
The Tile Complexity of Linear Assemblies

Harish Chandran, Nikhil Gopalkrishnan, and John Reif

Department of Computer Science, Duke University, Durham, NC 27707
{harish,nikhil,reif}@cs.duke.edu

Abstract. The conventional Tile Assembly Model (TAM) developed by
Winfree using Wang tiles is a powerful, Turing-universal theoretical frame-
work which models varied self-assembly processes. We describe a natural
extension to TAM called the Probabilistic Tile Assembly Model (PTAM)
to model the inherent probabilistic behavior in physically realized self-
assembled systems. A particular challenge in DNA nanoscience is to form
linear assemblies or rulers of a specified length using the smallest possible
tile set. These rulers can then be used as components for construction of
other complex structures. In TAM, a deterministic linear assembly of
length N requires a tile set of cardinality at least N . In contrast, for any
given N , we demonstrate linear assemblies of expected length N with a tile
set of cardinality Θ(log N) and prove a matching lower bound of Ω(log N).
We also propose a simple extension to PTAM called κ-pad systems in
which we associate κ pads with each side of a tile, allowing abutting tiles to
bind when at least one pair of corresponding pads match and prove analo-
gous results. All our probabilistic constructions are free from co-operative
tile binding errors and can be modified to produce assemblies whose prob-
ability distribution of lengths has arbitrarily small tail bounds dropping
exponentially with a given multiplicative factor increase in number of tile
types. Thus, for linear assembly systems, we have shown that randomiza-
tion can be exploited to get large improvements in tile complexity at a
small expense of precision in length.

1 Introduction

Biological systems show a remarkable range of form and function. How are these
multitude of systems constructed? What are the principles that govern them? In
particular, as computer scientists, we ask if there are simple rules whose repeated
application can give rise to such complex systems. This leads us to the study of
self-assembly.

1.1 Fundamental Nature of Self-assembly

Self-assembly is a fundamental pervasive natural phenomenon that gives rise to
complex structures and functions. It describes processes in which a disordered
system of pre-existing components form organized structures as a consequence of
specific, local interactions among the components themselves, without any exter-
nal direction. In its most complex form, self-assembly encompasses the processes
involved in growth and reproduction of higher order life. A simpler example of
self-assembly is the orderly growth of crystals. In the laboratory, self-assembly

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 235–253, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



236 H. Chandran, N. Gopalkrishnan, and J. Reif

techniques have produced increasingly complex structures [1,2] and dynamical
systems [3]. The roots of attempts to model and study self-assembly begin with
the study of tilings.

A Wang tile [4] is an oriented unit square with a pad associated with each
side. Any two tiles with the same pad on corresponding sides are said to be
of the same tile type. Tile orientation is fixed, they cannot be rotated or re-
flected1. Given a finite set S of Wang tiles types, a valid arrangement of S on
a planar unit square grid consists of copies of Wang tiles from the set S such
that abutting pads of all pairs of neighboring tiles match. The tiling or domino
problem for a set of Wang tiles is: can tiles from S (chosen with replacement)
be arranged to cover the entire planar grid? Berger [5] proved the undecidability
of the tiling problem by reducing the halting problem [6] to it. Robinson [7]
gave an alternative proof involving a simulation of any single tape deterministic
Turing Machine by some set of Wang tiles. Garey and Johnson [8] and Lewis
and Papadimitrou [9] proved that the problem of tiling a finite rectangle is NP-
complete. These results paved the way for Wang tiling systems to be used for
computation. But, Wang tilings do not model coordinated growth and hence
do not describe complex self-assembly processes. Winfree [10] extended Wang
tilings to the Tile Assembly Model (TAM) with a view to model self-assembly
processes, laying a theoretical foundation [11,12] for a form of DNA based com-
putation, in particular, molecular computation via assembly of DNA lattices
with tiles in the form of DNA motifs.

The tile complexity [13] of assembling a shape is defined as the minimum
number of tile types for assembling that shape. Tile complexity, apart from cap-
turing the information complexity of shapes, is also important as there exist
fundamental limits on the number of tile types one can design using DNA se-
quences of fixed length. Various ingenious constructions for shapes like squares
[14], rectangles and computations like counting [15], XOR [16] etc. exist in this
model. Lower bounds on tile complexity have also been shown for various shapes.
Stochastic processes play a major role in self-assembly and have been investi-
gated theoretically by Winfree [17] and Adleman [11] and in the laboratory by
Schulman et al. [18]. However, TAM is deterministic in the sense that it produces
exactly one terminal assembly given a tile set. This is because at most one type
of tile is allowed to attach at any position in a partially formed assembly. See
Section 2 for more details. This work investigates the effects of relaxing these
constraints and reduces the number of tile types required to form linear assem-
blies of given length. In contrast to earlier work in stochastic self-assembly, we
make tile attachments irreversible (as in TAM) and allow multiple tile types to
attach at any position.

1.2 Motivation

A particular challenge in DNA nanoscience is to form linear assemblies or rulers
of a specified length from unit sized square tiles. These rulers can then be used
1 This is a valid assumption when implementing Wang tiles in the laboratory using

DNA due to the complimentary nature of DNA strand binding.
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as a component for construction of other complex structures. One can use these
structures as beams and struts within the nanoscale (See Fig.1a). Linear assem-
blies can also serve as boundaries [18] and nucleation sites for more complex
nanostructures. (Note that due to the inherent flexible nature of linear nanos-
tructures, most complex nanostructures will generally tolerate small deviations
from the intended lengths of these substructures). Various tile based techniques
for constructing linear assemblies have been successfully explored in the labora-
tory [19,18]. Hence, tile assembly models for linear assemblies are apt theoret-
ical frameworks for exploring a fundamental and important challenge in DNA
nanoscience. In TAM, rulers of length N can be trivially constructed by de-
terministic assembly of N distinct tile types. This is also the matching linear
lower bound for size of tile sets in deterministic TAM, as shown in Section 4.
Thus, it is impractical to form large linear structures using the deterministic
techniques of TAM. Long thin rectangles (which are approximations of linear
assemblies) can be formed using Θ( log N

log log N ) tile types but they suffer errors due
to co-operative tile binding. In contrast with linear assemblies, the number of
tile types to form an N × N square is only Θ( log N

log log N ) [14], which is exponen-
tially better than the lower bound for linear assemblies. This bound for squares
is asymptotically tight for almost all N as dictated by information theory[13]
while the one for linear assemblies is not. This begs the question: why are we not
able to reach information theoretic limit of Θ( log N

log log N ) in linear structures using
TAM? Is this lower bound tight? What is the longest (finite) linear assembly one
can assemble with a set of n tile types in realistic tiling models? What changes
to TAM will give us the power to specify the linear systems using a smaller tile
set? While square assemblies have been extensively studied [13,14,20,21], many
questions remain about linear assemblies, which are simpler constructs yet are
fundamental building blocks at the nanoscale. We answer a number of these
questions and show novel, interesting results using techniques that differ consid-
erably from existing ones. While there have been numerous variations on TAM
in recent years, their impact on laboratory techniques in DNA self-assembly are
minimal. At the same time, design principles used in DNA self-assembly do not
fully leverage the programmability and stochasticity inherent to self-assembly.
Hence, our goal is to develop a simple model that directs design principles of
experimental DNA self-assembly by taking advantage of inherent stochasticity
of self-assembly. It is noteworthy that the techniques for designing and analyzing
these simple constructs under our simple model are non-trivial and theoretically
rich.

