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Abstract. A variant of Rate Transition Systems (RTS), proposed by
Klin and Sassone, is introduced and used as the basic model for defin-
ing stochastic behaviour of processes. The transition relation used in our
variant associates to each process, for each action, the set of possible fu-
tures paired with a measure indicating their rates. We show how RTS can
be used for providing the operational semantics of stochastic extensions
of classical formalisms, namely CSP and CCS. We also show that our
semantics for stochastic CCS guarantees associativity of parallel compo-
sition. Similarly, in contrast with the original definition by Priami, we
argue that a semantics for stochastic π-calculus can be provided that
guarantees associativity of parallel composition.

1 Introduction

Performance and dependability issues are of utmost importance for “network-
aware” computing, due to the enormous size of systems—networks typically
consist of thousands or even millions of nodes—and their strong dependence on
mobility and interaction. Spontaneous computer crashes may easily lead to fail-
ure of remote execution or process movement, while spurious network failures
may cause loss of code fragments or unpredictable delays. The enormous mag-
nitude of computing devices involved in global computing yields failure rates
that no longer can be ignored. The presence of such random phenomena implies
that correctness of global computing software and their safety guarantees are no
longer rigid notions.

A number of stochastic process algebras have been proposed in the last two
decades with the aim of combining two very successful approaches to concurrent
systems specification and analysis, namely Labeled Transition Systems (LTS)
and Continuous Time Markov Chains (CTMC). Indeed, LTS have proved to be
a very convenient framework for providing compositional semantics of languages
for specifying large complex system and for the analysis of their qualitative prop-
erties of systems. CMTC have, instead, been used mainly in performance eval-
uation, and thus for the analysis of quantitative properties taking into account
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also aspects related to both time and probability. Examples of stochastic process
algebras include TIPP [8], PEPA [14], EMPA [2], stochastic π-calculus [22] and
StoKlaim [5]. Semantics of these calculi have been provided by resorting to vari-
ants of the Structured Operational Semantics (SOS) approach but, as noticed
in [18], they are not based on any general framework for operational semantics
descriptions of stochastic processes, and indeed differ substantially from one an-
other. Moreover, due to the different underlying models, it is rather difficult to
appreciate differences and similarities of such semantics.

The common feature of all the above mentioned approaches is that the actions
used to label transitions are enriched with rates of exponentially distributed ran-
dom variables (r.v.) characterising their mean duration. On the other hand, they
differ for the way synchronization rates are determined, the actions performed by
processes are counted, etc.. Moreover, although the same class of r.v. is assumed,
i.e. exponentially distributed ones, we have that the underlying models and no-
tions are significantly different, ranging, e.g. from multi relations for PEPA, to
proved transition systems for stochastic π-calculus, to unique rate names for
StoKlaim.

In [18], a variant of Labelled Transition Systems is introduced, namely Rate
Transition Systems (RTS), which is used for defining the stochastic semantics of
process calculi. The main feature of RTS is that the transition relation is actually
a function ρ associating a rate value in IR≥0 to each state-action-state triple:
ρ(P, α, Q) = λ > 0 if and only if P evolves via action α to Q with rate λ. Stochas-
tic semantics of process calculi are defined by relying on the general framework
of SGSOS. Moreover, in [18] conditions are put forward for guaranteeing associa-
tivity of the parallel composition operator in the SGSOS framework. It is then
proved that one cannot guarantee associativity of parallel composition operator
up to stochastic bisimilarity when the synchronisation paradigm of CCS is used
in combination with the synchronisation rate computation based on apparent
rates [14]. This implies for instance that parallel composition of Stochastic π is
not associative. And, it has to be said that associativity of parallel composition
is a higly desirable property in particular for networks and distributed systems,
especially in presence of dynamic process creation.

