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Preface

ICALP 2009, the 36th edition of the International Colloquium on Automata,
Languages and Programming, was held on the island of Rhodes, July 6–10,
2009. ICALP is a series of annual conferences of the European Association for
Theoretical Computer Science (EATCS) which first took place in 1972. This
year, the ICALP program consisted of the established track A (focusing on
algorithms, complexity and games) and track B (focusing on logic, automata,
semantics and theory of programming), and of the recently introduced track C
(in 2009 focusing on foundations of networked computation).

In response to the call for papers, the Program Committee received 370 sub-
missions: 223 for track A, 84 for track B and 63 for track C. Out of these, 108
papers were selected for inclusion in the scientific program: 62 papers for track
A, 24 for track B and 22 for track C. The selection was made by the Program
Committees based on originality, quality, and relevance to theoretical computer
science. The quality of the manuscripts was very high indeed, and many deserv-
ing papers could not be selected.

ICALP 2009 consisted of five invited lectures and the contributed papers.
This volume of the proceedings contains all contributed papers presented in
track B and track C together with the papers by the invited speakers Georg
Gottlob (University of Oxford), Tom Henzinger (École Polytechnique Fédérale
de Lausanne), and Noam Nisan (Google, Tel Aviv, and Hebrew University). A
companion volume contains all contributed papers presented at the conference
in track A, together with the papers by the invited speakers Kurt Mehlhorn
(Max-Planck-Institut für Informatik, Saarbrücken) and Christos Papadimitriou
(University of California at Berkeley).

The following workshops were held as satellite events of ICALP 2009:

ALGOSENSORS 2009—5th International Workshop on Algorithmic Aspects of
Wireless Sensor Networks

DCM 2009—5th International Workshop on Developments in Computational
Models

FOCLASA 2009—8th International Workshop on Foundations of Coordination
Languages and Software Architectures

QUANTLOG 2009—Workshop on Quantitative Logics 2009

We wish to thank all authors who submitted extended abstracts for consid-
eration, the Program Committees for their scholarly effort, and all referees who
assisted the Program Committees in the evaluation process.

Thanks are due to the sponsors (Ministry of National Education and
Religious Affairs of Greece, Research Academic Computer Technology Insti-
tute (CTI), Piraeus Bank) for their support, and to the Research Academic
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Computer Technology Institute (CTI) for the local organization. We are also
grateful to all members of the Organizing Committee.

Thanks also to Andrei Voronkov for his help with the conference management
system EasyChair, which was used in handling the submissions and the electronic
PC meeting as well as in assisting in the assembly of the proceedings.

April 2009 Susanne Albers
Alberto Marchetti Spaccamela

Yossi Matias
Paul G. Spirakis

Wolfgang Thomas
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Improved Bounds for Speed Scaling in Devices Obeying the Cube-Root
Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Nikhil Bansal, Ho-Leung Chan, Kirk Pruhs, and Dmitriy Katz

Competitive Analysis of Aggregate Max in Windowed Streaming . . . . . . . 156
Luca Becchetti and Elias Koutsoupias

Faster Regular Expression Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Philip Bille and Mikkel Thorup

A Fast and Simple Parallel Algorithm for the Monotone Duality
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Endre Boros and Kazuhisa Makino

Unconditional Lower Bounds against Advice . . . . . . . . . . . . . . . . . . . . . . . . . 195
Harry Buhrman, Lance Fortnow, and Rahul Santhanam

Approximating Decision Trees with Multiway Branches . . . . . . . . . . . . . . . 210
Venkatesan T. Chakaravarthy, Vinayaka Pandit,
Sambuddha Roy, and Yogish Sabharwal

Annotations in Data Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Amit Chakrabarti, Graham Cormode, and Andrew McGregor

The Tile Complexity of Linear Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Harish Chandran, Nikhil Gopalkrishnan, and John Reif

A Graph Reduction Step Preserving Element-Connectivity and
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Chandra Chekuri and Nitish Korula

Approximating Matches Made in Heaven . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Ning Chen, Nicole Immorlica, Anna R. Karlin,
Mohammad Mahdian, and Atri Rudra

Strong and Pareto Price of Anarchy in Congestion Games . . . . . . . . . . . . . 279
Steve Chien and Alistair Sinclair

A Better Algorithm for Random k-SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Amin Coja-Oghlan

Exact and Approximate Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Marek Cygan and Marcin Pilipczuk

Approximation Algorithms via Structural Results for Apex-Minor-Free
Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Erik D. Demaine, MohammadTaghi Hajiaghayi, and
Ken-ichi Kawarabayashi



Table of Contents – Part I XIX

Node-Weighted Steiner Tree and Group Steiner Tree in Planar
Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

Erik D. Demaine, MohammadTaghi Hajiaghayi, and Philip N. Klein

On Cartesian Trees and Range Minimum Queries . . . . . . . . . . . . . . . . . . . . 341
Erik D. Demaine, Gad M. Landau, and Oren Weimann

Applications of a Splitting Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Martin Dietzfelbinger and Michael Rink

Quasirandom Rumor Spreading: Expanders, Push vs. Pull, and
Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Benjamin Doerr, Tobias Friedrich, and Thomas Sauerwald

Incompressibility through Colors and IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
Michael Dom, Daniel Lokshtanov, and Saket Saurabh

Partition Arguments in Multiparty Communication Complexity . . . . . . . . 390
Jan Draisma, Eyal Kushilevitz, and Enav Weinreb

High Complexity Tilings with Sparse Errors . . . . . . . . . . . . . . . . . . . . . . . . . 403
Bruno Durand, Andrei Romashchenko, and Alexander Shen

Tight Bounds for the Cover Time of Multiple Random Walks . . . . . . . . . . 415
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3 École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract. A stochastic game is a two-player game played on a graph,
where in each state the successor is chosen either by one of the players, or
according to a probability distribution. We survey stochastic games with
limsup and liminf objectives. A real-valued reward is assigned to each
state, and the value of an infinite path is the limsup (resp. liminf) of all
rewards along the path. The value of a stochastic game is the maximal
expected value of an infinite path that can be achieved by resolving the
decisions of the first player. We present the complexity of computing
values of stochastic games and their subclasses, and the complexity of
optimal strategies in such games.

1 Introduction

A turn-based stochastic game is played on a finite graph with three types of
states: in player-1 states, the first player chooses a successor state from a given set
of outgoing edges; in player-2 states, the second player chooses a successor state
from a given set of outgoing edges; and in probabilistic states, the successor state
is chosen according to a given probability distribution. The game results in an
infinite path through the graph. Every such path is assigned a real value, and the
objective of player 1 is to resolve her choices so as to maximize the expected value
of the resulting path, while the objective of player 2 is to minimize the expected
value. If the function that assigns values to infinite paths is a Borel function (in
the Cantor topology on infinite paths), then the game is determined [17]: the
maximal expected value achievable by player 1 is equal to the minimal expected
value achievable by player 2, and it is called the value of the game.

There are several canonical functions for assigning values to infinite paths.
If each state is given a reward, then the max (resp. min) function chooses the
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maximum (resp. minimum) of the infinitely many rewards along a path; the
limsup (resp. liminf ) function chooses the limsup (resp. liminf) of the infinitely
many rewards; and the limit-average function chooses the long-run average of
the rewards. The max and min functions are Borel level-1 functions, whereas
limsup and liminf are Borel level-2 functions, and limit-average is a Borel level-3
function. Stochastic games with the limit-average condition (also called mean-
payoff objective) have been studied extensively in the literature [11,14,20,1,15].
The study of stochastic games with max and min conditions [2,4], as well as
limsup and liminf conditions [5,13,16], is more recent. The max and min func-
tions are natural generalizations of reachability and safety objectives in the non-
quantitative setting, while the limsup and liminf functions are natural general-
izations of Büchi and coBüchi objectives [18,19].

In this paper, we survey algorithms and computational complexity results for
computing values of turn-based stochastic games and with limsup and liminf
objectives. We organize the results according to the different classes of game
graphs. We successively consider (i) 1-player game graphs, where all states belong
to one player, (ii) 2-player game graphs, in which there is no probabilistic state,
(iii) 11/2-player game graphs (or Markov decision processes), in which there is
no player-2 state, and (iv) 21/2-player game graphs, which is the general case.
Along with surveying known results in the field, we also present two algorithmic
improvements over the literature for the solution of 1-player and 2-player game
graphs with limsup and liminf objectives. We show that 1-player game graphs
with n states and m edges can be solved in time O(n+m) while the previously
known algorithm of [2] runs in time O(n log n + m); for 2-player game graphs,
our algorithm runs in time O(mn log n) as compared to the previously known
algorithm of [2] that runs in time O(mn2).

2 Definitions

We consider the class of turn-based stochastic games and some of its subclasses.

Game graphs. A turn-based probabilistic game graph (21/2-player game graph)
G = ((S,E), (S1, S2, SP ), δ) consists of a finite directed graph (S,E), a partition
(S1, S2, SP ) of the finite set S of states, and a probabilistic transition function
δ: SP → D(S), where D(S) denotes the set of probability distributions over the
state space S. The states in S1 are the player-1 states, where player 1 decides the
successor state; the states in S2 are the player-2 states, where player 2 decides
the successor state; and the states in SP are the probabilistic states, where the
successor state is chosen according to the probabilistic transition function δ. We
assume that for s ∈ SP and t ∈ S, we have (s, t) ∈ E iff δ(s)(t) > 0, and we
often write δ(s, t) for δ(s)(t). For technical convenience we assume that every
state in the graph (S,E) has at least one outgoing edge. For a state s ∈ S, we
write E(s) to denote the set { t ∈ S | (s, t) ∈ E } of possible successors.

Subclasses of stochastic games. The turn-based deterministic game graphs
(2-player game graphs) are the special case of the 21/2-player game graphs with
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SP = ∅. The Markov decision processes (11/2-player game graphs) are the special
case of the 21/2-player game graphs with S1 = ∅ or S2 = ∅. We refer to the MDPs
with S2 = ∅ as player-1 MDPs, and to the MDPs with S1 = ∅ as player-2 MDPs.
The transition systems (1-player game graphs) are the special case of 21/2-player
game graphs with (a) SP = ∅ and (b) either S1 = ∅ or S2 = ∅. Observe that 1-
player game graphs are subclasses of both 2-player game graphs and 11/2-player
game graphs.

Size of graph. Given a game graph G = ((S,E), (S1, S2, SP ), δ) we use the
following notations: (a) we denote by n the number of states, i.e., n = |S|;
(b) we denote by m the number of edges, i.e., m = |E|; (c) we denote by Δ the
maximum out-degree of the graph, i.e., Δ = maxs∈S |E(s)|.

Plays and strategies. An infinite path, or a play, of the game graph G is
an infinite sequence ω = 〈s0, s1, s2, . . .〉 of states such that (sk, sk+1) ∈ E for all
k ∈ N. We write Ω for the set of all plays, and for a state s ∈ S, we write Ωs ⊆ Ω
for the set of plays that start from the state s. A strategy for player 1 is a function
σ: S∗ · S1 → D(S) that assigns a probability distribution to all finite sequences
w ∈ S∗ · S1 of states ending in a player-1 state (the sequence w represents a
prefix of a play). Player 1 follows the strategy σ if in each player-1 move, given
that the current history of the game is w ∈ S∗ · S1, she chooses the next state
according to the probability distribution σ(w). A strategy must prescribe only
available moves, i.e., for all w ∈ S∗, s ∈ S1, and t ∈ S, if σ(w · s)(t) > 0, then
(s, t) ∈ E. The strategies for player 2 are defined analogously. We denote by Σ
and Π the set of all strategies for player 1 and player 2, respectively.

Once a starting state s ∈ S and strategies σ ∈ Σ and π ∈ Π for the two
players are fixed, the outcome of the game is a random walk ωσ,πs for which
the probabilities of events are uniquely defined, where an event A ⊆ Ω is a
measurable set of plays. For a state s ∈ S and an event A ⊆ Ω, we write
Prσ,πs (A) for the probability that a play belongs to A if the game starts from
the state s and the players follow the strategies σ and π, respectively. For a
measurable function f : Ω → IR we denote by Eσ,πs [f ] the expectation of the
function f under the probability measure Prσ,πs (·).

Strategies that do not use randomization are called pure. A player-1 strategy σ
is pure if for all w ∈ S∗ and s ∈ S1, there is a state t ∈ S such that σ(w·s)(t) = 1.
A memoryless player-1 strategy does not depend on the history of the play but
only on the current state; i.e., for all w,w′ ∈ S∗ and for all s ∈ S1 we have σ(w ·
s) = σ(w′ ·s). A memoryless strategy for player 1 can be represented as a function
σ: S1 → D(S). A pure memoryless strategy is a strategy that is both pure and
memoryless. A pure memoryless strategy for player 1 can be represented as a
function σ: S1 → S. We denote by ΣPM the set of pure memoryless strategies for
player 1. The pure memoryless player-2 strategies ΠPM are defined analogously.

Quantitative objectives. A quantitative objective is specified as a measurable
function f : Ω → IR. We consider zero-sum games, i.e., games that are strictly
competitive. In zero-sum games the objectives of the two players are functions
f and −f , respectively. We consider quantitative objectives specified as limsup
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and liminf objectives. These objectives are complete for the second levels of the
Borel hierarchy: limsup objectives are Π2-complete, and liminf objectives are
Σ2-complete. The definition of limsup and liminf objectives is as follows.
– Limsup objectives. Let r : S → IR be a real-valued reward function that

assigns to every state s the reward r(s). The limsup objective assigns to
every play the maximum reward that appears infinitely often in the play.
Formally, for a play ω = 〈s1, s2, s3, . . .〉 we have

limsup(r)(ω) = lim sup〈r(si)〉i≥0 = lim
n→∞max{ r(si) | i ≥ n }.

– Liminf objectives. Let r : S → IR be a real-valued reward function that assigns
to every state s the reward r(s). The liminf objective assigns to every play the
maximum reward v such that the rewards that appear eventually always in the
play are at least v. Formally, for a play ω = 〈s1, s2, s3, . . .〉 we have

liminf(r)(ω) = lim inf〈r(si)〉i≥0 = lim
n→∞min{ r(si) | i ≥ n }.

The limsup and liminf objectives are complementary in the sense that for
all plays ω we have limsup(r)(ω) = −liminf(−r)(ω). If the reward function
r is boolean (that is rewards are only 0 and 1), then (a) the limsup objec-
tive correspond to the classical Büchi objective with the set of states with
reward 1 as the set of Büchi states; and (b) the liminf objective correspond
to the classical coBüchi objective with the set of states with reward 1 as the
set of coBüchi states.

Values and optimal strategies. Given a game graph G and a measurable
function f : Ω → IR we define the value functions 〈〈1〉〉Gval and 〈〈2〉〉Gval for the
players 1 and 2, respectively, as the following functions from the state space S
to the set IR of reals: for all states s ∈ S, let

〈〈1〉〉Gval (f)(s) = sup
σ∈Σ

inf
π∈Π

Eσ,πs [f ];

〈〈2〉〉Gval (−f)(s) = sup
π∈Π

inf
σ∈Σ

Eσ,πs [−f ].

In other words, the value 〈〈1〉〉Gval (f)(s) gives the maximal expectation with which
player 1 can achieve her objective f from state s, and analogously for player 2.
The strategies that achieve the values are called optimal: a strategy σ for player 1
is optimal from the state s for f if 〈〈1〉〉Gval (f)(s) = infπ∈Π Eσ,πs [f ]. The optimal
strategies for player 2 are defined analogously. We now state the classical deter-
minacy results for 21/2-player games with limsup and liminf objectives.

Theorem 1 (Quantitative determinacy). Let G = ((S,E), (S1, S2, SP ), δ)
be a 21/2-player game graph. For all reward functions r : S → IR and all
states s ∈ S, we have

〈〈1〉〉Gval (limsup(r))(s) + 〈〈2〉〉Gval (liminf(−r))(s) = 0;

〈〈1〉〉Gval (liminf(r))(s) + 〈〈2〉〉Gval (limsup(−r))(s) = 0.

The above results can be derived from the results in [16] or from the result of
Martin [17].
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3 Computational and Strategy Complexity

In this section we survey the computational complexity and the structural prop-
erties of optimal strategies in various subclasses of stochastic games. We orga-
nize our results for various classes of game graphs. The classical algorithmic
solutions for stochastic games can be classified as (a) graph-theoretic algorithms
or (b) value-iteration algorithms. We briefly discuss the general properties of
the value-iteration algorithm and provide specific details of the algorithms for
different classes of the game graphs later (in specific subsections).

Value-iteration algorithms and improvement functions. The values of
stochastic games and their subclasses with limsup and liminf objectives can
be characterized as fixpoint solution of certain nested fixpoint formulas. The
characterization provides symbolic value-iteration algorithms to compute values
by iterating certain binary improvement functions parametrized by a predecessor
operator Pre that will be instantiated according to the different classes of game
graphs. A valuation is a function v: S → IR ∪ { −∞,∞} that maps every state
to a real number1. We write V for the set of valuations. A binary improvement
function Imp2 operates on pairs of valuations and needs to satisfy the following
requirements.

Monotone For all valuation pairs (v1, u1), (v2, u2), if (v1, u1) ≤ (v2, u2), then
Imp2(v1, u1) ≤ Imp2(v2, u2) (the inequality ≤ is pointwise for valuations).

Continuous For every chain C = 〈(v0, u0), (v1, u1), (v2, u2), . . .〉 of valuations,
the sequence Imp2(C) = 〈Imp2(v0, u0), Imp2(v1, u1), Imp2(v2, u2), . . .〉 is a
chain of valuations by monotonicity of Imp2. We require that Imp2(limC) =
lim Imp2(C).

Directed Either v ≥ Imp2(v, u) ≥ u for all valuations v, u with v ≥ u; or v ≤
Imp2(v, u) ≤ u for all real valuations v, u with v ≤ u.

If the above requirements are satisfied, then we can invoke Kleene’s fixpoint
theorem for existence of fixpoints with the improvement functions. The binary
improvement functions we consider also satisfy the following locality property:
for all states s ∈ S and all valuation pairs (v1, u1), (v2, u2), if v1(s′) = v2(s′)
and u1(s′) = u2(s′) for all successors s′ ∈ E(s), then Imp2(v1, u1)(s) =
Imp2(v2, u2)(s).

The description of improvement functions. Consider a reward function r,
and the corresponding objectives limsup(r) and liminf(r). Given a function Pre:
V → V , we define the two parametric functions limsupImp[Pre]: V ×V → V and
liminfImp[Pre]: V × V → V by

limsupImp[Pre](v, u) = min{max{ r, u,Pre(u) }, v,max{ u,Pre(v) } };
liminfImp[Pre](v, u) = max{min{ r, u,Pre(u) }, v,min{ u,Pre(v) } };

for all valuations v, u ∈ V (the functions max and min are lifted from real
values to valuations in a pointwise fashion). Observe that if v ≥ u, then v ≥
1 We add −∞ and ∞ to the set of reals in the range of valuations so that the set V

of valuations form a complete lattice.
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limsupImp[Pre](v, u) ≥ u; and if v ≤ u, then v ≤ liminfImp[Pre](v, u) ≤ u. Thus
both limsupImp[Pre] and liminfImp[Pre] are directed. For different graph models,
we will instantiate the parameter Pre differently. We remark that in all the cases
that we will consider in this paper, we can simplify the above definitions of the
binary improvement functions as follows:

limsupImp[Pre](v, u) = min{max{ r, u,Pre(u) }, v,Pre(v) };
liminfImp[Pre](v, u) = max{min{ r, u,Pre(u) }, v,Pre(v) };

for all valuations v, u ∈ V . To see why the simplification is sound, let uj+1 =
limsupImp[Pre](v, uj) (according to the original, unsimplified definition) for all
j ≥ 0. For all valuations v ≥ u0, if Pre(v) ≥ u0, then for all j ≥ 0, both v ≥ uj

and Pre(v) ≥ uj, and therefore uj+1 = min{ max{ p, uj,Pre(uj) }, v,Pre(v) }.
If u0(s) = mint∈S r(t) for all s ∈ S, then for all instantiations of Pre (that
we will use) for all valuations v ≥ u0, we will have Pre(v) ≥ u0, and thus the
above simplification is sound. The case liminfImp[Pre] and u0(s) = maxt∈S r(t)
for all s ∈ S is symmetric. In some special cases of boolean reward functions
r, the valuations can also be restricted to be functions from states to boolean
(such as 2-player game graphs with boolean reward functions). In such cases, we
can invoke Tarski-Knaster fixpoint theorem that requires only the monotonicity
property. Then the improvement function can be further simplified as follows:

limsupImp[Pre](v, u) = min{max{ r,Pre(u) },Pre(v) };
liminfImp[Pre](v, u) = max{min{ r,Pre(u) },Pre(v) };

The above description of the improvement functions does not satisfy the directed
property. Also see [4] for a more detailed discussion about the properties of the
fixpoint and the requirements of improvement functions.

Fixpoint characterization. Given the two parametric improvement functions,
the value function of player 1 for limsup objective can be characterized as a
nested fixpoint solution (nesting of a greatest fixpoint and a least fixpoint). In
μ-calculus notation, let

vls = (νx)(μy) limsupImp[Pre](x, y). (1)

Then for suitable instantiation Pre in limsupImp[Pre] the valuation vls gives the
value function for a stochastic game with limsup objective. Symmetrically, the
value function for liminf objective can also be characterized as a nested fix-
point solution (nesting of a least fixpoint and a greatest fixpoint). In μ-calculus
notation, let

vli = (μx)(νy) liminfImp[Pre](x, y). (2)

Then for suitable instantiation Pre in liminfImp[Pre] the valuation vli gives the
value function for a stochastic game with liminf objective. In all cases that we
consider, for the least fixpoint iterations are initialized with the valuation min r
(i.e, the valuation that assigns the value min r to all states) , and for the greatest
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fixpoint iterations are initialized with the valuation max r. We will illustrate the
value-iteration algorithm and the fixpoint characterization on an example in
the case of 2-player game graphs. In the following subsection we present the
instantiation of Pre for different classes of game graphs.

3.1 1-Player Game Graphs

In this subsection we present the results for 1-player game graphs with limsup
and liminf objectives. For simplicity we consider 1-player game graphs with
SP = ∅ and S2 = ∅ (the results for the case when SP = ∅ and S1 = ∅ are
similar).

Strategy complexity. Pure memoryless optimal strategies exist for 1-player
game graphs with limsup and liminf objectives. The result can be obtained as
a special case of the result known for 2-player game graphs (see Section 3.2) or
11/2-player game graphs (see Section 3.3).

Value-iteration algorithm. We present the value iteration solution for 1-
player game graphs. We define the graph predecessor operator maxPre: V → V
as the function on valuations defined by

maxPre(v)(s) = max{ v(s′) | s′ ∈ E(s) }

for all valuations v ∈ V and all states s ∈ S; that is, the value of maxPre(v) at
a state s is the maximal value of v at the states that are successors of s. If the
parameter Pre is instantiated as maxPre, then the nested fixpoint solution of (1)
gives the value function for 1-player game graphs with limsup objectives, and the
solution of (2) gives the value function for liminf objectives. Each inner improve-
ment fixpoint converges within at most n steps, and the outer improvement fix-
points converges within at most n computations of inner improvement fixpoints.
Every improvement step (i.e., each application of the function limsupImp[Pre] or
liminfImp[Pre]) can be computed in O(m) time. Hence the value-iteration algo-
rithm has the time complexity O(mn2).

Graph-theoretic algorithm. The value function for 1-player game graphs
with the limsup and liminf can be obtained in O(m) time. The algorithm for
limsup objective is as follows. First compute the set of all maximal strongly
connected components (this can be done in O(m) time). For a bottom maximal
strongly connected component C, the value of every state in C is maxs∈C r(s).
Then proceed in a bottom up fashion: consider a maximal strongly connected
component C′ such that for every state t ∈

(⋃
s∈C′ E(s)

)
\C′ the value of state

t is computed, and let this value be v(t). The value of every state s ∈ C′ is as
follows:

1. If either (a) |C′| ≥ 2, or (b) |C′| = 1 and the only state of C′ has a self-loop;
then for every state s ∈ C′ the value v(s) is given by

max{max{ r(s) | s ∈ C′ },max{ v(t) | ∃s ∈ C′ · t ∈ E(s) } }.
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2. If |C′| = 1 and the only state of C′ does not have self-loop, then the value
v(s) of the only state s of C′ is given by

max{ v(t) | ∃s ∈ C′ · t ∈ E(s) }.

Thus value of every state can be computed in O(m) time. The algorithm for
liminf objectives is similar. We know of no implementation of the nested value
improvement scheme that matches this complexity. We summarize the results in
the following theorem.

Theorem 2 (Complexity of 1-player game graphs). For all 1-player game
graphs with limsup and liminf objectives, the following assertions hold.

1. Pure memoryless optimal strategies exist.
2. The value function can be computed in O(n2m) time by the value-iteration

algorithm.
3. The value function can be computed in O(m) time by the graph-theoretic

algorithm.

Remark 1. The graph-theoretic algorithm we present runs in O(m) time, as
compared to the previously known algorithm of [2] that runs in O(m+n · log n)
time. The algorithm of [2] first sorted states with respect to the rewards and then
applied algorithms for Büchi (or coBüchi) objectives, whereas our algorithm does
not need the sorting step of the previous algorithm.

3.2 2-Player Game Graphs

We now present the results for 2-player game graphs with limsup and liminf
objectives.

Strategy complexity. Pure memoryless optimal strategies exist for 2-player
game graphs with limsup and liminf objectives. The result has several different
proofs. In [13] Gimbert and Zielonka present sufficient conditions on measurable
functions (that specify quantitative objectives) that ensures existence of pure
memoryless optimal strategies in 2-player game graphs. It was also shown in [13]
that limsup and liminf objectives satisfy the required conditions, and hence
existence of pure memoryless optimal strategies in 2-player game graphs with
limsup and liminf objectives follows.

Value-iteration algorithm. The value-iteration solution for 2-player game
graphs uses the game graph predecessor operator maxminPre: V → V defined
by

maxminPre(v)(s) =

{
max{ v(s′) | s′ ∈ E(s) } if s ∈ S1;
min{ v(s′) | s′ ∈ E(s) } if s ∈ S2;

for all valuations v ∈ V and all states s ∈ S. In other words, the value of
maxminPre(v) at a player-1 state s is the maximal value of v at the successors
of s, and at a player-2 state s it is the minimal value of v at the successors of s.
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If the parameter Pre is instantiated as maxminPre, then the nested fixpoint solu-
tion of (1) gives the value function for 2-player game graphs with limsup objec-
tives, and the solution of (2) gives the value function for liminf objectives. Each
inner improvement fixpoint converges within at most n steps, and the outer im-
provement fixpoints converges within at most n computations of inner improve-
ment fixpoints. Every improvement step (i.e., each application of the function
limsupImp[maxminPre] or liminfImp[maxminPre]) can be computed in O(m) time.
Hence the value-iteration algorithm has the time complexity O(mn2).

Example 1 (2-player game with limsup objective). Consider the deterministic
game shown in Fig. 1, where the reward function r is indicated by state labels.
We consider the objective limsup(r) for player 1 (the � player). We specify
valuations as value vectors; the outer initial valuation is v0 = 〈15, 15, 15, 15, 15〉,
and the inner initial valuation is u0 = 〈5, 5, 5, 5, 5〉. We compute the first inner
improvement fixpoint: u0

0 = 〈5, 5, 5, 5, 5〉, and since

uj+1
0 = min{max{ r, uj0,maxminPre(uj0) }, v0,maxminPre(v0) }

for all j ≥ 0, where v0 = maxminPre(v0) = 〈15, 15, 15, 15, 15〉, we obtain
u1

0 = 〈5, 5, 15, 10, 5〉. Note that u1
0 coincides with the reward function r. Next we

obtain u2
0 = max{ r, u1

0,maxminPre(u1
0) } = 〈10, 5, 15, 10, 10〉. Finally u3

0 = u4
0 =

〈10, 10, 15, 10, 10〉, which is the first inner improvement fixpoint v1. Intuitively,
vi(s) is the largest reward that player 1 can ensure to visit at least i times from
s. The second inner improvement chain starts with u0

1 = 〈5, 5, 5, 5, 5〉 using

uj+1
1 = min{max{ r, uj1,maxminPre(uj1) }, v1,maxminPre(v1) },

where v1 = 〈10, 10, 15, 10, 10〉 and maxminPre(v1) = 〈10, 10, 10, 10, 10〉. Since
max{ r, u0

1,maxminPre(u0
1) } = 〈5, 5, 15, 10, 5〉, we obtain u2

1 = 〈5, 5, 10, 10, 5〉
and u3

1 = 〈10, 5, 10, 10, 10〉 Then u3
1 = u4

1 = 〈10, 10, 10, 10, 10〉, which is the
second inner improvement fixpoint v2. This is also the desired outer improvement
fixpoint; that is, vls = v2 = v3 = 〈10, 10, 10, 10, 10〉. The player-1 strategy that
chooses at state s0 the successor s3 ensures that against all strategies of player 2,
the reward 10 will be visited infinitely often. Dually, the player-2 strategy that
chooses at s1 the successor s0 ensures that against all strategies of player 1, the
reward 15 will be visited at most once. Hence 〈10, 10, 10, 10, 10〉 is the 2-player
game valuation of the player-1 objective limsup(r): from any start state, player 1
can ensure that reward 10 will be visited infinitely often, but she cannot ensure
reward 15.

Graph-theoretic algorithm. The value function for 2-player game graphs
with the limsup and liminf objectives can be computed in O(mn log(Δ) log(k)

log(n) )
time, where k is the number of different rewards of the reward function in the
game graph. The algorithm for limsup objectives is as follows: we first sort the
rewards in ascending order, and let the reward values in ascending order be
r1 < r2 < · · · < rk. To check if the value at a state s is at at least ri, for
1 ≤ i ≤ k, we consider all states with rewards at least ri as Büchi states, and
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s0

s2 s3 s4s1

5

515 10 5

Fig. 1. Deterministic game with limsup objective

then check if player 1 can satisfy the Büchi objective from s. A game with a Büchi
objective can be solved in O(mn log(Δ)

log(n) ) time by graph-theoretic algorithms [6].
By a binary search over the sorted set of rewards we can compute the value
in O(mn log(Δ) log(k)

log(n) ) time. The algorithm for liminf objectives is similar, and
it uses solution of games with coBüchi objectives instead of Büchi objectives.
We know of no implementation of the nested value improvement scheme that
matches this complexity. We summarize the results in the following theorem.

Theorem 3 (Complexity of 2-player game graphs). For all 2-player game
graphs with limsup and liminf objectives, the following assertions hold.

1. Pure memoryless optimal strategies exist.
2. The value function can be computed in O(n2m) time by the value-iteration

algorithm.
3. The value function can be computed in O(mn log(Δ) log(k)

log(n) ) time by the graph-
theoretic algorithm.

Remark 2. Observe that for the worst case complexity for graph-theoretic algo-
rithmic solution we have Δ = O(n) and k = O(n), and then the graph-theoretic
algorithm runs in time O(mn log(n)). The worst-case complexity of the previ-
ously known algorithm (of [2]) is O(mn2).

3.3 11/2-Player Game Graphs

We now present the results for 11/2-player game graphs with limsup and liminf
objectives.

Strategy complexity. Pure memoryless optimal strategies exist for 11/2-player
game graphs with limsup and liminf objectives. This fact can be proved by
straightforward extension of the results and proof techniques for MDPs with
Büchi and coBüchi objectives. The existence of pure memoryless optimal strate-
gies in MDPs with Büchi and coBüchi objectives has been shown in [8,10].

Value-iteration algorithm. To present the value iteration solution for 11/2-
player game graphs, we need the probabilistic graph predecessor operator
maxPreP : V → V defined by

maxPreP (v)(s) =

{
max{ v(s′) | s′ ∈ E(s) } if s ∈ S1;∑
s′∈E(s) v(s

′) · δ(s)(s′) if s ∈ SP ;
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for all valuations v ∈ V and all states s ∈ S. In other words, the value of
maxPreP (v) at a player-1 state s is the maximal value of v at the successors of s,
and the value of maxPreP (v) at a probabilistic state s is the average value of
v at the successors of s. If the parameter Pre is instantiated as maxPreP , then
the nested fixpoint solution of (1) gives the value function for 11/2-player game
graphs with limsup objectives, and the solution of (2) gives the value function
for liminf objectives. Unlike the case of 1-player and 2-player game graphs, the
inner and outer iterations do not necessarily converge in finitely many iterations,
but converge only in the limit. We now present the result on the boundedness
properties of values for rational rewards and transition probabilities that allows
to compute the exact values by value-iteration algorithms.

Precision of values. We assume that all transition probabilities and rewards
are given as rational numbers, and for simplicity (but without loss of generality)
we assume that all rewards are positive. From the existence of pure memoryless
optimal strategies, and the results of [9,20] it follows that all values in 11/2-
player game graphs with limsup and liminf objectives are again rationals and
that the denominators can be bounded. Let δu = max{ d | δ(s)(s′) = n

d for s ∈
SP and s′ ∈ E(s) } be the largest denominator of all transition probabilities.
Let ru = lcm{ d | r(s) = n

d for s ∈ S } be the least common multiple of all
reward denominators. Let rmax = max{ n | r(s) = n

d for s ∈ S } be the largest
numerator of all rewards. Then, for all states s ∈ S, both 〈〈1〉〉Gval (limsup(r))(s)
and 〈〈1〉〉Gval (liminf(r))(s) have the form n

d for positive integers n and d with
n, d ≤ γ, where

γ = δ4m
u · ru · rmax.

This boundedness property of values for limsup and liminf objectives in 11/2-
player game graphs is the key for proving computability of the two improvement
fixpoints. The inner fixpoint can be computed as follows: the improvement func-
tion can be iterated for 2 · γ2 iterations, and the valuation obtained is rounded
to the nearest multiple of 1

γ to obtain the inner fixpoint (the argument is sim-
ilar to the value-iteration algorithms of [9,20]). Similarly, the valuation of the
outer fixpoint can be obtained by rounding after 2 · γ2 iterations of the outer
fixpoint computation. Hence the value-iteration algorithm has the time complex-
ity O(γ4).

Graph-theoretic algorithm and linear program. The value function for
11/2-player game graphs with the limsup and liminf objective can be computed
in polynomial time. Let k be the number of different reward values. The key
steps of the algorithm for limsup objective is as follows: (a) first the rewards
are sorted in ascending order; (b) then qualitative analysis (computing the set
of states with value 1) of sub-graphs of the given 11/2-player game graph with
Büchi objectives is performed, and there are k calls to the qualitative analysis
algorithm (see [5] for details) for Büchi objectives which can be performed in
polynomial time using algorithms of [7]; (c) after the above analysis the value
function can be obtained by solving a linear program. The algorithm for liminf
objective is similar and it uses qualitative analysis for coBüchi objectives (see [5]
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for details). We know of no implementation of the nested value improvement
scheme that runs in polynomial time. We summarize the results in the following
theorem.

Theorem 4 (Complexity of 1 1/2-player game graphs). For all 11/2-player
game graphs with limsup and liminf objectives, the following assertions hold.

1. Pure memoryless optimal strategies exist.
2. The value function can be computed in O(γ4) time by the value-iteration

algorithm.
3. The value function can be computed in polynomial time by the graph-theoretic

algorithm and linear programming.

3.4 21/2-Player Game Graphs

Finally, in this section we present the results for 21/2-player game graphs with
limsup and liminf objectives.

Strategy complexity. Pure memoryless optimal strategies exist for 21/2-player
game graphs with limsup and liminf objectives. The results (Theorem 3.19
of [12]) showed that if for a quantitative objective f and its complement −f
pure memoryless optimal strategies exist in 11/2-player game graphs, then pure
memoryless optimal strategies also exist in 21/2-player games. Since pure memo-
ryless optimal strategies exist for both limsup and liminf objectives in 11/2-player
game graphs (Theorem 4), the existence of pure memoryless optimal strategies
follows for 21/2-player games with limsup and liminf objectives.

Value-iteration algorithm. To present the value-iteration solution for 21/2-
player game graphs, we need the probabilistic game graph predecessor operator
maxminPreP : V → V defined by

maxminPreP (v)(s) =

⎧⎪⎨⎪⎩
max{ v(s′) | s′ ∈ E(s) } if s ∈ S1;
min{ v(s′) | s′ ∈ E(s) } if s ∈ S2;∑
s′∈E(s) v(s

′) · δ(s)(s′) if s ∈ SP ;

for all valuations v ∈ V and all states s ∈ S. The predecessor operator
maxminPreP is a generalization of game graph predecessor operator maxminPre
and the probabilistic graph predecessor operator maxPreP . If the parameter Pre
is instantiated as maxminPreP , then the nested fixpoint solution of (1) gives
the value functions for 21/2-player game graphs with limsup objectives, and the
solution of (2) gives the value function for liminf objectives. The boundedness
properties of the values of 11/2-player game graphs also holds for 21/2-player
game graphs, and bounds on the number of iterations to compute the fixpoints
for 11/2-player game graphs also generalize to 21/2-player game graphs. Hence if
all the rewards and transition probabilities are rational, then the value function
for 21/2-player game graphs with limsup and liminf objectives can be computed
in O(γ4) time using value-iteration algorithm.
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Optimal algorithm. The problem to decide, given a state s and a rational num-
ber q, whether the value function at s is at least q for 21/2-player game graphs
with limsup and liminf objectives lies in NP ∩ coNP [5]. The result follows from
existence of pure memoryless strategies, and the polynomial time algorithms to
compute values in 11/2-player game graphs with limsup and liminf objectives.
No polynomial-time algorithms are known for computing values for limsup and
liminf objectives in 21/2-player game graphs. In particular, the qualitative anal-
ysis and the linear-programming approach for 11/2-player game graphs do not
generalize to 21/2-player game graphs. We summarize the results in the following
theorem.

Theorem 5 (Complexity of 2 1/2-player game graphs). For all 21/2-player
game graphs with limsup and liminf objectives, the following assertions hold.

1. Pure memoryless optimal strategies exist.
2. The value function can be computed in O(γ4) time by value-iteration algo-

rithm.
3. Given a state s and a rational number q, whether the value function at s is

at least q can be decided in NP ∩ coNP.

Table 1. Nested value improvement for limsup and liminf objectives. Recall that γ is
such that 16n ∈ O(γ).

n states Objective limsup(r) Objective liminf(r)
m edges
1-player Predecessor operator Predecessor operator
graphs limsupImp[maxPre](v, u) liminfImp[maxPre](v, u)

Value-iteration complexity O(n2m) Value-iteration complexity O(n2m)

Best known complexity O(m) Best known complexity O(m)
2-player Predecessor operator Predecessor operator
games limsupImp[maxminPre](v, u) liminfImp[maxminPre](v, u)

Value-iteration complexity O(n2m) Value-iteration complexity O(n2m)

Best known complexity O(nm log n) Best known complexity O(nm log n)
11/2-player Predecessor operator Predecessor operator
graphs limsupImp[maxPreP ](v, u) liminfImp[maxPreP ](v, u)

Value-iteration complexity O(γ4) Value-iteration complexity O(γ4)

Best known complexity is Best known complexity is
polynomial time polynomial time

21/2-player Predecessor operator Predecessor operator
games limsupImp[maxminPreP ](v, u) liminfImp[maxminPreP ](v, u)

Value-iteration complexity O(γ4) Value-iteration complexity O(γ4)

Best known complexity is NP ∩ coNP Best known complexity NP ∩ coNP
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4 Conclusion

In this survey, we considered stochastic games and their subclasses with lim-
sup and liminf objectives. In Table 1, we summarize the results for the different
classes of game graphs. We presented a comprehensive study of the known results
in terms of the complexity of strategies, and the two classical algorithmic solu-
tions, namely, value-iteration algorithms and graph-theoretic algorithms. For
1-player and 2-player games, we also improved the previously known graph-
theoretic algorithms and their complexity.

Finally, note that the 1-player game graphs with limsup and liminf objective
can be viewed as weighted automata with limsup and liminf functions, and
computing the value of such games can then be viewed as computing the greatest
value of a word in such weighted automata, which amounts to solving the so-
called quantitative emptiness problem [3].
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Abstract. Several variants of the Constraint Satisfaction Problem have
been proposed and investigated in the literature for modelling those sce-
narios where solutions are associated with some given costs. Within these
frameworks computing an optimal solution is an NP-hard problem in
general; yet, when restricted over classes of instances whose constraint
interactions can be modelled via (nearly-)acyclic graphs, this problem is
known to be solvable in polynomial time. In this paper, larger classes
of tractable instances are singled out, by discussing solution approaches
based on exploiting hypergraph acyclicity and, more generally, structural
decomposition methods, such as (hyper)tree decompositions.

1 Introduction

The Constraint Satisfaction Problem (CSP) is a well-known framework [11] for
modelling and solving search problems, which received considerably attention in
the literature due to its applicability in various areas. Informally, a CSP instance
is defined by singling out the variables of interest, and by listing the allowed
combinations of values for groups of them, according to the constraints arising
in the application at hand. The solutions for this instance are the assignments
of domain values to variables that satisfy all such constraints. Many apparently
unrelated problems from disparate areas actually turn out to be equivalent to
the CSP and can be accommodated within the CSP framework. Examples are
puzzles, conjunctive queries over relational databases, graph colorability, and
checking whether there is a homomorphism between two finite structures.

Example 1. Figure 1 shows a combinatorial crossword puzzle (taken from [15]).
A set of legal words is associated with each horizontal or vertical array of white
boxes delimited by black boxes. A solution to the puzzle is an assignment of a
letter to each white box such that to each white array is assigned a word from its
� G.Gottlob works at the Computing Laboratory and at the Oxford Man Institute
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Fig. 1. A crossword puzzle, its associated hypergraph Hcp, and a hypertree decompo-
sition of width 2 for Hcp

set of legal words. This problem can be recast in a CSP by associating a variable
with each white box, and by defining a constraint for each array of white boxes
prescribing the legal words that are associated with it. �

When assignments are associated with some given cost, however, computing an
arbitrary solution might not be enough. For instance, the crossword puzzle in
Figure 1 may admit more than one solution, and expert solvers may be asked
to single out the most difficult ones, such as those solutions that minimize the
total number of vowels occurring in the used words. In these cases, one is usually
interested in the corresponding optimization problem of computing the solution
of minimum cost, whose modeling is accounted for in several variants of the basic
CSP framework, such as fuzzy, probabilistic, weighted, lexicographic, valued, and
semiring-based CSPs (see [25,4] and the references therein).

Since solving CSPs—and the above extensions—is an NP-hard problem, much
research has been spent to identify restricted classes over which solutions can effi-
ciently be computed. In this paper, structural decomposition methods are consid-
ered [15], which identify tractable classes by exploiting the structure of constraint
scopes as it can be formalized either as a hypergraph (whose nodes correspond
to the variables and where each group of variables occurring in some constraint
induce a hyperedge) or as a suitable binary encoding of such hypergraph. In par-
ticular, we focus on the structural methods based on the notions of (generalized)
hypertree width [18,19] and treewidth [28]. In both cases, the underlying idea
is that solutions to CSP instances that are associated with acyclic (or nearly-
acyclic) structures can efficiently be computed via dynamic programming, by
incrementally processing the structure according to some of its topological or-
derings.

As a matter of fact, however, while in the case of classical CSPs deep and
useful results have been achieved for both graph and hypergraph representa-
tions, in the case of CSP extensions tailored for optimization problems attention
was mainly focused on binary encodings and, in particular, on the primal graph
representation, where nodes correspond to variables and an edge between two
variables indicates that they are related by some constraint. Discussing whether
(and how) hypergraph-based structural decomposition techniques in the litera-
ture can be lifted to such optimization frameworks is the main goal of this paper.
In particular, we consider three CSP extensions:
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(1) First, we consider optimization problems where every mapping variable-
value is associated with a cost, so that the aim is to find an assignment
satisfying all the constraints and having the minimum total cost.

(2) Second, we consider the case where costs are associated with the allowed
combinations of simultaneous values for the variables occurring in the con-
straint, rather than to individual values. Again, within this setting, we con-
sider the problem of computing a solution having minimum total cost.

(3) Finally, we consider a scenario where the CSP instance at hand might not
admit a solution at all, and where the problem is hence to find the assignment
minimizing the total number of violated constraints (and, more generally,
whenever a cost is assigned to each constraint, the assignment minimizing
the total cost of violated constraints).

For each of the above settings, the complexity of computing the optimal solution
is analyzed in this paper, by overviewing some relevant recent research and by
providing novel results. In particular:

� We show that optimization problems of kind (1) can be solved in polyno-
mial time on instances having bounded (generalized) hypertree-width hyper-
graphs. This result is based on an algorithm recently designed and analyzed
in the context of combinatorial auctions [13].

� We show that even optimization problems of kind (2) are tractable on in-
stances having bounded (generalized) hypertree-width hypergraphs. Indeed,
we describe how to transform this kind of instances into equivalent instances
of kind (1), by preserving their structural properties.

� We observe that optimization problems of kind (3) remain NP-hard even
over instances having an associated acyclic hypergraph. However, there is
also good news: they are shown to be tractable on instances having bounded
treewidth incidence graph encoding. The latter is a binary encoding of the
constraint hypergraph with usually better structural features than the primal
graph encoding (see, e.g., [15,22]). Again, proof is via a mapping to case (1).

Organization. The rest of the paper is organized as follows. Section 2 discusses
preliminaries on CSPs and structural restrictions, and Section 3 provides an
overview of the structural decomposition methods based on treewidth and (gen-
eralized) hypertree width. Results for optimization problems of kind (1) and
(2) are discussed in Section 4, whereas problems of kind (3) are discussed in
Section 5. Finally, Section 6 draws our conclusions.

2 CSPs, Acyclic Instances, and Their Desirable
Properties

An instance of a constraint satisfaction problem [11] is a triple I = 〈Var , U, C〉,
where Var is a finite set of variables, U is a finite domain of values, and C =
{C1, C2, . . . , Cq} is a finite set of constraints. Each constraint Cv, for 1 ≤ v ≤ q,
is a pair (Sv, rv), where Sv ⊆ Var is a set of variables called the constraint
scope, and rv is a set of substitutions (also called tuples) from variables in Sv
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Fig. 2. A hypergraph H1, a join tree JT (H1), the primal graph G(H1), and the inci-
dence graph inc(H1)

to values in U indicating the allowed combinations of simultaneous values for
the variables in Sv. Any substitution from a set of variables V ⊆ Var to U is
extensively denoted as the set of pairs of the form X/u, where u ∈ U is the value
to which X ∈ V is mapped. Then, a solution to I is a substitution θ : Var �→ U
for which q-tuples t1 ∈ r1, ..., tq ∈ rq exist such that θ = t1 ∪ ... ∪ tq.

Example 2. In the crossword puzzle of Figure 1, Var coincides with the letters of
the alphabet, and a variable Xi (denoted by its index i) is associated with each
white box. An example of constraint is C1H = ((1, 2, 3, 4, 5), r1H), and a pos-
sible instance for r1H is {〈h, o, u, s, e〉, 〈c, o, i,n, s〉, 〈b, l, o, c, k〉}—in the various
constraint names, subscripts H and V stand for “Horizontal” and “Vertical,”
respectively, resembling the usual naming of definitions in crossword puzzles. �

The structure of a CSP instance I is best represented by its associated hy-
pergraph H(I) = (V,H), where V = Var and H = {S | (S, r) ∈ C}—in the
following, V and H will be denoted by N (H) and E(H), respectively. As an
example, the hypergraph associated with the crossword puzzle formalized above
is illustrated in the central part of Figure 1.

A hypergraph H is acyclic iff it has a join tree [3]. A join tree JT (H) for
a hypergraph H is a tree whose vertices are the hyperedges of H such that,
whenever the same node X ∈ V occurs in two hyperedges h1 and h2 of H, then
X occurs in each vertex on the unique path linking h1 and h2 in JT (H). The
notion of acyclicity we use here is the most general one known in the literature,
coinciding with α-acyclicity according to Fagin [9]. Note that the hypergraph
Hcp of Figure 1 is not acyclic. An acyclic hypergraph is discussed below.

Example 3. Consider the hypergraph H1 shown on the left of Figure 2, which is
associated with a CSP instance over the set of variables {A, ...,M}. In particular,
six constraints are defined over the instance whose scopes precisely correspond
to the hyperedges in E(H1); for instance, {A,B,C} is an example of constraint
scope. Note also that H1 is acyclic. Indeed, a join tree JT (H1) for it is reported
in the same figure to the right of H1. �

An important property of acyclic instances is that they can efficiently be
processed by dynamic programming. Indeed, according to Yannakakis’ algo-
rithm [34] (originally conceived in the equivalent context of evaluating acyclic
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Boolean conjunctive queries), they can be evaluated by processing any of their
join trees bottom-up, by performing upward semijoins between the constraint re-
lations, thus keeping the size of the intermediate result small. At the end, if the
constraint relation associated with the root atom of the join tree is not empty,
then the CSP instance does admit a solution. Therefore, the whole procedure
is feasible in O(n × rmax × log rmax), where n is the number of constraints and
rmax denotes the size of the largest constraint relation.

In addition to the polynomial time algorithm for deciding whether a CSP
admits a solution, acyclic instances enjoy further desirable properties:

Acyclicity is efficiently recognizable: Deciding whether a hypergraph is
acyclic is feasible in linear time [31] and belongs to the class L (determinis-
tic logspace). Indeed, this follows from the fact that hypergraph acyclicity
belongs to SL [16], and that SL is equal to L [27].

Acyclic instances can be efficiently solved: After the bottom-up step de-
scribed above, one can perform the reverse top-down step by filtering each
child vertex from those tuples that do not match with its parent tuples. The
relations obtained after the top-down step enjoy the global consistency prop-
erty, i.e., they contain only tuples whose values are part of some solution of
the CSP. Then, all solutions can be computed with a backtrack-free proce-
dure, and thus in total polynomial time, i.e., in time polynomial in the input
plus the output [34] (and actually also with polynomial delay). Alternatively,
one may enforce pairwise consistency by taking the semijoins between all pairs
of relations until a fixpoint is reached. Indeed, acyclic instances that fulfil this
property also fulfil the global consistency property [2].

Acyclic instances are parallelizable: It has been shown that solving acyclic
CSP instances is highly parallelizable, as this problem (actually, decid-
ing the existence of a solution) is complete for the low complexity class
LOGCFL [16]. Efficient parallel algorithms are discussed in [16] and [17].

We conclude this section by recalling that the above desirable properties of
acyclic CSP instances have profitably been exploited in various application sce-
narios. Indeed, besides their application in the context of Database Theory, they
found applications in Game Theory [14,8], Knowledge Representation and Rea-
soning [21], and Electronic Commerce [13], just to name a few.

3 Generalizing Acyclicity

Many attempts have been made in the literature for extending the good results
about acyclic instances to relevant classes of nearly acyclic structures. We call
these techniques structural decomposition methods, because they are based on
the “acyclicization” of cyclic (hyper)graphs. We refer the interested reader to
[29] for a detailed description of how these techniques may be useful for con-
straint satisfaction problems and to [22] for further results about graph-based
techniques, when relational structures are represented according to various graph
representations (primal graph, dual graph, incidence-graph encoding). We also
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want to mention recent methods such as Spread-cuts [7] and fractional hypertree
decompositions [23].

A survey of most of these techniques is currently available in Wikipedia (look
for “decomposition method”, at http://www.wikipedia.org). In the sequel, we
shall briefly overview the tree and hypertree decomposition methods.

3.1 Tree Decompositions

For classes of instances having only binary constraints or, more generally, con-
straints whose scopes have a fixed maximum arity, the most powerful structural
method is based on the notion of treewidth.

Definition 1 ([28]). A tree decomposition of a graph G = (V,E) is a pair
〈T, χ〉, where T = (N,F ) is a tree, and χ is a labelling function assigning with
each vertex p ∈ N a set of vertices χ(p) ⊆ V such that the following conditions
are satisfied: (1) for each node b of G, there exists p ∈ N such that b ∈ χ(p); (2)
for each edge (b, d) ∈ E, there exists p ∈ N such that {b, d} ⊆ χ(p); and, (3) for
each node b of G, the set {p ∈ N | b ∈ χ(p)} induces a connected subtree of T
(connectedness condition). The width of 〈T, χ〉 is the number maxp∈N (|χ(p)|−1).
The treewidth of G, denoted by tw(G), is the minimum width over all its tree
decompositions. �

It is well-known that a graph G is acyclic if and only if tw(G) = 1. Moreover,
for any fixed natural number k > 0, deciding whether tw(G) ≤ k is feasible in
linear time [5].

Any CSP with primal graph G such that tw(G) ≤ k can be (efficiently)
turned into an equivalent CSP whose primal graph is acyclic. Let I = 〈Var , U, C〉
be a CSP instance, let G be the primal graph of H(I), and let 〈T, χ〉 be a
tree decomposition of G having width k. We may build a new acyclic CSP
instance I′ = 〈Var , U, C′〉 over the same variables and universe as I, but with
a different set of constraints C′, as follows. Firstly, for each vertex v of T , we
create a constraint (Sv, rv), where Sv = χ(v) and rv = U |χ(v)|. Then, for every
constraint (S, r) ∈ C of the original problem such that S ⊆ χ(v), we eliminate
from rv all those tuples that do not match with r. The resulting constraint is
then added to C′. It can be shown that I ′ has the same solutions as I, and that
it is acyclic. In fact, observe that, by construction, 〈T, χ〉 is a join tree of the
hypergraph H(I ′) associated with I ′, because of the connectedness condition
of tree decompositions. Furthermore, building I′ from I is feasible in O(n ×
|U |k+1) where n is the number of vertices in T , and where the size of the largest
constraint relation in the resulting instance is |U |k+1. Since one can always
consider only tree decompositions whose number of vertices is bounded by the
number of variables of the problem (i.e., the nodes of the graph), it follows that
deciding whether I ′ (and hence I) is satisfiable is feasible in O(|V ar|× |U |k+1×
log |U |k+1). In fact, as for acyclic instances, even in this case we may compute
also solutions for I with a backtrack-free search, after the preprocessing of the
instance performed according to the given tree decomposition (i.e., according to

http://www.wikipedia.org
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the join tree of the equivalent acyclic instance). As a consequence, all classes of
CSP instances (with primal graphs) having bounded treewidth may be solved
in polynomial time, even if with an exponential dependency on the treewidth.

Clearly enough, this technique is not very useful for CSP instances with large
constraint scopes. In particular, the class of CSP instances whose associated
constraint hypergraphs are acyclic are not tractable according to tree decompo-
sitions, because acyclic hypergraphs may have unbounded treewidth. Intuitively,
in the primal graph all variables occurring in the same constraint scope are con-
nected to each other, and thus they lead to a clique in the graph. It follows that
CSP instances having constraint scopes with large arities have large treewidths,
too, because the treewidth of a clique of n nodes is n−1. As an example, Figure 2
reports the graph G(H1) associated with the acyclic hypergraph H1, where one
may notice how the hyperedge {A,C,D,E, F,G,H} is flattened into a clique
over all its variables.

3.2 Hypertree Decompositions

Let us now turn our attention to hypergraph based decompositions. Such decom-
positions are similar to tree decompositions, but they use an additional covering
of each set χ(p) with as few as possible hyperedges. The width is then no longer
defined as the maximum cardinality of χ(p) over all decomposition nodes p, but
as the maximum number of hyperedges used to cover χ(p). Intuitively, this no-
tion of width is better, because it will allow us to expresses more accurately the
computational effort needed to transform an instance into an acyclic one.

Definition 2 ([19]). A generalized hypertree decomposition of a hypergraph H
is a triple HD = 〈T, χ, λ〉, where 〈T, χ〉 is a tree decomposition of the primal
graph of H, and λ is a labelling of the tree T by sets of hyperedges of H such
that, for each vertex p ∈ vertices(T ), χ(p) ⊆

⋃
h∈λ(v) h. That is, all variables in

the χ labeling are covered by hyperedges (scopes) in the λ labeling. The width
of HD is the number maxp∈vertices(T )(|λ(p)|). The generalized hypertree width of
H, denoted by ghw(H), is the minimum width over all its generalized hypertree
decompositions. If I is a CSP instance then ghw(I) := ghw(H(I)). �

Clearly, for each CSP instance I, ghw(I) ≤ tw(I). Moreover, there are classes
of CSPs having unbounded treewidth whose generalized hypertree width is
bounded[19].

Finding a suitable tree decomposition whose sets χ(p) may each be covered
with a few hyperedges seems to be quite a hard task even in case we have some
fixed upper bound k. Indeed, it has been shown that deciding whether ghw(H) ≤
k is NP-complete (for any fixed k ≥ 3) [20]. Fortunately, since its first proposal in
[18], this notion comes with a tractable variant, called hypertree decomposition,
whose associated width is at most 3 times (+1) larger than the generalized
hypertree width [1]. As a consequence, it can be shown that every class of CSPs
that is tractable according to generalized hypertree width is tractable according
to hypertree width, as well.
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Definition 3 ([18]). A hypertree decomposition of a hypergraph H is a gen-
eralized hypertree decomposition HD = 〈T, χ, λ〉 that satisfies the following
additional condition, called Descendant Condition or also special condition:
∀p ∈ vertices(T ), ∀h ∈ λ(p), h ∩ χ(Tp) ⊆ χ(p), where Tp denotes the sub-
tree of T rooted at p, and χ(Tp) the set of all variables occurring in the χ
labeling of this subtree.

The hypertree width hw(H) of H is the minimum width over all its hypertree
decompositions. �

As an example, on the right part of Figure 1 a hypertree decomposition of the
hypergraph Hcp in Example 1 is reported. Note that this decomposition has
width 2.

We refer the interested reader to [18,29] for more details about this notion
and in particular about the descendant condition. Here, we just observe that the
notions of hypertree width and generalized hypertree width are true generaliza-
tions of acyclicity, as the acyclic hypergraphs are precisely those hypergraphs
having hypertree width and generalized hypertree width one. In particular, the
classes of CSP instances having bounded (generalized) hypertree width have the
same desirable computational properties as acyclic CSPs [16]. Indeed, from a
CSP instance I = 〈Var , U, C〉 and a (generalized) hypertree decomposition HD
of H(I) of width k, we may build an acyclic CSP instance I′ = 〈Var , U, C′〉 with
the same solutions as I. The overall cost of deciding whether I is satisfiable is in
this case O((m−1)×rkmax× log rkmax), where rmax denotes the size of the largest
constraint relation and m is the number of vertices of the decomposition tree,
with m ≤ |Var | (in that we may always find decompositions in a suitable normal
form without redundancies, so that the number of vertices in the tree cannot
exceed the number of variables of the given instance). To be complete, if the in-
put consists of I only, we have to compute the decomposition, too. This can be
done with a guaranteed polynomial-time upper bound in the case of hypertree
decompositions [18].

In the following two sections, we provide some tractability results for op-
timization problems. For the sake of presentation, we give algorithms for the
acyclic case, provided that these results may be clearly extended to any class of
instances having bounded (generalized) hypertree width, after the above men-
tioned polynomial-time transformation.

4 Optimization Problems over CSP Solutions

In this section, we consider optimization problems where an assignment has to
be singled out that satisfies all the constraints of the underlying CSP instance
and that has minimum total cost; in other words, we look for a “best” solution
among all the possible solutions. In particular, below, we shall firstly address the
case where each possible variable-value mapping is associated with a cost (also
called constraint satisfaction optimization problem); then we shall consider the
case where costs are defined over the constraints tuples (weighted CSP).
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Input: An acyclic CSOP instance 〈I, w〉 with I = 〈Var , U, C〉, C = {(S1, r1), ..., (Sq, rq)},
and a join tree T = (N,E) of the hypergraph H(I);

Output: A solution to 〈I, w〉;
var t∗ : Var �→ U ;

�vtv
: rational number, for each tuple tv ∈ rv ;

ttv,c : tuple in rc, for each tuple tv ∈ rv , and for each (v, c) ∈ E;
————————————————————————————————————————–

Procedure BottomUp;
begin
Done := the set of all the leaves of T ;
while ∃v ∈ T such that (i) v ∈ Done, and (ii) {c | c is child of v} ⊆ Done do
rv := rv − {tv | ∃(v, c) ∈ E such that ∀tc ∈ θc, tv ≈ tc};
if rv = ∅ then EXIT; (* I is not satisfiable *)
for each tv ∈ rv do
�vtv

:= w(tv);
for each c such that (v, c) ∈ E do

t̄c := arg mintc∈rc|tv≈ tc

(
�ctc
− w(tc ∩ tv)

)
;

ttv,c := t̄c; (* set best solution *)
�vtv

:= �vtv
+ �ct̄c

− w(t̄c ∩ tv);

end for
end for
Done := Done ∪ {v};

end while
end;

————————————————————————————————————————–
begin (* MAIN *)
BottomUp;
let r be the root of T ;
t̄r := arg mintr∈rr �

r
tr

;
t∗ := t̄r; (* include solution *)
TopDown(r, t̄r);
return t∗;

end.

Procedure TopDown(v : vertex of N , tv ∈ rv);
begin

for each c ∈ N s.t. (v, c) ∈ E do
t̄c := ttv,c;
t∗ := t∗ ∪ t̄c; (* include solution *)
TopDown(c, t̄c);

end for
end;

Fig. 3. Algorithm ComputeOptimalSolution

4.1 Constraint Satisfaction Optimization Problems

An instance of a constraint satisfaction optimization problem (CSOP) con-
sists of a pair 〈I, w〉, where I = 〈Var , U, C〉 is a CSP instance and where
w : Var × U �→ Q is a function mapping substitutions for individual vari-
ables to rational numbers. For a substitution {X1/u1, ..., Xn/un}, we denote by
w({X1/u1, ..., Xn/un}) the value

∑n
i=1 w(Xi, ui). Then, a solution to a CSOP

instance 〈I, w〉 is a solution θ to I such that w(θ) ≤ w(θ′), for each solution θ′

to I. Details on this framework can be found, e.g., in [32].
Constraint satisfaction optimization problems naturally arise in various ap-

plication contexts. As an example they have recently been used in the context
of combinatorial auctions [13], in order to model and solve the winner deter-
mination problem of determining the allocation of the items among the bidders
that maximizes the sum of the accepted bid prices. In particular, in [13], it has
been observed that CSOPs and, in particular, the winner determination prob-
lem, can be solved in polynomial time on some classes of acyclic instances via a
dynamic programming algorithm founded on the ideas of [34]. This algorithm,
named ComputeOptimalSolution, is reported in Figure 3 and will be briefly
illustrated in the following.
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The algorithm receives in input the instance 〈I, w〉 and a join tree T = (N,E)
for H(I). Recall that each vertex v ∈ N corresponds to a hyperedge of H(I)
and, in its turn, to a constraint in C; hence, we shall simply denote by (Sv, rv)
the constraint in C univocally associated with vertex v.

Based on 〈I, w〉 and T , ComputeOptimalSolution computes an optimal
solution (or checks that there is no solution) by looking for the “conformance” of
the tuples in each relation rv with the tuples in rc, for each child c of v in T , where
tv ∈ rv is said to conform with tc ∈ rc, denoted by tv ≈ tc, if for eachX ∈ Sv∩Sc,
X/u ∈ tv ⇔ X/u ∈ tc. In more detail, ComputeOptimalSolution solves
〈I, w〉 by traversing T in two phases. First, vertices of T are processed from
the leaves to the root r, by means of the procedure BottomUp that updates
the weight �vtv of the current vertex v. Intuitively, �vtv stores the cost of the best
partial solution for I computed by using only the variables occurring in the
subtree rooted at v. Indeed, if v is a leaf, then �vtv = w(tv). Otherwise, for each
child c of v in T , �vtv is updated by adding the minimum value �ctc − w(tc ∩ tv)
over all tuples tc conforming with tv. The tuple t̄c for which this minimum is
achieved is stored in the variable ttv ,c (resolving ties arbitrarily). Note that if
this process cannot be completed, because there is no tuple in rv conforming
with some tuple in each relation associated with the children of v, then we may
conclude that I is not does not admit any solution. Otherwise, after the root
r ∈ N is reached, this part ends, and the top-down phase may start.

In this second phase, the tree T is processed starting from the root. Firstly,
the assignment t∗ is defined as the tuple in rr with the minimum cost over all
the tuples in rr (again, resolving ties arbitrarily). Then, procedure TopDown
extends t∗ with a tuple for each vertex of T : at each vertex v and for each child
c of v, t∗ is extended with the tuple ttv ,c resulting from the bottom-up phase.

Being based on a standard dynamic programming scheme, correctness of
ComputeOptimalSolution can be shown by structural induction on the sub-
trees of T [13]. Moreover, by analyzing its running time, one may note that deal-
ing with cost functions does not (asymptotically) provide any overhead w.r.t.
Yannakakis’s algorithm [34] for plain CSPs. Following [13], the following can be
shown for the more general case of CSOP instances having bounded generalized
hypertree-width hypergraphs.1

Theorem 1. Let 〈I, w〉 be a CSOP instance and HD a (generalized) hypertree
decomposition of H(I). Moreover, let k be the width of HD and m be the number
of vertices in its decomposition tree. Then, a solution to 〈I, w〉 can be computed
(or it is discovered that no solution exists) in time O((m−1)×rkmax× log rkmax),
where rmax is the size of the largest constraint relation in I.

1 In all complexity results, we assume the weighting function w be explicitly listed in
the input (otherwise, just add the cost of computing through w all cost values for
the variable assignments of the given input instance).
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4.2 Weighted CSPs: Costs over Tuples

Let us now turn to study a slight variation of the above scenario, where costs
are associated with each tuple of the constraint relations, rather than with sub-
stitutions for individual variables. In fact, this is the setting of weighted CSPs,
a well-known specialization of the more general valued CSP framework [30].

Formally, a weighted CSP (WCSP) instance consists of a tuple 〈I, w1, ..., wq〉,
where I = 〈Var , U, C〉 with C = {C1, C2, . . . , Cq} is a CSP instance, and where,
for each tuple tv ∈ rv, wv(tv) ∈ Q denotes the cost associated with tv. For a
solution θ = t1∪...∪tq to I, we define w(θ) =

∑q
v=1 wv(tv) as its associated cost.

Then, a solution to 〈I, w1, ..., wq〉 is a solution θ to I such that w(θ) ≤ w(θ′),
for each solution θ′ to I.

A few tractability results for WCSPs (actually, for valued CSPs) are known in
the literature when structural restrictions are considered over binary encodings
of the constraint hypergraphs. Indeed, it has been observed that WCSPs are
tractable when restricted on classes of instances whose associated primal graphs
are acyclic or nearly-acyclic (see, e.g., [33,10,26]). However, the primal graph
obscures much of the structure of the underlying hypergraph since, for instance,
each hyperedge is turned into a clique there—see the discussion in Section 3.

Therefore, whenever constraints have large arities, tractability results for pri-
mal graphs are useless, and it becomes then natural to ask whether polynomial-
time solvability still holds when moving from (nearly-)acyclic primal graphs
to acyclic hypergraphs, possibly associated with very intricate primal graphs.
Next, we shall positively answer this question, by simply recasting weighted
CSPs as constraint optimization problems, and by subsequently solving them
via the algorithm ComputeOptimalSolution. To this end, given a WCSP
instance 〈I, w1, ..., wq〉, we define its associated CSOP instance, denoted by
CSOP(〈I, w1, ..., wq〉), as the pair 〈I ′, w′〉 with I ′ = 〈Var ′, U ′, C′〉 such that:

• Var ′ = Var ∪ {D1, ..., Dq}, where each Dv is a fresh auxiliary variable in I ′;
• U ′ = U∪

⋃q
v=1

⋃
tv∈rv

{utv}, i.e., for each constraint (Sv, rv) ∈ C, U ′ contains
a fresh value for each tuple in rv—intuitively, mapping the variable Dv to
utv encodes that the tuple tv is going to contribute to a solution for I;

• C′ = {(Sv ∪ {Dv}, r′v) | (Sv, rv) ∈ C}, where r′v = {tv ∪ {Dv/utv} | tv ∈ rv};
• w′(X/u) = wv(tv) if X = Dv and u = utv , for some tuple tv ∈ rv; otherwise,
w′(X/u) = 0. That is, the whole cost of each tuple is determined by the
mapping of its associated fresh variable Dv.

It is immediate to check that the above transformation is feasible in linear
time. In addition, the transformation enjoys two relevant preservation prop-
erties: Firstly, it preserves the structural properties of the WCSP instance in
that H(I ′) is acyclic if and only if H(P ) is acyclic; and secondly, it preserves
its solutions, in that θ′ = t′1 ∪ ... ∪ t′q is a solution to 〈I, w1, ..., wq〉 if and only
if θ = t1 ∪ ... ∪ tq is a solution to 〈I ′, w′〉, where t′v = tv ∪ {Dv/utv} for each
1 ≤ v ≤ q. By exploiting these observations and Theorem 1, the following can
be established.
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Theorem 2. Let 〈I, w1, ..., wq〉 be a WCSP instance and HD a (generalized)
hypertree decomposition of H(I). Moreover, let k be the width of HD and m be the
number of vertices in its decomposition tree. Then, a solution to 〈I, w1, ..., wq〉
can be computed (or we may state that there is no solution) in time O((m−1)×
rkmax × log rkmax), where rmax is the size of the largest constraint relation in I.

5 Minimizing the Number of Violated Constraints

In this section, we shall complete our picture by considering those scenarios
where problems might possibly be overconstrained and where, hence, the focus is
on finding assignment minimizing the total number of violated constraints. These
kinds of problems are usually referred to in the literature as Max-CSPs [12],
which similarly as WCSPs are specializations of valued CSPs.

Formally, let θ : Var �→ U be an assignment for a CSP instance I =
〈Var , U, C〉. We say that the violation degree of θ, denoted by δ(θ), is the number
of relations rv such that there is no tuple tv ∈ rv with tv ⊆ θ. An assignment
θ : Var �→ U is a solution to the Max-CSP instance (associated with I) if
δ(θ) ≤ δ(θ′), for each assignment θ′ : Var �→ U . Note that Max-CSPs instances,
by definition, do always have a solution.

5.1 Acyclic Instances Remain Intractable

After the tractability results established in Section 4.2 for WCSPs, one may
expect good news for Max-CSPs, too. Surprisingly, this is not the case.

Theorem 3. Solving Max-CSPs is NP-hard, even when restricted over classes
of instances with acyclic constraint hypergraphs.

Proof. Consider any class T of CSPs instances having an NP-hard satisfiability
problem. Then, let T ′ be a new class of Max-CSP instances such that, for each
I = 〈Var , U, C〉 ∈ T , T ′ contains an instance I ′ = 〈Var , U, C′〉 with C′ = C ∪
{(Var , ∅)}. That is, any instance I′ ∈ T ′ has a constraint over all variables with
an empty constraint relation, and thus it is not satisfiable. Moreover, because
of the big hyperedge associated with such a constraint, its hypergraph H(I ′) is
trivially acyclic. Also, by construction, there is an assignment for I′ violating
only one constraint if and only if I is satisfiable. It follows that finding an
assignment minimizing the total number of violated constraints is NP-hard on
the class of acyclic instances T ′. �

5.2 Incidence Graphs and Tractable Cases

Given that hypergraph acyclicity and hence its generalizations are not sufficient
for guaranteeing the tractability of Max-CSPs, it makes sense to explore acyclic-
ity properties related to suitable graph representations. In fact, as observed
in Section 4.2, it is well-known that valued CSPs (and, hence, Max-CSPs) are
tractable over acyclic primal graphs (e.g., [33,10,26]). More precisely, tractability
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has been observed in the literature to hold over primal graphs having bounded
treewidth (see Section 3). Our main result in this section is precisely to show
that tractability still holds in case the incidence graph of H(I) has bounded
treewidth, which is a more general condition than the bounded treewidth of pri-
mal graphs and which can be used to establish better complexity bounds and
to enlarge the class of tractable instances [22]. The fact that the standard CSP
is tractable for instances whose incidence graphs have bounded treewidth was
already shown in [6]. We here extend this tractability result to Max-CSPs.

Recall that the incidence encoding of a hypergraph H, denoted by inc(H) =
(N,E), is the bipartite graph where N = E(H) ∪ N (H) and E = { {h, a} | h ∈
E(H) and a ∈ h)}, i.e. it contains an edge between h and a if and only if the
variable a occurs in the hyperedge h. As an example, Figure 2 reports on the
rightmost part the incidence graph inc(H1), where nodes associated with hyper-
edges in E(H1) are depicted as black circles. Note that the treewidth of inc(H1)
is 2, which is much smaller than the treewidth of G(H1). This does not happen
by chance since, for each hypergraph H, it holds that tw(inc(H)) ≤ tw(G(H));
in addition, there are also classes of hypergraphs with incidence encodings of
bounded treewidth and primal encodings of unbounded treewdith (see, e.g., [22]).

While enlarging the class of instances having bounded treewidth, the inci-
dence encoding still conveys all the information needed to solve Max-CSP in-
stances. Again, the solution algorithm consists of a transformation into a suit-
able CSOP instance. Formally, let I = 〈Var , U, C〉 be a Max-CSP instance with
C = {(S1, r1), ..., (Sq, rq)}, and let 〈T, χ〉 be a k-width tree decomposition of
inc(H(I))—recall that for each vertex v ∈ T , χ(v) is a set of variables (i.e., nodes
of N (H(I))) and constraint scopes (i..e, edges in E(H(I))). Then, the constraint
satisfaction optimization problem instance CSOP(I, 〈T, χ〉) is the pair 〈I′, w′〉,
where I ′ = 〈Var ′, U ′, C′〉 and such that:
• Var ′ = Var ∪ {S1, ..., Sq}, that is, also the constraint scopes of C belong to

the variables of the new problem;
• U ′ = U ∪ {unsat} ∪ {ut | t ∈ ri, for 1 ≤ i ≤ q};
• C′ = {(χ(v), r′v) | v ∈ T } where the constraint relation r′v is defined as

follows. Let μ = |χ(v)∩Var |, and let Uμ denote the set of all possible tuples
over the μ variables in χ(v) ∩Var . Let also Si1 , ...Sih be the scope-variables
in χ(v). Then, for each tuple θ ∈ Uμ, the relation r′v contains all tuples
θ ∪ {Si1/vi1} ∪ · · · ∪ {Sih/vih}, where vij ∈ U (1 ≤ j ≤ h) is a value for the
scope-variable Sij such that: vij = ut if there is a tuple t ∈ rij conforming
with θ; and vij = unsat , if no such a tuple exists in rij .

• w′(X/u) = 0 if u �= unsat ; otherwise w′(X/u) = 1, that is, each constraint
of C that is not satisfied increases the cost of a solution by a unitary factor.

Note that this transformation is feasible in time exponential in the width of 〈T, χ〉
only. Moreover, solutions of I ′ with minimum total cost precisely correspond to
assignments over I minimizing the total number of violated constraints. In fact,
the following can be established.

Theorem 4. Let I = 〈Var , U, C〉 be a Max-CSP instance with tw(inc(H(I))) =
k. Then, a solution to I can be computed in time O(|Var |× |U |k+1× log |U |k+1).
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6 Conclusion and Discussion

In this paper, classes of tractable CSOP, WCSP, and Max-CSP instances are
singled out by overviewing and proposing solution approaches applicable to
instances whose hypergraphs have bounded (generalized) hypertree width, or
whose incidence graphs have bounded treewidth. The techniques described in
this paper are mainly based on Algorithm ComputeOptimalSolution, which
has been designed to optimize costs expressed as rational numbers and combined
via the summation operation. However, it is easily seen that it remains correct
if costs are specified over an arbitrary totally ordered monoid structure, where
some binary operation ⊕ (in place of standard summation) is used in order to
combine costs, provided it is commutative, associative, closed, and that it ver-
ifies identity and monotonicity. It follows that all tractable classes of CSOP,
WCSP, and Max-CSP instances identified in this paper remain tractable in such
extended scenarios, which indeed emerge with valued CSPs (see, e.g., [4]).
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Abstract. In the pi-calculus, we consider decidability of certain safety properties
expressed in a simple spatial logic. We first introduce a behavioural type system
that, given a process P, tries to extract a spatial-behavioural type T , in the form
of a ccs term that is logically equivalent to the given process. Using techniques
based on well-structured transition systems, we then prove that, for an interesting
fragment of the considered logic, satisfiability (T |= φ) is decidable for types. As
a consequence of logical equivalence between types and processes, we obtain
decidability of this fragment of the logic for all well-typed pi-processes.

Keywords: pi-calculus, behavioural types, spatial logic, decidability, safety.

1 Introduction

In recent years, spatial logic [6] and behavioural type systems [10,7,1] have gained
attention as useful tools for the analysis of concurrent systems described in process
calculi. Spatial logics are well suited to express properties related to concurrency and
distribution, thanks to a combination of spatial and dynamic connectives. An example
is the property expressing race-freedom on some channel a: “it is never the case that
there are two concurrent outputs ready at channel a”. behavioural type systems are used
in order to obtain abstract representation of message-passing systems and simplify their
analysis. In Igarashi and Kobayashi’s work on generic type systems [10], pi-calculus
processes are abstracted by means of ccs types. The main property of Igarashi and
Kobayashi’s system is type soundness: any safety property satisfied by a type is also
satisfied by processes that inhabit that type.

In [1], we have combined ideas from spatial logics and behavioural type system into a
single framework. Like in [10], the language of processes we consider is the pi-calculus,
while types are ccs terms. Differently from [10], though, types of [1] account for both
the behavioural and the spatial structure of processes. This fact allows one to estab-
lish a precise correspondence between processes and their types. This correspondence
makes it possible to prove type soundness theorems holding for fairly general classes of
properties, not only safety invariants, although this enhancement comes at some price
in terms of flexibility of the type system w.r.t. [10]. A prominent feature of [1] is that
structural congruence is used as a subtyping relation.
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A driving motivation in all the mentioned works is being able to combine type- and
model-checking. The idea is that, rather than model checking a given property against a
process, with a behavioural type system at hand, one checks the property against a sim-
pler model: a type. Moving from processes to types certainly implies a gain in simplic-
ity in terms of reasoning [10,1]. Unfortunately, in [11], undecidability of behavioural
type systems using the simulation preorder as a sub-typing relation has been proven.
The result suggests that any “reasonable” instances of the generic system of [10] based
on simulation preorders might turn out to be undecidable. We may hope the situation
is better for our system in [1], because this system adopts structural congruence as a
subtyping relation, that, for the considered languages, is easily seen to be decidable.

In the present paper, our goal is to show decidability of a fragment of Spatial Logic
over a pi-calculus with replication, introduced in Section 2. The fragment in question is
expressive enough to capture interesting safety invariants. We achieve our goal in two
steps. In the first one, we devise a behavioural type system whose purpose is, basically,
to extract behavioural ccs types T out of given processes P. The types extracted this
way are logically equivalent to the original processes. This part of the work is based on
behavioural type techniques similar to those discussed in [1] and is reported in Section 3.

In the second one (Section 6), we show that it is actually decidable whether a ccs
type T satisfies a formula in the fragment introduced in Section 4. This part, which is
largely independent from the first one, heavily relies on the technique of well-structured
transition systems (wsts) introduced by Finkel and Schnoebelen [8] and overviewed in
Section 5. Our result generalizes a previous result by Busi et al. [4], who had proven
decidability in ccs with replication of weak barbs. As a corollary of the logical corre-
spondence given by the type system, decidability of the considered logic carries over to
well-typed pi-processes.

It is worth to stress that, in the economy of the proof, being able to go from the pi-
calculus to ccs, via the behavioural type system, is crucial. In particular, the wsts tech-
nique does not apply to pi-calculus directly. The technical reason is that there is no upper
bound on the nesting depth of restrictions in pi-terms as they evolve, a fact that prevents
the definition of a syntax-basedwqo in pi-calculus. Instead, there is such a bound for ccs.

2 Processes

The language we consider is a synchronous polyadic pi-calculus [13] with guarded sum-
mations and replications. We presuppose a countable set of namesN and let a,b, . . . , x, . . .
range over names. Processes P,Q,R, . . . are defined by the grammar below

α ::= a(b̃)
∣∣∣ a〈b̃〉 ∣∣∣ τ P ::=

∑
i∈I αi.Pi

∣∣∣ P|P ∣∣∣ (νb : t)P
∣∣∣ !a(b̃).P

where b̃ is a tuple of names and t = (x̃ : t̃′)T is a channel type where: (x̃ : t̃) is a binder
with scope T ; x̃ and t̃ represent the formal parameters and types of objects carried by
the channel; T is a process type (see Section 3) prescribing a usage of those parameters.
The calculus is equipped with standard notions of free and bound names (fn(·), bn(·)).
Notice that we let fn((νb : t)P) = (fn(P)∪ fn(t)) \ {b} and that terms are identified up to
alpha-equivalence, defined as usual. To prevent arity mismatch, we will only consider
well-sorted terms in some fixed sorting system (see e.g. [13]), and call P the resulting
set of processes.
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Table 1. Laws for structural congruence ≡ on processes

(νy)0 ≡ 0 (P|Q)|R ≡ P|(Q|R) P|Q ≡ Q|P P|0 ≡ P (νx : t)P|Q ≡ (νx : t)(P|Q) if x̃ � fn(Q)

Table 2. Rules for the reduction relation → on processes

(com)
αl = a(x̃) α′n = a〈b̃〉 l ∈ I n ∈ J∑

i∈I
αi.Pi|

∑
j∈J
α′j.Q j → Pl[b̃/x̃]|Qn

(tau)
j ∈ I α j = τ∑

i∈I
αi.Pi → P j

(res) P→ P′

(νx : t)P→ (νx : t)P′

(rep) αn = a〈b̃〉 n ∈ J

!a(x̃).P|
∑

j∈J
α j.Q j →!a(x̃).P|P[b̃/x̃]|Qn

(par) P→ P′

P|Q→ P′|Q (struct)

P ≡ Q
Q → Q′ Q′ ≡ P′

P→ P′

In the following, we write 0 for the empty summation, omit trailing 0’s and some-
times abbreviate (νb1 : t1) · · · (νbn : tn)P as (νb̃i : t̃i)i∈1..nP, or (νb̃ : t̃)P, or (νb̃)P.

Over P, we define a reduction semantics, based as usual on a notion of structural
congruence and on a reduction relation. These relations are defined as the least con-
gruence ≡ and as the least relation → generated by the axioms in Table 1 and Table 2,
respectively. Concerning Table 1, note that we have dropped the law (νx : t)(νy : t′)P =
(νy : t′)(νx : t)P, which allows one to swap restrictions: the reason is that swapping t and
t′, which may contain free names, would require unpleasant side conditions. The rules
in Table 2 are standard.

In the sequel, we say that a process P has a barb a (written P↘a) if P≡(νb̃)(
∑

iαi.Pi+

a.Q|R), with a � b̃. P ↘a is defined similarly. By P
〈a〉
−−−→ Q we denote a reduction

P → Q arising from a synchronization on the channel name (subject) a ∈ fn(P).

3 Type System

Types. Types are essentially ccs terms, bearing some extra annotation on input prefixes
and restrictions. Let a, b, . . . range over finite set of names. The set T of types is gener-
ated by the following grammar:

μ ::= aa
∣∣∣ a ∣∣∣ τ T, S , U ::=

∑
i∈I μi.Ti

∣∣∣ !aa.T ∣∣∣ T |T ∣∣∣ (νaa)T .
In aa.T and (νaa)T , the annotations a contribute to the set of free names of a type,
indeed fn(aa.S ) = {a} ∪ a∪ fn(S ). In the type system, annotations will be employed so
as to ensure that for processes P and their types T scope extrusion, hence structural
congruence, works in the same manner in both P and in T (see [1] for more details).
In the sequel, we shall often omit the channel type ()0, writing e.g. (x)x instead of
(x : ()0)x, and annotations on input prefixes and restrictions when unnecessary. We will
often denote guarded summations and replications by the letters G, F, . . .. Notions of
free and bound names (fn(·) and bn(·)), alpha-equivalence, structural congruence and
reduction for types parallel those of processes.

Typing rules. Judgements of type system are of the form Γ � P : T , where: P ∈ P, T ∈ T
and Γ is a context: a finite partial map from names to channel types. We write Γ�a : t if
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Table 3. Typing rules for the local system

(T-Inp)

Γ � a : (x̃ : t̃)T fn(t̃)∪ fn(T ) \ x̃ = a
Γ, x̃ : t̃ � P : T |T ′ x̃ � fn(T ′)

Γ � a(x̃).P : aa.T ′ (T-Out) Γ � a : (x̃ : t̃)T Γ � b̃ : t̃ Γ � P : S

Γ � a〈b̃〉.P : a.(T [b̃/x̃] |S )

(T-Res) Γ,a : t � P : T a = fn(t)
Γ � (νa : t)P : (νaa)T

(T-Par) Γ � P : T Γ � Q : S
Γ � P|Q : T |S (T-Eq) Γ � P : T T ≡ S

Γ � P : S

(T-Sum) |I| � 1 ∀i ∈ I : Γ � αi.Pi : μi.Ti

Γ �
∑

i∈I
αi.Pi :

∑
i∈I
μi.Ti

(T-Rep) Γ � a(x̃).P : aa.T
Γ �!a(x̃).P :!aa.T

(T-Tau) Γ � P : T
Γ � τ.P : τ.T

a ∈ dom(Γ) and Γ(a)= t. We say that a context is well-formed if whenever Γ � a : (x̃ : t̃)T
then fn(T, t̃) ⊆ x̃∪dom(Γ). In what follows we shall only consider well-formed contexts.

The type system can be thought of as a procedure that, given P, builds a ccs approx-
imation T of P, with a little help from a context Γ prescribing channel usage. See [2]
for further details. In the following we say that a process P is Γ-well-typed if Γ � P : T
for some T ∈ T .

Results. This paragraph introduces the main properties of the type system. Theorem 1
and 2 guarantee the reduction-based correspondence between processes and the corre-
sponding types, while Proposition 1 guarantees the structural one. Note that the struc-
tural correspondence is shallow, in the sense that in general it breaks down underneath
prefixes. Finally, Proposition 2 guarantees decidability of �.

Theorem 1 (subject reduction). Γ � P : T and P → P′ implies that there exists a T ′

such that T → T ′ and Γ � P′ : T ′.

Theorem 2 (type subject reduction). Γ � P : T and T → T ′ implies that there exists a
P′ such that P→ P′ and Γ � P′ : T ′.

Proposition 1 (structural correspondence). Suppose Γ � P : T.

1. P↘α, with α ::= a
∣∣∣ a, implies T ↘α; vice-versa for T and P.

2. P≡(νã: t̃)R implies T≡(νãã)S, with ã=fn(t̃) and Γ, ã: t̃ � R:S;vice-versa for T and P.
3. P ≡ P1|P2 implies T ≡ T1|T2, with Γ � Pi : Ti, for i = 1,2; vice-versa for T and P.

Proposition 2. Let Γ be a context. It is decidable whether P is Γ-well-typed.

4 Shallow Logic and Type-Process Correspondence

The logic for the pi-calculus we introduce below can be regarded as a fragment of Caires
and Cardelli’s Spatial Logic [6]. In [1] we have christened this fragment Shallow Logic,
as it allows us to speak about the dynamic as well as the “shallow” spatial structure of
processes and types. In particular, the logic does not provide for modalities that allows
one to “look underneath” prefixes.

Definitions. The set F of Shallow Logic formulae φ,ψ, . . . is given by the grammar
φ ::= T

∣∣∣ a ∣∣∣ a ∣∣∣ φ|φ ∣∣∣ ¬φ ∣∣∣H∗φ
∣∣∣ φ∧φ ∣∣∣ φ∨φ ∣∣∣ 〈a〉φ ∣∣∣ ♦∗φ, where a ∈ N .
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The set of logical operators includes spatial (a,a, |,H∗) as well as dynamic (〈a〉,♦∗)
connectives, beside the usual boolean connectives, including a constant T for “true”.
We have included both disjunction and conjunction to present more smoothly “mono-
tone” properties, that is, properties whose satisfaction is preserved when adding “more
structure” to terms. The names of a formula φ, written n(φ), are defined as expected.
The interpretation of F over processes and types is given below.

[[T]]=U [[〈a〉φ]]=
{
A
∣∣∣∃B : A

〈a〉
−−−→ B, B ∈ [[φ]]

}
[[φ1∨φ2]]= [[φ1]]∪ [[φ2]] [[φ1∧φ2]]= [[φ1]]∩ [[φ2]]

[[¬φ]]=U\ [[φ]] [[H∗φ]]=
{
A
∣∣∣∃ã,B : A ≡ (νã)B, ã � n(φ), B ∈ [[φ]]

}
[[a]]=

{
A
∣∣∣A↘a

}
[[φ1|φ2]]=

{
A
∣∣∣∃A1,A2 : A ≡ A1|A2, A1 ∈ [[φ1]], A2 ∈ [[φ2]]

}
[[a]]=

{
A
∣∣∣A↘a

}
[[♦∗φ]]=

{
A
∣∣∣∃B : A→∗ B, and B ∈ [[φ]]

}
We let U be the set including all processes and all types. We write A |= φ if A ∈ [[φ]],
where A ∈ U. Connectives and spatial modalities are interpreted as usual. Concerning
the dynamic part, 〈a〉φ checks if an interaction with subject a may lead A to a state where
φ is satisfied; ♦∗φ checks if any number, including zero, of reductions may lead A to a
state where φ is satisfied. In this paper, we shall mainly focus on safety properties, that
is, properties of the form “nothing bad will ever happen”. The following definition is
useful to syntactically identify classes of formulae that correspond to safety properties.

Definition 1 (monotone and anti-monotone formulae). We say a formula φ is mono-
tone if it does not contain occurrences of ¬ and anti-monotone if it is of the form ¬ψ,
with ψ monotone.

Safety invariants can often be written as anti-monotone formulae ¬♦∗ψ with ψ a mono-
tone formula representing the bad event one does not want to occur. This can also be
written as �∗¬ψ, where �∗ = ¬♦∗¬.

Example 1. The following formulae define properties depending on generic names, a

and l. NoRace(a)
�
= ¬♦∗H∗(a |a) says that it will never be the case that there are two

concurrent outputs competing for synchronization on a. Linear(a)
�
= ¬♦∗〈a〉♦∗〈a〉 says

that it is never the case that a is used more than once in a computation. In Lock(a, l)
�
=

¬♦∗H∗(l | 〈a〉), a represents a shared resource and l a lock: this formula says that it is
never the case that the resource a is acquired in the presence of l, that is, without prior
acquisition of the lock.

Logical correspondence between processes and types. The following theorem is crucial:
it basically asserts that, under a condition of well-typing, model checking on processes
can be reduced to model checking on types. The proof is based on the structural and
operational correspondences seen in Section 3.

Theorem 3 (type-process correspondence). Suppose Γ � P : T. Let φ be any formula.
Then P |= φ if and only if T |= φ.

This correspondence can be enhanced by the next result, saying that, under certain
circumstances, model checking can be safely carried out against a more abstract version
of the type T , with a further potential gain in efficiency. This more abstract version is
obtained by “masking”, by means of the ↓x̃ operator (see [2] for the details), the free
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names of the type that are not found in the formula. Moreover, if this masking produces
a top-level sub-term in the type with no free name, this term can be safely discarded.

Proposition 3. (a) SupposeΓ � P : T and let φ be an anti-monotone formula with n(φ)⊆
x̃. Then T ↓x̃|= φ implies that T |= φ. (b) Suppose fn(U) = ∅. Then, for any T and φ,
T |U |= φ if and only if T |= φ.

Example 2. Consider the formula NoRace(a) introduced in Example 1 and the process
P = b〈a〉+a |b(x).(νc)(c | !c.x.c

)
| !a. f | ! f .n. Here, at runtime, the number of occurrences

of n “counts” the number of interactions performed on a. For a suitable Γ, one finds
Γ � P : T , where (ignoring annotations) T = b.(νc)(c | !c.a.c

)
+a |b | !a. f | ! f .n and

T ↓a= (b.(νc)(c | !c.a.c
)
+a |b | !a. f | ! f .n) ↓a= τ.(νc)(c | !c.a.c

)
+a |τ | !a.τ | !τ.τ .

τ.(νc)(c|!c.a.c
)
+a|!a.τ |=NoRace(a) and P |=NoRace(a) (Proposition 3 and Theorem 3).

5 A Well-Structured Transition System for Behavioural Types

Background. We review below some background material about well-structured transi-
tion systems [8] and well quasi-ordering over trees and forests.

Definition 2 (wqo). Let S be a set. A quasi-ordering (qo, aka preorder) on S is a reflex-
ive and transitive binary relation over S . A qo � on S is a well quasi-ordering (wqo) if
for any sequence of elements of S , (si)i≥0, there are i and j, with i < j, s.t. si � s j.

Recall that a transition system is a pair Tr = (S , → ), where S is the set of states and
→⊆ S ×S is the transition relation. Tr is finitely-branching if for each s ∈ S the set of
successors {s′|s → s′} is finite.

Definition 3 (wsts, [8]). A well-structured transition system (wsts for short) is a pair
W = (�, Tr) where: (a) Tr = (S , → ) is a finitely-branching transition system, and (b)
� is a wqo over S that is compatible with → ; that is: whenever s1 � s2 and s1 → s′1
then there is s′2 such that s2 → s′2 and s′1 � s′2.

Otherwise said, awsts is a finitely-branching transition system equipped with awqo that
is a simulation relation. Let Tr be a transition system equipped with a qo�. Let I ⊆ S be a
set of states. We let the upward closure of I, written ↑ I, be {s ∈ S | s′ � s for some s′ ∈ I}.
The set ↑ {s} will be abbreviated as ↑ s. A basis of (an upward-closed) set Y ⊆ S is a
set I such that Y =↑ I. We let the immediate predecessors of I, Pred(I), be the set {s ∈
S | s → s′ for some s′ ∈ I} and the set of predecessors of I, Pred∗(I), be {s ∈ S | s →∗

s′ for some s′ ∈ I}. We say W has an (effective) pred-basis if there is a (computable)
function pb(·) : S → 2S such that for each s ∈ S , pb(s) is a finite basis of ↑ Pred(↑ s).

Proposition 4 ([8]). Let W be a wsts such that: (a) � is decidable, and (b) W has
an effective pred-basis. Then there is a computable function that, for any finite I ⊆ S ,
returns a finite basis of Pred∗(↑ I).

The above proposition entails decidability of a number of reachability-related problems
in wsts’s (see [8]). Indeed, saying that the set I is reachable from a given state s is
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equivalent to saying that s ∈ Pred∗(↑ I): this can be decided, if one has at hand a finite
basis B for Pred∗(↑ I), by just checking whether s � s′ for some s′ ∈ B.

We will also rely upon some definitions and results on trees. Let L be a set. We
define ordered forests F , G, ... with labels in L (from now on, simply forests) to be the
set of objects inductively defined as follows: (i) the empty sequence ε is a forest; (ii)
if F1, ...,Fk are forests (k ≥ 0) then the sequence (a1,F1) · · · (ak,Fk), with ai ∈ L, is a
forest with roots a1, ...,ak. A forest of the form (a,F ) is called an (ordered, rooted)
tree. A tree of the form (a, ε) is called a leaf. The multiset of leaves occurring in F is
denoted by L(F ), while the corresponding set is denoted l(F ). The height of a forest F ,
written h(F ), is defined as the maximal length of a path from a root to a leaf, defined as
expected; the height of a leaf is 0. We will often use the familiar pictorial representation
of trees and forests. The following theorem provides us with a wqo on forests, hence on
trees, called rooted tree embedding. One can think of this wqo as saying that F1 � F2 if
F1 can be mapped into a sub-forest of F2, provided that the mapping respects the roots
of F1. The proof of the theorem can be given relying on a result on wqo on sequences
due to Higman [9] (see [4] for a similar proof); or even generalizing the Kruskal tree
theorem [12] to forests, again via Higman’s lemma.

Theorem 4 (rooted tree embedding). LetF be the set of all forests with labels in a cer-
tain nonempty set. Consider the following qo � over F: (a1,F1) · · · (ak,Fk) � (b1,G1) · · ·
(bh,Gh) iff there are distinct indices 1≤ i1 < · · ·< ik ≤ h s.t. for each j, 1≤ j ≤ k, a j = bi j

and Fi � Gi j . Let G ⊆ F be such that: there is a finite bound on the height of the forests
in G and there is a finite L s.t. the labels of all forests in G are included in L. Then � is
a wqo on G.

A wsts for behavioural types. Let (Xi)i≥1 be an infinite sequence of variables disjoint
from N and consider the grammar of types in Section 3, augmented with the clause
T ::= X, where X ranges over variables. Let T be the set of terms generated by this
grammar – by “term” we mean here a proper term, not an alpha-equivalence class of
terms – where each variable occurs at most once in a term and only in the scope of
restrictions or parallel compositions. E.g. (νaa)(X1|aa.b.c)|X2 is in T, while a.X1 is not.
In other words, we are considering open terms representing static contexts, with the
variables Xi acting as the “holes”. We let C range over T, reserving the letters S ,T for
the subset of closed terms (types) and will sometimes write C[X̃] to indicate that C’s
variables are exactly X̃ = (Xi1 , ...,Xik). In this case, taken T̃ = (T1, ...,Tk), we will denote
by C[T̃ ] the term obtained by textually replacing each Xij with T j in C[X̃].

Each term C can be seen as a forest FC , with restrictions (νaa) as internal labels
and either guarded summations/replications G or variables Xi as leaves, and parallel
composition | interpreted as concatenation1, as shown in the following example.

Example 3. Consider the term C = b. f f | (νaa)
(
b
b
.a |X1 | (νcc)(b |a.(νdd)d )

)
. The forest

FC associated to C is depicted below.

1 More formally, each C is mapped to a forest FC as follows: FXi = (Xi, ε), FG = (G, ε), FT |S =
FT · FS and F(νaa)T = ((νaa),FT ).
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b. f f (νaa)

bb.a X1 (νcc)

b a.(νdd)d

Via this correspondence, we can identify terms with forests, and in what follows
we shall not notationally distinguish between the two. In the following we will some-
times use a ground version of the function L(·), written GL(·), returning the multiset of
ground, i.e. non-variables, leaves of a term. In the example above: L(C)= {| b. f f, bb.a,
X1, b, a.(νdd)d |} and GL(C)={|b. f f, bb.a, b, a.(νdd)d |}. The qo defined in the statement
of Theorem 4 is also inherited by T, that is, we can set: C � C′ iff FC � FC′ . To make
this a well qo, we have to restrict ourselves to some subset of Twith bounded height and
set of labels. This will be obtained by tailoring out of T a superset of all terms that are
reachable from a given initial closed term T . To this purpose, we introduce a few more
additional notations directly on terms. Given a C, let us write dp(C) for the maximal
nesting depth of restrictions in C, defined thus (max over an empty set yields 0):

dp(Xi) = 0 dp(
∑

i∈I μi.Ci) = maxi∈I dp(Ci) dp(!aa.C) = dp(C)
dp(C1|C2) =max{dp(C1),dp(C2)} dp((νaa)C) = 1+dp(C) .

In the example above, dp(C) = 3. We denote by sub(C) the set of variables, summations
and replications that occur as subterms of C: this is of course a finite set. Finally, we
denote by res(C) the set of restrictions (νaa) occurring in C. The set of terms we are
interested in is defined below.

Definition 4 (TT [X̃] ). Fix a type T and a set of variables X̃ = (X j1 , ...,X jk), then

TT [X̃]
�
=
{

C ∈ T
∣∣∣ l(C) ⊆ sub(T )∪ X̃, res(C) ⊆ res(T ), dp(C) ≤ dp(T )

}
.

In the following, we abbreviate TT [X̃] as TT when X̃ = ε. Consider now the rooted-tree
embedding � described above, we have the following result.

Proposition 5. For any T and X̃, the relation � is a wqo over TT [X̃].

Proof. Terms in TT [X̃], by definition, have bounded height: indeed, for any C ∈ TT [X̃],
we have h(C) ≤ dp(C) ≤ dp(T ). Moreover, they are built using a finite set of labels:
X̃∪ res(T )∪ sub(T ). Theorem 4 ensures then that � is a wqo over TT [X̃].

We want to show now that TT can be endowed with wsts structure. In what follows,
we shall consider the traditional ccs transition relation over closed terms, denoted here
μ
�−→ ; in particular, we shall write

τ
�−→ as �→. The relation �→ is preferable to → in

the present context, because it avoids alpha-equivalence, structural congruence and is
finitely branching for the considered fragment. In Section 6, we shall argue that �→ is
equivalent to → for the purpose of defining the satisfaction relation S |= φ. The set TT
of closed terms enjoys the following crucial properties, which can be easily inferred by
induction on the structure of the term. Note in particular that, by the second property, the

restriction nesting depth of any term is not increased by
μ
�−→ . This is a crucial property

that does not hold in the pi-calculus. E.g. (type annotations omitted):

(νb1)a〈b1〉 | !a(y).(νb2)(y.b2 |c〈b2〉) | !c(x).a〈x〉 →∗

(νb1)(νb2)(b1.b2|(νb3)(b2.b3| · · · (νbn+1)(bn.bn+1 |c〈bn+1〉) · · · ))|!a(y).(νb2)(y.b2|c〈b2〉)|!c(x).a〈x〉.
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Proposition 6. (1) For any S ∈ TT and S ′, S
μ
�−→ S ′ implies that S ′ ∈ TT . (2) The

relation � is a simulation relation over TT . As a consequence: (3) For any T , let Tr be

the transition system (TT ,
τ
�−→ ). Then WT

�
= (�,Tr) is a wsts.

Concerning the decidability issues, we note that: (a) the wqo � is decidable, indeed its

very inductive definition yields a decision algorithm; (b) the transition relation
μ
�−→ is

decidable for the fragment of ccs that corresponds to the language of types.

6 Decidability

Decidability of a fragment of Shallow Logic relies on applying Proposition 4 to WT .
Thewqo � has already seen to be decidable. In order to be able to apply this proposition,
we have to fulfill obligation (b), that is, show that WT has an effective pred-basis.
Moreover, we have to show that each denotation [[φ]] can be presented via an effectively
computable finite basis playing the role of “I” in the proposition.

Pred-basis. Informally, the pred basis function, pbT (S ), works in two steps. First, all de-
compositions of S as S = C[Ũ], with |Ũ | = 0,1 or 2, are considered – there are finitely
many of them. Then, out of each C, all contexts C′ are built that have the same ground
leaves as C, but possibly more holes, up to 2. Again, there are finitely many such con-
texts. The contexts C′ are then filled with ground leaves, in such a way that the resulting
terms posses a reduction to S , up to �. In what follows, we shall also admit as a possible
context C the 0-hole forest ε, which gives rise only to the decomposition S = ε[S ].

Definition 5 (pred-basis). Let T be a type, S ∈ TT and C, C′ range over TT [X1,X2].

pbT (S )
�
=
⋃

S=C[Ũ ]
{
C′[G̃] ∈ TT

∣∣∣C′ �C, GL(C′) =GL(C),G̃ ⊆ sub(T ), C′[G̃] �→� S
}

The construction of pbT (S ) is effective. In particular, given C, there are finitely many
ways of adding one or two holes to C, resulting into a C′ � C, and they can all be tried
in turn. In what follows we let PredT (·) stand for Pred(·)∩TT .

Theorem 5. Suppose T ∈ T . Then for any S ∈ TT , ↑ pbT (S ) =↑ PredT (↑ S ). Moreover,
pbT (·) is effective.

Proof. (Outline) Effectiveness has already been discussed. Moreover, by construction,
↑ pbT (S ) ⊆↑ PredT (↑ S ). Let us examine the other inclusion. Suppose first V �→� S ,
we show that there is U ∈ pbT (S ) s.t. V � U: this will be sufficient to accommodate
also the most general case V ��→� S , since WT is a wsts. Assume that the reduction
in V originates from two communicating prefixes (the τ-prefix case is easier). That
is, assume V = C[G1,G2] �→ C[S 1,S 2] � S . It is then easy to prove that S = C′′[S̃ ′],
with C � C′′ and (S 1,S 2) � S̃ ′. It is possible to build out of C′′ a 2-holes context C′ ∈
TT [X1,X2] s.t. C �C′ �C′′. Take U =C′[G1,G2].

We can extend pbT to finite sets I ⊆ TT , by setting pbT (I)
�
= ∪S∈IpbT (S ). By doing so,

we obtain the following corollary, which says that WT has an effective pred-basis.

Corollary 1. There is a computable function pbT (·) such that, for any finite I ⊆ TT ,
↑ pbT (I) =↑ PredT (↑ I).
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Remark 1. Consider the labelled version of the reduction relation,
〈λ〉
�−→ , λ ::= a|ε. For

any fixed label 〈a〉, Corollary 1 still holds if considering the transition system given by
〈a〉
�−→ , rather than �→. We shall name pb〈a〉T (·) the corresponding pred-basis function.

Applying Proposition 4, we get the result we were after.

Corollary 2. There exists a computable function pb∗T (·) such that, for any finite set
I ⊆ TT , pb∗T (I) is a finite basis of Pred∗T (↑ I).

Finite bases for plain formulae. Our first task is showing that, for certain formulae
φ, the satisfaction relation S |= φ can be defined relying solely on �→ and on context
decomposition, in particular, with no reference to structural congruence and → . In the
proposition below, we show that this is indeed possible for plain formulae.

Definition 6 (plain formulae). We say a formula φ is plain if it does not contain ♦∗
underneath H∗.

Let us say a context C is pure if l(C) ⊆ (Xi)i≥1; we let D range over pure contexts; e.g.
D= (νa)(X1|X2)|X3 is pure. Given a context C[X̃, Ỹ] and two sequences G̃, F̃ s.t. |X̃|= |G̃|
and |Ỹ | = |F̃|, we say C links G̃ and F̃ if there are an internal node (νaa) of C seen as
a forest, Xi ∈ X̃ and Yj ∈ Ỹ such that both Xi and Yj are in the scope of this node, and
a ∈ fn(Gi)∩ fn(F j). Given a sequence G̃, we denote by

∏
G̃ the parallel composition of

the terms in G̃, in some arbitrary order. Given a term C[T̃ ] and S̃ � T̃ , fix any injection
f : {1, . . . ,k} → {1, . . . , |T̃ |} (k = |S̃ |) such that S j � T f ( j), for 1 ≤ f (1) < · · · < f (k) ≤ |T̃ |.
We write C[S̃ � f T̃ ] for the closed term obtained from C[S j/X f ( j)] j=1,··· ,k by pruning all
sub-trees having only variables as leaves. In the following we will write C[S̃ � T̃ ] for
C[S̃ � f T̃ ], when f is the identity. As an example, take T̃ = T1, T2, T3, T4, S̃ = S 1, S 2

and suppose f (1) = 1 and f (2) = 4. C, C[T̃ ] and C[S̃ � f T̃ ] are depicted below.
l1

X1 l3

X2 X3

l2

l4 l5

X4

l1

T1 l3

T2 T3

l2

l4 l5

T4

l1

S 1

l2

l4 l5

S 2

Proposition 7. Assume S ∈ TT , φ plain and monotone and bn(T )∩ n(φ) = ∅. Then we
have the following equivalences, where G̃,G̃1,G̃2 are assumed to be included in sub(T ).

S |=〈a〉φ iff∃U : S
〈a〉
�−−→ U and U |= φ S |= ♦∗φ iff ∃U : S �→∗ U and U |= φ

S |=a iff∃D,G̃, U : S = D[G̃] and for some G ∈ G̃ : G =!aa.U or aa.U is a summand of G
S |=a iff∃D,G̃, U : S = D[G̃] and for some G ∈ G̃ : a.U is a summand of G
S |=H∗φ iff∃D,G̃ : S = D[G̃] and

∏
G̃ |= φ

S |=φ1 |φ2 iff∃D,G̃1,G̃2 : S = D[G̃1,G̃2], D not linking G̃1 and G̃2, D[G̃i �G̃1,G̃2] |=φi (i = 1,2)

As discussed at the beginning of this section, in order to take advantage of Corollary 2,

we have to show that each set [[φ]], or, more accurately, each set [[φ]]T
�
= [[φ]]∩TT ,

can be presented via an effectively computable finite basis in WT . We define this basis
below, by induction on the structure of φ: the ♦∗ and 〈a〉 cases take advantage of the
pred-basis functions defined in the last paragraph, the other cases basically follow the
corresponding cases of the previous proposition or, in the case of ∨ and T, the expected
boolean interpretation. The only exception to this scheme is the ∧ connective, which



Deciding Safety Properties in Infinite-State Pi-Calculus via Behavioural Types 41

is nontrivial and will be commented below. Some more terminology first. Given a set
I ⊆ TT , we denote by minimal(I) the set of minimal elements in I, w.r.t. the wqo �. For
any ordered sequence G̃, we denote by 〈G̃〉 the multiset obtained if ignoring order.

Definition 7 (finite basis). Let T be a type and φ be a plain and monotone formula,
such that bn(T )∩ n(φ) = ∅. The finite basis FbT (φ) is inductively defined below, where
G,G̃,G̃1 and G̃2 are assumed to be included in sub(T ).

FbT (a)
�
= {D[G] ∈ TT

∣∣∣G =!aa.U or aa.U is a summand of G, for some U}
FbT (a)

�
= {D[G] ∈ TT

∣∣∣ a.U is a summand of G, for some U}
FbT (φ1 |φ2)

�
=
⋃

S 1∈FbT (φ1),S 2∈FbT (φ2)
{
D[G̃1,G̃2] ∈ TT

∣∣∣ for i = 1,2 : 〈G̃i〉 = L(S i), D does not
link G̃1 and G̃2 and D[G̃i �G̃1,G̃2] � S i

}
FbT (H∗φ)

�
=
⋃

S∈FbT (φ)
{
D[G̃] ∈ TT

∣∣∣ 〈G̃〉 = L(S )
}

FbT (T)
�
= {D[G] ∈ TT

∣∣∣G ∈ sub(T )}
FbT (φ1∨φ2)

�
= FbT (φ1)∪FbT (φ2) FbT (〈a〉φ)

�
= pb〈a〉T (FbT (φ))

FbT (φ1∧φ2)
�
= minimal([[φ1]]∩ [[φ2]]) FbT (♦∗φ)

�
= pb∗T (FbT (φ))

Note that minimal([[φ1]]∩ [[φ2]]) is finite: if not, one would find an infinite sequence of
pairwise incomparable elements, thus violating the condition of wqo.

Theorem 6. Consider T and φ like in Definition 7. Then FbT (φ) is a finite basis for
[[φ]]T , that is ↑ FbT (φ) = [[φ]]T . Moreover, FbT (·) is computable.

Proof. (Outline) The first part of the statement is quite easy, indeed one inclusion,
↑ FbT (φ) ⊆ [[φ]]T , is valid by construction, while the opposite direction is proved by
induction on φ, relying on the characterization of |= provided by Proposition 7 for
the spatial and dynamic connectives, the boolean ones being trivial to handle. Prov-
ing that FbT (·) is computable is more difficult, because of the clause for conjunction.
This is accommodated by introducing an effective operator ‖ that over-approximates
the “minimal” operator: FbT (φ1) ‖ FbT (φ2) ⊇minimal([[φ1]]T ∩ [[φ2]]T ). The operator ‖
produces a finite set of terms by appropriately merging terms, seen as forests, drawn
from FbT (φ1) and FbT (φ2). We refer the reader to [2] for the details.

By virtue of the above theorem, we can decide if S |= φ, with S ∈ TT , by checking if
there is U ∈ FbT (φ) s.t. S � U: since � is decidable, this can be effectively carried out,
and we obtain Corollary 3. Finally, Corollary 4 is a consequence of Proposition 2.

Corollary 3 (decidability on types). Let φ be plain and monotone. It is decidable
whether T |= φ. Hence, decidability also holds for φ plain and anti-monotone.

Corollary 4 (decidability on pi-processes). Let Γ be a context. Given a Γ-well-typed
P and φ plain and (anti-)monotone, it is decidable whether P |= φ.

7 Conclusion and Related Work

We have proven the decidability of a fragment of Spatial Logic that includes interesting
safety properties for a class of infinite-control pi-processes. The proof relies heavily
on both behavioural type systems [10,7,1] and well-structured transition system tech-
niques [8]. Implementation issues are not in the focus of this paper. Whether a practical
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algorithm may be obtained or not from the theoretical discussion presented here is an
interesting topic, that is left for future work.

Our proof of decidability generalizes the result in [4] that “weak” barbs ♦∗a are
decidable in ccs with replication. Variations and strengthening of these results have
recently been obtained by Valencia et al. [14]. It is worth to notice that weak barbs
are not decidable in the pi-calculus, [3]. On the other hand, our results show that they
become decidable when restricting to well-typed pi-processes.

Also related to our approach is [5], where Caires proves that model-checking Spatial
Logic formulae for bounded pi-calculus processes, and in particular finite-control pro-
cesses, is decidable. Note that the class of processes we have considered here properly
includes bounded processes.

Acknowledgments. We wish to thank Luis Caires, Roland Meyer and Gianluigi Zavat-
taro for very stimulating discussions on the topics of the paper.
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Abstract. In this paper, we propose an abstract procedure which, given
a timed automaton, produces a language-equivalent deterministic infinite
timed tree. We prove that under a certain boundedness condition, the
infinite timed tree can be reduced into a classical deterministic timed au-
tomaton. The boundedness condition is satisfied by several subclasses of
timed automata, some of them were known to be determinizable (event-
clock timed automata, automata with integer resets), but some others
were not. We prove for instance that strongly non-Zeno timed automata
can be determinized. As a corollary of those constructions, we get for
those classes the decidability of the universality and of the inclusion
problems, and compute their complexities (the inclusion problem is for
instance EXPSPACE-complete for strongly non-Zeno timed automata).

1 Introduction

Timed automata have been proposed by Alur and Dill in the early 90s as a model
for real-time systems [2]. A timed automaton is a finite automaton which can
manipulate real-valued variables called clocks, that evolve synchronously with
the time, can be tested and reset to zero. One of the fundamental properties
of this model is that, although the set of configurations is in general infinite,
checking reachability properties is decidable. From a language-theoretic point
of view, this means that checking emptiness of the timed language accepted by
a timed automaton can be decided (and is a PSPACE-complete problem). The
proof relies on the construction of the so-called region automaton, which finitely
abstracts behaviours of a timed automaton. Since then, its appropriateness as
a model for the verification of real-time systems has been confirmed, with the
development of verification algorithms and dedicated tools.

There are however two weaknesses to that model: a timed automaton cannot
be determinized, and inclusion (and universality) checking is undecidable [2],
except for deterministic timed automata. This basically forbids the use of timed
automata as a specification language. Understanding and coping with these
weaknesses have attracted lots of research, and, for instance, testing whether
a timed automaton is determinizable has been proved undecidable [6]. Also,
the undecidability of universality has been further investigated, and rather re-
stricted classes of timed automata suffer from that undecidability result [1]. On

S. Albers et al. (Eds.): ICALP 2009, Part II, LNCS 5556, pp. 43–54, 2009.
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the other hand, classes of timed automata have been exhibited, that either can be
effectively determinized (for instance event-clock timed automata [3], or timed
automata with integer resets [9]), or for which universality can be decided (for
instance single-clock timed automata [7]).

In this paper, we describe a generic construction that is applicable to ev-
ery timed automaton, and which, under certain conditions, yields a determin-
istic timed automaton, which is language-equivalent to the original timed au-
tomaton. The idea of the procedure is to unfold the timed automaton into a
finitely-branching infinite tree that records the timing constraints that have to be
satisfied using one clock per level of the tree (hence infinitely many clocks). When
reading a finite timed word in that infinite tree, we may reach several nodes of
the tree, but the timing information stored in the clocks is independent of the
run in the tree. Thanks to this kind of input-determinacy property, we can deter-
minize this infinite object, yielding another finitely-branching infinite tree. And,
under a boundedness condition on the amount of timing information we need to
store, we will be able to fold back the tree into a deterministic timed automa-
ton. This boundedness condition is not a syntactical condition on the original
timed automaton, but will be satisfied by large classes of timed automata: event-
clock timed automata [3], timed automata with integer resets [9], and strongly
non-Zeno timed automata. Furthermore, our construction yields automata of
exponential-size in the first case, and doubly-exponential-size automata other-
wise. In particular, our approach provides an EXPSPACE algorithm to check
universality (and inclusion) for a large class of timed automata, and we prove
that this complexity is tight. Our algorithm can easily be adapted into a PSPACE
one, in the special case of event-clock timed automata, allowing to recover the
known result of [3].

2 Timed Automata

Preliminaries. Given X a finite or infinite set of clocks and M a non-negative
integer, a clock valuation over X bounded by M is a mapping v : X → �M

where �M = [0,M ] ∪ {⊥}. We assume furthermore that ⊥ > M . The notation
⊥ is for abstracting values of clocks that are above some fixed value M . This is
rather non-standard (though used for instance in [8]) but it will be convenient in
this paper. We note 0̄ the valuation that assigns 0 to all clocks. If v is a valuation
over X and bounded by M , and t ∈ �+, then v + t denotes the valuation which
assigns to every clock x ∈ X the value v(x)+ t if v(x)+ t ≤M , and ⊥ otherwise
(in particular, if v(x) = ⊥, then (v + t)(x) = ⊥). For Y ⊆ X we write [Y ← 0]v
for the valuation equal to v on X \ Y and to 0̄ on Y , and v|Y for the valuation
v restricted to clocks in Y . A(n M -bounded) guard (or constraint) over X is a
finite conjunction of constraints of the form x ∼ c where x ∈ X , c ∈ � ∩ [0,M ]
and ∼ ∈ {<,≤,=,≥, >}. We denote by GM (X) the set of M -bounded guards
over X . Given a valuation v and a guard g we write v |= g whenever v satisfies g.

A timed word over Σ is a finite sequence of pairs (a1, t1)(a2, t2) . . . (ak, tk)
such that for every i, ai ∈ Σ and (ti)1≤i≤k is a nondecreasing sequence in �+.
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Timed automata. A timed automaton is a tuple A = (L, �0, Lacc, X,M,E)
such that: (i) L is a finite set of locations, (ii) �0 ∈ L is the initial location, (iii)
Lacc ⊆ L is the set of final locations, (iv) X is a finite set of clocks, (v) M ∈ �,
and (vi) E ⊆ L × GM (X)×Σ × 2X × L is a finite set of edges. Constant M is
called the maximal constant of A.

The semantics of a timed automaton A is given as a timed transition system
TA = (S, s0, Sacc, (�+ × Σ),→) with set of states S = L × �

X
M , initial state

s0 = (�0, 0̄), set of accepting states Sacc = Lacc × �
X
M , and transition relation

→ ⊆ S×(�+×Σ)×S composed of moves of the form (�, v)
τ,a−−→ (�′, v′) whenever

there exists an edge (�, g, a, Y, �′) ∈ E such that v+τ |= g and v′ = [Y ← 0](v+τ).
A run � of A is a finite sequence of moves, i.e., � = s0

τ1,a1−−−→ s1 . . .
τk,ak−−−→ sk.

It is said initial whenever s0 = (�0, 0̄). An initial run is accepting if it ends in
an accepting location. The timed word u = (a1, t1)(a2, t2) . . . (ak, tk) is said to
be read on � whenever ti =

∑i
j=1 τj for every 1 ≤ i ≤ k. We write L(A) for the

set of timed words (or timed language) accepted by A, that is the set of timed
words u such that there exists an initial and accepting run � which reads u.

A timed automaton A is deterministic whenever for every timed word u, there
is at most one initial run which reads u. It is strongly non-Zeno whenever there
exists K ∈ � such that for every run � = s0

τ1,a1−−−→ s1 . . .
τk,ak−−−→ sk in A, k ≥ K

implies
∑k
i=1 τi ≥ 1. This condition is rather standard in timed automata [4].

Example 1. An example of timed automaton is depicted in Fig. 1. This automa-
ton will be used as a running example throughout the paper in order to illustrate
the different steps of our construction. This automaton is not deterministic and
accepts the timed language {(a, t1)(a, t2) · · · (a, t2n) | n ≥ 1, 0 < t1 < t2 < · · · <
t2n−1 and t2n − t2n−2 = 1}, with the convention that t0 = 0. The timed word
(a, 0.5)(a, 1.6)(a, 2.9) can be read on the initial run (�0, 0)

0.5,a−−−→ (�3, 0)
1.1,a−−−→

(�0, 0) 1.3,a−−−→ (�1,⊥) but is not accepted. The last configuration of the above run
is (�1,⊥) because the value of clock x should be 1.3, but as it is larger than the
maximal constant 1, we abstract the precise value into ⊥.

�0 �1�3 �2
x>0,a x=1,a,{x}

x>0,a,{x}

x>0,a,{x}
Fig. 1. A timed automaton A

On timed bisimulations. A strong timed (resp. time-abstract) simulation re-
lation between two timed transition systems Ti = (Si, si,0, Si,acc, (Σ ∪ �+),→i)

for i ∈ {1, 2} is a relation R ⊆ S1 × S2 such that if s1 R s2 and s1
t1,a−−→ s′1 for

some t1 ∈ �+ and a ∈ Σ, then there exists s′2 ∈ S2 (resp. t2 ∈ �+ and s′2 ∈ S2)
such that s2

t1,a−−→ s′2 (resp. s2
t2,a−−→ s′2) and s′1 R s′2. A strong timed (resp. time-

abstract) bisimulation relation between two timed transition Ti for i ∈ {1, 2}
is a relation R ⊆ S1 × S2 such that both R and R−1 are strong timed (resp.
time-abstract) simulation relations. The above relations preserve initial (resp.
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accepting) states whenever s1,0 R s2,0 (resp. s1 R s2 and si ∈ Si,acc implies
s3−i ∈ S3−i,acc). Note that the notion of strong timed bisimulation which pre-
serves initial and accepting states is stronger than that of language equivalence.

The classical region construction. We let X be a finite set of clocks, and
M ∈ �. We define the equivalence relation ≡X,M between valuations in �M as
follows: v ≡X,M v′ iff (i) for every clock x ∈ X , v(x) ≤M iff v′(x) ≤M ; (ii) for
every clock x ∈ X , if v(x) ≤ M , then �v(x)� = �v′(x)�, and (ii) for every pair
of clocks (x, y) ∈ X2 such that v(x) ≤ M and v′(x) ≤ M , {v(x)} ≤ {v(y)} iff
{v′(x)} ≤ {v′(y)}. 1 The equivalence relation is called the region equivalence for
the set of clocks X w.r.t. M , and an equivalence class is called a region. We note
RegXM for the set of such regions. A region r′ is a time-successor of a region r if
there is v ∈ r and t ∈ �+ such that v + t ∈ r′. If v is a valuation, we will write
[v] for the region to which v belongs (when X and M are clear in the context).

It is a classical result [2] that given a timed automaton A with maximal
constant M and set of clocks X , the relation RX,M between configurations of A
defined by (�, v) RX,M (�, v′) iff v ≡X,M v′ is a time-abstract bisimulation.

3 Some Transformations

In this section, we describe a general construction that aims at determinizing
a timed automaton. We know however that not all timed automata can be de-
terminized [2], and even that we cannot decide whether a timed automaton can
be determinized [6]. We will thus give conditions that will ensure (i) that our
procedure can be properly applied, and (ii) that the resulting timed automaton
is deterministic and accepts the same timed language as the original automaton.
We will then analyze the complexity of the procedure, and apply it to several
subclasses of timed automata, some of which were known to be determinizable,
some other were not known to be determinizable.

This construction consists in four steps: (i) an unfolding of the original au-
tomaton into an infinite timed tree, (ii) a region abstraction, (iii) a symbolic
determinization, and (iv) a reduction of the number of clocks, allowing to fold
the tree back into a timed automaton. These steps are described in the following
subsections. Due to page limitation, we will give no formal definitions of the
objects we build in our construction, and better illustrate the construction on
the running example. All details can be found in the technical report [5].

3.1 Construction of an Equivalent Infinite Timed Tree

In this first step, we unfold the timed automaton A into a finitely-branching
infinite timed tree A∞ that has infinitely many clocks (one clock per level of
the tree), we call Z = {z0, z1, . . .} this infinite set of clocks. The idea of this
unfolding is to use a fresh clock reset at each level of the tree in order to record
the timing constraints that have to be satisfied in A. Each node n of A∞ is
1 Where �α� (resp. {α}) denotes the integral (resp. fractional) part of α.
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labelled by a pair (�, σ) ∈ L × ZX where � records the location of A that node
n simulates and σ describes how the clocks of A are encoded using the clocks
of A∞ (if σ(x) = zi, the value clock x would have in A is the current value of
clock zi). The advantage of this infinite timed tree is that it enjoys some input-
determinacy property: when reading a finite timed word u in A∞, there may be
several runs in the tree that read u, but the timing information stored in the
clocks is independent of the run in the tree (see Remark 4).

Example 2. Part of the infinite timed tree A∞ associated with the timed au-
tomaton A of Fig. 1 is depicted in Fig. 2. Notice that a fresh clock is reset at
each level; for instance z2 is reset on all edges from level-1 to level-2 nodes (i.e.
n1 → n3 and n2 → n4). The timed tree A∞ corresponds to the unfolding of A:
the two branches starting from the node n0 represent the possible choice in state
�0 of A; the same phenomenon also happens in n4. The label of n4 is (�0, z2); it
means that node n4 represents the location �0 of A and that the value of clock
x can be recovered from the current value of clock z2. It is important to observe
how the second component of the label evolves. First consider the edge n4 → n5;
it represents the transition from �0 to �1 in A, which does not reset clock x; the
reference for clock x is the same in n5 as it is in n4, that is why the label of n5

is (�1, z2). Now consider the edge n4 → n6; it represents the transition from �0
to �3 in A, which resets clock x; the reference for clock x thus becomes z3, the
clock which has just been reset, that is why the label of n6 is (�3, z3).

n0

(�0,z0)

n1 (�1,z0) n2 (�3,z1)

n3 (�2,z2) n4

(�0,z2)

n5 (�1,z2) n6 (�3,z3)

n7 (�2,z4) n8 (�0,z4)

...

level 0

level 1

level 2

level 3

level 4

z0>0,a,{z1} z0>0,a,{z1}

z0=1,a,{z2} z1>0,a,{z2}

z2>0,a,{z3} z2>0,a,{z3}

z2=1,a,{z4} z3>0,a,{z4}

Fig. 2. The infinite timed tree A∞ associated with the timed automaton A of Fig. 1

The correctness of this unfolding is stated in the follow lemma.

Lemma 3. The relation R1 between states of A and states of A∞ defined by
(�, v ◦ σ) R1 (n, v) if label (n) = (�, σ) is a strong timed bisimulation.
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Remark 4. In A∞, for every finite timed word u, there is a unique valuation
vu ∈ �

Z such that for every initial run � in A∞ that reads u, � ends in some
configuration (n, vu) with level (n) = |u|. Indeed, if the timed word u is of the
form (a1, t1)...(a|u|, t|u|), any initial run � reading u necessarily ends in a config-
uration (n, vu) where level (n) = |u| and vu(zj) = t|u| − tj for any j ≤ |u|.

3.2 A Region Abstraction

In this second step, we extend in a natural way the classical region equivalence to
the above infinite timed tree: at level i of the tree, only clocks in Zi = {z0, · · · , zi}
are relevant (all other clocks have not been used yet), we thus consider regions
over that set of clocks. We use R(A∞) to denote this region abstraction, and we
interpret it in a timed manner. We do not illustrate this transformation step on
our running example, since R(A∞) is easily obtained from A∞, but only depict
the transformation on an edge, see below:

n (�,σ)

n′ (�′,σ′)

level i

level i+1

g,a,{zi+1}

n,r (�,σ)

n′,r′ (�′,σ′)

r′′,a,{zi+1}

r: region over Zi

r′: region over Zi+1
=r′′∧(zi+1=0)

r′′: region over Zi
time successor of r
included in g

It is worth noting that, in R(A∞), any state reached after a transition is of the
form ((n, r), v), where n is a node of A∞ (of some level, say i), r is a region over
Zi, and v is a valuation over Zi which belongs to r. It is not difficult to see that,
as in the standard region construction in timed automata, two states ((n, r), v1)
and ((n, r), v2) with v1, v2 ∈ r are time-abstract bisimilar. Furthermore, R(A∞)
will satisfy the same input-determinacy property as A∞ (see Remark 4). The
correctness of R(A∞) can then be stated as follows.

Lemma 5. The relation R2 between states of A∞ and states of R(A∞) defined
by (n, v) R2 ((n, r), v) if v ∈ r is a strong timed bisimulation.

3.3 Symbolic Determinization

This third step is the crucial step of our construction. We will symbolically deter-
minize the infinite timed tree R(A∞) using a rather standard subset construc-
tion, and we denote by SymbDet(R(A∞)) the resulting infinite tree. However
there will be a subtlety in the subset construction: useless clocks will be for-
gotten ‘on-the-fly’. More precisely, at each node, we only consider active clocks,
i.e. clocks that appear in the label of the node (other clocks record values that
do not impact on further behaviours of the system). The determinization is
then performed on the ‘symbolic’ alphabet composed of regions over active
clocks and actions, and thanks to the input-determinacy property of R(A∞),
this symbolic determinization coincides with the determinization of the under-
lying timed transition system. Let us explain this crucial step on our running
example.
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Example 6. The construction of SymbDet(R(A∞)) is illustrated on Fig. 3. The
determinization is performed using a classical subset construction. For example
starting from node n0, both n1 and n2 can be reached via a transition with
guard 0 < z0 < 1. This is reflected in the leftmost {n1,n2}-node at the first
level. It is also important to understand the meaning of active clocks. In A∞,
the only active clock in node n4 is z2. Therefore, guards on transitions leaving
the node ({n4}, z2 = 0) in SymbDet(R(A∞)) are regions over this unique clock
z2. If we consider a node combining n5 and n6, active clocks will consist in the
union of active clocks in both nodes, hence z2 and z3. For sake of readability,
we have mostly omitted labels of nodes on Fig. 3, but they can be naturally
inferred from those in R(A∞); for instance, the label of the top-rightmost node
is {(�1, z0), (�3, z1)}, the union of the labels of n1 and n2 in R(A∞).

({n0},z0=0)

({n1,n2},0=z1<z0<1) ({n1,n2},0=z1<z0=⊥) ({n1,n2},0=z1<z0=1)

label
{(�1,z0),(�3,z1)}

({n3,n4},z2=0) ({n4},z2=0) ({n3},z2=0)

({n5,n6},0=z3<z2<1) ({n5,n6},0=z3<z2=⊥) ({n5,n6},0=z3<z2=1)

({n7,n8},z4=0) ({n8},z4=0) ({n7},z4=0)

...

0<z0<1

z0>1

z0=1

0<z1<z0=1
0<z1 ,z0 �=1

z1>0

0<z1<1<z0 0=z1<z0=1

0<z2<1 z2>1

z2=1

0<z2<1

z2>1

z2=1

0<z3<z2=1 0<z3 ,z2 �=1

z3>1

0<z3<1<z2
0=z3<z2=1

Fig. 3. The DAG induced by the infinite timed tree SymbDet(R(A∞))

The subset construction induces a DAG (as seen on Fig. 3). However the rest
of the construction will require a tree instead of a DAG; we thus add markers to
nodes, so that we can have several copies of a node, depending on the ancestors.
A node in SymbDet(R(A∞)) is thus a tuple (�,K, r) where � is a marker, K is
a subset of node names in R(A∞) (they all have same level), and r is a region
over the set Act(K) =

⋃
n∈K,label(n)=(�,σ) σ(X), the set of active clocks in K.

The correctness of SymbDet(R(A∞)) is stated in the following proposition.

Proposition 7. SymbDet(R(A∞)) is a deterministic timed tree, and for every
node N = (�,K, r) and for every valuation v ∈ �Act(K) with v ∈ r,

L(SymbDet(R(A∞)), (N, v)) =
⋃
n∈K

L(R(A∞), ((n, r), v))
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Remark 8. In case A has a single clock x, a level-i node of SymbDet(R(A∞))
carries the following information: a finite set of pairs of the form (�, x �→ zj)
for some j ≤ i and a region for clocks in Zi. We skip details, but with this
information, we can easily recover the well-quasi-order that gives the decidability
of the universality problem in single-clock timed automata [7].

3.4 Reduction of the Number of Clocks

SymbDet(R(A∞)) is an infinite object (it is an infinite timed tree and it has in-
finitely many clocks). Our aim is to fold this tree back into a deterministic timed
automaton. Obviously we cannot do so for all timed automata, and so far we have
not made any assumption on A. Given γ ∈ �, we say that SymbDet(R(A∞))
is γ-clock-bounded if in every node, the number of active clocks is bounded by
γ. Under this hypothesis, we will be able to quotient SymbDet(R(A∞)) by an
equivalence of finite index, and get a deterministic timed automaton BA,γ which
accepts the same language as the original timed automaton A.

The idea will be to fix a finite set of clocks Xγ = {x1, · · · , xγ}, and start-
ing from the level-0 node of SymbDet(R(A∞)) to rename the active clocks into
clocks in Xγ following a deterministic policy. Under the γ-clock-boundedness as-
sumption, each time we will require a new clock (because a new one has become
active), there will be (at least) one free clock in Xγ . Of course, we rename clocks
in guards and regions as well, and change the labels of the nodes accordingly
(an element of the label of a node is now a pair (�, σ) where � is a location of A
and σ : X �→ Xγ assigns to each clock of A its representative in the tree). The
new object is still infinite, but it has finitely many clocks. A node is now a tuple
(�,K, r) where � is a marker, K is a subset of nodes in R(A∞) and r is a region
over (a subset of) Xγ . Now it is just a matter of noticing that two nodes with
the same region and the same labels are isomorphic and strongly timed bisimilar
(in particular they are language-equivalent). Timed automaton BA,γ is obtained
by merging such nodes.

Example 9. In Fig. 3, it is easy to see that SymbDet(A∞) is 2-clock-bounded.
So one can rename the clocks to X2 = {x1, x2}, for instance we can map clocks
with even indices to x1 and clocks with odd indices to x2. After this renaming,
nodes sharing the same label (that is: set of locations of A, mappings from X
to {x1, x2} and regions over {x1, x2}) can be merged. Indeed, one can show
that subtrees rooted at nodes with the same label are strongly timed bisimilar.
For instance, in our running example, nodes ({n0}, z0 = 0) and ({n4}, z2 =
0), labelled respectively by {(�0, z0)} and {(�0, z2)} in SymbDet(R(A∞)), are
merged into a single location with region x1 = 0. The resulting timed automaton
is depicted on Fig. 4. In general, a location of this automaton is of the form
({(�j , σj) | j ∈ J}, r) where J is a finite set, �j is a location of A, σj : X → X2,
and r is a region over a subset of X2. In our running example, there is a single
clock x, hence we assimilate σj with the value σj(x).

The correctness of the construction is stated in the following proposition.
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({(�0,x1)},x1=0)

({(�1,x1),(�3,x2)},0=x2<x1<1) ({(�1,x1),(�3,x2)},0=x2<x1=⊥) ({(�1,x1),(�3,x2)},0=x2<x1=1)

({(�0,x1),(�2,x1)},x1=0) ({(�2,x1)},x1=0)
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Fig. 4. The deterministic version of A: the timed automaton BA,γ

Proposition 10. Assume that SymbDet(R(A∞)) is γ-clock-bounded. Then, BA,γ
is a deterministic timed automaton, and L(BA,γ) = L(A).

3.5 Algorithmic Issues and Complexity

In this subsection, we shortly discuss the size of the effectiveness of its con-
struction. If A = (L, �0, Lacc, X,M,E) is a timed automaton such that SymbDet
(R(A∞)) is γ-clock-bounded (for some γ ∈ �), then the timed automaton BA,γ
has roughly α(A, γ) = 2|L| · γ|X| ·

(
(2M + 2)(γ+1)2 · γ!

)
locations because a lo-

cation is characterized by a finite set of pairs (�, σ) with � a location of A,
σ : X → Xγ , and a region over Xγ .

The procedure we have described goes through the construction of infinite
objects. However, if we abstract away the complete construction, we know pre-
cisely how locations and transitions are derived. Hence, BA,γ can be computed
on-the-fly by guessing new transitions, and so can its complement (since BA,γ
is deterministic). A location of the automaton BA,γ can be stored in space log-
arithmic in α(A, γ), and we will thus be able to check for universality (e.g.) in
nondeterministic space log(α(A, γ)).

4 Our Results

We will now investigate several classes of timed automata for which the procedure
described in Section 3 applies.

4.1 Some Classes of Timed Automata Are Determinizable

Automata satisfying the p-assumption (TAp). Given p ∈ �, we say that a
timed automaton A satisfies the p-assumption if for every n ≥ p, for every run
� = (�0, v0)

τ1,a1−−−→ (�1, v1) . . .
τn,an−−−→ (�n, vn) in A, for every clock x ∈ X , either x

is reset along � or vn(x) = ⊥. This assumption will ensure that we can apply the
previous procedure, because if A satisfies the p-assumption, SymbDet(R(A∞)) is
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p-clock-bounded. Then we observe that any strongly non-Zeno timed automaton
(we write SnZTA for this class) satisfies the p-assumption for some p ∈ � which
is exponential in the size of the automaton. We thus get the following result:

Theorem 11. For every timed automaton A in SnZTA or in TAp, we can con-
struct a deterministic timed automaton B, whose size is doubly-exponential in
the size of A, and which recognizes the same language as A.

Event-clock timed automata (ECTA) [3]. An event-clock timed automaton
is a timed automaton that contains only event-recording clocks: for every letter
a ∈ Σ, there is a clock xa, which is reset at every occurrence of a. It is easy
to see that the deterministic timed tree associated with such an automaton is
|Σ|-clock-bounded. Thus, applying our procedure, we recover the result of [3],
with the same complexity bound.

Theorem 12. For every timed automaton A in ECTA, we can construct a de-
terministic timed automaton B, whose size is exponential in the size of A, and
which recognizes the same language as A.

Timed automata with integer resets (IRTA) [9]. A timed automaton with
integer resets is a timed automaton in which every edge e = (�, g, a, Y, �′) is such
that Y is non empty if and only if g contains at least one atomic constraint of
the form x = c, for some clock x. In that case, we observe that the deterministic
timed tree associated with such an automaton is (M + 1)-clock-bounded. We
thus recover the result of [9], with the same complexity bound.

Theorem 13. For every timed automaton A in IRTA, we can construct a de-
terministic timed automaton B, whose size is doubly-exponential in the size of
A, and which recognizes the same language as A.

4.2 Deciding Universality and Inclusion

The universality and the inclusion problems are undecidable for the general
class of timed automata [2]. Given A and B two timed automata, the univer-
sality problem asks whether L(A) is the set of all finite timed words, and the
inclusion problem asks whether L(B) ⊆ L(A). When A belongs to one of the
above determinizable classes, we will be able to decide the universality and the
inclusion problems (there is no need to restrict automaton B). We establish now
the precise complexity of those problems, and start by providing a lower bound
for the universality problem.

Proposition 14. Checking universality in timed automata either satisfying the
p-assumption for some p or with integer resets is EXPSPACE-hard.

Proof (sketch). The idea of the proof is as follows. Given an exponential-space
Turing machine M with input word w0, we define a timed automaton AM,w0

such that AM,w0 is universal if and only if M does not halt on input w0. An
execution of M over w0 is encoded by a timed word, and AM,w0 will accept
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all finite timed words that are not encodings of halting executions of M on w0.
Assuming |w0| = n, the maximal length of the tape is 2n, and a configuration
of M can be seen as a pair 〈q, w〉, where q is a control state of M and w is a
word of length 2n that represents the content of the tape (the position of the
tape head is marked by a dotted letter). We furthermore require that actions
are separated by precisely one time unit, which entails for instance that control
states should be separated by precisely 2n + 1 time units.

A finite timed word might not be the encoding of an halting computation inM
for several reasons: it is not the encoding of a proper execution in M, or it does
not end in the halting state, or actions do not occur at integer time points, or
control states are not separated by 2n+1 time units, etc. All these properties can
be described using either timed automata satisfying the p-assumption, or timed
automata with integer resets. For instance, a rule of the form (q, a, b, right, q′) can
be unfaithfully mimicked for two reasons: either the dotted letter (representing
the position of the head) is not transferred properly (first automaton below), or
the rest of the configuration is not copied properly (second automaton below).

y=1,q,{y} y=1,ȧ,{x,y} y=1,x=2n+2,¬ḃ

y=1,{y} y=1,¬Q,{y} y=1,{y} y=1,{y}

y=1,q,{y} y=1,a,{x,y} y=1,x=2n+1,¬a

y=1,{y} y=1,¬Q,{y} y=1,{y} y=1,{y}

All other cases can be handled in a similar way, which concludes the proof. ��
This lower bound applies as well for the inclusion problem in the very same
classes of timed automata. Note that strongly non-Zeno timed automata are
never universal, but we can modify the above proof to show that the inclusion
problem is EXPSPACE-hard as well for strongly non-Zeno timed automata.

Summary of the results. We can summarize our results in the following table.
The column on the left indicates the subclass we consider. New results are in
black and italic, and in particular we can notice that there was no lower bound
known for the class IRTA.

size of the det. TA universality problem inclusion problem

TAp doubly exp. EXPSPACE-complete EXPSPACE-complete

SnZTA doubly exp. trivial EXPSPACE-complete

ECTA [3] exp. PSPACE-complete PSPACE-complete

IRTA [9] doubly exp. EXPSPACE-complete EXPSPACE-complete
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5 Conclusion

In this paper, we proposed a general framework for the determinization of timed
automata by means of an infinite timed tree. We showed that for a wide range
of timed automata this infinite tree is language-equivalent to a deterministic
timed automaton. The construction of this deterministic timed automaton yields
the basis for algorithms to check universality or language inclusion. Concerning
the complexity, these algorithms applied to event-clock timed automata [3] and
timed automata with integer resets [9] provide tight bounds. In addition, our
general framework yields the decidability of the universality problem for strongly
non-Zeno timed automata, which was not known before.

We have focused on finite timed words, but we believe the procedure can be
extended to timed automata over infinite timed words (with an ω-regular accep-
tance condition), by incorporating a Safra-like construction in our procedure. In
that framework the strong non-Zenoness assumption will even make more sense,
and we thus claim that strongly non-Zeno timed automata are determinizable!
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1 Département d’informatique, Université de Sherbrooke, Sherbrooke (Qc) Canada,
J1K 2R1

martin.beaudry@usherbrooke.ca
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1 Introduction

One of the main objectives of the algebraic theory of regular languages concerns
the classification of regular languages based on Eilenberg’s variety theorem [10].
This theorem states that there exists a bijection between varieties of regular
languages and varieties of finite monoids1. For example, the variety of star-free
regular languages (the closure of finite languages under Boolean operations and
concatenation) is related to the monoid variety of aperiodic monoids (those with
no nontrivial subgroups)[21].

Even if the theorem of varieties is a fundamental tool, it has some limita-
tions since many interesting classes of languages are closed under left and right
quotients, inverse morphisms, union and intersection but not under complemen-
tation. These classes are called positive varieties of languages. For example, the
class of cofinite languages forms a positive variety. Another example is the poly-
nomial closure of group languages. A group language is a regular language whose
syntactic monoid is a finite group. The smallest class of languages that contains
all group languages and is closed under union and concatenation is called the
polynomial closure of G and is denoted Pol(G) [18]. It has been proved that
Pol(G) is also the class of (regular) open languages for the group topology over
the free monoid. As a consequence, Pol(G) is not closed under complementation
but forms a positive variety of languages.

A counterpart to Eilenberg’s variety theorem has been established in [17] for
positive varieties of languages and the varieties of ordered monoids. An ordered
monoid is a monoid M equipped with a partial order ≤ such that x ≤ y and
s ≤ t implies xs ≤ yt, for all x, y, s, t ∈M . For example, a language is in Pol(G)
if and only if it is recognized by an ordered monoid satisfying e ≤ 1 for all
idempotent e ∈M [18]. Such monoids are said to be E-ordered.
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1 Varieties of semigroups will not be considered in this paper
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In [3], another algebraic characterization of Pol(G) was given in term of finite
loops. A loop is a binary operation defined over a set B and, like a group,
it satisfies the cancellation laws : (ax = ay) ⇒ (x = y) and (xa = ya) ⇒
(x = y) for all a, x, y ∈ B. Loops have mainly been investigated from two
principal perspectives: algebra and combinatorics. The algebraic study of loops
was initiated in the first half of the 20th century with the works of Moufang [14],
Albert [1,2] and Bruck [6,7]. Group-theoretical notions like subgroups, quotients,
morphisms, normal subgroups, nilpotency, and solvability extend smoothly into
loop theory. Meanwhile, most combinatorial properties of loops are based on the
fact that the multiplication table of a loop is a latin square. The study of latin
squares was initiated by Euler with its famous 36 officers problem (e.g. see [9]).
Many techniques have been developed, for example, to build latin squares of any
size or to complete a partially defined latin square. It is only recently that loops
have been investigated from a language theoretic point of view.

Given a loop B and a word w ∈ B∗, we define the evaluation function ηB :
B∗ → P(B) such that ηB(w) is set of elements in B that can be obtained
when evaluating w using all possible parenthesizations (for example, ηB(abc) =
{a(bc), (ab)c}). We say that a language L ⊆ A∗ is recognized by B if there exists
a morphism φ : A∗ → B∗ and set F ⊆ B such that L = {w ∈ A∗ | ηB◦φ(w)∩F �=
∅}. The main result in [3] states that both the finite E-ordered monoids and the
finite loops recognize exactly the class of languages Pol(G).

This result was refined in [4], where the class of group-free loops was studied,
those loops B which do not have any nontrivial group divisor (i.e. a morphic
image of a subloop of B). It was proved that aperiodic loops can only recog-
nize star-free open languages, that is, those whose syntactic ordered monoid is
aperiodic and E-ordered. The converse question remained open, whether any
star-free open language can be recognized by a finite group-free loop. The initial
motivation for the research reported on in this paper was to obtain an answer
to this question, and this we did.

Theorem 1. A language is star-free and open if and only if it is recognized by
a finite aperiodic loop.

Meanwhile, it was shown in [5] that to any loop B one can associate in a nat-
ural manner an E-ordered monoid D(B), called the derived monoid of B. This
monoid shares many important properties with B; in particular, every language
recognized by B is also recognized by D(B), and every group that divides D(B)
also divides B. In other words, the language-recognizing capabilities of the (non-
associative) loop B are totally encoded in the (associative) monoid D(B).

Proving Theorem 1 led us to define a counterpart to the concept of derived
monoid: to an E-ordered monoid M , we associate a loop B such that every
language recognized by M is also recognized by B, and every group which divides
B also divides M ; we say that B is faithful to M . We prove Theorem 1 by showing
that faithful group-free loops exist for every aperiodic E-ordered monoid.

Our proof is constructive: from an E-ordered monoid M , we explicitely build
a loop B that satisfies the desired properties. However, this implies the construc-
tion of a latin square that respects a particular set of constrains, and this turns
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out to be a complicated combinatorial task. For this reason, we first build from
M a less rigid algebraic structure H and then embed H in a loop B.

A halfloop is a partially defined loop or, more formally, a partial binary func-
tion over a set H such that each product to the left or the right is a partial
injective function. In particular, any loop is a halfloop. It will be convenient
to assume that undefined products actually evaluate to an absorbing element,
denoted by 0 or ⊥. Recognition of languages by halfloops has the additional re-
striction that 0 must belong to the accepting set. The next proposition indicates
that there is no loss of generality in replacing loops with halfloops:

Proposition 1. Any halfloop H can be embedded in a loop G such that:

1. Every group which divides G also divides H,
2. Every language recognized by H is also recognized by G.

The problem of embedding a halfloop into a loop was first solved by Evans [11].
His method does not, however, offer any guarantee on the structure and com-
binatorial properties of this loop. In our construction, no new group is created
and no recognized language is lost. Theorem 1 will now follow from:

Proposition 2. For any aperiodic E-ordered monoid M , there exists a group-free
halfloop H such that every language recognized by M is also recognized by H.

To prove this proposition, we introduce a concept which, we believe, is an in-
teresting contribution of this paper. Homomorphisms are an essential tool in
monoid theory, but they are of limited utility in our context. If S(L) is the syn-
tactic monoid of a regular language L and M is any monoid that also recognizes
L then there must exist a morphism from a submonoid of M onto S(L) (see
[16,19]). However, homomorphisms preserve associativity, so that this property
does not extend in general to halfloops. Nevertheless, if M is E-ordered, we can
use a mapping which is almost a morphism.

Definition 1. Let H be a halfloop and M an E-ordered monoid. A semi-
morphism μ : H → M is a surjective mapping satisfying μ(1) = 1 and
μ(a)μ(b) ≤ μ(ab).

A special case of semi-morphisms will be central to our proof. Let ϕ : M∗ →M
be the natural morphism and let η be the evaluation function on H .

Definition 2. A semi-morphism μ : H →M is faithful if there exists a monoid
morphism α : M∗ → H∗ extending an injective mapping α : M → H such that:

1. α(1) = 1
2. μ ◦ α = IdM , where IdM is the identity mapping on M .
3. For all w ∈M∗, ϕ(w) ∈ μ ◦ η ◦ α(w).

Lemma 1. If μ : H → M is a faithful semi-morphism, then H recognizes all
the languages recognized by M .
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1 2 3 4 5
1 1 2 3 4 5
2 2 3 1 5 4
3 3 4 5 1 2
4 4 5 2 3 1
5 5 1 4 2 3

Fig. 1.

Example 1. Let B5 be the loop described in Figure 1 and let U1 be the E-ordered
monoid defined over the two elements 1 (identity) and 0 (absorbing) with the
order 0 ≤ 1.

Define the mapping μ : B5 → U1 such that μ(1) = 1 and μ(b) = 0 for all b �= 1.
Then, μ is a faithful semi-morphism from B5 to U1. We can conclude that B5

recognizes the language A∗aA∗.
In this paper, we assume that the reader is familiar with the algebraic theory

of automata and regular languages, see e.g. [16,19]. The essential facts on finite
loops are given in the next section, see [8,15] for more background. Sections 3
and 4 contain an outline for the proofs of Propositions 1 and 2, respectively. All
details are given in the full paper. We conclude with some comments on future
work.

2 Background on Loops

A groupoid (also called magma) is given by a set and a binary operation. In
this paper, we assume that all groupoids contain a two-sided identity element
usually denoted 1. Therefore, a monoid is an associative groupoid while a finite
loop is a cancellative groupoid. A finite groupoid that is both associative and
cancellative is a group. Excepting the free monoids, all groupoids considered in
this paper are finite. Upon introducing a groupoid, we will either use a notation
of the form (G, �) to specify that the set of values is G and that the operation
is denoted by �, or we will simply write G.

A groupoid G is said to divide another groupoid L, which we denote by G ≺ L,
if G is a homomorphic image of a subgroupoid of L. It is easily verified that if
L is a loop and G ≺ L, then G is also a loop.

Given a groupoid G and a word w ∈ G∗, we use ηG(w) to denote the set
of those values of G that can be obtained by evaluating w in G in all possible
ways, i.e. using all possible parenthetizations. As a particular case, we define
η(ε) = {1}. When G is associative, then ηG(w) is a singleton. When it is clear
from the context which groupoid the evaluation takes place in, the subscript G
is omitted.

A loop is said to be group-free if has no nontrivial group divisor. The loop
B5 of Figure 1 is the smallest group-free loop. Also, the smallest non-associative
loops have size 5; from now on, therefore, all loops we work on are assumed to
have size at least 5.
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Groupoids are used to to recognize subsets of A∗, in the following manner.
We say that L ⊆ A∗ is recognized by the groupoid G if there exist an alphabetic
morphism φ : A∗ → G∗ (i.e. extending a mapping A → G) and a subset F of
G such that L = {x ∈ A∗ | η(φ(x)) ∩ F �= ∅}. Note that when G is associative,
we are back to the definition given for monoids. In terms of language recogni-
tion, the power of finite groupoids and of finite loops has been characterized
precisely, while knowledge on the languages recognized by finite group-free loops
was incomplete.

Lemma 2.

1. [13] A language L is recognizable by a finite groupoid iff it is context-free.
2. [3] L is recognizable by a finite loop iff L is an open regular language.
3. [4] L is recognizable by a finite group-free loop only if L is an open star-free

language.

3 Semi-morphisms and Faithful Halfloops

For s ∈ M , we will often use the notation H(s) = μ−1(s) and for S ⊆ M we
define H(S) =

⋃
s∈S H(s). We now give a proof of Lemma 1 :

Proof (of Lemma 1). It suffices to consider languages of the form L = ϕ−1(F )
where F is an ordered ideal of M . We use K = H(F )∪{⊥} as accepting set and
show that L = {w ∈M∗ | η◦α(w)∩K �= ∅}. If w ∈ L then ϕ(w) ∈ μ(η◦α(w))∩F ,
since μ is faithful. Hence, η ◦ α(w) ∩K �= ∅ and H accepts ϕ(w). It remains to
show that H does not accept w whenever w /∈ L. This is a consequence of the fact
that for all w ∈ M∗, η ◦ α(w) ⊆ ϕ(w) which can easily be proved by induction
on the length of w.

Definition 3. A loop or halfloop G is said to be faithful to an E-ordered monoid
M if there exists a faithful semi-morphism μ : G→M .

In this paper, we are particularly interested to the case where G is a group-free
loop and M a E-ordered aperiodic monoid.

We now give a more involved example of the application of lemma 1. For any
n ≥ 2, we define the Brandt monoids BAn over the set {0, 1}∪{aij | 1 ≤ i, j ≤ n}.
Here, 1 is the identity, 0 the absorbing element, and the product aijak� is ai� if
j = k, or 0 otherwise. We will consider BAn as an E-ordered monoid, where the
stable order satisfies aii ≤ 1 for all 1 ≤ i ≤ n and 0 ≤ m for all m.

Theorem 2. There exists a group-free halfloop faithful to the Brandt monoid
BAn.

Proof. We first observe that BAn is “almost” a halfloop. The only situa-
tions where the cancellation law is violated are aiiaij = aij = 1aij and
aijajj = aij = aij1.
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Let B5 = {1, 2, 3, 4, 5} be the group-free loop depicted in Figure 1 . Let
S = ({aij |i �= j} ×B5) ∪ ({aii|1 ≤ i ≤ 5} × {2, 3, 4, 5}). We define a halfloop H
over the set S ∪ {ε,⊥} where ε is the identity, ⊥ is absorbing, and the value of
〈aij , p〉〈ak�, q〉 is ⊥ if j �= k, 〈ai�, pq〉 if j = k and i �= �, and ε if j = k, i = � and
pq = 1, that is, where the result would have been 〈aii, 1〉 if this pair had been in
S. We claim that H is faithful to BAn.

Define μ : H → BAn by μ(⊥) = 0, μ(ε) = 1 and μ(〈x, y〉) = x. Define also
α : BAn → H by α(0) = ⊥, α(1) = ε and α(aij) = 〈aij , 2〉. Clearly, μ is a semi-
morphism. The only nontrivial item upon verifying that it is faithful, consists
in verifying that a word w ∈ (BAn)∗ such that ϕ(w) = aii (ϕ is the natural
homomorphism) satisfies η ◦α(w) �= {ε}. To see this, observe that if ϕ(w) = aii,
then α(w) has the form 〈aij , 2〉 · · · 〈aki, 2〉. If |w| = 1, observe that 〈aii, 2〉 is
the only x ∈ H∗ of length 1 which satisfies aii ∈ μ ◦ η(x); that if |w| = 2, then
α(w) = 〈aij , 2〉〈aji, 2〉 evaluates to 〈aii, 3〉, and that for |w| ≥ 3, since |η(2n)| ≥ 2
for all n ≥ 3, the subset η ◦ α(w) of H cannot be a singleton.

4 Embedding a Halfloop into a Loop

In this section, we give a proof Proposition 1. Our constructions relies heavily on
the fact that the loop’s table is a latin square. We will use the following classical
theorems from the theory of latin squares; a latin rectangle over n objects is a
r × s table, r, s ≤ n, where each object occurs at most once per line or column.

Theorem 3 (Hall [12]). For any m × n latin rectangle over n objects, m ≤
n, there exists a latin square over the same n objects whose first m lines are
exactly those of the latin rectangle. In other words, any such latin rectangle can
be extended into a latin square.

Theorem 4 (Ryser [20]). Consider a r × s latin rectangle with entries from
the set {1, . . . , q}. Let N(i) denote the number of times the entry i occurs in the
latin rectangle. A necessary and sufficient condition that this rectangle can be
extended to a q × q latin square, is that N(i) ≥ r + s− q for each i.

Our proof consists in three steps. First, we embed H into a halfloop H ′ where
each nonabsorbing element has a left and a right inverse. Then, we embed H ′ in
a loop G′. Finally, we verify that G′ has the claimed properties.

Step 1. Let H = {a1, . . . , an−1, ε,⊥} = A∪ {ε,⊥}, where ε denotes the identity,
and denote by “·” the operation of the halfloop H . Let p be the number of lines
(and columns) of the table of H where ε is absent. Define {a1

1, . . . , a
1
p} = { a ∈

A | ∀ b ∈ H, ab �= ε } and {a2
1, . . . , a

2
p} = { a ∈ A | ∀ b ∈ H, ba �= ε }. We define

on the set H ′ = H ∪ {b1, . . . , bp} the operation � by

– if c, d ∈ H , then c � d = c · d,
– for each c ∈ H ′, ε � c = c � ε = c,
– for each i ∈ {1, . . . , p}, a1

i � bi = ε and bi � a
2
i = ε,

– everything else evaluates to ⊥.



Faithful Loops for Aperiodic E-Ordered Monoids 61

Γ0 Γ1

Γ0 Z0 Z1

Γ1 Z′
1 Z′

0

Γ0 Γ1 Γ2 Γ3 Γ4 Γ5

Γ0 Z0 Y2 Y3 Y4 Y5 Z1

Γ1 Y2 X1 Y0 Y5 Y3 Y4

Γ2 Y5 Y4 X2 Y0 Y1 Y3

Γ3 Y4 Y5 Y1 X3 Y0 Y2

Γ4 Z2 Y3 Y5 Y2 X4 Z3

Γ5 Y3 Y0 Y4 Y1 Y2 X5

Fig. 2. The main subtables of H ′ (left) and G (right)

It is readily verified that H ′ with the operation � is a halfloop. Since b � b = ⊥
for each b �∈ H , no element of H ′ \H can belong to a loop, and the subloops of
H ′ are exactly those of H (note that there are several subgroupoids of H ′).

Step 2. The second step consists in embedding H ′ into a loop G′. For this, we
use Theorem 4. Let Γ0 = H ′ \ {ε,⊥} and let m = n + p − 1 denote the size of
Γ0. Moreover. let Γ1 be a copy of Γ0 and build an arbitrary m×m latin square
Q over Γ1

We superimpose the table of H ′ onto Q, that is, we replace the occurrences of ⊥
in the table with the corresponding entry in Q. This creates a (m+1)× (m+1)
latin rectangle over G′ = {ε} ∪ Γ0 ∪ Γ1. Observe that this can be done in such
a way that each element of Γ1 occurs at least once in this rectangle, so that
the conditions for Theorem 4 are satisfied. The rectangle can thus be extended
into a latin square over G′. Through appropriate permutations of the lines and
columns indexed with elements of Γ1, this latin square can be regarded as the
table of a loop G′.

We partition its main subtable into four m × m zones (see Figure 2). By
construction, each line and column of Z0 contains an occurrence of ε, so that
we can assert that no such occurrence exists in Z1 or Z ′1. There are not much
constraints on the whereabouts of ε inside zone Z ′0, however, and therefore the
loop G′ can have unwanted divisors.

Step 3. The general structure of the final loop G that we want to build is
illustrated on Figure 2. Here, Γ2 · · ·Γ5 are four copies of Γ0. In this picture, a
line (resp. column) labelled Γi represents |Γi| lines of the actual table, one for
each element of Γi. For 1 ≤ i ≤ 5, Xi is the main subtable of a loop over Γi∪{ε}
isomorphic to a group-free loop Bm+1 and, for 0 ≤ j ≤ 5, Yj represents any latin
square over Γi.

Regions Z0 and Z1 (at the top left and right or the table) are identical to those
in G′. In the columns labelled with Γ0 and Γ5, the remaining occurrences of
elements of Γ0 and Γ1 are gathered in regions denoted Z2 and Z3 (on the line
of Γ4). To build Z2 and Z3 we first suppose that all lines labelled Γ4 in Figure
2 are empty. Using Theorem 3 to complete the square will force the elements of
Γ0 ∪ Γ1 to be placed in Z2 and Z3.
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To verify that the only nontrivial groups contained in G are those that were in
H , the reader can convince himself by inspecting Figure 2, that any pair {g, h}
where g and h do not belong to the same subset Γi generates the whole of G,
that a subset of Γi, i �= 0, generates a subloop of Γi ∪ {ε}, and that a subset of
Γ0 generates either a subset of Γ0, i.e. a subloop of H , or the whole of G in the
case where some combination of its elements can evaluate into a value g ∈ Γ1.

Also, no new group divides G. Since loop homomorphism have the same basic
properties as group homomorphism, verifying this can be done in a classical way,
by showing that the kernel of the homomorphism cannot be a proper subloop,
or that none of the subloops of G can be normal.2 In other words, all homomor-
phisms from G are trivial.

Finally, we show that every language recognized by H with ⊥ in the accepting
set F is also recognized by G. Let A = Γ0 ∪ {ε}. It is sufficient to prove that for
any w = w1 · · ·wn ∈ A+, such that ⊥ ∈ ηH(w), the set ηG(w) must contain an
element inG−A. Such a word can be expressed asw = sut, where u is the leftmost
segment of w with ⊥ ∈ ηH(u) and u contains no such proper segment. Then, we
have ηG(s) ⊆ A, ηG(u) ∩ Γ1 �= ∅. Hence, we only have to check that a word in
AΓ1A

∗ can always be evaluated into some element of G − A. This is done by an
exhaustive analysis of which subsets Γi the suffix t ∈ A∗ can evaluate into.

Our construction actually preserves faithfulness:

Lemma 3. Let μ : H → M be a faithful semi-morphism from a halfloop H to
an E-ordered monoid M , and let G be the loop obtained from H by the above
construction. Then μ can be extended to G − H by setting μ(g) = 0 for all
g ∈ G−H, and the resulting function μ : G→ M is a faithful semi-morphism.
In other words, if H is faithful to M then so is G.

5 Construction of Faithful Group-Free Halfloops

In this section, we sketch our method for building a faithful group-free halfloop
from an aperiodic E-ordered monoid.

From now on, let M = (M,≤) be an aperiodic ordered monoid satisfying
xω ≤ 1, where 1 is the identity. In practice, we will assume no further property
for ≤. It can be easily proved that M has a zero element, which we denote by 0.

In an E-ordered monoid containing a zero element, we say that a J -class C
is 0-minimal whenever C �= {0} and C ∪ {0} is an ideal.
We work by induction on the lattice of J -classes of M : we start with M0 = {0, 1},
and iteration i + 1 consists in creating the monoid Mi+1 from Mi by inserting
just above its minimal ideal a J -class C of M , such that C is 0-minimal in Mi+1.
Concretely, Mi+1 = Mi ∪ C, and the operation is defined on s, t ∈Mi by

– if st = u in the monoid M with u ∈Mi+1, then st = u in the monoid Mi+1;
– if st = u in M with u �∈Mi+1, then st = 0 in Mi+1.

2 A subloop K is normal if it satisfies the three conditions gK = Kg, (gh)K = g(hK)
and K(gh) = (Kg)h.
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We embed the triple (Hi, μi, αi), faithful to Mi by induction hypothesis, in
(Hi+1, μi, αi), faithful to Mi+1, by adding to Hi a set X = Hi+1 \ Hi of new
elements, and adjusting the operation, so that

– for all a ∈ Hi and m ∈Mi, m �= 0, μi+1(a) = μi(a) and αi+1(m) = αi(m);
– for all a ∈ X , μi+1(a) ∈ C;
– for all m ∈ C, αi+1(m) ∈ X ;
– if ab = c in Hi with c �= ⊥, then ab = c in Hi+1.

Once the values of μi(a) and αi(m) are determined, they remain the same until
the end of the induction. Therefore, from now on we use the notations μ(a),
α(m), and H(m) = μ−1(m).

A graphic interpretation of the induction step consists in taking the table
T (Hi) of the operation in Hi, adding the lines and columns corresponding to
the new elements of X , defining the content of the newly defined cells in the table,
and replacing the appropriate occurrences of ⊥ in T (Hi) with values from X .
The nonzero entries in T (Hi) remain unchanged. We will sketch the construction
at the induction step for two of the four possible cases.

Induction basis. The monoid M0 is isomorphic to the E-ordered monoid U1

defined in example 1.

Definition 4. Given an element m ∈M , we define its dominating set by m =
{ n ∈ M | m ≤ n }; we extend this notation to subsets of M : if E ⊂ M , then
let E =

⋃
m∈Em.

With this notation, a surjective mapping ϕ from a halfloop H to M is a semi-
morphism iff ϕ(1) = 1 and μ(ab) ∈ μ(a)μ(b) for all a, b ∈ H.

Induction step; the regular and trivial case. Here, the new J -class is C = {e},
where ee = e. Our construction uses the following properties of dominating sets.

Lemma 4. Let e ∈ E(M). Then, e is a submonoid of M and it holds e = { x ∈
M | xe = e } = { x ∈M | ex = e }.

Lemma 5. If m ≤J s and m belongs to a regular J -class, then there exists
m′ J m such that m′ ≤ s.

K Hi(e)
K (1) (2)

Hi(e) (3) (4)

We partition T (Hi) into four regions; in the table above, K = Hi \ Hi(e). By
Lemmas 4 and 5, only region (4) contains positions [a, b] such that μ(a)μ(b) ∈ e.
Moreover, every occurrence of ⊥ in this region is at a position [a, b] such that
μ(a)μ(b) = e in M . Therefore, region (4) is embedded in an aperiodic loop using
the method of the previous section; this yields a loop Hi+1(e) = H(e); in total,
the resulting loop is Hi+1 = Hi ∪ H(e), and we set H(e) = H(e) − Hi(e) and
α(e) = γ for some γ ∈ Hi+1 −Hi.

Proposition 1 ensures that the resulting Hi+1 is group-free. The fact that
Hi+1 is faithful to Mi+1 follows from the induction hypothesis and Lemma 3.
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D0 D1 D2 D3 X

G0 (1) ... (2) ... ⊥
G1 ... ... (4) ... (10)
G2 (3) (5) (6) (7) ⊥
G3 ... ... (8) (9) (12)
X ⊥ (11) ⊥ (13) ⊥

Δ Δ′ d Θ′ X ′

Δ Δ ∪ X ′ X ′ Δ′ X ′

Δ′ X ′ X ′

d Δ′

Θ′ X ′ X ′ X ′

X ′

Fig. 3. Case 2: the table T (Hi+1) (left) and the partial latin square Q (right)

Induction step; the trivial non-regular case. Here, C = {m} with m2 = 0. Let
X = Hi+1 \Hi be the set of the halfloop elements created at this induction step.
Building the table T (Hi+1) is done in three steps: first, we identify those regions
in T (Hi+1) where the entries will be elements of X ; second, we build a specific
latin square over in a subset of Hi+1; in the third step we fill the appropriate
entries in T (Hi+1), using the latin square as a template. For the first step, we
create two partitions of Hi, in order to use the following.

Lemma 6. With s, t ∈Mi, if sm = m, then m ≤ t⇔ m ≤ st (dually: mt = m
and m ≤ s⇔ m ≤ st.

G0 = H({ s ∈Mi | s �∈ m∧sm = 0 }); D0 = H({ t ∈Mi | t �∈ m∧mt = 0 });
G1 = H({ s ∈Mi | s �∈ m∧sm = m }); D1 = H({ t ∈Mi | t �∈ m∧mt = m });
G2 = H({ s ∈Mi | s ∈ m∧sm = 0 }); D2 = H({ t ∈Mi | t ∈ m∧mt = 0 });
G3 = H({ s ∈Mi | s ∈ m∧sm = m }); D3 = H({ t ∈Mi | t ∈ m∧mt = m }).
This enables us to divide table T (Hi+1) into 25 zones, as depicted in Figure 3. In
the five regions identified with ⊥, all entries are null. Seven other zones, identified
with “. . .”, cannot contain entries from H(m), either by their definition or as a
consequence of Lemma 6. For example, if s ∈ μ(G0) and t ∈ μ(D1), then st = m
is not possible since otherwise we would have m = st = mt ⇒ m = stω ≤ s
which contradict the definition of G0.

The remaining blocks carry a label running from (1) to (13).
In this table, the line of a ∈ Hi+1 consists of all positions of the form [a, b];
if a ∈ G1, then all entries in region (10) must belong to H(m) if we want the
halfloop to be faithful, and we will want to have an element of X at every position
of region (4) where a ⊥ has to be replaced. This means more positions to fill than
there are elements in X : for every such element placed in region (4), a position
in region (10) must be filled with an element of Hi ∩H(m). We show that there
are indeed enough of them.

For the second step, let Δ = Hi(m) = G2 ∪ G3 = D2 ∪D3 and Θ = Hi \Δ.
We partition X = Hi+1 \Hi into four subsets, X = {d} ∪Δ′ ∪ Θ′ ∪X ′, where
|Δ′| = |Δ| = δ, |Θ′| = |Θ| = θ, and |X ′| > 2δ + θ + 1. Let |X | = χ.

The partially defined latin square Q of Figure 3 represents a modification of
the (δ + χ) × (δ + χ) subtable of T (Hi+1) whose lines and columns belongs to
Δ ∪ X : Some entries which previously were containing ⊥ have been filled with
elements from X .

Let Q[a, b] denote the entry at position [a, b].
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– in each position [a, b] of the block labelled with Δ∪X ′, either T (Hi)[a, b] ∈ Δ
and then Q[a, b] = T (Hi)[a, b], or T (Hi)[a, b] = ⊥, and we set Q[a, b] ∈ X ′;

– In a block labelled with a set X ′ or Δ′, all entries must belong to this set.
– Other blocks contain only ⊥

The set X ′ is large enough to ensure that Q satisfies the condition for Ryser’s
theorem (Theorem 4): this yields a latin square S over the set X ∪Δ.

Let T (Hi+1)[a, ∗] denote the line of a in T (Hi+1), (dually, T (Hi+1)[∗, a] for
the column) and define similar notations for S. The third step consists in doing
the following.

– For each a ∈ Δ, use the line S[a, ∗] to fill the appropriate positions on the
line T (Hi+1)[a, ∗]; this involves the regions of T (Hi+1) labelled with 6, 7, 8,
9 and 12. Dually, use the line S[∗, a] to fill T (Hi+1)[∗, a] which involves the
regions of T (Hi+1) labelled with 6, 7, 8, 9 and 13.

– Define some bijection τ : Θ → Θ′. For each a ∈ Θ, define T (Hi+1)[a, ∗] using
in S[τ(a), ∗], which means the regions labelled with 2, 4 and 10. Dually, define
T (Hi+1)[∗, a] using in S[∗, τ(a)], which means the regions labelled with 3, 5
and 11.

– The appropriate entries of region 1 are defined by setting T (Hi+1)[a, b] =
S[τ(a), τ(b)].

Finally, we define α(m) = d and H(m) = X . Verifying faithfulness reduces to
proving condition 3 of Definition 2; the other conditions are satisfied by con-
struction.

6 Conclusion

If the apparent absence of structure in finite groupoids may have been seen ini-
tially as an absolute barrier to comprehension, the results of this paper together
with related results obtained in the last decade demonstrate that several fas-
cinating facts and questions can be obtained by concentrating on key special
cases.

Thus, the relationship established in this paper and its predecessors, between
finite loops and E-ordered monoids, offers a different perspective to the study of
regular languages, and uncovers a number of new questions. For example, what
languages are recognized by nilpotent or solvable loops?

Moreover, what can be said on the algebraic structure of loops that recog-
nize, for example, the open piecewise-testable languages? These languages are
recognized by ordered monoids that satisfy the equation x ≤ 1.

Another question is related to the fact that any groupoid whose multiplication
monoid belongs to the variety DO can only recognize regular languages [5].
Hence, to what extent the definition of faithful semi-morphisms introduced in
this paper could also be applied to other kinds of groupoids and ordered monoids?

Finally, Proposition 1 still has to be extended to arbitrary E-ordered monoids
and loops; yet the crop of new concepts gathered while dealing with the group-
free case is already likely to give us powerful insight on the structural and
language-theoretical properties of finite loops and groupoids.
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Boundedness of Monadic Second-Order
Formulae over Finite Words
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Abstract. We prove that the boundedness problem for monadic second-
order logic over the class of all finite words is decidable.

1 Introduction

In applications one frequently employs tailor-made logics to achieve a balance
between expressive power and algorithmic manageability. Adding fixed-point op-
erators to weak logics turned out to be a good way to achieve such a balance.
Think, for example of the addition of transitive closure operators or more gen-
eral fixed-point constructs to database query languages, or of various fixed-point
defined reachability or recurrence assertions to logics used in verification. Fixed-
point operators introduce a measure of relational recursion and typically boost
expressiveness in the direction of more dynamic and less local properties, by
iteration and recursion based on the expressiveness that is locally or statically
available in the underlying fragment, say of first-order logic FO. We here exclu-
sively consider monadic least fixed points, based on formulae ϕ(X,x) that are
monotone (positive) in the monadic recursion variable X . Any such ϕ induces
a monotone operation Fϕ : P �→ { a ∈ A | A |= ϕ(P, a) } on monadic relations
P ⊆ A. The least fixed point of this operation over A, denoted as ϕ∞(A), is also
the least stationary point of the monotone iteration sequence of stages ϕα(A)
starting from ϕ0(A) := ∅. The least α for which ϕα+1(A) = ϕα(A) is called the
closure ordinal for this fixed-point iteration on A.

For a concrete fixed-point process it may be hard to tell whether the recursion
employed is crucial or whether it is spurious and can be eliminated. Indeed
this question comes in two versions : (a) one can ask whether a resulting fixed
point is also uniformly definable in the base logic without fixed-point recursion
(a pure expressiveness issue); (b) one may also be interested to know whether
the given fixed-point iteration terminates within a uniformly finitely bounded
number of iterations (an algorithmic issue, concerning the dynamics of the fixed-
point recursion rather than its result).

