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Abstract. We propose the study of graphs that are defined by low-
complexity distributed and deterministic agents. We suggest that this
viewpoint may help introduce the element of individual choice in models
of large scale social networks. This viewpoint may also provide interesting
new classes of graphs for which to design algorithms.

We focus largely on the case where the “low complexity” computa-
tion is AC0. We show that this is already a rich class of graphs that
includes examples of lossless expanders and power-law graphs. We give
evidence that even such low complexity graphs present a formidable chal-
lenge to algorithms designers. On the positive side, we show that many
algorithms from property testing and data sketching can be adapted to
give meaningful results for low-complexity graphs.

1 Introduction

This paper tries to highlight some interesting families of graphs that we call
low complexity graphs. These are graphs whose vertices are vectors of attributes
(without loss of generality, vectors in {0, 1}n for some n) and whose edge struc-
ture has low computational complexity, namely, determining whether (i, j) is
an edge or not is a low-complexity computation involving i, j. (This definition
assumes an adjacency matrix representation of the graph; we have an alternative
definition for an adjacency list representation.)

There are many motivations for studying this concept. First, from a
complexity-theoretic view such graphs are natural if we think of the graph as
being defined by computationally bounded distributed agents, and they only use
their personal information (namely, their names i, j) while computing their de-
cision. Concretely, one could hope that many graph problems are easier to solve
on low-complexity graphs than they are on general graphs (analogously to say,
fixed treewidth graphs or minor-excluded graphs).

Second, such low-complexity graphs represent a plausible way to incorporate
the concept of individual choice in models of formation of social network graphs
(e.g., graphs that arise on the Web, Myspace, Facebook, etc.). Empirically these
graphs are found to exhibit some strong properties such as power law distri-
bution of degrees and top eigenvalues. A large body of work has been used to
describe how such graphs can arise naturally as a result of distributed actions.
The dominant model is some variant of a preferential attachment process, in
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which nodes attach to the graph one by one, and when they try to (probabilis-
tically) decide which other nodes to attach to, they prefer nodes with higher
degree (i.e., “popular nodes”). By varying model parameters and assumptions
(see the survey by Mitzenmacher [1]) a rich variety of graphs can be obtained.

While it is highly plausible that random choice coupled with a “follow the
herd” behavior should be an important part of the story of how such networks
come about, it is unclear if this is the complete story. For instance, it has been
empirically observed that many graph problems are trivial to solve on the above
random models but quite difficult on real-life graphs obtained from social net-
works [2].

One obvious missing element in the above models is that of individual choice.
Clearly, people link to other people on Myspace or Facebook or the Web at
least in part due to their interest profile, and they seek out interesting people or
webpages using search tools (e.g., Google and other search engines) that allow
them to explicitly or implicitly express (via boolean expressions) their choice
function.

Our model of low-complexity graphs gives one way to incorporate the element
of individual choice: the choice of a person with attribute vector i to link to a
person with vector j is a low complexity computation involving i, j. For sake
of clarity the model has been kept very bare: (i) The attributes are distributed
uniformly in the population (i.e., the node set is {0, 1}n); (ii) The choice function
for all nodes uses the same low-complexity computation —only their inputs are
different, namely, their own attribute vectors. Note that this allows the adjacency
list of each node i to be different because its attribute vector is unique.

(iii) The issue of random choice has been left out entirely, or to be more
precise, is allowed only in very small doses as part of the choice function. The
point in this paper is that even with these restrictions, great expressive power
still remains —one can realize complicated graphs like power-law graphs and
lossless expanders and extractors (see Section 2).

Now we formally define low complexity graphs. If C is a complexity class
then an infinite family of graphs {Gn} is said to be a C-graph family in the
adjacency matrix representation if for every n ≥ 1, Gn has 2n nodes and there
is an algorithm in class C that, given indices i, j ∈ {0, 1}n, can compute whether
or not (i, j) is an edge in the graph. A C-graph family in the adjacency list
representation is similarly defined, except we restrict it to be d-regular for some
d (which could be a slowly growing function of n) and we require for each input
size n a sequence of dn algorithms from C that given i compute the individual
bits of the adjacency list of node i. (The output of each algorithm consists of one
bit.) We can similarly define other low-complexity objects such as hypergraphs,
circuits, etc.

