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Abstract. We present a randomized subexponential time, polynomial
space parameterized algorithm for the k-Weighted Feedback Arc Set

in Tournaments (k-FAST) problem. We also show that our algorithm
can be derandomized by slightly increasing the running time. To deran-
domize our algorithm we construct a new kind of universal hash func-
tions, that we coin universal coloring families. For integers m, k and r,
a family F of functions from [m] to [r] is called a universal (m, k, r)-
coloring family if for any graph G on the set of vertices [m] with at most
k edges, there exists an f ∈ F which is a proper vertex coloring of G.
Our algorithm is the first non-trivial subexponential time parameterized
algorithm outside the framework of bidimensionality.

1 Introduction

In a competition where everyone plays against everyone it is uncommon that
the results are acyclic and hence one cannot rank the players by simply using
a topological ordering. A natural ranking is one that minimizes the number of
upsets, where an upset is a pair of players such that the lower ranked player
beats the higher ranked one. The problem of finding such a ranking given the
match outcomes is the Feedback Arc Set problem restricted to tournaments.

A tournament is a directed graph where every pair of vertices is connected
by exactly one arc, and a feedback arc set is a set of arcs whose removal makes
the graph acyclic. Feedback arc sets in tournaments are well studied, both from
the combinatorial [16,17,20,21,22,28,31,32,35], statistical [29] and algorithmic
[1,2,9,25,33,34] points of view. The problem has several applications - in psy-
chology it occurs in relation to ranking by paired comparisons: here you wish
to rank some items by an objective, but you don’t have access to the objective
function, only to pairwise comparisons of the objects in question. An example
for this setting is measuring people’s preferences for food. The weighted gener-
alization of the problem, Weighted Feedback Arc Set in Tournaments
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is applied in rank aggregation: Here we are given several rankings of a set of ob-
jects, and we wish to produce a single ranking that on average is as consistent as
possible with the given ones, according to some chosen measure of consistency.
This problem has been studied in the context of voting [5,8], machine learning
[7], and search engine ranking [14,15]. A natural consistency measure for rank
aggregation is the number of pairs that occur in different order in the two rank-
ings. This leads to Kemeney-Young rank aggregation [23,24], a special case of
Weighted Feedback Arc Set in Tournaments.

Unfortunately, the problem of finding a feedback arc set of minimum size
in an unweighted tournament is NP-hard [2]. However, even the weighted ver-
sion of the problem admits a polynomial time approximation scheme [25] and
has been shown to be fixed parameter tractable [27]. One should note that the
weighted generalization shown to admit a PTAS in [25] differs slightly from the
one considered in this paper. We consider the following problem:

k-Weighted Feedback Arc Set in Tournaments (k-FAST)
Instance: A tournament T = (V, A), a weight function w : A → {x ∈
R : x ≥ 1} and an integer k.
Question: Is there an arc set S ⊆ A such that

∑
e∈S w(e) ≤ k and T \S

is acyclic?

The fastest previously known parameterized algorithm for k-FAST by Ra-
man and Saurabh [27] runs in time O(2.415k ·k4.752 +nO(1)), and it was an open
problem of Guo et al. [19] whether k-FAST can be solved in time 2k · nO(1).
We give a randomized and a deterministic algorithm both running in time
2O(

√
k log2 k) + nO(1). Our algorithms run in subexponential time, a trait uncom-

mon to parameterized algorithms. In fact, to the authors best knowledge the only
parameterized problems for which non-trivial subexponential time algorithms
are known are bidimensional problems in planar graphs or graphs excluding a
certain fixed graph H as a minor [10,11,13].

Our randomized algorithm is based on a novel version of the color coding
technique initiated in [4] combined with a divide and conquer algorithm and
a k2 kernel for the problem, due to Dom et al. [12]. In order to derandomize
our algorithm we construct a new kind of universal hash functions, that we coin
universal coloring families. For integers m, k and r, a family F of functions from
[m] to [r] is called a universal (m, k, r)-coloring family if for any graph G on
the set of vertices [m] with at most k edges, there exists an f ∈ F which is a
proper vertex coloring of G. In the last section of the paper we give an explicit
construction of a (10k2, k, O(

√
k))-coloring family F of size |F| ≤ 2Õ(

√
k) and

an explicit universal (n, k, O(
√

k))-coloring family F of size |F| ≤ 2Õ(
√

k) log n.
We believe that these constructions can turn out to be useful to solve other edge
subset problems in dense graphs.