In the present paper, we introduce a variant of RTS where the transition rela-
tion � associates to a given process P and a given transition label α a func-
tion, denoted by P, Q,. . . , mapping each term into a non-negative real number.
The reduction P

α� P has the following meaning: if P(Q) = v, (with v �= 0),
then Q is reachable from P by executing α, the duration of such execution being
exponentially distributed with rate v; if P(Q) = 0, then Q is not reachable from

P via α. We have then that if P
α� P then ⊕P

def
=

∑
Q P(Q) represents the

total rate of α in P . Moreover, we adapt the apparent rate approach to calculi
like CCS and, consequently, π-calculus. This adaptation guarantees associativity
and commutativity properties of parallel composition. The approach is somewhat
reminiscent of that of Deng et al. [7] where probabilistic process algebra terms
are associated to a discrete probability distribution over such terms.
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In the rest of the paper, after introducing Rate Transition Systems, we show
how they can be used for providing the stochastic operational semantics of the
two classical formalisms CSP and CCS. We prove that our characterizations of
the stochastic variants of the above mentioned process calculi either are in full
agreement with the originally proposed ones or show the differences. Further-
more, we show that in our approach associativity of the parallel composition
operator can be guaranteed also in the stochastic extensions of calculi based on
a two party synchronisation pattern, like CCS and π-calculus. We also introduce
a natural notion of bisimulation over RTS that is finer than Markovian bisimula-
tion and use it to establish the associativity results. Due to space limitation, all
proofs are omitted. For the same reason, the treatment of stochastic π-calculus
is omitted; the complete RTS semantics, related results and proofs can be found
in detail in [6].

2 Rate Transitions Systems

The semantics of process algebras is classically described by means of Labelled
Transitions Systems (LTS). The semantics of stochastic process algebras [11,15]
are classically defined by means of Continuous Time Markov Chains (CTMC).
Here we assume the reader is familiar with basic notions concerning CTMC and
exponentially distributed r.v. [9]; we only recall our working definition of CTMC:

Definition 1. A Continuous-Time Markov Chain (CTMC) is a tuple (S,R)
where S is a countable set of states and R a rate matrix assigning non-negative
values to pairs of states, such that for all s ∈ S,

∑
s′∈S R[s, s′] converges1.

Intuitively, (S,R) models a stochastic process where, for any state s ∈ S, when-
ever

∑
s′∈S R[s, s′] > 0, the probability to take an outgoing transition from s

by (continuous) time t is 1 − e−
∑

s′∈S R[s,s′]·t, i.e. the s-residence time is ex-
ponentially distributed with rate

∑
s′∈S R[s, s′], and the probability to take

a transition from state s to state s′, given that s is left, is R(s,s′)∑
s′′∈S R[s,s′′] . If

∑
s′∈S R[s, s′] = 0, then s is said to be absorbing, i.e. if the process enters

state s, it remains in s forever. In what follows, the rate matrix function R
of any CTMC (S,R) is lifted to sets of states C ⊆ S in the natural way:

R[s, C]
def
=

∑
s′∈C R[s, s′].

2.1 Rate Transition Systems and Markov Chains

We now present RTS, a generalisation of LTS, specifically designed for describing
stochastic behaviours of process algebras and instrumental to generate CMTC
to be associated to given systems. RTS have been introduced in [18], however,
in that work, a rate is associated to each transition, while in our approach the
transition relation associates to each state and to each action a function mapping
each state to a non negative real number. Formally:
1 Notice that this definition allows self loops in CTMC, i.e. R[s, s] > 0 is allowed. We

refer the reader to [1] for details.
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Definition 2 (Rate Transition Systems). A rate transition systems is a
triple (S, A, � ) where S is a set of states, A a set of transition labels, �
a subset of S × A×ΣS and ΣS is the set [S → IR≥0] of total functions from S
to IR≥0.

In the sequel RTS will be denoted by R,R1,R′,. . . , while P, Q, R, . . . will range
over the elements of ΣS . Intuitively, s1

α� P and P(s2) = v ∈ IR>0 means
that s2 is reachable from s1 via the execution of α with rate v. On the other hand,
P(s2) = 0 means that s2 is not reachable from s1 via α. Notice that the above
definition, differently from the original one in [18], includes also nondeterministic
systems where from a certain state the same actions can lead to different rate
functions.

Notation 1. In the sequel, we will use ∅ to denote the constant function 0, while
[s1 �→ v1, . . . , sn �→ vn] will denote a function associating vi to si and 0 to all
the other states. Moreover, for X ⊆ S and P ∈ ΣS P(X) =

∑
s∈X P(s) and

⊕P denotes P(S).