Of course, similar definitions have been used in complexity theory before.
For instance, the case C = DSPACE(n) corresponds to logspace uniform
circuits/graphs, and also corresponds to a common notion of strongly explicit
constructions (used for example when we talk about explicit constructions of
expanders). The case C = P/poly coincides with succinctly described graphs [3].
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It is known that many standard problems (e.g., connectivity) are intractable for
succinctly represented graphs, when the input to the algorithm is the circuit that
represents the graph. Classes such as PPAD [4] are also defined in this context.
The difference in our paper is that we are interested in letting C be a very low
complexity classes: say, NC0,AC0, or the set of graphs with log n decision tree
complexity. AC0, the class of functions computable by bounded depth circuits
of unlimited fan-in and polynomial size, will be a frequent choice in this paper.
Furthermore, in our lower bound results we usually think of the entire graph as
being presented to the algorithm (as opposed to just the circuit). The algorithms
we present in Section 4 work even in the model where the algorithm is presented
the circuit defining the input graph.

In fact, one motivation for studying low-complexity graphs is that this fits
in the longer-term program of understanding low-complexity graphs (which are
just truth tables of low-complexity functions) as a prelude to proving complex-
ity lower bounds. Of course, the results of Razborov and Rudich [5] caution us
against hoping for quick successes in this endeavor if the C is too complex. Ac-
cordingly, this paper generally restricts attention to classes no more powerful
than AC0. Our results suggest that even these graphs can be quite complex and
difficult. In Section 3 we show that solving any of the standard NP or P prob-
lems on AC0-graphs is probably no easier than solving them on general graphs,
even when the entire graph is given as input.

In light of the hardness results one should relax one’s expectations of what
kind of algorithms can be possible. One could try for approximation algorithms.
We observe using the current proof of the PCP Theorem [6] that approximation
is intractable for a host of standard problems on NC1-graphs (Section 3.1). It
is an open problem whether this result can be extended to AC0-graphs, and a
positive resolution seems to require a new proof of the PCP Theorem. We can
show however that AC0 graphs can prove to be difficult (ie have high integrality
gaps) for current approximation algorithms that are based upon semidefinite
programming (Theorem 9).

In light of the results about seeming difficulties of approximation, one can try
to further relax what it means to solve the problem. An attractive approach is to
try sampling-based algorithms such as the ones developed in property testing and
streaming algorithms. We show that many known algorithms can be interpreted
as follows: given a circuit representing a low-complexity graph, these algorithms
return another low-complexity circuit that approximately represents a solution.
(See Section 4.)

Though many known sampling-based algorithms are tight when the graph is
given as a black box, it is conceivable that they can be improved upon when
the graph is given as a small circuit. (Theorem 11 explains why the black box
lower bounds don’t apply.) Perhaps designing such algorithms can be a new
motivation for revisiting lowerbound techniques for classes such as AC0, or even
NC0. For instance we do not currently know if constant degree NC0-graphs can
be expanders in the adjacency list representation. We observe in Section 2.1 that
expanders of logarithmic degree can be realized as NC0 graphs.



122 S. Arora, D. Steurer, and A. Wigderson

This paper spans ideas from multiple areas, and consequently we have to
assume familiarity with many standard terms and results and necessarily omit
many details. We also see the results in this manuscript as representative rather
than exhaustive. Even the basic model can be extended in many ways. For
instance, if nodes are allowed a small amount of randomness and a small amount
of computation then one obtains complexity-based extension of the theory of
G(n, p) graphs. We hope that many such extensions will be studied in future.