The boundedness problem Bdd(F , C) for a class of formulae F and a class of
structures C concerns question (b): to decide, for ϕ ∈ F , whether there is a finite
upper bound on its closure ordinal, uniformly across all structures A ∈ C (we
call such fixed-point iterations, or ϕ itself, bounded over C).

S. Albers et al. (Eds.): ICALP 2009, Part II, LNCS 5556, pp. 67–78, 2009.
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Interestingly, for first-order logic, as well as for many natural fragments, the
two questions concerning eliminability of least fixed points coincide at least over
the class of all structures. By a classical theorem of Barwise and Moschovakis [1],
the only way that the fixed point ϕ∞(A) can be first-order definable for every A,
is that there is some finite α for which ϕ∞(A) = ϕα(A) for all A. The converse is
clear from the fact that the unfolding of the iteration to any fixed finite depth α
is easily mimicked in FO.

In other cases – and even for FO over other, restricted classes of structures,
e.g., in finite model theory – the two problems can indeed be distinct, and of
quite independent interest.

We here deal with the boundedness issue. Boundedness (even classically, over
the class of all structures, and for just monadic fixed points as considered above)
is undecidable for most first-order fragments of interest, e.g., [6]. Notable excep-
tions are monadic boundedness for positive existential formulae (datalog) [3],
for modal formulae [9], and for (a restricted class of) universal formulae without
equality [10].

One common feature of these decidable cases of the boundedness problem
is that the fragments concerned have a kind of tree model property (not just
for satisfiability in the fragment itself, but also for the fixed points and for
boundedness). This is obvious for the modal fragment [9], but clearly also true
for positive existential FO (derivation trees for monadic datalog programs can be
turned into models of bounded tree width), and similarly also for the restricted
universal fragment in [10].

Motivated by this observation, [7] has made a first significant step in an
attempt to analyse the boundedness problem from the opposite perspective,
varying the class of structures rather than the class of formulae. The hope is
that this approach could go beyond an ad-hoc exposition of the decidability of
the boundedness problem for individual syntactic fragments, and offer a unified
model theoretic explanation instead. [7] shows that boundedness is decidable for
all monadic fixed points in FO over the class of all acyclic relational structures.
Technically [7] expands on modal and locality based proof ideas and reductions
to the MSO theory of trees from [9,10] that also rest on the availability of a
Barwise–Moschovakis equivalence. These techniques do not seem to extend to
either the class of all trees (where Barwise–Moschovakis fails) or to bounded tree
width (where certain simple locality criteria fail).

The present investigation offers another step forward in the alternative ap-
proach to the boundedness problem, on a methodologically very different note,
and – maybe the most important novel feature – in a setting where neither lo-
cality nor Barwise–Moschovakis are available. On the one hand, the class of for-
mulae considered is extended from first-order logic FO to monadic second-order
logic MSO – a leap which greatly increases the robustness of the results w.r.t.
interpretations, and hence their model theoretic impact. On the other hand, au-
tomata are crucially used and, for the purposes of the present treatment, the
underlying structures are restricted to just finite word structures. We expect
that this restriction can be somewhat relaxed, though. Work in progress based
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on automata theoretic results recently obtained by Colcombet and Löding [2]
shows that our approach generalises from finite words to the case of finite trees.
This extension of the present results will, via MSO interpretability in trees, then
reach up at least to the finite model-theory version of the following conjecture,
which has been implicit as a potential keystone to this alternative approach to
boundedness :

Conjecture 1. The boundedness problem for monadic second-order logic over the
class of all trees (and hence over any MSO-definable class of finite tree width) is
decidable.

2 Preliminaries

We assume that the reader is familiar with basic notions of logic (see, e.g., [4] for
details). Throughout the paper we assume that all vocabularies are finite and
that they contain only relation symbols and constant symbols, but no function
symbols. We regard free variables as constant symbols.

Let ϕ and ψ be formulae over a vocabulary τ containing a unary relation
symbol X and a constant symbol x. As usual, the formula ϕ[c/x] is obtained
from ϕ by replacing all free occurrences of x by c. The formula ϕ[ψ(x)/X ] is
obtained from ϕ by replacing all free occurrences of X , say Xc with constant
symbol c, by ψ[c/x]. For α < ω, we define the formula ϕα inductively as follows :

ϕ0 := ⊥ and ϕα+1 := ϕ[ϕα(x)/X ] .

Note that the vocabulary of ϕα is τ � {X}. Suppose that A is a structure
of vocabulary τ � {X,x}. If ϕ is positive in X , then ϕα defines the α-th stage
of the least fixed-point induction of ϕ on A. We denote this set by ϕα(A). The
corresponding fixed point is ϕ∞(A).

Definition 1. (a) Let ϕ be a formula over τ , positive in X, and let α < ω. We
say that ϕ is bounded by α over a class C if ϕα(A) = ϕα+1(A), for all A ∈ C.
We call ϕ bounded over C if it is bounded by some α < ω.

(b) The boundedness problem for a logic L over a class C is the problem to
decide, given a formula ϕ ∈ L, whether ϕ is bounded over C.

Lemma 1. Let L be a logic and C a class of structures such that equivalence
of L-formulae over C is decidable. The boundedness problem for L over C is
decidable if and only if there is a computable function f : L→ ω such that, if a
formula ϕ ∈ L is bounded over C, then it is bounded by f(ϕ) over C.

In this paper we consider the class of all finite words over some alphabet Σ.
We encode such words as structures in the usual way. Let τΣ be the signature
consisting of a binary relation ≤ and unary relations Pc, for every c ∈ Σ. We
represent a finite word w = a0 . . . an−1 ∈ Σ∗ as the structure whose universe
[n] := {0, . . . ,n− 1} consists of all positions in w and where ≤ is interpreted by
the usual order on integers, and Pc is interpreted by the set { i ∈ [n] | ai = c }
of all positions carrying the letter c.
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We denote the concatenation of two words A and B by A+B. For a structure A
and a set U ⊆ A, we denote by AU the substructure induced by U . (If A contains
constants with value outside of U then we drop them from the vocabulary when
forming AU .)

We will reduce the boundedness problem to a corresponding problem for au-
tomata. A distance automaton is a tuple A = (Σ,Q,Δ0,Δ1, I, F ), where A′ =
(Σ,Q,Δ, I, F ) for Δ = Δ0 ∪̇Δ1 is a finite nondeterministic automaton in the
usual sense with alphabet Σ, state space Q, transition relation Δ ⊆ Q×Σ ×Q,
set of initial states I ⊆ Q, and set of final states F ⊆ Q. The language L(A)
of A is the language of A′ in the usual sense, and for w ∈ L(A), the distance
dA(w) is the minimal number of transitions from Δ1, the minimum ranging over
all accepting runs of A′ on w. For w /∈ L(A), we set dA(w) := ∞. As usual, we
set dA(L) := { dA(w) | w ∈ L }, for sets L ⊆ Σ∗. This definition is a slightly
modified version of the one in [5].

Theorem 1 (Hashiguchi [5,8]). Let A be a distance automaton with state
space Q. If dA(L(A)) is bounded, then it is bounded by 24|Q|3 :

sup dA(L(A)) <∞ implies sup dA(L(A)) ≤ 24|Q|3.

3 Positive Types

For a vocabulary τ , we denote by MSOn[τ ] the set of all MSO-formulae over τ
with quantifier rank at most n. If X ∈ τ is a unary predicate we write MSOnX [τ ]
for the subset of all formulae where the predicate X occurs only positively.
MSOnX [τ ] is finite up to logical equivalence, and we will silently assume that
all formulae are canonised in some way. For example, for Φ ⊆ MSOnX [τ ] the
conjunction

∧
Φ is always a formula from MSOnX [τ ], and it will even happen

that
∧
Φ ∈ Φ. The following result carries over from MSOn[τ ] to MSOnX [τ ].

Fact 1. There exists a computable function f : ω → ω such that, up to logical
equivalence, we have

|MSOn[τ ]| ≤ f
(
n + |τ |+ ar(τ)

)
.

Definition 2. Let τ be a vocabulary and X ∈ τ . The X-positive n-type of a
τ-structure A is the set

tpnX(A) := {ϕ ∈ MSOnX [τ ] | A |= ϕ } .

We write TpnX [τ ] for the set of all X-positive n-types of τ-structures.

Lemma 2. Let A be a structure and P ⊆ P ′ ⊆ A. Then

tpnX(A, P ) ⊆ tpnX(A, P ′) ,

where X is interpreted by P and P ′, respectively.
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Fact 2. Let B be the τ-reduct of A. Then tpnX(B) = tpnX(A) ∩MSOnX [τ ].

Lemma 3. For every n < ω, there is a binary function ⊕n such that

tpnX(A + B) = tpnX(A)⊕n tpnX(B) , for all words A and B .

Furthermore, ⊕n is monotone:

s ⊆ s′ and t ⊆ t′ implies s⊕n t ⊆ s′ ⊕n t′ .

Note that, being a homomorphic image of word concatenation +, the opera-
tion ⊕n is associative.

4 The Main Theorem

Let us temporarily fix a formula ϕ ∈ MSOnX [τ ] with vocabulary τ = {x,X,≤, Pa,
Pb, . . . } belonging to a word structure with one constant symbol x and one
additional unary predicate X . Let

π : TpnX [τ ] → TpnX [τ � {x}]

be the canonical projection defined by π(t) := t ∩MSOnX [τ � {x}].
Note that, by our assumption on τ , there are exactly two X-positive n-types of

one-letter τ -words with letter a : the one not containing Xx and the one which
does contain Xx. We will at times denote these by, respectively, 0a and 1a.
Frequently, we will omit the index a if we do not want to specify the letter.

Given a word structure A of vocabulary τ�{X,x}, we consider the fixed-point
induction of ϕ. For every α < ω and every position p of A we consider the type
tp(A, ϕα(A), p). We annotate A with all these types. At each position p we write
down the list of these types for all stages α. These annotations can be used to
determine the fixed-point rank of all elements of A. A position p enters the fixed
point at stage α if the α-th entry of the list is the first one containing a type t
with Xx ∈ t.

We can regard the annotation as consisting of several layers, one for each stage
of the induction. At a position p each change between two consecutive layers is
caused by some change at some other position in the previous step. In this way
we can trace back changes of the types through the various layers.

In order to determine whether the fixed-point inductions of the formula are
bounded, we construct a distance automaton that recognises (approximations
of) such annotations. Furthermore, the distance computed by the automaton
coincides with the longest path of changes in the annotation. It follows that
the automaton is bounded if and only if the fixed-point induction is bounded.
Consequently, we can solve the boundedness problem for ϕ with the help of
Theorem 1.

Let us start by precisely defining the annotations we use. A local stage an-
notation at a position above a fixed letter of A captures the flow of information
that is relevant for stage updates in the fixed-point induction at this letter and
at some stage.
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Definition 3. (a) A local stage annotation is a 6-tuple

γ =
(

<t t∧ t>

>t ∧t t<

)
of types where

– ∧t, t∧ ∈ {0a, 1a} with ∧t ⊆ t∧, for some letter a ∈ Σ,
– >t,

<t, t>, t< ∈ TpnX [τ � {x}],
– <t = π(∧t⊕ t<) and t> = π(>t⊕ ∧t),
– Xx ∈ t∧ iff ϕ ∈ >t⊕ ∧t⊕ t<.

We say that γ is an annotation of a, for the letter a in the first clause.
(b) Let A be the word structure corresponding to a0 . . . a�−1 ∈ Σ∗. For α < ω,

we denote the expansion of A by the α-th stage of ϕ by Aα := (A, ϕα(A)).
The annotated word An(A) is a word b0 . . . b�−1 where the p-th letter bp is the

sequence of local stage annotations of ap obtained by the removal of duplicates
from the sequence (γα)α<ω with

γα :=

(
tpnX(Aα[p,�)) tpnX(Aα+1

{p} , p) tpnX(Aα[0,p])
tpnX(Aα[0,p)) tpnX(Aα{p}, p) tpnX(Aα(p,�))

)
.

Here, AαU denotes (Aα)U , not (AU )α.

The components of an annotation γ are called incoming from the left, outgoing
to the left, and so on. They are denoted by >γ,

<γ, . . . . We also speak of the
>•-component of γ, etc.

Example 1. Consider the formula

ϕ(X,x) := ∀y[y < x→ Xy] ∨ ∀y[y > x→ Xy] .

Figure 1 shows (the first 4 elements of) the real annotation of a word of length
at least 9. Here,

– λ denotes the type of the empty word,
– 0 denotes any type not containing the formula ∃yXy,
– 1 denotes any type containing the formula ∀yXy, and
– 01 denotes any type containing ∃yXy, but not ∀yXy.

Below we will construct an automaton that, given a word A guesses potential
annotations for A and computes bounds on the length of the fixed-point induc-
tion of ϕ on A. Unfortunately, the real annotations An(A) cannot be recognised
by automata. For instance, in the above example the real annotations of words
of even length are of the form uxnynv where ynv is the ‘mirror image’ of uxn.
This language is not regular.

So we have to work with approximations. Let us see what such approximations
look like.
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λ 0 0

0 1 0

λ 1 01

01 1 1

λ 1 1

1 1 1

0 0 0

0 0 0

1 0 01

01 1 01

1 1 01

01 1 1

1 1 1

1 1 1

0 0 0

0 0 0

01 0 01

01 0 01

1 0 01

01 1 01

1 1 01

01 1 1

1 1 1

1 1 1

0 0 0

0 0 0

01 0 01

01 0 01

1 0 01

01 1 01

1 1 01

01 1 1

1 1 1

1 1 1

· · ·

Fig. 1. Annotation for ϕ(X, x) := ∀y[y < x → Xy] ∨ ∀y[y > x → Xy]

Definition 4. (a) We extend the order ⊆ on X-positive n-types to local stage
annotations by requiring that ⊆ holds component-wise. A history (at a) is a
strictly increasing sequence h = (h0 � · · · � hm) of local stage annotations
(at a) such that

– ∧(h0) = 0a,
– ∧(hi+1) = (hi)∧, for all i < m, and
– (hm)∧ = 1a implies ∧(hm) = 1a.

Let Στ denote the set of all histories with a ∈ Σ. An annotated word is a word
over Στ .

(b) We say that an annotated word is consistent, if it satisfies the following
conditions.

(1) If h2 is the immediate successor of h1, then the projections of h1 to the
components •> and •< coincide1 with the projections of h2 to the components
>• and <•, respectively.

(2) For the first letter: the >• components in its history are all equal to tpnX(λ),
where λ is the empty word.

(3) Similarly, for the last letter: the •< components in its history are all equal
to tpnX(λ).

Clearly, An(A) is a consistent annotated word. Furthermore, consistency of an-
notated words can be checked by an automaton since all conditions are strictly
local. The main part of our work will consist in computing bounds on the real
fixed-point rank of an element from such a word.

For an annotated word A, we index the individual type annotations by triples
(p, i, j) where p is a position in A, i is an index for the history at position p,
and j specifies the component in the local stage annotation. We denote the type
specified in this way by tp,i,j , or by (>t)p,i, (<t)p,i for a concrete component
j = >•, <•, etc.

1 This is coincidence as a set, i.e., with duplicates removed.
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When considering the annotated word encoding the fixed-point induction of ϕ,
the indices of particular interest are those at which type changes occur. The fixed
point is reached as soon as no such changes occur anymore.

Definition 5. An index I = (p, i, j) is relevant if either

i > 0 and tp,i,j �= tp,i−1,j , or i = 0 , j = •∧ , and Xx ∈ tp,i,j .

In the latter case, we call I initially relevant.

During the fixed-point induction changes at one index trigger changes at other
indices in the next stage. The following definition formalises this dependency. We
introduce three notions of dependency between indices. We have direct dependen-
cies, where a change at one index immediately leads to a change at another one,
and we have what we call lower and upper dependencies, intuitively associated
with the temporal sequence of events. However, due to the lack of synchronisa-
tion between levels of adjacent histories (which in turn comes from the deletion
of duplicates in each history), this temporal intuition is not directly available
for dependencies linking adjacent histories. Some of the real stage dependencies
can only be reconstructed globally, which will eventually give us the required
bounds on ranks.

Definition 6. Let I = (p, i, j) and I ′ = (p′, i′, j′) be two relevant indices. We
say that I directly depends on I ′ if I is not initially relevant and one of the
following cases occurs:

j = >• , j′ = •> , p′ = p− 1 , and tI = tI′ ;
j = •< , j′ = <• , p′ = p + 1 , and tI = tI′ ;
j = ∧• , j′ = •∧ , p′ = p , and i′ = i− 1 ;
j = •∧ , j′ ∈ {>•, ∧•, •<} , p′ = p , and i′ = i ;
j = <• , j′ ∈ {•<, ∧•} , p′ = p , and i′ = i ;
j = •> , j′ ∈ {>•, ∧•} , p′ = p , and i′ = i .

A direct dependency of some index (p, i, ∧•) on (p, i− 1, •∧) is called a jump.
Relaxing the equality requirement i′ = i to either i′ ≤ i or to i′ ≥ i in each of

the last three clauses (thus also allowing upward or downward steps within the
same history in those cases), we obtain dependencies from below or from above.

Note that the last three forms of direct dependencies go from outgoing to in-
coming indices within the same local annotation.

Furthermore, I directly depends on I ′ if and only if it depends on I ′ both
from below and from above.

Also note that the first two clauses of (direct) dependency are the only de-
pendencies between distinct (namely adjacent) histories. In these there is no
condition on i, i′, corresponding to the lack of synchronisation discussed above.

Finally note that in the case of a jump, i.e., a (direct) dependency of (p, i, ∧•)
on (p, i− 1, •∧), we have

(∧t)p,i = (t∧)p,i−1 = 1 and (∧t)p,i−1 = 0 .
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In particular, at every position p there can be at most one jump.

Lemma 4. Let I be a relevant index in a consistent annotated word. Either I is
initially relevant, or there is some relevant index on which I depends directly.

We can form a digraph consisting of all relevant indices where there is an edge
from I to I ′ if I depends on I ′ from below. We call this digraph the lower
dependency graph. Similarly, we can define the upper dependency graph by using
dependencies from above.

Lemma 5. The digraph of lower dependencies in a consistent annotated word
is acyclic.

A path in the dependency digraph is called grounded if it ends in an initially
relevant index. The rank of a path is the number of jumps it contains.

Due to acyclicity and finiteness, all maximal paths in the lower dependency
graph are grounded. The same is true also in the direct dependency graph, since
every relevant index is either initial or it directly depends on some other relevant
index by Lemma 4. For the upper dependency graph, which may have cycles, we
can only say that every maximal cycle-free path must be grounded (and there
are always such, namely in particular paths w.r.t. direct dependencies).

Let I be a relevant index and α < ω. We say that α is a lower rank of I if
in the lower dependency graph there is some grounded path from I of rank α.
Similarly, we define upper ranks of I as the ranks of grounded cycle-free paths
in the upper dependency graph. Note that I can have several different lower and
upper ranks, but at least one of each kind (due to the existence of grounded
paths w.r.t. direct dependencies, Lemma 4).

p

I

31
46

We now fix a consistent annotated word A over the underlying Σ-word B.
Let � be their length. As above, we write Bα := (B, ϕα(B)) for the expansion
of B by the α-th stage of the fixed-point induction.

We say that α satisfies an outgoing index I = (p, i, j) if

j = <• and Bα
[p,�) |= tI ,

or j = •∧ and (Bα+1
{p} , p) |= tI ,

or j = •> and Bα
[0,p] |= tI .

Note that Bα
[p,�) |= tI just means that

tI ⊆ tpnX(Bα
[p,�)) .



76 A. Blumensath, M. Otto, and M. Weyer

Reverting the inclusion, we say that I = (p, i, <•) confines α if

tpnX(Bα
[p,�)) ⊆ tI .

For the other outgoing cases, we define confinement analogously.
The next lemma relates the real fixed-point induction of ϕ on B to the given

annotation A, through confinement. In particular, the top level of the annotation
confines all stages of the real fixed point.

Lemma 6. Let p be a position and mp the length of the history at position p.

(a) tpnX(B0
[0,p)) = (>t)p,0 and tpnX(B0

(p,�)) = (t<)p,0.
(b) For every α < ω, we have

tpnX(Bα
[0,p)) ⊆ (>t)p,mp ,

tpnX(Bα
{p}, p) ⊆ (∧t)p,mp ,

tpnX(Bα
(p,�)) ⊆ (t<)p,mp .

We can use the preceding lemma to show that the lower and upper ranks provide
bounds for the real rank of an element.

Lemma 7. Let I = (p, i, j) be a relevant outgoing index and α < ω.

(a) If α ≥ α′ for all lower ranks α′ of I, then α satisfies I.
(b) If I is not initially relevant and all upper ranks of I are larger than α, then

(p, i− 1, j) confines α.

We call a position p active if there is some i such that (p, i, •∧) is relevant; in
this case, the corresponding i is unique. We may thus define the set of upper
ranks of an active position p as the set of upper ranks of the relevant index of
the form (p, i, •∧) at p. Recall that an upper rank of a relevant index is any rank
of a grounded cycle-free upper dependency path.

Lemma 8. Let p be a position.

(a) If p ∈ ϕ∞(B), then p is active.
(b) If p is active, then p ∈ ϕ∞(B).
(c) If p ∈ ϕα(B) (and hence p is active by (a)), then some upper rank of p is at

most α.

A proposal is a pair (A, p) where A is a consistent annotated word and p is an
active position in A. In order to treat proposals as words over some alphabet
one can extend annotated letters with a mark for the special position p.

Lemma 9. There exists a computable function g : ω → ω such that, for every
formula ϕ, we can effectively construct a distance automaton A with at most
g(|ϕ|) states such that

(a) L(A) is the set of proposals;
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(b) if (A, p) is a proposal then dA(A, p) is the minimum over all upper ranks
of p.

Next, let us consider annotated words that arise from the actual fixed-point
induction. Recall that An(B) is the word whose p-th letter is the history (hi)
at position p. The removal of duplicates in the definition of a history induces a
non-decreasing mapping iB,p : ω → ω from stages to history entries such that,
for example, >(hiB,p(α)) = tpαX(B[0,p)). For I = (p, i, j), we set

αB(I) := αB,p(i) := min {α < ω | i = iB,p(α) } .

Lemma 10. Let B be a word and let I be a relevant index in An(B). Then each
upper rank of I is bounded from below by αB(I).

Theorem 2. The boundedness problem for MSO over the class of all finite
words is decidable.

Proof. Let ϕ ∈ MSO be positive in X and let g be the function from Lemma 9.
We exploit Lemma 1 and claim that, over finite words, if ϕ is bounded then it
is bounded by N := 24g(|ϕ|)3 + 1.

Assume that ϕ is bounded over finite words, say by N ′. For every proposal
(A, p), it follows from Lemma 8 (b), that p ∈ ϕ∞(A). Hence, p ∈ ϕN

′
(A).

Lemma 8 (c) then implies that some rank of p is at most N ′. Let A be the
distance automaton from Lemma 9. Then we have dA(L(A)) ≤ N ′ <∞. There-
fore, Theorem 1 implies that dA(L(A)) ≤ N − 1. Consequently, for all proposals
(A, p), some rank of p is at most N − 1. In particular, this holds if A = An(B),
for some word structure B. By Lemma 10, p enters the fixed-point induction
not later than stage N . As B and p were arbitrary, it follows that ϕ is bounded
over words by N . ��

5 Extensions

Having obtained the decidability for the boundedness problem over the class
of all finite words we can use model theoretic interpretations to obtain further
decidability results.

Theorem 3. For all k, the boundedness problem for MSO over the class of all
finite structures of path width at most k is decidable.

Example 2. Let Cn be the class of all unranked trees (T,E, S) of height at most n
where E is the successor relation and S is the next sibling relation. This class
has path width at most 2n. By the theorem, it follows that the boundedness
problem for monadic second-order formulae over Cn is decidable.

Using similar techniques, one can extend the theorem to MSO-axiomatisable
subclasses, to guarded second-order logic GSO, and to simultaneous fixed points.
If we could show that the boundedness problem is also decidable for the class
of all (finite) trees, then it would follow in the same way that the problem is
decidable for every GSO-axiomatisable class of (finite) structures of bounded
tree width.
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petej@ida.liu.se
3 Max-Planck-Institute for Human Development, Königin-Luise-Strasse 5

14195 Berlin
vonoertzen@mpib-berlin.mpg.de

Abstract. We study logical techniques for deciding the computational
complexity of infinite-domain constraint satisfaction problems (CSPs).
For the fundamental algebraic structure Γ = (R; L1, L2, . . . ) where R
are the real numbers and L1, L2, . . . is an enumeration of all linear rela-
tions with rational coefficients, we prove that a semilinear relation R (i.e.,
a relation that is first-order definable with linear inequalities) either has
a quantifier-free Horn definition in Γ or the CSP for (R; R,L1, L2, . . . )
is NP-hard. The result implies a complexity dichotomy for all constraint
languages that are first-order expansions of Γ : the corresponding CSPs
are either in P or are NP-complete depending on the choice of allowed re-
lations. We apply this result to two concrete examples (generalised linear
programming and metric temporal reasoning) and obtain full complexity
dichotomies in both cases.

1 Introduction

Let Γ = (D;R1, R2, . . . ) be a relational structure1 over the set D. The constraint
satisfaction problem for Γ (CSP(Γ ) in short) is the computational problem to
decide whether a given primitive positive sentence Φ involving relation symbols
for the relations in Γ is true in Γ . A first-order formula is called primitive positive
(pp) if it is of the form

∃x1, . . . , xn.ψ1 ∧ · · · ∧ ψm

where ψi are atomic formulas, i.e., formulas of the form x = y or R(xi1 , . . . , xik)
with R the relation symbol for a k-ary relation from Γ . We call such a formula
a pp-formula. The conjuncts in a pp-formula Φ are also called the constraints of
Φ, and to emphasise the connection between the structure Γ and the constraint
satisfaction problem, we typically refer to Γ as a constraint language.

1 Our terminology is standard; all notions that are not introduced in the paper can
be found in standard text books, e.g., in [11].
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By choosing an appropriate constraint language Γ , many computational prob-
lems that have been studied in the literature can be formulated as CSP(Γ )
(see e.g. [2, 4]). It often turns out that the structure Γ can be chosen to be
ω-categorical, i.e., the set of all first-order sentences that is true in the struc-
ture has a unique countable model (up to isomorphism). The linear order of
the rationals (Q, <) is a well-known example of an ω-categorical structure. Ev-
ery finite domain CSP can be formulated within an ω-categorical structure.
The condition of ω-categoricity is interesting for constraint satisfaction because
the so-called universal-algebraic approach, which is intensively studied for fi-
nite constraint languages, applies—at least in principle—also for ω-categorical
structures (see e.g. [3] for an application of the universal-algebraic approach
to infinite-domain CSPs). However, many interesting and common structures
are not ω-categorical. In this paper we demonstrate that methods based on
logical definability can sometimes be used for studying the complexity of such
languages.

Our prime example will be a class of constraint languages that contains the
constraint language of linear program feasibility, i.e., the problem to decide
whether a given system of linear inequalities with rational coefficients has a
real solution. Let LI be an enumeration of the linear relations L(x1, . . . , xn) de-
fined by inequalities of the form c1x1 + . . .+ cnxn ≤ c0 or equalities of the form
c1x1 + . . . + cnxn = c0 where n > 0 and c0, c1, . . . , cn ∈ Q.

A relation is called semilinear if it has a first-order definition in the structure
(R;LI). We are mainly concerned with constraint languages that are expansions
of (R;LI) by semilinear relations. The set of semilinear relations is a rich set.
For example, every relation R ⊆ Xk where X is a finite subset of Q is semilinear;
thus, every finitary relation on a finite set can be viewed as a semilinear relation.
Piecewise linear functions constitute another example: a function f : R → R is
piecewise linear if R can be partitioned into finitely many subintervals I1, . . . , In
such that on each subinterval Ij , f is a linear function. A well-known concrete
example is the absolute value function | · |. If every interval Ij = [aj , bj] satisfies
aj , bj ∈ Q, then relations like {(x, f(x)) | x ∈ R} and {(x, y, z) ∈ R3 | x =
f(y − z)} are semilinear.

We prove the following result.

Theorem 1. Let Γ = (R;LI,R1, R2, . . .) be a constraint language such that
R1, R2, . . . are semilinear relations. Then, either each Ri has a quantifier-free
Horn definition in (R;LI) and CSP(Γ ) is in P, or CSP(Γ ) is NP-complete.

A first-order formula in conjunctive normal form is Horn if and only if each clause
contains at most one positive literal. Throughout this paper, the negative literals
are of the kind ¬(c1x1 + · · ·+ cnxn = c0) and all other literals are considered to
be positive. We typically write e1 �= e2 instead of literals of the form ¬(e1 = e2),
and e1 > e2 instead of literals of the form ¬(e1 ≤ e2).

Thus, Theorem 1 tells us that the borderline between easy and hard problems
can be precisely characterised in terms of logical definability. We use Theorem 1
for proving complete complexity dichotomies for two additional problems:
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Generalised linear programming. Linear programming can be viewed as optimis-
ing a linear function over the feasible points of an instance of CSP(R;LI). This
view suggests a generalisation: optimise a linear function over the feasible points
of an instance of CSP(Γ ) where Γ is a first-order expansion of (R;LI). We com-
pletely classify the complexity of this problem and present an algorithm for the
tractable cases.

Temporal reasoning with metric constraints. A temporal constraint language Γ
is a structure (R;R1, R2, . . .) with a first-order definition in (R;<). Many com-
putational problems in artificial intelligence and scheduling can be modelled as
constraint satisfaction problems for temporal constraint languages. Often, these
languages are extended with some mechanism for expressing metric time, i.e.,
the ability to assign numerical values to variables and performing some kind of
arithmetic calculations [6]. We study metric temporal languages Γ that satisfy
the following restrictions: (1) All relations in Γ are semilinear, (2) Γ contains the
relation ≤, (3) Γ contains addition x = y + z, and (4) Γ contains the constant
1. It has been observed that almost every polynomial-time solvable metric tem-
poral reasoning problem is a subclass of the so-called Horn-DLR class [13]. Our
result shows that this is not a coincidence: whenever a metric temporal language
Γ satisfies conditions (1)-(4) and is not a subclass of Horn-DLR, then CSP(Γ )
is NP-hard.

2 Preliminaries

We will be working with infinite constraint languages so it is necessary to decide
how to represent relations. We represent semilinear relations by quantifier-free
first-order formulas over LI in conjunctive normal form. The relations from
LI are represented by their rational coefficients, which are quotients of integers
written in binary. Lemma 2 will justify that we restrict ourselves to quantifier-free
formulas. This representation allows us, for instance, to easily (and in polynomial
time) check whether a given rational tuple is a member of a relation or not.

We say that a relation R(x1, . . . , xk) is pp-definable in Γ if there exists a
quantifier pp-formula φ over Γ such that (x1, . . . , xn) ∈ R iff φ(x1, . . . , xn) holds
in Γ . The following simple but important result explains the importance of pp-
definability for the constraint satisfaction problem.

Lemma 1 (Jeavons et al. [12]). Let Γ = (D;R1, R2, . . . ) be a relational
structure, and let R be pp-definable over Γ . Then CSP(D;R,R1, R2, . . . ) is
polynomial-time equivalent to CSP(Γ ).

Lemma 1 will be used extensively in the sequel and we will not make explicit
references to it. We say that a relation R is quantifier-free Horn definable over
(R;LI) if there exists a quantifier-free Horn formula φ such that R(x1, . . . , xn) ≡
φ(x1, . . . , xn) in (R;LI). It is important to note that Lemma 1 does not hold
in general if we replace ‘primitive positive definable’ with ‘quantifier-free Horn
definable’. The relations that are quantifier-free Horn definable in (R;LI) have
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been given various names in the literature; Horn-DLRs and Horn constraints are
two examples [13, 14].

Theorem 2. Let Γ be a structure whose relations are quantifier-free Horn de-
finable in (R;LI). Then CSP(Γ ) is in P, and for every satisfiable instance Φ of
CSP(Γ ) over k variables, the solution set S to Φ satisfies

S∗ = {x ∈ Rk | Ax ≥ α,Bx �= β} ⊆ S ⊆ {x ∈ Rk | Ax ≥ α} = S∗

where S∗ and S∗ have the same dimension in Rk. Furthermore, the matrix A
and the vector α can be computed in polynomial time.

Proof. The complexity result is proved in, for instance, [5, 13, 14]. The result
concerning the solution set follows from the algorithm presented in [13]; further-
more, this algorithm explicitly constructs A and α. ��
A structure Γ admits quantifier elimination if every first-order formula is over
Γ equivalent to a quantifier free formula; see [15] for an introduction to this
concept. The following result has been proved by, for instance, Ferrante and
Rackoff [7].

Lemma 2. (R;LI) admits quantifier elimination.

3 First-Order Expansions of Linear Program Feasibility

We will now prove Theorem 1. Let R(x1, . . . , xk) be a relation over R. The
relation R is convex if it defines a convex subset of Rk, and R excludes an
interval if there are p, q ∈ R and reals 0 < δ1 < δ2 < 1 such that p+(q−p)y �∈ R
whenever δ1 ≤ y ≤ δ2. Note that we can assume that δ1, δ2 are rational numbers.

If a unary relation is ‘far’ from being convex in the sense that it excludes an in-
terval, then it is useful for proving NP-hardness via reductions from CSP({0, 1},
R1/3) where R1/3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. This problem is equivalent to
the NP-complete variant of One-In-Three 3Sat where no clause contains a
negated literal [9, LO4].

Lemma 3. Let T ⊆ R be a unary relation. If T excludes an interval, then
CSP(R;LI, T ) is NP-hard.

Proof. We know that there are points p, q ∈ T and rational numbers 0 < δ1 <
δ2 < 1 such that p + (q − p)y �∈ T whenever δ1 ≤ y ≤ δ2. Assume without loss
of generality that δ1 = 1/5, δ2 = 4/5 (otherwise, choose p, q ∈ T appropriately).
Define

U(y) ≡ ∃z. z = p + (q − p)y ∧ T (z) ∧ 0 ≤ y ≤ 1.

Observe that U is pp-definable in (R;LI, T ). We can now show NP-hardness
by a polynomial-time reduction from CSP({0, 1}, R1/3). Let φ be an arbitrary
instance of this problem. For each variable v appearing in φ, introduce the con-
straint U(v). For each constraint R1/3(vi, vj , vk) in φ, introduce the constraints
vi + vj + vk ≥ 3/5, vi + vj + vk ≤ 8/5. One can see that the resulting instance
has a solution if and only if φ has a solution. ��



Semilinear Program Feasibility 83

We continue by presenting a well-known result in convex geometry. It is one
of many versions of the so-called Hahn-Banach separation theorem which is a
consequence of the Hahn-Banach theorem in functional analysis [10, 1]. Given
two non-empty subsets A,B of Rk, we say that a hyperplane H separates A and
B if A is in one and B is in the other of the two closed halfspaces determined
by H .

Theorem 3. Let A and B be nonempty, convex, and disjoint subsets of Rk.
Then, there is a hyperplane separating A and B.

The dimension of a subset S of Rn is the largest integer d such that S contains
a d-dimensional sphere (of some radius ε > 0).

Corollary 1. Let A and B be nonempty, convex, and disjoint subsets of Rk. If
A is open and has dimension k, then there exists a separating hyperplane H such
that A ∩H = ∅.

Proof. By Theorem 3, there exists a hyperplane H that separates A and B.
Since A has full dimension, it cannot be the case that A ⊆ H . If A ∩ H �= ∅,
then H contains some interior points of A but not all of them. The fact that A
is open implies that none of the closed halfspaces determined by H contains all
of A. This contradicts that H separates A and B. ��

We can now prove the main lemma.

Lemma 4. Let R be a semilinear relation of arity k. Then, either

1. a unary relation U that excludes an interval can be pp-defined in (R;LI,R);
or

2. R is quantifier-free Horn definable in (R;LI).

Proof. Suppose that R cannot be quantifier-free Horn defined in (R;LI). Choose
a quantifier-free CNF formula φ = C1 ∧ . . . ∧Cn that defines R (such a formula
exists by Lemma 2). Without loss of generality, choose φ such that

1. φ contains no literals of the type aTx < b or aTx = b. These can be removed
by using the following equivalences:

(aTx < b ∨ C1 ∨ . . . ∨ Cm) ⇔

(aTx ≤ b ∨ C1 ∨ . . . ∨ Cm) ∧ (aTx �= b ∨ C1 ∨ . . . ∨ Cm)

and
(aTx = b ∨ C1 ∨ . . . ∨ Cm) ⇔

(aTx ≤ b ∨ C1 ∨ . . . ∨ Cm) ∧ (aTx ≥ b ∨ C1 ∨ . . . ∨ Cm)

2. φ contains the minimum number of non-Horn clauses (among the formulas
satisfying 1.)
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Now, consider a non-Horn clause

C = (P1 ∨ . . . ∨ Pm ∨N1 ∨ . . . ∨Np)

in φ where P1, . . . , Pm are positive literals and N1, . . . , Np are negative literals.
Let P = {x ∈ Rk | x satisfies (P1 ∨ . . . ∨ Pm)} and note that P is a closed k-
dimensional subset of Rk. We can without loss of generality assume that P �= Rk

since, otherwise, we could remove the clause and obtain an equivalent formula
with a smaller number of non-Horn clauses.

Define the formula ψ = φ \ C, let S′ be the set of points that satisfy ψ, and
let S = S′ ∩ P . For any set X ⊆ Rk, we define the complement Xc such that
Xc = Rk \ X . Note that P c is a nonempty open set and it is convex (since it
is an intersection of convex sets). Furthermore, the dimension of P c is k since
P c = (

⋃m
i=1 Pi)

c =
⋂m
i=1 P

c
i where P ci , 1 ≤ i ≤ m, is an open halfspace with

dimension k. By combining these three properties (openness, full dimension, and
convexity), the following is easy to see:

(*) Let p, q ∈ S and let L be the line {py + q(1− y) | 0 ≤ y ≤ 1}. If L ∩ P c �= ∅,
then the line L ∩ P c has non-zero length.

We consider three different cases:

1. S = ∅. Then, every positive literal can be removed from C which leads to a
contradiction since the number of non-Horn clauses decreases.

2. S �= ∅ and there are points p = (p1, . . . , pk), q = (q1, . . . , qk) ∈ S such that
the line L = {py + q(1 − y) | 0 ≤ y ≤ 1} satisfies L ∩ P c �= ∅. Define the
unary relation U such that

U(y) ≡ ∃z1, . . . , zk.

k∧
i=1

zi = piy + qi(1− y) ∧∧
l∈{N1,...,Np}

¬l ∧ R(z1, . . . , zk) ∧ 0 ≤ y ≤ 1

Note that U is pp-definable in (R;LI,R). We see that U is nonempty by
the choice of p and q. By (*), L ∩ P c has non-zero length so we can chose
0 < a < b < 1 such that py+q(1−y) ∈ L∩P c whenever y ∈ [a, b]. Arbitrarily
choose d such that a ≤ d ≤ b and consider U(d). The existentially quantified
vector z = (z1, . . . , zk) is forced to equal pd + q(1 − d) and this point is in
L∩P c. Now, z ∈ L∩P c implies that z �∈ P , so z does not satisfy the formula∧
l∈{N1,...,Np} ¬l ∧ R(z1, . . . , zk) (recall that P corresponds to the points

satisfying (P1 ∨ . . . ∨ Pm)). Thus, d �∈ U and U excludes an interval since d
can be arbitrarily chosen in the interval [a, b].

3. S �= ∅ and for every pair of points p, q ∈ S, the line L from p to q satisfies
L ∩ P c = ∅. Define T = {sy + s′(1 − y) | s, s′ ∈ S and 0 ≤ y ≤ 1}. This
set is convex, S ⊆ T , and T ∩ P c = ∅. Apply Corollary 1 on the convex sets
P c and T : there exists a separating hyperplane H = {x ∈ Rk | eTx = f}
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such that P c ∩ H = ∅. Consequently, T = T ∩ {x ∈ Rk | eTx ≤ f} or
T = T ∩ {x ∈ Rk | eTx ≥ f}; let Ĥ denote the closed halfspace that gives
equality.
We claim that S′ ∩ P = S′ ∩ Ĥ ; this implies that the positive literals
P1, . . . , Pm in C can be replaced by a single literal l that equals either
eTx ≤ f or eTx ≥ f . This is a contradiction since the number of non-Horn
clauses decreases.

S′ ∩ P ⊆ S′ ∩ Ĥ : T = T ∩ Ĥ and S ⊆ T so S = S ∩ Ĥ, too. Since S ⊆ S′, it
follows that S′ ∩ P = S = S ∩ Ĥ ⊆ S′ ∩ Ĥ .

S′ ∩ Ĥ ⊆ S′ ∩ P : Suppose that Ĥ �⊆ P . Then, there exists an x ∈ P c such
that x ∈ Ĥ . We know that P c and T are separated by H and that H∩P c = ∅.
Thus, no point in P c is in Ĥ by the very choice of Ĥ . Hence, Ĥ ⊆ P and
S′ ∩ Ĥ ⊆ S′ ∩ P .

These three cases complete the proof. ��

The proof of Theorem 1 leads to equivalent characterizations of semilinear rela-
tions that are quantifier-free Horn definable.

Definition 1. We say that R ⊆ Rn is essentially convex if for all p, q ∈ R there
are only finitely many points on the line between p and q that are not in R.

Corollary 2. Let R be a semilinear relation. Then the following are equivalent.

1. R is Horn-definable;
2. R is essentially convex;
3. R does not exclude an interval.

Proof. For the implication from 1 to 2, assume that R is Horn-definable, and
let p, q ∈ R. For each clause C from a Horn definition of R with k disequality
literals, at most k points on the line between p and q do not satisfy C (since if
some point does not satisfy an inequality from C, then also p or q do not satisfy
the inequality). Hence, the number of points on the line between p and q that
are not contained in R is bounded by the total number of disequality literals in
a Horn definition of R, and finite.

The implication from 2 to 3 is immediate. In the previous Theorem we have
shown that 3 implies 1, which proves the statement. ��

Proof (of Theorem 1). If all relations of Γ are Horn-definable, then CSP(Γ ) can
be solved in polynomial time (Theorem 2). Otherwise, if there is a relation R
from Γ that is not Horn definable, then Lemma 4 shows that R excludes an
interval, and NP-hardness of CSP(Γ ) follows by Lemma 3.

So we only have to show that CSP(Γ ) is in NP. Let Φ be an arbitrary in-
stance of CSP(Γ ). Recall that we represent semilinear relations in the input by
quantifier-free conjunctive normal form formulas over LI. One can now non-
deterministically guess one literal from each clause and verify – in polynomial-
time by Theorem 2 – that all the selected literals are simultaneously satisfiable.

��
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4 Applications

4.1 Generalised Linear Programming

The optimisation problem linear programming (LP) is defined in the following
way: max{cTx | Ax ≤ b} where x is a variable vector taking values from Rk and
A, b, c are matrices and vectors (of suitable dimensions) with entries in Q.

We generalise LP as follows: let Γ be a set of semilinear relations and consider
the problem max{cTx | Φ(x)} where Φ is a quantifier-free pp-formula over Γ .
Denote this problem GLP(Γ ). It is easy to see that LP is exactly the problem
GLP(R;LI). These optimisation problems may have unbounded solutions and we
let the objective value be ∞ if this is the case. If a given optimisation instance
has no solution, i.e., if {cTx | Ax ≤ b} = ∅ or {cTx | Φ(x)} = ∅, then the
objective value is defined to be −∞.

Theorem 4. Let Γ = (R;LI,R1, R2, . . . } be a constraint language such that
R1, R2, . . . are semilinear. Then, either each Ri has a quantifier-free Horn defi-
nition in (R;LI) and GLP(Γ ) is in P, or GLP(Γ ) is NP-hard.

Proof. If there is an Ri that does not have a quantifier-free Horn definition in
(R;LI), then CSP(R;LI,Ri) is NP-hard by Theorem 1 and GLP(Γ ) is NP-hard,
too.

Assume instead that each Ri is quantifier-free Horn definable in (R;LI). Let
(c, Φ) denote an arbitrary instance of GLP(Γ ) over variables x1, . . . , xk. First
check whether the instance ∃x.Φ(x) of CSP(Γ ) is true or not; if not, then return
−∞ and stop. Otherwise, we know from Theorem 2 that the solution set S to
Φ satisfies

S∗ = {x ∈ Rk | Ax ≤ α,Bx �= β} ⊆ S ⊆ {x ∈ Rk | Ax ≤ α} = S∗

where S∗ and S∗ have the same dimension in Rk and A,α can be computed
in polynomial time. Now maximise cTx over Ax ≤ α and let M denote the
optimal value; this is a linear program so it can be solved in polynomial time.
If M = ∞, we return ∞. Otherwise, it is known that the optimum is a rational
number. Check whether the instance Φ ∧ cTx = M has a solution. If it has,
then the optimal value of (c, Φ) is M . Otherwise, S equals {x ∈ Rk | Ax ≤ α}
with a finite number of subsets of hyperplanes being removed, and the removed
points include the points where cTx attains its maximum. In this case, there
exists a δ > 0 such that for every 0 < ε < δ, (c, Φ) has a solution x such that
cTx = M − ε. ��

4.2 Temporal Constraint Satisfaction

A temporal constraint language Γ is a structure (R;R1, R2, . . .) with a first-
order definition in (R;<). The complexity of every temporal constraint language
has been determined by Bodirsky & Kara [3]. Fundamental and well-known
temporal constraint lanugages are PA = {≤, <, �=,=} (which is often called the
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point algebra in the literature [6]) and Ord-Horn [16] (which is a subset of the
quantifier-free Horn definable relations over (R;≤)).

Temporal constraint languages are often extended with some mechanism for
expressing metric time, i.e. the ability to assign numerical values to variables and
performing restricted arithmetic calculations. It is fair to say that the main bulk
of languages for metric temporal reasoning are semilinear, cf. [6,13]. Inspired by
this fact, we will completely classify the complexity of metric temporal constraint
languages Γ that

1. are semilinear,
2. contain the temporal relation ≤,
3. allow basic addition x + y = z, and
4. contain the singleton relation {1}.

We first note that the equality relations in LI are pp-definable in (R; +, 1) with
small pp-formulas; the proof is straightforward but tedious, using the fact that
by iterated doubling we can produce a primitive positive definition of a number
n that has logarithmic size in n.

Lemma 5. The relation {(x1, . . . , xl) | n1x1 + . . . + nlxl = n0} is pp-definable
with a formula of length polynomial in the representation size of n0,n1, . . . ,nl
in (R; {(x, y, z) | x + y = z}, 1) for arbitrary n0, . . . ,nl ∈ Q.

Proof. Observe that we can assume that n0, . . . ,nl are integers, because we can
multiply the equality n1x1 + · · · + nlxl = n0 by the least common multiple of
the denominators of n0,n1, . . . ,nl and obtain an equivalent equation. Also note
that x = 0 is pp-definable by x+ x = x, and we therefore freely use the terms 0
and 1 in pp-definitions. Similarly, x = −1 is pp-definable by x + 1 = 0.

The proof is by induction on l. We first show how to express equations of the
form n1x1 + n2x2 = x3. By setting x2 to −1 and x3 to 0, this will solve the
case l = 1. We later complete the induction. For positive n1,n2, this formula is
equivalent to

∃u1, . . . , un1 , v1, . . . , vn2 . u1 = x1 ∧
n1−1∧
i=1

x1 + ui = ui+1

∧ v1 = x2 ∧
n2−1∧
i=1

x2 + vi = vi+1

∧ un1 + vn2 ≤ x3 .

However, this formula is exponential in the representation size of n1 and n2, and
hence cannot be used in polynomial-time reductions.

Let bit(n, i) denote the i-th lowest bit in the binary representation of an
integer n and 1 ≤ i ≤ �log n�+ 1. Since x = 0 can be pp-defined by x + x = x,
the formula x = bit(n, i) is (for fixed n, i) pp-definable as well, and we will use
the term 0 and bit(n, i) freely in other pp-definitions.
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The following formula is equivalent to the previous one

∃ā, b̄, c̄, d̄. a1 = x1 ∧
�log n1�∧
i=1

ai + ai = ai+1 ∧

b1 = x2 ∧
�log n2�∧
i=1

bi + bi = bi+1 ∧

c1 = bit(n1, 1) ∧
�log n1�∧
i=1

bit(n1, i + 1)ai + ci = ci+1 ∧

d1 = bit(n2, 1) ∧
�log n2�∧
i=1

bit(n2, i + 1)bi + di = di+1 ∧

c�logn1�+1 + d�log n2�+1 ≤ x3 .

and has polynomial length in the representation size of n1 and n2. If l = 2,
and n1 = 0 or n2 = 0, then the proof is similar. If n1 and n2 have different
signs, we replace the conjunct c�logn1�+1 + d�log n0�+1 = e in the formula above
appropriately by c�log n1�+1 + e = d�log n0�+1 or d�log n0�+1 + x3 = c�logn1�+1. If
both n1 and n2 are negative, then we use the pp-definition ∃x′3.−n1x1−n2x2 =
x′3 ∧ x′3 + x3 = 0.

Equalities of the form n1x1 + n2x2 = n0 can now be defined by ∃x3.n1x1 +
n2x2 = x3 ∧ x3 = n0. Now suppose that l > 2. By the inductive assumption,
there is a pp-definition φ1 for n1x1 + u = n0 and a pp-definition φ2 for n2x2 +
. . .nlxl = u. Then ∃u.φ1 ∧ φ2 is a pp-definition for n1x1 + · · · + nlxl = n0.
It is straightforward to verify that the pp-definition has polynomial size in the
representation size of this equality. ��

Given a linear equality L(x1, . . . , xk) ≡ c1x1 + . . . + clxl = c0, let φL(x1,...,xk)

denote the pp-definition of L(x1, . . . , xk) in (R; {(x, y, z) | x+y = z}, 1) obtained
in Lemma 5. The complete classification is now a consequence of Theorem 1.

Theorem 5. Let Γ be a constraint language whose relations are semilinear and
that contains the relations {(x, y, z) | x+ y = z}, {1}, and ≤. Then, either each
relation R from Γ has a quantifier-free Horn definition in (R;LI) and CSP(Γ )
is in P, or CSP(Γ ) is NP-hard.

Proof. Assume that a relation R from Γ is not quantifier-free Horn definable
in (R;LI); this implies that CSP(R;LI,R) is NP-complete by Theorem 1. We
show that CSP(Γ ) is NP-complete, too. Let Φ be an arbitrary instance of
CSP(R;LI,R). Construct an instance Ψ of CSP(Γ ) by replacing each occurrence
of a linear equality constraint L by φL, and each occurrence of a linear inequality
constraint L = (c1x1 + . . . clxl ≤ c0) in φ by a φc1x1+···+clxl−y=0 ∧ y ≤ c; use
fresh variables for y and all existentially quantified variables introduced by φL.
The resulting formula Ψ can be re-written as a primitive positive sentence over
Γ without increasing its length and, by Lemma 5, the length of Ψ is polynomial
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in the length of Φ. Since Φ is satisfiable if and only if Ψ is satisfiable, CSP(Γ ) is
NP-hard. Clearly, the problem is in NP. If every R ∈ Γ is quantifier-free Horn
definable in (R;LI), then CSP(Γ ) is in P by Theorem 2. ��

We have seen that (R;LI) is primitive positive definable in (R; +, 1,≤). This
shows that linear program feasibility can, up to primitive positive definability,
be cast as a CSP with a finite constraint language; this is interesting because for
such constraint languages, the computational complexity of the CSP does not
depend on the representation of the relations in the input.

5 Conclusions

We have presented complexity classifications for certain constraint satisfaction
problems, and the results are to a large extent based on logical methods. We feel
that the results and ideas presented in this paper can be extended in many differ-
ent directions. Hence, it seems worthwhile to provide some concrete suggestions
for future work. An interesting example is the class of structures that are definable
in Presburger arithmetics [17], i.e., structures that are first-order definable over
the integers with addition (Z; +). Presburger arithmetics is important for many
different reasons: one is, of course, that (Z; +) is a very natural and fundamental
class with a long history and many links to other branches of mathematics. An-
other reason is that the the problem todecidewhether a givenfirst-order sentence is
true in (Z; +) is superexponential [8] (and thus provably worse than NP-complete)
which makes the search for computationally easy fragments worthwhile. One may
object that Presburger arithmetics do not admit quantifier elimination and this
might make the application of our methods more difficult. However, slightly ex-
panded structures do have quantifier elimination: one example is (Z; +, {Pi | i >
1}, 0,±1,±2, ...) where Pn = {x ∈ Z | x is divisible by n} [15].

Adapting the universal-algebraic approach to cover the results of the paper
would be another interesting line of research. We have already mentioned that the
structures studied in this paper are not ω-categorical so this adaptation is non-
trivial. Such an algebraic approach may be used for studying other structures
that are not ω-categorical: two families of structures that come to mind are
torsion-free divisible abelian groups (such as (R; +)) and algebraically closed
fields (such as (C; +, ∗)). They share the property of being categorical in all
uncountable cardinals (cf. [15] and [18]) which possibly simplifies the study of
them.
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Abstract. We present a case study of a formal verification of a numeri-
cal program that computes the discretization of a simple partial differen-
tial equation. Bounding the rounding error was tricky as the usual idea,
that is to bound the absolute value of the error at each step, fails. Our
idea is to find out a precise analytical expression that cancels with itself
at the next step, and to formally prove the correctness of this approach.

1 Introduction

Given a program using floating-point arithmetic, it is pretty hard to know the
final rounding error of the result. We are interested in proving numerical analysis
programs with a very high level of guarantee. We present here a simple example
of scientific computation. The basic property is that each floating-point result is
a correct rounding of the exact real value: using the default rounding mode, the
result is the floating-point number that is closest to the real value. This property
is defined in the IEEE-754 standard [1] and all modern processors comply with it.

Nevertheless, even if each computation is correct, i.e. the best possible, there
is no guarantee that the final result after many such computations is still ac-
curate. There exist several methods for bounding the final error of a program,
including interval arithmetic, forward and backward analysis [2,3]. These well-
known methods may or may not give useful results. However, when they state
a bad rounding error, it does not always imply the error is huge. It is a known
fact that floating-point errors may cancel [3] but it is very difficult to handle.
We use here a method that displays these cancellations and takes advantage of
them. This idea of exhibiting floating-point errors cancellation has been used
by Even, Seidel and Ferguson in [4]. This article’s technique is also linked to
static analysis [5], and provides more precision and more readability at the cost
of less genericity. This technique is also linked to expansions [6] as the error is
somewhat “computed” and used.

To increase the trust in our results, we use deductive formal methods: we
machine-check all proofs using the Coq proof checker [7]. We use a high-level
formalization of floating-point numbers [8,9]. We use the Why platform for ver-
ification of C programs, that includes the Caduceus tool [10,11]. The Caduceus
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tool allows the user to precisely specify a C program. Each function is anno-
tated with pre-conditions (what the function requires from the inputs) and
post-conditions (what the function ensures at its end). The annotations and re-
quirements (pointer dereferencing for example) are then transformed into proof
obligations that have to be solved by proof assistants or decision procedures.

The Caduceus tool has floating-point annotations [12] that allow to spec-
ify numerical programs. More precisely, each floating-point number has a ghost
value called exact which does not suffer from rounding. This real value is then
computed with the same operations as the float value except that the ghost
operation is exact. The macro round error(f) is then used for |f − exact(f)|.
More, each floating-point number has another ghost value called model that the
user may set and which does not suffer from rounding. It is used to represent the
ideal result of the function (computed with infinite sums, no discretization. . . ).
For example, to compute a naive exponential by the polynomial evaluation of
1+x+x*x/2, the corresponding exact value is 1+x+ x2

2 (with mathematical exact
operations) while the model value is exp(x).

Inside the annotations, all computations are exact. For example, this program
takes x as input and multiplies it by 2.

/*@ requires |x| < 2^^(1022)

@ ensures \result =2*x

@ && \round_error(\ result )=2*\ round_error(x) */

double multiply2(double x) { return 2*x; }

This function requires x to be small enough so that the multiplication does not
overflow. It ensures that the result, denoted by the macro \result is equal to
the mathematical multiplication of x by 2. This is correct as the radix is 2. More,
the rounding error of the result is twice the rounding error of the input.

Section 2 describes a first simplified example. Section 3 tackles the bounding
of the rounding error of the discretization of the spread of acoustic waves on a
rope. Section 4 gives conclusive remarks and perspectives.

2 First Example: Linear Recurrence of Order 2

2.1 The Problem

We first present a linear recurrence of order 2. For some initial values u0 and u1,
we compute the following sequence:

un+1 = 2× un − un−1.

This may seem a silly idea as this sequence can be solved. Indeed, we know
that, mathematically, un = u0 + (u1 − u0) × n. Nevertheless, this example is
representative of the analytical error idea and corresponds rather nicely to our
real problem (Section 3 with a = 0).
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To compute uN , we assume that (ui) is bounded by 1: for all i ≤ N , |ui| ≤ 1.
This requires u0 and u1 to be small and close enough one to another. This
noteworthy limitation still corresponds to similar properties in our real program.
Without this property, the error bound would be multiplied by max0≤i≤N |ui|.

We use this C program that we will later annotate:

double comput_seq(double u0, double u1 , int N) {
int i;
double uprev , ucur , tmp;
uprev=u0; ucur =u1;

for (i=2; i<=N; i++) {
tmp = 2*ucur -uprev;
uprev = ucur;
ucur = tmp;

}
return ucur;

}

We use IEEE double precision floating-point numbers [1] with a 53-bits long
mantissa. So, if f is the rounding in double of a real x, then |f − x| ≤ 2−53|f |.

As the exact value of |un| is bounded by 1, if the errors of un−1 and un−2 are
not too big, then the error in the subtraction is less than 2−53. A natural error
analysis gives: let Ei = ui − exact(ui), then |Ei+1| ≤ 2 × |Ei| + |Ei−1| + 2−53.
Assuming u0 and u1 are error-free, this gives us that |EN | is roughly equal to
2N × 2−53. This error is very pessimistic and should be improved upon.

2.2 The Analytical Error

The idea is that the error should be signed. Taking its absolute value can only
lead to an exponential error. By keeping its sign, we have that:

Ei+1 = 2× Ei − Ei−1 + εi+1 with |εi+1| ≤ 2−53.

The key point is that we have now a subtraction between 2×Ei and Ei−1. At
each step, the error will only be added a small value, therefore Ei−1 is close to
Ei, so that 2×Ei−Ei−1 ≈ Ei. This allows us to get rid of the exponential in the
error bound. We now assume that u0 and u1 are not exact anymore. Of course,
the initial errors must not be too big: we assume the computed ui do not exceed
2. More precisely, the annotations of the C function are given in Figure 1.

Theorem 1. If the pre-conditions of Figure 1 are satisfied, then the post-con-
ditions of Figure 1 hold.

Proof. This proof deeply relies on the definition of the predicate mkp which is
a loop invariant inductively proved correct at each iteration update. The idea
is to keep track of both the exact value and the exact floating-point error of up
and uc in order to bound the final error.
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/*@ requires 2 <= N <= 2^^25-1 &&

@ \round_error (u0) + \round_error (u1) <= 1./(6*N) &&

@ \forall int k; 0 <= k <= N =>

@ |\ exact(u0)+k*(\ exact(u1)-\exact(u0))| <= 1

@ ensures

@ \exact(\ result )==\ exact(u0)+N*(\ exact(u1)-\exact(u0))

@ && \round_error (\result) <= N*(N+1)/2.*2^^( -53)

@ + N*(\ round_error (u0)+\ round_error (u1))

@*/

double comput_seq (double u0, double u1 , int N) { ...

Fig. 1. Annotated C program for computing the linear recurrence of order 2

The predicate mkp is a property linking the inputs u0 and u1 and the state
of the program: the number of iterations n and the current un = ucur = uc and
un−1 = uprev = up. For a given float f , let us denote by δ(f) = f − exact(f).
We have round error(f) = |δ(f)|. We define the predicate mkp by:

mkp(u0, u1, uc, up,n) = ∃ε : N → R,
∀i ∈ N, i ≤ n ⇒ |εi| ≤ 2−53

∧ δ(up) =
∑n−1
j=0 (n− j) εj + (1− n) δ(u0) + n δ(u1)

∧ δ(uc) =
∑n
j=0(n + 1− j) εj + (−n) δ(u0) + (n + 1) δ(u1)

.

As soon as mkp is defined, the proof is rather easy. The exact value of ui is
computed by recurrence. The mkp property is proved the same way. At stage i
of the iteration, we define a new εi which is the signed rounding error committed
during this iteration. As the multiplication is exact, εi = ui− (2× ui−1 − ui−2).
This value can easily be bounded as this is the error of one single subtraction
such that the result is smaller than 2. Therefore |εi| ≤ 2−53 and

|EN | ≤
N(N + 1)

2
2−53 + N × (|δ(u0)|+ |δ(u1)|).

There is left to guarantee that |ui| ≤ 2, we first know, according to our
assumptions, that |exact(ui)| ≤ 1. So there is left to prove that |Ei| ≤ 1. And the
analytical expression of the error shows that the floating-point error is smaller
than i(i + 1) × 2−54 + i (|δ(u0)|+ |δ(u1)|). We therefore need to bound N by
about 225 so that i(i + 1)2−54 is bounded enough. Moreover, we have to bound
|δ(u0)| + |δ(u1)| = round error(u0) + round error(u1) by 1/(6N). These values
are sufficient to guarantee that the error is bounded: |Ei| ≤ 1. ��

3 Second Example: Rope

3.1 The Problem

The piece of code that is studied here is extracted from a numerical code by
F. Clément about acoustic waves [13]: given a rope attached at its two ends, we
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create a wave by applying a force (initializations). The rope then undulates, de-
pending on some mathematical equations that can be discretized and computed.

The mathematical point of view is that look for u from R2 to R, solution of
the differential equation, knowing initial values of u and its derivative for t = 0:

∂2u(x, t)
∂t2

− c2
∂2u(x, t)

∂x2
= 0.

The value u(x, t) gives the position of the rope at the abscissa x and the time
t. It is discretized both in space and time with steps (Δx,Δt). The result is a
matrix p where p[i][k] = pki is the position of the rope at the abscissa i×Δx and
the time k ×Δt. The matrix p is computed by the following piece of code:

for (k=1; k<nk; k++) {
p[0][k+1] = 0.;
for (i=1; i<ni; i++) {

dp = p[i+1][k] - 2.*p[i][k] + p[i-1][k];
p[i][k+1] = 2.*p[i][k] - p[i][k-1] + a*dp;

}
p[ni][k+1] = 0.;

}

This is the main iteration of the program. Before that, p[. . . ][0] and p[. . . ][1]
are set. The value a is a parameter computed previously. It is assumed that
0 < a � 1. Typically, a can be the rounding of 0.9 or 0.99. The value i is
bounded by the ends of the rope 0 and ni. We compute the position of the rope
between the initial time 0 and a maximum time nk.

We assume that (pki ) is bounded. The reason is that (pki ) represents values
that are supposed to be smaller than 1 (as the rope cannot fly away). These
model pki cannot be computed as they would need infinite sums or absence
of discretizations. Nevertheless, the exact(pki ) are near these model values so
we may assume they are smaller that 1.5. We assume nk is small enough to
guarantee that the floating-point values |pki | are smaller than 2. As the error will
be proved proportional to k2, this roughly corresponds to nk ≤ 222.

3.2 The Pyramids

Let εki be the (signed) floating-point error made in the two lines computing pki .
From the preceding program, we set

εk+1
i = pk+1

i − (2pki − pk−1
i + exact(a)× (pki+1 − 2pki + pki−1)).

As the |pki | are assumed to be smaller than 2, this value can be bounded. To
prove that, we use simple interval arithmetic: the idea is to bound each step
of the proof. We formally prove that |εk+1

i | ≤ 85 × 2−52 for a reasonable error
bound for a, that is to say |a− exact(a)| ≤ 2−49.

Note that the floating-point error Eki = pki − exact(pki ) is much bigger than
εki as it contains all the preceding rounding errors. More precisely, given the
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definition of pki and the preceding discussion on the dependencies, Eki depends
and only depends on the following εlj :

εki
εk−1
i−1 εk−1

i εk−1
i+1

εk−2
i−2 εk−2

i−1 εk−2
i εk−2

i+1 εk−2
i+2

. ..
...

. . .
ε0
i−k · · · ε0

i · · · ε0
i+k

This unfortunately means both that the error is at least proportional to k2,
and that the analytical error is a pyramidal double summation.

This is quite harder than the previous expression, as a double summation is
more difficult to handle, both on the paper and using a proof assistant. Moreover,
the error is not the sum of all the εlj of the pyramid. They have to be multiplied
by a well-chosen constant depending on their place in the pyramid. This constant
is far from trivial and is mathematically defined in the next subsection.

3.3 The α Sequence

Each εki is to be multiplied by its own constant that gives the significance of each
rounding error in the final error. Therefore, let us introduce α : (Z × Z) → R
defined by

α0
0 = 1 ∀i �= 0, α0

i = 0

α1
−1 = α1

1 = ǎ α1
0 = 2(1− ǎ) ∀i �∈ {−1, 0, 1}, α1

i = 0

αki = ǎ× (αk−1
i−1 + αk−1

i+1 ) + 2(1− ǎ)× αk−1
i − αk−2

i

where ǎ is the exact value of the floating-point value a of the preceding subsection
(so ǎ is typically 0.9 or 0.99). The non-zero terms fit in a pyramid looking like
this for ǎ = 0.9, where lines are indexed by k and columns by i:

1
0.9 0.2 0.9

0.81 0.36 0.66 0.36 0.81
0.729 0.486 0.495 0.58 0.495 0.486 0.729

. .. . . .
0.9k · · · 0.9k

It is easy to prove that αki = αk−i, that αkk = ǎk and that if i < −k or i > k, then
αki = 0. More interesting, the sum “by line” has a surprisingly simple expression:

Lemma 1.
+∞∑
i=−∞

αki = k + 1.
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Proof. We have:
+∞∑
i=−∞

αk+1
i =2ǎ

+∞∑
i=−∞

αki +2(1−ǎ)
+∞∑
i=−∞

αki −
+∞∑
i=−∞

αk−1
i =2

+∞∑
i=−∞

αki −
+∞∑
i=−∞

αk−1
i .

The sum by line verifies the linear recurrence of Section 2. As
∑+∞
i=−∞ α0

i = 1
and

∑+∞
i=−∞ α1

i = 2, we have
∑+∞
i=−∞ αki = k + 1. ��

Lemma 2. αki ≥ 0

Proof. The demonstration was found out by M. Kauers and V. Pillwein.
If we denote by P the Jacobi polynomial, we have

αjn =
n∑
k=j

(
2k

j + k

)(
n + k + 1
2k + 1

)
(−1)j+kak = aj

n−j∑
k=0

P
(2j,0)
k (1− 2a)

Now the conjecture follows directly from the inequality of Askey and Gasper[14],
which asserts that

∑n
k=0 P

(r,0)
k (x) > 0 for r > −1 and −1 < x ≤ 1 (see Theorem

7.4.2 in The Red Book [15]). ��

This assertion is not formally proved as it involves both many complex compu-
tations and very high level mathematics. Moreover, this lemma can be ignored
at the price of a less tight bound (see Section 3.7).

3.4 The Analytical Error

Now, we claim that we can express the exact floating-point error of pki in an
analytical way:

Theorem 2.

Eki = pki − exact(pki ) =
k∑
l=0

l∑
j=−l

αlj ε
k−l
i+j

Proof. The analytical expression exactly fits the computation of pk+1
i and the

sequence αki is defined so that they cancel at the right time.
We prove the expression of Eki by induction on k. We assume the initializations

fulfill this requirement by choosing wisely ε0
i and ε1

i so that this expression is
correct for k = 0 and k = 1. We now assume the expression is correct for k − 1
and k and we prove it for k + 1:

Ek+1
i = pk+1

i − (2pki − pk−1
i + ǎ× (pki+1 − 2pki + pki−1))

+2(1− ǎ)(pki − exact(pki ))
+ǎ(pki+1 − exact(pki+1) + pki−1 − exact(pki−1))

−(pk−1
i − exact(pk−1

i ))
= εk+1

i + 2(1− ǎ)Eki + ǎ(Eki+1 + Eki−1)− Ek−1
i
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After a lot of tiring but stupid computation (mostly summation games), we
have the equality:

Ek+1
i = εk+1

i + 2(1− ǎ)εki + ǎεki+1 + ǎεki−1 +
k−1∑
l=0

⎛⎝2(1− ǎ)αl+1
−l−1ε

k−1−l
i−l−1

+2(1− ǎ)αl+1
l+1ε

k−1−l
i+l+1 + ǎαl+1

l εk−1−l
i+l+1 + ǎαl+1

l+1 εk−1−l
i+l+2

+ǎαl+1
−l εk−1−l

i−l−1 + ǎαl+1
−l−1 εk−1−l

i−l−2 +
l∑

j=−l
αl+2
j εk−1−l

i+j

⎞⎠
We also go the other way:

k+1∑
l=0

l∑
j=−l

αlj ε
k+1−l
i+j = εk+1

i + 2(1− ǎ)εki + ǎεki+1 + ǎεki−1

+
k−1∑
l=0

⎛⎝αl+2
−l−2 εk−1−l

i−l−2 + αl+2
−l−1 εk−1−l

i−l−1 + αl+2
l+1 εk−1−l

i+l+1

+αl+2
l+2 εk−1−l

i+l+2 +
l∑

j=−l
αl+2
j εk−1−l

i+j

⎞⎠
Let us compute Δ = Ek+1

i −
∑k+1
l=0

∑l
j=−l α

l
j ε
k+1−l
i+j to prove this value is 0.

We use the facts that αii = ǎi and that αl−l−1 = αll+1 = 0 and αl+1
−l−2 = αl+1

l+2 = 0.

Δ =
k−1∑
l=0

(
εk−1−l
i+l+2 (ǎαl+1

l+1 − αl+2
l+2) + εk−1−l

i−l−2 (ǎαl+1
−l−1 − αl+2

−l−2)

+εk−1−l
i−l−1 (2(1− ǎ)αl+1

−l−1 + ǎαl+1
−l − αl+2

−l−1)

+ εk−1−l
i+l+1 (2(1− ǎ)αl+1

l+1 + ǎαl+1
l − αl+2

l+1)
)

=
k−1∑
l=0

εk−1−l
i−l−1 (2(1− ǎ)αl+1

−l−1 + ǎαl+1
−l

−(2(1− ǎ)αl+1
−l−1 + ǎαl+1

−l + ǎαl+1
−l−2 − αl−l−1))

+εk−1−l
i+l+1 (2(1− ǎ)αl+1

l+1 + ǎαl+1
l

−(2(1− ǎ)αl+1
l+1 + ǎαl+1

l + ǎαl+1
l+2 − αll+1))

=
k−1∑
l=0

(
εk−1−l
i−l−1 (−ǎαl+1

−l−2 + αl−l−1)) + εk−1−l
i+l+1 (−ǎαl+1

l+2 + αll+1))
)

= 0

This rather complicated expression is proved correct. We can express the precise
floating-point error with this double summation. ��
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3.5 ε Tossing

The previous proof assumes that the double summation is correct for all (i′, k′)
such that k′ < k. This would be correct if there was an infinite set of i where pki
is computed. The i such that pki is computed are the integers between 0 and ni.
At the ends of the range, pki is exact because set to 0.

This is quite unpleasant because this means our fine recurrence fails because
of these extrema. The reason is that Ek0 = 0, so Ek0 is a priori not equal to the
expected double summation, except if we define ε out of the [0; ni] range so that
Ek0 =

∑k
l=0

∑l
j=−l α

l
j ε
k−l
j = 0 and Ekni =

∑k
l=0

∑l
j=−l α

l
j ε
k−l
ni+j = 0.

We defined εki in the preceding Section for all k and for 0 < i < ni as in
Figure 2. We define εk0 = 0. We then define εki for all i, k in the following way:

– If i ≥ 0, then
• if (i÷ ni) mod 2 = 0, then εki = εki mod ni,
• else εki = −εk(ni−i) mod ni,

– else εki = −εk−i.

0 ni

k

0 0

i 0

k

i−ni ni 2ni 3ni

Fig. 2. Initial ε and tossed ε

On the ranges [k× ni; (k + 1)× ni], either we have ε (for even k), or we have
a negated mirrored ε (for odd k). Figure 2 illustrates the way ε is defined on
the whole range. This weird definition allows us to guarantee that the double
summation is exactly zero for i = 0 and i = ni. Indeed, by symmetry of α and
by antisymmetry of ε:

Ek0 =
k∑
l=0

l∑
j=−l

αlj ε
k−l
j =

k∑
l=0

⎛⎝ −1∑
j=−l

αlj ε
k−l
j + αl0 εk−l0 +

l∑
j=1

αlj ε
k−l
j

⎞⎠
=

k∑
l=0

⎛⎝ l∑
j=1

−αlj εk−lj + 0 +
l∑
j=1

αlj ε
k−l
j

⎞⎠ = 0

The same kind of proof holds for Ekni = 0. This proof trick is here only to
pretend that E0 and Eni are equal to 0. They do not imply anything on the
values of the Ei between these bounds.
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3.6 Formal Proof

All the proofs described have been done and machined-checked using Coq. This
allows us to formally verify the annotations of the loop invariant and the final
error bound. The unproved assumptions are solved using axioms.

All the annotated programs and the corresponding Coq developments descri-
bed in this article are available at http://www.lri.fr/~sboldo/gallery.html.
They require libraries about floating-point arithmetic1, and its formalization in
the Why platform 2.

The difficulty did not lie in the floating-point part. The only floating-point
proof is the 85×2−52 one, which is basic interval arithmetic. Nevertheless, it was
not automatized and was 735 lines long. We have since developed automations
that cut down this proof to 10 lines and improved the result to 80× 2−52 [16].

The hard part (apart from finding out the analytical expression) is handling
the double summation expressions. For example, we handle expressions such as
k∑
l=1

l+1∑
j=−l+1

αlj−1 εk−li+j with the following expression:

(sum_f_z (fun l : Z => sum_f_z (fun j : Z
=> alpha a (j - 1) (Zabs_nat l) * eps (i + j) (k - l))
(- l + 1) (l + 1)) 1 k)%R.

This is rather cumbersome to handle, even if it is just following the pen and
paper proof. Note that some automations and nice notations on big operators
have been developed in [17]; they would have helped the proof and its readability.
There is indeed nothing very technical or tricky in this formal proof, except that
the loop invariant must be defined using higher order logic.

3.7 Final Error

The analytical expression of the error is in itself interesting (it may lead to know
which error is dominating the others). Nevertheless, the main interest is to get
a not-too-overestimated final bound for the rounding error.

Theorem 3.∣∣Ek
i

∣∣ =
∣∣pk

i − exact
(
pk

i

)∣∣ ≤ 85× 2−53 × (k + 1)× (k + 2)

Proof. Let us bound the rounding error of pki , that is |Eki |=
∣∣∣∑k

l=0

∑l
j=−l α

l
j ε
k−l
i+j

∣∣∣.
We know that for all j and l, |εlj | ≤ 85 × 2−52 and that

∑+∞
i=−∞ αli = l + 1

by Lemma 1. As the αki are nonnegative, then the error is easily bounded by
85× 2−52 ×

∑k
l=0 l + 1. ��

1 Available at http://lipforge.ens-lyon.fr/www/pff/.
2 Available at http://why.lri.fr/.

http://www.lri.fr/~sboldo/gallery.html
http://lipforge.ens-lyon.fr/www/pff/
http://why.lri.fr/
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As the proof of the non-negativity of the αki is nontrivial and not formally proved,
the validity of this result may be put in question. Nevertheless, the αki are the
discretization of the differential equation with different initializations (and no
rounding error). Therefore, as the |pki | are bounded, the |αki | are bounded the
same way. Therefore we may assume that |αki | ≤ 1.5, and this permits to prove
a bound on |Eki |:

|Eki | =

∣∣∣∣∣∣
k∑
l=0

l∑
j=−l

αljε
k−l
i+j

∣∣∣∣∣∣ ≤
k∑
l=0

l∑
j=−l

∣∣αljεk−li+j

∣∣ ≤ 85× 2−52 ×
k∑
l=0

l∑
j=−l

|αlj |

≤ 85× 2−52 × 3
2

k∑
l=0

l∑
j=−l

1 = 255× 2−53
k∑
l=0

2 l + 1 < 2−45 × (k + 1)2

This is a slightly worse bound than the previous one, but it only relies on the
study of the partial differential equation.

4 Conclusion

In order to prove the program entirely, the only difficulty left is the bounded-
ness of the discretized solution of the partial differential equation: we assumed
that |pki | ≤ 2. As we bound the floating-point error, if nk ≤ 222 or so, it is
indeed enough to bound |exact(pki )| by 1.5. This last fact is due to the consis-
tency of the numerical scheme. This is a part of the global proof of the program,
that demonstrates that this programs computes an approximation of the spread
of acoustic waves on a rope. This mostly tackles Coq formalization of mathe-
matical knowledge and requires many new definitions and lemmas about scalar
product, symmetrical operators, Taylor series, f = O(g), O of functions of two
variables. . . and is therefore out of the scope of this paper.

This technique of the analytical error and precise floating-point error cancel-
lation coming with its formal proof is new. The reason is that it requires very
generic specifications as the loop invariant needs to be logically defined: it states
there exists a function ε that has such and such property. And Caduceus allows
us to express such a high-level property on a C program. We then use Coq as
a back-end to formally check the specifications. This genericity is an advantage
compared to automatic methods that cannot express our loop invariant.

We have shown how the analytical error technique increases the quality of
the final floating-point error on two examples. Instead of the exponential error
we obtain by usual methods, we get a quadratic error: this is indeed a terrific
improvement. But the price is rather high as the user has to find out the exact
expression of the analytical error before proving it. The analytical expression of
the second example took us a few months to be worked out. We did not find any
method to infer the analytical error from the program. We plan to develop meth-
ods to find out automatically analytical expressions or hints towards analytical
expressions in order to spread the use of this technique.
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This technique cannot provide an error bound to all floating-point programs
as it requires a readable expression for the analytical error simple enough to
handle in proofs. We also intend to study this class of programs.
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7. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.

Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004)
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Abstract. We define stochastic timed games, which extend two-player timed
games with probabilities (following a recent approach by Baier et al), and which
extend in a natural way continuous-time Markov decision processes. We focus on
the reachability problem for these games, and ask whether one of the players has
a strategy to ensure that the probability of reaching a fixed set of states is equal to
(or below, resp. above) a certain number r, whatever the second player does. We
show that the problem is undecidable in general, but that it becomes decidable
if we restrict to single-clock 1 1

2
-player games and ask whether the player can

ensure that the probability of reaching the set is =1 (or >0, =0).

1 Introduction

Timed systems. Timed automata [1] are a well-established formalism for the modelling
and analysis of timed systems. A timed automaton is roughly a finite-state automaton
enriched with clocks and clock constraints. This model has been extensively studied,
and several verification tools have been developed. To represent interactive or open
systems, the model of timed games has been proposed [2], where the system interacts
with its environment, and the aim is to build a controller that will guide the system, so
that it never violates its specification, whatever are the actions of the environment.

Adding probabilities to timed automata. In [3,4], a purely probabilistic semantics has
been given to timed automata, in which both delays and discrete choices are random-
ized. The initial motivation of the previous works was not to define a model with
real-time and probabilistic features, but rather to propose an alternative semantics to
timed automata, following the long-running implementability and robustness paradigm
[9,12,17]. The idea is that unlikely behaviours should not interfere with the validity of
a formula in a timed automaton, and the probabilistic semantics has been proposed to
provide a way of measuring the ‘size’ of sets of runs in a timed automaton. In this con-
text, natural model-checking questions have been considered: (i) ‘Does the automaton
almost-surely satisfy a given ω-regular property?’, and (ii) ‘Does the automaton satisfy
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a given ω-regular property with probability at least p?’. The first problem is decidable
for single-clock timed automata [3], but it is open for general timed automata. The
second problem is decidable for a subclass of single-clock timed automata [6].

If we consider probabilities no more as a way of providing an alternative semantics
to timed automata but rather as part of the model itself, the purely stochastic model de-
fined in [3] can be viewed as an extension of continuous-time Markov chains (CTMCs
in short), which have been extensively studied, both by mathematicians [11] and by
computer scientists for their role in verification [5,13].

Stochastic timed games. In real-life systems, pure stochastic models might not be suffi-
cient, and non-determinism and even interaction with an environment might be crucial
features (we might think of communication protocols, where messages can be lost, and
response delays are probabilistic). In the same way continuous-time Markov decision
processes extend CTMCs, we can extend the purely stochastic model of [3] with non-
determinism, and even with interaction.

In this paper, we propose the model of stochastic timed games, which somehow
extend classical timed games with probabilities. In this model, some locations are prob-
abilistic (in some context we could say they represent the nature), and the other lo-
cations belong either to player ♦ or to player �. We call these locations respectively
©-locations, ♦-locations, and �-locations. Following classical terminology in stochas-
tic finite games [8] where the nature is viewed as half a player, those games will be
called 2 1

2 -player timed games, and stochastic timed games with no �-locations will be
called 1 1

2 -player timed games. Finally, the purely stochastic model of [3] can then be
called the 1

2 -player game model (there are no ♦-locations nor �-locations).
We assume a stochastic timed game is given, and we play the game as follows. At

♦-locations, player ♦ chooses the next move (delay and transitions to be taken), at
�-locations, player � chooses the next move, and at ©-locations, the environment is
purely probabilistic (and the probability laws on delays and transitions are given in
the description of the model). Moves for the two players are given by (deterministic)
strategies, and given two strategies λ♦ (for player ♦) and λ� (for player �), the play of
the game is a probability distribution over the set of runs of the timed automaton. Some
natural questions can then be posed:

Qualitative questions: given r ∈ {0, 1}, is there a strategy for player ♦ such that for
every strategy for player �, the probability (under those strategies) of satisfying
some reachability property is equal to (resp. less than, resp. more than. . . ) r?

Quantitative questions: given r ∈ (0, 1), is there a strategy for player ♦ such that for
every strategy for player �, the probability (under those strategies) of satisfying
some reachability property is equal to (resp. no less than, resp. no more than. . . ) r?

On that model, only restricted results have been proven so far, and they only concern the
1
2 -player case: all qualitative questions can be decided (in NLOGSPACE) if we restrict
to single-clock models [3], and under a further restriction on the way probabilities are
assigned to delays, all quantitative questions can be decided [6].

Our contribution. In this paper, we show the two following results:

– For 1 1
2 -player games with a single clock, the qualitative questions ‘equal to 0’ or

‘equal to 1’ can be solved in PTIME, matching the known PTIME-hardness in
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classical Markov decision processes [16], and the qualitative question ‘larger than
0’ can be solved in NLOGSPACE, matching the NLOGSPACE-hardness of the
reachability in finite graphs;

– For 2 1
2 -player games, the quantitative questions are undecidable. We will make

precise in the core of the paper the classes of models for which this result holds.

2 Definitions

Timed automata. We assume the classical notions of clocks, clock valuations and
guards are familiar to the reader [1]. We write G(X) for the set of diagonal-free guards
over set of clocks X . A timed automaton is a tupleA = (L,X,E, I) such that: (i) L is
a finite set of locations, (ii) X is a finite set of clocks, (iii) E ⊆ L× G(X)× 2X × L
is a finite set of edges, and (iv) I : L → G(X) assigns an invariant to each location.
A state s of such a timed automaton is a pair (�, v) ∈ L× (R+)|X| (where v is a clock
valuation). If s = (�, v) is a state and t ∈ R+, we write s + t for the state (�, v + t).
We say that there is a transition (t, e) from state s = (�, v) to state s′ = (�′, v′), we

then write s
t,e−−→ s′, if e = (�, g, Y, �′) ∈ E is such that (i) v + t |= g, (ii) for every

0 ≤ t′ ≤ t, v + t′ |= I(�), (iii) v′ = [Y ← 0](v + t), and (iv) v′ |= I(�′). A run in

A is a finite or infinite sequence � = s0
t1,e1−−−→ s1

t2,e2−−−→ s2 · · · of states and transitions.

An edge e is enabled in state s whenever there is a state s′ such that s
0,e−−→ s′. Given

s a state of A and e an edge, we define I(s, e) = {t ∈ R+ | s t,e−−→ s′ for some s′} and
I(s) =

⋃
e∈E I(s, e). The automaton A is non-blocking if for all states s, I(s) �= ∅.

For the sake of simplicity, we assume that timed automata are non-blocking.

Stochastic timed games. A stochastic timed game is a tuple G = (A, (L♦, L�, L©),
w, μ) where A = (L,X,E, I) is a timed automaton, (L♦, L�, L©) is a partition of L
into the locations controlled by player ♦, � and ©, respectively, w is a function that
assigns to each edge leaving a location in L© a positive (integral) weight, and μ is a
function that assigns to each state s ∈ L© × (R+)|X| a measure over I(s), such that
for all such s, μ(s) satisfies the following requirements:

1. μ(s)(I(s)) = 1;
2. We write χ for the Lebesgue measure. If χ(I(s)) > 0, μ(s) is equivalent1 to χ. Fur-

thermore, the choice of the measures should not be too erratic and those measures
should evolve smoothly when moving states. We thus require that for every a < b,
for every s, there is some ε > 0 such that μ(s+ δ)((a− δ, b− δ)) is lower-bounded
by ε on the set {δ ∈ R+ | (a− δ, b− δ) ⊆ I(s+ δ)}. If χ(I(s)) = 0, the set I(s) is
finite, and μ(s) must be equivalent to the uniform distribution over points of I(s).

Note that these conditions are required, see [3], but can be easily satisfied. For instance,
a timed automaton with uniform distributions on bounded sets and with exponential
distributions on unbounded intervals (with a smoothly varying rate, see [10]) satisfies
these conditions. Also note that we impose no requirements on the representation of the
measures. All our results hold regardless of the representation.

1 Measures χ1 and χ2 are equivalent if for all measurable sets A, χ1(A) = 0 ⇔ χ2(A) = 0.
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In the following, we will say that a timed automaton is equipped with uniform dis-
tributions over delays if for every state s, I(s) is bounded, and μ(s) is the uniform
distribution over I(s). We will say that the automaton is equipped with exponential dis-
tributions over delays whenever, for every s, either I(s) has zero Lebesgue measure,
or I(s) = R+ and for every location �, there is a positive rational number α� such that

μ(s)(I) =
∫
t∈I

α� · e−α�t dt.

Intuitively, in a stochastic game, locations inL♦ (resp.L�) are controlled by player ♦
(resp. player �), whereas locations in L© belong to the environment and behaviours
from those locations are governed by probabilistic laws. Indeed, in these locations, both
delays and discrete moves will be chosen probabilistically: from s, a delay t is chosen
following the probability distribution over delays μ(s); Then, from state s + t an en-
abled edge is selected following a discrete probability distribution that is given in a usual
way with the weight function w: in state s + t, the probability of edge e (if enabled)
is w(e)/ (

∑
e′{w(e′) | e′ enabled in s + t}). This way of probabilizing behaviours in

timed automata has been presented in [4,3], where all locations were supposed to be
probabilistic. We now formalize the stochastic process that is defined by a stochastic
game, when fixing strategies for the two players.

A strategy for player ♦ (resp. player �) is a function that assigns to every finite

run � = (�0, v0)
t1,e1−−−→ . . .

tn,en−−−→ (�n, vn) with �n ∈ L♦ (resp. �n ∈ L�) a pair

(t, e) ∈ R+ × E such that (�n, vn)
t,e−−→ (�, v) for some (�, v). In order to later be

able to measure probabilities of certain sets of runs, we impose the following additional
measurability condition on the strategy λ: for every finite sequence of edges e1, . . . , en
and every state s, the function κ : (t1, . . . , tn) �→ (t, e) such that κ(t1, . . . , tn) = (t, e)
iff λ(s t1,e1−−−→ s1 . . .

tn,en−−−→ sn) = (t, e) is measurable.2

A strategy profile is a pair Λ = (λ♦, λ�) where λ♦ and λ� are strategies for
players ♦ and � respectively. Given a stochastic timed game G, a finite run � end-
ing in a state s0 and a strategy profile Λ = (λ♦, λ�), we define Run(G, �, Λ) (resp.
Runω(G, �, Λ)) to be the set of all finite (resp. infinite) runs generated by λ♦ and λ�
after prefix �, i.e., the set of all runs s0

t1,e1−−−→ s1
t2,e2−−−→ · · · in the underlying automa-

ton satisfying the following condition: if si = (�, v) and � ∈ L♦ (resp. � ∈ L�), then

λ♦ (resp. λ�) returns (ti+1, ei+1) when applied to �
t1,e1−−−→ s1

t2,e2−−−→ . . .
ti,ei−−−→ si.

Moreover, given a finite sequence of edges e1, . . . , en, we define the symbolic path
πΛ(�, e1 . . . en) by

πΛ(�, e1 . . . en) = {�′ ∈ Run(G, �,Λ) | �′ = s0
t1,e1−−−→ · · · tn,en−−−→ sn, ti ∈ R+}

When Λ is clear from the context, we simply write π(�, e1 . . . en).
We extend the definitions of [3] to stochastic games, and define, given a strategy

profile Λ = (λ♦, λ�) and a finite run � ending in s = (�, v), a measure PΛ over
the set Run(G, �, Λ). To that aim, we define PΛ on symbolic paths initiated in � by
PΛ(π(�)) = 1 and then inductively as follows:

2 For the purpose of this definition, we define the measurable space on the domain (and
codomain) as a product space of measurable spaces of its components (where for real numbers
and edges we take the σ-algebra generated by intervals and by set of edges, respectively).
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– If � ∈ L♦ (resp. � ∈ L�) and λ♦(�) = (t, e) (resp. λ�(�) = (t, e)), we set

PΛ(π(�, e1 . . . en)) =

{
0 if e1 = e

PΛ(π(� t,e−−→ s′, e2 . . . en)) otherwise (where s
t,e−−→ s′)

– If � ∈ L©, we define

PΛ(π(�, e1 . . . en)) =
∫

t∈I(s,e1)

p(s + t)(e1) · PΛ(π(�
t,e1−−→ st,e1 , e2 . . . en)) dμ(s)(t)

where s
t,e1−−→ st,e1 for every t ∈ I(s, e1).

These integrals are properly defined thanks to the measurability condition we impose
on strategies, and thanks to Fubini’s Theorem [19].

Following [3], it is not difficult to see that, given a measurable constraint C of Rn+,
we can extend this definition to constrained symbolic paths πCΛ(�, e1 . . . en), where

πCΛ(�, e1 . . . en) = {�′ ∈ Run(G, �, Λ) | �′=s0
t1,e1−−−→ · · · tn,en−−−→ sn and (t1, . . . , tn)|=

C}. We now consider the cylinder generated by a constrained symbolic path: an infinite
run �′′ is in the cylinder generated by πCΛ(�, e1 . . . en), denoted Cyl(πCΛ(�, e1 . . . en)),
if � ∈ Runω(G, �, Λ) and there exists �′ ∈ πCΛ(�, e1 . . . en) which is a prefix of
�′′. We extend PΛ to those cylinders in a natural way: PΛ(Cyl(πCΛ(�, e1 . . . en))) =
PΛ(πCΛ(�, e1 . . . en)), and then in a unique way to the σ-algebra Ω�Λ generated by those
cylinders. Following [3], we can prove the following correctness lemma.

Lemma 1. Let G be a stochastic timed game. For every strategy profile Λ, for every
finite run �, PΛ is a probability measure over (Runω(G, �, Λ), Ω�Λ).

Example 2. Consider the following game G:

a

(x<1)

b

(x≤1)

c

(x≤1)

d

e1,x<1

e2,x=0

e3,x≥0

e4,x≤1,x:=0

e5,x<2
e6,x=2

Suppose the game is equipped with uniform distributions over delays and over edges,
and consider a strategy profile Λ = (λ♦, λ�) such that strategy λ♦ assigns (0.5, e1) to
each run � ending in state (a, v) if v ≤ 0.5 and (0, e1) otherwise, and such that strategy

λ� assigns (0, e3) to each run ending in (b, v). If � = (a, 0)
0.5,e1−−−−→ (b, 0.5)

0,e3−−→
(c, 0.5), PΛ(π(�, e4e1e3e4)) = 1

36 . �

The reachability problem. In this paper we study the reachability problem for stochas-
tic games, which is stated as follows. Given a game G, an initial state s, a set of locations
A, a comparison operator∼ ∈ {<,≤,=,≥, >} and a rational number r ∈ [0, 1], decide
whether there is a strategy λ♦ for player ♦, such that for every strategy λ� for player �,
if Λ = (λ♦, λ�), PΛ{� ∈ Run(G, s, Λ) | � visits A} ∼ r. In that case, we say that λ♦
is a winning strategy from s for the reachability objective Reach∼r(A).
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A special case is when r ∈ {0, 1}, and the problem is called the qualitative reacha-
bility problem. In all other cases, we speak of the quantitative reachability problem.

Example 3. Consider again the stochastic timed game G of Example 2 together with
the qualitative reachability objective Reach=1({d}). Player ♦ has a winning strategy
λ♦ for that objective from state (a, 0), which is defined as follows: λ♦(�) = (0.5, e1)
for all runs � ending in state (a, 0). On the other hand, player ♦ has no winning strategy
from (a, 0) for the quantitative objective Reach<0.9({c}). �

The region automaton abstraction. The well-known region automaton construction is
a finite abstraction of timed automata which can be used for verifying many properties
like ω-regular untimed properties [1]. In this paper, we will only use this abstraction
in the context of single-clock timed automata, where the original abstraction can be
slightly improved [14]. Furthermore, we will still interpret this abstraction as a timed
automaton, as it is done in [3].

Let A be a single-clock timed automaton, and Γ = {0 = γ0 < γ1 < · · · < γp}
be the set of constants that appear in A (plus the constant 0). We define the set RA of
regions in A as the set of intervals of the form [γi; γi] (with 0 ≤ i ≤ p), or (γi−1; γi)
(with 1 ≤ i ≤ p) or (γp; +∞). AssumingA = (L, {x}, E, I), the region automaton of
A is the timed automaton R(A) = (Q, {x}, T, κ) such that Q = L ×RA, κ((�, r)) =

I(�), and T ⊆ (Q × RA × E × 2X × Q) is such that (�, r)
r′′,e,Y−−−−→ (�′, r′) is in T

iff there exists e ∈ E, v ∈ r, τ ∈ R+ such that v + τ ∈ r′′, (�, v)
τ,e−−→ (�′, v′), and

v′ ∈ r′.
In the case of single-clock timed automata, the above automaton R(A) has size

polynomial in the size of A (the number of regions is polynomial), and the reachability
problem is indeed NLOGSPACE-complete in single-clock timed automata [14]. In the
following, we will assume w.l.o.g. that timed automata are given in their region automa-
ton form. Hence, to every location of this automaton will be associated a single region
in which the valuation will be when arriving in that location.

3 Qualitative Reachability in Single-Clock 11
2

-Player Games

In this section we restrict to single-clock 1 1
2 -player games, i.e., stochastic games with a

single clock, and with no locations for player �. Furthermore, we focus on the qualita-
tive reachability problems.

Optimal strategies may not exist. Indeed, it may be the case that for every ε > 0,
there is a strategy achieving the (reachability) objective with probability at least 1 − ε
(resp. at most ε), while there is no strategy achieving the objective with probability 1
(resp. 0). In this case, we speak about ε-optimal strategies. For instance, consider the
following game, where we assume uniform distributions over delays.

a

(x<1)

b

(x≤2) c

d

x<1,e1
x≥1,e2

x<1,e3

x=2,e4

x=2,e5
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Assuming that the objective is to reach location c (resp. d) from (a, 0), one can check
that by taking the edge e1 close enough to time 1, the probability of reaching c (resp. d)
can be arbitrary close to 1 (resp. 0), while there is no strategy that could ensure reaching
c (resp. d) with probability 1 (resp. 0).

In this paper we will ask whether there are strategies that precisely achieve a qualita-
tive objective (like equal to 1, or equal to 0), and we leave for future work the interesting
but difficult question whether we can approximate arbitrarily these objectives or not.

Decidability of the existence of optimal strategies. We now turn to one of the two
main theorems of this paper, whose proof will be developed.

Theorem 4. Given a single-clock 1 1
2 -player timed game G, s = (�, 0) a state of G, and

A a set of locations of G, we can decide in PTIME whether there is a strategy achieving
the objective Reach=1(A) (or Reach=0(A)). We can decide in NLOGSPACE whether
there is a strategy achieving the objective Reach>0(A). These complexity upper bounds
are furthermore optimal.

For the rest of the section, we assume that G is a single-clock 1 1
2 -player timed game

with the underlying automaton being a region automaton. We also fix a set A of loca-
tions. Computing winning states for the objectives Reach=0(A) and Reach>0(A) can
be performed using a simple fixpoint algorihm (in fact, the problem can be reduced to
the similar problem for discrete-time Markov decision processes [18]). 3

Proposition 5. We can compute in PTIME (resp. NLOGSPACE) the set of states from
which player ♦ has a strategy to achieve the objective Reach=0(A) (resp. Reach>0(A).
Furthermore, this set of states is closed by region (i.e., if (�, v) is winning, then for every
v′ in the same region as v, (�, v′) is winning).

The case of the objective Reach=1(A) requires more involved developments, but a
proposition identical to the previous one can however be stated.

Proposition 6. We can compute in PTIME the set of states from which player ♦ has a
strategy to achieve the objective Reach=1(A). Furthermore, this set of states is closed
by region.

The restriction to single-clock games yields the following important property: reset-
ting the unique clock somehow resets the history of the game, the target state is then
uniquely determined by the target location. Hence, we will first focus on games where
the clock is never reset, and then decompose the global game w.r.t. the resetting transi-
tions and solve the different non-resetting parts separately and glue everything together.

We first focus on games without any resets, and consider a more complex objective:
given two sets of locationsA andB such thatB ⊆ A, we say that the strategy λ achieves
the objective ExtReach(A,B) if it achieves both Reach=1(A) and Reach>0(B). We
can prove (using another fixpoint algorithm):

3 All propositions in this section make use of the fact that we can remove w.l.o.g. certain “neg-
ligible” edges from the game effectively. An edge e of G is said to be negligible if it starts
from some ©-location � and if it is constrained by some punctual constraint, whereas there is
another edge leaving � labelled with a non-punctual constraint.
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Lemma 7. We assume that the clock is never reset in G. Let A and B ⊆ A be two sets
of locations of G. We can compute in PTIME the set of states from which player ♦ has
a strategy to achieve the objective ExtReach(A,B). Furthermore, this set of states is
closed by region.

Now we show how we can use Lemma 7 to solve the games for the objective Reach=1(A).
This lemma heavily relies on the specific properties of single-clock timed automata that
we have mentioned earlier. Somehow to solve the objective Reach=1(A), we will en-
force moving from one resetting transition to another one, always progressing towards
A. This is formalized as follows.

Lemma 8. If �in is a location of G, the following two statements are equivalent:

1. There is a strategy λ from (�in , 0) that achieves the objective Reach=1(A).
2. Writing L0 for the set of locations which are targets of resetting transitions (w.l.o.g.

we assume �in ∈ L0 and A ⊆ L0), there is a set R ⊆ L0 × 2L0 × L0 such that:

(a) There is (�in , S, k) ∈ R for some S ⊆ L0 and k ∈ S;
(b) Whenever � ∈ S \ A for some (�′, S, k) ∈ R, then (�, S′, k′) ∈ R for some

S′ ⊆ L0 and k′ ∈ S′;
(c) For each (�, S, k) ∈ R, there is a strategy that achieves ExtReach(S, {k}) from

(�, 0) without resetting the clock (except for the last move to S);
(d) For each (�, S, k) ∈ R, there is a sequence k1k2 . . . kn such that k1 = �,

kn ∈ A, and for every 1 ≤ i < n, there exist Si+1 ⊆ L0 and ki+1 ∈ Si+1

such that (ki, Si+1, ki+1) ∈ R.

Moreover, the set R has polynomial size and can be computed in polynomial time.

We define some vocabulary before turning to the proof. If such an above relation R
exists, we write LR = {� ∈ L0 | ∃S ⊆ L0 and k ∈ S s.t. (�, S, k) ∈ R}. For every
� ∈ LR, we call the distance to A from � the smallest integer n such that there is a
chain leading to A, as in condition 2d. For every � ∈ LR, the distance to A is a natural
number. Furthermore, for every � ∈ LR, there is (�, S, k) ∈ R such that the distance to
A from k is (strictly) smaller than the distance to A from �.

Proof (sketch). We only justify the implication 2. ⇒ 1., which gives a good intuition
for the construction. We start by fixing some (�, S, k) ∈ R for every � ∈ LR such that
the distance to A from k is (strictly) smaller than the distance to A from �. Let λ� be
a (fixed) strategy that achieves the objective ExtReach(S, {k}) from state (�, 0). From
these strategies we construct a strategy λ that achieves Reach=1(A) from (�in , 0) as
follows.

We let � = s0
t1,e1−−−→ s1

t2,e2−−−→ · · · tn−1,en−1−−−−−−→ sn be a finite run in G, and set �′ as the
longest suffix of � which does not reset the clock. �′ starts in some state si = (�i, 0).
If �i ∈ LR, we define λ(�) as λ�i,Si,ki(�′), and otherwise we define it in an arbitrary
manner (but the set of runs for which we will need to define the strategy in an arbitrary
manner has probability 0). The intuitive meaning of the definition is depicted in the
following picture.
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strategy λ

�,0 k1,0 k2,0

�2,0

··· kn,0 ∈A

λ� λk1 λkn−1

λ�2
S1

proba 1

proba ε�,S1,k1>0

S2
proba 1

proba εk1,S2,k2>0

Sn

proba 1

proba εkn−1,Sn,kn>0

It can be proven using standard tools of probability theory that λ achieves the objective.
Indeed, if � ∈ LR and (�, S, k) has been selected, from state (�, 0), runs generated by
λ almost-surely resets the clock, reaching states (�′, 0) with �′ ∈ S, and with positive
probability, say ε�,S,k > 0, reach state (k, 0). Furthermore, the distance to A from k
is smaller than that from �. Now, due to condition 2d, the probability to reach A from
(�, 0) is at least the positive product ε�,S1,k1 · εk1,S2,k2 · · · εkn−1,Sn,kn . Hence, there
exists ε > 0 such that the probability to reach A from any (�, 0) (such that there is some
(�, S, k) ∈ R) is at least ε. We can now conclude, by saying that from any (�, 0) with
� ∈ LR, the probability to reach {(�′, 0) | �′ ∈ LR} is 1. Hence, with probability 1 we
reach A under strategy λ. �

4 Quantitative Reachability in 21
2

-Player Games

In this section we present the second main theorem of this paper.

Theorem 9. Given a 2 1
2 -player timed game G, s = (�, 0) a state of G, and A a set

of locations of G, we cannot decide whether there is a winning strategy from s for
achieving the objective Reach∼ 1

2
(A) (for ∼ ∈ {<,≤,=,≥, >}). This result holds for

games with three clocks.

We will prove this theorem by reduction from the halting problem for two-counter ma-
chines. The reduction has been inspired by recent developments in weighted timed sys-
tems [7]. A two-counter machine M is a finite set of labeled instructions 1:inst1, . . . ,
n−1:instn−1, n:stop where each insti is of the form “cj := cj + 1; goto k” or “if cj = 0
then goto k; else cj := cj − 1; goto �”. Here, j ∈ {1, 2} and k, � ∈ {1, . . . ,n}). A

configuration ofM is a triple [insti, d1, d2] where insti is the instruction to be executed
and d1, d2 ∈ N are the current values of the counters c1 and c2. A computational step
� between configurations is defined in the expected way. A computation is a (finite
or infinite) sequence α1, α2, . . . where α1 = [inst1, 0, 0] and for all i, αi � αi+1. A
halting computation is a finite computation that ends in the instruction stop. The halt-
ing problem asks, given a two counter machine, whether there is a halting computation.
This problem is known to be undecidable [15].

LetM be a two-counter machine. We construct a timed game G with three clocks and
uniform distributions over delays, and a set of (black) locationsA such that player ♦ has
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a strategy to reach A with probability 1
2 iffM has a halting computation. In G, player ♦

will simulate a computation of M and the values of both counters will be represented
as the value of one clock. More precisely, if the values of the two counters are p1 and
p2 respectively, the correct representation will be 1

2p1 ·3p2 . At the same time, player �
will be allowed to check that the representation is correct and “faithful” (i.e. that if an
instruction of M is simulated, then the value of the counter is changed appropriately).
Due to the lack of space, we are unable to provide the whole construction here, we only
give a brief insight by defining some gadgets that we use in the construction.

Note that in the gadgets, the letters x and y are clock variables. Later on, we will
build up a game by instantiating the clock variables with real clocks. In all the gadgets,
unless specified, the weight of each edge is 1 (so that when two edges are concur-
rently enabled, they are equally probable). From all states, the set of possible delays
is bounded, hence we assume uniform distribution over delays everywhere. Finally, v0

denotes the valuation assigning x0 (resp. y0, 0) to x (resp. y, u).

First, we define gadgets check succ1(x, y) and check succ2(x, y). These gadgets are
used for testing whether the values of clocks x and y are of the form α and α

2 for some
α ∈ [0, 1] (in the case of check succ1(x, y)), or α and α

3 for some α ∈ [0, 1] (in the
case of check succ2(x, y)). We will later use these gadgets to check that an increment
or a decrement of the counters has been faithfully made. The gadget check succ1(x, y)
has only probabilistic locations and has the following structure:

a

(u=0)
b

(u=0)

c

(u≤1)

d

e

(u≤1)

f

u=0

x<1

x≥1

y>1
y≤1

We claim that in gadget check succ1(x, y), the probability of reaching the black
locations from (a, v0) is 1

2 iff x0 = 2y0, because the probability of reaching one of the
black locations is 1

2 (1− y0) + 1
4x0. The gadget check succ2(x, y) can be created from

check succ1(x, y) by changing the weights of the edges.
Next, we define gadgets check zero1(x, y) and check zero2(x, y) that are used for

testing that the value stored in clock x is 1
3p for some p ≥ 0 in the case of check zero1

(x, y), or 1
2p for some p ≥ 0 in the case of check zero2(x, y). These gadgets will

later be used to check that the value of the first or second counter is zero. The gadget
check zero1(x, y) has the following structure:

a

(x≤1)

b

(x,u≤1)

c

(u=0)

d (u=0)

e

x=1,u=0

u=0 u>0

y:=0

x=1,x:=0

u=1

u:=0
check zero1(y,x)

check succ2(x,y)
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We claim that in the gadget check zero1(x, y), player ♦ has a strategy from (a, v0) for
reaching the black locations with probability 1

2 iff there is some integer p ≥ 0 such
that x0 = 1

3p . The idea is that the value x0 is of the required form iff it is possible to
iteratively multiply its value by 2 until we eventually reach the value 1 (in which case
we can take the edge down to d from a). The fact that we multiply by 2 is ensured by
the gadget check succ2(x, y). The gadget check zero2(x, y) can be defined similarly
and the precise definition is omitted here.

Finally for each instruction insti we create a gadget gi(x, y), that will simulate the
instruction, with the encoding of the counters given earlier. For instance, if insti is of
the form ‘cj := cj + 1; goto k’, then gi(x, y) is of the form:

a

(x,u≤1)

b

(u≤1)

c

(u=0)
u=0

x=1,x:=0

y:=0 u=1

u:=0
gk(y,x)

check succj(x,y)

Player ♦ chooses at which time the transition from a to b is taken, and it should be
such that the value of y when entering c is properly linked with the value of x so that
the incrementation of counter cj has been simulated. The gadget for a decrementation
follows similar ideas, but is a bit more technical, that is why we omit it here.

Remark 10. The above reduction is for a reachability objective of the form Reach=1
2
(A).

However, we can twist the construction and have the reachability objective Reach∼ 1
2
(A)

(for any ∼ ∈ {<,≤,≥, >}). Also, the construction can be twisted to get the following
further undecidability results:

1. The value 1
2 in the previous construction was arbitrary, and the construction could

be modified so that it would work for any rational number r ∈ (0, 1).
2. Instead of assuming uniform distributions over delays, one can assume unbounded

intervals and exponential distributions over delays: it only requires one extra clock
in the reduction.

5 Conclusion

In this paper, we have defined stochastic timed games, an extension of two-player timed
games with stochastic aspects. This 2 1

2 -player model can also be viewed as an extension
of continuous-time Markov decision processes, and also of the purely stochastic model
proposed in [3]. On that model, we have considered the qualitative and quantitative
reachability problems, and have proven that the qualitative reachability problem can be
decided in single-clock 1 1

2 -player model, whereas the quantitative reachability problem
is undecidable in the (multi-clock) 2 1

2 -player model. This leaves a wide range of open
problems. Another challenge is the computation of approximate almost-surely winning
strategies (that is for every ε > 0, a strategy for player ♦ which ensures the reachability
objective with probability larger than 1 − ε). Finally, more involved objectives (like
ω-regular or parity objectives) should be explored in the context of 1 1

2 -player timed
games.
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The polynomial closure Pol(L) of a class of languages L of A∗ is the set of
languages that are finite unions of marked products of the form L0a1L1 · · · anLn,
where the ai are letters and the Li are elements of L.

The main result of this paper gives an equational description of Pol(L), given
an equational description of L, when L is a lattice of regular languages closed
under quotients, or a quotienting algebra of languages, as we call it in the sequel.
The term “equational description” refers to a recent paper [5], where it was
shown that any lattice of regular languages can be defined by a set of profinite
equations. More formally, our main result can be stated as follows:

If L is a quotienting algebra of languages, then Pol(L) is defined by
the set of equations of the form xωyxω 	 xω , where x, y are profinite
words such that the equations x = x2 and y 	 x are satisfied by L.

As an application of this result, we establish a set of profinite equations defining
the class of languages of the form L0a1L1 · · · anLn, where each language Li is
either of the form u∗ (where u is a word) or A∗ (where A is the alphabet) and we
prove that this class is decidable. Let us now give the motivations of our work
and a brief survey of the previously known results.

Motivations. The polynomial closure occurs in several difficult problems on
regular languages. For instance, a language has star-height one if and only if it
belongs to the polynomial closure of the set of languages of the form F or F ∗,
where F is a finite language. Although this class is known to be decidable, it
is still an open problem to find profinite equations for this class. Such a result
could serve, in turn, to discover a language of generalized star-height > 1, a
widely open problem.

The polynomial closure is also one of the two operations appearing in the
definition of the concatenation hierarchy over a given set L of regular languages,
defined by induction on n as follows. The level 0 is L and, for each n 
 0, the
level 2n + 1 is the polynomial closure of the level 2n and the level 2n + 2 is the
Boolean closure of the level 2n+ 1. The simplest hierarchy is built on the initial
set L = {∅, A∗}. A nice result of Thomas [15] shows that a regular language is of
level 2n + 1 in this hierarchy if and only if it is definable by a Σn+1-sentence of

� The authors acknowledge support from the AutoMathA programme of the European
Science Foundation and the projects ISFL-1-143 and PTDC/MAT/69514/2006 of
CAUL, financed by FCT and FEDER.

S. Albers et al. (Eds.): ICALP 2009, Part II, LNCS 5556, pp. 115–126, 2009.
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first order logic in the signature {<, (a)a∈A}, where a is a predicate giving the
positions of the letter a. Similar logical interpretations hold for other hierarchies,
but unfortunately, only the very low levels of such hierarchies are known to be
decidable and in general, this type of decidability problems is considered to be
difficult. Our result certainly does not solve the problem in general, but it gives
an algebraic approach that can be successful in some particular cases, like the
one considered in Section 3, which does not follow from the results of [9].

Known results. A similar result was known when L is a variety of languages,
that is, a class of regular languages closed under Boolean operations, quotients
and inverse of morphisms, but depended on the conjunction of two theorems.
The first theorem [11] relied on Eilenberg’s theory of varieties, which gives a
bijective correspondence between varieties of languages and varieties of finite
monoids. It stated, in essence, that the polynomial closure corresponds, on the
monoid level, to a certain Mal’cev product of varieties. The second result [10]
gave identities for the Mal’cev product of two varieties of finite monoids. These
results have been extended in [7] to positive varieties of languages and in [9]
to quotienting algebras closed under inverse of length-preserving morphisms.
However, all these proofs relied on the original proof of [11] and required the use
of Mal’cev products and relational morphisms.

In summary, our new result is more general than all the previously known
results. Further, our new proof combines various ideas from the above-mentioned
papers, but avoids the use of Mal’cev products, a major difference with the
original proof, although the experienced reader will still recognize their ghost in
this paper. This could be a decisive advantage for potential extensions to other
structures, like words over linear orders or finite trees.

1 Definitions and Background

1.1 Languages, Monoids and Syntactic Order

Let A be a finite alphabet. A lattice of languages is a set of regular languages of
A∗ containing the empty language, the full language A∗ and closed under finite
intersection and finite union. We denote by Lc the complement of a language L
of A∗.

Let L be a language of A∗ and let u be a word. The left quotient of L by u is
the language u−1L = {v ∈ A∗ | uv ∈ L}. The right quotient Lu−1 is defined in
a symmetrical way. A quotienting algebra of languages is a lattice of languages
closed under the operations L �→ u−1L and L �→ Lu−1, for any word u.

An ordered monoid is a monoid M equipped with a partial order 	 compatible
with the product on M : for all x, y, z ∈M , if x 	 y then zx 	 zy and xz 	 yz.
For each x ∈M , we set ↓x = {y ∈M | y 	 x}. A morphism of ordered monoids
is an order-preserving monoid morphism.

The syntactic congruence of a language L of A∗ is the equivalence relation on
A∗ defined by u ∼L v if and only if, for every x, y ∈ A∗,

xvy ∈ L ⇐⇒ xuy ∈ L
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The monoid M = A∗/∼L is the syntactic monoid of L and the natural morphism
η : A∗ → M is called the syntactic morphism of L. It is a well-known fact that
a language is regular if and only if its syntactic monoid is finite.

The syntactic preorder of a language L is the relation 	L over A∗ defined
by u 	L v if and only if, for every x, y ∈ A∗, xvy ∈ L implies xuy ∈ L.
The associated equivalence relation is the syntactic congruence ∼L. Further, 	L
induces a partial order on the syntactic monoid M of L. This partial order 	 is
compatible with the product and can also be defined directly on M as follows:
given u, v ∈M , one has u 	 v if and only if, for all x, y ∈M , xvy ∈ η(L) implies
xuy ∈ η(L). The ordered monoid (M,	) is called the syntactic ordered monoid
of L.

1.2 Factorization Forests

We review in this section an important combinatorial result of I. Simon on finite
semigroups. A factorization forest is a function F that associates with every
word x of A2A∗ a factorization F (x) = (x1, . . . , xn) of x such that n 
 2 and
x1, . . . , xn ∈ A+. The integer n is the degree of the factorization F (x). Given
a factorization forest F , the height function of F is the function h : A∗ → N
defined recursively by

h(x) =

{
0 if |x| 	 1
1 + max {h(xi) | 1 	 i 	 n} if F (x) = (x1, . . . , xn)

The height of F is the least upper bound of the heights of the words of A∗.
Let M be a finite monoid and let ϕ : A∗ →M be a morphism. A factorization

forest F is Ramseyan modulo ϕ if, for every word x of A2A∗, F (x) is either of
degree 2 or there exists an idempotent e of M such that F (x) = (x1, . . . , xn)
and ϕ(x1) = ϕ(x2) = · · · = ϕ(xn) = e for 1 	 i 	 n. The factorization forest
theorem was first proved by I. Simon in [12,13,14] and later improved in [2,3,4,6]:

Theorem 1.1. Let ϕ be a morphism from A∗ into a finite monoid M . There
exists a factorization forest of height 	 3|M | − 1 which is Ramseyan modulo ϕ.

1.3 Profinite Monoids and Equations

We briefly recall the definition of a free profinite monoid. More details can be
found in [1,8]. A finite monoid M separates two words u and v of A∗ if there is
a morphism ϕ : A∗ →M such that ϕ(u) �= ϕ(v). We set

r(u, v) = min
{
Card(M) | M is a finite monoid that separates u and v }

and d(u, v) = 2−r(u,v), with the usual conventions min ∅ = +∞ and 2−∞ = 0.
Then d is a metric on A∗ and the completion of A∗ for this metric is denoted by
Â∗. The product on A∗ can be extended by continuity to Â∗. This extended prod-
uct makes Â∗ a compact topological monoid, called the free profinite monoid.
Its elements are called profinite words.
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Every finite monoid M can be considered as a discrete metric space for the
discrete metric d, defined by d(x, y) = 0 if x = y, and d(x, y) = 1 otherwise.
Now, every morphism ϕ from A∗ into a finite monoid is uniformly continuous
and therefore can be extended (in a unique way) into a uniformly continuous
morphism ϕ̂ from Â∗ to M .

Since A∗ embeds naturally in Â∗, every finite word is a profinite word. We
shall also use the operator x �→ xω in Â∗, which is formally defined by the
formula xω = lim

n→∞x
n! and is justified by the fact that the sequence (xn!)n�0

is a Cauchy sequence in Â∗ and hence has a limit in Â∗. Let ϕ be a morphism
from A∗ onto a finite monoid M and let s = ϕ̂(x). Then the sequence (sn!)n�0 is
ultimately equal to sω, where ω is the least integer k such that for all t ∈M , tk

is idempotent. Consequently, we obtain the formula ϕ̂(xω) = ϕ̂(x)ω , which gives
ground to the notation xω .

Let L be a regular language of A∗, let (M,	) be its syntactic ordered monoid
and let η : A∗ →M its syntactic morphism. Given two profinite words u, v ∈ Â∗,
we say that L satisfies the (profinite) equation u 	 v (resp. u = v) if η̂(u) 	 η̂(v)
(resp. η̂(u) = η̂(v)). By extension, we say that a set of languages L satisfies a
set of equations Σ if every language of L satisfies every equation of Σ.

2 Polynomial Closure of Lattices of Languages

Let L be a set of languages of A∗. An L-monomial of degree n is a language of the
form L0a1L1 · · · anLn, where each ai is a letter of A and each Li is a language of
L. An L-polynomial is a finite union of L-monomials. Its degree is the maximum
of the degrees of its monomials. The polynomial closure of L, denoted by Pol(L),
is the set of all L-polynomials.

Our main result gives an equational description of Pol(L), given an equational
description of L, when L is a quotienting algebra of languages. To state this
result in a concise way, let us introduce a convenient notation. Given a set R of
regular languages, denote by Σ(R) the set of equations of the form xωyxω 	 xω ,
where x, y are profinite words of Â∗ such that the equations x = x2 and y 	 x
are satisfied by R. Note that the function mapping R to the class of languages
satisfying Σ(R) is monotonic for the inclusion. We can now state our main result:

Theorem 2.1. If L is a quotienting algebra of languages, then Pol(L) is defined
by the set of equations Σ(L).

The proof is divided into several parts. We first prove in Proposition 2.2 that
Pol(L) satisfies the equations of Σ(L). To establish the converse of this property,
we consider a language K satisfying all the equations of Σ(L). We convert this
property into a topological property (Proposition 2.4) and then use a compact-
ness argument to show that K satisfies the equations of Σ(F), where F is a finite
sublattice of L (Proposition 2.5). The final part of the proof consists in proving
that K belongs to Pol(F). This is where the factorization forest theorem arises,
but a series of lemmas (Lemmas 2.6 to 2.11) are still necessary to find explicitly
a polynomial expression for K.
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Proposition 2.2. If L is a lattice of languages, then Pol(L) satisfies the equa-
tions of Σ(L).

Proof. Since, by [5, Theorem 7.2] the set of languages satisfying Σ(L) is a
lattice of languages, it suffices to prove the result for any L-monomial. Let
L = L0a1L1 · · · anLn be an L-monomial and let η : A∗ → M be its syntactic
morphism. Let, for 0 	 i 	 n, ηi : A∗ → Mi be the syntactic morphism of Li.
Let x and y be two profinite words such that each Li satisfies the two equations
x = x2 and y 	 x.

Since A∗ is dense in Â∗, one can find a word x′ ∈ A∗ such that r(x′, x) >
max{|M0|, . . . , |Mn|, |M |}. It follows that η(x′) = η̂(x) and, for 0 	 i 	 n,
ηi(x′) = η̂i(x). Similarly, one can associate with y a word y′ ∈ A∗ such that
η(y′) = η̂(y) and, for 0 	 i 	 n, ηi(y′) = η̂i(y). It follows that each Li satisfies
the equations x′ = x′2 and y′ 	 x′ and that L satisfies the equation xωyxω 	 xω

if and only if it satisfies the equations x′ωy′x′ω 	 x′ω. In other terms, it suffices
to prove the result when x and y are words.

We need to establish the relation (∗) : η̂(xωyxω) 	 η̂(xω). Let k be an integer
such that k > n and η̂(xω) = η(xk). Since η̂(xωyxω) = η(xkyxk), proving (∗)
amounts to showing that xkyxk 	L xk. Let u, v ∈ A∗ and suppose that uxkv ∈ L.
Thus uxkv = u0a1u1 · · · anun, where, for 0 	 i 	 n, ui ∈ Li. Since k > n, one
can find h ∈ {0, . . . ,n}, j ∈ {1, . . . , k} and u′h, u

′′
h ∈ A∗ such that uh = u′hxu

′′
h,

uxj−1 = u0a1u1 · · · ahu′h and xk−jv = u′′hah+1uh+1 · · ·anun. Since uh ∈ Lh and
Lh satisfies the equations x = x2 and y 	 x, one has u′hx

k−j+1yxju′′h ∈ Lh,
and since uxkyxkv = u0a1u1 · · · ah(u′hxk−j+1yxju′′h)ah+1uh+1 · · ·anun, one gets
uxkyxkv ∈ L. Thus xkyxk 	L xk, which completes the proof. ��
The rest of this section is devoted to showing the converse implication in Theo-
rem 2.1. Let us introduce, for each regular language L of A∗, the sets

EL =
{
(x, y) ∈ Â∗ × Â∗ | L satisfies x = x2 and y 	 x

}
FL =

{
(x, y) ∈ Â∗ × Â∗ | L satisfies xωyxω 	 xω

}
.

Recall that a subset of a topological space is clopen if it is both open and closed.

Lemma 2.3. For each regular language L of A∗, the sets EL and FL are clopen
in Â∗ × Â∗.

Proof. Let η : A∗ →M be the syntactic morphism of L. The formula α(x, y) =(
η̂(x), η̂(x2), η̂(y)

)
defines a continuous map α from Â∗×Â∗ into M3, considered

as a discrete space. Setting Δ = {(s, t, u) ∈M3 | s = t and u 	 s}, we get

EL =
{
(x, y) ∈ Â∗ × Â∗ | η̂(x) = η̂(x2) and η̂(y) 	 η̂(x)

}
= α−1(Δ)

Now, since M is a discrete topological space, Δ is clopen in M3 and thus EL is
a clopen subset of Â∗ × Â∗.

A similar argument, using the continuous map β : Â∗ × Â∗ →M2 defined by
β(x, y) =

(
η̂(xωyxω), η̂(xω)

)
, would show that FL is clopen. ��
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We now convert our equational conditions into a topological property. Recall
that a cover [open cover ] of a topological space X is a collection of subsets [open
subsets] of X whose union is X .

Proposition 2.4. Let F be a set of regular languages of A∗ and let K be a
regular language of A∗. The following conditions are equivalent:

(1) K satisfies the profinite equations of Σ(F),

(2) the set {FK} ∪ {EcL | L ∈ F} is an open cover of Â∗ × Â∗.

Proof. Indeed F satisfies the two profinite equations x = x2 and y 	 x if and only
if (x, y) ∈

⋂
L∈F EL or, equivalently, (x, y) /∈

⋃
L∈F EcL. Similarly, K satisfies the

equation xωyxω 	 xω if and only if (x, y) ∈ FK . Now, condition (1) is equivalent
to saying that (x, y) /∈

⋃
L∈F EcL implies (x, y) ∈ FK , which is another way to

say that {FK} ∪ {EcL | L ∈ F} is a cover of Â∗ × Â∗. Further, Proposition 2.3
shows that it is an open cover. ��

Proposition 2.5. If K satisfies the equations of Σ(L), there is a finite subset
F of L such that K satisfies the equations of Σ(F).

Proof. Proposition 2.4 shows that {FK} ∪ {EcL | L ∈ L} is a cover of Â∗ × Â∗.
Since Â∗ is compact, one can extract from this cover a finite cover, say {FK} ∪
{EcL | L ∈ F}. By Proposition 2.4 again, K satisfies the profinite equations of
the form xωyxω 	 xω such that all the languages of F satisfy the equations
x = x2 and y 	 x. ��
Let K be a regular language satisfying all the equations of Σ(L) and let η :
A∗ → M be its syntactic morphism. Let also F = {L1, . . . , Ln} be a finite
subset of L as given by Proposition 2.5. For 1 	 i 	 n, let ηi : A∗ → Mi be
the syntactic morphism of Li. Let μ : A∗ → M1 × · · · ×Mn be the morphism
defined by μ(u) = (η1(u), . . . , ηn(u)). Finally, let V = μ(A∗) and, for 1 	 i 	 n,
let πi : V → Mi be the natural projection. We set S = {(η(u), μ(u)) | u ∈ A∗}.
Then S is a submonoid of M × V and the two morphisms α : S → M and
β : S → V defined by α(m, v) = m and β(m, v) = v are surjective. Further,
the morphism δ : A∗ → S defined by δ(u) = (η(u), μ(u)) satisfies η = α ◦ δ and
μ = β ◦ δ. The situation is summarized in the following diagram:

M VS

A∗

Mi
α β

η μ
δ

ηi

πi

We now arrive at the last step of the proof of Theorem 2.1, which consists in
proving that K belongs to Pol(F).
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We start with three auxiliary lemmas. The first one states that every down-
ward closed language recognized by μ belongs to L and relies on the fact that L
is a quotienting algebra of languages. The second one gives a key property of S
and this is the only place in the proof where we use the equations of Σ(L). The
third one is an elementary, but useful, observation.

Lemma 2.6. Let t ∈ V . Then the language μ−1(↓ t) belongs to L.

Proof. Let t = (t1, . . . , tn) and let z be a word such that μ(z) = t. Then ti = ηi(z)
and μ−1(↓ t) =

⋂
1�i�n η

−1
i (↓ ti). Moreover, one gets for each i ∈ {1, . . . ,n},

η−1
i (↓ ti) = {x ∈ A∗ | ηi(x) 	 ηi(z)} = {x ∈ A∗ | x 	Li z} =

⋂
(u,v)∈Ei

u−1Liv
−1

where Ei = {(u, v) ∈ A∗ × A∗ | uzv ∈ Li}. Since Li is regular, there are only
finitely many quotients of the form u−1Liv

−1 and hence the intersection is finite.
The result follows, since L is a quotienting algebra of languages. ��
Lemma 2.7. For every idempotent (e, f) ∈ S and for every (s, t) ∈ S such that
t 	 f , one has ese 	 e.

Proof. Let x and y be two words such that δ(x) = (e, f) and δ(y) = (s, t). Then
η(x) = e, μ(x) = f , η(y) = s and μ(y) = t and since f is idempotent and t 	 f ,
F satisfies the equations x = x2 and y 	 x. Therefore K satisfies the equation
xωyxω 	 xω . It follows that η̂(xωyxω) 	 η̂(xω), that is ese 	 e. ��
Before we continue, let us point out a subtlety in the proof of Lemma 2.7. It looks
like we have used words instead of profinite words in this proof and the reader
may wonder whether one could change “profinite” to “finite” in the statement
of our main result. The answer is negative for the following reason: if F satisfies
the equations x = x2 and y 	 x, it does not necessarily imply that L satisfies
the same equations. In fact, the choice of F comes from the extraction of the
finite cover and hence is bound to K.

We now set, for each idempotent f of V , L(f) = μ−1(↓f).

Lemma 2.8. For each idempotent f of V , one has L(1)L(f)L(1) = L(f).

Proof. Since 1 ∈ L(1), one gets the inclusion L(f) = 1L(f)1 ⊆ L(1)L(f)L(1).
Let now s, t ∈ L(1) and x ∈ L(f). Then by definition, μ(s) 	 1, μ(x) 	 f and
μ(t) 	 1. It follows that μ(sxt) = μ(s)μ(x)μ(t) 	 1f1 = f , whence sxt ∈ L(f).
This gives the opposite inclusion L(1)L(f)L(1) ⊆ L(f). ��
We now come to the combinatorial argument of the proof. By Theorem 1.1, there
exists a factorization forest F of height 	 3|S|−1 which is Ramseyan modulo δ.
We use this fact to associate with each word x a certain language R(x), defined
recursively as follows:

R(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L(1)xL(1) if |x| 	 1
R(x1)R(x2) if F (x) = (x1, x2)
R(x1)L(f)R(xk) if F (x) = (x1, . . . , xk), with k 
 3 and

δ(x1) = · · · = δ(xk) = (e, f)
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In particular R(1) = L(1), since L(1) is a submonoid of A∗.
Denote by E the finite set of languages of the form L(f), where f is an idem-

potent of V . We know by Lemma 2.6 that E is a subset of L. Let us say that an
E-monomial is in normal form if it is of the form L(1)a0L(f1)a1 · · · L(fk)akL(1)
where f1, . . . , fk are idempotents of V .

Lemma 2.9. For each x ∈ A∗, R(x) is equal to an E-monomial in normal form
of degree 	 2h(x).

Proof. We prove the result by induction on the length of x. The result is true
if |x| 	 1. Suppose that |x| 
 2. If F (x) = (x1, x2), then R(x) = R(x1)R(x2)
otherwise R(x) = R(x1)L(f)R(xk). We treat only the latter case, since the first
one is similar. By the induction hypothesis, R(x1) and R(xk) are equal to E-
monomials in normal form. It follows by Lemma 2.8 that R(x) is equal to an
E-monomial in normal form, whose degree is lesser than or equal to the sum
of the degrees of R(x1) and R(xk). The result now follows from the induction
hypothesis, since 2h(x1) + 2h(xk) 	 21+max{h(x1),...,h(xk)} 	 2h(x). ��

Lemma 2.10. For each x ∈ A∗, one has x ∈ R(x).

Proof. We prove the result by induction on the length of x. The result is trivial
if |x| 	 1. Suppose that |x| 
 2. If F (x) = (x1, x2), one has x1 ∈ R(x1) and x2 ∈
R(x2) by the induction hypothesis and hence x ∈ R(x) since R(x) = R(x1)R(x2).
Suppose now that F (x) = (x1, . . . , xk) with k 
 3 and δ(x1) = · · · = δ(xk) =
(e, f). Then R(x) = R(x1)L(f)R(xk). Since x1 ∈ R(x1) and xk ∈ R(xk) by the
induction hypothesis and μ(x2 · · ·xk−1) = f , one gets x2 · · ·xk−1 ∈ L(f) and
finally x ∈ R(x1)L(f)R(xk), that is, x ∈ R(x). ��
If R is a language, let us write η(R) 	 η(x) if, for each u ∈ R, η(u) 	 η(x).

Lemma 2.11. For each x ∈ A∗, one has η(R(x)) 	 η(x).

Proof. We prove the result by induction on the length of x. First, applying
Lemma 2.7 with e = f = 1 shows that if (s, t) ∈ S and t 	 1, then s 	 1. It
follows that η(R(1)) = η(L(1)) = η(μ−1(↓1)) 	 1.

If |x| 	 1, one gets R(x) = L(1)xL(1) and η(R(x)) = η(L(1))η(x)η(L(1)) 	
η(x) since η(L(1)) 	 1. Suppose now that |x| 
 2. If F (x) = (x1, x2), thenR(x) =
R(x1)R(x2) and by the induction hypothesis, η(R(x1)) 	 η(x1) and η(R(x2)) 	
η(x2). Therefore, η(R(x)) = η(R(x1))η(R(x2)) 	 η(x1)η(x2) = η(x). Finally,
suppose that F (x) = (x1, . . . , xk) with k 
 3 and δ(x1) = · · · = δ(xk) = (e, f).
Then R(x) = R(x1)L(f)R(xk). By the induction hypothesis, η(R(x1)) 	 e and
η(R(xk)) 	 e. Now, if u ∈ L(f), one gets μ(u) 	 f . Since (η(u), μ(u)) ∈ S, it
follows from Lemma 2.7 that the relation eη(u)e 	 e holds in M . Finally, we get
η(R(x)) = η(R(x1))η(L(f))η(R(xk)) 	 eη(L(f))e 	 e = η(x). ��

We can now conclude the proof of Theorem 2.1. We claim that K =
⋃
x∈K R(x).

The inclusion K ⊆
⋃
x∈K R(x) is an immediate consequence of Lemma 2.10. To

prove the opposite inclusion, consider a word u ∈ R(x) for some x ∈ K. It follows
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from Lemma 2.11 that η(u) 	 η(x). Since η(x) ∈ η(K), one gets η(u) ∈ η(K)
and finally u ∈ K. Now, by Lemma 2.9, each language R(x) is an E-monomial
of degree 	 2h(x). Since h(x) 	 3|S| − 1 for all x, and since E is finite, there are
only finitely many such monomials. Therefore K is equal to an E-polynomial.
Finally, Lemma 2.6 shows that each E-polynomial belongs to Pol(L), and thus
K ∈ Pol(L). ��

3 A Case Study

The density of a language L ⊆ A∗ is the function which counts the number of
words of length n in L. More formally, it is the function dL : N → N defined by
dL(n) = |L ∩ An|. See [16] for a general reference. If dL(n) = O(1), then L is
called a slender language. A regular language of A∗ is slender if and only if it
is a finite union of languages of the form u0v

∗u1, where u0, v, u1 ∈ A∗ (see [16,
Theorem 3.6]). A language is sparse if it is of polynomial density. One can show
that a regular language is sparse if and only if it is a finite union of languages
of the form u0v

∗
1u1 · · · v∗nun, where u0, v1, . . . , vn, un are words.

We shall also use the following characterization of regular nonslender lan-
guages, in which i(u) denotes the first letter (or initial) of a word u.

Proposition 3.1. A regular language L is nonslender if and only if there exist
words p, q, r ∈ A∗ and u, v ∈ A+ such that i(u) �= i(qv) and pu∗qv∗r ⊆ L.

p q r

u v

If |A| 	 1, every regular language is slender, but if |A| 
 2, the full language
A∗ is not slender and thus regular slender languages do not form a lattice of
languages. However, the regular languages that are either slender or full form
a quotienting algebra of languages, denoted by S in the sequel. Two sets of
profinite equations for S were given in [5]. We shall just mention the second one,
which requires a convenient writing convention. Let L be a regular language of
A∗ and let η : A∗ →M be its syntactic morphism. If x is a profinite word of Â∗,
we say that L satisfies the equation x 	 0 [x = 0], if the monoid M has a zero,
denoted by 0, and if η̂(x) 	 0 [η̂(x) = 0].

Proposition 3.2. Suppose that |A| 
 2. A regular language of A∗ is slender or
full if and only if it satisfies the equations x 	 0 for all x ∈ A∗ and the equations
xωuyω = 0 for each x, y ∈ A+, u ∈ A∗ such that i(x) �= i(uy).

We are interested in the polynomial closure of S. The languages of Pol(S) are
finite unions of languages of the form L0a1L1 · · · anLn, where the ai are letters
and the Li are languages of the form A∗ or u∗ for some word u.1 In particular,
1 To see this, it suffices to replace each word ui = a1 · · · ak by 1∗a11∗a21∗ · · · 1∗ak1∗

in each monomial of the form u0v
∗
1u1 · · · v∗

nun.
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Pol(S) contains all regular sparse languages but it also contains the nonsparse
language A∗ if |A| 
 2.

The main result of this section is an equational description of Pol(S). Let us
denote by Σ′(S) the set of equations of the form

(xωyω)ωz(xωyω)ω 	 (xωyω)ω

where z ∈ A∗ and x, y ∈ A+ and i(x) �= i(y).

Theorem 3.3. A regular language of A∗ belongs to Pol(S) if and only if it
satisfies the equations of Σ′(S).

Proof. Let us first settle a trivial case. If |A| 	 1, every regular language belongs
to Pol(S), but on the other hand, the set Σ′(S) is empty because the condition
i(x) �= i(y) is never satisfied! We suppose now that |A| 
 2.

We show that every language of Pol(S) satisfies the equations of Σ′(S) by
applying Theorem 2.1. It suffices to verify that, if i(x) �= i(y), S satisfies the
equations (xωyω)ω =

(
(xωyω)ω

)2 and z 	 (xωyω)ω. But this is trivial, since we
know by Proposition 3.2 that S satisfies the equations xωyω = 0 (take u = 1 in
the equation xωuyω = 0) and z 	 0.

Let K be a regular language satisfying the equations of Σ′(S) and let η :
A∗ →M be its syntactic morphism. We immediately derive from Σ′(S) a more
comprehensible property, which is the counterpart of Lemma 2.7 in the proof of
Theorem 2.1.

Lemma 3.4. Let e be an idempotent of M . Then either η−1(e) is slender, or
for all s ∈M , ese 	 e.

Proof. Let L = η−1(e). Since L is not slender, Proposition 3.1 tells us that
one can find words p, q, r ∈ A∗ and u, v ∈ A+ such that i(u) �= i(qv) and
pu∗qv∗r ⊆ L. Further, since e is idempotent, L is a semigroup and we have in
fact (pu∗qv∗r)+ ⊆ L. It follows that

p(u∗(qvrp)∗)∗qr ⊆ p(u∗(qv∗rp)∗)∗u∗qv∗r ⊆ (pu∗qv∗r)+ ⊆ L

Setting x = u, y = qvrp and t = qr, we get i(x) �= i(y) and p(x∗y∗)∗t ⊆ L. It
follows in particular that

η̂
(
p(xωyω)ωt

)
= e (1)

Let s ∈M and let w be a word such that η(w) = s. Since L satisfies the equations
of Σ′(S), it satisfies in particular the equation (xωyω)ωtwp(xωyω)ω 	 (xωyω)ω

and hence also p(xωyω)ωtwp(xωyω)ωt 	 p(xωyω)ωt. This means that

η̂
(
p(xωyω)ωtwp(xωyω)ωt

)
	 η̂

(
p(xωyω)ωt

)
(2)

Now, using (1), (2) and the relation η(w) = s, we get ese 	 e. ��
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The end of the proof is similar to that of Theorem 2.1, with the major difference
that we do not use the morphisms δ and μ anymore. By Theorem 1.1, there
exists a factorization forest F of height 	 3|M | − 1 which is Ramseyan modulo
η. We associate with each idempotent e ∈M the language L(e) equal to η−1(e)
if this language is slender, and to A∗ otherwise. Let us denote by E the set of
languages of the form L(e). By definition, every language of E is slender or full.
We also associate with each word x a language R(x), defined as follows:

R(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L(1)xL(1) if |x| 	 1
R(x1)R(x2) if F (x) = (x1, x2)
R(x1)L(e)R(xk) if F (x) = (x1, . . . , xk), with k 
 3 and

η(x1) = · · · = η(xk) = e

The proof now consists in adapting Lemmas 2.8, 2.9, 2.10 and 2.11 to our new
definitions. We just give here a sketch of these proofs (detailed proofs can be
found in the Appendix). For Lemma 2.8, one needs to prove that, for each
idempotent e ∈M , L(1)L(e)L(1) = L(e). The key observation is that if η−1(e) is
slender, then η−1(1) is slender: indeed η−1(1)η−1(e) ⊆ η−1(e) and if the density
of η−1(1) is not bounded, the density of η−1(e) cannot be bounded. Therefore,
if η−1(e) is slender, one can follow the original proof. If η−1(e) is not slender,
then L(e) = A∗ and the result is trivial, since 1 ∈ L(1).

The proofs of Lemmas 2.9 and 2.10 are unchanged. The proof of Lemma 2.11
requires a slight modification in the case where F (x) = (x1, . . . , xk) with k 
 3,
η(x1) = · · · = η(xk) = e and η−1(e) nonslender. Then R(x) = R(x1)A∗R(xk)
and by the induction hypothesis η(R(x1)) 	 e and η(R(xk)) 	 e. Further,
Lemma 3.4 shows that, for all s ∈M , ese 	 e. Therefore, for each s1 ∈ η(R(x1)),
sk ∈ η(R(xk)) and s ∈M , one gets s1ssk 	 ese 	 e. It follows that η(R(x)) 	 e,
which completes the proof, since η(x) = e.

The rest of the proof is unchanged and shows that K is equal to an E-
polynomial. Since each E-monomial is itself in Pol(S), it follows that K ∈ Pol(S).

��

Corollary 3.5. There is an algorithm to decide whether a given regular lan-
guage belongs to Pol(S).

Proof. Let L be a regular language and let η : A∗ → M be its syntactic mor-
phism. By Theorem 3.3, L belongs to Pol(S) if and only if it satisfies the equa-
tions of Σ′(S). Setting

F =
⋃
a,b∈A
a=b

η(a)M × η(b)M

it suffices to verify that the property (xωyω)ωz(xωyω)ω 	 (xωyω)ω holds for all
(x, y) ∈ F and all z ∈M . Since M and F are finite, this property is decidable.

��
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Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 443–454. Springer, Hei-
delberg (2008)

7. Pin, J.-E.: Algebraic tools for the concatenation product. Theoret. Comput.
Sci. 292, 317–342 (2003)

8. Pin, J.-E.: Profinite methods in automata theory. In: Albers, S. (ed.) 26th Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS 2009),
Schloss Dagstuhl, Germany, Dagstuhl, Germany. Internationales Begegnungs- Und
Forschungszentrum für Informatik (IBFI), pp. 31–50 (2009)

9. Pin, J.-E., Straubing, H.: Some results on C-varieties. Theoret. Informatics
Appl. 39, 239–262 (2005)
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Abstract. We take a dual view of Markov processes – advocated by
Kozen – as transformers of bounded measurable functions. We redevelop
the theory of labelled Markov processes from this view point, in partic-
ular we explore approximation theory. We obtain three main results:
(i) It is possible to define bisimulation on general measure spaces and
show that it is an equivalence relation. The logical characterization of
bisimulation can be done straightforwardly and generally. (ii) A new and
flexible approach to approximation based on averaging can be given. This
vastly generalizes and streamlines the idea of using conditional expecta-
tions to compute approximation. (iii) It is possible to show that there is
a minimal bisimulation equivalent to a process obtained as the limit of
the finite approximants.

1 Introduction

Markov processes with continuous state spaces or continuous time evolution or
both arise naturally in many areas of computer science: robotics, performance
evaluation, modelling and simulation for example. For discrete systems there
was a pioneering treatment of probabilisitic bisimulation and logical character-
ization [1]. The continuous case, however, was neglected for a time. For a little
over a decade now, there has been significant activity among computer scien-
tists [2,3,4] [5] [6,7,8] [9,10] as it came to be realized that ideas from process
algebra, like bisimulation and the existence of a modal characterization, would
be useful for the study of continuous systems.

In [4] a theory of approximation for LMPs was initiated. Finding finite approx-
imations is vital to give a computational handle on such systems. The previous
work was characterized by rather intricate proofs that did not seem to follow
from basic ideas in any straightforward way. For example, the logical charac-
terization of (probabilistic) bisimulation requires subtle properties of analytic
spaces.

In the present paper we take an entirely new approach, in some ways “dual”
to the normal view of probabilistic transition systems. We think of a Markov
process as a transformer of functions, rather than as a transformer of the state.
Thus, instead of working directly with a Markov kernel τ(s,A) that takes a state
s to a probability distribution over the state space, we think of a Markov process
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�� Research supported by a Royal Society – Wolfson Research Merit Award.

S. Albers et al. (Eds.): ICALP 2009, Part II, LNCS 5556, pp. 127–138, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



128 P. Chaput et al.

as transforming a function f into a new function
∫
f(s′)τ(s, ds′) over the state

space. This is the probabilistic analogue of working with predicate transformers,
a point of view advocated by Kozen [11].

This new way of looking at things leads to three new results:
1. It is possible to define bisimulation on general spaces – not just on analytic

spaces – and show that it is an equivalence relation with easy categorical
constructions. The logical characterization of bisimulation can also be done
generally, and with no complicated measure theoretic arguments.

2. A new and flexible approach to approximation based on averaging can be
given. This vastly generalizes and streamlines the idea of using conditional
expectations to compute approximation [5].

3. It is possible to show that there is a minimal bisimulation equivalent to a
process obtained as the limit of the finite approximants.

2 Preliminary Definitions

Given a measurable space (X,Σ) with a measure μ we say two measurable func-
tions are μ-equivalent if they differ on a set of μ-measure zero. Given two measur-
able real-valued functions f and g on X , we say f ≤μ g if f is less than g except
maybe on a set of measure zero. For B ∈ Σ, we let 1B be the indicator function
of the set B. L1(X,μ) stands for the space of equivalence classes of integrable
functions. Similarly we write L+

1 (X,μ) for equivalence classes of functions that
are positive μ-almost everywhere. L∞(X,μ) is the space of equivalence classes
of μ-almost everywhere uniformly bounded functions on X , and L+∞(X,μ) are
the μ-almost everywhere positive functions of that space. Given two measures
ν, μ on (X,Σ), if we have, for all A ∈ Σ, that μ(A) = 0 ⇒ ν(A) = 0, we say
that ν is absolutely continuous with respect to μ, and write ν & μ.

Theorem 1. [12] If ν & μ, where ν, μ are finite measures on (X,Σ) there is a
positive measurable function h on X such that for every B ∈ Σ

ν(B) =
∫
B

h dμ .

The function h is defined uniquely, up to a set of μ-measure 0.

The function h is called the Radon-Nikodym derivative of ν with respect to μ;
we write dν

dμ for the Radon-Nikodym derivative of the measure ν with respect to
μ. Note that dν

dμ ∈ L1(X,μ).
Given a function f ∈ L+

1 (X,μ), we let f�μ be the measure which has density
f with respect to μ. According to the Radon-Nikodym theorem, given ν & μ,
we have dν

dμ�μ = ν, and given f ∈ L+
1 (X,μ), df�μ

dμ = f These two identities just
say that the operations − � μ and d

dμ are inverses of each other as operations
from L+

1 (X,μ) to the space of finite measures on X .
Let Prb be the category of probability spaces and measurable maps; we will

usually suppress the σ-algebra. There are no conditions relating to the measures
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but the categories of interest will be subcategories where the morphisms do have
extra conditions related to the measures. Given a map α : (X, p) −→ (Y, q) in
Prb, where p and q are probability measures, we denote by Mα(p) the image
measure of p by α onto Y .

One normally works with vector spaces, but it is more convenient to work
with cones. The following definition is due to Selinger [13].

Definition 1. A cone is a set V on which a commutative and associative bi-
nary operation, written +, is defined and has a 0. Multiplication by positive real
numbers is defined and it distributes over addition. The following cancellation
law holds:

∀u, v, w ∈ V, v + u = w + u⇒ v = w .

The following strictness property also holds: v + w = 0 ⇒ v = w = 0.

Cones come equipped with a natural partial order. If u, v ∈ V , a cone, one says
u ≤ v if and only if there is an element w ∈ V such that u + w = v. One can
also put a norm on a cone, with the additional requirement that the norm be
monotone with respect to the partial order.

Definition 2. A (ω-)complete normed cone is a normed cone such that its unit
ideal is a (ω-)dcpo.

A (ω-)continuous linear map between two cones is one that preserves sups of
(ω-)directed sets, i.e. is Scott-continuous. Note that in a (ω-)complete normed
cone, the norm is (ω-)Scott-continuous. All the cones that we work with are
complete normed cones. For instance, L+

∞(X) is a complete normed cone, with
the norm ‖−‖∞ the usual essential supremum norm.

Let (X,Σ) be a measure space. We write L+(X) for the cone of bounded
measurable maps from X to R+; in this cone we have functions, not equiva-
lence classes of functions. Let (X,Σ, μ) be a measure space. We define the cone
M≤Kμ(X) to be the cone of all measures on (X,Σ) which are uniformly less
than a multiple of the measure μ; this minimal multiple is the norm on this cone.
The normed cones M≤Kμ(X) and L+

∞(X,Σ, μ) are isomorphic via the two maps
d(−)
dμ and (−) � μ, which are also norm-preserving.
Markov processes can be viewed as linear maps on function spaces. Given τ a

Markov process on X , we define τ̂ : L+(X) −→ L+(X), for f ∈ L+(X), x ∈ X ,
as τ̂(f)(x) =

∫
X f(z)τ(x, dz). This map is well-defined, as per our definition

above, τ̂ (1B) is measurable for every B ∈ Σ. In fact, τ̂(1B)(x) = τ(x,B) is
the probability of jumping from x to B. τ̂ is also linear and continuous and thus
τ̂ (f) is measurable for any measurable f . Conversely, any such functional L with
L(1X) ≤ 1X is a Markov process. From now on, we shall only consider Markov
processes from this functional point of view.

3 Abstract Markov Processes and Conditional
Expectation

In order to reduce the state space, we would like to project the space L+(X)
onto a smaller space. Let Λ ⊆ Σ be a sub-σ-algebra, and let p be a finite measure
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on (X,Σ). We have a positive, linear and continuous map EΛ : L+
1 (X,Σ, p) −→

L+
1 (X,Λ, p), the conditional expectation with respect to the sub-σ-algebra Λ. It

can be restricted to L+∞, as it is a subcone of L+
1 . This map averages the function

f over the sets of Λ. However, we cannot use the conditional expectation map
in conjunction with Markov processes just yet, as Markov processes are defined
as maps on L+, and not on any L+

p space. We therefore make the following
definition:

Definition 3. An abstract Markov process (AMP) on a probability space X is
a ω-continuous linear map τ : L+∞(X) −→ L+∞(X) with τ(1X) ≤p 1X .

The condition that τ(1X) ≤p 1X is equivalent to requiring that the operator
norm of τ be less than one, i.e. that ‖τ(f)‖∞ ≤ ‖f‖∞ for all f ∈ L+

∞(X). This
is natural, as the function τ(1X), evaluated at a point x, is the probability of
jumping from x to X , which is less than one.

AMPs are often called Markov operators in the literature, and have been first
introduced in [14]. The novelty here is that our transition probabilities may be
subprobabilities, as in the LMP literature, and we may then examine LMPs from
this point of view.

It can be shown that a (usual) Markov process τ(x,B) on a probability space
(X,Σ, p) can be expressed as an AMP if and only if for all B ∈ Σ such that
p(B) = 0, we have τ(x,B) = 0, p-almost everywhere.

The simplest example of an AMP on a probability space (X,Σ, p) is the
identity tranformation on L+

∞(X), which sends any f ∈ L+
∞(X) to itself. This

AMP corresponds to the Markov process δ(x,B) = 1B(x).
We now formalize the notion of conditional expectation. We work in a subcate-

gory of Prb, called Rad∞, where we require the image measure to be bounded by
a multiple of the measure in the codomain; that is, measurable maps α : (X,Σ, p)
−→ (Y,Λ, q) such that Mα(p) ≤ Kq for some real number K.

Let us define an operator Eα : L+
∞(X, p) −→ L+

∞(Y, q), as follows: Eα(f) =
dMα(f�p)

dq . As α is in Rad∞, the Radon-Nikodym derivative is defined and is in
L+
∞(X, p). That is, the following diagram commutes by definition:

L+
∞(X, p)

�p
� M≤Kp(X)

L+
∞(Y, q)

Eα

�
�

d
dq M≤Kq(Y )

Mα(−)
�

Note that if (X,Σ, p) is a probability space and Λ ⊆ Σ is a sub-σ-algebra,
then we have the obvious map λ : (X,Σ, p) −→ (X,Λ, p) which is the identity
on the underlying set X . This map is in Rad∞ and it is easy to see that Eλ
is precisely the conditional expectation onto Λ. Thus the operator E− truly
generalizes conditional expectation. It is easy to show that Eα◦β = Eα ◦Eβ and
thus E− is functorial.

Let us define, for any map α : (X, p) −→ (Y, q) in Rad∞, a function d(α) =
Eα(1X) = dMα(p)

dq . Note that d(α) is in L+
∞(Y, q). It can be shown that the

operator norm of Eα is ‖d(α)‖∞.
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Given an AMP on (X, p) and a map α : (X, p) −→ (Y, q) in Rad∞, we thus
have the following approximation scheme:

L+
∞(Y, q) ........

α(τ)
� L+

∞(Y, q)

L+
∞(X, p)

(−)◦α
�

τ� L+
∞(X, p)

Eα
�

Note that ‖α(τ)‖ ≤ ‖(−) ◦ α‖ · ‖τ‖ · ‖Eα‖ = ‖τ‖ · ‖d(α)‖∞. Here the norm
of (·) ◦ α is 1. As an AMP has a norm less than 1, we can only be sure that a
map α yields an approximation for every AMP on X if ‖d(α)‖∞ ≤ 1. We call
the AMP α(τ) the projection of τ on Y .

4 Bisimulation

The notion of probabilistic bisimulation was introduced by Larsen and Skou [1]
for discrete spaces and by Desharnais et al. [2] for continuous spaces. Subse-
quently a dual notion called event bisimulation or probabilistic co-congruence
was defined independently by Danos et al. [9] and by Bartels et al. [15]. The idea
of event bisimulation was that one should focus on the measurable sets rather
than on the points. This meshes exactly with the view here.

Definition 4. Given a (usual) Markov process (X,Σ, τ), an event-bisimulation
is a sub-σ-algebra Λ of Σ such that (X,Λ, τ) is still a Markov process [9].

The only additional condition that needs to be respected for this to be true is
that the Markov process τ(x,A) is Λ-measurable for a fixed A ∈ Λ. Translating
this definition in terms of AMPs, this implies that the AMP τ sends the subspace
L+
∞(X,Λ, p) to itself, and so that the following commutes:

L+
∞(X,Σ)

τ
� L+

∞(X,Σ)

L+
∞(X,Λ)

∪

�

τ
� L+

∞(X,Λ)
∪

�

A generalization to the above would be a Rad∞ map α from (X,Σ, p) to
(Y,Λ, q), respectively equipped with AMPs τ and ρ, such that the following
commutes:

L+
∞(X, p)

τ
� L+

∞(X, p)

L+
∞(Y, q)

(−)◦α�

ρ
� L+

∞(Y, q)

(−)◦α�
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We will call such a map a zigzag. Note that if there is a zigzag from X to Y ,
then the AMP on Y is very closely related to the projection α(τ) on Y . Indeed,
we have the following diagram:

L∞(Y )+
ρ

� L∞(Y )+

L∞(X)+
τ
�

(−)◦α
�

L∞(X)+

(−)◦α

�

L∞(Y )+

$$$$$$$$$$$$$$
α(τ)

�
(−)◦α

�

L∞(Y )+

(−)·d(α)

�Eα
�

We have that Eα(f ◦ α) = f · d(α) from a lemma in the full paper. This implies
that α(τ) = ρ · d(α). In particular, if d(α) = 1Y - which happens if Mα(p) = q
- then ρ is equal to α(τ). Note that the condition Mα(p) = q means that the
image measure is precisely the measure in the codomain of α.

We have developed the above theory in a very general setting where the
maps between state spaces need only to respect some conditions; for instance, in
Rad∞, that the image measure be bounded by a multiple of the measure in the
target space. From now on we shall considerably restrict the maps between the
state spaces. Indeed, we have seen above that zigzags and projections coincided
exactly given that the map of the state spaces was particularly well-behaved.

Definition 5. A map α : (X, p) −→ (Y, q) in Prb is said to be measure-
preserving if Mα(p) = q.

Clearly these maps form a subcategory of Prb. In effect, this ensures that the
map α is essentially surjective. However, there is no reason why we would con-
sider essentially surjective maps which are not surjective in the usual sense. We
shall thus consider the subcategory of Prb consisting of the surjective measure-
preserving maps. We will also augment this category with additional structure
relevant to our situation.

We define the category AMP of abstract Markov processes as follows. The
objects consist of probability spaces (X,Σ, p), together with an abstract Markov
process τ on X . The arrows α : (X,Σ, p, τ) −→ (Y,Λ, q, ρ) are surjective measure-
preserving maps from X to Y such that α(τ) = ρ. In words, this means that the
Markov processes defined on the codomain are precisely the projection of the
Markov processes τ on the domain through α. When working in this category,
we will often denote objects by the state space, when the context is clear.

One can define a preorder on AMP as follows: given two AMPs (X,Σ, p, τ)
and (Y,Λ, q, ρ), we say that Y ( X if there is an arrow α : (X,Σ, p, τ) −→
(Y,Λ, q, ρ) in AMP.

Definition 6. We say that two objects of AMP, (X,Σ, p, τ) and (Y,Λ, q, ρ),
are bisimilar if there is a third object (Z, Γ, r, π) with a pair of zigzags
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α : (X,Σ, p, τ) −→ (Z, Γ, r, π)
β : (Y,Λ, q, ρ) −→ (Z, Γ, r, π)

making a cospan diagram

(X,Σ, p, τ) (Y,Λ, q, ρ)

(Z, Γ, r, π)

β

�

α
�

Note that the identity function on an AMP is a zigzag, and thus that any zigzag
between two AMPs X and Y implies that they are bisimilar.

The great advantage of cospans is that one needs pushouts to exist rather
than pullbacks (or weak pullbacks); pushouts are much easier to construct. The
following theorem shows that bisimulation is an equivalence.

Theorem 2. Let α : X −→ Y and β : X −→ Z be a span of zigzags. Then the
pushout W exists and the pushout maps δ : Y −→W and γ : Z −→W are zigzags.

Corollary 1. Bisimulation is an equivalence relation on the objects of AMP.

It turns out that there is a “smallest” bisimulation. Given an AMP (X,Σ, p, τ),
one question one may ask is whether there is a “smallest” object (X̃, Ξ, r, ξ) in
AMP such that, for every zigzag from X to another AMP (Y,Λ, q, ρ), there is a
zigzag from (Y,Λ, q, ρ) to (X̃, Ξ, r, ξ). It can be shown that such an object exists.

Proposition 1. Let {αi : (X,Σ, p, τ) −→ (Yi, Λi, qi, ρi)} be the set of all zigzags
in AMP with domain (X,Σ, p, τ). This yields a generalized pushout diagram,
and as in Theorem 2, the pushout (X̃, Ξ, r, ξ) exists and the pushout maps are
zigzags.

This object has important uniqueness properties.

Corollary 2. Up to isomorphism, the object (X̃, Ξ, r, ξ) the unique bottom ele-
ment of ZZX , the collection of all zigzags with X as domain. If (W,Ω, q, ρ) is
another AMP such that there is a zigzag μ from X̃ to W , then μ is an isomor-
phism.

Thus, we can say that X̃ is the meet (or infimum) of all objects Yi which are
bisimilar to the AMP X , with respect to the preorder (. This “smallest” ob-
ject is given in an abstract way; however, it can be constructed explicitly. Its
construction is closely linked to a modal logic.

The logical characterization result from LMPs can easily be recast in the
context of AMPs. We skip the proofs but give the basic definitions. Let us fix a
finite set of labels A once and for all. We can then speak of objects in a category
AMPA of labelled AMPs, consisting of a probability space (x,Σ, p) and a set
of AMPs τa indexed by A.
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Definition 7. We define a logic L as follows, with a ∈ A:

L ::= T|φ ∧ ψ| 〈a〉q ψ

Given a labelled AMP (X,Σ, p, τa), we associate to each formula φ a measurable
set �φ�, defined recursively as follows:

�T� = X �φ ∧ ψ� = �φ� ∩ �ψ��
〈a〉q ψ

�
=
{
s : τa(1�ψ�)(s) > q

}
We let �L� denote the measurable sets obtained by all formulas of L.

Theorem 3. (From [9]) Given a labelled AMP (X,Σ, p, τa), the σ-field σ(�L�)
generated by the logic L is the smallest event-bisimulation on X. That is, the
map i : (X,Σ, p, τa) −→ (X,σ(�L�), p, τa) is a zigzag; furthermore, given any
zigzag α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa), we have that σ(�L�) ⊆ α−1(Λ).

Hence, the σ-field obtained on X by the “smallest object” X̃ is precisely the
σ-field we obtain from the logic.

5 Approximations of AMPs

Given an arbitrary AMP, it may be very difficult to study its behavior if its
state space is very large or uncountable. It is therefore crucial to devise a way
to reduce the state space to a manageable size.

In this section, we let the measurable map iΛ : (X,Σ) −→ (X,Λ) be the
identity on the set X , restricting the σ-field. The resulting AMP morphism is
denoted as iΛ : (X,Σ, p, τ) −→ (X,Λ, p, Λ(τ)), as p is just restricted on a smaller
σ-field, with Λ(τ) being the projection of τ on the smaller σ-field Λ.

Let (X,Σ, p, τa) be a labelled AMP. Let P be a finite set of rationals in [0, 1];
we will call it a rational partition. We define a family of finite π-systems [12],
subsets of Σ, as follows:

ΦP,0 = {X, ∅}
ΦP,n = π

({
τa(1A)−1(qi, 1] : qi ∈ P , A ∈ ΦP,n−1, a ∈ A

}
∪ ΦP,n−1

)
where π(Ω) is the π-system generated by the class of sets Ω.

For each pair (P ,M) consisting of a rational partition and a natural number,
we define a σ-algebra ΛP,M on X as ΛP,M = σ (ΦP,M ), the σ-algebra generated
by ΦP,M . We shall call each pair (P ,M) consisting of a rational partition and a
natural number an approximation pair. These σ-algebras have a very important
property:

Proposition 2. Given any labelled AMP (X,Σ, p, τa), the σ-field σ (
⋃
ΛP,M ),

where the union is taken over all approximation pairs, is precisely the σ-field
σ �L� obtained from the logic.
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Consider the σ-algebra ΛP,M . We have the map

iΛP,M : (X,Σ, p, τa) −→ (X,ΛP,M , p, ΛP,M(τa)) .

Now since ΛP,M is finite, it is atomic, and so it partitions our state space X ,
yielding an equivalence relation. Quotienting by this equivalence relation gives
a map πP,M : (X,ΛP,M , p, ΛP,M (τa)) −→ (X̂P,M , Ω, q, ρa), where X̂P,M is the
(finite!) set of atoms of ΛP,M and Ω is just the powerset of X̂P,M . The measure
q is just the image measure and AMPs ρa are the projections πP,M (τa). Note
that πP,M is a zigzag as π −1

P,M (Ω) = ΛP,M .
As the σ-field on X̂P,M is its powerset, we will refrain from writing Ω when

involving a finite approximation. We thus have an approximation map φP,M =
πP,M ◦ iΛP,M from our original state space to a finite state space; furthermore it
is clear that this map is an arrow in AMP.

Let us define an ordering on the approximation pairs by (P ,M) ≤ (Q, N)
if Q refines P and M ≤ N . This order is natural as (P ,M) ≤ (Q, N) implies
ΛP,M ⊆ ΛQ,N , which is clear from the definition. Thus, this poset is a directed
set: given (P ,M) and (Q, N) two approximation pairs, then the approximation
pair (P ∪Q,max(M,N)) is an upper bound.

Given two approximation pairs such that (P ,M) ≤ (Q, N), we have a map
i(Q,N),(P,M) : (X,ΛQ,N , ΛQ,N (τa)) −→ (X,ΛP,M , ΛP,M (τa)) which is well de-
fined by the inclusion ΛP,M ⊆ ΛQ,N ⊆ Σ. We therefore have a projective
system of such maps indexed by our poset of approximation pairs. It can be
shown that these maps induce a map on the finite approximation spaces X̂P,M ,
say j(Q,N),(P,M) : (X̂Q,N , φQ,N (τa)) −→ (X̂P,M , φP,M (τa)), such that the map
φ(P,M) factors through the map φ(Q,N) as φ(P,M) = j(Q,N),(P,M)◦φ(Q,N). Hence,
the maps j(Q,N),(P,M) together with the approximants X̂(P,M) also form a pro-
jective system with respect to our poset of approximation pairs.

A result of Choksi [16] allows us to construct projective limits of measure
spaces. We consider the underlying probability spaces of the finite approximants
of a labelled AMP (X,Σ, p, τa).

Proposition 3. (From [16]) The probability spaces of finite approximants X̂P,M
of an AMP (X,Σ, p, τa), indexed by the approximation pairs, form a projective
system of surjective measure-preserving maps; furthermore, its projective limit
(proj lim X̂, Γ, γ) exists in Prb

Concretely, proj lim X̂ is the projective limit in Set. Thus we have the usual
projection maps, appropriately restricted, ψP,M : proj lim X̂ −→ X̂P,M for every
approximation pair. We also have, in Set, a unique map κ : X −→ proj lim X̂
such that ψP,M ◦ κ = φP,M .

The σ-field Γ is the smallest σ-field making all of the maps ψP,M measurable.
We must show that κ−1(Γ ) ⊆ Σ. We shall show something stronger.

Proposition 4. The σ-field κ−1(Γ ) is precisely equal to σ �L�; in particular κ
is measurable.
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Proof. The σ-field Γ is generated by the preimages of ψP,M . Taking the preimage
of this through κ is equivalent to taking the preimage through the approximation
maps φP,M , which is exactly ΛP,M . These σ-fields generate σ �L�.

We now need to show that κ is measure-preserving. γ was defined so that the
maps ψP,M were measure preserving [16]; thus γ and Mκ(p) agree on all subsets
of proj lim X̂ which are the preimage of a measurable set in a finite approximant
X̂P,M . Since these sets generate Γ , and form a π-system, the uniqueness of
measure theorem [12] implies that γ = Mκ(p).

Finally, we define the AMP ζa on proj lim X̂ in the obvious way; that is,
as the projection of τa through κ. Then the projection of ζa onto the finite
approximants through ψP,M is precisely equal to ρa as they were previously
defined, since ψP,M ◦ κ = φP,M . Thus, the projective limit of measure spaces
can be extended to a projective limit of AMPs.

Proposition 5. The universal map κ obtained from the projective limit is a
zigzag.

Therefore, if we let (X̃, Ξ, r, ξa) be the smallest bisimulation obtained as in
proposition 1, we have a zigzag ω : (proj lim X̂, Γ, γ, ζa) −→ (X̃, Ξ, r, ξa). This
zigzag must be an isomorphism of σ-fields as Ξ is the smallest possible σ-field
on X̃. We can show that there is a zigzag going in the other direction.

Proposition 6. Let α : (X,Σ, p, τa) −→ (Y,Θ, q, ρa) be a zigzag. Then these two
AMPs have the same finite approximants. In particular, two bisimilar AMPs
have the same finite approximants.

We conclude with the main result.

Theorem 4. Given a labelled AMP (X,Σ, p, τa), the projective limit of its fi-
nite approximants (proj lim X̂, Γ, γ, ζa) is isomorphic to its smallest bisimulation
(X̃, Ξ, r, ξa).

6 Related Work and Conclusions

The main contribution of the present work is to show how one can obtain a
powerful and general notion of approximation of Markov processes using the
dualized view of Markov processes as transformers of random variables (mea-
surable functions). We view Markov processes as “predicate transformers”. Our
main result is to show that this way of working with Markov processes greatly
simplifies the theory: bisimulation, logical characterization and approximation.
Working with the functions (properties) one is less troubled by having to deal
with things that are defined only “almost everywhere” as happens when one
works with states.

A very nice feature of the theory is the ability to show that a minimal bisimula-
tion exists. Furthermore, this minimal object can be constructed as the projective
limit of finite approximants.
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Previous work on bisimulation-based approximation of Markovprocesses began
with a paper by Desharnais et al. [4] where the approximation scheme was based
on an unfolding of the transition system. The main technical result is that every
formula satisfied by a process is satisfied by one of its finite approximants.

In [5] the idea of approximating by averaging was introduced and the main tool
used to compute the approximation is the conditional expectation. The mathemat-
ical theory developed there is the bare beginnings of the theory developed here.
There also the idea of averaging by conditional approximation was used; but none
of the results relating to bisimulation and especially the result about construct-
ing a minimal bisimulation by taking a projective limit of finite approximants was
known. Moving to AMPs was crucial for all this to work.

One of the problems with any of the approximation schemes is that they are
hard to implement. In a recent paper [7], an approach based on Monte Carlo
approximation was used to “approximate the approximation.” The point is that
it is hard to compute τ−1 in practice. Our most pressing future work is to explore
the possibility of implementing the approximation scheme and, perhaps using
some technique like Monte Carlo, to compute the approximations concretely. It
is curious that the abstract version of Markov processes makes it more likely
that one can compute approximations in practice and is another argument in
favour of a “pointless” view of processes.
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The Theory of Stabilisation Monoids
and Regular Cost Functions�
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Liafa/Cnrs/Université Paris 7, Denis Diderot, France

Abstract. We introduce the notion of regular cost functions: a quanti-
tative extension to the standard theory of regular languages.

We provide equivalent characterisations of this notion by means of
automata (extending the nested distance desert automata of Kirsten),
of history-deterministic automata (history-determinism is a weakening
of the standard notion of determinism, that replaces it in this context),
and a suitable notion of recognisability by stabilisation monoids. We also
provide closure and decidability results.

1 Introduction

When considering standard regular languages (say on finite words), some re-
sults appear as cornerstones on which the whole theory is constructed. The first
such kind of results are the equivalences between many different formalisms: non-
deterministic automata, deterministic automata, recognisability by monoids, reg-
ular expressions, etc. The second one consists in the numerous closure properties
that regular languages enjoy: union, intersection, projection (mapping under a
length-preserving morphism), complementation, etc. From these facts one can
derive a third kind of results: the equivalence with logical formalisms such as
monadic (second-order) logic. Finally, all these properties do not come at an un-
affordable price: emptiness is decidable, and hence the satisfaction of the logic
is also decidable.

In this paper, we present a quantitative extension to the standard notion of
regularity in which those cornerstone results still hold. We consider a quantitative
notion of regularity which allows to attach non-negative integer values to words,
such as the number of occurrences of a pattern, the length of segments, etc. One
also possess some freedom for combining those values, e.g., using minimum or
maximum. One can for instance describe the maximum number of occurrences of
letter a that are not separated by a letter b. Those integer values are considered
modulo an equivalence which preserves the existence of bounds, but does not
preserve exact values – as opposed to the usual way one considers quantitative
forms of automata. This is the price to pay for keeping all equivalences and
closure properties.

Originally, this work aimed at unifying and reinterpreting some recent results
from the literature. Let us review them.
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First, in [9] Kirsten gives a new proof to the decidability of the (restricted)
star-height problem1. This problem is known to be decidable from Hashiguchi
[7], but with a very difficult proof. The first part in Kirsten’s proof consists in
reducing the star-height problem to a problem of limitedness: decide the exis-
tence of a bound for some function defined by means of a nested distance desert
automata, a new form of automata introduced for this purpose. The second part
consists in proving the decidability of this limitedness problem. This is done by
turning this automata-related question into an algebraic one: the automaton is
translated into a monoid equipped with a stabilisation operator '. The limit-
edness problem becomes easy to decide in this presentation. Kirsten’s paper is
itself the continuation of a long line of research concerning distance automata,
tropical semiring, desert automata, etc. [6,8,11,12,13,14,15,16,17].

Second, the paper [3] provides a study of an extension of the monadic second-
order logic over infinite words with new ‘bound’ quantifiers such as: ‘there exists
a set of arbitrary large size satisfying some property’. The goal being different,
the presentation is also significantly different, and getting results comparable to
the ones in the present paper requires a translation that we cannot detail here.
However, two new forms of automata are introduced in [3] as intermediate objects
in the proofs, namely B-automata and S-automata. The class of B-automata
corresponds essentially to the non-nested variant of the nested desert distance
automata, while the class of S-automata is a new dual variant. The decidability
of limitedness can be derived from this work but with a bad complexity (non-
elementary, as opposed to [9]). Independently, B-automata were also introduced
in [1] under the name of R-automata, and the decidability of the limitedness
problem established using another technique, yielding better complexity.

Other applications of the technique have also been described. Still in this
framework, the restricted star-height problem for trees has been shown decidable
[4], and the Mostowski hierarchy problem2 has been reduced to the corresponding
limitedness problem over infinite trees [5], which remains open. The existence
of a bound on the number of iterations necessary for reaching the fixpoint of a
monadic second-order formula over words has been also shown decidable using
distance automata [2].

Contribution. Our contribution can be roughly described as 1) a unification of
the ideas in [9] and [3], and 2) the development of a suitable mathematical back-
ground and the establishment of new results in order to make this theory a com-
plete extension of the standard theory of regular languages. Let us be more precise.

The first contribution lies in the definition of a cost function: cost functions
are mappings from words (or from any set in general) to ω + 1 quotiented by a
suitable equivalence that preserves the notion of bound (≈ in the paper). In our
framework, cost functions can be seen as a refinement of the notion of language
(each language can be seen as a cost function, while the converse is not true).

1 Problem: given a regular language L of words and an integer k, is it possible to
describe L with a regular expression using at most k nesting of Kleene stars?.

2 The hierarchy induced by the number of priorities used by a non-deterministic parity
automaton running on infinite trees.
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We then introduce B- and S-automata, automata that accept cost functions
rather than languages. Those are slight extensions of the automata in [3]. We
establish the equivalence of the two forms of automata, via an elementary con-
struction, as well as the equivalence with their history-deterministic form. The
new notion of history-determinism is a weakening of the classical notion of de-
terminism (deterministic automata are strictly weaker in this framework). It is
needed for the further extension of the theory to trees. Quiet naturally, we call
regular the cost functions described by one of these formalisms.

The second aspect of the theory that we develop is the algebraic formalism.
We introduce the notion of stabilisation monoids: finite monoids equipped with a
stabilisation operator, inspired from [9]. We develop a mathematical framework
– new to the knowledge of the author – in order to define the semantics of
stabilisation monoids. The key result here is the existence of unique semantics
(that we call compatible mappings) for each stabilisation monoid3. Building on
these notions, we introduce the notion of recognisable cost functions. As we may
expect, these happen to be exactly the regular cost functions.

While describing the above objects, we prove the closure of regular cost func-
tions under operations which correspond to union, intersection, projection and
dual of projection in the world of languages. We also provide decision procedures
subsuming the limitedness results from [9].

Structure of the paper. We present in Section 2 cost functions and the au-
tomata part of the theory. We present in Section 3 the algebraic framework, and
the equivalent notion of recognisability.