(a) (b)

Fig. 1. (a) Possible nanostructures using rulers as substructures. (b) Diagonal tiles:
Colors indicate pad type. Red pads are implemented using complimentary DNA.
Strands for other pads are omitted.
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1.3 Related Work in Self-assembly Using Probabilistic and
Randomized Models

Non-determinism was used in tiling by Lagoudakis et al. [22] for implementing
an algorithm for SAT. Recently, Becker et al. [23] describe probabilistic tile sys-
tems that yield squares, rectangles and diamond in expectation using O(1) tile
types. This work was extended by Ming-Yang Kao et al. [21] to yield arbitrar-
ily close approximations to squares with arbitrarily high probability using O(1)
tile types. Both these papers allow precise arbitrary relative concentrations of
tile types with no cost incurred in tile complexity. In the laboratory, achiev-
ing precise arbitrary relative concentrations between tiles is infeasible. Also, the
descriptional complexity of tile systems in such models include not just the de-
scriptional complexity of the tile set, but also the descriptional complexity of
the concentration function. Thus, size of tile set producing an assembly is not
a true indicator of its complexity. In PTAM, the set of tiles is a multi-set that
implicity defines relative concentrations and precludes arbitrary relative concen-
trations. Thus, size of the tile set producing an assembly is a true indicator of its
complexity. In addition, all our constructions have equimolar tile concentration
and hence are experimentally feasible. Reif [24], and later Demaine et al. [25]
discuss staged self-assembly. Demaine et al. [25] show how to get various shapes
using O(1) pad types. Aggarwal et al. [20] introduce various extensions to TAM
and study the impact of these extension on both running time and the num-
ber of tile types. Compared to the above, PTAM is a simple extension to TAM
that requires no laboratory techniques beyond those used to implement TAM.
In particular, we consider standard one pot reaction mixtures with no interme-
diate purification steps. The Kinetic Tile Assembly Model (kTAM) proposed by
Winfree [17] models kinetics and thermodynamics of DNA hybridization reac-
tions. Schulman et al. [18] used DX tiles consisting of DNA stands to create one
dimensional boundaries within the nanoscale. Adleman [11] proposed a math-
ematical theory of self-assembly which is used to investigate linear assemblies.
While many fundamental theoretical questions arise in these models, the ques-
tion of tile complexity of linear assemblies is uninteresting due the existence
of the trivial lower bound mentioned in Section 1.2. Thus, the questions about
linear self-assemblies examined in this paper are original and the constructions
presented are novel.

1.4 Main Results

We describe a natural extension to TAM in Section 3 to allow randomized as-
sembly, called the Probabilistic Tile Assembly Model (PTAM). A restriction of
the model to diagonal, haltable, uni-seeded, and east-growing systems (defined
in Section 3), which we call the standard PTAM is considered in this paper. Prior
work in DNA self-assembly strongly suggests that standard PTAM can be real-
ized in the laboratory. We show various non-trivial probabilistic constructions in
PTAM for forming linear assemblies with a small tile set in Section 4, using tech-
niques that differ considerably from existing assembly techniques. In particular,
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for any given N , we demonstrate linear assemblies of expected length N with
tile set of cardinality Θ(logN) using one pad per side of each tile in Section 4.2.
We derive a matching lower bound of Ω(logN) on the tile complexity of linear
assemblies of any given expected length N in standard PTAM systems using one
pad per side of each tile in Section 4.3. This lower bound, which holds for all
N , is tight and better than the information theoretic lower bound of Ω( log N

log log N )
which holds only for almost all N . We also propose a simple extension to PTAM
in Section 5 called κ-pad systems in which we associate κ pads with each side of a
tile, allowing abutting tiles to bind when at least one pair of corresponding pads
match. This gives linear assemblies of expected length N with 2-pad (two pads
per side of each tile) tile set of cardinality Θ( log N

log log N ) tile types for infinitely
many N . We show that we cannot achieve smaller tile complexity by proving a
lower bound of Ω( log N

log log N ) for each N on the cardinality of the κ-pad (κ pads
per side of each tile) tile set required to form linear assemblies of expected length
N in standard κ-pad PTAM systems for any constant κ. The techniques used
for deriving these lower bounds are notable as they are stronger and differ from
traditional Kolmogorov complexity based information theoretic methods used
for lower bounds on tile complexity. Kolmogorov complexity based lower bounds
do not preclude the possibility of achieving assemblies of very small tile multiset
cardinality for infinitely many N while our lower bounds do, as they hold for
every N . All our probabilistic constructions can be modified to produce assem-
blies whose probability distribution of lengths has arbitrarily small tail bounds
dropping exponentially with a given k at the cost of a multiplicative factor k
increase in number of tile types, as proved in Section 6.

2 The Tile Assembly Model for Linear Assemblies

This section describes the Tile Assembly Model (TAM) by Winfree for linear
(1D) assemblies (henceforth referred to as LTAM). For a complete and formal
description of the model see [13]. LTAM describes deterministic linear assemblies.
The next section extends the model by introducing randomization. This paper
considers only one-dimensional grid of integers Z which simplifies the definitions
of the model. The directions D = {East,West} are functions from Z to Z, with
East(x) = x + 1 and West(x) = x − 1. We say that x and x′ are neighbors if
x′ ∈ {West(x),East(x)}. Note that East−1 = West and vice versa. N is the set
of natural numbers.

A Wang tile over the finite set of distinct pads Σ is a unit square where two
opposite sides have pads from the set Σ2. Formally, a tile t is an ordered pair of
pads (Wt, Et) ∈ Σ2 indicating pad types on the West and East sides respectively.
Thus, a tile cannot be reflected. For each tile t, we define padEast(t) = Et and
padWest(t) = Wt. Σ contains a special null pad, denoted by φ. The empty tile
(φ, φ) represents the absence of any tile. Pads determine when two tiles attach.
2 In general, for two dimensional assemblies, tiles have pads on all four sides. However,

we do not use any pads on the North and South sides in this paper and hence omit
them. Also, we allow for multiple pads on the sides of a tile in Section 5.
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A function g : Σ × Σ → {0, 1} is a binary pad strength function if it satisfies
∀x, y ∈ Σ, g(x, y) = g(y, x) and g(φ, x) = 0. Linear assemblies do not have co-
operative tile binding, i.e, interactions of more than one pair of pads at a given
step. Hence the temperature parameter used in TAM is redundant in linear
assemblies where tiles have only one pad per side. Throughout this paper we
assume only a binary pad strength function. In this model each tile has only a
single pad on each of its sides (West and East) whereas in Section 5 we allow
multiple pads per side for each tile.