Definition 3. Let R = (S, A, � ) be an RTS, then:

– R is well defined if and only if for each s ∈ S, α ∈ A and P ∈ ΣS such
that s

α� P we have: ∃x : ⊕P ≤ x
– R is image finite if and only if for each s ∈ S, α ∈ A and P such that

s
α� P either P = ∅ or P = [s1 �→ λ1, . . . , sn �→ λn]

– R is fully stochastic if and only if for each s ∈ S, α ∈ A, P and Q we
have: s

α� P, s
α� Q =⇒P = Q

In the following we will only consider well defined RTS.
In general, given RTS (S, A, � ) we will be interested in the CTMC

composed by the states reachable from a subset C of S only via the actions in
A′ ⊆ A. To that purpose we use the following two definitions:

Definition 4. For sets C ⊆ S and A′ ⊆ A, the set of derivatives of C through
A′, denoted Der(C, A′), is the smallest set such that:

– C ⊆ Der(C, A′),
– if s ∈ Der(C, A′) and there exists α ∈ A′ and Q ∈ ΣS such that s

α� Q
then {s′ | Q(s′) > 0} ⊆ Der(C, A′)

Definition 5. Let R = (S, A, � ) be a fully stochastic RTS, for C ⊆ S,
the CTMC of C, when one considers only actions in a finite set A′ ⊆ A is
defined as CTMC[C, A′]

def
= (Der(C, A′),R) where for all s1, s2 ∈ Der(C, A′):

R[s1, s2]
def
=

∑
α∈A′ Pα(s2) with s1

α� Pα.

Notice that RTS are naturally mapped to Continuous Time Markov Decision
Processes [23,12]. Moreover, it turns out that general, non-fully stochastic, RTS
are a convenient framework for automatic time bounded reachability probability
analysis of Interactive Markov Chains [10,12], where nondeterminism and time
are treated in an orthogonal way.
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2.2 Rate Aware Bisimulation

Two key concepts in the theory of process algebras are the notions of behavioural
equivalence and congruence. In the literature, many behavioural equivalences
have been proposed which differ in what they consider essential aspects of ob-
servable behaviour. More recently, such behavioural equivalences have been ex-
tended to Markovian process algebras.

In this paper, we focus on Strong Markovian Bisimulation Equivalence [4,14],
which has a direct correspondence with the notion of lumpability—a successful
minimisation technique—of CTMCs [14,17], and for which efficient algorithms
have been devised for computing the best possible lumping [13].

Definition 6 (Strong Markovian bisimilarity [4]). Given CTMC (S,R)

– An equivalence relation E on S is a Markovian bisimulation on S if and only
if for all (s1, s2) ∈ E and for all equivalence classes C ∈ S/E the following
condition holds: R[s1, C] ≤ R[s2, C].

– Two states s1, s2 ∈ S are strong Markovian bisimilar, written s1 ∼M s2, if
and only if there exists a Markovian bisimulation E on S with (s1, s2) ∈ E.

We introduce Rate Aware Bisimulation Equivalence as the natural equivalence
induced by the next state function and show that it implies Strong Markovian
Bisimulation Equivalence. We point out that our semantic approach makes the
definition of the Rate Aware Bisimulation Equivalence very natural.

Definition 7 (Rate Aware Bisimilarity). Given RTS (S, A, � )

– An equivalence relation E ⊆ S × S is a rate aware bisimulation if and only
if, for all (s1, s2) ∈ E, for all α and P:

s1
α� P =⇒ ∃Q : s2

α� Q ∧ ∀C ∈ C/EP(C) = Q(C)

– Two states s1, s2 ∈ S are rate aware bisimilar (s1 ∼ s2) if there exists a rate
aware bisimulation E such that (s1, s2) ∈ E.

For instance, if we consider the RTS with set of states {si|1 ≤ i ≤ 7}, where
s1

α� [s3 �→ λ1, s2 �→ λ2], s4
α� [s5 �→ λ3, s6 �→ λ4] and s7

α� [s8 �→ λ5],
states s1, s4 and s7 are rate aware bisimilar whenever λ1 + λ2 = λ3 + λ4 = λ5.