Some Notations

As usual, we denote by ω the set of non-negative integers and ω + 1 the set
ω ∪ {ω}. Those are ordered by 0 < 1 < · · · < ω. The identity mapping over ω is
id . Given a set E, Eω is the set of sequences of ω-length of elements in E. Such
sequences will be denoted by bold letters (a, b,. . . ). We fix a finite alphabet A
consisting of letters. The set of words over A is A∗. The empty word is ε. The
concatenation of a word u and word v is uv. The length of word u is |u|. The
number of occurrences of a letter a in u is |u|a.

2 Regular Cost Functions

We introduce in Section 2.1 the notion of cost function. We present B and S-
automata in Section 2.2, and their history-deterministic form in Section 2.3. The
key duality result is the subject of Section 2.4.

2.1 Cost Functions

A correction function is a mapping from ω to ω. From now, the symbols α, α′, . . .
implicitly designate correction functions. Given x, y in ω + 1, x �α y holds
3 This result is reminiscent of the one for infinite words stating that each finite Wilke

algebra can be uniquely extended into an ω-semigroup.
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if x ≤ α(y) in which α is the extension of α with α(ω) = ω. For every set E,
�α is extended to (ω + 1)E in a natural way by f �α g if f(x) �α g(x) for
all x ∈ E, or equivalently f ≤ α ◦ g. Intuitively, f is dominated by g after it has
been ‘stretched’ by α. One also writes f ≈α g if f �α g and g �α f .

Some elementary properties of �α are:

Fact 1. If α ≤ α′ and f �α g, then f �α′ g. If f �α g �α h, then f �α◦α h.

Example 1. Over ω×ω, maximum and sum are equivalent for the doubling cor-
rection function (for short, (max) ≈×2 (+)). Proof: for all x, y ∈ ω, max(x, y) ≤
x + y ≤ 2×max(x, y).

Our second example concerns mappings from sequence of words to ω. Given
words u1, . . . , un ∈ {a, b}∗, we have |u1 . . . un|a ≈α max(|K|,maxi=1...n |ui|a)
in which K is the set of indices i such that |ui|a ≥ 1 and α(θ) = θ2. Proof:
max(|K|,maxi=1...n |ui|a) ≤ |u|a ≤ Σi∈K |ui|a ≤ (max(|K|,maxi=1...n |ui|a))2 .

One also defines f � g (resp. f ≈ g) to hold if f �α g (resp. f ≈α g) for some α.
A cost function (over a set E) is an equivalence class of ≈ (i.e., a set of mappings
from E to ω + 1). The relation � has other characterisations:

Proposition 1. For all f, g from E to ω+1, the following items are equivalent:

– f � g,
– ∀n ∈ ω.∃m ∈ ω.∀x ∈ E.g(x) ≤ n → f(x) ≤ m , and;
– for all X ⊆ E, g|X is bounded implies f |X is bounded.

The last characterisation shows that the relation ≈ is an equivalence relation
that preserves the existence of bounds. Indeed, all this theory can be seen as an
automata theoretic method for proving the existence/non-existence of bounds.

Cost functions over some set E ordered by � form a lattice. Given a sub-
set X ⊆ E, one denotes by χX its characteristic mapping defined by χX(x) = 0
if x ∈ X , ω otherwise. It is easy to see that for all X,Y ⊆ E, χX � χY iff
Y ⊆ X . To this respect, the lattice of cost functions is a refinement of the lat-
tice of subsets of E equipped with the superset ordering. Keeping this in mind,
the notion of regular cost function developed in the paper is an extension of
the standard notion of regular language. This extension is strict as soon as E
is infinite: there are cost functions that are not equivalent to any characteristic
mapping. Consider for instance the size mapping over words, or the number of
occurrences of some letter.

2.2 Automata

We present here the automata model we use. A cost automaton (that can be
either a B-automaton or an S-automaton) is a tuple 〈Q,A, In,Fin , Γ,Δ〉 in
which Q is a finite set of states, A is the alphabet, In and Fin are respectively
the set of initial and final states, Γ is a finite set of counters, and Δ ⊆ Q×A×
{ε, i, r, c}Γ ×Q is the set of transitions. The idea behind the letter in {ε, i, r, c}Γ
(called an action) is that each counter (the value of which ranges over ω) can
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either be left unchanged (ε), be incremented by one (i), be reset to 0 (r), or
be checked (c). A run σ of an automaton over a word a1 . . . an is defined as a
sequence q0, a1, c1, q1, . . . , qn−1, an, cn, qn such that q0 is initial, qn is final and for
all i = 1 . . .n, (qi−1, ai, ci, qi) ∈ Δ. Given a run σ, each counter ι ∈ Γ is initialized
with value 0 and evolves from left to right according to ci(ι): if ci(ι) is ε or c, the
value is left unchanged, if it is i, it is incremented by 1, if it is r, the counter is
reset. The set C(σ) ⊆ ω is the set of values taken by the counters when checked
(i.e., the value of counter ι when ci(ι) = c). The difference between B-automata
and S-automata comes from their dual semantics, [[·]]B and [[·]]S respectively:

for all u ∈ A∗, [[A]]B(u) = inf{supC(σ) : σ run over u} ,

and, [[A]]S(u) = sup{inf C(σ) : σ run over u} ,

in which we use the standard convention that inf ∅ = ω and sup ∅ = 0. Remark
that if A is a non-deterministic finite automaton in the standard sense, accepting
the language L, then it can be seen as a cost automaton without counters. Seen as
a B-automaton, [[A]]B(u) = χL, while seen as an S-automaton [[A]]S(u) = χA∗\L.

Remark 1 (variants). The other similar automata known from the literature can
essentially be seen as special instances of the above formalism. The B-automata
and S-automata in [3] use only actions in {ε, i, cr} in which cr is an atomic
operation that checks the counter and immediately resets it. The models are
equivalent but the history-determinism (see below) cannot be achieved for S-
automata in this restricted form. The hierarchical automata correspond to the
case when Γ = {1, . . . ,n} and for all transitions (p, a, c, q), if for all i ∈ Γ ,
if c(i) �= ε implies c(j) = r for all j < i. The nested distance desert automata of
Kirsten corresponds to hierarchical B-automata that use actions in {ε, ic, r} in
which ic is an atomic operation which increments the counter and immediately
checks it. The R-automata in [1] use also actions in {ε, ic, r}, but without the
hierarchical constraint. All those models are equivalent, up to ≈.

We conclude the section by showing some easy closure properties. Given a map-
ping f from A∗ to ω + 1 and a length-preserving morphism h from A∗ to B∗ (B
is another alphabet) the inf-projection and sup-projection of f with respect to h
are the mappings finf,h and fsup,h from B∗ to ω + 1 defined for v ∈ B∗ by:

finf,h(v) = inf{f(u) : h(u) = v} and fsup,h(v) = sup{f(u) : h(u) = v}.

By simply adapting the standard constructions for intersection, union, and pro-
jection of non-deterministic automata, we get:

Proposition 2. The mappings accepted by B-automata (resp. S-automata) are
closed under min and max. The mappings accepted by B-automata (resp. S-
automata) are closed under inf-projection (resp. sup-projection).

2.3 History-Determinism

In general B and S-automata cannot be determinised (even modulo ≈). We
consider here automata which possess a weaker property: history-determinism
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(note that this notion is meaningful even for other kinds of non-deterministic
automata). Informally, a non-deterministic automaton is history-deterministic
if it possible to choose deterministically the run while accepting an equivalent
function. The subtlety comes from the fact that cost automata do not have a suf-
ficient memory for ‘implementing’ this deterministic choice. History-determinism
can be seen as a semantic notion of determinism as opposed to the standard no-
tion that we can refer to as state-determinism4. This notion is required for the
extension of the theory to trees.

Formally, let us fix ourselves a cost automaton (either B or S) with unique
initial state A = 〈Q,A, {q0},Fin, Γ,Δ〉. A translation strategy5 for A is a map-
ping δ from A∗×A to Δ which tells deterministically how to construct a run of A
over a word. One defines the run of A over the word u driven by δ inductively
as follows: if u = ε, the run is q0. If u is of the form va, the run is the run of A
over v driven by δ prolonged with the transition δ(v, a) (if this procedure does
not provide a valid run over u, then there is no run driven by δ over this entry).
If A is a B-automaton the value [[A]]δB(u) is supC(σ) where σ is the run of A
over u driven by δ, and ω if there is no such run. If A is an S-automaton the
value [[A]]δS(u) is inf C(σ) where σ is the run of A over u driven by δ, and 0 if
there is no such run.

A B-automaton is history-deterministic if there exists α and for all n ∈
ω a translation strategy δn such that for all words u, [[A]]B(u) ≤ n implies
[[A]]δnB (u) ≤ α(n). An S-automaton is history-deterministic if there exists α and
for all n ∈ ω a translation strategy δn such that for all word u, [[A]]S(u) ≥ α(n)
implies [[A]]δnS (u) ≥ n. In other words, the automaton, when driven by δ, com-
putes an ≈α-equivalent function.

2.4 Duality and Regularity

Duality relates all the above notions together. It is central in the theory.

Theorem 1 (duality). A cost function over words is accepted by an [history-
deterministic] [hierarchical] B-automaton, iff it is accepted by an [history-deter-
ministic] [hierarchical] S-automaton. Those equivalences are effective and of
elementary complexity. Such cost functions are called regular.

In fact, the proof of Theorem 1 and Theorem 3 below are interdependent. Indeed,
the way to transform a cost function accepted by a B-automaton into a cost
function accepted by an S-automaton (and vice-versa) is to transform it first
into a recognisable cost function, and only then to construct an S-automaton.
The results have been separated in this abstract for being easier to present.

One can remark that in the absence of counters, translating a B-automaton
into an S-automaton (and vice-versa) is easy to achieve by using any complemen-
tation construction for standard non-deterministic automata. Hence Theorem 1
4 In state-determinism, given the current state and a letter, there is only one possible

transition, while in history-determinism, given the prefix of word seen so far (the
history), and a letter, it is possible to uniquely choose one transition.

5 The name comes from the game theoretic part which is not developed here.
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can be seen as a replacement for both the results of complementation and de-
terminisation in the classical theory of regular languages.

Even if not explicitly stated, the equivalence between [hierarchical] B-automa-
ta and [hierarchical] S-automata, can be derived from the results in [3]. However,
using the proof in [3] entails a long theoretical detour, and the constructions in [3]
give a non-elementary blowup in the number of states. Furthermore, the notion
of history-determinism has no equivalent in [3].

3 Stabilisation Monoids and Recognisable Cost Functions

In this section we describe our algebraic characterisation of regular cost func-
tions. The core algebraic object is the stabilisation monoid that we describe in
Section 3.1. In Sections 3.2, 3.3 and 3.4, we show how to attach semantics to
stabilisation monoids. In Section 3.5 we introduce recognisability, state that it
is equivalent to regularity and give a decidability result.

3.1 Stabilisation Monoids

A monoid M = 〈M, ·〉 is a set M equipped with an associative operation ·
that has a neutral element 1, i.e., such that 1 · x = x · 1 = x for all x ∈M . One
extends the product to products of arbitrary length by defining π from M∗ to M
by π(ε) = 1 and π(ua) = π(u) ·a. An idempotent in M is an element e ∈M such
that e · e = e. One denotes by E(M) the set of idempotents in M. An ordered
monoid 〈M, ·,≤〉 is a monoid 〈M, ·〉 together with an order ≤ over M such that
the product · is compatible with ≤; i.e., a ≤ a′ and b ≤ b′ implies a · b ≤ a′ · b′.

We are now ready to introduce the new notion of stabilisation monoid.

Definition 1. A stabilisation monoid 〈M, ·,≤, '〉 is an ordered monoid 〈M, ·,≤〉
together with an operator ': E(M) → E(M) (called stabilisation) such that:

– for all a, b ∈M with a · b ∈ E(M) and b · a ∈ E(M), (a · b)� = a · (b · a)� · b;6
– for all e ∈ E(M), (e�)� = e� ≤ e;
– for all e ≤ f in E(M), e� ≤ f �;
– 1� = 1.

From now, we consider that all stabilisation monoids are finite.

The intuition is that e� represents what is the value of en when n becomes ‘very
large’. This idea – which is incompatible with the classical view on monoids –
fits well with the following consequences of the definition:

for all e ∈ E(M), e� = e · e� = e� · e = e� · e� = (e�)� .

Most of the remaining of the section is devoted to the formalisation of this
intuition. This requires the development of a suitable mathematical framework.
This approach is then validated by Theorem 2 which associates unique semantics
to stabilisation monoids.
6 This equation states that � is a consistent mapping in the sense of [9,10].
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3.2 Cost Sequences

In order to give quantitative semantics to stabilisation monoids, the basic object
is not the element of the monoid, but sequences of such elements. New rela-
tions (α and ∼α are used to relate such sequences together. Those are tightly
connected to �α and ≈α (see Section 3.3 for a formalisation of this link).

From now, θ and θ′ implicitely range over ω. Given an ordered set (E,≤), a
correction function α, and two sequences a, b ∈ Eω, define a (α b to hold when:

∀θ.∀θ′. α(θ) ≤ θ′ → a(θ) ≤ b(θ′) .

We set ∼α to be (α ∩ )α. The following fact is easy (analogue to Fact 1):

Fact 2. If α ≤ α′ and a (α b, then a (α′ b. If a (α b (α c, then a (α◦α c.

The mapping α is used as a parameter of ‘precision’ for ∼ and (. The above
fact states that using one transitivity step costs precision. (In practice, when
doing proofs, we omit the correction function subscript, and rather ensure that
the proofs conform to a structural property – very natural at use – ensuring that
the length of chains of transitivity steps are bounded.)

A sequence a is said α-non-decreasing if a (α a. Fact 3 is for helping intuition:
it shows that one can almost think of α-non-decreasing sequences as if those were
non-decreasing functions, and simplify the relation (α in this case:

Fact 3. Every α-non-decreasing sequence is ∼α-equivalent to a non-decreasing
sequence. If a and b are non-decreasing, then a (α b iff a ≤ b ◦ α.

The above inequality a ≤ b ◦α conveys the important intuition that a is ‘domi-
nated’ by b after ‘shrinking’ its coordinates (by α). This has to be compared to
the definition of �α in which the correction function is used for ‘stretching’.

From now, we identify each element a ∈ E with the sequence constant equal
to a. According to Fact 3, the relation (α (whatever is α) coincide with ≤
over those sequences. Hence the α-non-decreasing sequences equipped with the
relation (α can be seen as a refinement of (E,≤).

We introduce now an important tool: α-monotonic mappings. This notion
simplifies a lot the work with the (α and ∼α relations. Given two ordered sets
(E,≤) and (F,≤), a mapping f from E to Fω is said α-monotonic if

∀a, b ∈ E. a ≤ b→ f(a) (α f(b) .

You can remark that in particular, for each a ∈ E, since a ≤ a, we have f(a) (α
f(a), and hence f(a) is α-non-decreasing. Every α-monotonic f from E to Fω

can be turned into a mapping f̃ from Eω to Fω by setting:

for all a ∈ Eω and all θ ∈ ω, f̃(a)(θ) = f(a(θ))(θ) .

The following proposition discloses some key properties of α-monotonicity:

Proposition 3. Let f : E → Fω be α-monotonic and a, b ∈ Eω, then:

a (α b implies f̃(a) (α f̃(b) .

In particular, if f : E → Fω and g : F → Gω are α-monotonic, then g̃ ◦ f
is α-monotonic. Furthermore (̃g̃ ◦ f) = g̃ ◦ f̃ .
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3.3 Relationship between �α and �α

As mentioned above, (α and �α are tightly connected. We introduce in this
section some useful notations and formalise this link in Proposition 4.

Given an ordered set (E,≤), an ideal is a subset I ⊆ E such that for all a ∈ I
and b ≤ a, b ∈ I. Its complement in E is I. Given a ∈ E, the ideal generated
by a is Ia= {b ∈ E : b ≤ a}. Given a sequence a ∈ Eω and an ideal I, set
I[a] = sup{θ + 1 : a(θ) ∈ I}7 and a ∈ Eω, set I[a]= inf{θ : a(θ) ∈ I}.

One goes back and forth between (α and �α using Proposition 4:

Proposition 4. For all a, b ∈ Eω, a (α b iff I[a] �α I[b] for all ideal I ⊆ E.

3.4 Compatible Mappings

In this section, we capture the semantics of stabilisation monoids via the notion
of compatible mappings (see definition below). We establish the existence and
unicity of this semantics (Theorem 2).

Definition 2. Given a stabilisation monoid M = 〈M, ·,≤, '〉, a mapping ρ
from M∗ (words over M) to Mω is compatible with M if for some α we have:

Monotonicity. ρ is α-monotonic,
(M∗ is ordered by a1 . . . am ≤ b1 . . . bn if m = n and ai ≤ bi for all i)

Letter. for all a ∈M , ρ(a) ∼α a, and ρ(ε) ∼α 1,
(a and 1 denote the constant sequences equal to a and 1 respectively)

Product. for all a, b ∈M , ρ(ab) ∼α a · b,
(a · b denotes the constant sequence equal to a · b)

Stabilisation. for all e ∈ E(M), m ∈ ω, ρ(em) ∼α (e�|me),
(em denotes the word consisting of m occurrences of the letter e)
(for a ≤ b in M , set (a|mb) ∈Mω to map [0,m) to a and [m,ω) to b)

Substitution. for all u1, . . . ,un ∈M∗, n ∈ ω, ρ(u1 . . . un) ∼α ρ̃(ρ(u1) . . . ρ(un)).
(in which ρ(u1) . . . ρ(un) is naturally seen as an α-non-decreasing sequence
of words instead of a word over α-non-decreasing sequences)

Example 2. Consider the stabilisation monoid M with three elements⊥ ≤ a ≤ b,
for which the product is defined by x · y = min≤(x, y) (hence b = 1), and the
stabilisation by b� = b and a� = ⊥� = ⊥. Given a word u ∈ {⊥, a, b}∗, one sets:

ρ(u) =

⎧⎪⎨⎪⎩
b if u ∈ b∗

⊥||u|aa if u ∈ b∗(ab∗)+

⊥ otherwise.

The mapping ρ is compatible with M:

Monotonicity. We prove id -monotonicity. Let u ≤ v. If v ∈ b+ then ρ(u) ≤
b = ρ(v) (since ρ(v) = b is maximal), i.e., ρ(u) (id ρ(v). If u contains the
letter ⊥ then ρ(u) = ⊥ ≤ ρ(v). Otherwise, since u ≤ v, u and v contain at
least one occurrence of a, and no occurrence of ⊥. Hence ρ(u) = (⊥||u|aa)
and ρ(v) = (⊥||v|aa). But since u ≤ v, |u|a ≥ |v|a. We get that ρ(u) (id ρ(v).

7 The +1 makes the theory more smooth, e.g., for Proposition 4.
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Letter. We have ρ(b) = b, ρ(⊥) = ⊥ and ρ(a) = ⊥|1a. This implies ρ(a) ∼α a
for α(θ) = max(1, θ).

Product. The only non trivial case is ρ(aa) = (⊥|2a) ∼α (⊥|1a) = a · a which
holds for α(θ) = max(2, θ).

Stabilisation. Every element is an idempotent. Let m ≥ 1. For all x ∈ M ,
ρ(xm) = x�|mx by definition.

Substitution. Let u1, . . . , un ∈ M∗ and u = u1 . . . un. If for all i, ui ∈ b∗,
then ρ(u) = b = ρ̃(ρ(u1) . . . ρ(un)). If the letter ⊥ occurs in some ui,
then ρ(u) = ⊥ = ρ̃(ρ(u1) . . . ρ(un)). Otherwise u contains no ⊥, and at
least one occurrence of a. Let K be the set of indices i such that ui contains
an occurrence of a. By applying the definition of ρ and ρ̃ we claim that

ρ̃(ρ(u1) . . . ρ(un)) = ⊥|max(|K|,maxi∈K |ui|a)a ,

indeed if θ < |ui|a for some i, then ρ(ui)(θ) = ⊥, and as a consequence
ρ̃(ρ(u1) . . . ρ(un))(θ) = ⊥. And otherwise, if θ < |K|, (ρ(u1) . . . ρ(un))(θ)
contains no occurrences of ⊥, but |K|-many occurrences of a, and hence
once more ρ̃(ρ(u1) . . . ρ(un))(θ) = ⊥. Finally, if θ ≥ max(|K|,maxi∈K |ui|a),
then (ρ(u1) . . . ρ(un))(θ) contains no occurrences of ⊥ and at most θ oc-
currences of a. We obtain ρ̃(ρ(u1) . . . ρ(un))(θ) = a. Using Example 1 one
has max(|K|,maxi∈K |ui|a) ≈α |u|a (for α(θ) = θ2), and consequently using
Proposition 4, ρ(u) ∼α ρ̃(ρ(u1) . . . ρ(un)).

Remark 2. Let us state the link with the standard monoids. Consider a monoid
M = 〈M, ·〉. It can be turned into a stabilisation monoid 〈M, ·,≤, '〉 by a) setting
≤ to be the equality, and b) setting e� = e for all idempotents e. In this case,
it is easy to see that defining for all words u ∈ M∗, ρ(u) to be the sequence
constant equal to π(u) provides a compatible mapping (for α = id , i.e., ∼α is
the equality). According to Theorem 2 below, this is the only possible mapping
compatible with 〈M, ·,≤, '〉.

Theorem 2 states that stabilisation monoids have unique semantics. It is rem-
iniscent of the existence of unique extensions of finite Wilke algebras into ω-
semigroups in the theory of regular languages of infinite words.

Theorem 2. For every stabilisation monoid, there exists a mapping ρ compat-
ible with it. Furthermore it is unique up to ∼.

3.5 Recognisability

We now define the notion of recognisability for cost-functions.
(We use the definitions of Section 3.3.) Given a stabilisation monoid M =

〈M, ·,≤, '〉, a length-preserving morphism h from A∗ to M∗, and an ideal I ⊆M ,
the triple M, h, I recognises the mapping f : A∗ → ω + 1 if there exists α such
that for all u ∈ A∗, f(u) ≈α I[ρ(h(u))] in which ρ is a mapping compatible
with M . A cost function from A∗ to ω + 1 is recognisable if some (equivalently
all) function in the class are recognised by some M, h, I.
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Example 3. For A = {a, b}, the function | · |a which counts the number of occur-
rences of a in a word is recognisable. For this, consider the monoid of Example 2,
the morphism defined by h(a) = a, h(b) = b, and the ideal I = {⊥}. Then we
have |u|a = I[ρ(u)] for all u ∈ A∗. This means that | · |a is recognisable.

As one can expect, recognisability and regularity coincide:

Theorem 3. A cost function over words is regular iff it is recognisable.

As mentioned above, this theorem and Theorem 1 are proved at the same time.
This proof is much more involved than the equivalent one for regular languages.

We conclude our description by a decidability result.

Theorem 4. The relation � is decidable over recognisable cost functions.

This decidability result extends previous results. For instance, the boundedness
problem (deciding the existence of n ∈ ω such that f(u) ≤ n for all words u)
corresponds to f � 0. The standard limitedness problem (the boundedness over
the support of the function) corresponds to f � χL where L is {u : f(u) < ω}.

4 Conclusion

We have introduced the notion of regular cost functions over words: equivalence
classes of functions from words to ω + 1. We have shown that those cost func-
tions enjoy many equivalent representations: algebraic and automata theoretic.
This paper is mainly oriented toward the algebraic part, in particular with The-
orem 2 which shows that stabilisation monoids have a semantics independent
from the automata counterpart. From those equivalences we obtain that the
class of regular cost functions enjoy closure under min, max, inf-projection and
sup-projection. From those closure properties, it is possible to derive an equiv-
alence with a suitable extension of monadic second-order logic (not presented
in the paper). We also provide a decision procedures for the � relation, and
as a consequence the equivalence of cost functions. This result generalises the
decidability of the limitedness problem in [9] and [1].

The results were carefully stated so that the extension of the theory to trees
is possible (subject of a following paper). In particular we have introduced the
notion of history-determinism, a semantic notion which replaces the classical
notion of determinism in this framework. Let us finally remark that this whole
framework can be extended without any problem to infinite words.
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A Tight Lower Bound for Determinization of
Transition Labeled Büchi Automata

Thomas Colcombet and Konrad Zdanowski�

Liafa/Cnrs/Université Paris 7, Denis Diderot, Paris, France

Abstract. In this paper we establish a lower bound hist(n) for the
problem of translating a Büchi word automaton of size n into a de-
terministic Rabin word automaton when both the Büchi and the Rabin
condition label transitions rather than states. This lower bound exactly
matches the known upper bound to this problem. The function hist(n)
is in Ω((1.64n)n) and in o((1.65n)n).

Our result entails a lower bound of hist(n − 1) when the input Büchi
automaton has its Büchi acceptance condition labeling states (as it is
usual). Those lower bounds remain when the output deterministic Rabin
automaton has its Rabin acceptance condition labeling states.

1 Introduction

Since the seminal work of Büchi [Büc62], automata running over infinite words
(of length ω) have become a fundamental object in automata theory. The au-
tomata introduced by Büchi are non-deterministic and use a so called Büchi
acceptance condition: a run of the automaton is accepting if some set of states is
visited infinitely often. Büchi established that it is possible to complement them,
though those automata cannot be made deterministic in general. The next fun-
damental step in this theory is the result of McNaughton [McN66] stating that
Büchi automata can be effectively transformed into deterministic automata (of
doubly exponential size) using a Muller acceptance condition; i.e., a run is ac-
cepting if it satisfies a boolean combination of atomic properties of the form ‘the
state q is visited infinitely often’1. Those two operations of complementation and
determinization of automata running on infinite words are the two key results
in this theory, and a long line of research is dedicated to the search of the exact
complexity of those two operations (in terms of state blow-up).

The complementation saga. The quest for the exact complexity for the com-
plementation of Büchi automata has been the subject of a long list of works
(see e.g., [Sch09a]). Now both lower bounds and upper bounds are well known
and tightly related. Indeed, there is a function tight which is in O((0.76n)n)
such that (lower bound) for all n, there exists a Büchi automaton of size n such

� Both authors are supported by the Anr project Jade (“Jeux et Automates,
Décidabilité et Extensions”).

1 The original statement is that every Büchi automaton is equivalent to a boolean
combination of deterministic Büchi automata.

S. Albers et al. (Eds.): ICALP 2009, Part II, LNCS 5556, pp. 151–162, 2009.
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that every Büchi automaton for the complement language has Ω(tight(n − 1 ))
states [Yan08], and (upper bound) for all Büchi automaton of size n, there ex-
ists a Büchi automaton for its complement of size O(tight(n + 1 )) [Sch09a].
Since O(n2tight(n− 1)) = O(tight(n + 1)), lower and upper bound to the com-
plementation problem only differ by a quadratic factor. This is the end of the
quest.

The determinization problem: The origins. In the theory of finite automata,
determinization is easy to describe [RS64]. Given a non-deterministic (finite
word) automaton of size n, one constructs a deterministic automaton that main-
tains the set of states that the original automaton could have reached at the
current position. The resulting automaton has size 2n (2n− 1 if one does not re-
quire completeness). This construction is known to be optimal (it is even optimal
for complementation). For automata running over infinite words, the informa-
tion maintained by the above construction is not sufficient. Safra was the first
to provide a solution oriented toward efficiency [Saf88]. In his construction the
reachable states are maintained, and furthermore organized in a tree-structure
(called a Safra tree) which carries information on the history of the possible runs
reaching each state. The resulting construction takes as input a non-deterministic
Büchi automaton of size n, and produces a deterministic automaton of size at
most (12)nn2n states using a Rabin acceptance condition; i.e., a run is accepting
if it satisfies a disjunction of properties of the form ‘the set of state E is visited
infinitely often, and the set of states F finitely often’ (each such pair (E,F ) is
named a Rabin pair). The automaton constructed by Safra uses 2n Rabin pairs:
this is achieved by furthermore maintaining in each Safra tree a name attached
to each node. This naming mechanism allows a dynamic reuse of the Rabin
pairs. The ideas developed by Safra in his seminal work are underlying most of
the other solutions to the determinization problem.

The determinization problem: Further developments. Piterman [Pit07] pro-
poses a modification to Safra’s constructions for producing an automaton using
a parity acceptance condition; i.e., every state has a priority in ω, and a run is
accepting if the least priority seen infinitely often is even. This construction, not
only produces a parity condition (which is a further restriction on the Rabin
condition), but also improves on the original upper bound of Safra, reaching a
deterministic automaton of size at most 2nnnn!. By a finer analysis of Piterman’s
solution, Liu and Wang reach an upper bound of 2n(n!)2 [LW]. Independently,
Schewe in [Sch09b] gives a solution in o((2.66n)n) for the size of a Rabin deter-
ministic automaton using 2n−1 Rabin pairs2. In the same paper, Schewe provides
the best known upper bound for producing a deterministic parity automaton in
O((n!)2) (recall that n! ≈ (0.36n)n).

Extensions and Variants. Safra has generalized his construction: he shows how
to directly determinize automata that use Streett acceptance condition; i.e., the
dual of Rabin: a run is accepting if it satisfies a conjunction of properties of the

2 In fact one can argue on the respective advantages of this solution with respect to
others since it is obtained by completely removing the naming system in Safra’s
original solution, and the price to pay for that is the 2n−1 number of Rabin pairs.
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form ‘if the set of states E is visited infinitely often, then the set of states F
is visited infinitely often’. A construction with similar characteristics has been
described by Muller and Schupp using different techniques [MS95]. The latter
has been revisited by Kähler and Wilke for giving a unified view on comple-
mentation, determinization, and disambiguisation3 of Büchi automata[KW08].
Finally, Piterman in [Pit07] describes the best known determinization procedure
that takes a Streett automaton as input, and produces a deterministic parity
automaton as output.

Lower bounds. The first non-trivial lower bound to the problem of determiniza-
tion was n! [Löd99], derived from an early lower bound for complementation
[Mic88]. The best known lower bound is in Ω((0.76n)n) [Yan06], and holds even
if the resulting automaton uses a Muller acceptance condition.

Decomposition. Schewe [Sch09b] develops the idea that the correct way of
describing determinization constructions consists in first isolating what he calls
the principle acceptance mechanism that captures the core of the construction,
and then waving on this construction for producing deterministic automata of
various characteristics. The principle acceptance mechanism takes the form of a
deterministic Rabin-automaton which has the non-standard characteristic that
the Rabin condition labels transitions rather than states. It has 2n−1 Rabin
pairs and hist(n) = o((1.65n)n) states, where hist(x) is the function giving the
number of states of an output automaton in Schewe’s construction.

Contributions. In this paper, we establish that the principle acceptance mech-
anism isolated by Schewe is optimal. More precisely, we prove that there ex-
ists a transition-labeled Büchi automaton of size n accepting a language Ln
such that every transition-labeled deterministic Rabin automaton accepting the
language Ln has at least hist(n) states. If the input Büchi automaton has its
Büchi condition labeling states, then we have a lower bound of hist(n−1). Since
transition-labeled automata are at least as compact as their state-labeled coun-
terparts, those lower bounds can be directly transferred to state-labeled Rabin-
automata as output. Since both hist(n) and hist(n− 1) are in Ω((1.64n)n), this
improves the previous lower bound of Ω((0.76n)n) to Ω((1.64n)n).

2 Basic Definitions and Facts

2.1 Basic Notions and Notations

For a sequence u, the i-th element of u is denoted by u(i) with the convention
that elements in a sequence are labeled from 0. The empty sequence is denoted
by ε and the length of a sequence u is denoted by |u|. If we assume an ordering
between elements of sequences then the lexicographic ordering of sequences is
defined as u <lex v if there exists i such that u(i) < v(i) and for all j < i,
u(j) = v(j) or |u| < |v| and for all i < |u|, u(i) = v(i). Then u ≤lex v if u <lex v
or u = v.
3 An automaton is non-ambiguous if there is at most one accepting run per input.

This is weaker than determinism.
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A tree T is a subset of ω<ω such that if xi ∈ T then x ∈ T and xj ∈ T for all
j < i. The elements of T are called nodes. The size of T is the number of nodes
in T . A node of the form xi is called a child of the node x. If x is a prefix of y we
write x ( y, and we write x ≺ y if x ( y and x �= y. When x ( y, x is called an
ancestor of y, and y a descendant of x. When x ≺ y, x is called a strict ancestor
of y, and y a strict descendant of x.

2.2 Automata

We define here automata running on infinite inputs. Le us emphasize the fact
that, in this work, the accepting condition refers to transitions rather than states.

A (finite) automaton is a tuple A = (Q,Σ, I, Γ,Δ), where Q is a set of states,
Σ is an input alphabet, I is a set of initial states, Γ is an output alphabet and
Δ ⊆ Q×Σ × Γ ×Q is the transition relation.

We see a finite automaton A as a non-deterministic transducer from Σω to
Γω. For a word u ∈ Σω, ρ = (p0, b0, p1)(p1, b1, p2)(p2, b3, p3) . . . is a run of A
over u if p0 ∈ I and ∀i (pi, u(i), bi, pi+1) ∈ Δ. The output of ρ, Out(ρ) is the
word b0b1b2 . . . .

The automaton A is called deterministic if A has exactly one initial state and
Δ is a functional relation, that is for each q ∈ Q and a ∈ Σ there is at most one
transition of the form (q, a, b, p) in Δ. We will take the convention that when an
automaton is deterministic, we denote its transition relation by δ, and we use it
also as a mapping from Q × Σ to Q. This mapping is naturally extended into a
mapping from Q×Σ∗ to Q in the usual manner. Thus, δ(q, u) is the unique state
p such that after reading u when starting in q the automaton A is in the state p.

An automaton B is a Büchi automaton if Γ = {0, 1}. The language LB is the
set of words v in {0, 1}ω such that v contains infinitely many zeros. A run ρ of
of B is accepting if Out(ρ) ∈ LB. An automaton B accepts a word u ∈ Σω if
there is an accepting run of B on u.

An automaton R is a Rabin automaton with h conditions (i.e, h Rabin pairs)
for h ∈ ω, if Γ = P({r1, s1, r2, s2, . . . , rh, sh}). The Rabin language LR is the set
of words v in Γω such that for some i, ri ∈ v(n) for finitely many n, and si ∈ v(n)
for infinitely many n. As above, a run ρ of a Rabin automaton R is accepting if
Out(ρ) ∈ LR and R accepts u if there is an accepting run of R on u.

We are interested in providing a lower bound to the number of states needed
for the determinization of a Büchi automaton. Hence, we define the size of an
automaton as the number of its states. For a Büchi automaton B, let D(B) be
the size of a smallest deterministic Rabin automaton which recognizes the same
language. Let D(n)= max{D(B) : B is a Büchi automaton of size n}.

An important remark made by Yan in [Yan08] is that for each n there exists
a canonical Büchi automaton with n states which can simulate every Büchi
automaton of this size: the full automaton. In our context, it gives the following
definition.

Definition 1 (Full automaton). The full Büchi automaton of size n is the
automaton Bn = (Q,Σ,Q, {0, 1},Δ) such that Q = {1, . . . ,n} and Σ = P(Q×
{0, 1} ×Q) and Δ = {(q, a, b, p) : (q, b, p) ∈ a}.
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Thus, the language of Bn is a set of words u such that there is a path ρ =
(p0, b0, p1)(p1, b1, p2)(p2, b2, p3) . . . such that for each i, (pi, bi, pi+1) ∈ u(i) and
for infinitely many i, bi = 0. We denote this language Ln.

Since full automata can simulate every automaton of the same size, we naturally
get the following lemma. It follows from it that to prove lower or upper bounds
on D(n) it is enough to consider only full automata Bn.
Lemma 1 ([Yan06]). D(n) = D(Bn).

2.3 Games

A game is a tuple G = (V, VE , VA, pI , Γ,Move, L), where V is a set of positions
which is partitioned into the positions for Eva VE and the positions for Adam VA,
pI ∈ V is the initial position of G, Γ is the labeling alphabet, Move ⊆ V ×Γ ×V
is the set of possible moves, and L ⊆ Γω is the winning condition. A tuple
(v, a, w) ∈ Move indicates that there is a move from v to w which produces
letter a. A game using the winning condition L is called an L-game.

During a play of the game G, the two players, Adam and Eva, make moves
according to Move, the player to whom belong the current positions choosing the
next move. Formally, a play is a maximal sequence π = (p0, a0, p1, a1, p2, a2, . . . )
such that p0 = pI and for each i, (pi, ai, pi+1) ∈ Move. Let πΓ = (a0, a1, a2, . . . ).
Eva wins the play π if πΓ ∈ L. Otherwise, Adam wins the play.

A strategy for the player X is a function which tells the player what moves
he should choose depending on the finite history of moves played so far. For-
mally, a strategy (for Eva or for Adam) is a total mapping from finite sequences
(p0, a0, . . . , an−1, pn) into Move. A play π is compatible with a strategy σ for Eva
(resp. Adam) if for all prefixes (p0, . . . , pn−1, an−1, pn) of π, if pn−1 ∈ VE (resp. in
VA), then σ(p0, . . . , pn−1) = (pn−1, an−1, pn). A strategy σ for Eva (resp. Adam)
is winning if Eva (resp. Adam) wins every play compatible with σ.

A strategy with memory m for Eva is described as (M, update, choice, init) in
whichM is a set of size m called the memory, update is a mapping fromM×Move
to M , choice is a mapping from VE × M to Move, and init ∈ M . The map-
ping update is defined for moves, but can naturally be extended to paths in the
game. The strategy described by (M, update, choice, init) is the one which to each
path π = (p0, a0, . . . , an−1, pn) with pn ∈ VE associates choice(pn, update(init, π)).
A player X wins a game with memory n if it has a winning strategy with memory
m. A positional strategy corresponds to the case m = 1.

We call a game G a Rabin-game if L is the Rabin language LR over some
alphabet Γ . Eva has positional winning strategies in Rabin games:

Theorem 1 ([Kla94],[Zie98]). For every Rabin-game, if Eva wins, she can
win using a positional strategy.

2.4 Reduction

A standard way to use a deterministic automaton is for game reduction. Indeed,
given a deterministic automaton for a language L with (e.g. Rabin) acceptance
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condition F with n states, and an L-game, one can perform the product of
the game with the automaton, yielding an F -game. From the determinism of
the automaton, one can derive that the winner of the two games is the same.
Pushing further, if the F -game admits positional strategies for Eva (and it is
the case for Rabin-games according to Theorem 1), one can see the states of the
automaton as maintaining the memory for a strategy in the L-game: Eva needs
memory n in the original game. We obtain:

Lemma 2. If Eva wins an L-game, and there exists a deterministic Rabin-
automaton for L with n states, then Eva wins using a strategy with memory n.

It is standard to use this result for proving upper bound results on the memory
needed for the winner of a game. In this work, we take the opposite point of
view and read the above lemma as follows: “If Eva wins an L-game, and requires
memory n for that, then every deterministic Rabin-automaton for L has size at
least n”. This provides an argument for proving lower bounds on determinization
problems.

3 The Determinization Construction

Now, we will describe briefly the construction of Schewe from [Sch09b]. This
construction takes as input a Büchi automaton B, and produces as output a
deterministic Rabin automaton R such that L(B) = L(R). This construction
captures the core mechanism of the famous construction of Safra [Saf88] (it
removes from it the node naming system that was used for reducing the number
of Rabin pairs). For more explanation of the construction we use here, we refer
the reader to [Sch09b].4 For a more extensive description of the original Safra
construction, we suggest [Tho97].

Let us fix a Büchi automaton B = (Q, I,Σ, {0, 1},Δ) with n states. For a
set S ⊆ Q and a letter a ∈ Σ, let Δ(S, a) = {q : ∃p ∈ S∃b (p, a, b, q) ∈ Δ} and
Δ0(S, a) = {q : ∃p ∈ S (p, a, 0, q) ∈ Δ}.

In the construction we work with trees with nodes labeled by subsets of states
of a Büchi automaton. A labeling of T is a function from nodes of T to the set
of labels (in our case: subsets of Q). A label of a node x ∈ T is denoted by T (x).
We use a convention that for x �∈ T , T (x) = ∅. It does not cause any ambiguity
because the labels of nodes of T will be always nonempty. For a node x we order
its children by the “older than” relation and we say that xi is older than xj for
i < j.

Recall that siblings in a tree have, by definition, consecutive numbers starting
from 0. For this reason, the process of deleting a node requires some explanations.
Deleting a node x in a tree T consists in a) removing the node x and all its
descendants, and b) shifting all the younger siblings of x to the left, i.e., the
direct right sibling of x takes the place of x, etc...

4 Schewe’s construction takes a state-labeled Büchi automaton as input rather than a
transition labeled automaton. Nevertheless, his approach easily adapts to this case.
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Now, we define the deterministic Rabin automaton R accepting L(B). The
set of states of R is the set of trees T of size at most |Q| labeled with subsets of
Q and such that

1. each node in T is labeled by a nonempty set of states,
2. the label of a node x is a strict superset of the union of its children labels,
3. labels of siblings are disjoint.

We call such trees, after [Sch09b], history trees. According to our notation for
x ∈ T , T (x) is the label of the node x in T . In particular, by the second point
above, T (ε) denotes the set of states which occur in some label of T . We denote
by H the set of history trees.

The initial state of R is a one node tree labeled by the set of initial states of
B. We always call this initial tree T0 (in general T0 depends on the set of initial
states of B but in the cases we consider it will be just a one node tree labeled
with Q). Let T be the current state of R, and a be the currently read letter.
The transition function is defined in multiple steps as follows.

1. For each node x ∈ T , replace the label of x with Δ(T (x), a).
2. For each node x ∈ T originally labeled by S, if Δ0(S, a) is nonempty then

form a new youngest child of x and label it with Δ0(S, a).
3. For each node x and for each state q ∈ T (x), if q belongs to an older sibling

of x, then delete q from labels of x and all its descendants.
4. Now, we contract the tree obtained so far:

4.1 for each node x such that its label is nonempty and is equal to the sum
of labels of its descendants, delete all strict descendants of x, and call x
green,

4.2 for each node xi that has an empty label, mark xi and all the nodes
in trees rooted at younger siblings of xi as red, and delete the subtree
rooted in xi.

5. The output of the transition is a set E of what we call events. For each red
node x we put (x,A) ∈ E and for each green x we put (x,E) in E .

The events (x,A) play the role of ri in the definition of a Rabin language LR
and events (x,E) correspond to si. Thus, the Rabin condition simply states that
there exists x such that (x,A) is seen finitely many times and (x,E) infinitely
many times. In other words, there will be a node x such that from some time on
it will never be deleted or moved to the left during point 4.2 of the transition
and it will be green infinitely many times. We will denote by Λ the set of possible
events, i.e., pairs of the form either (x,A) or (x,E) in which x is a possible node
in an history tree (there are 2n−1-many such x).

Since the Rabin automaton defined above is deterministic, its transition rela-
tion can be seen as a partial function from H×Σ to P(Λ)×H. Given a history
tree T , and a letter a, δ(T, a) denotes the tree obtained by the above proce-
dure, and E(T, a) the set of produced events. The mapping δ is extended into a
mapping from H × Σ∗ to H by δ(T, ε) = T , and δ(T, ua) = δ(δ(T, u), a). The
mapping E is extended into a mapping from H × Σ∗ to P(Λ) by E(T, ε) = ∅
and E(T, ua) = E(T, u) ∪ E(δ(T, u), a).
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Theorem 2 ([Sch09b], variant of [Saf88]). Let B be a nondeterministic
Büchi automaton and let R be a deterministic Rabin automaton constructed
as above for B. Then, L(B) = L(R).

3.1 Complexity of the Construction

The size complexity of the construction described above is measured as the
number of states of the constructed Rabin automaton. Then, let us define the
function hist(n) as the number of history trees for Q of size n. The subject
of the paper is to prove that this value also provides a lower bound to the
determinization construction. This function is analyzed in [Sch09b] where it is
proved to be in o((1.65n)n). On the other hand, the following lower bound on
hist(n) can be proved.

Lemma 3 (M. Bouvel, D. Rossin). The function hist(n) is in Ω((1.64n)n).

4 Optimality of Determinization

During this section we fix a full automaton of size n, Bn = (Q,Σ,Q, {0, 1},Δ),
and we set Σ to be its alphabet P(Q× {0, 1} ×Q). The subject of this section
is to prove Theorem 4 that establishes our lower bound.

The proof consists first in restricting ourselves to a constant set of reach-
able states, second to prove a lower bound in this restricted context, third to
reconstruct our main result.

4.1 Fixing the Set of Reachable States

We define the set of states reachable by a word u, Reach(u), by induction.
Reach(ε) = Q and Reach(va) = {q : p ∈ Reach(v), (p, b, q) ∈ a} for v ∈ Σ∗ and
a ∈ Σ. Let ΣS be the set of letters a ∈ Σ such that S = {q : (p, b, q) ∈ a, p ∈ S},
or equivalently Reach(a) = Reach(aa) = S. Let LSn be Ln ∩ΣωS .

Of course, each history tree T maintains in T (ε) the set of states reachable by
the original automaton at the current position in the word. Hence it is natural for
all S ⊆ Q to consider HS = {T ∈ H : T (ε) = S}. We have for all words u ∈ Σ∗S
and all T ∈ HS that δ(T, u) ∈ HS .

4.2 The Game

Let us fix ourselves a set S ⊆ Q. We establish in this section Theorem 3 which
provides a lower bound for the size of a deterministic Rabin automaton accepting
LSn. For this, we define a game G such that Eva wins G but she cannot win with
memory less than |HS |. That proves, by Lemma 2, that any deterministic Rabin
automaton accepting LSn has at least |HS | states.

We order history trees: we say that T is strictly smaller than T ′ at position
x, written T <x T

′, if T ′(x) � T (x) and for all y <lex x, T ′(y) = T (y). We can
remark that if T <x T

′, x may not be a node of T ′ (i.e., T ′(x) = ∅), but in any
case it is a node of T .
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We construct the LSn-game G= (V, VE , VA, pI , Σ+
S ,Move, LSn), where VE is a

singleton set {pE} and VA consists of the initial position in the game pI and one
position pT for each history tree T ∈ HS . The moves in G are the following:

1. (pI , u, pE) ∈ Move, for all u ∈ Σ+
S ,

2. (pE , idS , pT ) ∈ Move, for each history tree T , where idS = {(q, 1, q) : q ∈ S},
3. (pT , u, pE) ∈ Move, for each history tree T and word u ∈ Σ+

S if there exists
a node x in δ(T, u) such that either
– (x,E) ∈ E(T, u), and for all y ≤lex x, (y,A) �∈ E(T, u) and δ(T, u)(y) =

T (y) or;
– δ(T, u) <x T and for all y <lex x, (y,A) �∈ E(T, u).

Essentially, this game has a flower shape. The central node is controlled by Eva,
and from this node, she can decide to go to any of the petals of the flower,
each one corresponding to a history tree pT . Then, it is Adam’s turn to choose
a word u, and come back to the center. Adam’s moves are restricted in the
following way: playing a word u in petal pT is valid if it is possible to witness
in the behaviour of R from the state T when reading u that it is profitable for
Eva. This witness takes the form of a position x in the tree T such that nothing
happened above or to the left of x, and something good for Eva happened in x:
either some Eva-good event in E , or a local advance of the <x ordering.

It should be clear that both players can always perform a move from their
positions. Thus, every completed play has the length ω.

Lemma 4. Eva has a winning strategy in G.

To prove Lemma 4 we show that a winning strategy for Eva is as follows: if a
word u was played after a finite play and Eva is to make a move from pE , then
she chooses to go to a position indexed by δ(T0, u). Then, possible moves for
Adam forces him to generate infinitely often an event (x,E) without generating
infinitely many (x,A).

4.3 Memory Lower Bound for the Game

Now, for each history tree T ∈ HS we define a game GT which is a modification
of G by removing a petal pT , i.e., removing one of Adam’s positions, and hence
removing to Eva the ability to take the corresponding move. All other elements
in the game are unchanged. Our crucial Lemma 5 states that for any two history
trees T �= T ′ in HS , there exists always a word u such that (pT ′ , u, pE) is a valid
move in the game, and such that nothing good for Eva happens when R reads u
from state T . This is formalized as follows:

Lemma 5. Let T �= T ′ be history trees in HS. There exists a word u such that

1. (pT ′ , u, pE) is a move in GT ,
2. T = δ(T, u),
3. for all x, (x,E) �∈ E(T, u).
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This lemma is the technical core of our proof. It requires an analysis of the
differences between the two trees. This results in many situations of very different
nature. With the help of Lemma 5 we can prove the following.

Lemma 6. For every T ∈ HS Adam has a winning strategy in GT .

A winning strategy for Adam is as follows. From pI he plays a word u such that
δ(T0, u) = T , where T0 is the initial state of the deterministic Rabin automaton
R from Theorem 2. The good answer for Eva would be to move to pT (according
to the proof of Lemma 4), but since the petal is removed, she has to choose
another move, say to pT ′ for some T ′ �= T . Then Adam answers according to
Lemma 5. Of course, using this strategy, Adam maintains the property that if a
word w has been played so far, then δ(T0, w) = T , and hence Adam can always
answer to Eva’s proposal using Lemma 5. Now, when the play gets infinite, say
producing an infinite word u, we can see from the property of the words u in
Lemma 5 that R does not accept this word (no events good for Eva are ever
produced). Hence, u �∈ LSn and Adam wins.

From Lemma 6 we may easily infer the following.

Corollary 1. Eva has no winning strategy with memory |HS | − 1 in G.

Indeed, if Eva had a strategy with memory |HS | − 1, then there would be a
position pT which is never visited by this strategy. But this would mean that
Eva wins GT with the exact same strategy.

Using Lemma 2, we now get:

Theorem 3. Every deterministic Rabin automaton accepting LSn has size at
least |HS |.

4.4 Reduction to the General Case

What remains to be done is a reduction to the general case. We do this by
decomposing a given deterministic Rabin automaton accepting Ln into disjoint
sets of states. The following lemma gives an argument for such a decomposition.

Lemma 7. Let R be a deterministic Rabin automaton which accepts Ln with a
transition function δ and an initial state q0. If δ(q0, u) = δ(q0, v) then Reach(u) =
Reach(v).

Now, it is possible to prove the main theorem.

Theorem 4. Every deterministic Rabin automaton accepting Ln has size at
least hist(n).

The theorem is proved by defining for a given deterministic Rabin automaton
R accepting Ln a partition of its states. For S a nonempty subset of Q, let RS
be the set of states q ∈ Q such that there exists u with Reach(u) = S and
δ(q0, u) = q, in which q0 is the initial state of R and δ is its transition function.
The automaton R restricted to RS can be seen as a Rabin automaton which
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accepts the restriction of Ln to letters in ΣS . Hence the lower bound of Theorem
3 holds for the automaton R restricted to RS .

Theorem 4 then follows from the fact that the sets RS are disjoint, and that

hist(n) = |H| =
∑

S⊆{1,...,n}
|HS | .

5 Discussion

We have proved an exact lower bound for the determinization of Büchi automata
using a non-standard definition of automata in which the acceptance condition
labels transitions rather than states as it is usual.

State-labeled Büchi automaton as input. A state-labeled Büchi automaton over
alphabet Σ and of states Q, has transitions Δ ⊆ Q × Σ × Q (the Büchi label
has disappeared from transitions), and a set of final states F ⊆ Q. A run of
the automaton is accepting if it visits a state in F infinitely often. Given a
(transition-labeled) Büchi automaton with n states A, one can transform it into
a state-labeled Büchi automaton with 2n states B in such a way that the action
of every letter in A can be simulated by a sequence of two letters on B. This is
sufficient for proving that translating a state-labeled automaton of size 2n into
a deterministic Rabin-automaton requires at least hist(n) states.

However it is possible to do much better if one inspects the proof of our
theorem more closely. For this one remarks that in our proof of optimality one
does not need to use the whole alphabet Σ. By a close inspection of all the cases
in the proof of Lemma 5, one can remark that all the letters appearing in the
word u described by this lemma do satisfy the following property: either there
is no 0-transitions in a letter, or all transitions labeled by 0 have the same state
as origin. Using this remark, one can optimise the above argument and get the
following lower bound.

Theorem 5. There is a language L′n accepted by a state-labeled Büchi automa-
ton with n-states such that every deterministic Rabin automaton accepting L′n
has size at least hist(n− 1).

State-labeled Rabin automaton as output. It is very simple to transform a state-
labeled automaton accepting some language (whatever is its acceptance con-
dition) into a transition-labeled one using the same acceptance condition and
the same number of states. The idea is simply to use transitions that have as
label the label of the origin state in the original automaton. From this we de-
duce that all the lower bounds presented above can be directly transferred to
transition-labeled automata as output.
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tion of Büchi automata unified. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
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Abstract. We prove that orthogonal constructor term rewrite systems
and lambda-calculus with weak (i.e., no reduction is allowed under the
scope of a lambda-abstraction) call-by-value reduction can simulate each
other with a linear overhead. In particular, weak call-by-value beta-
reduction can be simulated by an orthogonal constructor term rewrite
system in the same number of reduction steps. Conversely, each reduc-
tion in an orthogonal term rewrite system can be simulated by a constant
number of weak call-by-value beta-reduction steps. This is relevant to
implicit computational complexity, because the number of beta steps to
normal form is polynomially related to the actual cost (that is, as per-
formed on a Turing machine) of normalization, under weak call-by-value
reduction. Orthogonal constructor term rewrite systems and lambda-
calculus are thus both polynomially related to Turing machines, taking
as notion of cost their natural parameters.

1 Motivations

Implicit computational complexity is a young research area, whose main aim is
the description of complexity phenomena based on language restrictions, and
not on external measure conditions or on explicit machine models. It borrows
techniques and results from mathematical logic (model theory, recursion theory,
and proof theory) and in doing so it has allowed the incorporation of aspects of
computational complexity into areas such as formal methods in software devel-
opment and programming language design. The most developed area of implicit
computational complexity is probably the model theoretic one – finite model
theory being a very successful way to describe complexity problems. In the de-
sign of programming language tools (e.g., type systems), however, syntactical
techniques prove more useful. In the last years we have seen much work restrict-
ing recursive schemata and developing general proof theoretical techniques to
enforce resource bounds on programs. Important achievements have been the
characterizations of several complexity classes by means of limitations of recur-
sive definitions (e.g., [3,9]) and, more recently, by using the “light” fragments of
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linear logic [6]. Moreover, rewriting techniques such as recursive path orderings
and the interpretation method have recently been proved useful in the field [10].
By borrowing the terminology from software design technology, we may dub
this area as implicit computational complexity in the large, aiming at a broad,
global view on complexity classes. We may have also an implicit computational
complexity in the small — using logic to study single machine-free models of
computation. Indeed, many models of computations do not come with a natu-
ral cost model — a definition of cost which is both intrinsically rooted in the
model of computation, and, at the same time, it is polynomially related to the
cost of implementing that model of computation on a standard Turing machine.
The main example is the λ-calculus: The most natural intrinsic parameter of a
computation is its number of beta-reductions, but this very parameter bears no
relation, in general, with the actual cost of performing that computation, since
a beta-reduction may involve the duplication of arbitrarily big subterms1. What
we call implicit computational complexity in the small, therefore, gives com-
plexity significance to notions and results for computation models where such
natural cost measures do not exist, or are not obvious. In particular, it looks for
cost-explicit simulations between such computational models.

The present paper applies this viewpoint to the relation between λ-calculus
and orthogonal (constructor) term rewrite systems. We will prove that these two
machine models simulate each other with a linear overhead. That each construc-
tor term rewrite system could be simulated by λ-terms and beta-reduction is well
known, in view of the availability, in λ-calculus, of fixed-point operators, which
may be used to solve the mutual recursion expressed by first-order rewrite rules.
Here (Section 4) we make explicit the complexity content of this simulation, by
showing that any first-order rewriting of n steps can be simulated by kn beta
steps, where k depends on the specific rewrite system but not on the size of the
involved terms. Crucial to this result is the encoding of constructor terms using
Scott’s schema for numerals [17]. Indeed, Parigot [11] (see also [12]) shows that
in the pure λ-calculus Church numerals do not admit a predecessor working in a
constant number of beta steps. Moreover, Splawski and Urzyczyn [15] show that
it is unlikely that our encoding could work in the typed context of System F.

Section 3 studies the converse – the simulation of (weak) λ-calculus reduction
by means of orthogonal constructor term rewrite systems. We give an encoding of
λ-terms into a (first-order) constructor term rewrite system. We write [·]Φ for the
map returning a first-order term, given a λ-term; [M ]Φ is, in a sense, a complete
defunctionalization of the λ-term M , where any λ-abstraction is represented by
an atomic constructor. This is similar, although not technically the same, to the
use of supercombinators (e.g., [8]). We show that λ-reduction is simulated step
by step by first-order rewriting (Theorem 1).

As a consequence, taking the number of beta steps as a cost model for
weak λ-calculus is equivalent (up to a linear function) to taking the number of

1 In full beta-reduction, the size of the duplicated term is indeed arbitrary and does
not depend on the size of the original term the reduction started from. The situation
is much different with weak reduction, as we will see.
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rewritings in orthogonal constructor term rewrite systems. This is relevant to im-
plicit computational complexity “in the small”, because the number of beta steps
to normal form is polynomially related to the actual cost (that is, as performed
on a Turing machine) of normalization, under weak call-by-value reduction. This
has been established by Sands, Gustavsson, and Moran [14], by a fine analysis of
a λ-calculus implementation based on a stack machine. Constructor term rewrite
systems and λ-calculus are thus both reasonable machines (see the “invariance
thesis” in [16]), taking as notion of cost their natural, instrinsic parameters.

As a byproduct, in Section 5 we sketch a different proof of the cited result
in [14]. Instead of using a stack machine, we show how we could encode construc-
tor term rewriting in term graph rewriting. In term graph rewriting we avoid
the explicit duplication and substitution inherent to rewriting (and thus also to
beta-reduction) and, moreover, we exploit the possible sharing of subterms.

An extended version of this paper with full proofs is available [5], where we
describe also an extension of our results to λ-calculus with call-by-name.

2 Preliminaries

The language we study is the pure untyped λ-calculus endowed with weak (that
is, we never reduce under an abstraction) call-by-value reduction.

Definition 1. The following definitions are standard:
• Terms are defined as follows:

M ::= x | λx.M |MM,

where x ranges a denumerable set Υ . Λ denotes the set of all λ-terms. We
assume the existence of a fixed, total, order on Υ ; this way FV(M) will be a
sequence (without repetitions) of variables, not a set. A term M is said to be
closed if FV(M) = ε, where ε is the empty sequence.

• Values are defined as follows:

V ::= x | λx.M.

• Weak call-by-value reduction is denoted by →v and is obtained by closing
call-by-value reduction under any applicative context:

(λx.M)V →v M{V/x}
M →v N

ML→v NL

M →v N

LM →v LN

Here M ranges over terms, while V ranges over values.
• The length |M | of M is defined as follows, by induction on M : |x| = 1,
|λx.M | = |M |+ 1 and |MN | = |M |+ |N |+ 1.

Weak call-by-value reduction enjoys many nice properties. In particular, the one-
step diamond property holds and, as a consequence, the number of beta steps
to normal form (if any) is invariant on the reduction order [4] (this justifies
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the way we defined reduction, which is slightly more general than Plotkin’s
one [13]). It is then meaningful to define Timev(M) as the number of beta steps
to normal form (or ω if such a normal form does not exist). This cost model will
be referred to as the unitary cost model, since each beta (weak call-by-value)
reduction step counts for 1 in the global cost of normalization. Moreover, notice
that α-conversion is not needed during reduction of closed terms: if M →v N
and M is closed, then the reduced redex will be in the form (λx.L)V , where
V is a closed value. As a consequence, arguments are always closed and open
variables cannot be captured.

The following lemma gives us a generalization of the fixed-point (call-by-value)
combinator (but observe the explicit limit k on the reduction length):

Lemma 1. For every natural number n, there are terms H1, . . . , Hn and a nat-
ural number m such that for any sequence of values V1, . . . , Vn and for any
1 ≤ i ≤ n:

HiV1 . . . Vn →k
v Vi(λx.H1V1 . . . Vnx) . . . (λx.HnV1 . . . Vnx),

where k ≤ m.

The proof of Lemma 1 can be found in [5].
We will consider in this paper orthogonal constructor (term) rewrite systems

(CRS, see [2]). A constructor (term) rewrite system is a pair Ξ = (ΣΞ ,RΞ)
where:
• Symbols in the signature ΣΞ can be either constructors or function sym-

bols.
• terms in C(Ξ) are those built from constructors and are called constructor

terms ;
• terms in P(Ξ, Υ ) are those built from constructors and variables and are

called patterns ;
• terms in T (Ξ) are those built from constructor and function symbols and

are called closed terms.
• terms in V(Ξ, Υ ) are those built from constructors, functions symbols and

variables in Υ and are dubbed terms.
• Rules in RΞ are in the form f(p1, . . . ,pn) →Ξ t where f is a function symbol,

p1, . . . ,pn ∈ P(Ξ, Υ ) and t ∈ V(Ξ, Υ ). We here consider orthogonal rewrite
systems only, i.e. we assume that no distinct two rules in RΞ are overlapping
and that every variable appears at most once in the lhs of rules in RΞ .
Moreover, we assume that reduction is call-by-value, i.e. the substitution
triggering any reduction must assign constructor terms to variables. This
restriction is anyway natural in constructor rewriting.

For any term t in a CRS, |t| denotes the number of symbol occurrences.

3 From Lambda-Calculus to Constructor Term Rewriting

Definition 2 (The CRS Φ). The constructor rewrite system Φ is defined as a
set of rules RΦ over an infinite signature ΣΦ. In particular:
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• The signature ΣΦ includes the binary function symbol app and constructor
symbols cx,M for every M ∈ Λ and every x ∈ Υ . The arity of cx,M is
the length of FV(λx.M). To every term M ∈ Λ we can associate a term
[M ]Φ ∈ V(Φ, Υ ) as follows:

[x]Φ = x;
[λx.M ]Φ = cx,M (x1, . . . , xn), where FV(λx.M) = x1, . . . , xn;
[MN ]Φ = app([M ]Φ, [N ]Φ).

Observe that if M is closed, then [M ]Φ ∈ T (Φ).
• The rewrite rules in RΦ are all the rules in the following form:

app(cx,M (x1, . . . , xn), x) → [M ]Φ,

where FV(λx.M) = x1, . . . , xn.
• A term t ∈ T (Φ) is canonical if either t ∈ C(Φ) or t = app(u, v) where u

and v are themselves canonical.

Notice that the signature ΣΦ contains an infinite amount of constructors.

Example 1. Consider the λ-term M = (λx.xx)(λy.yy). [M ]Φ is t ≡
app(cx,xx, cy,yy). Moreover, t → app(cy,yy, cy,yy) ≡ u, as expected. Finally,
we have u→ u.

To any term in V(Φ, Υ ) corresponds a λ-term in Λ:

Definition 3. To every term t ∈ V(Φ, Υ ) we can associate a term 〈t〉Λ ∈
Λ as follows: 〈x〉Λ = x, 〈app(u, v)〉Λ = 〈u〉Λ〈v〉Λ and 〈cx,M (t1, . . . tn)〉Λ =
(λx.M){〈t1〉Λ/x1, . . . , 〈tn〉Λ/xn} where FV(λx.M) = x1, . . . , xn.

Canonicity holds for terms in Φ obtained as images of (closed) λ-terms via [·]Φ.
Moreover, canonicity is preserved by reduction in Φ:

Lemma 2. For every closed M ∈ Λ, [M ]Φ is canonical. Moreover, if t is canon-
ical and t→ u, then u is canonical.

For canonical terms, being a normal form is equivalent of being mapped to a
normal form via 〈·〉Λ. This is not true, in general: take as a counterexample
cx,y(app(cz,z , cz,z)), which corresponds to λx.(λz.z)(λz.z) via 〈·〉Λ.

Lemma 3. A canonical term t is a normal form iff 〈t〉Λ is a normal form.

Reduction in Φ can be simulated by reduction in the λ-calculus, provided the
starting term is canonical.

Lemma 4. If t is canonical and t→ u, then 〈t〉Λ →v 〈u〉Λ.

Conversely, call-by-value reduction in the λ-calculus can be simulated in Φ:

Lemma 5. If M →v N , t is canonical and 〈t〉Λ = M , then t → u, where
〈u〉Λ = N .
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The previous lemmas altogether imply the following theorem, by which λ-calculus
normalization can be mimicked (step-by-step) by reduction in Φ:

Theorem 1 (Term Reducibility). Let M ∈ Λ be a closed term. The following
two conditions are equivalent:
1. M →n

v N where N is in normal form;
2. [M ]Φ →n t where 〈t〉Λ = N and t is in normal form.

Proof. Suppose M →n
v N , where N is in normal form. Then, by applying

Lemma 5, we obtain a term t such that [M ]Φ →n t and 〈t〉Λ = N . By Lemma 2,
t is canonical and, by Lemma 3, it is in normal form. Now, suppose [M ]Φ →n t
where 〈t〉Λ = N and t is in normal form. By applying n times Lemma 4, we ob-
tain 〈[M ]Φ〉Λ →n

v 〈t〉Λ = N . But 〈[M ]Φ〉Λ = M by an easy induction on M and
N is a normal form by Lemma 3, since [M ]Φ and t are canonical by Lemma 2.�

There is another nice property of Φ, that will be crucial in proving the main
result of this paper:

Proposition 1. For every M ∈ Λ, for every t with [M ]Φ →∗ t and for every
occurrence of a constructor cx,N in t, N is a subterm of M .

Example 2. Let us consider the λ-term M = (λx.(λy.x)x)(λz.z). Notice that

M →v (λy.(λz.z))(λz.z) →v λz.z.

Clearly [M ]Φ = app(cx,(λy.x)x, cz,z). Moreover:

app(cx,(λy.x)x, cz,z) → app(cy,x(cz,z), cz,z) → cz,z .

For every constructor cw,N occurring in any term in the previous reduction
sequence, N is a subterm of M .

A remark on Φ is now in order. Φ is an infinite CRS, since ΣΦ contains an
infinite amount of constructor symbols and, moreover, there are infinitely many
rules in RΦ. As a consequence, what we have presented here is an embedding of
the (weak, call-by-value) λ-calculus into an infinite (orthogonal) CRS. Consider,
now, the following scenario: suppose the λ-calculus is used to write a program M ,
and suppose that inputs to M form an infinite set of λ-terms Θ which can anyway
be represented by a finite set of constructors in Φ. In this scenario, Proposition 1
allows to conclude the existence of finite subsets of ΣΦ and RΦ such that every
MN (where N ∈ Θ) can be reduced via Φ by using only constructors and rules
in those finite subsets. As a consequence, we can see the above schema as one
that puts any program M in correspondence to a finite CRS. Finally, observe
that assuming data to be representable by a finite number of constructors in
Φ is reasonable. Scott’s scheme [17], for example, allows to represent any term
in a given free algebra in a finitary way, e.g. the natural number 0 becomes
*0+ ≡ cy,λz.z while n + 1 becomes *n + 1+ ≡ cy,λz.yx(*n+). Church’s scheme, on
the other hand, does not have this property.
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4 From Constructor Term Rewriting to Lambda-Calculus

In this Section, we will show that any rewriting step of a constructor rewrite
system can be simulated by a fixed number of weak call-by-value beta-reductions.

Let Ξ be an orthogonal constructor rewrite system over a finite signature ΣΞ .
Let c1, . . . , cg be the constructors of Ξ and let f1, . . . , fh be the function symbols
of Ξ. The following constructions work independently of Ξ.

We will first concentrate on constructor terms, encoding them as λ-terms using
Scott’s schema [17]. Constructor terms can be easily put in correspondence with
λ-terms by way of a map 〈〈·〉〉Λ defined by induction as follows:

〈〈ci(t1 . . . , tn)〉〉Λ ≡ λx1. . . . .λxg .λy.xi〈〈t1〉〉Λ . . . 〈〈tn〉〉Λ.

This way constructors become functions:

〈〈ci〉〉Λ ≡ λx1. . . . .λxar (ci).λy1. . . . .λyg.λz.yix1 . . . xar(ci).

Trivially, 〈〈ci〉〉Λ〈〈t1〉〉Λ . . . 〈〈tn〉〉Λ rewrites to 〈〈ci(t1 . . . tn)〉〉Λ in ar (ci) steps. The
λ-term λx1. . . . .λxg.λy.y corresponds to an error value, and is denoted as ⊥. A
λ-term built in this way, i.e. a λ-term which is either ⊥ or in the form 〈t〉Λ is
denoted with metavariables like X or Y .

The map 〈〈·〉〉Λ defines encodings of constructor terms. But what about terms
containing function symbols? The goal is defining another map [·]Λ returning a
λ-term given any term t in T (Ξ), in such a way that t→∗ u and u ∈ C(Ξ) implies
[t]Λ →∗v 〈〈u〉〉Λ. Moreover, [t]Λ should rewrite to ⊥ whenever the rewriting of t
causes an error (i.e. whenever t has a normal form containing a function symbol).
The map we are looking for should act compositionally on terms:

[c(t1, . . . , tar(c))]Λ = [c]Λ[t1]Λ . . . [tar(c)]Λ
[f(t1, . . . , tar(f))]Λ = [f ]Λ[t1]Λ . . . [tar(f)]Λ.

As a consequence, we only need to define our map on constructors and on func-
tion symbols. Defining the λ-term [c]Λ corresponding to a constructor c is rela-
tively easy: we simply need to take into account the case when some argument is
⊥. Treating function symbols is more complicated, since the rewrite rules govern-
ing f must be “embedded” inside [f ]Λ. One of the main ingredients in rewriting is
first-order matching, which is not natively available in the pure λ-calculus, and
should therefore be coded into the λ-term. This is the purpose of the following
lemma.

Lemma 6 (Pattern matching). Let α1, . . . , αn be non-overlapping sequences
of patterns of the same length m. Then there are a term Mm

α1,...,αn
and an integer

l such that for every sequence of values V1, . . . , Vn, if αi = p1, . . . ,pm then

Mm
α1,...,αn

〈〈p1(t11, . . . , t
k1
1 )〉〉Λ . . . 〈〈pm(t1m, . . . , t

km
m )〉〉ΛV1 . . . Vn

→k
v Vi〈〈t11〉〉Λ . . . 〈〈tk11 〉〉Λ . . . 〈〈t1m〉〉Λ . . . 〈〈tkm

m 〉〉Λ,
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where k ≤ l, whenever the tji are constructor terms. Moreover,

Mm
α1,...,αn

X1, . . . , XmV1 . . . Vn →k
v ⊥,

where k ≤ l, whenever X1, . . . , Xm do not unify with any of the sequences
α1, . . . , αn or any of the X1, . . . , Xm is itself ⊥.

Rewrite rules define the computational behavior of function symbols in a mutu-
ally recursive way. We can exploit the powerful fixed-point combinators of the
untyped λ-calculus (see Lemma 1) to define [f ]Λ.

Theorem 2. There is a natural number k such that for every function symbol f
and for every t1, . . . , tar(f) ∈ C(Ξ), the following three implications hold (where
u stands for f(t1, . . . , tar(f)) and M stands for [f ]Λ〈〈t1〉〉Λ . . . 〈〈tar(f)〉〉Λ):
• If u rewrites to v ∈ C(Ξ) in n steps, then M rewrites to 〈〈v〉〉Λ in at most kn

steps.
• If u rewrites to a normal form v /∈ C(Ξ), then M rewrites to ⊥.
• If u diverges, then M diverges.

Informally, any term [fi]Λ has the form HiV1 . . . Vh where

Vi = λx1. . . . .λxh.λy1. . . . .λyar(fi).Mα1,...,αny1 . . . yar(fi)W1 . . .Wn,

n is the number of reduction rules “governing” fi, αi is the sequence of patterns
appearing in the i-th such rule and Wi corresponds to the rhs of the same rule.
As a consequence, the natural number k of Theorem 2 can be obtained from the
corresponding constants from Lemma 1 and Lemma 6. Clearly, the constant k
in Theorem 2 depends on Ξ, but is independent on the particular term u.

5 By-product: Polynomial Invariance

In this section, we will show how the correspondence between λ-calculus and
constructor rewrite systems allows to prove an invariance result on λ-calculus
originally established by Sands, Gustavsson, and Moran [14]. We sketch here how
we may obtain the same result by using our simulation results. The interested
reader could find all the technical details in [5].

The result we are interested in is the following: for weak call-by-value λ-
calculus, the number of beta-reductions to normal form is polynomially related
to the actual cost of computing that normal form on a Turing machine (and
thus on any other reasonable machine model). Both in constructor term rewrit-
ing and in the λ-calculus, proving the number of reduction steps to normal form
to be a “good” cost model is not trivial. Indeed, the substitution process could
involve the manipulation (in particular, the copying) of terms whose size is not
even polynomially related to the size of the original term nor to the number
of reduction steps performed insofar. As a consequence, substitution must be
implemented carefully, and terms have to be represented implicitly, exploiting
sharing of subterms. The term rewriting community has already developed a
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formalism which allows us to exploit sharing, namely term graph rewriting. The
desired result thus follows easily once we observe that every (orthogonal) con-
structor rewrite system is graph reducible (which is the property expressed by
Theorem 3, below; recall that this does not hold for arbitrary term rewriting
systems [1]).

Given a signature Σ, a labelled graph over Σ consists of a directed acyclic
graph together with an ordering on the outgoing edges of each node, and a
(partial) labelling of nodes with symbols from Σ such that the out-degree of each
node matches the arity of the corresponding symbols (and is 0 if the labelling is
undefined). As an example, consider the signature Σ = {a, b, c, d}, where arities
of a, b, c, d are 2, 1, 0, 2 respectively, and b, c, d are constructors. Examples of
labelled graphs over the signature Σ are the following ones:

a
�� ��
b
��
d

����
�

���
��

b
��

c

⊥

a

����

b
����

�

⊥

a

��

��
b
��
a

		��
�



�
��

⊥ b
��
⊥

The symbol ⊥ denotes vertices where the underlying labelling function is un-
defined (and, as a consequence, no edge departs from such vertices). Their role
is similar to the one of variables in terms. A term graph is a labelled graph G
together with a node r of G, the root of the term graph. As an example, the fol-
lowing are graphic representations of some term graphs (over the same signature
Σ considered in the previous examples).
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The root is the only vertex drawn inside a circle. We now need a way to write
programs acting on term graphs. A graph rewrite rule over a signature Σ con-
sists of a labelled graph G together with two vertices r, s of G. In the spirit of
constructor rewriting, r must be labelled with a function symbol, while the label
of any vertex reachable from r (if any) must be a constructor symbol. Moreover,
every non-labelled vertex reachable from s can be reached from r, too. The fol-
lowing are examples of graph rewriting rules, assuming a to be a function symbol
and b, c, d to be constructors:
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The circled vertex corresponds to r, while the squared vertex corresponds to
s. A set of graph rewrite rules over a signature Σ defines a constructor graph
rewrite system G. The relation →G is defined in the natural way (see [5]). As an
example, if G includes the following rewrite rule
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b �� c

Given a constructor rewrite system R over Σ, the corresponding constructor
graph rewrite system G is defined as the class of graph rewrite rules corresponding
to those in R. Given a term t, [t]G will be the corresponding graph, while the
term graph G corresponds to the term 〈G〉R . Contrarily to what happens in
term rewriting, any construtor rewrite system is graph reducible:

Theorem 3 (Graph Reducibility). For every constructor rewrite system R
over Σ and for every term t over Σ, the following two conditions are equiva-
lent:
1. t→n u, where u is in normal form;
2. [t]G →n G, where G is in normal form and 〈G〉R = u.

As a corollary (and thanks to Proposition 1), we get:

Corollary 1. There is a polynomial p : N2 → N such that for every λ-term M ,
the normal form of [[M ]Φ]Θ can be computed in time at most p(|M |,Timev(M)).

This cannot be achieved when using explicit representations of λ-terms. More-
over, reading back a λ-term from a term graph may take exponential time.
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Example 3. Consider the λ-terms

Mn ≡ 2(2(2(. . . (2︸ ︷︷ ︸
n times

(λx.x)) . . .))),

where 2 is the Church numeral for 2. Their size is proportional to n, while the
size of their normal form is exponential in n. However, the number of reduction
steps leading to the normal form is linear in n. Altogether, this implies that the
number of reduction steps to normal form cannot be a cost model if we represent
λ-terms explicitly, i.e., if we require the output to be a λ-term expressed as a
string. Observe, on the other hand, that the normal form [[Mn]Φ]Θ is a graph
whose size is again linear in n.

We can complement Corollary 1 with a completeness statement — any universal
computational model with an invariant cost model can be embedded in the λ-
calculus with a polynomial overhead. We can exploit for this the analogous result
we proved in [4] (Theorem 1) — the unitary cost model is easily proved to be
more parsimonious than the difference cost model considered in [4].

Theorem 4. Let f : Σ∗ → Σ∗ be computed by a Turing machine M in time g.
Then, there are a λ-term NM and a suitable encoding ·� : Σ∗ → Λ such that
NMv� normalizes to f(v)� in O(g(|v|)) beta steps.

6 Conclusions

We have shown that the most näıve cost models for weak call-by-value λ-calculus
(each beta-reduction step has unitary cost) and orthogonal constructor term
rewriting (each rule application has unitary cost) are linearly related. Since, in
turn, this cost model for λ-calculus is polynomially related to the actual cost of
reducing a λ-term on a Turing machine, the two machine models we considered
are both reasonable machines, when endowed with their natural, intrinsic cost
models (see also Gurevich’s opus on Abstract State Machine simulation “at the
same level of abstraction”, e.g. [7]). This strong (the embeddings we consider
are compositional), complexity-preserving equivalence between a first-order and
a higher-order model is the most important technical result of the paper.

Ongoing and future work includes the investigation of how much of this sim-
ulation could be recovered either in a typed setting (see [15] for some of the
difficulties), or in the case of λ-calculus with strong reduction, where we reduce
under an abstraction. Novel techniques have to be developed, since the analysis
we performed in the present paper cannot be easily extended to these cases.
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Abstract. The IEEE standardized Property Specification Language, PSL
for short, extends the well-known linear-time temporal logic LTL with
so-called semi-extended regular expressions. PSL and the closely related
SystemVerilog Assertions, SVA for short, are increasingly used in many
phases of the hardware design cycle, from specification to verification.
In this paper, we extend the common core of these specification lan-
guages with past operators. We name this extension RTL. Although all
ω-regular properties are expressible in PSL, SVA, and RTL, past opera-
tors often allow one to specify properties more naturally and concisely.
In fact, we show that RTL is exponentially more succinct than the cores
of PSL and SVA. Furthermore, we present a translation of RTL into
language-equivalent nondeterministic Büchi automata, which is based on
novel constructions for 2-way alternating automata. Our translation has
almost the same worst-case complexity in terms of the size of the resulting
nondeterministic Büchi automata as the existing translations for PSL and
SVA. Consequently, the satisfiability and the model-checking problem for
RTL fall into the same complexity classes as the corresponding problems
for PSL and SVA. From the translation it also follows that the blowup of
translating RTL formulas into initially equivalent PSL/SVA formulas is
at most triply exponential.

1 Introduction

The industry standardized temporal logics PSL [1] and SVA (the assertion lan-
guage of SystemVerilog [2]) are increasingly used in the hardware industry to
formally express, validate, and verify the requirements of circuit designs. The
linear-time core of PSL extends the well-known linear-time temporal logic LTL
with semi-extended regular expressions (SEREs), which are essentially regular
expressions with an additional operator for expressing the intersection of lan-
guages. The core of SVA can be seen as a subset of PSL.1 The prominence
of PSL and SVA in industry over other specification languages like LTL [23],

� Partly supported by the Swiss National Science Foundation (SNF).
�� Due to space limitations, most proofs have been omitted. These can be found in an

extended version of the paper, which is available from the authors’ webpages.
1 For the ease of exposition, we identify, similar to [5, 9, 7, 24], PSL and SVA with

their respective cores. In particular, the cores are “unclocked,” they do not contain
local variables (which are not part of the PSL standard), and their semantics is only
defined over infinite words.

S. Albers et al. (Eds.): ICALP 2009, Part II, LNCS 5556, pp. 175–187, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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μLTL [4], and ETL [28] is that PSL and SVA balance well the competing needs
of a specification language like expressiveness, usability, and implementability [3]:
all ω-regular languages are expressible in PSL/SVA, specifications in PSL/SVA
are fairly easy to read and write, and relevant verification problems (e.g. model
checking) for PSL/SVA are automatically solvable in practice.

Although temporal operators that refer to the past have been found natural
and useful when expressing temporal properties [20, 16, 21, 10, 9], the PSL and
SVA standards support temporal past operators only in a restrictive way. This
design choice has already been made for the predecessor ForSpec [3] of PSL/SVA
and has been justified by the argument that handling “arbitrary mixing of past
and future operators results in nonnegligible implementation cost” [3]. One rea-
son for this belief is that in the automata-theoretic approach to model check-
ing [27], one uses 2-way automata to deal with past and future operators rather
than 1-way automata when only future operators are present. The nowadays
used automata constructions for 2-way automata are more involved than the
corresponding ones for 1-way automata. For instance, with the state-of-the-art
construction in [16], we can translate a 2-way alternating Büchi automaton with
n states into a language-equivalent nondeterministic Büchi automaton (NBA)
with 2O(n2) states. For a given 1-way alternating Büchi automaton, we obtain
with the Miyano-Hayashi construction [22] an NBA with only 2O(n) states. Nev-
ertheless, in this paper, we give arguments in favor of extending PSL and SVA
with past operators and we argue against this assumed additional implementa-
tion cost. In particular, one of our results shows that a restricted class of 2-way
automata suffices and the additional cost for this class is small.

In more detail, the content of the paper is as follows. We first propose an
extension of PSL with past operators, which we name Regular Temporal Logic,
RTL for short. RTL extends PSL by the standard past operators from linear-
time temporal logic and by the corresponding past operators of the PSL/SVA-
specific operators for SEREs. For example, the PSL/SVA-specific operator α�ϕ
describes that a system trace fulfills from the current time point the pattern
given by the SERE α and at the end the post-condition ϕ holds, where ϕ is
a PSL/SVA formula. RTL additionally contains the corresponding counterpart
α−−−�ϕ. This describes that the pre-condition ϕ holds at some time point in the
past and at that time point the system trace fulfills up to the current time point
the pattern α. Note that the temporal operator α� ϕ is closely related to the
modality 〈α〉ϕ in dynamic logic [15]. However, PSL/SVA uses SEREs over state
predicates and in dynamic logic, the expressions are over program statements.

PSL, SVA, and RTL have the same expressive power: they all describe the
class of ω-regular languages. However, RTL allows one to describe ω-regular
languages more concisely than PSL and SVA. To show this, we establish a lower
bound on the succinctness of RTL and SVA. We define a family of ω-regular
languages and prove that these languages can be described in RTL exponentially
more succinctly than in SVA. For the LTL-expressible properties, i.e, the ω-
regular languages that are star-free, we obtain as a byproduct that RTL is double
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exponentially more succinct than LTL, even when extended with the classical
temporal past operators Y (yesterday) and S (since).

Furthermore, we investigate the additional computational cost for solving the
satisfiability problem and the model-checking problem for RTL. As for PSL
and SVA, these problems are EXPSPACE-complete for RTL. In practice, the
satisfiability problem and the model-checking problem for PSL and SVA are
solved by using an automata-theoretic approach [5, 9, 7], translating a given
formula into an NBA. With the standard automata constructions for PSL and
SVA, one obtains for a PSL/SVA formula of size n an NBA of size O(22·22n

) [5,7].
We present a novel construction for RTL that translates an RTL formula of size
n into an NBA of size O(23·22n

). Note that the upper bounds of the sizes of the
resulting automata for PSL/SVA and RTL only differ by a small constant in
the exponent despite the richer structure of RTL. Our translation is based on
alternation-elimination constructions for restricted classes of 2-way alternating
automata that were recently presented in [12] and which we further improve in
this paper for the alternating automata that we obtain from our translation of
RTL formulas into alternating automata. This construction can also be used to
translate a given RTL formula into an initially equivalent SVA formula whose
size is triple exponentially larger, not quite matching the lower bound mentioned
above. One of these three exponentials is due to the fact that the resulting SVA
formulas do not contain SEREs anymore, but only regular expressions.

We point out that our translation for RTL into NBAs significantly improves
over translations that we obtain when utilizing automata constructions that do
not take the given special class of alternating automata into account. For in-
stance, when using the state-of-the-art construction [16] for translating 2-way
alternating automata into NBAs, one obtains an NBA of size O(24·24n+22n

),
where n is again the size of the given RTL formula. Overall, the presented trans-
lation indicates that extensions of temporal logics with past operators can be
handled with only a minor overhead in the automata-theoretic model-checking
approach when adequate constructions for 2-way alternating automata are used.

2 Preliminaries

Words and Trees. We denote the set of finite words over the alphabet Σ by Σ∗

and the set of infinite words over Σ by Σω. The length of a word w ∈ Σ∗ is
written as |w| and ε denotes the empty word. For a finite or infinite word w, wi
denotes the symbol of w at position i ∈ N, where we assume that i < |w| if w is
finite. We write v ( w if v is a prefix of the word w. For i, j < |w|, we write wi..
for the suffix wiwi+1 . . . and wi..j for the subword wiwi+1 . . . wj .

A (Σ-labeled) tree is a function t : T → Σ, where T ⊆ N∗ satisfies the
conditions: (i) T is prefix-closed (i.e., if v ∈ T and u ( v then u ∈ T ) and (ii) if
vi ∈ T and i > 0 then v(i− 1) ∈ T . The elements in T are called the nodes of t
and the empty word ε is called the root of t. A node vi ∈ T with i ∈ N is called
a child of the node v ∈ T . An (infinite) path in t is a word π ∈ Nω such that
v ∈ T , for every prefix v of π. We write t(π) for the word t(π0)t(π1) . . . ∈ Σω.
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Propositional Logic. We denote the set of Boolean formulas over the set P of
propositions by B(P ), i.e., B(P ) consists of the formulas that are inductively
built from the propositions in P and the connectives ∨, ∧, and ¬. For M ⊆ P
and b ∈ B(P ), we write M |= b iff b evaluates to true when assigning true to the
propositions in M and false to the propositions in P \M . We write B+(P ) for
the set of Boolean formulas in which the connective ¬ does not occur.

Regular Expressions. The syntax of semi-extended regular expressions (SEREs)
over the proposition set P is defined by the grammar α ::= ε | b | α � α |
α∗, where b ∈ B(P ) and � ∈ {∪,∩, ;, :}. The language of an SERE over the
proposition set P is inductively defined: (i) L(ε) := {ε}, (ii) L(b) := {w ∈
(2P )∗ | |w| = 1 and w |= α}, for b ∈ B(P ), (iii) L(β � γ) := L(β) � L(γ), for
� ∈ {∪,∩, ;, :}, where L ; L′ := {uv | u ∈ L and v ∈ L′} is the concatenation of
L and L′, and L : L′ := {ubv | ub ∈ L and bv ∈ L′ with b ∈ 2P } the fusion, and
(iv) L(β∗) :=

⋃
n∈N

Ln(β), where L0 := {ε} and Li+1 := L ; Li, for all i ∈ N.
The size of an SERE is its syntactic length, i.e., ||ε|| := 1, ||b|| := 1, for b ∈ B(P ),
||β � γ|| := 1 + ||β||+ ||γ||, for � ∈ {∪,∩, ;, :}, and ||β∗|| := 1 + ||β||.

Automata. In the following, we define 2-way alternating automata, which scan
input words letter by letter with their read-only head. Let D := {−1, 0, 1} be
the set of directions in which the read-only head can move. A 2-way alternating
Büchi automaton (2ABA) A is a tuple (Q,Σ, δ, qI , F ), where Q is a finite set of
states, Σ is a finite nonempty alphabet, δ : Q×Σ → B+(Q×D) is the transition
function, qI ∈ Q is the initial state, and F ⊆ Q is the acceptance condition. The
size ||A|| of the automaton A is |Q|.

A configuration of A is a pair (q, i) ∈ Q×N. Intuitively, q is the current state
and the read-only head is at position i of the input word. A run of A on w ∈ Σω

is a tree r : T → Q× N such that r(ε) = (qI , 0) and{
(q′, j′− j) ∈ Q×D | r(y) = (q′, j′), where y is a child of x in r

}
|= δ(q, wj) ,

for each node x ∈ T with r(x) = (q, j). For π := (q0, i0)(q1, i1) . . . ∈ (Q ×
N)ω, we define Inf (π) := {q | q occurs infinitely often in q0q1 . . . ∈ Qω}. A path
π ∈ T in a run r is accepting if Inf (r(π)) ∩ F �= ∅. The run r is accepting if
every path in r is accepting. The language of A is the set L(A) := {w ∈ Σω |
there is an accepting run of A on w}.

The automaton A is 1-way if δ(q, a) ∈ B+(Q×{1}), for all q ∈ Q and a ∈ Σ.
That means, A can only move the read-only head to the right. If A is 1-way, we
assume that δ is of the form δ : Q × Σ → B+(Q). We call a 1-way automaton
a nondeterministic Büchi automaton (NBA) if its transition function returns a
disjunction of states for all inputs. We view the transition function δ of an NBA
as a function of the form δ : Q×Σ → 2Q. This means that clauses are written
as sets. Note that a run r : T → Q×N of an NBA A on w ∈ Σω can be reduced
to a single path π in r that is consistent with the transition function. Using
standard terminology, we also call r(π) ∈ (Q× N)ω a run of A on w.
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w, i |= p iff p ∈ wi

w, i |= cl(α) iff ∃k ≥ i : wi..k ∈ L(α), or ∀k ≥ i : ∃v ∈ L(α) : wi..k � v
w, i |= ϕ ∧ ψ iff w, i |= ϕ and w, i |= ψ
w, i |= ¬ϕ iff w, i |= ϕ
w, i |= Xϕ iff w, i + 1 |= ϕ
w, i |= ϕ U ψ iff ∃k ≥ i : w, k |= ψ and ∀j : if i ≤ j < k then w, j |= ϕ
w, i |= α� ϕ iff ∃k ≥ i : wi..k ∈ L(α) and w, k |= ϕ
w, i |= Yϕ iff i > 0 and w, i − 1 |= ϕ
w, i |= ϕ S ψ iff ∃k ≤ i : w, k |= ψ and ∀j : if k < j ≤ i then w, j |= ϕ
w, i |= α−−−� ϕ iff ∃k ≤ i : wk..i ∈ L(α) and w, k |= ϕ

Fig. 1. Interpretation of an RTL formula over P at a position i ≥ 0 of a word w ∈ (2P )ω

3 Temporal Logics with Expressions and Past Operators

In this section, we extend LTL with SEREs and past operators. We call the
extension Regular Temporal Logic, RTL for short. The cores of the two industrial-
standard property-specification languages PSL [1] and SVA [2] are fragments of
RTL. The syntax of RTL over the set P of propositions is given by the grammar

ϕ ::= p | cl(α) | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕ U ϕ | α� ϕ | Yϕ | ϕ S ϕ | α−−−� ϕ ,

where p ∈ P and α is an SERE over P . The semantics of RTL is given in Figure 1.
A word w ∈ (2P )ω is a model of an RTL formula ϕ if w, 0 |= ϕ. The language of
an RTL formula ϕ is L(ϕ) := {w ∈ (2P )ω | w, 0 |= ϕ}. The RTL formulas ϕ and
ψ are initially equivalent if L(ϕ) = L(ψ). They are logically equivalent, written
as ϕ ≡ ψ, if w, i |= ϕ ⇔ w, i |= ψ, for all i ∈ N and w ∈ (2P )ω. As for SEREs,
we define the size ||ϕ|| of an RTL formula ϕ as its syntactic length.

We define the following fragments of RTL. We call an RTL formula a PSL
formula if it does not contain the operators Y, S, and −−−�. An LTL formula is a
PSL formula that does not contain the operators cl and�. An SVA formula is
a PSL formula that does not contain the operators cl, X, and U. The fragments
PLTL and PSVA, which extend LTL and SVA, respectively, with past opera-
tors, are defined as expected. Note that RTL and PSL extended with the past
operators Y, S, and −−−� coincide.

We use standard syntactic sugar, like the Boolean constants and connectives
ff, tt, ∨, →, and we define ϕ R ψ := ¬(¬ϕ U ¬ψ), ϕ T ψ := ¬(¬ϕ S ¬ψ), Zϕ :=
Ytt → Yϕ. Moreover, for an RTL formula ϕ and an SERE α, we write α�ϕ for
¬(α�¬ϕ) and α−−−�ϕ for ¬(α−−−�¬ϕ). Note that the standard unary temporal
operators can easily be defined in the respective fragment. For instance, for PSVA
we define Gϕ := tt∗� ϕ, Fϕ := tt∗� ϕ, Hϕ := tt∗−−−� ϕ, and Oϕ := tt∗−−−� ϕ.

Remark 1. In the PSL standard [1], we also have atomic formulas of the form
ended(α) and prev(α), where α is an SERE. For instance, the word w satis-
fies ended(α) at position i iff there is a subword u of w that ends at i and
u ∈ L(α). The operators ended and prev can be seen as restricted variants of
the past operator −−−�. For instance, in RTL, if ε �∈ L(α), ended(α) is syntactic
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sugar for α−−−� tt, and tt otherwise. Observe that ended and prev can only be
applied to SEREs, and in contrast to −−−�, it is not possible to define the classical
past operators Y, H, and O with them. We also remark that the literature,
e.g. [5, 9, 17, 24, 7] usually considers the essential core of the PSL standard to
which the operators ended and prev do not belong. We follow this convention,
i.e., the formulas in our fragment PSL of RTL do not contain ended(α) and
prev(α). Finally, we remark that the automata constructions [5,7] for PSL and
SVA cannot cope with the operators ended and prev, which are handled by our
construction in Section 4 for RTL.

Example 2. A standard example for showing that the past operators of PLTL
can lead to more intuitive specifications is G(grant → Orequest), i.e., every grant
is preceded by a request [20]. An initially equivalent LTL formula is request R
(¬grant ∨ request). Let us now illustrate the beneficial use of SEREs and past
operators. Suppose that a request is not a single event but a sequence of events,
e.g., a request consists of a start event followed eventually by an end event and
no cancel event happens between the start and the end event. Such sequences
are naturally described by the SERE (start ; tt∗ ; end) ∩ (¬cancel )∗. Using this
SERE and the new past operator−−−�, we can easily express in RTL the property
that every grant is preceded by a request:

G
(
grant →

(
((start ; tt∗ ; end) ∩ (¬cancel)∗) ; tt∗−−−� tt

))
. (1)

Note that according to the semantics of the operator −−−�, the end event has
to happen before or at the same time as the grant event. Alternatively, we can
express the property in PLTL as

G
(
grant → O

(
end ∧ ¬cancel ∧ Y(¬cancel S (start ∧ ¬cancel))

))
. (2)

Although debatable, we consider that the RTL formula (1) is easier to understand
than the PLTL formula (2). In SVA, we can express the property as norequest�
¬grant , where the SERE norequest describes the complement of the language
L
(
tt∗ ; ((start ; tt∗ ; end) ∩ (¬cancel )∗) ; tt∗

)
, that is, norequest := (a ∪ b ; d∗ ;

c)∗ ; (c∗ ∪ b ; d), where a, b, c, and d are the Boolean formulas ¬start ∨ cancel ,
start ∧ ¬cancel , cancel , and ¬cancel ∧ ¬end , respectively. Note that in general,
complementation of SEREs is difficult and can result in an exponential blowup
with respect to the size of the given SERE.

Example 3. Let us give another example to illustrate the usefulness of past oper-
ators, in particular, the operator−−−�. For N ≥ 1 and i ∈ {0, . . . , N−1}, consider
the RTL formula ΦN,i := G

(
send i →

(
switchi ∩ (init ; (¬init)∗)−−−� tt

))
, where

switchi counts the number of switch events modulo N , i.e.,

switchi :=
(
(¬switch)∗ ; switch ; . . . ; (¬switch)∗ ; switch︸ ︷︷ ︸

N times

)∗ ;

(¬switch)∗ ; switch ; . . . ; (¬switch)∗ ; switch︸ ︷︷ ︸
i times

; (¬switch)∗ .
(3)
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Intuitively, ΦN,i expresses the property that the process i is only allowed to send
a data item if it possesses the token. The process i possesses the token iff i ≡ 0
mod N switch events occurred previously since the last init event. Note that
this property is not expressible in LTL since it is not star-free.

The negation of the PSL formula(
(¬init)∗� send i

)
∨ F

(
init ∧

(
(tt ; (¬init)∗) ∩ (

⋃
j =i switchj)� send i

))
(4)

is initially equivalent to ΦN,i. Note that the size of the formula (4) is quadratic
in N , whereas the size of the formula (3) is only linear in N . In Section 5, we
prove that PSVA is exponentially more succinct than PSL.

In general, for writing specifications, RTL possesses the advantage of PLTL over
LTL and the advantage of PSL/SVA over LTL, namely, additional operators for
referring to the past and SEREs for describing sequences of events.

4 From RTL to Nondeterministic Automata

In this section, we present a translation from RTL formulas into language-equiv-
alent NBAs. Similar to the well-known translation for LTL formulas into NBAs,
our translation comprises two steps: for a given RTL formula, we first construct
an alternating automaton, which we then translate into an NBA. Throughout
this section, we fix a finite set P of propositions.

4.1 From RTL to Loop-Free and Locally 1-Way 2ABAs

In this subsection, we assume that ϕ is an RTL formula over P and ϕ is in
negation normal form, i.e., the negation symbol ¬ only occurs directly in front
of the atomic subformulas of ϕ. Note that every RTL formula ψ can be rewritten
into a logically equivalent RTL formula in negation normal form over an extended
language, where we use the additional Boolean connective ∨ and the additional
operators R, T, Z, �, and −−−� as primitives. The size of the resulting formula
is at most 2||ψ||. For rewriting a formula into negation normal form, we use the
logical equivalences ¬¬γ ≡ γ, ¬Xγ ≡ X¬γ, ¬Yγ ≡ Z¬γ, and ¬Zγ ≡ Y¬γ.

Due to space limitations, we do not provide the construction of the 2ABA Aϕ
for the RTL formula ϕ here. Instead, we only briefly highlight the similarities
and the differences to the standard constructions for LTL, PLTL, SVA, and
PSL [26,14, 5,7]. The construction in [7] additionally handles SEREs with local
variables. Our construction can easily be extended by this feature. However, for
the ease of exposition, we focus here on how to handle the temporal past and
future operators of RTL efficiently. As the standard construction for PSL [5],
the state space of the 2ABA Aϕ consists of the subformulas of the given RTL
formula and the states of the automata for the SEREs. We introduce a special
symbol # to mark the beginning of the input word. With this symbol, Aϕ checks
in a run whether the read-only head is at the first position of the input word. We
need some auxiliary states for such a check. The new operators −−−� and −−−� are
then easily handled since Aϕ is alternating and 2-way. From the construction,
we obtain the following lemmas.
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Lemma 4. The 2ABA Aϕ accepts the language {#w | w ∈ L(ϕ)}.

Lemma 5. The 2ABA Aϕ has size at most 4 + 2||ϕ||.

The 2ABA Aϕ has some additional properties, which we exploit in Section 4.2
for constructing the NBA. Namely, Aϕ is loop-free [14, 12] and locally 1-way.

Intuitively speaking, loop-freeness means that an automaton cannot visit a
configuration twice on the same computation branch. Formally, it is defined as
follows for a 2ABA B = (S,Σ, η, sI , E). Let Π(B) be the set of words of the
form (s0, j0)(s1, j1) . . . ∈ (S × N)ω such that (s0, j0) = (sI , 0) and for all i ∈ N,
there is some a ∈ Σ and a set M ⊆ S ×Z with (si+1, ji+1 − ji) ∈M and M is a
minimal model of η(si, a), i.e, M � η(si, a) and M \ {c} �� η(si, a), for all c ∈M .
The automaton B is loop-free if for all words π ∈ Π(B), there are no integers
i, j ∈ N with i �= j such that πi = πj . Recall that πi and πj are configurations,
which consist of the current state and the current position of the read-only head.

Lemma 6. The 2ABA Aϕ is loop-free.

A 2ABA B = (S,Σ, η, sI , E) is locally 1-way if η(s, b) ∈ B+(S×{0, 1})∪B+(S×
{−1, 0}), for every s ∈ S and b ∈ Σ. We remark that any 2ABA can be trans-
formed into a language-equivalent 2ABA that is locally 1-way by doubling the
state space. However, such a transformation is not needed for Aϕ, since Aϕ is
already constructed in such a way that it is locally 1-way.

Lemma 7. The 2ABA Aϕ is locally 1-way.

4.2 From Loop-Free and Locally 1-Way 2ABAs to NBAs

In the following, we show how the alternating automaton from the previous sub-
section for an RTL formula in negation normal form can be translated into an
NBA. The presented construction is based on an improvement of an alternation-
elimination construction from [12]. Here, we additionally exploit the fact that
the given 2ABA is locally 1-way. Overall, for an RTL formula ψ, the resulting
language-equivalent NBA has size O(23·22||ψ||

). With the construction in [12], we
would obtain an NBA of size O(24·22||ψ||

). Another advantage of the new con-
struction is that it avoids the explicit representation of an extended alphabet,
which is used in one of the intermediate construction steps in [12] and which is
of exponential size. The presented construction also allows for a symbolic imple-
mentation [11], which can be used in tools like NuSMV [8] for satisfiability and
finite-state model checking. See [6] for such implementations and an evaluation
of constructions for the special case of 1-way alternating Büchi automata.

Theorem 8. For a loop-free and locally 1-way 2ABA A, there is a language-
equivalent NBA B of size O(|Σ| · 22||A||), where Σ is the alphabet of A.

The intuition for the construction of Theorem 8 is as follows. For an input word
w, the NBA B guesses a run r of A = (Q,Σ, δ, qI , F ) on w and checks whether
this run is accepting. For this, as in [25,12], B represents r as a sequence of state
sets R0R1 . . . ∈ (2Q)ω, where each Ri contains the state q iff there is a path in
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r that visits (q, i). In the case where A is 1-way, each Ri consists of the states
that occur in the ith level of the run r. Note that in the general case where A is
2-way, Ri might contain states that occur in different levels of r. For instance, Ri
contains the states q and q′ from different levels if r contains a path of the form
(qI , 0) . . . (q, i) . . . (q′, i) . . . . SinceA is locally 1-way, we can locally check whether
such a sequence R0R1 . . . represents a run of A on w. For doing so, B stores the
set Ri+1 and the letter wi+2 after reading the ith letter of w. For a state q ∈ Ri
with δ(q, wi) ∈ B+(Q×{0, 1}), the set (Ri×{0})∪(Ri+1×{1}) must be a model of
δ(q, wi). B checks this when reading the letter wi. For δ(q, wi) ∈ B+(Q×{−1, 0})
and i > 0, (Ri−1 × {−1}) ∪ (Ri × {0}) must be a model of δ(q, wi). B already
checks this when it reads the (i − 1)th input letter by using the guessed letter
wi. Additionally, B must check that every path in r visits configurations with an
accepting state infinitely often. Since A is loop-free the run r is accepting iff there
are indexes i0 < i1 < . . . such that each path in r that visits a configuration
(q, ij) visits a configuration with an accepting state before visiting (q′, ij+1), for
every j ∈ N. Similar to the alternation-elimination construction by Miyano and
Hayashi [22] for 1-way alternating Büchi automata, B checks this property with
an additional component in the state space and its set of accepting states.

We obtain the following result by putting the two constructions together.

Theorem 9. For any RTL formula ψ, there is a language-equivalent NBA C of
size O(23·22||ψ||

).

Proof. First, we transform ψ into a logically equivalent formula ψ′ that is in
negation normal of size 2||ψ||. Let Aψ′ be the 2ABA that we obtain from ψ′ by
the construction in Section 4.1. By the Lemmas 5, 6, and 7, Aψ′ is loop-free,
locally 1-way, and ||Aψ′ || ≤ 4 + 22||ψ||. By Lemma 4, Aψ′ accepts the language
{#w | w ∈ L(ψ)}. By Theorem 8, we translate Aψ′ into a language-equivalent
NBA B with O(23·22||ψ||

) states. From B, it is easy to obtain an NBA C with
L(C) = L(ψ) and ||C|| ∈ O(23·22||ψ||

). ��

We remark that the upper bound of the NBA in Theorem 9 can be improved by
taking the number of distinct subformulas into account instead of the syntactic
length of the given RTL formula. We omit such a refined analysis here.

4.3 Consequences of the Translation

We conclude this section by proving some facts that follow from Theorem 9.
Since SVA can already express all ω-regular languages, we have that RTL de-

scribes exactly the ω-regular languages. Moreover, SVA, PSL, and RTL share the
same computational complexity. In particular, the satisfiability and the model-
checking problem for RTL are EXPSPACE-complete in general and PSPACE-
complete for RTL formulas with a bounded number of intersection operators.
Another similarity between the logics is that they all have the small model prop-
erty of doubly exponential size. In particular, there is a constant c > 0 such that
a satisfiable RTL formula ϕ has a model of the form uvω with |uv| ≤ c · 23·22||ϕ||

.
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Since PSL/SVA and RTL describe the same class of properties, the question
arises of their relative succinctness. The next theorem states an upper bound on
the translation from RTL to SVA. Roughly speaking, for the proof, we translate
an RTL formula into an NBA and then into an ω-regular expression, which we
finally translate into an SVA formula.

Theorem 10. For any RTL formula ϕ, there is an initially equivalent SVA

formula of size 2O(222||ϕ||+2
) and in which the intersection operator does not occur.

It is fair to ask whether the upper bound in Theorem 10 is optimal, i.e., whether
there is a family of RTL formulas such that every initially equivalent family of
PSL formulas must be triply exponentially larger. The result on the small model
property shows that such a lower bound cannot be proved by comparing the
model sizes (see, e.g., the Gap Lemma in [18]). We were only able to establish
an exponential lower bound. This result is presented in the next section.

5 Succinctness Gaps

In this section, we prove an exponential succinctness gap between RTL and
PSL/SVA, i.e., there is a family (Φn)n>0 of RTL formulas such that for every
family (Ψn)n>0 of PSL or SVA formulas, if Ψn is initially equivalent to Φn for all
n > 0, then ||Ψn|| is exponential in ||Φn||. In fact, our result is stronger since the
formulas Φn that we define are just PSVA formulas. The proof of this succinctness
result can easily be adapted to show that PSVA and, hence, RTL, is double
exponentially more succinct than PLTL.

Our proof for the succinctness gap between PSVA and SVA has a similar
flavor as the proof in [21], which shows that PLTL is exponentially more succinct
than LTL. However, our proof is more involved since we must take SEREs into
account. In fact, the formulas in the family of PLTL formulas that is used in [21]
are initially equivalent to SVA formulas of linear size. From this observation, we
conclude that SVA is exponentially more succinct than LTL.
Lemma 11. For every n > 0, there is an SVA formula Θn such that for any
LTL formula Ξn, if L(Ξn) = L(Θn) then ||Ξn|| ∈ Ω(2||Θn||).

Let us now turn to the succinctness gap between PSVA and SVA. For this,
we first introduce so-called n-counting words, which can be defined in SVA by
formulas of sizeO(n). In the following, let n > 0, Pn be the set {c0, . . . , cn−1, p, q}
of propositions, and Σn the alphabet 2Pn . The n-value of the letter b ∈ Σn is
valn(b) :=

∑
0≤i<n 2c

′
i with c′i := 1 if ci ∈ b and c′i := 0, otherwise. In other

words, the n-value of b is obtained by reading c0, . . . , cn−1 as bits of a positive
integer in binary representation. A word w ∈ Σωn is n-counting if valn(w0) = 0
and valn(wi+1) ≡ valn(wi) + 1 mod 2n, for all i ∈ N.
Lemma 12. For every n > 0, there is an SVA formula countn of size O(n)
such that L(countn) ⊆ Σωn is the language of n-counting words.

An n-segment of a word w ∈ Σωn is a subword v = wi . . . wi+2n−1 such that i ≡ 0
mod 2n, for some i ∈ N. The n-segment v is initial if i = 0. For a proposition
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r ∈ P , the words u, v ∈ Σ∗n are r-equal if |u| = |v| and r ∈ ui ⇔ r ∈ vi, for all
i ∈ N with i < |v|. Let Ln and L′n be the following languages:
– Ln consists of the n-counting words w ∈ Σωn such that if an n-segment of w

is p-equal to the initial n-segment w then they are also q-equal.
– L′n consists of the n-counting words w ∈ Σωn such that if the n-segments u

and v of w are p-equal then they are also q-equal.

Lemma 13. For every n > 0, there is a PSVA formula Φn of size O(n) such
that L(Φn) = Ln.

Lemma 14. For every n > 0, if B is an NBA with L(B) = L′n then ||B|| ≥ 222n

.

With the above lemmas we obtain our succinctness result for PSVA and SVA.

Theorem 15. For every n > 0, there is a PSVA formula Φn such that L(Φn) =
Ln and for every SVA formula Ψn, if L(Ψn) = Ln then ||Ψn|| ∈ Ω(2||Φn||).

Proof. For a given n > 0, take the PSVA formula Φn from Lemma 13. Suppose
that Ψn is an SVA formula that is initially equivalent to Φn. Let Ψ ′n := countn ∧
G(¬c0 ∧ · · · ∧ ¬cn−1 → Ψn). Note that Ψ ′n expresses that a model is n-counting
and each two p-equal n-segments in a model are also q-equal, i.e., L(Ψ ′n) = L′n.
By Theorem 9, there is an NBA B of size 22O(||Ψ′

n||)
and L(B) = L(Ψ ′n). By

Lemma 14, we have that ||B|| ≥ 222n

. It follows that ||Ψ ′n|| ∈ Ω(2||Φn||). Since Ψ ′n
is linear in the size of Ψn, we conclude that ||Ψn|| ∈ Ω(2||Φn||). ��

Note that Ln is a star-free language, i.e., there is an LTL formula ϕn such that
L(ϕn) = Ln. We can easily adapt the proof of Theorem 15 to obtain a double
exponential succinctness gap between PSVA and PLTL.

Corollary 16. For every n > 0, there is a PSVA formula Φn such that L(Φn) =
Ln and for any PLTL formula Ξn, if L(Ξn) = Ln then ||Ξn|| ∈ Ω(22||Φn||

).

Remark 17. We conclude this section by stating some open problems related to
the presented succinctness gaps. First, it remains open whether the exponen-
tial succinctness gap still holds between RTL and extensions of PSL/SVA with
restricted variants of the past operators like the ones discussed in Remark 1.
We did not succeeded in proving such a gap, neither did we succeed in express-
ing the languages Ln concisely in such an extension. Second, it remains open
whether the succinctness gaps carry over to a fixed and finite proposition set.
Note that the proposition sets Pn over which the PSVA formulas Φn are defined
grow linearly in n. As shown in [13], we can encode any number of propositions
by a single proposition. However, the sizes of the adapted formulas for Φn are no
longer linear in n. In particular, the sizes of the adapted SEREs in Lemma 13
are quadratic in n. It is not obvious how to adapt these SEREs so that their
sizes remain linear in n. Therefore, for a fixed and finite proposition set, we only
obtain a superpolynomial succinctness gap between PSVA and SVA. Note that
for similar reasons, the adapted proof of the succinctness gap between PLTL and
LTL in [21,19] for a fixed and finite proposition set also only shows that PLTL
is superpolynomially more succinct than LTL.
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6 Conclusion

In this paper, we have proposed the temporal logic RTL, which extends PSL
and SVA with past operators. We have analyzed its complexity and our results
show that RTL and PSL/SVA are similarly related as PLTL and LTL with
respect to expressiveness, succinctness, and the computational complexities of
the satisfiability and the model-checking problem. It remains to be seen whether
the advantages of RTL over PSL and SVA pay off in practice. The presented
translation for RTL into NBAs shows that the additional cost for handling past
operators is small and should not be a burden in implementing RTL in system
verification. Our preliminary experience with a prototype implementation for
the model checker NuSMV are promising.2
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Abstract. We describe a simple, conceptual forward analysis procedure for ∞-
complete WSTS S. This computes the clover of a state s0, i.e., a finite description
of the closure of the cover of s0. When S is the completion of a WSTS X, the
clover in S is a finite description of the cover in X. We show that this applies
exactly when X is an ω2-WSTS, a new robust class of WSTS. We show that our
procedure terminates in more cases than the generalized Karp-Miller procedure
on extensions of Petri nets. We characterize the WSTS where our procedure ter-
minates as those that are clover-flattable. Finally, we apply this to well-structured
counter systems.

1 Introduction

Context. Well-structured transition systems (WSTS) are a general class of infinite-state
systems where coverability—given states s, t, decide whether s (≥;→∗;≥) t, i.e.,
whether s ≥ s1 →∗ t1 ≥ t for some s1, t1—is decidable, using a simple backward
algorithm [14,15,19,2].

The starting point of this paper and of its first part [17] is our desire to derive similar
forward algorithms, namely algorithms computing the cover ↓Post∗(↓ s) of s. While
the cover allows one to decide coverability as well, by testing whether t ∈ ↓Post∗(↓ s),
it can also be used to decide U -boundedness, i.e., to decide whether there are only
finitely many states t in the upward-closed set U and such that s (≥;→∗) t. No back-
ward algorithm can decide this. In fact, U -boundedness is undecidable in general, e.g.,
on lossy channel systems [9]. So the reader should be warned that computing the cover
is not possible for general WSTS. Despite this, the known forward algorithms are felt to
be more efficient than backward procedures in general: e.g., for lossy channel systems,
although the backward procedure always terminates, only the non-terminating forward
procedure is implemented in the tool TREX [1].

State of the art. Karp and Miller [27] proposed an algorithm, for Petri nets, which com-
putes a finite representation of the cover, i.e., of the downward closure of the reachabil-
ity set of a Petri net. Finkel [14,15] introduced the WSTS framework and generalized
the Karp-Miller procedure to a class of WSTS. This was achieved by building a non-
effective completion of the set of states, and replacing ω-accelerations of increasing se-
quences of states (in Petri nets) by least upper bounds (lub). In [12,15] a variant of this
generalization of the Karp-Miller procedure was studied; but no guarantee was given
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that the cover could be represented finitely. There were no effective finite representa-
tions of downward closed sets in [15]. Finkel [16] modified the Karp-Miller algorithm
to reduce the size of the intermediate computed trees. [22] recently proposed a weaker
acceleration, which avoid some possible underapproximations in [16]. Emerson and
Namjoshi [12] took into account the labeling of WSTS for adapting the generalised
Karp-Miller algorithm to model-checking. They assume the existence of a compatible
cpo, and proved that for broadcast protocols (which are equivalent to transfer Petri nets),
the Karp-Miller procedure can be generalized. However, termination is then not guar-
anteed [13], and in fact neither is the existence of a finite representation of the cover.
Abdulla, Colomb-Annichini, Bouajjani and Jonsson proposed a forward procedure for
lossy channel systems [3] using downward closed regular languages as symbolic repre-
sentations. Ganty, Geeraerts, Raskin and Van Begin [21,20] proposed a forward proce-
dure for solving the coverability problem for WSTS equipped with an effective adequate
domain of limits, or equipped with a finite set D used as a parameter to tune the pre-
cision of an abstract domain. Both solutions insure that every downward closed set has
a finite representation. Abdulla et al. [3] applied this framework to Petri nets and lossy
channel systems. Abdulla, Deneux, Mahata and Nylén proposed a symbolic framework
for dealing with downward closed sets for Timed Petri nets [4].
Our contribution. First, we define complete WSTS as WSTS whose well-ordering is
also a continuous dcpo. This allows us to design a conceptual procedure CloverS that
looks for a finite representation of the downward closure of the reachability set, i.e., of
the cover [15]. We call such a finite representation a clover (for closure of cover). This
clearly separates the fundamental ideas from the data structures used in implementing
Karp-Miller-like algorithms. Our procedure also terminates in more cases than the well-
known (generalized) Karp-Miller procedure [12,15]. We establish the main properties
of clovers in Section 3 and use them to prove CloverS correct, notably, in Section 5.

Second, we characterize complete WSTS for which CloverS terminates. These are
the ones that have a (continuous) flattening with the same clover. This establishes a
surprising relationship with the theory of flattening [8].

Third, and building on our theory of completions [17], we characterize those WSTS
whose completion is a complete WSTS in the sense above. They are exactly the ω2-
WSTS, i.e., those whose state space is ω2-wqo, as we show in Section 4.

Finally, we apply our framework of complete WSTS to counter systems in Section 6.
We show that affine counter systems may be completed into ∞-complete WSTS iff the
domains of the monotone affine functions are upward closed.

2 Preliminaries

Posets, dcpos. We borrow from theories of order, as used in model-checking [2,19],
and also from domain theory [6,23]. A quasi-ordering ≤ is a reflexive and transitive
relation on a set X . It is a (partial) ordering iff it is antisymmetric.

We write≥ the converse quasi-ordering,< the associated strict ordering (≤\≥), and
> the converse (≥\≤) of <. A set X with a partial ordering≤ is a poset (X,≤), or just
X when ≤ is clear. The upward closure ↑E of a set E is {y ∈ X | ∃x ∈ E · x ≤ y}.
The downward closure ↓E is {y ∈ X | ∃x ∈ E · y ≤ x}. A subset E of X is upward
closed if and only if E = ↑E. Downward closed sets are defined similarly. A downward
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closed (resp. upward closed) set E has a basis A iff E = ↓A (resp. E = ↑A); E has a
finite basis iff A can be chosen finite.

A quasi-ordering is well-founded iff it has no infinite strictly descending chain x0 >
x1 > . . . > xi > . . .. An antichain is a set of pairwise incomparable elements. A
quasi-ordering is well iff it is well-founded and has no infinite antichain. We abbreviate
well posets as wpos.

An upper bound x ∈ X of E ⊆ X is such that y ≤ x for every y ∈ E. The
least upper bound (lub) of a set E, if it exists, is written lub(E). An element x of E is
maximal (resp. minimal) iff ↑x∩E = {x} (resp. ↓ x∩E = {x}). Write MaxE (resp.
MinE) the set of maximal (resp. minimal) elements of E.

A directed subset of X is any non-empty subset D such that every pair of elements
of D has an upper bound in D. Chains, i.e., totally ordered subsets, and one-element
set are examples of directed subsets. A dcpo is a poset in which every directed subset
has a least upper bound. For any subset E of a dcpo X , let Lub(E) = {lub(D) |
D directed subset of E}. Clearly, E ⊆ Lub(E); Lub(E) can be thought of E plus all
limits from elements of E.

The way below relation & on a dcpo X is defined by x & y iff, for every directed
subset D such that lub(D) ≤ y, there is a z ∈ D such that x ≤ z. Write ↓↓E = {y ∈
X | ∃x ∈ E · y & x}. X is continuous iff, for every x ∈ X , ↓↓x is a directed subset,
and has x as least upper bound.

When ≤ is a well partial ordering that also turns X into a dcpo, we say that X is a
directed complete well order, or dcwo. If additionally X is continuous, we say that X
is a cdcwo.

A subset U of a dcpo X is (Scott-)open iff U is upward-closed, and for any directed
subset D of X such that lub(D) ∈ U , some element of D is already in U . A map
f : X → X is (Scott-)continuous iff f is monotonic (x ≤ y implies f(x) ≤ f(y))
and for every directed subset D of X , lub(f(D)) = f(lub(D)). Equivalently, f is
continuous in the topological sense, i.e., f−1(U) is open for every open U .

A closed set is the complement of an open set. Every closed set is downward closed.
The closure cl(A) of A ⊆ X is the smallest closed set containing A. This should not be
confused with the inductive closure Ind(A) of A, which is obtained as the least set B
containing A and such that Lub(B) = B. In general, ↓A ⊆ Lub(↓A) ⊆ Ind(↓A) ⊆
cl(A), and all inclusions can be strict. However, when X is a continuous dcpo, and A is
downward closed in X , Lub(A) = Ind(A) = cl(A). (See, e.g., [17, Proposition 3.5].)
Well-Structured Transition Systems. A transition system is a pair S = (S,→) of a
set S, whose elements are called states, and a transition relation → ⊆ S ×S. We write
s→ s′ for (s, s′) ∈ →. Let

∗→ be the transitive and reflexive closure of the relation →.
We write PostS(s) = {s′ ∈ S | s → s′} for the set of immediate successors of the
state s. The reachability set of a transition system S = (S,→) from an initial state s0

is Post∗S(s0) = {s ∈ S | s0
∗→ s}.

A transition system (S,→) is effective iff S is r.e., and for every state s, PostS(s)
is finite and computable. An ordered transition system is a triple S = (S,→,≤) where
(S,→) is a transition system and ≤ is a quasi-ordering on S. We say that (S,→,≤) is
effective if (S,→) is effective and if ≤ is decidable.
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S = (S,→,≤) is monotone (resp. strictly monotone) iff for every s, s′, s1 ∈ S such
that s → s′ and s1 ≥ s (resp. s1 > s), there exists an s′1 ∈ S such that s1

∗→ s′1 and
s′1 ≥ s′ (resp. s′1 > s′). S is strongly monotone iff for every s, s′, s1 ∈ S such that
s→ s′ and s1 ≥ s, there exists an s′1 ∈ S such that s1 → s′1 and s′1 ≥ s′.

Finite representations of PostS(s) ,e.g., as Presburger formulae or finite automata,
usually don’t exist even for monotone transition systems (not even speaking of being
computable). The cover CoverS(s) = ↓Post∗S(↓ s) (= ↓Post∗S(s) when S is mono-
tone) is better behaved. Note that being able to compute the cover allows one to decide
coverability: s (≥;→∗;≥) t iff t ∈ CoverS(s). In most cases we shall encounter, it
will also be decidable whether a finitely represented cover is finite, or whether it meets
a given upward closed set U in only finitely many points. Therefore boundedness (is
Post∗S(s) finite?) and U -boundedness (is Post∗S(s)∩U finite?) will be decidable, too.

An ordered transition system S = (S,→,≤) is a Well Structured Transition System
(WSTS) iff S is monotone and (S,≤) is wpo. This is our object of study.

For strictly monotone WSTS, it is also possible to decide the boundedness problem,
with the help of the Finite Reachability Tree (FRT) [15]. However, the U -Boundedness
problem (called the place-boundedness problem for Petri nets) remains undecidable for
strictly monotone WSTS (for instance, for transfer Petri nets), but it is decidable for
Petri nets. It is decided with the help of a richer structure than the FRT, the Karp-Miller
tree. The set of labels of the Karp-Miller tree is a finite representation of the cover.

We will consider transition systems defined by a finite set of transition functions

for simplicity. This is as in [17]. Formally, a functional transition system (S, F→) is

a labeled transition system where the transition relation
F→ is defined by a finite set

F of partial functions f : S −→ S, in the sense that for every s, s′ ∈ S, s
F→ s′

iff s′ = f(s) for some f ∈ F . A map f : S → S is partial monotonic iff dom f
is upward-closed and for all x, y ∈ dom f with x ≤ y, f(x) ≤ f(y). An ordered

functional transition system is an ordered transition system S = (S, F→,≤) where F
consists of partial monotonic functions. This is always strongly monotonic. A functional
WSTS is an ordered functional transition system where ≤ is well.

A functional transition system (S, F→) is effective if every f ∈ F is computable:
given a state s and a function f , we may decide whether s ∈ dom f and in this case,
one may also compute f(s).

3 Clovers of Complete WSTS

Complete WSTS and their clovers. All forward procedures for WSTS rest on com-
pleting the given WSTS to one that includes all limits. E.g., the state space of Petri nets
is Nk, the set of all markings on k places, but the Karp-Miller algorithm works on Nkω,
where Nω is N plus a new top element ω. We have defined general completions of wpos,
serving as state spaces, and have briefly described completions of (functional) WSTS
in [17]. We temporarily abstract away from this, and consider complete WSTS directly.

Generalizing the notion of continuity to partial maps, a partial continuous map f :
X → X , where (X,≤) is a dcpo, is such that dom f is open (not just upward-closed),
and for every directed subset D in dom f , lub(f(D)) = f(lub(D)).
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Equivalently, dom f is open and f−1(U) is open for any open U . The composite of
two partial continuous maps is again partial continuous.

Definition 1. A complete WSTS is a (functional) WSTS S = (S, F→,≤) where (S,≤)
is a cdcwo and every function in F is partial continuous.

The point in complete WSTS is that one can accelerate loops:

Definition 2. Let (X,≤) be a dcpo, f : X → X be partial continuous. The lub-
acceleration f∞ : X → X is defined by: dom f∞ = dom f , and for any x ∈ dom f ,
if x < f(x) then f∞(x) = lub{fn(x) | n ∈ N}, else f∞(x) = f(x).

Note that if x ≤ f(x), then f(x) ∈ dom f , and f(x) ≤ f2(x). By induction, we can
show that {fn(x) | n ∈ N} is an increasing sequence, so that the definition makes sense.

Complete WSTS are strongly monotone. One may not decide, in general, whether
a recursive function f is monotone [18] or continuous, whether an ordered set (S,≤)
with a decidable ordering ≤, is a dcpo or whether it is a wpo. We may prove that
given an effective ordered functional transition system, one cannot decide whether it is
a WSTS, or a complete WSTS. However, the completion of any functional ω2-WSTS
is complete, as we shall see in Theorem 1.

In a complete WSTS, there is a canonical finite representation of the cover:

Definition 3 (Clover). Let S = (S, F→,≤) be a complete WSTS. The clover
CloverS(s0) of the state s0 ∈ S is MaxLub(CoverS(s0)).

Proposition 1. Let S=(S, F→,≤) be a complete WSTS, and s0∈S. ThenCloverS(s0)
is finite, and cl(CoverS(s0)) = ↓CloverS(s0).

Proof. Lub(CoverS(s0)) = cl(CoverS(s0)) since CoverS(s0) is downward closed,
and S is a continuous dcpo. Since S is a wpo, it is Noetherian in its Scott topology [25,
Proposition 3.1]. Since S is a continuous dcpo, S is also sober [6, Proposition 7.2.27],
so Corollary 6.5 of [25] applies: every closed subset F of S is such that MaxF is finite
and F = ↓MaxF . Now let F = Lub(CoverS(s0)). ��

For any other representative, i.e., for any finite set R such that ↓R = ↓CloverS(s0),
CloverS(s0) = MaxR. Indeed, for any two finite sets F,G ⊆ S such that ↓F = ↓G,
MaxF = MaxG. So Clover is the minimal representative of the cover, i.e., there
is no representative R with |R| < |CloverS(s0)|. The clover was called the minimal
coverability set in [16].

Despite the fact that the clover is always finite, it is non-computable in general (see
Proposition 4 below). Nonetheless, it is computable on flat complete WSTS, and even
on the larger class of clover-flattable complete WSTS (Theorem 3 below).
Completions. There are numberous WSTS which are not complete: the set Nk of states
of a Petri net with k places is not even a dcpo. The set of states of a lossy channel system
with k channels, (Σ∗)k, is not a dcpo for the subword ordering either. We have defined
general completions of wpos, and of WSTS, in [17], which we recall quickly.

The completion X̂ of a wpo (X,≤) is defined in any of two equivalent ways. First,
X̂ is the ideal completion Idl(X) of X , i.e., the set of ideals of X , ordered by inclusion,
where an ideal is a downward-closed directed subset of X . This can also be described
as the sobrification S(Xa) of the Noetherian space Xa, but this is probably harder to
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understand (although it makes proofs simpler). We consider X as a subset of X̂ , by
equating each element x ∈ X with ↓x ∈ Idl(X). For instance, if X = Nk, e.g., with
k = 3, then (1, 3, 2) is equated with the ideal ↓(1, 3, 2), while {(1,m,n) | m,n ∈ N}
is a limit, i.e. an element of X̂ \ X ; the latter is usually written (1, ω, ω), and is the
least upper bound of all (1,m,n), m,n ∈ N. The downward-closure of (1, ω, ω) in X̂ ,
intersected with X , gives back the set of non-limit elements {(1,m,n) | m,n ∈ N}.

This is a general situation: one can always write X̂ as the disjoint union X ∪ L, so
that any downward closed subset D of X can be written as X ∩ ↓A, where A is a finite
subset of X∪L. Then L, the set of limits, is a weak adequate domain of limits (WADL)
for X—we slightly simplify Definition 3.1 of [17], itself a slight generalization of [21].
In fact, X̂ (minus X) is the smallest WADL [17, Theorem 3.4].

X̂ = Idl(X) is always a continuous dcpo. In fact, it is even algebraic [6, Proposi-
tion 2.2.22]. It may however fail to be well, hence to be a cdcwo, see Lemma 1 below.

We have also described a hierarchy of datatypes on which completions are effec-

tive [17, Section 5]. Notably, N̂ = Nω , Â = A for any finite poset, and
∏̂k
i=1 Xi =∏k

i=1 X̂i. Also, X̂∗ is the space of products on X , as defined in [1], i.e., regular ex-
pressions that are products of atomic expressions A∗ (A ∈ Pfin(X̂), where Pfin denotes
the set of finite subsets) or a? (a ∈ X̂). In any case, elements of completions X̂ have a
finite description, and the ordering⊆ on elements of X̂ is decidable [17, Theorem 5.3].

Having defined the completion X̂ of a wpo X , we can define the completion S = X̂

of a (functional) WSTS X = (X,
F→,≤) as (X̂,

SF→,⊆), where SF = {Sf | f ∈ F}
[17, Section 6]. For each partial monotonic map f ∈ F , the partial continuous map
Sf : Ŝ → Ŝ is such that domSf = {C ∈ X̂ | C ∩dom f �= ∅}, and Sf(C) = ↓ f(C)
for every C ∈ X̂ . In the cases of Petri nets or functional-lossy channel systems, the
completed WSTS is effective [17, Section 6].

The important fact, which assesses the importance of the clover, is the following:

Proposition 2. Let S = X̂ be the completion of the functional WSTS X = (X,
F→,≤).

For every state s0 ∈ X , CoverX(s0) = CoverS(s0) ∩X = ↓CloverS(s0) ∩X .

CoverS(s0) is contained, usually strictly, in ↓CloverS(s0). The above states that,
when restricted to non-limit elements (in X), both contain the same elements. Tak-
ing lub-accelerations (Sf)∞ of any composition f of maps in F leaves CoverS(s0),
but is always contained in ↓CloverS(s0) = cl(CoverS(s0)). So we can safely lub-
accelerate in S = X̂ to compute the clover in S. While the clover is larger than the
cover, taking the intersection back with X will produce exactly the cover CoverX(s0).

4 A Robust Class of WSTS: ω2-WSTS

The construction of the completion S = X̂ of a WSTS X = (X,
F→,≤) is almost

perfect: the only missing ingredient to show that S is a complete WSTS is to check that
X̂ is well-ordered by inclusion. We have indeed seen that X̂ is a continuous dcpo; and
S is strongly monotonic, because Sf is continuous, hence monotonic, for every f ∈ F .

We show that, in some cases, X̂ is indeed not well-ordered. Take X to be Rado’s
structure XRado [29], i.e., {(m,n) ∈ N2 | m < n}, ordered by ≤Rado: (m,n) ≤Rado
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(m′,n′) iff m = m′ and n ≤ n′, or n < m′. It is well-known that≤Rado is a well quasi-
ordering, and that P(XRado) is not well-quasi-ordered by ≤�Rado, defined as A ≤�Rado B
iff for every y ∈ B, there is a x ∈ A such that x ≤Rado y [26]; see for example
[5, Example 3.2] for a readable reference. One can show that X̂Rado = Idl(XRado) is
comprised of all elements of XRado, plus infinitely many elements ω0, ω1, . . . , ωi, . . . ,
and ω, so that (i,n) ≤ ωi for all n ≥ i + 1, ωi ≤ ω for all i ∈ N, and {ωi | i ∈ N} is
an antichain. We note that the latter is infinite. So:

Lemma 1. X̂Rado is not well-ordered by inclusion.

A well-quasi-order X is ω2-wqo if and only if it does not contain an (isomorphic copy
of) XRado, see e.g. [26]. We show that the above is the only case that can go bad:

Proposition 3. Let S be a well-quasi-order. Then Ŝ is well-quasi-ordered by inclusion
iff S is ω2-wqo.

Let an ω2-WSTS be any WSTS whose underlying poset is ω2-wqo. It follows:

Theorem 1. Let S = (S, F→,≤) be a functional WSTS. Then Ŝ is a (complete, func-
tional) WSTS iff S is an ω2-WSTS.

All wpos used in the literature, and in fact all wpos arising from the hierarchy of data
types of [17, Section 5] are ω2-wqo. This follows from the fact that they are even better-
quasi-ordered—see [5] for a gentle introduction to the latter concept.
Effective complete WSTS. The completion Ŝ of a WSTS S is effective iff the comple-
tion Ŝ of the set of states is effective and if Sf is recursive for all f ∈ F . Ŝ is effective
for all the data types of [17, Section 5]. Also, Sf is indeed recursive for all f ∈ F ,
whether in Petri nets, functional-lossy channel systems (a way of recasting lossy chan-
nel systems as functional WSTS [17, Section 6]), reset/transfer Petri nets notably. As
promised, we can now show:

Proposition 4. There are effective complete WSTS S such that the map CloverS :
S → Pfin(S) is not recursive.

Proof. Let S be the completion of a functional-lossy channel system [17, Section 6] on
the message alphabet Σ. By Theorem 1, S is a complete WSTS. It is effective, too, see
op.cit., or [1, Lemma 6]. CloverS(s0) can be written as a tuple of control states and of
simple regular expressionP1+. . .+Pn representing the contents of channels. EachPi is
a product of atomic expressionsA∗ (A ∈ Pfin(Σ)) or a? (a ∈ Σ). Now Post∗S(s0) is fi-
nite iff none of these atomic expressions is of the form A∗. So computing CloverS(s0)
would allow one to decide boundedness for functional-lossy channel systems. However
functional-lossy channel systems are equivalent to lossy channel systems in this respect,
and boundedness is undecidable for the latter [9]. The same argument also applies to
reset Petri nets [11]. ��

5 A Conceptual Karp-Miller Procedure

We say that an effective complete (functional) WSTS S = (S, F→,≤) is ∞-effective
iff every function g∞ is computable, for every g ∈ F ∗, where F ∗ is the set of all
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compositions of map in F . E.g., the completion of a Petri net is ∞-effective: not only
is Nkω a wpo, but every composition of transitions g ∈ F ∗ is of the form g(x) = x + δ,
where δ ∈ Zk . If x < g(x) then δ ∈ Nk \ {0}. Write xi the ith component of x, it
follows that g∞(x) is the tuple whose ith component is xi if δi = 0, ω otherwise.

Let S be an ∞-effective WSTS, and write A - B iff ↓A ⊆ ↓B, i.e., iff every
element of A is below some element of B. The
following is a simple procedure which computes
the clover of its input s0 ∈ S (when it termi-
nates):
Note that CloverS is well-defined and all its
lines are computable by assumption, provided
we make clear what we mean by fair choice in
line (a). Call Am the value of A at the start of
the (m − 1)st turn of the loop at step 2 (so in

Procedure CloverS(s0) :
1. A← {s0};
2. while PostS(A) �- A do

(a) Choose fairly (g, a) ∈ F ∗ ×A
such that a ∈ dom g;

(b) A← A ∪ {g∞(a)};
3. return MaxA;

Fig. 1. The CloverS procedure

particular A0 = {s0}). The choice at line (a) is fair iff, on every infinite execution,
every pair (g, a) ∈ F ∗ × Am will be picked at some later stage n ≥ m.

Our procedure is more conceptual than the existing proposals, which generally build
a tree [27,15,16,22] or a graph [12] for computing the clover. We shall see that termina-
tion of CloverS has strong ties with the theory of flattening [8]; but this paper requires
one to enumerate sets of the form g∗(x), which is sometimes harder than computing
just the element g∞(x). For example, if g : Nk → Nk is an affine map g(x) = Ax + b
with A ≥ 0 and b ≥ 0 then g∞(x) is computable as a vector in Nkω [18, Theorem 7.9],
but g∗(x) is not even definable by a Presburger formula.

Finally, we use a fixpoint test (line 2) that is not in the Karp-Miller algorithm; and
this improvement allows CloverS to terminate in more cases than the Karp-Miller pro-
cedure when it is used for extended Petri nets (for reset Petri nets for instance, which
are a special case of the affine maps above), as we shall see. To decide whether the
current set A, which is always an under-approximation of CloverS(s0), is the clover, it
is enough to decide whether PostS(A) - A. The various Karp-Miller procedures only
test each branch of a tree separately, to the partial exception of the minimal coverability
tree algorithm [15] and the recent coverability algorithm [22], which compare nodes
across branches. That the simple test PostS(A) - A does all this at once does not
seem to have been observed until now.

By Proposition 4, we cannot hope to have CloverS terminate on all inputs. But:

Theorem 2 (Correctness). If CloverS(s0) terminates, then it computesCloverS(s0).

If the generalized Karp-Miller Tree procedure [15] terminates then it has found a finite
set g1, g2, ..., gn of maps to lub-accelerate. These lub-accelerations will also be found
by CloverS, by fairness. From the fixpoint test, CloverS will also stop. The reset Petri
net of [11, Example 3], with an extra transition that adds a token to each place, is
an example where the generalized Karp-Miller procedure does not terminate, while
CloverS terminates. So:

Proposition 5. The procedure CloverS terminates in more cases than the generalized
Karp-Miller procedure.
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Termination is however undecidable, using Proposition 4 and Theorem 2.

Proposition 6. There is an ∞-effective complete WSTS such that the termination of
CloverS is undecidable.

We now characterize those transition systems on which CloverS terminates.

A functional transition system (S,
F→) with initial state s0 is flat iff there are finitely

many words w1, w2, ..., wk ∈ F ∗ such that any fireable sequence of transitions from s0

is contained in the languagew∗1w
∗
2 ...w

∗
k . (We equate functions in F with letters from the

alphabetF , and understand words as the corresponding composition of maps.) Ginsburg
and Spanier [24] call this a bounded language, and show that it is decidable whether any
context-free language is flat.

Not all systems of interest are flat. For an arbitrary system S, flattening [8] consists
in finding a flat system S′, equivalent to S w.r.t. reachability, and computing on S′

instead of S. We adapt the definition in [8] to functional transition systems (without
an explicit finite control graph). A functional transition system
S1 = (S1,

F1→), together with a map ϕ : S1 → S2 and a map,
also written ϕ, from F1 to F2, is a flattening of a functional
transition system S2 = (S2,

F2→) iff (1) S1 is flat and (2) for
all (s, s′) ∈ S2

1 , for all f1 ∈ F1 such that s ∈ dom f1 and
s′ = f1(s), ϕ(s) ∈ domϕ(f1) and ϕ(s′) = ϕ(f1)(ϕ(s)). (I.e.,
ϕ is a morphism of transition systems.) Let us recall that (S, s0)
is Post∗-flattable iff there is a flattening S1 of S and a state s1

S1 S2

ϕ

Fig. 2. Flattening
of S1 such that ϕ(s1) = s0 and Post∗S(s0) = ϕ(Post∗S1

(s1)).
A flattening is continuous iff S1 is an complete transition system and ϕ : S1 → S2

is continuous. Correspondingly, we say that (S, s0) is clover-flattable iff there is an
continuous flattening S1, ϕ of S and a state s1 of S1 such that ϕ(s1) = s0 and
CloverS(s0) - ϕ(CloverS1 (s1)).

We obtain the following; the proof is non-trivial, and omitted for lack of space.

Theorem 3. Let S be an ∞-effective complete WSTS. The procedure CloverS termi-
nates on s0 iff (S, s0) is clover-flattable. Then we can even require that the continuous
flattening has the same clover up to ϕ, i.e., CloverS(s0) = Maxϕ(CloverS1(s1)).

6 Application: Well Structured Counter Systems

We now demonstrate how the fairly large class of counter systems fits with our the-
ory. We show that counter systems composed of affine monotone functions with up-
ward closed definition domains are complete (strongly monotonic) WSTS. This result
is obtained by showing that every monotone affine function is continuous and its lub-
acceleration f∞ is computable. Moreover, we prove that it is possible to decide whether
a general counter system (given by a finite set of Presburger relations) is a monotone
affine counter system, but that one cannot decide whether it is a WSTS.

Definition 4. A relational counter system (with n counters), for short an R-counter
system, C is a tuple C = (Q,R,→) where Q is a finite set of control states, R =
{r1, r2, ...rk} is a finite set of Presburger relations ri ⊆ Nn×Nn and→⊆ Q×R×Q.
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We will consider a special case of Presburger relations, those which allow to code the
graph of affine functions. A (partial) function f : Nn −→ Nn is non-negative affine,
for short affine if there exist a matrix A ∈ Nn×n with non-negative coefficients and
a vector b ∈ Zn such that for all x ∈ dom f, f(x) = Ax + b. When necessary,
we will extend affine maps f : Nn −→ Nn by continuity to f : Nnω −→ Nnω, by
f(lubi∈N(xi)) = lubi∈N(f(xi)) for every countable chain (xi)i∈N in Nn.

Definition 5. An affine counter system (with n counters) (ACS) C = (Q,R,→) is a
R-counter system where all relations ri are (partial) affine functions.

The domain of maps f in an affine counter system ACS are Presburger-definable. A
reset/transfer Petri net is an ACS where every line or column of every matrix contains
at most one non-zero coefficient equal to 1, and, all domains are upward closed sets. A
Petri net is an ACS where all affine maps are translations with upward closed domains.

Theorem 4. One can decide whether an effective relational counter system is an ACS.

Proof. The formula expressing that a relation is a function is a Presburger formula,
hence one can decide whether R is the graph of a function. One can also decide whether
the graph Gf of a function f is monotone because monotonicity of a Presburger-
definable function can be expressed as a Presburger formula. Finally, one can also de-
cide whether a Presburger formula represents an affine function f(x) = Ax + b with
A ∈ Nn×n and b ∈ Zn from [10]. ��
For counter systems (which include Minsky machines), monotonicity is undecidable.
Clearly, a counter system S is well-structured iff S is monotone: so there is no algo-
rithm to decide whether a relational counter system is a WSTS. However, an ACS is
strongly monotonic iff each map f is partial monotonic; this is equivalent to requiring
that dom f is upward closed, since all matrices A have non-negative coefficients. This
is easily cast as Presburger formula, and therefore decidable.

Proposition 7. There is an algorithm to decide whether an ACS is a strongly mono-
tonic WSTS.

We have recalled that Petri net functions (f(x) = x + b, b ∈ Zn and dom(f) upward
closed) can be lub-accelerated effectively. This result was generalized to broadcast pro-
tocols (equivalent to transfer Petri nets) by Emerson and Namjoshi [12] and to a class
of affine functions f(x) = Ax + b such that A ∈ Nn×n, b ∈ Nn and dom(f) is up-
ward closed [18]. Antonik recently extended this result to Presburger monotone affine
functions: for every f(x) = Ax + b with A ∈ Nn×n, b ∈ Zn and dom(f) Presburger-
definable, the function f∞ is recursive [7]. We deduce the following strong relationship
between well-structured ACS and complete well-structured ACS.

Theorem 5. The completion of an ACS S is an ∞-effective complete WSTS iff S is a
strongly monotonic WSTS.

Proof. Strong monotonicity reduces to partial monotonicity of each map f , as dis-
cussed above. Well-structured ACS are clearly effective, since Post(s) = {t | ∃f ∈
F · f(t) = s} is Presburger-definable. Note also that monotone affine function are con-
tinuous, and Nnω is cdcwo. Finally, for every Presburger monotone affine function f , the
function f∞ is recursive, so the considered ACS is ∞-effective. ��
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Corollary 1. One may decide whether the completion of an ACS is an ∞-effective
complete WSTS.

So the completions of reset/transfer Petri nets [11], broadcast protocols [13], self-modi-
fying Petri nets [30] and affine well-structured nets [18] are∞-effective complete WSTS.

7 Conclusion and Perspectives

We have provided a framework of complete WSTS, and of completions of WSTS, on
which forward reachability analyses can be conducted, using natural finite representa-
tions for downward closed sets. The central element of this theory is the clover, i.e., the
set of maximal elements of the closure of the cover. We have shown that, for complete
WSTS, the clover is finite and describes the closure of the cover exactly. When the
original WSTS is not complete, we have shown the the general completion of WSTS
defined in [17] is still a WSTS, iff the original WSTS is an ω2-WSTS. This charaterize
a new, robust class of WSTS. We have also defined a simple procedure for computing
the clover for ∞-effective complete WSTS, and we have shown that it terminates iff
the WSTS is clover-flattable, iff it contains a flat subsystem having the same clover. We
have also observed procedure terminates in more cases than the Karp-Miller procedure
when applied to extensions of Petri nets.

In the future, we shall explore efficient strategies for choosing sequences g ∈ F ∗

to lub-accelerate in the CloverS procedure. We will also analyze whether CloverS

terminates in models such as BVASS [31], transfer Data nets [28], reconfigurable nets,
timed Petri nets [4], post-self-modifying Petri nets [30] and strongly monotone affine
well-structured nets [18]), i.e., whether they are clover-flattable.
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Abstract. We study a model of games that combines concurrency, im-
perfect information and stochastic aspects. Those are finite states games
in which, at each round, the two players choose, simultaneously and
independently, an action. Then a successor state is chosen accordingly
to some fixed probability distribution depending on the previous state
and on the pair of actions chosen by the players. Imperfect information
is modeled as follows: both players have an equivalence relation over
states and, instead of observing the exact state, they only know to which
equivalence class it belongs. Therefore, if two partial plays are indistin-
guishable by some player, he should behave the same in both of them.
We consider reachability (does the play eventually visit a final state?)
and Büchi objective (does the play visit infinitely often a final state?).

Our main contribution is to prove that the following problem is com-
plete for 2-ExpTime: decide whether the first player has a strategy that
ensures her to almost-surely win against any possible strategy of her
oponent. We also characterise those strategies needed by the first player
to almost-surely win.

1 Introduction

Perfect information turn based two-player games on a graph [10] are widely
studied in computer science. Indeed, they are a useful tool for both theoretical
(for instance the modern proofs of Rabin’s complementation lemma rely on the
memoryless determinacy of parity games [11]) and more practical applications.
On the practical side, a major application of games is for the verification of
reactive open systems. Those are systems composed of both a program and some
(possibly hostile) environment. The verification problem consists of deciding
whether the program can be restricted so that the system meets some given
specification whatever the environment does. Here, restricting the system means
synthesizing some controller, which, in term of games, is equivalent to designing
a winning strategy for the player modeling the program [14].

The perfect information turn-based model, even if it suffices in many situa-
tions, is somewhat weak for the following two reasons. First, it does not permit
to capture the behavior of real concurrent models where, in each step, the pro-
gram and its environment independently choose moves, whose parallel execution
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determines the next state of the system. Second, in this model both players
have, at each time, a perfect information on the current state of the play: this,
for instance, forbids to model a system where the program and the environment
share some public variables while having also their own private variables [15].

In this paper, we remove those two restrictions by considering concurrent
stochastic games with imperfect information. Those are finite states games in
which, at each round, the two players choose simultaneously and independently
an action. Then a successor state is chosen accordingly to some fixed probability
distribution depending on the previous state and on the pair of actions chosen
by the players. Imperfect information is modeled as follows: both players have
an equivalence relation over states and, instead of observing the exact state,
they only see to which equivalence class it belongs. Therefore, if two partial
plays are indistinguishable by some player, he should behave the same in both
of them. Note that this model naturally captures several model studied in the
literature [1,9,7,8]. The winning conditions we consider here are reachability (is
there a final state eventually visited?), Büchi (is there a final state that is visited
infinitely often?) and their dual versions, safety and co-Büchi.

We study qualitative properties of those games (note that quantitative proper-
ties — e.g. deciding whether the value of the game is above a given threshold —
are already undecidable in much weaker models [13]). More precisely, we inves-
tigate the question of deciding whether some player can almost-surely win, that
is whether he has a strategy that wins with probability 1 against any counter
strategy of the oponent. Our main contributions is to prove that, for both reach-
ability and Büchi objectives, one can decide, in doubly exponential time (which
is proved to be optimal), whether the first player has an almost-surely win-
ning strategy. Moreover, when it is the case, we are also able to construct such
a finite-memory strategy. We also provide intermediate new results concerning
positive winning in safety (and co-Büchi) 1 1

2 -player games (a.k.a partial obser-
vation Markov decision process).

Related work. Concurrent games with perfect information have been deeply
investigated in the last decade [2,1,7]. Games with imperfect information have
been considered for turn-based model [15] as well as for concurrent models with
only one imperfectly informed player [9,8]. To our knowledge, the present paper
provides the first positive results on a model of games that combines concur-
rency, imperfect information (on both sides) and stochastic transition function.
In a recent independent work [4], Bertrand, Genest and Gimbert obtain simi-
lar results than the one presented here for a closely related model. The main
differences with our model are the following: Bertand et al. consider a slightly
weaker model of games in which the players may observe their own actions, and
they allow the players to use richer strategies where the players can randomly
update their memory (note that those strategies when used in our model seem
strictly more powerful than the one we consider [12]). Bertand et al. also discuss
qualitative determinacy results and consider the case where a player is more
informed than the other. We refer the reader to [4] for a detailed exposition.



202 V. Gripon and O. Serre

2 Definitions

A probability distribution over a finite set X is a mapping d : X → [0, 1]
such that

∑
x∈X

d(x) = 1. In the sequel we denote by D(X) the set of probability

distributions over X .
Given some set X and some equivalence relation ∼ over X , [x]∼ stands for

the equivalence class of x for ∼ and X/∼ = {[x]∼ | x ∈ X} denotes the set of
equivalence classes of ∼.

For some finite alphabet A, A∗ (resp. Aω) designates the set of finite (resp.
infinite) words over A.

2.1 Arenas

A concurrent arena with imperfect information is a tuple A = 〈S,ΣE , ΣA,
δ,∼E,∼A〉 where

– S is a finite set of control states;
– ΣE (resp. ΣA) is the (finite) set of actions for Eve (resp. Adam);
– δ : S ×ΣE ×ΣA → D(S) is the transition (total) function;
– ∼E and ∼A are two equivalence relations over states.

A play in a such an arena proceeds as follows. First it starts in some initial state
s. Then Eve picks an action σE ∈ ΣE and, simultaneously and independently,
Adam chooses an action σA ∈ ΣA. Then a successor state is chosen accordingly
to the probability distribution δ(s, σE , σA). Then the process restarts: the players
choose a new pair of actions that induces, together with the current state, a new
state and so on forever. Hence a play is an infinite sequence s0s1s2 · · · in Sω such
that for every i ≥ 0, there exists (σE , σA) ∈ ΣE×ΣA with δ(si, σE , σA)(si+1) >
0. In the sequel we refer to a prefix of a play as a partial play and we denote
by Plays(A) the set of all plays in arena A.

The intuitive meaning of ∼E (resp. ∼A) is that two states s1 and s2 such
that s1 ∼E s2 (resp. s1 ∼A s2) cannot be distinguished by Eve (resp. by Adam).
We easily extend the relation ∼E to partial plays: let λ = s0s1 · · · sn and λ′ =
s′0s
′
1 · · · s′n be two partial plays, then λ ∼E λ′ if and only if si ∼E s′i for all

i = 0, · · · ,n.
Note that perfect information concurrent arenas (in the sense of [2,1]) corre-

spond to the special case where ∼E and ∼A are the equality relation
over S.

2.2 Strategies

In order to choose their moves the players follow strategies, and, for this, they
may use all the information they have about what was played so far. How-
ever, if two partial plays are equivalent for ∼E , then Eve cannot distinguish
them, and should therefore behave the same. This leads to the following
notion.
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An observation-based strategy for Eve is a function ϕE : (S/∼E )∗ →
D(ΣE), i.e., to choose her next action, Eve considers the sequence of observations
she got so far. In particular, a strategy ϕE is such that ϕE(λ) = ϕE(λ′) whenever
λ ∼E λ′. Observation-based strategies for Adam are defined similarly.

Of special interest are those strategies that does not require memory: a mem-
oryless observation-based strategies for Eve is a function from S/∼E →
D(ΣE), that is to say these strategies only depend of the current equivalence
class.

A uniform strategy for some player X is a strategy ϕ such that for all par-
tial play λ, the probability measure ϕ(λ) is uniform, i.e., for all action σX ∈ ΣX ,
either ϕ(λ)(σX ) = 0 or ϕ(λ)(σX ) = 1

|{σX∈ΣX |ϕ(λ)(σX ) =0}| . The set of memory-
less uniform strategies for X is a finite set containing (2|ΣX| − 1)|S| elements.
Equivalently those strategies can be seen as functions to (non-empty) sets of
(authorised) actions.

A finite-memory strategy for Eve with memory M (M being a finite
set) is some triple ϕ = (Move, Up,m0) where m0 ∈ M is the initial mem-
ory, Move : M → D(ΣE) associates a distribution of actions with any ele-
ment in the memory M and Up : M × S/∼E → M is a mapping updating the
memory with respect to some observation. One defines ϕ(s0) = Move(m0) and
ϕ(s0 · · · sn) = Move(Up(· · ·Up(Up(m0, [s1]/∼E ), [s2]/∼E ), · · · , [sn]/∼E) · · · ) for
any n ≥ 1. Hence, a finite-memory strategy is some observation-based strat-
egy that can be implemented by a finite transducer whose set of control states
is M .

Remark 1. Note that in our definition of a strategy (and more generally in the
definition of a play) we implicitly assume that the players only observe the
sequence of states and not the corresponding sequence of actions. While the
fact that Eve does not observe what Adam played is rather fair (otherwise
imperfect information on states would make less sense) one could object that
Eve should observes the actions she played so far. Here, our view of a (ran-
domised) strategy is the following: when Eve respects some strategy, it means
that whenever she has to play, her strategy provides her a distribution that
she sends to some scheduler that, together with the distribution chosen by
Adam, picks the next state. Indeed, it permits for instance to model a sys-
tem in which some agent does not have the resources to implement himself
randomisation.

An alternative option would be to consider that Eve flips a coin to pick her
action and then sends this action to the scheduler that, together with the action
chosen by Adam, picks the next state. In this case, a strategy should depend on
the sequence of states together with the associated sequence of actions played
by Eve. We argue that this second approach can be simulated easily by the first
one, hence justifying our initial choice. Indeed, one can always enrich the set
of states to encode the last pair of actions played and then use the equivalence
relations ∼E / ∼A to hide / show part of this information to the respective
players.
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2.3 Probability Space and Outcomes of Strategies

Let A = 〈S,ΣE , ΣA, δ,∼E,∼A〉 be a concurrent arena with imperfect informa-
tion, let s0 ∈ S be an initial state, ϕE be a strategy for Eve and ϕA be a strategy
for Adam. In the sequel we are interested in defining the probability of a (mea-
surable) set of plays knowing that Eve (resp. Adam) plays accordingly ϕE (resp.
ϕA). This is done in the classical way: first one defines the probability measure
for basic sets of plays (called here cones and corresponding to plays having some
initial common prefix) and then extends it in a unique way to all measurable
sets.

First define Outcomes(s0, ϕE , ϕA) to be the set of all possible plays when
the game starts on s0 and when Eve and Adam plays respectively accord-
ingly to ϕE and ϕA. More formally, an infinite play λ = s0s1 · · · belongs to
Outcomes(s0, ϕE , ϕA) if and only if, for every i ≥ 0, there is a pair of actions
(σE , σA) ∈ ΣE×ΣA with δ(si, σE , σA)(si+1) > 0 and s.t. ϕE(s0s1 · · · si)(σE) > 0
and ϕA(s0s1 · · · si)(σA) > 0 (i.e. σX is possible accordingly to ϕX , for X =
E,A).

Now, for any partial play λ, the cone for λ is the set cone(λ) = λ · Sω of all
infinite plays with prefix λ. Denote by Cones the set of all possible cones and let
F be the Borel σ-field generated by Cones considered as a set of basic open sets
(i.e. F is the smallest set containing Cones and closed under complementation,
countable union and countable intersection). Then (Plays(A),F) is a σ-algebra.

A pair of strategies (ϕE , ϕA) induces a probability space over (Plays(A),F).
Indeed one can define a measure μϕE ,ϕA

s0 : Cones → [0, 1] on cones (this task is
easy as a cone is uniquely defined by a finite partial play) and then uniquely ex-
tend it to a probability measure on F using the Carathéodory Unique Extension
Theorem. For this, one defines μϕE ,ϕA

s0 inductively on cones:

– μϕE ,ϕA
s0 (s) = 1 if s = s0 and μϕE ,ϕA

s0 (s) = 0 otherwise.
– For every partial play λ ending in some vertex s,

μϕE ,ϕA
s0 (λ · s′) = μϕE ,ϕA

s0 (λ).
∑

(σE ,σA)

ϕE(λ)(σE).ϕA(λ)(σA).δ(s, σE , σA)(s′)

Denote by PrϕE ,ϕA
s0 the unique extension of μϕE ,ϕA

s0 to a probability measure
on F . Then (Plays(A),F ,PrϕE ,ϕA

s0 ) is a probability space.

2.4 Objectives, Value of a Game

Fix a concurrent arena with imperfect information A. An objective for Eve is a
measurable setO ⊆ Plays(A): a play is won by her if it belongs toO; otherwise it
is won by Adam. A concurrent game with imperfect information is a triple
(A, s0,O) where A is a concurrent arena with imperfect information, s0 is an
initial state and O is an objective. In the sequel we focus on the following special
classes of objectives (note that all of them are Borel sets hence measurable) that
we define as means of a subset F ⊆ S of final states.
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– A reachability objective is of the form S∗FSω: a play is winning if it
eventually goes through some final state.

– A safety objective is the dual of a reachability objective, i.e. is of the form
(S \ F )ω : a play is winning if it never goes through a final state.

– A Büchi objective is of the form
⋂
k≥0 S

kS∗FSω: a play is winning if it
goes infinitely often through final states.

– A co-Büchi objective is the dual of a Büchi objective, i.e. is of the form
S∗(S \ F )ω : a play is winning if it goes finitely often through final states.

A reachability (resp. safety, Büchi, co-Büchi) game is a game equipped with
a reachability (resp. safety, Büchi, co-Büchi) objective. In the sequel we may
replace O by F when it is clear from the context which winning condition we
consider.

Fix a concurrent game with imperfect information G = (A, s0,O). A strategy
ϕE for Eve is almost-surely winning if, for any counter-strategy ϕA for Adam,
PrϕE ,ϕA
s0 (O) = 1. If such a strategy exists, we say that Eve almost-surely wins

G. A strategy ϕE for Eve is positively winning if, for any counter-strategy ϕA
for Adam, PrϕE,ϕA

s0 (O) > 0. If such a strategy exists, we say that Eve positively
wins G.

3 Knowledge Arena

For the rest of this section we let A be a concurrent arena with imperfect infor-
mation with A = 〈S,ΣE , ΣA, δ,∼E,∼A〉 and let s0 ∈ S be some initial state.

Remark that in our model, the players do not observe the actions they play but
they may know the distribution they have chosen. Therefore, one could consider
a new arena in which the states have a component indicating the domain of the
last distribution chosen by Eve, and that this component is visible only to her
(it is hidden to Adam by the equivalence relantion ∼A).

Even, if she does not see the precise control state, Eve can deduce information
about it from previous information on the control state and from the set of
possible actions she just played. We should refer to this as the knowledge of
Eve, which formally is a set of states. Assume Eve knows that the current state
belongs to some set K ⊆ S. After the next move Eve observes the equivalence
class [s]∼E of the new control state and she also knows the subset D of actions
she may have played (it is the domain of the distribution she chose): hence she
can compute the set of possible states the play can be in. This is done using the
function UpKnow : 2S × [S]/∼E

× 2ΣE → 2ΣS defined by letting

UpKnow(K, [s]∼E , D) =
{t ∼E s | ∃r ∈ K, σ′E ∈ D, σA ∈ ΣA s.t. δ(r, σ′E , σA)(t) > 0},

i.e. in order to update her current knowledge, observing in which equivalence
class is the new control state, and knowing that she played an action in D ⊆ ΣE ,
Eve computes the set of all states in this class that may be reached from a state
in her former knowledge.
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Based on our initial remark and on the notion of knowledge we define the
knowldege arena associated with A, denoted AK . The arenaAK is designed
to make explicit the information Eve can collect on her moves (i.e. the domain of
the distributions she plays) and on the possible current state. We define AK =
〈SK , Σ′E , ΣA, δK ,∼KE ,∼KA 〉 as follows:

– SK = {(s,K,D) ∈ S × 2S × 2ΣE | K ⊆ [s]/∼E}: the first component is the
real state, the second one is the current knowledge of Eve and the third one
is the domain of the last distribution she played;

– Σ′E = ΣE × (2ΣE \ ∅): actions of Eve will now contain information on the
domain of actions of the distributions she picks;

– δK((s,K,D), (σE , D′), σA)(s′,K ′, D′′) = 0 if D′ �= D′′ or K ′ �= UpKnow(K,
[s′]∼E , D

′); and δK((s,K,D), (σE , D′), σA)(s′,K ′, D′) = δ(s, σE , σA)(s′)
otherwise: δK behaves as δ on the first components and deterministically
updates both the knowledge and the information on the domain;

– (s,K,D) ∼KE (s′,K ′, D′) if and only if K = K ′ (implying s ∼E s′) and
D = D′: Eve observes her knowledge and the domain of her last distribution;

– (s,K,D) ∼KA (s′,K ′, D′) if and only if s ∼A s′.

The intuitive meaning of the enriched alphabet Σ′E of Eve is that instead of
choosing a distribution d : ΣE → [0, 1] Eve makes the domain Dom = {s ∈ S |
d(s) > 0} of d explicit by choosing the distribution dK where dK(s,D) = d(s)
if D = Dom and dK(s,D) = 0 otherwise. We call such a distribution dK well-
formed (i.e. dK is obtained from some distribution d as just explained) and, in
the sequel, whenever referring to strategies of Eve in AK , we will mean functions
from sequences of observations into well-formed distributions.

Consider an observation-based strategy ϕ for Eve in the arena A. Then it can
be converted into an observation-based strategy on the associated knowledge
arena. For this, remark that in the knowledge arena, those states reachable from
the initial state (s0, {s0}, ∅) are of the form (s,K,D) with all states in K being
equivalent with s with respect to ∼E. Then one can define ϕK((s0,K0, D0)(s1,
K1, D1) · · · (sn,Kn, Dn)) as dK where d = ϕ([s0]∼E [s1]∼E · · · [sn]∼E ) is the cor-
responding distribution given by ϕ. Note that ϕK is observation-based as, for
all 0 ≤ h ≤ n, [sh]∼E is uniquely defined from the Kh, that are observed by Eve
in the knowledge arena.

Conversely, any observation-based strategy in the knowledge arena can be con-
verted into an observation-based strategy in the original arena. Indeed, consider
some observation-based strategy ϕK in the knowledge arena: it is a mapping
from (2S × 2Σ)∗ into D(Σ′E) (the equivalent classes of the relation ∼KE are, by
definition, isomorphic with 2S × 2Σ). Now, note that Eve can, while playing in
A, remember the domain of the distributions she played and compute on the fly
her current knowledge (applying function UpKnow to her previous knowledge
and to the domain of the last distribution played): hence along a play s0s1 · · · sn
she can compute the corresponding sequence (K0, D0)(K1, D1) · · · (Kn, Dn) of
knowledge / domain. Now it suffices to consider the observation-based strategy
ϕ for Eve in the initial arena defined by:

ϕ(s0s1 · · · sn) = ϕK((K0, D0)(K1, D1) · · · (Kn, Dn))
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Note that this last transformation (taking a strategy ϕK and producing a
strategy ϕ) is the inverse of the first transformation (taking a strategy ϕ and
producing a strategy ϕK). In particular, it proves that the observation-based
strategies in both arena are in bijection. It should be clear that those strategies
for Adam in both games are the same (as what he observes is identical).

Assume that A is equipped with a set F of final states. Then one defines the
final states in AK by letting FK = {(f,K,D) | f ∈ F} ∩ SK : this allows to
define an objective OK in AK from an objective O in A. Based on the previous
observations, we derive the following.

Proposition 1. Let G = (A, s0,O) be some imperfect information game equip-
ped with a reachability ( resp. saftey, Büchi, co-Büchi) objective. Let GK =
(AK , (s0, {s0}, ∅),OK) be the associated game played on the knowledge arena.
Then for any strategies ϕE , ϕA for Eve and Adam, the following holds:
PrϕE ,ϕA
s0 (O) = Prϕ

K
E ,ϕA

(s0,{s0},∅)(O
K). In particular, Eve has an almost-surely winning

observation-based strategy in G if and only if she has one in GK.

In the setting of the previous proposition, consider the special case where Eve
has an almost-surely winning observation-based strategy ϕK in GK that only
depends on the current knowledge (in particular, it is memoryless). Then the
corresponding almost-surely winning observation-based strategy ϕ in G is, in
general, not memoryless, but can be implemented by a finite transducer whose
set of control states is precisely the set of possible knowledges for Eve. More
precisely the strategy consists in computing and updating on the fly (using a
finite automaton) the value of the knowledge after the current partial play and
to pick the next action by solely considering the knowledge. We may refer at
such a strategy ϕ as a knowledge-only strategy.

4 Decidability Results

4.1 Reachability Objectives

The main result of this section is the following.

Theorem 1. For any reachability concurrent game with imperfect information,
one can decide, in doubly exponential time, whether Eve has an almost-surely
winning strategy. If Eve has such a strategy then she has a knowledge-only uni-
form strategy, and such a strategy can be effectively constructed.

Before proving Theorem 1 we first establish an intermediate result. A concurrent
game (with imperfect information) in which one player has only a single available
action is what we refer as a 1 1

2 -player game with imperfect information
(those games are also known in the literature as partially observable Markov
Decision Processes). The following result is a key ingredient for the proofs of
Proposition 2 and Theorem 1.
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Lemma 1. Consider an 1 1
2 -player safety game with imperfect information. As-

sume that the player has an observation-based strategy that is positively winning.
Then she also has an observation-based finite memory strategy that is positively
winning. Moreover, both the strategy and the set of positively winning states can
be computed in time O(2|S|).

Proof (Sketch). Consider the knowledge arena and call a knowledge K surely
winning if the player has a knowledge based strategy that is surely winning
from any (s,K,D) with s ∈ K and D ⊆ ΣE . We prove, that if the player has
a positively winning strategy, then the set of winning knowledges is non empty
and that it comes with a memoryless surely winning strategy (that consists
in staying in the surely winning component). This set also contains at least a
singleton {s} (meaning that if the player knows that she is in s then she can
surely win): call such states s surely winning. Then, one proves that positively
winning states are exactly those that are connected (in the graph sense) to some
surely winning state by a path made of non-final states. Hence a positively
winning strategy consists in playing some initial actions randomly (trying to
reach a surely winning state) and then in mimicking a knowledge-only surely
winning strategy. Complexity comes with a fixpoint definition of the previous
objects. ��

Fix, for the rest of this section, a concurrent game with imperfect information
G = (A, s0,O) equipped with a reachability objective O defined from a set
F of final states. We set A = 〈S,ΣE , ΣA, δ,∼E,∼A〉. We also consider GK =
(AK , (s0, {s0}, ∅),OK) to be the corresponding knowledge game.

To prove Theorem 1, one first defines (in a non constructive way) a know-
ledge-only uniform strategy ϕ for Eve as follows. We let

KAS = {K ∈ 2S | ∃ϕE knowledge-based strategy for Eve s.t. ϕE is almost-

surely winning for Eve in GK from any (s,K,D) with s ∈ K andD ⊆ ΣE}

be the set of knowledges made only by almost-surely winning states for Eve (note
here that we require that the almost-surely winning strategy is the same for all
configurations with the same knowledge).

One can prove that, from a configuration with knowledge K ∈ KAS, Eve
always has at least one action which ensures that she remains in KAS, and we
define ϕ as the knowledge-only uniform strategy that chooses at random one of
these safe actions. The next proposition shows that ϕ is almost-surely winning
for Eve.

Proposition 2. The strategy ϕ is almost-surely winning for Eve from states
whose Eve’s knowledge is in KAS.

Proof (sketch). To prove that ϕ is almost-surely winning, one needs to prove
that it is almost surely-winning against any strategy of Adam. However, once
ϕ is fixed (and as it is a knowledge-only strategy), one gets 1 1

2 -player game in
which only Adam is making choices. Proving that ϕ is almost surely winning is
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therefore equivalent to proving that Adam cannot positively wins in this new
game (for a safety objective). For this we use Lemma 1 to argue that it suffices
to prove that ϕ is winning against any finite-memory strategy of Adam. This
fact permits us to conclude. ��
Now one can prove Theorem 1. First Eve almost-surely wins in G if and only if
she almost-surely wins in GK if and only if {s0} ∈ KAS, i.e. (using Proposition
2) if and only if Eve has a knowledge-only uniform strategy in GK . Now, to
decide whether Eve almost-surely wins G, it suffices to check, for any possible
knowledge-only uniform strategy ϕ for her, whether it is almost-surely winning.
Once ϕ is fixed, it leads, from Adam’s point of view, to a 1 1

2 -player safety game
Gϕ where the player positively wins if and only if ϕ is not almost-surely winning.
Hence Lemma 1 implies that deciding whether ϕ is almost-surely winning can
be done in time exponential in the size of Gϕ, which itself is of exponential
size in |S|. Hence deciding whether a knowledge-only uniform strategy for Eve
is winning can be done in doubly exponential time (in the size of |S|). The
set of knowledge-only uniform strategies for Eve is finite and its size is doubly
exponential in the size of the game. Hence the overall procedure, that tests
every possible such strategies, requires doubly exponential time. As effectivity is
immediate, this concludes the proof of Theorem 1.

The naive underlying algorithm of Theorem 1 turns out to be optimal.

Theorem 2. Deciding whether Eve almost-surely wins a concurrent game with
imperfect information is a 2-ExpTime-complete problem.

Proof (sketch). The proof is a generalisation of a similar result given in [8] show-
ing ExpTime-hardness of concurrent games only one player is imperfectly in-
formed. The idea is to simulate an alternating exponential space Turing machine
(without input). We design a game where the players describe the run of such a
machine: transitions from existential (resp. universal) states are chosen by Eve
(resp. Adam) and Adam is also in charge of describing the successive configu-
rations of the machine. To prevent him from cheating, Eve can secretly mark a
cell of the tape, and latter check whether it was correctly updated (if not she
wins). As she cannot store the exact index of the cell (it is of exponential size),
she could cheat in the previous phase: hence Adam secretly marks some bit and
one recall the value of the corresponding bit of the index of the marked cell: this
bit is checked when Eve claims that Adam cheated (if it is wrong then she is
loosing). Eve also wins if the described run is accepting. Eve can also restart
the computation whenever she wants (this is useful when she cannot prove that
Adam cheated): hence if the machine accepts the only option for Adam is to
cheat, and Eve will eventually catch him with probability one. Now if the ma-
chine does not accept, the only option for Eve is to cheat, but it will be detected
with positive probability. ��

4.2 Büchi Objectives

We now consider the problem of deciding whether Eve almost-surely wins a
Büchi game. The results and techniques are similar to the one for reachability
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games. In particular, we need to establish the following intermediate result (the
proof is very similar to the one of Lemma 1 except that now the winning states
are those connected by any kind of path to a surely winning state).

Lemma 2. Consider an 1 1
2 -player co-Büchi game with imperfect information.

Assume that the player has an observation-based strategy that is positively win-
ning. Then she also has an observation-based finite memory strategy that is pos-
itively winning. Moreover, both the strategy and the set of positively winning
states can be computed in time O(2|S|).

From Lemma 2 and extra intermediate results we derive our main result. Again,
the key idea is to prove that the strategy that plays randomly inside the almost-
surely winning region is an almost-surely winning strategy.

Theorem 3. For any Büchi concurrent game with imperfect information, one
can decide, in doubly exponential time, whether Eve has an almost-surely win-
ning strategy. If Eve has such a strategy then she has a knowledge-based uniform
memoryless strategy, and such a strategy can be effectively constructed. The dou-
bly exponential time complexity bound is optimal.

5 Discussion

The main contribution of this paper is to prove that one can decide whether
Eve has an almost-surely winning strategy in a concurrent game with imperfect
information equipped with a reachability objective or a Büchi objective.

A natural question is whether this result holds for other objectives, in par-
ticular for co-Büchi objectives. In a recent work [3], Baier et al. established
undecidability of the emptiness problem for probabilistic Büchi automata on
infinite words. Such an automaton can be simulated by a 1 1

2 -player imperfect
information game: the states of the game are the one of the automaton, they are
all equivalent for the player, and therefore an observation based strategy is an
infinite word. Hence a pure (i.e. non-randomised) strategy in such a game coin-
cide with an input word for the automaton. From this fact, Baier et al. derived
that it is undecidable whether, in a 1 1

2 -player co-Büchi game with imperfect
information, Eve has an almost-surely winning pure strategy.

One can also consider the stochastic-free version of this problem (an arena is
deterministic iff δ(q, σE , σA)(q′) ∈ {0, 1} for all q, q′, σE , σA) and investigate
whether one can decide if Eve has an almost-surely winning strategy in a deter-
ministic game equipped with a co-Büchi objective. We believe that the 1 1

2 -player
setting can be reduced to this new one, hence allowing to transfer undecidability
results [12]. An even weaker model to consider is the stochastic-free model in
which Adam has perfect information about the play [8].

It may happen that Eve has no almost-surely winning strategy while having
a family (ϕε)0<ε<1 of strategies such that ϕε ensures to win with probability at
least 1− ε. Such a family is called limit-surely winning. Deciding existence of
such families is a very challenging problem: indeed, in many practical situations,
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it is satisfying enough if one can control the risk of failing. Even if those questions
have been solved for perfect information games [1], as far as we know, there has
not been yet any result obtained in the imperfect information setting.

Even if the algorithms provided in this paper are ”optimal”, they are rather
naive (checking all strategies for Eve may cost a lot in practice). Hence, one
should look for fixpoint-based algorithms as the one studied in [8]: it would be
of great help for a symbolic implementation, and it could also be a useful step
toward a solution of the problem of finding limit-surely winning strategies. Note
that there are already efficient techniques and tools for finding sure winning
strategies in subclasses of concurrent games with imperfect information [6,5].