2 Preliminaries

For an arc weighted tournament we define the weight function w∗ : V × V → R

such that w∗(u, v) = w(uv) if uv ∈ A and 0 otherwise. Given a directed graph
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1. Perform a data reduction to obtain a tournament T ′ of size O(k2).
2. Let t =

√
8k. Color the vertices of T ′ uniformly at random with colors from

{1, . . . , t}.
3. Let Ac be the set of arcs whose endpoints have different colors. Find a min-

imum weight feedback arc set contained in Ac, or conclude that no such
feedback arc set exists.

Fig. 1. Outline of the algorithm for k-FAST

D = (V, A) and a set F of arcs in A define D{F} to be the directed graph
obtained from D by reversing all arcs of F . In our arguments we will need the
following characterization of minimal feedback arc sets in directed graphs.

Proposition 1. Let D = (V, A) be a directed graph and F be a subset of A.
Then F is a minimal feedback arc set of D if and only if F is a minimal set of
arcs such that D{F} is a directed acyclic graph.

Given a minimal feedback arc set F of a tournament T , the ordering σ corre-
sponding to F is the unique topological ordering of T {F}. Conversely, given an
ordering σ of the vertices of T , the feedback arc set F corresponding to σ is the
set of arcs whose endpoint appears before their startpoint in σ. The cost of an
arc set F is

∑
e∈F w(e) and the cost of a vertex ordering σ is the cost of the

feedback arc set corresponding to σ.
For a pair of integer row vectors p̂ = [p1, . . . , pt], q̂ = [q1, . . . , qt] we say that

p̂ ≤ q̂ if pi ≤ qi for all i. The transpose of a row vector p̂ is denoted by p̂†. The
t-sized vector ê is [1, 1, . . . , 1], 0̂ is [0, 0, . . . , 0] and êi is the t-sized vector with all
entries 0 except for the i’th which is 1. Let Õ(

√
k) denote, as usual, any function

which is O(
√

k(log k)O(1)). For any positive integer m put [m] = {1, 2, . . . , m}.

3 Color and Conquer

Our algorithm consists of three steps. In the first step we reduce the instance
to a problem kernel with at most O(k2) vertices, showing how to efficiently
reduce the input tournament into one with O(k2) vertices, so that the original
tournament has a feedback arc set of weight at most k, if and only if the new
one has such a set. In the second step we randomly color the vertices of our
graph with t =

√
8k colors, and define the arc set Ac to be the set of arcs whose

endpoints have different colors. In the last step the algorithm checks whether
there is a weight k feedback arc set S ⊆ Ac. A summary of the algorithm is
given in Figure 1.

3.1 Kernelization

For the first step of the algorithm we use the kernelization algorithm provided
by Dom et al. [12]. They only show that the data reduction is feasible for the
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unweighted case, while in fact, it works for the weighted case as well. For com-
pleteness we provide a short proof of this. A triangle in what follows means a
directed cyclic triangle.

Lemma 1. k-FAST has a kernel with O(k2) vertices.

Proof. We give two simple reduction rules.

1. If an arc e is contained in at least k + 1 triangles reverse the arc and reduce
k by w(e).

2. If a vertex v is not contained in any triangle, delete v from T .

The first rule is safe because any feedback arc set that does not contain the
arc e must contain at least one arc from each of the k + 1 triangles containing
e and thus must have weight at least k + 1. The second rule is safe because the
fact that v is not contained in any triangle implies that all arcs between N−(v)
and N+(v) are oriented from N−(v) to N+(v). Hence for any feedback arc set
S1 of T [N−(v)] and feedback arc set S2 of T [N+(v)], S1 ∪ S2 is a feedback arc
set of T .

Finally we show that any reduced yes instance T has at most k(k+2) vertices.
Let S be a feedback arc set of T with weight at most k. The set S contains at
most k arcs, and for every arc e ∈ S, aside from the two endpoints of e, there
are at most k vertices that are contained in a triangle containing e, because
otherwise the first rule would have applied. Since every triangle in T contains an
arc of S and every vertex of T is in a triangle, T has at most k(k+2) vertices. 	


3.2 Probability of a Good Coloring

We now proceed to analyze the second step of the algorithm. What we aim for,
is to show that if T does have a feedback arc set S of weight at most k, then
the probability that S is a subset of Ac is at least 2−c

√
k for some fixed constant

c. We show this by showing that if we randomly color the vertices of a k edge
graph G with t =

√
8k colors, then the probability that G has been properly

colored is at least 2−c
√

k.

Lemma 2. If a graph on q edges is colored randomly with
√

8q colors then the
probability that G is properly colored is at least (2e)−

√
q/8.