The recently studied model of random dot product graphs [7,8] shares some
ideas with our low complexity graphs. There, the vertices are sampled from some
distribution on the sphere, and the probability of an edge is proportional to the
inner product of the endpoints. The inner product can be seen as a low-complexity
function of the endpoints (albeit not AC0) that determines the edge probability.

2 Constructions of Interesting AC0 Graphs

In this section we show how some well-known graphs can be realized as AC0

graphs. Throughout, N denotes the number of nodes in the graph, and the nodes
are assumed to be vectors of n bits (i.e., binary-valued attributes).

To set the context, we start with some simple examples of graphs that are not
AC0, by the well-known results of Ajtai [9] and of Furst, Saxe, and Sipser [10].

Example 1 (Graphs that are not AC0). Parity Graph: Its edge set is {(x, y) :
⊕i(xi ⊕ yi) = 1} where x, y ∈ GF (2)n and ⊕ addition mod 2.

Inner Product Graph: Its edge set is {(x, y) : x� y = 1} where x, y ∈ GF (2)n

and � is inner product mod 2.
Threshold graph: Its edge set is {(x, y) : x and y agree on at least 2/3rd of their

bits.}.
The fact that such simple operations are impossible in AC0 makes the task of
designing AC0 graphs difficult. Next, we list simple graphs that are AC0. These
will be building blocks in more complicated constructions later on.

Example 2 (Some AC0 graphs). The N -cycle. The attribute vector labeling
the nodes can be interpreted as a binary number in [0, N − 1], and the set of
edges is {x, x + 1 mod N}. Since x → x + 1 is computable in AC0, we conclude
that this is an AC0 graph.

The r-dimensional grid on N vertices. Reasoning similarly as above, this is also
an AC0 graph for every fixed r. This will be useful in Theorem 5.

The following is also AC0 for every k ≤ n: the graph whose edge set is
{(x, y) : x, y agree on the first k bits}.

Next, since approximate thresholds can be computed probabilistically in AC0

(actually even in depth 3 [11]), we can construct an AC0 graph that is an approx-
imate and noisy version of the Threshold graph of Example 1. (This could be
useful in modeling social networks because “approximate threshold” of shared
attributes could be a plausible strategy for setting up connections.) For any con-
stant ε (to be thought of as o(1)), the following holds. For (x, y)’s such that x, y
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agree in ≥ 2/3 + ε of the bits, {x, y} is an edge. For (x, y)’s such that x, y agree
in < 2/3 − ε of the bits, (x, y) is a non-edge. All other pairs (x, y) may or may
not be edges.

Finally, by definition, the set of AC0 graphs is closed under taking graph
complements, union and intersection of edge sets, and taking AND product G1×
G2, which is the graph whose vertex set is V (G1) × V (G2) and the edge set is
{((u1, v1), (u2, v2)) : (u1, u2) ∈ E(G1) AND (v1, v2) ∈ E(G2)}.
The following fact, a consequence of H̊astad’s [12] lower bound for AC0, suggests
that every AC0 graph has some structure. More precisely, it shows that AC0-
graphs are never good Ramsey graphs (in contrast to random graphs where
the largest bipartite clique and the largest bipartite independent set are of size
O(log N)).

Proposition 1. There is a polynomial-time algorithm that given an AC0 graph
on N nodes (in the adjacency matrix representation) finds either a bipartite
clique or independent set of size 2Ω(log N/poly(log log N)) (in fact the algorithm can
find many —say, superlogarithmic—number of these).

2.1 Expanders and Lossless Expanders

In this subsection we show AC0-graphs can exhibit highly “pseudorandom” be-
havior. For a long time the only known explicit constructions of these graphs
involved algebraic operations that are provably impossible in AC0. We use recent
constructions involving the zig-zag product. For background and myriad appli-
cations of expanders please see the extensive survey of Hoory, Linial, Wigder-
son [13].