Acknowledgements. The authors want to thank the anonymous reviewers as
well as Florian Horn for their useful comments on preliminary versions of this
work.
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Diagrammatic Confluence and Completion
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Abstract. We give a new elegant proof that decreasing diagrams imply conflu-
ence based on a proof reduction technique, which is then the basis of a novel
completion method which proof-reduction relation transforms arbitrary proofs
into rewrite proofs even in presence of non-terminating reductions. Unlike pre-
vious methods, no ordering of the set of terms is required, but can be used if
available. Unlike ordered completion, rewrite proofs are closed under instantia-
tion. Examples are presented, including Kleene’s and Huet’s classical examples
showing that non-terminating local-confluent relations may not be confluent.

Keywords: rewriting, confluence, completion, decreasing diagrams.

1 Introduction

Confluence of a binary relation on a set is defined as the existence of two derivations
reaching the same element for any two derivations issuing from a same element. In
case the relation describes some non-deterministic intentional computation, confluence
expresses that the associated extensional relation is functional.

There are two radically different methods for showing confluence of a binary rela-
tion: based on Newman’s lemma, the first applies to terminating relations [10]; based
on Hindley-Rosen’s lemma, the second applies to non-terminating relations [11]. Both
aim at restricting the confluence check to the so-called local peaks.

In a series of paper starting with his PhD thesis and ending with [13], Van Oostrom
succeeded to capture both methods within a single complete method, thanks to the no-
tion of decreasing diagram of a labelled relation. The goal of this paper is to investigate
a completion procedure for non-terminating relations based on decreasing diagrams.

Our contributions are three: we first reformulate the diagrammatic confluence re-
sult as an abstract Church-Rosser property under the existence of decreasing diagrams
for all peaks, for which we give an elegant proof in Section 3 which prepares the in-
vestigation of abstract diagrammatic completion in Section 4, our second contribution.
Our method is illustrated with Kleene’s and Huet’s famous examples showing that the
termination assumption in Newman’s lemma is necessary for obtaining confluence. In
section 5, our third contribution is a critical diagram lemma generalizing both Huet’s
lemma and Tait’s approach. By incorporating it to diagrammatic completion, we obtain
a completion method for non-terminating rewrite relations on terms which transforms
an arbitrary equational proof into a rewrite proof which instances are themselves rewrite
proofs, unlike what happens with ordered completion [5,2].
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2 Preliminaries

We assume a set of objectsO and a set of labelsL equipped with a partial quasi-ordering
� which strict part � is well-founded, and add for convenience a label 0 incompara-
ble to other labels. We use the letters l,m,n for labels, and α, β, γ for words over L.
We write M � l (resp., l � M ) for m � l (resp., l � m) for all m in the multiset of
labels M .

We consider (rewrite) relations generated by labelled rewrite steps of the form
s−→l t for s, t ∈ O and l ∈ L, and may omit l, s or t. Given an arbitrary labelled
rewrite step −→l, we denote its inverse by l←−, its reflexive closure by =−→l, its sym-

metric closure by
l←→ , its reflexive transitive closure by −→→α for some word-label α,

and its reflexive, symmetric transitive closure, called conversion, by
α←←→→. A conver-

sion
β←←→→ is called a subproof of the conversion

αβγ←←→→ = α←←→→ β←←→→ γ←←→→.
We use L(P ) for the multiset of labels occuring in a conversion P .

The triple v, u, w is said to be a local peak if v l←− u−→m w, a peak if v α←←−u
−→→β w, and a rewrite proof if v−→→α t β←←−w. The pair v, w (resp., the peak v, u, w)
is convertible if v

α←←→→w and joinable if v−→→α t β←←−w for some t. The relation−→
is said to be locally confluent if every local peak is joinable, confluent if every peak is
joinable, and Church-Rosser if every convertible pair is joinable.

We refer to [3] and [4] for missing notations and definitions.

3 Abstract Diagrammatic Church-Rosser Properties

Given an arbitrary rewrite relation onO, we first consider specific conversions called lo-
cal diagrams and define the important subclass of decreasing (local) diagrams [12,13].

Definition 1 (Local diagrams). A local diagram D is a pair made of a local peak
Dpeak = v←− u−→ w and a conversion Dconv = v←←→→w. We call diagram rewrit-
ing the rewrite relation =⇒D on conversions generated by a setD of local diagrams, in
which a local peak in a conversion PDpeakQ is replaced by its associated conversion
to yield PDconvQ.

Definition 2 (Decreasing diagrams [13]). A local diagram with local peak v l←−u

−→m w is decreasing whenever its conversion is of the form v
α←←→→ s

m=−→ s′
γ←←→→ t′

l←−= t
β←←→→w, with labels in α (resp. β) strictly smaller than m (resp. l), and labels in

γ strictly smaller than l or m.

Our first important result is that diagram rewriting is terminating.

Theorem 1. =⇒D terminates for any set of local decreasing diagrams.

The difficulty here is to define a measure on conversions that decreases when replacing
a local peak by one of its associated conversions.

Definition 3 (Filtered conversions). We define the filtered proof of a conversion P as
the sequence of elementary steps:
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[[ l←→P ]] = [[P ]] if [[P ]] = Q
r←−R with l � r

[[ l←−P ]] = l←−[[P ]] if [[P ]] �= Q
r←−R with l � r

[[ l−→P ]] = l−→ ([[P ]] \ l) if [[P ]] �= Q
r←−R with l � r

with : nil \ l = nil; ( m←→P ) \ l = (P \ l) if l � m, else
m←→(P \m)

An elementary step in P is visible if it belongs to [[P ]], otherwise hidden.

Filtered proofs generalize the lexicographic maximal measure [12].

Definition 4. A local peak v←− u−→ w is visible, semi-visible or hidden in a con-
version P if its elementary steps v←−u and u−→ w are both visible, one visible and
one hidden, or both hidden.

Definition 5. The visible surface Vs(P ) of a conversion P is the multiset containing
for each visible step −→l (resp. ←− ) of P , the multiset Ml of labels labelling the
visible steps to its left (resp. right).

Definition 6. A semi-visible derivation of length k in a conversion P is a subproof of

the form v0
M0←→u1−→ v1

M1←→u2 . . .
Mk−1←→ uk−→ vk

Mk←→uk+1, or of the form

uk+1
Mk←→ vk←− uk

Mk−1←→ . . . u2
M1←→ v1←−u1

M0←→ v0, which steps ui←→ vi are vis-

ible and steps vi
Mi←→ui+1 are hidden. The head and tail of a maximal semi-visible

derivation P are the subproofs v0
M0←→u1 and vk

Mk←→uk+1. The hidden subproof of

the derivation is the k-tuple ( M0←→ , . . . ,
Mk−1←→ ). The hidden proof Hp(P ) of P is the

multiset of its hidden subproofs. The hidden tail Ht(P ) of P is the multiset of its tails.

We are now ready for the complexity measure of a conversion:

Definition 7. We define the complexity C(P ) of a conversion P to be the quadruple
(L([[P ]]),Vs(P ), C(Hp(P )), C(Ht(P ))), the complexity of conversions being naturally
extended to multisets, and to tuples and multisets thereof. Complexities are compared
in the conversion ordering:
..= (�mul, (�mul)mul, ((..)lex)mul, (..)mul)lex.

A simple induction shows that the conversion ordering is well-founded for any set D
of local decreasing diagrams. An induction on the length of conversions shows that
diagram rewriting decreases their complexity.

3.1 The Church-Rosser Property

Because conversions in normal form cannot have a peak, the existence of local de-
creasing diagrams for all local peaks implies the Church-Rosser property, which itself
implies van Oostrom’s theorem that the labelled relation is confluent under this assump-
tion. While the result itself is not new, since confluence and Church-Rosser are equiv-
alent in this abstract setting, this new elegant proof based on a conversion reduction
technique is a key stepping stone to the coming completion procedure.

Theorem 2. A labelled relation which all local peaks have a decreasing diagram is
Church-Rosser.
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Termination of the conversion rewriting relation is actually too strong, weak termina-
tion would suffice by ensuring that a conversion in normal form is obtained provided a
strategy is used that leads to a normal form.

The Church-Rosser property is therefore decidable when there are finitely many local
peaks and a finite search space of decreasing diagrams for each of them.

4 Abstract Diagrammatic Completion

Diagrammatic completion is a novel completion procedure which transforms a labelled
relation −→ on O into a new one which all local diagrams are decreasing, defining the
same convertibility relation.

4.1 Completion Inference Rules

The inference rules for diagrammatic completion given at Figure 1 operate on pairs
(R,E) of labelled rewrites and equalities. The main operation of diagrammatic com-
pletion is to associate to each local peak u l←− s−→m v between rules in R the labelled
equality (u, {l},m) = (v, {m}, l), describing which rewrites are allowed on u and v
so as to maintain decreasingness when orientations or reductions take place. We call
labelled object a triple (u,M,n), where u is an object, M is a multiset of labels, and n
is a label, and labelled equality a (symmetric) pair (u,M,n) = (u′,M ′,n′) of labelled

Generate:

(E; R)
(E ∪ {(v, {m}, n) = (w, {n}, m)}; R)

if v
m←−u

n−→w

Delete:

(E;R ∪ {s k−→ s}) or
(E ∪ {(s, M, n) = (s,M ′, n′)}; R)

(E;R)

Decrease:

(E ∪ (u, L, l) = (v, M, m); R)
(E ∪ (u′, L′, l′) = (v, M, m);R)

if

⎧⎪⎨⎪⎩
(u, L, l) k�L=⇒(u′, L′, l′) and

u′ = v or m = 0 or l′ = 0 or
∃k � L′ � M

Label:

(E ∪ {(u, L, l) = (v,M, m)}; R)

(E;R ∪ {u k−→ v})

if

{
l = 0 and l � k or
l = m = 0 and L � k

Simplify Left:

(E; R ∪ {u k−→ v})

(E;R ∪ {u′ k′�k−→ v})
if u

l−→u′ and k � l

Simplify Right:

(E;R ∪ {u k−→ v})

(E; R ∪ {u k′�k−→ v′})
if v

l−→ v′ and {q | w q−→ v} � l

Fig. 1. Diagrammatic completion
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objects. Rewriting a labelled object (u,M,n) may use a step which label is strictly
smaller than M without restriction, as well as at most one rewrite step labelled with
n (using the label 0 in the definition of =⇒ for that purpose), before being possibly
further reduced by rewrite steps strictly smaller than M or n:

(u,M,n) =⇒k (v,M,n) if u
k←→ v with M � k

(u,M,n) =⇒n (v,M ∪ {n}, 0) if u=−→n v

Unlike Knuth-Bendix completion, diagrammatic completion cannot fail, since equa-
tions which cannot be deleted can permanently be oriented by Label: the property is
true of generated equations, and is carefully maintained by Decrease. Note also that the
label 0 is never used, since incomparable to other labels. Further, the fact that a rule
labelled k can be simplified by another rule of a lesser label l implies that Simplify
cannot be blocked by the lack of a label strictly smaller than k. On the other hand, large
labels may prevent potential simplifications.

It is easy to see that diagrammatic completion truly extends KB completion, by la-
belling each rewrite step s−→ t with the term s it originates from, comparing labels
in the order used in KB-completion: rewrite proofs become then particular decreasing
diagrams, hence diagrammatic completion terminates whenever KB-completion does.

We illustrate diagrammatic completion first with Kleene’s example showing that
local-confluence does not imply confluence when termination is not satisfied and then
with Huet’s version of Kleene’s counter-example[6], in which there is no cycle, but an
infinite derivation.

Example 1 (Kleene). Let F = {a, b, c, d} and R= {a 1−→ c, a
2−→ b, b

3−→a, b
4−→ d},

using natural numbers for labels and the ordering on natural numbers as the ordering
on labels (any labelling would do).

R E Inference Details
a→1 c, a→1 b,
b→1 a, b→3 d Generate 3rd & 4th
a→1 c, a→1 b,
b→1 a, b→3 d (a, {1}, 3) = (d, {3}, 1) Decrease by none
a→1 c, a→1 b,
b→1 a, b→3 d (a, {1, 3}, 0) = (d, {3}, 1) Decrease by 1st
a→1 c, a→1 b,
b→1 a, b→3 d (c, {1, 3}, 0) = (d, {3}, 1) Label
a→1 c, a→1 b
b→1 a, b→3 d Simplify Left by 3rd
c→2 d
a→1 c, a→1 b
b→1 a, a→2 d Simplify Left
c→2 d
a→1 c, a→1 b
b→1 a, b→1 d
c→2 d Done
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Note the use of Decrease to move the label 3 inside the multiset {1} at the second step
without doing any reduction, therefore allowing us to reduce a by the first rule at a
subsequent step.

Unlike KB-completion, simplification is not enough for completing a set of non-
terminating ground rules into a confluent one. Generation steps are necessary that would
be considered as simplification steps in KB-completion. This is so because reductions
are controlled by the labelling, not by an ordering on terms. For the very same reason,
the set of rules obtained is not fully reduced, as it is the case for KB-completion. Ob-
taining an inter-irreducible set of rules can of course only be achieved if the labelling
schema ensures termination of the rewrite relation itself.

Example 2 (Huet). F = {ai, bi}i≥0 ∪ {c, d},

R = {ai 2i+1−→ c, bi
2i−→ d, bi

2i+3−→ ai+1, ai
2i+2−→ bi} which is locally confluent, but not

confluent. Diagrammatic completion generates the two infinite families of rules:

{c 2i+2−→ bi, d
2i+1−→ ai} making it confluent.

4.2 Completion Sequences

We proceed as usual by associating rewrite rules on conversions to the inference rules
and proving that peaks are eventually eliminated by the conversion rewrite rules under
a fairness assumption [7,1].

Definition 8. A (diagrammatic) completion procedure takes as input a set of rewrites
R0 and an empty set of equalities E0, and computes a diagrammatic completion se-
quence {(Ri, Ei)}i made of a set of rewrites Ri and a set of equalities Ei such that
(Ei;Ri) /DC (Ei+1;Ri+1).

Given a completion sequence (∅;R0) . . . /∗DC (En, Rn) /∗DC . . ., we define its limit
(E∗;R∗) and inductive limit (E∞;R∞) as follows:
E∗ =

⋃
i Ei R∗ =

⋃
iRi E∞ =

⋃
i

⋂
j≥i Ei R∞ =

⋃
i

⋂
j≥iRi

Rewrites in R∞ and equalities in E∞ are called persisting.

4.3 Completion Rewrite Rules

During a completion sequence, the sets of rewrites and equalities at step i keep evolving

until they possibly stabilize. Given two convertible objects s, t, the conversion s
Ri∪Ei←←→→ t

is therefore in a constant state of flux, which we describe by rewrite rules on conversions
built from rewrites in R∗ and equalities in E∗, expressing the action of the inference
rules at that level.

Conversions are now sequences of elementary steps of two kinds: s
(M,n),(m,N)←→ t,

for which M,n,m,N describe the simplifications allowed on the equality (s,M,n) =
(t,N,m), and s

k−→ t or s
k←− t, for which k is, as before, the label of the rewrite

step. We shall abuse notation by writing u←→ v←→ w for the concatenation u←→ v
v←→ w. nil(s) will denote the conversion of length zero between s and itself, an
identity for concatenation which will be eliminated whenever possible.

Rewrite rules on conversions are given at Figure 2; as usual, they imply the soundness
of the (diagrammatic) completion inference rules.
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Generation v
m←− u

n−→ w ⇒ v
({m},n),(m,{n})←→ w

DeletionE v
(M,n),(n′,M′)←→ v ⇒ nil(v)

DeletionR v
l−→ v ⇒ nil(v)

Decreasingness u
(M,n),(n′,M′)←→ v ⇒ u

(M�{n},0),(n′,M′)←→ v

Decreasingness u
(M,n),(n′,M′)←→ v ⇒ u

k�M←→ u′ (M,n),(n′,M′)←→ v

Labelling u
(M,n),(n′,M′)←→ v ⇒ u

k−→ v
if n � k

Simplification Left u
k−→ v ⇒ u

l−→u′ k′
−→ v

if k � l and k � k′

Simplification Right u
k−→ v ⇒ u

k′
−→ v′ r←− v

if k � r and k � k′

Fig. 2. Diagrammatic completion rules on proofs

4.4 Completeness of Fair Completion Sequences

In Knuth-Bendix completion, the proof rewrite rules terminate, and end up in a proof
without peak under a fairness assumption. In diagrammatic completion, the proof
rewrite rules do not terminate because Decrease may not terminate. Restricting sim-
plification to rewriting would not solve the problem when rewriting is non-terminating.
However, the fairness assumption ensures that every local peak is eventually converted
into a decreasing diagram, hence fair sequences will terminate and end up in a proof
without peak, providing us with the argument for showing completeness of diagram-
matic completion. As for KB-completion, fairness is of course undecidable. Our notion
of fairness is not the most general possible, but simple enough to ease the proofs. We
shall later describe a fair, refined diagrammatic completion schema.

Definition 9 (Fairness). A reduction sequence is fair if for every persisting local peak,
there is a step j, such that the local peak is completed into a decreasing diagram at
step j.

Theorem 3. Fair reduction sequences are complete: any proof s
R0←←→→ t is eventually

rewritten into a persistent rewrite proof s
R∞
−→→u

R∞
←←− t.

4.5 Refined Fair Search

Given a local peak v
l0←−u

m0−→w, the non-deterministic search for a decreasing dia-
grams can by reduced by looking for strictly decreasing rewrite diagrams:

v = v0
l1−→ v1 . . . vn−1

ln−→ vn
m0=l

′
0=−→ v′0 . . . v

′
n′−1

l′
n′−→ v′n′

=

w = w0
m1−→w1 . . . wp−1

mp−→wp
r=m′

0=−→ w′0 . . . w
′
p′−1

m′
p′

−→w′p′
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with:

{
∀i ∈ [0,n− 1], li � li+1; ∀i ∈ [0,n′ − 1], l′i � l′i+1;
∀i ∈ [0, p− 1], mi � mi+1; ∀i ∈ [0, p′ − 1], m′i � m′i+1.

This can be achieved by a simple modification of the definition of =⇒:

(u, {i},n) =⇒k (v, {k},n) if u−→k v with i � k
(u, {i},n) =⇒k (v, {n}, 0) if u=−→n v

The search uses the well-founded ordering on labels to force termination of a partic-
ular search, fairness is therefore partially built-in. Our new fairness assumption is the
following:

Definition 10. A completion sequence searching for strictly decreasing rewrite dia-
grams is strongly fair if Generate eventually applies to every persisting local peak.

Strongly fair completion sequences searching for strictly decreasing rewrite diagrams
are fair, hence complete, because Simplify and Decrease terminate. The search can be
constrained even further by looking for rewrite proofs, as in Knuth-Bendix completion,
which appears as a particular instance of diagrammatic completion.

5 Labelled Rewriting on Terms

Abstract rewriting on a set of objectsO uses labels in an abstract set L. When rewriting
terms on a signatureF , the Generate inference rule should restrict to the so-called crit-
ical peaks obtained by unifiying lefthand sides of rules. Non-critical diagrams should
then be obtained from critical ones by instantiation and context application: these oper-
ations defined on terms must be lifted to labels which set must be an F -algebra.

5.1 Algebras of Terms and Labels

We denote by T (F ,X ) the free algebra of terms generated from F and a denumerable
set X of variables. We use Var(t) for the set of variables of the term t, Pos(t) for the
set of positions in t, and FPos(t) for its set of non-variable positions. The subterm of
t at position p is denoted by t|p, and we write t[u]p for the result of replacing t|p at
position p in t by u.

Definition 11. We assume given a homomorphism [| |] from the initial algebra T (F)
into an F -algebra L which elements in the �-well-founded carrier L are called labels.
Given term v and context u[ ]p, we denote by u[l]p the (unique) label [|u[v]p|] for some
v such that l = [|v|]. A labelling of a given rewrite relation −→ on ground terms is a
mapping φ from −→ to L such that φ(u[s]−→ u[t]) has label u[l] if φ(s−→ t) has
label l.

The homomorphism [| |] is extended to terms with variables, in such a way that it
respects substitutions: variables in X are added to the carrier L which is then closed
by the operations in the algebra that interpret the function symbols in F , making it a
F ∪X-algebra, and the homomorphism itself is then defined as a function from Ln to
L which acts as the identity on variables. It is then folklore that [|uσ |] is obtained by
evaluating the application of [|u|] to [|σ|].
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5.2 Labelled Rewrite Systems

Definition 12. Given a set of labelled rewrite rules R = {li
mi−→ ri}i∈I , where li, ri,mi

are respectively the lefthand side, the righthand side and the label of the ith rule in R,
the term u rewrites to the term v with labelm if u|p = liσ for some position p ∈ Pos(u)
and index i ∈ I , v = u[riσ] and m = u[miσ], which we write u

p,m−→ v. We may
sometimes omit p,m.

Definition 13. A labelled rewrite system R is

1. self-labelling [13] if s−→l t−→m u implies l � m;
2. rule-labelling if labels are natural numbers.

Both labellings can be equipped with a structure of F -algebra. A rewrite relation can
be made into a self-labelling relation iff it is terminating, showing that the canonical
self-labelling of a step u−→ v is by the rewritten term u. Rule-labelling targets non-
terminating rewrite relations generated by ordered sets of rewrite rules. Be aware that
different rules may have the same number as label.

5.3 Critical Diagrams

Our goal now is to restrict the set of local peaks to be checked in order to ensure conflu-
ence to those which are minimal with respect to instantiation and context application.
The principles of such an analysis are well-known: there are three kinds of peaks to be
distinguished, disjoint peaks when two rules apply at disjoint positions, ancestor peaks
when a rule applies above the other without overlapping it, and critical peaks when
both rules overlap. Unfortunately, there is no hope to have results that hold for arbitrary
labellings. Disjoint peaks commute for self- and rule-labelling. Ancestor peaks, unfor-
tunately, do not commute for rule-labelling unless rules are both left- and right-linear.

We now recall the usual notion of critical pair:

Definition 14. Given a labelled rewrite system R, a labelled rule l
m−→ r, a labelled

rule g
n−→ d and a position p ∈ FPos(l) such that the equational problem l|p = g has

a most general unifier σ, then the proof rσ
m←− lσ

n−→ lσ[dσ]p is called a critical peak
of the rule g

n−→ d onto the rule l
m−→ r at positions p, which associated critical pair is

(rσ, lσ[dσ]p).

We now come to the main result of this section, showing that the search for decreasing
diagrams can be restricted to critical peaks of various kinds. To this end, we assume that
the set of rewrite rules R is the union of two subsets R1 and R2. We assume that R1 is a
self-labelling set of rewrite rules, that R2 is a set of order-labelling linear rewrite rules,
and consider the relation −→R1 ∪−→R2 .

To work with the relation −→R1 ∪−→R2 , we blend the labellings �1 and �2 used
for R1 and R2 respectively to proofs using steps with R1 and steps with R2 as follows:
a rewrite step s−→l t at position p with Ri is labelled by the pair (i, l)}. Pairs are
compared in the well-founded ordering .:= (2 > 1,�1 ∪ �2)lex. Tedious checking
yields:
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Theorem 4 (Critical diagrammatic lemma). Let R = R1 0 R2 be a rewrite system
satisfying the assumptions above. Assume that critical peaks of rules in R have de-
creasing diagrams for .. Then, local peaks of rules in R have decreasing diagrams
for ..

Note that the ordering on triples reduces to the component orderings when checking the
diagrams for local peaks in R1 or in R2.

As a corollary of theorems 2 and 4, we get:

Corollary 1. Under our assumptions, −→R1 ∪−→R2 is Church-Rosser.

Generalizing the above results to left-linear (but right non-linear) rules in R2 is a non-
trivial matter. It is of course well-known that right-linearity can be taken care of by using
parallel rewriting, to the price of more complex technicalities. We have not succeeded
yet to accomodate these technicalities to the present framework.

6 Conclusion

We have described a novel extension of Knuth and Bendix completion procedure, di-
agrammatic completion, which accepts non-terminating relations as input, and returns
as output a relation which has the Church-Rosser property. Unlike ordered comple-
tion, diagrammatic completion is a true generalization of Knuth-Bendix completion. In
particular, they coincide for self-labelling rewrite relations, assuming Decrease is con-
strained so as to search for rewrite proofs. The properties of diagrammatic completion
are based on the critical diagrammatic lemma, which appears to be a powerful tool for
checking a relation for local confluence, a statement that is to be confirmed: first, by a
generalization to the case where R2 contains rules which are not right-linear; second by
an automatic confluence checker. Generalizations to rewriting modulo [9] and normal
rewriting [8] remain to be investigated.
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Abstract. Ong has shown that the modal mu-calculus model checking
problem (equivalently, the alternating parity tree automaton (APT) ac-
ceptance problem) of possibly-infinite ranked trees generated by order-n
recursion schemes is n-EXPTIME complete. We consider two subclasses
of APT and investigate the complexity of the respective acceptance prob-
lems. The main results are that, for APT with a single priority, the prob-
lem is still n-EXPTIME complete; whereas, for APT with a disjunctive
transition function, the problem is (n − 1)-EXPTIME complete. This
study was motivated by Kobayashi’s recent work showing that the re-
source usage verification for functional programs can be reduced to the
model checking of recursion schemes. As an application, we show that
the resource usage verification problem is (n − 1)-EXPTIME complete.

1 Introduction

The model checking problem for higher-order recursion schemes has been a topic
of active research in recent years (for motivation as to why the problem is in-
teresting, see e.g. the introduction of Ong’s paper [1]). This paper studies the
complexity of the problem with respect to certain fragments of the modal μ-
calculus. A higher-order recursion scheme (recursion scheme, for short) is a kind
of (deterministic) grammar for generating a possibly-infinite ranked tree. The
model checking problem for recursion schemes is to decide, given an order-n
recursion scheme G and a specification ψ for infinite trees, whether the tree gen-
erated by G satisfies ψ. Ong [1] has shown that if ψ is a modal μ-calculus formula
(or equivalently, an alternating parity tree automaton), then the model checking
problem is n-EXPTIME complete.

Following Ong’s work, Kobayashi [2] has recently applied the decidability
result to the model checking of higher-order functional programs (precisely, pro-
grams of the simply-typed λ-calculus with recursion and resource creation/access
primitives). He considered the resource usage verification problem [3]—the prob-
lem of whether programs access dynamically created resources in a valid manner
(e.g. whether every opened file will eventually be closed, and thereafter never
read from or written to before it is reopened). He showed that the resource usage
verification problem reduces to a model checking problem for recursion schemes

S. Albers et al. (Eds.): ICALP 2009, Part II, LNCS 5556, pp. 223–234, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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by giving a transformation that, given a functional program, constructs a recur-
sion scheme that generates all possible resource access sequences of the program.
From Ong’s result, it follows that the resource usage verification problem is in
n-EXPTIME (where, roughly, n is the highest order of types in the program).
This result also implies that various other verification problems, including (the
precise verification of) reachability (“Given a closed program, does it reach the
fail command?”) and flow analysis (“Does a sub-term e evaluate to a value gen-
erated at program point l?”), are also in n-EXPTIME, as they can be easily
recast as resource usage verification problems.

It was however unknown whether n-EXPTIME is the tightest upper-bound of
the resource usage verification problem. Although the model checking of recur-
sion schemes is n-EXPTIME-hard for the full modal μ-calculus, only a certain
fragment of the modal μ-calculus is used in Kobayashi’s approach to the resource
usage verification problem. First, specifications are restricted to safety proper-
ties, which can be described by Büchi tree automata with a trivial acceptance
condition (the class called “trivial automata” by Aehlig [4]). Secondly, specifi-
cations are also restricted to linear-time properties—the branching structure of
trees is ignored, and only the path languages of trees are of interest. Thus, one
may reasonably hope that there is a more tractable model checking algorithm
than the n-EXPTIME algorithm.

The goal of this paper is, therefore, to study the complexity of the model
checking of recursion schemes for various fragments of the modal μ-calculus
(or, alternating parity tree automata) and to apply the result to obtain tighter
bounds of the complexity of the resource usage verification problem.

The main results of this paper are as follows:
– The problem of whether a given Büchi automaton with a trivial acceptance

condition (or, equivalently, alternating parity tree automaton with a single pri-
ority 0) accepts the tree generated by an order-n recursion scheme is still n-
EXPTIME-hard. This follows from the n-EXPTIME-completeness of the word
acceptance problem for higher-order alternating pushdown automata1 [5].

– We introduce a new subclass of alternating parity tree automata (APT)
called disjunctive APT, and show that its acceptance problem for trees generated
by order-n recursion schemes is (n− 1)-EXPTIME complete. From this general
result, it follows that both the linear-time properties (including reachability,
which is actually (n−1)-EXPTIME complete) and finiteness of the tree generated
by a recursion scheme are (n− 1)-EXPTIME.

– As an application, we show that the resource usage verification problem [2]
is also (n − 1)-EXPTIME-complete, where n is the highest order of types used
in the source program (written in an appropriate language [2]).

Related Work. For the class of Büchi automata with a trivial acceptance
condition, Kobayashi [2] showed that the complexity is linear in the size of
recursion schemes, if the sizes of types and automata are bounded above by a

1 Engelfriet’s proof [5] is for a somewhat different—but equivalent—machine which is
called iterated pushdown automaton.
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constant. For the full modal μ-calculus, Kobayashi and Ong [6] have shown that
the complexity is polynomial-time in the size of the recursion scheme, assuming
that the size of types and the formula are bounded above by a constant.

2 Preliminaries

We assume the standard notions of (ranked/unranked) infinite trees [1].

Higher-Order Recursion Schemes. The set of types is defined by: κ ::= o |
κ1 → κ2, where o describes trees. The order of κ, written order (κ), is defined
by: order (o) := 0 and order (κ1 → κ2) := max (order (κ1) + 1, order(κ2)). A
(deterministic) higher-order recursion scheme (recursion scheme, for short) is a
quadruple G = (Σ,N ,R, S), where (i) Σ is a ranked alphabet i.e. a map from a
finite set of symbols called terminals to types of order 0 or 1. (ii) N is a map from
a finite set of symbols called non-terminals to types. (iii) R is a set of rewrite
rules F x̃→ t. Here, x̃ abbreviates a sequence of variables, and t is an applicative
term constructed from non-terminals, terminals, and variables. (iv) S is a start
symbol. We require that N (S) = o. The set of (typed) terms is defined in the
standard manner: A symbol (i.e., a terminal, non-terminal, or variable) of type
κ is a term of type κ. If terms t1 and t2 have types κ1 → κ2 and κ1 respectively,
then t1 t2 is a term of type κ2. For each rule F x̃→ t, F x̃ and t must be terms
of type o. There must be exactly one rewrite rule for each non-terminal. The
order of a recursion scheme is the highest order of its non-terminals.

A rewrite relation on terms is defined inductively by: (i) If F x̃→ t ∈ R, then
F s̃ −→G [s̃/x̃]t. (ii) If t −→G t′, then t s −→G t′ s and s t −→G s t′. The value
tree of a recursion scheme G, written [[G]], is the (possibly infinite) tree obtained
by infinite rewriting of the start symbol S: See [1] for a precise definition.

Alternating parity tree automata. Given a finite set X , the set B+(X) of positive
Boolean formulas over X is defined as follows:

B+(X) 1 θ ::= t | f | x | θ ∧ θ | θ ∨ θ

where x ranges over X . We say that a subset Y of X satisfies θ just if assigning
true to elements in Y and false to elements in X \ Y makes θ true.

An alternating parity tree automaton (or APT for short) over Σ-labelled trees
is a tuple A = (Σ,Q, δ, qI , Ω) where (i) Σ is a ranked alphabet; let m be the
largest arity of the terminal symbols; (ii) Q is a finite set of states, and qI ∈ Q is
the initial state; (iii) δ : Q×Σ −→ B+({1, . . . ,m}×Q) is the transition function
where, for each f ∈ Σ and q ∈ Q, we have δ(q, f) ∈ B+({1, . . . , arity(f)} ×Q);
and (iv) Ω : Q −→ {0, · · · ,M − 1} is the priority function.

A run-tree of an APT A over a Σ-labelled ranked tree T is a (dom(T )×Q)-
labelled unranked tree r satisfying: (i) ε ∈ dom(r) and r(ε) = (ε, qI); and (ii) for
every β ∈ dom(r) with r(β) = (α, q), there is a set S that satisfies δ(q, T (α)); and
for each (i, q′) ∈ S, there is some j such that β j ∈ dom(r) and r(β j) = (α i, q′).

Let π = π1 π2 · · · be an infinite path in r; for each i ≥ 0, let the state label
of the node π1 · · ·πi be qni where qn0 , the state label of ε, is qI . We say that
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π satisfies the parity condition just if the largest priority that occurs infinitely
often in Ω(qn0)Ω(qn1)Ω(qn2 ) · · · is even. A run-tree r is accepting if every infinite
path in it satisfies the parity condition. An APT A accepts a (possibly infinite)
ranked tree T if there is an accepting run-tree of A over T .

Ong [1] has shown that there is a procedure that, given a recursion scheme G
and an APT A, decides whether A accepts the value tree of G.

Theorem 1 (Ong). Let G be a recursion scheme of order n, and A be an APT.
The problem of deciding whether A accepts [[G]] is n-EXPTIME-complete.

3 Trivial APT and the Complexity of Model Checking

APT with a trivial acceptance condition, or trivial APT (for short), is an APT
that has exactly one priority which is even. Note that trivial APT are equivalent
to Aehlig’s “trivial automata” [4] (for defining languages of ranked trees).

The first result of this paper is a logical characterization of the class of ranked
trees accepted by trivial APT. Call S the following “safety fragment” of the
modal mu-calculus:

φ, ψ ::= Pf | Z | φ ∧ ψ | φ ∨ ψ | 〈i〉φ | νZ.φ

where f ranges over symbols in Σ, and i ranges over {1, · · · , arity(Σ)}.

Proposition 1 (Equi-Expressivity). The logic S and trivial APT are equiv-
alent for defining possibly-infinite ranked trees. I.e. for every closed S-formula,
there is a trivial APT that defines the same tree language, and vice versa.

3.1 n-EXPTIME Completeness

We show that the model checking problem for recursion schemes is n-EXPTIME
complete for trivial APT. The upper-bound of n-EXPTIME follows immediately
from Ong’s result [1]. To show the lower-bound, we reduce the decision problem

of w
?
∈ L(A), where w is a word and A is an order-n alternating PDA, to the

model checking problem for recursion schemes. n-EXPTIME hardness follows

from the reduction, since the problem of w
?
∈ L(A) is n-EXPTIME hard [5].

Definition 1. An order-n alternating PDA (order-n APDA, for short) for finite
words is a 7-tuple:

A = 〈P, λ, p0 ∈ P, Γ, Σ, Δ ⊆ P × Γ × (Σ ∪ {ε})× P ×Opn, F ⊆ P 〉

where P is a set of states, λ ∈ P → {A, E}, p0 is the initial state, Γ is the set
of stack symbols, Σ is an input alphabet, F is the set of final states, and Δ is
a transition relation that satisfies: for every p, γ, if (p, γ, ε, p′, θ) ∈ Δ for some
p′, θ, then (p, γ, a, p′, θ) �∈ Δ for every a ∈ Σ, p′ and θ. A configuration of an
order-n APDA is of the form (p, s) where s is an order-n stack: an order-1 stack
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is an ordinary stack, and an order-(k + 1) stack is a stack of order-k stacks. The
(induced) transition relation on configurations is defined by the rule:

if (p, top1(s), α, p
′, θ) ∈ Δ, then (p, s) −→α (p′, θ(s)).

Here, θ ∈ Opn is an order-n stack operation and top1(s) is the stack top of s.
The definition of the stack operations Opn is omitted since it is not important
for understanding the encodings below; interested readers may wish to consult,
for example, the paper [8] by Knapik et al.

Let w be a word over Σ. We write wi (0 ≤ i < |w|) for the i-th element of w.
A run tree of an order-n APDA over a word w is a finite, unranked tree such that
(i) The root is labelled by (p0,⊥n, 0), where ⊥n is the initial stack. (ii) If a node
is labelled by (p, s, i) and λ(p) = A, then either p ∈ F and i = |w|, or the set of
labels of the child nodes is exactly {(p′, θ(s), i+1) | (p, top1(s), wi, p′, θ) ∈ Δ∧i <
|w|}∪{(p′, θ(s), i) | (p, top1(s), ε, p′, θ) ∈ Δ}. (Thus, if the set is empty, the node
has no child.) (iii) If a node is labelled by (p, s, i) and λ(p) = E, then either p ∈ F
and i = |w|, or there exists exactly one child node which is labelled by an element
of the set: {(p′, θ(s), i + 1) | (p, top1(s), wi, p

′, θ) ∈ Δ ∧ i < |w|} ∪ {(p′, θ(s), i) |
(p, top1(s), ε, p′, θ) ∈ Δ}. An order-n APDA A accepts w if there exists a run
tree of A over w.

Engelfriet [5] has shown that the word acceptance problem for order-n APDA is
n-EXPTIME complete.

Theorem 2 (Engelfriet). Let A be an order-n APDA and w a finite word over

Σ. The problem of w
?
∈ L(A) is n-EXPTIME complete.

To reduce the word acceptance problem of order-n APDA to the model checking
problem for recursion schemes, we use the equivalence [8] between order-n safe
recursion schemes and order-n PDA as (deterministic) devices for generating
trees.

Definition 2. An order-n tree-generating (deterministic) PDA is a 5-tuple
〈Σ,Γ,Q, δ, q0〉 where Σ is a ranked alphabet, Γ is a finite stack alphabet, Q is
a finite state-set, δ : Q×Γ −→ (Q×Opn + {(f ; q1, · · · , qarity(f)) : f ∈ Σ, qi ∈
Q}) is the transition function, and q0 ∈ Q is the initial state. A generalized
configuration is either a configuration (which has the shape (q, s) where s is an
order-n stack over Γ ) or a triple of the form (f ; q1, · · · , qarity(f); s). We define
�
> , a labelled transition relation over generalized configurations, as follows:

– (q, s)
(q′,θ)
> (q′, θ(s)) if δ(q, top1(s)) = (q′, θ)

– (q, s)
f q̃
> (f ; q̃; s) if δ(q, top1 s) = (f ; q̃)

– (f ; q̃; s)
(f,i)
> (qi, s) for each 1 ≤ i ≤ arity(f).

A computation path of an order-n PDAA is a finite or infinite transition sequence

ρ = c0
�0
> c1

�1
> c2

�2
> · · · where each ci is a generalized configuration, and
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c0 = (q0,⊥n) is the initial configuration. The Σ-projection of ρ is the subsequence
�r1 �r2 �r3 · · · of labels of the shape (f, i) (in which case arity(f) > 0) or f (i.e. f ε,
in which case arity(f) = 0, and the label marks the end of the Σ-projection).
We say the PDA A generates the Σ-labelled tree t just if the branch language2

of t coincides with the set of Σ-projection of computation paths of A.

Theorem 3 (Knapik et al. [8]). There exists a reduction of an order-n tree-
generating PDA M to an order-n safe recursion scheme G that generates the
same tree as M. Moreover, both the running time of the reduction algorithm
and the size of G are polynomial in the size of M.

By Theorems 2 and 3, it suffices to show that, given a word w and an order-
n APDA A, one can construct an order-n tree-generating PDA MA,w and a
trivial APT BA such that w is accepted by A if, and only if, the tree generated
by MA,w is accepted by BA.

Let w be a word over Σ. We write wi (i ∈ {0, . . . , |w|−1}) for the i-th element
of w. From w and A = 〈P, λ, p0, Γ,Σ,Δ, F 〉 above, we construct an order-k PDA
MA,w for generating a {A, E, R, T}-labelled tree, which expresses a kind of run
tree of A over the input word w. The node label A (E, resp) means that A is in a
universal (existential, resp.) state; T means that A has accepted the word, and
R means that A is stuck (having no outgoing transition).

Let N := max q∈P,a∈Σ∪{ε},γ∈Γ |{q′, θ) | (q, γ, a, q′, θ) ∈ Δ}|. I.e. N is the degree
of non-determinacy of A. We define MA,w := 〈{A, E, T, R}, Γ,Q, δ, (p0, 0)〉 where:

– The ranked alphabet is {A, E, T, R}, where the arities of A and E are N , and
those of T and R are 0.

– Q = (P × {0, . . . , |w|}) ∪ {q�, q⊥} ∪ (P × {0, . . . , |w|} ×Opn)
– δ : Q× Γ −→ (Q×Opn + {(g; q̃) : g ∈ {A, E, T, R}, qi ∈ Q}) is given by:

(1) δ((p, |w|), γ) = (T; ε), if p ∈ F
(2) δ((p, i), γ) = (A; (p1, j1, θ1), . . . , (pm, jm, θm), q�, . . . , q�︸ ︷︷ ︸

N−m

)

if λ(p) = A and {(p1, j1, θ1), . . . , (pm, jm, θm)} is:
{(p′, i + 1, θ) | (p, γ, wi, p′, θ) ∈ Δ ∧ i < |w|} ∪ {(p′, i, θ) | (p, γ, ε, p′, θ) ∈ Δ}

(3) δ((p, i), γ) = (E; (p1, j1, θ1), . . . , (pm, jm, θm), q⊥, . . . , q⊥)
if λ(p) = E and {(p1, j1, θ1), . . . , (pm, jm, θm)} is:
{(p′, i + 1, θ) | (p, γ, wi, p′, θ) ∈ Δ ∧ i < |w|} ∪ {(p′, i, θ) | (p, γ, ε, p′, θ) ∈ Δ}

(4) δ((p, i, θ), γ) = ((p, i), θ)
(5) δ(q�, γ) = (T; ε)
(6) δ(q⊥, γ) = (R; ε)

Rules (2) and (3) are applied only when rule (1) is inapplicable. MA,w sim-
ulates A over the word w, and constructs a tree representing the computation
2 The branch language of t : dom(t) −→ Σ consists of (i) infinite words

(f1, d1)(f2, d2) · · · just if there exists d1 d2 · · · ∈ {1, 2, · · · , m}ω (where m is the max-
imum arity of the Σ-symbols) such that t(d1 · · · di) = fi+1 for every i ≥ 0; and
(ii) finite words (f1, d1) · · · (fn, dn) fn+1 just if there exists d1 · · · dn ∈ {1, · · · , m}∗
such that t(d1 · · · di) = fi+1 for 0 ≤ i ≤ n, and the arity of fn+1 is 0.
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of A. A state (p, i) ∈ P × {0, . . . , |w| − 1} simulates A in state p reading the
letter wi. A state (p, i, θ) simulates an intermediate transition state of A, where
θ is the stack operation to be applied. The states q� and q⊥ are for creating
dummy subtrees of nodes labelled with A or E, so that the number of children
of these nodes adds up to N , the arity of A and E. Rule (1) ensures that when
A has read the input word and reached a final state, MA,w stops simulating A
and outputs T. Rule (2) is used to simulate transitions of A in a universal state,
reading the i-th input: MA,w constructs a node labelled A (to record that A was
in a universal state) and spawns threads to simulate all possible transitions of
A. Rule (3) is for simulating A in an existential state. Note that, if A gets stuck
(i.e. if there is no outgoing transition), all children of the E-node are labelled R;
thus failure of the computation can be recognized by the trivial APT given in
the following. Rule (4) is just for intermediate transitions. Note that a transition
of A is simulated by MA,w in two steps: the first for outputting A or E, and the
second for changing the stack.

Now, we construct a trivial APT that accepts the tree generated by MA,w if,
and only if, w is not accepted by A. Let BA be ({q0}, {A, E, T, R}, q0, δ, {q0 �→ 0})
where:

δ(q0, A) =
∨N
i=1(i, q0) δ(q0, E) =

∧N
i=1(i, q0) δ(q0, T) = f δ(q0, R) = t

Intuitively, BA accepts all trees representing a failure computation tree of A. If
the automaton in state q0 reads T (which corresponds to an accepting state ofA),
it gets stuck. Upon reading A, the automaton non-deterministically chooses one
of the subtrees, and checks whether the subtree represents a failure computation
of A. On the other hand, upon reading E, the automaton checks that all subtrees
represent failure computation trees of A.

Based on the above intuition, we can prove the following result.

Theorem 4. Let w be a word, and A an order-n APDA. Then w is not accepted
by A if, and only if, the tree generated by MA,w is accepted by BA.

Corollary 1. The model checking of an order-n recursion scheme with respect
to a trivial APT is n-EXPTIME-hard in the size of the recursion scheme.

By modifying the encoding, we can also show that the model checking problem
is n-EXPTIME-hard in the size of APT. The idea is to modify MA,w so that it
generates a tree representing computation of A over not just w but all possible
input words, and let a trivial APT check the part of the tree corresponding to the
input word w. As a result, the trivial APT depends on the input word w, but the
tree-generating PDA does not. See [7] for more details. To our knowledge, the
lower-bound (of the complexity of model-checking recursion schemes) in terms
of the size of APT has been unknown even for the entire class of APT.

4 Disjunctive APT and Complexity of Model Checking

A disjunctive APT is an APT whose transition function δ is disjunctive, i.e. δ
maps each state to a positive boolean formula θ that contains only disjunctions
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and no conjunctions, as given by the grammar θ ::= t | f | (i, q) | θ ∨ θ.
Disjunctive APT can be used to describe path (or linear-time) properties of
trees.

First we give a logical characterization of disjunctive APT as follows. Call D
the following “disjunctive fragment” of the modal mu-calculus:

φ, ψ ::= Pf ∧ φ | Z | φ ∨ ψ | 〈i〉φ | νZ.φ | μZ.φ

where f ranges over symbols in Σ, and i ranges over {1, · · · , arity(Σ)}.

Proposition 2 (Equi-Expressivity). The logic D and disjunctive APT are
equivalent for defining possibly-infinite ranked trees. I.e. for every closed D-
formula, there is a disjunctive APT that defines the same tree language, and
vice versa.

Remark 1. (i) A disjunctive APT is a non-deterministic parity tree automaton.
(ii) For defining languages of ranked trees, disjunctive APT are a proper subset of
the disjunctive formulas in the sense of Walukiewicz and Janin [9]. For example,
the disjunctive formula (1 → {t})∧(2 → {t}) is not equivalent to any disjunctive
APT.

In the rest of the section, we show that the model checking problem for order-n
recursion schemes is (n− 1)-EXPTIME complete for disjunctive APT.

4.1 Upper Bound

We sketch a proof of the following theorem, based on Kobayashi and Ong’s
type system for recursion schemes [6]. An alternative proof, based on variable
profiles [1], will be given in a forthcoming journal version of this paper [7].

Theorem 5. Let G be an order-n recursion scheme and B a disjunctive APT.
It is decidable in (n − 1)-EXPTIME whether B accepts the value tree [[G]] from
its root.

In a recent paper [6], we constructed an intersection type system equivalent to
the modal mu-calculus model checking of recursion schemes, in the sense that for
every APT, there is a type system such that the tree generated by a recursion
scheme is accepted by the APT if, and only if, the recursion scheme is typable in
the type system. Thus, the model checking problem is reduced to a type checking
problem. The main idea of the type system is to refine the tree type o by the
states and priorities of an APT: the type q describes a tree that is accepted by
the APT with q as the start state. The intersection type (θ1,m1)∧ (θ2,m2) → q,
which refines the type o → o, describes a tree function that takes an argument
which has types θ1 and θ2, and returns a tree of type q.

The type checking algorithm presented in ibid. is n-EXPTIME in the com-
bined size of the order-n recursion scheme and APT (precisely the complexity is
O(r1+�m/2�expn((a |Q|m)1+ε)) for n ≥ 2, where r is the number of rules and a
the largest prioirty of symbols in the scheme, m is the largest priority, |Q| is the
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number of states) The bottleneck of the algorithm is the number of (atomic)
intersection types, where the set T (κ) of atomic types refining a simple type κ is
inductively defined by: T (o) = Q and T (κ1 → κ2) = {

∧
S → θ | θ ∈ T (κ2), S ⊆

T (κ1)× P}. where Q and P are the sets of states and priorities respectively.
According to the syntax of atomic types above, the number of atomic types

refining a simple type of order-n is n-exponential in general. In the case of
disjunctive APT, however, for each type of the form o→ · · · → o→ o, we need
to consider only atomic types of the form

∧
S1 → · · · →

∧
Sk → q, where at

most one of the Si’s is a singleton set and the other Sj ’s are empty. Intuitively,
this is because a run-tree of a disjunctive APT consists of a single path, so that
the run-tree visits only one of the arguments, at most once. In fact, we can show
that, if a recursion scheme is typable in the type system for a disjunctive APT,
the recursion scheme is typable in a restricted type system in which order-1 types
are constrained as described above: this follows from the proof of completeness of
the type system [6], along with the property of the accepting run-tree mentioned
above. Thus, the number of atomic types is k × |Q| × |P | × |Q| (whereas for
general APT, it is exponential). Therefore, the number of atomic types possibly
assigned to a symbol of order n is (n − 1)-exponential. By running the same
type checking algorithm as ibid. (but with order-1 types constrained as above),
order-n recursion schemes can be type-checked (i.e. model-checked) in (n − 1)-
EXPTIME.

4.2 Lower Bound

We show the lower bound by a reduction of the emptiness problem of the finite-
word language accepted by an order-n (deterministic) PDA (which is (n − 1)-
EXPTIME complete [5]). From an order-n PDA A, we can construct an order-n
tree-generating PDA MA, which simulates all possible input and ε-transitions
of A, and outputs e only when A reaches a final state: See the long version [7].
By a result of Knapik et al. [8], we can construct an equi-expressive order-n
safe recursion scheme G. By the construction, the finite word-language accepted
by A is non-empty if, and only if, the value tree of G has a node labelled e.
Since the latter property can be expressed by a disjunctive APT, the problem
of model-checking recursion schemes for disjunctive APT is (n− 1)-EXPTIME
hard. The problem is (n− 1)-EXPTIME hard also in the size of the disjunctive
APT: See [7] for more details.

4.3 Path Properties

The path language of a Σ-labelled tree t is the image of the map F , which acts
on the elements of the branch language of t by “forgetting the argument posi-
tions” i.e. F : (f1, d1) (f2, d2) · · · �→ f1 f2 · · · and F : (f1, d1) · · · (fn, dn) fn+1 �→
f1 · · · fn fωn+1. For example, the path language of the tree f a (f a b) is
{f aω, f f aω, f f bω}. Let G be a recursion scheme. We write W (G) for the path
language of [[G]]. Thus elements of W (G) are infinite words over the alphabet Σ
which is now considered unranked (i.e. arities of the symbols are forgotten).
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Lemma 1. Let G be an order-n recursion scheme. The following problems are
(n− 1)-EXPTIME complete.

(i) W (G)∩L(C) ?= ∅, where C is a non-deterministic parity word automaton.

(ii) W (G)
?
⊆ L(C), where C is a deterministic parity word automaton.

The decision problems Reachability (i.e. whether [[G]] has a node labelled by
a given symbol e) and Finiteness (i.e. whether [[G]] is finite) are instances of
Problem (i) of Lemma 1; hence they are in (n − 1)-EXPTIME (the former is
(n− 1)-EXPTIME complete, by the proof of Section 4.2).

5 Application to Resource Usage Verification

Now we apply the result of the previous section to show that the resource usage
verification problem is (n − 1)-EXPTIME complete. The aim of resource usage
verification is to check whether a program accesses each resource according to
the resource specification. For example, consider the following program.

let rec g x = if b then close(x) else read(x); g(x) in
let r = open_in "foo" in g(r)

It opens a read-only file “foo”, reads and closes it. For this program, the goal of
the verification is to statically check that the file is eventually closed before the
program terminates, and after it is closed, it is never read from or written to.

The resource usage verification problem was formalized by Igarashi and
Kobayashi [3]. Kobayashi [2] recently showed that the problem is decidable
for the simply-typed λ-calculus with recursion, generated from a base type of
booleans, and augmented by resource creation/access primitives, by reduction
to the model checking problem for recursion schemes.

Kobayashi [2] considered a language in CPS (continuation passing style), with
only top-level function definitions of the form F x̃ = e, where e is given by:

e ::= � | x | F | e1e2 | If∗ e1 e2 | NewL e | Acca e1 e2

The term � is the unit value. The term If∗ e1 e2 is a non-deterministic branch
between e1 and e2. The term NewL e creates a fresh resource that should be
used according to L, and passes it to e (thus, e is a function that takes a resource
as an argument). Here, L is a regular language. The term Acca e1 e2 accesses
the resource e1 (where a is the name of the access primitive), and then executes
e2. For example, in the above program, the last line is expressed by Newr∗c G,
and close(x) is expressed by Accc x k (where k is the continuation).

The language is simply typed; the two base types are unit for unit values
and R for resources. The body of each definition must have type unit (in other
words, resources cannot be used as return values; in that sense, programs are in
CPS). The constants If∗, NewL, and Acca are given the following types.

If∗:unit → unit → unit,NewL:(R → unit) → unit,Acca :R → unit → unit
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A program can be transformed to a recursion scheme that generates a tree
representing all possible (resource-wise) access sequences of the program [2].
We just need to replace each function definition F x̃ = e with the rewrite rule
F x̃→ e, and add the following rules

If∗ x y → brx y Acca x k → xa k �→ t(�)
NewLk → br (νL(kI)) (kK) I x k → x k K x k → k

Here, br is a terminal for representing non-deterministic choice. In the rule for
NewL, a fresh resource is instantiated to either I or K. This is a trick used to
extract resource-wise access sequences, by tracing or ignoring the new resource
in a non-deterministic manner: see Kobayashi’s paper [2] for more explanation.
The above transformation preserves types, except that unit and R are replaced
by o and (o→ o) → o→ o respectively.

Along with the transformation above, a tree automaton can be constructed
that accepts the trees containing an invalid access sequence. The automaton just
needs to focus on paths that contain a single occurrence of NewL, and check
whether, for every sequence s below NewL, all prefixes of s are elements of L ·t∗
(with br ignored). Thus, the automaton belongs to the class of disjunctive APT.
(On the other hand, an automaton that accepts the complement, i.e. the set of
trees containing only valid sequences, belongs to the class of trivial APT.)

We now show that the resource usage verification is (n− 1)-EXPTIME com-
plete, where n is the largest order of types in the source program. The base types
unit and R have orders 0 and 1 respectively. We assume that each resource spec-
ification in the program is given as a deterministic finite state automaton. The
lower-bound can be shown by reduction of the reachability problem of recursion
schemes to the resource usage verification problem: we just transform each rule
F x̃ → t into the function definition F x̃ = t, and replace the terminal e with
New{ε}Fail, where Fail is defined by Fail x = Accfail x �. Since resource prim-
itives occur only in the transformation of e, the order of the resulting resource
usage program is the maximum of 3 and the order of the recursion scheme. Thus,
the resource usage verification is (n− 1)-EXPTIME hard for n ≥ 3 (note that 3
is the lowest order of a closed program that creates a resource, since NewL has
order 3).

Showing the upper-bound is a little tricky: since the resource type R of order
1 is transformed into the type (o→ o) → o→ o of order 2, a source program of
order-n may be transformed into a recursion scheme of order n+1. For the image
of the resource type, however, it is sufficient to consider only two atomic types
σI and σK , where σI =

∧
q1,q2

((q1 → q2) → q1 → q2) and σK =
∧
q((
∧
∅) →

q → q). Here, we have omitted priorities. Thus, although, for example, a type
R → · · · → R → unit of order 2 is transformed into an order-3 type, the
number of atomic types that should be considered is single-exponential. Since
the APT for recognizing the value tree is disjunctive, we can apply the argument
in Section 4 to conclude that the recursion scheme can be model-checked in
(n− 1)-EXPTIME.
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Abstract. We present an AC1(logDCFL) algorithm for checking LTL
formulas over finite paths, thus establishing that the problem can be
efficiently parallelized. Our construction provides a foundation for the
parallelization of various applications in monitoring, testing, and verifi-
cation.

Linear-time temporal logic (LTL) is the standard specification language to de-
scribe properties of reactive computation paths. The problem of checking whether
a given finite path satisfies an LTL formula plays a key role in monitoring and
runtime verification [12,10,6,1,4], where individual paths are checked either on-
line, during the execution of the system, or offline, for example based on an
error report. Similarly, path checking occurs in testing [2] and in several static
verification techniques, notably in Monte-Carlo-based probabilistic verification,
where large numbers of randomly generated sample paths are analyzed [22].

Somewhat surprisingly, given the widespread use of LTL, the complexity of
the path checking problem is still open [18]. The established upper bound is P:
The algorithms in the literature traverse the path sequentially (cf. [10,18,12]);
by going backwards from the end of the path, one can ensure that, in each
step, the value of each subformula is updated in constant time, which results
in bilinear running time. The only known lower bound is NC1 [8], the com-
plexity of evaluating Boolean expressions. The large gap between the bounds
is especially unsatisfying in light of the recent trend to implement path check-
ing algorithms in hardware, which is inherently parallel. For example, the IEEE
standard temporal logic PSL [13], an extension of LTL, has become part of the
hardware description language VHDL, and several tools [6,4] are available to
synthesize hardware-based monitors from assertions written in PSL. Can we im-
prove over the sequential approach by evaluating entire blocks of path positions
in parallel?

In this paper, we show that LTL path checking can indeed be parallelized
efficiently. Our approach is inspired by work in the related area of evaluating
monotone Boolean circuits [11,9,15,3,17,5]. Rather than sequentially traversing
the path, we consider the circuit that results from unrolling the formula over the
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Fig. 1. Circuit resulting from unrolling the LTL formula ((aU b)U (c U d))U e over a
path ρ of length 5. We denote the value of an atomic proposition p at a path position
i = 0, . . . , 4 by pi. The graph of the circuit has no planar embedding.

path. Figure 1 shows such a circuit for the formula ((aU b)U (cU d))U e and a
path of length 5.

Yang [21] and, independently, Delcher and Kosaraju [7] have shown that
monotone Boolean circuits can be evaluated efficiently in parallel if the graph
of the circuit has a planar embedding. Unfortunately, this condition is already
violated in the simple example of Figure 1. Individually, however, each operator
results in a planar circuit: for example, d U e results in e0∨(d0∧(e1∨(d1∧. . .) · · · ).
The complete formula thus defines a tree of planar circuits.

Our path checking algorithm works on this tree of circuits. We introduce
a contraction technique that combines a parent node and its children into a
single planar circuit. Simple paths in the tree immediately collapse into a planar
circuit; the remaining binary tree is contracted incrementally, until only a single
planar circuit remains. The key insight of our solution is that the contraction
can be carried out as soon as one of the children has been evaluated. Because
no evaluated child has to wait for the evaluation of its sibling before it can be
contracted with its parent, we can contract a fixed portion of the nodes in every
sequential step, and therefore terminate in at most a logarithmic number of
steps.

The path checking problem can, hence, be parallelized efficiently. In addi-
tion to planarity, our construction maintains some further technical invariants,
in particular that the circuits have all input gates on the outer face. Analyz-
ing this construction, we obtain the result that the path checking problem is
in AC1(logDCFL).
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1 Preliminaries

Linear-Time Temporal Logic. We consider specifications in linear-time tem-
poral logic (LTL). We apply the usual finite-path semantics with a weak and a
strong version of the Next -Operator [16]. Let P be a set of atomic propositions.
The formulas of LTL are defined inductively as follows: For each atomic propo-
sition p ∈ P p and ¬p are LTL formulas. If φ and ψ are LTL formulas, then so
are

φ ∧ ψ, φ ∨ ψ, X∃ φ, X∀ φ, φ U ψ, and φRψ .

LTL formulas are evaluated over computation paths. A path ρ = ρ0, . . . , ρn−1

is a sequence of states where each state ρi for i = 0, . . . ,n − 1 is a valuation
ρi ∈ 2P of the atomic propositions. The length of ρ is n and is denoted by ‖ρ‖.
The suffix of ρ at position i, 0 ≤ i < n, is denoted by ρi. The empty path is
denoted by ε.

Given an LTL formula φ, a nonempty path ρ �= ε satisfies φ, denoted by ρ |= φ,
if one of the following holds:

– φ ∈ P and φ ∈ ρ0,
– φ = ¬p and p �∈ ρ0,
– φ = φl ∧ φr and ρ |= φl and ρ |= φr ,
– φ = φl ∨ φr and ρ |= φl or ρ |= φr,
– φ = X∃ψ and ρ1 |= ψ and ρ1 �= ε,
– φ = X∀ψ and ρ1 |= ψ or ρ1 = ε,
– φ = φl Uφr and ∃0 ≤ i < ‖ρ‖ s.t. ρi |= φr and ∀0 ≤ j < i, ρj |= φl, or
– φ = φl Rφr and ∀0 ≤ i < ‖ρ‖, ρi |= φr or ∃0 ≤ j < i s.t. ρj |= φl.

The semantics of LTL implies the expansion laws, which relate the satisfaction
of a temporal formula in some position of the path to the satisfaction of the
formula in the next position and the satisfaction of its subformulas in the present
position:

φl Uφr ≡ φr ∨ (φl ∧X∃ (φl Uφr)); φlRφr ≡ φr ∧ (φl ∨X∀ (φl Rφr)) .

We are interested in determining if an LTL formula is satisfied by a given
path. This is the path checking problem.

Definition 1 (Path Checking Problem). The path checking problem for LTL
is to decide, for an LTL formula φ and a nonempty path ρ, whether ρ |= φ.

Complexity classes within P. We assume familiarity with the standard com-
plexity classes within P. L is the class of problems that can be decided by a
logspace restricted deterministic Turing machine. logDCFL is the class of prob-
lems that can be decided by a logspace and polynomial time restricted determin-
istic Turing machine that is equipped with a stack. ACi, i ∈ N, denotes the class
of problems decidable by polynomial size unbounded fan-in Boolean circuits of
depth logi, where the depth of a circuit is the length of a longest directed path
in the circuit. AC is defined as

⋃
i∈N

ACi. Throughout the paper, all circuits are



238 L. Kuhtz and B. Finkbeiner

assumed to be uniform in the sense that the circuit for inputs of length n can be
generated by a deterministic Turing machine using space log(n). It holds that

L ⊆ logDCFL ⊆ AC1 ⊆ AC2 ⊆ · · · ⊆ AC ⊆ P .

Given a problem P and a complexity class C, P is AC1 Turing reducible to
C (denoted as P ∈ AC1(C)) if there is a family of AC1 circuits with additional
unbounded fan-in C-oracle gates that decides P . It holds that

AC1 ⊆ AC1(logDCFL) ⊆ AC2 .

Monotone Boolean circuits. A monotone Boolean circuit 〈Γ, γ〉 consists of
a set Γ of gates and a gate labeling γ. The gate labeling labels each gate either
with a Boolean value or with a tuple 〈and , left , right〉, 〈or , left , right〉, 〈id , suc〉,
where left , right , and suc are gates.

A gate that is labeled with a Boolean value is called a constant gate. For a
non-constant gate a labeled with 〈id , b〉, we say that a directly depends on b,
denoted by a ·. b. Likewise, for a gate a labeled with 〈and , b, c〉 or 〈or , b, c〉, a
directly depends on b and c. The dependence relation is the transitive closure of
·.. A gate on which no other gate depends is called a sink gate. A circuit must
not contain any cyclic dependencies.

For a set of gates G, const(G) denotes the set of all constant gates in G. If
G = const(G), we call G constant.

In the following, we assume that all circuits are monotone Boolean circuits.
We omit the labeling whenever it is clear from the context and identify the
circuit with its set of gates. We will often analyze subcircuits which are only
well-defined in the context of the full circuit. We call such subcircuits partial
circuits: Given a circuit C = 〈Γ, γ〉, a partial circuit is a circuit D = 〈Δ, δ〉 with
Δ ⊆ Γ and δ = γ|Δ. The gates in {g ∈ Γ \ Δ | ∃h ∈ Δ. h ·. g} are called the
variable gates of D. For a variable gate g of D, we define δ(g) = ⊥. If C is clear
from the context, we refer to D as Δ.

Circuit evaluation. The evaluation of a circuit 〈Γ, γ〉 is the (unique) circuit
〈Γ, γ′〉 where for each gate g ∈ Γ the following holds:

– γ′(g) = 0 iff γ(g) = 〈and, l, r〉 and γ′(l) = 0 or γ′(r) = 0,
– γ′(g) = 1 iff γ(g) = 〈and, l, r〉 and γ′(l) = 1 and γ′(r) = 1,
– γ′(g) = 〈id, l〉 iff γ(g) = 〈and, l, r〉 and γ′(l) �∈ {0, 1} and γ′(r) = 1,
– γ′(g) = 〈id, r〉 iff γ(g) = 〈and, l, r〉 and γ′(r) �∈ {0, 1} and γ′(l) = 1,
– γ′(g) = 0 iff γ(g) = 〈or, l, r〉 and γ′(l) = 0 and γ′(r) = 0,
– γ′(g) = 1 iff γ(g) = 〈or, l, r〉 and γ′(l) = 1 or γ′(r) = 1,
– γ′(g) = 〈id, l〉 iff γ(g) = 〈or, l, r〉 and γ′(l) �∈ {0, 1} and γ′(r) = 0,
– γ′(g) = 〈id, r〉 iff γ(g) = 〈or, l, r〉 and γ′(r) �∈ {0, 1} and γ′(l) = 0,
– γ′(g) = γ′(s) iff γ(g) = 〈id, s〉 and γ′(s) ∈ {0, 1}, and
– γ′(g) = γ(g) otherwise.
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A circuit is evaluated if all constant gates are sink gates. In an evaluated
circuit, all gates that do not depend on variable gates are constant. Hence, a
full circuit evaluates to a constant circuit; for a partial circuit, a subset of the
gates is relabeled: some and -/or -/id-gates are labeled as constant or id -gates.
In the construction presented in this paper, we evaluate circuits in several stages
by evaluating partial circuits. In this process, the evaluation of a partial circuit
includes substituting the partial circuit by its evaluation within the full circuit.
Since the evaluation of a partial circuit is a local operation, disjoint partial
circuits can be evaluated in parallel.

The problem of evaluating monotone planar circuits has been studied exten-
sively in the literature. Our construction is based on the evaluation of one-input-
face planar circuits:

Given a circuit G = 〈Γ, γ〉 with variable gates X , the graph gr(G) of G is the
directed graph 〈V,E〉, where V = Γ ∪ X and E = {〈a, b〉 ∈ V × V | a ·. b}. A
circuit C is planar if there exists an planar embedding of the graph of C. The
input gates of C are all constant and all variable gates of C. A planar partial
circuit is one-input-face if there is a planar embedding such that all input gates
are located on the outer face.

In the following, we abbreviate evaluated circuit as EV and one-input-face
planar as OIF, using the terms EV and OIF for the circuits as well as for the
corresponding property of a circuit. Note that an EV circuit with all variables
on the outer face is OIF. The evaluation of full OIF circuits can be parallelized
efficiently. We make use of a result by Chakraborty and Datta [5]:

Theorem 1 (Chakraborty and Datta 2006). The problem of evaluating a
full OIF circuit is in logDCFL.

Using standard techniques for partial circuits [15], the theorem generalizes from
full to partial circuits:

Corollary 1. The problem of evaluating an OIF circuit is in logDCFL.

Proof. We first assign the Boolean constant 1 to all variable gates. Each gate
that evaluates to 0 is turned into a 0 constant gate. Next, we assign 0 to all
variable gates. Each gate that evaluates to 1 is turned into a constant gate with
value 1. Since the values of the remaining gates depend on the variables, they
are simply copied. If one of the latter gates depends on a constant gate, the
dependency is removed by changing such a gate into an id -gate. ��

2 From LTL to Circuits

In this section, we provide an L many-one reduction from the path checking
problem of LTL to the problem of evaluating monotone Boolean circuits.

Given an LTL formula φ and a path ρ, we define a circuit C(φ, ρ) = 〈Γ, γ〉
such that ρ |= φ if and only if a distinguished result gate c0,0 is mapped to 1 in
the evaluation of C(φ, ρ). The circuit is constructed by unrolling φ on ρ into a
DAG according to the expansion laws.
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Definition 2. Given an LTL formula φ and a path ρ, the circuit C(φ, ρ) =
〈Γ, γ〉 is defined as follows. Let φ0, . . . , φm−1 (with φ0 = φ) be the subformulas
of φ and let ρ = ρ0, . . . , ρn−1. The set of gates Γ =

⋃
i=0,...,m−1
j=0,...,n−1

Ci,j contains

for each subformula φi and each path position 0 ≤ j < n the set Ci,j of gates
defined below:

– Ci,j = {ci,j} if j = n− 1 or if φi is either an atomic proposition, a negated
atomic proposition, a conjunction, a disjunction, an X∃-formula, or an X∀-
formula, and

– Ci,j = {ci,j, c′i,j} if 0 ≤ j < n − 1 and φi is either an U-formula or an
R-formula,

where ci,j , c
′
i,j , i = 0, . . . ,m− 1, j = 0, . . . ,n− 1 are distinct gates. The gates are

labeled as follows. For 0 ≤ j < n− 1:

– γ(ci,j) =
〈
or , cr,j, c′i,j

〉
and

γ(c′i,j) = 〈and , cl,j , ci,j+1〉 for φi = φl Uφr,
– γ(ci,j) =

〈
and , cr,j , c′i,j

〉
and

γ(c′i,j) = 〈or , cl,j , ci,j+1〉 for φi = φl Rφr, and
– γ(ci,j) = 〈id , cl,j+1〉 for φi = X∃φl or φi = X∀φl;

for j = n− 1:

– γ(ci,j) = 〈id, cr,j〉 for φi = φl Uφr or φi = φl Rφr,
– γ(ci,j) = 0 for φi = X∃φl, and
– γ(ci,j) = 1 for φi = X∀φl;

for 0 ≤ j < n:

– γ(ci,j) = 1 for either φi = p and p ∈ ρj or φi = ¬p and p �∈ ρj, p ∈ P ,
– γ(ci,j) = 0 for either φi = p and p �∈ ρj or φi = ¬p and p ∈ ρj, p ∈ P ,
– γ(ci,j) = 〈and , cl,j , cr,j〉 for φi = φl ∧ φr, and
– γ(ci,j) = 〈or , cl,j , cr,j〉 for φi = φl ∨ φr.

Lemma 1. The size of C(φ, ρ) is polynomial in ‖ρ‖ and ‖φ‖. Moreover, in the
evaluation of C(φ, ρ) the gate c0,0 is labeled with the constant 1 if and only if
ρ |= φ. ��

In the remainder of the paper, we fix the formula φ and the path ρ, and refer to
the circuit C(φ, ρ) as C. We now provide an embedding of C.

The embedding EmbC : gr(C)→2R×R is defined by EmbC(ci,j)={〈j, depth(φi)〉}
and EmbC(c′i,j) = {〈j + 0.5, depth(φi)〉}, where depth(φi) denotes the nesting
depth of φi in φ. An edge of gr(C) is embedded to the line segment between the
points onto which the incident nodes are embedded.

In general, EmbC is not planar. However, for each subformula φi, i = 1, . . .m−
1, we can identify a planar subcircuit μi =

⋃
j=0,...,n−1 Ci,j , which we call the

module of φi. Corresponding to the formula structure, the modules form a module
tree M = 〈M,E〉, where M = {μi | i = 0, . . . ,m − 1} and E = {〈μi, μj〉 |
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φ = ( a︸︷︷︸
φ3

U ( b︸︷︷︸
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U c︸︷︷︸
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)
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μ7 μ8
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μ5 μ6

Fig. 2. A schematic illustration of the circuit and the module tree for a formula φ and
a path of length six

((φi = φk ∧ φl or φi = φk ∨ φl or φi = φk Uφl or φi = φk Rφl) and (j = l
or j = k)) or φi = X∃φj or φi = X∀φj}. Note that the modules are pairwise
disjoint. A schematic illustration of an example circuit and the module tree is
shown in Figure 2.

Figure 3 shows the partial circuit that corresponds to a single branch of the
module tree from the example of Figure 2.

Our evaluation algorithm, which will be presented in the following section,
uses the fast evaluation of OIF circuits from Corollary 1 to evaluate subcircuits
of C. The following lemma establishes the connection between the embedding
EmbC and the module tree M that will allow for the application of Corollary 1
to increasingly larger subtrees of M.

{c0,0} 〈c′0,0〉
c2,0

{c0,1} 〈c′0,1〉
c2,1

{c0,2} 〈c′0,2〉
c2,2

{c0,3} 〈c′0,3〉
c2,3

{c0,4} 〈c′0,4〉
c2,4

[c0,5]

c2,5

{c1,0} 〈c′1,0〉
c3,0

{c1,1} 〈c′1,1〉
c3,1

{c1,2} 〈c′1,2〉
c3,2

{c1,3} 〈c′1,3〉
c3,3

{c1,4} 〈c′1,4〉
c3,4

[c1,5]

{c4,0} 〈c′4,0〉
c7,0

{c4,1} 〈c′4,1〉
c7,1

{c4,2} 〈c′4,2〉
c7,2

{c4,3} 〈c′4,3〉
c7,3

{c4,4} 〈c′4,4〉
c7,4

[c4,5]

c8,0 c8,1 c8,2 c8,3 c8,4 c8,5

Fig. 3. The partial circuit for the modules μ0, μ1, μ4, μ8 from the example in Figure 2.
The circuit is planar because the modules form a directed path in M. Braces denote or-
gates, angle brackets denote and -gates, and square brackets denote id -gates. Variable
gates are shown in gray. For constant gates the labeling is omitted.
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Lemma 2. For a directed path π ⊆M in the tree M, the circuit P =
⋃
m∈πm

is planar. If P is EV and all variable gates in P belong to the terminating module
of π then P is OIF. This property is stable under evaluation of partial circuits
of C.

Proof. The first sentence follows directly from the definition of EmbC . The sec-
ond sentence follows from the definition of EmbC and the observation that an
EV circuit with all variables on the outer face is OIF. For the proof of the third
sentence, note that evaluation does not add any edge to gr(C). If the graph of
P was planar (OIF) before the evaluation, it is planar (OIF) after the evaluation
of any partial circuit of C. ��

3 The Evaluation Algorithm

We now present our circuit evaluation algorithm. The problem of evaluating the
circuit C from Section 2 is AC1 Turing reduced to the evaluation problem for OIF
circuits. Our algorithm repeatedly evaluates subcircuits of C. In the following,
we always refer to the current circuit as C.

The central data structure of our algorithm is the evaluation tree M�, which is
the quotient ofM with respect to an equivalence 2. As the algorithm progresses,
more and more of the modules are collected into single nodes of M�.

We define 2 as an equivalence relation on the modules of M such that the
equivalence classes of 2 are full subtrees, i.e., for each equivalence class τ and
each node t ∈ τ , either each child or no child of t in M is in τ . For a node ν
of M� we denote the circuit

⋃
m∈νm by cir(ν). We call the nodes of M� the

enodes. An enode ν is called constant if cir(ν) is constant.
Initially, each simple path in M forms a class. Starting from the leaves ofM�,

our algorithm then evaluates the circuits corresponding to adjacent enodes and
updates 2 by collapsing the equivalence classes.

Throughout this process, we maintain the invariant that, for every enode, the
corresponding partial circuit is OIF. This allows us to apply the evaluation algo-
rithm from Corollary 1 on the partial circuit and, hence, perform the contraction
within logDCFL. The process ends when M� has been contracted into a single
class. At that point, C is fully evaluated.

To ensure the invariant, we maintain that the equivalence relation is well-
formed, as specified in the following definition:

Definition 3. The equivalence relation 2 is well-formed if for each enode α of
M� it holds that

– cir(α) is EV,
– α is a full subtree of M, and
– α is either a leaf or there is a single module bo(α) ∈ α such that there are

modules b, c ∈M with b �= c, b, c /∈ α, and 〈a, b〉 ∈ E and 〈a, c〉 ∈ E.

Together with Lemma 2, well-formedness ensures that for each enode, the
corresponding circuit is OIF.
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Lemma 3. Let 2 be well-formed and let α be an enode of M�. It holds that

– M� is a full binary tree,
– the circuit cir(α) is OIF, and
– if α is a leaf in M� then α is constant.

Proof. Since enodes are full subtrees ofM, the modules b and c from Definition 3
belong to different enodes. Each enode is therefore either a leaf or has exactly
two child enodes. Hence, M� is a full binary tree. The uniqueness of bo(α)
implies that all variable gates of cir(α) belong to bo(α). Since cir(α) is EV, all
but the ancestor enodes of bo(α) are constant. Hence, all non-constant modules
in α are on the directed path from the root of α to bo(α). Since cir(α) is EV, we
conclude, by Lemma 2, that cir(α) is OIF. If α is a leaf in M�, then cir(α) has
no variable gates. Then α is constant, because cir(α) is EV. ��

Initialization. Initially, 2 is set to be the reflexive, symmetric, and transitive
closure of 2′, where a 2′ b iff (a, b) ∈ E and there is no c different from b s.t.
(a, c) ∈ E.

X∃ and X∀ operators in the LTL formula give rise to modules with only a
single child in M. The initialization of 2 via 2′ causes the corresponding simple
paths in M to collapse, such that M� is a full binary tree. Note that all classes
of 2 are subtrees of M.

To ensure well-formedness, we evaluate (in parallel) all non-singleton enodes
that contain constants. These are exactly the enodes that correspond to modules
originating from X∃ and X∀ operators stacked upon a single constant module.
From the definition of EmbC it is clear that those nodes are OIF and thus the
evaluation can be performed in parallel within logDCFL, by using Corollary 1.

Lemma 4. After the initial evaluation, 2 is well-formed. ��

Tree contraction. Each contraction step combines a leaf enode of M� with
its parent and its sibling into a single enode. Well-formedness is preserved by
evaluating the circuit of the resulting enode.

Lemma 5. Let M� be well-formed. Given an enode α of M� with child enodes
β and γ. Let β be a leaf enode. The evaluation of cir(α∪β∪γ) can be performed
in logDCFL. Updating 2 such that α 2 β 2 γ preserves well-formedness of M�.

Proof. Let A = α ∪ β ∪ γ. cir(α) is OIF and β is constant. Thus the circuit
cir(α∪β∪const(γ)) is OIF and can be evaluated in logDCFL. After the evaluation,
since cir(γ) is EV, all constants in cir(A) are sinks, and, hence, cir(A) is EV. M�
is a full binary tree. Thus the enodes α, β, γ together form a full subtree in M�.
M� is the quotient of M, and α, β, and γ are each full subtrees of M. It follows
that A is a full subtree in M as well. In the subtree A of M, the module bo(α)
is an internal node. Since β is a leaf, bo(β) does not exist. If γ is a leaf, A also
becomes a leaf. Otherwise, bo(A) = bo(γ). ��
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Since, as we show in the following lemma, we can a contract a constant portion of
the enodes in parallel, the time consumed for the full contraction is logarithmic
in the size of M.

Lemma 6. The circuit C(φ, ρ) can be evaluated within AC1(logDCFL).

Proof. First, number the enodes of M� that have a child that is a leaf from left
to right (using depth first search on the tree, starting with 1) in L. Then, on every
odd-numbered enode, apply Lemma 5. Since the involved circuits are disjoint
for all odd-numbered enodes, all applications of Lemma 5 can be performed in
parallel. This eliminates at least

⌈
(‖M
‖+1)/2

2

⌉
leaves from the tree resulting

in a tree M′
� with ‖M′

�‖ ≤ �3/4‖M�‖�. Iterating this procedure leads in
O(log ‖M�‖) steps to a single leaf enode. At this point, C(φ, ρ) is fully evaluated.
The whole procedure can be implemented as an AC1 circuit with logDCFL oracle
gates.

The reduction circuit operates in stages. Each stage is structured as follows:
an L oracle gate that takes the current M� as input identifies the sets of enodes
to be contracted on the current stage and feeds these into logDCFL oracle gates
that implement Lemma 5. The remaining enodes are just copied. The output
of the stage is the updated version of M�. Since L ⊆ logDCFL, each stage is of
constant depth. A logarithmic number of sequential stages is stacked upon an
initialization step that consists of a single L oracle gate that initializes M� from
φ and ρ and parallel logDCFL oracle gates that evaluate enodes that initially are
simple paths in M. ��

Applying the evaluation algorithm to the circuit defined in Definition 2, we
obtain an AC1(logDCFL) solution to the path checking problem.

Theorem 2. The LTL path checking problem is in AC1(logDCFL).

Proof. Given an LTL formula φ and a path ρ. In L build the circuit C(φ, ρ).
Apply Lemma 6. The value of c0,0 is the result. ��

4 Conclusions

We have presented a positive answer to the question whether LTL can be checked
efficiently in parallel on finite paths. Our construction can, for example, be used
in hardware-based monitors to reduce the time needed to evaluate a block of
path positions from linear to just logarithmic.

The LTL path checking problem is closely related to the membership prob-
lems for the various types of regular expressions: the membership problem is
in NL for regular expressions [14], in logCFL for semi-extended regular expres-
sions [20], and P-complete for star-free regular expressions and extended regular
expressions [19]. Of particular interest is the comparison to the star-free reg-
ular expressions, since they have the same expressive power as LTL on finite
paths [16]. With AC1(logDCFL) vs. P, our result demonstrates a computational
advantage for LTL.
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Tight bounds for the complexity of LTL path checking remain a challenging
open problem. There is some hope to further reduce the upper bound towards
NC1, the currently known lower bound, because our construction relies on the
algorithm by Chakraborty and Datta (cf. Theorem 1) for evaluating monotone
Boolean planar circuits with all constant gates on the outer face. The circuits
that appear in our construction actually exhibit much more structure. However,
we are not aware of any algorithm that takes advantage of that and performs
better than logDCFL.
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Abstract. The exponential modality of linear logic associates a commu-
tative comonoid !A to every formula A in order to duplicate it. Here, we
explain how to compute the free commutative comonoid !A as a sequen-
tial limit of equalizers in any symmetric monoidal category where this
sequential limit exists and commutes with the tensor product. We then
apply this general recipe to two familiar models of linear logic, based
on coherence spaces and on Conway games. This algebraic approach en-
ables to unify for the first time apparently different constructions of the
exponential modality in spaces and games. It also sheds light on the sub-
tle duplication policy of linear logic. On the other hand, we explain at
the end of the article why the formula does not work in the case of the
finiteness space model.

1 Introduction

Linear logic is based on the principle that every hypothesis Ai should appear
exactly once in a proof of the sequent

A1, . . . , An / B. (1)

This logical restriction enables to represent the logic in monoidal categories,
along the idea that every formula denotes an object of the category, and every
proof of the sequent (1) denotes a morphism

A1 ⊗ · · · ⊗An −→ B

where the tensor product is thus seen as a linear kind of conjunction. Note
that, for clarity’s sake, we use the same notation for a formula A and for its
interpretation (or denotation) in the monoidal category.

This linearity policy on proofs is far too restrictive in order to reflect tradi-
tional forms of reasoning, where it is accepted to repeat or to discard an hy-
pothesis in the course of a logical argument. This difficulty is nicely resolved by
providing linear logic with an exponential modality, whose task is to strengthen
every formula A into a formula !A which may be repeated or discarded. From a se-
mantic point of view, the formula !A is most naturally interpreted as a comonoid

� This work has been supported by the ANR Curry-Howard Correspondence and Con-
currency Theory (CHOCO).
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of the monoidal category. Recall that a comonoid (C, d, u) in a monoidal cate-
gory C is defined as an object C equipped with two morphisms

d : C −→ C ⊗ C u : C −→ 1

where 1 denotes the monoidal unit of the category. The morphism d and u
are respectively called the multiplication and the unit of the comonoid. The two
morphisms d and u are supposed to satisfy associativity and unitality properties,
neatly formulated by requiring that the two diagrams

C d

��

d

��
C ⊗ C

C⊗d ��

C ⊗ C

d⊗C��
C ⊗ C ⊗ C

C
d

��

d

��
id

��

C ⊗ C

u⊗C ��

C ⊗ C

C⊗u��C

commute. Note that we draw our diagrams as if the category were strictly
monoidal, although the usual models of linear logic are only weakly monoidal.

The comonoidal structure of the formula !A enables to interpret the contrac-
tion rule and the weakening rule of linear logic

π...
Γ, !A, !A,Δ / B

Contraction
Γ, !A,Δ / B

π...
Γ,Δ / B

Weakening
Γ, !A,Δ / B

by pre-composing the interpretation of the proof π with the multiplication d in
the case of contraction

Γ ⊗ !A ⊗ Δ
d−→ Γ ⊗ !A ⊗ !A ⊗ Δ

π−→ B

and with the unit u in the case of weakening

Γ ⊗ !A ⊗ Δ
u−→ Γ ⊗ Δ

π−→ B.

Besides, linear logic is generally interpreted in a symmetric monoidal category,
and one requires that the comonoid !A is commutative, this meaning that the
following equality holds:

A
d �� A⊗A

symmetry �� A⊗A = A
d �� A⊗A .

When linear logic was introduced by Jean-Yves Girard, twenty years ago, it
was soon realized by Robert Seely and others that the multiplicative fragment
of the logic should be interpreted in a ∗-autonomous category, or at least, a
symmetric monoidal closed category C ; and that the category should have
finite products in order to interpret the additive fragment of the logic, see [10].
A more difficult question was to understand what categorical properties of the
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exponential modality “ ! ” were exactly required, in order to define a model
of propositional linear logic – that is, including the multiplicative, additive and
exponential components of the logic. However, Yves Lafont found in his PhD
thesis [6] a simple way to define a model of linear logic. Recall that a comonoid
morphism between two comonoids (C1, d1, u1) and (C2, d2, u2) is defined as a
morphism f : C1 −→ C2 such that the two diagrams

C1
f ��

d1

��

C2

d2

��
C1 ⊗ C1

f⊗f �� C2 ⊗ C2

C1
f ��

u1 ��

C2

u2��1

commute. One says that the commutative comonoid !A is freely generated by an
object A when there exists a morphism

ε : !A −→ A

such that for every morphism

f : C −→ A

from a commutative comonoid C to the object A, there exists a unique comonoid
morphism

f † : C −→ !A

such that the diagram

!A

ε

��

C

f ��

f† ��

A

(2)

commutes. From a logical point of view, !A is the weakest comonoid that implies
A. Lafont noticed that the existence of a free commutative comonoid !A for every
object A of a symmetric monoidal closed category C induces automatically a
model of propositional linear logic. Recall however that this is not the only way
to construct a model of linear logic. A folklore example is the coherence space
model, which admits two alternative interpretations of the exponential modality:
the original one, formulated by Girard [3] where the coherence space !A is defined
as a space of cliques, and the free construction, where !A is defined as a space of
multicliques (cliques with multiplicity) of the original coherence space A.

In this paper, we explain how to construct the free commutative comonoid in
the symmetric monoidal categories C typically encountered in the semantics of
linear logic. Our starting point is the well-known formula defining the symmetric
algebra

SA =
⊕
n∈N

A⊗n / ∼n (3)
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generated by a vector space A. Recall that the formula (3) computes the free
commutative monoid associated to the object A in the category of vector spaces
over a given field �. The group Σn of permutations on {1, . . . ,n} acts on the
vector space A⊗n, and the vector space A⊗n/ ∼n of equivalence classes (or orbits)
modulo the group action is defined as the coequalizer of the n! symmetries

A⊗n
symmetry ��···
symmetry

�� A⊗n
coequalizer �� A⊗n/ ∼n

in the category of vector spaces. Since a comonoid in the category C is the same
thing as a monoid in the opposite category C op, it is tempting to apply the dual
formula to (3) in order to define the free commutative comonoid !A generated by
an object A in the monoidal category C . Although the idea is extremely naive, it
is surprisingly close to the solution... Indeed, one significant aspect of our work
is to establish that the equalizer An of the n! symmetries

An
equalizer �� A⊗n

symmetry ��···
symmetry

�� A⊗n (4)

exists in several distinctive models of linear logic, and provides there the n-th
layer of the free commutative comonoid !A generated by the object A. This prin-
ciple will be nicely illustrated in Section 3 by the equalizer An in the category of
coherence spaces, which contains the multicliques of cardinality n in the coher-
ence space A ; and in Section 4 by the equalizer An in the category of Conway
games, which defines the game where Opponent may open up to n copies of the
game A, one after the other, in a sequential order.

Of course, the construction of the free exponential modality does not stop
here: one still needs to combine the layers An together in order to define !A
properly. One obvious solution is to apply the dual of formula (3) and to define
!A as the infinite cartesian product

!A =
�

n∈N

An. (5)

This formula works perfectly well for symmetric monoidal categories C where
the infinite product commutes with the tensor product, in the sense that the
canonical morphism

X ⊗
( �

n∈N

An
)

−→
�

n∈N

( X ⊗ An ) (6)

is an isomorphism. This useful algebraic degeneracy is not entirely uncommon:
it typically happens in the relational model of linear logic, where the free expo-
nential !A is defined according to formula (5) as the set of finite multisets of A,
each equalizer An describing the set of multisets of cardinality n.

On the other hand, the formula (5) is far too optimistic in general, and does
not work when one considers the familiar models of linear logic based either on
coherence spaces, or on sequential games. It is quite instructive to apply the
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formula to the category of Conway games: it defines a game !A where the first
move by Opponent selects a component An, and thus decides the number n of
copies of the game A played subsequently. This departs from the free commu-
tative comonoid !A which we shall examine in Section 4, where Opponent is
allowed to open a new copy of the game A at any point of the interaction.

So, there remains to understand how the various layersAn should be combined
together inside !A in order to perform this particular copy policy. One well-
inspired temptation is to ask that every layer An is “glued” inside the next
layer An+1 in order to allow the computation to transit from one layer to the
next in the course of interaction. One simple way to perform this “glueing” is
to introduce the notion of (co)pointed (or affine) object. By pointed object in
a monoidal category C , one means a pair (A, u) consisting of an object A and
of a morphism u : A −→ 1 to the monoidal unit. So, a pointed object is the
same thing as a comonoid, without a comultiplication. It is folklore that the
category C• of pointed objects and pointed morphisms (defined in the expected
way) is symmetric monoidal, and moreover affine in the sense that its monoidal
unit 1 is terminal.

The main purpose of this paper is to compute (in Section 2) the free com-
mutative comonoid !A of the category C as a sequential limit of equalizers. The
construction is excessively simple and works every time the sequential limit ex-
ists in the category C , and commutes with the tensor product. We establish
that the category of coherence spaces (in Section 3) and the category of Con-
way games (in Section 4) fulfill these hypotheses. This establishes that despite
their difference in style, the free exponential modalities are defined in exactly
the same way in the two models. We then clarify (in Section 5) the topological
reasons why neither formula (5) nor the sequential limit of equalizers formulated
below (9) define the free exponential modality in the finiteness space model of
linear logic recently introduced by Thomas Ehrhard [2].

2 The Sequential Limit Construction

Before stating the general proposition, we present the construction in three steps.

First step. We make the mild hypothesis that the object A of the monoidal
category C generates a free pointed object (A•, u) in the affine category C•.
This typically happens when the forgetful functor C• −→ C has a right adjoint.
Informally speaking, the purpose of the pointed object A• is to describe one copy
of the object A, or none... Note that this free pointed object is usually quite easy
to define: in the case of coherence spaces, it is the space A• = A & 1 obtained
by adding a point to the web of A ; in the case of Conway games, it is the game
A• = A itself, at least when the category is restricted to Opponent-starting
games.

Second step. The object A≤n is then defined as the equalizer (A•)n of the dia-
gram
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A≤n
equalizer �� A⊗n•

symmetry ��···
symmetry

�� A⊗n• (7)

in the category C . The purpose of A≤n is to describe all the layers Ak at the
same time, for k ≤ n. Typically, the object A≤n computed in the category of
coherence spaces is the space of all multicliques in A of cardinality less than or
equal to n.

Third step. We take advantage of the existence of a canonical morphism
A≤n A≤n+1 induced by the unit u : A• → 1 of the pointed object A•,
and define the object A∞ as the sequential limit of the sequence

1 A≤1 A≤2 · · · A≤n A≤n+1 · · · (8)

with limiting cone defined by projection maps

A∞
projection �� A≤n.

The 2-dimensional study of algebraic theories and PROPs recently performed
by Melliès and Tabareau [8] ensures that this recipe in three steps defines the
free commutative comonoid !A as the sequential limit A∞... when the object A
satisfies the following limit properties in the category C .

Proposition 1. Consider an object A in a symmetric monoidal category C .
Suppose that the object A generates a free pointed object (A•, u). Suppose more-
over that the equalizer (7) and the sequential limit (8) exist and commute with
the tensor product, in the sense that

X ⊗A≤n
X⊗ equalizer �� A⊗n•

X⊗ symmetry ��···
X⊗ symmetry

�� X ⊗A⊗n•

defines an equalizer diagram, and the family of maps

X ⊗A∞
X⊗ projection �� X ⊗A≤n

defines a limiting cone, for every object X of the category C . In that case, the
free commutative comonoid !A coincides with the sequential limit A∞.

The proof of Proposition 1 is based on two observations. The first observation is
that the category C• coincides with the slice category C ↓ 1, this implying that
the forgetful functor C• → C creates limits. Consequently, the limiting process
defining the object A∞ in the category C may be alternatively carried out in the
category C•. The second observation is that the limiting process defining A∞

provides a pedestrian way to compute the end formula

A∞ =
∫
n∈Injop

FinSet(n, 1)⊗ (A•)⊗n =
∫
n∈Injop

(A•)⊗n (9)
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in the category C•. As explained in our work on categorical model theory [8], this
end formula provides an explicit computation of the object RanfA•(1), where
RanfA• : FinSetop → C• denotes the right Kan extension of the pointed ob-
ject A• : Injop → C• along the change of basis f : Injop → FinSetop going
from the theory of pointed objects to the theory of commutative comonoids.
Recall that the category Inj has finite ordinals [n] = {0, . . . ,n− 1} as objects,
and injections [p] → [q] as morphisms, whereas the category FinSet has func-
tions [p] → [q] as morphisms. Proposition 1 says that the end formula defines the
free commutative comonoid when the end exists and commutes with the tensor
product.

3 Coherence Spaces

In this section, we compute the free exponential modality in the category of
coherence spaces defined by Jean-Yves Girard [3]. A coherence space E = (|E|,*+
) consists of a set |E| called its web, and of a binary reflexive and symmetric
relation *+ over E. A clique of E is a set X of pairwise coherent elements of the
web:

∀e1, e2 ∈ X, e1 *+ e2.

We do not recall here the definition of the category Coh of coherence spaces.
Just remember that a morphism R : E → E′ in Coh is a clique of the coherence
space E � E′, so in particular, R is a relation on the web |E| × |E′|.

It is easy to see that the tensor product does not commute with cartesian
products: simply observe that the canonical morphism

A⊗ (1 & 1) −→ (A⊗ 1) & (A⊗ 1)

is not an isomorphism. This explains why formula (5) does not work, and why
the construction of the free exponential modality requires a sequential limit,
along the line described in the introduction.

First step: compute the free affine object. Computing the free pointed (or
affine) object on a coherence space E is easy, because the category Coh has
cartesian products: it is simply given by the formula

E• = E & 1.

It is useful to think of E&1 has the space of multicliques of E with at most one
element: the very first layer of the construction of the free exponential modality.
Indeed, the unique element of 1 may be seen as the empty clique, while every
element e of E may be seen as the singleton clique {e}. Recall that a multiclique
of E is just a multiset on |E| whose underlying set is a clique of E.

Second step: compute the symmetric tensor power E≤n. It is not difficult
to see that the equalizer E≤n of the symmetries
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(E & 1)⊗n
symmetry ��···
symmetry

�� (E & 1)⊗n

is given by the set of multicliques of E with at most n elements, two multi-
cliques being coherent iff their union is still a multiclique. As explained in the
introduction, one also needs to check that the tensor product commutes with
those equalizers. Consider a cone

YR

��

R′

��
X ⊗ (E & 1)⊗n

X⊗symmetry ��···
X⊗symmetry

�� X ⊗ (E & 1)⊗n
(10)

First, observe that R = R′ because one may choose the identity among the n!
symmetries. Next, we show that the morphism R factors uniquely through the
morphism

X ⊗ E≤n
X⊗ equalizer �� X ⊗ (E & 1)⊗n

To that purpose, one defines the relation

R≤n : Y −−→ X ⊗ E≤n by y R≤n (x, μ) iff y R (x, u)

where μ is a multiset of |E| of cardinal less than n, and u is any word of length n
whose letters with multiplicity in |E & 1| = |E| � {∗} define the multiset μ.
Remark that the fact that R equalizes the symmetries implies that any u′

defining the same multiset μ will also be in the relation: y R (x, u′). We let
the reader check that the definition is correct, that it defines a clique R≤n of
Y � (X ⊗ E≤n), and that it is the unique way to factor R through (10).

Third step: compute the sequential limit

E≤0 = 1 E≤1 = (E & 1) E≤2 E≤3 · · ·

whose arrows are (dualized) inclusions from E≤n into E≤n+1. Again, it is a basic
fact that the limit !E of the diagram is given by the set of all finite multicliques,
two multicliques being coherent iff their union is a multiclique. At this point,
one needs to check that the sequential limit commutes with the tensor product.
Consider a cone

YR0

��
R1��

R2 ��

R3

��
X ⊗ 1 X ⊗ (E & 1) X ⊗ E≤2 X ⊗ E≤3 · · ·

and define the relation

R∞ : Y −−→ X⊗!E by y R∞ (x, μ) iff ∃n, y Rn (x, u)
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where μ is a multiset of elements of |E| and the element u of the web of E≤n is
any word of length n whose letters with multiplicity in |E&1| = |E|�{∗} define
the multiset μ. We let the reader check that R∞ is a clique of Y � (X⊗!E)
and defines the unique way to factor the cone. This concludes the proof that
the sequential limit !E defines the free commutative comonoid generated by E
in the category Coh of coherence spaces.

4 Conway Games

In this section, we compute the free exponential modality in the category of
Conway games introduced by André Joyal in [4]. One unifying aspect of our
approach is that the construction works in exactly the same way as for coherence
spaces.

Conway games. A Conway game A is an oriented rooted graph (VA, EA, λA)
consisting of (1) a set VA of vertices called the positions of the game; (2) a
set EA ⊂ VA × VA of edges called the moves of the game; (3) a function λA :
EA → {−1,+1} indicating whether a move is played by Opponent (−1) or by
Proponent (+1). We write �A for the root of the underlying graph. A Conway
game is called negative when all the moves starting from its root are played by
Opponent.
A play s = m1 ·m2 · . . . ·mk−1 ·mk of a Conway game A is a path s : �A � xk
starting from the root �A

s : �A
m1−−→ x1

m2−−→ . . .
mk−1−−−→ xk−1

mk−−→ xk

Two paths are parallel when they have the same initial and final positions. A
play is alternating when

∀i ∈ {1, . . . , k − 1}, λA(mi+1) = −λA(mi).

We note PlayA the set of plays of a game A.

Dual. Every Conway game A induces a dual game A∗ obtained simply by re-
versing the polarity of moves.

Tensor product. The tensor product A ⊗ B of two Conway games A and B
is essentially the asynchronous product of the two underlying graphs. More for-
mally, it is defined as:

– VA⊗B = VA × VB ,
– its moves are of two kinds :

x⊗ y →
{
z ⊗ y if x→ z in the game A
x⊗ z if y → z in the game B,

– the polarity of a move in A⊗B is the same as the polarity of the underlying
move in the component A or the component B.
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The unique Conway game 1 with a unique position � and no move is the neutral
element of the tensor product. As usual in game semantics, every play s of the
game A ⊗ B can be seen as the interleaving of a play s|A of the game A and a
play s|B of the game B.

Strategies. Remark that the definition of a Conway game does not imply that
all the plays are alternating. The notion of alternation between Opponent and
Proponent only appears at the level of strategies (i.e. programs) and not at the
level of games (i.e. types). A strategy σ of a Conway game A is defined as a non
empty set of alternating plays of even length such that (1) every non empty play
starts with an Opponent move; (2) σ is closed by even length prefix; (3) σ is
deterministic, i.e. for all plays s, and for all moves m,n,n′,

s ·m · n ∈ σ ∧ s ·m · n′ ∈ σ ⇒ n = n′.

The category of Conway games. The category Conway has Conway games
as objects, and strategies σ of A∗ ⊗ B as morphisms σ : A → B. The compo-
sition is based on the usual “parallel composition plus hiding” technique and
the identity is defined by a copycat strategy. The resulting category Conway is
compact-closed in the sense of [5].

It appears that the category Conway does not have finite nor infinite prod-
ucts [9]. For that reason, we compute the free exponential modality in the full
subcategory Conway of negative Conway games, which is symmetric monoidal
closed, and has products. We explain in a later stage how the free construction
on the subcategory Conway induces a free construction on the whole category.

First step: compute the free affine object. The monoidal unit 1 is terminal
in the category Conway . In other words, every negative Conway game may be
seen as an affine object in a unique way, by equipping it with the empty strategy
tA : A→ 1. In particular, the free affine object A• is simply A itself.

Second step: compute the symmetric tensor power. A simple argument
shows that the equalizer An = A≤n of (7) is the following Conway game:

– the positions of the game An are the finite words w = x1 · · ·xn of length n,
whose letters are positions xi of the game A, and such that xi+1 = �A is
the root of A whenever xi = �A is the root of A, for every 1 ≤ i < n. The
intuition is that the letter xk in the position w = x1 · · ·xn of the game An

describes the position of the k-th copy of A, and that the i+ 1-th copy of A
cannot be opened by Opponent unless all the i-th copy of A has been already
opened.

– its root is the word �An = �A · · · �A where the n the positions xk are at the
root �A of the game A,

– a move w→ w′ is a move played in one copy:

w1 x w2 → w1 y w2
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where x → y is a move of the game A. Note that the condition on the
positions implies that when a new copy of A is opened (that is, when x = �A)
no position in w1 is at the root, and all the positions in w2 are at the root.

– the polarities of moves are inherited from the game A in the obvious way.

Note that An may be also seen as the subgame of A⊗n where the i + 1-th copy
of A is always opened after the i-th copy of A.

Third step: compute the sequential limit. We now consider Diagram (8)

A0 = 1 A1 = A A2 A3 · · ·

whose morphisms are the partial copycat strategies An ← An+1 identifying An

as the subgame of An+1 where only the first n copies of A are played. The limit
of this diagram in the category Conway is the game A∞ defined in the same
way as A≤n except that its positions w = x1 · x2 · · · are infinite sequences of
positions of A, all of them at the root except for a finite prefix x1 · · ·xk. It is
possible to show that A∞ is indeed the limit of this diagram, and that the tensor
product commutes with this limit. From this, we deduce that the sequential limit
A∞ describes the free commutative comonoid in the category Conway .

It is nice to observe that the free construction extends to the whole cate-
gory Conway of Conway games. Indeed, one shows easily that every commu-
tative comonoid in the category of Conway games is in fact a negative game.
Moreover, the inclusion functor from Conway to Conway has a right adjoint,
which associates to every Conway game A, the negative Conway game A ob-
tained by removing all the Proponent moves from the root �A. By combining
these two observations, we obtain that (A )∞ is the free commutative comonoid
generated by a Conway game A in the category Conway.

5 Finiteness Spaces – An Inviting Counter-Example

In Sections 3 and 4 we have seen how to refine Formula (5) into Formula (9)
in order to compute the free exponential modality in the coherence space and
the Conway game models. We conclude the paper by explaining why the two
formulas do not work in the finiteness space model. Recall that there are two
levels of finiteness spaces. On the one hand, relational finiteness spaces constitute
a refinement of the relational model, while on the other hand linear finiteness
spaces are linearly topologized vector spaces [7] built on the relational layer. We
explain the failure of our two formulas at both levels. We refer the reader to [2]
for an introduction to finiteness spaces.

Relational finiteness spaces. Two subsets u, u′ of a countable set E are called
orthogonal, denoted by u ⊥ u′, whenever their intersection u ∩ u′ is finite. The
orthogonal of G ⊆ P(E) is then defined by G⊥ = {u′ ⊆ E |∀u ∈ G, u ⊥ u′}.
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A relational finiteness space E = (|E|,F(E)) is given by its web (a count-
able set |E|) and by a set F(E) ⊆ P(|E|) orthogonally closed, i.e. such that
F(E)⊥⊥ = F(E). The elements of F(E) (resp. F(E)⊥) are called finitary (resp.
antifinitary). A finitary relation R between two finiteness spaces E1 and E2 is a
subset of |E1| × |E2| such that

∀u ∈ F(E1), R · u :=
{
b ∈ |E2|

∣∣ ∃a ∈ u, (a, b) ∈ R
}
∈ F(E2),

∀v′ ∈ F(E2)⊥, tR · v′ :=
{
a ∈ |E1|

∣∣ ∃b ∈ v′, (a, b) ∈ R
}
∈ F(E1)⊥.

The category RelFin of relational finiteness spaces and finitary relations is
∗-autonomous. As such, it provides a model of multiplicative linear logic (MLL).

The exponential modality ! is then defined as follows [2]: given a finiteness
space E, the finiteness space !E has its web |!E| = Mfin(|E|) defined as the set
of finite multisets μ : |E| → N and its finiteness structure defined as

F(!E) = {M ∈Mfin(|E|) | ΠE(M) ∈ F(E)},

where for every M ∈Mfin(|E|), ΠE(M) def= {x ∈ |E| | ∃μ ∈M, μ(x) �= 0}.
Given a finiteness space E, let us compute the finiteness space E∞ defined by

Formula (9). The free pointed space generated by E exists, and is defined as

E•
def= E & 1.

The equalizer E≤n of the n! symmetries exists in RelFin and provides the n-th
layer of !E. Its web |E≤n| = M≤n

fin (|E|) consists of the multisets of cardinality
at most n and its finiteness structure is defined as

F(E≤n) = { Mn ⊆M≤n
fin (|E|) | ΠE(Mn) ∈ F(E) }.

Finally, the limit defined by Formula (9) is given by the finiteness space E∞

whose web is |E∞| = Mfin(|E|) and whose finiteness structure is

F (E∞) =
{

M ∈Mfin(|E|)
∣∣∣ ∀n ∈ N, Mn = M ∩M≤n

fin (|E|),
ΠE(Mn) ∈ F(E).

}
.

Note that the webs of !E and of E∞ are equal, and coincide in fact with the free
exponential in the relational model. However, it is obvious that the finiteness
structures of !E and E∞ do not coincide in general:

F(!E) � F (E∞) .

In fact, Formula (9) does not work here because the sequential limit (8) does
not commute with the tensor product. This phenomenon comes from the fact
that an infinite directed union of finitary sets is not necessarily finitary in the
finiteness space model – whereas an infinite directed union of cliques is a clique
in the coherence space model, this explaining the success of Formula (9) in this
model. The interested reader will check that Formula (5) computes the same
finiteness space E∞ as Formula (9) because E≤n coincides with the cartesian
product of Ek for k ≤ n. We now turn to the topological version of finiteness
spaces to understand the topological difference between !E and E∞.
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Linear finiteness spaces. Let � be an infinite field endowed with the discrete
topology. Every relational finiteness space E generates a vector space, the linear
finiteness space

�〈E〉 =
{
x ∈ �|E|

∣∣ |x| ∈ F(E)
}
,

where for any sequence x ∈ �
|E|, |x| = {a ∈ |E| | xa �= 0}. Endowed with a

topology defined with respect to the antifinitary parts, �〈E〉 is a linearly topol-
ogized space [7]. The category LinFin, with linear finiteness spaces as objects
and linear continuous functions as morphisms, is ∗-autonomous and provides a
model of MLL.

We now consider �〈E∞〉 and �〈!E〉, or more precisely their duals since the
functional definition is more intuitive. In LinFin, the dual space �〈E〉⊥ =
(�〈E〉 � �) consists of continuous linear forms and is endowed with the topology
of uniform convergence on linearly compact subspaces, i.e. subspaces K ⊆ �〈E〉
that are closed and have a finitary support |K| def= ∪x∈K |x|.

It appears that �〈E∞〉⊥ is the space of polynomials1. However, thanks to
the Taylor formula shown in [2], the functions in �〈!E〉⊥ are analytic, i.e. they
coincide with the limits of converging sequences of polynomials. Moreover, the
topology of �〈E∞〉⊥ is generated by the subspaces whose restrictions to polyno-
mials of degree at most n are opens. This topology differs from the linearly com-
pact open topology. Therefore, �〈E∞〉⊥ is topologically different from �〈!E〉⊥,
which is the completion of the space of polynomials, endowed with the linearly
compact open topology as shown in [1].

In a word, the dual of �〈E∞〉 gives rise to a simple space of computation,
the polynomials. Its topology is related to the local information given at each
degree. On the contrary, the dual of the exponential modality �〈!E〉 gives rise
to the richer space of analytic functions, where the Taylor formula makes sense.
Its topology is related to a global information which is not reduced to its fi-
nite approximations. One main open question in the future is to understand the
algebraic nature of this exponential construction, as was achieved here for the
coherence space and the Conway game model.

Acknowledgements. The authors would like to thank Thomas Ehrhard and
Martin Hyland for enlightening discussions and feedbacks.
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Abstract. We consider an extension of the guarded fragment in which
one can guard quantifiers using the transitive closure of some binary rela-
tions. The obtained logic captures the guarded fragment with transitive
guards, and in fact extends its expressive power non-trivially, preserving
the complexity: we prove that its satisfiability problem is 2Exptime-
complete.

1 Introduction

The guarded fragment of first-order logic, GF, introduced in [1], is a well-known
generalisation of modal logics. The main idea is to allow only a restricted form
of quantification, simulating local nature of the modal operators ♦, �. GF re-
tains a lot of nice properties of modal logics, including (a generalisation of) the
tree model property, the finite modal property and the robust decidability. This
makes it a promising starting point for logics for reasoning about programs and
hardware.

Many extensions and variants of GF have been extensively investigated last
years. One important direction is considering satisfiability of GF over restricted
classes of structures, in which some distinguished binary symbols are interpreted
as transitive relations (or, alternatively phrased, satisfiability of GF extended
by positive statements about transitivity of some binary relations). It appeared
([7], [3]) that allowing transitive symbols to appear in arbitrary positions in
formulas leads quickly to undecidability. However, if we restrict the usage of
transitive symbols to guards only, the satisfiability problem becomes decidable
and 2Exptime-complete ([11], [9]). The lower bound can be proved even in the
presence of only two variables. This two-variable version, [GF2 + TG], captures
(and non-trivially extends) modal logics K4, S4 and S5.

Transitivity of some binary relations is a desirable property in many reasoning
tasks. However, to reason about programs it would be nice to have some way of
expressing recursion. One idea is to extend GF by least and greatest fixed point
operators. It was done in [5]. This way we obtain a powerful logic embedding
� Part of the M.Sc. thesis, under the supervision of Emanuel Kieroński.

�� Partially supported by Polish Ministry of Science and Higher Education research
project N206 022 31/3660, 2006/2009.

S. Albers et al. (Eds.): ICALP 2009, Part II, LNCS 5556, pp. 261–272, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



262 J. Michaliszyn

modal μ-calculus with backward modalities. Another idea is to add to GF some
form of the transitive closure operator. In this paper we consider [GF2++], an
extension of the two-variable guarded fragment, in which the transitive closure
operator can be applied to some atomic formulas. We note that augmenting
fragments of first-order logic even by a week form of the transitive closure leads
quickly to undecidability (see, e. g., [6]). Thus we have to be careful: analogously
to the variant with transitive relations we restrict the usage of the transitive
closure operator + to symbols appearing only in guards. More formally, the
signature has a distiguished subset Σ+, containing binary symbols, which may be
used only in guards, either individually or under the transitive closure operator.
We note that a variant, in which symbols from Σ+ are used additionally outside
guards, but not under the transitive closure, is undecidable.

A tempting idea is to go towards an extension of GF which would be strong
enough to embed propositional dynamic logic, PDL [2]. However, this is not
easy. For example, a variant allowing generalised guards of the form T 4S(x, y),
simulating the composition of actions, is undecidable, even if the symbols which
can be used in compositions are allowed only in guards, and there is no transitive
closure operator [8].

[GF2++] easily simulates [GF2 + TG]: in a formula of [GF2 + TG] instead of
a transitive relation T we can simply use a transitive closure of a relation T ′.
However [GF2++] is strictly more expressive than [GF2 + TG]. For example,
consider the formula ∃x(S(x)∧∃y(xT+y ∧R(y))), stating that from some point
in S there exists a T -path to a point in R. This is clearly not a first-order
property and thus it cannot be expressed in [GF2 + TG].

We prove that the satisfiability problem for [GF2++] is decidable in 2Exp-

time, exactly as [GF2 + TG]. Similarly to the case of [GF2 + TG] the proof is
based on a tree-like model property. However, there are some serious complica-
tions, due to the fact that [GF2++] can speak both about direct successors and
about reachable elements. For example, in contrast to [GF2 + TG], for a given
element its witnesses cannot always be its direct successors.

The paper is organised as follows. In Section 2 we give some basic definitions
and introduce a normal form of formulas. In Section 3 we prove a useful result
on the two-variable logic FO2, which will be an important tool in our proof.
In Section 4 we show that every satisfiable [GF2++] formula in normal form
has a model of a special, tree-like shape. In Section 5 we outline an alternating
algorithm checking the existence of such a special model for a given normal form
sentence.

2 Preliminary

2.1 Logics

We work on First Order Logic (FO) with purely relational signatures, containing
no constants and functional symbols. Let GF stand for the Guarded Fragment
of First Order Logic defined as follows.
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– every atomic formula belongs to the language of GF
– GF is closed under boolean operators
– if ψ belongs to the language of GF, x,y are vectors of variables and α(x,y)

is an atomic formula that contains all variables from x and y, then formulas
∀x.α(x,y) ⇒ ψ(x,y) and ∃y.α(x,y)∧ψ(x,y) belong to the language of GF

Formulas α(x,y) are called guards. Note that x = x is a special case of a guard.
Logic with the Transitive Closure In Guards ([GF++]) is an extension of GF in

which some generalised guards are allowed. We divide the signature Σ into three
disjoint parts Σ = ΣU ∪ΣB ∪Σ+. Σ+ and ΣB are sets of binary symbols, where
symbols from Σ+ cannot appear outside guards, and ΣU is a set of symbols with
arity different than 2. For a given symbol T ∈ Σ+ we can form a guard in a usual
way, e. g. xTy, or by adding operator + to T , e. g. yT+x. The semantics of the
operator + is defined as usual: T+ denotes the transitive closure of T .

We work with two-variable variants of the logics only. We denote them by FO2,
GF2, [GF2++]. Without loss of generality we assume that signatures contain only
unary and binary symbols.

2.2 Terminology

1-types and 2-types of elements in a structure over a signature Σ are defined in a
standard way. The (atomic) 1-type of an element v is the set of atomic formulas
with free variable x satisfied by v. Similarly, the 2-type of a pair of elements
v, w is the set of atomic formulas with free variable x, y satisfied by v, w. We
assume that 2-types are proper, i. e. contain x �= y. For a 1-type t, let t[x/y]
stand for the set that contains the formulas from t in which each occurrence of
x is replaced by y. For a 2-type t let t|B, which is called a restriction of t to
family B, stand for the set that contains exactly those atomic formulas from t
that either have only one free variable or their relation symbol belongs to B.
Similarly, tB = t|{B} is called a restriction of t to the relation B.

To simplify the notation, we introduce for a binary symbol R a auxiliary
symbol R−1, whose intended meaning is to denote the inverse relation of R. Let,
for a given set of binary relations or binary relation symbols T , T −1 be the set
{R−1|R ∈ T }.

For a given logic, the satisfiability problem of this logic is defined as follows:
for a given formula ψ without free variables, is there any structure M such that
M |= ψ (model M satisfies ψ)?

2.3 Normal Forms

Definition 1. We say that a formula ψ ∈ FO2 is in Scott normal form[10] if it
is a conjunction of formulas in the following forms:

(i) ∃x.ρ(x)
(ii) ∀xy.δ(x, y)
(iii) ∀x.∃y.δ(x, y)
where both ρ(x) and δ(x, y) are quantifier-free.
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Every formula ψ of FO2 can be transformed, in polynomial time, to a formula
ϕ in Scott normal form over am extended signature, such that ψ is satisfiable if
and only if ϕ is satisfiable. Furthermore, ψ has models of the same size as ϕ.

Definition 2. We say that formula ψ ∈ [GF2++] is in normal form if it is a
conjunction of formulas in following forms:

(i’) ∃x.α(x) ∧ ρ(x)
(ii’) ∀xy.β(x, y) ⇒ δ(x, y)
(iii’) ∀x.α(x) ⇒ ∃y.β(x, y) ∧ δ(x, y)

where both α(x) and β(x, y) are proper guards and neither ρ(x) nor δ(x, y) con-
tains quantifiers.

Lemma 1. Every formula ϕ of [GF2++] can be effectively transformed to a set
of formulas Δ of [GF2++] over extended signature in normal form such that

– ϕ is satisfiable if and only if
∨

Δ is satisfiable
– |Δ| = O(2|ϕ|), Σ′ = O(|ϕ|) and for each ψ ∈ Δ we have |ψ| = O(|ϕ| log |ϕ|)
– Δ can be computed in exponential time, and every ψ ∈ Δ can be computed

in polynomial time.

The proof of this lemma is identical to the proof of Lemma 3.2 from paper
[11] about normal form for [GFk + TG], because that proof does not depend on
guards. Additionally we assume that a conjunct in form (i’) appears exactly once
in the whole formula.

We say that w is a witness for an element v, if for some conjunct of the
form (iii) the formula δ(v, w) is satisfied or for some conjunct in the form (iii’)
formulas α(v) and β(v, w) ∧ δ(v, w) are satisfied.

3 Exponential Model Property for Strongly-Connected
FO2

In this section we show a lemma about FO2, which in fact is an extension of the
exponential model property [4]. This lemma will then become a crucial tool in
our construction.

We say that a structure M is T -strongly-connected if the digraph obtained from
M by removing all edges except T is strongly-connected. Note that a structure
is T -strongly-connected if and only if the transitive closure of T contains every
pair of different elements of this structure.

Lemma 2. Let ϕ be a sentence from FO2 in Scott normal form over signature
Σ, with a distinguished binary symbol T , and let M be a T -strongly-connected
model of ϕ. Then ϕ has a T -strongly-connected model M′ of size bounded by
24|Σ|+5, such that

– M′ contains all 1-types realized in M
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– for every point v from M′ of 1-type tv and every 1-type tw such that there
is a 2-type t in M that contains tv, tw[x/y] there is a point w from M′ such
that the pair v, w has the 2-type t.

Proof. Let ΣU = {U1, U2, . . . , Uu} be a set of unary relation symbols, ΣB = {T ,
B1, B2, . . . , Bb} be a set of binary relation symbols and Σ = ΣB ∪ΣU . Let us
fix a sentence from FO2 in Scott normal form over a signature Σ

ϕ = ∃xρ(x) ∧ ∀xyφ(x, y) ∧
k∧
i=1

∀x∃yψi(x, y)

such that M is a T -strongly-connected model of ϕ with universe M .
We will now build a T -strongly-connected model M′ with universe M ′, where

|M ′| ≤ 24|Σ|+5. This construction can be seen as an extension of the construction
for the exponential model for FO2 [4]. However we have to work much harder to
preserve strong-connectivity of the model.

Definitions 1. – Kings are these points which have a unique 1-type in the
model.

– An R-path v1, v2, . . . , vk is a substructure generated by pairwise different
elements v1, v2, . . . , vk such that for each i < k we have M |= viRvi+1.

– A path s, v1, . . . , vn, s
′ is non-royal, if none of the elements v1, . . . , vn is a

king.
– A shortcut of a path s, . . . , vpi, vi, . . . , vj , vnj , . . . , s

′, where vertices vi and vj
have the same 1-types, is the path s, . . . , vpi, vi, vnj , . . . , s

′, where vi and vnj
are connected in the same way as vj with vnj .

– We say that a path s is a compression of a path s′ if s has no shortcut and
there exists a sequence r1, r2, . . . , rn where r1 = s′, rn = s and ri+1 is a
shortcut of ri for 1 ≤ i ≤ n.

Note that if the signature is finite, then every path can be compressed to a path
of length bounded exponentially in the size of the signature.

The universe M ′ contains the following parts: the royal palace Vk, the court
Vd and three cities V1, V2 and V3. Their construction proceeds as follows:

1. We insert into the royal palace Vk copies (i. e. elements of the same 1-type)
of all kings from M. If none of the kings satisfies ρ, then we add to the royal
palace one copy of a point that satisfies ρ in M. We preserve the connections
between these elements from M.

2. The court contains all witnesses for kings. More precisely, for each royal 1-
type tr, non-royal type tn and 2-type t that contains tr and tn[x/y], and
appears in M, we insert into the court Vd a new point of 1-type tn and
connect it with the point of type tr from royal palace as in t.

3. We build three cities. First, for each city we add 22|Σ| copies of every non-
royal point from M.

4. For each point v′ from the court or one of the cities, we find in M a T -path
s1 from a point that has the same type as v′ to the point k1 from the royal
palace, and a path s2 from the point k2 from the royal palace to a point that
has the same type as v′, where both s1 and s2, do not contain kings except
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k1 and k2, respectively. We add the compression of the paths s1 and s2 to
the V1, if v was from the court, or to the city of v′, if v′ was from a city, by
replacing extreme points with v′ and the copies of k1 and k2. Similarly, for
each pair (v′, w′) from the royal palace which has not been yet connected by
a T -path, we find in M a non-royal T -path s from the copy o v′ to the copy
of w′ and add a copy of a compression of s to the court. Finally, for each
newly-added element u′ that is connected directly (i.e. by some relation, not
only by the transitive closure of some relation) with a king of 1-type tk, we
find in M an element u which has the same 1-type as u′ and is connected
with the king of the 1-type tk in the same way as u′. We set connections
between u′ and VK as between u and all kings from M.

5. We ensure that all non-royal points have non-royal witnesses. For each non-
royal point v′ from M′ of 1-type ts, each non-royal 1-type tr and each 2-type t
from M which contains ts and tr[x/y], we copy connections from t to M′ in the
following way. If v′ was in Vd or V3, then we connect it with points from V1, if it
was in V1 then with V2, and if it was from V2 then with V3. Each city contains
22|Σ| elements of 1-type tr, so for each 2-type we can choose a different element.

6. We ensure that all non-royal points have the requested witnesses among
kings: for each non-royal element w′ from M′, if a connection between w′

and the royal palace is not set yet, then we find in M an element of the same
1-type and copy connections between this point and kings to M′. Note that
we always can find such a pair, because all points in M′ are copied from M′

and, moreover, if some 1-type appears in M only once, then it appears also
only once in VK and it does not appear in the court or in any city.

7. For each pair v′, w′ of points from M′, if the connection between v′ and w′

is not already set, we copy some connection beetwen points of the same 1-
types from M. Again, a proper connection can be found because of special
treatment of kings (as in step (6)).

Note that |Vk| ≤ 2|Σ|, |Vd| ≤ 22|Σ||Vk|+2|Σ||Vk|2 and |Vi| ≤ (1+2|Σ|) ·22|Σ|+
2|Σ||Vd| for i ∈ {1, 2, 3}, so |M | ≤ 24|Σ|+5. Let us observe that:

– The formula ∃xρ(x) is satisfied in M′, because a point that satisfies this
formula was added in step 1.

– All 1-types and 2-types from M′ appear also in M; thus, φ is satisfied.
– Every point has all witnesses it needs, so each ψj is satisfied in M′.
– The royal palace is a T -strongly-connected subgraph (because of step 4) and

moreover each courtier and citizen is on a T -path from the royal palace to
the royal palace because of paths added in step 4.

Therefore, M′ satisfies ϕ and is T -strongly-connected. The construction also
implies that in M′ there appear all 1-types from M are realized. ��
Theorem 1. Let ϕ be a an FO2 formula over a signature Σ with a distinguished
symbol T , and let M be a T -strongly-connected model of this formula. Then ϕ
has a T -strongly-connected model of size exponential in |Σ|.
This Theorem is a straightforward consequence of Lemma 2 and the observation
about Scott normal form.
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4 Ramified Model Property for [GF2++]

The proof of a special model property of [GF2++] has the common outline with
the idea presented in [11] for [GF2 + TG]. In both proofs we at first prove that
each satisfiable formula has a model of a tree-like shape. This is done in the
following way:

1. Take a satisfiable formula in normal form and a model M of this formula.
2. Take one point from the model M and start building the new model M′ from

this point.
3. If this point is in some clique whose edges are defined by a one of transi-

tive relation (a transitive closure of a relation from Σ+), take this clique,
compress it and add it to M′.

4. If the current point needs a witness outside its cliques, find a path to this
witness in M, compress it and add it M′.

5. Process recursively the newly-added points (as in points (3) - (5)).

The most important differences between the proofs are in points (3) and (4).
The reason why the part (3) of the proof is more difficult in the case of [GF2++]
is that the connections defining cliques are not atomic relation as in [GF2 + TG],
but paths. To overcome this difficulty we use the result of Section 3. The part
(4) is more complicated because in [GF2++] some witnesses cannot allways be
direct successors of an element.

It is important to underline why we take care about cliques. Our point is to
construct a model which looks like a tree. However, in [GF2++] logic we can
write a sentence ψ which is a conjunction of following formulas:

– ∀x(S0(x) ⇒ ∀y(xR+y ⇒ S0(y) ⇒ x = y)) (if a point v satisfies S0, then
there is no point reachable from v by relation R that satisfies S0, except,
possibly, v)

– every point satisfies exactly one of the relations S0, . . . , Sn−1

– there exists a point that satisfies S0

– ∀x.Si(x) ⇒ ∃y(xRy ∧ S(i+1) mod n(y)) for each i < n

It is easy to see that every model of ψ contains a cycle of length n. In fact, we
can obtain a cycle of length 2n, using S0, . . . , Sn−1 to encode a binary number
and request that every successor of a point v encodes the value greater by 1
modulo 2n. As we see, the structure must sometimes have fragments that do not
look like a tree. We will see that the size of each such fragment can be bounded
exponentially.

4.1 Construction of a Ramified Model for [GF2++]

Let ϕ = ∃xρ(x) ∧
∧j
i=1 ∀xyδi(x, y) ∧

∧k
i=1 ∀x.αi(x) ⇒ ∃y.ψi(x, y) be a fixed

formula in normal form from [GF2++] over the signature Σ = ΣU ∪ΣB ∪ Σ+,
where Σ+ = {T1, . . . , Tn}.

First, we define some properties of connections:
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Definitions 2. – Let t be a 2-type. We say that t is k-positive if there are
exactly k different relations R ∈ Σ+ such that t satisfies xRy ∨ yRx.

– We say that a structure is 1-positive, if every 2-type that appears in this
structure is either 1-positive or 0-positive.

– An extended 1-type of a point v in a structure A is the set that contains the
1-type of v and the pairs 〈R, t〉, where R ∈ Σ+ ∪ Σ−1

+ and for some w �= v
of 1-type t formula vR+w is satisfied in a structure A.

Note that a restriction of a 2-type t to a binary relation B, t|B, is at most
1-positive. Now we define cliques and some operations on them.

Definitions 3. – An R+-clique in a structure M is a subset K of elements
from M, such that for each v, w ∈ K we have M |= vR+w.

– The maximal R+-clique that contains v is denoted by R+-clique(v).
– A path of R+-cliques 〈C1, v

in
1 , vout1 〉, 〈C2, v

in
2 , vout2 〉, . . . , 〈Ck, vink , voutk 〉 is a

substructure generated by pairwise disjoint cliques C1, C2, . . . , Ck, where for
each 1 ≤ i ≤ k the clique Ci is the maximal R+-clique containing distin-
guished vertices vini and vouti , and for i < k, M |= vouti Rvini+1.

– We say that a vertex v is in the clique-distance m from w if the shortest (i. e.
of the minimal length) path of R+-cliques from R+-clique(v) to R+-clique(w)
has the length m.

– A path of R+-cliques 〈C1, v
in
1 , vout1 〉, . . . , 〈Cz , vinz , voutz 〉, 〈Cd, vind , voutd 〉, . . . is

a shortcut of a path of cliques 〈C1, vin1 , vout1 〉, . . . , 〈Cz , vinz , voutz 〉, 〈Cp, vinp ,
voutp 〉, . . . , 〈Cd, vind , voutd 〉, . . . if vinp and vind has the same 1-types.

– A compression of a path of R+-cliques s is a minimal path of R+-cliques
obtained by an iterated shortcutting of s.

Note that for any R ∈ Σ+ a single vertex is a R+-clique.
Now we define an operation on a structure that is usefull to express its tree-

likeness. Intuitively, a flattening of a model M is a graph G = 〈V,E〉, such that
V contains one vertex for each clique from M, and E connects cliques C1 and
C2 if at least one of the following conditions holds:

– C1 has a common vertex with C2 in M
– C1 is connected in M with C2 by some relation from Σ+

– C1 is connected in M with C2 by some relation from ΣB and is not connected
by the transitive closure of any of relation from Σ+.

The formal definition is more complicated. Each vertex is in n cliques (one for
each relation from Σ+), so connecting cliques with a common vertex lead us to
cliques of size n. We want to show that some flattening are trees, so we arbitrary
choose relation T1 and connect cliques with common vertex only if one of this
cliques is T+

1 -clique.

Definition 3. We say that an undirected graph G = 〈V,E〉 is a flattening of a
model M, if

– V = {R+-clique(w)|R ∈ Σ+ ∧ w ∈M}
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– {T+
i -clique(w), T+

j -clique(w′)} is in E if T+
i -clique(w) �= T+

j -clique(w′) and
at least one of the following conditions holds:
• w = w′ and i = 1
• i = j, and M |= wTiw

′ holds
• i = j = 1, for some S ∈ ΣB ∪ Σ−1

B we have M |= wSw′ and for each
S ∈ Σ+ ∪Σ−1

+ condition M |= wS+w′ is not satisfied

We are ready to define a property of models that will be used to build an
algorithm that checks if a given formula from [GF2++] has any model.

Definition 4. We say that a model M of a formula ϕ is r-ramified, if M is
1-positive, the size of each R+-clique in M for R ∈ Σ+ is bounded by r and the
flattening of M is a tree.

Theorem 2. Every satisfiable sentence from [GF2++] over a signature Σ has
a r-ramified model for r = 24|Σ|+5, in which every point has all the required
witnesses in clique-distance not greater than 2|Σ|.

Proof. Let ϕ = ∃xρ(x) ∧
∧j
i=1 ∀xyδi(x, y) ∧

∧k
i=1 ∀x.αi(x) ⇒ ∃y.ψi(x, y) be a

fixed formula from [GF2++] in normal form over the signature Σ = ΣU ∪ΣB ∪
Σ+, where Σ+ = {T1, . . . , Tn}. Furthermore, let M be a model of ϕ. Now we
define a recursive procedure that, for a given 24|Σ|+5-ramified structure M′,
point v ∈ M′ and function from : M′ → M, extends M′ to a 24|Σ|+5-ramified
structure where v and every newly-added vertex have all needed witnesses. Si-
multaneously, it extends the function from. Intuitively, from(v) indicates a
point “similar” to w.

1. Build the cliques of v, modifying the cliques of from(v), proceed as follows.
For each relation R ∈ Σ+ if v is not inside an R+-clique with size greater
then 1, then we take from M the R+-clique(from(v)) and we restrict all
2-types in this clique to the family of relations {R} ∪ΣB. Such a structure
is an R-strongly-connected component. If this component has more then 1
vertex, then, using Lemma 2 for formula (∃x5) ∧

∧j
i=1 ∀xyδ′i(x, y) and this

component, where δ′i is obtained from δi by replacing all guards xR+y by
5, we transform this component to a structure H ′ with an exponential size,
such that in H ′ all witnesses are preserved. Then we choose from H ′ an
element w with the same 1-type as v and add H ′ to M′ by identifying v with
w. Finally, for each element u′ �= w from H ′ we find in H an element u with
the same 1-type and we set from(u′) = u.

2. We ensure that v has required witnesses outside its cliques. In order to do
that, for each formula ψi = γi ∧ δi, where γi is a guard, vertex v satisfies
αi and ψi is not satisfied in M′ yet, we choose from M a point w′ that is a
witness of this formula for v′. Observe that w′ is not in any clique with v′.
(a) If γi = xRy or γi = yRx for some R ∈ ΣB ∪Σ+, then we add a copy w

of a point w′ to the model M′ and we set connections between v and w
in the same way as it was in M after restriction to R. Moreover, we put
from(w) = w′.
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(b) If γi = xR+y or γi = yR+x for some R ∈ Σ+, then we choose from M
a full path that provides the fulfilment of γi, with all R+-cliques that
appear on this path. We do it in following way.
Assume that γi = xR+y. We take a path of R+-cliques from R+-
clique(v′) to R+-clique(w′) with minimal length, we restrict every 2-
types on this path to R, and then we compress this path, obtaining a
path 〈R+-clique(v′), v′, v

′out〉, 〈C1, v
in
1 , vout1 〉, . . . , 〈Ck, vink , voutk 〉, where

Ck = R+-clique(w) and voutk = w′.
We compress every clique Ci to C′i in the way presented in step 1, ob-
taining cliques in which points v′ini and v′outi have the same 1-types as
vini and vouti , respectively. Then, in the R+-clique(v), we find a vertex
vout with the same 1-type as v

′out. We add to M′ path 〈C′1, v′in1 , v′out1 〉,
. . . , 〈C′k, v′ink , v′outk 〉 and we connect vout and v′in1 in the same way as
v

′out and v′in1 were connected.
For each i we put from(v′ini ) = vini and from(v′outi ) = vouti . Moreover,
for each vertex u′ ∈ C′i such that from(u′) is not set yet, we find in Ci
a vertex u with the same 1-type and put from(u′) = u.
When γi = yR+x, we do the same for R−1.

3. We connect vertices from M′ by relations from ΣB using some patterns from
M. More precisely, for each two vertices v, w:
(a) If for some R ∈ Σ+ condition vR+w ∧wR+v occurs, then these vertices

are in the same clique and the connections are already established.
(b) If these vertices are connected by R+ for some R ∈ Σ+, the con-

nection is asymmetric (without loss of generality we may assume that
vR+w ∧ ¬wR+v holds) and connections between these points were not
established yet, then we find in M a vertex w′ which has the following
property: in M there is a R-path from from(v) to w′ and w′ has the
same 1-type as w. Such a vertex exists, because the 1-type of w belongs
to the set of the 1-types that are reachable by relation R, written in
extended 1-type of from(v). We add connections from ΣB between v
and w in the same way as from(v) and w′ were connected.

(c) If these two points are not connected by the transitive closure of some
relation from Σ+, then either all connections between this points were
already set, or they are not connected at all – then we set empty con-
nection between this elements.

4. We repeat steps 1-4 for all vertices added in this stage.

We take from M a point v′, that satisfies ρ, add its copy v to M′, set
from(v) = v′ and apply the procedure above to v. The structure built by this
procedure is a model of ϕ. The proof is omitted in this version due page limit.

��

5 Algorithm

In this section we describe an alternating algorithm working in exponential space
that checks if a given formula has a ramified model. From Subsection 4.1 we know
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that every satisfiable formula in [GF2++] has a ramified model, so this algorithm
resolves the satisfiability problem. At first, let us introduce some definitions:

– 1-types of elements are defined as above.
– full 1-type of an element contains the following information: 1-type of ele-

ment, list of 1-types of all direct successors for each binary relation, and, for
each relation R which appears under the transitive closure in the formula, a
list of 1-types of vertices reachable by R, and the information about 1-types
of vertices reachable by R−1, except for vertices that are in R+-clique with
considered element.

– type of a clique, containing the following information: its size, full 1-types
of all the vertices in the clique, information about connections between the
vertices and function promise, which for a given 1-type t and b ∈ {−1, 1}
returns the length of the path of (Rb)+-cliques from the current clique to a
clique that contains a vertex of type t (or 0, if there is no such path).

Note that every two cliques of the same type are isomorphic. For the sake of
simplification, in this section we look upon a type of a clique as a clique of this
type with the attached function promise. This function is needed because the
algorithm guesses in each stage only cliques from a direct neighbourhood, while
Theorem 2 guarantees only that all needed witnesses are in clique-distance not
greater than exponential in the size of the signature. Due to the page limit, only
a sketch of the algorithm is presented.

Step 1. For a given formula ϕ = ∃xρ(x) ∧
∧j
i=1 ∀xyδi(x, y) ∧

∧k
i=1 ∀x.αi(x) ⇒

∃y.ψi(x, y), the algorithm starts from guessing (i.e. existentially choosing) type
of a starting clique K containing an element satisfying ρ. Then it checks if local
properties of K are correct: if connections between vertices in the clique satisfy
δi for each i, if all successors from the full 1-type of points in the clique can be
connected with points from the clique in a way that satisfies each δi, and if the
promise function and full 1-types of vertices are not inconsistent.
Step 2. The algorithm finds direct witnesses for each vertex in the clique
by guessing types of the cliques containing witnesses and connections between
guessed points and K. The algorithm checks if new cliques are locally proper.
Then, for each R+-clique K ′, which is connected with the previous clique by
R, the algorithm checks if 1-types of every vertex from K ′ are included in full
1-types of vertices from K to make sure that these vertices can be connected by
binary relations in a way that satisfy each δi. Furthermore, the algorithm checks
if the sets of 1-types reachable by R from vertices in K ′ are subsets of the sets
reachable by R from vertices in K and vice versa. Then the algorithm checks if
the type of K (including the promise function) and guessed cliques guarantee
all witnesses for each vertex from K.
Step 3. The algorithm guesses types of cliques that are on paths of cliques to
some clique that contains points of 1-types guaranteed in the promise function
from K. For the easier control of dependencies, the algorithm guess on this stage
only the first clique from this path and check if the guessed clique has less value
of the promise function or realizes this 1-type.



272 J. Michaliszyn

Step 4. The algorithm checks the counter of stages. If the value of the counter
is greater then 28|Σ|, then algorithm stops and return ”Yes”, because then we
know that some type of cliques occurred twice and another computation would
be the same as previously. In the other case the algorithm increments the counter,
universally chooses a clique K from the set of cliques added in this stage and
goes to step 2.

The algorithm needs only exponential memory, because each type of clique has
at most exponential size, so, since 2Exptime = AExpspace, the satisfiability
problem can be solved in 2Exptime.

The lower bound follows from the 2Exptime-hardness of the satisfiability
problem for logic [GF2 + TG], presented in [9], since we can simply replace tran-
sitive relations by transitive closure of these relations.

Corollary 1. The satisfiability problem for [GF2++] is 2Exptime-complete.
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Abstract. Alternating timed automata on infinite words are considered.
The main result is a characterization of acceptance conditions for which
the emptiness problem for the automata is decidable. This result implies
new decidability results for fragments of timed temporal logics. It is also
shown that, unlike for MITL, the characterisation remains the same even
if no punctual constraints are allowed.

1 Introduction

Timed automata [5] is a widely used model of real-time systems. It is obtained
from finite automata by adding clocks that can be reset and whose values can
be compared with constants. The crucial property of timed automata is that
their emptiness is decidable. Alternating timed automata have been introduced
in [15,20] following a sequence of results [1,2,19] indicating that a restriction to
one clock can make some problems decidable. The emptiness of one clock alter-
nating automata is decidable over finite words, but not over infinite words [23,16].
Undecidability proofs rely on the ability to express “infinitely often” properties.
Our main result shows that once these kind of properties are forbidden the
emptiness problem is decidable.

To say formally what are “infinitely often” properties we look at the theory
of infinite sequences. We borrow from that theory the notion of an index of a
language. It is known that the index hierarchy is infinite with “infinitely often”
properties almost at its bottom. From this point of view, the undecidability result
mentioned above left open the possibility that safety properties and “almost
always” properties can be decidable. This is indeed what we prove here.

Automata theoretic approach to temporal logics [26] is by now a standard
way of understanding these formalisms. For example, we know that the modal
μ-calculus corresponds to all automata, and LTL to very weak alternating au-
tomata, or equivalently, to counter-free nondeterministic automata [29]. By
translating a logic to automata we can clearly see combinatorial challenges posed
by the formalism. We can abstract from irrelevant details, such as a choice of
operators for a logic. This approach was very beneficial for the development of
logical formalisms over sequences.

An automata approach has been missing in timed models for an obvious rea-
son: no standard model of timed automata is closed under boolean operations.
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Event-clock automata [7] may be considered as an exception, but the price to
pay is a restriction on the use of clocks. Alternating timed automata seem to be a
good model, although the undecidability result over infinite words shows that the
situation is more difficult than for sequences. Nevertheless, Ouaknine and Wor-
rell [22] have shown decidability of the emptiness problem provided all states are
accepting, and some locality restriction on the transition function holds. Using
this, they have identified a decidable fragment of MTL called Safety MTL.

In this paper we show that our main result allows to get a decidable fragment
of TPTL [8] with one variable, that we call Constrained TPTL. This fragment
contains Safety MTL and allows all eventually formulas. Its syntax has also some
similarities with another recently introduced logic: FlatMTL [11,12]. We give
some elements of comparison between the logics later in the paper. In brief, the
reason why Constrained TPTL is not strictly more expressive than FlatMTL is
that the later includes MITL [6]. The later is a sub-logic of MTL where punctual
constraints are not allowed.

The case of MITL makes it natural to ask what happens to alternating timed
automata when we disallow punctual constraints. This is an interesting question
also because all known undecidability proofs have used punctual constraints in
an essential way. Our second main result (Theorem 4), says that the decidability
frontier does not change even if we only allow to test if the value of a clock is
bigger than 1. Put it differently, it is not only the lack of punctual constraints,
but also very weak syntax of the logic that makes MITL decidable.

Related work. The idea of restricting to one clock automata dates back at least
to [14]. Alternating timed automata where studied in a number of papers
[16,23,4,3]. The most relevant result here is the decidability of the emptiness for
the case when when all states are accepting and some locality condition holds [22].
One of technical contributions of the present paper is to remove the locality restric-
tion, and to add a non-accepting layer of states on the top of the accepting one.

For a long time MITL [6] was the most prominent example of a decidable
logic for real-time. In [23] Ouaknine and Worrell remark that MTL over finite
words can be translated to alternating timed automata, and hence it is decid-
able. They also show that over infinite words the logic is undecidable (which is a
stronger result than undecidability for the automata model in [16]). They have
proposed a fragment of MTL, called Safety MTL. Decidability of this fragment
was shown in [22] by reducing to the class of ATA mentioned in the previous
paragraph. A fragment of MTL called FlatMTL [11,12] represents an interesting
but technically different direction of development (cf. Sect. 4).

We should also discuss the distinction between continuous and pointwise se-
mantics. In the later, the additional restriction is that formulas are evaluated
only in positions when an action happens. So the meaning of F(x=1)α in the con-
tinuous semantics is that in one time unit from now formula α holds, while in
the pointwise semantics we additionally require that there is an action one time
unit from now. Pointwise semantics is less natural if one thinks of encoding prop-
erties of monadic predicates over reals. Yet, it seems sufficient for descriptions
of behaviors of devices, like timed automata, over time [24]. Here we consider
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the pointwise semantics simply because the emptiness of alternating timed au-
tomata in continuous semantics is undecidable even over finite words. At present,
it seems that an approach through compositional methods [13] is more suitable
to deal with continuous semantics.

The depth of nesting of positive and negative conditions of type “infinitely
often” is reflected in the concept of the index of an automaton. Wagner [27],
as early as in 1977, established the strictness of the hierarchy of indices for
deterministic automata on infinite words. Weak conditions were first considered
by Staiger and Wagner [28]. There are several results testifying their relevance.
For example Mostowski [17] has shown a direct correspondence between the index
of weak conditions and the alternation depth of weak second-order quantifiers.
For recent results on weak conditions see [18] and references therein.

Organization of the paper. After a section with basic definitions we state our
main decidability result (Theorem 2) and an accompanying undecidability result
(Theorem 4). We give an outline of the proof of the former theorem. Sect. 4
introduces Constrained TPTL, gives a translation of the logic into a decidable
class of alternating timed automata, and discusses relations with FlatMTL.

For the reasons of space, proofs are largely omitted. They can be found in the
full version of the paper [25].

2 Preliminaries

A timed word over a finite alphabet Σ is a sequence: w = (a1, t1)(a2, t2) . . . of
pairs from Σ×R+. We require that the sequence {ti}i=1,2,... is strictly increasing
and unbounded (non Zeno).

We will consider alternating timed automata (ATA) with one clock [16]. Let
x be this clock and let Φ denote the set of all comparisons of x with constants,
eg. (x < 1 ∧ x ≥ 0). A one-clock ATA over an alphabet Σ is a tuple

A = 〈Q,Σ, qo, δ, Ω : Q→ N〉

where Q is a finite set of states, and Ω determines the parity acceptance condi-
tion. The transition function of the automaton δ is a finite partial function:

δ : Q×Σ × Φ
·→ B+(Q× {nop, reset}).

where B+(Q×{nop, reset}) is the set of positive boolean formulas over atomic
propositions of the form 5, ⊥, and (q, f) with q ∈ Q and f ∈ {nop, reset}.

Intuitively, automaton being in a state q, reading a letter a and having a clock
valuation satisfying θ can proceed according to the positive boolean formula
δ(q, a, θ). It means that if a formula is a disjunction then it chooses one of the
disjuncts to follow, if it is a conjunction then it makes two copies of itself each
following one conjunct. If a formula is “atomic”of the form (q, nop) or (q, reset)
then the automaton changes the state to q, and either does nothing or sets the
value of the clock to 0, respectively. Formula 5 is unconditionally accepting, and
⊥ unconditinally rejecting.
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To simplify the definition of acceptance there is also one more restriction on
the transition function:

(Partition) For every q ∈ Q, a ∈ Σ and v ∈ R+, there is exaclty one θ
s.t. δ(q, a, θ) is defined, and v satisfies θ.

The acceptance condition of the automaton determines which infinite se-
quences of states (runs of the automaton) are accepting. A sequence q1q2 . . .
satisfies:

– weak parity condition if min{Ω(qi) : i = 1, 2, . . . } is even,
– strong parity condition if lim infi=1,2,...Ω(qi) is even.

Observe that the difference between weak and strong condition is that in the
weak case we consider all occurrences of states and in the strong case only those
that occur infinitely often. We will mostly use automata with weak conditions.
Whenever we will be considering strong conditions we will say it explicitly.

An alternating timed automaton A and a timed word w = (a1, t1)(a2, t2) . . .
determine the acceptance game GA,w between two players: Adam and Eve. In-
tuitively, the objective of Eve is to accept w, while the aim of Adam is the
opposite. A play starts at the initial configuration (q0, 0). It consists of poten-
tially infinitely many phases. The (k+1)-th phase starts in (qk, vk), ends in some
configuration (qk+1, vk+1) and proceeds as follows. Let v′ := vk + tk+1 − tk. Let
θ be the unique (by the partition condition) constraint such that v′ satisfies θ
and b = δ(qk, ak+1, θ) is defined. Now the outcome of the phase is determined
by the formula b. There are three cases:

– b = b1 ∧ b2: Adam chooses one of subformulas b1, b2 and the play continues
with b replaced by the chosen subformula;

– b = b1 ∨ b2: dually, Eve chooses one of subformulas;
– b = (q, f) ∈ Q×{nop, reset}: the phase ends with the result (qk+1, vk+1) :=

(q, f(v′)). A new phase is starting from this configuration.
– b = 5,⊥ the play ends.

The winner is Eve if the sequence ends in 5, or it is infinite and the states
appearing in the sequence satisfy the acceptance condition of the automaton.

Formally, a partial play is a finite sequence of consecutive game positions of
the form 〈k, q, v〉 or 〈k, q, v, b〉 where k is the phase number, b a boolean formula,
q a location and v a valuation. A strategy of Eve is a mapping that assigns to
each such sequence ending in Eve’s position a next move of Eve. A strategy is
winning if Eve wins whenever she applies this strategy.

Definition 1 (Acceptance). An automaton A accepts w iff Eve has a winning
strategy in the game GA,w. By L(A) we denote the language of all timed words
w accepted by A.

The Mostowski index of an automaton with the, strong or weak, acceptance
condition given by Ω is the pair consisting of the minimal and the maximal value
of Ω: (min(Ω(Q)),max(Ω(Q))). We may assume without a loss of generality
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that min(Ω(Q)) ∈ {0, 1}. (Otherwise we can scale down the rank by Ω(q) :=
Ω(q)−2.). Automata with strong conditions of index (0, 1) are traditionally called
Büchi automata and their acceptance condition is given by a set of accepting
states Q+ ⊆ Q; in our presentation theses are states with rank 0.

3 Decidability for One-Clock Timed Automata

We are interested in the emptiness problem for one clock ATA. As mentioned
in the introduction, the problem is undecidable for automata with strong Büchi
conditions. Here we will show a decidability result for automata with weak accep-
tance conditions of index (0, 1). A different presentation of these automata is that
they are strong Büchi automata where there are no transitions from an accepting
state to a non-accepting state. Indeed, once the automaton sees a state of prior-
ity 0 then any infinite run is accepting (but there may be runs that get blocked).
In the following we will write Q+ for accepting states, and Q− for the other
states. For automata presented in this way the (strong or weak) Büchi accep-
tance condition says simply: there are only finitely many states from Q−. So the
automaton accepts if Eve has a strategy to reach 5, or to satisfy this condition.

Theorem 2. For one-clock Büchi alternating timed automata with no transi-
tions from states in Q+ to states in Q−: it is decidable whether a given automa-
ton accepts a non Zeno timed word.

Ouaknine and Worrell [21] have proved undecidability of MTL over infinite timed
words. Their construction immediately implies undecidability for weak automata
with (1, 2) condition. So the above decidability result is optimal with respect to
index of the accepting condition.

Theorem 3 (Ouaknine, Worell). It is undecidable whether a given one-clock
Büchi nondeterministic timed automaton A accepts every infinite word, even
when there are no transitions in A from states in Q− to states in Q+.

The construction in op. cit. relies on equality constraints. Indeed, if we do not
allow equality constraints in MTL then we get a fragment called MITL, and
satisfiability problem for MITL over infinite words is decidable [6]. We show
that this phenomenon does not appear in the context of automata.

Theorem 4. It is undecidable whether a given one-clock Büchi alternating timed
automaton A accepts an infinite word, even when there are no transitions in A
from states in Q− to states in Q+, and when A does not test for equality.

In the rest of the section we give an outline of the proof of Theorem 2. Due to
space restrictions it is not possible to present the proof of Theorem 4. The proof
given in the full version of the paper [25] shows undecidability even when one
uses only tests: (x ≥ 1), and its negation.

To fix the notation we take a one clock ATA:

A = 〈Q,Σ, qo, δ, Q+ ⊆ Q〉.
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We will assume that the transition function satisfies the partition condition.
For simplicity, we also assume that every value of δ is a boolean formula in a
disjunctive normal form. Moreover, we will require that in every disjunct of every
transition of A there is some pair with reset and some pair with nop. Every
automaton can be easily put into this form.

Our first step will be to construct some infinite transition system H(A), so
that the existence of an accepting run of A is equivalent to the existence of some
good path in H(A). In the second step we will use some structural properties of
this transition system to show decidability of the problem.

3.1 Construction of H(A)

This is surely the less interesting part of the proof, unfortunately we need to
spend some time here as H(A) is the object we work with in the second step.

We need to reformulate the definition of acceptance ofA in terms of a sequence
instead of a tree. Additionally, we would like to abstract from time values in
states and transitions, but still be able to tell if a run is non Zeno.

We start with the definition of regions. As we have only one clock we take:

reg := {{0}, (0, 1), {1}, (1, 2), . . . , (dmax − 1, dmax), {dmax}, (dmax,+∞)},

where dmax denotes the biggest constant appearing in δ, i.e., the transition func-
tion of the automaton. There are three kinds of regions: bounded intervals (de-
noted regI), one-point regions (denoted regP ), and one unbounded interval
(dmax,+∞). We will use the notation Ii for the region (i − 1, i). In a similar
way, I∞ will stand for (dmax,+∞). For v ∈ R+, let reg(v) denote its region;
and let fract(v) denote the fractional part of v.

We will use the transition alphabet:

Σ = Σ ∪ {(delay, ε)} ∪ ({delay} ×Σ).

A transition on a ∈ Σ will represent an execution of an action. A transition
on (delay, ε) will represent a passage of time with some valuation changing a
region. Finally, we will have the most complicated case of (delay, a) transitions.
Such a transition simulates a passage of time until a region becomes a one-point
region, execution of the action at this moment, and letting some time pass to
get into the next interval region. We will only present the transitions of the last
type, the other two being simpler.

In H(A) the states will be finite words of the form Λ∗I · Λ∞, where ΛI =
P(Q × regI) and Λ∞ = P(Q × {∞}). The transitions on an action (delay, a)
will have the form:

(λ1 . . . λk, λ∞)
(delay,a)−→ (δ′λ′1 . . . λ

′
k−1, λ

′′
∞)

where the elements on the right are obtained by performing the following steps:

– (Letting the time pass to reach singleton region.) We change regions in λk.
Every pair (q, Id) ∈ λk becomes (q, {d}). Let us denote the result by λ1

k.
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– (Performing the action.) For i = 1, . . . , k,∞ we take λ′i, δ
′
i such that: λ1

k
a−→A

(λ′k, δ
′
k) and λi

a−→A (λ′i, δ
′
i) for i �= k.

– (Letting the time pass again) We increase again regions in λ′k: from {d} they
become Id+1, or I∞ if d = dmax.

– (Grouping the results) We put δ′ =
⋃
δ′i ∪ {(q, Id) : (q, {d}) ∈ λ′k, d < dmax}

and λ′′∞ = λ′∞ ∪ {(q, I∞) : (q, {dmax}) ∈ λ′k}.

We write c→ c′, c
(delay,·)−→ c′, c � c′, c

Σ∗
� c′ to denote that we may go from a

configuration c to c′ using one transition, one transition reading a letter of the
form (delay, ·), any number of transitions or any number of transitions reading
only letters from Σ, respectively.

We say that a path is good if it passes through infinitely many transitions
labelled by letters (delay, ·). The whole point of this type of transitions is that
they allow to capture non Zeno behaviours:

Lemma 5. A accepts an infinite non Zeno timed word iff there is a good path in
H(A) starting in the state ({(q0, I1)}, {∅, I∞}) with only finitely many appear-
ances of states from Q−.

3.2 Finding a Good Path in H(A)

By Lemma 5, our problem reduces to deciding if there is a good path in H(A).
The decision procedure works in two steps. In the first step we compute the set
Ĝ of all configurations from which there exists a good computation. Observe
that if a configuration from Ĝ has only states from Q+ then this configuration is
accepting. So, in the second step it remains to consider configurations that have
states from both Q− and Q+. This is relatively easy as an accepting run from
such a configuration consists of a finite prefix ending in a configuration without
states from Q− and a good run from that configuration. Hence, there is a good
accepting computation from a configuration iff it is possible to reach from it a
configuration in Ĝ that has only Q+ states. Once we know Ĝ, the later problem
can be solved using the standard reachability tree technique.

Computing accepting configurations. We start with the second step of our pro-
cedure as it is much easier than the first one. We need to decide if from an initial
state one can reach a configuration in Ĝ having only Q+ states. We can assume
that we are given Ĝ but we need to discuss a little how it is represented. It
turns out that there are useful well-quasi-orders on configurations that allow to
represent Ĝ in a finitary way.

A well-quasi-order is a relation with a property that for every infinite sequence
c1, c2, . . . there exist indexes i < j such that the pair (ci, cj) is in the relation.

The order we need is the relation, denoted (, over configurations of H(A):
we put (λ1 . . . λk, λ∞) ( (λ′1 . . . λ′k′ , λ

′∞) if λ∞ ⊆ λ′∞ and there exists a strictly
increasing function f : {1, . . . , k} → {1, . . . , k′} such that λi ⊆ λ′f(i) for each
i. Observe that here we use the fact that each λi is a set so we can compare
them by inclusion. This relation is somehow similar to the relation of being a
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subsequence, but we do not require that the corresponding letters are equal, only
that the one from the smaller word is included in the one from the greater word.
A standard application of Higman’s lemma proves that ( is a well-quasi-order.

The next lemma shows an important interplay between ( relation and tran-
sitions of H(A).

Lemma 6. Let c1, c′1, c2 be configurations of H(A) such that c′1 ( c1. Whenever
c1 � c2, then there exist c′2 ( c2 such that c′1 � c′2 and the second computation
has the length not greater than the first one. Similarly, when from c1 there exists
a good computation, then from c′1 such a computation exists.

The proof of the lemma follows from examining the definition of transitions.
Some care is needed to ensure that the matching computation is good.

Corollary 7. The set Ĝ is downwards closed, so it can be described by the finite
set of minimal elements that do not belong to it.

As we have mentioned, there is a good accepting computation from a configura-
tion iff it is possible to reach from it a configuration from Ĝ that has only Q+

states. A standard argument based on well-quasi-orders and examination of a
finite part of the reachability tree shows that this property is decidable.

Lemma 8. Let X be a downwards closed set in H(A). It is decidable if from a
given configuration one can reach a configuration in X with all states in Q+.

Computing Ĝ. In the rest of the section we deal with the main technical problem
of the proof that is computing the set Ĝ of all configurations from which there
exist a good computation. We will actually compute the complement of Ĝ. While
we will use well-orderings in the proof, standard termination arguments do not
work in this case. We need to use in an essential way a very special form of
transitions our systems have.

We write X↑= {c : ∃c′∈Xc′ ( c} for an upward closure of set X . Observe that
by Lemma 6 the complement of Ĝ is upwards closed.

Let set pre∀delay (respectively pre∀Σ∗) contain all configurations, from which
after reading any letter (delay, ·) (any number of letters from Σ), we have to
reach a configuration from X :

pre∀delay(X) ={c : ∀c′(c
(delay,·)−→ c′ ⇒ c′ ∈ X)}

pre∀Σ∗(X) ={c : ∀c′(c
Σ∗
� c′ ⇒ c′ ∈ X)}.

We use these pre operations to compute a sequence of sets of configurations:

Z−1 = ∅ Zi = pre∀Σ∗(pre∀delay(Zi−1↑)).

It is important that we may effectively represent and compare all the sets Zi↑.
Because the relation ( is a well-quasi-order, any upward closed set X↑ may be
represented by finitely many elements c1, . . . , ck (called generators) such that
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X ↑= {c1, . . . , ck}↑. Moreover, an easy induction shows that Zi−1 ↑⊆ Zi ↑ for
every i (because both pre∀ operations preserve inclusion). Once again, because
relation ( is a well-quasi-order, there has to be i such that Zi−1↑= Zi↑. Let us
write Z∞ for this Zi.

First, we show that Z∞ is indeed the complement of Ĝ.

Lemma 9. There is a good computation from a configuration c iff c �∈ Z∞↑.

To compute Z∞ it is enough to show how to compute Zi↑ from Zi−1↑. This is
the most difficult part of the proof. Once this is done, we can calculate all the
sets Zi↑, starting with Z−1 = ∅ and ending when Zi−1↑= Zi↑.

The main idea in calculating pre∀Σ∗(pre∀delay(X)) is that the length of its gen-
erators may be bounded by some function in the length of generators of X .

Lemma 10. Given an upwards closed set X we can compute a constant D(X)
(which depends also on our fixed automaton A) such that the size of every min-
imal element of pre∀Σ∗(pre∀delay(X)) is bounded by D(X)

Once we know the bound on the size of generators, we can try all potential
candidates. The following lemma shows that it is possible.

Lemma 11. For all upper-closed sets X, the membership in pre∀Σ∗(pre∀delay(X))
is decidable.

These two lemmas allow us to calculate Zi from Zi−1, and this is the last piece
we need to complete the proof the theorem. The proofs of the lemmas are quite
long, and require some additional notions. They can be found in the full version
of the paper [25].

4 Constrained TPTL

We present a fragment of TPTL (timed propositional temporal logic) that can
be translated to automata from our decidable class. We compare this fragment
with other known logics for real time. We will be rather brief in presentations of
different formalisms and refer the reader to recent surveys [9,24].

TPTL[8] is a timed extension of linear time temporal logic that allows to
explicitly set and compare clock variables. We will consider the logic with only
one clock variable, and we denote it by TPTL1. The syntax of the logic is:

p | α ∧ β | α ∨ β | αUβ | αŨ β | x ∼ c | x.α

where: p ranges over action letters, x is the unique clock variable, and x ∼ c is
a comparison of x with a constant. We do not have negation in the syntax, but
from the semantics it will be clear that the negation is definable.

The logic is evaluated over timed sequences w = (a1, t1)(a2, t2) . . . We define
the satisfiability relation, w, i, v � α saying that a formula α is true at a position
i of a timed word w with a valuation v of the unique clock variable:
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w, i, v � p if ai = p
w, i, v � x.α if w, i, ti � α w, i, v � x ∼ c if ti − v ∼ c
w, i, v � αUβ if ∃j>i (w, j, v � β and ∀k∈(i,j) w, k, v � α)
w, i, v � αŨβ if ∀j>i (w, j, v � β or ∃k∈(i,j) w, k, v � α)

Until operators permit us to introduce sometimes and always operators:

Fα ≡ ttUα Aα ≡ ff Ũα.

For the following, it will be interesting to note that the two until operators are
inter-definable once we have always and sometimes operators:

αŨβ ≡ Aβ ∨ βUα αUβ ≡ Fβ ∧ βŨα.

Observe that TPTL1 subsumes metric temporal logic (MTL). For example:
αU(i,j)β of MTL is equivalent to x.(αU((x > i) ∧ (x < j) ∧ β)). We will not
present MTL here, but rather refer the reader to [10] where it is also shown that
the following TPTL1 formula is not expressible in MTL:

x.(F (b ∧ F (c ∧ x ≤ 2))). (1)

Informally, the formula says that there is an event b followed by an event c in
less than 2 units of time.

The satisfiability problem over infinite timed sequences is undecidable for
MTL [21], hence also for TPTL1. Using our decidability result for alternating
timed automata, we can nevertheless find a decidable fragment, that we call
Constrained TPTL. The definition of this fragment will use an auxiliary notion
of positive TPTL1 formulas:

p | x.ϕ | x ∼ c | ϕ ∨ ψ | ϕ ∧ ψ | ϕŨψ | F ((x ≤ c) ∧ ψ).

These formulas can be translated into automata where all states are accept-
ing. Observe that the formula (1) belongs to the positive fragment if we add
redundant (x ≤ 2) after b. The set of formulas of Constrained TPTL is:

p | x.ϕ | x ∼ c | α ∨ β | α ∧ β |αUβ | ϕ ϕ positive.

A translation of Constrained TPTL to automata is similar in a spirit to that for
Safety MTL [22]. Once again we refer the reader to the full version [25].

Theorem 12. It is decidable if there is a non Zeno timed word that is a model
of a given Constrained TPTL formula. The complexity of the problem cannot be
bounded by a primitive recursive function.

Safety MTL [22] can be seen as a MTL fragment of positive TPTL. Indeed, both
formalisms can be translated to automata with only accepting states, but the
automata obtained from MTL formulas have also the locality property (cf. [22]).
This property ensures that the clock is always reset when changing state. The
example (1) shows that this is not the case for TPTL.

Using equivalences mentioned above, FlatMTL [11] with pointwise non Zeno
semantics can be presented as a set of formulas given by the grammar:
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p | α ∨ β | α ∧ β | αUJβ | χUIβ| χ J bounded and χ ∈MITL

The original definition admits more constructs, but they are redundant in the
semantics we consider. Both FlatMTL and Constrained TPTL use two sets of
formulas. The MTL part of the later logic would look like

p | α ∨ β | α ∧ β | αUIβ | ϕ ϕ positive.

From this presentation it can be seen that there are at least two important
differences: Constrained TPTL does not have restrictions on the left hand side
of until, and it uses positive fragment instead of MITL. We comment on these
two aspects below.

Unrestricted until makes the logic more expressive but also more difficult
algorithmically. For example, already the logic generated by the later grammar
without the clause for positive formulas has non primitive recursive complexity.
This should be contrasted with Expspace-completeness result for FlatMTL.

The use of positive fragment instead of MITL is also important. The two
formalisms have very different expressive powers. The crucial technical property
of MITL is that a formula of the form αUIβ can change its value at most three
times in every unit interval. This is used in the proof of decidability of FlatMTL,
as the MITL part can be described in a “finitary” way. The crucial property
of the positive fragment is that it can express only safety properties (and all
such properties). We can remark that by reusing the construction of [21] we get
undecidability of the positive fragment extended with a formula expressing that
some action appears infinitely often. Theorem 4 implies that this is true even if
we do not use punctual constraints in the positive fragment. In conclusion, we
cannot add MITL to the positive fragment without losing decidability.

Acknowledgements. The second author would like to thank Abraham Riche for
his cooperation in early stages of this work.

References

1. Abdulla, P., Jonsson, B.: Veryfying networks of timed processes. In: Steffen, B.
(ed.) TACAS 1998. LNCS, vol. 1384, pp. 298–312. Springer, Heidelberg (1998)

2. Abdulla, P., Jonsson, B.: Timed Petri nets and BQOs. In: Colom, J.-M., Koutny,
M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001)

3. Abdulla, P.A., Deneux, J., Ouaknine, J., Quaas, K., Worrell, J.: Universality anal-
ysis for one-clock timed automata. Fundam. Inform. 89(4), 419–450 (2008)

4. Abdulla, P.A., Ouaknine, J., Quaas, K., Worrell, J.: Zone-based universality anal-
ysis for single-clock timed automata. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007.
LNCS, vol. 4767, pp. 98–112. Springer, Heidelberg (2007)

5. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126,
183–235 (1994)

6. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J.
ACM 43(1), 116–146 (1996)

7. Alur, R., Fix, L., Henzinger, T.: Event-clock automata: A determinizable class of
timed automata. Theoretical Computer Science 204 (1997)



284 P. Parys and I. Walukiewicz

8. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–204 (1994)
9. Bouyer, P.: Model-checking timed temporal logics. In: Workshop on Methods for

Modalities (M4M-5), Cachan, France. Electronic Notes in Theoretical Computer
Science. Elsevier Science Publishers, Amsterdam (2009)

10. Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. In:
Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 432–443. Springer,
Heidelberg (2005)

11. Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctuality. In: LICS,
pp. 109–120 (2007)

12. Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: On expressiveness and com-
plexity in real-time model checking. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
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Abstract. A regular tree language L is locally testable if the member-
ship of a tree into L depends only on the presence or absence of some
neighborhoods in the tree. In this paper we show that it is decidable
whether a regular tree language is locally testable.

1 Introduction

This paper is part of a general program trying to understand the expressive power
of first-order logic over trees. We say that a class of regular tree languages has a
decidable characterization if the following problem is decidable: given as input
a finite tree automaton, decide if the recognized language belongs to the class
in question. Usually a decision algorithm requires a solid understanding of the
expressive power of the corresponding class and is therefore useful in any context
where a precise boundary of this expressive power is crucial. For instance, we do
not possess yet a decidable characterization of the tree languages definable in
FO(≤), the first-order logic using a binary predicate ≤ for the ancestor relation.

We consider here the class of tree languages definable in a fragment of FO(≤)
known as Locally Testable (LT). A language is in LT if its membership depends
only on the presence or absence of neighborhoods of a certain size in the tree. A
closely related family of languages is the class LTT of Locally Threshold Testable
languages. Membership in such languages is obtained by counting the number of
neighborhoods of a certain size up to some threshold. The class LT is the special
case where no counting is done, the threshold is 1. In this paper we provide a
decidable characterization of the class LT over trees.

Decidable characterizations are usually obtained by exhibiting a set of closure
properties that holds exactly for the languages in the class under investigation. It
is therefore necessary to have a formalism for expressing these properties. This
formalism must also come with some tools for proving that the properties do
characterize the class, typically with induction mechanisms, but also for proving
the decidability of those properties.

Over words one formalism turned out to be successful for characterizing many
class of regular languages. The closure properties are expressed as identities on
the syntactic monoid of the regular language. The syntactic monoid of a regular
language being the transition monoid of its minimal deterministic automata.
For instance the class of languages definable in FO(≤) is characterized by the
fact that their syntactic monoid is aperiodic. The later property corresponds
to the identity xω = xω+1 where ω is the size of the monoid. This equation
is easily verifiable automatically on the syntactic monoid. Similarly, the classes
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LTT and LT have been characterized using decidable identities on the syntactic
monoid [BS73, McN74, BP89, TW85].

Over trees the situation is more complex and right now there is no formalism
that can easily express all the closure properties of the classes for which we have
a decidable characterization. The most successful formalism is certainly forest
algebra [BW07]. For instance, forest algebra was used for obtaining decidable
characterizations for the classes of tree languages definable in EF+EX [BW06],
EF+F−1 [Boj07b, Pla08], BC-Σ1(<) [BSS08, Pla08], Δ2(≤) [BS08, Pla08]. How-
ever it is not clear yet how to use forest algebra for characterizing the class LTT
over trees and a different formalism was used for obtaining a decidable charac-
terization for this class [BS09].

Wewerenot able to obtain a reasonable set of identities forLT either byusing for-
est algebra or the formalism used for characterizing LTT. Our approach is slightly
different.

There is another technique that worked on words for deciding the class LT. It
is based on the “delay theorem” [Str85, Til87] for computing the expected size
of the neighborhoods: Given a regular language L, a number k can be computed
such that if L is in LT then it is in LT by investigating the neighborhoods of
size k. Once this k is available, deciding whether L is indeed in LT or not is
a simple exercise. On words, a decision algorithm for LT (and also for LTT)
has been obtained successfully using this approach [Boj07a]. Unfortunately all
efforts to prove a similar delay theorem on trees have failed so far.

We obtain a decidable characterization of LT by combining the two approaches
mentioned above. We first exhibit a set of necessary and decidable conditions for
a regular tree language to be in LT. Those conditions are expressed using the
formalism introduced for characterizing LTT. We then show that for languages
satisfying such conditions one can compute the expected size of the neighbor-
hoods. Using this technique we obtain a characterization of LT for ranked trees
and for unranked unordered trees.

Other related work. There exists several formalisms that were used for expressing
identities corresponding to several classes of languages but not in a decidable
way. Among them let us mention the notion of preclones introduced in [EW05] as
it is close to the one we use in this paper for expressing our necessary conditions.

Organization of the paper. We start with ranked trees and give the necessary
notations and preliminary results in Section 2. Section 3 exhibits several condi-
tions and proves they are decidable and necessary for being in LT. In Section 4
we show that for the languages satisfying the necessary conditions the expected
size of the neighborhoods can be computed, hence concluding the decidability
of the characterization. Finally in Section 5 we show how our result extends to
unranked trees. Due to space limitations several proofs are missing.

2 Notations and Preliminaries

We first prove our result for the case of binary trees. The case of unranked
unordered trees will be considered in Section 5.
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Trees. We fix a finite alphabet Σ, and consider finite binary trees with labels
in Σ. All the results presented here extend to arbitrary ranks in a straightfor-
ward way. A language is a set of trees. We use standard notations for trees.
For instance by the descendant (resp. ancestor) relation we mean the reflexive
transitive closure of the child (resp. inverse of child) relation.

Given a tree t and a node x of t the subtree of t rooted at x, consisting of
all the nodes of t which are descendants of x, is denoted by t|x. A context is
a tree with a designated (unlabeled) leaf called its port which acts as a hole.
Given contexts C and C′, their concatenation C · C′ is the context formed by
identifying the root of C′ with the port of C. A tree C ·t can be obtained similarly
by concatenating a context C and a tree t. Given a tree t and two nodes x, y of
t such that y is a descendant (not necessarily strict) of x, the context C = t[x, y]
is defined from t1 = t|x by replacing t1|y by a port. In this case we say that C
is a context occurring in t.

Types. Let t be a tree and x be a node of t and k be a positive integer, the k-type
of x in t is the (isomorphism type of the) restriction of t|x to the set of nodes
of t at distance at most k from x. A k-type τ occurs in a tree t if there exists a
node in t of k-type τ . If C is a context occurring in a tree t then the k-type of
a node of C is the k-type of that node in t. Notice that the k-type of a node of
C depends on the surrouding tree t, in particular the port of C has a k-type.

Given two trees t and t′ we denote by t �k t′ the fact that all k-types that
occur in t also occur in t′. Similarly we can speak of t �k C when t is a tree and
C is a context occurring in some tree t′. We denote by t 2k t′ the property that
the root of t and the root of t′ have the same k-type and t and t′ agree on their
k-types: t �k t′ and t′ �k t . Note that when k is fixed the number of k-types
is finite and hence the equivalence relation 2k has finite index.

A language L is said to be κ-locally testable (is in LTκ) if L is a union of
equivalence classes of 2κ. A language is said to be locally testable (is in LT) if
there is a κ such that it is κ-locally testable. In words this says that in order
to test whether a tree t belongs to L it is enough to check for the presence or
absence of κ-types in t, for some big enough κ.

The problem. We want an algorithm deciding if a given regular language is in
LT. If complexity does not matter, we can assume that the given language L is
given as a MSO formula. Another option would be to start with a bottom-up
tree automata for L or, even better, the minimal deterministic bottom-up tree
automata that recognizes L. The main difficulty is to compute a bound on κ,
the size of the neighborhood, whenever such a κ exists.

The string case is a special case of the tree case as it corresponds to trees of
rank 1. A decision procedure for LT was obtained in the string case independently
by [BS73, McN74]. It is based on a characterization of the syntactic semigroup of
the language by means of the equations exe = exexe and exeye = eyexe, where
e is an arbitrary idempotent (ee = e) while x and y are arbitrary elements of the
semigroup. The equations are then easily verified on the syntactic semigroup.

In the case of trees, we were not able to obtain a reasonably simple set of
identities for characterizing LT. Nevertheless we can show:
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Theorem 1 It is decidable whether a regular tree language is in LT.

Our strategy for proving Theorem 1 is as follows. In a first step we provide
necessary, and decidable, conditions for a language to be in LT. In a second step
we show that if a language verifies those conditions then we can compute a κ
such that it is in LT iff it is in LTκ. Finally we show that once κ is fixed, it is
decidable whether a regular language is a finite union of classes of 2κ.

Before starting providing the proof details we note that there exists examples
showing that the necessary conditions are not sufficient, see the end of Section 3.
This is not immediate to see and goes beyond the scope of this paper. We also
note that the problem of finding κ whenever such a κ exists is a special case of
the delay-theorem. In the case of LT, the delay theorem says that if a finite state
automaton A recognizes a language in LT then this language must be in LTκ
for a κ computable from A. This theorem holds over strings [Str85, Til87] and
can be used in order to decide whether a regular language is in LT as explained
in [Boj07a]. We were not able to prove such a general theorem for trees. Our
second step can be seen as a particular case of the delay theorem for languages
satisfying the conditions provided by the first step.

