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Preface

ICALP 2009, the 36th edition of the International Colloquium on Automata,
Languages and Programming, was held on the island of Rhodes, July 6–10,
2009. ICALP is a series of annual conferences of the European Association for
Theoretical Computer Science (EATCS) which first took place in 1972. This
year, the ICALP program consisted of the established track A (focusing on
algorithms, complexity and games) and track B (focusing on logic, automata,
semantics and theory of programming), and of the recently introduced track C
(in 2009 focusing on foundations of networked computation).

In response to the call for papers, the Program Committee received 370 sub-
missions: 223 for track A, 84 for track B and 63 for track C. Out of these, 108
papers were selected for inclusion in the scientific program: 62 papers for track
A, 24 for track B and 22 for track C. The selection was made by the Program
Committees based on originality, quality, and relevance to theoretical computer
science. The quality of the manuscripts was very high indeed, and many deserv-
ing papers could not be selected.

ICALP 2009 consisted of five invited lectures and the contributed papers.
This volume of the proceedings contains all contributed papers presented in track
A together with the papers by the invited speakers Kurt Mehlhorn (Max-Planck-
Institut für Informatik, Saarbrücken) and Christos Papadimitriou (University of
California at Berkeley). A companion volume contains all contributed papers
presented at the conference in track B and track C, together with the papers
by the invited speakers Georg Gottlob (University of Oxford), Tom Henzinger
(École Polytechnique Fédérale de Lausanne), and Noam Nisan (Google, Tel Aviv,
and Hebrew University).

The following workshops were held as satellite events of ICALP 2009:

ALGOSENSORS 2009—5th International Workshop on Algorithmic Aspects of
Wireless Sensor Networks

DCM 2009—5th International Workshop on Developments in Computational
Models

FOCLASA 2009—8th International Workshop on Foundations of Coordination
Languages and Software Architectures

QUANTLOG 2009—Workshop on Quantitative Logics 2009

We wish to thank all authors who submitted extended abstracts for consid-
eration, the Program Committees for their scholarly effort, and all referees who
assisted the Program Committees in the evaluation process.

Thanks are due to the sponsors (Ministry of National Education and Re-
ligious Affairs of Greece, Research Academic Computer Technology Institute
(CTI), Piraeus Bank) for their support, and to the Research Academic
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Computer Technology Institute (CTI) for the local organization. We are also
grateful to all members of the Organizing Committee.

Thanks also to Andrei Voronkov for his help with the conference management
system EasyChair, which was used in handling the submissions and the electronic
PC meeting as well as in assisting in the assembly of the proceedings.

April 2009 Susanne Albers
Alberto Marchetti Spaccamela

Yossi Matias
Paul G. Spirakis

Wolfgang Thomas
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Assigning Papers to Referees

Kurt Mehlhorn

Max-Planck-Institut für Informatik
and

Department of Computer Science, Saarland University

Refereed conferences require every submission to be reviewed by members of a
program committee (PC) in charge of selecting the conference program. A main
responsibility of the PC chair is to organize the review process, in particular,
to decide which papers are assigned to which member of the PC. The PC chair
typically bases her decision on input from the PC, her knowledge of submissions
and PC members, or scores that are computed automatically from keywords pro-
vided by authors and PC members. From now on, we call PC members reviewers
or referees.

There are many software systems available that support the PC chair in
her task; for example, EasyChair [8], HotCRP [7], Softconf [2], Linklings [1],
CMT [4], and Websubrev [6]. Used in more than 1300 conferences in 2008 alone
[9], EasyChair is currently the most popular conference management software.
The system asks the reviewers to declare conflicts of interests and to rank the
papers (for which the reviewer has no conflict of interest) into three classes: high
interest, medium interest, and low interest. This process is called bidding. Based
on this information, the system automatically computes an assignment that the
PC chair can later review and modify accordingly. Creating an assignment from
scratch by hand is normally not feasible since many conferences get in excess
of 500 submissions [3].

The talk will be based on the paper Assigning Papers to Referees [5] by Naveen
Garg, Telikepalli Kavitha, Amit Kumar, Kurt Mehlhorn, and Julián Mestre. The
paper is available at

http://www.mpi-inf.mpg.de/~mehlhorn/ftp/RefereeAssignment.pdf

In this paper, we propose to optimize a number of criteria that aim at achiev-
ing fairness among referees/papers. Some of these variants can be solved op-
timally in polynomial time, while others are NP-hard, in which case we design
approximation algorithms. Experimental results strongly suggest that the assign-
ments computed by our algorithms are considerably better than those computed
by popular conference management software.

References

1. Linklings, http://www.linklings.com/
2. Sofconf, http://www.softconf.com/
3. Apers, P.: Acceptance rates major database conferences,

http://wwwhome.cs.utwente.nl/~apers/rates.html

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 1–2, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.mpi-inf.mpg.de/~mehlhorn/ftp/RefereeAssignment.pdf
http://www.linklings.com/
http://www.softconf.com/
http://wwwhome.cs.utwente.nl/~apers/rates.html


2 K. Mehlhorn

4. Chaudhuri, S.: Microsoft’s academic conference management service,
http://cmt.research.microsoft.com/cmt/

5. Garg, N., Kavitha, T., Kumar, A., Mehlhorn, K., Mestre, J.: Assigning Papers to
Referees (2008),
http://www.mpi-inf.mpg.de/~mehlhorn/ftp/RefereeAssignment.pdf

6. Halevi, S.: Websubrev, http://people.csail.mit.edu/shaih/websubrev/
7. Kohler, E.: HotCRP, http://www.cs.ucla.edu/~kohler/hotcrp/
8. Voronkov, A.: EasyChair, http://www.easychair.org
9. Voronkov, A.: EasyChair - users, http://www.easychair.org/users.cgi

http://cmt.research.microsoft.com/cmt/
http://www.mpi-inf.mpg.de/~mehlhorn/ftp/RefereeAssignment.pdf
http://people.csail.mit.edu/shaih/websubrev/
http://www.cs.ucla.edu/~kohler/hotcrp/
http://www.easychair.org
http://www.easychair.org/users.cgi


Algorithmic Game Theory: A Snapshot

Christos H. Papadimitriou�

Division of Computer Science, U.C. Berkeley
christos@cs.berkeley.edu

Abstract. Algorithmic game theory is the research area in the interface
between the theories of algorithms, networks, and games, which emerged
more than a decade ago motivated by the advent of the Internet. “Snap-
shot” means several things: very personal point of view, of topical and
possibly ephemeral interest, and put together in a hurry.

1 Introduction

Algorithmic game theory is arguably at a watershed point of its development.
The field has grown tremendously in community size and stature. The basic
problem areas have been defined and progress has been made — enough to jus-
tify a field-crystallizing edited book [36]. The emergence, and persistence, of
important questions still outpace the exciting answers (see below for an idiosyn-
cratic collection of both), but now it is a race. Economists are starting to pay
attention, so we better have something meaningful — to them — to say.

2 Computing an Equilibrium

Games are thought experiments for understanding and predicting the behavior
of rational strategic agents. The predictions of the theory are called equilibria,
of which the Nash equilibrium is perhaps the most famous. One of the earliest
goals of algorithmic game theory was to understand the complexity of comput-
ing equilibria. This was quite predictable, given our field’s obsessions, but it also
entails an important contribution to the other side, as algorithmic issues have
influenced and shaped the debate on equilibrium concepts. We now know that
computing a Nash equilibrium is PPAD-complete ([13], see [14] for a high-level
exposition), even for 2-player games [8]; as a result, the most important question
in this realm now is: Is there a polynomial-time approximation scheme (PTAS)
for computing a Nash equilibrium? The standard approximation concept used
in the literature is additive with normalized positive payoffs; for relative (multi-
plicative) approximation when negative payoffs are allowed, a negative answer is
now known [11]. A quasipolynomial-time approximation scheme for this problem
had been known for some time [31]; in fact the algorithm in [31] is of a special

� Supported by NSF grants CCF-0635319, CCF-0515259, a gift from Yahoo! Research,
and a MICRO grant.

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 3–11, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



4 C.H. Papadimitriou

interesting kind called oblivious, in that it examines possible solutions without
looking at the game except to check the quality of the approximation. It can be
shown [15] that the algorithm in [31] is nearly optimal among oblivious ones.

But how about special cases for which exact polynomial algorithms exist? It
is quite remarkable that zero-sum games are essentially the only special case
of the problem that we know how to solve — for 80 years now [48]. This can
be generalized slightly to bimatrix games whose matrices, or their sum, are
of low rank [25,31]. In another page of this volume [16] we show an interesting
generalization to networks whose edges are zero-sum games (see below for further
discussion). Strictly competitive games, apparently defined by Aumann, is an
intriguing class of games generalizing the zero-sum ones; these are the games
which have, along with zero-sum games, the following property: if both players
switch from a pair of mixed strategies to another, then one is winning and the
other is losing. Unfortunately, and rather astonishingly, it was recently shown
[1] that this well studied and often mentioned “generalization” is void: zero-sum
games (and their trivial affine variants) are the only examples! Finally on the
subject of polynomially solvable special cases, recall that correlated equilibria are
efficiently computable in general games via linear programming (essentially by
design); for a nontrivial extension to succinctly representable games see [37,38].

Symmetry. Nash points out in his 1951 paper [34] that a modification of his
proof establishes that a symmetric game (i.e., a game in which all players are
identical) has a symmetric equilibrium (all identical players do the same thing).
But are symmetric games easier? A beautiful reduction due to Gale, Kuhn and
Tucker [20], which actually predated Nash’s result, establishes that finding an
equilibrium in a symmetric 2-player game cannot be easier than finding a Nash
equilibrium in a general game (which we now know, is not easy at all). The
reduction creates a game whose strategy space is the union of the two strategy
spaces. Interestingly, in that same volume with [20], there is an independent
proof of the same fact by Brown and von Neumann [5] based on the product of
the strategy spaces. Somewhat surprisingly, neither reduction, or straightforward
modification, works for three players, so it is currently open whether finding an
equilibrium in a symmetric three-player game is easier than finding an equilib-
rium in a general game. We conjecture that symmetric games are no easier than
general ones, for any number of players. Note also that it is not known how hard
it is to find a non-symmetric Nash equilibrium in a symmetric game — it is at
least PPAD-hard.

But symmetry does have definite dividends in multiplayer games. There is a
polynomial-time algorithm (albeit, one relying on decision algorithms for real
closed fields and therefore not very efficient with current technology) for finding
symmetric Nash equilibria in symmetric games with n players and few (about
logn) strategies [38]. A very important class of games results from a particu-
lar relaxed kind of symmetry called anonymity: the players have different utility
functions, but these depend on the strategy the player chooses, and on how many
of the other players choose each strategy — not on the identities of the players
who choose them (think of the game “shall I drive or take the bus?”). That is,
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the utilities are symmetric functions of the other players’ choices. There is now
a host of positive algorithmic results for such games culminating in an nO(log2 1

ε )

PTAS [15]. These algorithms rely on results approximating, with more and more
sophisticated techniques, the distribution of sums of binomial/multinomial vari-
ables, via other such sums whose probabilities are multiples of ε. There is no
known limit to possible improvements: for all we know, this class of games can be
solved exactly in polynomial time — I do believe that they are PPAD-complete.

Price Equilibria. Nash’s theorem not only launched Game Theory, but also in-
spired the price equilibrium theorems of Arrow and Debreu [2], a very important
realm of positive results in Microeconomics. Algorithms for finding such price
equilibria had been an open question for some time. We now have polynomial
algorithms for certain special cases (all falling within the subclass of “markets
with gross substitutability,” that is, markets in which increasing the price of a
good never decreases the demand of other goods, a case long known to have
positive algorithmic properties akin to convexity, see Chapters 5 and 6 of [36]).
One particular algorithm [10], again for such a special case, is of an interesting
and realistic sort that can be called “a price adjustment mechanism:” we look at
the prices and the excess demands, and possibly also the history of both, and,
based on this information, we adjust the prices. In contrast, all other known
algorithms for price equilibria zero in to the equilibrium via much less natural
primitives such as pivoting or hyperplane separation. We also have, at long last,
some intractability results for classes of markets (consumer utilities) that do not
fall in the gross substitutability category [9,7], as well as an exponential lower
bound (without complexity assumptions) for any price adjustment mechanism
that works in general markets [42].

3 Choosing an Equilibrium

The multiplicity of Nash equilibria has always been a tension between the algo-
rithmic and game-theoretic perspective. Somewhat forgotten is an answer pro-
vided decades ago by two great game theorists [22], page 144: Players can be
assumed to have prior ideas about how their opponents will play, and to start by
best-responding to those. If now the players’ beliefs evolve from that prior to the
realities of the actual response, this creates a linear tracing procedure which, in
the absence of degeneracies, points to one equilibrium. It would be interesting to
revisit this idea from the complexity-theoretic point of view. Is the linear trac-
ing procedure, for example, PSPACE-complete? Incidentally, another important
idea in [22], risk dominance of equilibria, was recently taken on in [32].

But the ultimate conceptual contribution to game theory is the introduction of
a meaningful, compelling, and influential equilibrium concept. I believe that the
novel point of view of algorithmic game theory (with its computational angle and
Internet zeitgeist) is capable of producing very interesting ideas here — besides,
the recent negative complexity results for Nash equilibria provide new motivation
toward this goal. The territory explored so far extends almost exclusively in the
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direction of learning and repeated games, see [18] for an early discussion and
[21,17] for some later attempts.

Repeated Games. The study of repeated games is, of course, a time honored
branch of classical game theory, the source of powerful models, as well as the
justification for concepts such as the mixed Nash equilibrium (and the arena of
early interactions between game theory and Computer Science, recall for example
[41]). Part of the conventional wisdom in repeated games is that the equilibrium
space is much richer and better behaved than that of one-shot games by dint
of an important cluster of insights and results known as the Folk Theorem: any
reasonable combination of payoffs can be realized by a Nash equilibrium of the
repeated game (for example, in the repeated prisoner’s dilemma nearly-always-
collaboration is possible). It was recently pointed out in [4] that this fundamental
result comes with serious, if somewhat covert, computational difficulties: Nash
equilibria in repeated games are no more easily accessible (for three or more
players) than those of one-shot games.

Learning. The point of repetition in games is to help players adjust to the game
and to each other — that is to say, to learn. Learning in games has a long history,
see Chapter 4 of [36]; it had been known for some time that a particular flavor
of learning known as no-regret learning — which in a very real sense is a novel
equilibrium concept — converges to the Nash equilibrium in zero-sum games
[19], and, in a different variant, to correlated equilibria in general games [24].
More recently, important connections between no-regret learning and the price
of anarchy (see the next section) has been brought to the fore, see for example
[3,47,28].

But of course nobody believes seriously that learning can fathom the in-
tractable, converge fast to a Nash equilibrium in general games; surprisingly,
we have very little concrete information on this. It can be shown through com-
munication complexity arguments [23] that in n-player games exponential time,
in n, is needed to converge to a Nash equilibrium (pure or mixed) by learning
algorithms — but then in such games the input would be exponential in n, and
the proof entails pointing out that all this information must be exchanged for
coordinated convergence to equilibrium. It was recently pointed out that a class
of learning-type algorithms [12] fail to converge in polynomial time (in the accu-
racy) to a Nash equilibrium even for two-person games with three strategies per
player — they do in the case of zero-sum games, and in the case of two strategies.
Can we come up with exponential lower bounds (independent of any complexity
assumptions) on restricted classes of algorithms for finding Nash equilibria in
bimatrix games? Since our ambition here falls short of proving that P �= NP,
we better restrict ourselves to algorithms that are incapable of identifying — or
approximating — the payoff matrices.

Incidentally, a very early instance of the learning approach to games is Julia
Robinson’s 1950 proof [43] that a particular algorithm called fictitious play (both
players know all payoffs, assume that the other player’s mixed strategy is cap-
tured by the histogram of her past plays, and best-respond to that) converges in
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the case of zero-sum games — but the best known upper bound on the number
of iterations needed to converge is exponential in the number of strategies (it is
implicit in Robinson’s inductive proof [43]). Karlin1 conjectured fifty years ago
that the true convergence rate is in fact quadratic.

4 Networks and Games

Scott Shenker’s famous quote “The Internet is an equilibrium — we just have to
identify the game” captures perfectly the complex of reasons that made game-
theoretic thought relevant to Computer Science ca. the late 1990s. The Internet
is a computational artifact that was not designed (except in the loosest and
broadest sense) by an entity but emerged from the unstructured interaction of
many. The area of the “price of anarchy” (see [30] and Chapter 17 of [36]) seeks
to gauge the loss of performance inherent in such process — the paradigmatic
work in this area is Roughgarden’s thesis [46,45] on the price of anarchy in
routing.

The model of [46], in which routing decisions are made by flows, is an adapta-
tion of classical models from transportation theory, and has little relevance to the
Internet. It was recently shown [40] that, if routing decisions are made by each
edge of the network so as to minimize downstream congestion experienced by the
flows through the edge, then the price of anarchy becomes unbounded. However,
if, instead, the edges charge per-unit-of-flow prices to their upstream neighbors
and maximize revenue minus cost, it is shown (under assumptions) that the price
of anarchy becomes one. In other words, this is another instance in which prices,
magically, usher in efficiency. One important cluster of questions is, how do the
conventions and protocols of today’s Internet, such as the BGP protocol gov-
erning the interactions between autonomous systems, limit this ideal efficiency?
Examples of features of BGP that may be sources of inefficiency are: Long-term
agreements that are oblivious to fluctuations in downstream congestion condi-
tions; and selection of a single downstream routing path per destination.

But networks are changing. Social networks such as Facebook are only the
latest and most explicit examples of the important networks of interactions be-
tween entities that had always been Internet’s raison d’ être — enabled by it
and embedded in it in a variety of ways. I believe that it is productive to un-
derstand such networks as graphs whose edges are games played by the nodes
— the so called graphical polymatrix games, in which each node chooses a com-
mon strategy to play in all incident games, and receives the sum of the resulting
payoffs. In fact, such modeling is not new: past work on the spreading of tech-
nologies and ideas in a social network [29], for example, falls squarely into this
framework, with coordination games at the edges (see [32] for recent work on
the convergence of such games). In a paper in this volume [16], a simple but
rather surprising result is shown: If the edges of the graph are zero-sum games,
then the whole game has the minmax property and is easily solvable. In fact,
1 Sam Karlin (1924–2007), a giant of early game theory among other fields, whose

work is not as broadly known to our community as one would have expected.
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the nodes/players can converge to the equilibrium via distributed learning, and
each of them has a value capturing the sum total of the advantages in both her
position in the network and in the structure of the incident games. Incidentally,
economists are getting increasingly interested in the effects of network structure
on markets and other economic interactions, and the point of view in this para-
graph may be an important opportunity for our field to contribute to modern
economic thought.

5 Mechanism Design

Mechanism design [44] seeks to create games in which the desired (socially op-
timum or, more generally, beneficial to the designer) behavior emerges as an
equilibrium of selfish participants, independently of the participants’s unknown
true preferences; this is done, of course, by providing appropriate incentives that
will make “gaming the system” unpalatable. It is a mature and much lauded
(see the above reference) area of economic theory, which, however, had been
perceived as a little too rich in sweeping positive results. The area of algorith-
mic mechanism design (see [35] and Chapter 9 of [36]) addresses this concern
by fathoming the intriguing tradeoffs between the effectiveness of the designed
mechanism and the computational complexity of its implementation.

Perhaps the most classical sweeping positive result in mechanism design is
the so-called VCG mechanism (named after the economists Vickrey, Clarke and
Groves who devised it): If monetary incentives are possible (and inconsequential,
which is another important aspect where computer scientists beg to differ, see for
example [26]), then essentially anything goes: there are appropriate incentives
that will elicit essentially any desired behavior of the agents. But algorithmic
game theory researchers have pointed out that the VCG approach to mechanism
design is paved with computational obstacles, as the computation of such pay-
ments is often an intractable problem. Now in computer science we know how
to deal with such intractability: We approximate. Unfortunately, incentives are
fragile, and work only if computed exactly. This three-way tension between com-
plexity, approximability, and incentive compatibility, has created an exciting and
deep research area. A recent result has connected, for the first time, this tradeoff
with classical complexity theory: It was shown that there is an NP-complete
optimization problem that can be approximated well (within a small constant
factor) in polynomial time but which, unless NP = BPP, cannot be approxi-
mated well (better than the square root of the problem’s natural parameter)
in an incentive-compatible way [39]. And in more recent work [33,6] steps have
been made towards extending this result to the central problem of combinatorial
auctions (see Chapter 11 of [36]).

Mechanism design is about important realities which lie at the roots of the
remarkable convergence of computational and economic thought over the past
decade or so: computational systems are no longer entities whose only job is to
produce correct outputs for the data on their input tape. They must encapsu-
late incentives so they are invoked with the right inputs — let alone invoked
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at all. . . Turing’s question “what can be computed?” is being revisited once
more (as it has been revisited several times in the past century to accommodate
considerations of complexity, distributed computation and on-line computation,
for example): Which functions can be computed, and with what accuracy, when
the inputs are owned by entities that are keenly interested in the outcome of the
computation?

Acknowledgment. Many thanks to Costis Daskalakis and Tim Roughgarden for
feedback on an earlier version.

References

1. Adler, I., Daskalakis, C., Papadimitriou, C.H.: Manuscript (2009)
2. Arrow, K.J., Debreu, G.: Existence of equilibria for a competitive economy. Econo-

metrica 22(3), 265–290 (1954)
3. Blum, A., Hajiaghayi, M., Ligett, K., Roth, A.: Regret minimization and the price

of total anarchy. In: STOC (2008)
4. Borgs, C., Chayes, J.T., Immorlica, N., Kalai, A.T., Mirrokni, V.S., Papadimitriou,

C.H.: The myth of the folk theorem. In: STOC 2008, pp. 365–372 (2008)
5. Brown, G.W., von Neumann, J.: Solutions of games by differential equations. In:

Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, Princeton
University Press, Princeton (1950)

6. Buchfuhrer, D., Umans, C.: Limits on the social welfare of maximal-in-range auc-
tion mechanisms (manuscript, 2009)

7. Chen, X., Dai, D., Du, Y., Teng, S.: Settling the complexity of Arrow-Debreu
equilibria in markets with linearly separable utilities (manuscript, 2009)

8. Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In:
FOCS (2006)

9. Codenotti, B., Saberi, A., Varadarajan, K., Ye, Y.: Leontief economies encode
nonzero sum two-player games. In: Proceedings of the seventeenth annual ACM-
SIAM Symposium on Discrete Algorithms, SODA (2006)

10. Cole, R., Fleischer, L.: Fast-converging tatonnement algorithms for one-time and
ongoing market problems. In: Proceedings of the 40th annual ACM Symposium on
Theory of Computing, STOC (2008)

11. Daskalakis, C.: The complexity of approximating a Nash equilibrium (submitted,
2009)

12. Daskalakis, C., Frongillo, R., Pierrakos, G., Papadimitriou, C.H., Valiant, G.: In
preparation (2009)

13. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. In: STOC 2006 (2006); SIAM Journal on Computing, special
issue for 2006 STOC (to appear)

14. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. CACM 58(2), 89–97 (2009)

15. Daskalakis, C., Papadimitriou, C.H.: On oblivious PTAS’s for Nash equilibrium.
In: STOC (2009)

16. Daskalakis, C., Papadimitriou, C.H.: On a network generalization of the minmax
theorem. In: Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5555, Springer, Heidelberg (2009)



10 C.H. Papadimitriou

17. Fabrikant, A., Papadimitriou, C.H.: The complexity of game dynamics: BGP os-
cillations, sink equilibria, and beyond. In: SODA 2008, pp. 844–853 (2008)

18. Friedmand, E.J., Shenker, S.J.: Learning and implementation on the Internet,
Working paper (1997)

19. Freund, Y., Schapire, R.E.: Adaptive game playing using multiplicative weights.
Games and Economic Behavior 29, 79–103 (1999)

20. Gale, D., Kuhn, H.W., Tucker, A.W.: On symmetric games. In: Kuhn, H.W.,
Tucker, A.W. (eds.) Contributions to the Theory of Games, Princeton University
Press, Princeton (1950)

21. Goemans, M.X., Mirrokni, V.S., Vetta, A.: Sink Equilibria and Convergence. In:
FOCS 2005, pp. 142–154 (2005)

22. Harsanyi, J.C., Selten, R.: A General Theory of Equilibrium Selection in Games.
MIT Press Classis, Cambridge (1982)

23. Hart, S., Mansour, Y.: The communication complexity of uncoupled Nash equilib-
rium procedures. In: STOC 2007 (2007)

24. Hart, S., Mas-Colell, A.: A simple adaptive procedure leading to correlated equi-
librium. Econometrica 68(5), 1127–1150 (2000)

25. Kannan, R., Theobald, T.: Games of fixed rank: A hierarchy of bimatrix games.
In: SODA (2007)

26. Karlin, A.R., Kempe, D., Tamir, T.: Frugality of truthful mechanisms. In: FOCS
(2005)

27. Kearns, M.J., Littman, M.L., Singh, S.P.: Graphical Models for Game Theory. In:
UAI (2001)
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36. Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V.: Algorithmic Game Theory.

Cambridge University Press, New York (2007)
37. Papadimitriou, C.H.: Computing correlated equilibria in multiplayer games. In:

STOC (2005)
38. Papadimitriou, C.H., Roughgarden, T.: Computing equilibria in multi-player

games. In: SODA 2005 (2005); J.ACM (full version, 2008)
39. Papadimitriou, C.H., Schapira, M., Singer, Y.: On the hardness of being truthful.

In: FOCS (2008)
40. Papadimitriou, C.H., Valiant, G.: Selfish routers and the price of anarchy (submit-

ted, 2009)
41. Papadimitriou, C.H., Yannakakis, M.: On complexity as bounded rationality (ex-

tended abstract). In: STOC 1994, pp. 726–733 (1994)
42. Papadimitriou, C.H., Yannakakis, M.: An impossibility theorem for price adjust-

ment mechanisms (manuscript, 2009)



Algorithmic Game Theory: A Snapshot 11

43. Robinson, J.: An iterative method of solving a game. Annals of Mathematics (1951)
44. Royal Swedish Academy of Sciences Mechanism Design Theory (2007),

http://nobelprize.org/nobelprizes/economics/laureates/

2007/ecoadv07.pdf

45. Roughgarden, T.: Selfish Routing. MIT Press, Cambridge (2002)
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Abstract. This paper deals with approximations of maximum indepen-
dent sets in non-uniform hypergraphs of low degree. We obtain the first
performance ratio that is sublinear in terms of the maximum or average
degree of the hypergraph. We extend this to the weighted case and give
a O(D̄ log log D̄/ log D̄) bound, where D̄ is the average weighted degree
in a hypergraph, matching the best bounds known for the special case
of graphs. Our approach is to use an semi-definite technique to sparsify
a given hypergraph and then apply combinatorial algorithms to find a
large independent set in the resulting sparser instance.

1 Introduction

This paper deals with approximations of maximum independent sets in hyper-
graphs of low degree. Recall that a hypergraph (set system) H = (V, E) has a
vertex set V and a collection E of (hyper)edges that are arbitrary subsets of
V . A hypergraph is weighted if vertices in V are assigned weights. It has rank
r if all edges are of size at most r, and is r-uniform if all are of size exactly
r. A set of vertices is independent if it does not properly contain any edge in
E. The degree of a vertex is its number of incident edges. We consider approx-
imation algorithms for the maximum independent set (MIS) problem in sparse
non-uniform hypergraphs.

The MIS problem is of fundamental interest, capturing conflict-free sets in a
very general way. It generalizes the classic independent set problem in graphs,
and thus inherits all its hardness properties. The vertices not in an independent
set form a hitting set of the hypergraph. Algorithms for MIS can therefore be
viewed as set covering algorithms with a differential measure, which lends it an
additional interest.

Hypergraph problems tend to be more difficult to resolve than the correspond-
ing graph problems, with the MIS problem a typical case. The best performance
ratio known for MIS in general hypergraphs, in terms of the number n of vertices,
is only O(n/ log n), which has a rather trivial argument [7]. For the graph case,

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 12–23, 2009.
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for comparison, the ratio is O(n(log logn)2/ log3 n) [4]. In terms of the maximum
degree Δ, a ratio of Δ is trivial, while previous work on MIS in hypergraphs has
improved only the constant term [2,8]. More specifically, a Δ/1.365-upper bound
was obtained for a greedy algorithm and a tight (Δ+1)/2-ratio for a local search
method, while in [8] a tight bound of (Δ+ 1)/2 was obtained for the greedy al-
gorithm as well as the best previously known bound of (Δ + 3)/5. The main
sign of success has been on sparse hypergraphs, where Turan-like bounds have
been proven [3,16,15]. Unlike graphs, however, the exact constant in the bounds
is not known.