These graphs will be sparse and we choose to describe them in the adjacency
list representation. Note that for constant degree graphs the adjacency matrix
representation is at least as rich as the adjacency list representation. A d-regular
graph G = (V, E) is an eigenvalue c-expander if the second eigenvalue of the
normalized Laplacian of G is at least c (sometimes called the “spectral gap”).
In a lossless expander, vertex neighborhoods are essentially as large as possible.
Graph G is an expander with loss ε if every set S of size at most α|V | has
|Γ (S)| ≥ d(1 − ε)|S| (where α = α(ε, d) does not depend on the size of the
graph). Lossless expanders have proved useful in a host of settings. See Capalbo
et al. [14] for the first explicit construction and further references.

Theorem 3. For every ε > 0 there is a d = d(ε) > 0 such that there is an AC0

family of d-regular expanders with loss ε.

Proof. It will be convenient to think of the graph being represented by a circuit
that given (v, i) with v ∈ V and i ∈ [d] (given in binary), and its output will be
a vertex u ∈ V which is the ith neighbor of v.

Let G : N×M → N and H : M×D → M be two circuits (note that the degree
of G is the size of H). Then their zig-zag product G©z H : (N × M) × (D2) →
(N × M) is defined by (G©z H)((v, k), (i, j)) = (G(v, H(k, i)), H(H(k, i), j)).
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Note that the output of G©z H is simply a composition of the given circuits
in serial, and its depth is the sum of depths of their depths (and size at most
twice the sum of their sizes).

Below we rely upon two works. We use the simplified expander construction
of Alon et al. [15] that gives a c-eigenvalue expander using only two applications
of the zig-zag product. Then we do a zigzag product with a constant size graph
as in Capalbo et al. [14] to end up with with a lossless expander. We assume
familiarity with these constructions and only describe why they work for us.

As in [15] start with a Cayley expander G on N = (F2)n of degree M = n2,
arising from construction of ε-biased sets. As addition in GF (2)n is carried out
in NC0, this graph is an AC0-graph (we must move from NC0 to AC0 when
using the edge index to obtain the actual representation of that vector from
the generating set). This graph is composed once with a smaller copy of itself
with n2 vertices, and then again with another expander that is small enough to
be trivially an AC0-graph. This gives an eigenvalue expander that is clearly an
AC0-graph.

Now let us say a few words about the construction of lossless expanders on [14].
For these constructions it is useful to have the circuits output “extra information.”
Above, given (v, i) they produce only the ith neighbor of v, and now we’ll ask them
to output more information (whose main function is ”keeping the entropy” in the
input) beyond the neighbor. E.g. in [16] the circuit G will also include the index
of the edge along which that neighboring vertex was reached. This modified cir-
cuit, G : N × M → N × M is called there a “rotation map”. The objects which
are multiplied using the extension of zig-zag in [14] are not expanders, but other
pseudorandom objects related to extractors. In some of them as well the output
has two parts, carrying a similar information as in the “rotation map”.

With this in mind, the construction of lossless expanders in [14] has the exact
same structure as the one above, and explicitly describes them as composition
of functions (and as noted above, easily interpreted in circuit terms). The two
components needed are an eigenvalue expander, which was constructed above in
AC0 and a constant-sized graph, which is in AC0 trivially. 	


Open questions for NC0 graphs. Can NC0-graphs be constant-degree expanders?
We note that in the adjacency matrix representation the answer is “No”, since
any nontrivial NC0 circuit cannot even represent a constant-degree graph.

However, in the adjacency list representation the answer to the question is
less clear (e.g., logarithmic degree NC0 expanders exist in this representation).

2.2 Constructions of Power-Law Graphs

Many real-life graphs have a degree distribution that satisfies the power law: for
some parameter α > 0, the number of nodes of degree > x is proportional to x−α.
As mentioned in the introduction, the standard explanation for these is some
form of randomized attachment process where nodes favor other nodes with high
degree (“popular nodes”). It has also been observed empirically that the largest
few eigenvalues also satisfy a power law with exponent α/2: if the largest degrees
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are d1, d2, d3, . . . , the largest eigenvalues are close to
√

d1,
√

d2,
√

d3, . . .. This has
also been explained for random graph models by Mihail and Papadimitriou [17].