A linear tiling system, T, is a tuple 〈T, S, g〉 where T containing the empty
tile is the finite set of tile types, S ⊂ T is the set of seed tiles and g is the
binary pad strength function. A configuration of T is a function A : Z → T with
A(0) = s for some s ∈ S. For D ∈ D we say the tiles at x and D(x) attach
if g(padD(A(x)), padD−1(A(D(x)))) = 1. Self-assembly is defined by a relation
between configurations,A→ B, if there exists a tile t ∈ T , a directionD ∈ D and
an empty position x such that t attaches to A(D(x)). We define A ∗−→ B as the
reflexive transitive closure of → and say B is derived from A. For all s ∈ S a start
configuration starts is given by starts(0) = s and ∀x �= 0 : start(x) = empty.
A configuration B is produced if starts

∗−→ B for some s ∈ S. A configuration is
terminal if it is produced from starts for some s ∈ S and no other configuration
can be derived from it. Term(T) is the set of terminal configurations of T. In
TAM, a terminal configuration is thought of as the output of a tiling system given
a seed tile s ∈ S. TAM requires that there be a unique terminal configuration
for each seed. Note that it allows different attachment orders as long as they
produce the same terminal configuration. This unique terminal configuration
requirement means that given any non terminal configuration A, at most one
t ∈ T can attach at any given position. In this sense, TAM is deterministic. In
the next section we will explore the effect of relaxing this condition of TAM.

DNA nanostructures can physically realize TAM as shown by Winfree et al.
[10] with the DX tile and LaBean et al. [26] with the TX tile. Like the square tile
in TAM, the DX and TX have pads that specify their interaction with other tiles.
The pads are DNA sequences that attach via hybridization of complimentary nu-
cleotides. Mao et al. [27] performed a laboratory demonstration of computation
via tile assembly using TX tiles. Yan et al. [16] performed parallel XOR com-
putation in the test-tube using Winfree’s DX tile. Other simple computations
have also been demonstrated. However, large and more complex computations
are beset by errors and error correction remains a challenge towards general
computing using DNA tiles.

3 The Probabilistic Tile Assembly Model

In TAM, the output of a tile system is said to be a shape of given fixed size
(for example, square of side N , linear assemblies of length N) if the tile system
uniquely produces it. In this paper, we consider some implications of relaxing
this requirement. Instead of asking that a set of tiles produce a unique shape, we
allow the set of terminal assemblies to contain more than one shape by designing
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tile systems which admit multiple tile type attachment at a given position in a
configuration. Note that we do not allow pad mismatch errors. We also associate
a probability of formation with each terminal assembly. These extensions and
modifications to TAM are formalized for linear assemblies. Note that the defi-
nitions given below can be easily extended to assemblies in two-dimensions by
introducing pads on North and South sides of tiles and including a temperature
parameter τ as in [13] for co-operative binding effects.

3.1 The Probabilistic Tile Assembly Model (PTAM) for Linear
Assemblies

A probabilistic linear tiling system T is given by the tuple 〈T, S, g〉, where T is
a (finite) multiset of tile types, S ⊂ T is the multiset of seed tiles and g is the
binary pad strength function. The set of pad types Σ, tiles and configurations
for T are defined as in Section 2. The multiplicity M : Σ × Σ → N of a tile
type is the number of times it occurs in T . T contains the empty tile type with
M(empty) = 1. Multiplicity models concentration. We assume a well-mixed,
one pot reaction environment in which at each step some member of T is copied
(chosen with replacement) from the pot with uniform probability. If the tile thus
obtained can attach to the produced configuration, it does so, else a new member
of T is copied with uniform probability in the next step. This continues till either
a match is found or none exists, in which case the system halts. Note that this
is a Gillespie simulation [28] with a seed serving as a nucleation site. A system
with only one seed, S = {s}, is called uni-seeded. We consider only uni-seeded
systems in this paper. The function type(t), type : T → Σ ×Σ, returns the tile
type for any t ∈ T .

Self-assembly of a linear tiling system T is defined by a relation between
set of positive probabilities and pair of configurations A and B as: A →p

T
B

(read as A gives B with probability p) if there exists a tile t ∈ T , a direction
D ∈ D and an empty position x such that t attaches to A(D(x)) with positive
probability p to give B where p = M(type(t))/

∑
j∈Δ M(type(j)) where Δ =

{j| type(j) attaches to A(D(x))}. The closure of →p
T
, denoted by ∗−→p̂

T
(read as

‘derives’), is defined by the following transitive law: if A →p1
T
B and B →p2

T
C

then A →p1p2
T

C. A configuration B is produced with positive probability p if
starts

∗−→p

T
B. A configuration is terminal if it is produced from starts and no

other configuration can be derived from it with positive probability. Term(T) is
the set of terminal configurations of T. We associate a probability of formation,
P (A) to each produced configuration A recursively, as follows: P (starts) = 1
and P (B) =

∑
Γ pkP (Ak) where Γ = {k|Ak →pk

T
B}. Length of a produced

configuration A, written as |A|, is the number of non-empty tiles in it.
A configuration A is called a linear assembly of length N if it is terminal and

|A| = N . Following Rothemund and Winfree’s terminology [13], a linear tiling
system is defined to be diagonal iff g(x, y) = 0 for all x, y with x �= y and
g(x, x) = 1 for all x �= φ. A tile t is reachable in T if it is part of some produced
configuration. A tile t ∈ T is a capping tile if t is reachable and there exists
D ∈ D such that g(padD(t), padD−1(t′)) = 0 for each t′ ∈ T . For D = East the
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tile is called East capping and for D = West it is called West capping. A capping
tile halts growth in either the East or West direction. Note that a tile other
than the seed cannot be both East and West capping. A linear probabilistic
tiling system T is haltable iff for each produced configuration A, there exists a
terminal configuration B such that A ∗−→p

T
B with positive probability p. Each

terminal configuration has a probability of formation associated with it. If T is
haltable, some terminal configuration occurs with certainty as stated without
proof in the following Lemma.

Lemma 1. If T is a haltable probabilistic linear tiling system, then∑
A∈Term(T) P (A) = 1.

A linear tiling system is called east-growing if the West pad of the seed tile is
φ. A simulation of a probabilistic tile system T by a probabilistic tile system
Q is a bijection f between terminal configurations that preserves lengths and
probabilities of formation of assemblies, i.e. f : Term(T) → Term(Q) satisfying
|A| = |f(A)| and P (A) = P (f(A)) for each A ∈ Term(T). Any probabilistic
linear tiling system T can be simulated by an east-growing probabilistic linear
tiling system Q using no more than twice the number of tile types of T, in the
following manner. For the seed s = (Ws, Es) of T, let s′ = (φ,E′

s) be the seed
of Q and for each East-capping tile c = (Wc, Ec) of T let Q contain tile c′ =
(W ′

c,W
′′
s ). For all other tiles t = (Wt, Et) of T, let Q contain tiles tr = (W ′

t , E
′
t)

and tl = (E′′
t ,W

′′
t ). The reader may verify that this is a simulation. Hence, we

consider only east-growing tile systems in this paper. A probabilistic linear tiling
system is equimolar if ∀t ∈ T : M(t) = 1. Thus, for an equimolar tile system,
the cardinality of T equals the number of tile types in it. A probabilistic linear
tiling system is two-way branching if at most two tile types can attach at any
given position for any given configuration. A probabilistic linear tiling system is
standard if it is diagonal, haltable, uni-seeded and east-growing.