The most powerful approach for the approximation of challenging optimiza-
tion problems has involved the use of semi-definite programming (SDP). It is
responsible for the best ratio known for IS in graphs of O(Δ log logΔ/ logΔ)
[6]. It is also involved in the complementary vertex cover problem [9], both in
graphs and in hypergraphs. Yet, it has failed to yield much success for MIS in hy-
pergraphs, except for some special cases. One intuition may be that hyperedges
result in significantly weaker constraints in the semi-definite relaxation than the
graph edges. The special cases where it has been successful — 2-colorable k-
uniform hypergraphs [6] and 3-uniform hypergraphs with a huge independence
number [11] — have properties that result in strengthened constraints. The use-
fulness of SDP for general MIS has remained open.

This state-of-the-art suggests several directions and research questions. A key
question is to what extent approximation ratios for IS in graphs can be matched
in hypergraphs. This can be asked in terms of different degree parameters, as
well as extensions. Given that graphs are 2-uniform hypergraphs and k-uniform
hypergraphs have certain nice properties, the question is also how well we can
handle non-uniform hypergraphs.

Our results. We derive the first o(Δ)-approximation for IS in hypergraphs match-
ing the O(Δ log logΔ/ logΔ)-approximation for the special case of graphs. Our
approach is to use an SDP formulation to sparsify the part of the instance formed
by 2-edges (edges of size 2), followed by a combinatorial algorithm on the result-
ing sparser instance. This is extended to obtain an identical bound in terms of the
average degree d̄ of an unweighted hypergraph. As part of the method, we also
obtain a k5/2−1/kd̄1−1/k+o(1)-approximation for hypergraphs with independence
number at least n/k.

We generalize the results to the vertex-weighted problem. In that case, no
non-trivial bound is possible in terms of the average degree alone, so we turn
our attention to a weighted version. The average weighted degree D̄ is the
node-weighted average of the vertex degrees. We give a O(D̄ log log D̄/ log D̄)-
approximation for MIS.

We apply two combinatorial algorithms to hypergraphs with few 2-edges.
One is a greedy algorithm analyzed by Caro and Tuza [3] for the k-uniform
case and Thiele [16] for the non-uniform case. The bound obtained in [16] is in
general unwieldy, but we can show that it gives a good approximation when the
number of 2-edges has been reduced. The other is a simple randomized algorithm
analyzed by Shachnai and Srinivasan [15].
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Organization. The paper is organized in the following way. In Sect. 2 we de-
scribe how to find a large sparse hypergraph in a given hypergraph H using
SDP technique. In Sect. 3 we give analysis of the greedy algorithm for MIS on
hypergraphs of rank 3 with small 2-degree, and then show how to apply this
greedy algorithm together with SDP to find a large hypergraph in H . In Sect.
4 we describe how to use a randomized algorithm together with SDP to find a
good approximation of a weighted MIS in hypergraphs.

2 Definitions

Given a hypergraph H = (V, E), let n and m be the number of vertices and
edges in H , respectively. We assume that H is a simple hypergraph, i.e. no edge
is a proper subset of another edge. An edge of size t is a t-edge. A hypergraph is
r-uniform if all edges are r-edges. A graph is a 2-uniform hypergraph. The rank
r of a hypergraph H is the maximum edge size in H .

Let dt(v) be t-degree of a vertex v, or the number of t-edges incident on v. We
denote by Δt and d̄t the maximum and the average t-degree in a hypergraph,
respectively. The degree d(v) of a vertex v is the total number of edges incident

on v, i.e. d(v) =
r∑

t=2
dt(v). We denote by Δ and d̄ the maximum and the average

degree in a hypergraph, respectively.
Given a function f : V → R that assigns weights to the vertices of H , let

w(H) = w(V ) =
∑

v∈V

w(v). We define D(v) = w(v)d(v) and D̄ =
∑

v∈V

w(v)d(v)/∑
v∈V

w(v) to be the weighted degree of a vertex v and the average weighted degree

in H , respectively.
By deleting a vertex v from a hypergraph H we mean the operation of deleting

v and all incident edges from H . By deleting a vertex v from an edge e we mean
the operation of replacing e by e \ {v}.

A (weak) independent set in H is a subset of V that doesn’t properly contain
any edge of H . Let α(H, w) be the weight of a maximum independent set in H .
If H is unweighted, then it is denoted as α(H).

3 Semidefinite Programming

We use semidefinite programming to find large subgraphs with few 2-edges. More
generally, we find subgraphs of large weight and small weighted average degree.
This is obtained by rounding the vector representation of a suitable subgraph;
such a subgraph is found by a result of Alon-Kahale. Along the way, we twice
eliminate vertices of high-degree to ensure degree properties.

Let us recall the definition of a vector coloring of a graph [10].

Definition 3.1 ([10]). Given a graph G and a real number h ≥ 1, a vector
h-coloring of G is an assignment of a |V (G)|-dimensional unit vector vi to each
vertex vi of G so that for any pair vi, vj of adjacent vertices the inner product
of their vectors satisfies
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vi · vj ≤ −
1

h− 1
. (1)

The vector chromatic number χ(G) is the smallest positive number h, such that
there exists a feasible vector h-coloring of G.

A vector representation given by a vector coloring is used to find a sparse
subgraph by the means of vector rounding [10]: choose a random vector b, and
retain all vertex vectors whose inner product with b is above a certain thresh-
old. The quality (i.e. sparsity) of the rounded subgraph depends on the vector
chromatic number of the graph. In order to approximate independent sets we
need to use this on graphs that do not necessarily have a small vector chromatic
number but have a large independent set.

A graph with a large independent set contains a large subgraph with a small
vector chromatic number, and there is a polynomial time algorithm to find it.
This comes from the following variation of a result due to Alon and Kahale [1]:

Theorem 3.2 ([7]). Let G = (V, E, w) be a weighted graph and �, p be numbers
such that α(G, w) ≥ w(G)/�+p. Then, there is a polynomial time algorithm that
gives an induced subgraph G1 in G with w(G1) ≥ p and χ(G1) ≤ l.

Let us now present our algorithm for finding a large-weight low 2-degree hyper-
graph. It assumes that it is given the size α of the maximum independent set
in the graph. We can sidestep that by trying all possible values for α, up to a
sufficient precision (say, factor 2).

Algorithm SparseHypergraph

Input: Hypergraph H(V, E), and its independence number α
Output: Induced hypergraph Ĥ in H of maximum degree 2kD̄ and maximum 2-

degree
√

2kD̄

Let k = w(H)/α and a = 1 + 1
ln ln D̄−1

.
Let G be the graph induced by the 2-edges of H .
Let G0 be the subgraph of G induced by nodes of degree at most 2kD̄ in H .
Find an induced subgraph G1 in G0 with w(G1)≥ (a−1)w(G)

2ak

with a vector 2ak-coloring.
Choose a random |V (G1)|-dimensional vector b.
Let G2 be the subgraph of G1 induced by vertices {v ∈ V (G1) : v · b ≥ c},

where c =
√

ak−2
ak

ln (2kD̄).

Let V̂ be the set of vertices of degree at most
√

2kD̄ in G2.
Output Ĥ, the subhypergraph in H induced by V̂ .

Fig. 1. The sparsifying algorithm

The algorithm SparseHypergraph can be implemented to run in polyno-
mial time. The subgraph G1 in G0 with small vector chromatic number and large
independent set can be found in polynomial time [1]. A vector representation
can be found within an additive error of ε in time polynomial in ln 1/ε and n
using the ellipsoid method [5] and Choleski decomposition.
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Analysis

Lemma 3.3. The graph G0 has weight at least w(H)(1 − 1/2k) and indepen-
dence number at least α(H)/2.

Proof. The graph G has the same weight as H , or w(V ). The independence
number of G is also at least that of H , since it contains only a subset of the
edges. Let X = V (G)−V (G0) be the high-degree vertices deleted to obtain G0.
Then, ∑

v∈X

w(v)d(v) ≥
∑
v∈X

w(v) · 2kD̄ = 2kD̄w(X) . (2)

Since
D̄ · w(V ) =

∑
v∈V

w(v)d(v) ≥
∑
v∈X

w(v)d(v) , (3)

we get from combining (3) with (2) that the weight w(X) of the deleted vertices
is at most w(V )/2k. Thus, w(G) ≥ (1 − 1/2k)w(H). Also, G0 has a maximum
independent set of weight at least α(G0, w) ≥ α(G, w) − w(X) ≥ α(H, w) −
w(X) ≥ w(H)/2k.

Observe that α(G0, w) ≥ w(H)/2k ≥ w(G0)/2k = w(G0)/2ak + w(G0)(a −
1)/2ak. Then, Theorem 3.2 ensures that a subgraph G1 can be found with
w(G1) ≥ w(G0)(a− 1)/2ak and χ(G1) ≤ 2ak. From that, a vector 2ak-coloring
of G1 can be found.

The main task is to bound the properties of the rounded subgraph G2. Karger
et al. [10] estimated the probability that G2 contains a given vertex or an edge.
Let N(x) denote the tail of the standard normal distribution: N(x) =

∫∞
x φ(z)dz,

where φ(z) = 1√
2π

exp
(
−x2

2

)
is the density function. Let τ =

√
2(ak−1)

ak−2 .

Lemma 3.4 ([10]). A graph G2 induced in G1(V1, E1) after vector-rounding
contains a given vertex in V1 with probability N(c) and a given edge in E1 with
probability N (cτ).

The following lemma states well-known bounds on the tail of the normal distri-
bution.

Lemma 3.5 ([14]). For every x > 0, φ(x)
(

1
x −

1
x3

)
< N(x) < φ(x) 1

x .

We can now bound the weight of the subgraph found.

Lemma 3.6. V̂ has expected weight Ω

(
w(G1)

(kD̄)
1
2− 1

k

√
ln(kD̄)

)
. This can be deran-

domized to obtain an induced subgraph V̂ with this much weight and maximum
2-degree at most

√
2kD̄.

Proof. First, for any edge (u, v) in G1 and G2 we define a weight function
w(u, v) = w(u) + w(v). Let w(V1) =

∑
v∈V (G1)

w(v) and w(E1) =
∑

(v,u)∈E(G1)

(w(v) + w(u)) be the weight of vertices and edges in G1. Similarly, let w(V2)
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and w(E2) be the weight of vertices and edges in G2. Let Xi be an indicator
random variable with Xi = 1, if V2 contains vi ∈ V1 and Xi = 0 otherwise. Then,
w(V2) =

∑
vi∈V1

w(vi)Xi. Using Lemma 3.4 and linearity of expectation we bound

E[w(V2)] by
E[w(V2)] = w(V1)N(c) . (4)

Similarly, we bound E[w(E2)] by

E[w(E2)] = w(E1)N(cτ) ≤ 2kD̄w(V1)N(cτ) , (5)

where in the last inequality we use the fact that maximum degree in G1 is
bounded by 2kD̄ (since we deleted the high-degree vertices from G and G1 is an
induced subgraph in G). Combining (4) and (5), we get that

E

[
w(V2)−

w(E2)√
2kD̄

]
= w(V1)N(c)−

√
2kD̄w(V1)N(cτ) . (6)

Observe that

cτ =

√
2(ak − 1)

ak
ln(2kD̄) =

√
2
(

1− 1
ak

)
ln(2kD̄)

and
exp(−(cτ)2/2) = (2kD̄)−1+1/ak .

Then, by Lemma 3.5

N(cτ) < φ(cτ)
1
cτ

=
(2kD̄)−1+1/ak

√
2π ·

√
2(ak−1)

ak ln(2kD̄)
(7)

and

N(c) > φ(c)
1
c

(
1− 1

c2

)
=

(2kD̄)−1/2+1/ak

√
2π ·

√
ak−2

ak ln(2kD̄)

(
1− ak

(ak − 2) ln(2kD̄)

)
.

(8)
Combining (6), (7) and (8), we deduce that

E

[
w(V2)−

w(E2)√
2kD̄

]
> w(V1)

(2kD̄)−1/2+1/ak

√
2π ·

√
ak−2

ak ln(2kD̄)(
1− ak

(ak − 2) ln(2kD̄)
−
√

ak − 2
2(ak − 1)

)
(9)

= Ω

(
w(V1)

(kD̄)1/2−1/k
√

ln(kD̄)

)
,

where in the last line we use a = 1 + 1
ln ln D̄−1

.
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The weight of vertices with degree greater than
√

2kD̄ is at most∑
vi∈V2

w(vi)d(vi)/
√

2kD̄ = w(E2)/
√

2kD̄. After deleting all such vertices from

G2, the expected weight of V̂ is E
[
w(V2)− w(E2)√

2kD̄

]
which is bounded by (10).

Finally, we can apply derandomization technique from [13] to derandomize
the vector rounding in polynomial time. In our algorithm an elementary event
corresponds to an edge in G2 and involves only two vectors corresponding to the
endpoints of the edge. This completes the proof.

We can bound the weight of the resulting hypergraph Ĥ in terms of the original

hypergraph. We have that w(V̂ ) = Ω

(
w(G1)

(kD̄)
1
2− 1

k
√

lnkD̄

)
, while using a = 1 +

1
ln ln D̄−1

, we have that

w(G1) =
(a− 1)w(G)

2ak
=

w(G)
2k ln ln D̄

=
w(H)

(
1− 1

2k

)
2k ln ln D̄

= Ω

(
w(H)
k ln ln D̄

)
.

Theorem 3.7. Let H be a hypergraph with average weighted degree D̄. The
SparseHypergraph algorithm finds an induced hypergraph in H of weight

Ω

(
w(H)

k3/2−1/kD̄1/2−1/k ln ln D̄
√

ln(kD̄)

)
, maximum 2-degree at most

√
2kD̄, and max-

imum degree at most 2kD̄.

4 Greedy Algorithm

Given a hypergraph H on n vertices with average degree d̄, our GreedySDP

algorithm first finds a sparse induced hypergraph H ′ in H using the Sparse-

Hypergraph algorithm and then uses the Greedy algorithm to find an inde-
pendent set in H ′.

The Greedy algorithm is a natural extension of the max-degree greedy al-
gorithm on graphs and uniform hypergraphs and was analyzed by Thiele [16].
Given a hypergraph H(V, E) with rank r, for any vertex v ∈ V let d̄(v) =
(d1(v), . . . , dr(v)) be the degree vector of v, where di(v) is the number of edges
of size i incident on v. Then, for any vertex v ∈ V let

f(d̄(v)) =
d1(v)∑

i1

d2(v)∑
i2

· · ·
dr(v)∑

ir

∏(
d1

i1

)∏(
d2

i2

)
· · ·
∏(

dr

ir

)
(−1)

r∑
j=1

ij

r∑
j=1

(j − 1)ij + 1

and let F (H) =
∑

v∈V

f(d̄(v)). The Greedy algorithm iteratively chooses a vertex

v ∈ V with F (H\v)≥F (H) and deletes v with all incident edges from H until
the edge set is empty. The remaining vertices form an independent set in H .

Caro and Tuza [3] showed that in r-uniform hypergraphs the Greedy algo-
rithm always finds a weak independent set of size at least Θ

(
n/Δ

1
r−1

)
. Thiele
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[16] extended their result to non-uniform hypergraphs and gave a lower bound
on the independence number as a complicated function of the degree vectors of
the vertices in a hypergraph. Using these two bounds, we prove the following
lemma.

Lemma 4.1. Given a hypergraph H on n vertices with maximum 2-degree
√

d
and maximum degree d, the Greedy algorithm finds an independent set of size
Ω(n/

√
d).

Proof. First, we truncate edges in H to a maximum size three by arbitrarily
deleting excess vertices. The resulting hypergraph H ′ still has maximum 3-degree
d and maximum 2-degree

√
d, and is now of rank 3. Moreover, an independent

set in H ′ is also independent in H . Thus, to prove the claim it is sufficient to
bound from below the size of an independent set found by the greedy algorithm
in H ′.

As shown in [16], Greedy finds an independent set in a rank-3 hypergraph
of size at least

α(H ′) ≥ n
d∑

j=0

√
d∑

i=0

(
d

j

)(√
d

i

)
(−1)(j+i)

i + 2j + 1
. (10)

By using the equality
∑
k

(
n
k

) (−1)k

x+k = x−1
(
x+n

n

)−1
we can simplify (10) as:

α(H ′) ≥ n

√
d∑

i=0

(−1)i

(√
d

i

)
1
2

⎛⎝ d∑
j=0

(
d

j

)
(−1)j

j + (i + 1)/2

⎞⎠
=

n

2(d + 1)

√
d∑

i=0

(−1)i

(√
d

i

)(
(i + 1)/2 + d

d + 1

)−1

. (11)

We show that for any value of d

Fd =

√
d∑

i=0

(−1)i

(√
d

i

)(
(i + 1)/2 + d

d + 1

)−1

(12)

is lower bounded by x
√

d for some x > 0. Then, from (11) the Greedy algorithm
finds an independent set of size at least Ω(n/

√
d).

Let fd(i) =
(√

d
i

)(
(i+1)/2+d

d+1

)−1
. Abusing binomial notation, we assume that(√

d
i

)
= 0, for any i >

√
d and

√
d integral. Then,

Fd =

√
d∑

i=0

(−1)ifd(i) . (13)

We define
qd(i) =

(i + 2)(i + 4) · · · (i + 2d + 2)
(i + 3)(i + 5) · · · (i + 2d + 1)

(14)
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for any i ≥ 0. Using Stirling’s approximation for the factorial function1 we obtain

qd(0) =
22d+1(d + 1)d

(2d + 1)
=
√

πd

(
1 +O

(
1
d

))
and

qd(1) =
(2d + 3)

22d+1(d + 1)(d + 1)
=

√
d

π

(
1 +O

(
1
d

))
.

Note that qd(i+2) = (i+3)(i+2d+4)
(i+2)(i+2d+3)qd(i) > qd(i), and so qd(i) >

√
d for any i ≥ 0.

Then, from the definition of fd(i) and (14) we have that fd(i+1)
fd(i) =

√
d−i

qd(i) < 1.
From (12) and (13) it follows that Fd > fd(0)− fd(1) and fd(0) = qd(0), then

Fd > fd(0)− fd(1)

= fd(0)

(
1−

√
d

qd(0)

)
= qd(0)−

√
d

= (
√

π − 1)
√

d

(
1 +O

(
1
d

))
. (15)

Thus, from (11), (12) and (15) the Greedy algorithm finds an independent set
of size at least Ω(n/

√
d).

The bound on the performance ratio of GreedySDP then follows from Lemma
4.1, Theorem 3.7 and the fact that truncating edges in SparseHypergraph

doesn’t increase the weight of a maximal independent set in a hypergraph.

Theorem 4.2. Given a hypergraph H on n vertices with average degree d̄ and
the independence number α(H) = n/k, the GreedySDP algorithm finds an

independent set of size at least Ω

(
n

k5/2−1/k d̄1−1/k ln ln d̄
√

ln(kd̄)

)
.

From Theorem 4.2 it is easy to see that if the maximum independent set in H is
relatively big, say Ω

(
n ln ln d̄

ln d̄

)
, i.e. k = O

(
ln d̄

ln ln d̄

)
, then GreedySDP obtains an

approximation ratio of O
(

d̄
ln d̄

)
. However, if the maximum independent set is at

most Ω
(

n ln ln d̄
ln d̄

)
, then Greedy alone is within a factor of O

(
d̄ ln ln d̄

ln d̄

)
. There-

fore, we run both Greedy and GreedySDP and output the larger independent
set found.

Theorem 4.3. Given a hypergraph H with average degree d̄, the GreedySDP-

MIS approximates the maximum independent set within a factor of O
(

d̄ ln ln d̄
ln d̄

)
.

Corollary 4.4. For small k the approximation factor of GreedySDP-MIS is
O
(
d̄1− 1

k +o(1)
)
.

1 Stirling’s approximation: N ! =
√

2πN
(

N
e

)N (1 + O
(

1
N

))
.
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The implication is the first approximation factor for the independent set problem
in hypergraphs that is sublinear in the average degree.

Corollary 4.5. The independent set problem in hypergraphs is o(Δ)-
approximable.

5 Randomized Algorithm

The RandomIS algorithm extends the randomized version of Turán bound on
graphs and was analyzed by Shachnai and Srinivasan in [15]. Given a hypergraph
H(V, E), the algorithm creates a random permutation π of V and adds a vertex
v to the independent set I, if there is no edge e such that e contains v and v
appears last in π among the vertices of e. Clearly, RandomIS outputs a feasible
independent set I, since it never contains the last vertex in any edge under the
permutation π.

Shachnai and Srinivasan [15] analyzed RandomIS on weighted hypergraphs.
They gave a lower bound on the probability that a vertex v ∈ H is added by the
algorithm to the independent set, using conditional probabilities and the FKG
inequality. In uniform hypergraphs the lower bound on the size of a independent
set found by RandomIS follows by summing the probabilities over the vertices
and applying linearity of expectation, giving a bound identical to that of Caro
and Tuza [3].

Theorem 5.1 ([15], Theorem 2). For any k ≥ 2 and any k-uniform hyper-

graph H, RandomIS finds an independent set of size at least
∑

v∈V

(
d(v)+1/(k−1)

d(v)

)−1

= Ω

( ∑
v∈V

w(v)

(d(v))
1

k−1

)
.

To extend the bound to non-uniform weighted hypergraphs, Shachnai and Srini-
vasan introduced the following potential function on a vertex v:

f(v) = min
j=1,2,···,a(v)

(dj(v))
− 1

kj (v)−1 ,

where a vertex v lies in edges of a(v) different sizes: kj(v), for j = 1, 2, · · · , a(v),
and dj(v) is the number of edges of size kj(v). Using similar analysis as in
Theorem 5.1, they proved the following bound:

Theorem 5.2 ([15], Theorem 3). Given a weighted hypergraph H(V, E), the
expected weight of the independent set produced by RandomIS is at least

Ω

( ∑
v∈V

w(v)

a(v)1/b(v) f(v)
)

, where b(v) = (minj(kj(v)− 1)).

Shachnai and Srinivasan also show in [15] how to derandomize RandomIS for
hypergraphs with bounded maximum degree, or logarithmic degree and sparse
neighborhoods.

Our algorithm RandomSDP first uses SparseHypergraph to find an in-
duced hypergraph H ′ in H with maximum 2-degree at most

√
2kD̄ and maxi-

mum degree at most 2kD̄; and then uses RandomIS to find an independent set
in H ′.
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The bound on the performance ratio of RandomSDP follows from Theorem

3.7 and Theorem 5.2, using that Ω

( ∑
v∈V

w(v)
a(v)1/b(v) f(v)

)
= Ω

⎛⎝∑
v∈V

w(v)
r∑

i=2
d

1
i−1
i

⎞⎠ by

the definitions of a(v), b(v) and f(v).

Theorem 5.3. Given a weighted hypergraph H with average weighted degree
D̄, the RandomSDP algorithm finds an independent set of weight at least

Ω

(
w(H)

k2−1/kD̄1/2−1/k ln ln D̄
√

ln(kD̄)

)
.

From Theorem 5.3 it follows that the RandomSDP algorithm approximates
MIS within a factor of O

(
D̄

ln D̄

)
if α(H, w) = Ω

(
w(V ) ln ln D̄

ln D̄

)
, whereas Ran-

domIS alone finds an approximation within a factor of O
(

D̄ ln ln D̄
ln D̄

)
if α(H, w) =

O
(

w(V ) ln ln D̄

ln D̄

)
. Therefore, given a hypergraph H , we run both RandomIS and

RandomSDP on H and output the larger of the independent sets.

Theorem 5.4. Given a hypergraph H(V, E) with average weighted degree D̄,
the RandomSDP-MIS approximates the weight of a maximum independent set
in H within a factor of O

(
D̄ ln ln D̄

ln D̄

)
.

6 Conclusions

In this paper we propose a new approach to the Maximum Independent Set
problem in weighted non-uniform hypergraphs. Our approach is to use SDP
techniques to sparsify a given hypergraph and then apply a combinatorial al-
gorithm to find a large independent set. Using this approach we derive o(d̄)-
approximation for IS in unweighted hypergraphs, matching the best known ratio
for IS in graphs, both in terms of maximum and average degree. We general-
ize the results to weighted hypergraphs, proving similar bounds in terms of the
average weighted degree D̄.

For further work one possible direction is to extend the result on the
GreedySDP-MIS to weighted hypergraphs. Another (and perhaps more in-
teresting) open question is to prove similar bounds in terms of the maximum
and average weighted hyperdegree, where the hyperdegree d∗(v) of a vertex v is

defined as d∗(v) =
r∑

t=2
dt(v)

1
t−1 . The hyperdegree is a generalization of a vertex

degree in a graph.
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6. Halldórsson, M.M.: Approximations of independent sets in graphs. In: Jansen, K.,
Rolim, J.D.P. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 1–13. Springer, Heidel-
berg (1998)
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Abstract. Correlation Clustering was defined by Bansal, Blum, and
Chawla as the problem of clustering a set of elements based on a, possi-
bly inconsistent, binary similarity function between element pairs. Their
setting is agnostic in the sense that a ground truth clustering is not
assumed to exist, and the cost of a solution is computed against the in-
put similarity function. This problem has been studied in theory and in
practice and has been subsequently proven to be APX-Hard.

In this work we assume that there does exist an unknown correct
clustering of the data. In this setting, we argue that it is more reason-
able to measure the output clustering’s accuracy against the unknown
underlying true clustering.

We present two main results. The first is a novel method for contin-
uously morphing a general (non-metric) function into a pseudometric.
This technique may be useful for other metric embedding and cluster-
ing problems. The second is a simple algorithm for randomly round-
ing a pseudometric into a clustering. Combining the two, we obtain a
certificate for the possibility of getting a solution of factor strictly less
than 2 for our problem. This approximation coefficient could not have
been achieved by considering the agnostic version of the problem unless
P = NP .

1 Introduction

Correlation Clustering was defined by Bansal, Blum and Chawla [1] as the prob-
lem of producing a clustering x of data points based on a binary function, h,
which tells us, for each pair, whether they are similar or not. The objective is
to find the clustering x that minimizes f(x, h), the number of disagreements
between h and x. The problem is agnostic in the sense that the clustering of the
data is not taken into account or even assumed to exist. This gives rise to an
APX-hard optimization problem which is studied in their paper and in conse-
quent work [1,2,3,4,5,6,7,8,9,10]. In this paper we assume a setting in which there

� Work done while second author was visiting Google Research as a summer intern.
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c© Springer-Verlag Berlin Heidelberg 2009
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is an (unknown) correct way to cluster the data, τ . Such a scenario arises, for
example, in duplicate detection and elimination in large data (also known as the
record linkage). In this setting we argue that one should try to minimize f(x, τ),
the number of disagreements between the output clustering and the ground truth
clustering.

A related problem that has been studied in the literature [11] is planted clus-
tering. In this model, the observation h is given by random noise applied to the
ground truth clustering τ . Solving the traditional Correlation Clustering prob-
lem on h, thus obtained, gives precisely a maximum likelihood configuration for
τ . It is not clear, however, why this random noise model should be at all realis-
tic. If for instance h is obtained as an output of a machine learned hypothesis,
then it is very reasonable to assume that the error will be highly structured
and correlated. Also, it is often the case that h is obtained as a robust ver-
sion (using e.g. spectral techniques [11] or dot product techniques [12]1) of some
raw input. In these cases, it is clear that any independence assumption that
we may have had on the raw input would be lost in the process of obtaining
h. Our approach is adversarial, and the practitioner may use it given h that is
obtained using any preprocessing, even if heavy dependencies are introduced.
The advantage of our work is that the practitioner need not worry about tran-
sitivity issues when preprocessing the data, and that unlike other techniques for
obtaining a final (transitive) clustering (e.g. k-means over h obtained as a low
dimensional Euclidean approximation of raw data using spectral techniques), we
provide provable approximation guarantees.

In our case, the ground truth clustering τ is not only unknown but can also be
arbitrarily different from the similarity function h. Since the algorithm can only
access h, we can expect the output x to respect the ground truth only insofar as
the input h does. We thus try to minimize C such that f(x, τ) ≤ Cf(h, τ) where
f measures the distance between the different objects. In other words, the more
h disagrees with the ground truth τ (larger f(h, τ)) the weaker the requirements
from the output x.

Traditional optimization gives the following indirect solution to our problem:
Find x which approximately minimizes f(x, h) so f(x, h) ≤ C∗f(h, τ) for some
C∗ ≥ 1 and for all possible clusterings τ . By the triangle inequality f(τ, x) ≤
f(τ, h)+ f(h, x) ≤ (C∗ +1)f(τ, h). Hence an approximation factor of C∗ for the
traditional corresponding combinatorial optimization problem gives an upper
bound of C = C∗ + 1 for our problem. Since C∗ > 1 (Correlation Clustering is
APX-hard) this approach would yield C > 2. A similar argument can be made
for randomized combinatorial optimization and an expected approximation ratio.
This immediately raises the interesting question of whether we can go below 2
and shortcut the traditional optimization detour (often an obstruction under
complexity theoretical assumptions).