Notice that rate aware bisimilarity and strong bisimilarity [19] coincide when
one does not take rates into account, i.e. when the range of rate functions is
{0, 1}. The following proposition guarantees that if two processes are rate aware
equivalent, then the corresponding states in the generated CTMC are strong
Markovian equivalent.

Proposition 1. Let R = (S, A, � ) be a fully stochastic RTS, for each
A′ ⊆ A and for each s1, s2 ∈ S and CTMC[{s1, s2}, A′]: s1 ∼ s2 =⇒ s1 ∼M s2

Notice that the reverse is not true. For example, if one considers RTS with states
{si|1 ≤ i ≤ 6} where s1

α� [s3 �→ λ1], s1
γ� [s2 �→ λ2], s4

β� [s5 �→ λ5],
and s4

α� [s5 �→ λ1], , states s1 and s4 are Markovian equivalent in the
CTMC[{s1, s4}, {α}], which does not contain states s2 and s5, but s1 �∼ s4.
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3 PEPA: A Process Algebra for Performance Evaluation

The first process algebra we take into account is the Performance Evaluation Pro-
cess Algebra (PEPA) developed by Hillston [14]. This algebra enriches CSP [16]
with combinators useful for modeling performance related features.

Like in CSP, in PEPA systems are described as interactions of components
that may engage in activities. Components reflect the behaviour of relevant parts
of the system, while activities capture the actions that the components perform.
The specification of a PEPA activity consists of a pair (α, λ) in which action α
symbolically denotes the performed action, while rate λ characterises the nega-
tive exponential distribution of its duration.

If A is a set of actions, ranged over by α, α′, α1, . . ., then PPEPA is the set of
process terms P, P ′, P1, . . . defined according to the following grammar

P ::= (α, λ).P | P + P | P��LP | P/L | A

where λ is a positive real number, L is a subset of A and A is a constant which
is assumed defined by an appropriate equation A

�
= P for some process term P ,

where constants occur only guarded in P , i.e. under the scope of a action prefix.
Component (α, λ).P models a process that perform action α and then behaves

like P . The action duration is determined by a random variable exponentially
distributed with rate λ.

Component P + Q models a system that may behave either as P or as Q,
representing a race condition between components. The cooperation operator
P ��L Q defines the set of action types L on which components P and Q must
synchronise (or cooperate); both components proceed independently with any
activity not occurring in L. The expected duration of a cooperation of activities
α ∈ L is a function of the expected durations of the corresponding activities in
the components. Roughly speaking, it corresponds to the longest one (the actual
definition can be found in [14], where the interested reader can find all formal
details of PEPA). Components P/L behaves as P except that activities in L are
hidden and appearing as τ transitions. The behaviour of process variable A is
that of P , provided that a definition A

�
= P is available for A.

We now provide the stochastic semantics of PEPA in terms of RTS. To this
aim, we consider the RTSRPEPA = (PPEPA,A, � ) where � is formally
defined in Fig. 1. These rules permit deriving with a single proof all possible
configurations reachable from a process with a given transition label.

Rule (Act) states that (α, λ).P evolves with α to [P �→ λ] (see Notation 1).
Rule (∅-Act) states that no process is reachable from (α, λ).P by performing
activity β �= α.

Rule (Sum) permits modeling stochastic behaviors of non deterministic choice.
This rule states that the states reachable from P +Q via α are all those that can
be reached either by P or by Q. Moreover, transition rates are determined by
summing local rates of transitions occurring either in P or in Q. Indeed, P +Q
denotes the next state function R such that: R(R) = P(R) + Q(R).
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(α, λ).P
α� [P �→ λ]

(Act)
α �= β

(α, λ).P
β� ∅

(∅-Act)

P
α� P Q

α� Q

P + Q
α� P + Q

(Sum)
P

α� P Q
α� Q α �∈ L

P��LQ
α� P��LQ+P��LQ

(Int)

P
α� P Q

α� Q α ∈ L

P��LQ
α� P��LQ · min{⊕P,⊕Q}

⊕P·⊕Q

(Coop)

P
α� P α �∈ L

P/L
α� P/L

(P-Hide)
α ∈ L

P/L
α� ∅

(∅-Hide)

P
τ� Pτ ∀α ∈ L.P

α� Pα

P/L
τ� Pτ/L +

∑
α∈L Pα/L

(Hide)
P

α� P A
�
= P

A
α� P

(Call)

Fig. 1. PEPA Operational Semantics Rules

Rules (Int) and (Coop) govern cooperation. Rule (Int) states that if α �∈
L computations of P��LQ are obtained by considering the interleaving of the
transitions of P and Q. Hence, if we let P and Q be the next state functions of
P and Q after α (α �∈ L), the next state function of P��LQ after α is obtained
by combining P��LQ and P��LQ, i.e. the next state function of P , composed
with Q, and the next state function of Q, composed with P , respectively, as
defined below.