Theorem 4. For every α > 2 there is an AC0 family of graphs whose degrees
satisfy the power-law with exponent α, and furthermore the top k = N1/2α eigen-
values satisfy the eigenvalue power law.

Proof. Many constructions are possible but since we only have to ensure power-
laws for the degrees and some top eigenvalues we give a particularly easy one.

We note that since α > 2 the number of edges is
∑

d N/dα−1 = O(N) and the
max degree is less than N1/α. For simplicity we make all degrees powers of 2.
We divide vertices into O(log n) classes S1, S2, . . . , Sk, where |Si| = N/2iα and
degree of vertices in Si is close to 2i (we say “close to” because the construction
will allow degrees to deviate a little). Thus the maximum degree vertex is in Sk

and has degree N1/α.
Vertices in Si consist of vectors in GF (2)n whose first iα bits are 0 and the

bit immediately after these is 1. Thus the Si’s are disjoint, and furthermore
verifying whether a vector x lies in Si is an AC0 computation.

For now we describe the construction as randomized and allow poly(n) random
bits, which can obviously be appropriately chosen and hardwired so that certain
bad events listed below do not happen. For each i pick a random shift ai ∈
GF (2)n and connect x ∈ Si to x + ai + b where b is a vector whose last n − i
bits are zero. If x + ai + b is in Sj for j ≥ 5 then leave out the edge. Note that
the adjacency matrix of these connections is computable in AC0.

By construction, the degree of each node in Si is almost 2i, except that an
occasional node x may have some missing edges because x+ai+b happened to lie
in ∪j≥5Sj . Since this set has size

∑
j≥5 N/2jα < N/25α−1 the chance that this

happens (since shift ai is random) is less than 1/25α−1. By Markov’s inequality
the fraction of nodes in Si (for i ≥ 7) that have more than 1/10 th of their edges
missing is less than 1/4.

Now we argue about the top eigenvalues along the lines of Mihail and Pa-
padimitriou. One can show that the edges of k highest-degree vertices form a
union of (mostly) disjoint stars with high probability. Since the largest eigenvalue
of a d-star is

√
d − 1, the graph formed by these edges has largest eigenvalues

roughly
√

d1, . . . ,
√

dk. Furthermore, it is true that with high probability, for all
i ∈ [k], our graph contains much less than

√
di edges between the leaves of the

di-star. Hence, by eigenvalue interlacing, even including these edges does not
spoil the eigenvalue power law. Finally, one can show that the maximum degree
of the remaining edges is too small to influence the first k eigenvalues. 	


3 Hardness Results

One reason to study specific graph families such as bounded tree-width graphs
is that one can often solve certain problems more easily on them as compared to
general graphs. In this section we explore whether such better algorithms exist
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for low-complexity graphs. The negative results in this section will guide the
choice of what kind of algorithms to expect.

Note that N is the number of nodes in the graph, n = log2 N is the number
of labels in the vertices, and the algorithm is provided the entire graph as input.

The first result shows that there are unlikely to be efficient algorithms for the
usual NP-complete problems on AC0-graphs. We say the NP-complete problem
is usual if its NP-completeness can be proved using the classical Cook-style proof
followed by a simple gadget-based reduction in the style of Karp. (This notion
is obviously not precise. The precise version of the next theorem would involve
replacing “usual NP-complete” by a list of a few thousand explicit problems.)

Theorem 5. If NEXP 
= EXP then none of the usual NP-complete problem
can be solved on AC0-graphs in polynomial time.

Proof (sketch). Suppose a polynomial-time algorithm were to solve a usual NP-
complete problem, say CLIQUE, on AC0-graphs. We show how to use it to
decide any language L ∈ NTIME(2nc

) deterministically in time 2O(nc), which
contradicts the Theorem’s hypothesis.