Our main result, Section 3, is a morphing process which proves the existence
of a good relaxed solution to our problem, which we name CorrelationCluster-
ingX. More precisely, one can continuously change the values of the input h into

1 In [12], a Gaussian random noise model is assumed.
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a “soft” clustering xdif which is [0, 1] valued and a metric (satisfies all trian-
gle inequalities). More importantly, we show that f(xdif , τ) ≤ 4/3f(h, τ). The
relaxation xdif is obtained as the limit at infinity of a solution to a piecewise
linear differential equation. This algorithm, which we also refer to as a morphing
process, is interesting in its own right and may be useful for other problems on
metric spaces. The intuitive idea behind the differential equation is a physical
system in which edges “exert forces” on each other proportional to the size of
triangle inequality violations. The main technical lemma shows that all triangle
inequality violations decay exponentially in time. This fast decay allows us to
bound the loss with respect to the ground truth from above.

In Section 4 we show how to randomly convert the relaxed solution xdif into an
integer solution x to CorrelationClusteringX such that f(x, τ) ≤ 3/2f(xdif , τ).
Applying the rounding algorithm to xdif gives a C ≤ 2 approximation algorithm.
As a side effect, our algorithm allows computing an invariant C′ = C′(h) ≤ 4/3
which serves as a witness for getting a solution to CorrelationClusteringX with
C = 3C′/2. In particular, if C′ < 4/3 then we get C < 2.

Our work is related to recent work by Ailon and Mehryar [13] on Machine
Learning reductions for ranking. Balcan et al. [14] also consider clustering prob-
lems in which a ground truth is assumed to exist. However, there are two main
differences. First, they consider objective functions in which the cost is computed
pointwise (here we consider pairwise costs). A second and more fundamental
difference is that they make strong assumptions about the (input observation,
ground truth) pair. Their assumptions, in some sense, exactly state that an ap-
proximation to the traditional optimization problem is “good” for the problem
in which errors are computed against the truth. In our case, we make no as-
sumptions about the input or the ground truth. Further investigation of the
connection between the two results is an interesting research direction.

We begin in Section 2 by formally defining our notation and stating our re-
sults. Some proofs (Theorems 4, 5 and 6) are entirely omitted due to space
limitations and can be found in [15]. The interested reader is also referred to the
last reference for further discussion.

2 Definitions and Statement of Results

We are given a set V of n elements to cluster together with a symmetric dis-
tance function h serving as clustering information. We use the convention that
h(u, v) = h(v, u) = 1 if u, v are believed to belong to separate clusters, and 0
otherwise.2

Let K denote the set of [0, 1]-valued symmetric functions on V × V (with a
null diagonal). Let I ⊆ K denote the subset of {0, 1} valued functions in K.
Let Δ ⊆ K denote the set of functions k ∈ K satisfying the triangle inequality
k(u, v) ≤ k(v, w) + k(w, u) for all u, v, w ∈ V . Let C denote I ∩Δ. Clearly c ∈ C
2 In other literature, h is a similarity measures, with higher values corresponding to

higher belief in co-clustering. We find our convention easier to work with because a
clustering is equivalently a pseudometric over the values {0,1}.



Correlation Clustering Revisited 27

is an encoding of a clustering of V , with c(u, v) = 1 if u, v are separated and
c(u, v) = 0 if they are co-clustered.

Our input h lives in I but not in Δ, hence the function h encodes possibly
inconsistent {0, 1} clustering information. Indeed, it may tell us that h(u, v) =
h(v, w) = 0 but h(u, w) = 1, hence violating transitivity. For a number a ∈ [0, 1]
let a denote 1−a. Define the Correlation Clustering cost function [1] f : K×K →
R+ as f(k1, k2) =

∑
u<v(k1(u, v)k2(u, v) + k1(u, v)k2(u, v)). For integer valued

k1, k2 this is the Hamming distance.
The problem of CorrelationClusteringX is given in the following:

Definition 1. Given h ∈ I and C ≥ 1 output x ∈ C such that for all τ ∈
C, f(τ, x) ≤ Cf(τ, h) (assuming such an x exists). In the randomized set-
ting, the goal is to output a sample x from a distribution D on C, such that
Ex∼D[f(τ, x)] ≤ Cf(τ, h) (assuming such D exists). An algorithm outputting x
in the deterministic case or drawing it from D in the randomized case is called
a C-approximation algorithm to CorrelationClusteringX.

Deterministic CorrelationClusteringX has a corresponding integer program over
the

(
n
2

)
variables of x ∈ C with an exponential number of constraints:

IP: minimize C s.t. f(x, τ) ≤ Cf(h, τ) for all τ ∈ C
x ∈ C, C ≥ 0

Note that in traditional correlation clustering, we would have used the constraint
f(x, h) ≤ Cf(h, τ) for all τ ∈ C instead. IP can be relaxed by allowing x ∈ Δ
and adding a constraint for each τ ∈ Δ.

LP: minimize C s.t. f(τ, x) ≤ Cf(τ, h) for all τ ∈ Δ
x ∈ Δ, C ≥ 1

Clearly, an equivalent program can be obtained by using only constraints
that correspond to vertices of Δ, of which there are exponentially many. Let
(xLP , CLP ) denote the minimizer of LP.

Observation 1. LP has a separation oracle and can therefore be solved opti-
mally in polynomial time.

To see Observation 1, note that given a candidate solution (x, C) it is possible
to find τ ∈ Δ satisfying f(τ, x) > Cf(τ, h) (if one exists) using another sim-
ple standard linear program with τ ∈ Δ as variable. Note that unlike in the
usual case of combinatorial optimization LP relaxations, it is not immediate to
compare between the values of IP and LP, because the relaxation is obtained
by both adding constraints and removing others. The reason we enlarged the
collection of constraints {f(τ, x) ≤ Cf(τ, h)}τ in LP is to give rise to an efficient
separation oracle.

Our first result states that the optimal solution to LP is a (deterministic)
fractional solution xLP for CorrelationClusteringX with approximation factor
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CLP of at most 4/3 (in the sense that f(xLP , τ) ≤ CLP f(h, τ) for all τ ∈ Δ).
The proof of the theorem is constructive. It is shown that the limit at infinity of
a solution to a certain differential equation is a feasible solution to LP.

Theorem 1. For any h ∈ I, the value of LP is at most 4/3.

In the proof of Theorem 1 we will point to one particular solution (xdif , Cdif )
which is a limit at infinity of a solution to a piecewise linear differential equation.
Finding this limit may be done exactly, but we omit the details because together
with Observation 1, general purpose convex optimization may be used instead.

Our next theorems refer to the QuickCluster algorithm which is defined in
Section 4. It is a tweaked version of the algorithm in [2] (also with a different
analysis). QuickCluster takes as input h ∈ K and outputs x ∈ C. Let QC(h)
denote the distribution over outputs x ∈ C of QuickCluster for input h.

Theorem 2. For any ĥ ∈ Δ and τ ∈ C we have Ex∼QC(ĥ)[f(x, τ)] ≤ 3
2f(ĥ, τ).

Combining Theorems 1 and Theorem 2 we get a randomized solution with C =
3
2CLP ≤ 2 for CorrelationClusteringX. If CLP < 4/3, we get a witness for
achieving C strictly less than 2.

Theorem 3. For any h ∈ I and τ ∈ C we have Ex∼QC(h)[f(τ, x)] ≤ 2f(τ, h).

The running time of QuickCluster is analyzed for two representation dependent
regimes. In the pairwise-queries model, only pairwise queries to h are allowed,
i.e, evaluating h(u, v) for a pair {u, v}. In the neighborhood-queries regime, the
algorithm is allowed neighborhood queries, returning for a query u its neighbor-
hood N(u) = {u}∪{v ∈ V | h(u, v) = 0} as a linked list. We obtain the following
bounds.

Theorem 4. In the pairwise-queries model, any constant factor randomized ap-
proximation algorithm for CorrelationClusteringX performs Ω(n2) queries to h
in expectation for some input h.

Trivially, QuickCluster performs O(n2) queries to h for some input h and thus
has an optimal worst case running time with respect to this model.

Theorem 5. In the neighborhood-queries model, the expected running time of
QuickCluster is O(n+ minτ∈C f(τ, h)).

The following is a lower bound on the approximation guarantee any deterministic
algorithm can achieve.

Theorem 6. There exists an input h for which any deterministic algorithm for
CorrelationClusteringX incurs an approximation factor of at least 2 for some
ground truth τ ∈ C. For the same input, a randomized algorithm can obtain a
factor of at most 4/3.
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3 Morphing h into a Metric: A Differential Program

In this section we prove Theorem 1. The idea is to “morph” h ∈ K, which is
not necessarily a metric, into a pseudometric. The solution xdif ∈ Δ is obtained
by theoretically running a differential equation to infinity. More precisely, we
define a differential morphing process such that ht(u, v) is the changed value of
h(u, v) at time t and h0(u, v) = h(u, v) for all u and v. The solution is given by
xdif = limt→∞ ht.

We look at a triangle created by the triplet {u, v, w}. For ease of notation we
set a = h(u, v), b = h(v, w), and c = h(w, u). First, we define the gap guvw of
the triangle {u, v, w} away from satisfying the triangle inequality as:

guvw = max{0, a− (b + c), b− (c + a), c− (a + b)} (1)

We define the force that triangle {u, v, w} exerts on a as follows:

F (a; b, c) =

{
−guvw if a > b + c

guvw otherwise.
(2)

The morphing process is such that the contribution of the triangle {u, v, w} to
the change in a, d a

dt , is the force F (a; b, c). Intuitively, the force serves to reduce
the gap. If a, b, and c satisfy the triangle inequality then no force is applied. If
a > b + c then d a

dt is negative and a is reduced. If b > c + a or c > a + b then
d a
dt is positive and a is increased. Summing over all triangles containing u and v
gives our differential equation in Figure 1. with the starting boundary condition
h0(u, v) = h(u, v) ∀u, v ∈ V . Similarly to our previous notation, let a(t), b(t)
and c(t) denote ht(u, v), ht(v, w) and ht(w, u) throughout.

dht(u,v)
dt

=
∑

w∈V \{u,v} F (ht(u, v); ht(v, w), ht(w, u)).

Fig. 1. The morphed input ht is given by the solution to the above differential equation
at time t. The initial starting point is the input h0 = h. The solution xdif is given by
xdif = limt→∞ ht.

The following is the main technical lemma of the proof. It asserts that the
external forces applied to a triangle {u, v, w} by other triangles only contribute
to reducing the gap guvw. It implies both the exponential decay of all positive
gaps and the stability of null gap.

Lemma 1. Let guvw(t) denote the gap of ht on the triplet {u, v, w} at time t,
as defined in (1). Then dguvw(t)

dt ≤ −3guvw(t) for all t.

Note: Clearly the lemma implies that guvw(t) ≤ guvw(t0)e−3(t−t0) for any t0 ≤ t.
The lemma is easy to prove if |V | = 3. For larger V , the difficulty is in showing
that the interference between triangles is constructive.
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Proof. It is enough to prove the lemma for the case {a(t) ≥ b(t)+ c(t)}∪{b(t) ≥
c(t) + a(t)} ∪ {c(t) ≥ a(t) + b(t)}. Indeed, in the open set {a(t) < b(t) + c(t)} ∩
{b(t) < c(t) + a(t)} ∩ {c(t) < a(t) + b(t)} the value of g is 0 identically. Assume
w.l.o.g. therefore that a(t) ≥ b(t) + c(t) (hence guvw(t) = a(t)− b(t)− c(t)).

d guvw(t)
dt

=
d (a(t)− b(t)− c(t))

dt
= F (a(t); b(t), c(t)) − F (b(t); c(t), a(t)) − F (c(t); a(t), b(t))

+
∑

s∈V \{u,v,w}
F (a(t); xs(t), ys(t))− F (b(t); zs(t), ys(t)) − F (c(t); xs(t), zs(t))

where xs(t) = ht(u, s), ys(t) = ht(v, s), and zs(t) = ht(w, s). The first line of
the RHS is exactly −3guvw. It suffices to prove that for any s ∈ V \ {u, v, w},
F (a(t); xs(t), ys(t))−F (b(t); zs(t), ys(t))−F (c(t); xs(t), zs(t)) ≤ 0. This is proved
by enumerating over all possible configurations of the three triangles {u, v, s},
{v, w, s} and {w, u, s} and is omitted from this abstract. The details can be
found in [15].

The following lemma tells us that if a(0), b(0), and c(0) violate the triangle
inequality then at each moment t > 0 they either violate the same inequality or
the violation is resolved.

Lemma 2. Let a(t), b(t), and c(t) denote ht(u, v), ht(v, w), and ht(w, u) re-
spectively. If a(0) ≥ b(0)+ c(0) then for all t ≥ 0 either a(t) ≥ b(t)+ c(t) or a(t),
b(t), and c(t) satisfy the triangle inequality.

Proof. First note that if for some time t0 the triplet {a(t0), b(t0), c(t0)} satisfies
the triangle inequality, then this will continue to hold for all t ≥ t0 in virtue of the
note following Lemma 1. Also note that a(t) > b(t)+ c(t) and (b(t) > c(t) + a(t)
or c(t) > a(t)+ b(t)) cannot hold simultaneously. Let t′ be the infimum of t such
that a(t) ≤ b(t) + c(t), or ∞ if no such t exists. If t′ = ∞ then the lemma is
proved. Otherwise by continuity and the first note above, a(t′) = b(t′) + c(t′),
b(t′) ≤ a(t′) + c(t′) and c(t′) ≤ a(t′) + b(t′), hence a(t′), b(t′), and c(t′) satisfy
the triangle inequality and thus continue to do so for all t > t′, completing the
proof of the lemma.

Now fix a ground truth clustering τ ∈ Δ. Consider the cost f(τ, ht) as a func-
tion of t. Letting Lt(u, v) = ht(u, v)τ(u, v) + ht(u, v)τ(u, v), we get f(τ, ht) =∑

u<v Lt(u, v) = 1
n−2

∑
u<v<w Cuvw(t), where Cuvw(t) := Lt(u, v) + Lt(v, w) +

Lt(w, u). The derivative of the cost is d f(τ,ht)
dt = 1

n−2

∑
uvw Guvw(t), where3

Guvw(t) := (1− 2τ(u, v))F (ht(u, v); ht(v, w), ht(w, u))
+(1− 2τ(v, w))F (ht(v, w); ht(w, u), ht(u, v))
+(1− 2τ(w, u))F (ht(w, u); ht(u, v), ht(v, w)).

3 Note that Guvw is not the derivative of Cuvw, but the sum
∑

uvw Guvw is the deriva-
tive of

∑
uvw Cuvw.
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The cost at time t is f(τ, ht) = 1
n−2

∑
uvw Cuvw(0) + 1

n−2

∑
uvw

∫ t

0
Guvw(s)ds.

We concentrate on the contribution of one triangle to this sum: Huvw(t) =
Cuvw(0) +

∫ t

0
Guvw(s)ds.

Let us consider the possible values of the term Guvw(t). If the values ht(u, v),
ht(v, w), and ht(w, u) satisfy the triangle inequality then Guvw(t) = 0 since the
forces F are all zero. Assume then w.l.o.g. that ht(u, v) ≥ ht(v, w)+ht(w, u) and
so by the definition of F , Guvw(t) = [2(τ(u, v) − τ(v, w) − τ(w, u)) + 1]guvw(t).
Notice that Guvw(t) ≤ guvw(t) since τ ∈ Δ. Therefore Guvw(t) ≤ guvw(t) and
by Lemma 1 Guvw(t) ≤ guvw(0)e−3t.

Lemma 3. Set τ ∈ Δ. Given the above process, let xdif = limt→∞ ht. Then
f(xdif , τ) ≤ 4

3f(h, τ). Additionally, xdif ∈ Δ.

Proof. In what follows we use the facts that f(xdif , τ) = limt→∞ 1
n−2

∑
uvw

Huvw(t) and that
∫∞
0 Guvw(t)dt ≤

∫∞
0 guvw(0)e−3tdt ≤ 1

3guvw(0).

f(xdif , τ) =
1

n− 2
lim

t→∞

∑
u<v<w

Huvw(t) =
1

n− 2

∑
u<v<w

Cuvw(0) +
∫ ∞

0

Guvw(t)

≤ 1
n− 2

∑
u<v<w

Cuvw(0) +
1
3
guvw(0)

≤ 1
n− 2

∑
u<v<w

4
3
Cuvw(0) ≤ 4

3
f(h, τ)

The last equation relies on the fact that Cuvw(0) ≥ guvw(0). Indeed, that
would imply Cuvw(0) + 1

3guvw(0) ≤ 4
3Cuvw(0). To see that, it suffices to check

that Cuvw(0) ≥ 0 and Cuvw(0) ≥ h(u, v) − h(v, w) − h(w, u) for any h(u, v),
h(v, w) and h(w, u) in [0, 1]. Notice that Cuvw(0)− [h(u, v)− h(v, w) − h(w, u)]
is a linear function in h defined on the convex set [0, 1]3 and thus attains its
maximal values at its extreme points, i.e. integer values of h. Enumerating these
cases and validating the statement is straightforward.

Lemma 3 immediately implies that (xdif = limt→∞ ht, Cdif = 4/3) is a feasible
solution to LP.

4 QuickCluster

We prove Theorem 2 and Theorem 3. The QuickCluster algorithm described here
is very similar to the one used in [2] but the new analysis provides a shortcut that
allows us to directly argue about the cost of the algorithm against an unknown
truth τ ∈ C which we hold fixed. To describe our algorithm we need to define
a piecewise linear tweaking function ψ : [0, 1] → [0, 1] as follows: ψ(a) = 0 for
a ≤ 1/6, ψ(a) = 1 for a ≥ 5/6, and in the middle section a ∈ [1/6, 5/6] ψ is
obtained by linear interpolation as ψ(a) = (6a−1)/4. Moreover, for convenience
we overload the definition of ψ such that ψ(u, v) ≡ ψ(h(u, v)). The algorithm
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begins by setting all nodes u ∈ V as free. In each iteration one node is chosen
uniformly at random from all free nodes, say u, to serve as a cluster center.
Then, each node v �= u is added to the cluster centered at u with probability
ψ(u, v) (and set as not-free). The algorithm terminates when there are no free
nodes left. Note that QuickCluster is defined for all h ∈ K and that for h ∈ I
QuickCluster is identical to the algorithm in [2]. Also, Ailon [16] used a similar
tweaking idea to improve rounding of a ranking LP in a traditional combinatorial
optimization setting.

4.1 The Expected Cost of QuickCluster

Let QC(h) be the distribution over outputs produced by QuickCluster for input
h. By definition of f and the fact that τ is fixed we have that Ex∼QC(h)[f(x, τ)] =∑

u<v Ex∼QC(h)[x(u, v)]τ(u, v) + Ex∼QC(h)[x(u, v)]τ(u, v). Since each x(u, v) is
a binary random variable its expectation is equal to the probability of it being
equal 1 which is equal to the probability of QuickCluster separating (cross-
clustering) u and v. This happens if either u or v are chosen as centers and
then not co-clustered (w.p. ψ(u, v)). This also happens if a third node w is
chosen as a center and and it co-clusters either u or v but not both. Similarly
Ex∼QC(h)[x(u, v)] is equal to the co-clustering probability of u and v which oc-
curs if either u or v are chosen as centers and joined or if a third node, w,
co-clusters both of them. Define puv as the probability that during the execu-
tion of the algorithm v and u are both free and one of them is chosen as a
center. Define puvw as the probability that during the execution of QuickClus-
ter, u, v and w are all free and one of them is chosen as center. Also note that
the relation of u and v in the output of QuickCluster is determined exactly
once. In what follows,

(
V
b

)
denotes the collection of unordered b-tuples of the set

V . When it is clear from the context, the notation (u, v) means an unordered
tuple {u, v} ∈

(
V
2

)
and similarly (u, v, w) means an unordered tuple {u, v, w}

∈
(
V
3

)
.

Lemma 4. Fix τ ∈ C. Let Lψ :
(
V
2

)
→ R+, β :

(
V
3

)
→ R+ and B :

(
V
2

)
×V → R+

be defined as

Lψ(u, v) := ψ(u, v)τ(u, v) + ψ(u, v)τ(u, v)

β(u, v; w) := ψ(w, u) ψ(w, v)τ(u, v) + ψ(w, u)ψ(w, v) τ(u, v)
+ψ(w, u)ψ(w, v) τ(u, v)

B(u, v, w) :=
1
3
[β(u, v; w) + β(v, w; u) + β(w, u; v)] .

Then Ex∼QC(h)[f(τ, x)] =
∑

u<v puvLψ(u, v) +
∑

u<v<w puvwB(u, v, w), where
x ∈ C is a random clustering obtained as the output of QuickCluster.
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Proof. Following the above discussion:

Ex∼QC(h)[x(u, v)] = puvψ(u, v) +
∑

w 
=u,v

1
3
puvw[ψ(w, u)ψ(w, v) + ψ(w, u)ψ(w, v)]

Ex∼QC(h)[x(u, v)] = puvψ(u, v) +
∑

w 
=u,v

1
3
puvw[ψ(w, u) ψ(w, v)] .

And so by linearity of expectation Ex∼QC(h)[τ(u, v)x(u, v) + τ(u, v)x(u, v)] =
puvLψ(u, v) +

∑
w 
=u,v

1
3puvwβ(u, v; w).

E[f(τ, x)] =
∑
u<v

puvLψ(u, v) +
∑
u<v

∑
w 
=u,v

1
3
puvwβ(u, v; w)

=
∑
u<v

puvLψ(u, v) +
∑

u<v<w

puvw
1
3
[β(u, w; v) + β(u, v; w) + β(v, w; u)]

=
∑
u<v

puvLψ(u, v) +
∑

u<v<w

puvwB(u, v; w) ,

as required.

4.2 QuickCluster Decomposition

In order to compute f(h, τ) we introduce a general decomposition for the sum∑
u<v Z(u, v) for any function Z :

(
V
2

)
→ R. Then, we apply our decomposition

to Z(u, v) = Lh(u, v) = h(u, v)τ(u, v) + h(u, v)τ(u, v).

Lemma 5. Let Z be any function Z :
(
V
2

)
→ R. Let C(u, v; w) := ψ(w, u)

ψ(w, v) + ψ(w, u)ψ(w, v) + ψ(w, u)ψ(w, v). Define the operator AZ : (
(

V
2

)
→

R)→ (
(

V
3

)
→ R) on Z as:

AZ(u, v, w) :=
1
3

[
C(u, v; w)Z(u, v) + C(v, w; u)Z(v, w) + C(w, u; v)Z(w, u)

]
.

(3)
Then one has:∑

u<v

Z(u, v) =
∑
u<v

puvZ(u, v) +
∑

u<v<w

puvwAZ(u, v, w) .

Proof. The term C(u, v; w) gives the probability that the node w determines the
relation between u and v given that u, v and w are free and w is chosen as center.
Since the relation between u and v is determined only once either indirectly (via
w) or directly (either u or v are centers) we have:

puv +
∑

w 
=u,v

1
3
puvwC(u, v; w) = 1. (4)
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By (4), Z(u, v) = 1 · Z(u, v) =
[
puv +

∑
w 
=u,v

1
3puvwC(u, v; w)

]
Z(u, v). Hence,

∑
u<v

Z(u, v) =
∑
u<v

puvZ(u, v) +
∑
u<v

∑
w 
=u,v

1
3
puvwC(u, v; w)Z(u, v)

=
∑
u<v

puvZ(u, v) +
∑

u<v<w

1
3
puvwC(u, v; w)Z(u, v)

+
∑

u<w<v

1
3
puvwC(u, v; w)Z(u, v) +

∑
w<u<v

1
3
puvwC(u, v; w)Z(u, v)

=
∑
u<v

puvZ(u, v) +
∑

u<w<v

puvwAZ(u, v, w) .

Applying Lemma 5 to the cost function f(h, τ) we gain:

f(h, τ) =
∑
u<v

Lh(u, v) =
∑
u<v

puvLh(u, v) +
∑

u<w<v

puvwALh
(u, v, w). (5)

4.3 Bounded Ratio Argument

To bound the ratio f(x, τ)/f(h, τ) using Equation (5) and Lemma 4 it suffices
to bound Lψ(u, v)/Lh(u, v) for every pair {u, v} and B(u, v, w)/ALh

(u, v, w) for
every triplet {u, v, w}.

In the case where h ∈ Δ we have that Lψ(u, v)/Lh(u, v) ≤ 6/5 and that
B(u, v, w)/ALh

(u, v, w) ≤ 3/2. Showing this entails breaking the polytope defin-
ing (h(u, v), h(v, w), h(w, u)) into 27 smaller polytopes in which each h(·, ·) is
constrained to lie in [0, 1/6], (1/6, 5/6], or (5/6, 1]. On each of these smaller
polytopes and for each one of 5 possibilities for τ on u, v, w, the functions Lh,
Lψ are linear, and B and ALh

are multinomials of total degree two and three
respectively.4 A computer aided proof was used to obtain the bound of 3/2 using
standard polynomial maximization techniques on each one of the polytopes. We
refer the reader to [17] for details. This proves Theorem 2.

When h ∈ I, enumerating over all possible choices of h and τ gives that
Lψ(u, v)/Lh(u, v) = 1 and B(u, v, w)/ALψ

(u, v, w) ≤ 2. This shows that per-
forming QuickCluster directly on h without solving the LP gives a C = 2 ap-
proximation ratio. This proves Theorem 3.

5 Short Discussion

Our algorithm trivially also gives an expected factor of 2 + 1 = 3 approxima-
tion to the traditional Corrleation Clustering by triangle inequality of f . Note
that the best known approximation factor for Correlation Clustering is 2.5 [2],
raising the question of whether it is possible to obtain a 1.5 approximation for
CorrelationClusteringX.
4 The 5 possibilities for τ are: One single cluster, 3 singleton clusters, and the 3 ways

to get a singleton and a pair.
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Finding a specific instance h for which our algorithm achieves the 2 approx-
imation bound for CorrelationClusteringX will show that our analysis is tight.
The worst input known to the authors is h corresponding to the balanced com-
plete bipartite graph (h(u, v) = 0 if {u, v} ∈ e) for which QuickCluster gives a
1.5 approximation factor (for τ which puts all of V into one cluster).

Acknowledgments. The authors would like to thanks Eyal Even-Dar, Mehryar
Mohri, and Elad Hazan for sharing their insights and expertise.
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Abstract. In experimental psychology, the method of paired compar-
isons was proposed as a means for ranking preferences amongst n el-
ements of a human subject. The method requires performing all

(
n
2

)
comparisons then sorting elements according to the number of wins. The
large number of comparisons is performed to counter the potentially
faulty decision-making of the human subject, who acts as an imprecise
comparator.

We consider a simple model of the imprecise comparisons: there exists
some δ > 0 such that when a subject is given two elements to compare,
if the values of those elements (as perceived by the subject) differ by
at least δ, then the comparison will be made correctly; when the two
elements have values that are within δ, the outcome of the comparison
is unpredictable. This δ corresponds to the just noticeable difference unit
(JND) or difference threshold in the psychophysics literature, but does
not require the statistical assumptions used to define this value.

In this model, the standard method of paired comparisons minimizes
the errors introduced by the imprecise comparisons at the cost of

(
n
2

)
comparisons. We show that the same optimal guarantees can be achieved
using 4n3/2 comparisons, and we prove the optimality of our method.
We then explore the general tradeoff between the guarantees on the error
that can be made and number of comparisons for the problems of sorting,
max-finding, and selection. Our results provide close-to-optimal solutions
for each of these problems.

1 Introduction

Let x1, . . . , xn be n elements where each xi has an unknown value val(xi). We
want to find the element with the maximum value using only pairwise com-
parisons. However, the outcomes of comparisons are imprecise in the following
sense. For some fixed δ > 0, if |val(xi) − val(xj)| ≤ δ, then the result of the
comparison can be either “≥” or “≤”. Otherwise, the result of the comparison
is correct. It is easy to see that in such a setting it might be impossible to find
the true maximum (for example when the values of all the elements are within
δ). It might however be possible to identify an approximate maximum, that is
an element xi∗ such that for all xi, val(xi) − val(xi∗) ≤ kδ for some, preferably
small, value k. In addition, our goal is to minimize the number of comparisons
performed to find xi∗ . We refer to the minimum value k such that an algorithm’s

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 37–48, 2009.
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output is always guaranteed to be kδ-close to the maximum as the error of the
algorithm in this setting. Similarly, to sort the above elements with error k we
need to find a permutation π such that if π(i) < π(j) then val(xi)−val(xj) ≤ kδ.

A key issue that our work addresses is that in any sorting (or max-finding) al-
gorithm, errors resulting from imprecise comparisons might accumulate, causing
the final output to have high error. Consider, for example, applying the classical
bubble sort algorithm to a list of elements that are originally sorted in the re-
verse order and the difference between two adjacent elements is exactly δ. All the
comparisons will be between elements within δ and therefore, in the worst case,
the order will not be modified by the sorting, yielding error (n− 1)δ. Numerous
other known algorithms that primarily optimize the number of comparisons can
be easily shown to incur a relatively high error. As can be easily demonstrated
(Theorem 1), performing all

(
n
2

)
comparisons then sorting elements according to

the number of wins, a “round-robin tournament”, achieves error k = 2, which is
lowest possible (Theorem 2). A natural question we ask here is whether

(
n
2

)
com-

parisons are necessary to achieve the same error. We explore the same question
for all values of k in the problems of sorting, max-finding, and general selection.