Notation 2. For next state function P, process algebra operator op and process
Q we let P op Q (resp. Q op P, op P) be the function R such that R(R) is
P(P ) if R = P op Q (resp. Q op P , op P ) and 0 otherwise.

Rule (Coop) is used for computing the next state function when a synchroniza-
tion between P and Q occurs. In that case, the next state function of P��LQ is
determined as P��LQ, as defined below.

Notation 3. For next state functions P, Q and set L ⊆ A, P��LQ is the
function such that P��LQ(R) is P(P ) ·Q(Q) if R = P��LQ, 0 otherwise.

As described in [14], actual rates in P��LQ are multiplied by the minimum of
the apparent rate of α in P and Q and divided by their product.

Notation 4. For next state functions P, and x, y ∈ IR≥0 P · x
y is the function

R such that R(R) = P(R) · x
y if y �= 0, ∅ otherwise.

The apparent rates of α in a process P is defined as the total capacity of P to
carry out activities of type α. In [14], the apparent rate of α in a process P is
computed by using an auxiliary function rα(P ). By using our RTS approach, if
P

α� P, then the apparent rate of α in P is determined as: ⊕P =
∑

Q P(Q).
Rule (P-Hide) states that the set of processes reachable from P/L with α

is determined by the set of processes reachable from P with α. Rule (∅-Hide)
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states that no process is reachable from P/L with α ∈ L. Rule (Hide) states
that the set of processes reachable from P/L with a τ is determined by the set
of processes reachable from P with τ and by considering, for each α in L, the
set of processes reachable from P with α.

Notice that ∀α ∈ L.P
α� Pα in the premises of rule (Hide) denotes that

to prove a transition one has to prove a transition for each α ∈ L. Theorem 1
below guarantees the finiteness of the proposed semantics.

Theorem 1. RPEPA is fully stochastic and image finite.

In the sequel by �
PEPA we mean the transition relation defined in [14].

Theorem 2. For all P, Q ∈ PPEPA and α ∈ A the following holds: P
α� P∧

P(Q) = λ > 0 if and only if P
α,λ�

PEPA Q.

The RTS associated to PEPA processes can be used for associating to each
process P a CTMC. This is obtained by considering CTMC[{P},A] where A is
the set of all activities that process P can perform.

4 Stochastic CCS

The second stochastic process algebra we consider in this paper is a stochas-
tic extension of the Calculus of Communicating System (CCS) [19]. Differently
from CSP, where processes composed in parallel cooperate in a multi-party syn-
chronization, in CCS parallel processes interact with each other by means of a
two-party synchronisation.

In Stochastic CCS (StoCCS), output actions are equipped with a parameter
(a rate, λ ∈ IR+) characterising a random variable with a negative exponential
distribution, modeling the duration of the action. Input actions are annotated
with a weight (ω ∈ N

+): a positive integer that will be used for determining the
probability that the specific input is selected when a complementary output is
executed. This approach is inspired by the passive actions presented in [14].

Let C be a set of channels ranged over by a, b, c, . . ., C denotes the co-names
of C. Elements in C are ranged over by a, b, c, . . .. A synchronization between
processes P and Q occurs when P sends a signal over channel (action a) while Q
receives a signal over the same channel (action a). The result of a synchronization
is an internal, or silent, transition that is labeled τ . In StoCCS a synchronization
over channel a is rendered by the label ←→a . The reasons for this choice will be
clarified later. We let

←→C be {←→a |a ∈ C}. The set of labels L is then C∪C∪{τ}∪←→C ,
while its elements are ranged over by 
, 
′, 
1, . . ..
PCCS is the set of Stochastic CCS process terms P, P ′, P1, Q, Q′, Q1 . . . defined

according to the following grammar:

P, Q ::= 0 | G | P |Q | P [f ] | P\L | A G ::= aω.P | aλ.P | G + G

where L ⊆ C while f is a renaming function, i.e. a function in L → L such that
f(a) = f(a), f(←→a ) =

←−→
f(a) and f(τ) = τ . A is a constant which is assumed being
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aω.P
a� [P �→ ω]

(In)
� �= a

aω.P
�� ∅

(∅-In)

aλ.P
a� [P �→ λ]

(Out)
� �= a

aλ.P
�� ∅

(∅-Out)

P
�� P Q

�� Q

P + Q
�� P + Q

(Sum)
P

�� P Q
�� Q � �=←→a

P |Q �� P|Q + P |Q
(Int)

P
←→a� P P

a� Pi P
a� Po Q

←→a� Q Q
a� Qi Q

a� Qo

P |Q
←→a� P|Q + P |Q + Pi·Qo

⊕Pi
+ Po·Qi

⊕Qi

(Sync)

0
�� ∅

(Nil)
� ∈ L

P\L �� ∅
(∅-Res)

P
�� P � �∈ L

P\L �� P\L
(P-Res)

P
τ� Pτ ∀� ∈ L.P

←→
�� P←→

�

P\L τ� Pτ\L +
∑

�∈L P←→
�
\L

(Res)

∀� : P
�� P�

P
β� ∑

�:f(�)=β P�[f ]
(Ren)

A
�
= P P

�� P

A
�� P

(Call)

Fig. 2. StoCCS Operational Semantics

defined by a proper defining equation A
�
= P for some process term P , where

each constant can occur only guarded in P . For the sake of notational simplicity,
we assume that each process G never contains at the same time an input and
an output action on the same channel. In other words, processes of the form
a.P +a.Q are forbidden. This does not introduce a significant restriction because
such processes do not have an obvious meaning in the context of stochastic
process algebras.

Action prefixing and non-deterministic choice have the same meaning as in
PEPA. Process P |Q models a system where P and Q proceed in parallel and
interact with each other using the two-parties synchronisation described above.
Restriction (P\L) and renaming (P [f ]) are respectively used for inhibiting in-
teractions of P over channels in L and for renaming channels in P according to
function f .

Following a similar approach as the one used for PEPA, we now define
the stochastic semantics of StoCCS in term of RTS. We let RStoCCS =
(PCCS,L, � ), where � is formally defined in Fig. 2.

The proposed semantics follows the same approach used by Priami in [22]
for the stochastic π-calculus and makes use of the PEPA notions of active and
passive actions. All the rules have the expected meaning and are similar to those
defined for PEPA and simply render the CCS semantics in a context where all
the possible next processes are computed in a single derivation.

More attention has to be paid to rule (Sync) that is used for deriving synchro-
nisations of parallel processes. In PEPA we have multi-party synchronisations.
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Hence, the next states of P��LQ after 
 ∈ L can be simply obtained by com-
bining the possible next states of P and Q after 
. In CCS we have two-party
synchronisations, thus the next states of P |Q after ←→a , i.e. after a synchronisa-
tion over channel a, are: (1) the next states of P alone after ←→a , in parallel with
Q; (2) the next states of Q alone after←→a , in parallel with P ; (3) the next states
of P after a in parallel with the next states of Q after a; (4) the next states of P
after a in parallel with the next states of Q after a. Moreover, synchronisation
rates between inputs in P and outputs in Q (and vice-versa) are obtained by
multiplying the input weights of P , i.e. Pi, by the output rates of Q, i.e. Qo,
over the total weight of all the inputs in P , i.e. ⊕Pi (and vice-versa). As an

example, consider P
�
= a2.P1 and Q

�
= a4.Q1|a2.Q2, then we have that←→a leads

process P |Q to P1|(Q1|a2.Q2) with rate 4
3 and to P1|(a4.Q1|Q2) with rate 2

3 .

Theorem 3. RStoCCS is fully stochastic and image finite.