3 Necessary Conditions

In this section we exhibit necessary conditions for a regular language to be in
LT. These conditions will play a crucial role in our decision algorithm. These
conditions are expressed using the same formalism as the one used in [BS09] for
characterizing LTT.

Guarded operations. Let t be a tree, and x, x′ be two nodes of t such that x and
x′ are not related by the descendant relationship. The horizontal swap of t at
nodes x and x′ is the tree t′ constructed from t by replacing t|x with t|x′ and
vice-versa, see Figure 1 (left). A horizontal swap is said to be k-guarded if x and
x′ have the same k-type.

Let t be a tree and x, y, z be three nodes of t such that x, y, z are not related by
the descendant relationship and such that t|x = t|y. The horizontal transfer of t
at x, y, z is the tree t′ constructed from t by replacing t|y with a copy of t|z, see
Figure 1 (right). A horizontal transfer is k-guarded if x, y, z have the same k-type.

Let t be a tree of root a, and x, y, z be three nodes of t such that y is a
descendant of x and z is a descendant of y. The vertical swap of t at x, y, z is

t|x t|x′

x x′ ⇐⇒

t|x′ t|x
x x′

t|x t|x t|z
x y z ⇐⇒

t|x t|z t|z
x y z

Fig. 1. Horizontal Swap (left) and Horizontal Transfer (right)
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the tree t′ constructed from t by swapping the context between x and y with
the context between y and z, see Figure 2 (left). A vertical swap is k-guarded if
x, y, z have the same k-type.

Let t be a tree of root a, and x, y, z be three nodes of t such that y is a
descendant of x and z is a descendant of y such that Δ = t[x, y] = t[y, z]. The
vertical stutter of t at x, y, z is the tree t′ constructed from t by removing the
context between x and y, see Figure 2 (right). A vertical stutter is k-guarded if
x, y, z have the same k-type.

C

Δ1

Δ2

T

x

y

z

⇐⇒

C

Δ2

Δ1

T

x

y

z

C

Δ

Δ

T

x

y

z

⇐⇒

C

Δ

T

x

z

Fig. 2. Vertical Swap (left) and Vertical Stutter (right)

Let L be a tree language and k be a number. If X is any of the four con-
structions above, horizontal or vertical swap, or vertical stutter or horizontal
transfer, we say that L is closed under k-guarded X if for every tree t and every
tree t′ constructed from t using k-guarded X then t is in L iff t′ is in L. Notice
that being closed under k-guarded X implies being closed under k′-guarded X
for k′ > k. An important observation is that each of the k-guarded operations
preserves (k + 1)-types.

If L is closed under all the k-guarded operations described above, we say that
L is k-tame. A language is said to be tame if it is k-tame for some k. The
following simple result shows that tameness is a necessary condition for LT.

Proposition 1 If L is in LT then L is tame.

We now turn to the decision procedure for testing tameness. If k is fixed, it
is simple to check whether L is k-tame, see for instance [BS09]. The following
proposition shows that k can be assumed to be bounded by a simple function of
the size of any bottom-up tree automata recognizing L. It can be shown using a
pumping argument.

Proposition 2 Given a regular language L, it is decidable whether L is tame.
Moreover, if this is the case, a k such that L is k-tame can be effectively com-
puted.

Example 1 Over strings tameness characterizes exactly LT as vertical swap
and vertical stutter are exactly the extensions to trees of the equations given in
Section 2 for LT. Over trees this is no longer the case as the following example
shows. For simplifying the presentation we assume that nodes may have between
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0 to three children. All trees in our language L have the same structure consisting
of a root of label a from which exactly three sequences of nodes with only one
child (strings) are attached. The trees in L have therefore exactly three leaves, and
those must have three distinct labels among {h1, h2, h3}. One branch, excepted
for its leaf, must be of the form b∗cd∗, another one of the form b∗cd∗ and the
last one of the form b∗c′d∗, where b, c, c’ and d are distinct labels. The reader
can verify that L is tame. It is not in LT because replacing exactly one node of
label c by a node of label c’ in a tree with long branches yields a tree with the
same neighborhood but not in L.

4 Deciding LT for Tame Languages

In this section we show that it is decidable whether a regular tree language is
in LT. In view of Proposition 1 and Proposition 2 it is sufficient to show that
it is decidable whether a tame regular tree language is in LT. Hence Theorem 1
follows from the following proposition.

Proposition 3 Assume L is a tame regular tree language. Then it is decidable
whether there exists a κ such that L is in LTκ.

Proof. Assume L is tame. Then from Proposition 2 one can effectively compute
a k such that L is k-tame. The proof of the proposition is then divided in two
steps. The first one shows that for k-tame languages, if such a κ exists then κ
is at most exponential in k. The second step, Lemma 1 below, shows that when
κ is fixed then being a union of 2κ is decidable. The proof of the second step is
straightforward and is left to the reader.

Lemma 1 Let L be a regular tree language and κ a number. It is decidable
whether L is in LTκ or not.

The rest of this section is devoted to the proof of the first step showing that for k-
tame regular tree language a bound on κ can be obtained. This is a consequence
of the lemma below. Recall that for each k, the number of k-types is finite. Let
βk be this number.

Lemma 2 Let L be a k-tame regular tree language. Set l = βk + 1. Then for
all l′ > l and any two trees t, t′ if t 2l t′ then there exists two trees T, T ′ with

1. t ∈ L iff T ∈ L
2. t′ ∈ L iff T ′ ∈ L
3. T 2l′ T ′

To see that the first step follows from Lemma 2, assume that L is a k-tame
regular tree language in LT. Then, by definition of LT, L is in LTl′ for some l′. If
l′ > βk + 1 then, from Lemma 2, L is also in LTl. Hence for testing membership
in LT it is sufficient to test membership in LTl for l = βk + 1 which is decidable
by Lemma 1.
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Before proving Lemma 2 we need some extra terminology. A non-empty con-
text C occurring in a tree t is a loop of k-type τ if the k-type of its root and the
k-type of its port is τ . A non-empty context C occurring in a tree t is a k-loop if
there is some k-type τ such that C is a loop of k-type τ . Note that if C is a loop
of k-type τ and x is a node of type τ in a tree t then inserting C at node x does
not modify the k-type of the nodes of t (it may add new k-types, coming from
the nodes of C). In particular the k-type of x is unchanged. Given a context C
we call the path from the root of C to its port the principal path of C. Finally,
the result of the insertion of a k-loop C at a node x of a tree t is a tree T such
that if t = D · t|x then T = D · C · t|x. Typically an insertion will occur only
when the k-type of x is τ and C is a loop of k-type τ . In this case the k-types
of the nodes of t are unchanged by this operation.

Proof (of Lemma 2). Suppose that L is k-tame. Recall that the number of k-
types is βk. Therefore, by choice of l, in every branch of a l-type one can find at
least one k-type that is repeated. This provides many k-loops that can be moved
around whenever necessary in order to obtain similar bigger types.

Take l′ > l, we build T and T ′ from t and t′ by inserting k-loops in t and t′

without affecting their membership in L.
Let B = {τ0, ..., τn} be the set of k-types τ such that there is a loop of k-type

τ in t or in t′. For each τ ∈ B we fix a context Cτ as follows. Because τ ∈ B
there is a context C in t or t′ that is a loop of k-type τ . For each τ ∈ B, we fix
arbitrarily such a C and set Cτ as C · . . . · C︸ ︷︷ ︸

l′

, l′ concatenation of the context C.

Notice that the path from the root of Cτ to its port is then bigger than l′.
We now describe the construction of T from t. The construction of T ′ from t′

is done similarly. The tree T is constructed by inserting simultaneously a copy
of the context Cτ at all nodes of type τ ∈ B of t.

We now show that T and T ′ have the desired properties. The third property
is easy to verify (proof omitted in this abstract).

Claim 1 T 2l′ T ′

The other two properties, t ∈ L iff T ∈ L and t′ ∈ L iff T ′ ∈ L, are not obvious
at all. This is the difficult part of the proof and it requires tameness of the
language. It is a consequence of Lemma 3 below. ��

In order to conclude the proof of Proposition 3 it remains to show the following
lemma. This lemma shows a key consequence of the fact that L is k-tame: the
insertion of k-loops that don’t introduce new (k+1)-types preserves membership
into L.

Lemma 3 Let L be a k-tame regular tree language. Let t be a tree and x a
node of t of k-type τ . Let t′ be another tree such that t 2k+1 t′ and C be a loop
of k-type τ in t′. Consider the tree T constructed from t by inserting a copy of
C at x. Then t ∈ L iff T ∈ L.

Proof. The proof is done in two steps. First we use the k-tame property of L
to show that we can insert a k-loop C′ at x in t such that the principal path
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of C is the same as the principal path of C′. By this we mean that there is a
bijection from the principal path of C′ to the principal path of C that preserves
(k + 1)-types. In a second step we replace one by one the subtrees hanging from
the principal path of C′ with the corresponding subtrees in C.

First some terminology. Given two nodes x, y of some tree T , we say that x
is a l-ancestor of y if y is a descendant of the left child of x. Similarly we define
r-ancestorship.

Consider the context C occurring in t′. Let y0, · · · , yn be the nodes of t′ on the
principal path of C and τ0, · · · , τn be their respective (k+1)-type. For 0 ≤ i < n,
set ci to l if yi+1 is a left child of yi and r otherwise.

From t we construct using k-guarded swaps and k-vertical stutter a tree t1
such that there is a sequence of nodes x0, · · · , xn in t1 with for all 0 ≤ i < n,
xi is of type τi and xi is an ci-ancestor of xi+1. The tree t1 is constructed by
induction on n. If n = 0 then this is a consequence of t 2k+1 t′ that one can
find in t a node of type τ0. Consider now the case n > 0. By induction we have
constructed from t a tree t′1 such that x0, · · · , xn−1 is an appropriate sequence in
t′1. By symmetry we consider the case where yn is the left child of yn−1. Because
all k-guarded operations preserve (k + 1)-types, we have t 2k+1 t′1 and hence
there is a node x of t′1 of type τn. If xn−1 is a l-ancestor of x then we are done.
Otherwise consider the left child x′ of x and notice that because yn is a child of
yn−1 and xn−1 has the same (k + 1)-type than yn−1 then x′, yn and x have the
same k-type.

We know that x is not a descendant of x′. There are two cases. If x and x′

are not related by the descendant relationship then by k-guarded swaps we can
replace the subtree rooted in x′ by the subtree rooted in x and we are done. If
x is an ancestor of x′ then the context between x and x′ is a k-loop and we can
use k-guarded vertical stutter to duplicate it. This places x as the left child of
xn−1 and we are done.

From t1 we construct using k-guarded swaps and k-guarded vertical stutter a
tree t2 such that there is a path x0, · · · , xn in t2 with for all 0 ≤ i < n, xi is of
type τi.

Consider the sequence x0, · · · , xn obtained in t1 from the previous step. Recall
that the k-type of x0 is that same as the k-type of xn. Hence using k-guarded
vertical stutter we can duplicate in t1 the context rooted in x0 and whose port is
xn. Let t′1 the resulting tree. We thus have two copies of the sequence x0, · · · , xn
that we denote by the top copy and the bottom copy. Assume xi is not a child of
xi−1. Notice that the context between the appropriate child of xi−1 and xi is a
k-loop. Using k-guarded vertical swap we can move the top copy of this context
next to its bottom copy. Using k-guarded vertical stutter this extra copy can
be removed. We are left with an instance of the initial sequence in the bottom
copy, while in the top one xi is a child of xi−1. Repeating this argument yields
the desired tree t2.

Consider now the context C′ = t2[x0, xn]. It is a loop of k-type τ . Let T ′ be
the tree constructed from t by inserting C′ in x. The proof of the following claim
is omitted in this abstract.
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Claim 2 T ′ ∈ L iff t ∈ L.

It remains to show that T ′ ∈ L iff T ∈ L. By construction of T ′ we have C′ �k+1

t. Consider now a node xi in the principal path of C′. Let Ti be the subtree
branching out the principal path of C at xi and T ′i be the subtree branching out
the principal path of C′ at xi. The claim below shows that replacing T ′i with Ti
does not affect membership into L. Hence a repeated use of that claim eventually
shows that T ′ ∈ L iff T ∈ L.

Claim 3 Let u and u′ be two trees. Assume s and s′ are subtrees respectively
of u and u′ such that the roots of s and s′ have the same k-type. Consider the
context D such that u = Ds.

If s �k+1 D and s′ �k+1 D then Ds ∈ L iff Ds′ ∈ L.

Proof (sketch). The proof is done by induction on the depth of s′. The idea is
to replace s with s′ node by node.

Assume first that s′ is of depth less than k. Then because the k-type of the
roots of s and s′ are equal, we have s = s′ and the result follows.

Assume now that s′ is of depth greater than k. Let x be the root of s. Let
τ be the (k + 1)-type of the root of s′. Because s′ �k+1 D we know that there
exists a node y in D of type τ . We consider two cases depending on the relation
between x and y.

– If y is an ancestor of x, let E be u[y, x] and notice that x and y have the
same k-type. Hence we can duplicate E using a k-guarded vertical stutter.
The resulting tree is DEs and because L is k-tame, DEs ∈ L iff Ds ∈ L.
Let z be the root of E in DEs. Notice that by construction z is of type
τ . Let s1 be the subtree of DEs rooted at the left child of z and let s′1 be
the subtree of s′ rooted at the left child of the root of s′. By construction
s1 �k+1 D, s′1 �k+1 D. Because their parent have the same (k + 1)-type,
the roots of s1 and s′1 have the same k-type. As the depth of s′1 is strictly
smaller than the depth of s′, by induction we can replace s1 by s′1 without
affecting membership into L. Similarly we do the same for the right child
and we are done.

– Assume now that x and y are not related by the descendant relationship.
We know that x, y have the same k-type and that s �k+1 D. Let s′′ be
the subtree of Ds rooted at y. It can be shown that, as a consequence of
tameness (this is where k-guarded horizontal transfer is used), replacing Ds
by Ds′′ does not affect membership in L . As y′′ is of type τ , we can proceed
by induction as above and replace the left and right subtrees of s′′ by their
corresponding subtrees of s′ to get the desired result. ��

This concludes the proof of the decision algorithm in the case of trees. We note
that in the case of strings Lemma 3 is extremely powerful and is sufficient for
showing that tameness implies membership in LT. This is due to the fact that, on
strings, any two nodes with the same type induce a loop and therefore Lemma 3
applies to this loop. This lemma can then be used for transforming by induction
a string to any other one with the same occurrences of types. However over trees
this no longer work as the two nodes may be incomparable.
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5 Unranked Trees

In this section we consider unranked unordered trees, where each node has an
arbitrary number of children but no order is assumed on these children. Our
goal is to extend the result of the previous section and provide a decidable
characterization of Locally Testable languages of unranked trees. Due to space
limitations, we mostly only mention here our results, their proofs will appear in
the journal version of this paper.

The first issue is to find an appropriate notion of LT for unranked trees.
Recall that a language of binary trees is LT if its membership depends only
on the presence or absence of neighborhoods of a certain size. With unranked
trees, there may be infinitely many different possible neighborhoods of a certain
size and hence this definition does not imply that the language is regular1. The
idea is to replace isomorphism types with FO definable types such that for each
isomorphism type there are only finitely many FO definable types.

We will use the following notion of type. The definition of k-type remains
unchanged: it is the isomorphism type of tree induced by nodes at depth at
most k. As mentioned above there are now infinitely many k-types. We therefore
introduce a more flexible notion that depends on one extra parameter l that
restricts the horizontal information. It is defined by induction on k. Consider an
unordered tree t. For k = 0, the (k, l)-type of t is just the label of the root of
t. For k > 0 the (k, l)-type of t is the label of its root together with, for each
(k − 1, l)-type, the number, up to threshold l, of children of the root of t of this
type.

From this we define two classes of Locally Testable languages. The most gen-
eral one, denoted ALT (A for Aperiodic), is defined as follows. Two trees are
(k, l)-equivalent if they have the same occurrences of (k, l)-types and their roots
have the same (k, l)-type. A language L is in ALT if there is a k and a l such
that L is a union of (k, l)-equivalence classes. In the framework of forest alge-
bra [BW07], languages in ALT have a syntactic forest algebra whose horizontal
monoid satisfies hω = hω+1.

The second one, denoted ILT in the sequel (I for Idempotent), assumes l = 1:
A language L is in ILT if there is a k such that L is a union of (k, 1)-equivalence
classes. In the framework of forest algebra languages in ILT have a syntactic
forest algebra whose horizontal monoid satisfies h + h = h.

The main result of this section is that we can extend the decidable character-
ization obtained for ranked trees to both ILT and ALT.

Theorem 2 It is decidable whether a regular unranked tree language is ILT.
It is decidable whether a regular unranked tree language is ALT.

The notions of k-tame and (k, l)-tame are defined as in Section 3 using k-types
and (k, l)-types. For unranked unordered trees both notions are identical:

1 In this section, by regular we mean definable in MSO using the child predicate. There
is also an equivalent automata model.
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Lemma 4 For every regular unordered tree language L and every k there is a
number l, computable from k and L, such that if L is k-tame, then L is (k, l)-
tame.

In the idempotent case we can completely characterize ILT. It corresponds to
tameness together with an extra closure property denoted horizontal stutter. A
tree language L is closed under horizontal stutter iff for any tree t and any node
x of t, replacing t|x with two copies of t|x does not affect membership into L.

Theorem 3 A regular unordered tree language is in ILT iff it is tame and closed
under horizontal stutter.

This immediately implies the ILT part of Theorem 2 as both tameness and
closure under horizontal stutter are decidable properties.

Proof (sketch). That the right-hand side conditions are necessary is obvious. For
the other direction we first use Lemma 4 to compute l from k. We then prove
the adaptation of Claim 3 to forests. Given two forests h and h′, h+ h′ denotes
the forest consisting of the trees of h followed by the trees of h′. Given a forest
h, a(h) is the tree whose root has label a and whose children are the trees of h.

Consider now two trees t and t′ that are (k, l)-equivalent. Then t = a(h) and
t′ = a(h′) for some a and forests h and h′ that are (k− 1, l)-equivalent. Assume
now that t ∈ L. By horizontal stutter, a(h+h) is also in L. Because h and h′ are
(k−1, l)-equivalent we can use Claim 3 and replace one copy of h by h′ and have
a(h + h′) ∈ L. Claim 3 applies again and yields a(h′ + h′) ∈ L. By horizontal
stutter this implies that t′ ∈ L.

Hence L is a union of (k, l)-equivalence classes. From closure under horizontal
stutter this implies that L is a union of (k, 1)-equivalence classes and is in ILT.

��

For ALT we follow the lines of the binary tree case and Theorem 2 follows from
the unranked variant of Proposition 3:

Proposition 4 Assume L is a tame regular unordered tree language. Then it is
decidable whether there exists a κ such that L is in ALTκ.

6 Discussion

We have provided a recursive procedure for testing whether a regular tree lan-
guage is locally testable.

Our characterization extends to unranked unordered trees. For ordered trees,
we believe that tameness together with a property that essentially say that the
horizontal monoid is in LT should provide a decision procedure for an intuitive
notion of LT over ordered unranked trees. Note that in this setting it is no longer
clear whether tameness is decidable or not. We leave this case for future work.

From the minimal deterministic automata defining a regular tree language
our procedure yields a multi exponential algorithm. On words this test for LT
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can be done in polynomial time. Note that testing whether a tree language is
tame requires only polynomial time on the minimal deterministic bottom-up tree
automata. A better complexity for testing LT could be obtained by exhibiting a
nice set of identities for the class of LT. This is left for future work.
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Abstract. We analyse the computational complexity of finding Nash
equilibria in simple stochastic multiplayer games. We show that restrict-
ing the search space to equilibria whose payoffs fall into a certain inter-
val may lead to undecidability. In particular, we prove that the following
problem is undecidable: Given a game G, does there exist a pure-strategy
Nash equilibrium of G where player 0 wins with probability 1. Moreover,
this problem remains undecidable if it is restricted to strategies with
(unbounded) finite memory. However, if mixed strategies are allowed,
decidability remains an open problem. One way to obtain a provably
decidable variant of the problem is to restrict the strategies to be posi-
tional or stationary. For the complexity of these two problems, we obtain
a common lower bound of NP and upper bounds of NP and PSpace re-
spectively.

1 Introduction

We study stochastic games [18] played by multiple players on a finite, directed
graph. Intuitively, a play of such a game evolves by moving a token along edges of
the graph: Each vertex of the graph is either controlled by one of the players, or
it is stochastic. Whenever the token arrives at a non-stochastic vertex, the player
who controls this vertex must move the token to a successor vertex; when the
token arrives at a stochastic vertex, a fixed probability distribution determines
the next vertex. The play ends when it reaches a terminal vertex, in which case
each player receives a payoff. In the simplest case, which we discuss here, the
possible payoffs of a single play are just 0 and 1 (i.e. each player either wins or
loses a given play). However, due to the presence of stochastic vertices, a player’s
expected payoff (i.e. her probability of winning) can be an arbitrary probability.

Stochastic games have been successfully applied in the verification and syn-
thesis of reactive systems under the influence of random events. Such a system is
usually modelled as a game between the system and its environment, where the
environment’s objective is the complement of the system’s objective: the envi-
ronment is considered hostile. Therefore, traditionally, the research in this area
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has concentrated on two-player games where each play is won by precisely one of
the two players, so-called two-player, zero-sum games. However, the system may
comprise of several components with independent objectives, a situation which
is naturally modelled by a multiplayer game.

The most common interpretation of rational behaviour in multiplayer games
is captured by the notion of a Nash equilibrium [17]. In a Nash equilibrium, no
player can improve her payoff by unilaterally switching to a different strategy.
Chatterjee & al. [6] showed that any simple stochastic multiplayer game has a
Nash equilibrium, and they also gave an algorithm for computing one. We argue
that this is not satisfactory. Indeed, it can be shown that their algorithm may
compute an equilibrium where all players lose almost surely (i.e. receive expected
payoff 0), while there exist other equilibria where all players win almost surely
(i.e. receive expected payoff 1).

In applications, one might look for an equilibrium where as many players as
possible win almost surely or where it is guaranteed that the expected payoff
of the equilibrium falls into a certain interval. Formulated as a decision prob-
lem, we want to know, given a k-player game G with initial vertex v0 and two
thresholds x, y ∈ [0, 1]k, whether (G, v0) has a Nash equilibrium with expected
payoff at least x and at most y. This problem, which we call NE for short, is
a generalisation of Condon’s SSG Problem [8] asking whether in a two-player,
zero-sum game one of the two players, say player 0, has a strategy to win the
game with probability at least 1

2 .
Our main result is that NE is undecidable if only pure strategies are consid-

ered. In fact, even the following, presumably simpler, problem is undecidable:
Given a game G, decide whether there exists a pure Nash equilibrium where
player 0 wins almost surely. Moreover, the problem remains undecidable if one
restricts to pure strategies that use (unbounded) finite memory. However, for the
general case of arbitrary mixed strategies, decidability remains an open problem.
If one restricts to simpler types of strategies like stationary ones, the problem
becomes provably decidable. In particular, for positional (i.e. pure, stationary)
strategies the problem becomes NP-complete, and for arbitrary stationary strate-
gies the problem is NP-hard but contained in PSpace. We also relate the com-
plexity of the latter problem to the complexity of the infamous Square Root Sum
Problem (SqrtSum) by providing a polynomial-time reduction from SqrtSum to
NE with the restriction to stationary strategies.

Let us remark that our game model is rather restrictive: First, players receive
a payoff only at terminal vertices. In the literature, a plethora of game models
with more complicated modes of winning have been discussed. In particular,
the model of a stochastic parity game [5,24] has been investigated thoroughly.
Second, our model is turn-based (i.e. for every non-stochastic vertex there is only
one player who controls this vertex) as opposed to concurrent [12,11]. The reason
that we have chosen to analyse such a restrictive model is that we are focussing
on negative results. Indeed, all our lower bounds hold for (multiplayer versions
of) the aforementioned models. Moreover, besides Nash equilibria, our negative
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results apply to several other solution concepts like subgame perfect equilibria
[20,21] and secure equilibria [4].

For games with rewards on transitions [15], the situation might be different:
While our lower bounds can be applied to games with rewards under the average
reward or the total expected reward criterion, we leave it as an open question
whether this remains true in the case of discounted rewards.

Due to space constraints, most proofs are either only sketched or omitted
entirely. For the complete proofs, see [23].

Related Work. Determining the complexity of Nash Equilibria has attracted
much interest in recent years. In particular, a series of papers culminated in
the result that computing a Nash equilibrium of a two-player game in strategic
form is complete for the complexity class PPAD [10,7]. More in the spirit of our
work, Conitzer and Sandholm [9] showed that deciding whether there exists a
Nash equilibrium in a two-player game in strategic form where player 0 receives
payoff at least x and related decision problems are all NP-hard. For infinite
games without stochastic vertices, (a qualitative version of) the problem NE
was studied in [22]. In particular, it was shown that the problem is NP-complete
for games with parity winning conditions and even in P for games with Büchi
winning conditions.

For stochastic games, most results concern the classical SSG problem: Con-
don showed that the problem is in NP ∩ co-NP [8], but it is not known to be
in P. We are only aware of two results that are closely related to our prob-
lem: First, Etessami & al. [13] investigated Markov decision processes with, e.g.,
multiple reachability objectives. Such a system can be viewed as a stochastic
multiplayer game where all non-stochastic vertices are controlled by one single
player. Under this interpretation, one of their results states that NE is decidable
in polynomial time for such games. Second, Chatterjee & al. [6] showed that the
problem of deciding whether a (concurrent) stochastic game with reachability
objectives has a positional-strategy Nash equilibrium with payoff at least x is
NP-complete. We sharpen their hardness result by showing that the problem re-
mains NP-hard when it is restricted to games with only three players (as opposed
to an unbounded number of players) where, additionally, payoffs are assigned at
terminal vertices only (cf. Theorem 5).

2 Simple Stochastic Multiplayer Games

The model of a (two-player, zero-sum) simple stochastic game [8] easily gener-
alises to the multiplayer case: Formally, a simple stochastic multiplayer game
(SSMG) is a tuple G = (Π,V, (Vi)i∈Π ,Δ, (Fi)i∈Π) such that:

– Π is a finite set of players (usually Π = {0, 1, . . . , k − 1});
– V is a finite, non-empty set of vertices ;
– Vi ⊆ V and Vi ∩ Vj = ∅ for each i �= j ∈ Π ;
– Δ ⊆ V × ([0, 1] ∪ {⊥})× V is the transition relation;
– Fi ⊆ V for each i ∈ Π .
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We call a vertex v ∈ Vi controlled by player i and a vertex that is not contained in
any of the sets Vi a stochastic vertex. We require that a transition is labelled by
a probability iff it originates in a stochastic vertex: If (v, p, w) ∈ Δ then p ∈ [0, 1]
if v is a stochastic vertex and p = ⊥ if v ∈ Vi for some i ∈ Π . Moreover, for
each pair of a stochastic vertex v and an arbitrary vertex w, we require that
there exists precisely one p ∈ [0, 1] such that (v, p, w) ∈ Δ. For computational
purposes, we require additionally that all these probabilities are rational.

For a given vertex v ∈ V , we denote the set of all w ∈ V such that there exists
p ∈ (0, 1]∪ {⊥} with (v, p, w) ∈ Δ by vΔ. For technical reasons, we require that
vΔ �= ∅ for all v ∈ V . Moreover, for each stochastic vertex v, the outgoing
probabilities must sum up to 1:

∑
(p,w):(v,p,w)∈Δ p = 1. Finally, we require that

each vertex v that lies in one of the sets Fi is a terminal (sink) vertex : vΔ = {v}.
So if F is the set of all terminal vertices, then Fi ⊆ F for each i ∈ Π .

A (mixed) strategy of player i in G is a mapping σ : V ∗Vi → D(V ) assigning
to each possible history xv ∈ V ∗Vi of vertices ending in a vertex controlled by
player i a (discrete) probability distribution over V such that σ(xv)(w) > 0 only
if (v,⊥, w) ∈ Δ. Instead of σ(xv)(w), we usually write σ(w | xv). A (mixed)
strategy profile of G is a tuple σ = (σi)i∈Π where σi is a strategy of player i in
G. Given a strategy profile σ = (σj)j∈Π and a strategy τ of player i, we denote
by (σ−i, τ) the strategy profile resulting from σ by replacing σi with τ .

A strategy σ of player i is called pure if for each xv ∈ V ∗Vi there exists w ∈ vΔ
with σ(w | xv) = 1. Note that a pure strategy of player i can be identified with
a function σ : V ∗Vi → V . A strategy profile σ = (σi)i∈Π is called pure if each
σi is pure.

A strategy σ of player i in G is called stationary if σ depends only on the
current vertex: σ(xv) = σ(v) for all xv ∈ V ∗Vi. Hence, a stationary strategy
of player i can be identified with a function σ : Vi → D(V ). A strategy profile
σ = (σi)i∈Π of G is called stationary if each σi is stationary.

We call a pure, stationary strategy a positional strategy and a strategy profile
consisting of positional strategies only a positional strategy profile. Clearly, a
positional strategy of player i can be identified with a function σ : Vi → V . More
generally, a pure strategy σ is called finite-state if it can be implemented by a
finite automaton with output or, equivalently, if the equivalence relation ∼ ⊆
V ∗×V ∗ defined by x ∼ y if σ(xz) = σ(yz) for all z ∈ V ∗Vi has only finitely many
equivalence classes.1 Finally, a finite-state strategy profile is a profile consisting
of finite-state strategies only.

It is sometimes convenient to designate an initial vertex v0 ∈ V of the game.
We call the tuple (G, v0) an initialised SSMG. A strategy (strategy profile) of
(G, v0) is just a strategy (strategy profile) of G. In the following, we will use the
abbreviation SSMG also for initialised SSMGs. It should always be clear from
the context if the game is initialised or not.

Given an SSMG (G, v0) and a strategy profile σ = (σi)i∈Π , the conditional
probability of w ∈ V given the history xv ∈ V ∗V is the number σi(w | xv) if

1 In general, this definition is applicable to mixed strategies as well, but for this paper
we will identify finite-state strategies with pure finite-state strategies.
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v ∈ Vi and the unique p ∈ [0, 1] such that (v, p, w) ∈ Δ if v is a stochastic vertex.
We abuse notation and denote this probability by σ(w | xv). The probabilities
σ(w | xv) induce a probability measure on the space V ω in the following way: The
probability of a basic open set v1 . . . vk ·V ω is 0 if v1 �= v0 and the product of the
probabilities σ(vj | v1 . . . vj−1) for j = 2, . . . , k otherwise. It is a classical result
of measure theory that this extends to a unique probability measure assigning a
probability to every Borel subset of V ω, which we denote by Prσv0 .

For a set U ⊆ V , let Reach(U) := V ∗ · U · V ω. We are mainly interested
in the probabilities pi := Prσv0(Reach(Fi)) of reaching the sets Fi. We call the
number pi the (expected) payoff of σ for player i and the vector (pi)i∈Π the
(expected) payoff of σ.

Drawing an SSMG. When drawing an SSMG as a graph, we will use the following
conventions: The initial vertex is marked by an incoming edge that has no source
vertex. Vertices that are controlled by a player are depicted as circles, where the
player who controls a vertex is given by the label next to it. Stochastic vertices
are depicted as diamonds, where the transition probabilities are given by the
labels on its outgoing edges (the default being 1

2 ). Finally, terminal vertices
are represented by their associated payoff vector. In fact, we allow arbitrary
vectors of rational probabilities as payoffs. This does not increase the power of
the model since such a payoff vector can easily be realised by an SSMG consisting
of stochastic and terminal vertices only.

3 Nash Equilibria

To capture rational behaviour of (selfish) players, John Nash [17] introduced the
notion of, what is now called, a Nash equilibrium. Formally, given a strategy
profile σ, a strategy τ of player i is called a best response to σ if τ maximises
the expected payoff of player i: Pr(σ−i,τ

′)
v0 (Reach(Fi)) ≤ Pr(σ−i,τ)

v0 (Reach(Fi)) for
all strategies τ ′ of player i. A Nash equilibrium is a strategy profile σ = (σi)i∈Π
such that each σi is a best response to σ. Hence, in a Nash equilibrium no player
can improve her payoff by (unilaterally) switching to a different strategy.

Previous research on algorithms for finding Nash equilibria in infinite games
has focused on computing some Nash equilibrium [6]. However, a game may have
several Nash equilibria with different payoffs, and one might not be interested
in any Nash equilibrium but in one whose payoff fulfils certain requirements.
For example, one might look for a Nash equilibrium where certain players win
almost surely while certain others lose almost surely. This idea leads us to the
following decision problem, which we call NE:2

Given an SSMG (G, v0) and thresholds x, y ∈ [0, 1]Π , decide whether
there exists a Nash equilibrium of (G, v0) with payoff ≥ x and ≤ y.

For computational purposes, we assume that the thresholds x and y are vectors
of rational numbers. A variant of the problem which omits the thresholds just
2 In the definition of NE, the ordering ≤ is applied componentwise.
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asks about a Nash equilibrium where some distinguished player, say player 0,
wins with probability 1:

Given an SSMG (G, v0), decide whether there exists a Nash equilibrium
of (G, v0) where player 0 wins almost surely.

Clearly, every instance of the threshold-free variant can easily be turned into an
instance of NE (by adding the thresholds x = (1, 0, . . . , 0) and y = (1, . . . , 1)).
Hence, NE is, a priori, more general than its threshold-free variant.

Our main concern in this paper are variants of NE where we restrict the
type of strategies that are allowed in the definition of the problem: Let PureNE,
FinNE, StatNE and PosNE be the problems that arise from NE by restricting
the desired Nash equilibrium to consist of pure strategies, finite-state strategies,
stationary strategies and positional strategies, respectively. In the rest of this
paper, we are going to prove upper and lower bounds on the complexity of these
problems, where all lower bounds hold for the threshold-free variants, too.

Our first observation is that neither stationary nor pure strategies are suf-
ficient to implement any Nash equilibrium, even if we are only interested in
whether a player wins or loses almost surely in the Nash equilibrium. Together
with a result from Sect. 5 (namely Proposition 8), this demonstrates that the
problems NE, PureNE, FinNE, StatNE, and PosNE are pairwise distinct prob-
lems, which have to be analysed separately.

Proposition 1. There exists an SSMG that has a finite-state Nash equilibrium
where player 0 wins almost surely but that has no stationary Nash equilibrium
where player 0 wins with positive probability.

Proof. Consider the game G depicted in Fig. 1 (a) played by three players 0, 1
and 2 (with payoffs in this order). Obviously, the following finite-state strategy
profile is a Nash equilibrium where player 0 wins almost surely: Player 1 plays
from vertex v2 to vertex v3 at the first visit of v2 but leaves the game immediately
(by playing to the neighbouring terminal vertex) at all subsequent visits to v2;
from vertex v0 player 1 plays to v1; player 2 plays from vertex v3 to vertex v4 at
the first visit of v3 but leaves the game immediately at all subsequent visits to v3;
from vertex v1 player 2 plays to v2. It remains to show that there is no stationary
Nash equilibrium of (G, v0) where player 0 wins with positive probability: Any
such equilibrium induces a stationary Nash equilibrium of (G, v2) where both
players 1 and 2 receive payoff at least 1

2 since otherwise one of these players
could improve her payoff by changing her strategy at v0 or v1. However, it is
easy to see that in any stationary Nash equilibrium of (G, v2) either player 1 or
player 2 receives payoff 0. ��

Proposition 2. There exists an SSMG that has a stationary Nash equilibrium
where player 0 wins almost surely but that has no pure Nash equilibrium where
player 0 wins with positive probability.

Proof. Consider the game depicted in Fig. 1 (b) played by three players 0, 1
and 2 (with payoffs given in this order). Clearly, the stationary strategy profile
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Fig. 1. Two SSMGs with three players

where from vertex v2 player 0 selects both outgoing edges with probability 1
2

each, player 1 plays from v0 to v1 and player 2 plays from v1 to v2 is a Nash
equilibrium where player 0 wins almost surely. However, for any pure strategy
profile where player 0 wins almost surely, either player 1 or player 2 receives
payoff 0 and could improve her payoff by switching her strategy at v0 or v1

respectively. ��

4 Decidable Variants of NE

In this section, we show that the problems PosNE and StatNE are decidable and
analyse their complexity.

Theorem 3. PosNE is in NP.

Proof (Sketch). Let (G, v0) be an SSMG. Any positional strategy profile of G can
be identified with a mapping σ :

⋃
i∈Π Vi → V such that (v,⊥, σ(v)) ∈ Δ for

each non-stochastic vertex v, an object whose size is linear in the size of G. To
prove that PosNE is in NP, it suffices to show that we can check in polynomial
time whether such a mapping σ constitutes a Nash equilibrium whose payoff lies
in between the given thresholds x and y. This can be done by computing, for
each player i, 1. the payoff zi of σ for player i and 2. the maximal payoff ri =
supτ Pr(σ−i,τ)

v0 (Reach(Fi)) that player i can achieve when playing against σ−i,
and then to check whether xi ≤ zi ≤ yi and ri ≤ zi. It follows from results on
Markov chains and Markov decision processes that both these numbers can be
computed in polynomial time (via linear programming). ��

To prove the decidability of StatNE, we appeal to results established for the
Existential Theory of the Reals, ExTh(R), the set of all existential first-order
sentences (over the appropriate signature) that hold in R := (R,+, ·, 0, 1,≤). The
best known upper bound for the complexity of the associated decision problem
is PSpace [3,19], which leads to the following theorem.

Theorem 4. StatNE is in PSpace.
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Proof (Sketch). Since PSpace = NPSpace, it suffices to give a nondeterministic
polynomial-space algorithm for StatNE. On input G, v0, x, y, the algorithm starts
by guessing a set S ⊆ V × V and proceeds by computing (in polynomial time),
for each player i, the set Ri of vertices from where the set Fi is reachable in
the graph G = (V, S). Finally, the algorithm evaluates a certain existential first-
order sentence ψ, which can be computed in polynomial time from (G, v0), x,
y, S and (Ri)i∈Π , over R and returns the answer to this query. The sentence ψ
states that there exists a stationary Nash equilibrium σ of (G, v0) with payoff ≥ x
and ≤ y whose support is S, i.e. S = {(v, w) ∈ V × V : σ(w | v) > 0}. ��

Having shown that PosNE and StatNE are in NP and PSpace respectively, the
natural question arises whether there is a polynomial-time algorithm for PosNE
or StatNE. The following theorem implies that this is not the case (unless, of
course, P = NP) since both problems are NP-hard. Moreover, both problems
are already NP-hard for games with only two players.

Theorem 5. PosNE and StatNE are NP-hard, even for games with only two
players (three players for the threshold-free variants).

It follows from Theorems 3 and 5 that PosNE is NP-complete. For StatNE, we
have provided an NP lower bound and a PSpace upper bound, but the ex-
act complexity of the problem remains unclear. Towards gaining more insight
into the problem StatNE, we relate its complexity to the complexity of the
Square Root Sum Problem (SqrtSum), the problem of deciding, given numbers
d1, . . . , dn, k ∈ N, whether

∑n
i=1

√
di ≥ k. Recently, it was shown that SqrtSum

belongs to the 4th level of the counting hierarchy [1], which is a slight improve-
ment over the previously known PSpace upper bound. However, it is an open
question since the 1970s whether SqrtSum falls into the polynomial hierarchy
[16,14]. We identify a polynomial-time reduction from SqrtSum to StatNE.3

Hence, StatNE is at least as hard as SqrtSum, and showing that StatNE resides
inside the polynomial hierarchy would imply a major breakthrough in under-
standing the complexity of numerical computation.

Theorem 6. SqrtSum is polynomial-time reducible to StatNE.

5 Undecidable Variants of NE

In this section, we argue that the problems PureNE and FinNE are undecid-
able by exhibiting reductions from two undecidable problems about two-counter
machines. Our construction is inspired by a construction used by Brázdil & al.
[2] to prove the undecidability of stochastic games with branching-time winning
conditions.

A two-counter machine M is given by a list of instructions ι1, . . . , ιm where
each instruction is one of the following:
3 Some authors define SqrtSum with ≤ instead of ≥. With this definition, we would

reduce from the complement of SqrtSum instead.
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– “inc(j); goto k” (increment counter j by 1 and go to instruction number k);
– “zero(j) ? goto k : dec(j); goto l” (if the value of counter j is zero, go to

instruction number k; otherwise, decrement counter j by one and go to
instruction number l);

– “halt” (stop the computation).

Here j ranges over 1, 2 (the two counters), and k �= l range over 1, . . . ,m. A
configuration of M is a triple C = (i, c1, c2) ∈ {1, . . . ,m} × N × N, where i
denotes the number of the current instruction and cj denotes the current value
of counter j. A configuration C′ is the successor of configuration C, denoted
by C / C′, if it results from C by executing instruction ιi; a configuration
C = (i, c1, c2) with ιi = “halt” has no successor configuration. Finally, the
computation of M is the unique maximal sequence ρ = ρ(0)ρ(1) . . . such that
ρ(0) / ρ(1) / . . . and ρ(0) = (1, 0, 0) (the initial configuration). Note that ρ is
either infinite, or it ends in a configuration C = (i, c1, c2) such that ιi = “halt”.

The halting problem is to decide, given a machine M, whether the compu-
tation of M is finite. It is well-known that two-counter machines are Turing
powerful, which makes the halting problem and its dual, the non-halting prob-
lem, undecidable.

Theorem 7. PureNE is undecidable.

Proof (Sketch). The proof is by a reduction from the non-halting problem to
PureNE: we show that one can compute from a two-counter machine M an
SSMG (G, v0) with nine players such that the computation of M is infinite iff
(G, v0) has a pure Nash equilibrium where player 0 wins almost surely.

Any pure strategy profile σ of (G, v0) where player 0 wins almost surely deter-
mines an infinite sequence ρ of pseudo configurations of M (where the counters
may take the value ω). Of course, in general, ρ is not the computation of M.
However, the game G is constructed in such a way that σ is a Nash equilibrium
iff ρ is the computation of M. Since ρ is infinite, this equivalence implies that G
has a pure Nash equilibrium where player 0 wins almost surely iff M does not
halt.

To get a flavour of the full proof, let us consider a machine M that contains
the instruction “inc(1); goto k”. An abstraction of the corresponding part of
the game G is depicted in Fig. 2: the game is restricted to three players 0, A
and B (with payoffs given in this order), and some irrelevant vertices have been
removed.

In the following, let σ be a pure strategy profile of (G, v) where player 0 wins
almost surely. At both vertices u and u′, player 0 can play to either a grey or
a white vertex; if she plays to a grey vertex, then with probability 1

2 the play
returns to u or u′ respectively; if she plays to the white vertex, the play never
returns to u or u′. Let c and c′ denote the maximal number of visits to the grey
vertex connected to u and u′ respectively (the number being ω if player 0 always
plays to the grey vertex): these two ordinal numbers represent the counter value
before and after executing the instruction.
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Fig. 2. Incrementing a counter

To see why c′ = 1 + c if σ is a Nash equilibrium, consider the probabilities
a := Prσv (Reach(FA)) and b := Prσv (Reach(FB)). We have a ≥ 1

3 and b ≥ 1
6 since

otherwise player A or B could improve by changing her strategy at vertex v or w
respectively. In fact, the construction of G ensures that a+ b = 1

2 ; hence, a = 1
3 .

Moreover, the same argumentation proves that a′ := Prσv′(Reach(FA)) = 1
3 .

Let p := Prσv (Reach(FA) | V ω\v . . . v′ ·V ω) be the conditional probability that
player A wins given that v′ is not reached; then a = p+ 1

4 · a′ and consequently
p = 1

4 . But p can also be written as the following sum of two binary numbers:

0.00 1 . . .1︸ ︷︷ ︸
c times

111 + 0.000 0 . . .0︸ ︷︷ ︸
c′ times

100 .

Obviously, this sum is equal to 1
4 iff c′ = 1 + c. ��

It follows from the proof of Theorem 7 that Nash equilibria may require infinite
memory (even if we are only interested in whether a player wins with probabil-
ity 0 or 1). More precisely, we have the following proposition.

Proposition 8. There exists an SSMG that has a pure Nash equilibrium where
player 0 wins almost surely but that has no finite-state Nash equilibrium where
player 0 wins with positive probability.

Proof. Consider the game (G, v0) constructed in the proof of Theorem 7 for the
machine M consisting of the single instruction “inc(1); goto 1”. We modify this
game by adding a new initial vertex v1 which is controlled by a new player,
player 1, and from where she can either move to v0 or to a new terminal vertex
where she receives payoff 1 and every other player receives payoff 0. Additionally,
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player 1 wins at every terminal vertex of the game G that is winning for player 0.
Let us denote the modified game by G′.

Since the computation of M is infinite, the game (G, v0) has a pure Nash
equilibrium where player 0 wins almost surely. This equilibrium induces a pure
Nash equilibrium of (G′, v1) where player 0 wins almost surely. However, it is easy
to see that there is no finite-state Nash equilibrium of (G, v0) where player 0 (or
player 1) wins almost surely. Consequently, in any finite-state Nash equilibrium
of (G′, v1) player 1 will play from v1 to the new terminal vertex, giving player 0
a payoff of 0. ��

It follows from Proposition 8 that the problems FinNE and PureNE are distinct.
Nevertheless, we can show that FinNE is undecidable, too. Note however that
FinNE is recursively enumerable: To decide whether an SSMG (G, v0) has a
finite-state Nash equilibrium with payoff ≥ x and ≤ y, one can just enumerate
all possible finite-state profiles and check for each of them whether the profile is
a Nash equilibrium with the desired properties (by analysing the finite Markov
chain that is generated by this profile).

Theorem 9. FinNE is undecidable.

Proof (Sketch). The proof is by a reduction from the halting problem for two-
counter machines and similar to the proof of Theorem 7. ��

6 Conclusion

We have analysed the complexity of deciding whether a simple stochastic mul-
tiplayer game has a Nash equilibrium whose payoff falls into a certain interval.
Our results demonstrate that the presence of both stochastic vertices and more
than two players makes the problem much more complicated than when one of
these factors is absent. In particular, the problem of deciding the existence of a
pure-strategy Nash equilibrium where player 0 wins almost surely is undecidable
for simple stochastic multiplayer games, whereas it is contained in NP∩co-NP for
two-player, zero-sum simple stochastic games [8] and even in P for non-stochastic
infinite multiplayer games with, e.g., Büchi winning conditions [22].

Apart from settling the complexity of NE when arbitrary mixed strategies
are considered, future research may, for example, investigate restrictions of NE
to games with a small number of players. In particular, we conjecture that the
problem is decidable for two-player games, even if these are not zero-sum.
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Abstract. This document describes the auction system used by Google
for allocation and pricing of TV ads. It is based on a simultaneous as-
cending auction, and has been in use since September 2008.

1 Introduction

While Google is known for its advertising on the web, not many people know that
it also allows advertisers to buy TV ads, and do so in a convenient way online. At
the time of writing, Google offers TV advertising inventory on over 100 channels
in the USA, some national and some local. While this paper will not elaborate on
the advantages that this offering can provide to advertisers, broadcasters, cable
operators, or Google itself, we will shortly mention the following advantages for
advertisers:

– Automation: all aspects of of creating, buying, and running the campaign
are done via a simple online web interface.

– Flexibility: in contrast to the old-fashioned habits of the TV advertising
industry where complex deals are manually negotiated long in advance, this
system provides a simple, transparent, just-in-time, granular auction model.
In particular this allows convenient aggregation of inventory over many small
networks.

– Measurement: Excellent online measurements and analysis of the cam-
paign are provided. Notably, the TV ads are delivered via set-top boxes that
track exact and actual numbers of viewers for each ad.

This document concentrates on the auction mechanism that is used for al-
location and pricing of TV ads. We only sketch a high-level description of the
whole system. The reader who wishes to learn more about the rest of the sys-
tem may consult Google’s web-sites for TV ads [1], or the adwords “traditional
media” blog [2]. A variant of the auction mechanism was also used for allocation
of Radio ads from October 2008 to May 2009, at which point Google cancelled
its Radio operation.
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1.1 How It Works — Overview

Google has deals in place with various “publishers” of TV content: broadcasters
and Cable companies. From the point of view of advertising, these publishers
own an inventory of ad-slots: time-slots on various stations, where each of these is
(part of) a commercial break within some scheduled program. A typical slot may
be between 30 second to 120 seconds long, and there may be many dozens of such
slots available daily on each station. Publishers make (part of) their inventory of
slots on their various stations available for sale through Google. All day-to-day
interaction with publishers is automated: slightly over-simplifying, each day the
publisher’s IT systems send the next day’s inventory (set of slots to be sold by
Google) to Google; Google then auctions it among interested advertisers; finally,
Google sends back the resulting schedule and ads to the publisher’s systems that
then insert the scheduled ads at the scheduled commercial breaks. The auction
also sets the prices for the advertisers and Google handles their billing.

This paper does not discuss the financial arrangements between Google and
the different publishers, which are manually negotiated, but rather focuses on
the advertiser-facing side which is goverened by an auction.

1.2 The Advertiser-Facing User Interface

An advertiser that wishes to set a TV advertising campaign can do so using the
respective section of Google’s Adwords site [1]. There are basically three steps
involved. First, the ad itself — the “creative” — a video clip, must be produced
in standard format. This is the responsibility of the advertiser, but Google offers
an online “ad creation marketplace” which helps connecting an advertiser with
specialists that can produce a TV ad for him. Once the ad exists, the advertiser
simply uploads it to the site.

The second step is targeting where your ad may appear. This is done using
a web-page interface that allows targeting by various criteria: stations, days in
the week, day parts, demographics, geographic regions, scheduled programs, etc.
Much sophistication went into making this interface convenient and powerful,
but logically, the output of this stage is simply the set of slots that the advertiser
is interested in. Figure 1 gives a screen shot of (part of) the user interface for
this.

The third step is setting the bid: how much the advertiser is willing to pay.
Logically, there are two main conceptual parts to this bid: a total budget and a
per-ad bid. First, a daily budget is specified, and then a maximum price that the
advertiser is willing to pay for his ad to appear in every targeted slot is specified.
The latter is commonly given in terms of ”cpm” — cost per Millie — the price
for each 1000 viewers. Thus for example a ”$5 cpm” ad that is watched by 3,000
viewers will cost $15. Again, a web-interface lets the advertiser specify these
”max-cpm” bids. While additional constraints and preferences may be specified,
logically, the heart of the specified information here is a real value for each
targeted slot. Figure 2 gives a screen shot of (part of) the TV-ads user interface
for this.
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Fig. 1. Screen shot from TV ads targeting interface

Fig. 2. Screen shot from TV ads bidding interface

1.3 The Auction Goals

Once all the inventory and bids are given, the goal of the auction is to decide on
the allocation, i.e. the schedule of ads, as well as the correct pricing. The desired
input and output of this auction is clear:
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Input:

– The inventory that is available for the next day. This is essentially a set of
slots, where each slot is specified by a time-range on a station, as well as its
basic parameters.

– The set of all campaigns that are interested in this inventory. The basic
information given for each campaign is the daily budget and the cpm for
each slot, but there may also be additional constraints and preferences.

Output:

– The schedule: which advertiser gets to air his creative in which slot.
– Pricing: How much is every advertiser charged (in cpm) for each slot that

he received.

As opposed to traditional methods in the industry where prices are set by
manual negotiations long in advance, the system here allows buying inventory
on a daily basis and thus the prices themselves must be determined automati-
cally as manual negotiation is impractical and inconvenient. These prices must
be flexible, changing on a day-to-day basis as to reflect the changing market
conditions, and thus must be determined by some auction-like (or market-like)
mechanism. This flexibility of prices is needed as to ensure basic economic ef-
ficiency in the face of changing market conditions. This automatic setting of
prices is a major difference from existing systems [3] that automatically handle
scheduling of ads, but are given manually defined prices.

The exact criteria according to which the allocation and pricing should be done
is slightly subtle. It is clear that we would want to allocate slots to advertisers in
a way that maximizes their value from the ads as implied by their bids, and that
we can never charge the advertisers more than what is implied by their budget
or bid. It is also clear that we would like to maximize the revenue, which is then
split between the publishers and Google (according to the negotiated business
terms whose details do not concern us here). What is less clear at first sight is the
exact desired trade off between the conflicting goals of the different advertisers,
between these and the revenue goal, as well as how all this is implemented in
a way that encourages advertisers to bid truthfully and not “shade” their bids.
This last consideration strongly suggests that we should not charge advertisers
directly according to their bid, but rather in the spirit of the “second price
auction”.

In section 2.2, we study some of the difficulties in even attempting to pose
this as an optimization goal (before even worrying about the practicality of the
optimization). Our conclusion is to attempt reaching a “market allocation” with
minimum equilibrium prices. In such an equilibrium, each ad slot is priced at the
minimum price needed for the winner to “take it away” from the competition,
and each advertiser is allocated the most cost-effective set of ads under these
prices according to his bids. Such an outcome would, in partuclar, be “Pareto-
optimal” as well as fair. Taking minimum market equilibrium prices implies that
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bidders have little strategic incentive to reduce their bids, as in any case they
pay the minimum price needed to win their allocation. This approach focuses on
setting up an economic environment—a market—that we anticipate will grow
in the future. Making sure that the environment provides an efficient and fair
outcome is critical for future growth.

1.4 The Auction Logic

The mechanism that was chosen to implement the auction is based on the simul-
taneous ascending auction with item prices. The theoretical foundations of this
ascending approach go back to [4] with a more general point of view taken in [5],
and has been famously used in the FCC spectrum auctions [6]. For a background
on combinatorial auctions in general and the simultaneous ascending auction in
particular we refer the reader to [7,6]. The basic logic of this auction is as follows:
each ad-slot has an associated price that keeps increasing throughout the auc-
tion. Prices start at low reserve prices, and rise whenever there is “over-demand”
for an ad-slot — i.e. a slot that is currently held by one bidder is desired by an-
other. Such small price increases keep going on until there is no “over-demand”,
at which point the auction closes. The basic step in the auction is the calculation
of the “demand” of a bidder at current prices — i.e. which set of slots would
this bidder desire to acquire assuming that slots are priced as given. In its basic
form the calculation of this demand is done by a greedy algorithm that chooses
slots according to decreasing bid-to-price ratio.

Under certain theoretical assumptions (“gross substitutes”) it is known that
this procedure ends with a “Walrasian market equilibrium” [5] and under even
stricter assumptions these prices are incentive compatible — i.e. give no bidder
any strategic reason to under-bid [4]. Of course, these theoretical assumptions
do not hold in reality, and thus we can not expect these desired properties to
perfectly hold in reality. In fact, we show that it is impossible to reach any
of these two conditions even under very restricted cases of our basic setting.
However, we do find that this general approach does work “well” in practice,
with various heuristic solutions to various complications1.

1.5 The Auction Implementation

The auction system described here has been in operation continuously since
September 2008. The complete TV-ads system (which has been in operation
longer) is quite sophisticated in terms of architecture involving multiple compo-
nents that interact with publisher systems, billing systems, databases, monitor-
ing, as well as a web-based front-end. The auction component itself is shielded
from this complexity and is quite simple in architecture. The auction is imple-
mented as a single-threaded single-processor program that accepts its input, in
1 We wish we could quantify this last claim by bringing experimental results, but are

not able to do so here. Some of this quantification has been done but is confidential
data, some of it has not been completely measured as it requires non-trivial effort,
and some of it is even not clear how to measure.
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one “chunk”, in the Google-standard open format of a protocol buffer [8], and
produces an output in a similar format. The most notable feature of the internal
architecture is the central place of a “Bidder” interface that represents a single
advertiser to the auction. The auction itself proceeds by repeatedly asking Bid-
der objects for their “demand”. This internal architecture directly corresponds
to the theoretical point of view [9], separates the concerns of each advertiser from
those of the auction as a whole, and is very adaptable to new advertiser bidding
product features. (The reader may observe the rapid rate of change (product
improvements) on the adwords traditional media blog [2].)

The system is considered a success: short-term simulations do show a signif-
icant improvement in the quality of allocation (revenue, advertiser value, and
other measures) and feedback from the advertiser and publisher directions has
been quite positive.

1.6 Rest of the Paper

The rest of this paper describes this auction in detail. We believe that it will
be more illuminating to start, in section 2, with a simplified description that
captures the basic issues, and only then, in section 3, discuss various “compli-
cations” that real life brings. This paper does not present any new theoretical
results, it does however attempt to provide a theoretical context to the many
issues that were faced and dealt with by the auction. As usual, any real imple-
mentation faces multiple complications, many of which are handled in an ad-hoc
way but really require new theoretical analysis. We attempt pointing out some
of the issues that we believe deserve such theoretical treatment. The first author
has in fact collaborated in theoretical analysis on one such topic [10].

2 The Basic Problem

This section discusses the basic version of the auction.

2.1 The Formulation

Let us start by introducing basic notation that captures the essence of the issue:

– We will have m abstract slots, numbered 1...m. For each slot j we are given
a reserve price rj ≥ 0, as well as basic slot data (station, time, impressions).

– We will have n bidders. Each bidder is specified by his budget bi ≥ 0, and his
maximum bid for each slot, specified by a “valuation function” vi(), where
vi(j) ≥ 0 denotes the bid for slot j. We denote Ti = {j|vi(j) > 0} the set
of slots that i targets. From the point of view of the auction, we take vi
as given, with entries that have been already calculated according to the
advertiser’s bid as a function of the slot data.

– The allocation produced is a partition of the slots into disjoint subsets
S0, S1...Sn ⊆ {1...m}, where each bidder i wins the set of slots Si, and
S0 are the unallocated slots.
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– The pricing produced is a real price pj for each slot j that satisfy the following
properties: (a) at least the reserve price: pj ≥ rj (b) individual rationality: if
j ∈ Si then pj ≤ vi(j) (c) budget constraints: for each bidder i,

∑
j∈Si

pj ≤
bi

2.

We first need to model the utilities of the bidders, i.e. what do they desire.
While in section 3 we elaborate on additional constraints and preferences that
they may express, in the basic formulation described here, we only get from
each bidder a bid for each slot. Our basic assumption on the value of a set of
items is “additive valuations” up to the budget limit. I.e., that the (declared)
value that bidder i gets from acquiring a bundle of slots S ⊆ {1...m} is simply
vi(S) =

∑
j∈S vi(j). Our assumption is that this is a monetary measure and

thus if the bidder pays a total of q for the bundle S then his utility — what we
should aim to optimize for him — is vi(S)− q, but this holds only as long as we
are within budget q ≤ bi. This budget limit takes us out of the usual quasi-linear
setting, and is analyzed theoretically in [10].

2.2 What Are the Goals?

Let us start by informally stating the goals that we would like to get, at first not
worrying about exact definitions, whether they are feasible, or how to handle
the conflicts between them.

– Efficiency: We should try to maximize the values obtained by the bidders,
i.e. the vector v1(S1)...vn(Sn). There will clearly be some trade off, which
we should specify, between the values obtained by different bidders.

– Revenue: certainly the auctioneer should aim to maximize the revenue,∑
j ∈S0

pj .
– Fairness: We should not discriminate between bidders. The exact meaning

of this requires some thought, but lack of fairness is usually quite clear.
– Incentive Compatibility: We should remember that the bid information is

given to us by advertisers. These will react strategically to the auction system
used, and optimize their bids as to get highest utility from the system. We
should ensure that there are no strategic reasons for advertisers to “under-
bid” or otherwise strategically declare a bid that is different than their true
value.

While the reader may certainly see the need for trade offs between these
goals, there is even conceptual difficulty in attempting to handle them separately.
We encourage the reader to pause for a while and try to formulate for himself
what his optimization trade-off approach will be. To our understanding there is
2 Less specifically, as in mechanism design theory, we could only ask for the total

payments from each bidder i without breakdown by “item price”, e.g., as given
by the VCG payment rule. This relaxation does not seem to really help, and our
subsequent discussion regarding formalizing the auction goals applies also to this
less specific “bundle price” setting.
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no clear mathematical programming formulation of the optimization goal that
makes much sense here. The difficulty is inherent in the combination of budget
constraints with valuations, as simple attempts to optimize “social welfare” do
not take budgets into proper account and simple attempts to maximize revenue
do not give reasonable weight to the valuations. This is especially apparent when
looking at scenarios where the budget constraints are the significant ones, which
is the typical case. In appendix A we use a simple example to discuss why several
natural attempts at formalizing the problem do not really make much sense. We
also discuss there the problems with auctioning each slot separately, an approach
which would be quite appealing due to its simplicity.

We believe that the approach that makes sense is the classic economic goal of
reaching a “Walrasian” market equilibrium:

– Unallocated slots remain at reserve price: j ∈ S0 implies pj = rj .
– Each advertiser gets his “demand” at the equilibrium prices, i.e. wins the

best package for him. Formally, any set S of slots where
∑
j∈S pj ≤ bi, we

have that
∑
j∈S(vi(j)− pj) ≤

∑
j∈Si

(vi(j)− pj).
– Where there is a range of equilibrium prices, we choose the lowest possible

equilibrium prices.

Achieving this goal would seem to be natural and desirable in its own right.
Let us say a few words on how it addresses our previous informal list of goals.

1. Efficiency: By the first welfare theorem, any equilibrium allocation will be
Pareto-optimal. In particular, every bidder gets the bundles of slots that is
optimal for him, under given prices, according to his bid.

2. Revenue: This auction does not always maximize revenue among all auctions.
However, at a high level, budgets are exhausted for all bidders that bid “high
enough”, while fairness and incentive constraints limit what can be taken
from “low bidders”.

3. Fairness: The auction is obviously anonymous, has the “no envy” property,
and all prices are justified by the property that at a lower price the slot
would be over-demanded.

4. Incentive Compatibility: in general we know that markets are incentive com-
patible as long as no single participant has non-negligible effect on market
prices. Without this assumption, there only are theoretical results showing
incentive compatibility of minimum equilibrium prices in some simple cases:
unit demand [4] and multi-unit auctions when valuations constraints are sig-
nificantly weaker than budget constraints [10]. One can not hope for perfect
theoretical incentive compatibility as [10] also show that no Pareto-optimal
auction can be incentive compatible in the presence of budget limits3.

Unfortunately, it is theoretically impossible to always reach such an equilib-
rium, even in this restricted setting, for two main theoretical reasons: The first
3 In particular due to the non-quasi-linear setting, VCG prices are not incentive com-

patible, even if they could be computed efficiently.
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reason is the computational difficulty: even when slot prices are given, comput-
ing the demand of a bidder is equivalent to a knapsack problem. Computing the
equilibrium allocation can only be harder, as computing the demand is a special
case. This is addressed by taking account of the fact that usually slot prices are
relatively small compared to budgets. In this case, we are close to a fractional
setting, where the demand of a bidder is efficiently computed by a greedy algo-
rithm. Not only is this greedy algorithm a good approximation, but when more
realistic issues are taken into account, in section 3.1, it may be argued that it
represents the demand better than the theoretical optimum.

The second reason is that it is well known that a Walrasian equilibrium may
not exist unless all demands are “gross substitutes”, which they need not be
in our case. Thus even ignoring computational issues an equilibrium may not
exist at all. Appendix B gives an example. This is handled in our auction by
first relaxing the condition that all non-reserve-priced slots must be allocated,
and then allocating the relatively few unsold spots in a sub-optimal “remnant
inventory sale” round.

2.3 The Simultaneous Ascending Auction

We describe here the basic version of the auction, still dealing only with the
basic scenario formalized above. This basic version is the framework for the
complete solution, and in the next section we will describe the various changes
and enhancements to the basic algorithm. The overall idea is simple:

Initialization:

1. For all slots j, set price to reserve: pj ← rj .
2. Start with an empty allocation: For all bidders i > 0, Si ← ∅, and S0 ← the

set of all slots.
3. For all advertisers i, enqueue i into the bidder queue.

Main loop:

While bidder queue not empty do:

1. Dequeue the next bidder i from the bidder que.
2. Compute the demand D of bidder i greedily as follows:

(a) Sort all slots in Ti with p̃j ≤ vi(j) according to decreasing value of
vi(j)/p̃j , where p̃j = pj for j ∈ Si ∪ S0 and p̃j = pj + δ otherwise.

(b) For all j according to the sorted order, if taking this slot does not exceed
budget, p̃j +

∑
t∈D p̃t ≤ bi, then acquire it, D ← D ∪ {j}.

3. For all slots j ∈ D ∩ Sk for some i �= k > 0 do:
(a) Increase price of j: pj ← pj + δ.
(b) Remove j from Sk.
(c) if k is not already in the bidder queue then enqueue k.

4. Update the set of unallocated spots: S0 ← S0 ∪ (Si −D).
5. Update Si: Si ← D.
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Output:

Each bidder i > 0 is allocated all slots j in Si, at a price of pj for slot j. Slots
in S0 are left un-allocated at this point.

The key step in this auction is the calculation of the demand D. It is important
that this step only depends on bidder i’s information as well as the values p̃j and
not on any other global information. The goal of the step is to find the set of
slots that maximize i’s utility

∑
j∈D(vi(j)− p̃j) subject to the budget constraint

that
∑
j∈D p̃j ≤ bi. The greedy algorithm gives the optimal solution to the

fractional variant of the problem where a slot may be partially taken at any
fraction α for price αp̃j and giving value αvi(j), and thus is practically a good
approximation to the optimal set4. Notice also the modularity and flexibility of
demand computation allowing easy extensions to take into account various other
bidder preferences as described in section 3.

This ascending auction algorithm follows the theoretical work starting with
[4,5], and described, e.g., in [11]. It is easy to see that it ends with a Walrasian
equilibrium (up to the additive δ) if no slots remain un-allocated. This is known
to be the case with “gross substitutes” bidders in which case it ends with the
minimal equilibrium prices5. In general, however, and especially given the com-
plications discussed in section 3, some slots may remain unallocated at this stage
and are allocated in a next “remnant inventory” stage.

2.4 Remnant Inventory

The auction main loop ends with some slots unsold, those in S0. The remnant
sale sells these slots. In this stage all bidders participate as before, but their
demands take into account the slots that they have already won. The logic of
this stage is heuristic, basically attempting to sell as much as possible at prices
that are as close as possible to the attempted “equilibrium prices” from the
previous round. This stage proceeds by reducing (slightly) all prices pj of the
remaining slots, and re-running the main loop, selling some more slots. This is
repeated until all remaining unsold slots are priced at their reserve price which
means that they can not be sold at all and are left un-allocated.

This round is certainly a heuristic; a theoretical foundation for handling rel-
atively small deviations from equilibrium would be of considerable interest.

3 Some Complications

3.1 The Imprecise Nature of Budgets

Budgets play a critical role in the problem formulation above, as they do in
reality: an advertiser’s budget is usually the main constraint on his allocated
4 A dynamic programming algorithm could give a provable tighter approximation, but

would require more running time, be much less flexible to addition of further con-
straints, and even more importantly would likely give a worse model of the bidder’s
true utility as we discuss in section 3.1.

5 The minimum is well defined as equilibrium prices turn out to be a lattice [5].
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set of spots. In reality, however, budgets are not totally well defined as in our
formulation for a host of reasons, including the following significant ones:

1. Google charges TV advertisers according to the actual number of people that
watched the ad (as reported by their cable boxes) and these real payments
need to be constrained by the budget but are not known at allocation time,
when only an estimate is available. Thus the algorithm works with estimated
payments that may later turn out to be smaller or larger than the real
payments.6 The implication is that the budget should not be treated like a
clear-cut constraint but rather as a “band” in which the higher you get the
higher the probability that you are over-budget.

2. The hard budget constraints are usually specified by the advertisers for
longer periods of time (month, week, or campaign-length), which encompass
multiple auctions. While it is expected that the single-auction daily budget is
approximately the appropriate proportion, this is not a hard constraint. In-
deed the current Google adwords rules allow exceeding a single day’s budget
by up to 20%, and only treat the longer-term budgets as “hard”.

The implication from this is double: first, since the budget should really be
treated as a “smooth” constraint, there is some room for optimizations as well as
policy decisions in regards to the exact stopping rule in calculating the demand
using the greedy algorithm. A simple example of an optimization is for handling
the integrality constraint at the “last spot” — the one that just goes over budget.
This may be allowed as long as it does not go over-budget beyond some threshold.
An example for a policy decision is to be conservative in optimizations and try
to stick closely to proportional daily budgets as to simplify advertiser control
of their campaign. The smoothness of the budget constraint further justifies
the greedy algorithm for computing demand rather than trying some kind of
knapsack algorithm, since the whole justification of the latter is dealing with
the sharp integrality constraint at the budget limit, without which the greedy
algorithm is optimal (i.e. for the fractional knapsack problem.)

We suggest that some more detailed modeling of budget constraints may be
of considerable interest in various settings.

3.2 Crowd Control

The basic formulation of the problem did not place any structural constraints on
the set of slots allocated to a single bidder. In reality there are some constraints
of this form, where the most significant ones forbid too much “crowding” of
slots on the same station. Such constraints come in different flavors: they may
forbid a single ad to to appear twice in the same commercial break or within
some predefined time gap, they may place the restriction on a single ad, on all
ads by the same advertiser, or even on ads by different advertisers in the same
6 In the algorithm above, pj is the total price of the ad given the estimated number of

impressions for it. The actual bids and payments are on CPM basis, i.e. after the ad
is aired will be scaled by (actual number of impressions)/(estimated impressions).
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industry. These kind of restrictions can represent the requirements of publishers
or of advertisers, and must be respected by the auction. These constraints are
easily incorporated into the auction by modifying the greedy demand algorithm
to take them into account: in each greedy step we check whether taking the
slot would violate “crowding” constraints, and skip the slot if this is the case.
While the greedy algorithm is no longer theoretically optimal for calculating the
demand even in the fractional case under these constraints, we did not observe a
significant sub-optimality in practice. Appendix C shortly provides a theoretical
analysis of such constraints that seems of general interest.

A constraint between different advertisers in the same industry is concep-
tually more problematic: it breaks the basic model of a combinatorial auction
since it introduces externalities: whether I can take a slot or not depends also on
someone else’s allocation. While in principle it is possible to “internalize” these
externalities into the model by introducing “crowding tokens” which are also
put in auction, this would have significant overhead. A simpler, although not
“perfectly correct” solution is to simply incorporate these “industry” crowding
constraints into the greedy demand logic, slightly breaking the theoretical con-
tract that the demand is a function of solely the current prices. One significant
addition to the basic auction algorithm which is needed here is a mechanism that
ensures that an advertiser is re-scheduled for calculating his demand whenever
an external constraint on him changes. A theoretical analysis and quantification
of the effect of “mild” externalities in combinatorial auctions and of various ways
of dealing with them seems to be of interest.

3.3 The Nature of Bidders: Accounts, Campaigns, and Creatives

All of our discussion assumes the atomic notion of the “bidders”: the entities
among which we allocate the slots and which are the strategic participants in
the auction. The reality is more complicated: there is an hierarchy of entities
among which we allocate. In the case of Google adwords the hierarchy contains
three levels.

1. The Account: Represents a single advertiser (company).
2. The Campaign: Represents an advertising campaign with its own budget and

goals. An account may run multiple campaigns.
3. The Creative: Represents a single ad. A campaign may run multiple ads.

Now, which of these entities should a bidder be? From one point of view, the
allocation is ultimately between ads, so the creative level seems right. From a
different point of view the advertiser is really the strategic player in the auction,
so the account level seems right. However, it seems that the campaign level is
really the preferred answer. Conceptually, a campaign has a goal that it is trying
to achieve, and the significant budget constraint usually is the campaign budget.
Indeed, bidding is set on a campaign level. Some modification need to be made
to the auction in order to handle the other levels of the hierarchy. First, we must
sub-allocate each campaign’s allocated slots among its creatives. This allocation
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is not price-based but rather by non-economic criteria usually, more or less, by
rotation. Second, we must take care of special relations between campaigns in the
same account, in particular they may share an “account budget” — a limit on the
combined expenditure of all campaigns in the same account — which in terms
of our campaign-based modeling is an externality. Also, as a matter of policy, it
might be required that campaigns from the same account do not compete with
each other, driving prices up without real competition from another advertiser.

We are not aware of theoretical work that attempts to directly model this
“fuzziness” in the nature of the agents themselves, but this certainly seems like
an interesting research direction.

3.4 Long vs. Short ads

All of our discussion so far assumed that all ads are of the same length, and thus
all advertisers that target the same slot simply compete against each other. In
reality, ads come in several standardized lengths: current TV industry standards
use an integer multiple of 15 seconds, and so we need to enhance our setting to
allow ads whose length is a small integer number of slots (practically between a
single slot and eight consecutive slots). The main difficulty arises when different
length ads compete for the same slots: should we prefer a $5 bid for 2-slots or
a $3 bid for 1-slot? In a totally “liquid” situation, which behaves just like the
fractional setting, there would also be another $3 1-slot bid for these 2 slots and
thus taking the two $3 bids for a total of $6 is certainly best. In practice this
will not always be the case.

At the algorithmic level, the problem is not very difficult due to the consecutive
linear nature of the multi-slot bids and can be solved polynomial time using dy-
namic programming [12]7. However, the pricing problem here is significant since
a bid for two consecutive slots has strong built-in complementarity: a single slot is
worthless. The difficulties with such a situation are well known and appear at full
strength even with a small example of selling 2 consecutive slots: Assume that Al-
ice has a 2-slot ad at a value of vA, while Bob and Charlie each have a 1-slot ad at
values vB and vC , respectively. It terms of maximizing efficiency Alice should win
whenever vA > vB+vC , and should “logically” pay vB+vC . But how much should
Bob and Charlie pay when vB + vC > vA? It is well recognized [13,6] that in such
a case the incentive compatible VCG payments are quite problematic: they would
have Bob pay max(0, vA−vC) and Charlie pay max(0, vA−vB). This is awkward
for several reasons, e.g., the payments may well be zero and may certainly be such
that the combined payment is much less than vA. A natural approach would be
to let Bob and Charlie share paying a sum of vA in some manner, e.g. proportion-
ally to their bid. But this is strongly non-incentive compatible as it encourages
free-riding: reducing my bid will reduce my payment.

Our approach has been to stick with the price-per-slot auction in the main
ascending auction stage and then do a correction in the second remnant sale
stage. This fits directly into the basic ascending slot price architecture. In places

7 In fact, this is true even in conjunction with the crowding constraints described above.
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with sufficient liquidity, it is optimal in terms of allocation and seems “correct”
in terms of pricing. Specifically, during the main ascending stage we maintain
a price for each slot and bids that require several continuous slots simply see
the sum of the slot prices when they compute their demand. When a “short”
ad takes a slot from a longer ad, the remaining slots are left un-allocated. This
may lead to slots remaining unallocated at the end of the auction at which point
they are sold in the “remanent sale”. In fact, the competition between different
length ads is usually the main source of un-allocated slots at the end of the first
ascending stage8.

In the remnant sale stage we change the pricing rule from being per-slot to
taking the whole ad into account. Since we are already in a situation where it
is clear that there are liquidity problems, a short ad can replace a longer one
only by paying for the complete price of the replaced ad — even those slots
that are not desired by the short one. Theoretically, the allocation achieved is
no longer optimal and we also deviate from incentive compatibility, but since
typically only a small fraction of slots are left unsold at the remnant stage, this
is practically acceptable.

While much analysis of the basic “one two-item bid vs. two one-item bid” has
appeared in the literature, we leave a comprehensive theoretic strategic treat-
ment of this scenario when there are many slots and bidders (and so we are
“somewhat close” to a fractional setting) as a research problem.

3.5 Auction Overlap

Our basic model considers a single fixed auction: all the input is available, then
an algorithm that determines the allocation and pricing is run, and then results
are reported to the systems that actually run the ads at the allocated times
and that bill the advertisers appropriately. Unfortunately, reality has a signif-
icant “online” component: the “input” i.e. the inventory for sale arrives from
the different publishers at different times. Some may know their inventory for
Tuesday a week before, some may only have it late Monday night, and in some
cases some preliminary information is available early and may then be updated
later. Similarly, some publishers are willing to get their schedule for Tuesday late
Monday night while others need it a few days in advance.

The way that this staggered schedule of availability of the input and the out-
put is handled is as follows. Every time some output (i.e. allocation information
for some set of slots) is needed, a new auction is run. At that point in time the
auction is run on all inventory whose allocation affects the required set of slots.
For inventory that is unavailable at that time, the preliminary available informa-
tion — a prediction, if needed — is used. Only the allocation of slots that needs
to be specified at this time is actually used, and the allocation of other slots is
discarded, to be finalized in future auctions which may have better information.

As an example (which is similar in spirit though not details to the case in our
auction) suppose that publisher A needs to get his schedule 2 days in advance
8 As the complementarity between adjacent slots indeed is “farthest away” from the

theoretical “gross substitutes” condition.
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and publisher B requires only 1 day in advance, but then may also report his
inventory to Google only 1 day in advance. We then hold two auctions on every
day x: one for day x+ 1 and the other day x+ 2. The auction for day x+ 2 will
use the best estimates so far for B’s inventory and the final inventory of A. The
allocation it produces for B will be simply thrown away, and only the allocation
for A will be committed. This will exhaust some of the budgets of advertisers
for day x + 2. The auction for day x + 1 (run on day x) will take into account
the budgets that were already spent for day x + 1 (by the auction run on day
x− 1) and will use the final inventory of B to get the allocation for B.

The quality of results obtained by this staggered online algorithm depends
of course on the quality of preliminary information. It is not needed really that
the preliminary information or prediction get the exact inventory correctly but
rather that prices implied by the predicted inventory are close enough to those
implied by the actual final inventory.

While there has been some work on online auctions (see survey in [14]), we
did not find any work that is directly applicable to our setting. We leave a
disciplined theoretical analysis of this type of “staggered” online problem as an
open problem.

3.6 Lack of Free Disposal

The model of combinatorial auctions implicitly assumes free disposal: an item
which is not sold can simply be thrown away. In reality this need not always be
the case. For example, a commercial break must be filled — empty airtime is
not tolerated. The solution to this is very simple in principle: just have a bunch
of “filler” ads ready that can be used to fill any empty slot. Of course preparing,
managing, and approving these ads may be non-trivial in practice, but from this
paper’s auction-centric point of view the problem reduces to filling empty slots
with appropriately chosen filler ads. In our auction, Google has “public service”
announcements used for this purpose, while providing this public service to the
community.
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Appendix A: Difficulties in Problem Formulation

Let us look at a few natural attempts to formulate the desired goals of the
auction and see why they do not make much sense. These will lead us to the
market equilibrium formulation that we took. For concreteness, let us consider
the following simple example:

Running Example: 100 slots are being auctioned among two advertisers: Alice
has a $60 budget and a $3 value for each slot and Bob has a $30 budget and a
$6 value per slot.

3.7 Independent Auctions?

The first approach that one may consider is to auction the spots one by one, each
time to the highest bidder whose budget has not been exhausted yet. This seems
to make much sense as slot values are independent of each other. This approach
also has the very strong appeal of simplicity both in terms of implementation
and in terms of of explaining it to the advertisers. One may think of various
approaches to decide on pricing, but using the second price in each of the slot

http://code.google.com/apis/protocolbuffers
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auctions seems appropriate for incentive compatibility. If we follow what this
approach means in our case we see that Bob, the high bidder, will win all the
first auctions until his budget is exhausted. Using a second-price rule, he will be
charged $3 per slot, so his budget will run out after winning 10 slots. At this
point, Alice will win the remaining 90 spots for free (or whatever low reserve
price there is). The extreme un-fairness would be even more apparent if Alice
only had a $10 budget — she would still win these 90 spots for free. Strategic
manipulation can be extremely helpful here: had Bob declared a $2 per-slot bid
instead, Alice would win the first slots for $2 each, exhausting her budget after
30 slots, and then Bob could reap the remaining 70 spots for free!

3.8 Maximize Revenue?

Suppose that are goal is maximizing revenue. This is achieved by charging the
two advertisers their full budgets. This will also satisfy individual rationality
as long as the allocation gives at least 20 slots to Alice and at least 5 to Bob.
Thus revenue maximization provides very little guidance on which allocation
to choose. So which other criteria should be use? Fairness and efficiency would
seem to suggest allocating a slot to the one that has a higher value for it. Should
Bob get all but 20 of the slots? This seems quite unfair. Why should he pay
much less per slot? It also is clearly not incentive compatible since advertisers
are strongly motivated to strategically reduce their declaration of the budget.
Another difficulty of this approach is to what extent is taking the whole budget
is justified: suppose that Bob only puts in a low $0.1 value for each spot (rather
than $6). Can we still charge Alice her full $60 budget, even though the “second
price” would only be $10 (10 cents for each of 100 slots)? Should we give some
spots to Bob in this case and charge him, hence increasing our revenue further?

3.9 Maximize Efficiency?

Suppose, on the other hand, that our goal is maximizing efficiency. Let us further
decide that our resolution of the trade off between different advertisers is the
“utilitarian” one of maximizing the sum of values,

∑
i

∑
j∈Si

vi(j). How are the
budgets taken into account? As previously, should Bob get all slots? How much
should he pay?

Some previous papers have considered the budget limit as an upper bound
on the value, vi(S) = min(bi,

∑
j∈S vi(j), and thus attempted to maximize∑

i(min(bi,
∑
j∈Si

vi(j)). If this is done, then again any allocation that gives
at least 20 slots to Alice and at least 10 to Bob would achieve this maximiza-
tion. Again we get very little guidance on which allocation to choose. How much
should they pay? VCG payments in this context make no sense since they would
be 0 (and in general do not ensure incentive compatibility in our non-quasi-linear
setting).
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3.10 Market Equilibrium

At this point, we hope that the reader is coming to the realization, like we have,
that the correct goal here is a market equilibrium.

Let us see what this equilibrium will look like here. At any price p ≤ 30/34 =
0.882... Alice will demand at least 68 slots and Bob at least 34 so there will be
over-demand. Just above this price, Bob’s demand would be 33 and Alice’s 67,
so the the lowest equilibrium price would be just above 88.2 cents. Bob would
pay $29.1.. for his 33 slots and Alice would pay $59.1.. her 67 slots. This is quite
efficient, nearly maximizes revenue, and seems to be quite fair. This case turns
out to also be incentive compatible: no advertiser can gain by manipulating his
bid.

Appendix B: Example with No Equilibrium Prices

Here is an example for a simple setting where no Walrasian equilibrium exists.

bidder budget v(a) v(b) v(c)
1 6 5 5 0
2 9 4 4 8
3 7 0 0 7

Assume towards contradiction that an equilibrium exists, and assume without
loss of generality that pa ≤ pb. If pa+pb > pc then bidder 2 demands c and pc ≥ 7
(otherwise 3 also demands it). But then bidder 1 demands only a, and b is left
un-allocated contradicting the requirement that unallocated slots be priced at
reserve (0 here). On the other hand, if pa+pb < pc then pc ≤ 7 (otherwise neither
2 nor 3 demand c and it is left un-allocated despite its non-zero price). But then
both 1 and 2 demand a. Contradiction. The case pa + pb = qc is treated like the
first case if c is allocated to 2, and like the second case otherwise, concluding the
contradiction.

Appendix C: Additive Valuations with Pair-Wise
Constraints

In this appendix we focus, in a general combinatorial auction setting, on con-
straints that forbid a bidder to win certain given pairs of items. This appendix
does not address the interplay with budget constraints (which we have not ana-
lyzed and leave as a topic for further study) but rather reverts to the standard
quasi-linear setting. A linear valuation with such constraints is given by two
elements:

1. A value v(j) for each item j ∈M , where M is the set of items for sale.
2. A graph G = (M,E), where E are the set of pairs that are forbidden to be

taken together.
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The valuation of a set is defined as v(S) = maxI⊆S
∑
j∈I v(j), where I ranges

over all sets that are independent in G. This is essentially the ”OR*” bidding
language used on singleton valuations (see [15]). We believe that this is quite
a useful “bidding language” in general and should be studied. Here are a few
preliminary results, whose proofs are straight forward given the literature and
omitted.

– Every linear valuation with pair-wise constraints lies in the class XOS of
[16] and hence is sub-additive. There are linear valuations with pair-wise
constraints that are not sub-modular and hence not gross-substitutes.

– Answering a value query or a demand query (see [9]) given the description
of the valuation as above is NP-hard. The same is true for approximating
the value to within m0.5−ε or for finding the welfare-maximizing allocation
between such valuations.

– When the graph is restricted to be an interval graph (as it is in our “crowd-
ing” constraints) both value and demand queries can be answered exactly in
polynomial time (using dynamic programming).
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Abstract. Analyzing massive data sets has been one of the key motivations for
studying streaming algorithms. In recent years, there has been significant progress
in analysing distributions in a streaming setting, but the progress on graph prob-
lems has been limited. A main reason for this has been the existence of linear
space lower bounds for even simple problems such as determining the connect-
edness of a graph. However, in many new scenarios that arise from social and
other interaction networks, the number of vertices is significantly less than the
number of edges. This has led to the formulation of the semi-streaming model
where we assume that the space is (near) linear in the number of vertices (but
not necessarily the edges), and the edges appear in an arbitrary (and possibly
adversarial) order.

However there has been limited progress in analysing graph algorithms in
this model. In this paper we focus on graph sparsification, which is one of the
major building blocks in a variety of graph algorithms. Further, there has been
a long history of (non-streaming) sampling algorithms that provide sparse graph
approximations and it a natural question to ask: since the end result of the sparse
approximation is a small (linear) space structure, can we achieve that using a
small space, and in addition using a single pass over the data? The question is
interesting from the standpoint of both theory and practice and we answer the
question in the affirmative, by providing a one pass Õ(n/ε2) space algorithm
that produces a sparsification that approximates each cut to a (1 + ε) factor. We
also show that Ω(n log 1

ε
) space is necessary for a one pass streaming algorithm

to approximate the min-cut, improving upon the Ω(n) lower bound that arises
from lower bounds for testing connectivity.

1 Introduction

The feasibility of processing graphs in the data stream model was one of the early
questions investigated in the streaming model [9]. However the results were not en-
couraging, even to decide simple properties such as the connectivity of a graph, when
the edges are streaming in an arbitrary order required Ω(n) space. In comparison to
the other results in the streaming model, [1,16] which required polylogarithmic space,
graph alogithms appeared to difficult in the streaming context and did not receive much
attention subsequently.
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However in recent years, with the remergence of social and other interaction net-
works, questions of processing massive graphs have once again become prominent.
Technologically, since the publication of [9], it had become feasible to store larger
quantities of data in memory and the semi-streaming model was proposed in [6,15].
In this model we assume that the space is (near) linear in the number of vertices (but
not necessarily the edges). Since its formulation, the model has become more appeal-
ing from the contexts of theory as well as practice. From a theoretical viewpoint, the
model still offers a rich potential trade-off between space and accuracy of algorithm,
albeit at a different threshold than polylogarithmic space. From a practical standpoint,
in a variety of contexts involving large graphs, such as image segmentation using graph
cuts, the ability of the algorithm to retain the most relevant information in main mem-
ory has been deemed critical. In essence, an algorithm that runs out of main memory
space would become unattractive and infeasible. In such a setting, it may be feasible
to represent the vertex set in the memory whereas the edge set may be significantly
larger.

In the semi-streaming model, the first results were provided by [6] on the construc-
tion of graph spanners. Subsequently, beyond explorations of connectivity [5], and
(multipass) matching [14], there has been little development of algorithms in this model.
In this paper we focus on the problem of graph sparsification in a single pass, that is,
constructing a small space representation of the graph such that we can estimate the
size of any cut. Graph sparsification [2,17] remains one of the major building blocks
for a variety of graph algorithms, such as flows and disjoint paths, etc. At the same
time, sparsification immediately provides a way of finding an approximate min-cut in a
graph. The problem of finding a min-cut in a graph has been one of the more celebrated
problems and there is a vast literature on this problem, including both deterministic
[7,8] as well as randomized algorithms [10,11,13,12] – see [3] for a comprehensive
discussion of various algorithms. We believe that a result on sparsification will en-
able the investigation of a richer class of problems in graphs in the semi-streaming
model.

In this paper we will focus exclusively on the model that the stream is adversari-
ally ordered and a single pass is allowed. From the standpoint of techniques, our al-
gorithm is similar in spirit to the algorithm of Alon-Matias-Szegedy [1], where we
simultaneously sample and estimate from the stream. In fact we show that in the semi-
streaming model we can perform a similar, but non-trivial, simultaneous sampling and
estimation. This is pertinent because sampling algorithms for sparsification exist [2,17],
which use O(npolylog(n)) edges. However these algorithms sample edges in an iter-
ative fashion that requires the edges to be present in memory and random access to
them.

Our Results. Our approach is to recursively maintain a summary of the graph seen so
far and use that summary itself to decide on the action to be taken on seeing a new
edge. To this end, we modify the sparsification algorithm of Benczur and Karger [2] for
the semi–streaming model. The final algorithm uses a single pass over the edges and
provides 1±ε approximation for cut values with high probability and usesO(n(log n+
logm)(log mn )(1 + ε)2/ε2) edges for n node and m edge graph.
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2 Background and Notation

Let G denote the input graph and n and m respectively denote the number of nodes and
edges. V AL(C,G) denotes the value of cut C in G. wG(e) indicates the weight of e in
graph G.

Definition 1. [2] A graph is k-strong connected if and only if every cut in the graph has
value at least k. k-strong connected component is a maximal node-induced subgraph
which is k-strong connected. The strong connectivity of an edge e is the maximum k
such that there exists a k-strong connected component that contains e.

In [2], they compute the strong connectivity of each edge and use it to decide the sam-
pling probability. Algorithm 1 is their algorithm. We will modify this in section 3.

Benczur-Karger([2])
Data: Graph G = (V,E)
Result: Sparsified graph H
compute the strong connectivity of edge cGe for all e ∈ G;
H ← (V, ∅);
foreach e do

pe = min{ρ/ce, 1};
with probability pe, add e to H with weight 1/pe;

end

Algorithm 1. Sparsification Algorithm

Here ρ is a parameter that depends on the size of G and the error bound ε. They
proved the following two theorems in their paper.

Theorem 1. [2] Given ε and a corresponding ρ = 16(d+ 2)(ln n)/ε2, every cut in H
has value between (1 − ε) and (1 + ε) times its value in G with probability 1− n−d.

Theorem 2. [2] With high probability H has O(nρ) edges.

Throughout this paper, e1, e2, · · · , em denotes the input sequence. Gi is a graph that
consists of e1,e2,· · · ,ei. c(G)

e is the strong connectivity of e in G and wG(e) is weight
of an edge e in G. Gi,j = {e : e ∈ Gi, 2j−1 ≤ c

(Gi)
e < 2j}. Each edge has weight

1 in Gi,j . Fi,j =
∑
k≥j 2j−kGi,j where scalar multiplication of a graph and addition

of a graph is defined as scalar multiplication and addition of edge weights. In addition,
H ∈ (1± ε)G if and only if (1− ε)V AL(C,G) ≤ V AL(C,H) ≤ (1+ ε)V AL(C,G).
Hi is a sparsification of a graph Gi, i.e., a sparsified graph after considering ei in the
streaming model.

3 A Semi-streaming Algorithm

We cannot use Algorithm 1 in the streaming model since it is not possible to compute
the strong connectivity of an edge in G without storing all the data. The overall idea
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would be to use a strongly recursive process, where we use an estimation of the con-
nectivity based on the current sparsification and show that subsequent addition of edges
does not impact the process. The modification is not difficult to state, which makes us
believe that such a modification is likely to find use in practice. The nontrivial part of
the algorithm is in the analysis, ensuring that the various dependencies being built into
the process does not create a problem. For completeness the modifications are presented
in Algorithm 2.

Stream-Sparsification
Data: The sequence of edges e1, e2, · · · , em
Result: Sparsified graph H
H ← ∅;
foreach e do

compute the connectivity ce of e in H ;
pe = min{ρ/ce, 1};
add e to H with probability pe and weight 1/pe;

end

Algorithm 2. Streaming Sparsification Algorithm

We use ρ = 32((4 + d) ln n + lnm)(1 + ε)/ε2 given ε > 0; once again d is a constant
which determines the probability of success. We prove two theorems for Algorithm 2.
The first theorem is about the approximation ratio and the second theorem is about its
space requirement. For the simplicity of proof, we only consider sufficiently small ε.

Theorem 3. Given ε > 0, H is a sparsification, that is H ∈ (1± ε)G, with probability
1−O(1/nd).

Theorem 4. If H ∈ (1±ε)G, H hasO(n(d log n+logm)(logm− logn)(1+ε)2/ε2)
edges.

We use a sequence of ideas similar to that in Benczur and Karger [2]. Let us first discuss
the proof in [2].

In that paper, Theorem 1 is proved on three steps. First, the result of Karger [11],
on uniform sampling is used. This presents two problems. The first is that they need
to know the value of minimum cut to get a constant error bound. The other is that
the number of edges sampled is too large. In worst case, uniform sampling gains only
constant factor reduction in number of edges.

To solve this problem, Benczur and Karger [2] decompose a graph into k-strong
connected components. In a k-strong connected component, minimum-cut is at least k
while the maximum number of edges in k-strong connected component(without (k+1)-
strong connected component as its subgraph) is at most kn. They used the uniform
sampling for each component and different sampling rate for different components. In
this way, they guarantee the error bound for every cut.

We cannot use Karger’s result [11] directly to prove our sparsification algorithm be-
cause the probability of sampling an edge depends on the sampling results of previous
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edges. We show that the error bound of a single cut by a suitable bound on the mar-
tingale process. Using that we prove that if we do not make an error until ith edge,
we guarantee the same error bound for every cut after sampling (i + 1)th edge with
high probability. Using union bound, we prove that our sparsification is good with high
probability.

4 Proof of Theorem 3

4.1 Single Cut

We prove Theorem 3 first. First, we prove the error bound of a single cut in Lemma 1.
The proof will be similar to that of Chernoff bound [4]. p in Lemma 4 is a parameter
and we use different p for different strong connected components in the later proof.

Lemma 1. Let C = {ei1 , ei2 , · · · , eil} with i1 < i2 < · · · < il be a cut in a graph G
such that wG(eij ) ≤ 1 and V AL(C,G) = c. The index of the edges corresponds to the
arrival order of the edges in the data stream. Let AC be an event such that pe ≥ p for
all e ∈ C. Let H be a sparsification of G. Then, P[AC ∧ (|V AL(C,H)− c| > βc)] <
2 exp(−β2pc/4) for any 0 < β ≤ 2e− 1.

Let Xj = pwH(eij ) and μj = E[Xj ] = pwG(eij ). Then, |V AL(C,H) − c| > βc if
and only if |

∑
j Xj − pc| > βpc. As already mentioned, we cannot apply Chernoff

bound because there are two problems:

1. Xj are not independent from each other and
2. values of Xj are not bounded.

The second problem is easy to solve because we have AC . Let Yj be random variables
defined as follows:

Yj =
{
Xj if peij

≥ p

μj otherwise.

If AC happens, Yj = Xj . Thus,

P[AC ∧ (|V AL(C,H)− c| > βc)] = P[AC ∧ (|
∑
j

Xj −
∑
j

μj | > βpc)]

= P[AC ∧ (|
∑
j

Yj −
∑
j

μj | > βpc)]

≤ P[|
∑
j

Yj −
∑
j

μj | > βpc] (1)

The proof of (1) is similar to Chernoff bound [4]. However, since we do not have in-
dependent Bernoulli random variables, we need to prove the upperbound of
E[exp(t

∑
j Yj)] given t. We start with E[exp(tYj)].

Lemma 2. E[exp(tYj)|Hij−1] ≤ exp(μj(et − 1)) for any t and Hij−1.
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Proof: There are two cases. Given Hij−1, peij
≥ p or peij

< p. At the end of each
case, we use the fact that 1 + x < ex.

Case 1 : If peij
< p, Yj = μj .

E[exp(tYj)|Hij−1] = exp(tμj)
< exp(μj(et − 1)).

Case 2 : If peij
≥ p, Yj = Xj . So E[exp(tYj)|Hij−1] = peij

exp(tμj/peij
) + (1−

peij
). Let f(x) = x exp(tμj/x) + (1− x). Observe that f ′(x) ≤ 0 for x > 0. So f(x)

is decreasing function. Also we have μj = pwG(eij ) ≤ p ≤ peij
since wG(eij ) ≤ 1.

Hence,
peij

exp(tμj/peij
) + (1− peij

) ≤ μj exp(t) + (1− μj).

Therefore,

E[exp(tYj)|Hij−1] ≤ μj(exp(t)− 1) + 1
≤ exp(μj(et − 1)).

From case 1 and 2, E[exp(tYj)|Hij−1] ≤ exp(μj(et − 1)) for any Hij−1. �
Now, we prove the upperbound of E[exp(t

∑
j Yj)].

Lemma 3. Let Sj =
∑l
k=j Yk. For any t and Hij−1, E[exp(tSj)|Hij−1] ≤

exp(
∑l
k=j μj(e

t − 1)).

Proof: We prove by induction. For j = l, E[exp(tSj)|Hij−1] = E[exp(tYl)|Hij−1]
≤ exp(μl(et − 1)) by Lemma 2.

Assume that E[exp(tSj+1)|Hij+1−1] ≤ exp(
∑l
k=j+1 μk(e

t− 1)) for any Hij+1−1.
Then,

E[exp(tSj)|Hij−1] =
∑
y

P[Yj = y|Hij−1]
∑

Hij+1−1

E[exp(t(y + Sj+1))|Hij+1−1]P[Hij+1−1|Yj = y,Hij−1]

=
∑
y

exp(ty)P[Yj = y|Hij−1]
∑

Hij+1−1

E[exp(tSj+1)|Hij+1−1]P[Hij+1−1|Yj = y,Hij−1]

≤
∑
y

P[Yj = y|Hij−1] exp

⎛⎝ l∑
k=j+1

μk(et − 1)

⎞⎠
= exp

⎛⎝ l∑
k=j+1

μk(et − 1)

⎞⎠E[Yj |Hij−1]

≤ exp

⎛⎝ l∑
k=j

μk(et − 1)

⎞⎠

Therefore, E[exp(tSj)|Hij−1] ≤ exp(
∑n
k=j μk(e

t − 1)) for any Hij−1 and t. �
Now we prove Lemma 1. Remember that we only need to prove P[|

∑
j Yj − pc| >

βpc] < 2 exp(−β2pc/4) by (1).
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Proof:[Proof of Lemma 1] Let S = S1 =
∑
j Yj and μ =

∑
j μj = pc. We prove in

two parts: P[S > (1 + β)μ] ≤ exp(−β2μ/4) and P[S < (1− β)μ] ≤ exp(−β2μ/4).
We prove P[S > (1 + β)μ] < exp(−β2μ/4) first. By applying Markov’s inequality

to exp(tS) for any t > 0, we obtain

P(S > (1 + β)μ) <
E[exp(tS)]

exp(t(1 + β)μ)

≤ exp(μ(et − 1))
exp(t(1 + β)μ)

.

The second line is from Lemma 3. From this point, we have identical proof as Chernoff
bound [4] that gives us bound exp(−β2μ/4) for β < 2e − 1. To prove that P[S <
(1 − β)μ] < exp(−β2pc/4) we applying Markov’s inequality to exp(−tS) for any
t > 0, and proceed similar to above. Using union bound to these two bounds, we
obtain a bound of 2 exp(−β4μ/4). �

4.2 k-Strong Connected Component

Now we prove the following lemma given a k-strong connected component and param-
eter p. This corresponds to the proof of uniform sampling method in [11].

Lemma 4. Let Q be a k-strong component such that each edge has weight at most 1.
HQ is its sparsified graph. Let β =

√
4((4 + d) ln n + lnm)/pk for some constant

d > 0. Suppose that AQ be an event such that every edge in Q has sampled with
probability at least p. Then, P[AQ ∧ (HQ /∈ (1± ε)Q)] = O(1/n2+dm).

Proof: Consider a cut C whose value is αk in Q. If AQ holds, every edge in C is also
sampled with probability at least p. By Lemma 1, P[AQ ∧ |V AL(C,HQ) − αk| >
βαk] ≤ 2 exp(−β2pαk/4) = 2(n4+dm)−α. Let P (α) = 2(n4+dm)−α.

Let F (α) be the number of cuts with value less or equal to αk. By union bound, we
have

P[AQ ∧ (HQ /∈ (1± ε)Q)] ≤ P (1)F (1) +
∫ ∞

1

P (α)
dF

dα
dα.

The number of cuts whose value is at most α times minimum cut is at most n2α. Since
the value of minimum cut of Q is k, F (α) ≤ n2α. SinceP is a monotonically increasing
function, this bound is maximized when F (α) = n2α. Thus,

P[AQ ∧ (HQ /∈ (1± ε)Q)] ≤ F (1)P (1) +
∫ ∞

1

P (α)
dF

dα
dα

≤ n2P (1) +
∫ ∞

1

P (α)(2n2α ln n)dα

≤ 2
n2+dm

+
∫ ∞

1

ln n

nα(2+d)mα
dα

= O(1/n2+dm).

�
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4.3 Error Bound for Hi and H

Lemma 5. The probability of i being the first integer such that Hi /∈ (1 ± ε)Gi is
O(1/ndm).

Proof: If Hj ∈ (1± β)Gj for all j < i, cej ≤ (1 + ε)c(Gj)
ej ≤ (1 + ε)c(Gi)

ej . Remember

that c(G)
e denotes the strong connectivity of e in graph G.

Hi =
∞∑

j=−∞
Hi,j

=
∞∑

j=−∞

(
Hi,j +

1
2
Fi,j+1

)
−

∞∑
j=−∞

1
2
Fi,j+1

Hi,j + (1/2)Fi,j+1 is a sparsification of Gi,j + (1/2)Fi,j+1 = Fi,j . Fi,j consists of

2j−1-strong connected components. For every e ∈ Gi,j , c
(Gi)
e < 2j . So it is sampled

with probability at least p = ρ/(1 + ε)2j . If we consider one 2j−1-strong connected
component and set ρ = 32((4 + d) ln n + lnm)(1 + ε)/ε2, by Lemma 4, every cut has
error bound ε/2 with probability at least 1−O(1/n2+dm). Since there are less than n2

such distinct strong connected components, with probability at least 1 − O(1/ndm),
Hi,j + (1/2)Fi,j+1 ∈ (1± β)Fi,j for every i, j. Hence,

Hi ∈
∞∑

j=−∞
(1± ε/2)Fi,j −

∞∑
j=−∞

1
2
Fi,j+1

⊆ (2± ε)Gi −Gi

= (1± ε)Gi.

Therefore, P[(∀j < i.Hj ∈ (1± ε)Gj) ∧ (Hi /∈ (1± ε)Gi)] = O(1/ndm). �
From Lemma 5, Theorem 3 is obvious. P[H /∈ (1 ± ε)G] ≤

∑m
i=1 P[(∀j < i.Hj ∈

(1± ε)Gj) ∧ (Hi /∈ (1 ± ε)Gi)] = O(1/nd).

5 Proof of Theorem 4

For the proof of Theorem 4, we use the following property of strong connectivity.

Lemma 6. [2] If the total edge weight of graph G is n(k− 1) or higher, there exists a
k-strong connected components.

Lemma 7. H ∈ (1± ε)G, total edge weight of H is at most (1 + ε)m.

Proof: Let Cv be a cut ({v}, V − {v}). Since H ∈ (1 ± ε)G, V AL(Cv, H) ≤ (1 +
ε)V AL(Cv, G). Total edge weight of H is (

∑
v∈V V AL(Cv, H))/2 since each edge

is counted for two such cuts. Similarly, G has (
∑
v∈V V AL(Cv, H))/2 = m edges.

Therefore, if H ∈ (1 ± ε)G, total edge weight of H is at most (1 + ε)m. �
Let Ek = {e : e ∈ H and ce ≤ k}. Ek is a set of edges that sampled with ce = k. We
want to bound the total weight of edges in Ek.
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Lemma 8.
∑
e∈Ek

wH(e) ≤ n(k + k/ρ).

Proof: Let H ′ be a subgraph of H that consists of edges in Ek. H ′ does not have
(k + k/ρ + 1)-strong connected component. Suppose that it has. Then there exists the
first edge e that creates a (k + k/ρ + 1)-strong connected component in H ′. In that
case, ei must be in the (k + k/ρ + 1)-strong connected component. However, since
weight e is at most k/ρ, that component is at least (k + 1)-strong connected without e.
This contradicts that ce ≤ k. Therefore, H ′ does not have any (k + k/ρ + 1)-strong
connected component. By Lemma 6,

∑
e∈Ek

wH(e) ≤ n(k + k/ρ). �
Now we prove Theorem 4.

Proof:[Proof of Theorem 4] If the total edge weight is the same, the number of edges
is maximized when we sample edges with smallest strong connectivity. So in the worst
case, ∑

e∈Ek−Ek−1

wH(e) = nk(1 + ρ)− n(k − 1)(1 + ρ) = n(1 + ρ).

In that case, k is at most (1+ε)m/n(1+1/ρ). Let this value be km. Then, total number
of edges in H is

km∑
i=1

n(1 + 1/ρ)
i/ρ

= n(ρ + 1)
km∑
i=1

1
i

= O(n(ρ + 1) log(km))
= O(nρ(logm− log n))
= O(n(d log n + logm)(logm− log n)(1 + ε)2/ε2).

�

6 Space Lower Bounds

First, we prove a simple space lowerbound for weighted graphs, where the lowerbound
depends on ε.

Theorem 5. For 0 < ε < 1, Ω(n(logC + log 1
ε )) bits are required in order to sparsify

every cut of a weighted graph within (1 ± ε) factor where C is maximum edge weight
and 1 is minimum edge weight.

Proof: Let F be a set of graphs such that there is a center node u and other nodes are

connected to u by an edge whose weight is one of 1,
(

1+ε
1−ε

)
,
(

1+ε
1−ε

)2

, · · · , C. Then,

|F | = (log( 1+ε
1−ε) C)n−1. For G,G′ ∈ F , they must have different sparsifications. So

we need Ω(log |F |) bits for sparsfication. It is easy to show that log |F | = Ω(n(logC+
log 1

ε )). �
Now we use the same proof idea for unweighted simple graphs. Since we cannot assign
weight as we want, we use n/2 nodes as a center instead of having one center node. In
this way, we can assign degree of a node from 1 to n/2.
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Theorem 6. For 0 < ε < 1, Ω(n(log n + log 1
ε )) bits are required in order to sparsify

every cut of a graph within (1± ε).

Proof: Consider bipartite graphs where each side has exactly n/2 nodes and each node

in one side has a degree 1,
(

1+ε
1−ε

)
,
(

1+ε
1−ε

)2

, · · · , or n/2. For each degree assignment,

there exists a graph that satisfies it. Let F be a set of graphs that has different degree

assignments. Then, |F | =
(
log( 1+ε

1−ε)
n
2

)n−1

. G,G′ ∈ F cannot have the same sparsi-

fication. So we need at least Ω(log |F |) = Ω(n(log n + log 1
ε )) bits. �

Another way of viewing the above claim is a direct sum construction, where we need
to use Ω(log 1

ε ) bits to count upto a precision of (1 + ε).

7 Conclusion and Open Problems

We presented a one pass semi-streaming algorithm for the adversarially ordered data
stream model which uses O(n(d log n + logm)(logm − log n)(1 + ε)2/ε2) edges to
provide ε error bound for cut values with probability 1 − O(1/nd). If the graph does
not have parallel edges, the space requirement reduces to O(dn log2 n(1 + ε)2/ε2).
We can solve the minimum cut problem or other problems related to cuts with this
sparsification. For the minimum cut problem, this provides one-pass ((1 + ε)/(1− ε))-
approximation algorithm.

A natural open question is to determine how the space complexity of the approxima-
tion depends on ε. Our conjecture is that the bound of n/ε2 is tight up to logarithmic
factors.
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Abstract. We formulate and study a new computational model for dynamic data.
In this model the data changes gradually and the goal of an algorithm is to
compute the solution to some problem on the data at each time step, under the
constraint that it only has a limited access to the data each time. As the data
is constantly changing and the algorithm might be unaware of these changes, it
cannot be expected to always output the exact right solution; we are interested
in algorithms that guarantee to output an approximate solution. In particular, we
focus on the fundamental problems of sorting and selection, where the true or-
dering of the elements changes slowly. We provide algorithms with performance
close to the optimal in expectation and with high probability.

1 Introduction

In the classic paradigm, an algorithm received all the input at the start of the compu-
tation and computed a function of that input. As computing became more interactive,
researchers developed the theory of online algorithms, focusing on the tradeoff between
the timely availability of the input and the performance of the algorithm. In this paper
we study another important aspect of online, interactive computing: computing and
maintaining global information on a data set that is constantly changing. While algo-
rithms and models to study dynamic data have been in vogue, our work formulates and
studies a new model of computing in the presence of constantly changing data.

For concreteness we present our work through one specific motivation, the popular
online voting website Bix (bix.com), owned by Yahoo!; this partially inspired us to
study the particular problem of sorting. We comment later on more general applications.
The Bix website hosts online contests for various themes such as the most entertaining
sport or the most dangerous animal or the best presidential nominee, in which users
vote to select the best amongst a pre-specified set of candidates. For a given contest,
Bix displays a pair of candidates to a user visiting the website and asks the user to rank-
order this pair. As the contest progresses, Bix aggregates all the pairwise comparisons

� Part of this work was done while the author was at Yahoo! Research.
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provided by users to pick the leader (or the top few leaders) of the contest thus far; the
goal is to reflect the current aggregated opinion as faithfully as possible. For simplicity,
we will ignore issues such as malicious user behavior and assume each user is able to
compare any pair of candidates. In fact, we will assume something more general: each
user has access to the global total order (“the public opinion”) and when Bix shows a
pair of candidates, the user consults this total order to rank-order the given pair.

There are two factors that make this setting both interesting and challenging. First,
as the contest progresses, users’ voting patterns might change, perhaps slowly, at an
aggregate level. This can be caused by an intrinsic shift in public opinion about the
candidates or factors external to the contest. While one cannot assume there is a fixed
total order that the contest is trying to uncover, it is reasonable to assume that the total
order changes slowly over time. Second, whenever a user visits their website, Bix has
to choose a pair of candidates to show to the user in order to elicit the comparison. A
visiting user is thus a valuable resource and hence Bix has to judiciously utilize this by
showing a pair of candidates that yields the most value. Note that this is not a trivial
problem: for example, it is not hard to show that asking the user to rank a random pair
of candidates is quite “wasteful” and leads to considerably weaker guarantees.1

One way to model the above scenario is as follows. We have a set of n elements and
an underlying total order πt, at time t, on the elements. The ordering slowly changes
over time and we model the slow change by requiring that the change from πt and πt+1

is local. The goal is to design an algorithm that, at any point in time, tracks the top few
elements of the underlying total order or more generally, maintains a total order π̃t that is
close to πt. The only capability available to the algorithm is pairwise comparison probes:
at any time t, given one or more pair of elements, it can obtain the pairwise ranking of
them according to the underlying total order currently in effect, (i.e., πt). Clearly, there
is a tradeoff between the number of probes that can be made at time t and the quality of
π̃t (e.g., if the number of probes is large enough, then π̃t = πt is easily achievable.)

Another motivation for the sorting problem is that of ranking in settings such as
web search, recommendation systems, and online ad selection. A significant factor in
ranking is the use of historic data. However, what may have been a good ranking in the
past may not remain so perpetually, and the ranking changes are typically gradual over
time (e.g., the query “vacation spots” might connote differently depending on the time
of the year). The ranking system would like to track the changing perception of ranking
by selecting what feedback (in the form of clicks) to request from the user. In addition
to the above applications, which are mostly in the Internet domain, the problem has
applications in sociology under the topic of the method of “paired comparisons” in the
measurement of social values [5, Ch. 7].2

Of course, except for the aforementioned motivations for the sorting problem, similar
issues arise in scenarios other than sorting. Consider, for example, a web crawler, whose
goal is to track the highest quality pages on the web. The notion of quality, however,
is (slowly) time-varying and the crawling algorithm, which is usually

1 In the language of the model defined in Section 2, this algorithm leads to a guarantee of O(n2)
for the Kendall tau distance (only a constant factor better than an oblivious algorithm that
always outputs the same ranking), whereas we are able to achieve O(n ln ln n).

2 We thank Matthew Salganik for pointing out this application.
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resource-constrained, has only limited access to the web graph at any point in time.
The goal of the crawler would then be to track pages whose quality is reasonably close
to the current best. Another graph application is maintaining routing tables with fastest
(least congested) routes. The load on routes changes gradually, and the router receives
new information on route’s load only when a packet is sent along that route. Yet another
setting can be that of a company that wants to track popular social network users with
lots of friends, so as to use this information for viral marketing. Social networking sys-
tems such as Facebook allow to query and find the contacts of a given user (unless the
user explicitly disallows) but limit the number of queries so as to prevent abuse. Over-
all, our setting is fairly general and can capture real-life scenarios such as continually
updated remote databases, hashing, load balancing, polling, etc.

A general framework. The nature of the problems described above suggests the fol-
lowing general framework to study dynamic data. Let U and V be (possibly infinite)
universe of objects. Let f : U → V be a function. Let d : U × U → R+ and
d′ : V × V → R+ be pairwise distance functions. U t ∈ U is the object at time t
while V t ∈ V will be the estimate of the output of function f at time t.

(1) We have an implicit sequence of objects U1, U2, . . . such that d(U t, U t+1) is
small, that is, the object changes slowly over time. The change can be arbitrary, or
stochastic (which is the case that we consider in this paper).

(2) At each t, portions of the object U t can be accessed by a certain number of
probes.

(3) The goal is to output a sequence V 1, V 2, . . . such that for each t, d′(f(U t), V t)
is small, that is, we have a good approximation to the function of the true object at each
point in time.

In the case of the Bix sorting problem that is the main focus of this paper, U = V =
Sn, the set of permutations on n elements, d = d′ is the Kendall tau distance, and f is
the identity function. For the selection problems we have that V is the set of elements,
d′ is the absolute rank difference between two elements, and f is an element. The slow
changing of the objects in (1) is captured by permitting, say, only pairwise exchanges
(corresponding to Kendall distance of 1) and the access to the object in (2) is captured
by rank-ordering a given pair of elements according to the current total order. Even
though in this paper we only focus on ranking and selection problems, this framework
applies to many other settings as well, such as graph algorithms [1].

Related work. Models for dealing with dynamic and uncertain data have been exten-
sively studied in the algorithmic community, from various points of view. This includes
the multi-arm bandit algorithms that deal with explore-exploit tradeoffs, online algo-
rithms that deal with future information, dynamic graph algorithms that deal with fast
updates in response to graph changes, data stream algorithms that deal with limited
computational resources such as space, stochastic optimization algorithms, etc. How-
ever, none of these captures the two crucial aspects of the above scenario: the slow
changing of the underlying object and the probe model of exposing only a limited por-
tion of the object to an algorithm. We are only aware of one other work that studies
similar tradeoffs, namely the work of Slivkins and Upfal [4], which studies them in the
more restricted setting of the multi-armed bandit model.



342 A. Anagnostopoulos et al.

Our results. For the problem of maintaining a sorted order using a single probe at each
time step when the permutation changes slowly and randomly and where the notion of
distance is Kendall tau (number of pairwise disagreements), we give an algorithm that
guarantees that for every time step t, the distance between the underlying true ordering
and the ordering maintained by the algorithm is at most O(n ln lnn), in expectation
and with high probability. This builds upon an algorithm that has a distance guarantee
of O(n ln n), in expectation and with high probability. We also show an Ω(n) lower
bound on the expected distance between the true ordering and the order maintained by
any algorithm.

To show the upper bound result, we first develop an algorithm that is based on peri-
odically running the quicksort algorithm on the data. We use quicksort-specific proper-
ties to show that this algorithm can guarantee a distance of O(n ln n). We then give a
more sophisticated algorithm that runs a copy of the above quicksort-based algorithm
in parallel with multiple copies of faster though less accurate “local quicksorts.” These
local quicksorts will be able to give us the desired distance guarantee of O(n ln lnn)
in the first few runs; however, their weakness is that they could accumulate the errors
and lead to considerably worse distance guarantees later. This weakness is overcome by
occasionally resetting the algorithm using the slower quicksort, which is run in parallel.

We then consider selection problems: finding an element of a given rank. We provide
algorithms that track the target elements to within distance 1. The basic idea is simi-
lar to the one we used for sorting: we adapt a static algorithm to the online setting by
repeated executions. Furthermore, to ensure that the result returned is always close to
the true value, we decompose the algorithm into two processes that are executed inde-
pendently and in parallel, where the slower process prepares the data structures that the
faster process uses over and over to compute the output. For the special case of finding
the minimum element, we give a simpler algorithm by modeling the evolution of the
process as a Markov chain.

2 Sorting Dynamic Elements

Consider a set U = {u1, . . . , un}. Throughout most of this paper, our focus is on the
problem of sorting the elements of U . In a static setting, where the correct ordering of
the elements of U is given by a permutation π, there are numerous well-known sorting
algorithms that can find the permutation π after comparing O(n ln n) pairs in U [2].
We are interested in a dynamic setting, where the true ordering π changes over time.
To make this precise, consider a discretized time horizon with time steps indexed by
positive integers. Let πt be the true ordering at time t. We assume that the true ordering
changes gradually, and we model this by assuming that for every t > 1, πt is obtained
from πt−1 by swapping a random pair of consecutive elements.

Our objective is to give an algorithm that can estimate the true ordering πt. Unlike
the familiar notion of algorithms that terminate in finite time, the algorithms we study
run for ever; we often refer to them as protocols. In every time step t, the algorithm can
select two elements of U to compare. The ordering of these two elements according
to πt is given to the algorithm, and then the algorithm computes an estimate π̃t of the
true ordering. The algorithm has memory, that is, it is allowed to store any information,
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and the information will be carried over to the next time step. Note that our definition
assumes that the rate of comparisons performed by the algorithm is equal to the rate of
change in the true ordering (i.e., one swap and one comparison probe per time step).
This assumption is merely for simplicity: all our results work in the more general set-
ting where corresponding to every change in the true ordering, the algorithm is allowed
to perform a number of comparisons given by a parameter β (β can be more or less than
1); the proofs are essentially exactly the same, with the bounds multiplied by functions
of β. Furthermore, notice that we did not impose any constraint on either the amount
of memory required by the algorithm or its running time. While such constraints seem
natural in practice, it turns out that the running time and the memory are not major con-
cerns, at least for the algorithms that we propose in this paper. Also, we need to specify
whether the algorithm knows the initial ordering π1. For convenience, we assume that
the algorithm knows π1, although our results hold without this assumption as well.3

Notice that unlike in the static setting where the algorithm can find the permutation
π after finite time, in the dynamic setting the algorithm can never expect to find the
exact true ordering πt. Therefore, we need a way to measure how close the estimate is
to the true ordering. For this purpose, we use the classical Kendall tau distance function
between permutations. For a permutation π we write x <π y if x is ordered before y ac-
cording to permutation π. The Kendall tau distance KT(π1, π2) between permutations
π1 and π2 is defined as follows:

KT(π1, π2) = |{(x, y) : x <π1 y ∧ y <π2 x}| .
The maximum Kendall tau distance between two permutations (and in fact the dis-

tance between two random permutations) is O(n2). In fact, no algorithm can guarantee
that in every time step the distance between πt and π̃t is less than O(n) (Section 2.1).
Our main result in Section 2.3 shows that there is an algorithm that can guarantee with
high probability that this distance is at most O(n ln lnn). We start with an easier result
of O(n ln n) in Section 2.2, which will be used in our main result.

2.1 Lower Bound

We first prove an Ω(n) lower bound on the expected Kendall tau distance between the
estimated order computed by any algorithm for our problem and the actual order at any
time t.

Theorem 1. For every t > n/8, KT (π̃t, πt) = Ω(n) in expectation and whp. 4

Proof. Consider the time interval I = [t − n/8, t]. Let B be the set of items involved
in any comparison by the algorithm in this interval, |B| ≤ n/4. Let B̄ = U \ B. At
any time τ ∈ I , the elements of B are adjacent in πτ to up to n/2 elements in B̄. Thus,
for any τ ∈ [t − n/8, t], there are at least n/4 pairs of adjacent elements of B̄ in πτ ,
each of these pairs is swapped with probability c/n, where c > 0 is a constant. Thus,
during the interval [t − n/8, t] the expected number of pairs in B̄ that are swapped

3 We only need to be careful to require t ≥ n ln n in our upper bounds (Theorems 2 and 3) if
the algorithm does not know π1.

4 We say that an event holds “with high probability”, abbreviated whp., if it holds with proba-
bility at least 1 − n−c for some constant c, for sufficiently large n.
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is (c/32)n. The expected number of pairs that are swapped and then swapped back
is O(c2n2/n2) = O(1). Since no element of B̄ is involved in any comparison the
algorithm cannot identify swapped between pairs in B̄, implying the result. ��

2.2 Algorithm with O(n ln n) Distance Guarantee

In this section we first give an algorithm that guarantees the following: for every time
step t, the distance between the orderings πt and π̃t is O(n ln n), with high probability.
We will use this result in the next section to get an improved bound of O(n ln ln n).

The algorithm proceeds in phases, where each phase consists of O(n ln n) time steps
(in expectation and whp.). In each phase, the algorithm runs a randomized quicksort
algorithm to sort all elements. At any time step, the algorithm outputs the ordering
that is obtained at the end of the last phase. Notice that since this algorithm outputs the
same permutation for O(n ln n) steps, it cannot provide a distance guarantee better than
O(n ln n). The following theorem shows that the distance guarantee of this algorithm
is in fact Θ(n ln n) whp.

Theorem 2. For every t, KT(π̃t, πt) = O(n ln n) in expectation and whp.

Before proving the above theorem, we note that in our algorithm, the quicksort al-
gorithm may not be replaced by an arbitrary O(n ln n) sorting algorithm. The reason
being, in our setting, the algorithm can receive inconsistent data (since the true ordering
is changing), and such inconsistencies can lead to large errors in general. In the case of
quicksort, we will use its specific properties to argue that the inconsistencies can result
in only a small number of additional errors (these errors will correspond to the set B in
the following proof).

Proof (of Theorem 2). Consider one phase of the algorithm from time t0 to t1. We have
that t1 − t0 = Θ(n ln n), in expectation and whp.

To bound the Kendall tau distance we have to bound the number of pairs (ui, uj) that
are ordered differently in the two permutations π̃t and πt. We divide these pairs into two
disjoint sets, A and B, where the set A contain the pairs for which the algorithm’s order
at time t1 is in accordance with the true ordering at some time point t ∈ [t0, t1):

A = {(ui, uj) | ui <π̃t1 uj, ui >πt1 uj, ∃t ∈ [t0, t1) s. t. ui <πt uj},
and the set B contains the pairs for which there was a disagreement between the algo-
rithm’s order estimate (at time t1) and the true order throughout the execution of the
algorithm in this phase:

B = {(ui, uj) | ui <π̃t1 uj , ∀t ∈ [t0, t1) ui >πt uj}.
Since KT(π̃t, πt) = |A ∪B| = |A|+ |B|, Lemmas 1 and 2 will complete the proof.

��

First we bound the cardinality of A by the running time of the algorithm.

Lemma 1. |A| = O(n ln n) in expectation and whp.

Proof. For the set A, note that if we let A′ be the set of pairs for which the true order
changed in [t0, t1), that is,

A′ = {(ui, uj) | ui <πt1 uj , ∃t ∈ [t0, t1) s. t. ui >πt uj},
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then we have that A ⊆ A′. Now notice that since the true order of the pair (ui, uj)
was swapped during [t0, t1), it has to be the case that at some point in [t0, t1), the pair
(ui, uj) was chosen to swap. Since only one pair swaps its ordering at each timestep
and since t1 − t0 = O(n ln n) in expectation and whp., we have that |A| ≤ |A′| ≤
t1 − t0 = O(n ln n) in expectation and whp. ��

For the set B the counting is more involved. By definition, for a pair (ui, uj) ∈ B
we have that ui > uj according to the true ordering during (t0, t1], however, at t1 the
algorithm concluded otherwise. This means that during one of the recursive calls of
the quicksort algorithm, elements ui and uj belonged to the same subarray that was
then sorted, a pivot element uk was chosen (uk �= ui, uj), and after element uk was
compared with all the elements of the subarray, the result was ui < uk and uj > uk.
For this to have happened, the element uk would have to be swapped with each of the
elements ui and uj at least once while it was a pivot. After the element uk terminates
being a pivot, the algorithm’s perception of the ordering between ui and uj does not
change. (Note that the above arguments crucially rely on the fact that the algorithm is
quicksort.)

From the previous discussion we see that if we can bound the number of swaps of
the pivot elements during the period they were acting as pivots, then we will be able
to bound the number of pairs in the set B. Since the probability that a pivot element is
chosen at a given time step is small (at most 2/n), we expect the set B to be small. We
prove this formally below.

Lemma 2. |B| = O(n ln n) in expectation and whp.

Proof. We will charge the error due to pair (ui, uj) to the corresponding pivot uk. Let
Xi be the number of steps that element ui was a pivot during [t0, t1); note that Xi ≤ n.
Let E be the event that

n∑
i=1

Xi ≤ c0n ln n, (1)

for some constant c0 > 0. Since the running time of quicksort is O(n ln n) in expecta-
tion and whp., E holds whp. Also, the running time of quicksort is O(n2) in the worst
case. The event ¬E will only contribute a negligible (inverse polynomial) amount to the
calculations below; therefore, for ease of exposition, we will condition on E being true
for the rest of the proof.

Since Xi ≤ n and
∑

Xi ≤ c0n ln n, by convexity,
∑

X2
i is maximized if c0 ln n of

the Xi’s are equal to n and the rest are equal to 0. Hence,

n∑
i=1

X2
i ≤ c0n

2 ln n. (2)

Let Yi be the number of steps that element i was a pivot element and it was chosen to
swap. GivenXi, we have that Yi ∼ Binomial(Xi, p) where p = 2/n (with the exception
of the case that the pivot is or becomes the first or last element in the order, in which
case p = 1/n). We argued earlier that for the pair (ui, uj) to become misordered, the
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corresponding pivot was swapped with both ui and uj . Therefore, if a pivot swapped Yi
times, then it could have led to at most Y 2

i misordered pairs. We can then bound the

number of pairs in the set B by S
 
=
∑n
i=1 Y

2
i ≥ |B| . The proof is complete if we

upper bound E[S]. Now,

E[S] = E

[
n∑
i=1

Y 2
i

]
= E

[
E

[
n∑
i=1

Y 2
i

∣∣∣∣Xi
]]

= E

[
n∑
i=1

E
[
Y 2
i |Xi

]]

= E

[
n∑
i=1

(Var [Yi|Xi] + E[Yi|Xi]2)
]

= E

[
n∑
i=1

(Xip(1− p) + X2
i p

2)

]

= E

[
p(1− p)

n∑
i=1

Xi + p2
n∑
i=1

X2
i

]
(1),(2)

≤ (2c0(1− p) + 4c0) ln n ≤ c1 ln n,

for some constant c1 > 0.
To bound the probability that the set B is large, first note that given Xi’s, the Yi’s are

independent binomial random variables. We apply Azuma’s inequality and finish the
proof.5 For some sufficiently large constant c2 > 0, we have

Pr(S −E[S] > c2n ln n) ≤ exp
(
−2c22n2 ln2 n∑n

i=1 X
2
i

)
(2)

≤ n−2c22/c1 .

The following lemma is also proved similarly and will be used later. The proof will
appear in the full version of the paper.

Lemma 3. Given an element ui, the number of pairs (ui, uj) that the permutations πt1

and π̃t1 rank differently is bounded by c̃ ln n in expectation and whp., for some con-
stant c̃ and sufficiently large n.

2.3 Main Result

Now we present a more complicated protocol that maintains an error of O(n ln lnn).
The main idea is that after the quicksort execution, which due to its running time has
as a result an error of O(n ln n), the rank of each element in the algorithm’s estimate is
within O(ln n) of its actual rank. Thus, by performing several (O(n/ ln n)) local sorts
in blocks of size m = Θ(ln n) we can correct the ordering. The total running time is
O(n/ ln n) · (ln n) ln lnn, therefore after all the sorts terminate the total error will be
bounded by O(n ln lnn).

5 The following is a consequence of Azuma’s inequality [3]. Assume that 0 < Xi < di are
independent random variables, and let S =

∑n
i=1 Xi. Then

Pr(S − E[S] > λ) ≤ exp

(
−2λ2/

n∑
i=1

d2
i

)
.
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Blocki+1

m

Blocki

Fig. 1. The set of elements ordered according to π̃t0 , and the partition into blocks

There are some issues that we have to address though. First, since elements might
have moved to neighboring blocks, we make the blocks overlapping thus allowing the
comparison of all neighboring elements (see Figure 1). First we sort the first m ele-
ments. From the resulting order we maintain the first m/2 of the elements. The second
half of the block is sorted along with the next m/2 elements. Again we maintain the
first m/2 elements and proceed in the same way.

Second, while we would like to sequentially execute a full set of local quicksorts after
the termination of the previous one so as to maintain the error of O(n ln lnn), eventu-
ally elements will move far. Thus it is necessary to occasionally execute a full quicksort
to recover the global order. The problem, however, is that during the execution of the
global quicksort the error will become n ln n. Therefore, we use the following idea:
execute two sets of quicksorts independently. During the odd timesteps we execute a
regular quicksort, and after its termination we restart, as in Section 2.2. The previous
analysis applies to this case as well with the difference that in every step there are two
pairs whose order swaps. During the even steps, we execute the set of Θ(n/ ln n) quick-
sorts on overlapping blocks of length m = Θ(ln n). The input to the set of quicksorts is
the output of the last full quicksort that has terminated. After the termination of the set
of quicksorts we rerun them, again with the same input. The two processes are executed
independently with their own data structures. In every time step, the “output” of the pro-
tocol is the output of the latest successfully completed set of quicksorts. In Figure 2 we
present a schematic representation of the algorithm. The proof of the following theorem
will appear in the full version of the paper.

Theorem 3. For every t, KT(π̃t, πt) = O(n ln lnn) in expectation and whp.

tf

c1n ln n

2n
m
· c1m ln m

c1n ln n

c1m ln m Set of 2n
m

block quicksorts

Full quicksort

Block quicksort

t0 t1 t2

Fig. 2. The periods of the execution of the sorting algorithm
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3 Selection Problems

As we mentioned earlier, the dynamic data setting can capture several scenarios. In
this section we illustrate this by providing two more examples. First we show a simple
algorithm for finding the element with minimum rank; for a fairly realistic application
of this setting, consider the social-network example presented in the introduction. We
then present a more general algorithm that can be used to find the element of a given
rank. By combining this algorithm with the previous result on sorting, one can find the
top-k ranked elements.

3.1 Finding the Minimum

Assume the same dynamic perturbation model as before where each pair swaps in every
time step with probability α/(n− 1), where α > 0 is a constant (α = 1 in the simplest
case). Instead of sorting all the elements we only want to estimate the smallest element.
The following simple algorithm outputs at any given step an element that is either the
minimum or very close to minimum. The algorithm maintains the current minimum es-
timate m and in every step compares it with an element ui chosen uniformly at random
from all the elements. If ui < m, it replaces m with ui. The basic idea to prove the
following theorem is to model the process as a Markov chain (details omitted in this
version).

Theorem 4. Let mt be the rank of the estimate at time t. In the steady state Pr(mt ≥
i) ≤

(
α

1+α

)i
, and E[mt] = 1 + α.

3.2 Finding the Element of a Given Rank

In this section we give an algorithm for solving the problem of finding the element of
rank k for k = 1, 2, . . . ,n. Given k, our goal is to find an element ui that minimizes the
distance |πt(ui)− k|, where πt(ui) is the rank of ui at time t. For k = 1 the problem
is that of finding the minimum, while for k = *n/2+ the problem is that of finding the
median. To make the exposition clearer we present the case of the median; the algorithm
and the proof can be easily generalized for any k. Figure 3 is a dynamic version of the
median algorithm in [3], with a few modifications to adapt it to our dynamic setting. As
in the case of the elaborate sorting algorithm, we run two algorithms in an interleaved
manner. In the odd steps we prepare a set C that will contain the median in any step
of the next execution of the while loop. In the even steps we use the set C computed
in the previous step to output the median estimate. During a sorting phase of the set C,
the output estimate is the element μ̃ computed in the previous run of the sorting. Let t0
be the last time point of the first period. We show that the difference in the rank of the
element returned by the algorithm is negligible.

Theorem 5. Let μ̃ be the output of algorithm Median. For every time t ≥ t0 = O(n)
we have that Pr

(∣∣π(μ̃)− n
2

∣∣ = 0
)
≥ 1− o(1), and E

[∣∣π(μ̃)− n
2

∣∣] = o(1).
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1. Algorithm Median(U )
2. Input: A set of elements U
3. while (true)
4. Execute in odd steps:
5. Pick a (multi-)set R of n

36 ln n
elements from U chosen independently uniformly at

random with replacement
6. quicksort(R)
7. Let d be the ( n

72 ln n
−

√
n)th smallest element in the sorted set R

8. Let u be the ( n
72 ln n

+
√

n)th smallest element in the sorted set R
9. By comparing every element in U to d and u, compute the set

C = {x ∈ U : d ≤ x ≤ u} and the number �d = |{x ∈ U : x < d}|
10. Execute in even steps using the set C computed last
11. quicksort(C)
12. μ̃ ← (�n/2� − �d + 1)th element in the sorted order of C
13. end while

Fig. 3. Algorithm for computing the median

Proof. The proof is based on the proof of the static version presented, for example,
in [3]; we will outline only the modification specific to the dynamic case.

We partition time into periods of length Θ(n), where each period corresponds to
a full execution of steps 4–9 in Figure 3. (Executing the full set of steps 4–9 (odd
time steps) requires time Θ(n) while the set of steps 10–12 (even time steps) requires
Θ(
√

n ln2 n), whp.) In the odd time steps of a period we compute a set C to be used to
compute the median in the next period. In the even time steps we use the set C computed
in the previous period.

We first note that the length of each period is linear with high probability, therefore
in a given period the rank of a given element (and in particular that of the median)
changes by a constant in expectation. Furthermore, with high probability no element
moves more than c ln n places during a period, for some constant c.

The analysis of the static case as presented in [3] reduces to proving that the follow-
ing two facts (adapted to our case) hold whp.:

1. The set C computed at a given period contains all the elements that are medians
during the next period.

2. |C| = O(
√

n ln n) whp.

With a similar argument as the one used in [3] and taking into account that the rank
of element d during two periods does not change more than 2c lnn whp., we have that
in order to maintain πt(d) < *n/2+ it suffices that at most n

72 lnn −
√

n samples in R
had rank smaller than n

2 − 2c ln n, when they were selected. We define Xi = 1 if
the ith sample had rank smaller than n

2 − 2c lnn, and 0 otherwise. Then we have that
Pr(Xi = 1) = 1

2 −
2c lnn
n and E [

∑
Xi] = n

72 lnn −
c
18 . We can apply a Chernoff

bound and obtain:

Pr

⎛⎝ |R|∑
i=1

Xi <
n

72 lnn
−
√

n

⎞⎠ = Pr
(∑

Xi −E
[∑

Xi

]
<

c

18
−
√

n
)

≤ e−
72 ln n

n (√n− c
18 )

2

≤ 1
n3

.
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A similar argument shows that we maintain that πt(u) > *n/2+ throughout the
execution of the entire period, therefore, the set C created at step 8 will contain whp.
all elements that are medians in the next period.

Next we need to show that |C| = O(
√

n ln n). The argument must take into account
that the elements change ranks and is similar to the one just presented. The reader can
refer to [3] for the type of events that need to be defined and we do not repeat here the
details. Thus C can be sorted in O(

√
n ln2 n) time.

We have now established that whp. |C| = O(
√

n ln n) and that it contains all ele-
ments that are medians during the next period. Since sorting in step 8 takes O(

√
n ln2 n)

steps, the probability that either the median at the beginning of a sorting phase, or the
O(ln n) pivots that it is compared to during the sorting move during the sorting phase is
bounded by O(ln3 n/

√
n). Thus, with probability 1−O(ln3 n/

√
n) the sorting returns

the correct median at that step. The probability that the median change place during the
next sorting round (before a new median is computed) is bounded by O((

√
n ln2 n)/n).

Thus, at any given step, with probability 1− o(n−1/2+ε) the algorithm returns the cor-
rect median. The expectation result is obtained by observing that when the output is not
the correct median, its distance to the correct median is with high probability O(ln n).

��

4 Conclusions

In this paper we study a new computational paradigm for dynamically changing data.
This paradigm is rich enough to capture many natural problems that arise in online
voting, crawling, social networks, etc. In this model the data gradually changes over
time and the goal of an algorithm is to compute some property of it by probing, under
the constraint that the amount of access to the data at each time step is limited. In
this simple framework, we consider the fundamental problems of sorting and selection,
where the true ordering slowly changes over time and the algorithm can probe the true
ordering once each time step using a pair of elements it chooses. We obtain an algorithm
that maintains, at each time step, an ordering that is at most O(n ln lnn)–Kendall-tau
distance away from the true ordering, with high probability. For selection problems, we
provide algorithms that track the target element to within distance 1. Revisiting classical
algorithmic problems in this paradigm will be an interesting direction for future line of
research [1].
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1 Introduction

Combinatorial optimization has been an important tool in the analysis of com-
puter networks. Traditionally, optimization problems such as maximum flow,
maximum matching, etc. have been studied for networks where each link has a
fixed capacity.1 However, recent research in wireless networking has shown that
it is possible to design networks where the capacity of the links can be changed
adaptively to suit the needs of specific applications [4][19]. (We call this phe-
nomenon adaptive channel width.) Specifically, wider communication channels
increases channel capacity (a result that is also predicted by Shannon’s capacity
formula [20]), but reduces the transmission range thereby disconnecting distant
nodes. Thus, one gets a choice of having few high capacity outgoing links ormany
low capacity ones at each node of the network. This motivates us to have a re-
look at traditional combinatorial optimization problems and design algorithms
to solve them in this new framework. In this paper, we focus on the maximum
bipartite flow problem in networks with adaptive channel width.
Consider a directed bipartite graph on vertices X ∪Y , where all the edges are

directed from vertices in X to vertices in Y and have capacities. In addition each
node in X and Y has a node capacity (corresponding to a budget for nodes in X
and demand for nodes in Y ). This is equivalent to adding a vertex s (called the
supersource) which is connected by a directed edge2 to each vertex in X with
edge capacity corresponding to the node capacity; similarly, adding a vertex t
(called the supersink) such that each vertex in Y is connected to it by a directed
edge with the corresponding capacity. In the traditional model, the maximum
flow permitted on an edge is equal to its capacity. The maximum bipartite flow
problem then requires us to find the maximum flow from s to t subject to the
capacity constraints. On the other hand, in networks with adaptive channel
width, the edges from X to Y do not have fixed capacities; rather one needs to
determine the assigned capacity at each node x ∈ X . Choosing a high assigned
capacity disconnects x from some nodes in Y but produces a high capacity edge
to the remaining nodes, while choosing a low assigned capacity implies that all
edges from x to nodes in Y have low capacity. The goal is to choose assigned
capacities such that the achievable flow in the resulting capacitated network is
maximized.
The main practical motivation for studying this problem comes from the need

to maximize throughput in infrastructure wireless networks. In particular, let X
be the set of base-stations and Y be the set of clients in an infrastructure wireless
network. Suppose that the base-stations are equipped with the ability to adapt
channel width. We will show that the problem of maximizing throughput in
such an infrastructure wireless network is identical to solving the maximum flow
problem on bipartite graphs with adaptive channel width. We formally define our
throughput maximization problem and its connection to the maximum bipartite
flow problem below.

1 In this paper, we will use the terms bandwidth and capacity interchangeably.
2 In this paper, we will use the terms directed edge, link and arc interchangeably.
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Problem Definition. We are given a set of base-stations B and a set of clients C
with |B| = n and |C| = m. Each base-station B ∈ B has a budget β(B), which is
the total capacity that the base-station can deliver to its clients. On the other
hand, each client C ∈ C has a demand α(C), which is the total bandwidth it
would like to be allocated from all the base-stations together.
For each base-station and client pair (henceforth, called a base-client pair)

(B,C), there is a critical capacity η(B,C), which corresponds to the maximum
bandwidth of a link from B to C. To each base station B ∈ B, the algorithm
selects an assigned capacity τ(B) that determines the capacity of a link (B,C)
(denoted by ψτ (B,C)) as follows

ψτ (B,C) :=
{
τ(B) , τ(B) ≤ η(B,C)
0 , otherwise.

Once the capacities of all links have been fixed, we want to find a flow f(B,C)
for each link (B,C) such that neither any link capacity is violated (capacity
constraint), i.e.

f(B,C) ≤ ψτ (B,C),

nor any base-station budget is violated (budget constraint), i.e.∑
C∈C

f(B,C) ≤ β(B).

The goal is to find the capacity assignment τ , and corresponding flow f that
maximizes the sum of satisfied demands of all the clients, where the satisfied
demand ατ,f(C) of a client C is given by

ατ,f (C) = min
( ∑
B∈B

f(B,C), α(C)
)
.

Note that given any τ and f , there always exists a flow f ′ which satisfies the bud-
get and capacity constraints, achieves the same value of total satisfied demand
and additionally satisfies the following demand constraints,∑

B∈B
f(B,C) ≤ α(C).

As a result, we will focus on flows that obey demand constraints along with
budget and capacity constraints.
The benefit of this assumption is that our problem now corresponds to the

maximum bipartite flow problem in networks with adaptive channel width. Re-
call that in this flow problem, we have two sets of nodes X and Y with edges
directed from X to Y , along with a supersource s and a supersink t. To draw
the correspondence, let X be the set of base-stations and Y the set of clients.
The edge from s to any x ∈ X (called a budget arc) has capacity β(x), that
from any x ∈ X to any y ∈ Y has critical capacity η(x, y) and that from any
y ∈ Y to t (called a demand arc) has capacity α(y) (refer to Figure 1). We call
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η(B2, C3)

Fig. 1. The augmentation graph corresponding to an instance of the problem

this graph the augmentation graph of the given problem instance. Our task is
to choose assigned capacities (i.e. the function τ) for vertices in X ; this fixes
the capacities of all the arcs from X to Y . Our goal is to choose τ so that the
maximum flow in the resulting capacitated network is maximized.

Related Work. Classically, the maximum bipartite flow problem has been solved
as a special case of the more general maximum flow problem on arbitrary graphs.
Suppose the input graph G = (V,E) has maximum flow of c from the source
to the sink. Ford and Fulkerson gave the first algorithm for the maximum flow
problem in the 1950s, which had a running time of O(|E|c) [9]. Since then, sev-
eral algorithms have been developed with better time bounds [6][7][8][11] finally
culminating in an Õ(|E|min(|E|1/2, |V |2/3) log c) algorithm due to Goldberg and
Rao [10], which is currently the fastest known deterministic algorithm for maxi-
mum flow. It may be noted here that a substantial amount of work has also been
done for developing randomized algorithms for maximum flow [14][16][15][17],
but these algorithms apply only to undirected networks. On the other hand, the
maximum bipartite flow problem with unit capacities (which is equivalent to
maximum bipartite matching) can be solved in O(|E|

√
|V |) time [13].

To summarize the above discussion, the maximum bipartite flow problem in
directed graphs with capacitated edges is solvable in polynomial time; however,
there is no algorithm which solves this problem faster than in general directed
graphs. As we will see, this is in sharp contrast to what we observe in networks
with adaptive channel width. In such networks, the maximum bipartite flow
problem is NP-hard (in fact, it is APX-hard); further, we give a randomized
approximation algorithm achieving an approximation factor of e

e−1 which does
not appear to extend easily to general directed networks.
We also briefly mention a related class of well-studied problems, namely un-

splittable flow problems. In these problems, typically there are one or more pairs
of source and sink vertices with specific demands, and the goal is to connect the
source-sink pairs using paths such that the satisfied demand is maximized while
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not violating any capacity constraint. These problems are typically NP-hard,
and several variants have been studied extensively [18][21][12] [2][3][5]. Interest-
ingly, though we have a single source and a single sink, and flow is allowed to
re-distribute arbitrarily at a node, the techniques we use to give an approxima-
tion algorithm for our problem bear similarities with the techniques usually used
for solving unsplittable flow problems. Specifically, both problems use a suitable
linear programming relaxation which is then rounded ensuring that certain cuts
are large in the rounded solution.

Our Results. Our first claim is that the maximum bipartite flow problem in
networks with adaptive channel width is APX-hard, i.e., it is unlikely that a
polynomial-time algorithm can approximate the problem within a certain con-
stant factor. Specifically, we describe an L-reduction from the APX-hard Max-
imum Bounded 3-Dimensional Matching problem (Max-3DM) to the channel
width assignment problem. We prove the following theorem (details of the con-
struction are omitted due to space constraints).

Theorem 1. The maximum bipartite flow problem in networks with adaptive
channel width is APX-hard.

Our next contribution is a greedy combinatorial algorithm which achieves an
approximation factor of O(logN), where N = max(m,n). The algorithm first
categorizes links according to their critical capacity in geometrically spaced in-
tervals. Now, observe that for any interval, we can set the assigned capacities
at the nodes such that all the links in that interval have capacity equal to their
critical capacities (while all other links have potentially no capacity at all). The
algorithm needs to decide which interval to choose. For this purpose, a maximum
flow algorithm is run on the entire graph, assuming that each link has capacity
equal to its critical capacity. This outputs a flow on each link. The algorithm
greedily chooses the interval which carries the greatest amount of flow on its
links. The details of the algorithm are omitted due to space constraints.
Finally, our main result is a randomized algorithm for this problem.

Theorem 2. There is a randomized algorithm for the maximum bipartite flow
problem in networks with adaptive channel width that has an expected approxi-
mation factor of e

e−1 .

Our algorithm uses a linear programming relaxation of the problem. Recall that
the celebrated Menger’s theorem implies that maximum flow from s to t equals
the minimum s − t cut. So, an algorithm for the problem should aim to choose
assigned capacities so as to maximize the minimum s − t cut in the resulting
capacitated network. Now, let us consider any linear programming formulation
of the problem; such a fractional linear program can be interpreted as a polytope,
where its optimal solution is a convex combination of the vertices of the polytope.
Each vertex of the polytope represents a particular choice of assigned capacities
and therefore, a particular capacitated graph (call them vertex graphs); these
correspond to the integral solutions we will round our solution to. The natural
linear program that we consider first simply ensures that for each cut, the convex
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combination of the values of the cut in the vertex graphs is large. However, since
each vertex graph may have a different minimum s−t cut, this does not guarantee
that sizes of these minimum s− t cuts are large. In fact, this linear program has
an integrality gap of Ω(logN/ log logN). To overcome this problem, we design
a more sophisticated linear program and a corresponding randomized rounding
technique that ensures that the minimal s− t cuts in the vertex graphs are large.

2 Algorithms for Maximum Bipartite Flow

As mentioned previously, a greedy combinatorial algorithm for our problem
achieves an approximation factor of O(logN), where N = max(m,n).

2.1 A Linear Program

Our goal now is to improve upon this combinatorial algorithm. Without loss of
generality, we may assume that the assigned capacity chosen at any base-station
B in an optimal solution is one among the critical capacities of its outgoing edges,
i.e. τ(B) ∈ {η(B,C) : C ∈ C}. If this is not the case, then the assigned capacity
can be increased to the closest value from the set {η(B,C) : C ∈ C} without
changing the flow on any link. This allows us introduce the boolean capacity
choice function p(B,C), which is 1 if τ(B) = η(B,C), and 0 otherwise. Clearly,
for any base-station B, p(B,C) = 1 for exactly one client C (called the choice
constraint). We also introduce another new notation, CB(C) which represents
the set of clients for which the critical capacity of their link to base-station B is
less than that for client C, i.e.

CB(C) = {C′ ∈ C : η(B,C′) ≤ η(B,C)}.

A natural formulation of the problem is via the following integer linear pro-
gram (ILP), where constraints (1), (2), (3) and (4) correspond to budget, de-
mand, capacity and choice constraints respectively.

maximize
∑
B∈B

∑
C∈C f(B,C) subject to∑

C∈C
f(B,C) ≤ β(B), ∀B ∈ B (1)∑

B∈B
f(B,C) ≤ α(C), ∀C ∈ C (2)

f(B,C) ≤
∑

C′∈CB(C)

p(B,C′)η(B,C′), ∀B ∈ B, ∀C ∈ C (3)

∑
C∈C

p(B,C) = 1, ∀B ∈ B (4)

p(B,C) ∈ {0, 1}, ∀B ∈ B, ∀C ∈ C (5)

f(B,C) ≥ 0, ∀B ∈ B, ∀C ∈ C. (6)
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LP Relaxation. To make this ILP tractable, we relax constraint (5) and allow
the function p to assume values between 0 and 1 (call this the fractional program
or FLP). The natural interpretation is that p(B,C) denotes the goodness of
η(B,C) as the assigned capacity of base-station B. Mathematically, it can be
thought of as the probability with which η(B,C) should be the assigned capacity
of base-station B.
Unfortunately, it turns out that this natural linear programming relaxation

fails to provide us with an approximation guarantee that is significantly better
than the one achieved by the combinatorial algorithm. To understand why this
is the case, let us note that for a given choice of values of p(B,C), this linear
program is solving the max-flow problem in the augmentation graph where the
capacity u of a link (B,C) is the following: if the assigned capacity τ(B) at base-
station B is chosen according to the probability distribution given by p(B,C),
then

u = E[ψτ (B,C)].

Therefore, by max-flow/min-cut duality, the approach used in the LP boils down
to choosing p(B,C) in such a way that the minimal expected capacity among
all s-t-cuts in the augmented graph is maximized. Given some final choice of
p(B,C) computed by the linear program, it is tempting to round it by choosing
assigned capacities according to p(B,C), and then solving the max-flow problem
in the resulting graph, hoping that the capacity of minimal cut will be close to
the expected one. Clearly, when we focus on one particular cut, say the one that
separates base-stations from clients, it will be true, but this does not necessarily
mean that for all cuts, such a promise will hold simultaneously. It may happen
that for the choice of assigned capacities that we obtain, it will always be the
case that for part of the clients the capacity of links leading to them in the
resulting graph will be much below the expectation, while for the other part
it will excessively large, and this excess will be wasted due to the bottlenecks
imposed by not large enough capacity of demand arcs for the respective clients.
Thus, even if on expectation each client has reasonable capacity of links leading
to it, the rounding procedure might not provide us with a particularly good
solution. Therefore, our analysis of the approximation guarantee given by this
LP would need to argue that with good probability all cuts are preserved up
to some ratio, and in fact, using Chernoff bounds, we can prove that this is
indeed true for the ratio O(log(m + n)/ log log(m + n)). Unfortunately, we can
show through an integrality gap example (omitted due to space constraints)
that this unsatisfactorily large ratio is not only a shortcoming of our particular
rounding procedure, but it is in fact all that we can achieve through any rounding
algorithm for this LP.

2.2 An Alternative Linear Program

In this section, we will describe a more sophisticated ILP which overcomes the
shortcomings of the previous ILP. Note that our goal is to choose assigned capaci-
ties such that the augmentation graph has a large maximum flow, or equivalently
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by Menger’s theorem, a large minimum cut. The previous FLP ensures that each
cut has large capacity in expectation and therefore the minimum among the ex-
pected capacities of the cuts is large; this however does not guarantee that the
expected capacity of the minimum cut is large. We need this stronger guarantee
from our LP. To achieve this goal, we design an LP which yields a family of flows
corresponding to the different choices of assigned capacities, and ensures that
the expected value of these flows is large. This clearly implies that the expected
capacity of the minimum cut is large, and therefore provides stronger guarantees
than the previous LP. Precisely, we consider the following ILP.

maximize
∑
B∈B

∑
C′,C∈C fC′(B,C) subject to∑

C∈C
fC′(B,C) ≤ p(B,C′)β(B), ∀B ∈ B, ∀C′ ∈ C (7)∑

B∈B

∑
C′∈C

fC′(B,C) ≤ α(C), ∀C ∈ C (8)

fC′(B,C) ≤
{

0, if η(B,C) < η(B,C′)
p(B,C′)min{η(B,C′), α(C)}, otherwise

∀B ∈ B, ∀C,C′ ∈ C (9)∑
C∈C

p(B,C) = 1, ∀B ∈ B (10)

p(B,C) ∈ {0, 1}, ∀B ∈ B, ∀C ∈ C (11)

fC′(B,C) ≥ 0, ∀B ∈ B, ∀C,C′ ∈ C. (12)

The key to understanding this ILP is the rounding technique that we employ
in our approximation algorithm; so let us describe our algorithm first. We relax
the integrality constraint , i.e. constraint (11) and allow the variables p to take
any value between 0 and 1, both inclusive. We solve the resulting FLP, and then
round the solution to obtain an integral solution. It is in this rounding procedure
that the crux of our algorithm lies. We choose assigned capacities according to
p(B,C), noting that for a fixed base-station B, p(B,C) is a valid probability dis-
tribution. Now, for any base-station B, if the assigned capacity τ(B) = η(B,C′),
then for each link (B,C), we add a flow of gC′(B,C) ≡ fC′(B,C)/p(B,C′) to
the s−B −C − t path in the augmentation graph. Crucially, this does not vio-
late the budget constraint at any base-station B since the total outflow at B is∑
C∈C gC′(B,C), which is at most β(B) by constraint (7); neither does it violate
the capacity constraint on any link (B,C) since constraint (9) ensures that the
flow on link (B,C) is at most ψτ (B,C). Hence, we focus on analyzing violations
of the demand constraints. The total inflow at C is

∑
B∈B gC′(B)(B,C). Unfor-

tunately, assigning these flow values simultaneously for all base-stations might
lead to an overflow in a demand arc (i.e., a demand constraint violation). For a
client with overflow, we decrease the incoming flows arbitrarily until the flow on
the link to t exactly matches its capacity (we call this the truncation step). Since
such a truncated flow is feasible, our ultimate goal is to prove that the truncation
step decreases the initial flow only by a constant fraction in expectation.
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Let F (B,C) be the random variable denoting the flow on link (B,C); clearly,
F (B,C) = gC′(B,C) with probability p(B,C′) and its expectation

E[F (B,C)] = f(B,C) ≡
∑
C′∈C

fC′(B,C) =
∑
C′∈C

p(B,C′)gC′(B,C).

Constraint (8) states that the expected inflow
∑
B∈B f(B,C) at client C is at

most its demand α(C). Also, for a given C, the F (B,C) values are independent.
Finally, constraint (9) enforces that F (B,C) ≤ α(C) irrespective of the choice of
the assigned capacity at base-station B, (i.e. inflow due to a single base-station
at a client never exceeds the demand of the client). Thus, we ensure that there
is some restriction on the wasted capacity, i.e. the capacity in the base-client
links which are left unused due to truncation; such a restriction was absent in
the previous formulation and, as we will see, this additional condition will be
sufficient for our purpose.

Note. The rounding procedure can be simplified in an actual implementation.
Once we obtain the assigned capacities of all the base-stations using randomized
rounding as described above, we can run a maximum flow algorithm on the
augmentation graph. Note that this achieves at least as much (and potentially
more) flow as that achieved by the rounding procedure described above. So an
actual implementation of our algorithm will rather employ a maximum flow sub-
routine than the above procedure for determining flows. However, we assume that
our algorithm uses the above procedure since it would be simpler to analyze—all
bounds proved using this assumption hold for an actual implementation using
maximum flow as well.
Before moving on to the analysis of the algorithm, let us verify that the new

ILP does represent the original problem. To do this, let us fix some optimal
solution (τ∗, f∗) for the original problem. Consider now a solution to our ILP
defined as follows. For each base-station B we set p(B,C) = 1 if B chooses
η(C) as its assigned capacity i.e. if τ∗(B) = η(B,C); otherwise p(B,C) = 0.
Next, for each link (B,C), we set fC′(B,C) = f∗(B,C) if τ∗(B) = η(B,C′),
and fC′(B,C) = 0 otherwise. Observe that all the constraints are preserved,
and the objective value corresponding to this solution has value equal to that
for the optimal solution. The converse direction is similar and we omit it for
brevity.

2.3 Analysis

If there are n base-stations and m clients, then the algorithm clearly runs in
time polynomial in N = max(n,m). So, we focus on proving guarantees on the
approximation factor of the algorithm. By the discussion in the previous section,
we know that in our rounding procedure the difference between the objective
value of the solution to the FLP and the actual flow that we obtain, consists solely
of the amount of initial flow that we have to truncate due to overflows at clients.
Thus our main task is to prove upper bounds on the expected overflow. Let
F (C) ≡

∑
B∈B F (B,C) be the random variable denoting total inflow at C before
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truncation and T (C) ≡ min(F (C), α(C)) be the random variable representing
the inflow at C after truncation. We would like to show that

E[T (C)] ≥ (1− 1/e)E[F (C)]. (13)

Then,
E[
∑
C∈C

T (C)] ≥ (1− 1/e)E[
∑
C∈C

F (C)] ≥ (1− 1/e)T ∗, (14)

where T ∗ is the total flow in an optimal integral solution. This proves Theorem 2,
which was stated in Section 1.
To establish inequality (13), we will need the following theorem (a similar

proof appears in [1]).

Theorem 3. Suppose we have a sequence of independent discrete random vari-
ables X1, X2, . . . , Xn such that each 0 ≤ Xi ≤ 1. Furthermore, suppose X =∑n
i=1 Xi and E[X ] ≤ 1. If Y = min(X, 1), then

E[Y ] ≥ (1− 1/e)E[X ].

We first use this theorem to prove inequality (13), and then give a proof of
the theorem itself. If, for client C, we define Xi = F (Bi, C)/α(C) (where
B = {B1, . . . , Bn}) and Y = T (C)/α(C), then such Xis and Y satisfy the
assumptions of the theorem. Thus, we can conclude that

E[T (C)] = α(C)E[Y ] ≥ (1− 1/e)α(C)E[X ] = (1− 1/e)E[F (C)].

Proof (Theorem 3). Our proof has the following outline. We assume for the
sake of contradiction that there exists a sequence {X̂1, X̂2, . . . , X̂n} of discrete
random variables such that

E[Ŷ ] = E[min(
∑
i

X̂i, 1)] < (1− 1/e)E[X̂] = (1 − 1/e)E[
∑
i

X̂i].

We call such a sequence (X̂i) a nemesis sequence. First, we prove that we can
assume without loss of generality, that X̂is are 0-1 random variables. Then, we
prove our theorem for 0-1 random variables, thus arriving at a contradiction for
the general case.
Let S(X̂i) be the number of distinct values other than 0 and 1 for which X̂i

has non-zero probability. Now, let us consider a nemesis sequence (X̂i) that min-
imizes

∑
i S(X̂i). We will prove that if

∑
i S(X̂i) > 0 then there exists another

nemesis sequence (X̃i) with
∑
i S(X̃i) <

∑
i S(X̂i). The minimality of (X̂i) im-

plies there exists a nemesis sequence with
∑
i S(X̂i) = 0, i.e. (X̂i) is a sequence

of 0-1 variables.
If
∑
i S(X̂i) > 0, then there exists some k such that S(X̂k) > 0, which in

turn means that there exists some 0 < a < 1 such that Pr[X̂k = a] = p > 0.
Suppose that this X̂k takes value of 0 and 1 with probability q ≥ 0 and r ≥ 0
respectively (note that p, q and r do not necessarily sum to 1). Now, consider
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another random variable X̃k that is distributed identically to X̂k except that the
probabilities of a, 0 and 1 are changed to 0, q+ (1− a)p and r+ ap respectively.
Note that E[X̃k] = E[X̂k], 0 ≤ X̃k ≤ 1 and S(X̃k) = S(X̂k)− 1. So, if we define
X̃i = X̂i for i �= k, then E[X̂ ] = E[X̃] ≤ 1. We would like to compare E[Ŷ ] to
E[Ỹ ] ≡ E[min{X̃, 1}]. Note that by our definition, for any δ ≥ 0,

Pr[X̃ − X̃k = δ] = Pr[X̂ − X̂k = δ].

Thus, to prove that E[Ỹ ] ≤ E[Ŷ ], it is sufficient to prove that

E[Ỹ |X̃ − X̃k = δ] ≤ E[Ŷ |X̂ − X̂k = δ],

for all δ ≥ 0.
Clearly, if δ ≥ 1 then

E[Ỹ |X̃ − X̃k = δ] = 1 = E[Ŷ |X̂ − X̂k = δ];

so the inequality holds. On the other hand, for δ < 1,

E[Ỹ |X̃ − X̃k = δ]− E[Ŷ |X̂ − X̂k = δ] = E[min{X̃k, 1− δ}]− E[min{X̂k, 1− δ}]
= ap(1− δ)− pmin{a, 1− δ} ≤ 0.

Thus, E[Ỹ ] ≤ E[Ŷ ], which proves that {X̂i} had to be a zero-one nemesis se-
quence.
Now, when {X̂i} is zero-one,

E[Ŷ ] = Pr[X̂ ≥ 1]

= 1−
∏
i

(1 − Pr[X̂i = 1])

≥ 1− (1 −
∑
i

E[X̂i]/n)n

≥ 1− e−E[X̂]

≥ (1 − 1/e)E[X̂],

as desired, where in the first inequality we used the fact that∑
i

Pr[X̂i = 1] =
∑
i

E[X̂i] = E[X̂ ],

and the arithmetic/geometric mean inequality.

To conclude, we may note that this theorem is tight for n i.i.d. 0-1 random
variables Xi with Pr[Xi = 1] = 1/n.

3 Conclusion

The ability to adaptively change channel widths in wireless networks introduces
interesting algorithmic problems. In this paper, we have studied a throughput
maximization problem in infrastructure wireless networks that was identical to
the maximum flow problem in bipartite graphs with adaptive channel width. An
interesting open question is to to find maximum flow in a general network with
adaptive channels.
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Abstract. We extend here the Population Protocol model of Angluin et
al. [2] in order to model more powerful networks of very small resource-
limited artefacts (agents) that are possibly mobile. The main feature of
our extended model is to allow edges of the communication graph, G,
to have states that belong to a constant size set. We also allow edges to
have readable only costs, whose values also belong to a constant size set.
Our protocol specifications are still independent of the population size
and do not use agent ids, i.e. they preserve uniformity and anonymity.
Our Mediated Population Protocols (MPP) can stably compute graph
properties of the communication graph. We show this for the properties
of maximal matchings (in undirected communication graphs), also for
finding the transitive closure of directed graphs and for finding all edges
of small cost. We demonstrate that our mediated protocols are stronger
than the classical population protocols, by presenting a MPP for a non-
semilinear predicate. To show this fact, we state and prove a general
theorem about the composition of two stably computing mediated pop-
ulation protocols. We also show that all predicates stably computable in
our model are (non-uniformly) in the class NSPACE(|E(G)|).

1 Introduction

1.1 Population Protocols

In a seminal work, Angluin et al. in [2] proposed the population protocol model
in order to represent sensor networks consisting of extremely limited agents that
may move and interact in pairs. Due to their severe limitations, the agents can
be represented as a population V of |V | = n finite state machines. A common
assumption is that a global start signal initiates computation by informing the
agents to sense their environment in order to receive a piece of the input. Two
agents communicate when they come sufficiently close to each other. The move-
ment is carried out by an adversary scheduler. A strong global fairness condition
is imposed on the adversary to ensure the protocol makes progress.
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Formally, a population protocol A consists of finite input and output alphabets
X and Y , a finite set of states Q, an input function I : X → Q mapping inputs
to states, an output function O : Q → Y mapping states to outputs, and a
transition function δ : Q×Q→ Q×Q. The critical assumption that diversifies
the population protocol model from traditional distributed systems is that the
protocol specifications are independent of the population size (that is, need O(1)
total memory capacity in each agent), which is known as the uniformity property
of population protocols. Moreover, population protocols are anonymous since
there is no room in the state of an agent to store a unique identifier.

A network communication graphG = (V,E) (see [1]) describes the permissible
ordered pairwise interactions. G is assumed to be a directed graph with no multi-
edges or self-loops (simple) and its n nodes are numbered 1 through n. An edge
(u, υ) ∈ E indicates the possibility of a communication between u and υ, in
which u is the initiator and υ the responder. The basic population protocol
model assumes the all-pairs family of directed communication graphs, denoted
GdAll, which simply contains for each n the complete directed graph on n vertices.

A population configuration is a mapping C : V → Q providing a snapshot
of the population states. C → C′ denotes that configuration C can go to C′

through a single interaction, i.e. there is an edge e = (u, υ) ∈ E such that
δ(C(u), C(υ)) = (C′(u), C′(υ)) and C′(ω) = C(ω) for all ω ∈ V −{u, υ}. In this
case we say that C goes to C′ via encounter e = (u, υ), and to emphasize that,
we write C

e→ C′. C′ is said to be reachable from C, denoted C
∗→ C′, if C can

be converted to C′ in one or more steps.
An execution is a finite or infinite sequence of configurations C0, C1, C2, . . .,

where C0 is an initial configuration and Ci → Ci+1, for all i ≥ 0. At any point
during the execution of a population protocol, each agent’s state determines its
output at that time (the output of u under configuration C is O(C(u)), for each
u ∈ V ). An infinite execution is fair if for every possible transition C → C′,
if C occurs infinitely often in the execution, then C′ occurs infinitely often. A
computation is an infinite fair execution.

Generally, population protocols do not halt. Instead, halting is replaced by an
interesting property called stability. Stability was defined in [2] to be a situation
where computation reaches a configuration C, after which, no matter how the
computation proceeds, no agent will be able to change its output value. Such a
configuration C is called an output-stable configuration. A protocol A (stably)
computes a function f that maps multisets of elements of X to Y if, for every
such multiset x and every computation that starts from the initial configuration
corresponding to x, the output value of every agent eventually stabilizes to f(x).

For the basic population protocol model there exists an exact characteriza-
tion of the computable predicates: they are precisely the semilinear predicates
or equivalently the predicates definable by first-order logical formulas in Pres-
burger arithmetic [2,4,5]. In the stabilizing inputs variant of the basic model [1],
convergence to a stable common output value is only required after the inputs
stop changing (here, each agent has an input field that can change over time).
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The results of [4] show that again the semilinear predicates are all that can be
computed by this model.

1.2 Other Previous Work

The motivation given for the population protocol model was the study of sen-
sor networks in which passive agents were carried along by other entities. Much
work has been devoted to the, now, well known fact that the set of computable
predicates of the basic (complete interaction graph) population protocol model
and most of its variants is exactly equal or closely related to the set of semi-
linear predicates. Also, in [2], the probabilistic population protocol model was
proposed, in which the scheduler selects randomly and uniformly the next pair
to interact. More recent work has concentrated on performance, supported by
this random scheduling assumption. [6] and [9] considered a huge population
hypothesis (population going to infinity), and studied the dynamics, stability
and computational power of probabilistic population protocols by exploiting the
tools of continuous nonlinear dynamics. In [6] it was also proven that there is a
strong relation between classical finite population protocols and models given by
ordinary differential equations. Distributed computing with advice (in the spirit
of our model) was considered in [10]. Moreover, several extensions of the basic
model have been proposed to more accurately reflect the requirements of prac-
tical systems. In [1] they studied what properties of restricted communication
graphs are stably computable, gave protocols for some of them, and proposed
the model extension with stabilizing inputs. Finally, some works incorporated
agent failures and gave to the agents slightly increased memory capacity. For an
excellent introduction to the subject see [5].

1.3 Our Approach

We extend the population protocol model with communication links satisfying
the following properties: Each e ∈ E is equipped with a buffer of O(1) total
storage capacity. Before an interaction e = (u, υ), the interacting pair reads
the contents of the corresponding buffer, that is, the state of e, to provide it
to the transition function. After an interaction e = (u, υ), the interacting pair
updates the contents of the corresponding buffer, according to the new state
of e, returned by the transition function. Since the memory of the edges is
constant and independent of the population size, the protocol specifications are
independent of n, i.e. both uniformity and anonymity are preserved.

By letting the edges keeping states, the first gain is that we manage to get more
computational power in comparison to the basic population protocol model. The
additional computational power is limited (as expected) due to the fact that this
additional set of states is again of constant cardinality (and usually we try to
keep it low, i.e. one or two bits suffice). We prove that the derived model is able
to compute at least one non-semilinear predicate.

The new model also gives rise to many other novel computational possibil-
ities. By defining a natural relaxation of stability, that we call r-stability, we
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obtain protocols that are able to locate subgraphs of the communication graph.
By associating each edge with a read-only cost, under certain assumptions, we
are able to devise protocols that solve optimization problems concerning the
communication graph. This cost can be assumed to be stored (together with the
state) in the constant size buffer of the edge.

2 The New Model

2.1 Mediated Population Protocols

A mediated population protocol A consists of finite input and output alphabets X
and Y , a finite set of agent states Q, an agent input function I : X → Q mapping
inputs to agent states, an agent output function O : Q→ Y mapping agent states
to outputs, a finite set of edge states S, an edge input function ι : X → S mapping
inputs to edge states, an edge output function ω : S → Y mapping edge states
to outputs, an output instruction r, a finite totally ordered cost set K, a cost
function c : E → K assigning a cost to each edge of the communication graph
and a transition function δ : Q×Q×K×S→ Q×Q×K×S (from now on we will
always assume that the cost remains the same after applying δ and so we will omit
specifying an output cost). If δ(qi, qj , x, s) = (q′i, q

′
j , s
′) (which, according to our

assumption, is equivalent to δ(qi, qj , x, s) = (q′i, q
′
j , x, s

′)), we call (qi, qj , x, s) →
(q′i, q

′
j , s
′) a transition, and we define δ1(qi, qj , x, s) = q′i, δ2(qi, qj, x, s) = q′j and

δ3(qi, qj , x, s) = s′. We will call δ1 the initiator’s acquisition, δ2 the responder’s
acquisition, and δ3 the edge acquisition after the corresponding interaction.

In most cases we will assume that K ⊂ ZZ+ and that cmax = maxw∈K {w} =
O(1). Generally, if cmax = maxw∈K {|w|} = O(1) then any agent is capable of
storing at most k cumulative costs (at most the value kcmax), for some k = O(1),
and we say that the cost function is useful (note that a cost range that depends
on the population size could make the agents incapable for even a single cost
storage and any kind of optimization would be impossible).

A mediated population protocol runs in a communication graph G = (V,E),
where V is a population of n agents, and E is an irreflexive binary relation on V ,
of cardinality denoted by m. In the case of an undirected graph we only require
that E is also symmetric, and that for all (u, υ), (υ, u) ∈ E, (u, υ) and (υ, u)
share the same buffer (in the undirected case we also assume in this work that
if δ(qi, qj , x, s) = (q′i, q

′
j , s
′), then δ(qj , qi, x, s) = (q′j , q

′
i, s
′), for all (qi, qj , x, s) ∈

Q×Q×K×S). In both cases (directed and undirected), a (u, υ) ∈ E means that
interaction (u, υ) is permitted in which u is the initiator and υ the responder.

A network configuration is a mapping C : V ∪ E → Q ∪ S specifying the
agent state of each agent in the population and the edge state of each edge in
the communication graph. If we restrict our attention on the states of the agents
only, we can use the mapping CV : V → Q which is called the population con-
figuration and similarly CE : E → S is the edge configuration. Let C and C′ be
network configurations, and let u, υ be distinct agents. We say that C goes to
C′ via encounter e = (u, υ), denoted C

e→ C′, if C′(u) = δ1(C(u), C(υ), x, C(e)),
C′(υ) = δ2(C(u), C(υ), x, C(e)), C′(e) = δ3(C(u), C(υ), x, C(e)), and
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C′(z) = C(z), for all z ∈ (V − {u, υ}) ∪ (E − e). We say that C can go to
C′ in one step, if C e→ C′ for some encounter e ∈ E. We write C ∗→ C′ if there is
a sequence of configurations C = C0, C1, . . . , Ct = C′, such that Ci → Ci+1 for
all i, 0 ≤ i < t, in which case we say that C′ is reachable from C. The definitions
of execution and computation are the same as in the population protocol model
but concern network configurations. Note that the mediated population protocol
code is of constant size and, thus, can be stored in each agent (device) of the
population.

2.2 Output Interpretation

Following the definition of stability proposed in [2], we say that a network config-
uration C is agent output-stable, if O(C′(υ)) = O(C(υ)) for all C′ where C ∗→ C′

and for all υ ∈ V (we can also write O(C′V ) = O(CV ) if we extend O to a map-
ping from population configurations to output assignments like in [2]). Moreover,
a configuration C is said to be edge output-stable, if ω(C′(e)) = ω(C(e)) for all
C′ where C

∗→ C′ and for all e ∈ E (i.e. if ω(C′E) = ω(CE)) and globally output-
stable, if it is both edge output-stable and agent output-stable.

The instruction r that we have included in the model definition is simply an
instruction that tells the output viewer how to interpret the output of a protocol.
For example, if a protocol is supposed to compute a predicate by reaching an
agent output-stable configuration where all agents agree on the correct output
value, then instruction r would be: “Get any u ∈ V and view its output”. In this
case, an agent output-stable configuration is said to be an r-stable configuration.

A configuration C is r-stable if one of the following holds: If the problem
concerns a subgraph to be found, then C should fix a subgraph that will not
change in any C′ reachable from C. If the problem concerns a function to be
computed by the agents, then an r-stable configuration drops down to an agent
output-stable configuration.

We will say that a protocol A stably solves a problem Π , if for every in-
stance I of Π and every computation of A on I, the network reaches an r-stable
configuration C that gives the correct solution for I if interpreted according to
the output instruction r. If instead of a problem Π we have a function f to be
computed, we will say that A stably computes f . In the special case where Π
is an optimization problem, a protocol that stably solves Π will be called an
optimizing population protocol for problem Π .

3 Some Graph Protocols

3.1 Maximal Matching

We first give a mediated population protocol MaximalMatching that stably
solves the following problem:

Problem 1. (Maximal matching) Given an undirected communication graphG =
(V,E), find a maximal matching, i.e., a set E′ ⊆ E such that no two members of
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E′ share a common end point in V and, moreover, there is no e ∈ E − E′ such
that e shares no common end point with every member of E′.