For any input x ∈ {0, 1}n we can use the standard Cook-Karp style reduction
to produce a graph with 2O(nc) nodes which has a clique of a certain size iff
x ∈ L. Let us show that this instance is an AC0-graph, and therefore amenable
to be solved by the algorithm.

Recall that the Cook-style reduction consists of writing constraints for the
2 × 3 “windows” in the tableau of M ’s computation on x. The window —and
hence also each edge in the instance of CLIQUE—is defined by indices of the
type (i + b1, j + b2) where b1 ∈ {0, 1, 2}, b2 ∈ {0, 1}, and i, j ≤ 2nc

. As noted
in Example 2 the function i → i + 1 is computable in AC0 when i is given in
binary, we can easily design an AC0 circuit of size poly(nc) (with x hardwired
in it) that represents the CLIQUE instance. This shows that the instance is an
AC0-graph. 	

At first glance the use of the conjecture NEXP 
= EXP (which implies P 
= NP)
in the previous result may seem like overkill. But there is a (folklore) converse
of sorts known.

Theorem 6. If NEXP = EXP then every NP problem on P/poly-graphs
(thus, also on AC0-graphs) can be solved deterministically in npoly(log n) time.

Proof (sketch). Suppose A is an exponential time deterministic algorithm for a
NEXP-complete problem. Let L be any NP language. To solve it on P/poly-
graphs of size N , we note that the input can be represented by the circuit whose
size is poly(log N). Though the circuit is not provided as part of the input, it can
be recovered in exp(poly(log N)) time by exhaustive search. Now we can think
of the problem as really one in NEXP where the input is this circuit. Now we
can use A to solve this problem in time exp(poly(log N)). 	

How about P-complete problems on AC0 graphs? Can we solve them more
efficiently than on general graphs? The following theorem –proved completely
analogously to the previous two theorems—suggests that we cannot.
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Theorem 7. If EXP 
= PSPACE then no usual P-complete problem can be
solved on AC0-graphs in polylog space. If EXP = PSPACE then every problem
in P can be solved on P/poly-graphs in polylog space.

3.1 Results about Hardness of Approximation

We already saw that problems like CLIQUE cannot be optimally solved on AC0-
graphs in polynomial time if NEXP 
= EXP. What about approximation? We
note that the current proof of the PCP Theorem (specifically, the generalization
from NP to NEXP) and related results imply that current inapproximability
results can be transfered to show hardness of the same problem on NC1-graphs.
The following is a sample result.

Theorem 8. If NEXP 
= EXP then the MAX-CLIQUE problem on NC1-
graphs cannot be approximated within any constant factor in polynomial time.

Proof (sketch). The only known proof [18,19,20] of the result NEXP =
PCP(poly(n), 1) involves taking polynomial extension and then using proce-
dures for polynomial testing/correcting and sum-check. These involve finite field
arithmetic on n-bit vectors (where the graph size is 2n), which is possible in NC1.
The proof has a second step involving verifier composition which is trivially in
NC1 because of the smaller inputs involved.

With these observations and the known reduction from PCP(poly(n), 1) to
approximating MAX-CLIQUE [21] we can finish the proof as in Theorem 5. 	

The stumbling block in proving a similar result for AC0 graphs is that current
PCP constructions rely upon field operations that cannot be done in AC0. It is
conceivable that this is inherent, and one way to show this would be to give a
better CLIQUE approximation algorithm for AC0 graphs. This would probably
involve an interesting new result about AC0.

At the same time, simple approximation algorithms such as basic SDP relax-
ations will probably not lead to better approximation in most cases. For example,
for MAX-CUT the integrality gap of the standard SDP relaxation is achieved
on instance of finite size, which are clearly AC0.

Theorem 9. The worst-case integrality gaps of the standard SDP relaxation
on AC0 graphs for MAX-CUT (see [22]) is 0.878.. (i.e., same as for general
graphs).