Diagonal tile systems were suggested by Winfree and Rothemund [13]. These
systems are implementable using DNA tiles. Matching pads are implemented as
perfect Watson-Crick complimentary DNA sequences (see Fig.1b). Non-diagonal
tile systems are not implementable using this technique. For tile systems produc-
ing linear assemblies that are not haltable, the expected length of the assembly
diverges. For linear assemblies, no advantage in tile complexity or tail bounds on
length of assemblies results from using multiple seeds. Thus, we consider only stan-
dard systems in this paper. Achieving arbitrary concentration vectors is infeasible
in laboratory implementations using molecules. In contrast, equimolar systems are
frequently achieved by chemists for various reactions. We demonstrate a equimo-
lar standard linear tiling system whose tile complexity matches the more general
lower bound of Ω(logN) applicable to all standard linear tiling systems.

3.2 Complexity Measures for Tile Systems

Recall that the tile complexity of a shape in TAM is defined as the number
of different tile types in the smallest tile set that realizes the shape. The tile
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complexity in TAM is closely related to the size of the smallest Turing machine
describing the shape [29]. While in TAM the shape is realized deterministically,
in PTAM we drop the requirement that a shape be obtained uniquely and in-
stead ask that it be approximated by our probabilistic tile systems. What should
be the correct measure of descriptional complexity of shapes in such probabilis-
tic systems? Consider a probabilistic linear tiling system with with three tile
types (Seed, Growth and Halt) at a 1 : N : 1 relative concentration such that
it assembles into a linear assembly of expected length N + 2. Clearly, the num-
ber of distinct tile types does not completely describe the assembly process in
the absence of information about relative concentrations. Thus concentrations
must be taken into account in any measure that hopes to intrinsically capture
descriptional complexity. There exist modifications of TAM [21,25,20] where the
number of tile types does not correspond to the descriptional complexity of the
shape. These systems encode the complexity elsewhere, like in the concentra-
tion, temperature, mechanism etc. In contrast, the standard systems of PTAM
encode all the description of the shape in the tile multiset through multiplicity
of a tile type which models its concentration. Thus, the (probabilistic) descrip-
tional complexity of shapes corresponds to the cardinality of the tile multiset
which we call tile complexity. Note that multiplicity of tiles in the multiset count
distinctly towards tile complexity.

What is the effect of the probabilistic model on tile complexity? We demon-
strate linear assemblies of fixed expected length N using a tile set of small
cardinality. In general, we are asking if there is any benefit in sacrificing the ex-
act description of a shape for a probabilistic description. For linear assemblies,
the answer is yes, as we show in the next section.

4 Constructing Linear Assemblies of Expected Length N

In the standard TAM, the tile complexity for a linear assembly of length N is N .
This is because if a tile type occurs at more than one position in the assembly,
the sub-unit between these two positions can repeat infinitely often. This does
not produce a linear assembly of length N . The PTAM does not suffer from this
drawback. By making longer and longer chains less likely, we ensure that most
chains are of length close to N . All our constructions can be shown to have expo-
nentially decaying tail with a linear multiplicative increase in the number of tile
types. So we focus on the expected lengths of linear assemblies in the following
sections. All of our constructions for linear assemblies of expected length N ∈ N

are standard, equimolar and two-way branching. The random variable L always
denotes the length of the assembly. Specific tiles systems in the rest of this sec-
tion are illustrated using tile binding diagrams. Each tile type is represented by
a square, with labels distinguishing different tile types. All possible interactions
among tiles are denoted via arrows that originate at the West side of some tile
and terminate on the East side of some tile, indicating pad strengths of 1 be-
tween these tiles along these sides. Absence of arrows indicate that no possible
attachment can occur, i.e. pad strength is 0. Thus, all our systems are temper-
ature 1 assemblies which are more resilient to errors than assemblies at greater
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temperatures. The latter suffer errors due to co-operative tile binding [30,31].
Moreover, temperature 1 systems are easier to implement in the laboratory than
higher temperature systems. Since we consider only equimolar systems for the
rest of this section, the cardinality of our tile multisets equal the number of tile
types. We use these terms interchangeably for equimolar systems.

4.1 Linear Assemblies of Expected Length N Using O(log2 N) Tile
Types

In this section we present a standard linear tiling system that achieves a linear
assembly of expected length N for any given N using O(log2N) tile types. First,
we give a construction for powers of two, i.e. for any givenN = 2i for some i ∈ N,
we show how to construct N length linear assemblies using Θ(logN) tile types.
Then we extend this construction to all N by expressing N in binary and linking
together the chains corresponding to 1s in the binary representation of N .

Fig. 2. Tile Binding Diagram for Powers of Two Construction

Powers of Two Construction: Fig.2 illustrates the tile set of size 3n + 2 =
Θ(n), used in a powers of two construction. The assembly halts only when the se-
quence T1, T2A, T2B, . . . T(n−1)A, T(n−1)B of attachments is achieved. The bridge
tiles Bi, i = 1, 2 . . . , n− 2, act as reset tiles at each stage of the assembly. Each
probabilistic choice is between a reset in the form of Bi and progress towards
completion in the form of T(i+1)A. Attachment of T1 to Bi and of TiB to TiA is
deterministic.

Lemma 2. Let L be the random variable equal to the length of the assembly.
Then, E[L] = 2n. Thus, an assembly of expected length 2n can be constructed
using Θ(n) tile types for any given n ∈ N.

Proof. We associate a sequence of independent Bernoulli trials, say coin flips,
with the assembly process. Let the addition of the 〈Bi, T1〉 complex correspond to
Tails and the addition of the 〈TiA, TiB〉 complex correspond to Heads. Halting of
the assembly then corresponds to achieving a sequence of n−2 successive heads,
corresponding to the sequence 〈T2A, T2B〉, . . . 〈T(n−1)A, T(n−1)B〉 of attachments.
The expected number of fair coin tosses for this to happen is 2(2(n−2) − 1) [32].
Each coin toss adds two tiles to the linear assembly. Hence E[L] = 4+4(2(n−2)−
1) = 2n.

Extension to Arbitrary N : We extend the powers of two construction to
all N by expressing N in binary, denoted by B(N). For each ith bit of B(N)
(i > 2) equal to 1, we have a power of two construction of expected length 2i,
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using 3i− 2 tile types as in 4.1. We simply append these various constructions
deterministically, and rely on linearity of expectation to achieve a linear assembly
of length N in expectation.