MaximalMatching

– X = {0}, Y = {0, 1},
– Q = {q0, q1}, S = {0, 1},
– I(0) = q0,
– ι(0) = 0, ω(0) = 0, ω(1) = 1,
– r: “Get each e ∈ E for which ω(se) = 1 (where se is the state of e)”,
– δ: (q0, q0, 0) → (q1, q1, 1)

Note that we have omitted specifying costs, since there is no need for them
here, and δ is of the simplified form δ : Q×Q× S → Q×Q× S. Moreover, any
other possibly interacting pair not appearing in δ, e.g. (q0, q1, 0) and (q1, q1, 1), is
assumed throughout this work to be included as an identity rule, that is, a rule
that leaves all interacting components unaffected (e.g. (q0, q1, 0) → (q0, q1, 0)
and (q1, q1, 1) → (q1, q1, 1)). We, also, don’t specify an agent output function
because the protocol’s correctness concerns only the edge output function.

Theorem 1. MaximalMatching stably solves the maximal matching problem.

Proof. Let M be the set of edges in state 1. M is theoretically updated after
each interaction, i.e., at any point, any edge in state 1 belongs to M . For an edge
e = (u, υ) to become a member of M , both its endpoints during the interaction
must be in state q0. If this holds, the edge gets in M and u, υ go to state q1 to
indicate that they both have an edge incident to them that belongs to M . From
now on, no edges adjacent to e can get in M , simply because their end point on
which they coincide with e is in state q1. This, together with the fact that two
interactions happening in parallel cannot concern adjacent edges, proves that M
is always a matching. Moreover, an edge not conflicting with M will eventually
get in M (if no conflict arises in the meanwhile), since it will be in state 0 and
both its end points will be in q0. The latter proves that M is maximal. ��

3.2 Transitive Closure with the Help of a Leader

Assume that G = (V,E) is a graph from the GdAll family, that is, the all-pairs
family of directed communication graphs, and that a protocol has computed a
subgraph of G, G′ = (V ′, E′), by letting the selected edges (edges in E′) be in
state 1, while all the remaining edges (i.e. all e ∈ E − E′) are in state 0. Note
that V ′ simply contains all nodes that are incident to at least one e ∈ E′. We
want to solve the following problem:

Problem 2. (Transitive Closure) Given a communication graph G = (V,E)
in GdAll with a subgraph G′ = (V ′, E′) precomputed in the above manner, find
the transitive closure of G′, that is, find a new edge set E∗ that will contain
a directed edge (u, υ) joining any nodes u, υ for which there is a non-null path
from u to υ in G′ (note that always E′ ⊆ E∗).
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We assume a controlled input assignment W : E → X that allows us to give
input 1 to any edge belonging to E′ and input 0 to any other edge. Moreover,
we assume that initially all agents are in state q0, except for an elected leader
(by any leader election protocol) that is in state l. The assumption of a leader
and the remark that this helps the protocols was first used in [2] and extensively
studied in [3]. We devise a protocol, TranClos, with the following specification:

TranClos

– X = Y = {0, 1},
– Q = {l, q0, q1, q′1, q2, q′2, q3}, S = {0, 1},
– controlled input assignment : “W (e′) = 1, for all e′ ∈ E′, and W (e) = 0, for

all e ∈ E − E′”,
– ι(x) = x, for all x ∈ X , ω(s) = s, for all s ∈ S,
– r: “Get each e ∈ E for which ω(se) = 1 (where se is the state of e)”,
– δ:

(l, q0, 0) → (q0, l, 0) (q2, q0, 1) → (q′2, q3, 1)
(l, q0, 1) → (q1, q2, 1) (q1, q3, x) → (q′1, q0, 1), for x ∈ {0, 1}

(q1, q2, 1) → (q0, l, 1) (q′1, q
′
2, 1) → (q0, l, 1)

Theorem 2. Protocol TranClos stably solves the transitive closure problem.

For the proof see [8].

3.3 Edges of Minimum Cost

Let us illustrate the incorporation of edge costs in the case of optimization
problems, by a simple optimizing population protocol for the following problem:

Problem 3. (Edges of minimum cost) Given an undirected connected communi-
cation graph G = (V,E) and a useful cost function c : E → K on the set of
edges, where K ⊂ ZZ+, design a protocol that finds the minimum cost edges of
E.

MinEdges

– X = Y = {0, 1},
– Q = K ∪ {q0}, S = {0, 1},
– I(x) = q0, for all x ∈ X ,
– ι(x) = 0, for all x ∈ X , ω(s) = s, for all s ∈ S,
– r: “Get each e ∈ E for which ω(se) = 1 (where se is the state of e)”,
– δ:

(q0, q0, c, d) → (c, c, 1)
(ci, cj, c, d) → (c, c, 1), if c ≤ min{ci, cj}

→ (min{ci, cj},min{ci, cj}, 0), if c > min{ci, cj}
(ci, q0, c, d) → (c, c, 1), if c ≤ ci

→ (ci, ci, 0), if c > ci
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Theorem 3. MinEdges is an optimizing population protocol for Problem 3.

Proof. We need to show that the system reaches an r-stable configuration C,
where if Eout is the subset of E specified by instruction r, we have e ∈ Eout if
and only if c(e) = copt, where copt = mine∈E{c(e)}.

All rules of δ together with the fairness assumption ensure that every agent will
eventually get copt (a less cost encountered always replaces the current cost of an
agent). At that point the system will be in an agent output-stable configuration,
since there is no cost less than copt in order to replace it. From now on, after
every interaction (u, υ), where e = {u, υ}, Eout ← Eout ∪ {e}, if no interacting
agent’s cost is less than c(e) (that is, if c(e) = copt) and Eout ← Eout − {e},
otherwise.

It follows that, eventually, the system will enter a configuration C where
e ∈ Eout will imply that c(e) = copt and e /∈ Eout that c(e) > copt. At that time,
no edge will be able to enter or leave Eout, and since Eout is the set specified
by r, C will be an r-stable configuration as needed. These together imply that
MinEdges is indeed an optimizing population protocol for Problem 3. ��

4 Computability

4.1 All-Pairs Directed Communication Graphs

We now investigate some aspects of the computational power of the mediated
population protocol (MPP) model and show that in the special case of the all-
pairs family of directed communication graphs it is in fact stronger than the
basic model proposed in [2].

Definition 1. The MPP model with the additional constraint that it runs on
the all-pairs family of directed communication graphs (GdAll), will be called the
basic MPP model.

Definition 2. We say that a predicate is strongly stably computable by the
MPP model, if it is stably computable in the classical sense of stable computation,
that is, all agents eventually agree on the correct output value.

On the other hand, if we say that a predicate is stably computable by the MPP
model (without including the word “strongly”), it is not obvious if all agents
agree on the same output value or not. Finally, when we say that a predicate is
stably computable by the population protocol model, it always means that all
agents eventually agree on the correct output value, since in this case we always
follow the classical definition of stable computation, as appears in [2].

Theorem 4. The population protocol model is a special case of the MPP model.

Proof. Ignoring the edge functions, the edge states, the edge costs, and the
output instruction r in the mediated population protocol model, makes the two
models equivalent. ��
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All the following corollaries are immediate consequences of Theorem 4, since it
shows that the population protocol model can be simulated by the mediated
population protocol model. There is nothing that the population protocol model
does that the MPP model is not capable of doing.

Corollary 1. Any predicate stably computable by the population protocol model
is also strongly stably computable by the mediated population protocol model.

Corollary 2. Any predicate stably computable by the basic population protocol
model is also strongly stably computable by the basic MPP model.

Corollary 3. Any predicate stably computable by the population protocol model
with stabilizing inputs is also strongly stably computable by the similar extension
of the mediated population protocol model with stabilizing inputs.

It is well known that Presburger arithmetic does not allow multiplication of
variables. Moreover, any semilinear predicate can be described by first-order
logical formulas in Presburger arithmetic and it is known that a predicate is
computable in the basic population protocol model if and only if it is semilinear.
To demonstrate that the basic MPP model is stronger, it suffices to show that
there is at least one non-semilinear predicate that is strongly stably computable
under this model.

It is obvious that the predicate “the number of c’s is the product of the number
of a’s and the number of b’s” is not semilinear. This holds, because multiplica-
tion of variables cannot be described by first-order logical formulas in Presburger
arithmetic. Let Nq denote the multiplicity of state q in the input configuration
multiset. Then, Nc = Na · Nb is a shorthand of the above predicate and the
mediated protocol V arProduct that we will now describe, stably computes it in
GdAll.

VarProduct

– X = {a, b, c, 0}, Y = {0, 1},
– Q = {a, ȧ, b, c, c̄, 0}, S = {0, 1},
– I(x) = x, for all x ∈ X , O(a) = O(b) = O(c̄) = O(0) = 1, and O(c) =

O(ȧ) = 0,
– ι(x) = 0, for all x ∈ X ,
– r: “If there is at least one agent with output 0, reject, else accept.”,
– δ: (a, b, 0) → (ȧ, b, 1), (c, ȧ, 0) → (c̄, a, 0), (ȧ, c, 0) → (a, c̄, 0)

Theorem 5. Protocol V arProduct stably computes (according to our relaxed
definition of stable computation) predicate Nc = Na ·Nb in GdAll.

Proof Sketch. Notice that the number of links leading from agents in state a
to agents in state b equals Na ·Nb. For each a the protocol tries to erase b c’s.
Each a is able to remember the b’s that has already counted (for every such b a
c has been erased) by marking the corresponding links. If the c’s are less than
the product then at least one ȧ remains and if the c’s are more at least one c
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remains. In both cases at least one agent that outputs 0 remains. If Nc = Na ·Nb
then every agent eventually outputs 1. For a full proof see [8].

It is easy to see that V arProduct’s states in every computation eventually stop
changing. Any protocol with the above property will be called a protocol with
stabilizing states. Keep in mind that original stable computation of population
protocols requires that all agents agree on their output value, and that it is
correct. But V arProduct does not seem to strongly stably compute Nc = Na ·Nb,
since the agents do not always agree on their final output value. Now we are about
to prove that with a slight addition it does.

Note that instruction r defines a semilinear predicate on multisets of states
(members of Q). To see this, simply write r formally as (Nc > 0) ∨ (Nȧ > 0).
The fact that it is semilinear suffices to prove that there is a population protocol
B′ with stabilizing inputs from the set Q of V arProduct’s states, that stably
computes it. This follows from a result in [4], stating that any population pro-
tocol for fixed inputs can be adapted to work with stabilizing inputs. Moreover,
Corollary 3 implies that there is a mediated protocol B with stabilizing inputs
that is equivalent to B′ (the one that ignores edges and does the same things
as B′), that is, it strongly stably computes the predicate defined by r. Finally,
V arProduct has stabilizing states, so its composition with B (their product con-
struction) provides stabilizing inputs to B. If the protocol’s answer is now taken
from B’s output, then it is trivial to see that their composition strongly stably
computes Nc = Na ·Nb.

We state now a composition theorem to generalize this remark. Its proof can
be found in [8]. In fact, our composition theorem holds for any family of directed
and connected communication graphs G.

Theorem 6. Any MPP A, that stably computes a predicate p with stabilizing
states in some family of directed and connected communication graphs G, con-
taining an instruction r that defines a semilinear predicate t on multisets of A’s
agent states, can be composed with a provably existing MPP B, that strongly sta-
bly computes t with stabilizing inputs in G, to give a new MPP C satisfying the
following properties:

– C is formed by the composition of A and B,
– its input is A’s input,
– its output is B’s output, and
– C strongly stably computes p in G.

Definition 3. Let SEM be the class of predicates stably computable, according to
the classical sense of stable computation, by the basic population protocol model
(precisely the semilinear predicates), and MP the class of number predicates
strongly stably computable by the basic mediated population protocol model.

Theorem 7. SEM is a proper subset of MP .

Proof. Corollary 2 implies that SEM ⊆ MP . Theorem 5 shows that there is a
non-semilinear predicate, p : Nc = Na · Nb, that does not belong to SEM but
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is stably computable by the basic MPP model (according to our definition of
stable computation). The mediated protocol V arProduct that stably computes
p, contains an output instruction r that defines a semilinear predicate t on mul-
tisets of V arProduct’s states. Consequently, Theorem 6 applies and we get that
p is also strongly stably computable by the basic MPP model (i.e. stably com-
putable according to the classical sense of stable computation), in other words,
p belongs to MP , and the theorem follows. ��

4.2 Any Family of Communication Graphs : Non-uniform Upper
Bounds on Computability

Definition 4. Let UMP be the class of predicates stably computable by the MPP
model in any family G of undirected, connected communication graphs, and DMP
the class of predicates stably computable by the MPP model in any family G′ of
directed, connected communication graphs.

Let m denote the number of edges of any communication graph G.

Theorem 8. All predicates in DMP and UMP are in the class NSPACE(m).

Proof. Let A be a mediated protocol that stably computes such a predicate p
in some family of graphs G, and let G ∈ G be any graph of this family. Since
G is always connected, we have that m ≥ n − 1. A network configuration can
be represented explicitly, by storing a state per node and a state per edge of G.
This takes O(m) space. Note that w.l.o.g. we can talk about languages instead
of predicates. So, A stably computes the language L corresponding to p (its
support).

We will now present a nondeterministic Turing machine MA that decides L
in space O(m). MA works as follows: To accept input x, MA must verify two
conditions: That there exists a configuration C reachable from I(x) (the initial
configuration corresponding to x), in which all relevant states satisfy the output
instruction r, and that there is no configuration C′ reachable from C, in which
r is violated.

The first condition is verified by guessing and checking a sequence of network
configurations, starting from I(x) and reaching such a C. MA guesses a Ci+1

each time, verifies that Ci → Ci+1 (begins from C0 = I(x), i.e. i = 0) and, if
so, replaces Ci by Ci+1, otherwise drops this Ci+1. The second condition is the
complement of a similar reachability problem. But NSPACE is closed under
complement for all space functions ≥ log n (see [11]). Thus, MA decides L in
O(m) space. ��

Note that, as far as a DMP is concerned, even a “standard” (not mediated)
population protocol whose G is a directed line can simulate a deterministic
linear space Turing machine [2]. Thus, by applying Savitch’s theorem [12], one
can say informally that DMP is between NSPACE(

√
n) and NSPACE(m).

However, for UMP , we only know that SEM ⊂ UMP ⊆ NSPACE(m).
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5 Future Work

We are currently experimenting with Population Protocols (see [7]) and investi-
gating the possible graph properties that can be computed by Mediated Popu-
lation Protocols.

Acknowledgements. We thank Maria Serna for posing the question of Tran-
sitive Closure and its importance.
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Rumor Spreading in Social Networks�
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Abstract. Social networks are an interesting class of graphs likely to become of
increasing importance in the future, not only theoretically, but also for its proba-
ble applications to ad hoc and mobile networking. Rumor spreading is one of the
basic mechanisms for information dissemination in networks, its relevance stem-
ming from its simplicity of implementation and effectiveness. In this paper, we
study the performance of rumor spreading in the classic preferential attachment
model of Bollobás et al. which is considered to be a valuable model for social net-
works. We prove that, in these networks: (a) The standard PUSH-PULL strategy
delivers the message to all nodes within O(log2 n) rounds with high probability;
(b) by themselves, PUSH and PULL require polynomially many rounds. (These
results are under the assumption that m, the number of new links added with each
new node is at least 2. If m = 1 the graph is disconnected with high probabil-
ity, so no rumor spreading strategy can work.) Our analysis is based on a careful
study of some new properties of preferential attachment graphs which could be
of independent interest.

1 Introduction

Rumor spreading is one of the basic mechanisms for information dissemination in net-
works. In this paper we analyze the performance of rumor spreading in the Preferential
Attachment model [7]. We show that, while neither PUSH nor PULL by themselves
guarantee fast information dissemination, with PUSH-PULL the information reaches
all nodes in the network within O(log2 n) rounds with high probability, n being the
number of nodes in the network.

The study of information dissemination in social networks is an important endeav-
our, encompassing a variety of questions ranging from the purely technological to the
spread of viruses and the diffusion of ideas in human communities. In order to gain in-
sight into these and other related questions, a lot of activity has been devoted to studying
stochastic generative models for social networks. The well-known preferential attach-
ment model, defined precisely in the next section, is considered to be able to capture
many of their salient features. Thus, it seems worthwhile to study how fundamental
primitives of information dissemination behave in such a model. Rumor spreading is
one of the very basic such primitives. Its simple, basic character makes it useful as a
protocol and interesting theoretically, for one can hope to gain insight on more complex
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phenomena by studying it. Perhaps surprisingly there seem to be no precise analysis
in the literature of the speed with which rumor spreading terminates in the preferential
attachment model (to the best of our knowledge) and thus this is the aim of this paper.
Before discussing the relevant state-of-the-art, let us first describe our results precisely.

There is a danger of terminological confusion surrounding the term gossip that we
shall now try to avoid. In this paper we study the randomized gossip protocol, also re-
ferred to in the literature with the terms rumor spreading or randomized broadcast (see
for instance [11,19]). It should not be confused with the gossip problem, in which each
node is to broadcast a piece of information and one seeks the most effective protocols to
do it (see for instance [20]). The randomized gossip protocol is a widely used protocols
in ad hoc networks to implement a broadcast service, and is defined as follows. Its aim
is to broadcast a message, i.e. to deliver to every node in the network a message origi-
nating from one source node. The randomized gossip protocol proceeds in a sequence
of synchronous rounds. At round t ≥ 0, every node that knows the message, selects a
random neighbour and sends message. This is the so-called PUSH strategy. The PULL
variant is specular. At round t ≥ 0 every node that does not yet have the message selects
a neighbour uniformly at random and asks for the information, which is transferred pro-
vided that it is in possession of the queried neighbour. Finally, the PUSH-PULL strategy
is a combination of both. At round t ≥ 0, each node selects a random neighbour to per-
form a PUSH if it has the information or a PULL in the opposite case. One of the most
studied question concerning rumor spreading is the following: how many rounds will
it take for one of the above strategies to disseminate the information to all nodes in the
graph, assuming a worst-case source?

We study this question for the preferential attachment model and show the following:

– regardless of the starting node, the PUSH strategy requires, with Ω(1) probability,
polynomially many rounds;

– there are starting nodes such that the PULL strategy requires, with Ω(1) probability,
polynomially many rounds;

– regardless of the starting node, the PUSH-PULL strategy requires, with probability
1− o(1), O(log2 n) many rounds.

From the technical point of view, Preferential Attachment networks (henceforth PA
network) are quite interesting because in them coexist subgraphs that are very hard for
rumor spreading, such as many high-degree stars, the so-called hubs, with subgraphs
that are very good, such as small-degree expanders. These two act as opposing forces
and only a careful analysis can ascertain which one will prevail. To this aim, we es-
tablish several strong structural properties of PA graphs that we believe will be useful
for further study. In particular we show that a linear size portion of the graph behaves
like a low-degree expander. This expander is not a subgraph made of nodes and edges.
Rather it is a sort of cluster graph obtained by collapsing connected components into
macronodes that are connected by short paths (as opposed to single edges). This core
acts as a sort of fast information exchanger– it can be easily reached by every node and
it can itself reach every node.

We now turn to a discussion of the relevant literature.
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2 Related Work

The literature on the gossip protocol and social networks is huge and we confine our-
selves to what appears to be more relevant to the present work.

Clearly, at least diameter-many rounds are needed for the gossip protocol to reach all
nodes. It has been shown that O(n log n) rounds are always sufficient for a connected
graph of n nodes [11]. The problem has been studied on a number of graph classes,
such as hypercubes, bounded-degree graphs, cliques and Erdös-Rényi random graphs
(see [15,11,18]).

It is a common assumption that graphs generated by the model intuitively intro-
duced by Barabási and Albert is a good representation of social networks [1]. In this
model nodes arrive one after the other. Roughly speaking, when a new node arrives,
m nodes are chosen randomly as neighbours, with probability proportional to their de-
gree. Bollobás et al. formalize this model in [7]. We will use the terms “preferential
attachment” and refer to it as the PA model. Analogously, we will speak of PA graphs
and PA networks. The PA model has been the object of a great deal of rigorous study
by a number of authors [2,4,5,6,7,8,14]. For instance, it is known that (a) its degree
distribution follows a power-law [7], (b) its maximum degree is ≥ n

1
2−ε [13], (c) its

diameter is Θ(log n/ log log n) (for m ≥ 2), and (d) its cover time is Θ(n log n) (again
for m ≥ 2).

An interesting property of the PA graphs is their robustness with respect to node dele-
tion. In [4,14] the authors study the size of the largest component of the PA graphs after
random and adversarial node deletions. In [2] the authors study the virus-spreading
problem on graphs very similar to PA graphs, relating it to spreading of computer
viruses over the internet.

It is natural to ask whether expansion and high conductance imply that rumor spread-
ing is fast. The graph in Figure 1 has high edge expansion, but rumor spreading takes
linearly many rounds. The graph consists of

√
n many independent sets, each of size√

n. These independent sets are arranged in a cycle. Two neighbouring independent
sets form a complete bipartite graph. The central node is connected to one vertex in
each independent set.

The graph also has high edge expansion but PUSH-PULL requires polynomially
many rounds in spite of the diameter being constant. Whether high conductance by
itself implies the success of PUSH-PULL in general appears to be an intriguing and
difficult open problem.

Fig. 1. Slow rumor spreading in spite of high edge expansion



378 F. Chierichetti, S. Lattanzi, and A. Panconesi

Mihail et al. [16] study the edge expansion and the conductance of graphs that are
very similar to PA graphs. We shall refer to these as “almost” PA-graphs [2]. They show
that edge expansion and conductance are constant in these graphs, when m ≥ 2.

High conductance implies that non-uniform rumor spreading succeeds. By non-
uniform we mean that, for every ordered pair of neighbours i and j, node i will select j
with probability pij for the rumor spreading step (in general, pij �= pji). Boyd et al. [3]
consider the “averaging” problem on general graphs, which is closely related to the con-
vergence of PUSH-PULL. A corollary of their main results is that, if the pij are suitably
chosen, non-uniform PUSH-PULL rumor spreading succeeds within O(log n) rounds
in almost-PA graphs. They also show that this distribution can be found efficiently us-
ing local computations in these graphs, but their method requires Ω(log n) steps. While
the contribution of [3] is noteworthy, this corollary is in our context somewhat trivial.
That such a probability distribution exists is straightforward. Because of their high con-
ductance, almost-PA graphs have diameter O(log n). Thus, in a synchronous network,
it is possible to elect a leader in O(log n) many rounds and set up a BFS tree originat-
ing from it. By assigning probability 1 to the edge between a node and its parent one
has the desired non uniform probability distribution. Thus, from the point of view of
this paper the existence of non uniform problem is rather uninteresting. Boyd et. al [3]
also show that this distributions can be found efficiently using local computations, but
their method requires Ω(log n) many steps. The local computations of each node, at
every step, include a broadcasting of some value to all neighbours. Local broadcasting,
used for diameter (that is, O(log n)) many rounds, is a trivial information-dissemination
strategy.

Also, Mosk-Aoyama and Shah [17] consider the problem of computing separable
functions. In particular, they consider the uniform rumor spreading problem on graphs
weighted by a high-conductance doubly-stochastic matrix “that assigns equal probabil-
ity to each of the neighbours of any node” (that is, if pij is the probability that node i
initiates a connection to node j in the generic round t, then ∀ij ∈ E(G) pij = pji =
Δ−1, where Δ is the maximum degree in the graph). Their work implies that if the
conductance (or the edge expansion) of a graph is Ω(1) then rumor spreading ends
in O(Δ log2 n) many rounds — this, while being a good bound for constant-degree
graphs, is polynomially large for PA graphs (where the bound would be larger than
Ω(n

1
2−ε)).

3 Preliminaries

Preferential attachment graphs were intuitively introduced in [1] and formally defined
in [7], from which the following definition is taken.

Definition 1. [PA model]. Let Gmn , m being a fixed parameter, be defined inductively
as follows:

– Gm1 consists of a single vertex with m self-loops.
– Gmn is built from Gmn−1 by adding a new node u together with m edges e1

u =
(u, v1), . . . , emu = (u, vm) inserted one after the other in this order. Let Mi be the
sum of the degree of all the nodes right before the edge eiu is added. The endpoint
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vi is selected with probability deg(vi)
Mi+1 , with the exception of node u that is selected

with probability deg(u)+1
Mi+1 .

In other words, if a vertex v �= u has degree d when eiu is inserted, it will be chosen with
probability proportional to d, while u will be chosen with probability proportional to its
current degree plus one. Note that definition allows for self-loops. The rich-get-richer
effect is clear, since the higher the degree of a node, the higher the probability that it
will be chosen as the endpoint of a new edge.

In the sequel we will say that an event holds with high probability if it occurs with
probability 1 − o(1), where o(1) will be a quantity going to zero as n, the number of
vertices of the graph under consideration, grows.

Definition 2. Consider a rumor spreading strategy (PUSH, PULL or PUSH-PULL).
Given a (random) graph of n nodes, we say that the strategy succeeds if the message
is delivered within poly-logarithmically, in n, many rounds, regardless of the starting
node, with probability 1 − o(1). It fails if, with non-vanishing probability, there exist a
node from which the message requires polynomially-many rounds to be delivered to all
nodes (i.e. it requires Ω(nα) many rounds for some α > 0).

4 Rumor Spreading in Social Networks

We begin by showing some simple lower bounds for the performance of PUSH and
PULL acting alone, and that the condition m ≥ 2 is necessary. This discussion will
provide the motivation to analyse the PUSH-PULL strategy.

The requirement m ≥ 2 is due to the fact that G1
n is disconnected with high proba-

bility. The next lemma is implicit in [6].

Lemma 1. G1
n is connected with probability

√
π

2
· Γ (n)
Γ (n + 1/2)

= Θ

(
1√
n

)
,

where Γ denotes the gamma function (Γ (x) =
∫∞
0

tx−1e−tdt).

Proof. The graph is connected iff no node, except the first, has a self-loop. The proba-
bility of this event is

∏n
i=2

2i−2
2i−1 , which is equivalent to the expression in the claim. ��

Next we characterize the performance of PUSH and PULL. Fix ε > 0. We say that a
node is of high degree if its degree is > nε. The next lemma says that, for a suitably
small ε, there are lots of high degree nodes in the graph. More precisely, with high
probability, the sum of their degrees is Ω(n1−ε). To prove the lemma we need a sharp
estimate of E[Xn

k ], where Xn
k is the number of nodes of degree k in G1

n. [7] gives the
bound E[Xt

i ] = (1 ± o(1)) 4t
i(i+1)(i+2) but this is not sufficient for our purposes. We

require a bound of the form E[Xt
i ] ≤ 4t

i(i+1)(i+2) +c, for some absolute constant c (say,
c = 2).

Lemma 2. Fix ε > 0 sufficiently small. Then, with high probability, the sum of the
degrees of nodes that in G1

n have degree > nε, is Ω(n1−ε).
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The proof is omitted from this extended abstract for lack of space.

Theorem 1. Both PUSH and PULL fail on {Gmn }.

Proof. If m = 1 the claim is implied by Lemma 1. We assume m ≥ 2. Let us consider
Gm2n. We show next that, if we consider the nodes inserted after time n, at least Ω(nα)
of them are connected only to high degree nodes, for some constant α > 0.

We will think of every edge uv as a pair of “half-edges”, going out of u and v re-
spectively. A half-edge is good if, at time n, it goes out of a high degree node. Consider
now a node u arrived at time t > n. Choosing a neighbour for u is equivalent to choos-
ing a half-edge uniformly at random in Gmt−1. We say that u is good if the half-edges
it chooses are all good. Note that the events of being good for each of the nodes from
n + 1 to 2n are independent.

As in [7], we can think of Gmn in the following, equivalent way. Generate G1
nm and

then collapse into one node each sequence of m consecutive nodes. Clearly, the degree
of a node in Gmn is at least as large as the degree of the nodes G1

nm it comes from. The
sum of degrees of high degree nodes in Gmn is no less than the analogous sum in G1

nm.
By Lemma 2, the probability of a node being good is at least(

Ω

(
n1−ε

n

))m
≥ Ω(n−mε).

We choose ε in such a way that (m + 1)ε < 1. Say, 0 < ε ≤ 1/(m + 2).
Now take the last Θ(n(m+1)ε) nodes. Among those, by Chernoff-Hoeffding bound,

at least Ω(nε) are good, with high probability. Let vt be one of them and suppose that
it was inserted at time t ≥ 2n−Θ(n(m+1)ε).

The probability that vt is not chosen as a neighbour by nodes inserted at later times
is at least

2mn∏
i=mt+1

(
1− m

2i− 1

)
>

2mn∏
i=mt+1

(
1− m

2mt

)
≥
(

1− 1
2n

)mΘ(n(m+1)ε)

= 1− o(1).

In other words, with high probability, vt is only connected to m nodes of high degree.

So, suppose the PULL algorithm is being used. If the source of the message is vt, then
the message will not be passed to any other node in time < o(nε) with high probability
because its m neighbours all have high degree — PULL does not work.

Analogously, if we place the message in u �= vt, since the only way to reach vt is
via m high degree nodes, PUSH will not be able to route the message to vt in o(nε)
time. ��

The previous theorem provides strong motivation to analyse the PUSH-PULL strategy.

5 Push and Pull Acting Together

In view of Lemma 1 we assume m ≥ 2 from now on. Our aim is to show the following.
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Theorem 2. Let m ≥ 2. Then, PUSH-PULL succeeds for {Gmn } within O(log2 n)
many rounds.

The proof will be based on several structural facts concerning PA graphs. Some are
taken from the existing literature, while new ones will have to be established. We will
use the following from [6].

Theorem 3. Let m ≥ 2. The diameter of Gmn is O(log n/ log log n) with high proba-
bility.

Consider a connected graph with n nodes in which every node has degree O(log n)
and that has O(log n) diameter. It is easy to see that in such a graph rumor spreading
succeeds within O(log2 n) rounds. The next two lemmas say that a PA graph contains
a linear size subgraph of this kind. Their proofs are postponed to the next section. Here
they are used to prove Theorem 2.

Lemma 3. Let m ≥ 2 and let ε > 0 be sufficiently small. Then, there exists a set of
vertices W ⊆ V (Gmn ), such that: (a) W only contains nodes added after time εn and
before time n/2, (b) |W | ≥ εn, and (c) every pair of vertices x, y ∈ W are connected
by a path of length O(log n) consisting solely of edges inserted between time εn and
3/4n.

The next lemma roughly says that if a vertex is not a hub by time εn it will never be
(this includes the case of nodes inserted after that time).

Lemma 4. Let m ≥ 2 and fix any ε > 0. Then, with high probability the following
holds: (a) Every node added after time εn has degree O(log n) in Gmn , and (b) For
every c′ > 0 there exists c > c′ such that, if a node has degree ≤ c′ log n in Gmεn its
degree in Gmn will be < c log n.

The following lemma follows from lemmas 3 and 4. It says that hubs are at distance at
most 2 from W .

Lemma 5. Let W be as in Lemma 3 and let m ≥ 2. Then, there exists a sufficiently
large constant c such that, with high probability, every node v ∈ V (Gmn ) with degree
≥ c log n is at distance ≤ 2 from W .

Proof. Let H be the set of vertices inserted before time εn and let R be the set of
vertices inserted after time 3

4n. Recall that W is a subset of the vertices inserted after
H and before R. A vertex v ∈ R is good if it is connected to W with its first edge. Our
aim is to show that R contains Θ(n) good vertices. Now, given any vertex in W we will
consider only the m half-edges going out of it when this vertex joined the graph. Even
with this limitation, the first edge choice of v ∈ R hits W with probability at least

|W |m
2mn

.

By Lemma 3(b) this is at least some constant 1 > p > 0. By our previous choice
concerning the half-edges of vertices in W , being good is an independent Bernoulli
trial. It follows from the Chernoff-Hoeffding bounds (and stochastic domination) that
the number of good nodes is Θ(n) with high probability.
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So far we have exposed only the random choice of the first edge of every good node.
Thus, there remain Θ(n) other edges going out of good nodes that are to be fixed.
We will use this to prove that every vertex in H whose degree is ≥ c log n in Gmn is
connected to a good node with probability at least 1 − O

(
n−2

)
. Once this is done the

claim will follow from the union bound, since |H | < n.
Let v′ be of degree ≥ c log n (the value of c will be fixed later). By Lemma 4 this

vertex must have been added before time εn, i.e. v′ ∈ H , and must have had degree
≥ c′ log n at that time. Let z be a good node inserted at time t > 3

4n. The second edge
choice of z selects v′ with probability at least

(degree of v′ at time t) - m
2m(# edges at time t)

≥ c′ log n−m

2mn
=

c′′ log n

n

These choices are Bernoulli trials with total expectation≥ c′′′ log n (that is the number
of good nodes times c′′ lognn ). It follows from the Chernoff-Hoeffding bounds that c
(and consequently c′, c′′, c′′′) can be chosen in such a way that the probability that v′

has no neighbour among the good vertices is at most O
(

1
n2

)
. The claim follows by

union bound. ��

Given the previous lemmas, we can prove Thm. 2 in the following way.

Proof (of Thm. 2). Let us partition V (Gmn ) into three classes. Let H ⊆ V be composed
of the nodes of degree Ω(log n), let W ⊆ V be as in lemma 3 (note that by lemma 4,
w.h.p. W ∩H = ∅) and let R = V −H −W .

Suppose that the information starts in some node of H . Then, by the PULL strategy
the information will be taken by at least one node in W in time O(log2 n) (by the
maximum degree of nodes in W , a coupon collector argument and lemma 5).

Suppose instead that the information starts in some node of R. The distance between
one node of R and one node in V − R is at most O(log n) by the diameter bound of
theorem 3. Also, each of the nodes in R has degree O(log n) by definition. Thus, in time
O(log2 n) (= maximum distance × maximum degree, see [11]) the information will
reach W (either directly or by passing through H) by the PUSH and PULL strategies.

So, we can assume that after O(log2 n) steps the information is in W . Each node
added after time εn has degree O(log n) and the diameter of W , even after projecting
on W ∪ R, is O(log n). Thus if at some point a node in W has the information, after
O(log2 n) steps the information will have reached all nodes in W by the PUSH strategy.

By lemma 5, if each node in W has the information, after O(log2 n) steps the infor-
mation will have been passed to each of the nodes in H by the PUSH strategy.

After each node in W ∪ H has the information, the PULL strategy employed will
give the information to each of the nodes in R in time O(log2 n). ��

6 Proofs

In this section we prove the two main lemmas from the previous section, Lemma 3
and 4. Recall that Lemma 4 was a statement about degrees in Gmn . The next lemma is
the key technical ingredient.
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Lemma 6. Consider a Polya urn process lasting for n steps. Suppose that this Polya
urn starts with R0 ≥ αn red balls and B0 ≤ g(n) blue balls, for α > 0 and some
function g(n) ∈ o(n). Then, with probability 1− o(1/n), the number of blue balls after
the n-th extraction, Bn, will be Bn ≤ cmax{g(n), log n}, for some constant c > 0.

Proof. The probability that, overall, k blue balls will be added to the urn is

P [Bn+B0+R0 = k] =
(

n

k

)
· B0 · · · (B0 + k − 1) · R0 · · · (R0 + n− k − 1)

(B0 + R0) · · · (B0 + R0 + n− 1)

=
(B0 + k − 1)!
k! (B0 − 1)!

· (R0 + n− k − 1)!
(R0 − 1)! (n− k)!

· n! (B0 + R0 − 1)!
(B0 + R0 + n− 1)!

=

(
B0+k−1

k

)
·
(
R0+n−k−1

n−k
)(

B0+R0+n−1
n

)
= f(k;B0 + R0 + n− 2, B0 + k − 1,n)

B0 + R0 − 1
B0 + R0 + n− 1

.

Where f(k; s, t, u) is the probability of getting exactly k good elements from a sample
without replacement of u elements, from a set of s elements, t of which are good.

Consider the numerator of the second to the last expression, is h(k) =
(
B0+k−1

k

)
·(

R0+n−k−1
n−k

)
. By simple algebraic manipulation, we obtain that for integer k ≥ c′ ·g(n),

for some c′ > 0, it holds that h(k) > h(k + 1). Therefore, the whole expression is
decreasing for k in that range.

Now, let us bound the “bad” event using r for r = c′ · (g(n) + log n), for some
sufficiently large constant c′ > 0,

P [Bn+B0+R0 ≥ r] =
n+B0∑
i=r

P [Bn+B0+R0 = i]

≤ (n + B0)P [Bn+B0+R0 = r]

= (n + B0)f(r; B0 + R0 + n − 2, B0 + r − 1, n)
B0 + R0 − 1

B0 + R0 + n − 1

≤ (n + B0)
∞∑

i=r

f(i; B0 + R0 + n − 2, B0 + r − 1, n)
B0 + R0 − 1

B0 + R0 + n − 1

where the last step allows us to use the well-known tail bound for the hypergeometric

sum [10]. Let P denote the probability that at least k good elements are in a sample
(without replacement) of u elements, from a set of s elements, t of which are good.
Then

P ≤ 2 exp

(
− (k − 1− ut/s)2

k − 1

)
.

Note that, in our case,

ut/s ≤ n (B0 + r − 1)
B0 + R0 + n− 2

≤ (1± on(1))
c′ + 1
1 + α

(g(n) + log n) .
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So, we get that k − 1 − ut/s ≥ (1 ± on(1)) c
′α−1
1+α (g(n) + log n). Thus it is possible

to make this lower bound arbitrarily large, by choosing c′ bounded away from 1
β . The

statement follows. ��

We show how Lemma 6 implies lemma 4. Take any node v having degree less than
c log n at time εn. The graph process can be seen as the following urn process. At time
εn, the urn contains a number of blue balls equal to dv, the degree of v, and εn− dv red
balls. The urn process works as follows. At each new time step, a red ball is added to
the urn. Then a random ball is extracted. The time step ends after this ball, and a new
one of the same color, are added to the urn.

The number of blue balls of the a Polya urn process (with the same starting condi-
tions, and the same running time) dominates the number of blue balls of the urn process
just described.

This proves the second part of lemma 4. The first part follows by noting that, just after
having added the generic node j, the degree of j is upper bounded by 2m. Suppose that
v was added after time εn. Then, the Polya urn process of lemma 6, with an initial urn
of log n blue balls and εn red ones, trivially dominates the degree of v.

We now move on to proving Lemma 3. The next lemma says that, given any positive
integer k, any tree can be partitioned into connected components of size k (with the
exception of one component) and diameter at most 2k. Later we will use this to cluster
a linear size subgraph of Gmn .

Lemma 7. Fix some integer k ≥ 1. The nodes of any tree can be partitioned into con-
nected components called macronodes in such a way that: (a) each macronode, except
at most one, contains k nodes, and (b) the diameter (in the tree) of each macronode is
at most 2k.

Proof. Fix a root, and label each node with the number of nodes of the subtree rooted
there. Pick a node v having the smallest label � greater than or equal k. If � = k, then
the subtree rooted at v will form a macronode. If � > k then, consider the levels of the
subtree rooted at v. We will put into the macronode the nodes of the levels, in ascending
order, in such a way that the number of nodes in the macronode will be k. If the number
of nodes in current level, plus the already inserted nodes, exceeds k, take any subset of
the nodes of the current level in order to reach k. What is the diameter of a macronode?
First of all note that the height of the tree rooted at v is at most k (otherwise, the subtree
rooted in a child of v would have a number of nodes no less than k but smaller than the
subtree rooted at v). Thus, the maximum distance between two nodes in the subtree is
bounded by 2k. ��

We finally come to the proof of Lemma 3. The main thrust of the proof is to show
that Gmn contains a linear-size, low degree expander of type G(N,M). Note that the
existence of a graph of linear size that is “almost” of type G(N,M) was already proven
in [5], where “almost” means that a linear, albeit small, number of edges may be added
and/or deleted from G(N,M). These edges introduce complications, but what makes
Lemma 3 is that the proof in [5] holds only if m is a very large constant, while we
assume m ≥ 2.
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Proof (of Lemma 3). By theorem 3.2 of [4], w.h.p. there exists a subset W ′ of the nodes
of V (Gmn ) such that: (a) W ′ contains nodes added after time εn and before time n/2,
(b) |W ′| ∈ Θ(n), and (c) V (Gmn ) projected on W ′ is connected.

Let us fix such a W ′. Take any spanning tree of W ′ and partition it in macronodes
of size s = *((4mn)/ |W ′|)2+ ∈ O(1) as shown in lemma 7. (Recall that the last
macronode may not have the required size. In that case, we remove its nodes from W ′.)
By the lemma, the diameter of each of the macronodes in V (Gmn ) is at most O(1).

We will show that the macronodes will be connected thanks to an Erdös-Renyi-like
random graph G(N,M) (a graph having N nodes and M edges chosen UAR between
those with these properties) and some other edges. Also, M ≥ (1/2 + ε)N : by a the-
orem of [12] this implies that, this G(N,M) will contain a giant component (i.e., a
component of size Ω(n)) of diameter O(log n). As the diameter of a macronode is
O(1), this will imply the main statement.

Consider nodes added between *n/2+ and 3/4n − 1. Each of those nodes will
choose the first 2 of its m neighbours by selecting the outgoing edges of the nodes
in W ′ with probability at least (|W ′| /(2mn))2. If such an event occurs we say that a
“pseudo-edge” is added between the macronodes containing the two selected vertices.
The macronodes, and the pseudo-edges, will compose the Erdös-Renyi-like random
graph G(N,M).

Consider the auxiliary graph in which macronodes are vertices and two of them
are connected by an edge if there is a pseudo-edge connecting them. The number t of
such macronodes in W ′ is t ≤ |W ′| /s. The number of pseudo-edges added between
macronodes is, with high probability, at least (|W ′| /(2mn))2 ·n/4 = |W ′|2 /(16m2n).
As the latter is greater than (1/2 + ε) |W ′| /s, it follows from the results of [12] that
in the auxiliary graph there exists a giant component having diameter O(log n) and
size Ω(n). The claim follows by choosing W as the set of nodes that make up the
macronodes. ��

7 Conclusion

We have shown how fast the PUSH-PULL strategy disseminates some information
throughout the nodes of a PA graph, and how slow the PUSH, PULL strategies obtain the
same result. In doing so, we have proved some lemmas that strengthen the connection
between the PA random graphs and classical Erdös-Renyi random graphs.

We believe that our results might offer some insights on real rumor spreading among
humans. Namely, it seems plausible that in a social network there exists a “core” of
people that might not be VIPs, and yet collectively are able to reach a majority of their
community in a few steps. Also, our proofs indicate how VIPs are only important for
relaying the information and not as originators of rumours (that is, even if they never
started a communication themselves, the information would still spread through the
network — just by people asking and telling them what they know) .
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silvestri@di.uniroma1.it

Abstract. We consider Mobile Ad-hoc NETworks (MANETs) formed
by n nodes that move independently at random over a finite square
region of the plane. Nodes exchange data if they are at distance at most
r within each other, where r > 0 is the node transmission radius. The
flooding time is the number of time steps required to broadcast a message
from a source node to every node of the network. Flooding time is an
important measure of the speed of information spreading in dynamic
networks.

We derive a nearly-tight upper bound on the flooding time which is a
decreasing function of the maximal velocity of the nodes.

It turns out that, when the node velocity is “sufficiently” high, even if
the node transmission radius r is far below the connectivity threshold, the
flooding time does not asymptotically depend on r. So, flooding can be
very fast even though every snapshot (i.e. the static random geometric
graph at any fixed time) of the MANET is fully disconnected.

Our result is the first analytical evidence of the fact that high, random
node mobility strongly speed-up information spreading and, at the same
time, let nodes save energy.

1 Introduction

The impact of node mobility in data propagation is currently one of the major
issues in Network Theory. The new trend is to consider node mobility as a re-
source for data forwarding rather than a hurdle [14,10]. This is well-captured
by the model known as opportunistic Mobile Ad-Hoc NETworks (opportunistic
MANET ), an interesting recent evolution of MANET [18,11,10,22]. In oppor-
tunistic MANETS, mobile nodes are enabled to communicate even if a route
connecting them never exists. Furthermore, nodes are not supposed to have or
acquire any knowledge of the network topology (this one being highly-dynamic).
Such two features make data communication in opportunistic networks a new
challenging research topic from both foundational and practical view-points.
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Inspired by opportunistic MANET, we here consider the Evolving Graph
yielded by a set of n nodes moving over a finite square. Two nodes can ex-
change data, at a given time step, if their relative distance at that time step is
not larger than a fixed transmission radius r > 0.

The aim of this work is to investigate the speed of data propagation in the
above evolving graph. It is not hard to see that this study must cope with
technical problems which are far to be trivial. Just to get an insight of such
difficulties, we observe that classic static concepts like global connectivity and
network diameter are almost meaningless in this context. On one hand, we can
easily construct a sequence of node configurations such that every corresponding
snapshot (i.e. the communication graph at any fixed time step) of the network
is not connected while the broadcast task can be performed in a logarithmic
number of time steps. On the other hand, it is easy to construct another temporal
sequence of node configurations where the snapshot diameter is always 3 while
the broadcast task requires Θ(n) time. Previous experimental works in this topic
show that data communication can benefit from node mobility even though all
the snapshots of the MANETs are not connected [11,18,21,14,6]. However, to
our knowledge, the only analytical evidence of this phenomenon is that proved
in [11] concerning network capacity, an information-theoretic concept which is
not known to be related to the speed of data propagation.

We thus believe that, in order to investigate data propagation on evolving
graphs (such as MANETs), a different concept and/or performance measure
should be adopted and investigated.

In our opinion, a fundamental role in this dynamic world is played by the
Flooding Time: this is in fact the desired crucial concept/measure. The flooding
mechanism is the simple broadcast protocol where every informed node sends
the source message at every time step (a node is said to be informed if it knows
the source message). The flooding time of an evolving graph is the first time step
in which all nodes are informed. The flooding time is a natural lower bound for
any broadcast protocol and it represents the maximal speed of data propagation:
the same role of the diameter in static networks. Flooding time of some classes
of Markovian Evolving Graphs [3] has been recently studied in [7,8].

Our work provides an analytical study of the flooding time of a natural class
of MANETS: we prove a nearly-tight bound on the flooding time showing that
high, random node mobility can dramatically speed-up data propagation with
respect to the corresponding static model. This can be seen as a strong and
somewhat final improvement of our previous work [8] where we (only) proved
that low random node mobility does not slow-down data propagation.

Our MANET model: An informal definition. We consider a model of
mobile networks called geometric Markovian Evolving Graphs, i.e., geometric-
MEG [8]. It is the discrete version of the well-known random-walk model [5,9,12]
and can also be viewed as the walkers model [9] on the square.

In a geometric-MEG, nodes (i.e. radio stations) move over a finite square
region of the plane and each node performs, independently from the others, a
sort of Brownian motion. In our model we make time and space discrete (see
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Section 2 for details). The mobility parameter is the move radius ρ. At every time
step, a node moves uniformly at random to any point which is within distance
ρ from its current position; so ρ determines the maximal node velocity. At any
time there is an edge (i.e. a bidirectional link) between two nodes if they are at
distance at most r.

It turns out that a geometric-MEG is a temporal sequence of random disk
graphs (random geometric graphs [19]). When r is over the connectivity threshold,
such random graphs are with high probability1 (in short, w.h.p.) connected and
have diameter D < n that depends on n and r. In our previous work [8], we
proved that when ρ < r (so we are in the case of low node mobility) and the
latter is over the connectivity threshold, then the flooding time of geometric-
MEG is w.h.p. asymptotically equivalent2 to the diameter of the corresponding
snapshots. Under the assumption ρ < r, it is not hard to show [8] this is the
best the flooding can achieve: the result is in fact asymptotically tight. It thus
follows that, in the slow case, random node mobility does not significantly affect
the flooding time with respect to the static case.

Our results. In this work, we consider the case ρ > r. This can viewed as a
model for opportunistic MANETs where message transmission is not so frequent
due to critic environment conditions and/or poor node transmission power while
node velocity is high and random. The resulting unit time (i.e. the time interval
between two consecutive message transmissions) is enough large so that the move
radius ρ is larger than the transmission radius r. We are thus motivated by the
futuristic scenario of mobile wireless sensor environments composed of myriads
of tiny nodes dispersed in the environment and subject to high, unpredictable
mobility as a consequence of environmental dynamics such as wind, storms or
water streams. To our knowledge, the impact of such a high node mobility on the
speed of data propagation has never been considered, at least from a foundational
perspective.

We provide a nearly-tight bound on the flooding time for such a case. Let G
be a geometric-MEG of n nodes over a square of edge size3

√
n, transmission

radius r and move radius ρ such that r ≥ r0 and ρ ≥ c
√

log n, where r0 and c
are sufficiently large positive constants. Then, w.h.p., flooding in G is completed
within

O
(√

n

ρ
+ log n

)
time steps.

It is not hard to show that, for ρ 
 r, the expected flooding time is Ω(
√

n/ρ)
[8], so our upper bound is nearly-tight and becomes tight whenever the flooding
time is Ω(log n).

When the transmission radius r is over the connectivity threshold (i.e.
Θ(
√

log n)), our bound implies that if the move radius ρ is (asymptotically)
1 As usual, we say that an event E occurs with high probability if Pr (E) 
 1−1/nΘ(1).
2 Actually, our previous bound leaves an O(log log n) gap in a small range of the

network parameters.
3 For clarity’s sake, we choose here to keep node density constant as the number of

nodes grows.
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higher than r, the flooding time is (asymptotically) smaller than the diameter
of the snapshots. When r is smaller than the connectivity threshold (say, it is
a constant r0) while ρ 
 c

√
log n, then our bound implies that flooding can be

efficiently completed despite the snapshot at every time step is formed by several
connected components of small sizes [19,13].

In general, our upper bound says that, in this case, the flooding time does not
asymptotically depends on the transmission radius.

This fact has important technological consequences in the futuristic scenario of
large, high-mobile MANETS. The two major goals in MANETS are: i) guarantee
good and fast data communication, and ii) minimize node energy-consumption
(which is clearly an increasing function of r). It is well-known that in classic,
(static or low-mobile) MANETS such two goals are in contrast with each other
and, thus, a suitable trade-off must be determined (actually, optimizing this
trade-off is currently a major research issue in ad-hoc networking [2,15,20]). In
particular, we know that [19,13], in order to guarantee global connectivity (and
thus data communication) in static random geometric graphs, the transmission
radius must be Ω(

√
log n), so it must increase with the network size.

In this context, our bound is a strong mathematical evidence of the fact
that, when node mobility is relatively high and random, the two above goals
are not competing anymore. We can achieve fast data-forwarding by using small
transmission radius (so, saving node energy). More importantly, the transmission
radius can be an absolute constant and, so, it does not need to increase as
the network size does. The technology of node transmitter devices can be thus
scalable. Observe that node mobility in such opportunistic networks is due to the
host mobility which is often fully independent from sensor devices: high sensor
mobility does not (necessarily) imply high energy consumption [10,18].

Adopted Techniques. The bound in [8] on the flooding time for the slow case
is achieved thanks to the expanding properties of the connected snapshots of the
geometric-MEG which are, in turn, guaranteed by two facts: 1) The stationary
node distribution at every time step is almost uniform; and 2) the transmission
radius r is over the connectivity threshold. In particular, they imply that, starting
from the second time step, the number of informed nodes is large enough to apply
standard Chernoff-like bounds. This allowed us to evaluate the number of new
informed nodes at any successive step. The role of node mobility is thus shown
to have a negligible impact on the flooding process.

This scenario is no longer true when r is below the connectivity threshold
(say constant). The snapshots of the geometric-MEG are very sparse and discon-
nected and, hence, their expanding properties are very scarce. This results into a
relatively-long initial phase (called Bootstrap) of the flooding process where the
number of informed nodes is not large enough to get useful concentration results
from Chernoff-like bounds. When ρ >> r, the flooding process is mainly due
to node mobility that, roughly speaking, brings the source information outside
the small connected components of the sparse snapshots: We provide a clean
analytical description of this phenomenon. A key-ingredient here is a proba-
bilistic analysis of the Bootstrap. We present a set of probabilistic lemmas for
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almost-increasing random processes that allows us to evaluate, at every time
step, the number of new informed nodes even when the latter has a small ex-
pected value. The rather general form of such lemmas might result useful in
other similar situations where Chernoff’s-like bounds are useless.

Due to lack of space, all the proofs are omitted. A full version of this paper
can be found online at http://arxiv.org/abs/0903.0520.

2 The Node Mobility Model

We consider a model of dynamic graphs, introduced in [8], that is a discrete
version of the random walk mobility model for radio networks [5]. In the latter
model, nodes (i.e. radio stations) move on a bounded region of the plane (typi-
cally a square region) and each node performs, independently from the others, a
sort of Brownian motion. At any time there is an edge (i.e. a bidirectional con-
nection link) between two nodes if they are at distance at most r (r represents
the transmission radius). In our model we discretize time and space. We choose
to keep the density constant (i.e. the ratio between the number of nodes and
the area) as the number n of nodes grows. Nodes move over a square of side

√
n

and so the density equals to 1. We remark that this choice is only for clarity’s
sake: all our results can be scaled to any density δ(n). The nodes can assume
positions whose coordinates are integer multiple of a resolution coefficient ε > 0.
Formally, nodes move on the following set of points

Ln,ε =
{

(iε, jε) | i, j ∈ N ∧ i, j 	
√

n

ε

}
At any time step, a node can move to one of the positions of Ln,ε within distance
ρ from the previous position. The positive real number ρ is a fixed parameter
that we call move radius. It can be interpreted as the maximum velocity of a
node4. Formally, we introduce the move graph Mn,ρ,ε = (Ln,ε, En,ρ,ε), where

En,ρ,ε = {(x,y) | x,y ∈ Ln,ε d(x,y) 	 ρ}

and d(·, ·) is the Euclidean distance. A node in position x, in one time step, can
move in any position in Γ (x), where Γ (x) = {y | (x,y) ∈ En,ρ,ε}. The nodes are
identified by the first n positive integers [n]. The time-evolution of the movement
of a single node i is represented by a Markov chain {Pi,t ; t ∈ N} where Pi,t are
random variables (in short r.v.) whose state-space is Ln,ε and

Pr (Pi,t+1 = x) =
{ 1
|Γ (Pi,t)| if x ∈ Γ (Pi,t)
0 otherwise

In other words, Pi,t is the position of node i at time t. Thus, the time evolution
of the movements of all the nodes is represented by a Markov chain P(n, ρ, ε) =
{Pt : t ∈ N} whose state space is Ln,ε × Ln,ε × · · · × Ln,ε (n times) and

Pt = (P1,t, P2,t, . . . , Pn,t)
4 Indeed, a node can run through a distance of at most ρ in a unit of time.
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Let us fix a transmission radius r > 0. A geometric-MEG is a sequence of random
variables G(n, ρ, r, ε) = {Gt : t ∈ N} such that Gt = ([n], Et) with

Et = {(i, j) | d(Pi,t, Pj,t) 	 r}

As for the stationary case, we observe that the stationary distribution πi of
Markov chain {Pi,t ; t ∈ N} is (see [1])

πi(x) =
|Γ (x)|∑

y∈Ln,ε
|Γ (y)|

Moreover, the stationary distribution of P(n, ρ, ε) is the product of the in-
dependent distributions πi for all i ∈ [n]. We say that a geometric-MEG
G(n, ρ, r, ε) = {Gt : t ∈ N} is a stationary geometric-MEG if the un-
derlying P0 is random with the stationary distribution of the Markov chain
P(n, ρ, ε) = {Pt : t ∈ N}. Notice that if G(n, ρ, r, ε) = {Gt : t ∈ N} is a
stationary geometric-MEG then all Gts are random with the same probability
distribution that we call stationary distribution of G(n, ρ, r, ε).

In the rest of the paper, we will always assume that the move radius ρ is not
larger than

√
n.

3 Bounding the Flooding Time

In the flooding mechanism, every informed node sends the source message at ev-
ery time step: so, all nodes that are within distance r from an informed node will
be informed at the next time step. For the sake of simplicity, every time step is
divided into two consecutive actions: i) the move action, where nodes make their
random move, and ii) the transmission action, where the informed nodes send
the source message. Clearly this assumption does not affect the asymptotical
bound on the flooding time.

Our result can be formally stated as follows.

Theorem 1. Let G(n, ρ, r, ε) be a stationary geometric-MEG. If r 
 r0 and
ρ 
 c

√
log n for sufficiently large constants r0 and c, then the flooding time is

w.h.p.

O
(√

n

ρ
+ log n

)
.

3.1 Proof’s Overiew

The proof consists of a probabilistic analysis of the number of new informed
nodes at every time step of the flooding process. In order to cope with this
analysis, the temporal process is organized in three consecutive phases. Even
though it is likely that, in the real process, these phases happen simultaneously
rather than consecutively, our analysis yields the desired upper bound. The
phases depend on the current number of informed nodes and on the “locality-
degree” of the process. As for the latter, we need to partition the square into equal
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supercells, i.e., subsquares of side length L = Θ(ρ2). This partition guarantees
that any node v in a supercell S, after the move-action, can reach any position
in any neighboring supercell with almost-uniform probability. Another crucial
property yielded by the partition is that, for the first - say - O(n) time steps,
every supercell will contain Θ(ρ2) nodes, w.h.p.

The Bootstrap Phase. In this initial phase, we start our analysis focussing on
what happens inside the neighborhood of the supercell S0 containing the source,
i.e., the supercell set N(S0) formed by S0 and its adjacent supercells. We can
say that, with positive-constant probability, S0 contains Θ(r2) informed nodes
after the first time step. Observe that this is the crucial analysis point where we
need to go from positive-constant probability to high probability and we cannot
use Chernoff-like bounds. Indeed, in the successive time steps t > 0 of this phase,
we consider the flooding-rate inside the supercell S′t having the maximal number
of informed nodes at time step t. We will then prove that, after t = O(log n)
time steps, there will be (at least) one supercell quasi-informed w.h.p., i.e., it
will have Θ(ρ2) informed nodes.

The Spreading Phase. After the Bootstrap, we can thus assume (w.h.p.)
that there is (at least) one supercell quasi-informed. We can thus look at the
flooding from a quasi-informed supercell to its adjacent ones. We show that,
w.h.p., if a supercell is quasi-informed at a given time step, then all its adjacent
supercells will be quasi-informed within the next time step. Since we prove that
the boundary of any supercell set D has size at least Ω(

√
|D|), it turns out that

this flooding phase makes all the supercells quasi-informed within O(
√

n/ρ) time
steps.

The Filling Phase. At the end of the previous phase, we thus have w.h.p.
all supercells quasi-informed. The Filling phase consists of the sequence of time
steps required to get all supercells informed. We prove that this final process can
be completed in O(log n) time steps, , w.h.p.

3.2 Preliminaries

We need to introduce the following notions.

– The square is partitioned into squared supercells of side length L with

ρ

3
√

2
	 L 	 ρ

2
√

2

– Every supercell is partitioned into squared cells of side length � with

r

1 +
√

2
	 � 	 r√

2

– The neighborhood N(S) of a supercell S is the set of supercells formed by
S and all its adjacent supercells.
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– A supercell is quasi-informed at time t if it contains γρ2 informed nodes at
that time, where γ is a suitable positive constant.

We say that the density condition holds at time t if, for every supercell S, the
number of nodes in S at time t is at least ηρ2, for a suitable constant 0 < η < 1.
Let D be the following event: the density condition holds for every time step
t = 0, 1, . . . ,n.

The proof of the following lemma is an easy consequence of the almost uni-
formity of the stationary distribution of geometric-MEG.

Lemma 1. Let G(n, ρ, r, ε) be a stationary geometric-MEG. If ρ 
 c
√

log n for
a sufficiently large constant c, then the probability of event D is at least 1−1/n4.

In the rest of this section, we will tacitely assume that event D holds. Thanks to
the previous lemma, since we are conditioning w.r.t. an event that holds w.h.p.,
the corresponding unconditional probabilities are affected by only a negligible
factor.

For the sake of simplicity, we will use the following probability notations. For
an event E and a random variable (r.v.) X , the notation

Pr (E | X ) 	 p

means that, for every possible value x of X , it holds

Pr (E | X = x) 	 p.

3.3 The Bootstrap

We now provide an upper bound on the time required to get at least one supercell
quasi-informed. We will prove the bound for r = r0 where r0 is a sufficiently large
constant. Observe that, since the flooding time is a non-increasing function of
the transmission radius r, the same upper bound holds for any r 
 r0 as well.

The following lemma will be used to evaluate the number of new informed
nodes after an initial sequence of consecutive time steps.

Lemma 2 (Almost-increasing random processes). Let {Xt : t ∈ N} be
a sequence of random variables with X0 = 1. Assume that two real values α >
1, 0 < β < 1, a positive integer M , and a probability p ∈ (0, 1) exist such that
for every t ∈ N it holds that

Pr (Xt+1 < αXt | Xt < M, Xt−1, . . . , X1) 	 p (1)

Pr (Xt+1 
 β Xt | Xt, Xt−1, . . . , X1) = 1 (2)

If p < logα
e log(α/β) then for any t 
 logM

logα−e p log(α/β) it holds that

Pr

(
t⋂
i=1

{Xi < M}
)

	 exp (−pt)
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Notice that the r.v. Xts can be mutually dependent. Informally speaking,
Lemma 2 states that, under Conditions (1) and (2), there is (at least) a time
step t̄ = O(log n) where the process value Xt̄ reaches the “goal” M w.h.p.

The following lemmas allow us to apply the previous lemma to the flooding
process.

For any supercell S, let mt(S) be the number of informed nodes in S at time
step t. For any time step t let Yt = max{mt(S) : S is a supercell}.

Lemma 3. For any time step t, it holds that

Pr
(
Yt+1 < 2Yt | Yt <

r2
0

28

)
	 exp

(
− r2

0

224

)
Lemma 4. For any supercell S and for any time step t, it holds that

Pr
(
mt+1(S) < 2mt(S)

∣∣∣∣ r2
0

28
	 mt(S) < γρ2

)
	 3 exp

(
−br2

0

56

)
The setting of constant b and the proof of the above lemma are based on the
following bound on the number of infected cells. We say that a cell C is infected
at time t if, immediately after the move action of time step t, C contains at least
one informed node.

Lemma 5. Positive constants a and b exist such that, for any time step t and
for any supercell S, if at the beginning of time step t a supercell S′ ∈ N(S)
contains m informed nodes, then

Pr (Z 	 am′) 	 exp (−bm′)

where Z is the random variable counting the number of infected cells of S at
time t and m′ = min{m,L2/�2}.

The proofs of Lemmas 4 and 5 allow us to fix the constant γ defining quasi-
informed supercells.

Lemma 6 (Bootstrap Time). Within O(log n) time steps there is a quasi-
informed supercell w.h.p.

Proof. By using simple geometric arguments, if we choose β = 1/121, then
it holds that Yt+1 
 βYt with probability one, thus satisfying Hypothesis
(2) of Lemma 2. From Lemmas 3 and 4, it is easy to see that the r.v. Yts
satisfy Hypothesis (1) of Lemma 2 with constants α = 2, M = γρ2 and
p = 3 exp

(
−b r

2
0

224

)
. Hence, for a sufficiently large constant r0, the thesis fol-

lows by applying Lemma 2. ��

3.4 The Spreading Phase

Lemma 7 (Local-supercell spreading). For any supercell S, if mt(S) 
 γρ2

then the event mt+1(S′) 
 γρ2 holds for any supercell S′ ∈ N(S) with probability
at least 1− 1/n4.
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In order to prove a bound on the number of time steps that are sufficient to
guarantee (with high probability) that one quasi-informed supercell spreads the
information to all the supercells, we need two lemmas. The first one will provide
a bound on the number of supercells that are adjacent to an arbitrary set of
supercells.

Let Q be a m×m square grid, that is, Q is a square partitioned into m×m
congruent sub-squares, called cells. For any subset B of the cells of Q, define the
boundary ∂B of B as the set of all the cells that do not belong to B and that
are adjacent to some cell in B:

∂B = {c | c �∈ B ∧ ∃c′ ∈ B : c′ is adjacent to c}.

Lemma 8 (Boundary size). Let Q be a m×m square grid and let B be any
subset of the cells of Q. It holds that

|∂B| 

√

min{|B|,m2 − |B|}.

The second lemma will allow us to prove an upper bound on the number of steps
to get all the supercells quasi-informed when, in one time step, the information
propagates from all the quasi-informed supercells to their adjacent ones.

Lemma 9 (Spreading time I). Let K be any integer with K 
 1 and let
{qt | t ∈ N} be a sequence of integers such that q0 
 1, for every t 
 0, qt 	 K
and qt+1 
 qt +

√
min{qt,K − qt}. Then, it holds that, for every t 
 5

√
K,

qt = K.

By combining Lemmas 7, 8 and 9 we get the following bound.

Lemma 10 (Spreading time II). If at time t1 	 n/2 there is at least one
quasi-informed supercell then, with probability at least 1 − 1

n2 , at every time t

with t1 + 22
√
n
ρ 	 t 	 n, all the supercells are quasi-informed.

3.5 The Filling Phase

We first prove that a node not yet informed and belonging to a quasi-informed
supercell will get informed in one time step, with a positive-constant probability.

Lemma 11. There exists a constant β > 0 such that, for any node u, if at the
beginning of a time step t the supercell that contains u is quasi-informed and
node u is not informed then, with probability at least β, node u gets informed by
the end of time step t.

From above lemma we can derive a logarithmic upper bound for the filling time.

Lemma 12 (Filling Time). If a time step t2 	 3n
4 exists such that at every

time step t with t2 	 t 	 n all the supercells are quasi-informed, then by time
t2 +O(log n) all the nodes are informed, w.h.p.

Finally, Theorem 1 follows from Lemma 6, Lemma 10, and Lemma 12.
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4 Conclusions

Some interesting issues concerning the flooding time of geometric-MEGs are still
open. There is a logarithmic gap between our upper bound and the known lower
bound [8] when the move radius ρ is very large. Closing this gap is an open
problem.

A more challenging open issue is to extend our upper bound to the case where
ρ and r are both very small (i.e. below

√
log n).

Another open research work is to study the flooding time when the starting
distribution is not the stationary one but is arbitrary (i.e. a worst-case analysis).
We conjecture that the worst-case flooding time is not asymptotically larger than
the stationary one for a large range of the network parameters.

Observe that our upper bound can be easily extended to the gossiping task
(i.e. the all-to-all communication). It would be interesting to extend our analysis
to other basic communication tasks such as data-gathering and routing.

Finally, a major challenge is to obtain similar results for more realistic mobility
models [17].
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Abstract. We study properties of multiple random walks on a graph under var-
ious assumptions of interaction between the particles. To give precise results,
we make our analysis for random regular graphs. The cover time of a random
walk on a random r-regular graph was studied in [6], where it was shown with
high probability (whp), that for r ≥ 3 the cover time is asymptotic to θrn ln n,
where θr = (r − 1)/(r − 2). In this paper we prove the following (whp) results.
For k independent walks on a random regular graph G, the cover time CG(k)
is asymptotic to CG/k, where CG is the cover time of a single walk. For most
starting positions, the expected number of steps before any of the walks meet is
θrn/

(
k
2

)
. If the walks can communicate when meeting at a vertex, we show that,

for most starting positions, the expected time for k walks to broadcast a single
piece of information to each other is asymptotic to 2θrn(ln k)/k, as k, n → ∞.

We also establish properties of walks where there are two types of particles,
predator and prey, or where particles interact when they meet at a vertex by coa-
lescing, or by annihilating each other. For example, the expected extinction time
of k explosive particles (k even) tends to (2 ln 2)θrn as k → ∞.

The case of n coalescing particles, where one particle is initially located at
each vertex, corresponds to a voter model defined as follows: Initially each vertex
has a distinct opinion, and at each step each vertex changes its opinion to that of
a random neighbour. The expected time for a unique opinion to emerge is the
expected time for all the particles to coalesce, which is asymptotic to 2θrn.

Combining results from the predator-prey and multiple random walk models
allows us to compare expected detection time in the following cops and robbers
scenarios: both the predator and the prey move randomly, the prey moves ran-
domly and the predators stay fixed, the predators move randomly and the prey
stays fixed. In all cases, with k predators and � prey the expected detection time
is θrH�n/k, where H� is the �-th harmonic number.
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1 Introduction

A random walk is a simple process in which particles or messages move randomly
from vertex to vertex in a graph. Random walks are an established method of graph ex-
ploration and connectivity testing with limited memory. If we consider the case where
several random walks occur simultaneously, many questions and different types of ap-
plication arise: In graph exploration, to what extent do the multiple random walks speed
up the process? If the walks can interact how effective is communication, such as broad-
casting, between the walks? If there are two different types of particles making walks,
then we can model predator-prey processes (cops and robbers). In the case where each
vertex of the graph initiates a random walk, there are applications in distributed data
collection, gossiping and voting.

In this paper, we study properties of multiple random walks on a graph under various
assumptions of interaction between the particles. To give detailed results for comparison
purposes, we make the analysis for random regular graphs. The technique used is not
specific to random graphs, nor to regular graphs. It can be applied to many graphs with
at least reasonable edge expansion, and whose local edge structure around vertices has
enough symmetry to be describable in a precise sense.

For brevity we restrict our proofs to random r-regular graphs, r ≥ 3. Our results
also apply to many non-random regular graphs e.g. Lubotsky-Phillips-Sarnak type ex-
panders and, with minor alterations, to many regular graphs where r →∞ slowly, e.g.
the hypercube on n = 2r vertices. In the case where r → ∞, the parameter θr used
throughout this paper becomes 1. To make our analysis, we reduce the multiple random
walks to a single random walk on a suitably defined product graph, to which we ap-
ply the technique of [6]. The main difficulty is to analyze the structure of the product
graph, in particular the pair-wise interaction of the walks. Once established, the reduc-
tion approach allows us to address a wide range of problems, some of which we now
describe.

Suppose there are k ≥ 1 particles, each making a simple random walk on a graph G.
Essentially there are two possibilities, either the particles are oblivious of each other,
or can interact on meeting. Oblivious particles act independently of each other, with
no interaction on meeting. Interactive particles, can interact directly in some way on
meeting. For example they may exchange information, coalesce, reproduce, destroy
each other. We assume that interaction occurs only when meeting at a vertex, and that
the random walks made by the particles are otherwise independent.

The paper gives precise results for the following topics on random regular graphs G:

1. Multiple walks. For k particles walking independently, we establish the cover time
CG(k) of G.

2. Talkative particles. For k particles walking independently, which communicate on
meeting, we give the expected time to broadcast a message.

3. Predator-Prey. For k predator and � prey particles walking independently, we give
the expected time to extinction of the prey particles, when predators eat prey parti-
cles on meeting.

4. Annihilating particles. For k = 2� particles walking independently, which destroy
each other (pairwise) on meeting, we give the expected time to extinction.
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5. Coalescing particles. For k particles walking independently, which coalesce on
meeting, we give the expected time to coalesce to a single particle. In the case
where a walk starts at each vertex, we extend the analysis to a distributed model of
voting, the Voter model.

The motivation for these models comes from many sources, and we give a brief
introduction. A further discussion, with detailed references is given in the appropriate
sections below. The formal definitions of the random variables above can be largely
found in [2], Chapter 14.

Using random walks to test graph connectivity is an established approach, and it is
natural to try to speed this up by parallel searching. Similarly, properties of commu-
nication between particles moving in a network, such as broadcasting and gossiping,
are natural questions. In this context, the predator-prey model could represent interac-
tion between server and client particles, where each client needs to attach to a server.
Combining results from the predator-prey and multiple random walk models allows us
to compare expected detection time for the following scenarios: both the predator and
the prey move, the prey moves and the predators stay fixed, the predators move and the
prey stays fixed. An application of this, is with the predators as cops and the prey as
robbers.

Coalescing and annihilating particle systems are part of the classical theory of in-
teracting particles; and our paper makes a new contribution to this area. A system of
coalescing particles where initially one particle is located at each vertex, is dual to an-
other classical problem, the voter model, which is defined as follows: Initially each
vertex has a distinct opinion, and at each step each vertex changes its opinion to that
of a random neighbour. It can be shown that the distribution of time taken for a unique
opinion to emerge, is the same as the distribution of time for all the particles to coalesce.
By establishing the expected coalescence time, we obtain the expected time to complete
voting in the voter model.

Most known results for interacting particle systems are for the infinite d-dimensional
grid Zd (see e.g. Liggett [14]). As far as we know, the results presented here are the first
which give precise answers for finite graphs, especially for the Voter model (Theorem
8). For an informative discussion on models of interacting particle systems see Chapter
14 of Aldous and Fill [2].

If one step of a random walk corresponds to a vertex forwarding a message to a
random neighbour, and vertices combine messages they receive, the coalescing particle
system gives the time taken to combine all messages. Another application is to calculate
the average value of a vertex based function f(v), v ∈ V ; for example temperature.
To do this each vertex initiates a message, and the messages then perform a coalescing
random walk. The voter model allows the distributed nomination of a central vertex,
to e.g. relay messages. This can be used to implement the leader election problem in a
distributed network.

Results: Oblivious particles

A standard measure of efficiency of graph exploration by a single random walk, is the
cover time, which is defined as follows: Let G = (V,E) be a connected graph, with
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|V | = n vertices and |E| = m edges. For a given starting vertex v ∈ V let Cv be the
expected time taken for a simple random walk to visit every vertex of G. The vertex
cover time CG is defined as CG = maxv∈V Cv . The (vertex) cover time of connected
graphs has been extensively studied. It is a classic result of Aleliunas, Karp, Lipton,
Lovász and Rackoff [3] that CG ≤ 2m(n − 1). It was shown by Feige [10], [11],
that for any connected graph G, the cover time satisfies (1 − o(1))n ln n ≤ CG ≤
(1 + o(1)) 4

27n3.
For many classes of graphs the cover time can be found precisely. For random regular

graphs, the following result was proved in [6].

Theorem 1. Let Gr denote the space of r-regular graphs with vertex set V =
{1, 2, . . . ,n} and the uniform measure. Let r ≥ 3 be constant, and let θr = r−1

r−2 .
If G is chosen randomly from Gr, then whp

CG ∼ θrn ln n.

The results given are asymptotic in n, the size of the vertex set. Thus An ∼ Bn means
that limn→∞ An/Bn = 1, and whp (with high probability) means with probability
tending to 1 as n →∞.

Our first result concerns the speedup in cover time. Let T (k, v1, ..., vk) be the
time to cover all vertices for k independent walks starting at vertices v1, ..., vk.
Define the k-particle cover time Ck(G) in the natural way as Ck(G) =
maxv1,...,vk

E(T (k, v1, ..., vk)) and define the speedup as Sk = C(G)/Ck(G). That the
speedup can vary considerably depending on the graph structure can be seen from the
following results, which can be easily proved. For the complete graph Kn, the speedup
is k; for Pn, the path of length n the speedup is Θ(ln k).

Improving s-t connectivity testing by using k independent random walks was stud-
ied by Broder, Karlin, Raghavan and Upfal [5]. They proved that for k random walks
starting from (positions sampled from) the stationary distribution, the cover time of
an m edge graph is O((m2 ln3 n)/k2). In the case of r-regular graphs, Aldous and
Fill [2] (Chapter 6, Proposition 17) give an upper bound on the cover time of Ck ≤
(25 + o(1))n2 ln2 n/k2. This bound holds for k ≥ 6 lnn.

More recently, the value of Ck(G) was studied by Alon, Avin, Koucký, Kozma,
Lotker and Tuttle [4] for general classes of graphs. The paper gives an example, the
barbell graph, (two cliques joined by a long path) for which the speed-up is exponential
in k provided k ≥ 20 lnn.

The paper [4] found that for expanders the speedup was Ω(k) for k ≤ n particles.
The class of r-regular graphs we consider are expanders. For these graphs, comparing
Theorem 2 with Theorem 1, we see that CG(k) ∼ CG/k, i.e. the asymptotic speedup
is exactly linear.

Theorem 2 Multiple particles walking independently
Let r ≥ 3 be constant. Let G be chosen randomly from Gr, then whp and independently
of the initial positions of the particles:

(i) for k = o(n/ ln2 n) the k-particle cover time CG(k) satisfies

CG(k) ∼ θr
k

n lnn,
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(ii) for any k, CG(k) = O
(
n
k ln n + lnn

)
.

Suppose we distinguish two types of particles, mobile, and fixed; and that mobile par-
ticles are predators and the fixed particles are prey (or vice versa). An application of
the methods used in Theorem 2 give the following result. For comparison with the case
where both predator and prey move, we have included the result of Theorem 5 below,
for the predator-prey model. The moral of the story is that as long as at least one particle
type moves, the expected detection time is the same.

Theorem 3 Comparison of search models
Let k, � ≤ nε for a sufficiently small positive constant ε.

(i) Suppose there are k mobile predator particles walking randomly, and � prey parti-
cles fixed at randomly chosen vertices of the graph. Let E(Fk,�,i) be the expected
detection time of all prey particles.

(ii) Suppose there are � mobile prey particles walking randomly, and k predator parti-
cles fixed at randomly chosen vertices of the graph. Let E(Fk,�,ii) be the expected
detection time of all prey particles.

Let E(Dk,�) be the expected extinction time of � mobile prey using k mobile predators,
as given by Theorem 5. Then whp, where H� is the �-th harmonic number,

E(Fk,�,i) ∼ E(Fk,�,ii) ∼ E(Dk,�) ∼
θrH�

k
n.

Results: Interacting particles

Consider a pair of random walks, starting at vertices u and v. LetM(u, v) be the number
of steps before the walks first meet at a vertex. Clearly if u = v, then M(u, v) = 0.
We say the walks are in general position, if the starting vertices of the walks are not
too near. For our definition of general position (v1, v2, ..., vk), we choose a pairwise
separation d(vi, vj) ≥ ω = ω(k,n) between particles, where

ω(k,n) = Ω(ln lnn + ln k). (1)

For the results given in this section, we assume that r ≥ 3 is constant, that G is
chosen randomly from Gr, and that the results hold whp over our choice of G.

We first consider problems of passing information between particles. We assume that
particles can only communicate when they meet at a vertex. We refer to such particles
as agents, to distinguish them from non-communicating particles. If initially one agent
has a message it wants to pass to all the others, we refer to this process as broadcasting
(among the agents).

Theorem 4. Broadcast time
Let k ≤ nε for a sufficiently small positive constant ε. Suppose k agents make ran-
dom walks starting in general position. Let Bk be the time taken for a given agent to
broadcast to all other agents. Then

E(Bk) ∼
2θr
k

Hk−1n,

where Hk is the k-th harmonic number. Thus when k →∞, E(Bk) ∼ 2θr ln k
k n.
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An alternative and less efficient way to pass on a message, is for the originating agent to
tell it directly to all other agents (by meeting directly with all other agents). Compared
to this, broadcasting improves the expected time for everybody to receive the message
by a multiplicative factor of k/2, for large k. To see this, compare E(Bk) of Theorem 4,
with E(D1,k−1) of Theorem 5 below. Meeting directly with all other agents corresponds
to a predator-prey process with one predator (the broadcaster) and k − 1 prey.

Our next results are for particles which interact in a far from benign manner. One
variant of interacting particles is the predator-prey model, in which both types of parti-
cles make independent random walks. If a predator encounters prey on a vertex it eats
them.

Theorem 5. Predator-prey
Let k, � ≤ nε for a sufficiently small positive constant ε. Suppose k predator and � prey
particles make random walks, starting in general position. Let Dk,� be the extinction
time of the prey. Then

E(Dk,�) ∼
θrH�

k
n.

A variant of predator-prey is interacting sticky particles, in which all particles are preda-
torial, and only one particle survives an encounter.

Theorem 6. Coalescence time: sticky particles
Let k ≤ nε for a sufficiently small positive constant ε. Let Sk be the time to coalesce,
when there are originally k sticky particles walking randomly, starting from general
position. Then,

E(Sk) ∼ 2θrn(k − 1)/k,

so E(Sk) ∼ 2θrn, if k →∞.

As a twist on predator-prey, we consider “explosive” particles which destroy each other
(pairwise) on meeting at a vertex (that is, if two meet, then both are destroyed, but if,
say, five meet, then two pairs are destroyed and one particle survives).

Theorem 7. Extinction time: explosive particles.
Let k ≤ nε for a sufficiently small positive constant ε. Suppose there are k = 2�
explosive particles walking randomly, starting in general position, and that particles
destroy each other pairwise on meeting at a vertex. Let Dk be the time to extinction.
Then

E(Dk) ∼ 2θrn(H2� −H�),

so E(Dk) ∼ 2θr(ln 2)n, if k →∞.

The proofs of Theorems 4-7 are given in Section 5.
Finally we consider the voter model. In this model, each vertex initially has a distinct

opinion. At each time step, each vertex i contacts a random neighbour j, and changes
its opinion to the opinion held by j. The number of opinions is non-increasing at each
step. Let Cvm be the number of steps needed for a unique opinion to emerge in the voter
model and let Ccrw be the number of steps to complete a coalescing random walk when
one particle starts at each vertex. By a duality argument these random variables have
the same expected value.
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Theorem 8. Voter model whp for random r-regular graphs,

ECvm = ECcrw ∼ 2θrn.

Methodology. For oblivious particles, we use the techniques and results of [6] and [8]
to establish the probability that a vertex is unvisited by any of the walks at a given time
t. Let T be a suitably large mixing time. Provided the graph is typical (Section 2) and
the technical conditions of Lemma 2 are met, then the probability that a vertex v is
unvisited at steps T, ..., t tends to (1 − πv/Rv)t. Here π is the stationary distribution
and Rv is the number of returns to v during T by a walk starting at v. The value Rv is
a property of the structure of the graph around vertex v. For most vertices of a typical
graph Rv ∼ θr, which explains the origin of this quantity.

In [6] a technique, vertex contraction, was used to estimate the probability that the
random walk had not visited a given set of vertices. For interacting particles, we use
this technique to derive the probability that a walk on a suitably defined product graph
H has not visited the diagonal (set of vertices v = (v1, ..., vk) with repeated vertex
entries vi) at a given time t. Basically we contract the diagonal to a single vertex, γ, and
analyze the walk in the contracted graph Γ .

Proof of Theorems. Because of space restrictions, we only give results and ideas of
proofs in this extended abstract. Full proofs of the theorems of this paper are in [9].

2 Typical r-Regular Graphs

We say an r-regular graph G is typical if it has the properties P1-P4 listed below: Let
ε1 > 0 be a sufficiently small constant. Let a cycle C be small if |C| ≤ L1, where

L1 = �ε1 logr n�. (2)

P1. G is connected, and not bipartite.
P2. The second eigenvalue of the adjacency matrix of G is at most 2

√
r − 1+ ε, where

ε > 0 is an arbitrarily small constant.
P3. There are at most n2ε1 vertices on small cycles.
P4. No pair of cycles C1, C2 with |C1|, |C2| ≤ 100L1 are within distance 100L1 of

each other.

The results of this paper are valid for any typical r-regular graph G, and indeed most
r-regular graphs have this property.

Theorem 9. Let G′r ⊆ Gr be the set of typical r-regular graphs. Then |G′| ∼ |Gr|.
P2 is a deep result of Friedman [13]. The other properties are easy to check. Note that
P3 implies that most vertices of a typical r-regular graph are tree-like.

3 Estimating First Visit Probabilities

3.1 Convergence of the Random Walk

Let G be a connected graph with n vertices and m edges. For random walkWu starting
at a vertex u of G, letWu(t) be the vertex reached at step t. LetP = P (G) be the matrix
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of transition probabilities of the walk and let P (t)
u (v) = Pr(Wu(t) = v). Assuming G

is not bipartite, the random walk Wu on G is ergodic with stationary distribution π.
Here π(v) = d(v)/(2m), where d(v) the degree of vertex v. We often write π(v) as πv .

Let the eigenvalues of P (G) be λ0 = 1 ≥ λ1 ≥ · · · ≥ λn−1 ≥ −1, and let
λmax = max(λ1, |λn−1|). The rate of convergence of the walk is given by

|P (t)
u (x)− πx| ≤ (πx/πu)1/2λtmax. (3)

For a proof of this, see for example, Lovasz [15].
In this paper we consider the joint convergence of k independent random walks

on a graph G = (VG, EG). It is convenient to use the following notation. Let Hk =
(VH , EH) have vertex set VH = V k and edge set EH = Ek. If S ⊆ VH , then Γ (S) is
obtained from H by contracting S to a single vertex γ(S). All edges, including loops
are retained. Thus dΓ (γ) = dH(S), where dF denotes vertex degree in graph F . More-
over Γ and H have the same total degree (nr)k , and the degree of any vertex of Γ ,
except γ, is rk .

Let k ≥ 1 be fixed, and let H = Hk. For F = G,H, Γ let Wu,F be a random walk
starting at u ∈ VF . Thus Wu,G is a single random walk, and Wu,H corresponds to k
independent walks in G.

Lemma 1. Let G be typical. Let F = G,H, Γ . Let S be such that dH(S) ≤ k2nk−1rk .
Let TF be such that, for graph F = (VF , EF ), and t ≥ TF , the walk Wu,F satisfies

max
x∈VF

|P (t)
u (x) − πx| ≤

1
n3

,

for any u ∈ VF . Then for k ≤ n,

TG = O(ln n), TH = O(ln n) and TΓ = O(k ln n).

3.2 First Visit Time Lemma: Single Vertex v

Considering a walk Wv , starting at v, let rt = Pr(Wv(t) = v) be the probability that
this walk returns to v at step t = 0, 1, .... Let

RT (z) =
T−1∑
j=0

rjz
j, (4)

generate returns during steps t = 0, 1, ..., T1. Our definition of return includes r0 = 1.
The following lemma should be viewed in the context that G is an n vertex graph

which is part of a sequence of graphs with n growing to infinity. For a proof see [8].

Lemma 2. Let T be a mixing time such that

max
u,x∈V

|P (t)
u (x) − πx| ≤ n−3.

Let RT (z) be given by (4), let Rv = RT (1), and let

pv =
πv

Rv(1 + O(Tπv))
. (5)

Suppose the following conditions hold.
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(a) For some constant 0 < θ < 1, we have min|z|≤1+λ |RT (z)| ≥ θ, where λ = 1
KT

for some sufficiently large constant K .
(b) T 2πv = o(1) and Tπv = Ω(n−2).

Let v be a (possibly contracted) vertex, and for t ≥ T , let At(v) be the event that Wu

does not visit v during steps T, T + 1, . . . , t. Then

Pr(At(v)) =
(1 + O(Tπv))

(1 + (1 + O(Tπv))πv/Rv)
t + o(Te−t/KT ).

4 Interacting Particles: Applying the First Visit Time Lemma

Recall the definition of Hk consisting of k copies of G, and let S = {(v1, ..., vk) : at
least two vi are the same}. The particles making random walks are at the components of
the vector corresponding to the vertex in question. Thus S is the set of particle positions
in which at least two particles coincide at a given step. As before, let γ(S) be the
contraction of S to a single vertex, and let Γ (S) be Hk with S contracted.

In order to usefully apply Lemma 2, and estimate the first visit probability of γ (and
hence S), we need to establish three things.

(i) The value of Rγ , the expected number of returns to the diagonal S of Hk for k
particles, and the value of π(γ), the stationary distribution of γ in Γ .

(ii) The conditions of Lemma 2 hold with respect to the vertex γ of the graph Γ .
(iii) The probability that any particles meet during the mixing time TΓ .

These points are formally summarized in Lemmas 3-4 below.

Lemma 3. For typical graphs and k particles, the expected number of returns to γ in
TΓ steps is

Rγ(S) = θr + O

(
k2

nΩ(1)

)
. (6)

If k ≤ nε for a small constant ε, then Rγ(S) ∼ θr.

Lemma 4. If k ≤ nε then the conditions of Lemma 2 hold with respect to the vertex γ
of a typical graph Γ .

From (5) with v = γ, and Lemma 3 we have

pγ =
πγ

θr(1 + O(n−Ω(1)))
.

It follows from [9] that the value of πγ corresponding to a meeting among k particles
is πγ = (1 + o(1))

(
k
2

)
/n, and for a meeting between a given set of s particles and

another set of k particles is πγ = (1 + o(1))sk/n. Applying this to Lemma 2 we have
the following theorem.



408 C. Cooper, A. Frieze, and T. Radzik

Theorem 10. Let Ak(t) be the event that a first meeting among the k particles after

the mixing time TΓ , occurs after step t. Let pk = (k
2)
θrn

(1 + O(n−Ω(1))). Then

Pr(Ak(t)) = (1 + o(1))(1 − pk)t + O(TΓ e−t/2KTΓ ).

Let Bs,k(t) be the event that a first meeting between a given set of s particles and
another set of k particles after the mixing time TΓ , occurs after step t. Let qsk =
sk
θrn

(1 + O(n−Ω(1))). Then

Pr(Bs,k(t)) = (1 + o(1))(1 − qsk)t + O(TΓ e−t/2KTΓ ).

By an occupied vertex, we mean a vertex visited by at least one particle at that time
step. The next lemma concerns what happens during the first mixing time, when the
particles start from general position, and also the separation of the occupied vertices
when a meeting occurs.

Lemma 5. For typical graphs G and k ≤ nε particles,
(i) Suppose two (or more) particles meet at time t > TΓ . Let pL be the probability that
the minimum separation between some pair of occupied vertices is less than L. Then
pL = O(k2rL/n).
(ii) Suppose the particles start walking on G with minimum separation at least
α(max {ln lnn, ln k}). Then, for a sufficiently large constant α,

Pr(Some pair of particles meet during TΓ ) = o(1).

From Lemma 5, we see that whp particles starting from general position do not meet
during the mixing time TΓ . When some set of particles do coincide after the mixing
time, the remaining particles are in general position whp.

Corollary 1. Let Mk (resp. Ms,k) be the time at which a first meeting of the particles
occurs, then E(Mk) = (1 + o(1))/pk (resp. E(Ms,k) = (1 + o(1))/qs,k).

This follows from E(Mk) =
∑
t≥T Pr(Ak(t)) and pkTΓ = o(1). �

5 Results for Interacting Particles

After an encounter, we allow the remaining particles time T = TG to re-mix . In any
of Theorem 4-7 the total number of particle interactions k2. Recall that TΓ = O(kT ).
From Lemma 5, the event that some particles meet during one of these kTΓ mixing
times has probability O(k3T/nΩ(1)) = o(1) (by assumption).

The proof of Theorem 4-7 will now follow from Lemma 5 and Corollary 1.

5.1 Broadcasting, Predator-Prey: Theorems 4, 5

Recall that Dk,� is the extinction time of the � prey using k predators. Thus

E(Dk,�) = O(k�T ) +
�∑
s=1

E(Ms,k) ∼ nθr

�∑
s=1

1
sk

=
nθr
k

H�,
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where H� is the �-th harmonic number. Similarly, the time Bk, for a given agent to
broadcast to all other agents is

∑k−1
s=1 Ms,k−s, and thus

E(Bk) = O(k�T ) + nθr

k−1∑
s=1

(1 + o(1))
s(k − s)

∼ nθr

k−1∑
s=1

1
s(k − s)

=
2nθr

k
Hk−1.

5.2 Expected Time to Coalescence: Theorem 6

Let Sk be the time for all the particles to coalesce, when there are originally k sticky
particles walking in the graph. Then,

E(Sk) = O(kT ) +
k∑
s=1

(1 + o(1))
ps

∼ nθr

k∑
s=2

2
s(s− 1)

= 2θrn
k − 1

k
.

We see that for k →∞, E(Sk) ∼ 2θrn.

5.3 Expected Time to Extinction: Explosive Particles: Theorem 7

Let Dk be the time to extinction, when there are originally k = 2� explosive particles
walking in the graph. Then

E(Dk) = O(kT ) +
�∑
s=1

(1 + o(1))
p2s

∼ nθr

�∑
s=1

2
2s(2s− 1)

= 2θrn(H2� −H�).

Noting that lim�→∞(H2� −H�) = ln 2, we have E(Dk) ∼ 2θr(ln 2) n, for k →∞.
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Abstract. We consider the problem of exploring an anonymous undi-
rected graph using an oblivious robot. The studied exploration strategies
are designed so that the next edge in the robot’s walk is chosen using
only local information, and so that some local equity (fairness) criterion
is satisfied for the adjacent undirected edges. Such strategies can be seen
as an attempt to derandomize random walks, and are natural undirected
counterparts of the rotor-router model for symmetric directed graphs.

The first of the studied strategies, known as Oldest-First (OF), al-
ways chooses the neighboring edge for which the most time has elapsed
since its last traversal. Unlike in the case of symmetric directed graphs,
we show that such a strategy in some cases leads to exponential cover
time. We then consider another strategy called Least-Used-First (LUF)
which always uses adjacent edges which have been traversed the smallest
number of times. We show that any Least-Used-First exploration covers
a graph G = (V, E) of diameter D within time O(D |E|), and in the long
run traverses all edges of G with the same frequency.

1 Introduction

A widely studied problem concerns the exploration of an anonymous graph G =
(V,E), with the goal of visiting all its vertices and regularly traversing its edges.
At each discrete moment of time, the robot is located at a node of the graph,
and is provided with only a local view of the adjacent edges of the graph. The
exploration strategies studied in this paper fall into the line of research devoted
to derandomizing random walks in graphs [4, 7, 19, 20, 22].

The random walk is an oblivious exploration strategy in which the edge used
by the robot to exit its current location is chosen with equal probability from
� The research was partially funded by the KBN (Poland) Grant 4 T11C 047 25, by
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among all the edges adjacent to the current node; cf. e.g. [1,16] for an extensive
introduction to the topic. Explorations achieved through random walks are on
average good, in the sense that the following properties hold in expectation:

(1) Within polynomial time, the walk visits all of the vertices of the graph.
(2) Within polynomial time, the walk stabilizes to the steady state, and hence-

forth all edges are visited with the same frequency.

We focus on the problem of designing local exploration strategies which deran-
domize a random walk in a graph in an attempt to achieve the above stated
properties in the deterministic sense of worst-case performance. The next vertex
to be visited should depend only on the values of certain parameters associated
with the edges adjacent to the current node. Such a problem naturally gives rise
to the definition of locally equitable strategies, i.e. strategies, in which at each
step the robot chooses from among the adjacent edges the edge which is in some
sense the “poorest”, in an effort to make the traversal fair. In this context, two
natural notions of equity may be defined:

– An exploration is said to follow the Oldest-First (OF) strategy if it directs
the robot to an unexplored neighboring edge, if one exists, and otherwise
to the neighboring edge for which the most time has elapsed since its last
traversal, i.e. the edge which has waited the longest.

– An exploration is said to follow the Least-Used-First (LUF) strategy if it
directs the robot to a neighboring edge which has so far been visited by the
robot the smallest number of times.

When the considered graph is symmetric and directed, and the above definitions
are applied to directed edges, then the Oldest-First notion of equity is known
to be strictly stronger than Least-Used-First, i.e. any exploration which follows
the OF strategy also follows the LUF strategy [22]. Moreover, the Oldest-First
strategy is in this context equivalent to a well-established efficient exploration
model based on the rotor-router model (a.k.a. the “Propp machine”, cf. e.g. [5]
for an introduction of the model). In the directed case, both of the described
locally fair exploration stratagies are known to preserve properties (1) and (2) of
the random walk. More precisely, for a symmetric directed graph of diameter D ,
any exploration which follows such a strategy achieves a cover time of O(D |E|)
and stabilizes to a globally fair traversal of all the edges. Herein we look at
the Oldest-First and Least-Used-First strategies when applied to the undirected
edges of a graph. For this case, the results, and the used techniques, turn out to
be surprisingly different.

Basic parameters. Two parameters of interest when discussing exploration
strategies are the cover time of a graph and the traversal frequency of its edges.
We introduce them first in the context of random walks.

Let Cs be the random variable describing the number of steps required for a
random walk starting at vertex s, to visit every vertex of the graph. Then the
cover time of the graph is the maximum, taken over all starting vertices s, of the
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expected values of variables Cs, C(G) = maxs∈V E Cs. Let cs,e(t) be the random
variable describing the number of visits to edge e within time t, for a random walk
starting at vertex s. We can define random variables describing the distribution
of visits to edges for sufficiently large time, fs,e = lim inft→∞ cs,e(t)/t (where
lim inf is used instead of lim to guarantee correctness of the definition). The
traversal frequency fe(G) of an edge e is defined as the minimum, taken over all
starting vertices s, of the expected values of variables fs,e, fe(G) = mins∈V E fs,e.

Given any exploration algorithm E which is fully deterministic (or in other
words, a specific exploration), the notions of cover time for E and traversal
frequency for E can be defined analogously. The only difference is that then the
variables Cs and fs,e are deterministically defined, hence we need not speak of
their expected values.

Related work. We confine ourselves to a short survey of works on random
walks, and the rotor-router model and its variants. Many other approaches to
the derandomization of random walks have been studied, most notably, through
universal traversal sequences [2] (UTS) and universal exploration sequences [15]
(UXS). UTS-s can be constructed in polylogarithimic space using pseudorandom
generators, cf. e.g. [18], whereas UXS-s have been proved to be constructible in
log-space [17].

Exploration with random walks. In expectation, random walks quickly “hit” all
vertices, and the cover time C(G) of a connected graph satisfies the inequalities
C(G) ≥ |V | log |V | and C(G) = O(|V |3) [2]. With respect to the diameter, the
cover time is upper bounded by O(D |E| log |V |). In fact, for many special graph
classes, such as complete graphs, expanders, trees, or grids, tighter bounds on
cover time can be obtained [1].

Random walks directly capture the property of equity in the sense that, for a
random walk in the steady state, the expected frequency of visits to each edge
is the same. More precisely, for a random walk on a connected undirected non-
bipartite graph G, the stationary distribution of visits to edges is the uniform
distribution with parameter 1/|E|, thus for any e, fe(G) = 1/|E|. Similarly, if
we replace each edge {u, v} with two symmetric directed edges (u, v), (v, u) then
the stationary distribution of visits is again uniform with parameter 1/(2|E|),
and so for any directed edge e, fe(G) = 1/(2|E|).

In expectation, the random walk stabilizes to such a fair traversal of the edges
very quickly. Several notions have been introduced, informally corresponding to
the expected moment at which (for a regular graph) all vertices have been visited
a similar number of times, cf. [21]. One of the most studied is that of blanket
time, which has been shown to be within a factor of O(log log |V |) of the cover
time, for all graphs [12].

Equitable exploration of directed graphs. For symmetric directed graphs, the
Oldest-First exploration strategy corresponds to exploration in the rotor-router
model, i.e. a set-up in which edges exiting each node have successive labels, and
the next edge to be traversed is selected by a pointer. After this edge is tra-
versed, the pointer moves on to the edge with the next label, in a cyclic way.
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This approach was first studied in [4, 19, 20], and the cover time of Oldest-First
for directed graphs was shown to be O(|V ||E|). Slightly later [22] obtained an
improved bound on cover time of O(D |E|), and also showed that after time
at most O(D |E|) the exploration stabilizes to a periodic traversal of some di-
rected Eulerian cycle of the graph (containing each directed edge exactly once,
i.e. of length 2|E|). Consequently, Oldest-First explorations on symmetric di-
rected graphs are fair, in the sense that all edges are visited with the same
frequency fe(G) = 1/(2|E|).

When considering symmetric directed graphs, an exploration achieved in ac-
cordance with the Oldest-First rule also satisfies the conditions of a Least-Used-
First exploration. Whereas a Least-Used-First exploration need not in general
stabilize to a traversal of a directed Eulerian cycle, it also retains the property
that for any time moment, the number of visits to any two edges outgoing from
the same vertex can differ by at most 1 [14, 13]. This property immediately
implies that for symmetric directed graphs, any execution of Least-Used-First
has a cover time of O(D |E|), and also visits all directed edges with the same
frequency.

In a slightly wider context, local exploration strategies have been considered
for robots with bounded memory, cf. e.g. [8,9,17]. In some settings, the robot is
additionally assisted by identifiers or markers placed on the nodes and/or edges
of the explored graph, cf. e.g. [3, 6, 10].

Our results. Herein we establish certain properties of explorations which follow
the Oldest-First or Least-Used-First strategies in undirected graphs.

The Oldest-First (OF) strategy in undirected graphs can be regarded as a natural
analogue of the Oldest-First strategy (rotor-router model) for symmetric directed
graphs. However, whereas the rotor-router model leads to explorations which
traverse directed edges with equal frequency, and have a cover time bounded by
O(D |E|), this is not the case for Oldest-First explorations in undirected graphs.
Indeed, in Section 2 we show the following theorems.

– In some classes of undirected graphs, any exploration which follows the
Oldest-First strategy is unfair, with an exponentially large ratio of visits
between the most often and least often visited edges (Theorem 1).

– There exist explorations following the Oldest-First strategy which have ex-
ponential cover time of 2Ω(|V |) in some graph classes (Theorem 2).

The Least-Used-First (LUF) strategy in undirected graphs is fundamentally bet-
ter than the Oldest-First strategy, which is contrary to the situation in symmet-
ric directed graphs. In fact, in Section 3 we show that, in undirected graphs,
explorations which follow the LUF strategy are fair, efficient, and tolerant to
perturbations of initial conditions, as expressed by the following theorems.

– Any exploration of an undirected graph which follows the Least-Used-First
strategy is fair, achieving uniform distribution of visits to all edges (Theo-
rem 5).
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– Any exploration of an undirected graph which follows the Least-Used-First
strategy achieves a cover time of O(D |E|), where D denotes the diameter
(Theorem 4). This bound is tight (Theorem 3). When the exploration starts
from a state with non-zero (corrupted) initial values of traversal counts on
edges, the cover time is bounded by O((|V |+p)|E|), where p is the maximal
value of a counter in the initial state (Theorem 6).

Notation. Unless otherwise stated, all considered graphs are assumed to be
simple, undirected, and connected. The explored graph is denoted by G = (V,E),
with |V | = n and |E| = m. The diameter of the graph is denoted by D and its
maximum vertex degree by Δ. The set of neighbors of a vertex v ∈ V is denoted
by Nv. The set of non-negative integers is denoted by N. A discrete interval [a, b]
is defined as the set of all integers k such that a ≤ k ≤ b ([a, b] = ∅ when a > b).

2 The Oldest-First (OF) Strategy

In this section we show that any OF exploration is unfair (Theorem 1), and
moreover that OF explorations may sometimes take exponential time to cover
the whole graph (Theorem 2).

Theorem 1. There exists a family of graphs (Gn)n≥1 of order Θ(n), such that
for each graph Gn in this family, some two of its edges e and e′ satisfy fe(Gn)

fe′ (Gn) =
(3
2 )n with fe′(Gn) �= 0, for any exploration following the OF strategy.

Proof. Fix an arbitrary positive integer n. Let Gn be the graph defined as follows.
The nodes are denoted v

(k)
j , for any j ∈ [1, 7] and any k ∈ [1,n]. Moreover, we

have that v
(k)
7 = v

(k+1)
1 for any k ∈ [1,n − 1]. This means that Gn has 6n + 1

nodes. The 8n edges are the following: e(k)
1 = {v(k)

1 , v
(k)
2 }, e(k)

2 = {v(k)
2 , v

(k)
3 },

e
(k)
3 = {v(k)

2 , v
(k)
4 }, e(k)

4 = {v(k)
3 , v

(k)
5 }, e(k)

5 = {v(k)
4 , v

(k)
5 }, e(k)

6 = {v(k)
2 , v

(k)
6 },

e
(k)
7 = {v(k)

5 , v
(k)
6 }, and e

(k)
8 = {v(k)

6 , v
(k)
7 }, for any k ∈ [1,n]. The graph Gn is

depicted in Figure 1.
We assume that the exploration is starting from v

(1)
1 . We will now focus

on a block B of Gn, that is on the subgraph of Gn induced by the 7 nodes
{v(k)

1 , · · · , v(k)
7 }, for an arbitrary and fixed k ∈ [1,n]. To simplify the notation,

we will remove the superscript (k) in the following, when there are no ambiguities.

v
(2)
3

v
(2)
5

v
(2)
4

v
(2)
6

v
(1)
7 = v

(2)
1 v

(2)
7 = v

(3)
1

v
(2)
2e

(1)
1 e

(n)
8

Fig. 1. The graph Gn
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D1C1

E1B1

A1

Fig. 2. The two possible cycles of traversals of a block B. Cycle (A1, B1, C1, D1, E1)
is presented in the figure. Cycle (A2, B2, C2, D2, E2) is obtained as follows: A2 = Ā1,
B2 = Ē1, C2 = D̄1, D2 = C̄1, E2 = B̄1, where X̄ denotes the reversal of the direction
of the exploration route in X.

There may be several different explorations following the OF strategy from
v
(1)
1 . Indeed, when the exploration reaches a node with at least two edges that

are not yet explored, the exploration may proceed along any of these unexplored
edges.

By a tedious case-by-case analysis, we show that the behavior of the robot in
successive traversals of a given block follows a cyclic pattern, as shown in Fig-
ure 2. In all the cases, in the time period during which the edge e8 is traversed
4 times, the edge e1 is traversed 6 times. We now notice that the exploration
becomes eventually periodic. Indeed, only the local ordering of the last traversal
times of the incident edges at each node influences the exploration. Therefore
the number of different possible configurations of the graph and its ongoing ex-
ploration is bounded by some (large) function of n. Therefore, the exploration
is eventually periodic and, for any edge e of the graph, the sequence ce(t)/t con-
verges to the actual frequency of traversals fe(Gn) of the edge e. In particular, we
have

∑
e∈E(Gn) fe(Gn) = 1. Since we just proved that for any k ∈ [1,n] we have

f
e
(k)
1

(Gn) = 3
2fe(k)

8
(Gn), we have f

e
(1)
1

(Gn) = (3
2 )nf

e
(n)
8

(Gn), with f
e
(n)
8

(Gn) �= 0.
This concludes the proof of the theorem. ��

Theorem 2. There exists a family of graphs (Gn)n≥1 of order Θ(n), such that
for each graph Gn in this family, some exploration following the OF strategy has
a cover time of 2Ω(n).

Proof. We consider the family of graphs described in Theorem 1. Given an ar-
bitrary execution E of the OF strategy, there exist two edges e and e′ satisfying
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fe(G)
fe′ (G) = (3

2 )n (with fe′(G) �= 0). Therefore, there exist two times t1 and t2, with
t2− t1 ≥ (3

2 )n− 1, such that the edge e′ is not traversed between time t1 and t2.
Let v be the current position of the traversal E at time t1. Then, consider the
exploration E ′ which starts at v and has the same execution from the beginning,
as E from time t1. It is clear that E ′ follows the OF strategy, and moreover it
will not traverse e′ before time t2 − t1. Thus, E ′ has a cover time of at least
(3
2 )n − 1. ��

3 The Least-Used-First (LUF) Strategy

In Subsection 3.2 we will show that LUF strategies are fair and cover any graph
in O(mD) time. Before doing this, in Subsection 3.1 we construct a family of
examples showing that such a bound on cover time is essentially tight.

3.1 A Worst Case Lower Bound on Cover Time

Theorem 3. For sufficiently large n, m ∈ [n − 1,n(n − 1)/2] and D ≤ n, the
worst-case cover time of the LUF strategy in the family of graphs of at most n
nodes, at most m edges, and diameter at most D , is Ω(mD).

Proof. Fix n ≥ 16, m ∈ [n − 1,n(n − 1)/2] and D ∈ [8,n]. Let G be the graph
defined as follows, see Figure 3. Let nC = �D /8�. The graph G first consists
of 3nC + 1 nodes organized in a chain of 4-node cycles. Let nK be the largest
even integer smaller than n/2 such that nK(nK+1)/2 < m/2. The graph G also
consists of nK additional nodes forming together with one extreme node of the
chain a complete graph on nK+1 vertices. To summarize, G has nK+3nC+1 ≤ n
nodes, 4nC + nK(nK + 1)/2 ≤ m edges and diameter 2nC + 1 ≤ D .

Fig. 3. The graph G with nC = 6 and nK = 4

It is easily shown that the worst-case cover time of G is at least nK(nK +
1)/2 · nC ; we leave out the details of the analysis. Since nK(nK + 1)/2 ∈ Ω(m)
and nC ∈ Ω(D), the theorem holds. ��

3.2 An Upper Bound on Cover Time

We now proceed to prove the O(mD) bound on cover time of any LUF explo-
ration, through a sequence of technical lemmas.

Throughout the proofs we will use the following notation. When describing
moments of time, the symbol t′ is treated as a more compact notation for t+ 1,
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likewise t′′ means t + 2. The vertex occupied by the robot at time t is denoted
by r(t); the starting vertex of exploration is denoted by s, that is s = r(0).
With each edge e we associate a counter ce called its traversal count, whose
value at time t is denoted by ce(t); initially we assume ce(0) = 0 for all e ∈ E.
When traversing edge e in the time interval (t, t′) we only increment the value
of the counter associated with this edge, ce(t′) = ce(t) + 1. For each node u
we denote by Cu(t) the set of traversal counts of the adjacent edges at time t:
Cu(t) = {c{u,v}(t) : v ∈ Nu}. The set of traversal counts of all edges of the graph
is denoted by C(t) = {ce(t) : e ∈ E}.

At any given time t, let parameter k ∈ N∪{−1} be defined in such a way that
maxC(t) ∈ [2k + 1, 2k + 2], and let parameter l ∈ N be such that minCr(t) ∈
[2l, 2l+1]. Parameters k, l, and r used without an indication of time are assumed
to refer to the moment of time denoted by t, while symbols k′, l′, r′, and r′′ should
be treated as equivalent to k(t′), l(t′), r(t′), and r(t′′), respectively.

We start by making the following claim which is a simple extension of the
following observation: for each vertex v different from both r and s, the total
number of traversals of edges incident to v, performed when entering v, is the
same as the total number of traversals of these edges performed when leaving v.

Lemma 1. For a node u ∈ V , let Su(t) =
∑
v∈Nu

c{u,v}(t). If Su(t) is odd, then
r �= s and either u = r, or u = s.

Lemma 2. If for some time moment t we have k′ = k + 1, then r = s and
Cs(t) = {2k + 2}.

Proof. If k′ = k + 1, then clearly c{r,r′}(t) = 2k + 2 = maxC(t). This implies
that during the time interval (t, t′) the robot chooses an edge having the maximal
traversal count. Clearly, this means that there is no edge with a smaller traversal
count available at r, so Cr(t) = {2k + 2}. Hence, in Lemma 1 the value of Sr(t)
is even, and we immediately obtain the claim, r = s. ��

Lemma 3. For any time moment t, maxCs(t) ≥ 2k + 1.

Proof. We can obviously assume that k ≥ 0. Let τ < t be such a time moment
that k(τ) = k − 1 and k(τ ′) = k. Then by Lemma 2, r(τ) = s and Cs(τ) =
{2(k − 1) + 2} = {2k}. So, after traversing any edge adjacent to s, we obtain
maxCs(τ ′) = 2k+1. Since t ≥ τ ′ and maxCs(t) ≥ maxCs(τ ′), the claim follows
directly. ��

Lemma 4. If for some time moment t we have Cr(t) = {2p + 2}, where p is
some integer, then r = s and p = k.

Proof. When Cr(t) = {2p + 2}, in Lemma 1 the value of Sr(t) is even, and so
r = s. Moreover, by Lemma 3 we cannot have p < k since then maxCs(t) ≤ 2k.
Thus p = k. ��
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Lemma 5. For any time moment t, the following statements hold:

– there exists a subset VA = {vl, ..., vk−1} of vertices indexed by integers a ∈
[l, k − 1], such that Cva(t) ⊆ [2a, 2a+ 3].

– for any other vertex v �∈ VA we have Cv(t) ⊆ [2b, 2b + 2] for some integer
value b.

Proof. Initially, for t = 0 we have C(0) = {0}, k = −1, l = 0, and so the
induction claim holds with VA(0) = ∅.

Assuming that the induction assumption holds for time t and a correspond-
ing set VA is given, we will now prove that it also holds for time t′ with an
appropriately modified set V ′A. (Sometimes no modification will be necessary;
for example, when G is a cycle, we have VA(τ) = ∅ for all τ ≥ 0.) We start by
showing a small auxiliary claim.

Claim. l′ ∈ [l − 1, l + 1].
Proof : The traversal count, directly before traversal, of the edge used in time
interval (t′, t′′) can be greater by at most one than that of the edge used in time
interval (t, t′), so c{r′,r′′}(t′) ≤ c{r,r′}(t)+1 ≤ 2l+2, and thus l′ ≤ l+1. Suppose
that l′ < l; then we have minCr′(t) < 2l, and by the inductive assumption
r′ �∈ VA(t). Thus maxCr′(t) − minCr′(t) ≤ 2, and we obtain c{r′,r′′}(t′) =
minCr′(t′) ≥ minCr′(t) ≥ maxCr′(t) − 2 ≥ 2l − 2, which means that always
l′ ≥ l − 1, completing the proof of the claim.

Now, consider the following definition of set V ′A = {v′a : a ∈ [l′, k′ − 1]} for
time t′: (1) For all a ∈ [l + 1, k − 1], put v′a := va; (2) If l′ ≤ l and l′ < k′,
put v′l := vl; (3) If l′ = l − 1 and l′ < k′, put v′l−1 := r′. The above procedure
clearly defines all elements v′a for a ∈ [l′, k − 1]. We now observe that it does in
fact define all elements v′a for the whole of the required range, a ∈ [l′, k′ − 1].
Indeed, if k′ = k + 1, by Lemma 2 we have c{r,r′}(t) = 2k + 2, so l = k + 1 = k′.
Consequently, if l′ ≥ k +1 in the proposed construction, then set V ′A is empty as
required, and if l′ = l − 1 = k, then the only element v′l−1 of V ′A is well defined.

We now verify the induction claim for the proposed definition of set V ′A by
checking the imposed bounds on sets Cv(t′), for all vertices v ∈ V . Taking into
account that for all vertices v other than r and r′ we have Cv(t) = Cv(t′), by
the construction of elements v′a based on elements va, it is evident that it now
suffices to check the bounds on Cv(t′) for v ∈ {r, r′, vl}; for all other vertices, the
bounds follow directly from the induction assumption for time t. We therefore
now successively consider vertices r, r′, and vl.

For vertex r we need to consider two possibilities: either r ∈ VA, or r �∈ VA.

1. If r ∈ VA, then VA �= ∅ and so l ≤ k− 1. Since minCr(t) ∈ [2l, 2l+ 1] by the
definition of l, taking into account the inductive assumption concerning the
bounds on Cr(t) we must have r = vl (note that vertices va are only defined
for indices a ≥ l) and Cr(t) ⊆ [2l, 2l + 3]. After traversing edge {r, r′}, we
have c{r,r′}(t′) = c{r,r′}(t) + 1 = minCr(t) + 1 ∈ [2l+ 1, 2l+ 2], so we retain
the property Cr(t′) ⊆ [2l, 2l + 3]. If r = v′l, the bounds on set Cr(t′) are
thus satisfied. We will now show that the other case, r �= v′l, is impossible.
Indeed, when r �= v′l we would have l′ = l + 1 (otherwise, l′ ≤ l would mean
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that l′ ≤ l < k ≤ k′, so v′l = vl = r). Therefore, minCr′(t′) ≥ 2l + 2, so
c{r,r′}(t′) = 2l+2 and c{r,r′}(t) = 2l+1. Taking into account that r′ �= r = vl,
we have r′ �∈ VA (as minCr′(t) ≤ 2l+1) and Cr′(t) ⊆ [2l, 2l+2]. As we have
already observed that minCr′(t′) ≥ 2l+ 2 and c{r,r′}(t′) = 2l+ 2, we obtain
Cr′(t′) = {2l + 2}. Applying Lemma 4 for time t′ gives r′ = s and k = l, a
contradiction with the assumption l < k.

2. If r �∈ VA, then since c{r,r′}(t) ∈ [2l, 2l+ 1], we must have Cr(t) ⊆ [2l, 2l+ 2]
(note that we must have minCr(t) ≥ 2l). At time t′, only the traversal
count of edge {r, r′} changes, c{r,r′}(t′) = c{r,r′}(t) + 1 = minCr(t) + 1 ∈
[2l + 1, 2l + 2], and we still have Cr(t′) ⊆ [2l, 2l + 2]. By the definition of
set V ′A we have r �∈ V ′A, so Cr(t′) fulfills the required bound with parameter
b = l.

For vertex r′ we likewise consider two possibilities: either r′ ∈ VA, or r′ �∈ VA;
in both cases, we obtain that the required bounds on Cr′(t′) are satisfied.

Finally, we consider vertex vl (under the assumption that l < k, otherwise
this case should be left out). Since the bounds for vertices r and r′ have already
been proven, we can restrict ourselves to the case of vl �= r and vl �= r′. This
means that the set of traversal counts adjacent to vl does not change during the
time interval (t, t′), i.e. Cvl

(t) = Cvl
(t′). Clearly, the only situation which needs

some comment is when vl �∈ V ′A; we will show that such a case is not possible.
Indeed, this would mean that l′ = l + 1 or l′ ≥ k′. If l′ = l + 1, then we would
have c{r,r′}(t′) = 2l + 2, so c{r,r′}(t) = 2l+ 1, and since r′ �= vl, we see from the
inductive assumption that r′ �∈ VA and Cr′(t) ⊆ [2l, 2l + 2]. Hence, noting that
l′ = l + 1, we have Cr′(t′) = {2l + 2}, and by applying Lemma 4 for time t′ we
obtain r′ = s and k = l, a contradiction with the assumption l < k. Finally, we
need to consider the case l′ ≥ k′. Then, since k′ ≥ k and l′ ≤ l + 1, we obtain
l′ = k′ = k = l+1, which turns out to be a subcase of the previously considered
case l′ = l + 1. ��

Theorem 4. For any graph, the cover time achieved by any LUF exploration is
at most 2m(D +1).

Proof. Consider any time moment t such that l ≥ k. Then by Lemma 5 set
VA is empty, and for any vertex v ∈ V we have maxCv(t) − minCv(t) ≤ 2.
Let edge {va, vb} be such that c{va,vb} ≥ 2k + 1, and consider any other edge
{ua, ub} of the graph. Let us arbitrarily choose a shortest path (w1, w2, . . . , wd),
with w1 = ua and wd = va; obviously, d ≤ D +1. The following relations hold:
c{ua,ub}(t) ≥ minCw1(t) ≥ maxCw1(t)− 2 ≥ c{w1,w2}(t)− 2 ≥ minCw2(t)− 2 ≥
maxCw2(t) − 4 ≥ . . . ≥ maxCwd

(t) − 2d ≥ c{va,vb} − 2d ≥ 2k + 1 − 2(D +1) =
2(k − D) − 1. So, at any time moment t such that l ≥ k > D , each edge of the
graph has been explored at least once. Notice that this is always true for the
unique time moment t such that maxC(t) = 2 D +2 and maxC(t′) = 2 D +3,
and we will use this time moment t as an upper bound on cover time. Since at
time τ = (2 D +2)m + 1 we must have maxC(τ) > 2 D +2 by the pigeon-hole
principle, we immediately obtain that t < τ , and the claim follows. ��
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Taking into account that by Lemma 5, for any time moment t and for any
vertex v ∈ V , we have maxCv(t) −minCv(t) ≤ 3, and using similar arguments
as in the above proof, we obtain that at any moment of time t the following
inequalities hold: maxC(t) − minC(t) ≤ 3(D +1). We easily conclude that in
the limit, all edges are explored with the same frequency.

Theorem 5. For any graph, any exploration following the LUF strategy achieves
uniform frequency on all edges, fe(G) = 1/m.

3.3 Cover Time of LUF with Modified Initial Conditions

It turns out that LUF explorations are resistant to minor perturbations, for
example when the initial values of traversal count are not necessarily 0 for all
edges e, but arbitrarily drawn from some range of values. We have the following
theorems; details of the proofs are omitted.

Theorem 6. For any graph, the cover time achieved by any exploration follow-
ing the LUF strategy is O(m(n + p)), where p is the maximum value of edge
traversal counters at time 0.

Corollary 1. For any graph, any exploration following the LUF strategy achieves
uniform frequency on all edges, fe(G) = 1/m, even when the initial values of edge
traversal counts in the graph are non-zero.

4 Final Remarks

We have shown that locally fair strategies in undirected graphs can closely imi-
tate random walks, allowing us to obtain an exploration which is fair with respect
to all edges, and efficient in terms of cover time. However, the fairness criterion
has to be chosen much more carefully than for symmetric directed graphs: Least-
Used-First works, but Oldest-First does not.

In future work it would be interesting to study modified notions of equity,
which are inspired by random walks which select the next edge to be traversed
with non-uniform probability. For example, it is possible to decrease the general-
case bound on the cover time of a random walk to O(|V |2 log |V |), by applying
a probability distribution which reflects the degrees of the nearest neighbors of
the current node [11]. It is an open question whether a similar bound can be
obtained in the deterministic sense using a derandomized strategy.
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Abstract. We consider graphical games in which the edges are zero-sum
games between the endpoints/players; the payoff of a player is the sum of
the payoffs from each incident edge. Such games are arguably very broad
and useful models of networked economic interactions. We give a simple
reduction of such games to two-person zero-sum games; as a corollary, a
mixed Nash equilibrium can be computed efficiently by solving a linear
program and rounding off the results. Our results render polynomially
efficient, and simplify considerably, the approach in [3].

1 Introduction

In 1928, von Neumann proved that every two-person zero-sum game has the
minmax property [8], and thus a randomized equilibrium — which, we now
know, is easily computable via linear programming. According to Aumann, two-
person strictly competitive games — that is zero-sum games (see the discussion
in the last section) — are “one of the few areas in game theory, and indeed in
the social sciences, where a fairly sharp, unique prediction is made” [2]. In this
paper, we present a sweeping generalization of this class to multi-player games
played on a network.

Networked Interactions. In recent years, with the advent of the Internet and the
many kinds of networks it enables, there has been increasing interest in games
in which the players are nodes of a graph, and payoffs depend on the actions
of a player’s neighbors [6]. One interesting class of such games are the graphical
polymatrix games, in which the edges are two-person games, and, once all players
have chosen an action, the payoff of each player is the sum of the payoffs from
each game played with each neighbor. For example, games of this sort with
coordination games at the edges are useful for modeling the spread of ideas and
technologies over social networks [7].

But what if the games at the edges are zero-sum — that is, we have a network
of competitors? Do von Neumann’s positive results carry over to this interesting
case? Let us examine a few simple examples. If the network consists of isolated
edges, then of course we have many independent zero-sum games and we are
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done. The next simplest case is the graph consisting of two adjacent edges. It
turns out that in this case too von Neumann’s ideas work: We could write the
game, from the middle player’s point of view, as a linear program seeking the
mixed strategy x such that

max z1 + z2

subject to A1x ≥ z1

A2x ≥ z2,

where A1 and A2 are the middle player’s payoff matrices against the two other
players. In other words, the middle player assumes that his two opponents will
each punish her separately as much as they can, and seeks to minimize the total
damage. In fact, a little thought shows that this idea can be generalized to any
star network.

But what if the network is a triangle, for example? Now the situation becomes
more complicated. For example, if player u plays matching pennies, say, with
players v and w (take the stakes of the game with v to be higher than the stakes
of the game with w), while v and w play between them, for much higher stakes,
a game that rewards v for playing heads, then v cannot afford to pay attention to
u, and u can steal a positive payoff along the edge (u, v), so that her total payoff
is positive — despite the fact that she is playing two matching pennies games.
Is there a general method for computing Nash equilibria in such three-player
zero-sum polymatrix games? Or is this problem PPAD-complete?

Our main result (Theorem 2) is a reduction implying that in any zero-sum
graphical polymatrix game a Nash equilibrium can be computed in polynomial
time, by simply solving a two-player zero-sum game and rounding off the equi-
librium. In other words, we show that there is a very broad and natural class
of tractable network games to which von Neumann’s method applies rather di-
rectly. The basic idea of the reduction is very simple: We create two players
whose strategy set is equal to the union of the actions of all players, and have
both of them “represent” all players. To make sure that the two players ran-
domize evenly between the players they represent, we make them play, on the
side, a high-stakes game of generalized rock-paper-scissors. It is not hard to see
that any minmax strategy of this two-person zero-sum game can be made (by
increasing the stakes of the side game) arbitrarily close to a Nash equilibrium of
the original game.1

We prove our main result in Section 2. In Section 3 we show an interesting
consequence: if the nodes of the network run any distributed iterative learning
algorithm of the bounded regret variety known to perform well in many contexts,
then the whole game converges to the Nash equilibrium (Theorem 3).

1 Ilan Adler (private communication, April 2009) pointed out to us a proof of our main
result by a direct reduction to linear programming: Formulate the two-player game
(without the generalized rock-paper-scissors part) as a linear program, adding con-
straints which require that each of the two players assigns the same total probability
mass to the strategies of each of the players it represents.
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Related work. In a very interesting paper [3] (which we discovered after we had
proved our results. . .), Bregman and Fokin present a general approach to solving
what they call separable zero-sum games: multiplayer games that are zero-sum,
and in which the payoff of a player is the sum of the payoffs of the player’s
interactions with each other player. Their approach is to formulate such games
as a linear program with huge dimensions but low rank, and then solve it by
a sequence of reductions to simpler and simpler linear programs that can be
solved by the column generation version of the simplex method in a couple of
special cases, one of which is our zero-sum polymatrix games. Even though their
technique does not amount to a polynomial-time algorithm, we believe that it
can be turned into one by a sophisticated application of the ellipsoid method
and multiple layers of separating hyperplane generation algorithms. In contrast,
our method is a very simple and direct reduction to two-player zero-sum games.

Definitions. An n-player zero-sum graphical polymatrix game is defined in terms
of an undirected graph G = (V,E), where V := [n] is the set of players, and, for
each edge [u, v] ∈ E, an mu×mv real matrix Au,v and another Av,u = −(Au,v)T.
That is, each player/node u has a set of actions, [mu], and each edge is a zero-
sum game played between its two endpoints. Given any mapping f from V to
the natural numbers such that f(u) ∈ [mu] for all u ∈ V — that is, any choice
of actions for the players, the payoff of player u ∈ V is defined as

Pu[f ] =
∑

[u,v]∈E
Au,vf(u),f(v).

In other words, the payoff of each player is the sum of all payoffs of the zero-sum
games played with the player’s neighbors.

In any game, a (mixed) Nash equilibrium is a distribution on actions for each
player, such that, for each player, all actions with positive probabilities are best
responses in expectation. In an ε-Nash equilibrium, all actions played by a player
with positive probability give her expected utility which is within an additive ε
from the expected utility given by the best response. A weaker but related notion
of approximation is the notion of an ε-approximate Nash equilibrium, in which the
mixed strategy of a player gives her expected utility that is within an additive ε
from the expected utility of the best response. Clearly, an ε-Nash equilibrium
is also an ε-approximate Nash equilibrium; but the opposite implication is not
always true. Nevertheless, the two notions are computationally related as follows.

Proposition 1. [4] Given an ε-approximate Nash equilibrium of an n-player
game, we can compute in polynomial time a

√
ε · (

√
ε + 1 + 4(n− 1)αmax)-Nash

equilibrium, where αmax is the magnitude of the maximum in absolute value
possible utility of a player in the game.

2 Main Result

Theorem 2. There is polynomial-time reduction from any zero-sum graphical
polymatrix game GG to a symmetric zero-sum bimatrix game G, such that from
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any Nash equilibrium of G one can recover in polynomial time a Nash equilibrium
of GG.

Proof of Theorem 2. In our construction we use a generalization of the well
known rock-paper-scissors game, defined below.

Definition 1 (Generalized Rock-Paper-Scissors). For an odd integer n >
0, the n-strategy rock-paper-scissors game is a symmetric zero-sum bimatrix
game (Γ,−Γ ) with n strategies per player such that for all u, v ∈ [n]:

Γu,v =

⎧⎪⎨⎪⎩
+1, if v = u + 1 mod n

−1, if v = u− 1 mod n

0, otherwise.

It is not hard to see that, for every odd n, the unique Nash equilibrium of the
n-strategy generalized rock-paper-scissors game is the uniform distribution over
both players’ strategies. Now let GG = {Au,v}[u,v]∈E be an n-player zero-sum
graphical polymatrix game with edge set E, whose u-th player has mu strategies.
Assuming without loss of generality that n is odd, let us define the embedding
G of GG into the n-strategy rock-paper-scissors game with scaling parameter
M > 0 as follows: G = (R,C) is an

∑
umu ×

∑
umu bimatrix game, whose

rows and columns are indexed by pairs (u : i), of players u ∈ [n] and strategies
i ∈ [mu], such that, for all u, v ∈ [n], i ∈ [mu], j ∈ [mv],

R(u:i),(v:j) = M · Γu,v + Au,vi,j

C(u:i),(v:j) = −M · Γu,v + Av,uj,i .

In the above, we take Au,v and Av,u to be the all-zero matrices if [u, v] /∈ E.
Observe that G is zero-sum and also symmetric, since the generalized rock-paper-
scissors game is symmetric.

Lemma 1. Let n > 0 be an odd integer, GG = {Au,v}[u,v]∈E a zero-sum graph-
ical polymatrix game whose largest in absolute value payoff entry has magni-
tude M/L, and G = (R,C) the embedding of GG into the n-strategy rock-paper-
scissors game, with scaling parameter M . Then for all u ∈ [n], in any Nash
equilibrium (x, y) of G, xu, yu ∈ ( 1

n −
n
L ,

1
n + n

L), where xu =
∑
i∈[mu] xu:i and

yu =
∑
i∈[mu] yu:i is the probability mass assigned by x and y to the block of

strategies (u : ·).

Proof of Lemma 1. Observe first that, since G is a symmetric zero-sum game,
the value of both players is 0 in every Nash equilibrium. We will use this to
argue that xu ≥ x(u+2 mod n) − 1

L , for all u ∈ [n], and similarly for y. This is
enough to conclude the proof of the lemma. For a contradiction, suppose that,
in some Nash equilibrium (x, y), xu < x(u+2 mod n) − 1

L , for some u. Then the
payoff to the column player for playing strategy (u + 1 mod n : j), for any
j ∈ [mu+1 mod n], is at least

Mx(u+2 mod n) −Mxu −
M

L
> 0.
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Since (x, y) is an equilibrium, the expected payoff to the column player from y
must be at least as large as the expected payoff from (u + 1 mod n : j), so in
particular larger than 0. But this is a contradiction since we argued that in any
Nash equilibrium of G the payoff of each player is 0. �

We argue next that, given any Nash equilibrium (x, y) of G, we can extract an
approximate equilibrium of the game GG by assigning to each node u of GG the
marginal distribution assigned by x to the block of strategies (u : i), i ∈ [mu].
For each node u, let us define the distribution x̂u over [mu] as follows

x̂u(i) =
xu:i
xu

, for all i ∈ [mu]. (1)

Lemma 2. In the setting of Lemma 1, if (x, y) is a Nash equilibrium of G, then
the collection of mixed strategies {x̂u}u is a 2M·n3

L2 –Nash equilibrium of GG.

Proof of Lemma 2. Notice that, because G is a symmetric zero-sum game, if
x is a minimax strategy of the row player, then x is also a minimax strategy
of the column player. Hence, the pair of mixed strategies (x, x) is also a Nash
equilibrium of G. Now, for every node u of the polymatrix game, we are going
to show that the collection {x̂u}u satisfies the equilibrium conditions at node u
approximately. Indeed, because (x, x) is a Nash equilibrium of G it must be that,
for all i, j ∈ [mu]:

E [Pu:i] > E [Pu:j ] ⇒ xu:j = 0, (2)

where
E [Pu:i] =

∑
v

M · Γu,v · xv +
∑

[u,v]∈E

∑
�∈[mv]

Au,vi,� · xv:�

is the expected payoff to the row player of G for playing strategy (u : i). From
Lemma 1 we have∣∣∣∣∣∣

∑
[u,v]∈E

∑
�∈[mv]

Au,vi,� · xv:� −
1
n

∑
[u,v]∈E

∑
�∈[mv]

Au,vi,� · x̂v(�)

∣∣∣∣∣∣ ≤ M · n2

L2
.

Hence, (2) implies

1
n

∑
[u,v]∈E

∑
�∈[mv]

Au,vi,� · x̂v(�) >
1
n

∑
[u,v]∈E

∑
�∈[mv]

Au,vj,� · x̂v(�)+
2M · n2

L2
⇒ x̂u(j)=0,

which is equivalent to

E [Pu:i] > E [Pu:j ] +
2M · n3

L2
⇒ x̂u(j) = 0, (3)

where E [Pu:i] is the expected payoff of node u in GG for playing pure strategy i,
if the other players play according to the collection of mixed strategies {x̂v}v =u.
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Since (3) holds for all u ∈ [n], i, j ∈ [mu], the collection {x̂u}u is a 2M·n3

L2 -Nash
equilibrium of GG. �

Choosing M = 2q(|GG|)2n3u2
max and L = M

umax
, where q(|GG|) is some polynomial

in the size of GG, and umax the magnitude of the maximum in absolute value
entry in the payoff tables of GG, the collection of mixed strategies {x̂u}u obtained
from a Nash equilibrium (x, y) of G, constitutes a 2−q(|GG|)-Nash equilibrium
of the game GG. If q(·) is a sufficiently large polynomial, then a 2−q(|GG|)-Nash
equilibrium of GG can be transformed in polynomial time to an exact equilibrium.
To see this, let us consider the following linear program with respect to the
variables z and {ŷu}u, where ŷu is a distribution over [mu]:

min z

s.t.
∑

[u,v]∈E

∑
�∈[mv]

Au,vi,� · ŷv(�) ≥
∑

[u,v]∈E

∑
�∈[mv]

Au,vj,� · ŷv(�)− z,
∀u ∈ [n],
i ∈ supp(x̂u),
j ∈ [mu].

(4)

In LP (4), supp(x̂u) denotes the support of the distribution x̂u. Observe in partic-
ular that (2−q(|GG|), {x̂u}u) is a solution of LP (4) with objective value 2−q(|GG|).
But, let us assume that q(·) has been chosen to be larger than the bit complexity
of any optimal solution to LP (4) (for any possible set of supports {supp(x̂u)}u).
It follows then that the optimal solution to LP (4) has objective value z = 0, so
that the corresponding collection {ŷu}u is an exact Nash equilibrium of GG. �

3 Distributed Learning

One of the more subtle advantages of two-person zero-sum games is that a large
variety of learning algorithms converge to the Nash equilibrium. Hence in this
section we study the behavior arising if every player in a zero-sum graphical
polymatrix game runs a no-regret learning algorithm.

Definition 2 (No-Regret Behavior). Let every node u ∈ V of a graphical
polymatrix game choose a mixed strategy xtu, at every time step t = 1, 2, . . .. We
say that the sequence of strategies (xtu)t chosen by u is a no-regret sequence, if
for every mixed strategy x of player u and all times T

T∑
t=1

⎛⎝ ∑
[u,v]∈E

(xtu)
T · Au,v · xtv

⎞⎠ ≥
T∑
t=1

⎛⎝ ∑
[u,v]∈E

xT ·Au,v · xtv

⎞⎠− o(T ), (5)

where the function o(T ) could depend on the number strategies available to player
u, the number of neighbors of u and magnitude of the maximum in absolute value
entry in the matrices Au,v. The function o(T ) is called the regret of player u at
time T .
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Example 1 (Multiplicative Weights-Update Algorithm). In the multiplicative
weights-update algorithm (see for example [5]) each player maintains a mixed
strategy. At each period, each probability is multiplied by a factor exponential in
the utility the corresponding strategy would yield against the opponent’s mixed
strategy (and the probabilities are renormalized). If every node in a zero-sum
graphical polymatrix game runs such an algorithm, then the resulting regret
is O((

√
T · logmu + logmu) · du · αumax), where mu is the number of strategies

available to player u, du is the degree of u, and αumax is the magnitude of the
largest in absolute value entry in the payoff matrices {Au,v}[u,v]∈E.

Our main result is the following.

Theorem 3. Suppose that every node u ∈ V of a zero-sum graphical polyma-
trix game GG plays a no-regret sequence of strategies (xtu)t=1,2,..., with regret
g(T ) = o(T ). Then, for all T , the set of strategies x̄Tu = 1

T

∑T
t=1 x

t
u, u ∈ V , is a(

2.3 · n · g(T )
T + 2

T

)
-approximate Nash equilibrium of the game.

Proof. Our proof plan is the following: Using the no-regret strategy sequences
of the players of GG we are going to define no-regret strategy sequences for
the players of the symmetric zero-sum bimatrix game G defined in the proof of
Theorem 2. We are going to show then that the time-averages of these sequences
comprise an approximate equilibrium of the game G, if M is sufficiently large.
Going back to the game GG using the mapping (1), we will then deduce that the
time-averages of the original sequences need to also comprise an approximate
equilibrium of the game GG.

To define the no-regret sequences of the players of the bimatrix game G, it is
tempting to take, at every time step, the (uniform) average of the strategies of
the players of GG. That is, for every time t = 1, 2, . . ., assign to both players of
G the strategy xt, such that xtu:i = 1

nx
t
u(i), for all u and i. This, however, may

result in large regrets for the players of G (essentially because the payoffs of the
side game are eliminated in this accounting, and the two players will tend to
skew their distributions towards the most “lucrative” of the players that they
represent). We define instead a non-uniform averaging with weights selected by
solving yet another related game, in a manner that depends on the payoffs of
the nodes of GG under the no-regret sequences.

Let us denote the average payoff of player u over the period t = 1, . . . , T as

P̄Tu :=
1
T

T∑
t=1

⎛⎝ ∑
[u,v]∈E

(xtu)
T · Au,v · xtv

⎞⎠ .

Let also αmax be the magnitude of the largest in absolute value entry in the
payoff tables of the game GG. We show the following lemma.

Lemma 3. For any Z > n2 and M > 2nZ ·αmax, there exist c > 0, and positive
weights {ku > 0 : u ∈ V }, such that for all u:

M ·
(

1
k(u+1 mod n)

− 1
k(u−1 mod n)

)
= − 1

n
P̄Tu + c; (6)
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1
ku

∈
[

1
n
− n

Z
,
1
n

+
n

Z

]
and

∑
u

1
ku

= 1. (7)

Recall that we have identified the vertices of GG with the integers in [n], and
without loss of generality let us assume that n is odd. Also, for conciseness, in
the remaining of the proof of Theorem 3 we are going to omit “mod n.” We
proceed with the proof of Lemma 3.

Proof of Lemma 3. We define a symmetric bimatrix game G′, with n strategies
per player corresponding to the different nodes of the game GG. The payoff
matrices (R,C) of the row and column players of G′ are defined as follows. For
all u, v ∈ V :

Ru,v = M · Γu,v +
1
n
P̄Tu ; Cu,v = −M · Γu,v +

1
n
P̄Tv ;

where Γu,v is the payoff matrix defined in the proof of Theorem 2. Since the game
G′ is symmetric, there exists a symmetric equilibrium (x, x), where x = (xu)u∈V .
We will argue first that xu ≥ 1

n −
1
Z , for all u ∈ V ; from this we can easily

deduce that xu ∈
[

1
n −

n
Z ,

1
n + n

Z

]
, for all u. Take u ∈ arg minu{xu} and suppose

that xu < 1
n −

1
Z . Then there exists a pair of nodes v and (v + 2) such that

xv+2 − xv >
1
nZ . Indeed, if xv+2 − xv ≤ 1

nZ for all v, it would be easy to deduce
(because n is odd) that xv ≤ xu + 1

Z < 1
n , for all v, which is clearly impossible.

Now, given that xv+2 − xv > 1
nZ , the utility of the players of the game G′ for

playing pure strategy v + 1 is

M · (xv+2 − xv) +
1
n
P̄Tv+1 >

M

nZ
− αmax > αmax,

since αmax is a bound on the absolute value of every entry in the payoff matrices
of the game GG, every node has at most n neighbors, and M

nZ > 2αmax. On the
other hand, since u ∈ arg minu{xu} it follows that the payoff of the players of
the game G′ for playing pure strategy u− 1 is

M · (xu − xu−2) +
1
n
P̄Tu−1 ≤ αmax.

Since (x, x) is an equilibrium, it must be that xu−1 = 0. It follows that there
must exist some w such that xw = 0 and xw−1 �= 0. But, the utility of the players
of the game G′ for playing pure strategy w − 1 is

M · (xw − xw−2) +
1
n
P̄Tw−1 ≤ αmax.

And, using again the fact that the utility for playing v+1 is larger than αmax, it
follows that xw−1 = 0 (a contradiction). This finishes the proof of Assertion (7)
taking ku := x−1

u , for all u.
Now, we need to justify (6). Since xu > 0 for all u, it follows that the expected

payoff for playing every u is the same. So, there exists c such that, for all u,

M · (xu+1 − xu−1) +
1
n
P̄Tu = c. Assertion (6) then follows. �

Now let us choose Z = n2TΛ (where Λ > 1 will be decided later), M >
2nZ · αmax, and let us define strategies for the players of G by averaging the
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strategies of the nodes of GG with the weights {1/ku}u given by Lemma 3. That
is, for all t, we define the strategy xt for each player of G as follows:

xtu:i =
1
ku

xtu(i), for all u ∈ [n], i ∈ [mu].

We show that if both players ofG adopt the sequence of strategiesxt, t = 1, 2, . . .,
defined above then the regret of each at time T is at most

(
g(T )
n + 2αmax

Λ

)
.

Lemma 4. For all mixed strategies z:

T∑
t=1

(xt)T ·R · xt ≥ zT ·R ·
(
T∑
t=1

xt

)
− g(T )

n
− 2αmax

Λ
, (8)

T∑
t=1

(xt)T · C · xt ≥
(
T∑
t=1

xt

)T

· C · z − g(T )
n

− 2αmax

Λ
. (9)

Proof of Lemma 4. Since G is symmetric it is enough to justify (8). Indeed,
for the left hand side we have:

T∑
t=1

(xt)T · R · xt =
T∑

t=1

∑
u∈[n]

1
ku

⎛⎝M ·
(

1
ku+1

− 1
ku−1

)
+

∑
[u,v]∈E

1
kv

(xt
u)TAu,vxt

v

⎞⎠
=

T∑
t=1

∑
u∈[n]

1
ku

⎛⎝− 1
n

P̄ T
u + c +

∑
[u,v]∈E

(
1
n
± n

Z

)
(xt

u)TAu,vxt
v

⎞⎠
≥

T∑
t=1

∑
u∈[n]

1
ku

⎛⎝− 1
n

P̄ T
u + c +

1
n

∑
[u,v]∈E

(xt
u)TAu,vxt

v − n

Z
nαmax

⎞⎠
= Tc − T

n

∑
u∈[n]

P̄ T
u

ku
+

1
n

∑
u∈[n]

1
ku

T∑
t=1

⎛⎝ ∑
[u,v]∈E

(xt
u)TAu,vxt

v

⎞⎠ − n2T

Z
αmax

= Tc − T

n

∑
u∈[n]

P̄ T
u

ku
+

1
n

∑
u∈[n]

1
ku

T P̄ T
u − n2T

Z
αmax

= Tc − n2T

Z
αmax = Tc − αmax

Λ
.

Let us now consider a mixed strategy z such that zu:i = 1, for some u ∈ [n] and
i ∈ [mu]. If we establish (8) for this z, it is easy to see that (8) holds for any z.

zT · R ·
(

T∑
t=1

xt

)
=

T∑
t=1

⎛⎝M ·
(

1
ku+1

− 1
ku−1

)
+

∑
[u,v]∈E

1
kv

eT
u:iA

u,vxt
v

⎞⎠
=

T∑
t=1

⎛⎝− 1
n

P̄ T
u + c +

∑
[u,v]∈E

(
1
n
± n

Z

)
eT

u:iA
u,vxt

v

⎞⎠
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≤
T∑

t=1

⎛⎝− 1
n

P̄ T
u + c +

1
n

∑
[u,v]∈E

eT
u:iA

u,vxt
v +

n

Z
nαmax

⎞⎠
= Tc − T

n
P̄ T

u +
1
n

T∑
t=1

⎛⎝ ∑
[u,v]∈E

eT
u:iA

u,vxt
v

⎞⎠ +
n2

Z
Tαmax

= Tc − T

n
P̄ T

u +
1
n

∑
[u,v]∈E

eT
u:iA

u,v

(
T∑

t=1

xt
v

)
+

n2Tαmax

Z
≤ Tc +

g(T )
n

+
αmax

Λ
,

where for the last derivation we used that the strategy sequence of the node u
of GG has regret at most g(T ). Combining the above bounds we get (8). �

We argue next the following

Lemma 5. The pair of strategies ( 1
T

∑T
t=1 x

t, 1
T

∑T
t=1 x

t) is a 2
T

(
g(T )
n + 2αmax

Λ

)
-

approximate Nash equilibrium of the game G.

Proof of Lemma 5. Let Φ := g(T )
n + 2αmax

Λ , and let us fix a pure strategy z∗

for the row player. (8) implies

T∑
t=1

(xt)T ·R · xt ≥ z∗T · R ·
(
T∑
t=1

xt

)
− Φ. (10)

Recalling that C = −R and setting z = xt we get from (9) that for all t:

−
T∑
t=1

(xt)T · R · xt ≥ −
(
T∑
t=1

xt

)T

· R · xt − Φ. (11)

Combining (10) and (11), we get

(
T∑
t=1

xt

)T

·R ·xt+Φ ≥ z∗T ·R ·
(

T∑
t=1

xt

)
−Φ,

for all t. Summing this for t = 1, . . . , T we get(
T∑
t=1

xt

)T

·R ·
(
T∑
t=1

xt

)
≥ T · z∗T ·R ·

(
T∑
t=1

xt

)
− 2ΦT.

Dividing by T 2 and recalling that that the above holds for all z∗ completes the
proof. �

We conclude the proof of Theorem 3 by arguing that the set of strategies {x̄Tu }u,
where x̄Tu = 1

T

∑T
t=1 x

t
u, comprise an approximate equilibrium of the game GG.

Denote by Γ := 2
T

(
g(T )
n + 2αmax

Λ

)
and take Ξ = n2

1−n2
Z

Γ + n3

Z 2αmax + 1
T .

Lemma 6. For all u ∈ [n], and for all mixed strategies zu of node u:∑
[u,v]∈E

(x̄Tu )T · Au,v · x̄Tv ≥
∑

[u,v]∈E
zT
u ·Au,v · x̄Tv −Ξ. (12)
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Proof of lemma 6. Suppose that (12) is violated for some pair u, zu. We are
going to contradict the assertion of Lemma 5. Indeed, let us define the following
strategy q for the row player of G:

qv:i =

{
1
kv
x̄Tv (i), if v ∈ [n] \ {u}, i ∈ [mv];

1
ku
zu(i), if v = u, i ∈ [mu];

and let us consider the change in the row player’s payoff if she replaces strategy
x̄T := 1

T

∑T
t=1 x

t by q. Clearly, the payoff from x̄T is∑
v∈[n]

1
kv

(x̄Tv )TRvx̄T , (13)

where we denote by Rv the matrix v restricted to the rows (v : i), i ∈ [mv].
Similarly, the payoff that the row player gets from q is

1
ku

(zu)TRux̄T +
∑

v∈[n]\{u}

1
kv

(x̄Tv )TRvx̄T . (14)

Subtracting the two payoffs we get that the difference between the payoff from
q and the payoff from x̄T is

1
ku

(
zT
uRux̄

T − (x̄Tu )TRux̄T
)

=
1
ku

⎛⎝ ∑
[u,v]∈E

1
kv

(zu − x̄Tu )T ·Au,v · x̄Tv

⎞⎠
=

1
ku

⎛⎝ ∑
[u,v]∈E

(
1
n
± n

Z

)
(zu − x̄Tu )T · Au,v · x̄Tv

⎞⎠
≥ 1

ku

∑
[u,v]∈E

(
1
n

(zu − x̄Tu )T · Au,v · x̄Tv −
n

Z
2αmax

)

≥ 1
ku

· 1
n

∑
[u,v]∈E

(zu − x̄Tu )T ·Au,v · x̄Tv −
1
ku

n2

Z
2αmax

≥ 1
ku

· 1
n
Ξ − 1

ku

n2

Z
2αmax > Γ,

and this contradicts the assertion of Lemma 5 that (x̄T , x̄T ) is a Γ -approximate
Nash equilibrium. �

From Lemma 6 it follows that the strategies {x̄Tu }u comprise a Ξ-approximate
Nash equilibrium of the game GG. Choosing Λ > max{8n2, 5n2αmax} it follows
that Ξ < 2.3 · n · g(T )

T + 3
T .

4 Discussion

We believe that graphical polymatrix games are useful models of important social
phenomena, such as trading or other interaction in social networks. In this paper
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we focused on the zero-sum variety of such games. Without restrictions on the
games played on the edges, it is easy to see that the problem of computing a
Nash equilibrium becomes intractable even for two strategies per player [4]. It
is interesting to understand what other classes of polymatrix games have nice
computational properties. For example, can the Nash equilibrium of such games,
with a small number of strategies at each player, be approximated well?

Our main result raises a number of other important questions. Consider a
directed graph such that along every edge (u, v) nodes u and v play the same
zero-sum game (A,−A). It is easy to see (assuming, for example, that the overall
game is non-degenerate) that each node can be assigned a value, characterizing
its expected payoff at equilibrium. This brings up an interesting question: which
structural properties of the graph and of the position of a node in it — as well as
the nature of the game A — determines these values? Such investigation could
result in important insights into networked economic activity.

Finally, in an earlier version of our paper we had included an extension of
our main result to the (ostensibly) more general case in which the games played
at the edges are strictly competitive, games that share with zero-sum games
this property: if both opponents change their mixed strategy, then their utilities
either both stay the same, or one increases while the other decreases. In subse-
quent joint work with Ilan Adler [1], however, we proved that the only examples
of such games are zero-sum games (or their trivial affine variants, resulting from
a zero-sum game by adding a constant to all payoffs of one player, or multiply-
ing them all by the same positive constant). In other words, this well known,
and much discussed in the literature, generalization of zero-sum games is, rather
astonishingly, void!
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Abstract. A variant of Rate Transition Systems (RTS), proposed by
Klin and Sassone, is introduced and used as the basic model for defin-
ing stochastic behaviour of processes. The transition relation used in our
variant associates to each process, for each action, the set of possible fu-
tures paired with a measure indicating their rates. We show how RTS can
be used for providing the operational semantics of stochastic extensions
of classical formalisms, namely CSP and CCS. We also show that our
semantics for stochastic CCS guarantees associativity of parallel compo-
sition. Similarly, in contrast with the original definition by Priami, we
argue that a semantics for stochastic π-calculus can be provided that
guarantees associativity of parallel composition.

1 Introduction

Performance and dependability issues are of utmost importance for “network-
aware” computing, due to the enormous size of systems—networks typically
consist of thousands or even millions of nodes—and their strong dependence on
mobility and interaction. Spontaneous computer crashes may easily lead to fail-
ure of remote execution or process movement, while spurious network failures
may cause loss of code fragments or unpredictable delays. The enormous mag-
nitude of computing devices involved in global computing yields failure rates
that no longer can be ignored. The presence of such random phenomena implies
that correctness of global computing software and their safety guarantees are no
longer rigid notions.

A number of stochastic process algebras have been proposed in the last two
decades with the aim of combining two very successful approaches to concurrent
systems specification and analysis, namely Labeled Transition Systems (LTS)
and Continuous Time Markov Chains (CTMC). Indeed, LTS have proved to be
a very convenient framework for providing compositional semantics of languages
for specifying large complex system and for the analysis of their qualitative prop-
erties of systems. CMTC have, instead, been used mainly in performance eval-
uation, and thus for the analysis of quantitative properties taking into account
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also aspects related to both time and probability. Examples of stochastic process
algebras include TIPP [8], PEPA [14], EMPA [2], stochastic π-calculus [22] and
StoKlaim [5]. Semantics of these calculi have been provided by resorting to vari-
ants of the Structured Operational Semantics (SOS) approach but, as noticed
in [18], they are not based on any general framework for operational semantics
descriptions of stochastic processes, and indeed differ substantially from one an-
other. Moreover, due to the different underlying models, it is rather difficult to
appreciate differences and similarities of such semantics.

The common feature of all the above mentioned approaches is that the actions
used to label transitions are enriched with rates of exponentially distributed ran-
dom variables (r.v.) characterising their mean duration. On the other hand, they
differ for the way synchronization rates are determined, the actions performed by
processes are counted, etc.. Moreover, although the same class of r.v. is assumed,
i.e. exponentially distributed ones, we have that the underlying models and no-
tions are significantly different, ranging, e.g. from multi relations for PEPA, to
proved transition systems for stochastic π-calculus, to unique rate names for
StoKlaim.

In [18], a variant of Labelled Transition Systems is introduced, namely Rate
Transition Systems (RTS), which is used for defining the stochastic semantics of
process calculi. The main feature of RTS is that the transition relation is actually
a function ρ associating a rate value in IR≥0 to each state-action-state triple:
ρ(P, α,Q) = λ > 0 if and only if P evolves via action α to Q with rate λ. Stochas-
tic semantics of process calculi are defined by relying on the general framework
of SGSOS. Moreover, in [18] conditions are put forward for guaranteeing associa-
tivity of the parallel composition operator in the SGSOS framework. It is then
proved that one cannot guarantee associativity of parallel composition operator
up to stochastic bisimilarity when the synchronisation paradigm of CCS is used
in combination with the synchronisation rate computation based on apparent
rates [14]. This implies for instance that parallel composition of Stochastic π is
not associative. And, it has to be said that associativity of parallel composition
is a higly desirable property in particular for networks and distributed systems,
especially in presence of dynamic process creation.

In the present paper, we introduce a variant of RTS where the transition rela-
tion � associates to a given process P and a given transition label α a func-
tion, denoted by P, Q,. . . , mapping each term into a non-negative real number.
The reduction P

α� P has the following meaning: if P(Q) = v, (with v �= 0),
then Q is reachable from P by executing α, the duration of such execution being
exponentially distributed with rate v; if P(Q) = 0, then Q is not reachable from

P via α. We have then that if P
α� P then ⊕P

def
=

∑
QP(Q) represents the

total rate of α in P . Moreover, we adapt the apparent rate approach to calculi
like CCS and, consequently, π-calculus. This adaptation guarantees associativity
and commutativity properties of parallel composition. The approach is somewhat
reminiscent of that of Deng et al. [7] where probabilistic process algebra terms
are associated to a discrete probability distribution over such terms.
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In the rest of the paper, after introducing Rate Transition Systems, we show
how they can be used for providing the stochastic operational semantics of the
two classical formalisms CSP and CCS. We prove that our characterizations of
the stochastic variants of the above mentioned process calculi either are in full
agreement with the originally proposed ones or show the differences. Further-
more, we show that in our approach associativity of the parallel composition
operator can be guaranteed also in the stochastic extensions of calculi based on
a two party synchronisation pattern, like CCS and π-calculus. We also introduce
a natural notion of bisimulation over RTS that is finer than Markovian bisimula-
tion and use it to establish the associativity results. Due to space limitation, all
proofs are omitted. For the same reason, the treatment of stochastic π-calculus
is omitted; the complete RTS semantics, related results and proofs can be found
in detail in [6].

2 Rate Transitions Systems

The semantics of process algebras is classically described by means of Labelled
Transitions Systems (LTS). The semantics of stochastic process algebras [11,15]
are classically defined by means of Continuous Time Markov Chains (CTMC).
Here we assume the reader is familiar with basic notions concerning CTMC and
exponentially distributed r.v. [9]; we only recall our working definition of CTMC:

Definition 1. A Continuous-Time Markov Chain (CTMC) is a tuple (S,R)
where S is a countable set of states and R a rate matrix assigning non-negative
values to pairs of states, such that for all s ∈ S,

∑
s′∈SR[s, s′] converges1.

Intuitively, (S,R) models a stochastic process where, for any state s ∈ S, when-
ever

∑
s′∈SR[s, s′] > 0, the probability to take an outgoing transition from s

by (continuous) time t is 1 − e−
∑

s′∈S R[s,s′]·t, i.e. the s-residence time is ex-
ponentially distributed with rate

∑
s′∈SR[s, s′], and the probability to take

a transition from state s to state s′, given that s is left, is R(s,s′)∑
s′′∈S R[s,s′′] . If∑

s′∈S R[s, s′] = 0, then s is said to be absorbing, i.e. if the process enters
state s, it remains in s forever. In what follows, the rate matrix function R
of any CTMC (S,R) is lifted to sets of states C ⊆ S in the natural way:

R[s, C]
def
=
∑
s′∈C R[s, s′].

2.1 Rate Transition Systems and Markov Chains

We now present RTS, a generalisation of LTS, specifically designed for describing
stochastic behaviours of process algebras and instrumental to generate CMTC
to be associated to given systems. RTS have been introduced in [18], however,
in that work, a rate is associated to each transition, while in our approach the
transition relation associates to each state and to each action a function mapping
each state to a non negative real number. Formally:
1 Notice that this definition allows self loops in CTMC, i.e. R[s, s] > 0 is allowed. We

refer the reader to [1] for details.
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Definition 2 (Rate Transition Systems). A rate transition systems is a
triple (S,A, � ) where S is a set of states, A a set of transition labels, �
a subset of S × A×ΣS and ΣS is the set [S → IR≥0] of total functions from S
to IR≥0.

In the sequel RTS will be denoted by R,R1,R′,. . . , while P,Q,R, . . . will range
over the elements of ΣS . Intuitively, s1

α� P and P(s2) = v ∈ IR>0 means
that s2 is reachable from s1 via the execution of α with rate v. On the other hand,
P(s2) = 0 means that s2 is not reachable from s1 via α. Notice that the above
definition, differently from the original one in [18], includes also nondeterministic
systems where from a certain state the same actions can lead to different rate
functions.

Notation 1. In the sequel, we will use ∅ to denote the constant function 0, while
[s1 �→ v1, . . . , sn �→ vn] will denote a function associating vi to si and 0 to all
the other states. Moreover, for X ⊆ S and P ∈ ΣS P(X) =

∑
s∈X P(s) and

⊕P denotes P(S).

Definition 3. Let R = (S,A, � ) be an RTS, then:

– R is well defined if and only if for each s ∈ S, α ∈ A and P ∈ ΣS such
that s

α� P we have: ∃x : ⊕P ≤ x
– R is image finite if and only if for each s ∈ S, α ∈ A and P such that

s
α� P either P = ∅ or P = [s1 �→ λ1, . . . , sn �→ λn]

– R is fully stochastic if and only if for each s ∈ S, α ∈ A, P and Q we
have: s

α� P, s
α� Q =⇒ P = Q

In the following we will only consider well defined RTS.
In general, given RTS (S,A, � ) we will be interested in the CTMC

composed by the states reachable from a subset C of S only via the actions in
A′ ⊆ A. To that purpose we use the following two definitions:

Definition 4. For sets C ⊆ S and A′ ⊆ A, the set of derivatives of C through
A′, denoted Der(C,A′), is the smallest set such that:

– C ⊆ Der(C,A′),
– if s ∈ Der(C,A′) and there exists α ∈ A′ and Q ∈ ΣS such that s

α� Q
then {s′ | Q(s′) > 0} ⊆ Der(C,A′)

Definition 5. Let R = (S,A, � ) be a fully stochastic RTS, for C ⊆ S,
the CTMC of C, when one considers only actions in a finite set A′ ⊆ A is
defined as CTMC[C,A′]

def
= (Der(C,A′),R) where for all s1, s2 ∈ Der(C,A′):

R[s1, s2]
def
=
∑
α∈A′ Pα(s2) with s1

α� Pα.

Notice that RTS are naturally mapped to Continuous Time Markov Decision
Processes [23,12]. Moreover, it turns out that general, non-fully stochastic, RTS
are a convenient framework for automatic time bounded reachability probability
analysis of Interactive Markov Chains [10,12], where nondeterminism and time
are treated in an orthogonal way.
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2.2 Rate Aware Bisimulation

Two key concepts in the theory of process algebras are the notions of behavioural
equivalence and congruence. In the literature, many behavioural equivalences
have been proposed which differ in what they consider essential aspects of ob-
servable behaviour. More recently, such behavioural equivalences have been ex-
tended to Markovian process algebras.

In this paper, we focus on Strong Markovian Bisimulation Equivalence [4,14],
which has a direct correspondence with the notion of lumpability—a successful
minimisation technique—of CTMCs [14,17], and for which efficient algorithms
have been devised for computing the best possible lumping [13].

Definition 6 (Strong Markovian bisimilarity [4]). Given CTMC (S,R)

– An equivalence relation E on S is a Markovian bisimulation on S if and only
if for all (s1, s2) ∈ E and for all equivalence classes C ∈ S/E the following
condition holds: R[s1, C] ≤ R[s2, C].

– Two states s1, s2 ∈ S are strong Markovian bisimilar, written s1 ∼M s2, if
and only if there exists a Markovian bisimulation E on S with (s1, s2) ∈ E.

We introduce Rate Aware Bisimulation Equivalence as the natural equivalence
induced by the next state function and show that it implies Strong Markovian
Bisimulation Equivalence. We point out that our semantic approach makes the
definition of the Rate Aware Bisimulation Equivalence very natural.

Definition 7 (Rate Aware Bisimilarity). Given RTS (S,A, � )

– An equivalence relation E ⊆ S × S is a rate aware bisimulation if and only
if, for all (s1, s2) ∈ E, for all α and P:

s1
α� P =⇒ ∃Q : s2

α� Q ∧ ∀C ∈ C/EP(C) = Q(C)

– Two states s1, s2 ∈ S are rate aware bisimilar (s1 ∼ s2) if there exists a rate
aware bisimulation E such that (s1, s2) ∈ E.

For instance, if we consider the RTS with set of states {si|1 ≤ i ≤ 7}, where
s1

α� [s3 �→ λ1, s2 �→ λ2], s4
α� [s5 �→ λ3, s6 �→ λ4] and s7

α� [s8 �→ λ5],
states s1, s4 and s7 are rate aware bisimilar whenever λ1 + λ2 = λ3 + λ4 = λ5.

Notice that rate aware bisimilarity and strong bisimilarity [19] coincide when
one does not take rates into account, i.e. when the range of rate functions is
{0, 1}. The following proposition guarantees that if two processes are rate aware
equivalent, then the corresponding states in the generated CTMC are strong
Markovian equivalent.

Proposition 1. Let R = (S,A, � ) be a fully stochastic RTS, for each
A′ ⊆ A and for each s1, s2 ∈ S and CTMC[{s1, s2}, A′]: s1 ∼ s2 =⇒ s1 ∼M s2

Notice that the reverse is not true. For example, if one considers RTS with states
{si|1 ≤ i ≤ 6} where s1

α� [s3 �→ λ1], s1
γ� [s2 �→ λ2], s4

β� [s5 �→ λ5],
and s4

α� [s5 �→ λ1], , states s1 and s4 are Markovian equivalent in the
CTMC[{s1, s4}, {α}], which does not contain states s2 and s5, but s1 �∼ s4.
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3 PEPA: A Process Algebra for Performance Evaluation

The first process algebra we take into account is the Performance Evaluation Pro-
cess Algebra (PEPA) developed by Hillston [14]. This algebra enriches CSP [16]
with combinators useful for modeling performance related features.

Like in CSP, in PEPA systems are described as interactions of components
that may engage in activities. Components reflect the behaviour of relevant parts
of the system, while activities capture the actions that the components perform.
The specification of a PEPA activity consists of a pair (α, λ) in which action α
symbolically denotes the performed action, while rate λ characterises the nega-
tive exponential distribution of its duration.

If A is a set of actions, ranged over by α, α′, α1, . . ., then PPEPA is the set of
process terms P, P ′, P1, . . . defined according to the following grammar

P ::= (α, λ).P | P + P | P��LP | P/L | A

where λ is a positive real number, L is a subset of A and A is a constant which
is assumed defined by an appropriate equation A

 
= P for some process term P ,

where constants occur only guarded in P , i.e. under the scope of a action prefix.
Component (α, λ).P models a process that perform action α and then behaves

like P . The action duration is determined by a random variable exponentially
distributed with rate λ.

Component P + Q models a system that may behave either as P or as Q,
representing a race condition between components. The cooperation operator
P ��L Q defines the set of action types L on which components P and Q must
synchronise (or cooperate); both components proceed independently with any
activity not occurring in L. The expected duration of a cooperation of activities
α ∈ L is a function of the expected durations of the corresponding activities in
the components. Roughly speaking, it corresponds to the longest one (the actual
definition can be found in [14], where the interested reader can find all formal
details of PEPA). Components P/L behaves as P except that activities in L are
hidden and appearing as τ transitions. The behaviour of process variable A is
that of P , provided that a definition A

 
= P is available for A.

We now provide the stochastic semantics of PEPA in terms of RTS. To this
aim, we consider the RTS RPEPA = (PPEPA,A, � ) where � is formally
defined in Fig. 1. These rules permit deriving with a single proof all possible
configurations reachable from a process with a given transition label.

Rule (Act) states that (α, λ).P evolves with α to [P �→ λ] (see Notation 1).
Rule (∅-Act) states that no process is reachable from (α, λ).P by performing
activity β �= α.

Rule (Sum) permits modeling stochastic behaviors of non deterministic choice.
This rule states that the states reachable from P +Q via α are all those that can
be reached either by P or by Q. Moreover, transition rates are determined by
summing local rates of transitions occurring either in P or in Q. Indeed, P +Q
denotes the next state function R such that: R(R) = P(R) + Q(R).
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(α, λ).P
α� [P �→ λ]

(Act)
α = β

(α, λ).P
β� ∅

(∅-Act)

P
α� P Q

α� Q

P + Q
α� P + Q

(Sum)
P

α� P Q
α� Q α ∈ L

P��LQ
α� P��LQ+P��LQ

(Int)

P
α� P Q

α� Q α ∈ L

P��LQ
α� P��LQ · min{⊕P,⊕Q}

⊕P·⊕Q

(Coop)

P
α� P α ∈ L

P/L
α� P/L

(P-Hide) α ∈ L

P/L
α� ∅

(∅-Hide)

P
τ� Pτ ∀α ∈ L.P

α� Pα

P/L
τ� Pτ/L +

∑
α∈L Pα/L

(Hide) P
α� P A


= P

A
α� P

(Call)

Fig. 1. PEPA Operational Semantics Rules

Rules (Int) and (Coop) govern cooperation. Rule (Int) states that if α �∈
L computations of P��LQ are obtained by considering the interleaving of the
transitions of P and Q. Hence, if we let P and Q be the next state functions of
P and Q after α (α �∈ L), the next state function of P��LQ after α is obtained
by combining P��LQ and P��LQ, i.e. the next state function of P , composed
with Q, and the next state function of Q, composed with P , respectively, as
defined below.

Notation 2. For next state function P, process algebra operator op and process
Q we let P op Q (resp. Q op P, op P) be the function R such that R(R) is
P(P ) if R = P op Q (resp. Q op P , op P ) and 0 otherwise.

Rule (Coop) is used for computing the next state function when a synchroniza-
tion between P and Q occurs. In that case, the next state function of P��LQ is
determined as P��LQ, as defined below.

Notation 3. For next state functions P, Q and set L ⊆ A, P��LQ is the
function such that P��LQ(R) is P(P ) ·Q(Q) if R = P��LQ, 0 otherwise.

As described in [14], actual rates in P��LQ are multiplied by the minimum of
the apparent rate of α in P and Q and divided by their product.

Notation 4. For next state functions P, and x, y ∈ IR≥0 P · xy is the function
R such that R(R) = P(R) · xy if y �= 0, ∅ otherwise.

The apparent rates of α in a process P is defined as the total capacity of P to
carry out activities of type α. In [14], the apparent rate of α in a process P is
computed by using an auxiliary function rα(P ). By using our RTS approach, if
P

α� P, then the apparent rate of α in P is determined as: ⊕P =
∑
QP(Q).

Rule (P-Hide) states that the set of processes reachable from P/L with α
is determined by the set of processes reachable from P with α. Rule (∅-Hide)
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states that no process is reachable from P/L with α ∈ L. Rule (Hide) states
that the set of processes reachable from P/L with a τ is determined by the set
of processes reachable from P with τ and by considering, for each α in L, the
set of processes reachable from P with α.

Notice that ∀α ∈ L.P
α� Pα in the premises of rule (Hide) denotes that

to prove a transition one has to prove a transition for each α ∈ L. Theorem 1
below guarantees the finiteness of the proposed semantics.

Theorem 1. RPEPA is fully stochastic and image finite.

In the sequel by �
PEPA we mean the transition relation defined in [14].

Theorem 2. For all P,Q ∈ PPEPA and α ∈ A the following holds: P
α� P∧

P(Q) = λ > 0 if and only if P
α,λ�

PEPA Q.

The RTS associated to PEPA processes can be used for associating to each
process P a CTMC. This is obtained by considering CTMC[{P},A] where A is
the set of all activities that process P can perform.

4 Stochastic CCS

The second stochastic process algebra we consider in this paper is a stochas-
tic extension of the Calculus of Communicating System (CCS) [19]. Differently
from CSP, where processes composed in parallel cooperate in a multi-party syn-
chronization, in CCS parallel processes interact with each other by means of a
two-party synchronisation.

In Stochastic CCS (StoCCS), output actions are equipped with a parameter
(a rate, λ ∈ IR+) characterising a random variable with a negative exponential
distribution, modeling the duration of the action. Input actions are annotated
with a weight (ω ∈ N+): a positive integer that will be used for determining the
probability that the specific input is selected when a complementary output is
executed. This approach is inspired by the passive actions presented in [14].

Let C be a set of channels ranged over by a, b, c, . . ., C denotes the co-names
of C. Elements in C are ranged over by a, b, c, . . .. A synchronization between
processes P and Q occurs when P sends a signal over channel (action a) while Q
receives a signal over the same channel (action a). The result of a synchronization
is an internal, or silent, transition that is labeled τ . In StoCCS a synchronization
over channel a is rendered by the label ←→a . The reasons for this choice will be
clarified later. We let

←→C be {←→a |a ∈ C}. The set of labels L is then C∪C∪{τ}∪←→C ,
while its elements are ranged over by �, �′, �1, . . ..
PCCS is the set of Stochastic CCS process terms P, P ′, P1, Q,Q′, Q1 . . . defined

according to the following grammar:

P,Q ::= 0 | G | P |Q | P [f ] | P\L | A G ::= aω.P | aλ.P | G+ G

where L ⊆ C while f is a renaming function, i.e. a function in L → L such that
f(a) = f(a), f(←→a ) =

←−→
f(a) and f(τ) = τ . A is a constant which is assumed being
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aω.P
a� [P �→ ω]

(In)
� = a

aω.P
�� ∅

(∅-In)

aλ.P
a� [P �→ λ]

(Out)
� = a

aλ.P
�� ∅

(∅-Out)

P
�� P Q

�� Q

P + Q
�� P + Q

(Sum)
P

�� P Q
�� Q � = ←→a

P |Q �� P|Q + P |Q
(Int)

P
←→a� P P

a� Pi P
a� Po Q

←→a� Q Q
a� Qi Q

a� Qo

P |Q
←→a� P|Q + P |Q + Pi·Qo

⊕Pi
+ Po·Qi

⊕Qi

(Sync)

0
�� ∅

(Nil) � ∈ L

P\L �� ∅
(∅-Res)

P
�� P � ∈ L

P\L �� P\L
(P-Res)

P
τ� Pτ ∀� ∈ L.P

←→
�� P←→

�

P\L τ� Pτ\L +
∑

�∈L P←→
�
\L

(Res)

∀� : P
�� P�

P
β� ∑

�:f(�)=β P�[f ]
(Ren) A



= P P

�� P

A
�� P

(Call)

Fig. 2. StoCCS Operational Semantics

defined by a proper defining equation A
 
= P for some process term P , where

each constant can occur only guarded in P . For the sake of notational simplicity,
we assume that each process G never contains at the same time an input and
an output action on the same channel. In other words, processes of the form
a.P +a.Q are forbidden. This does not introduce a significant restriction because
such processes do not have an obvious meaning in the context of stochastic
process algebras.

Action prefixing and non-deterministic choice have the same meaning as in
PEPA. Process P |Q models a system where P and Q proceed in parallel and
interact with each other using the two-parties synchronisation described above.
Restriction (P\L) and renaming (P [f ]) are respectively used for inhibiting in-
teractions of P over channels in L and for renaming channels in P according to
function f .

Following a similar approach as the one used for PEPA, we now define
the stochastic semantics of StoCCS in term of RTS. We let RStoCCS =
(PCCS,L, � ), where � is formally defined in Fig. 2.

The proposed semantics follows the same approach used by Priami in [22]
for the stochastic π-calculus and makes use of the PEPA notions of active and
passive actions. All the rules have the expected meaning and are similar to those
defined for PEPA and simply render the CCS semantics in a context where all
the possible next processes are computed in a single derivation.

More attention has to be paid to rule (Sync) that is used for deriving synchro-
nisations of parallel processes. In PEPA we have multi-party synchronisations.
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Hence, the next states of P��LQ after � ∈ L can be simply obtained by com-
bining the possible next states of P and Q after �. In CCS we have two-party
synchronisations, thus the next states of P |Q after ←→a , i.e. after a synchronisa-
tion over channel a, are: (1) the next states of P alone after ←→a , in parallel with
Q; (2) the next states of Q alone after ←→a , in parallel with P ; (3) the next states
of P after a in parallel with the next states of Q after a; (4) the next states of P
after a in parallel with the next states of Q after a. Moreover, synchronisation
rates between inputs in P and outputs in Q (and vice-versa) are obtained by
multiplying the input weights of P , i.e. Pi, by the output rates of Q, i.e. Qo,
over the total weight of all the inputs in P , i.e. ⊕Pi (and vice-versa). As an

example, consider P
 
= a2.P1 and Q

 
= a4.Q1|a2.Q2, then we have that ←→a leads

process P |Q to P1|(Q1|a2.Q2) with rate 4
3 and to P1|(a4.Q1|Q2) with rate 2

3 .

Theorem 3. RStoCCS is fully stochastic and image finite.