4 Algorithms for Low-Complexity Graphs

The hardness results in Section 3 greatly constrict our options in terms of what
kinds of algorithms to shoot for on AC0 graphs.

Of course, the only hope in designing such algorithms is to exploit something
about the structure of AC0 graphs (e.g., Proposition 1). Unfortunately, this
hope is somewhat dashed in Section 3.
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In light of these hardness results, it is reasonable to turn to sampling-based
algorithms from areas such as property testing and sublinear algorithms, which
result in a fairly weak approximation (necessarily so, since only a small portion
of the graph is examined). Since the introduction of the property testing idea
by Goldwasser, Goldreich, and Ron [23], a large body of literature has grown up
in this area. Note that such algorithms are natural to consider for AC0 graphs,
since we are given a circuit oracle for the edges.

We notice that many algorithms in this area implicitly give a stronger result
than formally stated: in many cases if the graph is AC0, then the approximate
solution to the problem (namely, a cut, assignment, etc.), which is an object
of size exp(n), can also be represented as an AC0 circuit. As an illustrative
example, we use MAX-CUT.

Theorem 10. For any ε > 0 there is a polynomial-time randomized algorithm
that, given an AC0 circuit computing f : {0, 1}n×{0, 1}n → {0, 1} representing a
graph in the adjacency matrix representation, produces an AC0 circuit computing
some g : {0, 1}n → {0, 1} circuit such that the cut (g−1(0), g−1(1)) in the graph
has capacity at least OPT − εn2 where OPT is the capacity of a MAX CUT in
the graph.

Proof. For any ε > 0, the sampling algorithm of Alon et al. [24] samples k =
O(1/ε5) vertex pairs and examines whether or not the corresponding edges are
present in the graph. This suffices for it to estimate the capacity of the maximum
cut within additive error εN2. In fact the proof of correctness shows something
stronger. It gives a function h : {0, 1}(k

2)×{0, 1}k → {0, 1} such that the following
is true for any graph G = (V, E) of any size. For any subset of k vertices S let
ES ∈ {0, 1}(k

2) be the characteristic vector showing which of the
(
k
2

)
pairs of S

are connected by an edge. If v is any other vertex, let vS be a characteristic
vector showing which of the k nodes of S are connected to v by an edge. For
every S let gS : V → {0, 1} be defined as gS(v) = h(ES , vS). (Thus gS implicitly
defines a cut of the graph.) Then if S is chosen uniformly at random, then the
probability is at least 0.99 that the cut represented by gS has capacity at least
OPT − εn2

Thus the randomized algorithm is to sample S at random and output the
function gS . Note that if the graph was AC0 then so is gS . 	

In fact, using the subsequent work of Alon et al. [25] there is a similar algorithm
(though again not mentioned explicitly) as in Theorem 10 for every testable
graph property. For example, the property of being C-colorable is testable for
any constant C. The analog of Theorem 10 for this problem shows that the final
AC0 circuit will compute a C-coloring that is a proper coloring of some graph
that differs in at most εn2 edges from G. The sampling complexity is much worse
than for MAX-CUT, though still constant for every constant ε > 0.

4.1 Algorithms for the Adjacency List Representation

Property testing has also been studied in the adjacency list representation, and
some algorithms transfer to the AC0 setting. For instance the work of [26] implies
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that it is possible to test in poly(n/ε) time whether the AC0-graph is ε-close
to a graph that is minor-free (ε-close means in this context that the symmetric
difference of the edge sets of the two graphs is at most εNd).

However, it has been shown that testing many interesting graph properties
require examining Ω(

√
N) vertices in the adjacency list model. We note that

this need not rule out existence of good algorithms for AC0 graphs in the sense
of Theorem 10. The reason is that the lowerbounds assume an edge oracle that
is black-box, whereas AC0 circuits of size n are learnable (albeit only with a very
inefficient algorithm) with poly(n) = poly(log N) queries.

Theorem 11. Every graph property is ε-testable (with 2-sided error) using
poly(log N/ε) evaluations of the AC0 circuit representing the adjacency list of
the d-regular graph.