Proof. Arrange the vertices of the graph by repeatedly removing a vertex of
lowest degree. Let d1, d2, . . . , ds be the degrees of the vertices when they have
been removed. Then for each i, di(s− i+1) ≤ 2q, since when vertex i is removed
each vertex had degree at least di. Furthermore, di ≤ s − i for all i, since the
degree of the vertex removed can not exceed the number of remaining vertices
at that point. Thus di ≤

√
2q for all i. In the coloring, consider the colors of

each vertex one by one starting from the last one, that is vertex number s.
When vertex number i is colored, the probability that it will be colored by
a color that differs from all those of its di neighbors following it is at least
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(1 − di√
8q

) ≥ (2e)−di/
√

8q because
√

8q ≥ 2di. Hence the probability that G is
properly colored is at least

s∏

i=1

(1− di√
8q

) ≥
s∏

i=1

(2e)−di/
√

8q = (2e)−
√

q/8. 	


3.3 Solving a Colored Instance

Given a t-colored tournament T , we will say that an arc set F is colorful if no
arc in F is monochromatic. An ordering σ of T is colorful if the feedback arc
set corresponding to σ is colorful. An optimal colorful ordering of T is a colorful
ordering of T with minimum cost among all colorful orderings. We now give an
algorithm that takes a t-colored arc weighted tournament T as input and finds a
colorful feedback arc set of minimum weight, or concludes that no such feedback
arc set exists.

Observation 1. Let T = (V1∪V2∪ . . .∪Vt, A) be a t-colored tournament. There
exists a colorful feedback arc set of T if and only if T [Vi] induces an acyclic
tournament for every i.

We say that a colored tournament T is feasible if T [Vi] induces an acyclic tour-
nament for every i. Let ni = |Vi| for every i and let n̂ be the vector [n1, n2 . . . nt].
Let σ = v1v2 . . . vn be the ordering of V corresponding to a colorful feedback
arc set F of T . For every color class Vi of T , let v1

i v2
i . . . vni

i be the order in
which the vertices of Vi appear according to σ. Observe that since F is colorful,
v1

i v2
i . . . vni

i must be the unique topological ordering of T [Vi]. We exploit this to
give a dynamic programming algorithm for the problem.

Lemma 3. Given a feasible t-colored tournament T , we can find a minimum
weight colorful feedback arc set in O(t · nt+1) time and O(nt) space.

Proof. For an integer x ≥ 1, define Si
x = {vi

1, . . . , v
i
x} and Si

0 = ∅. Given an
integer vector p̂ of length t in which the i’th entry is between 0 and ni, let T (p̂)
be T [S1

p1
∪ S2

p2
. . . ∪ St

pt
]. Observe that for any ordering σ = v1v2 . . . vn of V

corresponding to a colorful feedback arc set F of T and any integer x there is a
p̂ such that {v1, . . . , vx} = S1

p1
∪ S2

p2
. . . ∪ St

pt
.

For a feasible t-colored tournament T , let Fas(T ) be the weight of the mini-
mum weight colorful feedback arc set of T . Notice that if a t-colored tournament
T is feasible then so are all induced subtournaments of T , and hence the function
Fas is well defined on all induced subtournaments of T . We proceed to prove
that the following recurrence holds for Fas(T (p̂)).

Fas(T (p̂)) = min
i : p̂i>0

(Fas(T (p̂ − êi)) +
∑

u∈V (T (p̂))

w∗(vi
p̂i

, u)) (1)

The idea behind Recurrence 1 is to try all possible candidates for the last
vertex v of an optimal ordering of T (p̂). For every i the vertex vi

pi
is the only
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candidate for v with color i. First we prove that the left hand side is at most the
right hand side. Let i be the integer that minimizes the right hand side. Taking
the optimal ordering of T (p̂− êi) and appending it with vi

p̂i
gives an ordering of

T (p̂) with cost at most Fas(T (p̂ − êi)) +
∑

u∈V (T (p̂)) w∗(vi
p̂i

, u).
To prove that the right hand side is at most the left hand side, take an optimal

colorful ordering σ of T (p̂) and let v be the last vertex of this ordering. There is
an i such that v = vi

p̂i
. Thus σ restricted to V (T (p̂ − êi)) is a colorful ordering

of T (p̂− êi) and the total weight of the edges with startpoint in v and endpoint
in V (T (p̂ − êi)) is exactly

∑
u∈V (T (p̂)) w∗(vi

p̂i
, u). Thus the cost of σ is at least

the value of the right hand side of the inequality, completing the proof.
Recurrence 1 naturally leads to a dynamic programming algorithm for the

problem. We build a table containing Fas(T (p̂)) for every p̂. There are O(nt)
table entries, for each entry it takes O(nt) time to compute it giving the O(t·nt+1)
time bound. 	