One motivation for studying this problem comes from social sciences. A com-
mon problem both in experimental psychology and sociology is to have a hu-
man subject rank preferences amongst many candidate options. It also occurs
frequently in marketing research [20, Chapter 10], and in training information
retrieval algorithms using human evaluators [1, Section 2.2]. The basic method
to elicit preferences is to present the subject two alternatives at a time and ask
which is the preferred one. The common approach to this problem today was
presented by Thurstone as early as 1927, and is called the “method of paired
comparisons” (see [8] for a thorough treatment). In this method, one asks the
subject to give preferences for all pairwise comparisons amongst n elements. A
ranked preference list is then determined by the number of “wins” each candi-
date element receives. A central concept in these studies introduced as far back
as the 1800s by Weber and Fechner is that of just noticeable difference (JND)
unit or difference threshold δ. If two physical stimuli with intensities x < y have
|x − y| ≤ δ, a human will not be able to reliably distinguish which intensity
is greater1. The idea was later generalized by Thurstone to having humans not
only compare physical stimuli, but also abstract concepts [21].

Most previous work on the method of paired comparisons has been through
the lens of statistics. In such work the JND is modeled as a random variable and
the statistical properties of Thurstone’s method are studied [8]. Our problem
corresponds to a simplified model of this problem which does not require any
statistical assumptions, and is primarily from a combinatorial perspective.

Another context that captures the intuition of our model is that of designing
a sporting tournament based on win/lose games. There, biases of a judge and
unpredictable events can change the outcome of a game when the strengths of

1 The JND is typically defined relative to x rather than as an absolute value. This
is identical to absolute difference in the logarithmic scale and hence our discussion
extends to this setting.
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the players are close. Hence one cannot necessarily assume that the outcome is
truly random in such a close call. It is clear that both restricting the influence
of the faulty outcomes and reducing the total number of games required are
important in this scenario, and hence exploring the tradeoff between the two is
of interest. For convenience, in the rest of the paper we often use the terminology
borrowed from this scenario.

1.1 Our Results

We first examine the simpler problem of finding only the maximum element.
For this problem, we give a deterministic max-finding algorithm with error 2 us-
ing 2n3/2 comparisons. This contrasts with the method of paired comparisons,
which makes (n2 − n)/2 comparisons to achieve the same error. Using our al-
gorithm recursively, we build deterministic algorithms with error k that require
O(n1+1/((3/4)·2k−1)) comparisons. We also give a lower bound of Ω(n1+1/(2k−1)).
The bounds are almost tight — the upper bound for our error-k algorithm is
less than our lower bound for error-(k−1) algorithms. We also give a linear-time
randomized algorithm that achieves error 3 with probability at least 1 − 1/n2,
showing that randomization greatly changes the complexity of the problem.

We then study the problem of sorting. For k = 2, we give an algorithm using
4 · n3/2 comparisons. For general k, we show O((n1+1/(3·2�k/2�−1−1) + nk) logn)
comparisons is achievable, and we show a lower bound of Ω(n1+1/2k−1

) compar-
isons. When k = O(1), or if only a single element of specific order needs to be
selected, the logn factor disappears from our upper bound. Our lower bounds
for selection depend on the order of the element that needs to be selected and
interpolate between the lower bounds for max-finding and the lower bounds for
sorting. For k ≥ 3, our lower bound for finding the median (and also for sort-
ing) is strictly larger than our upper bound for max-finding. For example, for
k = 3 the lower bound for sorting is Ω(n5/4), whereas max-finding requires only
O(n6/5) comparisons.

Note that we achieve log logn error for max-finding in O(n) comparisons, and
2 log logn error for sorting in O(n logn) comparisons. Standard methods using
the same number of comparisons (e.g. a binary tournament tree, or Mergesort)
can be shown to incur at least logn error. Also, all the algorithms we give are
efficient in that their running times are of the same order as the number of
comparisons they make.

The main idea in our deterministic upper bounds for both max-finding and
selection is to develop efficient algorithms for a small value of k (k = 2), then for
larger k show how to partition elements, recursively use algorithms for smaller
k, then combine results. Achieving nearly tight results for max-finding requires
in part relaxing the problem to that of finding a small k-max-set, or a set which
is guaranteed to contain at least one element of value at least x∗ − kδ, where
x∗ is the maximum value of an element (we interchangeably use x∗ to refer to
an element of maximum value as well). It turns out we can find a k-max-set
in a fewer number of comparisons than the lower bound for error-k max-finding
algorithms. Exploiting this allows us to develop an efficient recursive max-finding
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algorithm. We note a similar approach of finding a small set of “good” elements
was used by Borgstrom and Kosaraju [6] in the context of noisy binary search.

For our randomized max-finding algorithm, we use a type of tournament with
random seeds at each level, in combination with random subsampling at each
level of the tournament tree. By performing a round-robin tournament on the
top few tournament players together with the subsampled elements, we obtain
an element of value at least x∗ − 3δ with high probability.

To obtain lower bounds we translate our problems into problems on directed
graphs in which the goal is to ensure existence of short paths from a certain node
to most other nodes. Using a comparison oracle that always prefers elements that
had fewer wins in previous rounds, we obtain bounds on the minimum of edges
that are required to create the paths of desired length. Such bounds are then
translated back into bounds on the number of comparisons required to achieve
specific error guarantees for the problems we consider. We are unaware of directly
comparable techniques having been used before.

Some of the proofs are omitted from this extended abstract and appear in the
full version of the paper.

1.2 Related Work

Handling noise in binary search procedures was first considered by Rényi [18] and
by Ulam [22]. An algorithm for solving Ulam’s game was proposed by Rivest et.
al. in [19], where an adversarial comparator can err a bounded number of times.
They gave an algorithm with query complexity O(log n) which succeeds if the
number of adversarial errors is constant.

Yao and Yao [24] introduced the problem of sorting and of finding the maximal
element in a sorting network when each comparison gate either returns the right
answer or does not work at all. For finding the maximal element, they showed
that it is necessary and sufficient to use (e + 1)(n − 1) comparators when e
comparators can be faulty. Ravikumar, Ganesan and Lakshmanan extended the
model to arbitrary errors, showing that O(en) comparisons are necessary and
sufficient [17]. For sorting, Yao and Yao showed that O(n logn + en) gates are
sufficient. In a different fault model, and with a different definition of a successful
sort, Finocchi and Italiano [11] showed an O(n logn) time algorithm resilient to
(n logn)1/3 faults. An improved algorithm handling (n logn)1/2 faults was later
given by Finocchi, Grandoni and Italiano [10].

In the model where each comparison is incorrect with some probability p, Feige
et al. [9] and Assaf and Upfal [2] give algorithms for several comparison problems,
and [3,15] give algorithms for binary search. We refer the reader interested in
the history of faulty comparison problems to a survey of Pelc [16].

We point out that some of the bounds we obtain appear similar to those
known for max-finding, selection, and sorting in parallel in Valiant’s model [23].
In particular, our bounds for max-finding are close to those obtained by Valiant
for the parallel analogue of the problem (with the error used in place of parallel
time) [23], and our lower bound of Ω(n1+1/(2k−1)) for max-finding with error k
is identical to a lower (and upper) bound given by Häggkvist and Hell [14] for
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merging two sorted arrays each of length n using a k-round parallel algorithm.
Despite these similarities in bounds, our techniques are different, and we are
not aware of any deep connections. For example, sorting in k parallel rounds
Ω(n1+1/k) comparisons are required [5,13], whereas in our model, for constant
k, we can sort with error k in n1+1/2Θ(k)

comparisons. For a survey on parallel
sorting algorithms, the reader is referred to [12].

2 Notation

Throughout this document we let x∗ denote some xi of the maximum value (if
there are several such elements, we choose one arbitrarily). Furthermore, we use
xi interchangeably to refer to the both the ith element and its value, e.g. xi > xj

should be interpreted as val(xi) > val(xj).
We assume δ = 1 without loss of generality, since the problem with arbitrary

δ > 0 is equivalent to the problem with δ = 1 and input values xi/δ.
We say x defeats y when the comparator claims that x is larger than y (and

we similarly use the phrase y loses to x). We say x is k-greater than y (x ≥k y)
if x ≥ y − k. The term k-smaller is defined analogously. We say an element
is a k-max of a set if it is k-greater than all other elements in the set, and a
permutation xπ(1), . . . , xπ(n) is k-sorted if xπ(i) ≥k xπ(j) for every i > j.

All logarithms throughout this document are base-2. For simplicity of presen-
tation, we frequently omit floors and ceilings and ignore rounding errors when
they have an insignificant effect on the bounds.

3 Max-finding

In this section we give deterministic and randomized algorithms for max-finding.

3.1 Deterministic Algorithms

We start by showing that the method of paired comparisons provides an optimal
error guarantee, not just for max-finding, but also for sorting.

Theorem 1. Sorting according to the number of wins in a round-robin tourna-
ment yields error 2.

Proof. Let x, y be arbitrary elements with y strictly less than x − 2. For any z
that y defeats, x also defeats z. Furthermore, x defeats y, and thus x has strictly
more wins than y, implying y is placed lower in the sorted order.

Theorem 2. No deterministic max-finding algorithm has error less than 2.

Proof. Given three elements a, b, c, the comparator can claim a > b > c > a,
making the elements indistinguishable. Without loss of generality, suppose A
outputs a. Then the values could be a = 0, b = 1, c = 2, implying A has error 2.

In Figure 1 we give an error-2 algorithm for max-finding.
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Algorithm A2: // Returns an element of value at least x∗ − 2. The value

s > 1 is a parameter which is by default �√n� when not specified.

1. Label all xi as candidates.
2. while there are more than s candidate elements:

(a) Pick an arbitrary set of s candidate elements and play them in a round-robin
tournament. Let x have the most number of wins.

(b) Compare x against all candidate elements and eliminate all elements that
lose to x.

3. Play the final at most s candidate elements in a round-robin tournament and
return the element with the most wins.

Fig. 1. The algorithm A2 for finding a 2-max

Lemma 1. The max-finding algorithm A2 has error 2 and makes at most ns +
n2/s comparisons. In particular, the number of comparisons is at most 2n3/2 for
s = �

√
n�.

Proof. We analyze the error in two cases. If x∗ is never eliminated then x∗

participates in Step 3. Theorem 1 then ensures that the final output is of value
at least x∗ − 2. Otherwise, consider the iteration when x∗ is eliminated. In this
iteration, it must be the case that the x chosen in Step 2(b) has x ≥ x∗ − 1,
and thus any element with value less than x∗ − 2 was also eliminated in this
iteration. In this case all future iterations only contain elements of value at least
x∗ − 2, and so again the final output has value at least x∗ − 2. In each step at
least (s − 1)/2 elements are eliminated implying the given bound on the total
number of comparisons.

The key recursion step of our general error max-finding is the algorithm 1-Cover

of Lemma 3 which is based on A2 and the following lemma.

Lemma 2. There is a deterministic algorithm which makes
(

n
2

)
comparisons

and outputs a 1-max-set of size at most �logn�.
The algorithm performs a round-robin tournament and then iteratively greedily
picks an element which defeats as many thus-far undefeated elements as possible.
We now obtain 1-Cover by setting s = �

√
n� /8 in Figure 1, then returning the

union of the x that were chosen in any iteration of Step 2(a), in addition to the
output of Lemma 2 on the elements in the final tournament in Step 3.

Lemma 3. There is an algorithm 1-Cover making O(n3/2) comparisons which
finds a 1-max-set of size at most

√
n/4 (for sufficiently large n).

We are now ready to present our main algorithm for finding a k-max.

Theorem 3. For every 3 ≤ k ≤ log logn, there exists an algorithm Ak finds a
k-max element using O(n1+1/((3/4)2k−1)) comparisons.

Corollary 1. There is a max-finding algorithm using O(n) comparisons with
error log logn.
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Algorithm Ak: // Returns a k-max for k ≥ 3

1. return A2(A′
k−1(x1, x2, . . . , xn))

Algorithm A′
k: // Returns a (k−1)-max set of size O(n2k/(3·2k−4)) for k ≥ 2

1. if k = 2, return 1-Cover(x1, x2, . . . , xn).
2. else

(a) Equipartition the n elements into t = bkn2k−1/(2k−4/3) sets S1, . . . , St.
(b) Recursively call A′

k−1 on each set Si to recover a (k − 2)-max set Ti.
(c) Return the output of 1-Cover with ∪t

i=1Ti as input.

Fig. 2. The algorithm Ak for finding a k-max based on a recursive algorithm A′
k

for finding a (k − 1)-max-set. The value bk is (1/2) · (3/4)k−3 for k ≤ 10 and
2−(3/4)k+5(3·2k−1−4)/4 otherwise.

3.2 Randomized Max-finding

We now show that randomization can significantly reduce the number of compar-
isons required to find an approximate maximum. We emphasize that although
an adversary is not allowed to adaptively change the input values during the
course of an algorithm’s execution, the adversary can adaptively choose how to
err when two elements are close. In particular, the classic randomized selection
algorithm can take quadratic time since for an input with all equal values, the
adversary can claim that the randomly chosen pivot is smaller than all other
elements. Nevertheless, we show the following.

Theorem 4. There exists a linear-time randomized algorithm which finds a 3-
max with probability at least 1− n−c for any constant c and n large enough.

Taking c > 1, and using the fact that the error of our algorithm can never be
more than n− 1, this gives an algorithm which finds an element with expected
value at least x∗ − 4. The high-level idea of the algorithm is as follows. We
randomly equipartition the elements into constant-sized sets. In each set we
play a round-robin tournament and advance everyone who was not the absolute
loser in their set. We also randomly subsample a set of players at each level of
the tournament tree. We show that either (1) at some round of the tournament
there is an abundance of elements with value at least x∗ − 1, in which case at
least one such element is subsampled with high probability, or (2) x∗ makes it
as one of the top few tournament players with high probability. We describe the
properties of the tournament in Lemma 4. In Figure 3 we present the subroutine
SampledTournament for the tournament.

Lemma 4. SampledTournament outputs a W of size O(n0.3 logn) after
O(n) comparisons such that W is a 1-max-set with probability at least 1− n−c.

Theorem 4 follows immediately from Lemma 4: run the algorithm Sampled-

Tournament, then return the winner of W in a round-robin tournament.
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Algorithm SampledTournament: // For constant c and n sufficiently

large, returns a 1-max-set with probability at least 1 − n−c.

1. Initialize N0 ← {x1, . . . , xn}, W ← ∅, and i ← 0.
2. if |Ni| ≤ n0.3, insert Ni into W and return W .
3. else randomly sample n0.3 elements from Ni and insert them into W .
4. Randomly partition the elements in Ni into sets of size 80(c + 2). In each set,

perform a round-robin tournament to find the minimal element (the element
with the fewest wins, with ties broken arbitrarily).

5. Let Ni+1 contain all of Ni except for the minimal elements found in Step 4.
That is, from each set of 80(c + 2) elements of Ni, only one does not belong to
Ni+1. Increment i and goto Step 2.

Fig. 3. The algorithm SampledTournament

4 Sorting and Selection

Definition 1. Element xj in the set x1, . . . , xn is of k-order i if there exists
a partition S1, S2 of [n] with j ∈ S1, |S1| = i, x� ≤k xj for all � ∈ S1, and
x� ≤k x�′ for all � ∈ S1, �

′ ∈ S2. A k-median is an element of k-order �n/2�.

Our sorting and selection algorithms are based on the following lemma.

Lemma 5. In a round-robin tournament on n elements, the element with the
median number of wins has at least (n− 2)/4 wins and at least (n− 2)/4 losses.

Algorithm Ck: // Returns an element of k-order i.

1. if k ≤ 3, sort the elements using B2 then return the element with index i.
2. else

(a) Set k′ = �k/2� + 1.

(b) Equipartition the n elements into t = bk′n2k′−1/(2k′−4/3) sets S1, . . . , St.
(c) Recursively call Ck−2 on each set Si to obtain a (k − 2)-median yi.
(d) Play the y1, . . . , yt in a round-robin tournament and let y be the element

with the median number of wins.
(e) Compare y with each of the other n−1 elements. If y defeats at least (n−1)/2

elements then let X2 be a set of d = (t−2)/4 ·((n/t)−1)/2 elements (k−1)-
greater than y, and let X1 be the set of at least (n− 1)/2− d elements that
y defeats which are not in X2 (thus every (x, x′) ∈ (X1 ∪{y})×X2 satisfies
x′ ≥k x). If y defeats less than (n − 1)/2 elements, X1 and X2 are defined
symmetrically.

i. if |X1| = i − 1, return i.
ii. else if i ≤ |X1|, recursively find an element of k-order i in X1.
iii. else recursively find an element of k-order (i − |X1| − 1) in X2.

Fig. 4. The algorithm Ck. The value bk′ is chosen as in the algorithm A′
k′ (see Figure 2).
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We can now obtain an error-2 sorting algorithm B2 which needs only 4 · n3/2

comparisons. The idea is to modify A2 so that the x found in Step 2(a) of Figure 1
is a pivot in the sense of Lemma 5. We then compare this x against all elements
and pivot into two sets, recursively sort each, then concatenate.

Lemma 6. There is a deterministic sorting algorithm B2 with error 2 that re-
quires at most 4 · n3/2 comparisons.

At a high level our algorithm for k-order selection is similar to the classical
selection algorithm of Blum et al. [4], in that in each step we try to find a pivot
that allows us to recurse on a problem of geometrically decreasing size. In our
scenario though, a good pivot must not only partition the input into nearly
equal-sized chunks, but must itself be of (k − 2)-order c · n for some constant
0 < c < 1. The base case k = 2 can be solved by Lemma 6 since the element
placed in position i of the sorted permutation is of 2-order i. Our algorithm is
given in Figure 4.

Lemma 7. For any i ∈ [n] and 2 ≤ k ≤ 2 log logn, the deterministic algorithm
Ck finds an element of k-order i in O(n1+1/(3·2�k/2�−1−1)) comparisons.

Theorem 5. For any 2 ≤ k ≤ 2 log logn, there is a deterministic sorting algo-
rithm Bk with error k using O((n1+1/(3·2�k/2�−1−1) + nk) logn) comparisons. If
k = O(1), the number of comparisons reduces to O(n1+1/(3·2�k/2�−1−1)).

Proof. We find a k-median using Ck, equipartition the elements into sets S1, S2

such that every element of S2 is k-greater than every element of S1 ∪{x}, recur-
sively sort each partition, then concatenate the sorted results. The upper bound
on the number of comparisons follows from the Master theorem (see [7, Theorem
4.1]), and correctness is immediate from the definition of a k-median.

5 Lower Bounds

Here we prove lower bounds against deterministic max-finding, sorting, and se-
lection algorithms. In particular, we show that Theorem 3 and Theorem 5 achieve
almost optimal trade-off between error and number of comparisons.

Lemma 8. Suppose a deterministic algorithm A upon given n elements guar-
antees that after m comparisons it can list r elements, each of which is guaran-
teed to be k-greater than at least q elements. Then m = Ω(max{q1+1/(2k−1), q ·
r1/(2k−1)}).

Proof. We define a comparator that decides how to answer queries online in such
a way that we can later choose values for the elements which are consistent with
the given answers, while maximizing the error of the algorithm.

Let Gt be the comparison graph at time t. That is, Gt is a digraph whose
vertices are the xi and which contains the directed edge (xi, xj) if and only if
before time t a comparison between xi and xj has been made, and the comparator



46 M. Ajtai et al.

has responded with “xi ≥ xj”. We denote the out-degree of xi in Gt by dt(xi).
Assume that at time t the algorithm wants to compare some xi and xj . If dt(xi) ≥
dt(xj) then the comparator responds with “xj ≥ xi”, and it responds with
“xi ≥ xj” otherwise. (The response is arbitrary when dt(xi) = dt(xj).) Let x be
an element that is declared by A to be k-greater than at least q elements.

Let yi = dist(x, xi), where dist gives the length of the shortest (directed) path
in the final graph Gm. If no such path exists, we set yi = n. After the algorithm
is done, we define val(xi) = yi, We first claim that the values are consistent with
the responses of the comparator. If for some pair of objects xi, xj the comparator
has responded with “xi ≥ xj”, then Gm contains edge (xi, xj). This implies that
for any x, dist(x, xj) ≤ dist(x, xi) + 1, or yi ≥ yj − 1. Therefore the answer
“xi ≥ xj” is consistent with the given values.

Consider the nodes xi that x can reach via a path of length at most k. These
are exactly the elements k-smaller than x, and thus there must be at least q of
them. For i ≤ k let Si = {xj |yj = i} and si = |Si|. We claim that for every
i ∈ [k], m ≥ s2

i /(2si−1) − si/2. For a node u ∈ Si, let pred(u) be a node in
Si−1 such that the edge (pred(u), u) is in the graph. For a node v ∈ Si−1, let
Si,v = {u ∈ Si | v = pred(u)}. Further, let do(pred(u), u) be the out-degree of
pred(u) when the comparison between pred(u) and u was made (as a result of
which the edge was added to Gm). Note that for any distinct nodes u, u′ ∈ Si,v,
do(v, u) �= do(v, u′) since the out-degree of v grows each time an edge to a node
in Si,v is added. This implies that∑

u∈Si,v

do(v, u) ≥
∑

d≤|Si,v|−1

d = |Si,v|(|Si,v| − 1)/2 .

By the definition of our comparator, for every u ∈ Si, dm(u) ≥ do(pred(u), u).
This implies that

m ≥
∑

v∈Si−1

∑
u∈Si,v

dm(u) ≥
∑

v∈Si−1

|Si,v|(|Si,v| − 1)
2

=

∑
v∈Si−1

|Si,v|2 − |Si|
2

.

Using the inequality between the quadratic and arithmetic means,

∑
v∈Si−1

|Si,v|2 ≥

⎛⎝ ∑
v∈Si−1

|Si,v|

⎞⎠2

/|Si−1| = s2
i /si−1.

This implies that m ≥ s2
i

2si−1
− si

2 .

We can therefore conclude that si ≤
√

(2m + si)si−1 ≤
√

3msi−1 since si ≤
n ≤ m. By applying this inequality and using the fact that s0 = 1 we obtain
that s2

1/3 ≤ m and si ≤ 3m · (3m/s1)2
−(i−1)

for i > 1. Since
∑

i≤k si ≥ q + 1, we

thus find that q ≤ 12 ·m · (3m/s1)2
−(k−1)

. This holds since either
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1. (3m/s1)2
−(k−1)

> 1/2 and then 12 ·m · (3m/s1)2
−(k−1) ≥ 6m > n, or

2. (3m/s1)−2−(k−1) ≤ 1/2 and then (3m/s1)−2−i+1
/(3m/s1)−2−i

=(3m/s1)−2−i

≤ (3m/s1)−2−(k−1) ≤ 1/2 for i ≤ k − 1, where the penultimate inequality
holds since s1 < 3m. In this case

q − s1 ≤
k∑

i=2

si ≤
k∑

i=2

(3m)(3m/s1)−2−(i−1) ≤
∑
i≤k

2i−k(3m)(3m/s1)−2−(k−1)

< 2(3m)1−2−(k−1)
s2−(k−1)

1

If s1 ≥ q/2, then m = Ω(q2) since m ≥ s2
1/3. Otherwise we have that m ≥

(q/4)1/(1−2−(k−1))/(3s
1/(2(k−1)−1)
1 ), implying

m = Ω(max{s2
1, q

1/(1−2−(k−1))/s
1/(2(k−1)−1)
1 }) = Ω(q1+1/(2k−1))

where the final equality can be seen by making the two terms in the max equal.
Also, note that the choice of x amongst the r elements of the theorem state-

ment was arbitrary, and that s1 is just the out-degree of x. Let smin be the min-
imum out-degree amongst the r elements. Then we trivially have m ≥ r · smin.
Thus, if smin ≥ q/2 then m ≥ qr/2, and otherwise

m = Ω(max{r · smin, q
1/(1−2−(k−1))/s

1/(2(k−1)−1)
min }) = Ω(q · r1/(2k−1))

where the final equality is again seen by making the two terms in the max equal.

From Lemma 8 we immediately obtain a lower bound for max-finding by setting
r = 1, q = n− 1, and for median-finding and sorting by setting r = q = n/2. In
general, the sorting lower bound holds for k-order selection of the ith element
for any i = c · n for constant 0 < c < 1.

Theorem 6. Every deterministic max-finding algorithm A with error k requires
Ω(n1+1/(2k−1)) comparisons.

Theorem 7. Every deterministic algorithm A which k-sorts n elements, or
finds an element of k-order i for i = c · n with 0 < c < 1 a constant, requires
Ω(n1+1/2k−1

) comparisons.

Theorem 6 implies the following, showing that Corollary 1 is tight.

Corollary 2. Let A be a deterministic max-finding algorithm that makes O(n)
comparisons. Then A has error at least log logn−O(1).
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Abstract. We present a randomized subexponential time, polynomial
space parameterized algorithm for the k-Weighted Feedback Arc Set

in Tournaments (k-FAST) problem. We also show that our algorithm
can be derandomized by slightly increasing the running time. To deran-
domize our algorithm we construct a new kind of universal hash func-
tions, that we coin universal coloring families. For integers m, k and r,
a family F of functions from [m] to [r] is called a universal (m, k, r)-
coloring family if for any graph G on the set of vertices [m] with at most
k edges, there exists an f ∈ F which is a proper vertex coloring of G.
Our algorithm is the first non-trivial subexponential time parameterized
algorithm outside the framework of bidimensionality.

1 Introduction

In a competition where everyone plays against everyone it is uncommon that
the results are acyclic and hence one cannot rank the players by simply using
a topological ordering. A natural ranking is one that minimizes the number of
upsets, where an upset is a pair of players such that the lower ranked player
beats the higher ranked one. The problem of finding such a ranking given the
match outcomes is the Feedback Arc Set problem restricted to tournaments.

A tournament is a directed graph where every pair of vertices is connected
by exactly one arc, and a feedback arc set is a set of arcs whose removal makes
the graph acyclic. Feedback arc sets in tournaments are well studied, both from
the combinatorial [16,17,20,21,22,28,31,32,35], statistical [29] and algorithmic
[1,2,9,25,33,34] points of view. The problem has several applications - in psy-
chology it occurs in relation to ranking by paired comparisons: here you wish
to rank some items by an objective, but you don’t have access to the objective
function, only to pairwise comparisons of the objects in question. An example
for this setting is measuring people’s preferences for food. The weighted gener-
alization of the problem, Weighted Feedback Arc Set in Tournaments
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is applied in rank aggregation: Here we are given several rankings of a set of ob-
jects, and we wish to produce a single ranking that on average is as consistent as
possible with the given ones, according to some chosen measure of consistency.
This problem has been studied in the context of voting [5,8], machine learning
[7], and search engine ranking [14,15]. A natural consistency measure for rank
aggregation is the number of pairs that occur in different order in the two rank-
ings. This leads to Kemeney-Young rank aggregation [23,24], a special case of
Weighted Feedback Arc Set in Tournaments.

Unfortunately, the problem of finding a feedback arc set of minimum size
in an unweighted tournament is NP-hard [2]. However, even the weighted ver-
sion of the problem admits a polynomial time approximation scheme [25] and
has been shown to be fixed parameter tractable [27]. One should note that the
weighted generalization shown to admit a PTAS in [25] differs slightly from the
one considered in this paper. We consider the following problem:

k-Weighted Feedback Arc Set in Tournaments (k-FAST)
Instance: A tournament T = (V, A), a weight function w : A → {x ∈
R : x ≥ 1} and an integer k.
Question: Is there an arc set S ⊆ A such that

∑
e∈S w(e) ≤ k and T \S

is acyclic?

The fastest previously known parameterized algorithm for k-FAST by Ra-
man and Saurabh [27] runs in time O(2.415k ·k4.752 +nO(1)), and it was an open
problem of Guo et al. [19] whether k-FAST can be solved in time 2k · nO(1).
We give a randomized and a deterministic algorithm both running in time
2O(

√
k log2 k) +nO(1). Our algorithms run in subexponential time, a trait uncom-

mon to parameterized algorithms. In fact, to the authors best knowledge the only
parameterized problems for which non-trivial subexponential time algorithms
are known are bidimensional problems in planar graphs or graphs excluding a
certain fixed graph H as a minor [10,11,13].

Our randomized algorithm is based on a novel version of the color coding
technique initiated in [4] combined with a divide and conquer algorithm and
a k2 kernel for the problem, due to Dom et al. [12]. In order to derandomize
our algorithm we construct a new kind of universal hash functions, that we coin
universal coloring families. For integers m, k and r, a family F of functions from
[m] to [r] is called a universal (m, k, r)-coloring family if for any graph G on
the set of vertices [m] with at most k edges, there exists an f ∈ F which is a
proper vertex coloring of G. In the last section of the paper we give an explicit
construction of a (10k2, k,O(

√
k))-coloring family F of size |F| ≤ 2Õ(

√
k) and

an explicit universal (n, k,O(
√
k))-coloring family F of size |F| ≤ 2Õ(

√
k) logn.