Theorem 1. An assembly of expected length N can be constructed using
O(log2N) tile types for any given N ∈ N.

4.2 Linear Assemblies of Expected Length N Using Θ(log N) Tile
Types

In this section we present a standard linear tiling system that achieves linear
assembly of length N in expectation for any given N using Θ(logN) tile types.
For powers of two, this construction reduces to one similar to that in Section
4.1. Our construction for general N is a more succinct than the one presented
in Section 4.1. This new construction rests on the observation that the expected
number of tiles of each type present in the powers of two construction decrease
geometrically.

(a) (b)

Fig. 3. Tile binding diagrams for O(log N) construction. (a) Tile Binding Diagram for

Section 4.2. (b) Tile Binding Diagram: N = 91; N ′′ = 90; N ′ = N′′
2

= 45 = (12221)alt2.
P is the prefix tile.

Consider the linear tiling system depicted in Fig.3a. The size of the tile set is
3n− 1 = Θ(n). The expected length of the assembly is N = 2n+1 − 2 = Θ(2n)
[32]. We observe that the number of bi-tiles 3 of type Ti decrease geometrically
as i decreases as stated below.

Lemma 3. Let Xi be the random variable equal to the number of bi-tiles of type
Ti in the final assembly. Then E[Xi−1] = E[Xi]

2 and hence E[Xi] = 2i−1 for
i = 2, 3, . . . , n

Proof. Every time a bi-tile of type Ti appears, a bi-tile of type Ti−1 follows
immediately in the resulting assembly with probability 1/2 for i = 2, 3 . . . n. So
E[Xi−1] = E[Xi]

2 . This property allows us to calculate the expected number of
bi-tiles of each type. T1 is the terminal bi-tile and appears exactly once. Hence
its expectation is 1 = 20. Repeated application of the above geometric decrease
property proves the claim.

3 A bi-tile Ti is a deterministic two tile complex TiA, TiB.
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Next, we give an alternate binary encoding [33] for all non-zero natural numbers
using {1, 2} instead of the standard {0, 1} encoding. This encoding will allow
us to exploit the geometric decay property to build succinct constructions. The
encoding of any non-zero natural number N is the N th string in the lexicographic
ordering of strings in {1,2}+. An equivalent characterization s given below.

Lemma 4. {1,2}-Binary Encoding: For all non-zero natural numbers N,
∃bi ∈ {1, 2} : N =

∑n−1
i=0 bi2

i where n ≤ �logN�. Every N has a unique {1,2}-
binary encoding.

Now we show how to encode any N using Θ(logN) tile types using the above
two Lemmas. Fig.3b is an example illustrating the construction for N = 91. For
any given N , let N ′′ be the greatest even number less than or equal to N . For
N ′ = N ′′

2 , let B(N ′) = bn−1bn−2 . . . b0 be its {1,2}-binary encoding of size n.
For each bit bi with i ∈ {0, 1, . . . , n − 2}, our construction has a tile complex
Ti+1 of size 2bi tiles that occurs Xi+1 times with E[Xi+1] = 2i. For the bit bn−1,
the tile complex T ′

n of size 2bn−1 − 1 tiles occurs X ′
n times with E[X ′

n] = 2n−1.
Each time T ′

n is deterministically preceded by either the seed or one of the bridge
tiles. Each such complex is called Tn. Thus Tn is of size of 2bn−1 tiles and occurs
Xn times with E[Xn] = 2n−1. For odd N , we deterministically prefix a single
tile to the West of the seed tile.

Theorem 2. The above construction has an expected length E[L] = N tiles and
uses Θ(logN) tile types.

Proof. The length of the assembly L is given by L = X1 + X2 + · · · + Xn +
(N mod 2) and hence by linearity of expectation, E[L] = 2(

∑n−1
i=0 bi2

i) + (N
mod 2) = N . The number of tile types is Θ(n) = Θ(logN).

4.3 Lower Bounds on the Tile Complexity of Linear Assemblies of
Expected Length N

In this section we prove that for all N the cardinality of any tile multiset that
forms linear assemblies of expected length N in standard PTAM systems is
Ω(logN). The techniques that we use for deriving these tile complexity lower
bounds are notable as they differ from traditional information theoretic methods
used for lower bounds on tile complexity and furthermore our low bound results
hold for each N , rather than for almost all N .

Fig. 4. T split into prefix and intermediates

Theorem 3. For any N , the cardinality of any tile multiset that forms linear
assemblies of expected length N in standard PTAM systems is Ω(logN).
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Proof. We will show that any standard linear PTAM system with tile multi-
set cardinality n has expected length of assembly at most O(2n). This implies
our result via the contrapositive. Recall that multiplicity of tiles in the multi-
set count distinctly towards tile complexity. Any standard PTAM linear tiling
multiset with cardinality n that produces linear assemblies of greatest (finite)
expected length is called n-optimal. Optimal linear tiling multisets must contain
exactly one capping tile. If one had multiple capping tiles, say term1, . . . , termk,
replacing the East pads of term1, . . . , termk−1 with the West pad of termk gives
a modified tile multiset of same cardinality, which is still standard, and has a
higher finite expected length, which is a contradiction. Define Ψn to be the ex-
pected length of the assembly produced by an n-optimal linear tiling multiset.
We will prove Ψn = O(2n) by a recursive argument on n.

Let T = 〈T, {s}, g〉 be any n-optimal linear tiling multiset. Let L be the ran-
dom variable equal to the length of the linear assembly produced by T and so
E[L] = Ψn. A run of a PTAM linear tiling system is a finite sequence of attach-
ment of tile types resulting in a terminal assembly. A run might be alternatively
thought of as a finite sequence of pad types where the number of pads in a run
is one more than the number of tiles. For any run of T, consider the pad type λ
appearing on the West side of the capping tile. Let Λ ⊂ T be the multiset of k1

(0 < k1 < n− 14) tiles with λ as their West pad, not including the capping tile.
Pad type λ might occur at many positions in this run. Define the prefix of the run
as the subsequence from the West pad of the seed tile to the first occurrence of λ.
Consider the subsequences that start and end in λ with no occurrence of λ within.
Such a subsequence, excluding the first λ, is called an intermediate (See Fig.4).
Define the following random variables: LP equal to the length of the prefix, LIi

equal to the length of the ith intermediate subsequence and r equal to number
of intermediates. The LIi are independent identical random variables and let LI

be a representative random variable with the same distribution. Length of the
assembly equals the sum of the lengths of the prefix and the intermediates. Thus,
L = LP +

∑r
i=1(LIi). For every i, the random variables r and LIi are independent

because of the memoryless property of linear tiling systems. Thus, by linearity
of expectation we get, Ψn = E[L] = E[LP ]+E[

∑r
i=1(LIi)] = E[LP ]+E[r]E[LI ]