It is easy to prove that the stochastic semantics of Fig. 2 coincides with the
one proposed in [18]. Unfortunately, the proposed semantics, like in [18], does
not respect a standard and expected property of the CCS parallel composition.
Indeed, using the above semantics, this operator is not associative. For instance
aλ.P |(aω1 .Q1|aω2 .Q2) and (aλ.P |aω1 .Q1)|aω2 .Q2 exhibit different stochastic be-
haviours. The former, after ←→a , reaches P |(Q1|aω2 .Q2) with rate λ·ω1

ω1+ω2
and

P |(aω1 .Q1|Q2) with rate λ·ω2
ω1+ω2

. The latter reaches both (P |Q1)|aω2 .Q2 and
(P |aω1 .Q1)|Q2 with rate λ. From the results in [18] it follows that it is im-
possible to define an SGSOS semantics that guarantees the associativity of CCS
parallel composition. It is moreover worth pointing out that the definition of
the semantics for the stochastic π-calculus, as in [22], suffers of the same prob-
lem [18]. In the sequel, we show that this problem can be overcome by using our
approach. To that purpose we modify rule (Sync) in such way that: the rates
of the synchronisations occurring in P and Q are updated in order to take into
account the inputs available in both P and Q; the rates of the synchronisations
between outputs in P and inputs in Q (and vice-versa) have to be divided by
the total rate of input in both P and Q. Rule (Sync) can be reformulated as
follows:

P
←→a� P P

a� Pi P
a� Po Q

←→a� Q Q
a� Qi Q

a� Qo

P |Q
←→a� P|Q·⊕Pi

⊕Pi+⊕Qi
+ P |Q·⊕Qi

⊕Pi+⊕Qi
+ Pi·Qo

⊕Pi+⊕Qi
+ Po·Qi

⊕Pi+⊕Qi

Using this rule, the associativity of parallel composition, up to rate aware
bisimulation, is guaranteed. E.g., in the case of aλ.P |(aω1 .Q1|aω2 .Q2) and
(aλ.P |aω1 .Q1)|aω2 .Q2, after ←→a , the following rate functions are reachable:

[

P |(Q1|aω2 .Q2) �→ λ · ω1

ω1 + ω2
, P |(aω1 .Q1|Q2) �→ λ · ω2

ω1 + ω2

]

[

(P |Q1)|aω2 .Q2 �→ λ · ω1

ω1 + ω2
, (P |aω1 .Q1)|Q2 �→ λ · ω2

ω1 + ω2

]
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Theorem 4. In StoCCS parallel composition is associative up to rate aware
bisimilarity, i.e. for each P , Q and R, P |(Q|R) ∼ (P |Q)|R
Notice that this result is not in contradiction with the one presented in [18]
where it is proved that associativity of parallel composition does not hold if one
uses PEPA-like synchronisation rates for CCS. Indeed, our result is obtained
thanks to the use of a specific explicit label for synchronisation transitions (←→a )
that in [18] are labelled by τ . Our choice permits updating synchronisation rates
while taking into account possible new inputs popping up along the derivation.
Notice finally that, it is easy to prove that ∼ is a congruence for each opera-
tor of StoCCS. The CTMC associated to a StoCCS process P is obtained by
considering CTMC[{P},←→C ∪ {τ}].

5 Conclusions

We have introduced a variant of Rate Transition Systems and used them to
define the semantics of stochastic extensions of several process algebras among
which CSP, CCS and π-calculus [6]. An original feature of this variant is that the
transition relation associates to each process, for each action, the set of possible
futures paired with a measure indicating their rates. This feature leads to a
compact, uniform and elegant definition of the operational semantics. In one
case this has also lead to the proposal of an alternative semantics for stochastic
CCS that enjoys associativity of the parallel composition operator. We have
also introduced a natural notion of bisimulation over RTS that is finer than
Markovian bisimulation and useful for reasoning about stochastic behaviours.

Even if in the present paper we have considered a synchronisation mechanism
implicitly based on active and passive actions, other synchronisation patterns
proposed in the literature can be easily dealt with as well. For instance, one
could associate proper rates both to output and input actions and define the
synchronisation rate as a suitable function of such rates. Finally, we have applied
our framework also to the definition of stochastic process calculi for service
oriented computing [21,3]. Interesting future work includes the further study
of the format of the RTS rules aiming at reaching similar general results on
bisimulation congruence as in [18].
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