We believe that these constructions can turn out to be useful to solve other edge
subset problems in dense graphs.

2 Preliminaries

For an arc weighted tournament we define the weight function w∗ : V × V → R
such that w∗(u, v) = w(uv) if uv ∈ A and 0 otherwise. Given a directed graph
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1. Perform a data reduction to obtain a tournament T ′ of size O(k2).
2. Let t =

√
8k. Color the vertices of T ′ uniformly at random with colors from

{1, . . . , t}.
3. Let Ac be the set of arcs whose endpoints have different colors. Find a min-

imum weight feedback arc set contained in Ac, or conclude that no such
feedback arc set exists.

Fig. 1. Outline of the algorithm for k-FAST

D = (V, A) and a set F of arcs in A define D{F} to be the directed graph
obtained from D by reversing all arcs of F . In our arguments we will need the
following characterization of minimal feedback arc sets in directed graphs.

Proposition 1. Let D = (V, A) be a directed graph and F be a subset of A.
Then F is a minimal feedback arc set of D if and only if F is a minimal set of
arcs such that D{F} is a directed acyclic graph.

Given a minimal feedback arc set F of a tournament T , the ordering σ corre-
sponding to F is the unique topological ordering of T {F}. Conversely, given an
ordering σ of the vertices of T , the feedback arc set F corresponding to σ is the
set of arcs whose endpoint appears before their startpoint in σ. The cost of an
arc set F is

∑
e∈F w(e) and the cost of a vertex ordering σ is the cost of the

feedback arc set corresponding to σ.
For a pair of integer row vectors p̂ = [p1, . . . , pt], q̂ = [q1, . . . , qt] we say that

p̂ ≤ q̂ if pi ≤ qi for all i. The transpose of a row vector p̂ is denoted by p̂†. The
t-sized vector ê is [1, 1, . . . , 1], 0̂ is [0, 0, . . . , 0] and êi is the t-sized vector with all
entries 0 except for the i’th which is 1. Let Õ(

√
k) denote, as usual, any function

which is O(
√
k(log k)O(1)). For any positive integer m put [m] = {1, 2, . . . , m}.

3 Color and Conquer

Our algorithm consists of three steps. In the first step we reduce the instance
to a problem kernel with at most O(k2) vertices, showing how to efficiently
reduce the input tournament into one with O(k2) vertices, so that the original
tournament has a feedback arc set of weight at most k, if and only if the new
one has such a set. In the second step we randomly color the vertices of our
graph with t =

√
8k colors, and define the arc set Ac to be the set of arcs whose

endpoints have different colors. In the last step the algorithm checks whether
there is a weight k feedback arc set S ⊆ Ac. A summary of the algorithm is
given in Figure 1.

3.1 Kernelization

For the first step of the algorithm we use the kernelization algorithm provided
by Dom et al. [12]. They only show that the data reduction is feasible for the
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unweighted case, while in fact, it works for the weighted case as well. For com-
pleteness we provide a short proof of this. A triangle in what follows means a
directed cyclic triangle.

Lemma 1. k-FAST has a kernel with O(k2) vertices.

Proof. We give two simple reduction rules.

1. If an arc e is contained in at least k+ 1 triangles reverse the arc and reduce
k by w(e).

2. If a vertex v is not contained in any triangle, delete v from T .

The first rule is safe because any feedback arc set that does not contain the
arc e must contain at least one arc from each of the k + 1 triangles containing
e and thus must have weight at least k + 1. The second rule is safe because the
fact that v is not contained in any triangle implies that all arcs between N−(v)
and N+(v) are oriented from N−(v) to N+(v). Hence for any feedback arc set
S1 of T [N−(v)] and feedback arc set S2 of T [N+(v)], S1 ∪ S2 is a feedback arc
set of T .

Finally we show that any reduced yes instance T has at most k(k+2) vertices.
Let S be a feedback arc set of T with weight at most k. The set S contains at
most k arcs, and for every arc e ∈ S, aside from the two endpoints of e, there
are at most k vertices that are contained in a triangle containing e, because
otherwise the first rule would have applied. Since every triangle in T contains an
arc of S and every vertex of T is in a triangle, T has at most k(k+2) vertices. ��

3.2 Probability of a Good Coloring

We now proceed to analyze the second step of the algorithm. What we aim for,
is to show that if T does have a feedback arc set S of weight at most k, then
the probability that S is a subset of Ac is at least 2−c

√
k for some fixed constant

c. We show this by showing that if we randomly color the vertices of a k edge
graph G with t =

√
8k colors, then the probability that G has been properly

colored is at least 2−c
√

k.

Lemma 2. If a graph on q edges is colored randomly with
√

8q colors then the
probability that G is properly colored is at least (2e)−

√
q/8.

Proof. Arrange the vertices of the graph by repeatedly removing a vertex of
lowest degree. Let d1, d2, . . . , ds be the degrees of the vertices when they have
been removed. Then for each i, di(s− i+1) ≤ 2q, since when vertex i is removed
each vertex had degree at least di. Furthermore, di ≤ s − i for all i, since the
degree of the vertex removed can not exceed the number of remaining vertices
at that point. Thus di ≤

√
2q for all i. In the coloring, consider the colors of

each vertex one by one starting from the last one, that is vertex number s.
When vertex number i is colored, the probability that it will be colored by
a color that differs from all those of its di neighbors following it is at least
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(1 − di√
8q

) ≥ (2e)−di/
√

8q because
√

8q ≥ 2di. Hence the probability that G is
properly colored is at least

s∏
i=1

(1− di√
8q

) ≥
s∏

i=1

(2e)−di/
√

8q = (2e)−
√

q/8. ��

3.3 Solving a Colored Instance

Given a t-colored tournament T , we will say that an arc set F is colorful if no
arc in F is monochromatic. An ordering σ of T is colorful if the feedback arc
set corresponding to σ is colorful. An optimal colorful ordering of T is a colorful
ordering of T with minimum cost among all colorful orderings. We now give an
algorithm that takes a t-colored arc weighted tournament T as input and finds a
colorful feedback arc set of minimum weight, or concludes that no such feedback
arc set exists.

Observation 1. Let T = (V1∪V2∪ . . .∪Vt, A) be a t-colored tournament. There
exists a colorful feedback arc set of T if and only if T [Vi] induces an acyclic
tournament for every i.

We say that a colored tournament T is feasible if T [Vi] induces an acyclic tour-
nament for every i. Let ni = |Vi| for every i and let n̂ be the vector [n1,n2 . . .nt].
Let σ = v1v2 . . . vn be the ordering of V corresponding to a colorful feedback
arc set F of T . For every color class Vi of T , let v1

i v2
i . . . vni

i be the order in
which the vertices of Vi appear according to σ. Observe that since F is colorful,
v1

i v2
i . . . vni

i must be the unique topological ordering of T [Vi]. We exploit this to
give a dynamic programming algorithm for the problem.

Lemma 3. Given a feasible t-colored tournament T , we can find a minimum
weight colorful feedback arc set in O(t · nt+1) time and O(nt) space.

Proof. For an integer x ≥ 1, define Si
x = {vi

1, . . . , v
i
x} and Si

0 = ∅. Given an
integer vector p̂ of length t in which the i’th entry is between 0 and ni, let T (p̂)
be T [S1

p1
∪ S2

p2
. . . ∪ St

pt
]. Observe that for any ordering σ = v1v2 . . . vn of V

corresponding to a colorful feedback arc set F of T and any integer x there is a
p̂ such that {v1, . . . , vx} = S1

p1
∪ S2

p2
. . . ∪ St

pt
.

For a feasible t-colored tournament T , let Fas(T ) be the weight of the mini-
mum weight colorful feedback arc set of T . Notice that if a t-colored tournament
T is feasible then so are all induced subtournaments of T , and hence the function
Fas is well defined on all induced subtournaments of T . We proceed to prove
that the following recurrence holds for Fas(T (p̂)).

Fas(T (p̂)) = min
i : p̂i>0

(Fas(T (p̂− êi)) +
∑

u∈V (T (p̂))

w∗(vi
p̂i

, u)) (1)

The idea behind Recurrence 1 is to try all possible candidates for the last
vertex v of an optimal ordering of T (p̂). For every i the vertex vi

pi
is the only
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candidate for v with color i. First we prove that the left hand side is at most the
right hand side. Let i be the integer that minimizes the right hand side. Taking
the optimal ordering of T (p̂− êi) and appending it with vi

p̂i
gives an ordering of

T (p̂) with cost at most Fas(T (p̂− êi)) +
∑

u∈V (T (p̂)) w∗(vi
p̂i

, u).
To prove that the right hand side is at most the left hand side, take an optimal

colorful ordering σ of T (p̂) and let v be the last vertex of this ordering. There is
an i such that v = vi

p̂i
. Thus σ restricted to V (T (p̂− êi)) is a colorful ordering

of T (p̂− êi) and the total weight of the edges with startpoint in v and endpoint
in V (T (p̂− êi)) is exactly

∑
u∈V (T (p̂)) w∗(vi

p̂i
, u). Thus the cost of σ is at least

the value of the right hand side of the inequality, completing the proof.
Recurrence 1 naturally leads to a dynamic programming algorithm for the

problem. We build a table containing Fas(T (p̂)) for every p̂. There are O(nt)
table entries, for each entry it takesO(nt) time to compute it giving the O(t·nt+1)
time bound. ��

In fact, the algorithm provided in Lemma 3 can be made to run slightly faster
by pre-computing the value of

∑
u∈V (T (p̂)) w∗(vi

p̂i
, u)) for every p̂ and i using

dynamic programming, and storing it in a table. This would let us reduce the
time to compute a table entry using Recurrence 1 from O(nt) to O(t) yielding
an algorithm that runs in time and space O(t · nt).

Lemma 4. k-FAST (for a tournament of size O(k2)) can be solved in expected
time 2O(

√
k log k) and 2O(

√
k log k) space.

Proof. Our algorithm proceeds as described in Figure 1. The correctness of the
algorithm follows from Lemma 3. Combining Lemmata 1, 2, 3 yields an expected
running time of O((2e)

√
k/8) ·O(

√
8k · (k2 + 2k)1+

√
8k) ≤ 2O(

√
k log k) for finding

a feedback arc set of weight at most k if one exists. The space required by the
algorithm is O((k2 + 2k)1+

√
8k) ≤ 2O(

√
k log k). ��

The dynamic programming algorithm from Lemma 3 can be turned into a divide
and conquer algorithm that runs in polynomial space, at a small cost in the
running time.

Lemma 5. Given a feasible t-colored tournament T , we can find a minimum
weight colorful feedback arc set in time O(n1+(t+2)·log n) in polynomial space.

Proof. By expanding Recurrence (1) �n/2� times and simplifying the right hand
side we obtain the following recurrence.

Fas(T (p̂)) = min
q̂≥0̂

q̂†·ê=�n/2�

{Fas(T (q̂)) + Fas(T \ V (T (q̂))) +
∑

u∈V (T (q̂))
v /∈V (T (q̂))

w∗(v, u)} (2)

Recurrence 2 immediately yields a divide and conquer algorithm for the prob-
lem. Let T (n) be the running time of the algorithm restricted to a subtournament
of T with n vertices. For a particular vector q̂ it takes at most n2 time to find the
value of

∑
u∈V (T (q̂)),v/∈V (T (q̂)) w∗(v, u). It follows that T (n) ≤ nt+2 ·2 · T (n/2) ≤

2log n · n(t+2)·log n = n1+(t+2)·log n. ��
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Theorem 1. k-FAST (for a tournament of size O(k2)) can be solved in expected
time 2O(

√
k log2 k) and polynomial space. Therefore, k-FAST for a tournament of

size n can be solved in expected time 2O(
√

k log2 k) + nO(1) and polynomial space.

4 Derandomization with Universal Coloring Families

For integers m, k and r, a family F of functions from [m] to [r] is called a
universal (m, k, r)-coloring family if for any graph G on the set of vertices [m]
with at most k edges, there exists an f ∈ F which is a proper vertex coloring
of G. An explicit construction of a (10k2, k,O(

√
k))-coloring family can replace

the randomized coloring step in the algorithm for k-FAST. In this section, we
provide such a construction.

Theorem 2. There exists an explicit universal (10k2, k,O(
√
k))-coloring family

F of size |F| ≤ 2Õ(
√

k).

For simplicity we omit all floor and ceiling signs whenever these are not crucial.
We make no attempt to optimize the absolute constants in the Õ(

√
k) or in the

O(
√
k) notation. Whenever this is needed, we assume that k is sufficiently large.

Proof. Let G be an explicit family of functions g from [10k2] to [
√
k] so that

every coordinate of g is uniformly distributed in [
√
k], and every two coordinates

are pairwise independent. There are known constructions of such a family G
with |G| ≤ kO(1). Indeed, each function g represents the values of 10k2 pairwise
independent random variables distributed uniformly in [

√
k] in a point of a small

sample space supporting such variables; a construction is given, for example, in
[3]. The family G is obtained from the family of all linear polynomials over a
finite field with some kO(1) elements, as described in [3].

We can now describe the required family F . Each f ∈ F is described by a
subset T ⊂ [10k2] of size |T | =

√
k and by a function g ∈ G. For each i ∈ [10k2],

the value of f(i) is determined as follows. Suppose T = {i1, i2, . . . , i√k}, with
i1 < i2 < . . . < i√k. If i = ij ∈ T , define f(i) =

√
k + j. Otherwise, f(i) = g(i).

Note that the range of f is of size
√
k+

√
k = 2

√
k, and the size of F is at most(

10k2

√
k

)
|G| ≤

(
10k2

√
k

)
kO(1) ≤ 2O(

√
k log k) ≤ 2Õ(

√
k).

To complete the proof we have to show that for every graph G on the set of
vertices [10k2] with at most k edges, there is an f ∈ F which is a proper vertex
coloring of G. Fix such a graph G.

The idea is to choose T and g in the definition of the function f that will
provide the required coloring for G as follows. The function g is chosen at random
in G, and is used to properly color all but at most

√
k edges. The set T is chosen

to contain at least one endpoint of each of these edges, and the vertices in the
set T will be re-colored by a unique color that is used only once by f . Using
the properties of G we now observe that with positive probability the number of
edges of G which are monochromatic is bounded by

√
k.
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Claim. If the vertices of G are colored by a function g chosen at random from
G, then the expected number of monochromatic edges is

√
k.

Proof. Fix an edge e in the graph G and j ∈ [
√
k]. As g maps the vertices in

a pairwise independent manner, the probability that both the end points of e
get mapped to j is precisely 1

(
√

k)2
. There are

√
k possibilities for j and hence

the probability that e is monochromatic is given by
√

k
(
√

k)2
= 1√

k
. Let X be the

random variable denoting the number of monochromatic edges. By linearity of
expectation, the expected value of X is k · 1√

k
=
√
k. ��

Returning to the proof of the theorem, observe that by the above claim, with
positive probability, the number of monochromatic edges is upper bounded by√
k. Fix a g ∈ G for which this holds and let T = {i1, i2, . . . , i√k} be a set of

√
k

vertices containing at least one endpoint of each monochromatic edge. Consider
the function f defined by this T and g. As mentioned above f colors each of the
vertices in T by a unique color, which is used only once by f , and hence we only
need to consider the coloring of G \ T . However all edges in G \ T are properly
colored by g and f coincides with g on G \T . Hence f is a proper coloring of G,
completing the proof of the theorem. ��

Remarks

– Each universal (n, k,O(
√
k))-coloring family must also be an (n,

√
k,O(

√
k))-

hashing family, as it must contain, for every set S of
√
k vertices in [n], a

function that maps the elements of S in a one-to-one manner, since these
vertices may form a clique that has to be properly colored by a function of
the family. Therefore, by the known bounds for families of hash functions
(see, e.g., [26]), each such family must be of size at least 2Ω̃(

√
k) logn.

Although the next result is not required for our results on the feedback arc
set problem, we present it here as it may be useful in similar applications.

Theorem 3. For any n > 10k2 there exists an explicit universal (n, k,O(
√
k))-

coloring family F of size |F| ≤ 2Õ(
√

k) logn.

Proof. Let F1 be an explicit (n, 2k, 10k2)-family of hash functions from [n] to
10k2 of size |F1| ≤ kO(1) logn. This means that for every set S ⊂ [n] of size at
most 2k there is an f ∈ F1 mapping S in a one-to-one fashion. The existence
of such a family is well known, and follows, for example, from constructions of
small spaces supporting n nearly pairwise independent random variables taking
values in [10k2]. Let F2 be an explicit universal (10k2, k,O(

√
k))-coloring family,

as described in Theorem 2. The required family F is simply the family of all
compositions of a function from F2 followed by one from F1. It is easy to check
that F satisfies the assertion of Theorem 3. ��

Finally, combining the algorithm from Theorem 1 with the universal coloring
family given by Theorem 2 yields a deterministic subexponential time polynomial
space algorithm for k-FAST.
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Theorem 4. k-FAST can be solved in time 2Õ(
√

k) + nO(1) and polynomial
space.

5 Concluding Remarks

In this article, we have shown that k-FAST can be solved in time 2Õ(
√

k) +nO(1)

and polynomial space. To achieve this we introduced a new variant of randomized
color coding, and showed that this approach could be derandomized with an
explicit construction of universal coloring families. We find it surprising that
the problem admits a subexponential time parameterized algorithm, as even the
existence of a 2k · nO(1) time algorithm was an open problem until now.

At the end of the introduction of the paper in which it was proved that Feed-

back Arc Set in Tournaments admits a PTAS [25], Mathieu and Schudy
write “We can feel lucky that the FAS problem on tournaments turns out to be so
easy as to have an approximation scheme: In contrast to Theorem 1, the related
problem of feedback vertex set is hard to approximate even on tournaments.” In-
terestingly, a similar remark can be made in our setting - a simple reduction from
Vertex Cover [30] shows that k-Feedback Vertex Set in tournaments can
not be solved in subexponential time unless the Exponential Time Hypothesis
[6,18] fails.

The results of Section 4 can be extended to universal coloring families of uniform
hypergraphs. These families can also be useful in tackling several parameterized
algorithmic problems. The details will appear in the full version of this paper.
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Abstract. In this paper, we show that for every constant 0 < ε <
1/2 and for every constant d ≥ 2, the minimum size of a depth d
Boolean circuit that ε-approximates Majority function on n variables
is exp(Θ(n1/(2d−2))). The lower bound for every d ≥ 2 and the upper
bound for d = 2 have been previously shown by O’Donnell and Wimmer
[ICALP’07], and the contribution of this paper is to give a matching
upper bound for d ≥ 3.

1 Introduction and Results

An investigation of the construction of small circuits for computing Majority
function in various computational models has attracted many researchers for a
long time. Interesting positive results (e.g., for comparator networks [3] or for
monotone formulae [8]) as well as some negative results (e.g., for constant depth
circuits [5]) have been obtained so far.

There also have been many researches on the construction of circuits to ap-
proximate the majority function. In this paper, we consider this problem in the
model of constant depth circuits consisting of AND and OR gates with un-
bounded fan-in.

It seems that there are two major notions of “approximate-Majority” in this
model. The first meaning of “approximate-Majority” is to compute a function
that coincides with the majority function on every point including at least 2/3
fraction of 1’s, or at most 1/3 fraction of 1’s. The complexity of approximate-
Majority of this notion is closely related to the complexity of probabilistic com-
putations, and has been widely investigated (see e.g., [1,2,9].)

The second meaning of “approximate-Majority”, which we focus on in this
paper, is to compute a function that disagrees with the majority function on at
most ε fraction of all points. We call such a function an ε-approximation of the
majority function.

O’Donnell and Wimmer [7] first investigated this problem and obtained the
following: (i) For every constant 0 < ε < 1/2 and every constant d ≥ 2, any
depth-d circuit computing an ε-approximation of the majority function on n
variables has size exp(Ω(n1/(2d−2))), and (ii) When d = 2, this lower bound is
optimal up to a constant factor in the exponent. The lower bound is proved by
a combination of the argument based on the H̊astad’s switching lemma [5] (see

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 59–70, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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also [4]) and the Kruskal-Katona Theorem developed in extremal set theory.
The upper bound is proved by showing the existence of a DNF formula of size
exp(O(

√
n)) that ε-approximates the majority function for every constant 0 <

ε < 1/2. Since the majority function has the largest total influence among all
monotone Boolean functions, a good solution to this problem would help to a
better understanding of the relationship between the total influence of monotone
functions and the size of small depth circuits for approximating them, which has
been widely investigated (see [7] and the references therein).

In this paper, we extend their results and show that their lower bound is
in fact optimal (again, up to a constant factor in the exponent) for every con-
stant d. Precisely, we give a probabilistic construction of depth d circuits of size
exp(O(n1/(2d−2))) that ε-approximates the majority function on n variables, for
every constant 0 < ε < 1/2 and for every constant d ≥ 3. This is a main (and
essentially only) result of this paper. Note that the minimum size of a depth
d circuit that exactly computes the majority function is known to be between
exp(Ω(n1/(d−1))) and exp(O(n1/(d−1)(logn)1−1/(d−1))) (see [5] or [10, Theorem
4.4, p.333] for the lower bound, and [6] for the upper bound).

The proof of our result is a simple generalization of the technique used in
a beautiful construction of O(n5.3) size monotone formulas for the majority
function by Valiant [8]. It should be noted that our circuit is monotone (i.e.,
without negated literals) and is formula (i.e., every gate has fan-out one). In
addition, our approach can also be used for constructing a small circuit for the
alternate version of approximate-majority, which will be discussed in the last
part of this paper.

The organization of the paper is as follows. In Section 2, we give some nota-
tions and definitions. In Section 3, we describe the framework of our construction.
The proof of the main result is described in Section 4. Finally, in Section 5, we
show that our approach can also yield a small circuit for approximating majority
of the first kind, together with some open problems.

2 Notations and Definitions

For a binary string x ∈ {0, 1}n, |x| denotes the number of 1’s in x. The majority
function on n variables, which is denoted by Majn, is a Boolean function defined
by Majn(x) = 1 iff |x| ≥ n/2. For 0 < ε < 1, a Boolean function f : {0, 1}n →
{0, 1} is said an ε-approximation for Majn if f and Majn disagree on at most ε
fraction of all inputs, i.e.,

Pr
x

[f(x) �= Majn(x)] ≤ ε,

where the probability is over the uniform distribution on {0, 1}n. For a set S,
�S denotes the cardinality of S.

We consider single-output circuits that consists of unbounded fan-in AND
and OR gates over the input literals, i.e., input variables and their negations.
The depth of a circuit is the number of gates in a longest path from the output
to an input. The size of a circuit is the number of AND and OR gates in it.

Throughout the paper, e denotes the base of the natural logarithm.
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3 Random Circuits

Let W = (w1, . . . , wd) be a d-tuple of integers such that wi ≥ 2 for every
1 ≤ i ≤ d. The values of wi will be determined later. Define a sequence of
random circuits f0, f1, . . . , fd on X = {x1, . . . , xn} recursively as follows:

1. f0 is a Boolean variable chosen uniformly from X = {x1, . . . , xn}.
2. For odd k, fk is an AND of wk independent copies of fk−1. For even k, fk is

an OR of wk independent copies of fk−1.

It is clear that fd is a random circuit (in fact, formula) of depth d, where the
bottom level consists of AND gates, and the fan-in of each gate at the k-th level
is wk. The number of gates in fd is given by 1+wd +wd−1wd + · · ·+

∏d
k=2 wk <

2
∏d

k=2 wk.
For k = 0, . . . , d and i ∈ {0, 1}, let Ai

k(p) : [0, 1]→ [0, 1] be a function defined
as follows:

A1
0(p) = p, for every p ∈ [0, 1]

A1
k(p) = (A1

k−1(p))wk for every odd k, and for every p ∈ [0, 1]
A0

k(p) = (A0
k−1(p))wk for every even k with k ≥ 2, and for every p ∈ [0, 1]

A0
k(p) + A1

k(p) = 1 for every k, and for every p ∈ [0, 1].

When f0 gets one with probability p then fk outputs i ∈ {0, 1} with probability
Ai

k(p). Note that A1
k(·) (A0

k(·), resp.) is monotonically increasing (decreasing,
resp.).

The following simple lemma relates the value of Ai
k(·)’s with the size of

ε-approximator circuits for the majority function.

Lemma 1. Suppose that, for a given W = (w1, . . . , wd), we have

A1
d

(
1/2− ε/

√
n
)
≤ ε, (1)

and

A0
d

(
1/2 + ε/

√
n
)
≤ ε. (2)

Then there is a depth d circuit of size less than 2
∏d

k=2 wk that computes a
3ε-approximation for Majn.

Proof. For every x ∈ {0, 1}n with |x| ≤ n/2− ε
√
n, we have

Pr
fd

[fd(x) �= Majn(x)] ≤ A1
d

(
1/2− ε/

√
n
)
≤ ε,

since Eq. (1) and A1
d(·) is monotonically increasing. Similarly, for every x ∈

{0, 1}n with |x| ≥ n/2 + ε
√
n, we have

Pr
fd

[fd(x) �= Majn(x)] ≤ A0
d

(
1/2− ε/

√
n
)
≤ ε,
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since Eq. (2) and A0
d(·) is monotonically decreasing. These immediately implies

that there is a depth d circuit of size less than 2
∏d

k=2 wk whose output disagrees
with the majority function on at most

ε
2n

2
+ ε

2n

2
+ �{x ∈ {0, 1}n | n/2− ε

√
n < |x| < n/2 + ε

√
n}

inputs. The last term is upper bounded by

2ε
√
n

(
n

n/2

)
≤ 2ε

√
n · 2n

√
n

= 2ε · 2n,

where the first inequality follows from the Stirling formula. This completes the
proof of the lemma. �
Note that, in this notation, a famous construction of O(n5.3) size monotone for-
mulae by Valiant [8] can be written as: A0

d(α(1/2+1/n)) < 2−n and A1
d(α(1/2−

1/n)) < 2−n for W = (2, 2, . . . , 2) with d ∼ 5.3 log2 n and α = (
√

5− 1)/2.

4 Bounds for Approximating Majority

In this section, we show our main theorem:

Theorem 2. For every constant 0 < ε < 1/2 and for every constant d ≥ 3, the
majority function on n variables can be ε-approximated by a depth d circuit of
size 2O(n1/(2d−2)). This is optimal up to a constant factor in the exponent.

By Lemma 1, all we have to do is choose a suitable parameter W = (w1, . . . , wd)
and verify that A0

d(1/2 + ε/
√
n) ≤ ε and A1

d(1/2− ε/
√
n) ≤ ε.

We first give a proof for the case d = 3 as an illustrative example in Section
4.1, and then give a proof for general cases in Section 4.2. The proof for general
cases includes also the case d = 3, and so a reader can skip Section 4.1 and go
directly to Section 4.2. The key ingredient of the proof is Lemmas 3 and 4 in
Section 4.2.

4.1 Construction of Depth Three Circuits

We pick W = (w1, w2, w3) with w1 = 1
εn

1/4, w̃2 = 2w1w1, w2 = (ln 2)w̃2,
w̃3 = 2w1 and w3 = (ln 2)w̃3. The number of gates in a circuit that will be
constructed is less than 2w2w3 = 2(ln 2)2(2w1)2w1 = 2O(n1/4/ε).

Note that A1
1(1/2) = (1/2)w1 , A0

2(1/2) = (1 − (1/2)w1)w2 ∼ (1/2)w1 and
A1

3(1/2) = (1− (1/2)w1)w3 ∼ 1/2, which is a key property of our parameter. Put
ph := 1/2 + ε/

√
n and p� := 1/2− ε/

√
n. Below we give a proof for A0

3(ph) ≤ ε
and A1

3(p�) ≤ ε, which is a bit long but uses only elementary calculations.
We first show that A0

3(ph) ≤ ε. By the definition, we have

A0
2(ph) = (1− pw1

h )w2 =
{
(1− pw1

h )(ln 2/p
w1
h )
}p

w1
h w̃2

≤
(

1
2

)p
w1
h w̃2

. (3)
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Here we use the inequality (1 − q)1/q ≤ 1/e for q < 1. The exponent in the last
term of Eq. (3) is

pw1
h w̃2 =

(
1
2

+
ε√
n

)w1

w̃2 = w̃2

{(
1
2

)w1 (
1 +

2ε√
n

)w1}
≥ w̃2

(
1
2

)w1
(

1 +
2ε√
n

w1

)
= w1

(
1 +

2
n1/4

)
. (4)

Here we use the inequality (1 + q)r ≥ 1 + qr for q > 0 and r ≥ 1.
We proceed to the estimation of A0

3(ph). Since (1− q)r ≥ 1− qr for q < 1 and
r ≥ 1, we have

A0
3(ph) = 1− (1−A0

2(ph))w3 ≤ 1− (1 −A0
2(ph)w3) = A0

2(ph)w3. (5)

By plugging Eqs. (3) and (4) into Eq. (5), we have

A0
3(ph) ≤ A0

2(ph)w3 ≤ (ln 2)
(

1
2

)w1 (1
2

)w1
2

n1/4

2w1

= (ln 2)
(

1
2

) 2
ε

< (ln 2)
ε

2
< ε,

where the second last inequality follows from (1/2)2/ε < ε/2 which is equivalent
to (1/2) < (ε/2)ε/2. This holds since the minimum value of the function qq is
(1/e)1/e ∼ 0.6922 > (1/2).