Since T is standard, each of the tiles in Λ and the capping tile can attach with
equal probability 1

k1+1 to any tile with λ as its East pad. Thus, r is a geometric
random variable, with parameter 1

k1+1 , counting the number of times the capping
tile fails to attach. Thus E[r] = k1. We will show that E[LP ] and E[LI ] are at
most Ψn−k1 by simulating the assemblies that produce these subsequences via
linear tiling multisets of cardinality at most n − k1. The prefix is simulated by
the linear tiling system TP obtained from T in the following manner. Drop the

4 Note that Λ cannot be empty for an optimal linear tiling system. Suppose it were:
let Λ′ = {t1, . . . , tk}, be the set of tile types with λ as their East pad. Replacing
the East pads of t1, . . . , tk−1 with the West pad of tk gives a modified tile multiset
of same cardinality, which is still standard, and has a higher finite expected length,
which is a contradiction. The same arguments hold as we recurse. The seed s and
the capping tile are never part of Λ.
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tiles in Λ from T. Observe that there is a run of TP for every possible prefix and
vice-versa, with the same probabilities of formation. Thus, the expected length of
assembly produced by TP is equal to E[LP ]. Also, the cardinality of tile multiset
for TP is n− k1 and hence E[LP ] ≤ Ψn−k1 by definition. The intermediate sub-
assemblies are simulated by a family of k1 different tile systems. Each tile system
has a tile multiset of cardinality n− k1 obtained by (i.) dropping the tiles in Λ
from T and (ii.) replacing the seed tile by some t ∈ Λ and making padWest(t) =
φ. Each intermediate sub-assembly is simulated by some tile system from this
family. Thus E[LI ] ≤ Ψn−k1 −1. Thus, Ψn = E[LP ]+E[r]E[LI ] ≤ (k1+1)Ψn−k1 .
In the next level of recursion, we drop k2 > 0 tiles to get Ψn ≤ (k1 + 1)Ψn−k1 ≤
(k1 +1)(k2 +1)Ψn−k1−k2 . In general, we drop ki tiles in the ith level of recursion
to get Ψn ≤ ∏i

j=1(kj + 1)Ψn−∑ i
j=1 kj

. The base case is Ψ2 = 2 since the best one
can do with a single seed and capping tile is assembly of length 2. Also, let there
be z levels of recursion. Thus Ψn ≤ ∏z

i=1(ki + 1) with
∑z

i=1 ki = n − 2. The
product

∏z
i=1(ki + 1) constrained by

∑z
i=1 ki = n− 2 has a maximum value of

2n−2. Hence Ψn ≤ O(2n).

5 κ-Pad Systems for Linear Assembly

In this section we will extend PTAM by modifying each tile to accommodate
multiple pads on each side. Tiles bind when one pair of adjacent pads match
(see Fig.5a). To ensure that tiles align fully and are not offset, each pad on a
side of a tile are drawn from different sets of pad types. Using such multi-padded
tiles, we will show it is possible to reduce the number of tile types to get linear
assemblies of expected length N .

(a) (b)

Fig. 5. κ-pad Systems. (a) κ-pad tiles A and B. (b) Pad binding diagram for linear
tiling system using Θi.o(

log N
log log N

) 2-pad tile types. Small labeled rectangles on the sides
of the tiles indicate various types of pads. Arrows indicate possible attachment. Absent
pads are φ.

5.1 Definitions

A κ-pad tile t over the cartesian product Σ = Σ1 × Σ2 × · · · × Σκ is a unit
square whose two opposite sides each have a κ tuple of pads from Σ. Thus, tile
t ∈ T is an ordered pair5 (Wt, Et) where Wt and Et are row vectors of size
κ, where the ith component of each vector is from the set Σi. Thus, the East
5 Again, for two dimensional assemblies, tiles have pads on all four sides and the model

can be extended to include a temperature parameter τ for co-operative binding
interactions with multiple tiles.
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and West sides of each tile has κ pads. Σ1, . . . , Σκ are finite, mutually disjoint
set of distinct pad types. A κ-pad linear tiling system T is given by the tuple
〈T, S, g〉 where T is the finite multiset of κ-pad tile types, S ⊂ T is the set of
seed tiles and g is the binary pad strength function. Definitions from Section
3 hold with appropriate modifications to incorporate multiple pads on sides of
each tile. For each tile t, we define padEast(t, i) = (Et)i and padWest(t, i) = (Wt)i

where (Et)i and (Wt)i denote the ith component of the respective pad vectors.
For D ∈ D we say the tiles at x and D(x) attach if there exists an i such that
g(padD(A(x), i), padD−1(A(D(x)), i)) = 1. (See Fig.5a).

With these modifications, diagonal, uni-seeded and haltable linear tiling sys-
tems and self-assembly of κ-pad tiles are defined as in Sections 2 and 3. In
particular, probabilities of attachment of tiles is given by the same formula as in
Section 3 and Lemma 1 holds for κ-pad systems. We restrict ourselves to study-
ing diagonal, uni-seeded and haltable κ-pad linear tiling systems. Note that for
assemblies in Section 5.3, adjacent tiles that bind have exactly one match among
corresponding pads.

5.2 Implementing κ-Pad Systems Using DNA Self-assembly

κ-pad tiles can be feasibly realized using carefully designed self-assembled DNA
motifs. Indeed, the DX motif [10], one of the early demonstrations of DNA
motifs that self-assemble into two dimensional lattices, can serve as a 2-pad
tile. Other similar motifs that also self-assemble into two dimensional lattices,
like the TX [26], can serve as multipad systems. These motifs can be easily
modified to self-assemble in one dimension, as a linear structure. On a much
larger scale, Rothemund’s origami technique [1] can be used to manufacture
tiles with hundreds of pads. A drawback of such a system would be that the
connection between adjacent tiles will be quite flexible, making a linear assembly
behave more as a chain rather than a rigid ruler.

5.3 Linear Assemblies of Expected Length N Using Θi.o( log N
log log N

)
2-Pad Tile Types

In this section we present an equimolar, standard κ-pad linear tiling system with
κ = 2, i.e a 2-pad system, that achieves for any given N ′ ∈ N, a linear assembly
of expected length N > N ′ using Θ( log N

log log N ) 2-pad tile types, i.e., arbitrary
long fixed length assemblies of expected length N using Θ( log N

log log N ) 2-pad tile
types. Fig.5b illustrates the tile set used in our construction. Q2, Q3 . . .Qn are
bi-tiles with deterministic internal pads and so for simplicity we will treat them
as a single tile of length two. R is a tile type with multiplicity n − 1, drawn as
R1, . . . , Rn−1 in Fig.5b. Qi+1 can attach to Qi’s East side via the upper pad. For
j ∈ {1, 2, . . . , n−1}, R1, R2, . . . , Rn−1 can attach to Qj’s East side via the lower
pad and Q1 attaches deterministically to Rj ’s East side via the lower pad. Q1

attaches deterministically to the seed’s East side while Qn is the capping tile.
The assembly halts iff the consecutive sequence Q1, Q2, . . . , Qn occurs. At each
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stage, the assembly can restart by the attachment of Q1 via any of the n − 1
bridge tiles Rj . The number of tile types is 2n = Θ(n).

