithmetic.

7 Discussion and Conclusions

The respective approaches from Sect. 3–4 have different advantages and weak-
nesses for formal verification of real world problems in real arithmetic. We draw a
qualitative comparison complementing the quantitative comparison from Sect. 5.

Quantifier Elimination. Quantifier elimination procedures [3] can handle full
nonlinear real arithmetic, including existential quantifiers. Their implementa-
tions are quite intricate algorithms for which correctness is not easily established
formally. Unfortunately, QE does not produce simple checkable certificates.

Proof-producing [11] or verified [29] QE procedures may be interesting im-
provements on the formal traceability of QE. Unfortunately, their performance
is not yet fully competitive with other quantifier elimination implementations or
our new proof-producing GRN procedure.

A compromise is reverification: Proof search [33,19] in KeYmaera generates
several problems of real arithmetic to find a proof, but only those in the fi-
nal proof are soundness-critical. For soundness, it is sufficient to use a fast or
untrusted implementation of QE during the proof search and to reverify the
final proof in a proof checker with a verified or proof-producing QE implemen-
tation [11,29]. For this purpose, KeYmaera strategies are especially useful that
identify the sweetspot for applying QE iteratively during the proof search [19].

Positivstellensatz. In the context of verification, a useful property of the Posi-
tivstellensatz is that it produces a witness (s + g + m2 = 0) for the validity of a
formula. Once the witness has been found, it is checkable by simple computations
in the polynomial ring to determine whether the polynomial identity holds by
comparing the coefficients. Similarly, the well-formedness of the witness can be
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determined by checking whether s is build from sums of squares using an exten-
sion of “completing the square” [13]. Thus, complicated numerical semidefinite
programming tools [23] do not need to be part of the trusted computing base
concerning soundness. Due to its enumerative nature with a large number of
extra parameters, scalability with the number of variables is still limited.

Gröbner Bases. The Gröbner Basis approach does not have simple witnesses like
Positivstellensatz approaches. Their working principle, however, is strictly based
on symbolic computations, which can be carried out from a small set of rewrite
rules within a logic. This corresponds to our built-in Gröbner basis approach
GK, which is almost as efficient as external Gröbner basis implementations. Our
experimental results indicate that, due to the partial ignorance of real-closed
field properties, the capabilities of Gröbner bases alone are not sufficient, even
in combination with Fourier-Motzkin elimination.

Real Nullstellensatz. Our new decision procedure based on Gröbner basis com-
putations and the real Nullstellensatz share the presence of checkable witnesses
with approaches based on the Positivstellensatz. Once a witness 1 +

∑
i s2

i = 0
has been found, the polynomial equality check can be performed easily within a
proof system using the GK rules, giving a fully formal proof. The performance in
our experiments show that this new approach is promising. It outperforms most
other approaches, except for highly tuned QE procedures, which lack support
for formal traceability. We believe that further research in this area is likely to
produce competitive but traceable solutions for real arithmetic.
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