In fact, the algorithm provided in Lemma 3 can be made to run slightly faster
by pre-computing the value of

∑
u∈V (T (p̂)) w∗(vi

p̂i
, u)) for every p̂ and i using

dynamic programming, and storing it in a table. This would let us reduce the
time to compute a table entry using Recurrence 1 from O(nt) to O(t) yielding
an algorithm that runs in time and space O(t · nt).

Lemma 4. k-FAST (for a tournament of size O(k2)) can be solved in expected
time 2O(

√
k log k) and 2O(

√
k log k) space.

Proof. Our algorithm proceeds as described in Figure 1. The correctness of the
algorithm follows from Lemma 3. Combining Lemmata 1, 2, 3 yields an expected
running time of O((2e)

√
k/8) ·O(

√
8k · (k2 + 2k)1+

√
8k) ≤ 2O(

√
k log k) for finding

a feedback arc set of weight at most k if one exists. The space required by the
algorithm is O((k2 + 2k)1+

√
8k) ≤ 2O(

√
k log k). 	


The dynamic programming algorithm from Lemma 3 can be turned into a divide
and conquer algorithm that runs in polynomial space, at a small cost in the
running time.

Lemma 5. Given a feasible t-colored tournament T , we can find a minimum
weight colorful feedback arc set in time O(n1+(t+2)·log n) in polynomial space.

Proof. By expanding Recurrence (1) �n/2
 times and simplifying the right hand
side we obtain the following recurrence.

Fas(T (p̂)) = min
q̂≥0̂

q̂†·ê=�n/2�

{Fas(T (q̂)) + Fas(T \ V (T (q̂))) +
∑

u∈V (T (q̂))
v /∈V (T (q̂))

w∗(v, u)} (2)

Recurrence 2 immediately yields a divide and conquer algorithm for the prob-
lem. Let T (n) be the running time of the algorithm restricted to a subtournament
of T with n vertices. For a particular vector q̂ it takes at most n2 time to find the
value of

∑
u∈V (T (q̂)),v/∈V (T (q̂)) w∗(v, u). It follows that T (n) ≤ nt+2 ·2 · T (n/2) ≤

2log n · n(t+2)·log n = n1+(t+2)·log n. 	
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Theorem 1. k-FAST (for a tournament of size O(k2)) can be solved in expected
time 2O(

√
k log2 k) and polynomial space. Therefore, k-FAST for a tournament of

size n can be solved in expected time 2O(
√

k log2 k) + nO(1) and polynomial space.

4 Derandomization with Universal Coloring Families

For integers m, k and r, a family F of functions from [m] to [r] is called a
universal (m, k, r)-coloring family if for any graph G on the set of vertices [m]
with at most k edges, there exists an f ∈ F which is a proper vertex coloring
of G. An explicit construction of a (10k2, k, O(

√
k))-coloring family can replace

the randomized coloring step in the algorithm for k-FAST. In this section, we
provide such a construction.

Theorem 2. There exists an explicit universal (10k2, k, O(
√

k))-coloring family
F of size |F| ≤ 2Õ(

√
k).

For simplicity we omit all floor and ceiling signs whenever these are not crucial.
We make no attempt to optimize the absolute constants in the Õ(

√
k) or in the

O(
√

k) notation. Whenever this is needed, we assume that k is sufficiently large.

Proof. Let G be an explicit family of functions g from [10k2] to [
√

k] so that
every coordinate of g is uniformly distributed in [

√
k], and every two coordinates

are pairwise independent. There are known constructions of such a family G
with |G| ≤ kO(1). Indeed, each function g represents the values of 10k2 pairwise
independent random variables distributed uniformly in [

√
k] in a point of a small

sample space supporting such variables; a construction is given, for example, in
[3]. The family G is obtained from the family of all linear polynomials over a
finite field with some kO(1) elements, as described in [3].

We can now describe the required family F . Each f ∈ F is described by a
subset T ⊂ [10k2] of size |T | =

√
k and by a function g ∈ G. For each i ∈ [10k2],

the value of f(i) is determined as follows. Suppose T = {i1, i2, . . . , i√k}, with
i1 < i2 < . . . < i√k. If i = ij ∈ T , define f(i) =

√
k + j. Otherwise, f(i) = g(i).

Note that the range of f is of size
√

k +
√

k = 2
√

k, and the size of F is at most
(

10k2

√
k

)

|G| ≤
(

10k2

√
k

)

kO(1) ≤ 2O(
√

k log k) ≤ 2Õ(
√

k).