Theorem 4. Let X be the random variable that equals the length of the tile
system illustrated in Fig.5b. Then E[X ] = N = Θ(nn) using Θ( log N

log log N ) = Θ(n)
2-pad tile types.

Proof. We can think of the process as a series of Bernoulli trials, say biased coin
tosses. A Head corresponds to attachment of some Qi (i �= 1) and a Tail to some
Rj , Q1 complex. The probability of a Head is 1

n . The assembly halts iff n − 1
successive heads occur. Each toss adds exactly 2 tiles to the assembly and the
seed and Q1 appear once before the first toss. So, from [32], the expected length
of the assembly is given by E[X ] = N = Θ(nn). The number of tile types used
is Θ(n) = Θ( log N

log log N ).

5.4 Lower Bounds for κ-Pad Systems

In this section we prove for each N that the cardinality of κ-pad tile multiset
required to form linear assemblies of expected length N in standard PTAM
systems is Ω( log N

log log N ). Prior self-assembly lower bounds on numbers of tiles
for assembly used information theoretic methods, whereas this proof is via a
reduction to a problem in linear algebra, and furthermore holds for each N ,
rather than for almost all N .

Theorem 5. For each N , the cardinality of the smallest κ-pad tile multiset re-
quired to form linear assemblies of expected length N in standard PTAM systems
is Ω( log N

log log N ).

Proof. As in the Theorem 3, we will show that any κ-pad standard linear PTAM
system with tile multiset of cardinality n has expected length of assembly at
most O(n2n) and this implies our result via the contrapositive. The proof uses a
reduction to determining the expected time to first arrival at a vertex in a random
walk over a graph, which is further reduced to a problem in linear algebra,
namely determining magnitude bounds on the solution of a linear system, which
is bounded by the magnitude of a ratio of two determinants.

Any n-optimal κ-pad system T = 〈T, {s}, g〉 has exactly one seed and one
capping tile, by an argument similar to the one in Section 4.3. Let L be the
random variable equal to the length of linear assembly produced by T. Consider
the directed weighted graph G = (V,E,w) constructed from T as follows: i.
V is in one-to-one correspondence with T where vertices in V have distinct
labels for repeated tile types in T , ii. directed edge (u, v) ∈ E iff the East face
of tile corresponding to u and West face of tile corresponding to v can attach
and iii. for each (u, v) ∈ E, edge weights indicating transition probability are
given by w(u, v) = (outdegree(u))−1. Note that the sum of edge weights of all
edges leaving a node is 1 and all edges leaving a vertex have equal transition
probability. G has a start vertex corresponding to the seed s and a destination
vertex corresponding to the capping tile. Self-assembly is a random walk on G
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from the start to the destination, where paths in G from the start correspond
to produced configurations in T. Let expected time to destination, δ(u), be the
expected length of the random walk from u to destination for some u ∈ V . The
expected length of the assembly, E[L] = δ(start) and δ(destination) = 0.

For any u ∈ V (other than the destination), with edges to the k vertices
{v1, . . . , vk}, δ(u) = 1 +

∑k
i=1

1
k δ(vi). Writing such equations for each vertex in

V , with δ(destination) = 0 gives a system of n linear equations in n variables,
say Aδ = b where A is an n × n matrix of transition probabilities with values
from the set {0, 1

n ,
1

n−1 , . . . , 1}, b = [1 1 . . . 1 0]T is a vector of size n and δ
is the vector of expected times to destination. A is non-singular and therefore
the system has a unique solution6. Using Cramer’s rule δ(s) = |Ab|

|A| where Ab

is the appropriate column of A substituted by b. We upper and lower bound
the two determinants using Leibniz’s formula, |C| =

∑
π∈Sn

sgn(π)
∏n

i=1 Ci,π(i)

where the sum is computed over all n! permutations of Sn, where Sn is the
permutations of the set {1, 2, . . . , n} and sgn(σ) denotes the signature of the
permutation σ: +1 if σ is an even permutation and −1 if it is odd. Note that
the maximum value of the product

∏n
i=1 Ci,π(i) is 1 since the values in each of the

determinants are from the set {0, 1
n ,

1
n−1 , . . . , 1}. Thus |Ab| ≤ n! and similarly

|A| ≥ (1/n)n. Hence, δ(s) ≤ O(n2n). Thus the expected length of an assembly
of any κ-pad standard linear PTAM system with tile multiset of cardinality n is
at most O(n2n) which implies a lower bound of Ω( log N

log log N ).

6 Improving Tail Bounds of Distribution of Lengths of
Assembly

Linear tile systems that do not give assemblies with exponential tail bounds on
length can be modified by concatenating k independent, distinct versions of the
tile system into a new tile system with tail bounds that drop exponentially with
k. Both the central limit theorem and Chernoff bounds are used for bounding
the tail of this new distribution.

Given a tile multiset T (with single or κ-pads on each side of each tile) for
a linear assembly, let L̂ be the random variable equal to the length of the as-
sembly with mean �N

k � and variance σ2

k , and let f(�N
k �) be the cardinality of T .

Consider k distinct versions of T , say T1, T2, . . . , Tk, each mutually disjoint. We
deterministically concatenate the assemblies produced by these tile multisets by
introducing pads that allow the East side of each capping tile of Ti to attach
to the West side of the seed tile of Ti+1 for i = 1, 2, . . . , n − 1. We then add
N − k�N

k � ≤ k distinct tiles that deterministically extend the assembly beyond
the capping tile of Tk. Let L the random variable equal to the length of the
assembly produced by this construction. This new multiset, Tsh of cardinality
fsh(N) ≤ kf(�N

k �) + k gives linear assemblies of expected length E[L] = N
and variance σ2. k ∈ {1, . . . , N} determines how sharp the overall probability
distribution is.
6 The solution is unique as the expected number of transitions from any vertex to the

capping vertex is well defined.
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The central limit theorem gives: ∀δ ≥ 0 : P (|L−N | ≤ δσ) → Φ(δ) as k → ∞,
where Φ and ψ are the probability density function and cumulative distribution
function respectively of the standard normal distribution. Thus, P (|L − N | ≥
δσ) → 2(1 − Φ(δ)) ≤ 2ψ(δ)/δ ≤ √

2/π(e−δ2/2/δ) as k → ∞. Thus, we achieve
an exponentially decaying tail bound with a linear multiplicative increase in tile
complexity for large k. Since Tsh is the concatenation of independent assemblies
Ti, Chernoff bounds for sums of independent random variables gives ∀δ, t > 0 :
P (L > (1 + δ)N) ≤ (M(t)/e(1+δ)�N

k �t)k and ∀δ > 0, t < 0 : P (L < (1 − δ)N) ≤
(M(t)/e(1−δ)�N

k �t)k whereM(t) is the moment generating function of the random
variable L̂. If M(t)/e(1+δ)�N

k �t < 1 for some t > 0 and M(t)/e(1−δ)�N
k �t < 1 for

some t < 0, we get tail bounds dropping exponentially with k.