We now turn to show A1
3(p�) ≤ ε, in which we should bound the value of A0

2

from below.

A0
2(p�) = (1− pw1

� )w2 =
{
(1− pw1

� )(ln 2/p
w1
� )
}p

w1
� w̃2

≥
{

(1− pw1
� )

1
e

}(ln 2)·pw1
� w̃2

>

{
(1− pw1

� )
1
2

}p
w1
� w̃2

. (6)

We use (1− 1/q)q ≥ (1− 1/q)(1/e) for q > 1 to derive the first inequality1, and
use (1 − q)ln 2 > 1− q to the second. The exponent in the last term is

pw1
� w̃2 =

(
1
2
− ε√

n

)w1

w̃2 = w̃2

(
1
2

)w1 (
1− 2ε√

n

)w1

≤ w1

(
1
2

) 2ε√
n

1
ln 2 w1

= w1

(
1
2

) 2
ln 2

1
n1/4

≤ w1

(
1− 1

ln 2
1

n1/4

)
. (7)

We use (1−1/q)q ≤ 1/e for q > 1 to derive the first inequality, and use (1/2)2q ≤
(1 − q) for q ≤ 1/2, which is equivalent to (1/4) ≤ (1 − q)1/q, to derive the

1 Proof: (1 − 1/q)q = (1 − 1/q)(1 − 1/q)q−1 = (1 − 1/q)(1 + 1/(q − 1))−(q−1) ≥
(1 − 1/q)(1/e).
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last inequality. By plugging Eq. (7) into Eq. (6), we can show that, for every
sufficiently large n,

A0
2(p�) ≥

(
1
2

)w1(1−1/n1/4)

. (8)

The proof of the above inequality is described in Appendix (Section A.1).
We now proceed to the estimation of A1

3(p�). Since (1−q)r ≤ (1/e)qr for q < 1
and r > 0, we have

A1
3(p�) = (1−A0

2(p�))w3 ≤
(

1
2

)w̃3A0
2(p�)

.

In order to show A1
3(p�) ≤ ε, it is sufficient to show that w̃3A

0
2(p�) ≥ log2(1/ε).

By Eq. (8), we have

w̃3A
0
2(p�) ≥ 2w1

(
1
2

)w1(1−1/n1/4)

=
(

1
2

)−w1/n1/4

= 21/ε > log2(1/ε).

This completes the proof of Theorem 2 for d = 3.

4.2 Construction for General Depths

We pick W = (w1, w2, . . . , wd) such that

– w1 = (1/ε)n1/(2d−2),
– w̃k = 2w1w1 and wk = (ln 2)w̃k for k = 2, . . . , d− 1,
– w̃d = 2w1 and wd = (ln 2)w̃d.

As for the case d = 3, we choose parameters so that A1
1(1/2) = (1/2)w1 ,

A0
2(1/2) = (1 − (1/2)w1)w2 ∼ (1/2)w1 , A1

3(1/2) = (1 − (1/2)w1)w3 ∼ (1/2)w1 ,
and so on. It should be noted that the asymptotically optimal construction
of depth two circuit of size exp(Θ(

√
n)) by O’Donnell and Wimmer [7] is a

random DNF of width w1 = (1/ε)
√
n and size w2 = (ln 2)2w1 . Hence, for d = 2,

our construction completely matches their construction, and so this can also be
viewed as a natural extension of their construction.

The following two lemmas are almost all that we need. The proof of these two
lemmas is described in Appendix (Sections A.2 and A.3).

Lemma 3. Let w = (ln 2)2w1w1. Suppose that n is sufficiently large. Suppose
also that

A ≥
(

1
2

)w1 (
1 + cn

α−d
2(d−1)

)
for some α ∈ {2, . . . , d− 1} and some positive constant c. If α < d− 1, then

(1−A)w ≤
(

1
2

)w1 (
1− c

2ε
n

(α+1)−d
2(d−1)

)
.

If α = d− 1, then
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(1−A)w ≤
(

1
2

)w1
(

1
2

) c
ε

.

Lemma 4. Let w = (ln 2)2w1w1. Suppose that n is sufficiently large. Suppose
also that

A ≤
(

1
2

)w1 (
1− cn

α−d
2(d−1)

)
,

for some α ∈ {2, . . . , d− 1} and some positive constant c. If α < d− 1, then

(1−A)w ≥
(

1
2

)w1 (
1 +

c

2ε
n

(α+1)−d
2(d−1)

)
.

If α = d− 1, then

(1−A)w ≥
(

1
2

)w1 (1
2

)− c
1.1ε

.

Proof of Theorem 2. Let W = (w1, . . . , wd) be as described at the beginning
of this subsection. The size of a circuit that will be constructed is less than
2
∏d

k=2 wk = 2(ln 2)d−1(2w1)d−1(w1)d−2 = 2O(n1/(2d−2)/ε). Put ph := 1/2+ ε/
√
n

and p� := 1/2− ε/
√
n. Below, we will show that A0

d(ph) ≤ ε and A1
d(p�) ≤ ε.

We first show that A0
d(ph) ≤ ε. We start with

A1
1(ph) =

(
1
2

)w1 (
1 +

2ε√
n

)w1

≥
(

1
2

)w1 (
1 + 2n

2−d
2(d−1)

)
>

(
1
2

)w1 (
1 + n

2−d
2(d−1)

)
, (9)

where the first inequality follows from the inequality (1 + q)r ≥ 1 + qr for q ≥ 0
and r ≥ 1. We use Lemma 3 to get

A0
2(ph) = (1 −A1

1(ph))w2 ≤
(

1
2

)w1 (
1− 1

2ε
n

3−d
2(d−1)

)
.

Then we use Lemma 4 to get

A1
3(ph) = (1 −A0

2(ph))w3 ≥
(

1
2

)w1 (
1 +

1
(2ε)2

n
4−d

2(d−1)

)
.

By applying Lemmas 3 and 4 alternatively, we have

A0
d−2(ph) ≤

(
1
2

)w1 (
1− 1

(2ε)d−3
n

−1
2(d−1)

)
(10)

when d is even, or we have

A1
d−2(ph) ≥

(
1
2

)w1 (
1 +

1
(2ε)d−3

n
−1

2(d−1)

)
(11)
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when d is odd. Note that when d = 3 we have already obtained Eq.(11) as Eq.(9).
By applying Lemma 3 or 4 once again, we obtain

A1
d−1(ph) ≥

(
1
2

)w1 (1
2

)− 1
(1.1ε)(2ε)d−3

≥
(

1
2

)w1 (1
2

)− 1
2ε

=
(

1
2

)w1

2
1
2ε ≥

(
1
2

)w1

· log2(1/ε) (12)

when d is even, and

A0
d−1(ph) ≤

(
1
2

)w1
(

1
2

) 1
(ε)(2ε)d−3

≤
(

1
2

)w1
(

1
2

) 1
ε

(13)

when d is odd. The case for even d is finished by using Eq. (12):

A0
d(ph) = (1−A1

d(ph))wd

≤
{

1−
(

1
2

)w1

log2(1/ε)
}(ln 2)2w1

≤
(

1
2

)log2(1/ε)

= ε,

where the first inequality follows from the inequality (1− q)r ≤ (1/e)qr for q ≤ 1
and r ≥ 0. The case for odd d is finished by using Eq. (13):

A1
d(ph) ≥

{
1−

(
1
2

)w1 (1
2

) 1
ε

}(ln 2)2w1

≥ 1− (ln 2)
(

1
2

) 1
ε

> 1− (ln 2)ε > 1− ε.

Here we use the inequality (1 − q)r ≥ 1 − qr for q ≤ 1 and r ≥ 1 to derive the
first inequality, and use (1/2)(1/q) < q, which is equivalent to (1/2) < qq, to the
second. This holds since the minimum value of the function qq is (1/e)(1/e) ∼
0.6922.

We now turn to show A1
d(p�) ≤ ε. The proof is almost analogous to the proof

for A0
d(ph) ≤ ε. The “base” is

A1
1(p�) =

(
1
2

)w1 (
1− 2ε√

n

)w1

≤
(

1
2

)w1 (1
2

) 2
ln 2 n

2−d
2(d−1)

≤
(

1
2

)w1 (
1− 1

ln 2
n

2−d
2(d−1)

)
<

(
1
2

)w1 (
1− n

2−d
2(d−1)

)
, (14)

where the first inequality follows from the inequality (1− q)r ≤ (1/e)qr for q ≤ 1
and r ≥ 0, and the second inequality follows from the inequality (1/2)2q ≤ 1− q
for q ≤ 1/2, which is equivalent to (1/4) ≤ (1 − q)1/q . By applying Lemmas 3
and 4 alternatively, we have

A1
d−2(p�) ≤

(
1
2

)w1 (
1− 1

(2ε)d−3
n

−1
2(d−1)

)
,
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when d is odd (note again that when d = 3, we have already obtained this as
Eq.(14)), or we have

A0
d−2(p�) ≥

(
1
2

)w1 (
1 +

1
(2ε)d−3

n
−1

2(d−1)

)
when d is even. These inequalities are identical to Eqs. (10) and (11) if we swap
ph and p�, “odd” and “even”, and the role of 0 and 1. This immediately implies
the desired bound, i.e., A1

d(p�) ≤ ε, since we have shown A0
d(ph) ≤ ε from Eqs.

(10) and (11). �

5 Bottom Fan-In and Depth-3 Circuit Size

Our approach can also handle the problem for constructing small circuits to
compute an “Approximate-Majority” of the first kind described in Introduction,
i.e., to compute a function f : {0, 1}n → {0, 1} such that f(x) = 1 for every
x with |x| ≥ (2/3)n and f(x) = 0 for every x with |x| ≤ (1/3)n. If we restrict
ourselves to depth d = 3, the conditions that should be satisfied are now

A1
3(1/3) <

⎧⎨⎩
(1/3)n∑

i=0

(
n

i

)⎫⎬⎭
−1

∼ 2−H(1/3)n, (15)

and

A0
3(2/3) <

⎧⎨⎩
n∑

i=(2/3)n

(
n

i

)⎫⎬⎭
−1

∼ 2−H(1/3)n, (16)

where H(p) := −p log2 p − (1 − p) log2(1 − p) denotes the binary entropy func-
tion. An easy calculation shows that these are satisfied by the parameter W =
(w1, w2, w3) := (log2 n, (ln 2)(log2 n)nlog2 3,n2), which implies that there is a
depth-3 circuit with bottom fan-in log2 n that approximates the majority (in
the meaning of the first kind of approximation) whose size is O(n2+log2 3+ε),
i.e., polynomial in n. The calculation for verifying this is described in Appendix
(Section A.4).

It has been recently shown by Viola [9] that every depth-3 circuit with bottom
fan-in at most (log2 n)/2 that approximates the majority on n variables has size
at least 2n0.1

. This means that a sharp threshold phenomenon (i.e., the size of
circuits becomes polynomial from exponential as the bottom fan-in increases)
occurs at somewhere between (log2 n)/2 and log2 n. A careful inspection of the
proof by Viola [9] can improve the lower limit to {1/(log2 3)−ε}n ∼ 0.631 log2 n,
but still has a gap. If we decrease the value of w1 from log2 n to α log2 n with
α < 1, then it will not be possible to satisfy Eqs. (15) and (16) by parameters
w2 and w3 whose values are polynomial in n. Hence, the problem to determine
the true threshold value, or to see what happen around the threshold would be
interesting.
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A Appendix

A.1 Proof of Eq. (8)

What we want to show is{
(1− pw1

� )
1
2

}w1(1− 1
ln 2

1
n1/4 )

≥
(

1
2

)w1(1− 1
n1/4 )

.

This is equivalent to

1− pw1
� ≥

(
1
2

) 1−ln 2
(ln 2)n1/4−1

. (17)

Since 1− q ≥ (1/2)2q for q ≤ 1/2, we have

1− Θ

(
1

n1/4

)
= 1− 1

2
· 1− ln 2
(ln 2)n1/4 − 1

≥ RHS of Eq. (17).

Since pw1
� is exponentially small in n, i.e., pw1

� = O(1/2n1/4
) = o(1/n1/4), Eq.

(17) holds for sufficiently large n. �
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A.2 Proof of Lemma 3

Since (1− q)r ≤ (1/e)qr for q ≤ 1 and r ≥ 0, we have

(1− A)w = (1−A)(ln 2)2w1w1 ≤
(

1
2

)A·2w1w1

≤
(

1
2

)w1(1+cn
α−d

2(d−1) )

=
(

1
2

)w1 (1
2

)c·w1n
α−d

2(d−1)

=
(

1
2

)w1 (1
2

) c
ε n

(α+1)−d
2(d−1)

.

This completes the proof for α = d−1. If α < d−1, then the exponent of the last
term converges to 0 as n→∞. Hence, we use the inequality (1/2)q ≤ (1− q/2)
for q ≤ 1, which is equivalent to (1/4) ≤ (1− q/2)2/q, to show

(1−A)w ≤
(

1
2

)w1 (
1− c

2ε
n

(α+1)−d
2(d−1)

)
(for sufficiently large n),

which completes the proof of the lemma. �

A.3 Proof of Lemma 4

By using the inequality (1− 1/q)q ≥ (1− 1/q)(1/e) for q > 1 (whose proof is in
the footnote in Section 4.1), we have

(1−A)w = (1−A)(ln 2)2w1w1 ≥
{

(1−A)
(

1
2

)}A·2w1w1

≥
{

(1 −A)
(

1
2

)}w1(1−cn
α−d

2(d−1) )

≥
(

1
2

)w1(1− c
1.1 n

α−d
2(d−1) )

(for sufficiently large n)

=
(

1
2

)w1 (1
2

)− c
1.1ε n

(α+1)−d
2(d−1)

,

where the third inequality can be derived by a similar calculation as the proof
of Eq. (8) in Section A.1. This completes the proof for the case α = d−1. When
α < d − 1, the exponent of the last term converges to 0 as n → ∞. Hence,
we can use the inequality 2q ≥ (1 + (ln 2)q) for q < 1, which is equivalent to
e ≥ (1 + q)1/q , to show

(1−A)w ≥
(

1
2

)w1 {
1 +

(ln 2)c
1.1ε

n
(α+1)−d
2(d−1)

}
(for sufficiently large n)

>

(
1
2

)w1 {
1 +

c

2ε
n

(α+1)−d
2(d−1)

}
.

This completes the proof of the lemma. �
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A.4 Depth-3 Circuits for Approximating Majority of the First Kind

This section describes the calculation for verifying Eqs. (15) and (16) when we
set W := (log2 n, (ln 2)(log2 n)nlog2 3,n2) (See Section 5). Eq. (15) is verified by
the following series of calculations.

A1
1(1/3) =

(
1
3

)log2 n

=
1

nlog2 3
,

A0
2(1/3) =

(
1− 1

nlog2 3

)(ln 2)(log2 n)nlog2 3

∼
(

1
e

)(ln 2)(log2 n)

=
1
n

,

A1
3(1/3) =

(
1− 1

n

)n2

∼
(

1
e

)n

< 2−n < 2−H(1/3)n.

Eq. (16) is verified by the following series of calculations.

A1
1(2/3) =

(
2
3

)log2 n

=
1

nlog2 3−1
,

A0
2(2/3) =

(
1− 1

nlog2 3−1

)(ln 2)(log2 n)nlog2 3

∼
(

1
e

)(ln 2)(log2 n)n

=
1
nn

,

A0
3(2/3) = 1−

(
1− 1

nn

)n2

< 1−
(

1− n2

nn

)
=
n2

nn
< 2−n < 2−H(1/3)n.

Strictly speaking, this is not a formal proof since we use an asymptotic estimation
(i.e., (1− 1/n)n ∼ 1/e) here. However, it will be obtained by some more careful
estimations.
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Abstract. Counting homomorphisms between graphs has applications
in variety of areas, including extremal graph theory, properties of graph
products, partition functions in statistical physics and property testing
of large graphs. In this work we show a new application of counting graph
homomorphisms to the areas of exact and parameterized algorithms.

We introduce a generic approach for counting subgraphs in a graph.
The main idea is to relate counting subgraphs to counting graph homo-
morphisms. This approach provides new algorithms and unifies several
well known results in algorithms and combinatorics including the recent
algorithm of Björklund, Husfeldt and Koivisto for computing the chro-
matic polynomial, the classical algorithm of Kohn, Gottlieb, Kohn, and
Karp for counting Hamiltonian cycles, Ryser’s formula for counting per-
fect matchings of a bipartite graph, and color coding based algorithms
of Alon, Yuster, and Zwick.

1 Introduction

Given two undirected graphs F and G, a homomorphism from F to G is a map-
ping from the vertex set of F to that of G such that the image of every edge of
F is an edge of G. Many combinatorial structures in F , for example indepen-
dent sets and proper vertex colorings, may be viewed as graph homomorphisms
to a particular graph G, see the book of Hell and Nešetřil [20] for a thorough
introduction to the topic. Counting homomorphisms between graphs has appli-
cations in a variety of areas, including extremal graph theory, properties of graph
products, partition functions in statistical physics and property testing of large
graphs. We refer to the excellent survey of Borgs et al. [11] for more references
on counting homomorphisms.

There is an extensive literature on the computational complexity of graph
homomorphism and counting homomorphisms. Hell and Nešetřil showed that for
any fixed simple graph G, the problem whether there exists a homomorphism
from F to G is solvable in polynomial time if G is bipartite, and NP-complete
if G is not bipartite [19]. Dyer and Greenhill [15] completely characterized the
dichotomy between P and #P-complete for counting homomorphisms from F
to G. It appears that polynomial-time solvable cases arise only when G is an
isolated vertex, a complete graph with all loops present, a complete bipartite

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 71–82, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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graph without loops, or a disjoint union of these graphs. Dalmau and Jonsson
[13], extending a result of Grohe [18], proved that counting homomorphisms from
a graph F ∈ F to an arbitrary graph G is in P if and only if all graphs in the
family F have bounded treewidth (up to the assumption from parameterized
complexity that FPT �= #W[1]).

In this paper we design exact and parameterized algorithms for counting the
number of subgraphs isomorphic to a given graph F in a general graph. For any
graph G with n vertices and m edges, all subgraphs of G isomorphic to a given
graph F can be counted by trying all possible edge subsets of G and for each
subset checking if the obtained graph is isomorphic to F . This algorithm runs in
time 2m+o(n) by making use of an algorithm due to Babai [2] to check isomor-
phism in time subexponential in n. Another approach is to try all permutations
of G and F , and for each fixed permutation, to compare vertex neighborhoods.
This will give us running time O(n!n2) = 2O(n log n). While it is an open question
in the area whether subgraph isomorphism can be solved in time 2O(n), there
are many special cases, depending on the structure of graph F , for which 2O(n)

algorithms are known. Many natural problems like Hamiltonian Cycle, Per-

fect Matching, Graph Coloring, Bandwidth Minimization, Triangle

Packing, and many others can be seen as subgraph isomorphism problems and
for each of these problems there are 2O(n) time algorithms known in the litera-
ture. However, known algorithms for these problems are tailored to their specific
properties.

The main idea behind our results is to reduce the problem of counting sub-
graphs of G isomorphic to a graph F to counting homomorphisms from F to G.
Let sub(F, G) denote the number of distinct copies of a graph F contained in a
graph G. Let also hom(F, G) and inj(F, G) be the number of homomorphisms
and injective homomorphisms from F to G respectively. The idea of relating
hom(F, G) and inj(F, G) is not new in Graph Theory. Lovász [24,11] gave the
following identities relating hom(F, G) and inj(F, G). For an equivalence rela-
tion Θ on V (F ) let F/Θ denote the graph obtained by identifying nodes that
belong to the same class of Θ. Then inj(F, G) =

∑
Θ μ(Θ)hom(F/Θ, G), where

μ(Θ) =
∏k

A∈Θ

(
(−1)|A|−1(|A| − 1)!

)
with the product running over all equiva-

lence classes of Θ and sum running over all equivalence relations. From algo-
rithmic point of view the above formula is not efficient because the number of
equivalence relations even for simple graphs like graph containing n isolated ver-
tices is too large to be meaningful. We give an alternate formula which helps
us in counting “simple structures” in time vertex exponential in the right hand
graph G. Let us denote by aut(F, F ) the number of automorphisms from F to it-
self, that is bijective homomorphisms. Our result shows that if |V (F )| = |V (G)|,
then

sub(F, G) =
inj(F, G)
aut(F, F )

=

∑
W⊆V (G)(−1)|W | hom(F, G[V (G) \W ])

aut(F, F )
. (1)

This formula can be seen as a generalization of inclusion-exclusion based for-
mulas which were used for many problems including counting the number of



Counting Subgraphs via Homomorphisms 73

perfect matchings in a graph [7,28], counting Hamiltonian cycles [4,21,22], and
computing chromatic polynomial of a graph [8,23]. The basic idea of inclusion-
exclusion based approach is that we express the number of objects we want to
count as a sum of other objects which are easier to count. The main advantage
of using graph homomorphisms is that despite of their expressive power, graph
homomorphisms from many structures can be counted efficiently.

Our results and related work. We start by proving (1), Theorem 1, which is
our main tool in the design of exact algorithms. We observe that a number of well-
known classical and recent results can be obtained as corollaries of Theorem 1.
We demonstrate its power by reproving the following results. Let G be a graph
on n vertices. Then the number of Hamiltonian cycles in G can be computed in
time 2nnO(1) and in polynomial space (this result was rediscovered several times
[4,22,21]). The chromatic polynomial of G can be computed in time 2n+O(

√
n)

(this almost matches the running times of the celebrated result of Björklund,
Husfeldt, and Koivisto [8,23]). The number of perfect matchings in a bipartite
graph can be counted in time 2n/2nO(1) (the classical result of Ryser [28], see
also Björklund and Husfeldt [8]). Then we use Theorem 1 and its variants to
obtain improvements on the following.

Number of optimal permutations for bandwidth. The Bandwidth problem is a
famous combinatorial problem where given an undirected graph G on n vertices,
we wish to embed its vertices onto an integer line such that the maximum stretch
of any edge of G is minimized.

Feige and Kilian [16] provided an exact algorithm computing the optimal
bandwidth in time 10nnO(1). Recently an improved algorithm with running time
5nnO(1) was given by Cygan and Pilipczuk [12]. None of the known algorithms
can be adapted to count the number of optimal bandwidth assignments.

The Bandwidth problem can be seen as a subgraph isomorphism problem,
and by combining Theorem 1 with the techniques of counting homomorphisms
on graphs of bounded treewidth, we obtain the following. The number of optimal
bandwidth permutations of a graph on n vertices of treewidth at most t can be
counted in time 2t log2 n+nnO(1) and space 2t log2 nnO(1).

Number of perfect matchings. While a perfect matching in a graph can be found
in polynomial time, the problem of counting the number of perfect matchings
is #P-complete [29]. For bipartite graphs, the best known exact algorithm for
counting perfect matchings is to apply the Ryser’s formula for the permanent
[28], which runs in time O(1.414n). Björklund and Husfeldt [7] showed how
to compute the number of perfect matchings of a graph in time 2nnO(1) and
polynomial space. They also showed how to count perfect matchings in time
O(1.732n) and exponential space.

We generalize the classical result of Ryser by showing that if G contains an
independent set of size k then the number of perfect matchings in G can be
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found in time O(2n−kn3). Let us remark that the case of bipartite graphs is a
special case as k ≥ �n/2�.
Counting maximum subgraphs with a given property. Combining algorithms for
counting homomorphisms with ideas from data structures, we give algorithms
running in time 2O(n) for various problems asking to count the number of sub-
graph with specific properties in an n-vertex graph. For example, it is possible to
count in time 2O(n) maximum planar subgraphs, subgraphs of bounded genus,
or, even more generally, subgraphs excluding a fixed graph M as a minor. The
last result requires a new combinatorial bound on the number of non-isomorphic
unlabeled M -minor-free graphs which implies as a corollary the main theorem
of Norine, Seymour, Thomas, and Wollan from [27] on minor-closed families.
This resolves an open problem of Bernardi, Noy and Welsh [6]. We also obtain
a number of algorithms for counting spanning trees with different degree con-
ditions. These structures can be seen as generalizations of Hamiltonian paths.
Let us remark that prior to our work for many of the problems above the only
known algorithm was the trivial edge subset enumerating algorithm running in
time 2O(n2).

Packing problems. We show how to solve in time 2O(n) even more difficult prob-
lems, like finding a maximum vertex disjoint packing from a class H, where H is
a graph class excluding a fixed graph M as a minor. In particular the Maximum

Vertex Disjoint Cycles problem can be solved in time 2n+O(
√

n). Again, for
many of these problems no 2O(n) time algorithm were known.

Parameterized algorithms. By applying inclusion-exclusion it is possible to re-
fine the celebrated Color Coding technique of Alon, Yuster, and Zwick [1]. The
probabilistic algorithm of Alon et al. determines whether a given graph G con-
tains a fixed graph F as a subgraph and works in two stages. First we color the
vertices of G at random and then perform dynamic programming on the colored
graph in order to find an isomorphic subgraph of F whose vertices have distinct
colors. In [1] Alon et al. provide an algorithm for the case when F is a forest,
and then mention that this algorithm can be generalized to an algorithm that
finds a k-vertex graph F of treewidth t in an n-vertex graph G (if such a copy
exists) in expected time 2O(k)nt+1. One of the significant disadvantages of using
dynamic programming with color coding is that it requires exponential space. By
combining ideas based on inclusion-exclusion and graph homomorphisms with
color coding, we provide a polynomial space algorithm that in expected time
O((2e)k · k · t · nt+1) finds a k-vertex graph F of treewidth t in an n-vertex
graph G.

2 Preliminaries

Let G be a simple undirected graph without self loops and multiple edges. We
denote the vertex set of G by V (G) and the set of edges by E(G). For a subset
W ⊆ V (G), by G[W ] we mean the subgraph of G induced by W . By degW (v),
v ∈ V (G) and W ⊆ V (G), we denote the number of vertices adjacent to v in
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W . Given two graphs F and G, a graph homomorphism from F to G is a map
f from V (F ) to V (G), that is f : V (F ) → V (G), such that if uv ∈ E(F ),
then f(u)f(v) ∈ E(G). Furthermore, when the map f is injective, f is called an
injective homomorphism. Given two graphs F and G, the problem of Subgraph

Isomorphism asks whether there exists an injective homomorphism from F to
G. We also recall that hom(F, G), inj(F, G) and sub(F, G) denote the number
of homomorphisms from F to G, the number of injective homomorphisms from
F to G and the number of distinct copies of F in G, respectively. We need the
following result relating sub(F, G) and inj(F, G) for our purpose and provide its
proof in appendix.

Proposition 1. sub(F, G) = inj(F, G)/aut(F, F ).

This proposition allows us to focus on computing the value of inj(F, G), as one
can compute aut(F, F ) for a graph F on nF vertices in time 2O(

√
nF log nF ) [3]1,

which is subexponential in nF .

3 Relating Counting Subgraphs to Counting
Homomorphism

We first give a formula expressing the number of injective homomorphisms from
F to G in terms of the number of graphs homomorphisms from F to G, using
the principle of inclusion-exclusion.

Theorem 1. Let F and G be two graphs with |V (G)| = |V (F )|. Then

inj(F, G) =
∑

W⊆V (G)

(−1)|W | hom(F, G[V (G) \W ]).

Proof. To prove the theorem, we first show that if there is an injective homo-
morphism f from F to G then its contribution to the sum is exactly one. Notice
that since |V (G)| = |V (F )|, an injective homomorphism only contributes when
W = ∅. From this we conclude that injective homomorphisms are counted only
once in the right hand side. Since we are counting homomorphisms, in the right
hand side sum we also count maps which are not injective. Next we show that
if a map h is not an injective homomorphism then its total contribution to
the sum is zero, which will conclude the proof of the theorem. Observe that
since h is not an injective homomorphism it misses some vertices of V (G). Let
Ṽ = im(h) be the image of h in V (G). Since h is not an injective homomor-
phism, we infer that X = V (G) \ Ṽ �= ∅. We now observe that h is counted only
when we are counting homomorphisms from V (F ) to G[V (G) \W ] such that
W ⊆ X . The total contribution of h in the sum, taking into account the signs,
is
∑|X|

i=0

(|X|
i

)
(−1)i = (1 − 1)|X| = 0. Thus, we have shown that if h is not an

1 In fact, here for a given graph F they solve a harder problem of computing its
automorphism group and its generators. Please refer to Section 7 of [5] for further
discussion.
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injective homomorphism then its contribution to the sum is zero. This completes
the proof of the theorem. ��

For the rest of the section, we assume that we can count the number of graph
homomorphisms from F to all the graphs G[W ] in time t(n), where |F | ≤ |G| = n
and W ⊆ V (G). Then as a consequence of Theorem 1 we can compute the value
of inj(F, G) in time O(2n · t(n)) when the size of V (F ) and V (G) is n. A natural
question then would be: what happens when the size of V (F ), say nF is less
than the size of V (G), say n. An easy solution will be to enumerate all subsets
V ′ of size nF of V (G) and then compute inj(F, G[V ′]). But this will take time
O(
(

n
nF

)
2nF t(n)), which in the worst case, could be equal to O(3n · t(n)). In

the remaining of this section let us observe how to reduce the time complexity
to O(2n · t(n)) by using the recently developed O(2nn) algorithm for subset
convolution [9].