To complete the proof we have to show that for every graph G on the set of
vertices [10k2] with at most k edges, there is an f ∈ F which is a proper vertex
coloring of G. Fix such a graph G.

The idea is to choose T and g in the definition of the function f that will
provide the required coloring for G as follows. The function g is chosen at random
in G, and is used to properly color all but at most

√
k edges. The set T is chosen

to contain at least one endpoint of each of these edges, and the vertices in the
set T will be re-colored by a unique color that is used only once by f . Using
the properties of G we now observe that with positive probability the number of
edges of G which are monochromatic is bounded by

√
k.
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Claim. If the vertices of G are colored by a function g chosen at random from
G, then the expected number of monochromatic edges is

√
k.

Proof. Fix an edge e in the graph G and j ∈ [
√

k]. As g maps the vertices in
a pairwise independent manner, the probability that both the end points of e
get mapped to j is precisely 1

(
√

k)2
. There are

√
k possibilities for j and hence

the probability that e is monochromatic is given by
√

k
(
√

k)2
= 1√

k
. Let X be the

random variable denoting the number of monochromatic edges. By linearity of
expectation, the expected value of X is k · 1√

k
=

√
k. 	


Returning to the proof of the theorem, observe that by the above claim, with
positive probability, the number of monochromatic edges is upper bounded by√

k. Fix a g ∈ G for which this holds and let T = {i1, i2, . . . , i√k} be a set of
√

k
vertices containing at least one endpoint of each monochromatic edge. Consider
the function f defined by this T and g. As mentioned above f colors each of the
vertices in T by a unique color, which is used only once by f , and hence we only
need to consider the coloring of G \ T . However all edges in G \ T are properly
colored by g and f coincides with g on G \T . Hence f is a proper coloring of G,
completing the proof of the theorem. 	


Remarks

– Each universal (n, k, O(
√

k))-coloring family must also be an (n,
√

k, O(
√

k))-
hashing family, as it must contain, for every set S of

√
k vertices in [n], a

function that maps the elements of S in a one-to-one manner, since these
vertices may form a clique that has to be properly colored by a function of
the family. Therefore, by the known bounds for families of hash functions
(see, e.g., [26]), each such family must be of size at least 2Ω̃(

√
k) log n.

Although the next result is not required for our results on the feedback arc
set problem, we present it here as it may be useful in similar applications.

Theorem 3. For any n > 10k2 there exists an explicit universal (n, k, O(
√

k))-
coloring family F of size |F| ≤ 2Õ(

√
k) log n.

Proof. Let F1 be an explicit (n, 2k, 10k2)-family of hash functions from [n] to
10k2 of size |F1| ≤ kO(1) log n. This means that for every set S ⊂ [n] of size at
most 2k there is an f ∈ F1 mapping S in a one-to-one fashion. The existence
of such a family is well known, and follows, for example, from constructions of
small spaces supporting n nearly pairwise independent random variables taking
values in [10k2]. Let F2 be an explicit universal (10k2, k, O(

√
k))-coloring family,

as described in Theorem 2. The required family F is simply the family of all
compositions of a function from F2 followed by one from F1. It is easy to check
that F satisfies the assertion of Theorem 3. 	


Finally, combining the algorithm from Theorem 1 with the universal coloring
family given by Theorem 2 yields a deterministic subexponential time polynomial
space algorithm for k-FAST.
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Theorem 4. k-FAST can be solved in time 2Õ(
√

k) + nO(1) and polynomial
space.

5 Concluding Remarks

In this article, we have shown that k-FAST can be solved in time 2Õ(
√

k) +nO(1)

and polynomial space. To achieve this we introduced a new variant of randomized
color coding, and showed that this approach could be derandomized with an
explicit construction of universal coloring families. We find it surprising that
the problem admits a subexponential time parameterized algorithm, as even the
existence of a 2k · nO(1) time algorithm was an open problem until now.

At the end of the introduction of the paper in which it was proved that Feed-

back Arc Set in Tournaments admits a PTAS [25], Mathieu and Schudy
write “We can feel lucky that the FAS problem on tournaments turns out to be so
easy as to have an approximation scheme: In contrast to Theorem 1, the related
problem of feedback vertex set is hard to approximate even on tournaments.” In-
terestingly, a similar remark can be made in our setting - a simple reduction from
Vertex Cover [30] shows that k-Feedback Vertex Set in tournaments can
not be solved in subexponential time unless the Exponential Time Hypothesis
[6,18] fails.

The results of Section 4 can be extended to universal coloring families of uniform
hypergraphs. These families can also be useful in tackling several parameterized
algorithmic problems. The details will appear in the full version of this paper.
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