It is easy to prove that the stochastic semantics of Fig. 2 coincides with the
one proposed in [18]. Unfortunately, the proposed semantics, like in [18], does
not respect a standard and expected property of the CCS parallel composition.
Indeed, using the above semantics, this operator is not associative. For instance
aλ.P |(aω1 .Q1|aω2 .Q2) and (aλ.P |aω1 .Q1)|aω2 .Q2 exhibit different stochastic be-
haviours. The former, after ←→a , reaches P |(Q1|aω2 .Q2) with rate λ·ω1

ω1+ω2
and

P |(aω1 .Q1|Q2) with rate λ·ω2
ω1+ω2

. The latter reaches both (P |Q1)|aω2 .Q2 and
(P |aω1 .Q1)|Q2 with rate λ. From the results in [18] it follows that it is im-
possible to define an SGSOS semantics that guarantees the associativity of CCS
parallel composition. It is moreover worth pointing out that the definition of
the semantics for the stochastic π-calculus, as in [22], suffers of the same prob-
lem [18]. In the sequel, we show that this problem can be overcome by using our
approach. To that purpose we modify rule (Sync) in such way that: the rates
of the synchronisations occurring in P and Q are updated in order to take into
account the inputs available in both P and Q; the rates of the synchronisations
between outputs in P and inputs in Q (and vice-versa) have to be divided by
the total rate of input in both P and Q. Rule (Sync) can be reformulated as
follows:

P
←→a� P P

a� Pi P
a� Po Q

←→a� Q Q
a� Qi Q

a� Qo

P |Q
←→a� P|Q·⊕Pi

⊕Pi+⊕Qi
+ P |Q·⊕Qi

⊕Pi+⊕Qi
+ Pi·Qo

⊕Pi+⊕Qi
+ Po·Qi

⊕Pi+⊕Qi

Using this rule, the associativity of parallel composition, up to rate aware
bisimulation, is guaranteed. E.g., in the case of aλ.P |(aω1 .Q1|aω2 .Q2) and
(aλ.P |aω1 .Q1)|aω2 .Q2, after ←→a , the following rate functions are reachable:[

P |(Q1|aω2 .Q2) �→
λ · ω1

ω1 + ω2
, P |(aω1 .Q1|Q2) �→

λ · ω2

ω1 + ω2

]
[
(P |Q1)|aω2 .Q2 �→

λ · ω1

ω1 + ω2
, (P |aω1 .Q1)|Q2 �→

λ · ω2

ω1 + ω2

]
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Theorem 4. In StoCCS parallel composition is associative up to rate aware
bisimilarity, i.e. for each P , Q and R, P |(Q|R) ∼ (P |Q)|R

Notice that this result is not in contradiction with the one presented in [18]
where it is proved that associativity of parallel composition does not hold if one
uses PEPA-like synchronisation rates for CCS. Indeed, our result is obtained
thanks to the use of a specific explicit label for synchronisation transitions (←→a )
that in [18] are labelled by τ . Our choice permits updating synchronisation rates
while taking into account possible new inputs popping up along the derivation.
Notice finally that, it is easy to prove that ∼ is a congruence for each opera-
tor of StoCCS. The CTMC associated to a StoCCS process P is obtained by
considering CTMC[{P},←→C ∪ {τ}].

5 Conclusions

We have introduced a variant of Rate Transition Systems and used them to
define the semantics of stochastic extensions of several process algebras among
which CSP, CCS and π-calculus [6]. An original feature of this variant is that the
transition relation associates to each process, for each action, the set of possible
futures paired with a measure indicating their rates. This feature leads to a
compact, uniform and elegant definition of the operational semantics. In one
case this has also lead to the proposal of an alternative semantics for stochastic
CCS that enjoys associativity of the parallel composition operator. We have
also introduced a natural notion of bisimulation over RTS that is finer than
Markovian bisimulation and useful for reasoning about stochastic behaviours.

Even if in the present paper we have considered a synchronisation mechanism
implicitly based on active and passive actions, other synchronisation patterns
proposed in the literature can be easily dealt with as well. For instance, one
could associate proper rates both to output and input actions and define the
synchronisation rate as a suitable function of such rates. Finally, we have applied
our framework also to the definition of stochastic process calculi for service
oriented computing [21,3]. Interesting future work includes the further study
of the format of the RTS rules aiming at reaching similar general results on
bisimulation congruence as in [18].

References

1. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-Checking Algorithms
for Continuous-Time Markov Chains. IEEE Transactions on Software Engineer-
ing 29(6), 524–541 (2003)

2. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent pro-
cesses with nondeterminism, priorities, probabilities and time. Theoret. Comput.
Sci. 202(1-2), 1–54 (1998)

3. Bravetti, M., Latella, D., Loreti, M., Massink, M., Zavattaro, G.: Combining
timed coordination primitives and probabilistic tuple spaces. In: TGC 2008. LNCS,
vol. 5474, pp. 52–68. Springer, Heidelberg (2009)



446 R. De Nicola et al.

4. Brinksma, E., Hermanns, H.: Process Algebra and Markov Chains. In: Brinksma,
E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000. LNCS,
vol. 2090, pp. 183–231. Springer, Heidelberg (2001)

5. De Nicola, R., Katoen, J.-P., Latella, D., Loreti, M., Massink, M.: Model checking
mobile stochastic logic. Theoretical Computer Science 382(1), 42–70 (2007)

6. De Nicola, R., Latella, D., Loreti, M., Massink, M.: Rate-based Transition Systems
for Stochastic Process Calculi, http://www.dsi.unifi.it/~loreti/

7. Deng, Y., van Glabbeek, R., Hennessy, M., Morgan, C., Zhang, C.: Characterising
testing preorders for finite probabilistic processes. In: Proceedings of LICS 2007,
pp. 313–325. IEEE Computer Society, Los Alamitos (2007)

8. Glotz, N., Herzog, U., Rettelbach, M.: Multiprocessor and distributed systems
design: The integration of functional specification and performance analysis us-
ing stochastic process algebras. In: Donatiello, L., Nelson, R. (eds.) PECCS 1993.
LNCS, vol. 729. Springer, Heidelberg (1993)

9. Haverkort, B.R.: Markovian Models for Performance and Dependability Evalua-
tion. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and
FMPA 2000. LNCS, vol. 2090, pp. 38–83. Springer, Heidelberg (2001)

10. Hermanns, H.: Interactive Markov Chains. In: Hermanns, H. (ed.) Interactive
Markov Chains. LNCS, vol. 2428, pp. 57–88. Springer, Heidelberg (2002)

11. Hermanns, H., Herzog, U., Katoen, J.-P.: Process algebra for performance evalua-
tion. Theoret. Comput. Sci. 274(1-2), 43–87 (2002)

12. Hermanns, H., Johr, S.: Uniformity by Construction in the Analysis of Nondeter-
ministic Stochastic Systems. In: DSN 2007, pp. 718–728. IEEE Computer Society
Press, Los Alamitos (2007)

13. Hermanns, H., Siegle, M.: Bisimulation algorithms for stochastic process algebras
and their BDD-based implementation. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999,
ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 244–264. Springer, Hei-
delberg (1999)

14. Hillston, J.: A compositional approach to performance modelling. Distinguished
Dissertation in Computer Science, Cambridge University Press, Cambridge (1996)

15. Hillston, J.: Process algebras for quantitative analysis. In: IEEE Symposium on
Logic in Computer Science, pp. 239–248. IEEE Computer Society Press, Los Alami-
tos (2005)

16. Hoare, C.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs
(1985)

17. Kemeny, J., Snell, J.: Finite Markov Chains. Springer, Heidelberg (1976)
18. Klin, B., Sassone, V.: Structural operational semantics for stochastic process cal-

culi. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968.
Springer, Heidelberg (2008)

19. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

20. Milner, R., Parrow, J., Walker, J.: A Calculus of Mobile Processes, I and II. Infor-
mation and Computation 100(1), 1–77 (1992)

21. Nicola, R.D., Latella, D., Loreti, M., Massink, M.: MarCaSPiS: a markovian exten-
sion of a calculus for services. In: Proc. of SOS 2008. ENTCS, Elsevier, Amsterdam
(2008)

22. Priami, C.: Stochastic π-Calculus. The Computer Journal 38(7), 578–589 (1995)
23. Puterman, M.: Markov Decision Processes (1994)

http://www.dsi.unifi.it/~loreti/


Improved Algorithms for Latency Minimization
in Wireless Networks�

Alexander Fanghänel, Thomas Keßelheim, and Berthold Vöcking
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Abstract. In the interference scheduling problem, one is given a set
of n communication requests described by source-destination pairs of
nodes from a metric space. The nodes correspond to devices in a wireless
network. Each pair must be assigned a power level and a color such
that the pairs in each color class can communicate simultaneously at the
specified power levels. The feasibility of simultaneous communication
within a color class is defined in terms of the Signal to Interference plus
Noise Ratio (SINR) that compares the strength of a signal at a receiver
to the sum of the strengths of other signals. The objective is to minimize
the number of colors as this corresponds to the time needed to schedule
all requests.

We introduce an instance-based measure of interference, denoted by
I , that enables us to improve on previous results for the interference
scheduling problem. We prove upper and lower bounds in terms of I on
the number of steps needed for scheduling a set of requests. For gen-
eral power assignments, we prove a lower bound of Ω(I/(log Δ log n))
steps, where Δ denotes the aspect ratio of the metric. When restricting
to the two-dimensional Euclidean space (as previous work) the bound
improves to Ω(I/ log Δ). Alternatively, when restricting to linear power
assignments, the lower bound improves even to Ω(I). The lower bounds
are complemented by an efficient algorithm computing a schedule for
linear power assignments using only O(I log n) steps. A more sophis-
ticated algorithm computes a schedule using even only O(I + log2 n)
steps. For dense instances in the two-dimensional Euclidean space, this
gives a constant factor approximation for scheduling under linear power
assignments, which shows that the price for using linear (and, hence,
energy-efficient) power assignments is bounded by a factor of O(log Δ).

In addition, we extend these results for single-hop scheduling to multi-
hop scheduling and combined scheduling and routing problems, where
our analysis generalizes previous results towards general metrics and im-
proves on the previous approximation factors.

1 Introduction

The media access control (MAC) layer of wireless networks is responsible for
scheduling signals taking into account interference caused by concurrent trans-
missions. Early algorithmic studies of this task were based on graph theoretical
� This work has been supported by the UMIC Research Centre, RWTH Aachen Uni-

versity.
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vicinity models (see, e.g., [10,17,8]). In more recent literature, these studies have
been critized to not model interference appropriately as they assume that the in-
terference caused by signals ends abruptly at some boudary (see, e.g.,[14,15,4,5]).

Like the other recent studies mentioned above, we describe interference using
the so-called physical model in which it is assumed that the strength of a signal
fades with the distance from the sender. This fading is described by a path loss
exponent α ≥ 1.1 The strength of a signal sent with some power p received by a
node (transceiver) v at distance d from the source of the signal is assumed to be
p/dα. The node v can successfully receive the signal if its strength is sufficiently
large in comparison to the sum of other signals that are sent simultaneously plus
ambient noise, that is, if the signal to interference plus noise ratio (SINR) is
above some threshold β > 1, the so-called gain.

The interference scheduling problem is formally defined as follows. Let V be
a set of nodes from a metric space. Let d(u, v) denote the distance between two
nodes u and v. One is given a set R of n requests consisting of pairs (ui, vi) ∈ V 2,
where ui is the source and vi the destination of the signal from the i-th request.
For every i ∈ [n] := {1, . . . ,n}, one needs to specify a power level pi > 0 and a
color ci ∈ [k] := {1, . . . , k} such that the latency, i. e., the number of colors, k, is
minimized and the pairs in each color class satisfy the SINR constraints for all
signals: For every i ∈ [n], it must hold that

pi
d(ui, vi)α

≥ β

⎛⎜⎜⎝ ∑
j∈[n]\{i}
cj=ci

pj
d(uj , vi)α

+ ν

⎞⎟⎟⎠ ,

where ν ≥ 0 expresses ambient noise. The so-called scheduling complexity of R,
as introduced by Moscribroda and Wattenhofer [14], is the minimal number of
colors (steps) needed to schedule the requests in R.

In this work, we mostly focus on linear power assignments, i.e., for a request
pair (ui, vi) the power is proportional to d(ui, vi)α and, hence, linear in fading. Lin-
ear power schemes also have been considered in [2,19,4]. Our analysis will show,
that one loses only a factor of order log Δ due to restricting to this power scheme
(where the aspect ratio Δ denotes the ratio between the longest and shortest dis-
tance between any two nodes). Let us remark that the dependence on the aspect
ratio Δ cannot be avoided using the linear power assignment which, without tak-
ing into account other parameters than n, cannot achieve an approximation ratio
better than Ω(n) [14,6]. Besides leading to good performance results, linear power
assignments have the advantage being energy-efficient as the minimal transmis-
sion power required to transmit along a distance d is Θ(dα).

1.1 Our Contribution

We introduce an instance-based measure of interference that enables us to esti-
mate the scheduling complexity of any set of requests within small factors.
1 It is usually assumed, that α satisfies 2 < α < 5. Our analysis holds for any constant

α ≥ 1, unless stated otherwise.
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Definition 1 (Measure of Interference). Let R ⊆ V ×V be a set of requests.
For w ∈ V define

Iw(R) =
∑

(u,v)∈R
min

{
1,

d(u, v)α

d(u,w)α

}
.

Using this we define the measure of interference induced by the requests R:

I = I(R) = max
w∈V

Iw(R) .

We prove upper and lower bounds on the number of steps needed for scheduling
R in terms of I. For general power assignments and general metrics, we prove
a lower bound of Ω(I/logΔ log n) steps. When restricting to the two-dimensional
Euclidean space and assuming α > 2 the bound improves to Ω(I/logΔ). Al-
ternatively, when restricting to linear power assignments and assuming general
metrics, this bound improves even to Ω(I). The lower bounds are complemented
by an efficient algorithm computing a schedule for linear power assignments us-
ing only O(I log n) steps. A more sophisticated algorithm computes a schedule
using even only O(I + log2 n) steps. This gives a constant factor approximation
of the optimal schedule under linear power assignments for dense instances, i.e.,
if I ≥ log2 n. Combining this upper bound for linear power assignments with the
lower bound for general power assignments and the two-dimensional Euclidean
space shows that the price for using linear, in other words, energy-efficient power
assignments is of order O(log Δ).

We further extend our results towards multi-hop scheduling and routing. In
the multi-hop scheduling problem, a request is defined by a sequence of pairs,
so-called paths, rather than a single pair of nodes. Along each of these paths,
one should forward a signal from the first to the last node on the path. Let
D denote the maximum number of hops on each of these paths, the so-called
dilation. Generalizing, the lower bounds from the single-hop to the multi-hop
problem, shows that one needs at least Ω(I/logΔ logn + D) steps, for general
power assignments, Ω(I/logΔ+D) for the Euclidean space, and Ω(I +D) steps,
for linear power assignments. We show how to extend our second algorithm for
the single-hop scheduling to the multi-hop case, where it produces a schedule of
at most O(I + D · log2 n) steps.

Our results for multi-hop scheduling reminds of the O(congestion+dilation)-
type results that have been shown previously for routing in wired networks, see,
e.g. [11,12,1,18]. In fact, this previous work was the inspiration to search for
an instance-based density measure that allows to derive lower bounds for the
scheduling complexity in wireless networks like the congestion in wired networks.
At this point, let us remark that, unlike the congestion, our interference mea-
sure I does not trivially give a lower bound on the number of steps needed for
scheduling a set of requests but it requires a careful analysis as also the upper
bound does.

Finally, we extend our result to combined multi-hop routing and schedul-
ing. Now requests are again defined by pairs of nodes. The problem is to
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find source-destination paths for all requests and to compute a power as-
signment and a schedule delivering all packets using as few steps as possi-
ble. Combining our multi-hop scheduling algorithm with a linear programming
approach for computing paths that minimize the term max{I,D} gives an
O(log Δ log3 n)-approximation for the combined routing and scheduling problem
in general metrics. In the two-dimensional Euclidean space the approximation
factor is O(log Δ log2 n). This generalizes the results from Chafekar et al. [4]
(cf. Section 1.2) towards general metrics and improves on their approximation
factors.

1.2 Related Work

The first theoretical studies about interference scheduling in the physical model
focus on topologies generated by placing nodes randomly in two-dimensional
Euclidean space, see, e.g., [7,3,9].

The study of interference scheduling with respect to arbitrary topologies
has been initiated by Moscibroda and Wattenhofer [14]. They present the first
analysis of the interference scheduling problem. However, they do not handle
general request sets but only specific kinds of sets.

This result has been extended by Moscibroda et al. [15] to arbitrary demands.
Their result is an O(log2 n · Iin) algorithm, where Iin is a certain interference
measure. This result enables them to improve the bound for strong connectivity
from O(log4 n) to O(log3 n). Unfortunately, Iin is no lower bound for the optimal
schedule length. Thus, it does not give any approximation guarantee for general
request sets since there is no comparison between Iin and the optimal schedule
length.

In [13], another measure of interference χρ called disturbance is introduced
where ρ > 0 is a parameter. The algorithm described achieves a schedule length
of O(χρρ2 log n · (log n + ρ)). Unfortunately, also this result does not yield a
comparison to the optimal schedule length.

Fanghänel et al. [6] deal with directed and undirected request sets. For the
directed case they extend the results of Moscibroda and Wattenhofer by showing
that any power assignment that is oblivous, i. e., the transmission power is based
only on the distance between the sender and the receiver, cannot be bounded in
an useful manner without taking into account metric properties like the aspect
ratio Δ. For the undirected case they prove the square-root power assignment
to be an O(log3.5+α n)-approximation. However, neither is this power scheme
energy efficient, nor can their constructive results be generalized towards the
multi-hop case with standard techniques, as there is no measure of interference
given that is a lower bound for the optimal schedule.

Chafekar et al. [4] study the combined routing and multi-hop version of
the interference scheduling problem. It is crucial for their analysis to deal with
two-dimensional Euclidean instances and α > 2. This allows to use graph color-
ing in a similar way to the approaches used in the graph-theoretical vicinity mod-
els. Our approach instead works in general metrics taking the non-locality of the
SINR constraint into account. In their analysis the considered power assignment
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is restricted, that is, it is assumed that power levels must be chosen from a spec-
ified interval [pmin, pmax]. It yields a schedule using O(opt′ · log2 n log Δ log2 Γ )
time slots where opt′ denotes the minimal number of time slots needed for a
schedule with slightly smaller power range [pmin, (1− ε)pmax] and Γ denotes the
ratio between pmax and pmin.

2 Introducing a Measure of Interference

In this section we justify the choice of our measure of interference, as it yields
lower bounds for the optimal schedule length under both arbitrary and lin-
ear power assignments. In Section 2.1 we show, that the length T of an op-
timal schedule using a linear power assignment is lower bounded by Ω(I). In
Section 2.2 we show, that a lower bound for the length of an optimal schedule
under an arbitrary power assignment is Ω(I/logΔ·logn) in general metrics and
Ω(I/logΔ) in the two-dimensional Euclidean space for α > 2.

2.1 A Comparison to the Optimal Schedule Using Linear Power
Assignments

Theorem 1. Let T be the minimum schedule length for a set of requests R in
a linear power assignment. Then we have T = Ω(I).

Proof. Let there be a schedule of length T when using a linear power assign-
ment. Then there exist sets of requests R1, . . . , RT each of which satisfies the
SINR constraint for the linear power assignment. I is subadditive, i. e., we have
I
(⋃T

t=1Rt
)
≤
∑T
t=1 I (Rt). Thus it suffices to show that I(Rt) = O(1) for such

a set.
Let Rt = {(u1, v1), . . . , (un̄, vn̄)}. Let furthermore be w ∈ V . The node w

does not necessarily act as a receiver vi in this request set Rt. This is why we
define vj as the closest (active) receiver from w, i. e. j ∈ argmini∈[n̄] d(vi, w).
This node might also be w itself.

To bound the measure of interference, we distinguish between two kinds of
requests. We define a set U of indices of requests whose senders ui lie within a
distance of at most 1

2d(vj , w) from w, i. e. U = {i ∈ [n̄] | d(ui, w) ≤ 1
2d(vj , w)}.

Using the triangle inequality we can conclude for all i ∈ U :

d(ui, vj) ≤ d(ui, w) + d(w, vj) ≤
3
2
d(vj , w) . (1)

In addition, we have

d(vj , w) ≤ d(vi, w) since vj is the closest receiver
≤ d(vi, ui) + d(ui, w) by triangle inequality

≤ d(vi, ui) +
1
2
d(vj , w) by definition of U .
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This implies
d(vj , w) ≤ 2d(ui, vi) . (2)

Combining Equation 1 and Equation 2 we get d(ui, vj) ≤ 3d(ui, vi). Thus it
holds

|U \ {j}| =
∑
i∈U
i=j

d(ui, vi)α

d(ui, vi)α
≤
∑
i∈U
i=j

d(ui, vi)α
1
3α d(ui, vj)α

≤ 3α

β
.

For all i ∈ [n̄] \ U it holds that

d(ui, vj) ≤ d(ui, w) + d(w, vj) by triangle inequality
≤ d(ui, w) + 2d(ui, w) by definition of U
= 3d(ui, w) .

Now, we can sum up all i ∈ [n̄] \ U :∑
i∈[n̄]\U
i=j

d(ui, vi)α

d(ui, w)α
≤

∑
i∈[n̄]\U
i=j

d(ui, vi)α
1
3α d(ui, vj)α

≤ 3α

β
.

Summing up all i ∈ [n̄] gives

Iw(Rt) ≤ |U \ {j}|+
∑

i∈[n̄]\U
i=j

d(ui, vi)α

d(ui, w)α
+ 1 ≤ 2 · 3α

β
+ 1 = O(1) .

��

2.2 A Comparison to the Optimal Schedule

Using similar arguments, we can also prove bounds on the optimal schedule
length using arbitrary power assignments. Due to space limitations the proofs
are omitted and can be found in the full version.

Theorem 2. Let T denote the optimal schedule length using any power assign-
ment. Then we have T = Ω (I/logΔ·logn).

In previous work, the instances often are restricted to the Euclidean plane and
α is required to be strictly greater than 2. Under these assumptions we can use
geometric arguments to get an even better bound of Ω(I/logΔ) on the optimal
schedule length, as the following theorem shows.

Theorem 3. Let the instance be located in the Euclidean plane and let α > 2.
Then we have T = Ω (I/logΔ), where T denotes the optimal schedule length using
any power assignment.

In total we found several bounds on the measure of interference that allow com-
parisons to the scheduling complexity. To complete these results, we will present
a single-hop algorithm that generates a schedule of length O(I + log2 n) whp in
the next section and extend this to multi-hop scheduling afterwards.
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3 Single-Hop Scheduling

The measure of interference enables us to design randomized algorithms using
linear power assignments, i. e., the power for the transmission from u to v is
c · d(u, v)α for some fixed c ≥ βν. As a key fact, we can simplify the SINR
constraint in this setting as follows. IfR is a set of requests that can be scheduled
in one time slot, we have for all nodes v′ with (u′, v′) ∈ R

∑
(u,v)∈R

(u,v) =(u′,v′)

c · d(u, v)α
d(u, v′)α

≤ c

β
− ν .

Since β > 1 we can write equivalently∑
(u,v)∈R

(u,v) =(u′,v′)

min
{

1,
d(u, v)α

d(u, v′)α

}
≤ 1

β
− ν

c
. (3)

For simplicity of notation we replace 1
β −

ν
c by 1

β′ in the following.

3.1 A Basic Algorithm

The idea of our basic algorithm (Algorithm 1) is that each sender decides ran-
domly in each time slot if it tries to transmit until it is successful. The probability
of transmission is set to 1

2β′I and is not changed throughout the process.

while packet has not been successfully transmitted do1
try transmitting with probability 1

2β′I2

end3

Algorithm 1. A simple single-hop algorithm

Theorem 4. Algorithm 1 generates a schedule of length at most O(I log n) whp.

Proof. Let us first consider the probability of success for a fixed request (uk, vk)
in a single step of the algorithm. Let Xi, i ∈ [n], be the 0/1 random variable
indicating if sender ui tries to transmit in this step. Assume a sender uk tries to
transmit in this step, i. e. Xk = 1. To make this attempt successful, the SINR
constraint (Equation 3) has to be satisfied. We can express this event as Z ≤ 1/β′

where Z is defined by

Z =
∑
i∈[n]
i=k

min
{

1,
d(ui, vi)α

d(ui, vk)α

}
Xi .
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We have E [Z] ≤ 1/2β′ and thus we can use Markov’s inequality to bound the
probability that this packet cannot be transmitted successfully by

Pr
[
Z ≥ 1

β′

]
≤ Pr [Z ≥ 2E [Z]] ≤ 1

2
.

To make the transmission successful the two events Xk = 1 and Z ≤ 1/β′ have
to occur. Since they are independent it holds that

Pr
[
Xk = 1, Z ≤ 1

β′

]
= Pr [Xk = 1] · Pr

[
Z ≤ 1

β′

]
≥ 1

2β′I

(
1− 1

2

)
=

1
4β′I

.

The probability for packet k not to be successfully transmitted in (k0+1)4β′I ln n
independent repeats of such a step is therefore at most(

1− 1
4β′I

)(k0+1)4β′I lnn

≤ e−(k0+1) lnn = n−(k0+1) .

Applying a union bound we get an overall bound on the probability that one of
n packets is not successfully transmitted in these independent repeats by n−k0 .
This means all senders are successful within O(I log n) steps whp. ��

3.2 A More Sophisticated Algorithm

An obvious disadvantage of the basic algorithm is that the probability of trans-
mission stays the same throughout the process. To improve it, one idea could be
to increase the probability of transmission after some transmissions have success-
fully taken place. Applying this idea, the new algorithm assigns random delays
to all packets. The maximum delay is decreased depending on Icurr, which de-
notes the measure of interference that is induced by the requests that have not
been scheduled at this point.

The algorithm works as follows: During one iteraton of the outer while loop
by repeatedly assigning random delays to the packets the measure of interference
is reduced to a half of its initial value. This is repeated until we have Icurr < log n
and the basic algorithm is applied.

Theorem 5. Algorithm 2 generates a schedule of length at most O(I + log2 n)
steps whp.

The proof of this theorem can be found in the full version.
In sufficiently dense instances, i. e., I ≥ log2 n, the second algorithm yields a

constant-factor approximation for the optimal schedule compared to the linear
power assignment with high probability. Compared to the optimal power assign-
ment the approximation factor is O(log Δ · log n) whp for general metrics resp.
O(log Δ) for the two-dimensional Euclidean plane.

Algorithm 1 can be implemented in a distributed way losing an additional
factor log n in the following way. In contrast to the centralized problem, the nodes
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while Icurr ≥ log n do1
J := Icurr2

while Icurr ≥ J
2

do3
if packet i has not been successfully transmitted then4

assign a delay 1 ≤ δi ≤ 16eβ′J i. u. r.5
try transmission after waiting the delay6

end7

end8

end9
execute algorithm Algorithm 110

Algorithm 2. An O(I + log2 n) whp algorithm

do not know the correct value of I, thus, they do not know their transmission
probability. Now in the distributed setting the algorithm processes in each while
iteration log n steps, where in each of these steps the transmission probability is
halfed, that is, starting by 1/2β′ down to 1/2β′n.

Algorithm 2 can be modified analogeously, leading to a schedule of length
O(log n · (I + log2 n)) whp.

4 Extensions for Multi-hop Scheduling and Routing

The multi-hop variant of the interference scheduling problem was first stated by
Chafekar et al. [4] as Cross-Layer Latency Minimization (CLM). Given m source
destination pairs (si, ti), the objective is to find paths from si to ti to send the
packets along, powers for each transmission and a schedule assigning the hops
to time slots. In this section we will present how the measure of interference
introduced in Section 2 and the single-hop algorithms from Section 3 can be
extended to multi-hop scheduling.

4.1 Multi-hop Scheduling with Fixed Paths

Let us first consider the paths to be fixed. In this case the task is to schedule a
set of requests R consisting of n pairs of nodes that lie on paths, respecting de-
pendencies such that one request may not be served before the ones lying earlier
on the path have been served. Obviously, the bounds on the measure of interfer-
ence proven in Section 2 still hold. We additionally express these dependencies
in the dilation D, which is the maximum path length. Of course, any schedule
using an arbitrary power assignment has length at least D.

In a naive approach to solve this problem we could regard the multi-hop prob-
lem as a concatenation of D single-hop problems and schedule each of them sep-
arately. This schedule has a length of O((I + log2 n)D) steps whp. Algorithm 3
extends this idea by assigning a random delay to each packet. This technique has
also been applied for scheduling in wired networks, e.g., by Leighton et al. [12].
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By this shift, a number of time frames is created and to each of them a
set of requests Ri is assigned. Due to the random delay the measure of in-
terference I(Ri) is sufficiently balanced between those time frames. As dif-
ferent hops that lie on the same path are assigned to different time frames,
our single-hop algorithm can be used to generate a schedule for each time
frame.

forall i ∈ [m] do1
assign a delay 1 ≤ δi ≤ 2eI

log2 n
i. u. r.2

end3

forall 1 ≤ t ≤ 2eI
log2 n

+ D do4
execute Algorithm 2 on all hops (i, j) with δi + j = t5

end6

Algorithm 3. Fixed path multi-hop scheduling

Theorem 6. The schedule generated by Algorithm 3 has length O(I +D log2 n)
whp.

Due to space limitations, this proof can be found in the full version.

4.2 Finding Optimal Paths (Routing)

To find optimal paths an approach first used by Srinivasan and Teo for wired
networks [18], solving an Integer Linear Program (ILP) approximately by using
relaxation and randomized rounding, can be adapted. Chafekar et al. [4] also use
it as a part of their CLM algorithm.

First, let us formalize the problem of finding paths such that max{I,D} is
minimal as ILP. We introduce a set of edges E ⊆ V × V which describes the
set of links that may be used. Let furthermore Nin(v) resp. Nout(v) denote the
incoming resp. outgoing edges from v.

Minimize w subject to:

∀i ∈ [m]
∑

e∈Nout(si)

y(i, e)−
∑

e∈Nin(si)

y(i, e) = 1 (4a)

∀i ∈ [m], v ∈ V \{si, ti}
∑

e∈Nout(v)

y(i, e)−
∑

e∈Nin(v)

y(i, e) = 0 (4b)

∀i ∈ [m]
∑
e∈E

y(i, e) ≤ w (4c)

∀i ∈ [m], v ∈ V
∑

e′=(u′,v′)

y(i, e′)min
{

1,
d(u′, v′)α

d(u′, v)α

}
≤ w (4d)

∀i ∈ [m], e ∈ E y(i, e) ∈ {0, 1} (4e)
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This ILP is designed to minimize w = max{I,D} as follows. Condition 4d
ensures that I ≤ w whereas Condition 4c ensures D ≤ w. By leaving out
Condition 4e, this ILP can be relaxed to an LP which then describes a multi-
commodity flow problem.

This LP can be solved in polynomial time. Afterwards we can use the LP
result to approximate a solution of the ILP, by selecting paths of length at most
2w and applying the technique of randomized rounding [16]. In a simple analysis
we find out the following. If I∗ and D∗ are the values such that max{I,D} is
minimal – which is the optimal solution for the ILP – we calculate paths such
that I = O(I∗ log n) whp and D ≤ 2D∗ this way.

4.3 Consequences for the CLM Problem

Let us combine our results to get an approximation algorithm for the CLM
problem as stated by Chafekar et al. [4]. Assume there is an optimal choice of
paths, powers and a schedule such that the latency is T . Let the measure of
interference caused by these paths be denoted by I† and their dilation by D†. In
Section 2 we showed that it holds I† = O(log Δ · logn ·T ). Obviously D† = O(T )
holds, too.

If I∗ and D∗ are the values such that max{I,D} is minimal, our path selec-
tion algorithm chooses paths such that I = O(I∗ log n) whp and D = O(D∗).
A schedule by Algorithm 3 using these paths has length O(I + D log2 n) =
O(I∗ log n+D∗ log2 n) = O((I†+D†) log2 n) = O(log Δ·log3 n·T ) whp. Thus we
reached an approximation factor ofO(log Δ·log3 n) whp. For instances restricted
to the Euclidean plane, we even get an approximation factor for O(log Δ · log2 n)
whp.
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Abstract. Intuitively, Braess’s paradox states that destroying a part
of a network may improve the common latency of selfish flows at Nash
equilibrium. Such a paradox is a pervasive phenomenon in real-world
networks. Any administrator, who wants to improve equilibrium delays
in selfish networks, is facing some basic questions: (i) Is the network
paradox-ridden? (ii) How can we delete some edges to optimize equilib-
rium flow delays? (iii) How can we modify edge latencies to optimize
equilibrium flow delays?

Unfortunately, such questions lead to NP-hard problems in general.
In this work, we impose some natural restrictions on our networks, e.g.
we assume strictly increasing linear latencies. Our target is to formulate
efficient algorithms for the three questions above. We manage to provide:
– A polynomial-time algorithm that decides if a network is paradox-

ridden, when latencies are linear and strictly increasing.
– A reduction of the problem of deciding if a network with arbitrary

linear latencies is paradox-ridden to the problem of generating all
optimal basic feasible solutions of a Linear Program that describes
the optimal traffic allocations to the edges with constant latency.

– An algorithm for finding a subnetwork that is almost optimal wrt
equilibrium latency. Our algorithm is subexponential when the num-
ber of paths is polynomial and each path is of polylogarithmic length.

– A polynomial-time algorithm for the problem of finding the best
subnetwork, which outperforms any known approximation algorithm
for the case of strictly increasing linear latencies.

– A polynomial-time method that turns the optimal flow into a Nash
flow by deleting the edges not used by the optimal flow, and perform-
ing minimal modifications to the latencies of the remaining ones.

Our results provide a deeper understanding of the computational com-
plexity of recognizing the Braess’s paradox most severe manifestations,
and our techniques show novel ways of using the probabilistic method
and of exploiting convex separable quadratic programs.
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1 Introduction

A typical instance of selfish routing consists of a directed network with a source
s and a destination t, with each edge having a non-decreasing function that
determines the edge’s latency as a function of its traffic, and a rate of traffic
divided among an infinite population of players, each willing to route a negligible
amount of traffic through a s− t path. The players seek to minimize the sum of
edge latencies on their path. Observing the traffic caused by others, each player
selects a s−t path of minimum latency. Thus, they reach a Nash equilibrium (aka
a Wardrop equilibrium), where all players route their traffic on paths of equal
minimum latency. Under some general assumptions on the latency functions, a
Nash equilibrium flow (or simply a Nash flow) exists and the common (and the
total) players’ latency in a Nash flow is unique (see e.g. [25,28]).

Motivation and Previous Work. A Nash equilibrium may not optimize the
network performance, measured by the total latency incurred by all players.
The main tool for quantifying and understanding the performance degradation
due to the players’ non-cooperative and selfish behaviour has been the Price of
Anarchy (PoA), which was suggested in a groundbreaking work by Koutsoupias
and Papadimitriou [17]. The PoA is the ratio of the total latency of the Nash
flow to the optimal total latency. Roughgarden [26] proved that the PoA is
independent of the network topology and at most ρ(D), where ρ only depends
on the class of latency functions D (e.g. ρ is 4/3 for linear latencies).

With the PoA very well understood, a few natural approaches for reducing
it have been investigated. A simple approach that does not require any network
modifications is Stackelberg routing [16], where the administrator exploits a small
fraction of coordinated traffic to improve the quality of the Nash flow reached by
the remaining selfish traffic. For parallel-link networks with arbitrary latencies
and for general networks with polynomial latencies, the coordinated traffic can
be allocated so that the PoA decreases smoothly to 1 as the fraction of the
coordinated traffic increases (see e.g. [27,15,4], and [9] for the case of atomic
players with unsplittable traffic). Unfortunately, there are instances for which
the PoA remains unbounded under any allocation of the coordinated traffic
[4], and instances where enforcing the optimal flow requires a large fraction of
coordinated traffic [13]. A different approach is to introduce edge-dependent
per-unit-of-traffic tolls, that influence the players’ selfish choices and induce the
optimal flow as the Nash flow of the modified instance. In the refundable tolls
setting, where tolls affect the players’ cost but not the network performance,
tolls that enforce the optimal flow can be computed efficiently even if the players
have different latency-vs-tolls valuations (see e.g. [7,8,14], see also [6,10] on the
performance of refundable tolls for atomic players). However, the idea of tolls
is not appealing to the players, since large tolls that significantly increase the
players’ disutility may be required to enforce the optimal flow (see e.g. [8]).

A simpler way of improving network performance at equilibrium is to exploit
the essence of the Braess’s paradox [5], namely that removing some network edges
may decrease the latency of the Nash flow (see Fig. 1 for an example). Thus, given
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Fig. 1. (a). The optimal flow routes 1/2 unit of traffic on the upper path (s, v, t) and
1/2 unit on the lower path (s, w, t), and achieves a total latency of 3/2. In the Nash
flow, all traffic goes through the path (s, v, w, t). The players’ latency is 2, and the PoA
is 4/3. (b). Without the edge (v, w), the Nash flow coincides with the optimal flow.
The network (a) is paradox-ridden, and the network (b) is its best subnetwork.

an instance of selfish routing, the administrator seeks for the best subnetwork,
i.e. the subnetwork minimizing the players’ latency at equilibrium. Compared
to Stackelberg routing and refundable tolls, edge removal is simpler and more
appealing. For the administrator, blocking the traffic on some edges is easier and
less expensive to implement than setting up a mechanism for collecting tolls on
every edge and refunding them to the players. As for the players, edge removal
is applied only if it results in a (significant) improvement on their equilibrium
latency, which is preferable to either tolls, that increase their disutility, or a
Stackelberg strategy, that allocates the coordinated traffic to slower paths.

Recent work indicates that edge removal can improve the performance of real-
world networks (see e.g. [28]). In this vein, Valiant and Roughgarden [30] proved
that the Braess’s paradox occurs with high probability on random networks,
and that for a natural distribution of linear latencies, edge removal improves
the equilibrium latency by a factor arbitrarily close to 4/3 (i.e. the worst-case
PoA for linear latencies) with high probability. Unfortunately, Roughgarden [29]
proved that it is NP-hard not only to find the best subnetwork, but also to
compute any meaningful approximation to the equilibrium latency on the best
subnetwork. In particular, he showed that even for linear latencies, it is NP-
hard to distinguish between paradox-free instances, where edge removal cannot
improve the equilibrium latency, and paradox-ridden instances, where the total
latency of the Nash flow on the best subnetwork is equal to the optimal total
latency (i.e. edge removal can decrease the PoA to 1). This implies that for
any ε > 0, it is NP-hard to approximate the equilibrium latency on the best
subnetwork within a factor of 4/3 − ε for linear latencies, and within a factor
of �n/2�−ε for general latencies, where n denotes the number of nodes. In fact,
the only known algorithm for approximating the equilibrium latency on the best
subnetwork is the trivial one, which does not remove any edges and achieves an
approximation ratio of 4/3 for linear latencies and �n/2� for general latencies.

Contribution. The motivating question for this work is whether there are some
practically interesting settings where a set of edges, whose removal significantly
improves the equilibrium latency, can be computed efficiently. Rather surpris-
ingly, we answer this question in the affirmative for several interesting cases. To
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the best of our knowledge, our results are the first of theoretical nature which
indicate that the Braess’s paradox can be efficiently detected and eliminated in
many interesting cases. Throughout this paper, we mostly focus on the impor-
tant case of linear latencies, even though some of our results can be generalized
to other classes of latency functions (e.g. polynomial latencies).

We first consider the problem of recognizing paradox-ridden instances. Even
though this problem is NP-complete for arbitrary linear latencies [29], we show
that it becomes polynomially solvable for the important case of strictly increasing
linear latencies1. Recognizing a paradox-ridden instance is equivalent to deciding
whether the instance admits an optimal flow that is a Nash flow on its subnet-
work (cf. Lemma 1). Then removing all edges not used by the optimal flow yields
the best subnetwork. However, an instance may admit many different optimal
flows. In fact, the NP-hardness proofs in [29] employ instances with exponentially
many optimal flows. On the other hand, if the optimal flow is unique, we can
recognize paradox-ridden instances by computing it and checking whether it is a
Nash flow on its subnetwork. Based on this observation, we present a polynomial-
time algorithm that recognizes paradox-ridden instances with strictly increasing
linear latencies (cf. Theorem 1). Furthermore, we reduce the problem of recog-
nizing a paradox-ridden instance with arbitrary linear latencies to the problem of
generating all optimal basic feasible solutions of a Linear Program that describes
the optimal traffic allocations to the constant latency edges (cf. Theorem 2).

Then we proceed to the more general problem of computing the best sub-
network and its equilibrium latency. For instances with polynomially many
paths, each of polylogarithmic length, and arbitrary linear latencies, we present
a subexponential-time approximation scheme. For any ε > 0, the algorithm com-
putes a subnetwork with an ε-Nash flow in which the players’ latencies are within
an additive term of ε/2 from the equilibrium latency on the best subnetwork. The
running time is exponential in poly(logm)/ε2, where m is the number of edges
(cf. Theorem 3). The analysis is based on a novel application of the Probabilistic
Method [1] motivated by Althöfer’s Lemma [2] and its application to the compu-
tation of approximate Nash equilibria for bimatrix games [21,20]. In particular,
we apply the Probabilistic Method and show that any flow on any network ad-
mits an ε-approximate “sparse” flow, which assigns traffic to O(logm/ε2) paths
(cf. Lemma 2). The proof has to take advantage of the network structure, since
the number of paths may be exponential in m. Hence, our result comprises a
novel (and more efficient) extension of Althöfer’s Lemma to the network set-
ting. In addition, the application to the best subnetwork approximation deals
with a congestion game with an infinite number of players, and is fundamentally
different from the application of Althöfer’s Lemma to approximation of Nash
equilibria for bimatrix games. In fact, to the best of our knowledge, this is the
first time that similar techniques are applied in the context of selfish routing.

For instances with strictly increasing linear latencies that are not paradox-
ridden, we show that there is an instance-dependent δ > 0, such that the

1 Constant latency edges represent links of practically infinite capacity. Therefore real-
world networks are most unlikely to contain many of them, if they contain any.



Efficient Methods for Selfish Network Design 463

equilibrium latency is within a factor of 4/3 − δ from the equilibrium latency
on the best subnetwork. Since we can efficiently compute the best subnetwork
for paradox-ridden instances, we can use the trivial algorithm for the remain-
ing ones, and approximate the equilibrium latency on the best subnetwork
within a factor strictly smaller than the inapproximability threshold2 of 4/3
(cf. Theorem 4).

If the instance is not paradox-ridden however, it is not possible to turn the
optimal flow into a Nash flow by just removing edges. Enforcing the optimal
flow is possible, if in addition to removing edges, the administrator can modify
the latency functions. In Section 5, we present a polynomial-time algorithm for
the problem of minimally modifying the latency functions of the edges used
by the optimal flow so that the optimal flow is enforced as a Nash flow on the
subnetwork used by the optimal flow with the modified latencies (cf. Theorem 5).

Other Related Work. For the problem of finding the best subnetwork in the
atomic model, Azar and Epstein [3] obtained strong inapproximability results
similar to those in [29]. Interestingly, the Braess’s paradox can be dramatically
more severe in multi-commodity instances than in single-commodity ones. More
precisely, Lin et al. [18] proved that for single-commodity instances with general
latency functions, the removal of at most k edges cannot improve the equilib-
rium latency by a factor greater than k + 1. On the other hand, Lin et al. [19]
presented a 2-commodity instance where the removal of a single edge improves
the equilibrium latency by a factor of 2Ω(n). As for the impact of the network
topology, Milchtaich [23] proved that the Braess’s paradox does not occur in
(single-commodity) series-parallel networks, which is precisely the class of net-
works that do not contain the network in Fig. 1.a as a topological minor.

2 Model, Preliminaries, and Problem Definitions

A selfish routing instance is a tuple G = (G(V,E), (�e)e∈E , r), where G(V,E) is
a directed network with a source s and a destination t, �e : IR≥0 �→ IR≥0 is a
non-decreasing latency function associated with each edge e, and r > 0 is the
rate of traffic entering the network at s and leaving the network at t. Let n = |V |
and m = |E|, and let P denote the set of simple s−t paths in G. We assume that
the edge latency functions �e(x) are continuous, differentiable, and convex in the
interval [0, r]. We mostly focus on linear latency functions �e(x) = aex+be, with
rational coefficients ae, be ≥ 0. Such a function is constant if ae = 0.

Given a selfish routing instance G = (G(V,E), (�e)e∈E , r), any subgraph
H(V,E′), E′ ⊆ E, obtained from G by edge deletions is called a subnetwork
of G. H has the same source s and destination t as G, and the edges of H

2 The reduction of [29, Theorem 3.3] constructs instances where almost all edges have
constant latency 0. Using �(x) = εx, for some very small ε > 0, instead of 0, we can
show that even for strictly increasing linear latencies, it is NP-hard to approximate
the equilibrium latency on the best subnetwork within a factor considerably smaller
than 4/3 for all instances. In this sense, our result is best possible.
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preserve their latencies in G. Each instance H = (H(V,E′), (�e)e∈E′ , r), where
H(V,E′) is a subnetwork of G(V,E), is called a subinstance of G.

Flows. A (G-feasible) flow f is a non-negative vector indexed by P so that∑
p∈P fp = r. For a flow f , let fe =

∑
p:e∈p fp be the amount of flow that f

routes on edge e. Flows f and g are different if there is an edge e with fe �= ge.
An edge e is used by flow f if fe > 0. Given a flow f , the latency of each edge e
is �e(fe), and the latency of each path p is �p(f) =

∑
e∈p �e(fe). For an instance

G defined on a network G(V,E) and a flow f , we let Ef = {e ∈ E : fe > 0} be
the set of edges used by f , and Gf (V,Ef ) be the subnetwork of G corresponding
to f . A flow f is acyclic if Gf contains no cycles.

The total latency of a flow f is C(f) =
∑
p∈P fp�p(f) =

∑
e∈E fe�e(fe) . The

optimal flow of instance G, denoted o, minimizes the total latency among all
G-feasible flows. We let L∗(G) = C(o)/r be the average latency in the optimal
flow. We note that for every subinstance H of G, L∗(H) ≥ L∗(G). For the latency
functions considered in this paper, an optimal flow can be computed efficiently,
while for strictly increasing latencies, the optimal flow is unique (in the sense
that all optimal flows route the same amount of traffic on every edge).

Nash Flows. The traffic is divided among an infinite population of players, each
willing to route a negligible amount of traffic through a minimum latency s− t
path. A flow f is a Nash flow, if it routes all traffic on minimum latency paths.
Formally, f is a Nash flow if for every path p with fp > 0, and every path p′,
�p(f) ≤ �p′(f). Therefore, in a Nash flow f , all players incur a common latency
L(f) = minp:fp>0 �p(f) on their paths, and the total latency is C(f) = rL(f).

For the latency functions considered in this paper, every instance G admits
at least one Nash flow, and the common players’ latency (and thus the total
latency) is the same for all Nash flows (see e.g. [28]). For instance G, we let
L(G) (resp. rL(G)) be the common players’ latency (resp. total latency) for
some Nash flow of G. We refer to L(G) (resp. rL(G)) as the equilibrium latency
(resp. equilibrium total latency) of G. We note that for every subinstance H of
G, L∗(G) ≤ L(H), and that there may be subinstances H with L(H) < L(G) (see
e.g. Fig. 1). For the class of latency functions considered in this paper, a Nash
flow can be computed efficiently, while for strictly increasing latencies, the Nash
flow is unique (see e.g. [28, Cor. 2.6.4]).

ε-Nash flows. The definition of a Nash flow can be naturally generalized to
that of an “almost Nash” flow. Formally, for some ε > 0, a flow f is an ε-Nash
flow if for every path p with fp > 0, and every path p′, �p(f) ≤ �p′(f) + ε.

Price of Anarchy. The Price of Anarchy (PoA) of a selfish routing instance G,
denoted ρ(G), is the ratio of the equilibrium total latency to the optimal total
latency. By the discussion above, ρ(G) = L(G)/L∗(G).

Other Notation and Conventions. For any integer k ≥ 1, we let [k] =
{1, . . . , k}. For an event E in a sample space, we let IP[E] denote the proba-
bility of event E happening. For a random variable X , we let IE[X ] denote the
expectation of X . For convenience and wlog., we normalize the traffic rate to 1.
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Then L(G) equals both the common players’ latency and the total latency at
equilibrium, and L∗(G) equals both the optimal average latency and the optimal
total latency of G. With the traffic rate normalized to 1, we sometimes identify
a selfish routing instance with the corresponding network.

Paradox-Free and Paradox-Ridden Instances. An instance G defined on
a network G is paradox-free if for every subnetwork H of G, L(H) ≥ L(G).
Paradox-free instances do not suffer from the Braess’s paradox and their PoA
cannot be improved by edge removal. An instance G is paradox-ridden if there is
a subnetwork H of G such that L(H) = L∗(G) = L(G)/ρ(G). Namely, the PoA
of paradox-ridden instances can decrease to 1 by edge removal.

Best Subnetwork. Given instance G, the best subnetwork HB is a subnetwork
of G that minimizes the equilibrium latency, i.e. HB has L(HB) ≤ L(H) for any
subnetwork H of G.

Problem Definitions. We now introduce three basic problems regarding selfish
network design:

– Paradox-Ridden Recognition (ParRid) : Given an instance G, decide if
G is paradox-ridden.

– Best Subnetwork Equilibrium Latency (BSubEL) : Given an instance G
defined on a networkG, find the best subnetworkHB ofG and its equilibrium
latency L(HB).

– Minimum Latency Modification (MinLatMod) : Given an instance G
defined on a network G(V,E) with a polynomial latency �e(x) =

∑d
i=0 ae,ix

i,
ae,i ≥ 0, for each e ∈ E, find modified latencies �̃e(x) =

∑d
i=0 ãe,ix

i, ãe,i ≥ 0,
e ∈ Eo, so that the Euclidean distance of the vectors (ae,i)e∈Eo,i∈[d] and
(ãe,i)e∈Eo,i∈[d] is minimum, and for the instance G̃o defined on the network
Go(V,Eo) with latencies �̃e(x), o is a Nash flow with common latency L∗(G).

3 Recognizing Paradox-Ridden Instances

In this section, we present a polynomial-time algorithm for ParRid on instances
with strictly increasing linear latencies. We start with a lemma that reduces
ParRid to the problem of checking if some optimal flow o is a Nash flow on Go.

Lemma 1. An instance G defined on a network G(V,E) is paradox-ridden iff
there is an optimal flow o that is a Nash flow on the subnetwork Go(V,Eo).

For instances with strictly increasing linear latencies, the optimal flow is unique
and can be efficiently computed. Then, checking whether the optimal flow o is
a Nash flow on Go can be performed by a shortest path computation.

Theorem 1. ParRid can be decided in polynomial time for instances with
strictly increasing linear latency functions.
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Proof. Computing the unique optimal flow o for an instance G with strictly
increasing linear latencies can be performed in polynomial time (see e.g. [24]).
To check whether o is a Nash flow on the subnetwork Go(V,Eo), we compute
the length d(v) of the shortest s − v path wrt the edge lengths {�e(oe)}e∈Eo

for all vertices v ∈ V . Then o is a Nash flow if for every edge (u, v) ∈ Eo,
d(v) = d(u) + �(u,v)(o(u,v)) (see e.g. [29, Proposition 2.10]). ��

Dealing with Constant Latencies. Next we formulate a general sufficient con-
dition, under which ParRid can be decided in polynomial time for instances with
arbitrary linear latencies. Let G be an instance defined on a network G(V,E),
let Ec = {e ∈ E : ae = 0} be the set of edges with constant latencies, let
Ei = E \ Ec be the set of edges with strictly increasing latencies, and let O be
the set of different optimal flows of G.

All optimal flows assign the same traffic to the edges with strictly increasing
latencies, and can differ only on edges with constant latencies. Given a fixed op-
timal flow o, we formulate a Linear Program whose feasible solutions correspond
to all (G-feasible) flows that agree with the optimal flows on the edges in Ei :

min
∑
e∈Ec

febe , s.t.∑
u:(v,u)∈Ei

o(v,u) +
∑

u:(v,u)∈Ec

f(v,u) =
∑

u:(u,v)∈Ei

o(u,v) +
∑

u:(u,v)∈Ec

f(u,v)

∀v ∈ V \ {s, t}∑
u:(s,u)∈Ei

o(s,u) +
∑

u:(s,u)∈Ec

f(s,u) = 1 (LP)∑
u:(u,t)∈Ei

o(u,t) +
∑

u:(u,t)∈Ec

f(u,t) = 1

fe ≥ 0 ∀e ∈ Ec

(LP) has a variable fe for each edge e ∈ Ec, while all o-related terms are fixed
and determined by o. An optimal solution to (LP) corresponds to a G-feasible
flow that agrees with o on all edges in Ei and allocates traffic to the edges in
Ec so that the total latency is minimized. Hence, every optimal solution to (LP)
corresponds to an optimal flow. On the other hand, every optimal flow o′ has
oe = o′e for all e ∈ Ei, and is translated into an optimal solution to (LP) by
setting fe = o′e for all e ∈ Ec. Therefore, there is a one-to-one correspondence
between the optimal solutions to (LP) and the optimal flows in O.

Given an optimal flow o, the discussion above reduces the problem of checking
if there is a o′ ∈ O that is a Nash flow on Go′ to the problem of generating all
optimal solutions of (LP) and checking whether some of them can be translated
into a Nash flow on the corresponding subnetwork. This can be performed in
polynomial time if (LP)’s optimal solution is unique (see e.g. [22, Theorem 2] on
how to efficiently decide uniqueness of the optimal solution). Thus,

Theorem 2. ParRid can be decided in polynomial time for instances with linear
latency functions where (LP) has a unique optimal solution.
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In fact, it suffices to generate all optimal basic feasible solutions. This is true
because (LP) allocates traffic to constant latency edges only. Hence, if a feasible
solution f can be translated into a Nash flow on the corresponding subnetwork,
this holds for any other feasible solution f ′ with {e : f ′e > 0} ⊆ {e : fe > 0}.
Therefore, the approach above can be extended to instances where (LP) has a
small number of basic feasible solutions (i.e. polynomially many in m). This class
includes instances with a constant number of constant latency edges.

4 Approximating the Best Subnetwork

Networks with Polynomially Many Short Paths. We present a subexpo-
nential-time approximation scheme for BSubEL on networks with polynomially
many paths, each of polylogarithmic length. We first show that any flow (on
any network) admits an ε-approximate “sparce” flow, which assigns traffic to
O(logm/ε2) paths. The proof builds on the proof of Althöfer’s Lemma [2].

Lemma 2. Let G be an instance on a network G(V,E), and let f be any G-
feasible flow. For any ε > 0, there exists a G-feasible flow f̃ that assigns positive
traffic to at most �log(2m)/(2ε2)�+1 paths, such that |f̃e − fe| ≤ ε, for e ∈ E.

Proof. For convenience, we let μ = |P| denote the number of paths in G, and
index the s− t paths in G by integers in [μ]. Since the traffic rate is normalized
to 1, we can interpret the flow f as a probability distribution on the set of paths
P . We prove that if we select k > log(2m)/(2ε2) paths uniformly at random
with replacement according to (the probability distribution) f , and assign to
each path j a flow equal to the number of times j is selected divided by k, we
obtain a flow that is an ε-approximation to f with positive probability. By the
Probabilistic Method [1], such a flow exists.

Let ε be any fixed positive number, and let k = �log(2m)/(2ε2)�+1. We define
k independent identically distributed random variables P1, . . . , Pk, each taking
an integer value in [μ] according to distribution f . Namely, for all i ∈ [k] and
j ∈ [μ], IP[Pi = j] = fj. For each path j ∈ [μ], let Fj be a random variable
defined as Fj = |{i ∈ [k] : Pi = j}|/k. By linearity of expectation, IE[Fj ] = fj .
For each edge e and each random variable Pi, we define an indicator variable
Fe,i that is 1 if e is included in the path indicated by Pi, and 0 otherwise.
Since the random variables {Pi}i∈[k] are independent, for every fixed edge e, the
variables {Fe,i}i∈[k] are independent as well. In addition, for every edge e, let
Fe = 1

k

∑k
i=1 Fe,i . We observe that Fe =

∑
j:e∈j Fj , and that IE[Fe] = fe .

Since
∑μ
j=1 Fj = 1, we can interpret the value of each Fj as an amount of

flow assigned to path j, and the value of each Fe as an amount of flow assigned
to edge e. Then the random variables F1, . . . , Fμ define a (G-feasible) flow on G
that assigns positive traffic to at most k paths and agrees with f on expectation.
By applying the Chernoff-Hoeffding bound [12], we obtain that for every edge e,

IP[|Fe − fe| > ε] ≤ 2e−2ε2k < 1/m ,
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where we use that k > log(2m)/(2ε2). By applying the union bound, we obtain
that IP[∃e : |Fe − fe| > ε] < m(1/m) = 1. Therefore, for any integer k >
log(2m)/(2ε2), there is positive probability that the (G-feasible) flow (F1, . . . , Fμ)
satisfies |Fe − fe| ≤ ε for all e ∈ E. By the Probabilistic Method, there exists a
flow f̃ with the properties of (F1, . . . , Fμ). ��
For any ε > 0, let ε1 > 0 depend on ε and on some parameters of G. By Lemma 2,
there exists an ε1-approximation f̃ to a Nash flow f on the best subnetwork
L(HB) that assigns positive traffic to at most �log(2m)/(2ε21)�+1 paths. If G has
polynomially many paths, f̃ can be found in subexponential time by exhaustive
search. Next we show that if all paths in G are relatively short, f̃ is an ε-Nash
flow on Gf̃ , and all players’ latencies in f̃ are at most L(HB) + ε/2. Thus we
obtain a subexponential approximation scheme for BSubEL.

Theorem 3. Let G = (G(V,E), (aex + be)e∈E , 1) be an instance with linear
latencies, let α = maxe∈E{ae}, and let HB be the best subnetwork of G. For
some constants d1, d2 > 0, let |P| ≤ md1 and |p| ≤ logd2 m, for all p ∈ P. Then,
for any ε > 0, we can compute in time mO(d1α

2 log2d2+1(2m)/ε2) a flow f̃ that is
an ε-Nash flow on Gf̃ and satisfies �p(f̃) ≤ L(HB)+ ε/2, for all paths p in Gf̃ .

Proof sketch. Let f be an acyclic Nash flow on the best subnetwork HB, and
for any ε > 0, let ε1 = ε/(2α logd2(2m)). Wlog. we assume that HB is precisely
Gf . By Lemma 2, there exists a G-feasible acyclic flow f̃ on HB that assigns
positive flow to at most k = �log(2m)/(2ε21)�+1 = �2α2 log2d2+1(2m)/ε2�+1
paths, and satisfies |fe − f̃e| ≤ ε1 for all edges e in HB, and f̃e = 0 for all
edges e not in HB. Using that f is a Nash flow on HB with L(f) = L(HB), we
show that for any path p in the subnetwork Gf̃ determined by the edges used
by f̃ , |�p(f) − L(HB)| ≤ ε/2. Therefore, there exists a G-feasible flow f̃ that
assigns positive flow to at most k paths, is an ε-Nash flow on Gf̃ , and satisfies
|�p(f) − L(HB)| ≤ ε/2, for all paths p in Gf̃ . A flow with the properties of f̃
can be computed in time mO(d1k) by exhaustive search. ��
Instances with Strictly Increasing Latencies. For such instances, we show
how to efficiently approximate the equilibrium latency on the best subnetwork
within a factor less than the inapproximability threshold of 4/3.

Theorem 4. For instances with strictly increasing linear latencies, BSubEL can
be approximated in polynomial time within a factor of 4/3 − δ, where δ > 0
depends on the instance.

Proof sketch. Let G be an instance with strictly increasing linear latencies defined
on G(V,E), and let HB be the best subnetwork of G. If G is paradox-ridden,
by Theorem 1, we can recognize it and compute HB and L(HB) in polynomial
time. Hence for paradox-ridden instances, we have an approximation ratio of 1.

If G is not paradox-ridden, we use the trivial algorithm that returns the
entire network G. Since G is not paradox-ridden, L(HB) > L∗(G). Setting
δ = ρ(G)(L(HB)−L∗(G))/L(HB) > 0, we obtain that L(G)/L(HB) = ρ(G)−δ.
Since G has linear latencies, ρ(G) ≤ 4/3, and the theorem follows. ��



Efficient Methods for Selfish Network Design 469

5 Enforcing the Optimal Flow by Latency Modifications

Despite our positive results, there are instances where either finding the best
subnetwork is hard, or the equilibrium latency on the best subnetwork is not
close to the optimal average latency. For such instances, we present a polynomial-
time algorithm that enforces the optimal flow by performing a minimal amount
of latency modifications on the edges used by the optimal flow.

Theorem 5. MinLatMod can be solved in polynomial time for instances with
polynomial latency functions.

Proof. Let G be an instance defined on a network G(V,E) with a polynomial
latency function �e(x) =

∑d
i=0 ae,ix

i, ae,i ≥ 0, for each e ∈ E. We can efficiently
compute an optimal flow o within any specified accuracy (see e.g. [11]) and the
corresponding subnetwork Go(V,Eo).

Let α = (ae,i)e∈Eo,i∈[d] be coefficients vector of the latency functions for the
edges used by the optimal flow o. We seek a modified coefficients vector α̃ =
(ãe,i)e∈Eo,i∈[d] so that the Euclidean distance of α and α̃ is minimized, and
for the instance G̃o defined on Go with latency functions �̃e(x) =

∑d
i=0 ãe,ix

i,
ãe,i ≥ 0, e ∈ Eo, the flow o is a Nash flow with common latency L∗(G). The best
vector α̃ is given by the optimal solution to the following Quadratic Program:

min
∑
e∈Eo

d∑
i=1

(ae,i − ãe,i)2

s.t.
∑
e∈p

d∑
i=0

ãe,i o
i
e = L∗(G) ∀paths p in Go (QP)

ãe,i ≥ 0 ∀e ∈ Eo , ∀i ∈ [d]

The equality constraints ensure that all paths in Go have a common latency
L∗(G) in o wrt the modified latency functions �̃. Thus o is a Nash flow with
common latency L∗(G) for the modified instance G̃o . (QP) always admits a
feasible solution (see e.g. [25, Cor. 2.7]). Moreover, (QP) is a convex separable
Quadratic Program, and can be solved in polynomial time within any specified
accuracy (see e.g. [11]). ��

Remark 1. We can use the same approach to compute a modified coefficients
vector that turns the optimal flow o into a Nash flow on Go wrt to the modified
latencies with any prescribed common latency Λ.
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Abstract. In a load balancing network each processor has an initial
collection of unit-size jobs, tokens, and in each round, pairs of processors
connected by balancers split their load as evenly as possible. An excess
token (if any) is placed according to some predefined rule. As it turns
out, this rule crucially effects the performance of the network. In this
work we propose a model that studies this effect. We suggest a model
bridging the uniformly-random assignment rule, and the arbitrary one (in
the spirit of smoothed-analysis) by starting from an arbitrary assignment
of balancer directions, then flipping each assignment with probability α
independently. For a large class of balancing networks our result implies
that after O(log n) rounds the discrepancy is whp O((1/2 − α) log n +
log log n). This matches and generalizes the known bounds for α = 0 and
α = 1/2.

1 Introduction

In this work we are concerned with two topics whose name contains the word
“smooth”, but in totally different meaning. The first is balancing (smoothing)
networks, the second is smoothed analysis. Let us start by introducing these two
topics, and then introduce our contribution – interrelating the two.

1.1 Balancing (Smoothing) Networks

In the standard abstraction of smoothing (balancing) networks [2], processors
are modeled as the vertices of a graph and connection between them as edges.
Each process has an initial collection of unit-size jobs (which we call tokens).
Tokens are routed through the network by transmitting tokens along the edges
according to some local rule. The quality of such network is measured by the
maximum difference between the number of tokens at any two vertices (after the
balancing operations have ended).

The local scheme of communication we study is a balancer gate: the number
of tokens is split as evenly possible between the communicating vertices with the
excess token (if such remains) routed to the vertex towards which the balancer
points. More formally, the balancing network consists of n vertices v1, v2, . . . , vn,
� Tobias Friedrich and Thomas Sauerwald were partially supported by postdoctoral
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Fig. 1. The network CCC16

and m matchings (either perfect or not) M1,M2, . . . ,Mm. We associate with
every matching edge a balancer gate (that is we think of the edges as directed
edges). At the beginning of the first iteration, xj tokens are placed in vertex
vj , and at every iteration r = 1, . . . ,m, the vertices of the network perform a
balancing operation according to the matching Mr (that is, vertices vi and vj
interact if (vi, vj) ∈Mr).

One motivation for considering smoothing networks comes from the server-
client world. Each token represents a client request for some service; the service
is provided by the servers residing at the vertices. Routing tokens through the
network must ensure that all servers receive approximately the same number of
tokens, no matter how unbalanced the initial number of tokens is (cf. [2]). More
generally, smoothing networks are attractive for multiprocessor coordination and
load balancing applications where low-contention is a requirement; these include
producers-consumers [10] and distributed numerical computations [3]. Together
with counting networks, smoothing networks have been studied quite extensively
since introduced in the seminal paper of [2].

[11, 12] initiated the study of the CCC network (cube-connected-cycles, see
Figure 1) as a smoothing network. For the special case of the CCC, sticking
to previous conventions, we adopt a “topographical” view of the network, thus
calling the vertices wires, and looking at the left-most side of the network as the
“input” and the right-most as the “output”. In the CCC, two wires at layer � are
connected by a balancer if the respective bit strings of the wires differ exactly in
bit �. In [15] it was observed that the CCC is isomorphic to the well-known block
network [2, 6]. Therefore, we refer to the CCC-network throughout this paper,
though many results in the area are actually stated for the block network. The
CCC is a canonical network in the sense that it has the smallest possible depth
of log n (smaller depth cannot ensure any discrepancy independent of the initial
one). Moreover, it has been used in more advanced constructions such as the
periodic (counting) network [2, 6].
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As it turns out, the initial setting of the balancers’ directions is crucial. Two
popular options are an arbitrary orientation or a uniformly random one. A max-
imal discrepancy of log n was established for the CCCn for an arbitrary initial
orientation [12]. For a random initial orientation of the CCCn, [11] show a dis-
crepancy of 2.36

√
log n for the CCCn (this holds whp1 over the random initial-

ization), which was improved by [15] to log log n +O(1) (and a matching lower
bound).

Results for more general networks have been derived in [16] for
arbitrary orientations. For expander graphs, they show an O(log n)-
discrepancy after O(log n)-rounds. This was recently strengthened
assuming the orientations are set randomly and in addition the match-
ings themselves are chosen randomly [9]. Specifically, for expander graphs
constant discrepancy can be achieved whp within O(log n (log log n)3) rounds.

1.2 Smoothed Analysis

Let us now turn to the second meaning of “smoothed”. Smoothed analysis comes
to bridge between the random instance, which typically has a very specific “un-
realistic” structure, and the completely arbitrary instance, which in many cases
reflects just the worst case scenario, and thus over-pessimistic in general. In the
smoothed analysis paradigm, first an adversary generates an input instance, then
this instance is randomly perturbed.

The smoothed analysis paradigm was introduced by in 2001 [18] to help
explain why the simplex algorithm for linear programming works well in prac-
tice but not in (worst-case) theory. They considered instances formed by taking
an arbitrary constraint matrix and perturbing it by adding independent Gaus-
sian noise with variance ε to each entry. They showed that, in this case, the
shadow-vertex pivot rule succeeds in expected polynomial time. Independently,
[4] studied the issue of Hamiltonicity in a dense graph when random edges are
added. In the context of graph optimization problems we can also mention [8, 13],
in the context of k-SAT [5, 7], and in various other problems [1, 14, 17, 19].

In our setting we study the following question: what if the balancers were
not set completely adversarially but also not in a completely random fashion.
Besides the mathematical and analytical challenge that such a problem poses,
in real network applications one may not always assume that the random source
is unbiased, or in some cases one will not be able to quantitatively measure the
amount of randomness involved in the network generation. Still it is desirable
to have an estimate of the typical behavior of the network. Although we do not
claim that our smoothed-analysis model captures all possible behaviors, it does
give a rigorous and tight characterization of the tradeoff between the quality of
load balancing and the randomness involved in setting the balancers’ directions,
under rather natural probabilistic assumptions.

1 Writing whp we mean with probability tending to 1 as n goes to infinity.
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As far as we know, no smoothed analysis framework was suggested to a net-
working related problem. Formally, we suggest the following framework.

1.3 The Model

Our model is similar (and, as we will shortly explain, a generalization of) the
periodic balancing circuits studied in [16]. It will be helpful for the reader to bear
in mind the following legend: we use superscripts (in round brackets) to denote a
time stamp, and subscripts to denote an index. In subscripts, we use the vertices
of the graph as indices (thus assuming some ordering of the vertex set). For
example, A(i)

u,v stands for the (u, v)-entry in matrix A(i), which corresponds to
time/round i.

Let M (1), . . . ,M (T ) be an arbitrary sequence of T (not necessarily perfect)
matchings. With each matching M (i) we associate a matrix P(i) with P(i)

uv = 1/2
if u and v are matched in M (i), P(i)

uu = 1 if u is not matched in M (i), and P(i)
uv = 0

otherwise.
In round i, every two vertices matched in M (i) perform a balancing operation.

That is, the sum of the number of tokens in both vertices is split evenly between
the two, with the remaining token (if exists) placed in the vertex pointed by the
matching edge.

Remark 1. In periodic balancing networks (see [16] for example) an or-
dered set of d (usually perfect) matchings is fixed. Every round of balancing is a
successive application of the d matchings. Our model is a (slight) generalization
of the latter.

Let us now turn to the smoothed-analysis part. Given a balancing network con-
sisting of a set T of directed matchings, an α-perturbation of the network is
a flip of direction for every edge with probability α independently of all other
edges.

Setting α = 0 gives the completely “adversarial model”, and α = 1/2 is the
complete random case.

Remark 2. For our results, it suffices to consider α ∈ [0, 1/2]. The case α 
 1/2
can be reduced to the case α 	 1/2 by flipping the initial orientation of all
balancers and taking 1 − α instead of α. It is easy to see that both distributions
are identical.

1.4 Our Contribution

For a load vector x, its discrepancy is defined to be maxu,v |xu −xv|. We use eu
to denote the unit vector whose all entries are 0 except the uth. For a matrix A,
λ(A) stands for the second largest eigenvalue of A (in absolute value). Unless
stated otherwise, ‖z‖ stands for the �2-norm of the vector z.

Theorem 1 Let G be some balancing network with matchings M (1), . . . ,M (T ).
For any two time stamps t1, t2 satisfying t1 < t2 	 T , and any input vector with
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initial discrepancy K, the discrepancy at time step t2 in α-perturbed G is whp
at most

(t2 − t1) + 3
(

1
2 − α

)
t1 + Λ1 + Λ2,

where

Λ1 = max
w∈V

4

√
log n

∑t1
i=1

∑
[u:v]∈M(i)

(
(eu − ev)

(∏t2
j=i+1 P(i)

)
ew

)2

,

Λ2 = λ
(∏t2

i=1 P(i)
)√

nK.

Before we proceed let us motivate the result stated in Theorem 1. There are
two factors that effect the discrepancy: the fact that tokens are indivisible (and
therefore the balancing operation may not be “perfect”, plus the direction of the
balancer – which wire gets the extra token), and how many balancing rounds are
there. On the one hand, the more rounds there are the more balancing operations
are carried, and the smoother the output is. On the other hand, the longer the
process runs, its susceptibility to rounding errors and arbitrary placement of
excess tokens increases. This is however only a seemingly tension, as indeed the
more rounds there are, the smoother the output is. Nevertheless, in the analysis
(at least as we carry it), this tension plays part. Specifically, optimizing over
these two contesting tendencies is reflected in the choice of t1 and t2. Λ2 is the
contribution resulting from the number of balancing rounds being bounded, and
Λ1, along with the first two terms, account for the indivisibly of the tokens. In
the cases that will interest us, t1, t2 will be chosen so that Λ1, Λ2 will be low-order
terms compared to the first two terms.

Our Theorem 1 also implies the following results:

• For the aforementioned periodic setting Theorem 1 implies the following:
after O (log(Kn)/ν) rounds (ν = (1 − λ(P))−1), P is the matrix of one
period, K the initial discrepancy) the discrepancy is whp at most

O
(
d log(Kn)

ν
·
(

1
2
− α

)
+

d log log n

ν

)
.

Setting α = 0 (and assuming K is polynomial in n) we get the result of
[16], and for α = 1/2 we get the result of [9]. (The restriction on K being
polynomial can be lifted but at the price of more cumbersome expressions
in Theorem 1. Arguably, the interesting cases are anyway when the total
number of tokens, and in particular K, is polynomial). Complete details in
the full version.

• For the CCCn, after log n rounds the discrepancy is whp at most

3
(

1
2 − α

)
log n + log log n +O(1).

Let us now turn to the lower bound.
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Theorem 2 Consider a CCCn with the all-up orientation of the balancers and
assume that the number of tokens at each wire is uniformly distributed over
{0, 1, . . . ,n−1} (independently at each wire). The discrepancy of the α-perturbed
network is whp at least

max{(1
2 − α) log n− 2 log log n, (1 + o(1))(log log n)/2}.

Theorem 2 is proven in Section 2, preceding the proof of Theorem 1 (Section
3), serving as a good introduction to the more complicated proof of Theorem 1.
Two more points to note regarding the lower bound:

• For α = 0, our lower bound matches the experimental findings of [11], which
examined CCC224 , all balancers pointing up, and the input is a random num-
ber between 1 and 100, 000. Their observed average discrepancy was roughly
(log n)/2.

• The input distribution that we use for the lower bound is arguably more
natural than the tailored and somewhat artificial ones used in previous lower
bound proofs [12, 15].

Finally, we state a somewhat more technical result that we obtain, which lies
in the heart of the proof of the lower bound and sheds light on the mechanics
of the CCC in the average case input. In what follows, for a balancer b, we let
Odd(b) be an indicator function which is 1 if b had an excess token. By Bi we
denote the set of balancers that effect wire i (that is, there is a simple path in
the network going from an input wire, through such a balancer, and ending up
at wire i).

Lemma 3. Consider a CCCn network with any fixed orientation of the bal-
ancers. Assume a uniformly distributed input over {0, 1, . . . ,n − 1}. Every bal-
ancer b in layer �, 1 	 � 	 log n, satisfies the following properties:

• Pr [Odd(b) = 1] = 1/2, and
• for every i, {Odd(b) | b ∈ Bi} is a set of independent random variables.

For lack of space, the proof of this lemma, as well as other technical details that
are missing throughout the paper, can be found in the full version of the paper.
Let us just remark that the lemma holding under such strict conditions is rather
surprising. First, it is valid regardless of the given orientation. Secondly, and
somewhat counter-intuitively, the Odd’s of the balancers that effect the same
output wire are independent.

2 Lower Bound - Proof of Theorem 2

The proof outline is the following. Given an input vector x (uniformly distributed
over the range {0, . . . ,n− 1}), we shall calculate the expected divergence from
the average load μ = ‖x‖1/n. The expectation is taken over both the smoothing
operation and the input. After establishing the “right” order of divergence (in
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expectation) we shall prove a concentration result. One of the main keys to
estimating the expectation is Lemma 3 saying that if the input is uniformly
distributed as above, then for every balancer b, Pr [Odd(b) = 1] = 1/2 (the
probability is taken only over the input).

Before proceeding with the proof, let us introduce some further notation. Let
y1 be the number of tokens exiting on the top output wire of the network. For
any balancer b, Ψ(b) is an indicator random variable which takes the value −1/2
if the balancer b was perturbed, and 1/2 otherwise. B(�) is the set of balancers
in layer �, and b � y1 stands for “there is a path of consecutive layers from
balancer b to the output of wire 1”.

Using the “standard” backward (recursive) unfolding (see also [11, 15] for a
concrete derivation for the CCCn) we obtain that,

y1 = μ +
logn∑
�=1

2− log +�
∑

b∈B(�)∧b�y1

Odd(b) · Ψ(b).

The latter already implies that the discrepancy of the entire network is at least

y1 − μ =
logn∑
�=1

2− logn+�
∑
b∈�

Odd(b) · Ψ(b),

because there is at least one wire whose output has at most μ tokens (a further
improvement of a factor of 2 will be obtained by considering additionally the
bottom output wire and prove that on this wire only a small number of tokens
exit). Write y1 − μ =

∑logn
�=1 S�, defining for each layer 1 	 � 	 log n,

S� := 2− logn+�
∑

b∈B�∧b�y1

Odd(b) · Ψ(b). (1)

2.1 Proof of (1
2

− α) log n − 2 log log n

We now turn to bounding the expected value of S�. Using the following facts: (a)
the Odd(b) and Ψ(b) are independent (b) Lemma 3 which gives E [Odd(b)] = 1/2
(c) the simple fact that E [Ψ(b)] = 1

2 − α (d) the fact that in layer � there are
2logn−� balancers which affect output wire 1 (this is simply by the structure of
the CCCn), we get

E [S�] = 2− log n+�
∑

b∈B�∧b�y1

1
2 · (1 − 2α)

= 2− log n+� · 2logn−� · 1
2 ·
(

1
2 − α

)
= 1

2

(
1
2 − α

)
.

This in turn gives that

E [y1 − μ] = E

[
log n∑
�=1

S�

]
= 1

2

(
1
2 − α

)
log n.
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Our next goal is to claim that typically the discrepancy behaves like the ex-
pectation; in other words, a concentration result. Specifically, we apply Hoeffd-
ings bound to each layer S� separately. It is applicable as the random variables
2− logn+� · Odd(b) · Ψ(b) are independent for balancers within the same layer
(such balancers concern disjoint sets of input wires, and the input was chosen
independently for each wire). For the bound to be useful we need the range of
values for the random variables to be small. Thus, in the probabilistic argument,
we shall be concerned only with the first log n− log log n layers (the last log log n
layers we shall bound deterministically). We use the following Hoeffding bound:

Lemma 4 (Hoeffdings Bound). Let Z1, Z2, . . . , Zn be a sequence of indepen-
dent random variables with Zi ∈ [ai, bi] for each i. Then for any number ε 
 0,

Pr [|
∑n
i=1 Zi −E [

∑n
i=1 Zi]| 
 ε] 	 2 · exp

(
− 2ε2∑n

i=1(bi − ai)2

)
.

We plug in,

Zb = 2− logn+�·Odd(b)·Ψ(b), ε = 2(�−logn+log log n)/2, (bi−ai)2 =
(
2�−logn

)2
,

and the sum is over 2logn−� balancers in layer �. Therefore,

Pr
[
|S� −E [S�]| 
 2(�−logn+log logn)/2

]
	 2 exp

(
−2 2�−logn+log logn

2�−logn

)
	 n−1.

In turn, with probability at least 1− logn/n (take the union bound over at most
log n S� terms):

logn−log log n∑
�=1

S� 
 1
2

(
1
2 − α

)
(log n− log log n)−

logn−log log n∑
�=1

2(�−logn+log logn)/2.

The second term is just a geometric series with quotient
√

2 , and therefore can
be bounded by 1

1−1/
√

2
< 4.

For the last log log n layers, we have that for every �, |S�| cannot exceed 1
2 , and

therefore their contribution, in absolute value is at most 1
2 log log n. Wrapping

it up, whp

y1 − μ =
logn∑
�=1

S� 
 1
2

(
1
2 − α

)
(log n− log log n)− 4− 1

2 log log n.

The same calculation implies that the number of tokens at the bottom-most
output wire deviates from μ in the same way (just in the opposite direction).

Hence, the discrepancy is whp lower bounded by (using the union bound over
the top and bottom wire, and not claiming independence)

y1 − yn 

(

1
2 − α

)
log n− 8− (3

2 − α) log log n 

(

1
2 − α

)
log n− 2 log log n.
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2.2 Proof of (1 + o(1)) log log n/2

The proof here goes along similar lines to Section 2.1, only that now we choose
the set of balancers we apply it to more carefully. By the structure of the CCCn,
the last x layers form the parallel cascade of n/2x independent CCC subnetworks
each of which has 2x wires (by independent we mean that the set of balancers
is disjoint).

We call a subnetwork good if after an α-perturbation of the all-up initial
orientation, all the balancers were not flipped (that is, still point up).

The first observation that we make is that whp (for a suitable choice of x, to
be determined shortly) at least one subnetwork is good. Let us prove this fact.

The number of balancers effecting the top (or bottom) wire in one of the
subnetworks is

∑x
�=1 2� 	 2x+1. In total, there are no more than 2 ·2x+1 effecting

both wires. The probability that none of these balancers was flipped is (using
our assumption α 	 1/2) (1 − α)2

x+2 
 2−2x+2
. Choosing x = log log n− 1, this

probability is at least n−1/2; there are at least n/ logn such subnetworks, thus
the probability that none is good is at most(

1− n−1/2
)n/ logn

= o(1).

Fix one good subnetwork and let μ′ be the average load at the input to that
subnetwork. Repeating the arguments from Section 2.1 (with α = 0, log n re-
scaled to x = log log n − 4, and now using the second item in Lemma 3 which
guarantees that the probability of Odd(·) = 1 is still 1/2, for any orientation of
the balancers) gives that in the top output wire of the subnetwork there are whp
at least μ′ + (log log n)/4−O(log log log n) tokens, while on the bottom output
wire there are whp at most μ′− (log log n)/4 +O(log log log n) tokens. Using the
union bound, the discrepancy is whp at least their difference, that is at least
(log log n)/2−O(log log log n).

3 Upper Bound - Proof of Theorem 1

We shall derive our bound by measuring the difference between the number of
tokens at any vertex and the average load (as we did in the proof of the lower
bound for the CCCn). Specifically we shall bound maxi |y(t)

i − μ|, y(t)
i being the

number of tokens at vertex i at time t (we use y(t) = (yi)i∈V for the vector of
loads). There are two contributions to the divergence from μ (which we analyze
separately):

• The divergence of the idealized process from μ due to its finiteness.
• The divergence of the actual process from the idealized process due to indi-

visibility.

The idea to compare the actual process to an idealized one was suggested in
[16] and was analyzed using well-known convergence results of Markov chains.
Though we were inspired by the basic setup from [16] and the probabilistic
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analysis from [9], our setting differs in a crucial point: when dealing with the
case 0 < α < 1/2, we get a delicate mixture of the deterministic and the random
model. The random variables in our analysis are not symmetric anymore which
leads to additional technicalities.

Formally, let ξ(t) be the load vector of the idealized process at time t, then by
the triangle inequality (1 is the all-one vector)

‖y(t) − μ1‖∞ 	 ‖y(t) − ξ(t)‖∞ + ‖ξ(t) − μ1‖∞.

Proposition 5. Let G be some balancing network with matchings
M (1), . . . ,M (T ). Then,

• ‖ξ(t) − μ1‖∞ 	 Λ2,
• whp over the α-perturbation operation, ‖y(t) − ξ(t)‖∞ 	 (t2 − t1) +

3
(

1
2 − α

)
t1 + Λ1.

Theorem 1 then follows. The proof of the first item in Proposition 5 is a rather
standard spectral argument (details in the full version). Let us outline the proof
of the second item:

3.1 Proof of Proposition 5: Bounding ‖y(t) − ξ(t)‖∞

The proof of this part resembles in nature the proof of Theorem 2. Assuming
an ordering of G’s vertices, for a balancer b in round t, b = (u, v), u < v, we
set Φ

(t)
u,v = 1 if the initial direction (before the perturbation) is u → v and −1

otherwise (in the lower bound we considered the all-up orientation thus we had
no use of these random variables). As in Section 2, for a balancer b in round t,
the random variable Ψ (t)

b is −1/2 if the balancer is perturbed and 1/2 otherwise.
Finally, recall that Odd(b) = 1 if there is an excess token, and 0 otherwise. Using
these notation we define a rounding vector ρ(t), which accounts for the rounding
errors in step t. Formally,

ρ(t)
u =

{
Odd(y(t−1)

u + y
(t−1)
v ) · Ψ (t)

u,v · Φ(t)
u,v if u and v are matched in M (t),

0 otherwise.

Now we can write the actual process as follows:

y(t) = y(0)P(t−1) + ρ(t). (2)

Let M (t)
Even be the set of balancers at time t with no excess token, and M

(t)
Odd the

ones with. Also, let ei be the vector whose entries are 0 except the ith which is
1. We can rewrite ρ(t) as follows:

ρ(t) =
∑

(u,v)∈M(t)
Odd

Ψ
(t)
u,v · Φ(t)

u,v ·
(
ei − ej

)
.

Unfolding equation (2), similarly to [16], yields then

y(t) = y(0)P[1,t] +
t∑
i=1

ρ(i)P[i+1,t]. (3)
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Fig. 2. Discrepancy for various α-values of CCC230 with random input from [0, 230].
The dotted line describes the experimental results, the broken lines are our theoretical
lower and upper bounds.

Observe that y(0)P[1,t] is just ξ(t) (as ξ(0) = y(0)), and therefore

y(t) − ξ(t) =
∑t
i=1 e

(i)P[i+1,t] =
∑t
i=1

∑
(u,v)∈M(i)

Odd

Ψ
(i)
u,v ·Φ(i)

u,v · (eu − ev) ·P[i+1,t].

In turn,(
y(t) − ξ(t)

)
v

=
∑t
i=1

∑
(u,w)∈M(i)

Odd

Ψ
(i)
u,v · Φ(i)

u,v ·
(
P[i+1,t]
u,v −P[i+1,t]

w,v

)
. (4)

Our next task is to bound equation (4) to receive the desired term from Propo-
sition 5. We do that similar in spirit to the way we went around in Section 2.1.
We break this sum into its first t1 summands (whose expected sum we calculate
and to which we apply a large-deviation-bound). The remaining (t − t1) terms
are bounded deterministically. The remainder of the proof can be found in the
full version of this paper.

4 Experimental Result

We examined experimentally how well a CCC230 balances a random input from
[0, 230], for different α values between 0 and 1/2. Figure 2 presents the average
discrepancy over 100 runs, together with the following slightly better bounds on
the expected discrepancy Δ in the random-input case:

• Δ 	 (1
2 − α) · (log n− *log log n+) + *log log n++ 4,

• Δ 
 max{(1/2− α) log n, 1/2 (1− 1
n ) (�log log n� − 1)}.
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Abstract. We introduce a new theoretical model of ad hoc mobile com-
puting in which agents have restricted memory, highly unpredictable
movement and no initial knowledge of the system. Each agent’s memory
can store O(1) bits, plus a unique identifier, and O(1) other agents’ iden-
tifiers. Inputs are distributed across n agents, and all agents must con-
verge to the correct output value. We give a universal construction that
proves the model is surprisingly strong: It can solve any decision problem
in NSPACE(n log n). Moreover, the construction is robust with respect
to Byzantine failures of a constant number of agents.

1 Introduction

Technological advances have made it possible to build ad hoc networks of mo-
bile tiny computing devices that can perform control and monitoring applications
without any specific infrastructure. Much work has been devoted to designing
and experimenting on such networks, but little has focussed on devising theo-
retical models to capture their inherent power and limitations. Without such a
model, it is impossible to verify the correctness of an algorithm or determine
whether some performance bottleneck results from an inherent complexity lower
bound or is merely an artifact of a particular environment. Ideally, a theoretical
model should be weak enough to cover a large spectrum of environments, yet
strong enough to capture what can indeed be computed in such systems.

An elegant candidate for a theoretical framework is the population protocol
model of Angluin et al. [1], which makes absolutely minimal assumptions. They
assumed totally asynchronous agents, no system infrastructure, O(1) bits of
memory per agent and made no assumptions about agents’ mobility patterns
except for a fairness condition, which ensures agents are not forever disconnected.
To study computability in the model, they assumed inputs are distributed across
all agents and, after a sequence of pairwise interactions, each agent must converge
to the correct output. Angluin et al. [3] proved the model can solve exactly those
decision problems expressible by first-order formulas in Presburger arithmetic.

Unfortunately, this class of solvable problems is fairly small. For instance,
it does not include multiplication. Moreover, even for this restricted class, al-
gorithms tolerate no failures or, at worst, a fixed number of benign failures [6].
However, in the hostile environments where ad hoc mobile networks are deployed,
arbitrary failures of some agents are often expected. Even one such failure can
prevent any non-trivial computation by population protocols. (See Sect. 3.)

S. Albers et al. (Eds.): ICALP 2009, Part II, LNCS 5556, pp. 484–495, 2009.
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A key obstacle to more sophisticated computations and fault-tolerance in the
population protocol model is anonymity: all agents behave identically. Although
a tiny device’s memory is often very constrained, it is usually sufficient to store
a unique identity. Typically, a modern tiny device consists of a micro-controller
such as the MSP430 [11], which has 16 KB of RAM, possibly with a flash-memory
component, such as the M25PX64 [9], which stores a few additional megabytes
that are more expensive to access. Devices are often equipped with a unique
identifier. For example, they might contain Maxim’s DS2411 chip, which stores
just 64 bits of ROM and is set by the factory to store a unique serial number.

Our goal is to define a minimal model of constrained, yet uniquely identified,
tiny devices. Our model resembles population protocols, but we assume all n
agents have unique identifiers (ids) and can store O(1) other agents’ ids. We
call our model the community protocol model, thinking of a community as a
collection of unique individuals, in contrast to a population, which is merely an
agglomeration of a nameless multitude. We assume ids are stored in ROM (as in
the DS2411 chip), so that Byzantine agents cannot alter their ids. We restrict the
usage of ids to their fundamental purpose, identification, by assuming algorithms
can only compare ids. (An algorithm cannot, for example, perform arithmetic
on ids.) In addition to having ids, the ability of agents to remember other ids is
crucial as, otherwise, the model would be as weak as population protocols.

Our main result describes how n agents can use a community protocol to
simulate a Turing machine. As in the population protocol model, a single algo-
rithm must work for all values of n. Thus, the agents, whose collective mem-
ory capacity stores O(n log n) bits, can solve any decision problem that is in
NSPACE(n log n), even though that memory is scattered across agents with
unpredictable movement. (We focus on decision problems, but the results easily
generalize to computing functions.) Furthermore, our simulation is resilient to a
constant number of Byzantine failures. So, although community protocols have
only slightly more memory than population protocols, they are much more pow-
erful: they solve a much wider class of problems and tolerate Byzantine failures.

There are several challenges to overcome in designing the simulation. The
system’s initially unstructured memory must be organized to allow tasks like
garbage collection. Similarly, the agents must organize themselves for a division
of labour. Furthermore, both of these tasks must be resilient to Byzantine fail-
ures. Another key difficulty is the impossibility of determining when these initial
set-up tasks are complete, so it must be possible to restart any tasks that depend
on them (while ensuring that Byzantine agents cannot cause spurious restarts).

We use the condition-based approach [8] to characterize the power of commu-
nity protocols. A Byzantine agent can immediately change or discard its portion
of the input. Thus, there must be preconditions that ensure such changes cannot
affect the outcome. For example, to compute the majority value of input bits,
there must be a precondition that the difference between the number of 0’s and
the number of 1’s is at least 2f ; otherwise f Byzantine agents flipping their input
bit would cause any algorithm to produce an incorrect output.
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Theorem 1. Any decision problem in NSPACE(n log n) can be computed by
a community protocol in a way that tolerates f = O(1) Byzantine agents, given
preconditions ensuring the output does not change if up to f of the input char-
acters are changed and up to 3f + 1 of the input characters are deleted.

This leaves a slight gap: clearly, changes to f inputs must not affect the out-
put, but our construction requires slightly stronger preconditions. The proof
of Theorem 1 generalizes: if each agent could store more ids, they could tol-
erate more failures: if each agent can store O(f2) ids, then any problem in
NSPACE(fn logn) can be solved tolerating f Byzantine failures (again, with
preconditions). In contrast, most work on Byzantine failures focusses on the
number of shared objects or messages, not the amount of local memory used.

2 Computation Models

After a brief, informal description of population protocols, we define community
protocols. We also describe a version of pointer machines used in our proof.

In the population protocol model [1], a system is a collection of agents.
Each agent can be in one of a finite number of possible states. Each agent has
an input value, which determines its initial state. When two agents meet, they
exchange information about their states and simultaneously update their own
states, according to a joint transition function. Each possible agent state has
an associated output value. The input assignment, transition function and the
association of an output value with each state provides a complete specification
of an algorithm. Algorithms are uniform: they do not depend on the size of
the system. An execution begins with a collection of agents assigned their initial
values and proceeds by an infinite series of pairwise interactions. An execution is
fair if every system configuration that is forever reachable is eventually reached.

For a finite alphabet A, A∗ denotes the set of finite strings over A, and A+

denotes the set of non-empty finite strings over A. Let Σ be the finite set of input
values for individual agents. Let Y be the set of possible outputs. An algorithm
(stably) computes a function f : Σ+ → Y if, for all x ∈ Σ+, every fair execution
starting with the characters of x assigned as inputs to |x| agents eventually
stabilizes to output f(x) (i.e., from some time onward, all agents output f(x)).

We extend the population protocol model to obtain our community proto-
col model by assigning unique ids to agents. Let U be an infinite ordered set
containing all possible ids. A community protocol algorithm is specified by: (1) a
finite set, B, of possible basic states, (2) an integer d ≥ 0 representing the num-
ber of ids that can be remembered by an agent, (3) an input map ι : Σ → B,
(4) an output map ω : B → Y , and (5) a transition relation δ ⊆ Q4, where
Q = B×(U ∪{⊥})d. The state of an agent stores an element of B, together with
up to d ids. The first of the d slots will be initialized with an agent’s unique id.
If any of the d slots is not currently storing an id, it contains a null id ⊥ /∈ U .
Thus, Q is the set of possible agent states. The transition relation indicates what
happens when two agents interact: if (q1, q2, q′1, q′2) ∈ δ, it means that when two
agents in states q1 and q2 meet, they can move into states q′1 and q′2, respectively.
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As in population protocols, algorithms are uniform: they cannot use any
bound on the number of agents, so U is infinite. Thus, the d slots in an agent’s
state intended for ids could store arbitrary amounts of information. To avoid
this, we require that agents store only ids they have learned from other agents.
From a practical perspective, this implies that if the algorithm is actually im-
plemented in a real system, O(log n) bits of memory per agent will suffice. This
is analogous to the common assumption in models like random access machines
that the number of bits that fit into one memory word is logarithmic in the size
of the problem. To keep the model minimal, we require algorithms’ operations
on ids to be comparison-based. These two constraints are formalized as follows.
(1) If (q1, q2, q′1, q′2) ∈ δ and id appears in q′1 or q′2 then id appears in q1 or q2.
(2) Consider a transition (q1, q2, q′1, q

′
2) ∈ δ. Let u1 < u2 < · · · < uk be all ids

that appear in any of the four states q1, q2, q′1 and q′2. Let v1 < v2 < · · · < vk be
ids. If ρ(q) is the state obtained from q by replacing all occurrences of each id
ui by vi, then we require that (ρ(q1), ρ(q2), ρ(q′1), ρ(q

′
2)) is also in δ.

A configuration of the algorithm consists of a finite vector of elements from Q.
Let X ⊆ Σ+ be the set of all possible input strings. An initial configuration for n
agents is a vector in Qn of the form (〈ι(xj), uj,⊥,⊥, . . . ,⊥〉)nj=1 where u1, . . . , un
are distinct elements of U and xj is the input to the jth agent. The input string
represented by this initial configuration is x = xπ(1)xπ(2) . . . xπ(n) ∈ X , where π
is the permutation of {1, . . . ,n} such that uπ(1) < uπ(2) < · · · < uπ(n). (In other
words, the input string x is the string of input symbols ordered by agent ids.)

We first define fair executions for the failure-free case. If C = (q1, . . . , qn) and
C′ = (q′1, . . . , q′n) are two configurations, we say C reaches C′ in a single step
(denoted C → C′) if there are indices i �= j such that (qi, qj , q′i, q

′
j) ∈ δ and for

all k different from i and j, qk = q′k. A failure-free execution on input string
x ∈ X is an infinite sequence of configurations C0, C1, . . ., such that C0 is an
initial configuration for x and Ci → Ci+1 for all i ≥ 0. In reality, several pairs of
agents may interact simultaneously, but simultaneous interactions can simply be
listed, in any order, in the execution since they are independent of one another.
A failure-free execution is called fair if, for each C that appears infinitely often
and for each C′ such that C → C′, C′ also appears infinitely often.

We now define executions in the presence of Byzantine agents. Since the or-
der of agents within configuration vectors is unimportant (and invisible to the
algorithm itself), assume for convenience that the Byzantine agents occupy the
last components of the vectors. An execution with t ≤ n Byzantine failures is an
infinite sequence of configurations C0, C1, . . . such that C0 is an initial configu-
ration of the algorithm, and for all i ≥ 0, either (1) Ci → Ci+1 or (2) the first
n− t components are unchanged between Ci and Ci+1 and the ids of the last t
components are unchanged. Case (2) allows Byzantine agents to undergo arbi-
trary state changes (without altering their ids). In particular, they can change
the ids in the other d− 1 slots of their states to any elements of U .

Byzantine agents are exempted from fairness requirements. In particular, a
Byzantine agent might never interact with any agent. For simplicity assume that,
in any execution, each Byzantine agent can only have a finite (but
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unbounded) number of different states. Thus, the entire system only has a finite
(but unbounded) number of different configurations in any execution. Consider
an execution C0, C1, . . . with t Byzantine agents. Let Di be the first n− t com-
ponents of Ci. The execution is fair if, whenever infinitely many of the Di’s are
equal to D and D → D′, then infinitely many of the Di’s are equal to D′.

An algorithm computes a function f : Σ+ → Y tolerating f Byzantine failures
if, for all input strings x ∈ X , every fair execution C0, C1, . . . with t ≤ f failures
starting from any initial configuration C0 for x converges to f(x), i.e., there is
an i such that for every j > i and every state (b, u1, . . . , ud) of a correct agent
in Cj , ω(b) = f(x). (A population protocol is a special case with d = 0.)

Instead of simulating a Turing machine directly, our community protocol sim-
ulates a pointer machine, which has a memory structured more like a community
protocol’s. Several types of pointer machines were developed independently. (See
[5] for a survey.) Here, we describe the slightly revised version of Schönhage’s
storage modification machine (SMM) model [10] used in our construction.
An SMM represents a single computer, not a distributed system. Its memory
stores a finite directed graph of constant out-degree, with a distinguished node
called the centre. The edges of the graph are called pointers. The edges out of
each node are labelled by distinct directions drawn from a finite set Δ. Any string
x ∈ Δ∗ can be used as a reference to the node (denoted p∗(x)) that is reached
from the centre by following the sequence of pointers labelled by the characters
of x. The basic operations of an SMM allow the machine to create nodes, change
pointers and follow paths of pointers. Formally, an SMM is specified by a finite
input alphabet Σ = {σ1, σ2, . . . , σr}, the set Δ, and a programme, which is a
finite list of consecutively numbered instructions. Inputs to the SMM are finite
strings from Σ∗. Programmes may use instructions of the following types.

• new creates a new node, makes it the centre, and sets all its outgoing
pointers to the old centre.
• recentre x, where x ∈ Δ+, changes the centre of the graph to p∗(x).
• set xδ to y, where x, y ∈ Δ∗ and δ ∈ Δ, changes the pointer of node p∗(x)

that is labelled by δ to point to node p∗(y).
• if x = y then goto �, where x, y ∈ Δ∗, jumps to line � if p∗(x) = p∗(y).
• input �1, �2, . . . , �r, where �1, . . . , �r are line numbers, consumes the next

input character (if there is one) and jumps to line �i if that character is σi.
• output o, where o ∈ {0, 1}, causes the machine to halt and output o.

When a node becomes unreachable from the centre, it can be dropped from
the graph, since it plays no further role in the computation. Space complexity is
measured by the maximum number of (reachable) nodes present at any one time
during the execution. Our instruction set differs slightly from Schönhage’s. We
have omitted instructions that can be trivially implemented from ours and in-
put/output instructions for online computation. We have given a separate name
to the recentre instruction, because it is handled separately in our construction.

As shown by van Emde Boas [12], an SMM can simulate a Turing machine.

Theorem 2. Any language decided by a Turing machine using O(S logS) space
can be decided by an SMM using S nodes [12].
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We introduce a nondeterministic SMM (NSMM), adding choose instructions:
• choose �0, �1, where �0 and �1 are line numbers, causes the machine to

transfer control either to line �0 or to line �1 nondeterministically.
We define acceptance of a string by an NSMM as for nondeterministic Turing

machines: an NSMM accepts a string x if and only if some execution on input
x outputs 1. The following theorem can be proved in exactly the same way as
Theorem 2, so it will suffice to simulate an NSMM using community protocols.

Theorem 3. Any language decided by a nondeterministic Turing machine using
O(S logS) space can be decided by an NSMM using S nodes.

3 Population Protocols Cannot Handle Byzantine Agents

A function f : X → Y is called trivial if the output can be determined from any
single input character, i.e., for any strings x, y ∈ X that both contain a common
character, f(x) = f(y). Clearly, population protocols can compute any trivial
function, even with Byzantine failures. We prove the converse also holds.

Theorem 4. Any function computable by a population protocol tolerating one
Byzantine agent is trivial.

Proof. Consider an algorithm that computes f , tolerating one Byzantine failure.
Let x and y be two strings with a common character a. We prove f(x) = f(y).
Let n = |x| + |y| − 1 and p1, p2, . . . , pn be agents. Let E be a fair, failure-free
execution where p1, . . . , p|x| have the characters of x as inputs and p|x|+1, . . . , pn
have the characters of y, except for one copy of a, as inputs. Furthermore, assume
p1 has input a in E. (The input vector of E may or may not be in X .)

Let E′ be the execution of |x| agents p1, . . . , p|x| with input string x, where
all agents except p|x| behave as in E, and p|x| behaves in a Byzantine manner,
simulating the actions of all of the agents p|x|, . . . , pn in E. The fairness of E′

follows from the fairness of E. Thus, in E′, p1 must stabilize to the output f(x).
Since p1 cannot distinguish E from E′, p1 must stabilize to f(x) in E too.

A symmetric argument (comparing E to an execution where p1, p|x|+1, . . . , pn
have input y and p|x|+1 is Byzantine, simulating the actions of p2, . . . , p|x|+1)
shows p1 stabilizes to f(y) in E. Thus, f(x) = f(y). ��

4 Simulating an NSMM with a Community Protocol

We now outline the proof of Theorem 1, starting with a high-level overview. By
Theorem 3, it suffices to design a community protocol that simulates an NSMM
that uses O(n) nodes. Due to space restrictions, we omit detailed proofs.

First, all agents organize themselves into a virtual ring. They then divide up
into O(f) clusters of approximately equal size using the ring structure. Each
cluster collectively undertakes a simulation of the NSMM on the entire input
string. In the simulation, each agent stores O(f) nodes of the NSMM’s graph data
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structure. Each agent can determine, by itself, whether another agent belongs
to its own cluster, to prevent other clusters’ Byzantine agents from interfering
with its cluster’s simulation. Thus, a majority of clusters will simulate the NSMM
correctly. Each agent takes the majority output value of all clusters as its output.

Agents cannot know when the ring structure has stabilized, since a previously
inert agent can begin interacting at any time. Thus, agents cannot wait until
the structure has stabilized before starting to simulate the NSMM. Instead, they
begin the simulations right away. Then, whenever the ring structure changes, the
simulations are restarted. (Our algorithm ensures that Byzantine agents cannot
cause spurious restarts.) We prove that simulations that begin after the ring
structure has stabilized eventually converge to the correct answer.

The mechanism for restarting simulations is also used to handle the non-
determinism of the NSMM. The system must output 1 if some execution of the
NSMM outputs 1. Whenever the cluster’s simulation outputs 0, it restarts, con-
tinuing to search for an execution that outputs 1. Some executions of the NSMM
may run forever. To handle this, the simulation can make a non-deterministic
decision to restart the simulation at any time. Fairness ensures that, if some
execution of the NSMM outputs 1, correct clusters will eventually find it.

Building the Ring Structure. All agents can be imagined as forming an
abstract ring, where the agents are ordered (clockwise) by their ids. The successor
of the agent with the largest id is the agent with the smallest id. Our protocol
makes use of this ring in several ways. In particular, an agent will sometimes
have to to traverse the ring, meeting (almost) all the agents in order.

Initially, agents have no information about the abstract ring, so they must
learn about it. Without failures, it would suffice for each agent to learn its
successor’s id. However, a Byzantine agent could disrupt traversals of the ring
by lying about its successor or refusing to meet an agent traversing the ring. To
avoid these problems, we build some redundancy into the agents’ knowledge of
the ring. Let s = 8f + 4. Each agent p has a successors field which stores the
ids of p’s s closest successors in the abstract ring that p has learned of so far.

An agent can learn about its successors by meeting them directly. If q is
correct, it eventually meets all of its predecessors who can record q’s id in their
successors fields. However, if q is Byzantine, q may meet some of its predecessors,
but not others. To facilitate orderly ring traversals, we ensure q’s id eventually
either appears in the successors fields of many of its predecessors (in which case
no traversal skips q) or very few of them (in which case every traversal skips q).

To achieve this agreement about the ring structure, agents gossip about their
successors. If p sees a new id x in another agent’s successors field, it can non-
deterministically choose to begin gathering evidence that x is a real id: it then
remembers ids of agents that have x in their successors fields. If p meets f + 1
such agents, it concludes that at least one correct agent believes x is the id of a
real agent, and can add x to its own successors field. The following lemma is an
easy consequence of the fact that Byzantine agents cannot forge their own ids.

Lemma 1. A correct agent’s successors field always contains only ids of actual
agents in the system and its successors field eventually stabilizes.
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The next lemma describes the degree of agreement achieved by gossiping when
some successors fields have stabilized. We use furthest(p) to denote the last id
of p.successors (taken in clockwise order around the ring, starting from p).

Lemma 2. Let C be a set of correct agents whose successors fields have stabi-
lized at time T . For some B ⊆ C the following properties always hold after T .
(1) For each correct agent p, after p.successors has stabilized, it contains the
ids of all agents of C ∪ B that are located after p and before the agent with id
furthest(p) in the abstract ring.
(2) For each agent q /∈ C ∪ B, at most f of the agents in C have the id of q in
their successors fields.

Traversing the Ring. Our construction will require an agent p to traverse
the ring structure, performing some action upon each agent it meets. Ideally,
p’s traversal should visit every correct agent. However, p cannot wait forever
to meet a particular agent, since that agent could be Byzantine. Thus, we are
satisfied if p performs its action on almost all other agents. To do the traversal,
p maintains a sorted list of s ids from one segment of the ring in an array field
called current[1..s]. To advance the traversal, the first element of current is
removed, all others are shifted left and a new id is added in current[s]. To begin
a traversal, p.current is initialized to p.successors. Agent p then waits until it
meets at least s−f of those s agents, remembering each of their successors fields
in its own state. (This is the most memory-intensive part of the construction: p
must remember Θ(f2) ids.) Agent p then adds to p.current the next id in the
ring (beyond p.current[s]) that appears in at least 3f + 2 of those s− f agents’
successors fields. We show that this makes it impossible for the f Byzantine
agents to misdirect the traversal. The traversal proceeds by iterating this process.

Naturally, traversals will not work properly before the ring structure has sta-
bilized. However, the traversals do work correctly once most successors fields
have stabilized. To make this more precise, consider any execution. Let T be
the latest time such that changes are made to the successors fields of exactly
f + 1 correct agents after T . (This time exists, by Lemma 1.) Let C be the set
of correct agents whose successors fields do not change after T . By definition of
T , |C| ≥ n− 2f − 1. Define B to satisfy Lemma 2 for these choices of T and C.
The following lemma, which relies heavily on Lemma 2’s guarantee that there
is eventually a high degree of agreement among agents’ successors fields, states
that a traversal’s advances are orderly if the traversal is started after T .

Lemma 3. Suppose a correct agent p begins a traversal after T and after its own
successors field has stabilized. Then, at all times, p.current contains all agents
of C∪B that lie within a segment of the abstract ring (sorted in clockwise order).
Furthermore, each advance will insert into p.current[s] the id of the next agent
of C∪B that is after (in clockwise order) the id previously stored in p.current[s].

Before advancing a traversal, p must meet s − f of the agents whose ids are in
p.current. Since the traversal is intended to accomplish some task, there may
be an additional external condition, defined by the algorithm, which must be
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satisfied before the traversal can advance. The following lemma says that if that
external condition is eventually satisfied, the traversal will indeed make progress.

Lemma 4. If a correct agent p begins a traversal after T and after p.successors
has stabilized, then, in any suffix of the execution, either the external condition
for advancing is unsatisfied infinitely often, or an advance eventually occurs.

Global Resets. When the ring structure changes, agents recompute their clus-
ters and re-start all simulated executions. Each time an agent p changes its
successors field, it initiates a global reset, which tells (almost) every agent in
the system to perform a local reset (described below). Agent p does a global reset
by traversing the ring, giving a reset request to each agent it visits. To ensure
Byzantine agents cannot cause spurious local resets, an agent performs a local
reset only after receiving reset requests from f + 1 different agents, not all of
which can be Byzantine. Before the ring structure stabilizes, a global reset has
unpredictable behaviour. However, Lemma 1 ensures correct agents eventually
stop initiating global resets, and this implies the next lemma.

Lemma 5. Each correct agent performs a finite number of local resets.

By Lemma 3, global resets give reset requests to most agents after T . Thus, most
agents receive f + 1 reset requests after T and do a local reset:

Lemma 6. Each correct agent in C ∪ B performs a local reset after T .

Local Resets and Clustering. Local resets occur because the ring structure
has changed. Agents then recompute the clusters and restart the simulations
of the NSMM. Clustering (eventually) divides agents into g = 4f + 3 clusters
of roughly the same size by chopping the ring into g sections. When an agent
performs a local reset, it first recomputes the cluster boundaries. If the agent is
the leader of its cluster (i.e., the agent with the lowest id in the cluster), then it
restarts the simulation of the NSMM within its cluster. When a non-leader does
a local reset, it also asks the leader of its cluster to restart the simulation.

We first describe how an agent computes the boundaries of all clusters after
its local reset. It initiates two traversals, called the slow traversal and the swift
traversal. The slow traversal advances once every g + 1 advances of the swift
traversal. Whenever the swift traversal overtakes the slow traversal, the agent
increments a counter and remembers the id of the agent where this crossing oc-
curred as a cluster boundary. (As an analogy, the locations on a clock face where
the minute hand passes the hour hand divide the face into 11 equal segments.)

By Lemma 6, all agents in C recompute clusters after T . Each agent remembers
the cluster boundaries by storing the lowest id in each cluster. By Lemma 3, they
will perform their slow and swift traversals identically in this final clustering, and
therefore all compute identical cluster boundaries. In this final clustering after
T , a cluster is called correct if it contains only agents in C. We prove that correct
clusters simulate the NSMM correctly after stabilization. A careful computation
of exactly where the swift traversal passes the slow traversal proves these clusters
are roughly equal in size.
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Lemma 7. Each cluster includes at least n−2f−1
g − 2 agents.

Simulating an NSMM within a Cluster. A cluster’s simulation of the
NSMM is driven by its leader, p. Other agents in the cluster store the NSMM’s
graph data structure, which contains up to cn nodes for some constant c. Each
agent stores up to 2cg nodes, ensuring that the collective capacity of the agents
in the cluster is big enough to store cn nodes, by Lemma 7. A pointer to a node is
represented by an id-index pair: the id identifies the agent storing the node and
the index identifies one of the nodes stored by that agent. Agent p stores in its
state a programme counter that describes what line of the NSMM programme
it is simulating and keeps an id-index pair that locates the graph’s centre. It
simulates each instruction of the NSMM’s programme one by one as follows.

To handle input instructions, p traverses the ring, starting from the agent
with the lowest id. When the simulation reaches an input instruction, p advances
the traversal and consumes the input of one agent. Ideally, the input symbols
of all agents would be consumed. However, a traversal visits only those agents
in C ∪ B, so the simulation will miss inputs from any agents outside that set.
Furthermore, any Byzantine agents in B might refuse to cooperate with the
traversal, so p’s input traversal must skip their inputs. Unfortunately, p does
not know whether traversed agents belong to C or B. So p guesses which agents
to skip during the traversal, never skipping more than f of them. If p guesses
incorrectly, it might choose not to skip an agent that is, in fact, Byzantine, and
the Byzantine agent may refuse to meet p and provide an input character to
the simulation. In this case, p gives up and restarts the simulation from scratch.
Fairness guarantees that, if an accepting execution of the NSMM exists, the
simulation will eventually find it when it correctly guesses which agents to skip.
The overall effect of this input scheme is that the simulation might miss inputs
from up to 3f+1 agents (because there may be up to 2f+1 agents outside C∪B
and the simulation will skip up to f agents in C∪B) and, among the agents from
which inputs are received, up to f may be altered by Byzantine agents.

To simulate a recentre x instruction, p follows the pointers described by the
string x one by one. Along the way, p stores the id-index pair locating each node
visited. It advances along the path by waiting to meet the agent with that id, and
then copies the new id-index pair from that agent’s state. When p has finished
traversing the path, it updates its centre field to point to the new centre.

To simulate a set xδ to y instruction, p first follows the pointers represented
by the string x to find the agent q storing the node whose pointer must be
updated. It then follows the pointers represented by y. Both paths are followed
in the way described in the previous paragraph. Then, p changes the pointer
stored in q to point to the node that it found at the end of the second path.

To simulate an if x = y then goto �′ instruction, p follows both paths of
pointers as described above, compares the resulting id-index pairs, and updates
its programme counter accordingly.

For a new instruction, p locates an agent that stores fewer than 2cg nodes
that are reachable from the centre. Agent p runs a garbage collection to detect
unreachable nodes. First, p iterates across all agents in the cluster, marking
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all nodes within their memories as unvisited. Then, p executes a depth-first
search (DFS) from the centre of the graph data structure. It then waits until it
finds an agent q with a node that was not visited during the DFS and replaces
that node by the old centre. There will always be such an agent q: the NSMM
uses cn nodes in the worst case and there is space within the cluster to store
2cg(n−2f−1

g − 2) = c(2n− 4f − 2g − 2) ≥ cn nodes. Agent p then creates a new
centre node in q and updates its own centre field.

If the simulation reaches an output(1) instruction, then the simulation has
successfully found an accepting execution, and no further simulation is neces-
sary. The cluster leader p sets a field of its memory called clusterOutput to 1.
(This field is initialized to 0 whenever p restarts a simulation.) If the simulation
reaches an output(0) instruction, it is treated as a failed attempt to find an ex-
ecution that leads to an output of 1, and p restarts the simulation of the NSMM,
continuing to look for some other execution of the NSMM that outputs 1.

To simulate a choose �0, �1 instruction, p simply changes its programme
counter to line �0 or line �1, making the choice nondeterministically.

To abandon simulated executions that never halt, p can non-deterministically
choose to restart the simulated execution at any time.
Producing the Output. Consider any correct cluster. Let p be its leader. Each
agent in the cluster performs a local reset after T , by Lemma 6, and will real-
ize that it is a member of the cluster. The cluster’s simulation of the NSMM
is restarted when the last of these local resets occurs (and p.clusterOutput
is reset to 0). After this, the simulations of executions by the NSMM within
the cluster are correct since the cluster contains no Byzantine agents. Thus,
p.clusterOutput will eventually be changed to 1 only if there is an execution of
the NSMM that outputs 1 for some input string obtained from the actual input
by deleting at most 3f+1 input characters and changing f of them (as described
above). Conversely, if such an accepting execution of the NSMM exists, the clus-
ter will eventually simulate one, by fairness. Thus, the preconditions imply that
p.clusterOutput eventually converges to the correct output value.

Whenever an agent meets a cluster leader, it copies that leader’s current
clusterOutput field into its own memory. The output map ω of the community
protocol has each agent output the value that appears in a majority of its own
local copies of the clusters’ outputs. Since |C| ≤ 2f + 1, a majority of the g =
4f + 3 clusters are correct, so all agents converge to the correct output.

5 Conclusion

Many variants of the population protocol model have been studied. See [4]
for a survey. Most of the work on population protocols assumes no failures.
Delporte-Gallet et al. [6] gave a general construction that allows population
protocols to tolerate O(1) benign failures (halting failures and transient fail-
ures). Here, we used a similar technique of dividing agents into groups, each of
which can simulate the entire protocol. However, the mechanisms needed to cope
with Byzantine failures are much more involved. Angluin, Aspnes and Eisenstat
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[2] described a population protocol that computes majority tolerating O(
√

n)
Byzantine failures. However, it is designed for a much more restricted setting,
where the scheduler chooses the next interaction randomly and uniformly.

Our model of mobile tiny devices tolerates Byzantine failures, while exploit-
ing the full power of the agents’ memory. This work found connections between
modern mobile systems, automata theory and Turing machines, using pointer
machines as a bridge. Many open questions remain. Can the small gap between
the preconditions that are sufficient for our construction and the ones that are
necessary for computation be closed? Can f Byzantine failures be tolerated if
each agent can store fewer than Θ(f2) ids? Because it is so general, our sim-
ulation would be extremely slow, but it might be possible to construct much
faster simulations with additional assumptions (for example, with a probability
distribution on the interactions). Finally, is the ordering on U required to cope
with Byzantine failures, or would tests for equality between ids suffice (as in the
failure-free case [7])?
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Abstract. In this paper we consider the stochastic multi-armed bandit
with metric switching costs. Given a set of locations (arms) in a metric
space and prior information about the reward available at these locations,
cost of getting a sample/play at every location and rules to update the
prior based on samples/plays, the task is to maximize a certain objec-
tive function constrained to a distance cost of L and cost of plays C.
This fundamental and well-studied problem models several optimization
problems in robot navigation, sensor networks, labor economics, etc.

In this paper we develop a general duality-based framework to pro-
vide the first O(1) approximation for metric switching costs; the actual
constants being quite small. Since these problems are Max-SNP hard,
this result is the best possible. The overall technique and the ensuing
structural results are independently of interest in the context of bandit
problems with complicated side-constraints. Our techniques also improve
the approximation ratio of the budgeted learning problem from 4 to 3+ε.

1 Introduction

A prevalent paradigm in sensor networks is to use and refine crude probabilistic
models of sensed data at various nodes via judiciously sensing and transmitting
values [13,12]; such a paradigm is used, for instance, in the ecological monitoring
and forecasting application in the Duke forest [15]. Consider running an extreme
value query in a sensor network [31]: The base station has crude prior models
on the values sensed at each node in the network, and wishes to refine these
estimates in order to select a node that is sensing extreme values. The key
constraint in this process is energy: It costs energy to measure a value at a
particular node, and it costs energy to transfer this process to a new node. The
goal is to optimally refine the estimates from the perspective of the query, subject
to a budget on the energy consumed in this process.
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Such an estimation problem with switching costs was traditionally moti-
vated in several contexts: Price-setting under demand uncertainty [29], decision
making in labor markets [23,27,4], and resource allocation among competing
projects [3,17]. For instance [4,3], consider a worker who has a choice of working
in k firms. A priori, she has no idea of her productivity in each firm. In each time
period, her wage at the current firm is an indicator of her productivity there,
and partially resolves the uncertainty in the latter quantity. Her expected wage
in the period, in turn, depends on the underlying (unknown) productivity value.
At the end of each time step, she can change firms in order to estimate her pro-
ductivity at different places; however at the end of a “trial” period of duration
C, she must choose one firm and stick with it. Her payoff is her expected wage in
the finally chosen firm. The added twist is that changing firms does not come for
free, and incurs a cost to the worker. What should the strategy of the worker be
to maximize her (expected) payoff? A similar problem can be formulated from
the perspective of a firm trying out different workers with a priori unknown pro-
ductivity to fill a post – again, there is a cost to switch between workers. We
make the assumption that these costs define a metric. This assumption is also
clearly valid in a sensor network where the communication cost between nodes
(and hence the cost to transfer the estimation process to a new node) depends
on geographic distance.

The above problems can be modeled using the celebrated stochastic multi-
armed bandit framework [6,7,32] with an additional switching cost constraint
[1,2,4,3,9]: We are given a bandit with n independent arms1. When arm i is
played, we observe a reward drawn from an underlying distribution Di. A pri-
ori, this distribution is unknown; however, a prior Di is specified over possible
distributions. (For instance, if Di is a Bernoulli {0, a} distribution where the
probability of a is an unknown value t ∈ [0, 1], a possible prior Di is the Beta
distribution over the parameter t.) As the arm is played, the observed rewards
resolve the prior into a posterior distribution over possible reward distributions.
The state space of the arm Si is the set of possible posterior distributions.
Suppose the arm is in state u ∈ Si, which corresponds to a certain posterior
distribution. Conditioned on this, each reward value is observed with a fixed
probability, and causes transition to a different state v ∈ Si. Let the expected
reward observed on playing in state u be Ru. Let puv denote the probability of
transitioning to state v given a play in state u. We assume the state space Si
has polynomial size, and further, the that state transitions define a DAG rooted
at the state ρi corresponding to the prior distribution Di. Since the states corre-
spond to evolution of a prior distribution, we have a martingale property that
Ru =

∑
v∈Si

Rvpuv. The mapping from priors to the state space is standard [7],
and we omit further discussion.

The cost model is as follows: If arm i is played in state u ∈ Si, the play cost is
cu. Further, the arms are located in a metric space with distance function �. If
the previous play was for arm i and the next play is for arm j, the distance cost

1 In the context of a sensor network, think of the nodes as arms, and the values they
sense as random variables.
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incurred is �ij . A policy is an adaptive scheme for playing one arm per step,
where a play can depend on the current state of each arm (which in turn depends
on the reward sequence observed from previous plays for that arm). The start
state of each arm is the root node ρi. The key assumption in all multi-armed
bandit problems is that only the state of an arm being played changes; all other
arms retain their present state. The policy therefore defines a decision tree of
depth T over the joint state space of the n arms. At each leaf node of this tree,
each arm i is in some final state fi; the payoff of the policy for this leaf node
is maxiRfi . This corresponds to choosing the best arm (or best sensor node) at
the end of the trial period. The goal is to compute the policy (or decision tree)
for playing the arms whose expected payoff over all leaf nodes is maximized.
There are three constraints:

1. The total play cost is at most C in all decision paths. This cost is paid per
play by the policy. If the budget C is exhausted, the policy must stop.

2. The total distance cost is at most L in all decision paths. The policy pays
this cost whenever it switches the arm being played.

3. The policy has poly-size specification, and can be computed in poly-time.
The input has size O(

∑
i |Si|2) corresponding to the puv, Ru, and cu values.

The objective discussed above, which is the reward of the finally chosen arm
is termed future utilization. We also consider past utilization (known in literature
as the finite horizon average reward problem) where we seek to maximize the
sum of the rewards obtained by the policy in all the plays it makes. The future
utilization objective is already NP-Hard to maximize even when all play costs
cu = 1 and a single play reveals the full information about the arm [18], even in
the absence of distance costs. The latter objective was used as a motivation for
the orienteering problem [8] when the deterministic reward was available only
for the first time a node is visited (in their own words) “as a first step towards
tackling this general problem”.

Results and Techniques. In this paper, we build upon previous work and
complete the development by providing an O(1) approximation for the general
stochastic setting for both the future and past utilization measures. The sensor
network motivation also suggests that the policy must have compact description
for switching between nodes, in particular: Is there a strategy which is non-
adaptive, that is, does not visit the same arm twice and achieves comparable
reward to a fully adaptive optimal strategy? We settle this question also in the
affirmative, that is even before playing any arm we can fix an ordering and an
associated strategy for each arm to explore.

Our algorithm is significantly different from our recent work [20], where we
obtained a factor 4 approximation for the future utilization measure, with �ij
is a function of the form ai + aj . Our solution technique there was to solve a
linear programming relaxation and round the solution to a feasible policy while
losing a constant factor. Unfortunately, that technique does not extend directly,
since it is not clear how to round the natural LP relaxation even for the special
case of orienteering [8,5,11]. We get around this difficulty by considering, via the
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Lagrangean, a space of relaxed decision policies that violate the play cost con-
straint but respect the distance cost constraint. We show that this relaxed space
has a 2+ ε approximation using the results for orienteering. At this point, we do
not use the Lagrangean to solve the original relaxation, but instead, interpret
the Lagrangean as yielding an amortized way of accounting for the reward. This
interpretation yields a choice of the Lagrange multiplier and a simple policy that
sequentially visits and plays the arms. We analyze this policy by converting the
amortization of the reward into a global accounting scheme based on stopping
condition rather than arm by arm. This global method shows the right choice of
the Lagrange multiplier in retrospect.

For the future utilization version, this technique yields a 4+ ε-approximation,
which reduces to 3+ε in the absence of switching costs. We therefore also improve
the factor 4 approximation for budgeted learning from our previous paper [20].
Our algorithmic technique is similar to that used in [22] in the context of the
entirely different restless bandit problems (where the state of an arm varies even
if it is not played) – this showcases the power of this technique in handling diverse
stochastic bandit problems even in the presence of arbitrary side constraints.

Related Work. The future utilization problem without switching costs (a.k.a.
budgeted learning), is well-known in literature [6,19,20,26,30,32]. Our previous
paper [20] presents the first 4-approximation algorithm using an LP based ap-
proach. Goel et al. [19] extend this to define a ratio index policy that computes
indexes for each arm in isolation and plays the arm with the highest index. They
show that this policy is a 4.54 approximation. This is analogous to the famous
Gittins index [16,7] that is optimal for the discounted past utilization setting. We
show the precise connection between these index policies and our technique, and
as a side-effect, show that not only is our technique generalizable to incorporate
switching costs (unlike indices), but in addition, the computation time needed for
our algorithm is not any worse than the time needed to compute such indices.
We note that since our problems generalize orienteering [8,5,11] which is already
Max-SNP hard, constant factor approximations are best possible.

Though it is widely acknowledged [4,9] that the right model for bandit prob-
lems should have a cost for switching arms, the key hurdle is that even for the
discounted reward past utilization version, index policies stop being optimal.
Banks and Sundaram [4] provide an illuminating discussion of this aspect, and
highlight the technical difficulty in designing reasonable policies. In fact, to the
best of our knowledge there was no prior theoretical results on stochastic multi-
armed bandit with metric switching costs. We note that this problem is very
different from the Lipshitz MAB considered in [25] where the rewards of the
bandits correlate to their position in the metric space.

The multi-armed bandit has an extensively studied problem since its intro-
duction by Robbins in [28]. From this starting point the literature diverges into
a number of (often incomparable) directions, based on the objective and the in-
formation available. In context of theoretical results, the typical goal [10,24,14]
has been to assume that the agent has absolutely no knowledge of ρi (model
free assumption) and then the task has been to minimize the “regret” or the
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lost reward, that is comparing the performance of the agent to a superagent
who has full knowledge, and plays the best arm from the start. It is easy to
show that with sufficiently small cost budgets, the regret against an all-powerful
adversary is too large, and hence the need for the Bayesian approach [6,7,32] con-
sidered here. The difficulty in the Bayesian approach is computational – these
problems can be solved by dynamic programming over the joint (product) state
space

∏
i |Si| which is exponential in the number of arms. We therefore seek

approximation algorithms in this setting.

Roadmap. Due to space limitations, we present a 4 + ε approximation to the
future utilization measure. The other results can be found in the full version of
this paper [21].

2 Future Utilization Problem: Notation

Recall that we are given n arms. The distance cost of switching from arm i to
arm j is �ij ∈ Z+; this defines a metric. The arm i has a state space Si, which
is a DAG with root (or initial state) ρi. If the arm i is played in a state u ∈ Si,
it transitions to state v ∈ Si with probability puv; the play costs cu ∈ Z+ and
yields expected reward Ru. Since the states correspond to evolution of a prior
distribution, we have a martingale property that Ru =

∑
v∈Si

Rvpuv.
The system starts at an arm i0. A policy, given the outcomes of the actions so

far (which decides the current states of all the arms), makes one of the following
decisions (i) play the arm it is currently on; (ii) play a different arm (paying
the switching cost); or (iii) stop and choose the current arm i in state u ∈ Si,
obtaining its reward Ru as the payoff. Any policy is subject to rigid constraints
that the total play cost is at most C and the total distance cost is at most L on
all decision paths. Although our algorithm will only stop and choose an arm i
when it is already at arm i, we allow the policies to choose any arm as long as
the arm was visited sometime in the past.

The goal is to find the policy with maximum expected payoff. We focus
on constructing, in polynomial time, policies with possibly implicit poly-size
specification in the input size O(

∑n
i=1 |Si|2). Let OPT denote both the optimal

solution as well as its value.

3 Lagrangean Relaxation

We describe a sequence of relaxations to the optimal policy. We first delete all
arms j such that �i0j > L. No feasible policy can reach such an arm without
exceeding the distance cost budget. Let P denote the set of policies on the
remaining arms that can perform one of three actions: (1) Choose current arm
and ignore this arm in the future; (2) Play current arm; or (3) Switch to different
(unchosen) arm. Such policies have no constraints on the play costs, but are
required to have distance cost L on all decision paths. Further, a policy P ∈ P
can choose multiple arms, and obtain payoff equal to the sum of the rewards
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Ru of the corresponding states. Any arm can be chosen at most once, and if so,
cannot be played in the future. The original problem had a stricter requirement
that only one arm could be chosen, and if a choice is made, the plays stop.

Given a policy P ∈ P define the following quantities in expectation over the
decision paths: Let I(P ) denote the expected number of arms finally chosen;
R(P ) be the expected reward obtained from the chosen arms; C(P ) denote the
expected play cost. Note that any policy P ∈ P needs to have distance cost at
most L on all decision paths. Consider the following optimization problem:

(M1) : max
P∈P

{
R(P )

∣∣∣∣ C(P )
C

+ I(P ) ≤ 2
}

Proposition 1. OPT is feasible for (M1).

Proof. We have I(OPT ) = 1, C(OPT ) ≤ C; since OPT ∈ P , this shows it is
feasible for (M1).

Let the optimum solution of (M1) be OPT ′ and the corresponding policy be
P ∗ such that R(P ∗) = OPT ′ ≥ OPT . Note that P ∗ need not be feasible for
the original problem, since, for instance, it enforces the play cost constraint only
in expectation over the decision paths. We now consider the Lagrangean of the
above for λ > 0, and define the problem M2(λ):

M2(λ) : max
P∈P

fλ(P ) = 2λ+ max
P∈P

(
R(P )− λ

(
C(P )
C

+ I(P )
))

Definition 1. V (λ) = maxP∈P
(
R(P )− λ

(
C(P )
C + I(P )

))
.

We re-iterate that the only constraint on the set of policies P is that the distance
cost is at most L on all decision paths. The critical insight, which explicitly uses
the fact that in the MAB the state of an inactive arm does not change, is the
following:

Lemma 1. For any λ ≥ 0, given any P ∈ P, there exists a P ′ ∈ P that
never revisits an arm that it has already played and switched out of, such that
fλ(P ′) ≥ fλ(P ).

Proof. We will use the fact that Si is finite in our proof. Suppose P ∈ P revisits
an arm. Consider the deepest point in the decision tree P where at decision node
α, it is at arm i, took a decision to move to arm j (child decision node β) and
later, on one of the decision paths descending from this point, revisits arm i.
Call (α, β) to be “offending”.

Note that starting at decision node β, the decision tree Pβ satisfies the condi-
tion that no arm is revisited. Compress all the actions corresponding to staying
in arm j starting at β to a single decision “super-node”. This “super node” cor-
responds to the outcome of plays on arm j starting at β. But the critical part
is that the plays of the arm j does not affect the state of the other arms (due
to independence and the fact that inactive arms do not change state). Also the
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subtrees that were children of this super-node do not have any action related
to arm j by assumption. These subtrees are followed with different probabilities
that sum up to 1.

Therefore we can choose the subtree T of the super-node which has the max-
imum value of fλ(T ), and use this subtree irrespective of the outcomes of arm
j. This yields a new policy P ′ so that fλ(P ′) ≥ fλ(P ), and furthermore, the dis-
tance cost of P ′ is at most L in all decision paths, so that P ′ is feasible. By the
repeated application of the above, the subtree Pβ can be changed to a path over
super-nodes (which correspond to actions at an arm which is never revisited),
without decreasing fλ(P ). We will refer to Pβ as a “path” in this sense.

Now suppose the arm i corresponding to the play at decision node α, which
is the parent of decision node β, is played in this path Pβ . Consider moving the
entire super-node corresponding to arm i in Pβ , to just after node α, so that arm
i is played according to this super-node before visiting arm j (as dictated by the
decision node β). By independence of arms, the intermediate plays in Pβ before
reaching arm i do not affect the state of arm i. Hence the move preserves the
states of all the arms. Further, the distance cost of the new policy is only smaller,
since the cost of switching into and out of arm i is removed. Note that (α, β) is
not “offending” any more, and we have not introduced any new offending pairs
of decision nodes. By repeated application, the proposition follows.

Note that the above is not true for policies restricted to be feasible for (M1).
This is because the step where we use sub-tree T regardless of the outcome of
the super-node corresponding to j need not preserve the (implicit) constraint
I(P ) ≤ 2, since this depends on whether node j is chosen or not by the super-
node. The Lagrangean M2(λ) makes the overall objective additive in the (new)
objective values of the super-nodes, with the only constraint being that the
distance cost is preserved. Since this cost is preserved in each decision branch,
it is preserved by using the best sub-tree T regardless of the outcome of the
super-node corresponding to j.

Let Pi denote the set of all policies that play only arm i. Such a policy at any
point in time can (i) play the arm; (ii) stop and choose the arm; or (iii) stop and
not choose the arm. Note that the policy can choose the arm at most once in
any decision path, but is otherwise unconstrained. Further note that expected
play cost C(P ) and reward R(P ) are defined for such a policy, but not distance
cost. The start state of the policy is ρi ∈ Si, and the state space is Si.

Definition 1 Qi(λ) = maxP∈Pi R(P )− λ
(
C(P )
C + I(P )

)
.

Lemma 2. Qi(λ) can be computed in time polynomial in |Si|.

Proof. This is a straightforward dynamic program. Let Gain(u) to be the maxi-
mum of the objective of the single-arm policy conditioned on starting at u ∈ Si.
If u has no children, then if we “play” at node u, then there is no further actions
for the policy and so the Gain(u) = −λ cuC in this case. Stopping and not doing
anything corresponds to Gain(u) = 0. “Choosing” this arm corresponds to a
gain of Ru − λ. Therefore we set Gain(u) = max{0, Ru − λ} in this case.
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If u had children, playing would correspond to a gain of −λ cuC +
∑
v puv

Gain(v). Choosing the arm would correspond to gain Ru−λ. Therefore we have:

Gain(u) = max

{
0, −λcu

C
+
∑
v

puvgain(v), Ru − λ

}
We have Gain(ρi) = Qi(λ). This will clearly take polynomial time in |Si|.

Recall that the optimal solution to M2(λ) is 2λ + V (λ). An immediate conse-
quence of Lemma 1 is the following:

Corollary 1. Define a graph G(V,E), where node i ∈ V corresponds to arm i.
The distance between nodes i and j is �ij, and the reward of node i is Qi(λ).
The optimum solution V (λ) of M2(λ) is the optimal solution to the orienteering
problem on G starting at node i0 and respecting rigid distance budget L.

Proof. Consider any n-arm policy P ∈ P . By Lemma 1, the decision tree of the
policy can be morphed into a sequence of “super-nodes”, one for playing each
arm, such that the decision about which arm to play next is independent of
the outcomes for the current arm. The policy maximizing fλ(P ) will therefore
choose the best policy in Pi for each single arm as the “super-node” (obtaining
objective value precisely Qi(λ)), and visit these subject to the constraint that
the distance cost is at most L. This is precisely the orienteering problem on the
graph defined above.

Theorem 1. For some constant ε > 0, assume Qi(λ) ∈
[
ελn , λ

]
for all arms i.

Then, V (λ) has a 2(1 + ε)-approximation (that we will denote W (λ)) in time
polynomial in

∑n
i=1 |Si|.

Proof. This follows from the 3-approximation algorithm of Chekuri et al. [11] for
the orienteering problem. Their result holds only when the Qi(λ) are integers in
a polynomial range. If the Qi(λ) ∈

[
ελn , λ

]
, then round them in powers of (1+ ε)

to make them integers, and then apply the factor 2+ε approximation algorithm.

4 Choosing and Interpreting the Penalty λ

Recall that optimal value to the problem (M1) is at least OPT . We first relate
OPT to the optimal value 2λ+V (λ) of the problem M2(λ). We ignore the factor
(1 + ε) in the result in Theorem 1.

Lemma 3. For any λ ≥ 0, we have 2λ+ V (λ) ≥ OPT .

Proof. This is simply weak duality: For the optimal policy P ∗ to (M1), we have
I(P ∗) +C(P ∗)/C ≤ 2. Since this policy is feasible for M2(λ), the claim follows.

Lemma 4. For constant δ > 0, we can choose a λ∗ in polynomial time so that
for the resulting orienteering tour (of value W (λ)) on the subset S of arms
constructed by the approximation algorithm, we have: (1) λ∗ ≥ OPT

4 (1− δ); and
(2) W (λ) =

∑
i∈S Qi(λ

∗) ≥ OPT
4 (1− δ).
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Proof. First note that as λ increases, the value of any policy P ∈ Pi reduces,
which implies Qi(λ) decreases. For λ ≥

∑n
i=1

∑
u∈Si

Ru, the optimal policy for
arm i does not play the arm, so that Qi(λ) = 0 for all arms i. For λ = 0,
we have Qi(λ) > 0. This implies the following algorithm to find λ∗ such that
W (λ∗) ≈ λ∗. Start with λ =

∑n
i=1

∑
u∈Si

Ru and decrease it in powers of (1+ε).
For each value of λ, compute all Qi(λ). Throw out all arms with Qi(λ) < ελn .
This decreases the value of any orienteering tour by at most ελ. Now, if some
arm i reachable from the root has Qi(λ) > λ, then the value of the tour is larger
than λ, so that λ can be increased further. Otherwise, we have Qi(λ) ∈

[
ελn , λ

]
for all i Theorem 1 yields a 2 approximation to the reward. Let the value of this
approximation be W (λ). We have: W (λ) ≥ 1

2 (V (λ) − ελ). By Lemma 3:

W (λ) ≥ 1
2

(V (λ) − ελ) ≥ 1
2

(OPT − (2 + ε)λ) ⇒ (1 +
ε

2
)λ + W (λ) ≥ OPT

2

As λ is decreased, we encounter a point where: W (λ) ≤ λ, and for λ′ =
λ(1 − ε), we have W (λ′) > λ′. Set λ∗ = λ′. For these choices, we must have:
λ = λ′(1 + ε) ≥ OPT

4 (1− ε), and W (λ′) ≥ OPT
4 (1− ε). Now choose λ∗ = λ′ and

δ as a appropriate function of ε.

As in Theorem 1, we will ignore the constant δ > 0 in the remaining analysis.

4.1 Amortized Accounting of the Reward

Consider the single-arm policy P ∗i ∈ Pi that corresponds to the value Qi(λ∗).
This policy performs one of three actions for each state u ∈ Si: (i) Play the
arm at cost cu; (ii) Choose the arm in the current state, and stop; or (iii)
Stop, but do not choose the arm. For this policy, note that R(P ∗i ) = Qi(λ∗) +
λ∗ (I(P ∗i ) + C(P ∗i )/C). This implies the reward R(P ∗i ) of this policy can be
amortized, so that for state u ∈ Si, the reward is collected as follows:

1. An upfront reward Qi(λ∗) when the play initiates at the root ρ ∈ Si.
2. A reward of λ∗cu/C for playing the arm in u ∈ Si.
3. A reward of λ∗ when the policy stops and chooses the arm in state u ∈ Si.

Lemma 5. If the arm i is played starting at the root ρ ∈ Si according to policy
P∗i , and the reward is generated according to the above amortized method, then
the expected reward of the policy is precisely Qi(λ∗).

Note that the above is not true if the policy P ∗i is executed incompletely.

5 Final Policy and Analysis

The final policy is now extremely simple, and shown in Figure 1. For analysis,
first make the following modification to the final policy: If the stopping condition
(2d) is encountered and the current arm is i, play the policy P ∗i to completion
and then stop and choose arm i. This exceeds the budget C. The original policy
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Policy for Future utilization

1. Define the problem (M1). Approximately solve the Lagrangean M2(λ∗) for
λ∗ computed in Lemma 4. The policy is an orienteering tour of length at
most L on a subset S∗ of arms, combined with a single arm policy P ∗

i for
each arm i ∈ S∗ whose value is Qi(λ∗).

2. Traverse the orienteering tour, and for each arm i encountered, play the arm
according to policy P ∗

i , with the stopping conditions:
(a) If P ∗

i chooses arm i, then the final policy stops and chooses arm i.
(b) If P ∗

i stops without choosing arm i, move to the next arm on tour.
(c) If the arms in S∗ are exhausted, then stop.
(d) If cost budget C exhausted, stop and choose the current arm i.

Fig. 1. The Final Policy for Future Utilization

differs from the modified policy in that when the budget C is exhausted and
the current state is u ∈ Si, the original policy chooses the current arm i and
obtains reward Ru, while the new policy plays policy P ∗i to completion (and
may or may not choose the arm on different decision paths). However, by the
martingale property of the rewards, the expected future reward of P ∗i even if
it chooses the arm on all decision paths is the same as the current reward Ru
of state u ∈ Si, so that the original policy has at least the expected reward of
the modified policy. This analysis is also present in [20]. Therefore, we will focus
on analyzing the modified policy that in Step (2d), plays the current arm i to
completion according to policy P ∗i . Ignoring the ε, δ in Theorem 1 and Lemma 4:

Lemma 6. The modified final policy, that in Step (2d), plays the current arm i
to completion according to policy P ∗i , has reward at least OPT/4.

Proof. For the modified policy, the reward can be accounted for in the amortized
sense discussed in Section 4.1. First note that when the policy visits arm i and
starts executing the policy P ∗i starting at state ρi ∈ Si, this policy executes
to completion and the execution is independent of the execution of previously
played arms. This implies that when the final policy visits arm i, the reward from
this arm can be accounted as: Give the system a reward of Qi(λ∗). For every
play of cost c, give a reward of λ∗ cC , and if the arm is chosen (so that the final
policy stops and chooses this arm), give a reward of λ∗. It is clear from Lemma 5
that the expected reward of the final policy according to this amortization is the
same as the expected reward of the finally chosen arm (i.e., the expected reward
of the policy). Now, in order to estimate this expected reward, we take a global
view of this amortization. Instead of summing the amortized rewards over the
random set of arms encountered, we sum these rewards based on the stopping
condition the policy encounters. There are three cases:

1. The final policy exhausts all arms. In this case, the accrued amortized reward
is at least

∑
i∈S Qi(λ

∗) ≥ OPT/4.
2. The final policy runs out of budget C. In that case, since the reward per

play is λ
∗
C per unit cost, the accrued reward is at least λ∗ ≥ OPT

4 .
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3. The final policy chooses some arm i. However, the amortized reward per
choice is λ∗ ≥ OPT

4 .

Since the above cases are exhaustive, the modified final policy yields amortized
reward at least OPT4 , which is the same as the actual reward.

As shown above, the reward of the final policy was only larger before we modified
Step (2d). Therefore, we have the following theorem:

Theorem 2. For the multi-armed bandit problem with metric switching costs
under future utilization, there exists a poly-time computable ordering of the arms
and a policy for each arm, such that a solution which plays the arms using these
policies in that fixed order without revisiting any arm, has reward at least 1

4 − ε
times that of the best adaptive policy, where ε > 0 is any small constant.

The above implies an improved approximation to the budgeted learning prob-
lem [20,19], which is the special case where all distances are zero (so that there
is no cost for switching between arms).

Corollary 2. The budgeted learning problem has a 3 + ε approximation.

Proof. In this case, the value V (λ) of the problem M2(λ) is computable in
polynomial time, since it is precisely

∑n
i=1 Qi(λ). Since 2λ + V (λ) ≥ OPT by

Lemma 3, choose λ∗ so that V (λ∗) ≥ OPT
3 and λ∗ ≥ OPT

3 . Now the policy in
Figure 1 is trivially a 3 + ε approximation.

Acknowledgments. We thank Ashish Goel and Peng Shi for helpful discussions.
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Abstract. We examine online matching problems with applications to
Internet advertising reservation systems. Consider an edge-weighted bi-
partite graph G(L ∪ R, E). We develop an 8-competitive algorithm for
the following secretary problem: Initially given R, and the size of L,
the algorithm receives the vertices of L sequentially, in a random order.
When a vertex l ∈ L is seen, all edges incident to l are revealed, together
with their weights. The algorithm must immediately either match l to
an available vertex of R, or decide that l will remain unmatched.

In [5], the authors show a 16-competitive algorithm for the transversal
matroid secretary problem, which is the special case with weights on
vertices, not edges. (Equivalently, one may assume that for each l ∈
L, the weights on all edges incident to l are identical.) We use a very
similar algorithm, but simplify and improve the analysis to obtain a
better competitive ratio for the more general problem. Our analysis is
easily extended to obtain competitive algorithms for a class of similar
problems, such as to find disjoint sets of edges in hypergraphs where edges
arrive online. We also introduce secretary problems with adversarially
chosen groups.

Finally, we give a 2e-competitive algorithm for the secretary problem
on graphic matroids, where, with edges appearing online, the goal is to
find a maximum-weight acyclic subgraph of a given graph.

1 Introduction

Many optimization problems of interest can be phrased as picking a maximum-
weight independent subset from a ground set of elements, for a suitable definition
of independence. A well-known example is the (Maximum-weight) Independent
Set problem on graphs, where we wish to find a set of vertices, no two of which
are adjacent. A more tractable problem in this setting is the Maximum-weight
Matching problem, in which we wish to find a set of edges such that no two
edges share an endpoint.

In the previous examples, independent sets are characterized by forbidding
certain pairs of elements from the ground set. A somewhat related, but differ-
ent notion of independence comes from the independent sets of a matroid. For
� This work was done while the author was at Google Inc., NY.
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example, in the uniform matroid of rank k, any set of at most k elements is
independent. For graphic matroids, a set of edges in an undirected graph is in-
dependent if and only if it does not contain a cycle; the optimization goal is to
find a maximum-weight acyclic subgraph of a graph G. In transversal matroids,
a set of left-vertices of a bipartite graph is independent if and only if there is a
matching that matches each vertex in this set to some right-vertex.

In many applications, the elements of the ground set and their weights are
not known in advance, but arrive online one at a time. When an item arrives, we
must immediately decide to either irrevocably accept it into the final solution,
or reject it and never be able to go back to it again. We will be interested in
competitive analysis, that is, comparing the performance of an online algorithm
to an optimal offline algorithm which is given the whole input in advance. In this
setting, even simple problems like selecting a single maximum-weight element
become difficult, because we do not know if elements that come in the future
will have weight significantly higher or lower than the element currently under
consideration. If we make no assumptions about the input, any algorithm can be
fooled into performing arbitrarily poorly by offering it a medium-weight item,
followed by a high-weight item if it accepts, and a low-weight item if it rejects.
To solve such problems, which frequently arise in practice, various assumptions
are made. For instance, one might assume that weights are all drawn from a
known distribution, or (if independent sets may contain several elements) that
the weight of any single element is small compared to the weight of the best
independent set.

One useful assumption that can be made is that the elements of the ground
set appear in a random order. The basic problem in which the goal is to select
the maximum-weight element is well known as the Secretary Problem. It was first
published by Martin Gardner in [7], though it appears to have arisen as folklore
a decade previously [6]. An optimal solution is to observe the first n/e elements,
and select the first element from the rest with weight greater than the heaviest
element seen in the first set; this algorithm gives a 1/e probability of finding the
heaviest element, and has been attributed to several authors (see [6]).

Several problems have been studied in this random permutation model; these
are often called secretary-type problems. Typically, given a random permutation
of elements appearing in an online fashion, the goal is to find a maximum-weight
independent set. For example, Kleinberg [10] gives a 1 + O(1/

√
k)-competitive

algorithm for the problem of selecting at most k elements from the set to maxi-
mize their sum. Babaioff et al. [3] give a constant-competitive algorithm for the
more general Knapsack secretary problem, in which each element has a size and
weight, and the goal is to find a maximum-weight set of elements whose total
size is at most a given integer B.

Babaioff et al. [2] had earlier introduced the so-called matroid secretary prob-
lem, and gave an O(log r)-competitive algorithm to find the max-weight in-
dependent set of elements, where r is the rank of the underlying matroid. A
16-competitive algorithm was also given in [2] for the special case of graphic
matroids; this was based on their 4d-competitive algorithm algorithm for the
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important case of transversal matroids, where d is the maximum degree of any
left-vertex. Recently, Dimitrov and Plaxton [5] improved the latter to a ratio
of 16 for all transversal matroids. A significant open question is whether there
exists a O(1)-competitive algorithm for general matroids, or for other secretary
problems with non-matroid constraints.

The secretary problem and variants can be understood as online allocation
questions: In the basic problem, elements correspond to agents with different
valuations for a single good; the goal of the algorithm is to sell the good to the
agent who values it most (thus maximizing social welfare), though agents arrive
one at a time in a random order. In more complex problems such as those con-
sidered in this paper, there may be multiple goods to auction, agents may have
varying valuations for different bundles of goods, etc. These lead to questions on
online mechanism design, where the algorithm may be viewed as an auctioneer
selling goods to agents arriving online; the auctioneer may wish to maximize rev-
enue, social welfare, etc. Hajiaghayi et al. [8] consider online mechanism design
questions and give strategyproof mechanisms for various auction problems.

These online allocation problems arise in many practical situations where
decisions must be made in real-time without knowledge of the future, or with
very limited knowledge. For example, a factory needs to decide which orders to
fulfil, without knowing whether more valuable orders will be placed later. Buyers
and sellers of houses must decide whether to go through with a transaction,
though they may receive a better offer in a week or a month. Below, we give an
example from online advertising systems, which we use as a recurring motivation
through the paper.

Internet-based systems are now being used to sell advertising space in other
media, such as newspapers, radio and television broadcasts, etc. Advertisers
in these media typically plan advertising campaigns and reserve slots well in
advance to coincide with product launches, peak shopping seasons, or other
events. In such situations, it is unreasonable to run an auction immediately
before the event to determine which ads are shown, as is done for sponsored
search and other online advertising.

Consider an automatic advertising reservation system, in which the seller
controls a number of slots, each representing a position in which an advertisement
(hereafter ad) can be published. Advertisers/Bidders appear periodically, and
report which slots they would like to place an ad in, and how much they are
willing to pay for each slot. When an advertiser reports a bid, the system must
immediately decide whether or not to accept it; if a bid is accepted, the ad
must be placed in the corresponding slot, and if not, the ad is permanently
rejected. Note that in disallowing the removal of an accepted ad, our model
differs significantly from that of [4], in which the seller can subsequently remove
an accepted ad if he makes a compensatory payment to the advertiser.

We model this system as as an online edge-weighted matching problem on
a bipartite graph G(L ∪ R,E): the vertices of set R correspond to the set of
slots, and those of set L to the ads. For each vertex l ∈ L, its neighbors in R
correspond to the slots in which ad l can appear, and the weight of edge (l, r)
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is the amount the advertiser is willing to pay if l appears in slot r. Initially, the
seller knows the set of slots R; vertices of L appear sequentially in a random
order, as advertisers bid on slots. When a vertex l ∈ L is seen, all the edges from
l to R are revealed, together with their weights; the seller must immediately
decide whether to accept ad l, and if so, which of the relevant slots to place it in.
The seller’s goal, obviously, is to maximize his revenue. Subsequently, we refer
to this problem as Bipartite Vertex-at-a-time Matching (BVM). We describe our
results for BVM and other problems below.

We remind the reader that though our results are described as algorithms
and we analyze competitive ratios for them, they can be viewed as mecha-
nisms for natural online allocation problems. All the algorithms are monotonic
in bids/values (that is, if an element is selected by the algorithm, it would also be
selected if its value were raised further). Thus, for those problems where bidders
are single-minded, we can obtain dominant-strategy truthful mechanisms.

1.1 Results and Outline

In Section 2, we obtain an 8-competitive algorithm for Bipartite Vertex-at-a-time
Matching (BVM), corresponding to the basic online ad allocation problem. We
give a simpler and tighter analysis for an algorithm essentially due to Dimitrov and
Plaxton [5] for the special case of transversal matroids; this allows us to improve
the competitive ratio from 16 to 8, even for the more general BVM problem. Re-
call that the elements of a transversal matroid are one partite set L (subsequently
referred to as the left vertices) of a bipartite graph, and a set of vertices S ⊆ L is
independent if the graph contains a perfect matching from S to the other partite
set. That is, the transversal matroid secretary problem is equivalent to the spe-
cial case of BVM in which all edges incident to each l ∈ L have the same weight.
(Equivalently, the weights are on vertices of L instead of edges.) Independently
of this paper, Babaioff et al. [1] recently gave a 4-competitive algorithm for the
weighted k-secretary problem, which is the following restricted case of BVM: Each
ad/element l has a weight w(l), each slot r has a multiplier v(r), and any ad can
be assigned to any slot; the value of assigning l to r is w(l) · v(r).

Besides providing improved competitive ratios, our methods are of interest as
they can be naturally applied to more general problems and appear robust to
changes in the model. We illustrate this in Section 3 by extending the algorithms
and intuition developed for BVM to hypergraph problems, with applications to
more complex advertising systems in which advertisers desire bundles of slots, as
opposed to a single slot. In particular, we obtain constant-competitive algorithms
for finding independent edge sets in hypergraphs of constant edge-size.

We also introduce secretary problems with groups, to model applications in
which we do not see a truly random permutation of elements. We assume that an
adversary can group the elements arbitrarily, but once the groups are constructed,
they appear in random order. When a group appears, the algorithm can see all the
elements in the group. We discuss this idea further in Section 4.

Finally, in Section 5, we obtain a simple 2e-competitive algorithm for the
problem of finding independent edge-sets in graphic matroids, improving the
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ratio of 16 from [2]. Recently, and independently from our work, the authors of
[1] gave a 3e-competitive algorithm for this problem.

The majority of our algorithms follow the “sample-and-price” method com-
mon to many solutions to secretary problems. That is, we look at a random
sample of elements containing a constant fraction of the input, and use the val-
ues observed to determine prices or thresholds. In the second half, we accept an
element if its weight/value is above the given price. For instance, in the opti-
mal solution to the original secretary problem, the price is set to be the highest
value seen in the first 1/e fraction of the input, and we accept any element from
the remaining set with value greater than this price. Throughout this paper, we
assume that the weights of all elements are distinct; one can always ensure this
through a tie-breaking scheme.

Several proofs have been omitted from this extended abstract; a longer version
can be found at http://arxiv.org/abs/0902.2795 or on the authors’ websites.

2 The Bipartite Vertex-at-a-Time Matching Problem

Recall that in the BVM problem, the algorithm is initially given one partite set
R of a bipartite graph G(L∪R,E), together with the size of the other partite set
L. The algorithm sees the vertices of L sequentially, in a random order. When
a vertex l ∈ L is seen, all edges incident to l are revealed, together with their
weights. The algorithm must immediately either match l to an available vertex
of R, or decide that l will remain permanently unmatched. In this section, we
show that an algorithm based on that of [5] gives a competitive ratio of 8 for
this problem. Before presenting the algorithm for BVM, we describe a closely
related algorithm Simulate that is easier to analyze, and then show that our
final algorithm does at least as well as Simulate.
Let Greedy denote the greedy algorithm below for the offline Edge-weighted
bipartite matching problem. Let w(F ) denote the weight of a set of edges F , and
OPT denote the weight of an optimum (max-weight) matching on G. It is easy
to see the following proposition, that Greedy is a 2-approximation.

Proposition 1. w(M) ≥ OPT/2.

Greedy(G(L∪ R,E)):
Sort edges of E in decreasing order of weight.
Matching M ← ∅
For each edge e ∈ E, in sorted order

If M ∪ e is a matching:
M ← M ∪ e

Return M .

We now describe the algorithm Simulate, which we use purely to analyze our
final algorithm for BVM.

Say that an edge e is considered by Simulate if we flip a coin and assign e to
either M1 or M2. We make two observations about Simulate: Once any edge
incident to a vertex l ∈ L has been considered, no other edge incident to l will be



Algorithms for Secretary Problems on Graphs and Hypergraphs 513

considered later. Second, once an edge incident to r ∈ R has been added to M1,
no subsequent edge incident to r will be considered. (Note that multiple edges
incident to r might be considered until one of these edges is added to M1.)

Simulate:
Sort edges of G(L ∪ R, E) in decreasing order of weight.
M1, M2 ← ∅
Mark each vertex l ∈ L as unassigned.
For each edge e = (l, r) ∈ E, in sorted order

If l is unassigned AND M1 ∪ e is a matching:
Mark l as assigned
Flip a coin with probability p of heads
If heads, M1 ← M1 ∪ e
Else M2 ← M2 ∪ e

M3 ← M2

For each vertex r ∈ R
If r has degree > 1 in M3

Delete all edges incident to r from M3.

Observe that from our description of Simulate, M1 is a matching, but M2

may not be, as a vertex r ∈ R may be incident to multiple edges of M2. Hence,
we have a final pruning step in case there are multiple edges incident to the
same vertex of R; this gives us a matching M3. We prove two statements about
Simulate, and later show that the matching returned by our online algorithm
is at least as good as M3.

Lemma 1. E[w(M1)] ≥ pOPT/2 and E[w(M2)] ≥ (1 − p)OPT/2.

Lemma 2. E[w(M3)] ≥ p2(1−p)
2 OPT.

Before describing our final algorithm for BVM, we show that the matching re-
turned by an intermediate algorithm SampleAndPermute (below) is at least
as good as M3, which implies that we have a 2

(1−p)p2 -competitive algorithm: set-
ting p = 2/3, we get a 13.5-competitive algorithm. However, our pruning step
allows us to take an edge for M3 only if its right endpoint has degree 1; a more
careful pruning step allows more edges in the matching. We use this fact to give
a tighter analysis for the next algorithm, obtaining a competitive ratio of 8.

Note that the matching M1 in SampleAndPermute is precisely the same as
M1 from Simulate; intuitively, in the former, we toss all the coins at once and
run Greedy, while in the latter, we toss coins while constructing the Greedy
Matching. (More precisely, the two algorithms to generate the matchings are
equivalent.) Similarly, the “matching” M2 in this algorithm is essentially M2

from Simulate. The difference between the two algorithms is in the pruning
step: To construct M3 in Simulate, we delete all edges incident to any vertex
r ∈ R with degree greater than 1; in SampleAndPermute, we add to M the
first such edge seen in our permutation of L − L′. It follows immediately from
Lemma 2 that E[w(M)] ≥ p2(1− p)OPT/2, but accounting for the difference in
pruning allows the following tighter statement.
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Lemma 3. E[w(M)] ≥ p(1−p)
2 OPT.

SampleAndPermute(G(L∪ R,E)):
L′ ← ∅
For each l ∈ L:

With probability p, L′ ← L′ ∪ {l}
M1 ← Greedy(G[L′ ∪ R]).
For each r ∈ R:

Set price(r) to be the weight of the edge incident to r in M1.
M, M2 ← ∅
For each l ∈ L − L′, in random order:

Let e = (l, r) be the highest-weight edge such that w(e) ≥ price(r)
Add e to M2.
If M ∪ e is a matching, add e to M .

We now present our final algorithm, a trivial modification of SampleAndPer-

mute for the online BVM problem.

SampleAndPrice(|L|,R)

k ← Binom(|L|, p)
Let L′ be the first k vertices of L.
M1 ← Greedy(G[L′ ∪ R]).
For each r ∈ R:

Set price(r) to be the weight of the edge incident to r in M1.
M ← ∅
For each subsequent l ∈ L − L′, :

Let e = (l, r) be the highest-weight edge such that w(e) ≥ price(r)
If M ∪ e is a matching, accept e for M .

As the input to SampleAndPrice is a random permutation, L′ is a subset of
L in which each vertex of L is selected with probability p; it is easy to see that
this algorithm is equivalent to SampleAndPermute. Therefore, E[w(M)] ≥
p(1−p)

2 OPT; setting p = 1/2 implies that the expected competitive ratio is 8.

3 Independent Edge Sets in Hypergraphs

We now consider more complex online allocation problems, where agents are
interested in demand bundles. For instance, in ad reservation systems, advertisers
rarely make reservations for a single ad at a time; they are more likely to plan
advertising campaigns involving multiple individual ads. In many campaigns,
advertisers create various ads which are related to and complement or reinforce
each other; these advertisers might be interested in acquiring a bundle or set of
slots for this campaign. They submit to the reservation system the bundles they
are interested in, together with the price they are willing to pay; the system must
either accept a request for an entire bundle or reject it, as it does not receive
revenue for providing the advertiser with a part of the bundle.
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These problems with bundles can be modeled by matchings in hypergraphs.
We define two natural hypergraph problems below, and show how they capture
the ad reservation problems:

In the Hypergraph Edge-at-a-time Matching (HEM) problem, we are initally
given the vertex set of a hypergraph; subsequently, hyperedges appear in a ran-
dom order. When an edge (together with its weight) is revealed, the algorithm
must immediately decide whether or not to accept it; as before, the goal is to
select a maximum-weight set of disjoint edges. For arbitrary hypergraphs, even
the offline version of this problem is NP-Complete (and also hard to approxi-
mate) via an easy reduction from the Independent Set problem. However, the
difficulty is related to the size of the hyperedges; if all edges contain only 2 ver-
tices, for instance, then we are simply trying to find a matching in a (possibly
non-bipartite) graph. (Even in this special case, the problem is of interest in an
online setting.) Let d denote the maximum size of an edge in the hypergraph.

We provide an O(d2)-competitive algorithm for the HEM problem by solv-
ing the more general Hypergraph Vertex-at-a-time Matching (HVM) problem,
described as follows: We are initally given a subset R of the vertex set of a hy-
pergraph. The remaining vertices L arrive online; each edge of the hypergraph
is constrained to contain exactly one vertex of L, together with some vertices of
R. The vertices of L appear online in a random order; when l ∈ L is revealed,
the algorithm also sees all edges incident to l, together with their weight. At this
point, the algorithm must immediately decide whether or not to accept some
edge containing l, and if so, which edge; again, the goal is for the algorithm to
select a maximum-weight set of disjoint edges. Here, let d denote the maximum
number of vertices of R contained in a single edge (so the largest edge has d+ 1
vertices). First, we note that the HEM problem with edge size d reduces to the
HVM problem with edge size d + 1: Let R be the vertex set of the original hy-
pergraph, and add one vertex to L for each original edge. An edge of the new
hypergraph consists of an old edge, together with the corresponding vertex of
L. Observing a random permutation of L together with the incident edges is
equivalent to a random permutation of the edge set of the original hypergraph.
Also, the BVM problem of Section 2 is the special case of HVM when d = 1.

It is easy to see that if each advertiser submits a request for a single bundle,
we obtain the HEM problem with vertex set corresponding to the set of slots,
and the requested bundles forming the hyperedges. More generally, an advertiser
may submit a request for one of a set of bundles, together with a price for each
bundle. (For example, a grocery store might want their coupons to appear in any
three out of four local newspapers. A large advertiser may be willing to sponsor
one “prime time” television show and have several ads shown during the show.)
This leads to the HVM problem, with vertex set L corresponding to the set of
advertisers, and set R to the set of slots: We receive a random permutation of
advertisers, and each advertiser informs us of the bundles she is interested in,
together with a price for each bundle.

Let Greedy denote the offline algorithm for HVM that sorts edges in de-
creasing order of weight, and selects an edge if it is disjoint from all previously
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selected edges. For ease of exposition, we subsequently assume that the hyper-
graph is (d+ 1)-uniform; that is, that each edge contains exactly d vertices of R
together with one vertex of L.

Proposition 2. Greedy returns a (d + 1)-approximation to the maximum-
weight disjoint edge set.

We again define an algorithm Simulate, as in Section 2:

Simulate:
Sort edges of E in decreasing order of weight.
Mark each vertex l ∈ L as unassigned.
M1, M2 ← ∅
For each edge e ∈ E in sorted order:

Let l be the vertex of L in e
If l is unassigned AND e is disjoint from M1:

Mark l as assigned.
Flip a coin with probability p of heads
If heads, add e to M1

If tails, add e to M2

M3 ← ∅
For each e ∈ M2:

Add e to M3 if e is disjoint from the rest of M2.

As before, we let w(F ) denote the weight of an edge set F . The proofs of the
following lemma is exactly analogous to Lemma 1.

Lemma 4. E[w(M1)] ≥ p ·OPT/(d+ 1) and E[w(M2)] ≥ (1− p)OPT/(d+ 1).
It is now slightly more complex to bound the weight of M3 than it was for the
BVM problem; for BVM, the set of edges in M2 incident to v ∈ R interfere
only with each other, but in the hypergraph version, edges e1 and e2 might not
intersect each other, though they may both intersect e3, and hence all of e1, e2, e3

will have to be deleted. However, we can use a similar intuition: In BVM, we
charge all edges of M2 incident to v to the heaviest such edge; in expectation,
each edge is charged a constant number of times. For the HVM problem, we
charge all the edges in a “connected component” to the heaviest edge in the
component, and argue that (with a suitable choice of p) the average size of the
components is small. More formally, we prove the following lemma:

Lemma 5. Setting p = 1− 1/2d, E[w(M3)] ≥ OPT

12d(d+1) .

SampleAndPrice(|L|, R)

k ← Binom(|L|, 1 − 1
2d

)
Let L′ be the first k elements of L.
M1 ← Greedy(G(L′, R)).
For each v ∈ V :

Set price(v) to be the weight of the edge incident to v in M1.
M ← ∅
For each subsequent l ∈ L − L′:

Let e be the highest-weight edge containing l such that for each v ∈ e, w(e) ≥ price(v)
If e is disjoint from M , add e to M .
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Our final algorithm SampleAndPrice for the HVM problem is defined above.
As before, since the input is a random permutation of L, L′ is a subset of L
in which every vertex is selected independently with probability 1 − 1/2d, and
the matching M is at least as good as M3 from Simulate. Therefore, we have
proved the following theorem:

Theorem 1. SampleAndPrice is an O(d2)-competitive algorithm for the
HVM secretary problem.

Note that M may also contain extra edges that occur earlier in the permutation
than edges they intersect; for the BVM problem, this was the difference between
Lemma 2 and the stronger bound Lemma 3. We do not provide a tighter analysis
similar to Lemma 3 for the HVM problem in this extended abstract, nor do we
optimize the constants of Lemma 5. In particular, for the HEM problem with
d = 2 (finding an online matching in a non-bipartite graph G(V,E), given a
random permutatation of E), a smaller constant can easily be obtained.

4 Secretary Problems with Groups

For some online allocation problems, the assumption of a truly random ordering
of all elements may not be realistic; element positions may be correlated. For an
advertising example, suppose – as we did for BVM – that individual ad requests
are made to a reservation system; each request comes with a set of acceptable
slots, and values for showing the ad in each of those slots. A single merchant,
when planning a campaign, may submit to the reservation system multiple ads,
together with the slots in which each ad can be placed, and a price for each
ad-slot combination. Even if the merchants arrive in a random order, this does
not correspond to a random permutation of ads. Similarly, an external event
may cause several companies from the same industry to simultaneously request
ad slots. In these situations, our analysis of Section 2 is not directly applicable.

We investigate secretary-type problems in which, instead of elements arriving
in random order, they can be grouped by an adversary. The algorithm receives
the number of groups in advance, instead of the number of elements. However,
once the groups have been constructed, they arrive in random order; when a
group arrives, the algorithm can see all its elements at once. Note that the groups
are fixed in advance; the adversary cannot construct groups in response to the
algorithm’s choices or the set of groups seen so far. The effect of such grouping on
the difficulty of the problem is not immediately clear: The adversary can ensure
that some permutations of the element set never occur, which might make the
problem more difficult. On the other hand, as the algorithm is allowed to see
several elements at once, it may be easier to compute a good solution.

Theorem 2. If (X , I) is a p-extendible system and r is the size of a largest inde-
pendent set, there is an O(p log r)-competitive algorithm for the (X , I) secretary
problem with groups.
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Matroids are examples of 1-extendible systems; informally, in a p-extendible
system, if a single element e is added to an independent set B, at most p other
elements from B need to be discarded to maintain independence [9,11]. The set
of matchings in a hypergraph with edge size d form a d-extendible system, and so
there is an O(d log n)-competitive algorithm for the HVM problem with groups.
It follows that there is an O(log |L|)-competitive algorithm for the BVM prob-
lem with groups. The proof of Theorem 2 is a straightforward generalization of
Theorem 3.2 in [2], which shows that there is an O(log r)-competitive algorithm
for the basic secretary problem (without groups) in matroids of rank r.

Theorem 2 shows that the best known algorithm for the matroid secretary
problem with groups matches that for the problem without groups; in each case,
there is an O(log r)-competitive algorithm. Most classes of matroids for which
a constant-factor approximation is known for the secretary problem satisfy the
so-called α-partition property of [1]. For all such matroids, an eα-competitive
algorithm is known for the secretary problem, and this extends directly to the
version with groups. On the other hand, we have seen an 8-competitive algo-
rithm for BVM, generalizing the transversal matroid secretary problem, though
transversal matroids do not satisfy the α-partition property for any constant
α. Thus, a natural question is whether one can obtain a constant-competitive
algorithm for the transversal matroid secretary problem with groups or BVM
with groups, corresponding to the ad reservation problem where multiple ads
(such as those from a single advertiser) may arrive simultaneously.

We note that the natural Sample-and-Price algorithm does not work, but
make the following conjecture, for which we provide some evidence in the full
version:

Conjecture 1. There is an O(1)-competitive for the BVM problem with groups.

5 Graphic Matroids

In this section, we describe a 2e-competitive algorithm for the Graphic Matroid
Secretary problem. Here, we are initially given the set of vertices V of an undi-
rected edge-weighted graph G = (V,E), and the size of its edge set |E|. Edges
of the graph appear in a random order; the goal is to accept a maximum-weight
subset of edges F that does not contain any cycles. As always, the decision to
accept an edge must be made upon its arrival, and cannot be revoked.

This problem is equivalent to finding the maximum-weight spanning tree (if G
is connected) and is also equivalent to finding the maximum-weight independent
set in the graphic matroid defined by the graph G. Babaioff et al. [2] give a
16-competitive algorithm for the secretary version of this problem based on a
related algorithm for transversal matroids. We give a simple reduction to the
classical secretary problem, losing a factor of 2 in the reduction. We thus obtain
a 2e ≈ 5.436-competitive algorithm for the Graphic Matroid Secretary problem.1

1 Independently, a 3e-competitive algorithm was recently given by [1].



Algorithms for Secretary Problems on Graphs and Hypergraphs 519

Fix an ordering v1, v2, . . . , vn on the vertices of G. Consider two directed
graphs: graph G0 is obtained by orienting every edge of G from higher numbered
to lower numbered vertex, and graph G1 by orienting every edge from lower to
higher numbered vertex.

Our online algorithm initially flips a fair coin X ∈ {0, 1}. For each vertex v
independently, it runs a secretary algorithm to find the maximum-weight edge
leaving v in GX . The output of the algorithm is F ′, the union of all edges
accepted by the individual secretary algorithms. Since the graph GX is acyclic
and each vertex has at most one outgoing edge in F ′, the set of edges returned
must be acyclic even in the undirected sense.

Theorem 3. The algorithm above is 2e-competitive for the graphic matroid sec-
retary problem.

6 Open Problems

1. An improved understanding of groups – and their contribution to the diffi-
culty of secretary-type problems – is likely to be of interest. In particular, can
one find an O(1)-competitive algorithm for the BVM problem with groups?

2. Few lower bounds for these problems are known beyond 1/e for the original
secretary problem; obtaining such bounds may require new techniques.

3. Obtain an O(1)-competitive algorithm for the general matroid secretary
problem.
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Abstract. We address the fundamental distributed problem of leader election in
ad hoc radio networks modeled as undirected graphs. Nodes are stations having
distinct integer labels, and each node knows only its own label and a polynomial
upper bound on all labels. A signal from a transmitting node reaches all neigh-
bors. What distinguishes radio networks from message-passing networks is that
a message is received successfully by a node, if and only if, exactly one of its
neighbors transmits in this round. If two neighbors of a node transmit simultane-
ously in a given round, none of the messages is heard by the receiving node. In
this case we say that a collision occurred at this node.

An important capability of nodes of a radio network is collision detection: the
ability of nodes to distinguish a collision from the background noise occurring
when no neighbor transmits. (This ability is the “keen ear” of the nodes.) Can
collision detection speed up leader election in arbitrary radio networks? We give a
positive answer to this question. More precisely, our main result is a deterministic
leader election algorithm working in time O(n) in all n-node networks, if collision
detection is available, while it is known that deterministic leader election requires
time Ω(n log n), even for complete networks, if there is no collision detection.
This is the first computational task whose execution for arbitrary radio networks
is shown to be faster with collision detection than without it.

1 Introduction

The background and the problem. A radio network is modeled as an n-node undi-
rected graph whose nodes are stations having distinct labels. Labels are integers from
an interval {1, . . . ,N}, where N = O(nγ), for a constant γ > 1. We consider ad hoc
networks in which each node knows only its own label and an upper bound N on all
labels, but does not know the topology of the network or its size. Nodes do not even
know their immediate neighborhood or their degree. Communication proceeds in syn-
chronous rounds. In each round each node acts either as a transmitter or as a receiver.
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S. Albers et al. (Eds.): ICALP 2009, Part II, LNCS 5556, pp. 521–533, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



522 D.R. Kowalski and A. Pelc

A signal from a transmitting node reaches all neighbors. A message is heard (received
successfully) by a node, if and only if it acts as a receiver and exactly one of its neigh-
bors transmits in this round. If two neighbors of a node u transmit simultaneously in
a given round, none of the messages is heard by this node and we say that a collision
occurred at u.

An important capability of nodes of a radio network is collision detection: the abil-
ity of nodes to distinguish a collision from “silence”, which is in fact the background
noise occurring when no neighbor transmits. (This ability is the “keen ear” of nodes: a
collision slightly increases the level of noise always existing in the channel and detect-
ing this difference requires a more sensitive receiving device.) Algorithmic aspects of
radio communication have been studied both assuming collision detection and without
supposing this capability. Some algorithmic techniques crucially depend on collision
detection: even in the case when no message can be heard due to collisions, nodes can
engage in “conversations” and transmit important control information using noise and
silence as bits. This information can help to prepare future successful message trans-
missions. On the other hand, it has been shown that in some cases collision detection
can be simulated in networks whose nodes do not have this capability; see, e.g., the
procedure Echo designed in [18].