Let f and g be functions that associate with every subset S ⊆ V (G) elements
f(S) and g(S) respectively of the ring Z. Then the convolution of f and g is
defined as follows: ∀S ⊆ V (G) (f ∗ g)(S) =

∑
T⊆S f(T )g(S \ T ). Let F and

G be graphs of order nF and n respectively. For a subset S ⊆ V (G), we put
f(S) = (−1)|S|, and g(S) = hom(F, G[S]). Let T ⊆ V (G) be a subset of size
nF . Then inj(F, G[T ]) =

∑
Q⊆T (−1)|Q| hom(F, G[T \ Q]) = (f ∗ g)(T ). Now

we compute the multi-set X = {inj(F, G[T ]) | |F | = |T | = nF ∧ T ⊆ V (G)} in
time O(2n · t(n)) using the result from [9]. Moreover, inj(F, G)=

∑
x∈X x. The

above discussion brings us to the following theorem.

Theorem 2. Let F and G be two graphs with nF and n vertices respectively,
with nF ≤ n. Furthermore, we assume that the value inj(F, G[S]) is computable
in time t(n) for every S ⊆ V (G). Then inj(F, G) is computable in time O(2n ·
t(n)).

4 Classical Results

In this section we give alternative algorithms for a few classical algorithms
through the method of counting homomorphisms.

Counting Hamiltonian Cycles – Kohn-Gottlieb-Kohn-Karp Algorithm.
Let #Ham(G) denote the number of Hamiltonian cycles in a graph G and F be a
cycle of length n then sub(F, G)=#Ham(G). It is also known that if F is a cycle
Cn, then hom(Cn, H) =

∑n
i=1 λn

i , where λ1, . . . , λn are the eigenvalues of the ad-
jacency matrix of H and aut(Cn, Cn)= 2n [11]. Using these results and Theorem 1,
we can compute #Ham(G) in time 2nnO(1) and polynomial space.

Chromatic Polynomial – Björklund-Husfeldt-Koivisto Algorithm. A
proper k-coloring of a graph G is a function f : V (G) → {1, . . . , k} such
that for every edge uv ∈ E(G), f(u) �= f(v). A well known polynomial as-
sociated with a graph G, is its Chromatic Polynomial. The rank of the
graph G is r(G) = |V (G)| − η(G), where η(G) is the number of connected
components of G. The Chromatic Polynomial of G is defined as χ(G; x) =
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E′⊆E(G)(−1)|E

′|x|V (G)|−r(E′), where r(E′) is equal to the rank of the subgraph
of G with vertex set V (G) and the edge set E′. The polynomial derives its name
due to the fact that for every fixed k ≥ 0, χ(G; k) is the number of proper
k-colorings of G. The chromatic number of G is the smallest integer k > 0 for
which χ(G; k) > 0. It is well known that for every k > 0, χ(G; k) = hom(G, Kk).
Here Kk is a clique of size k. However, to compute the chromatic polynomial of a
graph, we have to look at homomorphisms from “the other side”. A k-coloring of
a graph G can also be viewed as a partition of the vertex set of the given graph
into k independent sets, that is, a partition (V1, . . . , Vk) of V (G) such that for
every i ∈ {1, . . . , k}, G[Vi] has no edges. For our purpose we reformulate the
problem of coloring, as a problem of partitioning into k cliques in the comple-
ment graph. We model this as a problem of subgraph isomorphism as follows:
we guess the sizes t1, t2, . . . , tk of these cliques, where

∑
i ti = n. By making

use of this observation, it is possible to compute the chromatic polynomial of an
n-vertex graph in time 2n+O√

n and by making use of 2n × (n+ 1) space.

Number of Perfect Matchings in Bipartite Graphs – Ryser’s Formula.
Let G be a bipartite graph on an even number of vertices, say n, with V (G) being
partitioned into L and R of the same size. Then the Ryser’s Formula says
that # PM(G) =

∑
X⊆R(−1)|X|∏

u∈L

(∑
v/∈X 1[uv∈E(G)]

)
, where #PM(G) is

the number of perfect matchings in G. The sum
∑

v/∈X 1[uv∈E(G)] counts the
number of u’s neighbors not in X . Thus, we can count the number of perfect
matchings in a bipartite graph in time O(2n/2n2). If we take F as n/2 disjoint
copies of an edge then # PM(G)=sub(F, G). By using Theorem 1, it is easy to
obtain an algorithm to compute the value of # PM(G) in time 2nnO(1). We will
use the notion of saturating homomorphism in Section 5 to compute #PM(G)
in faster time, and in particular in time O(2n/2n2) in bipartite graphs.

5 New Applications

In this section we give new applications of Theorems 1 and 2 and show their
wider applicability.

Set Saturating Homomorphisms and Ryser’s Formula. In this subsection
we give a faster poly-space algorithm for counting perfect matchings in graphs
with large independent sets. To do so we first generalize the notion of graph
homomorphism and prove a generalization of Theorem 1. Let S be a given subset
of V (G), then a homomorphism f from F to G is called S-saturating if (a)
S ⊆ f(V (F )) and (b) for all v ∈ S, |f−1(v)| = 1. By S-hom(F, G) we denote the
number of S-saturating homomorphisms. Observe that for S = ∅ an S-saturating
homomorphism is simply a homomorphism. Along the lines of Theorem 1 and
using the method of inclusion-exclusion we can prove the following theorem.

Theorem 3. Let F and G be two graphs with |V (G)| = |V (F )|, and S ⊆ V (G).
Then

inj(F, G) =
∑

W⊆V (G)\S

(−1)|W |S-hom(F, G[V (G) \W ]).
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Theorem 4. Let G be an n-vertex graph and S ⊆ V (G) be an independent set
of G. There is an algorithm which counts the number of perfect matchings of G
in time 2n−|S| · nO(1).

It is well known that the chromatic number of a graph is always at most its
average degree (or degeneracy) plus one. Also by Brooks theorem, the chromatic
number of a graph is at most the maximum vertex degree, unless the graph is
complete or an odd cycle. Then by Theorem 4, we obtain the following result.

Corollary 1. Let G be an n-vertex graph and let δ andΔ be its average and maxi-
mum degrees. Then #PM(G) is computable in time min{2n− n

δ+1 , 2n− n
Δ }nO(1). In

particular if G is a bipartite graph then we can find #PM(G) in time 2n/2nO(1).

Subgraph Isomorphism when F has bounded Treewidth. Here, we give
an algorithm for counting subgraphs isomorphic to F in G, when F is given
together with a tree-decomposition of width t. We first mention an algorithm to
compute hom(F, G), when F is a graph of bounded treewidth.

Proposition 2 ([14]). Let F and G be two graphs on nF and n vertices respec-
tively, given together with a tree-decomposition of width t of F . Then hom(F, G)
is computable in time O(nF · nt+1 min{t,n}) and space O(lognF · nt+1).

Theorem 5. Let F and G be two graphs on nF and n vertices respectively, given
together with a tree-decomposition of width t of F . Then sub(F, G) is computable
in time O(2n · nF · nt+1 min{t,n}). The space requirement is O(log nF · nt+1) if
nF = n else it is O(log nF · nt+1 + 2n).

Bandwidth is one of the well studied graph layout problems. We begin the
section by defining it formally. A layout of a graph G on n vertices is a map
f : V (G) → {1, . . . ,n}. In the Bandwidth problem, the objective is to find
a layout function for a given graph G, such that maxuv∈E(G) |f(u) − f(v)| is
minimized.

The following lemma formulates the Bandwidth problem as an instance of
the Subgraph Isomorphism problem. By Pn we denote a path on n vertices.
For a graph G, the rth power of the graph is denoted by Gr. This graph is on
the same vertex set V (G), but we add an edge between two distinct vertices u
and v if there is a path of length at most r between them in G.

Lemma 1. Let G be a graph on n vertices. Then G has a layout of bandwidth
b if and only if there is an injective homomorphism from G to P b

n.

Using Lemma 1 together with Theorem 5 we obtain the following theorem.

Theorem 6. Given a graph G on n vertices together with a tree decomposition
of width t, it is possible to find the number of optimum bandwidth layouts in time
2n+t log2 nnO(1) and space O(logn ·nt+1). In particular if G is a tree then we can
compute the number of optimum bandwidth layouts in time O(2n · n3).
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Corollary 2. Given a graph G on n vertices excluding a graph M on r vertices
as a minor. It is possible to compute the number of optimum bandwidth layouts
in time 2n+r3/2√n log2 n · nO(1).

Degree Constrained Spanning Tree Problem. Hamiltonian Path is one
of the earliest known problems for which an exact algorithm with time com-
plexity 2nnO(1) was known. This problem can also be seen as a special case
of finding a spanning tree with certain degree constrains on the vertices. More
precisely the Degree Constrained Spanning Tree (DCST) problem is de-
fined as follows: Given a connected undirected graph G and a vector of size
n, â = (a1, a2, · · · , an), find a spanning tree T of G (if one exists), such that
there is a bijective mapping g : V (G) → {a1, a2, . . . , an} with the property
that degT (v) = g(v). A variation of DCST called Modified Degree Con-

strained Spanning Tree (MDCST) is defined by replacing the condition of
degT (v) = g(v) with degT (v) ≤ g(v) in DCST.

Theorem 7. Let G be a graph on n vertices and â = (a1, . . . , an) be a vector
of length n. Then we can count the number of feasible solutions to DCST and
MDCST in 5.912n · nO(1) time.

We solve the Minimum Degree Spanning Tree problem by finding the small-
est 2 ≤ i ≤ n − 1 for which MDCST problem returns yes with â = (i, i, · · · , i)
resulting in the following.

Corollary 3. Minimum Degree Spanning Tree on a graph on n vertices
can be solved in time 5.912n · nO(1).

Counting Graphs Excluding a Fixed Minor. In this section we apply our
results to count planar subgraphs of maximum size or more generally maximum
sized subgraphs that do not contain some fixed graph M as a minor. More
precisely, we consider Maximum Planar Subgraph and Maximum M -minor

Free Subgraph problems. Here given a graph G the objective is to find a subset
E′ ⊆ E(G) of maximum size such that the graph GE′ on the vertex set V (G)
and the edge set E′ is planar and M -minor free respectively.

A näıve algorithm for the above problems is to enumerate all edge subsets of
the given graph, for each subset test whether the subgraph induced by the edge
set has the desired properties and output the feasible subgraph with the maximum
number of edges. For a graph G on n vertices and m edges this algorithm will take
2m · nO(1) time. Let us remark that even for the decision version of these prob-
lems, no vertex exponential (i.e. cnnO(1)) time algorithms were known. The basic
ideas used here are similar to the ones used for trees, namely to prove that all unla-
beled graphs on n vertices in the considered class can be enumerated in timeO(cn)
for some constant c, and then for each element of the enumerated class, applying
Theorem 5 to count the number of subgraphs of G isomorphic to it.

Let M be a fixed graph. Norine, Seymour, Thomas, and Wollan [27] proved
that the number of labelled n-vertex graphs of size n in a family of graphs
excluding M as a minor is at most n!cn for some constant c (depending on M).
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We prove a more general result here, namely that the number of unlabelled M -
minor-free n-vertex graphs is at most cn for some constant c depending only on
M . Let us remark that since the number of labelings is at most n!, our result
immediately yields the main theorem from [27].

Theorem 8. Let G be a family of unlabelled n-vertex graphs that do not contain
some fixed graph M as a minor. Then there exists a constant cM such that the
number of non-isomorphic graphs in G is at most cn

M . Moreover, the elements
of G can be enumerated in time O(cn

M ).

As far as we have Theorem 8, by making use of Theorem 5 and the fact, that
the treewidth of an n-vertex graph excluding a fixed graph as a minor is O(

√
n),

we conclude with the main result of this section.

Theorem 9. Given a graph G on n vertices the counting version of the Maxi-

mum M -minor Free Subgraph problem can be solved in time O(cn) = 2O(n)

for some constant c = cM . All these algorithms use nO(
√

n) space.

H-Packing and some of its Variants. Let H and G be two graph classes.
By H-subgraph of G we mean any subgraph of G that belongs to H. Given a
graph G ∈ G, the Covering problem asks for finding a subset W of V (G) of
minimum size which covers all the H-subgraphs of G. On the other hand the
Packing problem asks for finding a maximum number of vertex disjoint copies
of H-subgraphs in G. In other words, the packing number of G with respect to
the class H is defined as

packH(G) = max {k | ∃ a partitionV1, · · · , Vk of V (G) such that
∀i ∈ {1, · · · , k}, ∃H∈HH ⊆ G[Vi]}.

Let M be a fixed graph. In this section we show that if H is a graph class
excluding M as a minor (that is no H ∈ H contains M as a minor) then there
exists a constant c depending only on M such that it is possible to compute the
value of packH(G) in time cnnO(1) for any graph G on n vertices.

Theorem 10. Let G be a graph on n vertices and H be a graph class excluding
a fixed graph M as a minor then the value of packH(G) can be computed in
time cnnO(1) = 2O(n), where c is a constant depending only on M .

Corollary 4. Given a graph G on n vertices, Maximum Vertex Disjoint

Cycles and Maximum Odd Sized Vertex Disjoint Cycles problems can
be solved in time 2n+O(

√
n), whereas Maximum l-Cycle Packing problem can

be solved in time O(n6 · 2n).

6 Color Coding

Let c : V (G) → {1, 2, . . . , k} be a coloring (not necessarily proper) of the vertex
set of a graph G in k colors. Thus Vi = c−1(i) is not necessarily an independent
set. For a graph F on k vertices, we say that an injective homomorphism f from



Counting Subgraphs via Homomorphisms 81

F to G is colorful, if each vertex of the image of F is colored by a distinct color.
We denote the number of colorful injective homomorphisms from a graph F to
a colored graph G by col-inj(F, G). Let us remark, that the number of colorful
copies of F in G is equal to col-inj(F, G)/aut(F, F ). Let G∗ be the graph obtained
from G by deleting all the mono-chromatic edges, that is, by making each color
class Vi into an independent set.

Theorem 11. Let c : V (G) → {1, 2, . . . , k} be a coloring of G and Vi = c−1(i).
Then

col-inj(F, G) = col-inj(F, G∗) =
∑

I⊆{1,2,...,k}
(−1)|I|hom(F, G∗[V (G∗) \ ∪i∈IVi]).

Combined with Proposition 2, Theorem 11 yields the following result.

Theorem 12. Let F be a k-vertex graph given with its tree decomposition of
width t and let G be an n-vertex graph. A subgraph of G isomorphic to F (if one
exists) can be found in either O((2e)k ·k ·t·nt+1) expected time and O(log k ·nt+1)
space or deterministically in time O((2e)k+o(k) · k · t · nt+1) and space O(log k ·
nt+1). Here, e is the base of natural logarithm.

7 Conclusion and Discussions

In this paper we introduced an approach for counting subgraphs in a graph
via counting graph homomorphisms in the realm of exact and parameterized al-
gorithms. This approach yields various new algorithms for many basic problems
like counting the number of perfect matchings, optimum bandwidth layouts, de-
gree constrained spanning trees, maximum planar subgraphs beside others. On the
other hand it also unified several well-known results in exact algorithms including
counting coloring, Hamiltonian cycles and perfect matchings of bipartite graphs.
These alternate algorithms generalize and unify algorithms for many well known
problems. Let us remark thatmost of our results canbe easily extended to weighted
directed graphs. We believe that our method is generic and will find many more ap-
plications.One important questionwhich remains unanswered is:Can sub(F, G)be
computed in 2O(n) time? In particular, we do not know the answer to this question
even for the very special case, when the maximum degree of F is 3.
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Abstract. We initiate the study of sublinear-time algorithms in the
external memory model [1]. In this model, the data is stored in blocks of
a certain size B, and the algorithm is charged a unit cost for each block
access. This model is well-studied, since it reflects the computational
issues occurring when the (massive) input is stored on a disk. Since each
block access operates on B data elements in parallel, many problems have
external memory algorithms whose number of block accesses is only a
small fraction (e.g. 1/B) of their main memory complexity.

However, to the best of our knowledge, no such reduction in complex-
ity is known for any sublinear-time algorithm. One plausible explanation
is that the vast majority of sublinear-time algorithms use random sam-
pling and thus exhibit no locality of reference. This state of affairs is
quite unfortunate, since both sublinear-time algorithms and the external
memory model are important approaches to dealing with massive data
sets, and ideally they should be combined to achieve best performance.

In this paper we show that such combination is indeed possible. In
particular, we consider three well-studied problems: testing of distinct-
ness, uniformity and identity of an empirical distribution induced by
data. For these problems we show random-sampling-based algorithms
whose number of block accesses is up to a factor of 1/

√
B smaller than

the main memory complexity of those problems. We also show that this
improvement is optimal for those problems.

Since these problems are natural primitives for a number of sampling-
based algorithms for other problems, our tools improve the external mem-
ory complexity of other problems as well.

1 Introduction

Random sampling is one of the most fundamental methods for reducing task
complexity. For a wide variety of problems, it is possible to infer an approximate
solution from a random sample containing only a small fraction of the data,
yielding algorithms with sublinear running times. As a result, sampling is often
the method of choice for processing massive data sets. Inferring properties of
data from random sample has been a major subject of study in several areas,
including statistics, databases [2,3], theoretical computer science [4,5,6,7], . . .

� The research was supported in part by David and Lucille Packard Fellowship, by
MADALGO (Center for Massive Data Algorithmics, funded by the Danish National
Research Association), by Marie Curie IRG Grant 231077, by NSF grants 0514771,
0728645, and 0732334, and by a Symantec Research Fellowship.

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 83–94, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



84 A. Andoni et al.

However, using random sampling for massive data sets encounters the fol-
lowing problem: typically, massive data sets are not stored in main memory,
where each element can be accessed at a unit cost. Instead, the data is stored
on external storage devices, such as a hard disk. There, the data is stored in
blocks of certain size (say, B), and each disk access returns a block of data, as
opposed to an individual element. In such models [1], it is often possible to solve
problems using roughly T/B disk accesses, where T is the time needed to solve
the problem in main memory. The 1/B factor is often crucial to the efficiency of
the algorithms, given that (a) the block size B tends to be large, on the order
of thousands and (b) each block access is many orders of magnitude slower than
a main memory lookup. Unfortunately, implementations of sampling algorithms
typically need to perform1 one block access per each sampled element [2]. Effec-
tively, this means that out of B data elements retrieved by each block access,
B− 1 elements are discarded by the algorithm. This makes sampling algorithms
a much less attractive option for processing massive data sets.

Is it possible to improve the sampling algorithms by utilizing the entire infor-
mation stored in each accessed block? At the first sight, it might not seem so.
For example, consider the following basic sampling problem: the input data is a
binary sequence such that the fraction of ones is either at most f or at least 2f ,
and the goal is to detect which of these two cases occurs. A simple argument
shows that any sampling algorithm for this problem requires Ω(1/f) samples to
succeed with constant probability, since it may take that many trials to even
retrieve one 1. It is also easy to observe that the same lower bound holds even if
all elements within each block are equal (as long as the total number of blocks
is Ω(1/f)), in which case sampling blocks is equivalent to sampling elements.
Thus, even for this simple problem, sampling blocks does not yield any reduction
in the number of accesses.

Our Results. Contrary to the above impression, in this paper we show that
there are natural problems for which it is possible to reduce the number of
sampled blocks. Specifically, we consider the problem of testing properties of
empirical distributions induced by the data sets. Consider a data set of size m
with support size (i.e., the number of distinct elements) equal to n. Let pi be
the fraction of times an element i occurs in the data set. The vector p then
defines a probability distribution over a set of distinct elements in the data set.
We address the following three well-studied problems:

– Distinctness: are all data elements distinct (i.e., n = m), or are there at least
εm duplicates?

– Uniformity: is p uniform over its support, or is it ε-far2 from the uniform
distribution?

– Identity: is p identical to an explicitly given distribution q, or is it ε-far
from q?

1 It is possible to retrieve more samples per block if the data happens to be stored in
a random order. Unfortunately, this is typically not guaranteed.

2 We measure the distance between distribution using the standard variational dis-
tance, which is the maximum probability with which a statistical test can distin-
guish the two distributions. Formally, a distribution p is ε-far from a distribution q,
if ‖p − q‖1 ≥ ε, where p and q are interpreted as vectors.
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Note that testing identity generalizes the first two problems. However, the
algorithms for distinctness and uniformity are simpler and easier to describe.

It is known [8,9,10] that, if the elements are stored in main memory, then
Θ̃(
√
n) memory accesses are sufficient and necessary to solve both uniformity

and identity testing. In this paper we give an external memory algorithm which
uses only Õ(

√
m/B) block accesses. Thus, for m comparable to n, the number

of accesses is reduced by a factor of
√

B. It also can be seen that this bound
cannot be improved in general: if B = m/n, then each block could consist of
equal elements, and thus the Θ̃(

√
n) = Θ̃(

√
m/B) main memory lower bound

would apply.
From the technical perspective, our algorithms mimic the sampling algorithms

of [10,11,9]. The key technical contribution is a careful analysis of those algo-
rithms. In particular, we show that the additional information obtained from
sampling blocks of data (as opposed to the individual elements) yields a sub-
stantial reduction of the variance of the estimators used by those algorithms.

Applications to Other Problems. The three problems from above are natural
primitives for a number of other sampling-based problems. Thus, our algorithms
improve the external memory complexity of other problems as well. Below we
describe two examples of problems where our algorithms and techniques apply
immediately to give improved guarantees in the external memory model.

The first such problem is testing graph isomorphism. In this problem, the
tester is to decide, given two graphs G and H on n vertices, whether G are H
are isomorphic or at least εn2 edges of the graphs must be modified to achieve
a pair of isomorphic graphs. Suppose one graph, G, is known to the tester (for
instance, it is a fixed graph with an easily computable adjacency relation), and
the other graph, H , is described by the adjacency matrix written in the row-
major order on the disk. Then, our algorithm for identity testing improves the
sample complexity of the Fischer and Matsliah algorithm [12] by essentially a
factor of

√
B. Formally, in the main memory, the Fischer and Matsliah algorithm

uses O(
√
n · poly(logn, 1/ε)) queries to H . Combined with our external memory

identity tester, algorithm will use only O((
√
n/B +1) ·poly(log n, 1/ε)) samples.

The second application is a set of questions on testing various properties
of metric spaces, such as testing whether a metric is a tree-metric or ultra-
metric. In [13], Onak considers several such properties, for which he gives al-
gorithms whose sampling complexity in main memory is of the form O(α/ε +
n(β−1)/β/ε1/β), where α ≥ 1 and β ≥ 2 are constant integers. The additive term
n(β−1)/β/ε1/β corresponds to sampling for a specific β-tuple. Using our tech-
niques for distinctness testing, it can easily be shown that whenever an algo-
rithm from [13] requires O(α/ε+n(β−1)/β/ε1/β) samples, the sample complexity
in external memory can be improved to O(α/ε + (n/B)(β−1)/β/ε1/β), provided
a single disk block contains B points.

2 Distinctness Problem: Finding a Single Repetition

We start with the distinctness problem, which is the easiest problem where we
can show how to harness the power of block queries. The distinctness problem
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consists of distinguishing inputs representing sets of m distinct elements, from
those inputs representing multisets which have at least ε · m repetitions. This
problem was studied in [14] in the standard memory model and is known to have
worst-case complexity Θ(

√
m/ε). In the main memory setting, the solution is

a variant of the birthday paradox argument, an argument that will be needed
(indirectly) for our analysis as well.

Fact 1 (The Birthday Paradox). Let S be a set of size m. For α ∈ (0, 1),
let P be a set of αm disjoint pairs of elements in S. With probability 1/2, a
random subset of size O(

√
m/α) contains two elements that belong to the same

pair in P .

The following theorem shows that it is enough to sample O(
√

m/εB) blocks to
solve the distinctness problem.

Theorem 2. Let m be the length of the sequence stored on disk in blocks of
length B. If at least εm elements must be removed from the sequence to achieve
a sequence with no repetitions, then O(

√
m/εB) block queries suffice to find with

constant probability an element that appears at least twice in the sequence.

Proof. For each element that appears at least twice in the sequence, we divide
all its occurrences into pairs. This gives us at least Ω(εm) pairs of identical
elements, and it suffices to detect any of them. Let us now consider possible
layouts of these pairs into blocks. Let f1 be the number of the pairs that have
both elements in the same block, and let f2 be the number of the pairs with
elements in two different blocks. At least one of f1 and f2 must be Ω(εm).

If f1 = Ω(εm), then the pairs must occupy at least an ε-fraction of all the
m/B blocks, so O(1/ε) block-queries suffice to find at least one of the pairs.

Suppose now that f2 = Ω(εm). For each block that contains an element of
one of the pairs counted by f2, there is a block that contains the other element of
the pair. Consider the following procedure that creates a set P of disjoint pairs
of blocks of size Ω(εm/B). Initially, let S be the set of all blocks. As long as
there is a pair of blocks in S that contain two corresponding elements of a pair
counted by f2, we add the pair to P and remove the pair from S. Note that one
such step erases at most 4B of the pairs counted by f2. Thus, at termination,
P contains at least Ω(εm/B) disjoint pairs of blocks such that each of the pairs
exhibits a repetition. By Fact 1, it suffices to sample O(

√
m/εB) blocks to find

such a pair, and hence, a repetition of elements. ��

3 Testing Uniformity

In this section we show that we can test uniformity of a distribution with O(
√

m
B ·

1
ε · log B) queries. Note that, for m = Θ(n), this improves over the usual (in main
memory) testing by a factor of Θ̃(

√
B).

Theorem 3. Let m be the length of a sequence of elements in [n], and assume
m ≤ nB. The sequence is stored in blocks on disk, and each block contains B
elements of the sequence. Let p be the empirical distribution of the sequence.
There is an algorithm that samples O

(
1
ε

√
m
B · log B

)
blocks, and:
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– accepts with probability ≥ 2/3 if p is O
(

ε√
Bm·log B

)
-close to uniformity

on [n],
– rejects with probability ≥ 2/3 if p is ε-far from uniform on [n].

Our algorithm is given in Figure 1. Let Q = C · 1
ε ·
√

m
B · log B for a sufficiently

big constant C.

Uniformity-Test(n, m, B, ε)

Let Q = C · 1
ε
·√m

B
· log B for a sufficiently big constant C.

Pretest
1. Sample a set S of Q blocks (the set is sampled without replacement).
2. Fail if an element appears more than m/n times.

Test
3. Sample two sets S1, S2 of Q blocks each. The sets are sampled with

replacement.
4. Count the number of collisions (of elements) between the two sets of

samples. Let this number be W .
5. Fail if W > (1 + ε/2) (QB)2

n
.

Fig. 1. Algorithm for testing uniformity in the block query model

3.1 Analysis: Proof of Theorem 3

We use the following notation. Set s = m/n. Let Pα,i be the number of occur-
rences of an element i ∈ [n] in a block α ∈ [m/B]. Note that pi = 1

m

∑
α Pα,i.

Generally, i, j ∈ [n] will denote elements (from the support of p), and α, β, γ, δ ∈
[m/B] will denote indexes of blocks.

Proposition 4. If p is uniform, Pretest stage passes (with probability 1).

Lemma 5. If Pretest stage passes with probability ≥ 1/3, then:

– There are at most O(m/B
Q ) = O( ε

log B ·
√

m
B ) blocks that have more than s

occurrences of some element.
– p is O(ε

√
B/m)-close to a distribution q such that maxi qi ≤ O(ε

√
s/nB ·

log B).

Proof. The first bullet is immediate. Let us call “bad” blocks the ones that have
more than s occurrences of some element. “Good” ones are the rest of them.

To proceed with the second bullet, consider only the good blocks, since the
bad ones contribute at most O(B · ε

√
m/B · 1

m ) = O(ε
√

B/m) fraction of the
mass. We claim that for every i, and for every k such that 2k ≤ s, there are
at most C1 · s

2k · ε
√

m/B blocks that have at least 2k occurrences of element
i, for some sufficiently large C1. Suppose for contradiction that for some i and
k, there are more than C1 · s

2k · ε
√

m/B blocks that have ≥ 2k occurrences of
element i. The expected number of such blocks that the algorithm samples in
the Pretest phase is ≥ C2s/2k, for some sufficiently large constant C2. By the
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Chernoff bound, the algorithm will sample more than s/2k such blocks with
probability greater than 2/3. This means that the algorithm will sample more
than s copies of i, and will reject the input with probability greater than 2/3,
which contradicts the hypothesis.