Acknowledgements

We wish to thank our anonymous reviewers for helpful comments, especially for
pointing out the error resilience of temperature 1 assemblies. We also thank Josh
Letchford and Thom LaBean for helpful discussions and Sudheer Sahu, Manoj
Gopalkrishnan, Jeff Phillips, Shashidhara Ganjugunte and Urmi Majumder for
their comments on an earlier draft of this paper. This work was supported by
NSF EMT Grant CCF-0829797, CCF-0829798 and AFSOR Contract FA9550-
08-1-0188.

References

1. Rothemund, P.: Folding DNA to Create Nanoscale Shapes and Patterns. Na-
ture 440, 297–302 (2006)

2. Yan, H., Yin, P., Park, S.H., Li, H., Feng, L., Guan, X., Liu, D., Reif, J., LaBean,
T.: Self-assembled DNA Structures for Nanoconstruction. American Institute of
Physics Conference Series, vol. 725, pp. 43–52 (2004)

3. Zhang, D.Y., Turberfield, A., Yurke, B., Winfree, E.: Engineering Entropy-Driven
Reactions and Networks Catalyzed by DNA. Science 318, 1121–1125 (2007)

4. Wang, H.: Proving Theorems by Pattern Recognition II (1961)
5. Berger, R.: The Undecidability of the Domino Problem, vol. 66, pp. 1–72 (1966)
6. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1993)
7. Robinson, R.: Undecidability and Nonperiodicity for Tilings of the Plane. Inven-

tiones Mathematicae 12, 177–209 (1971)
8. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of

NP-Completeness. W.H. Freeman, New York (1981)
9. Lewis, H., Papadimitriou, C.: Elements of the Theory of Computation. Prentice-

Hall, Englewood Cliffs (1981)
10. Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and Self-Assembly of Two-

Dimensional DNA Crystals. Nature 394, 539–544 (1999)
11. Adleman, L.: Towards a mathematical theory of self-assembly. Technical report,

University of Southern California (2000)
12. Winfree, E.: DNA Computing by Self-Assembly. In: NAE’s The Bridge, vol. 33,

pp. 31–38 (2003)
13. Rothemund, P., Winfree, E.: The Program-Size Complexity of Self-Assembled

Squares. In: STOC, pp. 459–468 (2000)



The Tile Complexity of Linear Assemblies 253

14. Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Running Time and Program Size
for Self-Assembled Squares. In: STOC, pp. 740–748 (2001)

15. Barish, R., Rothemund, P., Winfree, E.: Two Computational Primitives for Al-
gorithmic Self-Assembly: Copying and Counting. Nano Letters 5(12), 2586–2592
(2005)

16. Yan, H., Feng, L., LaBean, T., Reif, J.: Parallel Molecular Computation of Pair-
Wise XOR using DNA String Tile. Journal of the American Chemical Society (125)
(2003)

17. Winfree, E.: Simulations of Computing by Self-Assembly. Technical report, Caltech
CS Tech Report (1998)

18. Schulman, R., Lee, S., Papadakis, N., Winfree, E.: One Dimensional Boundaries
for DNA Tile Self-Assembly. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS,
vol. 2943, pp. 108–126. Springer, Heidelberg (2004)

19. Park, S.H., Yin, P., Liu, Y., Reif, J., LaBean, T., Yan, H.: Programmable DNA Self-
assemblies for Nanoscale Organization of Ligands and Proteins. Nano Letters 5,
729–733 (2005)

20. Aggarwal, G., Goldwasser, M., Kao, M.Y., Schweller, R.: Complexities for Gener-
alized Models of Self-Assembly. In: SODA, pp. 880–889 (2004)

21. Kao, M.Y., Schweller, R.: Randomized Self-Assembly for Approximate Shapes.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
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23. Becker, F., Rapaport, I., Rémila, É.: Self-assemblying classes of shapes with a
minimum number of tiles, and in optimal time. In: Arun-Kumar, S., Garg, N.
(eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 45–56. Springer, Heidelberg (2006)

24. Reif, J.: Local parallel biomolecular computation. In: NA-Based Computers, III,
pp. 217–254. American Mathematical Society, Providence, RI (1997)

25. Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller,
R.T., Souvaine, D.L.: Staged Self-assembly: Nanomanufacture of Arbitrary Shapes
with O(1) Glues. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848,
pp. 1–14. Springer, Heidelberg (2008)

26. LaBean, T., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J., Seeman, N.: Con-
struction, Analysis, Ligation, and Self-Assembly of DNA Triple Crossover Com-
plexes. Journal of the American Chemical Society 122(9), 1848–1860 (2000)

27. Mao, C., LaBean, T., Reif, J., Seeman, N.: Logical Computation Using Algorithmic
Self-Assembly of DNA Triple-Crossover Molecules. Nature 407, 493–496 (2000)

28. Gillespie, D.: Exact Stochastic Simulation of Coupled Chemical Reactions. The
Journal of Physical Chemistry 81, 2340–2361 (1977)

29. Soloveichik, D., Winfree, E.: Complexity of Self-Assembled Shapes. SIAM Journal
of Computing 36(6), 1544–1569 (2007)

30. Winfree, E., Bekbolatov, R.: Proofreading Tile Sets: Error Correction for Algorith-
mic Self-Assembly. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp.
126–144. Springer, Heidelberg (2004)

31. Chen, H.-L., Goel, A.: Error free self-assembly using error prone tiles. In: Ferretti,
C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 62–75. Springer,
Heidelberg (2005)

32. Gordan, H.: Discrete Probability. Springer, Heidelberg (1997)
33. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applica-

tions, 2nd edn. Springer, Heidelberg (1997)


	The Tile Complexity of Linear Assemblies
	Introduction
	Fundamental Nature of Self-assembly
	Motivation
	Related Work in Self-assembly Using Probabilistic and Randomized Models
	Main Results

	The Tile Assembly Model for Linear Assemblies
	The Probabilistic Tile Assembly Model
	The Probabilistic Tile Assembly Model (PTAM) for Linear Assemblies
	Complexity Measures for Tile Systems

	Constructing Linear Assemblies of Expected Length N
	Linear Assemblies of Expected Length $N$ Using $\Theta$ (log$^{2} N$) Tile Types
	Linear Assemblies of Expected Length $N$ Using $\Theta$ (log $N$) Tile Types
	Lower Bounds on the Tile Complexity of Linear Assemblies of Expected Length $N$

	$\kappa$-Pad Systems for Linear Assembly
	Definitions
	Implementing $\kappa$-Pad Systems Using DNA Self-assembly
	Linear Assemblies of Expected Length $N$ Using $\Theta_{i.o}(\frac{\log N}{\log \log N})$ $2$-Pad Tile Types
	Lower Bounds for $\kappa$-Pad Systems

	Improving Tail Bounds of Distribution of Lengths of Assembly



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