Hence it is natural to ask how crucial is collision detection for the efficiency of
performing tasks in radio networks. More precisely, can the availability of collision
detection speed up the execution of a computational task in ad hoc radio networks? It
has been long known that in the special case of single-hop radio networks (also known
as a multiple-access channel), i.e., those with the topology of a complete graph, the
answer to this question is positive. For complete graphs, deterministic leader election
can be done in time Θ(logn) with collision detection [3,14,24], while it requires time
Ω(n logn) in the model without this capability, by an adaptation of techniques from
[7]. Leader election is a task involving symmetry breaking: initially all nodes have
the same status non-leader and the goal is for all nodes but one to keep this status
and for the remaining single node to get the status leader. All nodes must learn the
leader’s identity.

However, the more general question if any task in arbitrary radio networks can be
performed faster with collision detection than without it, remained open. In other words,
does there exist an important computational task such that every algorithm solving it for
all networks without collision detection is slower than some algorithm solving it for all
networks with collision detection? This paper gives a positive answer to this question.

Our results. We show that deterministic leader election in arbitrary ad hoc radio net-
works is faster with collision detection than without it. More precisely, we show a de-
terministic leader election algorithm working in time O(n) in all n-node networks, if
collision detection is available. This complexity is optimal. On the other hand, a simple
adaptation of techniques from [7] shows that deterministic leader election requires time
Ω(n logn) even for complete networks, if collision detection is not available in the sys-
tem. Our linear time algorithm is based on several novel techniques introduced to handle
communication in radio networks with collision detection: remote token elimination,
fuzzy-separating families, distributed fuzzy-degree clustering.
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Related work. Algorithmic aspects of radio communication in networks of arbitrary
topology have been intensely studied in the last two decades, starting with the sem-
inal paper [4]. A lot of attention has been devoted to efficient algorithms for such
tasks as broadcasting, in particular in ad hoc radio networks, both in the determinis-
tic [7,8,9] and in the randomized [1,8,19,20] setting. The above papers do not assume
collision detection. The model with collision detection has been less studied in the
context of radio broadcasting: cf. [5] for arbitrary networks and [10] for geometric net-
works.

Leader election, which is the task considered in the present paper, is a classic topic in
distributed computing, and has been widely studied in the early history of this domain
(cf. [21]). Most of the results on leader election in the radio model concern single-hop
networks of known size n. Some of these results were originally obtained for other
distributed problems but have corollaries for leader election. For the time of deter-
ministic leader election without collision detection, matching bounds Ω(n logn) and
O(n logn) follow from [7], with the upper bound being non-constructive. A construc-
tive upper bound O(n polylog(n)) follows from [15]. For the time of deterministic al-
gorithms with collision detection, matching bounds are also known: Ω(logn) follows
from [13], and O(logn) follows from [3,14,24]. For the expected time of randomized
algorithms without collision detection, the same matching bounds are known: Ω(logn)
follows from [20] and O(logn) from [2]. Finally, randomized leader election with colli-
sion detection can be done faster: matching bounds Ω(log logn) (for fair protocols) and
O(loglogn) were proved in [25]. For more references and a detailed study of classes
of randomized protocols and energy issues for leader election in single-hop networks,
see [16,22].

For leader election in arbitrary networks results are much less complete. The best
bounds on the time of deterministic algorithms without collision detection are Ω(n logn)
(by applying techniques from [7]) and O(n log3 n) [6], respectively. To the best of our
knowledge, no results are published for deterministic leader election with collision de-
tection, but the lower bound Ω(n) and the upper bound O(n logn) are folklore (see,
respectively, Proposition 1 and the procedure L Elect(X ,k) taken in case k = n + 1).

2 Preliminaries

Throughout the paper, [m] denotes the set {1, . . . ,m}, for any positive integer m. A linear
upper bound on the number of nodes in the graph is denoted by n, and all labels of nodes
are integers from the interval [N], where N = O(nγ), for a constant γ > 1. Without loss
of generality we assume that N is a power of 2. All logarithms are to the base of 2. We
denote � = logN +1 and assume that labels of nodes are binary strings of length �. The
notation polylog(m) stands for O(loga m), for some constant a > 1.

The following folklore result gives a lower bound on the time of deterministic leader
election. It holds even for less restrictive models than that of radio communication, e.g.,
for the message passing model and even if each station obtains parameters n and N as a
part of the input.

Proposition 1. Every deterministic algorithm solving the leader election problem in
arbitrary networks requires time Ω(n) on some n node networks.
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It turns out that in networks without collision detection a stronger lower bound can be
proved. An application of combinatorial tools developed in [7] to the leader election
problem gives the following lower bound.

Proposition 2. Every deterministic algorithm solving the leader election problem in
arbitrary n-node radio networks without collision detection requires time Ω(n logn) on
some network.

We say that a (combinatorial) data structure is explicitly constructed if there is an algo-
rithm computing this structure in time polynomial in the size of the structure. We will
use the following combinatorial notions.

Let k ≤m. A family F of subsets of [m] is (m,k)-strongly selective, if for every non-
empty subset Z of [m] of size at most k, and for every element z ∈ Z, there exists a set
F ∈ F such that Z ∩F = {z}. Notice that strongly selective families are equivalent to
the well studied superimposed codes (cf. [17]) and have applications in many domains
of computer science, ranging from pattern matching to circuit complexity.

Proposition 3 ([11]). For any integers k ≤ m there exists an explicitly constructed
(m,k)-strongly selective family of size O(k2 logm).

Strongly-selective families can be used by nodes to learn their neighborhood in a dis-
tributed way. This process, however, is not very fast if neighborhoods are large, due to
a lower bound Ω(min{m,k2} logk m) on the size of such families [7]. In our algorithms
only nodes with relatively small degrees learn their neighborhoods using strongly-
selective families of size O(n), however this requires a distributed procedure of check-
ing in time O(n) whether a node has a desirably small, or rather a large degree. In order
to make such a local classification of nodes, we introduce a new combinatorial structure
called a fuzzy-separating family. It will be an important tool in our distributed cluster-
ing method. A family F of subsets of [m] is (m,a,b,c)-fuzzy-separating, for integers
a < b and c, if it has the following properties:

– for every non-empty subset Z of [m] of size at most a, there are more than c sets
disjoint from Z in F ;

– for every non-empty subset Z of [m] of size at least b, there are at most c sets disjoint
from Z in F .

The name fuzzy separating comes from the fact that we can distinguish subsets Z
of size at most a from those of size at least b by looking at the number of sets in F
disjoint from Z, but the situation of subsets of intermediate size (between a and b) is
not determined.

Lemma 1. For sufficiently large n and N, there exists an explicitly constructed

(N,n1/4, n1/2

logN ,c)-fuzzy-separating family of size O(n1/2 polylog(N)), for some

c = O(n1/2 polylog(N)).

We use the following terminology, introduced in [5]. A node v acting as a receiver in
a given round hears signal µ, if at least one of its in-neighbors acts as a transmitter,
i.e., if v hears a message or if there is a collision at v in this round. Otherwise (if no
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in-neighbor of v acts as a transmitter), v hears silence. A contact message is a fixed
one-bit signal. A k-neighborhood of a node is the set of all nodes at distance at most k
from it. A 1-neighborhood is simply called neighborhood.

Due to lack of space, the proofs of Proposition 2 and Lemma 1, as well as the cor-
rectness and complexity analysis of the algorithms, are omitted.

3 The Algorithm

We present a deterministic leader election algorithm working in time O(n) on graphs
with at most n nodes. We proceed in four steps. We first describe three procedures
used in the description of the algorithm. Then we present an auxiliary leader election
algorithm working under the additional assumptions that each node knows its neighbor-
hood and knows the linear upper bound n on the number of nodes. (If the nodes know
their neighborhood then leader election is much simpler then without this information.)
Later we describe our main algorithm working without the first assumption (and using
the auxiliary algorithm as an ingredient). Finally, we show how the second assumption
(about knowledge of n) can be removed.

In the algorithm description we use the well-known concept of multiplexing of pro-
cedures. By multiplexing we mean that the execution of a procedure, described as a
sequence of consecutive steps, will be interleaved with the execution of other proce-
dures needed to complete the task. Disjoint time threads (which are sets of rounds) are
reserved to participating procedures (e.g., odd and even rounds for two procedures, and
in general, each step of x threads is run every x rounds). Multiplexing serves mainly to
avoid collisions between transmissions from different procedures.

We will use two types of entities issued by nodes: tokens and agents. Tokens are la-
beled with the label of the issuing node. During the algorithm they are “shown” to other
nodes. Each node keeps in its memory the maximum of its own label and of all labels of
tokens it has seen to date; smaller labels are forgotten. At the end, all nodes elect as the
leader the node with the label corresponding to this maximum (which is updated many
times by nodes during the algorithm execution). The crucial difficulty of the algorithm
is how to circulate these tokens. One way is well known in leader election algorithms:
tokens follow a prescribed route from node to neighbor (a DFS route in our case). For
this type of token circulation we use agents; messages that carry tokens and serve as
vehicles following a prescribed DFS route in some part of the graph. Unfortunately,
not in all parts such a DFS route is known (recall that, in our main algorithm, nodes
do not know their neighborhood), and hence we also have to use remote transmissions
of tokens, bit by bit, using collision detection. Choosing the right way of communicat-
ing labels in each part of the graph and combining these two ways of communication,
avoiding the danger of unwanted interferences, is the main novelty of our algorithm and
its main technical difficulty.

To overcome this difficulty we introduce several new algorithmic ideas and tools.
The first is a fast classification of nodes according to their degree. This classification
into nodes of small and of large degrees is “fuzzy” (nodes of intermediate degrees may
be classified either way), but is sufficient for our purposes and can be done fast. To this
end we use small fuzzy separating families constructed in the previous section. Then
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we partition the entire graph into clusters, in a distributed way, according to degrees of
nodes and to the sizes of connected components spanned by nodes of small and of large
degrees. This partitioning is crucial, as token circulation is done differently in each type
of clusters. Next, we elect representatives, one in each cluster. Among those, in turn,
we elect O(logN) local leaders which include the (yet unknown) node with the largest
label. The final leader election is performed among these local leaders: their tokens are
shown to all nodes using several ways of circulation, depending on the type of cluster. In
order to keep the total time linear, it is crucial that the number of local leaders be small;
indeed, the time of this last phase has a polylogarithmic overhead with respect to the
number of contenders. The danger of unwanted interferences forces us to use different
time threads for internal communication in each type of clusters and for inter-cluster
communication.

3.1 Basic Procedures

In the description of the algorithm we will use the following procedures.

procedure standard DFS
This procedure operates under the assumption that all nodes of the graph know their
immediate neighborhood. The procedure is initiated at some node of the graph which
issues an agent carrying a token. A time limit for the duration of the procedure is deter-
mined from the outset and implemented by a counter carried by the agent. The token is
passed between neighbors in a DFS manner by this agent, always to the yet unvisited
neighbor with lowest label. Token transfer is done in one round by sending the agent by
the node currently hosting it: the agent is a message containing the token, the counter
and labels of the sending and of the receiving node. The procedure is either carried out
for the specified amount of time without visiting all nodes, and then the agent comes
back to the initiating node, using the DFS path in the opposite direction, or the proce-
dure is repeated cyclicly for the specified amount of time. In the first case we say that
DFS was unsuccessful, in the second case that it was successful.

procedure blind DFS
This procedure operates without the assumption that all nodes of the graph know their
neighborhood. The only difference with respect to standard DFS is the choice of the
node to which the agent goes next. Since nodes do not know their neighbors, the
yet unvisited neighbor with smallest label is discovered using collision detection, in
a binary search fashion. This discovery takes 2� = O(logN) = O(logn) rounds and
proceeds as follows. In the first step, the node hosting the agent asks all yet unvis-
ited neighbors to transmit their labels. If it heard silence, the agent is sent back to
its DFS parent. If it heard noise, it asks all yet unvisited neighbors with labels in the
interval [1,N/2] to transmit their labels. Then, depending on whether it heard noise,
silence, or a message, it asks all yet unvisited neighbors with labels in the interval
[1,N/4] (resp. [N/2 + 1,3N/4]) to transmit their labels, or selects the yet unvisited
neighbor with smallest label and stops (if a message from some node is heard). After
2� = O(logN) = O(logn) rounds, the yet unvisited neighbor with smallest label is dis-
covered and the agent is sent to it in the next round. In total, 2�+ 1 rounds are needed
to go to the next node in the DFS route. As before, blind DFS can be successful or not.
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procedure L Elect(X ,k)
This procedure uses two parameters: the set X of participating nodes in the graph and
the depth k. The goal is to select at least one and at most 2n/k local leaders among
nodes in X . Each local leader is the node from X which has the largest label among all
nodes from X at distance at most k from it. The procedure proceeds in � stages, each
using k rounds. Every time a node calls procedure L Elect(X ,k), it must know two
things: whether it belongs to set X or not, and what is the value of the parameter k.
This condition will be satisfied in all applications of procedure L Elect in our leader
election algorithms.

At the beginning of the procedure all nodes in X have status qualified, and the goal
is that at the end of the stage only local leaders keep this status. In the first round of stage
i, for 1 ≤ i≤ �, each qualified node with the ith bit of its label equal to 1 transmits the
contact message. In round j > 1 of stage i≤ �, where 1< j≤ k, every node of the graph
that heard signal µ in the previous round transmits the contact message. At the end of
stage i, the following update is done: if a qualified node has not transmitted in the first
round of the stage and it heard signal µ during this stage, it becomes non-qualified. A
qualified node becomes a local leader at the end of the last stage of the procedure.

3.2 The Auxiliary Algorithm

We first present the auxiliary algorithm Known Neighb LE that elects a leader under
the additional assumption that each node knows labels of all its neighbors. It also gets
parameters n and N as a part of the input. The algorithm consists of two parts. In the
first part O(logn) local leaders are elected using procedure L Elect. In the second part
a unique final leader is elected among local leaders by passing tokens initiated by all
local leaders in a DFS manner and eliminating tokens initiated at local leaders with
smaller labels. The finally elected leader is the node with the largest label among all
nodes. The novelty of our approach is in stopping the leader election process started
in the first part, some time before finishing it (which results in selecting slightly more
local leaders instead of one leader, but in a shorter time), and finishing the process in
the second part, using a different approach based on remote token elimination (which
is another new technique introduced in this paper).

Algorithm Known Neighb LE

Part 1. Election of local leaders
Call procedure L Elect(X ,k) for X equal to the set of all nodes in the graph and k =

2n
logN . The output is the nonempty set Y of at most logN local leaders: nodes in Y get
the status local leader and all other nodes in the graph get the status non local leader.

Part 2. Remote token elimination
This part is organized in two time threads. In the first time thread each local leader
runs standard DFS, stopping after the issued agent comes back to it having visited all
nodes. The circulating agent issued by each local leader carries its token (the label of the
issuing node) and the sequence of labels of all visited nodes.1 Each action of passing the

1 This is only a technical assumption and can be avoided by introducing a counter and confir-
mation bits at visited nodes; thus the size of agents (and all other messages in our algorithms)
can be reduced to O(logN).
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agent from node u currently hosting it to the next node v in the DFS route is carried out
in blocks consisting of 3 rounds. In the first round of the block u proposes the agent to v,
in the second round v confirms that it can receive it, in the third round u sends the agent
to v (if it got confirmation). The second time thread is reserved for possible conflict
resolution designed to eliminate all agents but one, if more than one agent is proposed
to node v. This conflict resolution lasts 2� rounds and is performed in the second time
thread, while the execution in the first time thread is halted (no action is performed
until resolving the conflict). Thus execution in the second time thread is carried out in
consecutive blocks of 2� rounds. Below we give the details of the execution in both time
threads.

Part 2 lasts exactly 7n rounds. In the beginning of part 2 each node becomes non
locked and starts executing thread 1 (it is idle in thread 2 until it becomes locked).
Time thread 1: It is executed only by non locked nodes. A node that becomes non locked
waits until the beginning of the next block of thread 1 and then starts its run. Recall that
one block in which an agent is passed to the next node on the DFS route, or its host
becomes locked, consists of three rounds.
Round 1: If a node u holding an agent is not locked then it proposes the agent to the
next node v on its DFS route. The message has format propose(u,v) and contains the
agent. If the DFS route is finished (at the node issuing the agent) the node does nothing.
Round 2: A node that receives a message propose(u,v) in the first round sends back a
confirmation of the format confirm(v,u), and if it hears a collision it sends the contact
message (to “jam” the channel).
Round 3:

– If a node u that proposed the agent to v in the first round receives the confirmation
from v in the second round, it “passes” the agent to v: the agent is erased at u and v
is now the node hosting the agent; otherwise (a collision, the contact message, or
silence is heard) it sends an alert (the contact message) and becomes locked;

– if a node v that sent the confirmation to node u in the second round receives an
alert or hears a collision in the third round, it does not accept the proposed agent
(the agent is not “passed” from u to v); otherwise (if it hears silence) it accepts the
agent (the agent is “passed” from u to v;

– if the token carried by the agent accepted by v is smaller than the largest token ever
received by node v or smaller than its own label then the newly accepted agent is
erased at v.

Time thread 2: The execution in this time thread is performed only by locked nodes. A
locked node (hosting an agent) initializes status to candidate. It waits until the end of
the current block of 2� rounds in time thread 2 and performs the following procedure,
similar to procedure L Elect, lasting the entire next block of 2� rounds in this time
thread. At the end of the executed procedure the node becomes non locked.

procedure Conf Res

– in round 2 j +1, where 0≤ j < �, if the node is a candidate and additionally the jth
bit of the label of the token carried by the agent hosted by this node is 1 then the
node transmits the contact message, otherwise it acts as a receiver;
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– in round 2 j + 2, where 0 ≤ j < �, if the node heard signal µ in round 2 j + 1 then it
transmits the contact message, otherwise it acts as a receiver;

– if signal µ has been heard in round 2 j +1 or 2 j +2 by a candidate node that did not
transmit in round 2 j+1, where 0≤ j <�, then it changes its status to non-candidate;

– after 2� rounds, if a node is non-candidate then the agent hosted by the node is erased.

3.3 The Algorithm without Local Knowledge

We now present algorithm Ma LE, which does not assume that nodes know their neigh-
bors, however it still assumes a known upper bound n on the number of nodes in the
(unknown) network. (This assumption will in turn be removed at the end of this section.)
While it is possible to elect a sublinear number of local leaders as before, the remote to-
ken elimination part must be different from that in algorithm Known Neighb LE, as it is
impossible to use Standard DFS. In order to overcome this difficulty, we first add a new
preprocessing part (Part 0) in which the entire graph is divided, in a distributed way, into
clusters spanned by nodes of small and of large degrees, and further an additional size
criterion is applied to classify clusters with nodes of large degrees. We call this newly
introduced clustering the fuzzy-degree clustering, as it mainly depends on node degrees
and the main combinatorial tool used to compute it are fuzzy separating families. In the
first type of clusters, whose nodes have small degrees, it is possible to learn the neigh-
borhood (using strongly selective families), and there we can build a DFS route visiting
all the nodes of the cluster, which permits to eliminate tokens during the remote to-
ken elimination part, similarly as in algorithm Known Neighb LE. In the second type of
clusters, which are of relatively small size, it may be too costly to learn neighborhoods,
but still a DFS route can be built using the blind DFS procedure. In the third type of
clusters, which are large and contain nodes of large degrees, a slightly different method
must be used: tokens are eliminated using “waves of noise”. In each cluster a represen-
tative is selected. Then local leaders are chosen, using procedure L Elect, from among
representatives (Part 1). Next a more complex remote token elimination part (Part 2),
working in parallel in previously prepared clusters and taking care of the difficulties
mentioned above, permits to eliminate all local leaders except one. As before, the final
leader is the node with the largest label.

Algorithm Ma LE

Part 0. Computing fuzzy-degree clustering
Stage 1. Let F = {F1, . . .Fk} be a (N,n1/4,n1/2/ logN,c)-fuzzy separating family of
size α = O(n1/2 polylog(N)), with c = O(n1/2 polylog(N)), given by Lemma 1. In the
ith round of Stage 1, for 1≤ i≤ α, nodes with labels in set Fi transmit the contact mes-
sage. By the definition of a fuzzy separating family, we get the following classification
of nodes: nodes that heard silence during at most c rounds - we call such nodes large,
and nodes that heard silence during more than c rounds - we call such nodes small.
It can be proved that nodes of degree at least n1/2/ logN are large and nodes of degree
smaller than n1/4 are small. Note that nodes of intermediate degree may be classified ei-
ther as small or as large, due to the “fuzziness” of the separating family. This, however,
will not affect our considerations.
Stage 2. Let S = {S1, . . .Sβ} be a (N,n1/2/ logN)-strongly selective family of size
β = O((n1/2/ logN)2 logN) = O(n/ logN). In the ith round of Stage 2, for 1 ≤ i ≤ β,
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nodes with labels in set Si transmit their label. It can be easily proved that upon comple-
tion of this stage all small nodes have heard the message of each of their neighbors, and
since small nodes know that they are small, each such node knows that it heard from all
of its neighbors.

Define white clusters to be connected components of the graph spanned by small
nodes and red clusters to be connected components of the graph spanned by large nodes.
Notice that red clusters have diameter at most 3n3/4.
Stage 3. This stage is executed in two time threads: thread 1 for small nodes and thread
2 for large nodes.
Time thread 1 (small nodes): Call algorithm Known Neighb LE in all white clusters in
parallel, to elect a leader of each white cluster. (Recall that nodes in white clusters know
all their neighbors.) Call the computed leader of each white cluster its representative.
Time thread 2 (large nodes): Call procedure L Elect(X ,k) in all red clusters in parallel,

where X is the set of large nodes and k = 3n3/4. Since red clusters have diameter at
most 3n3/4, this procedure elects a single node in each red cluster. Call this node the
representative of the cluster.

Thus, upon completion of Stage 3, a unique representative is elected in each cluster.
Stage 4. Each representative of a red cluster runs in parallel blind DFS for n rounds.
If this DFS was successful (all nodes of the cluster were visited) the red cluster is re-
colored gray; if it was unsuccessful, the red cluster is re-colored black. Re-coloring
is done in such a way that if blind DFS was successful, another run of blind DFS is
initiated for n rounds by the representative whose agent carries the re-coloring message.
If a node does not receive such an agent within the n rounds dedicated to this process, it
re-colors itself black; otherwise it re-colors itself gray. At the end of the stage, the token
issued by the representative comes back to it. Note that gray clusters are those clusters
of large nodes that have sufficiently few nodes for blind DFS to visit all of them within
time n, and black clusters are all other clusters of large nodes.

This concludes Part 0 of the algorithm. At the end of this part there are three types
of clusters in the graph together with their representatives:
(i) white, consisting of small nodes, in which a complete DFS route is established,
(ii) gray, consisting of large nodes, in which a complete DFS route is established, and
(iii) black, consisting of large nodes, in which DFS failed.

Part 1. Election of local leaders
Call procedure L Elect(X ,k), for X equal to the set of all cluster representatives and
k = 2n/ logN. The output is the nonempty set Y of at most logN local leaders: nodes in
Y have status local leader and all other nodes in the graph have status non local leader.

Part 2. Remote token elimination
This part is devoted to eliminating all local leaders except one, which becomes the
leader. As in the auxiliary algorithm Known Neighb LE, each local leader issues a token
that has its label. Since local leaders are chosen among cluster representatives, there is
at most one local leader per cluster. Unlike in the auxiliary algorithm, tokens are not
always carried by agents. Instead, they are carried by an agent inside gray or white
clusters, propagated using the procedure L Elect within black clusters, and transfered
between clusters using the procedure Conf Res. In each white or gray cluster there is a
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single agent that carries the largest token met in the cluster and this agent moves along
a DFS route fixed for the cluster by its representative. As usual, nodes forget all tokens
except the largest one they have seen to date.

Part 2 is organized in four time threads: one thread for actions in each type of clusters
(white, gray and black), and one thread for inter-cluster communication. We call these
threads white, gray, black and inter-cluster, respectively. Each thread consists of 9n
rounds. Only nodes with the color of a time thread participate in this thread, while
others are idle. During the inter-cluster time thread all nodes are active. Recall that
clusters of the same color are never neighboring (by an edge), hence in time threads
dedicated to communication within clusters of the same color (either white or gray or
black), nodes is one cluster do not interfere with nodes in other clusters of the same
color (i.e., their transmissions do not cause collisions in nodes in other clusters of the
same color). On the other hand, interferences between nodes of different colors, which
may be neighboring by an edge, are avoided by the definition of “color” time threads.
Time thread white/gray:

In white and gray clusters each representative sends an agent which travels cyclicly
along the DFS route (prepared in Part 0). The agent carries some token which may
change during its travel. In each round one step is done by the agent along the DFS
route. If the representative is a local leader, the agent starts carrying the token with
the representative’s label, otherwise it starts carrying a default token 0. Whenever the
agent visits a node that remembers a larger token (sent from a neighboring cluster), the
currently carried token is destroyed and the larger token is further carried by the agent
along the DFS route. Visiting nodes that remember smaller tokens than the one carried
by the agent do not affect the carried token.
Time thread black:

In black clusters, where there is no prepared route to circulate tokens, smaller tokens
are eliminated remotely. This is done using procedure L Elect(X ,k), where X is the set
of all black nodes and k = 3n3/4, which is an upper bound on the diameter of a black
cluster. Each node uses the largest of all labels it has seen as its name when running pro-
cedure L Elect(X ,k). Let X ′ be the set of nodes that remain qualified at the end of the
procedure. Note that since k is the upper bound on the diameter of the black cluster, all
nodes in X ′ have seen the same largest label. Next the procedure L Elect(X ′,k) is run
for set X ′ and k = 3n3/4, and, similarly as before, nodes in X ′ use the largest of all labels
they have seen as their name in this procedure. During the execution of the procedure,
all black nodes not in X ′ additionally extract a label from the execution of the proce-
dure. More precisely, a node writes 1 in position i of the binary representation if it hears
signal µ in the ith stage of the procedure, otherwise it writes 0. All nodes of the cluster
have now seen the same largest label. This block of 2k� rounds, consisting of procedures
L Elect(X ,k) and L Elect(X ′,k), is repeated 9n/(2k�) times in the black time thread.
Time thread inter-cluster:

Transferring tokens between clusters is done in the inter-cluster thread. It does not
guarantee the transfer of every token, however the tokens which are located on the bor-
der of a cluster and are locally the largest ones will be successfully transfered to the
neighboring clusters. Each node executes the following extended procedure Conf Res
in a cyclic way. One cycle lasts 3� rounds. During the first 2� rounds the procedure
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Conf Res is run. At the beginning of this run, the node fixes its current token. At the end
of the procedure, each node has status either candidate or non-candidate. In the remain-
ing � rounds each candidate node keeps transmitting control messages according to the
label of its token (i.e., transmits only in rounds i such that there is 1 in position i). A
node receiving signal µ in round i of the last � rounds writes 1 in position i of its new to-
ken’s label, otherwise it puts 0. At the end it compares the label of its new token with the
ones arriving during the execution of the cycle and remembers only the maximal one.

Theorem 1. Algorithm Ma LE elects a leader in any ad hoc radio network with at most
n nodes in time O(n), assuming that all nodes know parameters n and N.

We finally extend the Ma LE algorithm, removing the assumption that a linear upper
bound n on the number of nodes is known to stations a priori. We apply a standard dou-
bling technique in which algorithm Ma LE is run under the assumptions that the number
of participating nodes is at most 2i, for consecutive integers i > 0, until the leader is
successfully elected. We show that this happens not later than when the estimate 2i be-
comes larger than n. Additionally, we implement a distributed procedure for checking
whether this process should be stopped after the current run of algorithm Ma LE, or if it
should be continued for subsequent powers of 2 as estimates for the number of nodes.

Theorem 2. There exists an algorithm electing a leader in any ad-hoc n-node radio
network in time O(n), for any unknown integer n > 0.
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Abstract. Consider a center possessing a trusted (tamper proof) device
that wishes to securely compute a public function over private inputs
that are contributed by some network nodes. In network scenarios that
support direct communication of nodes with the center, the computa-
tion can be done by the nodes encrypting their inputs under the device’s
public key and sending the ciphertexts to the center which, in turn, feeds
them to the trusted device that computes the function. In many modern
networking scenarios, however, the center and the contributing nodes are
not directly connected/connectable, in which case the discovery and col-
lection of inputs can only be performed by an agent (or agents) released
to the network by the center. This introduces a new set of issues for
secure computation. In this work we consider an agent that is released,
sweeps the network once and then returns to its origin. The direct solu-
tion, in this case, is for the agent to possess a certified public key of the
trusted device and for the nodes to contribute their inputs as ciphertexts
under this key; once the agent collects all inputs it reconnects with the
center for function computation. The above single-sweep simple collec-
tion requires the agent to store a linear number of ciphertexts. The goal
of this work is to formalize and solve the above problem for a general
set of functions by an agent that employs sub-linear storage while main-
taining input privacy (an important technical requirement akin of that
of “Private Information Retrieval” protocols).

1 Introduction

Secure multi-party computations is a general paradigm introduced by Goldre-
ich, Micali and Wigderson [9]. It models a group of network nodes wishing to
compute a public function on private inputs (or a private function on a universal
� Research partly supported by Egyptian Culture and Education Bureau (ECEB)

Washington-DC.
�� Research partly supported by NSF awards 0447808, 0831304, 0831306.

S. Albers et al. (Eds.): ICALP 2009, Part II, LNCS 5556, pp. 534–545, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Secure Function Collection with Sublinear Storage 535

circuit), producing the correct result, while a faulty subset of the nodes cannot
learn from the computation more than what can be deduced from the output
availability. In a model allowing nodes to also deviate from the protocol, the
computation also requires that the faulty subset cannot hurt the computation.
This paradigm is central in cryptography and secure network protocols, and has
produced numerous variations. For example, recently, it was advocated to de-
velop solutions that take into account specific communication environments for
improved efficiency [14].

In this work we consider a setting for multi-party computations which is mo-
tivated by two modern phenomena: The first is modern network environments
and network processing settings where network nodes are not always connected
or directly reachable by a global routing infrastructure (ad hoc networks, sen-
sor networks), or where applications at a network node are activated only when
being approached by an agent (e.g., web crawling). The second motivation is
the availability of trusted computing platforms representing a trusted tamper
resistant computational device. Indeed, building cryptographic systems based
on trusted and tamper proof implementations and cryptographically fortifying
such implementations is an area of increasing recent interest [13,12,8].

The problem we consider is the setting where a server (called the “center”)
M in possession of a tamper-proof cryptographic device (that offers elemen-
tary public-key signing and decryption functionality) wishes to compute a func-
tion described by a program P on a set of m inputs residing in network units
U = {U1, ..., Um}, to which the center has no direct interaction with. The task
of collecting the inputs is given to an agent A that visits the units. The com-
putation is required to maintain input security and to have certain robustness
properties as well. The setting, which can be called “agent-oriented secure func-
tion evaluation” gives rise to new problems in the area of secure computing
based on various constraints and limitations that can be put on the parties by
varying the problem’s parameters. In this work we consider the case of an agent
that is limited to returning to the center once after sweeping the network nodes,
in which case the interesting challenge is to employ an agent with sub-linear
number of ciphertexts.

We formalize the above problem which we call “secure collection of a function”
(SCF). We want to achieve the following security and integrity properties:

Unit Privacy against Malicious Agent: Even if the agent is malicious it can-
not violate the privacy of the units; furthermore,
Unit Privacy against Curious Center: While the center is trusted in our
framework (since it is the interested party) we still wish to maintain the
privacy of the units against in the honest-but-curious sense. We note that
this can be very useful also in the setting where the trusted device em-
ployed by the center simulated by a quorum of entities (employing threshold
cryptography techniques shared among trusted bases).
Integrity in the presence of Malicious Units: If any number of units turn
malicious they cannot collude to disrupt or spoil the computation (except
by choosing their private inputs arbitrarily).
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Computation Privacy in the presence of Malicious Units: If any number of
units turn malicious and are given the contents of the agent they cannot
learn the state of the computation (beyond what can be deduced from their
own contributions and the size of the state’s encoding).

Based on the above, from a security point of view, the agent is oblivious
to the contributions of the units and the state of the computation. Its content
only reveal some encoding of state. From a robustness point of view, we note
that changing the state of the agent can be detected by keeping local copies
at neighbors (such extensions are left for future work). Further, in the worse
case, this amounts to a total denial of service (namely, elimination of the agent),
but it will not violate the privacy of the units. Mitigating the denial of service
resulting by agent capturing can only be coped with by releasing a multitude of
agents and we do not address these aspects at present (such variations are also
suggested future work).

Our contributions and results. Here we present the concrete results we
achieve. As mentioned earlier, a sweeping agent can collect all inputs in cipher-
text form, a solution that requires it to carry a linear number of ciphertexts.
Our goal then is to reduce this storage requirement for a large set of functions.
Given our setting, we choose to implement the branching program model for
representing and computing our function f . We show that this model can lead
to working solutions within the constraints on agent’s storage as well as those on
the computational complexity imposed by the SCF setting. We employ a Pail-
lier type encryption [19] assuming the decisional composite residuosity (DCR)
assumption.

To solve our problem, we develop a new cryptographic primitive that effi-
ciently computes a function f in the branching program model. We call it “1-
out-of-2 private table evaluation” (PTE1

2). In this primitive, the agent A has
input two tables (T (0) and T (1)). It delivers an encrypted version of the two
tables to the unit. The unit, in turn, makes a selection according to her private
input bit b, and delivers a re-encryption of her choice back to A.

Private table evaluation enables the agent to walk along a branching program
layer by layer in an oblivious fashion without learning in cleartext the actual state
of the computation. At the end of the protocol (after visiting all units) the agent
returns an encryption of the leaf representing the output of the program to the
center who can then employ the trusted device to decrypt and obtain the result.
During the protocol, the agent stores only an encryption of the current table. A
nice property of this primitive is that the units need not have any public keys and
they employ the key of the trusted device. We give an efficient implementation of
the PTE1

2 that yields an SCF protocol achieving a complexity (both in terms of
communication as well as in the size of the active read/write storage of the agent)
in the order of O(k · wmax) where k is the security parameter of the underlying
homomorphic public key encryption scheme and wmax is the maximum width
of the branching program. For a large set of branching programs this value is
independent of the number of units m. For example for NC1 programs we can
get memory linear in the security parameter k due to Barrington’s theorem [1].
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Another appealing property of the PTE1
2 is that, with the help of well known

and suitable proofs of knowledge and with agent signing commitments to input
upon its first visit we can design efficient solutions against malicious behavior of
the units without hurting the complexity of the honest-but-curious protocol. The
total run-time of the computation is proportional to the size of the branching
program.

We show how to perform general function evaluation in this model. We then
show how to implement SCF for concrete problems that are of practical impor-
tance in the setting of network sweeping: (i) polling-to-partition procedures, that
can simulate a wide array of distributed decision-making and polling operations,
and (ii) pattern and string matching procedures typical in search problems. Fi-
nally, we note that to further hide the circuit structure from units, the agent
can perform dummy PTE1

2 operations, in a random walk, mixing it with real
computations.
Related Work. Secure multiparty computation was initiated and studied by
Goldreich, Micali and Wigderson [9] in a fully connected (broadcast links).
This was followed by information theoretic protocols assuming (added) private
links [2,4,20]. Various models with partial connectivity were then considered in
[6,14,7]. In our setting we take the approach to restrict even further the connec-
tivity (by not assuming a complete routing infrastructure as in ad hoc scenarios).
We further employ a trusted device (also employed in recent work on employ-
ing trusted hardware in [13,10]). We next note that our problem bears some
relation to private information retrieval [5,16,3] where a client wishes to extract
a record from a database in sublinear communication. The distinction in our
setting is that the role of the database is distributed to a set of units and the
role of the communication channel is played by the agent that interacts with the
units.

The use of the branching program model of computation for reducing the
communication complexity in secure computations between two curious parties
was put forth by Naor and Nissim in [18]. Note that the units are not supposed to
coordinate with each other, so their technique cannot be directly adapted for our
setting. Their model was also utilized in the context of sublinear communication
oblivious transfer in [17] and for general two party computation in [11].
Paper Organization. In section 2 we present the formulation of the problem
and the security model. Next, in section 3 we show our basic secure collection
of a function protocol construction using private table evaluation as a building
block. An explicit private table evaluation protocol is then presented in section 4.
Due to lack of space, we leave in the full version the examples of our framework,
the zero-knowledge proof protocol for enforcing security against malicious units
as well as proofs of our claims.

2 Problem and Model

We first introduce the general formulation of our problem.
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Definition 1. The Collecting a Function (CF) problem: A center M wishes to
compute a function f : Xm → Z on inputs x1, . . . , xm that are distributed to a
set of units U = {U1, ..., Um}. The units communicate with the center indirectly
through black-box interaction with an agent A.

A communication pattern Π for a CF problem is a string P from {U1, . . . , Um}∗
that specifies the order with which the agent interacts with the units. Note that
the agent must also interact two times with the center, one time when the agent
is dispatched to collect the information (initialization) and another time when
the agent delivers the results to the center.

A secure CF (SCF) protocol for a function f : Xm → Z and a communication
pattern P is a triple 〈Init,Final, (πA, πU )〉 such that Init receives a description
of f and a security parameter and produces a public/secret-key pair (pk, sk);
(πA, πU ) is a two-party protocol where in the j-th round, (j ∈ {1, . . . , |P |}), the
agent running πA on input (sj−1, pk) and a description of f interacts with the
unit Ut, where t ∈ {1, . . . ,m} and Ut is the j-th symbol of P , running protocol
πU on input (s′j−1, xt); the two parties terminate returning private outputs sj
and s′j respectively. Note that s0 := ε, and s′0 := pk. Final receives the string s|P |
and sk and returns a value in the range of f .

An SCF protocol is correct if for all x1, . . . , xm ∈ X it holds that Final in the
computation as described above returns the value f(x1, . . . , xm) always.

Security Properties for SCF protocols. Next we introduce the security and in-
tegrity properties for SCF protocols.

Unit Privacy against a Malicious Agent. For any i = 1, . . . ,m, and
for any PPT adversary Adv playing the role of the agent A and all units
{U1, . . . , Um} \ {Ui}, there exists an expected polynomial-time simulator
Sim, such that for any x1, . . . , xm ∈ X , the output of Sim is computationally
indistinguishable to the view of the adversary Adv that includes all proto-
col transcripts and private tapes of corrupted parties. The input of Sim is
equal to the input of the (corrupted) agent A and the (corrupted) units
{x1, . . . , xm} \ {xi}.
Unit Privacy against a Honest-but-Curious Center. There exists an
expected polynomial-time simulator Sim such that for any x1, . . . , xm ∈ X ,
the output of Sim is identical to the distribution of the internal state of the
agent at the end of all interactions with the units. The input of Sim is equal
to the value f(x1, . . . , xm).
Computation Integrity in the presence of Malicious Units. There is
a deterministic implicit input function IN, such that for any PPT adversary
Adv, playing the role of all units {U1, . . . , Um}, it holds that for any x1, . . . ,
xm ∈ X , if the agent terminates successfully then the output of the center
M equals f(x1, . . . , xm) where (x1, . . . , xm) = IN(τ) where τ is the total
communication transcript of all the interactions between the agent and the
units. Note that IN is not required to be polynomial-time.
Computation Privacy in the presence of Malicious Units. For any
PPT adversary Adv playing the role of all units {U1, . . . , Um} that is
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capable of corrupting the agent at a certain point of the system execution
and receiving its content, there is an expected polynomial-time simulator
Sim, such that for any x1, . . . , xm ∈ X , the output of Sim is computationally
indistinguishable to the view of the adversary. The input of Sim is equal to
x1, . . . , xm as well as a description of the function f .

Efficiency Parameters of SCF protocols. For an SCF protocol 〈Init,Final,(πA, πU )〉
we are primarily interested in the following efficiency measures:

Agent Storage. Is the maximum number of storage bits required by the
agent quantified over all possible CF computations and coin tosses.
Agent-Unit Communication. Is the maximum number of bits commu-
nicated between the unit and the agent quantified over all possible SCF
protocol computations and coin tosses.

Naturally, the time complexity of agent, units and the center is also of interest.

3 Designing SCF Protocols from Branching Programs

We first describe the notion of layered branching programs for modeling multi-
party protocols. The definition below is a straightforward generalization of the
notion of two party branching programs used for modeling protocols in the com-
munication complexity model as given in [15]. We define how m parties can
compute a function f : Xm → Z based on their inputs and broadcast communi-
cation.

Definition 2 (Multiparty computation in the Branching Program
model (BPM)). A (layered) branching program P for the function f : Xm → Z
and parties U1, . . . , Um is a layered directed graph G = (V = (L0, ..., Lc), E) of
depth c where |L0| = 1. Each edge in E connects layer L� to layer L�+1 where
� ∈ {0, . . . , c − 1} and is labeled by an element of X so that each vertex has
exactly |X | outgoing edges all labeled distinctly. Further, each layer is labeled by
a party U ∈ {U1, . . . , Um} and each node in Lc is labeled with an element z ∈ Z.

The output of the program P on input (x1, ..., xm) where xi ∈ X is the label of
the leaf reached by starting at the single node at the L0 level and traversing the
graph following the appropriately labeled edges at each level based on the input of
the party that labels the layer. We say that the branching program P computes
f : Xm → Z if its value on input (x1, ..., xm) equals f(x1, ..., xm). The cost of
the program is c, its width is max |L�|.

A branching program P can capture multiparty computation of a function f in
the following way: the party Ui that labels the top layer L0 that contains a single
node v0 computes the next node following the edge labeled according to its input
and broadcasts the index of the next node to the other parties. Next, the party
at level L1 continues recursively based on the communication transcript and the
computation proceeds recursively until all parties terminate at the leaf level. The
overall communication complexity equals c broadcasts of at most log2 max{|L�|}
bits.
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In our setting the units do not interact with one another but rather the
broadcast channel can be simulated by interacting with the agent. In particular:

Given the branching program P of cost c for the function f : Xm → Z, we
derive a communication pattern Π ∈ {U1, . . . , Um}c based on the labels of
the layers of P .
The agent maintains a state that corresponds to a node of the branching
program P . Initially this node is set to be single node v0 of the top layer L0.
The agent, while at a state corresponding to the v-th vertex at level L�
for � ∈ {0, . . . , c − 1}, visits the next unit Ui following the order of the
communication pattern Π and executes a protocol with Ui that enables
the agent to compute the index of the vertex in level L�+1 in the layered
branching program P that is determined by the outgoing edge of v labeled
by xi where xi is the input of the unit Ui.
The computation proceeds recursively until the agent reaches the last layer
of the branching program P that reveals the value f(x1, . . . , xm).

In the remaining of the section for simplicity we will focus on the special case
that X = {0, 1}. Extending our results to the general case is straightforward. We
next consider how one can add privacy to the above CF computation strategy.
We first observe that each level of the branching program can be represented by
a set of tables T (0), T (1). We depict this in figure 1.

Fig. 1. An arbitrary level in a fragment of branching program (on the left) and the
corresponding tables (on the right). The choice of a table depends on U ’s input b.

As described above, at each layer of the computation, the agent and the unit
will utilize a protocol that we call 1-out-of-2 private table evaluation (PTE). This
is a two-party protocol that relies on a suitable public-key encryption scheme
〈G, E ,D〉. The agent will be given its input j in encrypted form as Epk (j) and
in the course of the interaction with the unit it expects to update it to the
encryption Epk (T (b)[j]) where b is the unit’s input.

The two tables T (0), T (1) are selected from {1, . . . , w}v where v, w ∈ N are
parameters of the protocol. For greater generality in our protocol description we
will also allow the underlying encryption scheme used to be parameterized and
use the notation Evpk(m) for any v ∈ N. Pictorially we have the following:
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A

T (0), T (1)

PTE1
2

Ev
pk(j)

U b

pkpk

Ew
pk(T (b)[j])

Fig. 2. 1-out-of-2 private table evaluation

Definition 3 (1-out-of-2 private table evaluation (PTE1
2)). The protocol

is based on parameters v, w ∈ N and is executed by agent A and unit U based
on a public key encryption 〈G, E ,D〉. First an external party generates a key
pair (pk , sk) ← G(1λ), and delivers pk to both agent A and unit U . Second A
interacts with U ; here A has input Evpk (j) where j ∈ {1, . . . , v}, and T (0), T (1) ∈
{1, . . . , w}v, and U has the input b ∈ X. Finally only the agent outputs Ewpk (j′)
where j′ = T (b)[j] ∈ {1, . . . , w}.

We say that a PTE1
2 protocol is secure, if the following properties are satisfied.

In all cases below it is assumed that the input of both parties includes the
public-key pk that is honestly generated and neither party is in possession of the
secret-key.

Integrity. Informally, we require that the unit can only contribute in terms of
selecting one of the two tables that the agent possesses and is not capable –
even if acting maliciously – to influence the agent to derive an encryption of any
value other than an encryption of j′. More formally, we require that even if the
unit is malicious it holds that the output of the agent is distributed uniformly
either over all ciphertexts of the form Epk (T (0)[j]) or all ciphertexts of the form
Epk (T (1)[j]).

Unit Privacy. Informally, we require that the input of the unit remains hidden
from the agent. More formally, for any PPT adversary Adv corrupting the agent
A, there exists an expected polynomial-time simulator Sim, such that for any
x ∈ X the output of Sim is computationally indistinguishable to the view of
the adversary Adv that includes protocol transcripts and private tapes of the
corrupted agent. The input of Sim equals the corrupted agent’s input.

Agent Privacy. Informally, we require that the two input tables T (0), T (1) of
the agent remain hidden from the unit. More formally, for any x ∈ X , and any
PPT adversary Adv corrupting the unit U , there exists an expected polynomial-
time simulator Sim, such the output of Sim is computationally indistinguishable
to the view of the adversary Adv that includes protocol transcripts between the
unit U and the agent A.

Our Design Strategy. Based on an implementation of PTE1
2 we can derive a

SCF protocol for any function f : Xm → Z as follows. Let P be a branching
program for computing f with communication pattern Π . We assume each unit
Ui holds an input bi ∈ X = {0, 1}. Our SCF system is illustrated in figure 3 and
operates as follows:
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In the initialization process Init, given a security parameter k a key pair
(pk , sk) ← G(1k). The public key pk is supplied to the agent A and all
units, and the secret key sk is only known by the center. M also gives A the
branching program P for function f .
According to the structure of P , A invokes the PTE1

2 with each unit U ∈
{U1, . . . , Um}. In particular at each layer of P (except the last) the agent
defines two tables T (b)[·] ∈ {1, . . . , w}v where v is the width of the current
layer and w is the width of the next layer as shown in figure 1.
Using sk, Final decrypts the ciphertext to receive the decryption of the final
index that also reveals the output of the computation.

Connecting the above to our broad modeling as given in the introduction the
implementation of Init,Final is assumed internal to the center’s trusted device.

A

Um

U2

U1

bm

b2

b1

pk,program forf

PTE
1
2

PTE1
2

PTE 1
2

c = Epk (f(b1, . . . , bm))

pk

(pk, sk) ← G(1k)

f(b1, . . . , bm) ← Dsk(c)

M

pk

pk

pk

Init :

Final :

Fig. 3. The SCF protocol based on private-table evaluation

Theorem 1. The SCF protocol defined above satisfies (i) unit privacy against
a malicious agent under the assumption that the given PTE satisfies unit pri-
vacy (ii) unit privacy against an honest-but-curious center unconditionally (iii)
computation integrity in the presence of malicious units under the assumption
that the given PTE satisfies integrity, (iv) computation privacy in the presence of
malicious units under the assumption that the given PTE satisfies agent privacy.

4 Implementing Private Table Evaluation Efficiently

Our implementation of PTE1
2 is based on an IND-CPA public-key encryption

scheme with homomorphic property. Here we use the Paillier cryptosystem [19];
we note that the construction could be based on other homomorphic encryptions.
Next we give a brief review of Paillier system 〈G, E ,D〉.

Key Generation, G(1k). On input a security parameter k, let p, q be ran-
dom k-bit primes such that p, q > 2, p �= q, and gcd(pq, (p− 1)(q − 1)) = 1;
let N = pq, d = lcm(p−1, q−1), K = d−1 mod N , and h = (1+N); output
a key pair (pk , sk), where sk = 〈p, q〉 and pk = 〈N, h〉.
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Encryption, Epk (m). Define a plaintext space Mpk := ZN and a ciphertext
space Cpk := Z∗N2 . Upon receiving m ∈ Mpk , randomly choose r ∈R Z∗N ,
and output the ciphertext c = hmrN mod N2. We denote the ciphertext as
Epk (m) or Epk (m; r).

Decryption, Dsk (c). Upon receiving c ∈ Cpk , compute m = (cdK mod N2)−1
N

modN . Note that d,K can be obtained from sk as in key generation.
The Paillier cryptosystem is IND-CPA secure [19] under the Decisional Com-
posite Residuosity (DCR) assumption. It also enjoys an additive homomor-
phic property. For binary operators “+” over Mpk and “·” over Cpk , we have
Epk (m1; r1) · Epk (m2; r2) = Epk (m1 + m2; r1r2).

Observe that based on the homomorphic property, we can randomize a valid
ciphertext c into another one c′ while preserving the underlying plaintextm intact.
In particular, c′ can be obtained by multiplying c with a ciphertext for 0, i.e., c′ =
c·Epk (0; r0) = Epk (m; rm)·Epk (0; r0) = Epk (m; rmr0), where rm, r0 ∈R Z∗N . Notice
that for any c it holds that c′ is a random variable over the subset of Cpk that is of
size |Z∗N | and corresponds to all possible encryptions of the plaintext in c.

The parameterization we will use will be as follows: Evpk(m) = 〈Epk(m),
Epk(m2), . . . , Epk(mv−1)〉, i.e., for any v > 0 it holds that Evpk(m) is a vector
of v − 1 ciphertexts. Note that if v = 1 it holds that E1

pk(m) = 〈E(1)〉 (indepen-
dently of m).

4.1 Building Block: A PTE Construction

We present next our construction for private table evaluation that is utilizing
Paillier encryption as defined in the previous section.

1. Generate (pk , sk) ← G(1k), deliver pk to agent A and unit U . Then A and
U operate as follows.

2. Upon receiving two tables T (0), T (1) ∈ {1, . . . , w}v, and a vector of ci-
phertexts Evpk(j) = 〈C1, . . . , Cv−1〉 where recall that Ci = Epk (ji) for i =
1, . . . , v − 1, j ∈ {1, . . . , v}, the agent A chooses 2(w − 1) polynomials with
degree v−1 as: g(0)

1 (x), . . . , g(0)
w−1(x), g(1)

1 (x), . . . , g(1)
w−1(x) over Z∗N , such that

g
(b)
� (j) = (T (b)[j])� mod N , for j = 1, . . . , v, where � ∈ {1, . . . , w − 1} and
b ∈ {0, 1}. Notice that the polynomial g

(b)
� (x) is computed as g

(b)
� (x) =∑

n λ
(j)
n (T (b)(n))� where the λ

(j)
n ’s are the Lagrange coefficients: for any

polynomial p of degree less than v they satisfy p(x) =
∑v−1
n=0 λ

(x)
n p(n). Let

a
(b,�)
0 , . . . , a

(b,�)
v−1 be the coefficients of polynomial g(b)

� (x).
Using the above set of polynomials and its input ciphertexts 〈C1, . . . , Cv−1〉
the agent computes C(b)

� = Epk (g(b)
� (j)) =

∏v−1
i=0 (Ci)a

(b,�)
i , where C0 = Epk(1)

for � = 1, . . . , w−1. We denote C(b) = 〈C(b)
1 , . . . , C

(b)
w−1〉, for b = 0, 1. Observe

that C(b) = Ewpk(T (b)[j]). The agent sends 〈C(0), C(1)〉 to unit U .
3. On input b ∈ {0, 1}, after receiving 〈C(0), C(1)〉 from A, the unit randomizes

C(b) into C′ where C′ = 〈C′1, . . . , C′w−1〉 and C′� = C
(b)
� · Epk (0; r�) and

r� ∈R Z∗N for � = 1, . . . , w − 1, and returns C′ to agent A.
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4. Finally agent A outputs C′.

Below we prove the security of the above protocol for honest units. In the
next session we show how to efficiently handle malicious units. We show:

Theorem 2. The PTE protocol defined above satisfies (i) integrity for honest
units unconditionally, (ii) unit privacy under DCR assumption, (iii) agent pri-
vacy under DCR assumption.

4.2 PTE against Malicious Units

To defend against a malicious unit, we need to enforce the unit to commit to its
input b, i.e, E = hbtN mod N2 where t ∈R Z∗N , and the commitment E is further
to be signed by the agent, σ = Signsk(E) and deposited to the unit. Further the
unit needs to prove that the vector of ciphertexts C′ is randomization of C(b)

and such b is the one committed in E, that means the unit should show a proof
that it knows the witness of the following language

L =

⎧⎪⎪⎨⎪⎪⎩
〈C(0)

1 , . . . , C
(0)
w−1, C

(1)
1 , . . . , C

(1)
w−1, C

′
1, . . . , C

′
w−1, E〉|

∃b, r1, . . . , rw−1, β :
C′�/C

(0)
� = (C(1)

� /C
(0)
� )b · rN� mod N2 for � = 1, . . . , w − 1,

E = hbβN mod N2

⎫⎪⎪⎬⎪⎪⎭
Note that the unit should save 〈E, σ〉 and in the case that the agent visits the

same unit again, 〈E, σ〉 will be handed to the agent and the ZK proof will be
based on this recorded E and newly produced vector of ciphertexts. The proof
can be done by standard techniques, and the details can be found in the full
version.

Theorem 3. The PTE protocol defined above satisfies (i) integrity under the
Sign unforgeability, (ii) unit privacy under DCR assumption, (iii) agent privacy
under DCR assumption.

Corollary 1. The SCF protocol of section 3 with the PTE of the present sec-
tion satisfies (i) unit privacy against a malicious agent under DCR assumption
(ii) unit privacy against a semi-honest center unconditionally (iii) computation
integrity in the presence of malicious units under Sign unforgeability, (iv) com-
putation privacy in the presence of malicious units under DCR assumption.
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1 Introduction

Consider n users vying for shares of a divisible good. Every user i wants as
much of the good as possible but has diminishing returns, meaning that its
utility Ui(xi) for xi ≥ 0 units of the good is a nonnegative, nondecreasing,
continuously differentiable concave function of xi. The good can be produced in
any amount, but producing X =

∑n
i=1 xi units of it incurs a cost C(X) for a

given nondecreasing and convex function C that satisfies C(0) = 0. Cost might
represent monetary cost, but other interesting interpretations are also possible.
For example, xi could represent the amount of traffic (measured in packets, say)
that user i injects into a queue in a given time window, and C(X) could denote
aggregate delay (X ·c(X), where c(X) is the average per-unit delay). An altruistic
designer who knows the utility functions of the users and who can dictate the
allocation x = (x1, . . . , xn) can easily choose the allocation that maximizes the
welfare W (x) =

∑n
i=1 Ui(xi)−C(X), where X =

∑n
i=1 xi, since this is a simple

convex optimization problem.
But what if users are autonomous and choose the quantities xi to maximize

their own objectives? The most natural way to proceed is equilibrium analysis,
where we model each user as maximizing its own payoff function and consider
equilibrium allocations — those from which no user can unilaterally change
its quantity to increase its payoff. We can then study the welfare achieved by
autonomous and self-optimizing users via the price of anarchy (POA) — the
worst (i.e., smallest) ratio between the welfare of an equilibrium (the outcome
of selfish behavior) and the maximum-possible welfare (the ideal for an altruis-
tic designer). The POA is a standard measure of inefficiency in game-theoretic
systems, with a value near 1 indicating that selfish behavior is essentially benign.

Defining user payoffs requires a fundamental modeling decision: how does the
joint cost C(X) of producing an allocation translate to negative incentives for
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users? This choice is formalized by a cost-sharing method ξ : Rn
+ → Rn

+ , which
distributes the joint cost to the users:

∑
i ξi(x) = C(X) for every allocation x

with X =
∑

i xi. For example, a natural cost-sharing method is average-cost pric-
ing, defined by ξFIFO

i (x) = xi

X ·C(X); we also call this the “FIFO method.” In the
queue example above, average-cost pricing naturally arises from the FIFO (first-
in, first-out) queue service discipline with random packet arrivals. The other
cost-sharing method that has been extensively studied in the present context is
serial cost-sharing, which we define in Section 2 and also call the “Fair Share
method,” after Shenker [11]. Given a cost-sharing method ξ, we define the payoff
of user i in allocation x as Pi(x) = Ui(xi) − ξi(x); equilibria and the POA are
then defined as outlined above. (Thus, we assume utility functions are in the
same units as the cost function.)

From a design perspective, an obvious question is: which cost-sharing method
yields the best welfare guarantee (i.e., POA closest to 1)? This question, as
stated, is not well defined: the best cost-sharing method depends on the play-
ers’ utilities, and it is not reasonable to assume that these are known a priori
to the designer. We therefore study the worst-case POA of cost-sharing meth-
ods, with the “worst” quantifier ranging over all possible utility function pro-
files U1, . . . , Un for a fixed number of users and a fixed cost function. Our re-
search agenda is twofold: (1) For fundamental cost-sharing methods, precisely
determine the worst-case POA in as many settings as possible; and (2) Identify
the optimal cost-sharing method for a given environment — the one with the
maximum-possible worst-case POA.

Our Results. Solving problems (1) and (2) in their full generality appears in-
tractable, and our goal here is to provide precise answers for important spe-
cial cases. Our first main result is for quadratic cost functions (of the form
C(X) = aX2 + bX). For a class of cost-sharing methods that strictly generalizes
the FIFO and Fair Share methods, we give an exact formula for the worst-
case POA of every method in the class for every number n of users. We give
a single analysis that applies to all methods in the class. Our analysis identi-
fies restricted linear structure in the equilibrium conditions for such methods
and uses it to identify worst-case utility profiles. The precision of our analy-
sis permits identification of the optimal method in this class for every num-
ber n of users. For example, our analysis shows that, in the limit as n → ∞,
the Fair Share method has the optimal worst-case POA among methods in the
class.

General cost functions produce nonlinear equilibrium conditions and are much
more difficult to analyze. For the Fair Share method and the case of n = 2 users,
however, we show how to determine the worst-case POA with respect to general
cost functions. This result is based on a novel and unexpected “reduction” to
nonatomic selfish routing games.

Related Work. The work closest to ours is Moulin [5], who studies our exact
model. Moulin [5] proved our first result for quadratic cost functions in the
important special cases of the FIFO and Fair Share methods, using different
(somewhat ad hoc) computations for each case. Here, we give a single analysis
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generalizing these two results of his, which also applies to a broader class of
cost-sharing methods. In our opinion, it is surprising that the seemingly very
different FIFO and Fair Share methods (see Section 2) can be simultaneously
analyzed with a common proof. Our result for general cost functions and two
players generalizes a different result in Moulin [5], who gave tight bounds in the
two-player case for monomial cost functions (for both the FIFO and Fair Share
methods). The connection to selfish routing games is new to this paper, and it
allows us to analyze general (non-monomial) cost functions. Moulin [5] also gave
a number of results for the incremental cost-sharing method, which generally
charges users more than the total production cost (i.e., is not “budget-balanced”)
and therefore falls outside our purview. In subsequent work, Moulin [6] used
budget-balanced cost-sharing methods with negative cost shares — subsidies,
which are not permitted in this paper — to obtain much stronger positive
results. For example, for every quadratic cost function and number of users,
there is such a cost-sharing method that only induces games with POA equal
to 1 [6].

A number of different but related models have been studied before. Closest
to the present work is Johari and Tsitsiklis [2,3], who studied a variant of our
model with inelastic supply — i.e., there is a fixed amount of the divisible good
but no production cost — and identified the allocation mechanism with the best
worst-case POA among those in a broad class. We mention also Shenker [11],
who studied the Fair Share method in a queueing context but without any quan-
titative efficiency guarantees; Moulin and Shenker [7], who compared the FIFO
and Fair Share methods from an axiomatic perspective; and Christodoulou et
al. [1], who were the first to study (in a different model) how to design protocols
to optimize the worst-case POA.

2 Fundamental Cost-Sharing Methods

The FIFO method was defined in Section 1. The Fair Share method is an alter-
native designed to insulate users that request smaller quantities from the large
requests. For example, with two players and quantities x1 ≤ x2, the method
assigns a cost share of C(2x1)/2 to the first player (its fair share, if we pretend
that the second player shares its size), and the balance C(x1 +x2)−C(2x1)/2 to
the second player. In general, all users split the cost that would ensue if all users
were the same size as the smallest one; and the remaining cost is recursively
allocated to the n − 1 largest users.

Precisely, using [n] to mean {1, 2, . . . , n}: for a vector x ∈ Rn, a permutation
π : [n] → [n] is an ordering of x if the vector z ∈ Rn such that zπ(i) = xi satisfies
z1 ≤ z2 ≤ · · · ≤ zn. The vector z is the ordered version of x. There are multiple
orderings of a vector x when it has some equal components, but all the orderings
give rise to the same ordered version z.

Definition 1 (The Fair Share Method [7,11]). For any cost function C,
number of users n, and vector x ∈ Rn

+, let π be an ordering of x with ordered
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version z. For k ∈ [n], let sk =
∑k−1

�=1 z� + (n − k + 1)zk. Then the cost share of
user i ∈ [n] is

ξFS
i (x) =

C(sπ(i))
n − π(i) + 1

−
π(i)−1∑

k=1

C(sk)
(n − k + 1)(n − k)

.

A simple way to interpolate between the FIFO and Fair Share methods is via
the following θ-combinations for θ ∈ [0, 1]:

ξi(x) = θξFS
i (x) + (1 − θ)ξFIFO

i (x). (1)

The FIFO and Fair Share methods correspond to the values θ = 0 and θ = 1,
respectively. A θ-combination can be implemented in a system with one FIFO
queue and one Fair Share queue. Each arriving packet is placed into the Fair
Share queue with probability θ (and otherwise the FIFO queue). Departing pack-
ets are chosen from a queue with these same probabilities. We emphasize that
while θ-combinations are defined as a linear combination of the FIFO and Fair
Share methods, the equilibria and POA with respect to such methods are not
linear in θ — indeed, even for a quadratic cost function, the worst-case POA is
a fairly complex function of θ (Theorem 1).

3 Quadratic Cost Functions

This section considers quadratic cost functions. This assumption is restrictive,
but we will be rewarded with an exact characterization of the worst-case price
of anarchy for every θ-combination and number n of users. For simplicity, we
assume that C(X) = X2 throughout this section; scaling by a constant changes
nothing, and adding a linear term (with a nonnegative coefficient) only improves
the POA.

3.1 Equilibrium Properties

We now state some basic properties of equilibria with respect to a θ-combination
and the cost function C(X) = X2. The proofs of these preliminary results are not
trivial, but they are not the main point of this paper and we refer the interested
reader to [4, Chapter 5] for the technical details.

For a given θ-combination, with a quadratic cost function, there is a linear re-
lationship between an allocation vector x and the corresponding marginal costs
ξ′i(xi; x−i). (Here the derivative is w.r.t. xi and x−i denotes the other users’ quan-
tities — the vector x with the ith component removed.) For example, Figure 1
demonstrates this linear relationship in the special case of the FIFO and Fair
Share methods, when n = 4. The next proposition formalizes the relationship
for all of the cost-sharing methods that we study.
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B0 =

⎡⎢⎢⎣
2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

⎤⎥⎥⎦ B1 =

⎡⎢⎢⎣
8 0 0 0
2 6 0 0
2 2 4 0
2 2 2 2

⎤⎥⎥⎦
Fig. 1. The matrix B defined in Proposition 1 for the FIFO method (B0) and Fair Share
method (B1), when n = 4. Assuming that the users have been sorted in nondecreasing
order of xi, the columns correspond to the quantities xi, and the rows to the induced
marginal costs ξ′i(xi; x−i).

Proposition 1. For the cost function C(y) = y2, any number of users n, any
user i ∈ [n], and any θ ∈ [0, 1], let ξi denote the cost share of user i under the
θ-combination. Define an n × n matrix B by

Bk� =

⎧⎨⎩2(1 + θ(n − k)), if k = �;
1 + θ, if k > �;
1 − θ, if k < �

for any k, � ∈ [n]. For any vector x ∈ Rn
+ , let π be any ordering of x, and let z

be the ordered version of x.

(a) The vector p ∈ Rn with pπ(i) = ξ′i(xi; x−i) for all i ∈ [n] is given by p = Bz.
(b) If zk1 < zk2 then pk1 < pk2 ; if zk1 ≤ zk2 then pk1 ≤ pk2 .

Part (a) of Proposition 1 asserts that the matrix B correctly maps allocations
to marginal costs. Part (b) asserts that marginal costs must be increasing in the
quantities xi. Proposition 1 will be useful in our POA analysis and also enables
us to establish existence and uniqueness of equilibria.

Proposition 2. For every θ-combination, quadratic cost function, and utility
function profile, the induced game has a unique equilibrium allocation vector.

Proposition 2 also holds for much more general convex cost functions. It can
be proved by modifying Rosen’s existence and uniqueness theorems for convex
games [8]. (Modifications are needed because the Fair Share method is not con-
tinuously differentiable at allocation vectors with two equal components.)

3.2 Tight Bounds on the POA

We now show how to determine the worst-case price of anarchy of every θ-
combination under a quadratic cost function, over all utility function profiles.
We first note that linear functions — of the form Ui(xi) = aixi for ai ≥ 0
— induce games with as large a POA as any other type of (nonnegative and
concave) utility function.

Lemma 1 (Linearization Lemma [2,5]). For every θ-combination, number n
of users, and convex cost function, the worst-case POA (over all utility function
profiles) is determined by linear utility function profiles.
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The proof of Lemma 1 simply shows that linearizing utility functions at the equi-
librium point only worsens the POA, and then shifting the resulting nonnegative
affine functions to be linear again only worsens the POA.

For the rest of this section, we assume that all utility functions are linear with
0 < a1 ≤ a2 ≤ · · · ≤ an. For such a profile, an optimal solution allocates only to
the nth user. A simple calculation shows that the optimal amount to give this
user is an/2, leading to a welfare of an(an/2) − (an/2)2 = a2

n/4.
The next lemma studies the welfare of an equilibrium allocation x∗ and is

central to our analysis. It states that the requested quantities in x∗ are in the
same order as the ai values, determines a remarkable formula for the welfare of
the system under x∗, and develops a constraint that relates the x∗i values to an.

Lemma 2. For the cost function C(y) = y2, any number of users n, any θ ∈
[0, 1], and any a ∈ Rn

+ such that 0 < a1 ≤ a2 ≤ · · · ≤ an, let x∗ be the equilibrium
allocation under the θ-combination.

(a) The requested quantities in x∗ are in the order x∗1 ≤ x∗2 ≤ · · · ≤ x∗n.
(b) The welfare of the system under x∗ is

W (x∗) =
n∑

i=1

(2θ(n − i) + 1) (x∗i )
2
. (2)

(c) The components of x∗ satisfy the equation

(1 + θ)
n−1∑
i=1

x∗i + 2x∗n = an. (3)

Proof. Simple computations show that, for every i, the function ξi(y; x−i) is
convex and differentiable in y for every fixed x−i. It follows that an alloca-
tion vector x is an equilibrium, with each user i choosing an optimal quantity
given x−i, if and only if

x∗i > 0 ⇒ ai = ξ′i(x
∗
i ; x

∗
−i);

x∗i = 0 ⇒ ai ≤ ξ′i(0; x∗−i).
(4)

To prove (a), let x∗ be an equilibrium and suppose for contradiction that there
are two users i1 and i2 such that i1 < i2 and x∗i1 > x∗i2 . Because x∗i2 ≥ 0, we have
x∗i1 > 0, and so the equilibrium conditions in (4) imply that ai1 = ξ′i1(x

∗
i1 ; x

∗
−i1)

and ai2 ≤ ξ′i2(x
∗
i2

; x∗−i2
). Since ai1 ≤ ai2 , ξ′i1(x

∗
i1

; x∗−i1
) ≤ ξ′i2(x

∗
i2

; x∗−i2
). On

the other hand, since x∗i1 > x∗i2 , Proposition 1 implies that ξ′i1(x
∗
i1

; x∗−i1
) >

ξ′i2(x
∗
i2 ; x

∗
−i2), contradicting this inequality.

Given that x∗1 ≤ x∗2 ≤ · · · ≤ x∗n, we can apply Proposition 1 with the ordering
π of x∗ being the identity permutation to rewrite the equilibrium conditions
in (4) as
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x∗i > 0 ⇒ ai =
n∑

j=1

Bijx
∗
j ;

x∗i = 0 ⇒ ai ≤
n∑

j=1

Bijx
∗
j ,

(5)

where B is the n× n matrix defined in Proposition 1. By definition, the welfare
of x∗ is

W (x∗) =
n∑

i=1

aix
∗
i −

(
n∑

i=1

x∗i

)2

. (6)

The equilibrium conditions in (5) imply that total utility at equilibrium can be
written as a quadratic form:

n∑
i=1

aix
∗
i =

n∑
i=1

x∗i
n∑

j=1

Bijx
∗
j = (x∗)T

Bx∗ = (x∗)T

(
1
2
(
B + BT

))
x∗.

Since a quadratic cost function can be similarly expressed as

C(x) =

(∑
i

xi

)2

= xT Ex,

where E is the all-ones n × n matrix, equilibrium welfare can be expressed as a
quadratic form:

W (x∗) = (x∗)T

(
1
2
(
B + BT

))
x∗ − (x∗)T

Ex∗

= (x∗)T

(
1
2
(
B + BT

)
− E

)
x∗. (7)

Let D denote the symmetric matrix 1
2 (B + BT ) − E. By the definition of B,

the diagonal entries of D are Dii = Bii − 1 = 2θ(n − i) + 1 for all i ∈ [n]. For
any i, j ∈ [n] such that i �= j, we have Dij = Dji = (1/2)(1 + θ + 1− θ)− 1 = 0.
Thus D is a diagonal matrix, and the equation involving the quadratic form
(x∗)T

Dx∗ in (7) simplifies to

W (x∗) =
n∑

i=1

Dii (x∗i )
2 ,

which yields the expression in (2) upon substitution of the Dii values.
Finally, since an > 0, the equilibrium condition in (5) implies that x∗n > 0

with

an =
n∑

i=1

Bnix
∗
i .

By substituting the Bni values, we obtain the equation in (3). 	
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Scaling a vector of coefficients a by λ increases both the optimal and equilibrium
welfares by a factor of λ2 (for the latter, this follows from the linear equilibrium
conditions and Lemma 2(b)). Since the POA is the ratio of these, and since the
optimal welfare depends only on an, we can restrict our search for the worst-case
utility function profile to the set A = {a ∈ Rn

+ | 0 < a1 ≤ a2 ≤ · · · ≤ an = 1}
and focus on minimizing the equilibrium welfare Wa over a ∈ A. Our second key
lemma computes this minimum precisely.

Lemma 3. Fix the cost function C(y) = y2, any number of users n, and any
θ ∈ [0, 1]. Then infa∈AWa = 1/4Γθ(n), where Wa is the welfare of the (unique)
equilibrium for the utility profile a, and

Γθ(n) = 1 +
(1 + θ)2

4

n−1∑
i=1

1
2θi + 1

. (8)

Proof. By Lemma 2, a lower bound on the minimum-possible equilibrium welfare
is provided by the value of the convex program

minimize
n∑

i=1

(2θ(n − i) + 1)x2
i

subject to (1 + θ)
n−1∑
i=1

xi + 2xn = 1.

(9)

We introduce a Lagrange multiplier λ for the constraint 1− (1+θ)
∑n−1

i=1 xi −
2xn = 0. Then the Karush-Kuhn-Tucker (KKT) optimality conditions for the
program in (9) are

2(2θ(n − i) + 1)xi − λ(1 + θ) = 0, ∀i ∈ [n − 1];
2xn − 2λ = 0.

Solving the KKT conditions for the xi values yields

xi =
(

1 + θ

2θ(n − i) + 1

)
λ

2
, ∀i ∈ [n − 1];

xn = λ.

Substituting these values into the equality constraint in (9), we obtain

1 = λ

(
(1 + θ)2

2

n−1∑
i=1

1
2θ(n − i) + 1

+ 2

)

= 2λ

(
(1 + θ)2

4

n−1∑
i=1

1
2θi + 1

+ 1

)
= 2λΓθ(n),

and thus λ = 1/2Γθ(n).
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The value of the objective function in (9) for this vector x is

n−1∑
i=1

(2θ(n − i) + 1)
(

1 + θ

2θ(n − i) + 1

)2 (
λ

2

)2

+ λ2 =λ2

(
(1 + θ)2

4

n−1∑
i=1

1
2θ(n − i) + 1

+ 1

)
=λ2Γθ(n)

=
1

4Γθ(n)
.

This quantity lower bounds the minimum-possible equilibrium welfare (for vec-
tors a ∈ A).

To obtain a matching upper bound, consider the vector x ∈ Rn
+ obtained by

solving the KKT conditions and imposing the equality constraint in (9). The
components of x are

xi =
(

1 + θ

2θ(n − i) + 1

)
1

4Γθ(n)
, ∀i ∈ [n − 1];

xn =
1

2Γθ(n)
,

and so 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn. Define a vector a as a = Bx, where B
is the matrix defined in the statement of Proposition 1 for the θ-combination.
Proposition 1 implies that a1 ≤ a2 ≤ · · · ≤ an. Moreover, because x satisfies the
equality constraint in (9), we have

an =
n−1∑
i=1

Bnixi + Bnnxn = (1 + θ)
n−1∑
i=1

xi + 2xn = 1.

Finally, the vector x satisfies the equilibrium conditions in (5), so it is the
equilibrium of the game with utility functions defined by a. Since the welfare of
x is Wa = 1/4Γθ(n), the proof is complete. 	


Recalling that the optimal welfare is 1/4 for every vector a ∈ A, we have our
main result for quadratic cost functions.

Theorem 1. For the cost function C(y) = y2, any number of users n, and any
θ ∈ [0, 1], the price of anarchy of the θ-combination is 1/Γθ(n).

The formula in Theorem 1 for the two special cases θ = 0 and θ = 1 was
established in Moulin [5] using two different proofs. Obviously, the formula in (8)
can be used to identify the optimal θ-combination for every number n of users.
When n = 2, the FIFO method is the best θ-combination (with worst-case
POA 4/5) while the Fair Share method is the worst (with worst-case POA 3/4).
When n = 3, the Fair Share method remains the worst (with worst-case POA
15/23). The FIFO method is slightly better, with worst-case POA 2/3. Taking
θ ≈ .262648 yields a superior θ-combination, with worst-case POA ≈ .687. For
all n ≥ 4, the Fair Share method outperforms the FIFO method but other θ-
combinations are still better (see Table 1). In the limit as n → ∞, for every
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Table 1. Illustration of Theorem 1. Comparison, for different n, of the exact worst-case
POA of the FIFO method, the Fair Share method, and the optimal θ-combination.

n POA of FIFO POA of Fair Share Optimal θ Optimal POA
2 .8 .75 0 .8
3 ≈ .667 ≈ .652 ≈ .262648 ≈ .687
4 ≈ .571 ≈ .595 ≈ .375361 ≈ .623
5 .5 ≈ .559 ≈ .442921 ≈ .581
10 ≈ .308 ≈ .469 ≈ .588111 ≈ .481
20 ≈ .174 ≈ .403 ≈ .677465 ≈ .410
40 ≈ .093 ≈ .354 ≈ .737 ≈ .358

θ ∈ (0, 1], Γθ(n) scales as (1 + θ)2 ln n/(8θ). (For θ = 0, the FIFO method scales
as 4/(n + 3).) Since θ/(1 + θ)2 is increasing in the interval θ ∈ (0, 1], the Fair
Share method has the best asymptotic worst-case POA, which scales as 2/(ln n)
for large n.

4 General Cost Functions

This section considers general (non-quadratic) cost functions. Analyzing the case
of many players appears intractable, so we settle for a solution to two-player
games induced by the Fair Share method. We begin with a simple but useful
lemma, which holds even with many users.

Lemma 4. If all users have linear utility functions and the cost function is
strictly convex, then the total quantity allocated in the Fair Share equilibrium
equals that in the optimal allocation.

Proof. (Sketch.) Suppose user n has the largest utility function coefficient an.
One optimal solution allocates only to user n, and the optimal amount to allocate
is the unique point X at which an = C′(X).

Consider an equilibrium under Fair Share. Analogous to condition (5) in
Lemma 2 and the bottom row of the matrix B1 in Figure 1, at equilibrium
we must have an = ξ′n(x∗n; x∗−n) = C′(X). Thus the quantity allocated at x∗

(across all users) equals that in the optimal solution (to user n only). 	


Our approach is to show an explicit connection, interesting in its own right,
between games with two users with linear utility functions and nonatomic selfish
routing games (e.g. [10]). Recall Pigou’s example, a basic selfish routing network:
X units of traffic, comprising a large number of infinitesimal autonomous users,
choose between two parallel links connecting one vertex to another. One link has
some per-unit cost function c(x1), and the other has constant per-unit cost c(X).
The first link is a dominant strategy, so in the only equilibrium all traffic takes it
and the aggregate cost is X · c(X). An optimal outcome, by definition, splits the
traffic x1 and x2 = X−x1 between the two links to minimize x1 ·c(x1)+x2 ·c(X).
Much is known about the ratio between the equilibrium and optimal costs in
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Pigou’s example (and much more general selfish routing networks), as a function
of c. This ratio is called the Pigou bound for c and is denoted α(c). For example,
the Pigou bound for all affine functions is at most 4/3, with equality achieved
when c(x) = ax for some a > 0; and for per-unit cost functions c that are
polynomials with nonnegative coefficients and degree at most p, the largest Pigou
bound grows like ≈ p/ ln p [9].

The connection between Pigou’s example and the queueing games studied in
this paper is most vivid for the total user utility — so for our penultimate result,
we ignore the cost term in the welfare objective function.

Theorem 2. For every differentiable convex cost function C, the worst-case
fraction of the optimal total utility achieved by the Fair Share equilibrium allo-
cation with two players is exactly

1
2

(
1 +

1
α(C′)

)
,

where α(C′) is the Pigou bound for C′.

Proof. (Sketch.) We prove the theorem constructively, by exhibiting a worst-
possible example for the Fair Share equilibrium allocation. Fix a choice of X ≥ 0;
we later optimize adversarially over X . Give the second user the utility func-
tion U2(x2) = C′(X) · x2. For any x1 ∈ [0, X/2], choosing the coefficient a1 =
C′(2x1) ≤ C′(X) for the first user’s utility function ensures that x∗1 = x1 at the
Fair Share equilibrium x∗. For a given choice of X and x1 ∈ [0, X/2], the total
user utility obtained by Fair Share is then x1 · C′(2x1) + (X − x1) · C′(X). By
a change of variable, this payoff is minimized at y∗/2, where y∗ is the optimal
amount of traffic to route on the non-constant link of Pigou’s example when
there are X units of traffic and the non-constant per-unit cost function c is C′.
The resulting total user utility is

y∗

2
C′(y∗) +

(
X − y∗

2

)
· C′(X) =

1
2

(y∗C′(y∗) + (X − y∗) · C′(X)) +
1
2

(X · C′(X))

≥ X · C′(X)
(

1
2

+
1

2α(C′)

)
,

where the inequality follows from the definition of the Pigou bound α(C′) for C′.
The parameter X can be chosen so that the inequality is arbitrarily close to an
equality. The total user utility obtained in the optimal solution is X ·C′(X), and
the Fair Share equilibrium allocation obtains only a 1

2 (1 + 1/α(C′)) fraction of
this. Reversing the steps in the argument above shows that no worse example is
possible. 	


To extend Theorem 2 to a bound on the POA for the welfare objective, we need
to re-introduce the cost terms (for both the optimal and equilibrium allocations).
This can be approached in a number of ways. Since we can assume utility func-
tions are linear (Lemma 1), Lemma 4 shows that both allocations will suffer the
same cost. A crude way to proceed is to define
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γ(c) = sup
X≥0

∫X

0 c(x)dx

X · c(X)
; (10)

for example, if c(x) = xd, then γ(c) = 1/(d + 1). Theorem 2 then yields the
following corollary for the POA.

Corollary 1. For every differentiable convex cost function C, the worst-case
POA of Fair Share with two players is at least

1
1 − γ(C′)

·
(

1
2

(
1 +

1
α(C′)

)
− γ(C′)

)
,

where α(C′) is the Pigou bound for C′ and γ(C′) is defined as in (10).

For example, for the marginal cost function C′(x) = xd, plugging in the known
upper bound on the Pigou value [9] together with γ(C′) = 1/(d+1) immediately
gives a lower bound of 1 − 1

2 (d + 1)−1/d, on the worst-case POA, recovering a
result of Moulin [5]. Other natural types of cost functions can be treated in a
similar way.
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Abstract. We study the impact on observational semantics for SOC of priority
mechanisms which combine dynamic priority with local pre-emption. We de-
fine manageable notions of strong and weak labelled bisimilarities for COWS, a
process calculus for SOC, and provide alternative characterisations in terms of
open barbed bisimilarities. These semantics show that COWS’s priority mecha-
nisms partially recover the capability to observe receive actions (that could not be
observed in a purely asynchronous setting) and that high priority primitives for
termination impose specific conditions on the bisimilarities.

1 Introduction

Service-oriented computing (SOC) is an emergent paradigm for distributed computing
that aims to build networks of interoperable applications through the use of platform-
independent, reusable software components called services. Service definitions are used
as templates for creating service instances that supply application functionalities to ei-
ther end-user applications or other instances. Being inherently loosely coupled, SOC
systems do not provide intrinsic mechanisms to identify service instances for deliver-
ing messages and to link together actions executed as part of the same client-service
long-running interaction. Therefore, emerging standards like WS-BPEL and WS-CDL
advocate the use of correlation data within exchanged messages that the interacting
partners can retrieve by means of a pattern matching mechanism.

Recently, many process calculi have been expressly designed to model SOC scenar-
ios, so that service definitions and service instances are represented as reactive processes
running concurrently. In this setting, priority mechanisms which allow some actions to
take precedence over others can be very fruitful. E.g., when a message arrives, the
problem arises of rightly handling race conditions among those service instances and
the corresponding service definition which are able to receive the message. This can be
modelled by exploiting a parallel composition operator that gives precedence to actions
with greater priority. Receive activities are then assigned priority values which depend
on the messages available so that, in presence of concurrent matching receives, only
a receive using a more defined pattern (i.e. having greater priority) can proceed. This
way, service instances take precedence over the corresponding service definition when
both can process the same message, thus preventing creation of wrong new instances.

Notably, receives would have dynamically assigned priority values since these values
depend on the matching ability of their argument pattern. Indeed, while computation

� This work has been supported by the EU project SENSORIA, IST-2 005-016004, and EPSRC
GR/T03215, GR/T03208 and EP/F003757.

S. Albers et al. (Eds.): ICALP 2009, Part II, LNCS 5556, pp. 558–570, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



On Observing Dynamic Prioritised Actions in SOC 559

proceeds, some of the variables used in the argument pattern of a receive can be assigned
values, because of execution of syntactically preceding receives or of concurrent threads
sharing these variables. This restricts the set of messages matching the pattern while
increases the priority of the receive. Furthermore, pre-emption is local since receives
having a more defined pattern have a higher execution priority with respect to only the
other receives matching the same message.

There are other situations where local pre-emption is needed. For example, when a
fault arises in a scope, (some of) the remaining activities of the enclosing scope should
be terminated before starting the execution of the relative fault handler. This can be
modelled by exploiting the same parallel operator as before together with actions for
forcing immediate termination of concurrent activities which take the greatest priority.
The same mechanism can also be used for exception and compensation handling.

However, apart from COWS [10,13], priority mechanisms that combine dynamic pri-
ority with local pre-emption have not been studied yet in the literature [4]. COWS (Cal-
culus for Orchestration of Web Services) is an extension of asynchronous
π-calculus [7,1] equipped with the priority mechanisms sketched above and with other
distinctive features of SOC systems inspired by WS-BPEL, such as shared variables
among parallel threads, and communication based on correlation and pattern matching.

This paper studies the impact of COWS’s priority mechanisms on observational se-
mantics for SOC. We first define strong and weak labelled bisimilarities for a fragment
of COWS without primitives for termination, and prove that they are sound and com-
plete with respect to contextual barbed ones (Section 3). Due to the locality of received
endpoints, the labelled bisimilarities involves a family of relations indexed by sets of
names, similar to the quasi-open bisimilarity for π-calculus [12]. The obtained seman-
tics inhabits between asynchrony and synchrony because, with respect to a purely asyn-
chronous setting, the priority mechanism permits partially recovering the capability to
observe receive actions. We then extend our investigation and results to COWS (Sec-
tion 4). We get that the primitives with greatest priority causing termination require
specific conditions on the labelled bisimilarities for these to be congruences. Hence, the
resulting observations are more fine-grained than the previous ones. Our semantic theo-
ries are usable to check interchangeability of services and conformance against service
specifications as demonstrated through a practical example in Sections 2 and 4.

2 A ‘Morra game’ Scenario

We start providing some insights into COWS’s main features in a step-by-step fashion
by means of an example service described at two different levels of abstraction.

The service allows its clients to play the well-known game Morra, where two players,
named “odds” and “evens”, throw out a single hand, each showing zero to five fingers.
If the sum of fingers shown by both players is an even number then the “evens” player
wins; otherwise the “odds” player is the winner. The service collects the two throws
(i.e. two integers), calculates the winner and sends the result back to the two players. A
high-level specification of the service in COWS is:

∗ [xid, xp, xnum, yp, ynum] ( odds • throw?〈xid, xp, xnum〉 | evens • throw?〈xid, yp, ynum〉
| xp • res!〈xid,win(xnum, ynum, 1)〉 | yp • res!〈xid,win(xnum, ynum, 0)〉 )

(1)
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The replication operator ∗ , that spawns in parallel as many copies of its argument term
as necessary, supports creation of multiple instances to serve several matches simulta-
neously. The delimitation operator [ ] declares the scope of variables xid, xp, yp, xnum

and ynum. Two distinct endpoints, i.e. pairs odds • throw and evens • throw, are used by
the service to receive throws from the players. When sending their throws, the players
are required to provide a match identifier, stored in xid, and the partner names, stored
in xp and yp, that they will use to receive the result. To avoid interferences between
matches played simultaneously, match-ids could be made unique by using delimitation.

Players throws arrive randomly, thus any interaction with the service starts with one
of the two receive activities odds • throw?〈xid, xp, xnum〉 or evens • throw?〈xid, yp, ynum〉,
that are correlated by means of the shared variable xid, and terminates with the two
invoke activities xp • res!〈xid,win(xnum, ynum, 1)〉 and yp • res!〈xid,win(xnum, ynum, 0)〉, used
to reply with the result. We assume that win(x, y, z) is a total function which, if x and
y are integers between 0 and 5, returns w in case (x + y) mod 2 is equal to z, and l if
(x + y) mod 2 is different from z; otherwise, err is returned.

A communication takes place when the arguments of a receive and of a concurrent
invoke along the same endpoint match and causes replacement of the variables argu-
ments of the receive with the corresponding values arguments of the invoke (within the
scope of variables declarations). When operation throw is invoked, if a service instance
with the same match-id already exists, then the invocation is received by the instance,
otherwise a new instance is activated. This is done through the dynamic prioritised
mechanism of COWS, i.e. assigning the receives by instances (having a more defined
pattern) a greater priority than the receives by a service definition.

Thus, for example, after an interaction with the following client

[z] ( evens • throw!〈first, cbB, 1〉 | cbB • res?〈first, z〉 . 〈rest of client B〉 )

service definition (1) runs in parallel with the instance identified by the match-id first

[xp, xnum] ( odds • throw?〈first, xp, xnum〉
| xp • res!〈first,win(xnum, 1, 1)〉 | cbB • res!〈first,win(xnum, 1, 0)〉 )

Now, if another client performs the invocation odds • throw!〈first, cbA, 2〉, it will be pro-
cessed by the already existing instance because, w.r.t. this invocation, the receive odds •

throw?〈first, xp, xnum〉 has greater priority than the receive odds • throw?〈xid, xp, xnum〉
occurring in (1) (that has a less defined argument pattern).

For a lower level implementation, we wish to maximise the abilities of different
services, while preserving the observable behaviour of the whole service w.r.t. the high-
level specification. The main service is now composed of three entities as follows:

[req2f , req5f , resp2f , resp5f ] ( ∗M | ∗ 2F | ∗ 5F ) (2)

The delimitation operator is used here to declare that req2f , req5f , resp2f and resp5f
are private operation names known to the three components M, 2F and 5F, and only to
them. The three subservices are defined as follows:

M � [xid, xp, xnum, yp, ynum]
( odds • throw?〈xid, xp, xnum〉 | evens • throw?〈xid, yp, ynum〉
| [k] ( m • req2f !〈xid , xnum, ynum〉 | m • req5f !〈xid, xnum, ynum〉

| [xo, xe] m • resp2f ?〈xid, xo, xe〉. ( kill(k) | {|xp • res!〈xid , xo〉 | yp • res!〈xid, xe〉|} )
| [xo, xe] m • resp5f ?〈xid, xo, xe〉. ( kill(k) | {|xp • res!〈xid , xo〉 | yp • res!〈xid, xe〉|} ) )
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Table 1. μCOWS syntax

s ::= u • u′!ε̄ | g | s | s | [u] s | ∗s (invoke, guard, parallel, delimitation, replication)

g ::= 0 | p • o?w̄.s | g + g (nil, receive, choice)

2F � [x]
( m • req2f ?〈x, 1, 1〉.m • resp2f !〈x, l,w〉
+m • req2f ?〈x, 1, 2〉.m • resp2f !〈x,w, l〉
+m • req2f ?〈x, 2, 1〉.m • resp2f !〈x,w, l〉
+m • req2f ?〈x, 2, 2〉.m • resp2f !〈x, l,w〉 )

5F � [x, y, z]
( m • req5f ?〈x, y, z〉.m • resp5f !〈x, err, err〉
+m • req5f ?〈x, 0, 0〉.m • resp5f !〈x, l,w〉
+m • req5f ?〈x, 0, 1〉.m • resp5f !〈x,w, l〉
+ . . . + m • req5f ?〈x, 5, 5〉.m • resp5f !〈x, l,w〉)

Service M is publicly invocable and can interact with players as well as with the ‘in-
ternal’ services 2F and 5F. These latter two services, instead, can only be invoked by
M and have the task of calculating the winner of a match. In particular, 2F performs
a quick computation of simple matches where both players hold out either one or two
fingers, while 5F performs a slower computation of standard 5-fingers matches (that
exactly corresponds to the computation modelled by the function win( )). After the two
initial receives, for e.g. performance and fault tolerance purposes, M invokes services
2F and 5F concurrently. Communication between M and the other two subservices ex-
ploits the match identifier (stored in x) as a correlation datum. When one of 2F and 5F
replies, M immediately stops the other computation. This is done by executing the kill
activity kill(k), that forces termination of all unprotected parallel terms inside the en-
closing [k] , which stops the killing effect. Kill activities take the greatest priority w.r.t.
the other parallel activities included within the enclosing scope. However, critical ac-
tivities can be protected from the effect of a forced termination by using the protection
operator {| |}; this is indeed the case of the response xp • res!〈xid, xo〉 in our example.
Finally, M forwards the responses to the players and terminates.

Services 2F and 5F use the choice operator + to offer alternative behaviours:
one of them can be selected by executing an invoke matching the receive leading the
behaviour. If the throws are not integers between 0 and 5, 2F does not reply, while 5F
returns the string err. Indeed, the receive m • req5f ?〈x, y, z〉 is assigned less priority
than the other receive activities, i.e. it is only executed when none of the other receives
matches the two throws, thus avoiding to return err in case of admissible throws.

3 μCOWS : The Protection- and Kill-Free Fragment of COWS

μCOWS’s syntax is presented in Table 1. We use two countable and disjoint sets: the
set of values (ranged over by v, v′, . . . ) and the set of ‘write once’ variables (ranged
over by x, y, . . . ). The set of values includes the set of names (ranged over by n, m, p, o,
. . . ) mainly used to represent partners and operations. We also use a set of expressions
(ranged over by ε) which contains, at least, values and variables. Partner names and
operation names can be combined to designate endpoints, written p • o, and can be
communicated, but dynamically received names can only be used for service invocation.

We use w to range over values and variables and u to range over names and vari-
ables. ·̄ stands for tuples, e.g. x̄ means 〈x1, . . . , xn〉 (with n ≥ 0) where the xis are pair-
wise distinct. We write a, b̄ to denote the tuple obtained by concatenating the element
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Table 2. Matching rules

M(x, v) = {x �→ v} M(v, v) = ∅ M(〈〉, 〈〉) = ∅
M(w1, v1) = σ1 M(w̄2, v̄2) = σ2

M((w1, w̄2), (v1, v̄2)) = σ1 � σ2

a to the tuple b̄. All notations shall extend to tuples component-wise. n ranges over
communication endpoints that do not contain variables (e.g. p • o), while u ranges over
communication endpoints that may contain variables (e.g. u • u′). When convenient, we
shall regard a tuple or an endpoint simply as a set, writing e.g. x ∈ ȳ to mean that x is
an element of ȳ. We will omit trailing occurrences of 0 and write [u1, . . . , un] s in place
of [u1] . . . [un] s. We will write I � s to assign a name I to the term s.

We assume that monadic operators bind more tightly than parallel composition, and
prefixing more tightly than choice. The only binding construct is delimitation: [u] s
binds u in the scope s. The occurrence of a name/variable is free if it is not under the
scope of a delimitation for it. fu(t) denotes the set of free names/variables in t.

The operational semantics of μCOWS is defined only for closed terms, i.e. terms
without free variables, and is given in terms of a structural congruence and of a labelled
transition relation. The structural congruence, written ≡, is defined as the least congru-
ence relation induced by a given set of equational laws. We explicitly show here the
laws for replication and delimitation

∗ 0 ≡ 0 ∗ s ≡ s | ∗ s [u] 0 ≡ 0 [u1] [u2] s ≡ [u2] [u1] s s1 | [u] s2 ≡ [u] (s1 | s2) if u � fu(s1)

while omit the (standard) laws for the other operators stating that parallel composition
and guarded choice are commutative, associative and have 0 as identity element. All
the presented laws are straightforward. In particular, the last law permits to extend the
scope of names (as in π-calculus) and variables, thus enabling possible communication.

To define the labelled transition relation, we use three auxiliary functions. Firstly,
we use the function [[ ]] for evaluating closed expressions (i.e. expressions without vari-
ables): it takes a closed expression and returns a value. It is not explicitly defined since
the exact syntax of expressions is deliberately not specified. Secondly, we use the partial
function M( , ) for performing pattern-matching on semi-structured data and, thus,
determining if a receive and an invoke over the same endpoint can synchronise. The
(straightforward) rules defining M( , ) are shown in Table 2. When tuples w̄ and v̄
match, M(w̄, v̄) returns a substitution for the variables in w̄; otherwise, it is undefined.
Substitutions (ranged over by σ) are functions mapping variables to values and are writ-
ten as collections of pairs of the form x �→ v. Application of σ to s, written s · σ, has
the effect of replacing every free occurrence of x in s with v, for each x �→ v ∈ σ, by
possibly using α-conversion for avoiding v to be captured by name delimitations within
s. We use ∅ to denote the empty substitution, | σ | to denote the number of pairs in
σ, and σ1 � σ2 to denote the union of σ1 and σ2 when they have disjoint domains.
Finally, in Table 3, we inductively define a predicate for checking communication con-
flicts: noConf(s, n, v̄, �) holds true if s cannot immediately perform a receive over the
endpoint n matching v̄ and generating a substitution σ with lesser pairs than �.

The labelled transition relation, written
α
−−−→, is the least relation over terms induced

by the rules in Table 4, where label α is generated by the following grammar:
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Table 3. There are not conflicting receives along n matching v̄

noConf(u!ε̄, n, v̄, �) = noConf(0, n, v̄, �) = true noConf(∗ s, n, v̄, �) = noConf(s,n, v̄, �)

noConf(n′?w̄.s, n, v̄, �) =

{
false if n′ = n ∧ |M(w̄, v̄) |< �
true otherwise

noConf(s | s′, n, v̄, �) = noConf(s + s′, n, v̄, �) = noConf(s, n, v̄, �) ∧ noConf(s′, n, v̄, �)

noConf([u] s, n, v̄, �) =

{
noConf(s, n, v̄, �) if u � n
true otherwise

Table 4. μCOWS operational semantics

[[ε̄]] = v̄
(inv)

n!ε̄
n� v̄
−−−−−→ 0

n?w̄.s
n� w̄
−−−−−→ s (rec)

g
α
−−→ s

(choice)
g + g′

α
−−→ s

s
n� [m̄] v̄
−−−−−−−→ s′ n ∈ v̄ n � (n ∪ m̄)

(openinv)
[n] s

n� [n,m̄] v̄
−−−−−−−−→ s′

s
σ�{x�→v}
−−−−−−−−→ s′

(delcom)
[x] s

σ
−−−→ s′ ·{x �→ v}

s
n� [ȳ] w̄
−−−−−−−→ s′ x ∈ w̄ x � ȳ

(openrec)
[x] s

n� [x,ȳ] w̄
−−−−−−−−→ s′

s
nσ�{x�→v} � v̄
−−−−−−−−−−−→ s′

(delcom 2)
[x] s

nσ� v̄
−−−−−−→ s′ ·{x �→ v}

s1
n� v̄
−−−−−→ s′1 s2

n� v̄
−−−−−→ s′2 (match)

s1 | s2
∅
−−→ s′1 | s′2

s
α
−−→ s′ u� (u(α) ∪ ce(α))

(del)
[u] s

α
−−→ [u] s′

s1
n� w̄
−−−−−→s′1 s2

n� v̄
−−−−−→s′2 M(w̄, v̄)=σ |σ |�1 noConf(s1 | s2, n, v̄, |σ |) (com)

s1 | s2
nσ |σ| v̄
−−−−−−−→ s′1 | s′2

s1
nσ� v̄
−−−−−−→ s′1 noConf(s2, n, v̄, �) (parcom)

s1 | s2
nσ� v̄
−−−−−−→ s′1 | s2

s1
α
−−→ s′1 α � nσ � v̄

(par)
s1 | s2

α
−−→ s′1 | s2

s
nσ� v̄
−−−−−−→ s′ n ∈ n

(private)
[n] s

σ
−−−→ [n] s′

s ≡ s1 s1
α
−−→ s2 s2 ≡ s′

(str)
s

α
−−→ s′

α ::= n � [n̄] v̄ | n � [x̄] w̄ | σ | nσ� v̄

Labels n � [n̄] v̄ and n� [x̄] w̄ denote execution of invoke and receive activities over the
endpoint n, resp., while labels σ and nσ� v̄ denote execution of a communication with
generated substitution σ to be still applied. Thus, ∅ and n ∅ � v̄ denote computational
steps corresponding to taking place of communication without pending substitutions.
In the sequel, we will write n� v̄ (resp. n� w̄) instead of n� [ ] v̄ (resp. n� [ ] w̄) and use
u(α) to denote the set of names and variables occurring in α, where u(nσ� v̄) = u(σ),
u({x �→ v}) = {x} ∪ fu(v) and u(σ1 � σ2) = u(σ1) ∪ u(σ2). We use ce(α) to denote the
names composing the endpoint if α denotes execution of a communication, i.e. ce(α) is
∅ except for α = nσ� v̄ for which we let ce(nσ� v̄) = n. Finally, we use bu(α) to denote
the set of names/variables that occur bound in α; i.e. bu(α) is ∅ except for α = n � [n̄] v̄
and α = n � [x̄] w̄ for which we let bu(n � [n̄] v̄) = n̄ and bu(n � [x̄] w̄) = x̄.
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We comment on salient points of rules in Table 4. An invocation can proceed only if
the expressions in the argument can be evaluated (inv). This means, for example, that if it
contains a variable x it is stuck until x is not replaced by a value because of execution of
a receive assigning a value to x. A receive activity offers an invocable operation along
a given partner name (rec), and the execution of a receive permits to take a decision
between alternative behaviours (choice). Bound invocations, that transmit private names,
can be generated by (openinv), while delimited receive activities can proceed by (openrec).

Communication can take place when two parallel terms perform matching receive
and invoke activities (com). Communication generates a substitution that is recorded
in the transition label (for subsequent application), rather than a silent transition as in
most process calculi. In particular, two different kinds of communication label can be
generated: σ and nσ� v̄. The latter label, produced by (com), carries information about
the communication which has taken place (i.e. the endpoint, the transmitted values, the
generated substitution and its length) used to check the presence of conflicting receives
in parallel components. Indeed, if more then one matching is possible, the receive that
needs fewer substitutions is selected to progress ((com) and (parcom)). This mechanism
permits to correlate different service communications thus implicitly creating a long-
running interaction and can be exploited to model the precedence of a service instance
over the corresponding service specification when both can process the same request.
However, the check for the presence of a conflict is not needed when either the per-
formed receive has the highest priority (i.e. the substitution has length 0) or the commu-
nication takes place along a private endpoint. In the former case, label ∅ is immediately
generated by (match). In the latter case, when the delimitation of a name belonging to the
endpoint of a communication label is encountered (i.e. the communication is identified
as private), the transition label nσ� v̄ is turned into σ (private).

When the delimitation of a variable x argument of a receive involved in a communi-
cation is encountered, i.e. the whole scope of the variable is determined, the delimitation
is removed and the substitution for x is applied to the term ((delcom) and (delcom 2)); thus,
x disappears from the term and cannot be reassigned a value. [u] s behaves like s (del),
except when the transition label α contains u. Execution of parallel terms is interleaved
(par), but when a communication subject to conflict check is performed. Indeed, it must
ensure that the receive activity with greater priority progresses ((com) and (parcom)).

Now, we want to define a co-inductive notion of bisimulation for the calculus. Since
communication is asynchronous, an obvious starting point is considering as observable
only the output capabilities of terms, as done by the labelled bisimulation introduced for
asynchronous π-calculus in [1]. The intuition is that an asynchronous observer cannot
directly observe the receipt of data that it has sent. Moreover, to enable compositional
reasoning, we want our bisimulation to be a congruence, namely to be preserved by all
μCOWS (closed) contexts C that are generated by the following grammar:

C ::= [[·]] | G | C | s | s | C | [u]C | ∗ C G ::= n?w̄.C | G + g | g + G

such that, once the hole is filled with a closed term s, C[[s]] is a μCOWS closed term.
In [13], we show that for μCOWSm, a fragment of μCOWS that dispenses with prior-

ity in parallel composition, a notion of bisimulation inspired to [1] enjoys the equality

[x] ( ∅ + n?〈x, v〉. n!〈x, v〉 ) = ∅ (3)
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where, for the sake of presentation, we exploit the context ∅+[[·]] � [m] (m!〈〉 | m?〈〉+[[·]])
and the term ∅ � [m] (m!〈〉 | m?〈〉)1. Intuitively, the equality means that a term that emits
the data it has received behaves as a term that simply performs an unobservable action
and is an analogous of the input absorption law, i.e. a(b). āb + τ = τ, characterising
strong bisimilarity for asynchronous π-calculus [1].

In μCOWS, instead, the context C � [y, z] n?〈y, z〉. m!〈〉 | n!〈v′, v〉 | [[·]] can tell the

two terms above apart. In fact, we have C[[∅]]
n ∅ 2 〈v′ ,v〉
−−−−−−−−−→ m!〈〉 | ∅, where the term

(m!〈〉 | ∅) can perform the invoke m!〈〉. Instead, the other term cannot properly reply
because the receive n?〈x, v〉 has higher priority than n?〈y, z〉 when synchronising with
the invocation n!〈v′, v〉. Thus, C[[[x] ( ∅ + n?〈x, v〉. n!〈x, v〉 )]] can only evolve to terms
that cannot immediately perform the activity m!〈〉. This means that μCOWSm’s notion
of bisimulation is not a congruence for μCOWS. This is due to the fact that receive
activities that exercise a priority (i.e. receives whose arguments contain some values)
can be detected by an interacting observer (as shown by the above example). Hence, for
a suitable notion of labelled bisimilarity for μCOWS, equation (3) does not hold. Now,
consider the term [x, x′] ( ∅ + n?〈x, x′〉. n!〈x, x′〉 ). Since n?〈x, x′〉 does not exercise any
priority on parallel terms, the contextC cannot tell the term above and ∅ apart. Similarly,
we have that ∅ + n?〈〉. n!〈〉 and ∅ cannot be distinguished by D � n?〈〉. m!〈〉 | n!〈〉 | [[·]].
Therefore, such pairs of terms should be considered as bisimilar.

Now, consider the terms s1 � [n] ( m!〈n〉 | n!〈〉 ) and s2 � [n] m!〈n〉. Although
the former also contains the subterm n!〈〉, they can both perform only the invocation
along the endpoint m. In fact, n!〈〉 is blocked since initially it is in the scope of [n]
and afterwards no interacting partner can ever be able to receive along n (contexts of
the form [[·]] | m?〈x〉. x?〈〉. 0 are not allowed because of the syntactic constraint on the
‘localisation’ of names). Therefore, s1 and s2 should be considered as bisimilar. Instead,
the natural asynchronous labelled bisimilarity derived from [1] would tell them apart
and, hence, need to be weakened. Hence, we define a labelled bisimulation as a family
of relations indexed with sets of names corresponding to the names that cannot be used
by contexts (to test) for reception since they are dynamically exported private names.

Definition 1. A names-indexed family F of relations is a set of symmetric binary rela-
tions RN on μCOWS closed terms, one for each set of names N , i.e. F = {RN}N .

Definition 2 (Labelled bisimilarity). A names-indexed family of relations {RN}N is a

labelled bisimulation if, whenever s1RN s2 and s1
α
−−−→ s′1, where bu(α) are fresh, then:

1. if α = n � [x̄] w̄ then one of the following holds:

(a) ∃ s′2 : s2
n�[x̄] w̄
−−−−−−−→ s′2 and

∀ v̄ s.t. M(x̄, v̄) = σ and noConf(s2, n, w̄·σ, | x̄ |) : s′1 ·σRN s′2 ·σ
(b) | x̄ |=| w̄ | and ∃ s′2 : s2

∅
−−→ s′2 and

∀ v̄ s.t. M(x̄, v̄) = σ and noConf(s2, n, w̄·σ, | x̄ |) : s′1 · σRN (s′2 | n!v̄)

2. if α = n ∅ � v̄ where � =| v̄ | then one of the following holds:

(a) ∃ s′2 : s2
n ∅ � v̄
−−−−−−→ s′2 and s′1 RN s′2 (b) ∃ s′2 : s2

∅
−−→ s′2 and s′1 RN s′2

1 ∅ plays a role similar to τ in π-calculus, namely ∅ is both a label and a term such that ∅
∅
−−→ 0.
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3. if α = n � [n̄] v̄ where n � N then ∃ s′2 : s2
n�[n̄] v̄
−−−−−−→ s′2 and s′1 RN∪ n̄ s′2

4. if α = ∅ or α = n ∅ � v̄, where � �| v̄ |, then ∃ s′2 : s2
α
−−−→ s′2 and s′1 RN s′2

Two closed terms s1 and s2 are N-bisimilar, written s1 ∼Nμ s2, if s1RN s2 for some RN
in a labelled bisimulation. They are labelled bisimilar, written s1 ∼μ s2, if they are
∅-bisimilar. ∼Nμ is called N-bisimilarity, while ∼μ is called labelled bisimilarity.

The resulting definition somewhat recalls that of quasi-open bisimilarity for π-calculus
[12]. Clause 1 deals with both observable and unobservable receives. In fact, all receives
can be simulated in a normal way (clause 1.(a)); additionally, receives such that | x̄ |=| w̄ |,
i.e. w̄ contains only variables or is the empty tuple (since x̄ ⊆ w̄ and w̄\x̄ does not
contain variables), can be simulated by a computational step leading to a term that, when
composed with the invoke activity consumed by the receive, stands in the appropriate
relation (clause 1.(b)). Execution of receives whose argument contains variables leads to
open terms, which the operational semantics is not defined for. Since the freed variables
are placeholders for values to be received, clause 1 requires the two continuations to be
related for any matching tuple of values that can be effectively received (i.e. that do
not give rise to communication conflicts). Clause 2 permits replying also with an ∅-
transition to communications involving an unobservable receive (�=| v̄ | implies that the
argument of the receive is a, possible empty, tuple of variables). Clause 3, and the use of
names-indexed families of relations, handles the fact that dynamically exported private
names cannot be used by a receiver within the endpoint of a receive (whose syntax does
not allow to use variables). With abuse of notation, n � N in clause 3, with n = p • o,
stands for p � N ∧ o � N . Thus, invocations along endpoints using either of the names
in N are unobservable, hence these endpoints cannot be used to tell the executing terms
apart. Finally, clause 4 deals with computational steps. Notably, actions σ and nσ� v̄,
with σ � ∅, are not taken into account, since they cannot be performed by closed terms
(see rules (com), (delcom) and (delcom 2)).

Theorem 1. ∼μ is a congruence for μCOWS closed terms.

As a further evidence of the reasonableness of our notion of bisimilarity, we provide
now an alternative characterization in terms of (open) barbed bisimilarity along the
line of [8,12]. To this aim, first we identify an appropriate basic observable, namely a
predicate that points out the interaction capabilities of a term. Since communication is
asynchronous, again we consider as observable only the output capabilities of terms.

Definition 3 (Observable for μCOWS). Let s be a μCOWS closed term. Predicate

s ↓n holds true if there exist s′, n̄ and v̄ such that s
n� [n̄] v̄
−−−−−−−→ s′.

Definition 4 (Open barbed bisimilarity). A symmetric binary relation R on μCOWS
closed terms is an open barbed bisimulation if whenever s1Rs2 the following holds:

(Barb preservation) if s1 ↓n then s2 ↓n;
(Computation closure) if s1

∅
−−→ s′1 (resp. s1

n ∅ � v̄
−−−−−→ s′1) then there exists s′2 such that

s2
∅
−−→ s′2 (resp. s2

n ∅ � v̄
−−−−−→ s′2 or �=| v̄ | ∧ s2

∅
−−→ s′2) and s′1Rs′2;
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(Context closure) C[[s1]]RC[[s2]], for every closed context C.

Two closed terms s1 and s2 are open barbed bisimilar, written s1 !μ s2, if s1Rs2 for
some open barbed bisimulation R. !μ is called open barbed bisimilarity.

Barbed bisimilarity has the advantage of an intuitive meaning, since it is induced by
a simple notion of observable and is defined by means of computation and context
closure. Differently from ∼μ, the definition of !μ suffers from universal quantification
over all possible language contexts, which makes the reasoning on terms very hard.

Our main results state that labelled bisimilarity is sound and complete with respect to
open barbed bisimilarity. Due to the intuitiveness of !μ, this result makes us confident
that the notion of labelled bisimularity is sufficiently reasonable.

Theorem 2. ∼μ and !μ coincide.

Our semantic theories extend in a standard way to the weak case so that results of
congruence and coincidence still hold. Due to space limitations, the exact definitions are
relegated to [13]. Here, we conclude with an example inspired to the law !(a(b). āb) = 0
that holds for weak bisimilarity in asynchronous π-calculus [1]. In fact, the analogous
of equality (3) for the weak case is ∗ [x, x′] n?〈x, x′〉. n!〈x, x′〉 ≈μ 0. To prove validity,
the most significant case is simulating the transition

∗ [x, x′] n?〈x, x′〉. n!〈x, x′〉
n� [x,x′ ] 〈x,x′ 〉
−−−−−−−−−−−−→ ∗ [x, x′] (n?〈x, x′〉. n!〈x, x′〉) | n!〈x, x′〉

The term on the right replies with an empty transition and it is easy to show that, for all
v and v′, (∗ [x, x′] (n?〈x, x′〉. n!〈x, x′〉) | n!〈v, v′〉) and (0 | n!〈v, v′〉) are weak bisimilar.

4 COWS

COWS is obtained by enriching μCOWS as follows:

s ::= . . . | kill(k) | {|s|} | [k] s

Besides the sets of values and variables, we also use the set of (killer) labels (ranged
over by k, k′, . . .). Notably, expressions do not include killer labels (that, hence, are not
communicable). Delimitation now is a binder also for killer labels and, differently from
the scope of names and variables, that of killer labels cannot be extended. A COWS
term is closed if it does not contain free variables and killer labels.

Informally, execution of a kill activity kill(k) causes termination of all parallel terms
inside the enclosing [k] , which stops the killing effect. Critical activities can be pro-
tected from the effect of a forced termination by using the protection operator {|s|}.
E.g., K � n!〈v〉 | [k] ( [x] n?〈x〉.s | {| m!〈v′〉 |} | kill(k) ) can perform a computational
step † by executing the kill activity and evolving to (n!〈v〉 | [k] ( halt([x] n?〈x〉.s) |
halt({| m!〈v′〉|} ) ) ≡ (n!〈v〉 | [k] {| m!〈v′〉 |}), where function halt( ), given a term s, returns
the term obtained by only retaining the protected activities inside s. COWS’s priority
mechanism assigns greatest priority to kill activities so that they pre-empt all other ac-
tivities inside the enclosing killer label’s delimitation. For example, in the term K above
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communication along n and activity m!〈v′〉 are blocked until the kill activity has been
performed. We refer to [13] for a complete account of COWS semantics.

When considering observational semantics for COWS we soon discover that ∼μ is
not preserved by those contexts forcing termination of the activities in the hole. For
example, ∅ ∼μ {|∅|} trivially holds. However, the COWS context [k] (kill(k) | [[·]]) can
tell the two terms apart. Indeed, [k] (kill(k) | ∅) ∼μ [k] (kill(k) | {|∅|}) does not hold since,
after execution of the kill activity (that has highest priority), we would get 0 ∼μ {|∅|}
which is trivially false. Therefore, ∼μ is not a congruence for COWS.

Open barbed bisimilarity, namely !, is by definition closed under all contexts and its
definition only needs to be tuned for considering also †-transitions in the ‘Computation
closure’ (the exact definition is in [13]). Instead, labelled bisimilarity must explicitly
take care of the effects of execution of kill activities and of occurrences of the protection
operator. These differences w.r.t. to Definition 2 are highlighted with a gray background.

Definition 5 (Labelled bisimilarity). A names-indexed family of relations {RN}N is

a labelled bisimulation if s1RN s2 then halt(s1)RN halt(s2) and if s1
α
−−−→ s′1, where

bu(α) are fresh, then: we replace clauses 1.(b) and 4 in Definition 2 as follows (other
clauses are identical).

1. (b) | x̄ |=| w̄ | and ∃ s′2 : s2
∅
−−→ s′2 and ∀ v̄ s.t. M(x̄, v̄) = σ and

noConf(s2, n, w̄·σ, | x̄ |) : s′1 · σRN (s′2 | n!v̄) or s′1 · σRN (s′2 | {|n!v̄|})

4. if α = ∅, α = † or α = n ∅ � v̄, where � �| v̄ |, then ∃ s′2 : s2
α
−−−→ s′2 and s′1 RN s′2

Two closed terms s1 and s2 are N-bisimilar, written s1 ∼N s2, if s1RN s2 for some
RN in a labelled bisimulation. They are labelled bisimilar, written s1 ∼ s2, if they are
∅-bisimilar. ∼N is called N-bisimilarity, while ∼ is called labelled bisimilarity.

halt-closure takes into account kill activities performed by contexts (halt(s) gets the
same effect as of plunging s within the context [k] (kill(k) | [[·]])), while clause 4 takes
into account kill activities that are active within the considered terms. Clause 1.(b) con-
siders that if a closed term s performs a transition labelled by n � [m̄] v̄, then s contains
an invoke of the form n!ε̄, with [[ε̄]] = v̄, which can be either protected or not.

Theorem 3. (1) ∼ is a congruence for COWS closed terms; and (2) ∼ and ! coincide.

Extension to the weak case is standard (definitions of the bisimilarities are in [13]).
Again, results of congruence and coincidence hold.

We finish studying the relationship between the specifications of the Morra service
introduced in Section 2. We can prove that (1) #≈ (2). Indeed, (1) can perform two
transitions labelled by evens • throw � [xid, yp, ynum] 〈xid, yp, ynum〉 and by odds • throw �
[xp, xnum] 〈 f irst, xp, xnum〉 and, because of application of substitutions {xid �→ f irst, yp �→
cbB, ynum �→ 1} and {xp �→ cbA, xnum �→ 2}, evolve to ( cbA • res!〈 f irst,win(2, 1, 1)〉 |
cbB • res!〈 f irst,win(2, 1, 0)〉 ). (2) can properly simulate the above transitions but it can
only evolve to {| cbA • res!〈 f irst,w〉 | cbB • res!〈 f irst, l〉 |}. Of course, the latter term
behaves differently from the former one in presence of kill activities. In fact, given the
context C � [k′] ( [n] (n!〈〉 | n?〈〉. kill(k′)) | [[·]] ), we have that C[[(1)]] #≈ C[[(2)]].
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If we modify the last two invokes in the high-level specification (1) as follows:

∗ [xid, xp, xnum, yp, ynum] ( odds • throw?〈xid, xp, xnum〉 | evens • throw?〈xid, yp, ynum〉
| {| xp • res!〈xid,win(xnum, ynum, 1)〉 | yp • res!〈xid,win(xnum, ynum, 0)〉 |} )

(4)

the problem persists, because (4) after the first two transitions always provides a re-
sponse, while (2) could fail to provide a response in presence of kill activities. Instead,
a term bisimilar to (4) can be obtained by replacing M in (2) by the following term:

[xid, xp, xnum, yp, ynum] ( odds • throw?〈xid, xp, xnum〉 | evens • throw?〈xid, yp, ynum〉 | {| [k] ( . . . ) |} )

5 Related Work

Many process calculi with priority have been proposed in the literature [4]. In previ-
ous proposals, dynamic priorities are basically used to model scheduling approaches
and real-time aspects (see e.g. [2,5]) while in COWS they are used for coordination, as
well as for orchestration, purposes. For example, in the service 5F of Section 2 they
enable implementing a sort of ‘default’ behaviour, that returns err when a throw is not
admissible. To the best of our knowledge (see also [4]), the interplay between dynamic
priorities and local pre-emption, and their impact on semantic theories of processes
have never been explored before. A termination construct similar to COWS’s kill activ-
ity has been introduced in [6] in the setting of a distributed pi-calculus, where it is used
to model the failure of a node. Instead, COWS’s kill activity (in conjunction with pro-
tection and delimitation) is more flexible since it permits terminating parallel activities
in a more selective way. [9,3] use labelled bisimilarities to prove compliance between
service implementations and specifications for process calculi based on an explicit no-
tion of session rather than on correlation. COWS’s barbed bisimilarities follow the ap-
proach of open barbed bisimilarities [8,12] rather than that of barbed congruence [11],
i.e. quantification over contexts occurs recursively inside the definition of bisimilarity.
COWS’s priority mechanisms make some receive actions observable (which leads to a
novel notion of observation that refines the purely asynchronous one [1,7]), and require
specific conditions on the labelled bisimilarities for these to be congruences.
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4. Cleaveland, R., Lüttgen, G., Natarajan, V.: Priorities in process algebra. In: Handbook of
Process Algebra, pp. 391–424 (2001)

5. Fecher, H.: A Real-Time Process Algebra with Open Intervals and Maximal Progress. Nordic
Journal of Computing 8(3), 346–365 (2001)



570 R. Pugliese, F. Tiezzi, and N. Yoshida

6. Francalanza, A., Hennessy, M.: A theory for observational fault tolerance. Journal of Logic
and Algebraic Programming 73(1-2), 22–50 (2007)

7. Honda, K., Tokoro, M.: An Object Calculus for Asynchronous Communication. In: America,
P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991)

8. Honda, K., Yoshida, N.: On Reduction-Based Process Semantics. Theoretical Computer Sci-
ence 151(2), 437–486 (1995)

9. Lanese, I., et al.: Disciplining Orchestration and Conversation in Service-Oriented Comput-
ing. In: SEFM, pp. 305–314. IEEE, Los Alamitos (2007)

10. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg (2007)

11. Milner, R., Sangiorgi, D.: Barbed Bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS,
vol. 623, pp. 685–695. Springer, Heidelberg (1992)

12. Sangiorgi, D., Walker, D.: On Barbed Equivalences in pi-Calculus. In: Larsen, K.G., Nielsen,
M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 292–304. Springer, Heidelberg (2001)

13. Tiezzi, F.: Specification and Analysis of Service-Oriented Applications. PhD Thesis, Univ.
Florence (2009); http://rap.dsi.unifi.it/cows/theses/tiezzi_phdthesis.pdf

http://rap.dsi.unifi.it/cows/theses/tiezzi_phdthesis.pdf


A Distributed and Oblivious Heap�

Christian Scheideler and Stefan Schmid

Institut für Informatik
Technische Universität München, D-85748 Garching, Germany

Abstract. This paper shows how to build and maintain a distributed
heap which we call SHELL. In contrast to standard heaps, our heap
is oblivious in the sense that its structure only depends on the nodes
currently in the network but not on the past. This allows for fast join
and leave operations which is desirable in open distributed systems with
high levels of churn and frequent faults. In fact, a node fault or depar-
ture can be fixed in SHELL in a constant number of communication
rounds, which significantly improves the best previous bound for dis-
tributed heaps. SHELL has interesting applications. First, we describe a
robust distributed information system which is resilient to Sybil attacks
of arbitrary scale. Second, we show how to organize heterogeneous nodes
of arbitrary non-uniform capabilities in an overlay network such that the
paths between any two nodes do not include nodes of lower capacities.
This property is useful, e.g., for streaming. All these features can be
achieved without sacrificing scalability: our heap has a de Bruijn like
topology with node degree O(log2 n) and network diameter O(log n), n
being the total number of nodes in the system.

1 Introduction

In recent years, peer-to-peer systems have received a lot of attention both inside
and outside of the research community. Major problems for these systems are how
to handle a large churn, adversarial behavior, or participants with highly varying
availability and resources. This is particularly the case in open peer-to-peer
systems, where any user may join and leave at will. In this paper, we argue that
many of these challenges can be solved by organizing the nodes in a distributed
heap called SHELL.1 SHELL is oblivious, which implies that its structure only
depends on the nodes currently in the system but not on the past. It has turned
out that this is a crucial property for systems with frequent membership changes
as recovery and maintenance is simpler and faster. In fact, in SHELL, a join
operation can be handled in O(log n) time and a leave operation in constant
time, which is much better than the O(log2 n) runtime bound previously known
for scalable distributed heaps [3].

� Partly supported by the DFG-Project SCHE 1592/1-1. For the full version see [15].
1 The name SHELL is due to the fact that nodes are organized in different layers

in our network, where nodes “higher” in the heap can be protected and operate
independently of nodes “lower” in the heap.

S. Albers et al. (Eds.): ICALP 2009, Part II, LNCS 5556, pp. 571–582, 2009.
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SHELL has a number of interesting applications. As a first case study, we
construct a fault-tolerant distributed information system called i-SHELL which
is resilient to churn and Sybil attacks of any size. Sybil attacks are a particularly
cumbersome problem in open distributed systems: a user may join the system
with a large number of identities in order to, e.g., take over responsibility for
an unfair amount of the resources in the system, control or isolate certain parts
of the overlay network, or flood the system with futile traffic. The key idea of
i-SHELL is that nodes only connect to older nodes in the system so that nodes
that were already in the system when the Sybil attack takes place are unaffected
by it.

As a second case study, we show that SHELL can also be used to organize
nodes with arbitrary capacities in an efficient manner. For example, in a sce-
nario where nodes have non-uniform Internet connections, our h-SHELL system
guarantees that the paths between two nodes with fast Internet connections only
include nodes which are also fast while keeping a low congestion. This is a vital
property, e.g., for streaming.

1.1 Model and Definitions

In order to present our key ideas in a clean way, we will use a high-level model
for the design and analysis of the SHELL system. We assume that time proceeds
in rounds, and all messages generated in round i are delivered in round i + 1
as long as no node sends and receives more than a polylogarithmic amount
of information. In other words, we assume the standard synchronous message-
passing model with the restriction that a node can only communicate with nodes
that it has currently links to. We do not consider the amount of time needed
for internal computation as that will be very small in our case. Each node v
in the system is associated with a key key(v) ∈ N. Our heap will organize the
nodes according to these keys. We assume the existence of a symmetry breaker
(e.g., unique IP addresses) which allows us to order nodes with the same key so
that we can assume w.l.o.g. that all keys are distinct. The order nv of a node
v is defined as the number of nodes w in the system with key(w) < key(v).
Intuitively, nv represents the number of nodes that are above v in the heap.

The problem to be solved for the SHELL system is to find efficient and scalable
algorithms for the following operations:

1. v.join(): Node v joins the system.
2. v.leave(): Node v leaves the system.
3. v.rekey(x): Node v’s key changes to x.

By “scalability” we mean that these operations can also be executed efficiently
when performed concurrently.

Scalability is an important feature of SHELL. Messages can be routed fast
while the traffic is distributed evenly among nodes. We measure the congestion
as follows.
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Definition 1 (Congestion). The congestion at a node v is the number of
packets forwarded by v in a scenario where each of the n nodes in the system
wants to send a message to a random node.

One application of SHELL is a distributed information system resilient to Sybil
attacks. Formally, we will study the following type of attack.

Definition 2 (Sybil Attack). Starting with time t0, an attacker joins the net-
work with an arbitrary number of nodes.

Our goal is to ensure that all nodes that joined the network before t0 are safe
against that Sybil attack.

1.2 Our Contributions

The main contribution of this paper is the presentation of a scalable and robust
overlay network called SHELL. SHELL is a distributed heap with join and leave
operations with asymptotically optimal runtime. In contrast to other distributed
(as well as many standard sequential) heaps (e.g., PAGODA [3]), SHELL is
oblivious, which allows it to react much more rapidly to dynamic changes: nodes
can join in time O(log n) and leave in time O(1). Another highlight of SHELL
is its robustness. For example, we are not aware of any other structure which
allows us to build a distributed information system resilient to Sybil attacks of
arbitrary scale. We also show that SHELL has interesting applications, e.g., it
can deal very efficiently with arbitrary variations in the capacities of the nodes.
In summary, our distributed heap has the following properties.

1. Scalability: Nodes have degree O(log2 n) and the network diameter is
O(log n), where n is the network size. Congestion is bounded by O(log n)
on expectation and O(log2 n) w.h.p.2, which is on par with well-known peer-
to-peer networks like Chord [19].

2. Dynamics : Nodes can be integrated in O(log n) time and removed in O(1)
time.

3. Robustness : SHELL can be used to build robust distributed information
systems, e.g., a system which is resilient to arbitrarily large Sybil attacks.

4. Heterogeneity: SHELL can organize arbitrarily heterogeneous nodes in an
efficient way (e.g., for streaming).

1.3 Related Work

A heap is a standard data structure that has been extensively studied in com-
puter science (e.g., [4]). There are several types of concurrent heap implementa-
tions such as skip queues [16] or funnel trees [17]. Moreover, distributed heaps
have been used in the context of garbage collection in distributed programs.
However, none of these constructions can be used to design scalable distributed
systems like those considered in this paper.
2 By ”with high probability” or ”w.h.p.” we mean a probability of at least 1 −

1/poly(n).
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A prominent way to build scalable distributed systems are distributed hash
tables (or DHTs). Since the seminal works by Plaxton et al. [12] on locality-
preserving data management in distributed environments and by Karger et al. [8]
on consistent hashing, many DHTs have been proposed and implemented, e.g.,
Chord [19], CAN [13], Pastry [14], Tapestry [21], or D2B [7]. While these systems
are highly scalable, they often assume nodes to be homogeneous, and they are
vulnerable to various attacks, especially Sybil attacks that, if large enough, can
cause network partitions in these DHTs.

Sybil attacks [6] are an important challenge for open distributed systems. A
prominent example is our email system in which tons of spam emails are created
by Sybils to evade filtering. A solution to the Sybil attack problem in practice is
to have new subscribers solve difficult cryptographic puzzles which limits the rate
at which participants can join, or to perform Turing tests to prevent automated
subscriptions and to ensure that a new user is indeed a human being. Most of
these solutions are based on centralized entities. In fact, a well-known result by
Douceur [6] claims that in purely decentralized environments, it is inherently
difficult to handle Sybil attacks. Douceur finds that the only means to limit the
generation of multiple identities is to have a trusted authority be responsible
for generating them. Bazzi et al. propose a Sybil defense based on network
coordinates [1,2] in order to differentiate between nodes. Other approaches are
based on social networks [5,20] and game theory [9]. All of these approaches
are aiming at detecting and/or limiting Sybil attacks. In our paper, we do not
aim at preventing Sybil attacks. We assume that an attacker can indeed connect
an unbounded number of nodes to the network (by controlling, e.g., a botnet).
Nevertheless, SHELL remains efficient at any time for those nodes that have
already been in the system before the attack.

As a second application, we demonstrate how SHELL can organize heteroge-
neous nodes such that stronger nodes can operate independently of weaker nodes.
While many peer-to-peer systems assume that nodes have uniform capabilities,
there have also been several proposals to construct heterogeneous systems (e.g.,
[11,18]). These are usually based on multi-tier architectures but can only handle
a certain subset of the capacity distributions well. The system closest to ours
is PAGODA [3] which also constructs a distributed heap. However, this archi-
tecture is not oblivious. The more rigid structure implies that the system is less
dynamic and cannot adapt to bandwidth changes nearly as quickly as SHELL. In
fact, a join and leave operation take O(log2 n) time, and it appears that without
major modifications it is not possible to lower the runtime of the operations to
something comparable with SHELL.

2 The SHELL Heap

In this section, we present the SHELL heap. Due to space constraints, the proofs
were left out and can be found in [15].
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2.1 The SHELL Topology

The SHELL topology is based on a dynamic de Bruijn graph and builds upon
the continuous-discrete approach introduced by Naor and Wieder [10]. In the
classical d-dimensional de Bruijn graph, {0, 1}d represents the set of nodes and
two nodes x, y ∈ {0, 1}d are connected by an edge if and only if there is a bit
b ∈ {0, 1} so that x = (x1 . . . xd) and y = (b x1 . . . xd−1) (i.e., y is the result of
a right shift of the bits in x with the highest bit position taken by b) or y =
(x2 . . . xdb). When viewing every node x ∈ {0, 1}d as a point

∑d
i=1 xi/2i ∈ [0, 1)

and letting d → ∞, then the node set of the de Bruijn graph is equal to [0, 1)
and two points x, y ∈ [0, 1) are connected by an edge if and only if x = y/2,
x = (1 + y)/2 or x = 2y (mod 1). This motivates the dynamic variant of the de
Bruijn graph described in the following.

For any i ∈ N0, a level i interval (or simply i-interval) is an interval of size
1/2i starting at an integer multiple of 1/2i in [0, 1). The buddy of an i-interval
I is the other half of the (i − 1)-interval that contains I. We assume that every
node in the system is assigned to some fixed (pseudo-)random point in [0, 1) (the
node set of the continuous de Bruijn graph above) when it joins the system. We
also call this point its identity or id. For now, suppose that every node v knows
its order nv. Later in this section we present a local control strategy that allows
the nodes to obtain a good estimate on nv. We want to maintain the following
condition at any point in time for some fixed and sufficiently large constant
c > 1.

Condition 21. Each node v has forward edges to all nodes w with key(w) <
key(v) in the following three intervals:

– the �v,0-interval containing v (v’s home interval) and its buddy,
– the �v,1-interval containing v/2 and the �v,2-interval containing (1 + v)/2

(v’s de Bruijn intervals) and their buddies.

v also has backward edges to all nodes that have forward edges to it.
The level �v,0 ∈ N0 of v is chosen as the largest value such that the �v,0-

interval containing v contains at least c log nv nodes w with key(w) < key(v) for
some fixed and sufficiently large constant c. If there is no such �v,0 (i.e., nv is
very small), then �v,0 is set to 0. The same rule is used for the selection of the
levels �v,i, i ∈ {1, 2}, using the points (i + v − 1)/2 instead of v.

The conditions on �v,i suffice for our operations to work w.h.p. If we want guar-
antees, one would have to extend the definition of �v,i to lower bounds on the
number of nodes in both halves of the �v,i-interval as well as its buddy, but for
simplicity we will not require that here.

The forward edges are related to the upward edges in a standard (min-)heap
while the backward edges are related to the downward edges. However, instead
of a tree-like structure, we have a de Bruijn-like structure among the nodes.
Forward edges to the home interval of a node are called home edges and edges
to the de Bruijn intervals de Bruijn edges. Our construction directly yields the
following properties.



576 C. Scheideler and S. Schmid

Fact 22 (Oblivious Structure). The SHELL topology only depends on the
current set of nodes and their keys but not on the past.

Fact 23 (Forward Independence). The forward edges of a node v only de-
pend on nodes u with key(u) < key(v).

Recall that every node is given a (pseudo-)random point in [0, 1). Then the
following property also holds.

Lemma 1 (Level Quasi-Monotonicity). For any pair of nodes v and w with
key(v) > key(w) it holds that �v,i ≥ �w,j − 1 for any i, j ∈ {0, 1, 2}, w.h.p.

In this lemma and the rest of the paper, ”w.h.p.” means with probability at least
1 − 1/poly(nv). Next we bound the degree of the nodes. From the topological
conditions we can immediately derive the following property.

Lemma 2. Every node v has Θ(c log nv) many forward edges to every one of
its intervals, w.h.p.

For the backward edges, we have the following bound, where n is the total
number of nodes in the system.

Lemma 3. The maximal number of backward edges of a node is limited by
O(c log2 n) w.h.p.

2.2 Routing

We now present a routing algorithm on top of the described topology. For any
pair (u, v) of nodes, the operation route(u, v) routes a message from node u
to node v. The routing operation consists of two phases: first, a forward(v)
operation is invoked which routes a message from node u to some node w with
key(w) < key(u) whose home interval contains v. Subsequently, if necessary
(i.e., if w �= v), a refine(v) operation performs a descent or ascent along the
levels until (the level of) node v is reached. In the following, we will show how to
implement the route(u, v) operation in such a way that a message is only routed
along nodes w for which it holds that key(w) ≤ max{key(u), key(v)}.

Forward(v). We first consider the forward(v) algorithm, where node u sends a
message along forward edges to a node whose home interval includes node v. Let
(x1, x2, x3, . . .) be the binary representation of u and (y1, y2, y3, . . .) be the binary
representation of v (i.e., u =

∑
i≥1 xi/2i). Focus on the first k = log nu bits of

these representations. Ideally, we would like to send the message along the points
z0 = (x1, x2, x3, . . .), z1 = (yk, x1, x2, x3, . . .), z2 = (yk−1, yk, x1, x2, x3, . . .),
. . . , zk = (y1, . . . , yk, x1, x2, x3, . . .). We emulate that in SHELL by first send-
ing the message from node u along a forward edge to a node u1 with largest
key whose home interval contains z1. u can indeed identify such a node since
z1 = z0/2 or z1 = (1 + z0)/2, i.e., z1 is contained in one of u’s de Bruijn in-
tervals, say, I. Furthermore, u has Θ(c log nu) forward edges to each of the two
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halves of its intervals, w.h.p., and from Lemma 1 it follows that every node w
that u has a forward edge to, �w,0 ≤ �u,i + 1, i.e., w’s home interval has at least
half the size of I. Hence, u has a forward connection to a node u1 whose home
interval contains z1 w.h.p. From u1, we forward the message along a forward
edge to a node u2 with largest key whose home interval contains z2. Again, u1

can identify such a node since z2 = z1/2 or z2 = (1 + z1)/2 and z1 belongs to
the home interval of u1, which implies that z2 belongs to one of the de Bruijn
intervals of u1. We continue that way until a node uk is reached whose home
interval contains zk, as desired. Observe that according to Lemma 1, uk con-
tains v in its home interval as the first k bits of uk and v match and �uk,0 < k,
w.h.p., so the forward operation can terminate at uk. We summarize the central
properties of the forward phase in three lemmas. The first lemma bounds the
dilation.

Lemma 4. For any starting node u and any destination v, forward(v) has a
dilation of log nu, w.h.p.

The next lemma is crucial for the routing to be scalable.

Lemma 5. In the forward phase, a packet issued by a node u of order nu will
terminate at a node of order at least nu/2 w.h.p.

As a consequence, we can bound the congestion.

Lemma 6. For a random routing problem, the congestion at any node v is
O(log nv) on expectation and O(log2 nv) w.h.p.

Refine(v). Recall that once the forward(v) operation terminates, the packet
has been sent to a node w that contains the location of v in its home interval.
In a second refining phase refine(v), the packet is forwarded to the level of v in
order to deliver it to v. First, suppose that the packet reaches a node w with
key(w) > key(v). According to Condition 21, w has forward connections to all
nodes x in its home interval with key(x) < key(w). Hence, w has a forward edge
to v and can therefore directly send the packet to v.

So suppose that the packet reached a node w with key(w) < key(v). In this
case, w may not be directly connected to v since there will only be a forward
edge from v to w (and therefore a backward edge from w to v) if w is in v’s home
interval, which might be much smaller than w’s home interval. Therefore, the
packet has to be sent downwards level by level until node v is reached. Suppose
that w is at level � in its home interval. We distinguish between two cases.

Case 1 : nv ≤ (3/2)nw. Then v and w can be at most one level apart w.h.p.:
Since the interval size of w can be at most 2(1+δ)c log nw/nw for some constant
δ > 0 (that can be made arbitrarily small depending on c) w.h.p., two levels
downwards there can be at most (1 + δ)2c log nw/2 nodes left in a home interval
of that level that w has forward edges to, w.h.p. Moreover, there can be at most
an additional (1+δ)(nw/2)(1+δ)c log nw/(2nw) = (1+δ)2c log nw/4 nodes that
v has forward edges to, which implies that the level of v must be larger than
� + 2 w.h.p. Thus, w is either in v’s home interval or its buddy, which implies



578 C. Scheideler and S. Schmid

that v has a forward edge to w (resp. w has a backward edge to v), so w can
deliver the packet directly to v.

Case 2 : nv > (3/2)nw. Then there must be at least one node x with key(w) ≤
key(x) < key(v) that is in the �+1-interval containing v (which might be w itself)
w.h.p. Take the node with largest such key. This node must satisfy nx ≤ (3/2)nw

w.h.p., which implies that it is at level � or �+1 by Case 1, so w has a backward
edge to that node and therefore can send the packet to it. The forwarding of the
packet from x is continued in the same way as for w so that it reaches node v in
at most log nv hops.

For the refine operation, the following lemma holds.

Lemma 7. For any starting node w and any node v, the refine(v) operation has
a dilation of O(log nv). Furthermore, the congestion at any node u is at most
O(c log nu) w.h.p.

2.3 Join and Leave

Open distributed systems need to incorporate mechanisms for nodes to join and
leave. Through these membership changes, the size of the network can vary
significantly over time. A highlight of SHELL is its flexibility which facilitates
very fast joins and leaves.

Join. We first describe the join operation. Recall that each node v is assigned
to a (pseudo-)random point in [0, 1) when it joins the system. For the bootstrap
problem, we assume that node v knows an arbitrary existing node u in the
system which can be contacted initially. Then the following operations have to
be performed for x ∈ {v, v/2, (1 + v)/2}:
1. forward(x): Route v’s join request along forward edges to a node w with

key(w) ≤ key(u) whose home interval contains x.
2. refine(x): Route v’s join request along forward or backward edges to a node

w′ with maximum key ≤ key(v) that contains x in its home interval.
3. integrate(x): Copy the forward edges that w′ has in its home interval and

buddy to v (and check Condition 21 for the involved nodes).

Here, we use a slight extension of the refine operation proposed for routing.
If key(v) > key(w), there is no change compared to the old refine operation.
However, if key(v) < key(w), then we have to send v’s join request upwards
along the levels till it reaches a node w′ with maximum key ≤ key(v) that
contains v in its home interval. This is necessary because w may not have a
forward edge to w′.

Observe that a membership change can trigger other nodes to upgrade or
downgrade. To capture these effects formally, we define the update cost as follows.

Definition 3 (Update Cost). The total number of links which need to be
changed after a given operation (e.g., a single membership change) is referred to
as the update cost induced by the operation.

Theorem 24. A join operation terminates in time O(log n) w.h.p. The update
cost of a join operation is bounded by O(c log2 n) w.h.p.
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Leave. If a node v leaves in SHELL, it suffices for its neighbors to drop v from
their neighbor list, which can be done in constant time. Some of the nodes may
then have to upgrade to a higher level, which also takes constant time w.h.p. as
it suffices for a node to learn about its 3-hop neighborhood w.h.p. (due to the
use of buddy intervals). Thus, we have the following result.

Theorem 25. The leave operation takes a constant number of communication
rounds w.h.p. Moreover, the update cost induced at other nodes (cf Definition 3)
is bounded by O(c log2 n) w.h.p.

2.4 Rekey

There are applications where node keys are not static and change over time.
For instance, in the heterogeneous peer-to-peer system described in Section 3,
the available bandwidth at a node can decrease or increase dynamically. Our
distributed heap takes this into account and allows for frequent rekey operations.
Observe that we can regard a rekey operation as a leave operation which is
immediately followed by a join operation at the same location in the ID space
but maybe on a different partition level. While a node can downgrade in constant
time, decrease key operations require collecting additional contact information,
which takes logarithmic time. From our analysis of join and leave operations,
the following corollary results.

Corollary 26. In SHELL, a node can perform a rekey operation in time
O(log n), where n is the total number of nodes currently in the system. The
update cost induced at other nodes (cf Definition 3) is at most O(c log2 n).

2.5 Estimation of the Order

So far, we have assumed that nodes know their order in order to determine their
level. Of course, an exact computation takes time and may even be impossible
in dynamic environments. In the following, we will show that sufficiently good
approximations of the correct partition level i can be obtained by sampling.

In order to find the best home interval, adjacent intervals, and de Bruijn
interval sizes, a node v counts the number B(j) of nodes in a given j-level
interval it observes. Ideally, the smallest j with the property that the home
interval contains at least c log nv nodes of lower keys defines the forward edges.
We now prove that if decisions are made with respect to these B(j), errors are
small in the sense that the estimated level is not far from the ideal level i.

Concretely, at join time, nodes do binary search to determine the level i
according to the following rule: if j > B(j)/c− log B(j) then level j is increased,
and otherwise, if j < B(j)/c − log B(j), j is decreased, until (in the ideal case)
a level i with i = B(i)/c − log B(i) is found (or the level i closest to that).

The following lemma shows that this process converges and that the search
algorithm efficiently determines a level which is at most one level off the ideal
level with high probability.

Theorem 27. Let î be the level chosen by the sampling method and let i be the
ideal level. It holds that |̂i − i| ≤ 1 w.h.p.
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3 Applications

A distributed and oblivious heap structure turns out to be very useful in various
application domains. In the following, we sketch two applications. For more
information, we refer the reader to the technical report [15]. We first describe
a fault-tolerant information system called i-SHELL which is resilient to Sybil
attacks of arbitrary scale. Second, we show how our heap can be used to build
a heterogeneous peer-to-peer network called h-SHELL.

3.1 i-SHELL

In order to obtain a robust distributed information system, we order the nodes
with respect to their join times (i-order). Concretely, key(v) is equal to the
time step when v joined the system. For the bootstrap problem, we assume
the existence of a network entry point assigning time-stamps to the nodes in a
verifiable way. Recall that for this choice of the keys the forward connections of
a node only depend on older nodes. Moreover, whenever two nodes u and v want
to exchange messages, our routing protocol makes sure that these messages are
only forwarded along nodes w that are at least as old as u or v. This has the
following nice properties:

Churn. Suppose that there are some nodes frequently joining and leaving the
system. Then the more reliable nodes can decide to reject re-establishing forward
edges to such a node each time the node is back up, forcing it to obtain a new
join time stamp from the entry point so that it can connect back to the system.
In this way, the unreliable nodes are forced to the bottom of the SHELL system
so that communication between reliable nodes (higher up in SHELL) will not be
affected by them.

Sybil Attacks.Suppose that at some time t0 the adversary enters the system
with a huge number of Sybil nodes. Then any two nodes u and v that joined
the SHELL system before t0 can still communicate without being affected by
the Sybils. The Sybils may try to create a huge number of backward edges to
the honest nodes, but an honest node can easily counter that by only keep-
ing backward edges to the T oldest nodes, for some sufficiently large thresh-
old T . Moreover, Sybils could try to overwhelm the honest nodes with traffic.
But also here the honest nodes can easily counter that by preferentially filter-
ing out packets from the youngest nodes in case of congestion, so that packets
from nodes that joined the system before t0 can still be served in a timely
manner.

Putting it together. We can combine SHELL with consistent hashing in order
to convert it into a DHT that is robust to the Sybil attacks described above.
One can show the following result:

Theorem 31. For the nodes injected before t0, insert, delete and find operations
have a runtime of O(log n), where n is the number of nodes currently in the
system, and their congestion is bounded by O(log2 n), irrespective of a Sybil
attack taking place after t0.
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3.2 h-SHELL

As a second example, we sketch how to use our heap structure to build a peer-
to-peer overlay called h-SHELL. h-SHELL takes into account that nodes can
have heterogeneous bandwidths. The system can be used, e.g., for streaming.
In h-SHELL, key(v) is defined as the inverse of the bandwidth of v, i.e., the
higher its bandwidth, the lower its key and therefore the higher its place in h-
SHELL. Nodes may propose a certain bandwidth, or (in order to avoid churn) its
neighbors in h-SHELL are measuring its bandwidth over a certain time period
and propose an average bandwidth value for a node v that may be used for
its key. When the bandwidth at a node changes, a fast rekey operation will
reestablish the heap condition.

From the description of the SHELL topology it follows that whenever two
nodes u and v communicate with each other, only nodes w with a bandwidth
that is at least the bandwidth of u or v are used for that. Thus, in the absence of
other traffic, the rate at which u and v can exchange information is essentially
limited by the one with the smaller bandwidth. But even for arbitrary traffic
patterns h-SHELL has a good performance. Using Valiant’s random intermedi-
ate destination trick, the following property can be shown using the analytical
techniques in PAGODA [3].

Theorem 32. For any communication pattern, the congestion in h-SHELL in
order to serve it is at most by a factor of O(log2 n) higher w.h.p. compared to a
best possible network of bounded degree for that communication pattern.

4 Conclusion

The runtime bounds obtained for SHELL are optimal in the sense that scal-
able distributed heaps cannot be maintained at asymptotic lower cost. In future
research, it would be interesting to study the average case performance and
robustness of SHELL “in the wild”.
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Abstract. In this paper, we show that the proportional response dy-
namics, a utility based distributed dynamics, converges to the market
equilibrium in the Fisher market with constant elasticity of substitution
(CES) utility functions. By the proportional response dynamics, each
buyer allocates his budget proportional to the utility he receives from
each good in the previous time period. Unlike the tâtonnement process
and its variants, the proportional response dynamics is a large step dis-
crete dynamics, and the buyers do not solve any optimization problem
at each step. In addition, the goods are always cleared and assigned to
the buyers proportional to their bids at each step. Despite its simplicity,
the dynamics converges fast for strictly concave CES utility functions,
matching the best upperbound of computing the market equilibrium via
solving a global convex optimization problem.

1 Introduction

The market equilibrium characterizes the efficient outcome in a competitive mar-
ket and is a central notion in Economics. While much recent studies have been
devoted to computing the market equilibrium, it is desirable, from both economic
and computational perspective, to know how such equilibrium emerges when the
agents dynamically respond to the market condition in a distributed fashion. In
this paper, we show that for certain widely studied markets, namely, the Fisher
market with constant elasticity of substitution (CES) utility functions, there is
a utility based proportional response dynamics that converges to the market
equilibrium, and it may converges fast, matching the bound by solving a global
convex program via the ellipsoid or interior point method.

We consider the Fisher market in which there are distinct sellers and buyers.
Further, each seller has one unit of divisible good for sale (so we do not distin-
guish seller and good), and each buyer i has a budget bi and a utility function
with the form ui(x1, · · · , xn) =

∑
j(wijxj)ρi for some 0 < ρi ≤ 1. Such utility

functions are the standard constant elasticity of substitution (CES) utility func-
tions. 1 It includes the well studied linear Fisher market. We consider the market
1 The standard form is actually ui(xi1, · · · , xin) = (

∑
j(wijxij)ρi)1/ρi , to make it

1-homogeneous.

S. Albers et al. (Eds.): ICALP 2009, Part II, LNCS 5556, pp. 583–594, 2009.
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rule that after the buyers place bids to the goods, each good is allocated to a
buyer at a proportion of the buyer’s bid to the total bids placed to that good.
By the proportional response dynamics, the buyer submits bids in discrete time
steps and adjusts his bids according to the utility he receives from each good
in the previous time step. Formally, if we denote by bij(t) the bid of buyer i to
good j at time t, then bij(t + 1) = uij(t)

ui(t)
bi where uij(t) = (wij

bij(t)∑
i bij(t)

)ρi and
ui(t) =

∑
j uij(t).

From the above description, we can see that the proportional response dy-
namics is characteristically different from the standard tâtonnement market dy-
namics and its variants. In the tâtonnement process, the price of each good is
gradually adjusted according to the excess of demand in the previous time step.
The proportional response dynamics does not explicitly involve a price mech-
anism as it is based on the user’s utility. Consequently, it requires much less
information and no need to solve an optimization problem at each step. It is
naturally distributed and guarantees the market clearance at each step. In ad-
dition, it is a large step discrete dynamics in the sense that the buyer does not
gradually change his bid, and therefore there is no need to choose a sufficiently
small step size as typically done in tâtonnement process. Yet, for CES utility
functions, we show that the proportional response dynamics converges to the
market equilibrium, and in the case when each ρi < 1, the proportional response
dynamics converges much faster than the discretized tâtonnement process.

In the tâtonnement process, at each time step, the buyer computes the op-
timum bundle. Such strategy bears similarity to the best response dynamics in
multi-player games. In contrast, in the proportional response dynamics, each
buyer adapts his bid according to the utility received in the previous time step.
This is similar to the family of dynamics based on the payoff reinforcement learn-
ing. Examples include the replicator dynamics in evolutionary games [13] and
the multiplicative update algorithm in zero-sum games [12]. In these dynamics,
the probability of playing each strategy is adjusted by a multiplicative factor
determined by the payoff corresponding to that strategy. As we shall see later in
the convergence proof, the proportional response can be reformulated as a mul-
tiplicative process. One major contribution of our work is to show there exists
utility based dynamics that converges to the market equilibrium.

The proportional response dynamics has been studied in [20] for a market
that models the bandwidth allocation in the peer to peer file sharing system.
One important property in that model is that each good, the upload bandwidth,
brings the same utility to the interested users. This is no longer the case in
a Fisher market. Consequently, we can no longer apply the techniques used
in [20]. In particular, the proportional response is no longer equivalent to a matrix
scaling process, an important tool used in that paper. Instead, in this paper,
we show that the Kullback-Leibler divergence between the allocation defined
by the dynamics and the limiting market equilibrium approaches 0. Our proof
is facilitated by the equivalence between the Eisenberg-Gale program and the
market equilibrium [11]. This also renders the proof simpler and the technique
more general than that in [20].
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Admittedly, compared to the tâtonnement process, the proportional response
dynamics applies to more specific markets. It remains an interesting direction
to discover similar dynamics that converge to the market equilibrium in more
general economies.

Related work. The Fisher market is a special case of the general exchange mar-
ket. According to [5], it was first defined by Irving Fisher in 1891. The linear
Fisher market is equivalent to the pari-mutuel method studied in [11]. In [11],
Eisenberg and Gale established that the market equilibrium, which they called
equilibrium probabilities, is the solution to a convex program, now commonly
referred to as the Eisenberg-Gale program, and laid the foundation for many
subsequent works. In Computer Science community, [9] first presented a polyno-
mial time algorithm to approximate the market equilibrium in the linear market
with bounded number of goods. [10] proposed a polynomial time combinatorial
algorithm for computing the market equilibrium for the linear Fisher market.
In [14,21], polynomial time algorithms are presented for computing the market
equilibrium by solving the Eisenberg-Gale program.

There has also been a long history in studying the dynamics for converg-
ing to the market equilibrium. One particularly well studied dynamics is the
tâtonnement process in which the price changes gradually according to the ex-
cess of demand. It was first considered by Walras in 1874. In a series of pa-
pers [2,1,3,17,19], several economists formulated the process and studied the
convergence of the continuous tâtonnement dynamics, and it was shown that
tâtonnement converges locally for economies satisfying weak gross substitutabil-
ity (WGS). In [18], Norvig showed that a greedy bidding strategy, which can be
regarded as a variant of tâtonnement process, converges to the market equilib-
rium in the set up considered by Eisenberg and Gale in [11]. More recently, in
[7,6], it is shown that the discretized tâtonnement process converges for WGS
utility functions, and [8] showed that an asynchronous variant also converges.
In [4], a dynamics is presented for a perturbed keyword auction mechanism
and shown to converge to the market equilibrium. That dynamics can also be
regarded as a variant of tâtonnement process.

2 Preliminaries

Fisher market. A Fisher market is a bipartite market which distinguishes the
role of buyer and seller. Each buyer i has a budget bi, and each seller has a unit
of divisible good for sale (and therefore we do not distinguish the sellers and the
goods). Suppose there are m buyers and n goods. Each buyer’s utility is defined
as a function of the amount of each good he receives. In this paper, we consider
the family of markets where a buyer’s utility function has the form:

ui(xi1, · · · , xin) =
n∑

j=1

(wijxij)ρi ,

where 0 < ρi ≤ 1, wij ≥ 0, and xij represents the amount of good j allocated to
the user i. Such utility functions are standard in Economics and satisfy constant
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elasticity of substitution (CES) property. One special case is the linear Fisher
market where ρi = 1 for all 1 ≤ i ≤ m. Without loss of generality, we assume
that for each i, there exists j such that wij > 0, and for each j, there exists i,
such that wij > 0. We denote ρM = maxi ρi ≤ 1.

Market equilibrium. In a Fisher market, given a price vector p = (p1, · · · , pn)
where pj is the price of the good j, each buyer i can maximize his utility within
his budget constraint. The optimum bidding is the solution to the following
optimization problem.

maxui(xi1, · · · , xin) , s.t. (1)
∀i, j xij = bij/pj ,

∀i
∑

j

bij ≤ bi ,

∀i, j bij ≥ 0 .

If it happens that there exists a solution b = {bij} to the optimization problem
for each buyer i and such that ∀j

∑
i bij = pj , we call the price vector together

with the corresponding bidding and allocation x = {xij = bij/pj} a market
equilibrium.

It is known that

Lemma 1. The Fisher market with CES utility functions always has an equi-
librium. At the equilibrium, each good’s price and each buyer’s utility is unique.

Approximate market equilibrium. The notion of approximate market equilibria
measures the closeness of an allocation to an equilibrium. Suppose that p∗ is the
market equilibrium price. Following [9,15], the bidding vector b = {bij}, with
price vector p = {pj =

∑
i bij}j is an ε-approximate market equilibrium if

1. (1 − ε)p∗j ≤ pj ≤ (1 + ε)p∗j .
2. For each i, ui ≥ (1 − ε)ũi where ũi is the maximum utility of buyer i given

the price vector p.

We also define a stronger notion of the approximate market equilibrium. A bid-
ding vector b = {bij} is called a strong ε-approximate market equilibrium if there
exists a market equilibrium b∗ such that for all i, j, (1− ε)b∗ij ≤ bij ≤ (1 + ε)b∗ij.
It is easily seen that in the Fisher market with concave utility functions, a strong
ε-approximate market equilibrium is an O(ε)-approximate market equilibrium.
The reverse might not be true.

Proportional response dynamics. As standard in the study of market dynamics,
we consider the setup where the buyers face the same market, i.e. the same set
of goods, budget constraint, and utility function, at each time step while a buyer
decides his bids according to the outcome in the previous time steps.

Denote by bij(t) the bid of buyer i on the good j at time t. The proportional
response dynamics considered in this paper is defined as bij(t + 1) = bi

uij(t)
ui(t)

,
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where pj(t) =
∑

i bij(t), uij(t) = (wijbij(t)/pj(t))ρi , and ui(t) =
∑

j uij(t).
Intuitively, at each step, each buyer allocates the bid proportional to the utility
he receives from each good in the previous time period. In addition, we require
that bij(0) > 0 whenever wij > 0. We have that,

Lemma 2. A market equilibrium is a fixed point of the proportional response
dynamics.

Proof. Consider a market equilibrium with the price vector p and the bidding
vector b. By the definition, the market equilibrium is the solution of the opti-
mization problem (1).

Using Lagrangian multiplier, we have that for each i, there exists λi such that
if bij > 0, then ρi

(
wij

pj

)ρi

bρi−1
ij = λi. Thus, uij =

(
wijbij

pj

)ρi

= bijλi/ρi. That
is, for any j, k with bij , bik > 0, uij/uik = bij/bik. Hence, b is a fixed point of
the proportional response dynamics. �

Main results. The main result of the paper is

Theorem 1. The proportional response dynamics converges to a market equi-
librium in the Fisher market with CES utility functions.

We establish the convergence rate of the dynamics in two cases, when ρM < 1
and when ρM = 1. Without loss of generality, let

∑
i bi = 1 and

∑
j wij = 1

for every i. Let W1 = 1
minwij>0 wij

, W2 = 1
mini bi

, W = nW1W2, and L = log W .
Throughout this paper, log is assumed to be the natural logarithm. We assume
that initially bij(0) = Ω

(
bi

nO(1)

)
. This includes the case where each buyer splits

his bid evenly among all the goods. About the convergence rate, we have that

Theorem 2. When ρM < 1, it takes O
(

L+log(1/ε)
(1−ρM )2

)
steps to reach a strong

ε-approximate market equilibrium. When ρM = 1, it takes O(W 3/ε2) steps to
reach an ε-approximate market equilibrium.

We note that in the above bounds, the number of buyers m appears implicitly
as W2 ≥ m. In the proportional response dynamics, each step takes O(mn)
arithmetic computation. When ρM < 1, the overall running time is bounded
by O(mn(L + log(1/ε))/(1− ρM )2). This bound is comparable to O((mnL)O(1)

log(1/ε)) computation time obtained by solving a convex program via the el-
lipsoid or interior point methods, and it is much faster than the discretized
tâtonnement process which typically takes either O((mnL/ε)O(1)) [6] or O(WO(1)

log(1/ε)) [8] steps.

3 The Convergence Proof

In [11], Eisenberg and Gale characterize the market equilibrium in the linear
Fisher market as the solution of a convex optimization problem. Their result
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easily extends to CES utility functions. Consider the Eisenberg-Gale program
defined as

max
∑

i

bi

ρi
log ui , s.t. (2)

∀i ui =
∑

j

(wijxij)ρi ,

∀j
∑

i

xij = 1 ,

∀i, j xij ≥ 0 .

The following statement is a straight forward extension of [11].

Lemma 3. For the Fisher market with CES utility functions, an allocation x =
{xij} is an equilibrium if and only if it is a solution to (2). Further, the value
of each ui is unique at a solution of (2).

Now we proceed to prove the convergence of the proportional response dynamics.

Proof (Theorem 1).
The convergence proof consists of two steps. Consider the sequence of bids

b(t) = {bij(t)} for t = 0, 1, · · · . We first show that any limiting point of this
sequence is a market equilibrium. This is done by showing that each user’s
utility and each good’s price all converge to that at the market equilibrium.
This is sufficient to guarantee the convergence when there is a unique market
equilibrium, such as in the case where ρM < 1. When ρM = 1, an additional
argument is needed to show that there can be at most one limiting point starting
from any given initial condition.

1. Any limiting point of the dynamics is a market equilibrium

Take any market equilibrium b∗ = {b∗ij}. Let u∗i represent the utility of user i

and p∗j the price of good j at the equilibrium. Let zij(t) =
(

b∗ij

bij(t)

)b∗ij

. When
b∗ij = 0, we define zij(t) = 1. For b∗ij > 0, we have that

zij(t + 1) =
(

b∗ij
bij(t + 1)

)b∗ij

=
(

b∗ijui(t)
uij(t)bi

)b∗ij

by that bij(t + 1) = uij(t)
ui(t)

bi

=
(

u∗ij
u∗i

· ui(t)
uij(t)

)b∗ij

by Lemma 2 b∗ij/bi = u∗ij/u∗i .

Since uij(t) = (wijbij(t)/pj(t))ρi and u∗ij = (wijb
∗
ij/p∗j )

ρi , we further have
that
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zij(t + 1) =
(

b∗ij/p∗j
bij(t)/pj(t)

)ρib
∗
ij
(

ui(t)
u∗i

)b∗ij

=
(

b∗ij
bij(t)

)ρib
∗
ij

(
pj(t)
p∗j

)ρib
∗
ij (

ui(t)
u∗i

)b∗ij

= zij(t)ρi

(
pj(t)
p∗j

)ρib
∗
ij (

ui(t)
u∗i

)b∗ij

. (3)

By the above equation, we effectively reformulate the proportional response
dynamics to a multiplicative process which, as we shall prove soon, allows us
define a potential function and prove its convergence. Let φi(t) =

∏
j zij(t), and

φ(t) =
∏

i φi(t)1/ρi , we have that

φ(t + 1) =
∏

i

∏
j

zij(t + 1)1/ρi =
∏

i

∏
j:b∗ij>0

zij(t + 1)1/ρi

=
∏

i

∏
j:b∗ij>0

zij(t)

(
pj(t)
p∗j

)b∗ij (
ui(t)
u∗i

)b∗ij/ρi

by (3)

=
∏

i

φi(t)
∏
j

(
pj(t)
p∗j

)∑
i:b∗

ij
>0 b∗ij ∏

i

(
ui(t)
u∗i

)∑
j:b∗

ij
>0 b∗ij/ρi

=
∏

i

φi(t)
∏
j

(
pj(t)
p∗j

)p∗
j ∏

i

(
ui(t)
u∗i

)bi/ρi

.

Write ψ(t) =
∏

j

(
pj(t)
p∗

j

)p∗
j ∏

i

(
ui(t)
u∗

i

)bi/ρi

, then φ(t+1) =
∏

i φi(t)ψ(t). We have
that

Lemma 4. 1. φi(t) ≥ 1, and φi(t) ≤ φ(t).
2. ψ(t) ≤ 1, and ψ(t) = 1 if and only if ui(t) = u∗i for any i and pj(t) = p∗j for

any j.
3. φ(t + 1) ≤ φ(t)ρM ψ(t) ≤ φ(t)ψ(t).

Proof. 1. We observe that

log φi(t) =
∑

j

b∗ij log
b∗ij

bij(t)

is the Kullback-Leibler(KL) divergence between b∗i = {b∗ij} and bi = {bij(t)}.
Since

∑
j b∗ij =

∑
j bij(t) = bi, log φi(t) ≥ 0 and hence φi(t) ≥ 1. By that ρi ≤ 1

and φi(t) ≥ 1, we immediately have that φi(t) ≤ φ(t).

2. By that
∑

j p∗j =
∑

j pj(t) =
∑

i bi, we have that
∑

j p∗j log(p∗j/pj(t)) ≥ 0,

and hence
∏

j

(
pj(t)
p∗

j

)p∗
j ≤ 1. By Lemma 3,

∑
i

bi

ρi
log ui(t) ≤

∑
i

bi

ρi
log u∗i . Hence
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∏
i

(
ui(t)
u∗

i

)bi/ρi

≤ 1. Therefore ψ(t) ≤ 1. The second half of the statement follows
from the equality condition in the above two inequalities and Lemma 3.

3. By that φi(t) ≥ 1 and ρM ≥ ρi, we have that

φ(t + 1) =
∏

i

φi(t)ψ(t) ≤
∏

i

φi(t)ρM /ρiψ(t) = φ(t)ρM ψ(t) .

Since ρM ≤ 1 and φ(t) ≥ 1, φ(t + 1) ≤ φ(t)ψ(t). �

By the above lemma, we now show that ψ(t) → 1 when t → ∞. By repeatedly
applying Lemma 4.3, we have that φ(t + 1) ≤ φ(0)

∏t
τ=0 ψ(τ). That is

t∏
τ=0

ψ(τ) ≥ φ(t + 1)/φ(0) ≥ 1/φ(0) . (4)

Since bij(0) > 0 if wij > 0, φ(0) is upper bounded. Together with the fact that
ψ(t) ≤ 1, (4) implies that ψ(t) → 1 when t → ∞. By Lemma 4.2, this in turn
implies that ui(t) → u∗i for any i and pj(t) → p∗j for any j. By Lemma 3, any
limiting point of the dynamics is a market equilibrium.

2. The dynamics always converges to a single market equilibrium

When ρM < 1, the market equilibrium is unique. The proportional dynamics
converges to that unique market equilibrium from any initial condition. However,
when some ρi = 1, there may exist multiple market equilibria. We shall show
that it is impossible that the sequence bij(t) has two distinctive limiting points.
Suppose that b′ = {b′ij} is a limiting point of the sequence b(t0), b(t1), · · · . By
1, we know that b′ is a market equilibrium. Since we can choose any market
equilibrium in the definition of zij , we now choose b∗ = b′. Since b(tk) → b′,
we have that zij(tk) → 1 and therefore φ(tk) → 1 when k → ∞. By that φ(t) is
monotonically decreasing, and that φ(t) ≥ 1, we have for any infinite sequence
s0, s1, · · · , φ(sk) → 1 when k → ∞. Therefore, b(sk) → b′. That is, the dynamics
always converges to a single market equilibrium. �

4 The Rate of Convergence

In this section, we present the convergence rate of the proportional response
dynamics. We consider two cases, when ρM < 1 and when ρM = 1. In the
former case, we are able to show a fast convergence of the dynamics; and in the
latter case, we show that the dynamics converges in pseudo-polynomial time.

We make the assumption that
∑

i bi = 1 and for each i,
∑

j wij = 1. Recall
that W1 = 1

minwij >0 wij
and W2 = 1

mini bi
, W = nW1W2, and L = log W . We

have that

Lemma 5. At the equilibrium, p∗j ≥ 1
W for any j. When ρM < 1, b∗ij =

Ω
((

1
W 2

)1/(1−ρM )
)

whenever wij > 0.
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Proof. For any j, consider a buyer i with wij > 0. If for every other k, wik = 0,
then p∗j ≥ bi ≥ 1/W2. Otherwise, suppose that wij , wik > 0. As in the proof of
Lemma 2, (

wij

p∗j

)ρi

b∗ij
ρi−1 =

(
wik

p∗k

)ρi

b∗ik
ρi−1 . (5)

By that b∗ij ≤ p∗j , b∗ik ≤ p∗k, and ρi ≤ 1, we have(
wij

p∗j

)ρi

p∗j
ρi−1 ≤

(
wik

b∗ik

)ρi

b∗ik
ρi−1 .

Rearranging the terms, we have that p∗j ≥
(

wij

wik

)ρi

b∗ik ≥ 1
W1

b∗ik. Since there

exists k such that b∗ik ≥ bi/n, p∗j ≥ bi

nW1
≥ 1

W .
When ρM < 1, by applying (5) again, we have that

b∗ij = b∗ik

(
wijp

∗
k

wikp∗j

)ρi/(1−ρi)

≥ b∗ik

(
1

W1
· 1
nW1W2

)ρi/(1−ρi)

≥ b∗ik

(
1

nW 2
1 W2

)ρM /(1−ρM )

= Ω

((
1

W 2

)1/(1−ρM )
)

.

�

We will need the following technical lemma that bounds the difference between
two vectors from their KL divergence.

Lemma 6. For two positive sequences xj and yj for j = 1, · · · , n that satisfy∑
j xj =

∑
j yj, let η = maxj

|xj−yj |
xj

. Then

∑
j

xj log(xj/yj) ≥
1
16

min(1, η)η min
j

xj .

Proof. We use the well known inequality of
∑

j xj log(xj/yj) ≥ 1
2

∑
j(
√

xj −
√

yj)2. Suppose that k = arg maxj
|xj−yj |

xj
. Then

∑
j

xj log(xj/yj) ≥
1
2
(
√

xk −√
yk)2 =

1
2

(
xk − yk√
xk +

√
yk

)2

=
1
2
η2 x2

k

(
√

xk +
√

yk)2
.

When yk ≤ 2xk, x2
k/(

√
xk +

√
yk)2 ≥ x2

k/(
√

xk +
√

2xk)2 ≥ 1
8xk.

When yk > 2xk, i.e. when y = (η + 1)xk and η > 1,

x2
k

(
√

xk +
√

yk)2
=

x2
k

(
√

xk +
√

(1 + η)xk)2
=

1
(1 +

√
1 + η)2

xk ≥ 1
8η

xk .
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The last inequality follows from that η > 1. Hence, we have that∑
j

xj log(xj/yj) ≥
1
16

min(1, η)ηxk ≥ 1
16

min(1, η)η min
j

xj .

�

According to Lemma 6, in order to show maxj
|xj−yj |

xj
≤ ε < 1, it suffices to show

that
∑

j xj log(xj/yj) = O(ε2)minj xj . Now, we are ready to prove Theorem 2.

Proof (Theorem 2). (1) When ρM < 1, we show that the dynamics reaches a
strong ε-approximate market equilibrium. By Lemma 4.2 and 3, φ(t + 1) ≤
φ(t)ρM ψ(t) ≤ φ(t)ρM . Applying the inequality iteratively, we have that φ(t) ≤
φ(0)ρt

M and hence, φi(t) ≤ φ(t) ≤ φ(0)ρt
M , or log φi(t) ≤ ρt

M log φ(0).
As observed earlier, log φi(t) =

∑
j b∗ij log b∗ij

bij(t) is the KL divergence between
b∗ij and bij(t). By Lemma 6, bij(t) is a strong ε-approximate equilibrium as
long as log φi(t) ≤ 1

16ε2 minj:b∗ij>0 b∗ij for ε < 1. Of course, how fast the process
converges also depends on the initial choice of bij(0). By the assumption that
bij(0) = bi

nO(1) , φi(0) =
∏

j(b
∗
ij/bij(0))b∗ij = O(

∏
j(

bi

bi/nO(1) )b∗ij ) = O(nO(bi)).

Hence φ(0) = O(nO(1)) by that
∑

i bi = 1.
By choosing t = cL+log(1/ε)

(1−ρM )2 for sufficiently large c, we have that log φ(t) ≤
ρt

M log φ(0) = O(( 1
W 2 )1/(1−ρM )ε2). By Lemma 5 and 6, we have that |b

∗
ij−bij(t)|

b∗ij
≤

ε for any i, j, that is b(t) = {bij(t)} is a strong ε-approximation to b∗.

(2) When ρM = 1, the convergence could be slower. Indeed, it may never con-
verge to a strong ε-approximate equilibrium as at the market equilibrium, some
b∗ij may be 0 even when wij > 0. We will show that it converges to the standard
notion of ε-approximate equilibrium in O(W 3/ε2) steps. We will establish the
bound in the worst case of ρi = 1 for all i.

By Lemma 4.3, we have that φ(t + 1) ≤ ψ(t)φ(t). We claim that if ψ(t) ≥
1 − δ for δ = 1

256WW 2
2
ε2, then b(t) is an ε-approximate equilibrium. Recall that

ψ(t) =
∏

j

(
pj(t)
p∗

j

)p∗
j ∏

i

(
ui(t)
u∗

i

)bi

. In what follows, we omit (t) for the simplicity

of the notations. Since
∏

j

(
pj

p∗
j

)p∗
j ≤ 1 and

∏
i

(
ui

u∗
i

)bi

≤ 1. By that ψ ≥ 1 − δ,
we have that

∏
j

(
pj

p∗j

)p∗
j

≥ 1 − δ , (6)

∏
i

(
ui

u∗i

)bi

≥ 1 − δ . (7)

By (6), Lemma 5 and 6, we have that for every j, (1− ε′)p∗j ≤ pj ≤ (1 + ε′)p∗j
where ε′ = ε/(4W2). Let ũi be the maximum utility of the buyer i under the
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price vector p. It remains to show that for each i, ui ≥ (1 − ε)ũi. Since ũi =
bi maxj wij/pj and u∗i = bi maxj wij/p∗j , we have that u∗i ≥ (1−ε′)ũi ≥ (1−ε′)ui.
Then for any i,

∏
j

(
uj

u∗j

)bj

≤
(

ui

u∗i

)bi ∏
j =i

(
1

1 − ε′

)bj

≤ 1
1 − ε′

(
ui

u∗i

)bi

.

By (7), we have that ui

u∗
i

≥ ((1 − δ)(1 − ε′))1/bi ≥ 1 − W2(δ + ε′). Hence
ui ≥ (1 − W2(δ + ε′))u∗i ≥ (1 − W2(δ + ε′))(1 − ε′)ũi. By the choice of δ, we
have that δ, ε′ ≤ ε/(4W2) and consequently ui ≥ (1 − ε)ũi. Hence, b is an
ε-approximate market equilibrium.

By (4), if for any τ ∈ [0, t], ψ(τ) < 1 − δ, then (1 − δ)t ≥ 1/φ(0) ≥ 1/nO(1).
Hence if t ≥ c log n/δ for some constant c > 0, there exists τ ≤ t such that
ψ(τ) ≥ 1 − δ. We thus have that the dynamics converges to an ε-approximate
market equilibrium in O(WW 2

2 log n/ε2) = O(W 3/ε2) steps. �

5 Future Directions

One crucial property used in the convergence proof is the equivalence between
the market equilibrium and the solution to the Eisenberg-Gale program. It would
be interesting to know if the technique can extend to other Eisenberg-Gale mar-
kets as defined in [16]. We note that the proportional response dynamics most
naturally applies to separable utility functions, i.e. the utility of each buyer is
the sum of the utility obtained from different goods. It would be interesting
to know if similar dynamics can be defined for more general families of such
utility functions. It is also interesting to derive tight convergence bound when
ρM = 1 and to know if the dynamics converges under certain asynchronous
model.
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