Proof. The adjacency list consists of d log N bits, and each is computed by a cir-
cuit of size poly(log N) whose output is a single bit. Each of these d log N circuits
can be learnt after evaluating it on poly(log N/ε) random points. Namely, if we
simply pick the circuit that best fits those poly(log N/ε) values, then the stan-
dard Chernoff bound calculation shows that this circuit is with high probability
(over the choice of the sample points) correct for all but ε/10d logN fraction of
the inputs. Doing this for all d log N circuits ensures that we get an AC0 rep-
resentation of the graph that is ε/10-close to the true graph. Having obtained
such a representation, we can try all graphs that are ε/9-close to our graph and
check if any of them have the property. 	


4.2 Adapting Sketching Algorithms to Low-Complexity Graphs

Sketching algorithms are given a data matrix M , and using random sampling
they construct a sketch S(M) of this data which can be used to approximate the
value of some specific function f on M .

Here we note that if M is a low-complexity matrix —in other words, M(i, j)
can be produced by a low-complexity computation given i, j — many known
sketching algorithms produce the sketch S(M) that is also a low-complexity
object. Usually this is trivial to see if by “low complexity” we mean NC1 but
sometimes it is true for even AC0 thanks to the following fact about AC0.

Theorem 12 (Approximate counting). Let f : {0, 1}n × {0, 1}n → {0, 1}
be computable by an AC0 circuit and define g : {0, 1}n → {0, 1} as g(x) =∑

y f(x, y). Then for every ε, c > 0 there is a AC0 circuit that given x as input
outputs 1 if g(x) > c and 0 if g(x) < c − ε, and an arbitrary value otherwise.

Proof. We give a probabilistic construction. Pick m = poly(n) random vectors
y1, y2, . . . , ym and for any x try to compute

∑
i≤m f(x, yi). Using our observation

in Example 2 there is an AC0 circuit (even explicit thanks to [11]) that outputs
1 if

∑
i≤m f(x, yi) > c and 0 if

∑
i≤m f(x, yi) < c − ε/2. Letting m > n2/ε2

allows us to conclude via Chernoff bounds that
∑

i f(x, yi) correctly estimates
g(x) =

∑
y f(x, y) for all x ∈ {0, 1}n. 	
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As an example we describe how to compute a special sketch of a matrix M called
low rank decomposition.

Theorem 13. Let A be an N ×N matrix that is AC0, and whose entries have
absolute value at most log N . Then there is a randomized poly(n) time algorithm
that given ε > 0 produces an AC0 matrix M with all entries of absolute values
O(log N) such that |A−M |F ≤ |A−M∗|F + εN2, where | · |F denotes Frobenius
(i.e. sum of squares) norm and M∗ is the rank k matrix that minimizes |A −
M∗|F .

Proof. The theorem is implicit in the paper of Frieze, Kannan, Vempala [27]
together with some simple observations. For simplicity we assume the matrix is
0/1. The FKV algorithm starts by sampling s = poly(k, ε) columns according
to the probability distribution where column i is picked with probability propor-
tional to its squared �2 norm. Since we can estimate the squared �2 norm up to
additive error ε by Theorem 12 the sampling of columns is easily implemented
using standard rejection sampling. Next the FKV algorithm samples s rows us-
ing a similar sampling. Let S be the submatrix defined by the sampled columns
and W be the final s × s matrix.

Then it computes the top k singular vectors u1, u2, . . . , uk of the above s × s
submatrix and scaling factors c1, c2, . . . , ck (depending only on W ) and lets vt =
ctSut. The final approximation is M = A · (∑t vtv

T
t ).

Now we observe that if suffices to compute the ui’s up to precision 1/poly(s)
which is a constant. Thus the ui’s are computable in AC0 via brute force. Then
vt = ctSut is computable up to precision ε/k2 in AC0 by Theorem 12, which
implies that M is also computable up to precision ε in AC0. 	
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