We can now show that the number of occurrences of each element in good
blocks is bounded. For each k ∈ {0, 1, . . . , �log s�}, there are at most C1

s
2k ·

ε
√

m/B good blocks in which the number of occurrences of i is in the range
[2k, 2k+1). Summing over all ranges, we see that the total number of occurrences
of i is at most O(sε

√
m/B log s) = O(sε

√
m/B log B), which implies that the

distribution q defined by the good blocks is such that for each i,

qi ≤
O(sε

√
m/B · log B)

m(1−O(ε
√

B/m))
= O(ε

√
s/Bn · log B). ��

Using the above lemma, we can assume for the rest of the proof that the input
only contains blocks that have at most s occurrences of any element i ∈ [n]. If
the input is ε-far from uniform, the number of blocks in S1 and S2 with more
than s occurrences of an element is greater than a sufficiently high constant with
a very small probability. Therefore, those blocks can decrease W by only a tiny
amount, and have a negligible impact on the probability of rejecting an input
that is ε-far from uniform. Moreover, this step changes the distribution by only
at most O(ε

√
B/m) probability mass. If the distribution is uniform, then the

assumption holds a priori.
Let w = W/B2 denote the sum of “weighted” collisions between blocks (i.e.,

if blocks α and β have z collisions, the pair (α, β) contributes z/B2 to the
“weighted” collision count w).
Proposition 6. The expected number of weighted collisions is E [w] = Q2

∑
i p2

i .
Let’s call t =

∑
i p2

i .
Lemma 7. The variance of w is at most O(Q2ts/B + Q3t maxi pi).

Proof. Let Cα,β be the number of collisions between block α and β, divided by
B2. Thus 0 ≤ Cα,β ≤ s/B (we would have Cα,β ≤ 1 if the block could contain
any number of occurrences of an element).

Note that Eα,β [Cα,β ] =
∑

i p2
i = t.

Let C̄α,β = Cα,β − t. We note that for any α, β, γ ∈ [m/B], we have that

E
[
C̄α,βC̄α,γ

]
= E [Cα,βCα,γ ]− t2 ≤ E [Cα,βCα,γ ]. (1)

We bound the variance of w as follows.

Var [w] = ES1,S2

⎡⎢⎣
⎛⎝ ∑

α,β∈S1×S2

C̄α,β

⎞⎠2
⎤⎥⎦

= Q2Eα,β∈[m/B]

[
(C̄α,β)2

]
+ E

⎡⎢⎢⎣ ∑
(α,β),(δ,γ)∈S1×S2

(α,β) 
=(δ,γ)

C̄α,β · C̄δ,γ

⎤⎥⎥⎦
≤ Q2Eα,β∈[m/B]

[
(C̄α,β)2

]
+ 2Q3Eα,β,γ∈[m/B]

[
C̄α,β · C̄α,γ

]
,
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where we have used the fact that, if {α, β}∩{γ, δ} = ∅, then E
[
C̄α,β · C̄δ,γ

]
= 0.

We upper bound each of the two terms of the variance separately. For the first
term, we have

Eα,β

[
(C̄α,β)2

]
≤ Eα,β

[
(Cα,β)2

]
=

B2

m2

∑
α,β

(∑
i

Pα,iPβ,i

B2

)2

=
1

B2m2

∑
i

∑
α,β

∑
j

Pα,iPβ,iPα,jPβ,j

≤ 1
B2m2

∑
i

∑
α,β

Pα,iPβ,i ·Bs

=
1

B2

∑
i

p2
i ·Bs = t · s

B
,

where for the last inequality we use the fact that
∑

j Pα,jPβ,j ≤ s
∑

j Pα,j = sB.
To bound the second term of Var [w], we use Equation (1):

Eα,β,γ∈[m/B]

[
C̄α,β · C̄α,γ

]
≤ Eα,β,γ∈[m/B] [Cα,β · Cα,γ ]

=
B3

m3

∑
α,β,γ

∑
i,j

Pα,iPβ,i

B2
· Pα,jPγ,j

B2

=
1

Bm3

∑
i

∑
α,β

Pα,iPβ,i

∑
j,γ

Pα,jPγ,j

≤ 1
m2

∑
i

∑
α,β

Pα,iPβ,i

∑
j

Pα,j

B
·max

j
pj

≤ maxj pj

m2

∑
i

∑
α,β

Pα,iPβ,i = t max
j

pj. ��

The following proposition gives bounds on t. Its proof is immediate.

Proposition 8. If p is uniform, then t =
∑

p2
i = 1

n . If p is ε-far from unifor-
mity, then t ≥ (1 + ε) 1

n .

Lemma 9. If p is ε-far from uniformity, then the algorithm rejects with proba-
bility at least 2/3.

Proof. We have that t ≤ maxi pi ≤ O(ε ·
√

s/nB · log B), and thus

Pr[w ≤ (1 + ε/2) 1
n ·Q

2] = Pr[tQ2 − w ≥ tQ2 − (1 + ε/2)Q2 1
n ]

= Pr[tQ2 − w ≥ Q2(t− 1
n −

ε/2
n )]

≤
E
[
(w − tQ2)2

]
(Q2(t− 1

n −
ε/2
n ))2

.
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If t > 2
n , then

Pr[w ≤ (1 + ε/2) 1
n ·Q

2] ≤ O(1) · Q2st/B + Q3t · ε ·
√

s/nB · log B

Q4t2

≤ O(1) ·
(

s

BQ2t
+ ε

Q ·
√

s/nB · log B

)
< 1/3.

Otherwise, if (1 + ε) 1
n ≤ t ≤ 2

n , then

Pr[w ≤ (1 + ε/2) 1
n ·Q

2] ≤
E
[
(w − tQ2)2

]
(Q2(t− 1

n −
ε/2
n ))2

≤ O(1) · Q2st/B + Q3t · ε ·
√

s/nB · log B

Q4ε2/n2

≤ O(1) · Q2s/B + Q3ε ·
√

s/nB · log B

Q4ε2/n

= O(1) ·
(

m

BQ2ε2
+
√

m log B

Qε
√

B

)
< 1/3. ��

Lemma 10. If p is uniform, then the algorithm passes with probability at least
5/6.

Proof. Since t = 1
n , we have

Pr[w ≥ (1 + ε/3) 1
n ·Q

2] = Pr[w −Q2t ≥ ε
3Q2t] ≤ Var [w]

( ε
3Q2t)2

= O(1) · Q2st/B + Q3t/n

( ε
3Q2t)2

= O(1) ·
(

m

BQ2ε2
+

1
εQ

)
< 1/6.

��

Lemma 11. If p is O( ε√
Bm log B

)-close to uniform, then the algorithm accepts
with probability at least 2/3.

Proof. The probability that the algorithm will see the difference between p and
the uniform distribution is bounded by

3Q · B ·O
(

ε√
Bm log B

)
= O(1).

Since the constant in O(1) can be made arbitrarily small, we can assume that the
probability of seeing a difference is at most 1/6. The uniform distribution passes
the test with probability at least 5/6, so if p is as close to uniformity as specified
above, it must be accepted with probability at least 5/6− 1/6 = 2/3. ��

This finishes the proof of Theorem 3.
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4 Testing Identity

Now we show that we can test identity of a distribution with O(
√

m
B ·poly(1/ε) ·

polylog(Bn)) queries. As for uniformity testing, when m = Θ(n), this improves
over the usual (in main memory) sampling complexity by Θ̃(

√
B).

Theorem 12. Let m be the length of a sequence of elements in [n] and assume
that m ≤ nB/2 and n−0.1 < ε < 0.1. The sequence is stored in blocks on disk, and
each block contains B elements of the sequence. Let p be the empirical distribution
of the sequence. There is an algorithm that given some explicit distribution q on
[n], samples O

(
1
ε3 ·

√
m
B · polylog(Bn)

)
blocks, and:

– accepts with probability ≥ 2/3 if p = q;
– rejects with probability ≥ 2/3 if p is ε-far from q.

Our algorithm is based on the identity-testing algorithm of [11] and is given in
Figure 2.

The high-level idea of the algorithm is the following. We use the distribution q
to partition the support into sets Rl, where Rl contains the elements with weight
between (1 + ε′)−l and (1 + ε′)−l+1, where ε′ is proportional to ε, and l ranges
from 1 to some L = O(1

ε logn). Abusing notation, let Rl denote the size of the
set Rl. Then, note that Rl ≤ (1 + ε′)l. Let p|Rl

be the restriction of p to the
support Rl (p|Rl

is not a distribution anymore). It is easy to see that: if p = q
then p|Rl

= q|Rl
for all l, and if p and q are far, then there is some l such that

p|Rl
and q|Rl

are roughly ε/L-far in the �1 norm. For all l’s such that Rl ≤ m/B,
we use the standard identity testing (ignoring the power of the blocks). The
standard identity testing takes only O(

√
m/B(ε−1 logn)O(1)) samples because

the support is bounded by m/B (instead of n).
To test identity for l’s such that Rl > m/B, we harness the power of blocks. In

fact, for each level Rl, we (roughly) test uniformity on p|Rl
(as in the algorithm

of [11]). Using our own uniformity testing with block queries from Theorem 3,
we can test uniformity of p|Rl

using only O(
√

m/B(ε−1 logn)O(1)) samples. In
the our algorithm, we do not use Theorem 3 directly because of the following
technicality: when we consider the restriction p|Rl

, the blocks generally have less
than B elements as the block also contains elements outside Rl. Still, it suffices to
consider only p|Rl

of “high” weight (roughly ε/L), and such p|Rl
must populate

many blocks with at least a fraction of εL of elements in each. This means that
the same variance bound holds (modulo small additional factors).

We present the complete algorithm in Figure 2. Assume C is a big constant
and c is a small constant.

4.1 Analysis: Proof of Theorem 12

We now proceed to the analysis of the algorithm. Suppose, by rescaling, that if
p �= q, they are 6ε-far (as opposed to ε-far). We can decompose the distribution
p into two components by partitioning the support [n]: p′ is the restriction of
p on elements heavier than B/m (i.e., i ∈ [n] such that pi ≥ B/m), and p′′ on
elements lighter than B/m. Clearly, running identity testing on both components
is sufficient. Abusing notation, we refer to vectors p̃ ∈ (R+)n as distributions
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Identity-Test(n, m, B, ε, q)

1. Let Q = C 1
ε3

·√m
B

· logO(1) nB and ε′ = cε;
2. Let L = 5 log1+ε′ n and L0 = log1+ε′ m/B < L;
3. Let Rl = {i ∈ [n] : (1 + ε′)−l < qi ≤ (1 + ε′)−l+1}, for l ∈ {1, 2, . . . L − 1},

and RL = {i ∈ [n] : qi ≤ (1 + ε′)−L};
4. If

∑
l≤L0

‖q|Rl
‖1 ≥ ε/4, then run the standard identity testing algorithm for

the distribution defined on elements ∪l≤L0Rl (disregarding block structure),
and, if it fails, FAIL;

5. Let wl =
∑

i∈Rl
qi for l ∈ {L0 + 1, . . . L};

6. For each L0 < l < L such that wl ≥ ε/L, do the following:
(a) Query Q blocks, and restrict the elements to elements in Rl; call these

blocks V l
1 , . . . V l

Q;
(b) Let vl be the total number of elements in V l

1 , . . . V l
Q (counting repetitions

of blocks);
(c) If |vl − wlQB| > (ε/L)2wlQB, then FAIL;
(d) For each element i ∈ Rl, compute how many times it appears in the

blocks V l
1 , . . . V l

Q (where we ignore repeats of a block);
(e) If an element i ∈ Rl appears more that (1 + ε′)−l+1m times, then FAIL.
(f) Let N2(l) be the number of collisions in V l

1 , . . . V l
Q (with replacement);

(g) If N2(l) > (1 + ε
2
) · w2

l
Rl

· (QB
2

)
, then FAIL;

Fig. 2. Algorithm for identity testing in the block query model

as well, and, for p̃, q̃ ∈ (R+)n, we say the distributions p̃ and q̃ are ε-far if
‖p̃− q̃‖1 ≥ ε‖q̃‖1.

Testing identity for distribution p′ is handled immediately, by Step 4 (as long
as ‖q′‖1 ≥ ε/4). Note that it requires only Õ(ε−2

√
m/B) samples because the

support of the distribution is at most m/B. Let’s call p|Rl
the restriction of

the probability distribution p to the elements from Rl. For all i ∈ RL, we have
pi ≤ (1 + ε′)−L < n−5. We define wl = ‖q|Rl

‖1, and then wL ≤ n · n−5 ≤ n−4.
The main observation is the following:

– if p = q, then p|Rl
= q|Rl

for all l;
– if p is 6ε-far from q, and ‖p′−q′‖1 ≤ ε‖q′‖1 (or ‖q′‖1 < ε/4), then there exist

some l, with L0 < l < L, such that wl ≥ ε/L, and p|Rl
and q|Rl

are at least
ε-far.

From now on, by “succeeds” we mean “succeeds with probability at least
9/10”.

Proposition 13. If p = q, then step 6c succeeds. If step 6c succeeds, then
|
∑

i∈Rl
pi − wl| ≤ (ε/L)2/2 · wl for all l, L0 < l < L, such that wl ≥ ε/L.

The proof of the proposition is immediate by the Chernoff bound.
If step 6e passes, then we can assume that for each block, and each i ∈

Rl, L0 < l < L, the element i appears at most (1 + ε′)−l+1m times in that
block— employing exactly the same argument as in Lemma 5. Furthermore,
in this case, for each i ∈ Rl, L0 < l < L, the value of pi is pi ≤ wl ·
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O( (1+ε′)−l+1m·m/B/Q
m log2 nB) = wl ·O((1+ε′)−l

√
m
B (ε−1 lognB)O(1)). Both con-

ditions hold a priori if p = q.
As in the case of uniformity testing, we just need to test the �2 norm of p|Rl

for at each level l.
Suppose p|Rl

is ε-far from q|Rl
. Then ‖p|Rl

‖22 ≥ ‖p|Rl
‖21 · 1+ε

Rl
· (1 − O(ε′))

by Proposition 8. Furthermore, by Proposition 13, we have ‖p|Rl
‖22 ≥

w2
l

Rl
·

(1 + ε)(1−O(ε′))(1 − (ε/L)2) > (1 + 2
3ε) · w2

l

Rl
.

Now suppose p|Rl
= q|Rl

. Then ‖p|Rl
‖22 ≤ Rl · (1 + ε′)2(−l+1) ≤ (1+ε′)2

Rl
· w2

l ≤
(1 + 3cε) · w2

l

Rl
.

Finally, the step 6g verifies that the estimate N2(l) of ‖p|Rl
‖22 is close to its

expected value when p = q. Indeed, if N2(l) were a faithful estimate — that is if
N2(l) = ‖p|Rl

‖22 ·
(
QB
2

)
— then we would be done. However, as with uniformity

testing, we have only E [N2(l)] = ‖p|Rl
‖22 ·
(
QB
2

)
. Still the bound is almost faithful

as we can bound the standard deviation of N2(l). Exactly the same calculation
as in Lemma 7 holds. Specifically, note that the variance is maximized when the
elements of Rl appear in vl/B ≥ wl

2 Q of the blocks V l
1 , . . . V l

Q, while the rest are
devoid of elements from Rl. This means that the estimate N2(l) is effectively
using only wl

2 Q = Ω(ε−2
√

m/B logO(1) n) blocks, which is enough for variance
estimate of Lemma 7.

This finishes the proof of Theorem 12.

5 Lower Bounds

We show that for all three problems, distinctness, uniformity and identity testing,
the

√
B improvement is essentially optimal. Our lower bound is based on the

following standard lower bound for testing uniformity.

Theorem 14 (Folklore). For some ε > 0, any algorithm for testing uniformity
on [n] needs Ω(1

ε

√
n) samples.

From the above theorem we conclude the following lower bound for testing uni-
formity with block queries. Naturally, the bound also applies to identity test-
ing, as uniformity testing is a particular case of identity testing. Similarly, the
lower bound for the distinctness problem follows from the lower bound below for
m = n.
Corollary 15. For some ε > 0, any algorithm for testing uniformity on [n] in
the block query model must use Ω(

√
m
B ) samples, for n ≥ m/B.

Proof. By Theorem 14, Ω(
√

m
B ) samples are required to test if a distribution on

[m/B] is uniform. We now show how a tester for uniformity in the block model
can be used to test uniformity on [m/B]. We replace each occurrence of element
i ∈ [m/B] by a block with m/n copies of each of the elements (i− 1) · nB

m + j,
for j ∈ [nB/m]. If the initial distribution was ε-far from uniformity on [m/B],
the new distribution is ε-far from uniformity on [n]. If the initial distribution
was uniform on [m/B], the new distribution is uniform on [n]. Hence, Ω(1

ε

√
m
B )

samples are necessary to test uniformity and identity in the block query model
for m/B ≤ n. ��
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6 Open Problems

There is a vast literature on sublinear-time algorithms, and it is likely that other
problems are amenable to approaches presented in this paper. From both the
theoretical and practical perspective it would be very interesting to identify such
problems.
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Abstract. The notion of distributed functional monitoring was recently
introduced by Cormode, Muthukrishnan and Yi [4] to initiate a formal
study of the communication cost of certain fundamental problems arising
in distributed systems, especially sensor networks. In this model, each
of k sites reads a stream of tokens and is in communication with a cen-
tral coordinator, who wishes to continuously monitor some function f of
σ, the union of the k streams. The goal is to minimize the number of
bits communicated by a protocol that correctly monitors f(σ), to within
some small error. As in previous work, we focus on a threshold version
of the problem, where the coordinator’s task is simply to maintain a
single output bit, which is 0 whenever f(σ) ≤ τ (1 − ε) and 1 when-
ever f(σ) ≥ τ . Following Cormode et al., we term this the (k, f, τ, ε)
functional monitoring problem.

In previous work, some upper and lower bounds were obtained for this
problem, with f being a frequency moment function, e.g., F0, F1, F2. Im-
portantly, these functions are monotone. Here, we further advance the
study of such problems, proving three new classes of results. First, we
provide nontrivial monitoring protocols when f is either H , the empir-
ical Shannon entropy of a stream, or any of a related class of entropy
functions (Tsallis entropies). These are the first nontrivial algorithms for
distributed monitoring of non-monotone functions. Second, we study the
effect of non-monotonicity of f on our ability to give nontrivial monitor-
ing protocols, by considering f = Fp with deletions allowed, as well as
f = H . Third, we prove new lower bounds on this problem when f = Fp,
for several values of p.

Keywords: Communication complexity, distributed algorithms, data
streams, sensor networks.

1 Introduction

Energy efficiency is a key issue in sensor network systems. Communication, which
typically uses power-hungry radio, is a vital resource whose usage needs to be
minimized [7]. Several other distributed systems have a similar need for min-
imizing communication. This is the primary motivation for our present work,
which is a natural successor to the recent work of Cormode, Muthukrishnan
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and Yi [4], who introduced a clean formal model to study this issue. The for-
malization, known as distributed functional monitoring, involves a multi-party
communication model consisting of k sites (the sensors, in a sensor network) and
a single central coordinator. Each site asynchronously receives “readings” from
its environment, formalized as a data stream consisting of tokens from a discrete
universe. The union of these streams defines an overall input stream σ that the
coordinator wishes to monitor continuously, using an appropriate protocol in-
volving private two-way communication channels between the coordinator and
each site. Specifically, the coordinator wants to continuously maintain approx-
imate knowledge of some nonnegative real-valued function f of σ. (We assume
that f is invariant under permutations of σ, which justifies our use of “union”
above, rather than “concatenation.”)

As is often the case in computer science, the essence of this problem is captured
by a threshold version with Boolean outputs. Specifically, we have a threshold
τ ∈ R+ and an approximation parameter ε ∈ R+, and we require the coor-
dinator to continuously maintain an output bit, which should be 0 whenever
f(σ) ≤ τ(1 − ε) and 1 whenever f(σ) ≥ τ .1 Following [4], we call this the
(k, f, τ, ε) functional monitoring problem. This formulation of the problem com-
bines aspects of streaming algorithms, sketching and communication complexity.

Motivation. Plenty of recent research (e.g., in network and database settings)
has studied such continuous monitoring problems, for several special classes of
functions f (see, e.g., [2,6,5,12]). However, formal worst-case bounds on commu-
nication cost were first addressed in detail in [4]. We continue to address this
here. Philosophically, the study of such monitoring problems is a vast generaliza-
tion of Slepian-Wolf-style distributed source coding [13] in much the same way
that communication complexity is a vast generalization of basic source coding in
information theory. Furthermore, while the problems and the model we consider
here are strongly reminiscent of streaming algorithms, there are notable addi-
tional challenges: for instance, maintaining an approximate count of the total
number of tokens received is a nontrivial problem in our setting, but is trivial in
the streaming model. For a more detailed discussion of prior research, we refer
the reader to [4] and the references therein.

Our Results and Comparison with Prior Work. Our work studies (k, f, τ, ε) func-
tional monitoring for two natural classes of functions f : the empirical Shannon
entropy H (and its generalization: Tsallis entropy) and the frequency moments
Fp. For an input stream σ of tokens from the universe [n] := {1, 2, . . . ,n}, let fi

denote the number of appearances of i in σ, where i ∈ [n]. For p ≥ 0, the pth fre-
quency moment Fp(σ) is defined to be

∑n
i=1 fp

i . Note that p can be non-integral
or zero: indeed, using the convention 00 = 0 makes F0(σ) equal to the number of
distinct tokens in σ. These functions Fp capture important statistical properties

1 Clearly, a solution to the value monitoring problem solves this threshold version, and
the value monitoring problem can be solved by running, in parallel, several copies
of a solution to this threshold version with geometrically spaced thresholds.
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of the stream and have been studied heavily in the streaming algorithms liter-
ature [1,9]. The stream σ also implicitly defines a probability distribution over
[n], given by Pr[i] = fi/m, where m is the length of σ. For various applications,
especially ones related to anomaly detection in networks, the entropy of this
distribution — also called the empirical entropy of the stream — is a measure of
interest. Abusing notation somewhat, we denote this as H(σ), when the underly-
ing entropy measure is Shannon entropy: thus, H(σ) =

∑n
i=1(fi/m) log(m/fi).2

We also consider the family of functions Tα(σ) = (1 −
∑n

i=1(fi/m)α)/(α − 1),
which are collectively known as Tsallis entropy [14] and which generalize Shan-
non entropy, as shown by considering the limit as α → 1.

We study the effect of non-monotonicity of f on the (k, f, τ, ε) problem: the
bounds of Cormode et al. [4] crucially exploited the fact that the functions being
monitored were monotone nondecreasing. We obtain three new classes of results.
First, we provide nontrivial monitoring protocols for H , and the related functions
Tα. For this, we suitably extend recent sketching algorithms such as those due to
Bhuvanagiri and Ganguly [3] and Harvey et al. [8]. These are the first nontrivial
algorithms for monitoring non-monotone functions.3 Our algorithms, which are
simple and easily usable, can monitor continuously until the end of the stream,
even as the f(σ) crosses the threshold multiple times. This is the desired behavior
when monitoring non-monotone functions.

Secondly, we prove lower bounds for monitoring f = Fp with deletions allowed:
i.e., the stream can contain “negative tokens” that effectively delete earlier to-
kens. In contrast with the good upper bounds in [4] for monitoring Fp without
deletions (a monotone problem), we show that essentially no good upper bounds
are possible. Using similar techniques, we also give a lower bound for monitor-
ing H that is necessarily much milder, and in the same ballpark as our upper
bound.

Thirdly, we prove new lower bounds for the monotone problems f = Fp, with-
out deletions, for various values of p. These either improve or are incomparable
with previous bounds [4]; see Table 1 for a side-by-side comparison.

Notation, etc. We now define some notation that we use at various points.
We use |σ| to denote the length of the stream σ and σ1 ◦ σ2 to denote the
concatenation: σ1 followed by σ2. We typically use S1, . . . , Sk to denote the k
sites, and C to denote the coordinator, in a (k, f, τ, ε) functional monitoring
protocol. We tacitly assume that randomized protocols use a public coin and
err with probability at most 1/3 at each point of time. These assumptions do
not lose generality, as shown by appropriate parallel repetition and the private-
versus-public-coin theorem of Newman [11]. We use m to denote the overall
input length (i.e., number of tokens) seen by the protocol under consideration.
We state our communication bounds in terms of m, k and ε, and sometimes τ .

2 Throughout this paper we use “log” to denote logarithm to the base 2 and “ln” to
denote natural logarithm.

3 Muthukrishnan [10] gives an upper bound for monitoring a non-monotone function,
but with additive error.
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Table 1. Summary of our results (somewhat simplified) and comparison with previous
work [4]. Dependence on τ is not shown here, but is stated in the relevant theorems.

Problem Previous Results Our Results

H , deterministic

Õ(m), trivially

Ω(kε−1/2 log m)

H , randomized Õ(kε−3 log4 m), Ω(ε−1/2 log m)

Fp, dels., determ. Ω(m)

Fp, dels., rand. Ω(m/k)

F1, deterministic O(k log(1/ε)), Ω(k log(1/(εk))) Ω(k log(1/ε))

F0, randomized Õ(k/ε2), Ω(k) Ω(1/ε), Ω(1/ε2) if round-based

Fp, p > 1, rand. Õ(k2/ε + (
√

k/ε)3), Ω(k), for p = 2 Ω(1/ε), Ω(1/ε2) if round-based

2 An Algorithm for Monitoring Entropy

We discuss randomized algorithms for monitoring Shannon entropy, H , and Tsal-
lis entropies, Tα. These provide the first nontrivial communication upper bounds
for the monitoring of non-monotone functions. At a high level, our algorithms
monitor changes (in the L1 sense) in the empirical probability distribution de-
fined by the input streams. For probability distributions μ, ν on the set [n], we
write ‖μ−ν‖1 =

∑n
i=1 |μ(i)−ν(i)|. We use the following three technical lemmas,

whose proofs are left to the full version of the paper.

Lemma 1. Let σ and σ′ be streams of tokens from [n], and μ and ν denote
the empirical distributions induced by σ and σ ◦ σ′ respectively. Let m = |σ|. If
|σ′| ≤ m, then, |H(σ ◦ σ′)−H(σ)| ≤ ‖ν − μ‖1 log(2m).

Lemma 2. Let σ, σ′, μ, ν and m be defined as in Lemma 1. Then, for all α > 1,
|Tα(σ ◦ σ′)− Tα(σ)| ≤ ‖ν − μ‖1 ·min {log(2m), α/(α− 1)}.
Lemma 3. Let σ, σ′, μ, ν and m be defined as in Lemma 1. Then if |σ′| < �,
then ‖ν − μ‖1 < 2�/m.

We also need an entropy sketching scheme, such as the one provided by the
following result, due to Harvey, Nelson and Onak [8].

Fact 1. Let ε > 0. There is an algorithm that maintains a data structure (called
a “sketch”) SH(σ), based on an input stream σ, such that (1) based on SH(σ),
we can compute an estimate Ĥ(σ) ∈ [H(σ) − ε, H(σ) + ε], (2) we can suitably
combine SH(σ1) and SH(σ2) to obtain SH(σ1 ◦σ2), and (3) SH(σ) can be stored
using Õ(ε−2 log m logn log(mn)) bits.4 Here, the Õ notation hides factors poly-
nomial in log log m and log(1/ε). ��
4 The Õ(ε−2 log m) bound in [8] is on the number of words of storage, each O(log(mn))

bits long, and does not include O(log n) space for a pseudorandom generator.
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The Algorithm. We proceed in multiple rounds. At the end of the ith round, let
ρij be the overall stream seen at site Sj , let σi = ρi1 ◦ · · · ◦ρik, and let mi = |σi|.
In round 0, sites directly forward input tokens to the coordinator C, who ends
the round after seeing a c0 := 100 items. Then, C uses SH from Fact 1 to get
an estimate Ĥ(σ0) of H(σ0) with an additive error of ε̂ := ετ/4.

For rounds i > 0, C and S1, . . . , Sk simulate a (k, F1, τi,
1
2 ) monitoring algo-

rithm, such as the one from [4], using error 1
2 and threshold τi := min{mi−1,

mi−1λi/(2 log(2mi−1))}, where λi = τ(1− ε
4 )− Ĥ(σi−1) if Ĥ(σi−1) < τ(1− ε

2 ),
and λi = Ĥ(σi−1)− τ(1− 3ε

4 ) otherwise. λi is the slack of the estimate Ĥ(σi−1)
from τ (or τ(1− ε) in the latter case), while allowing for error of the estimates.
The choice of τi ensures that the simulated F1 monitoring algorithm notifies
the coordinator by outputting 1 when too many items (as determined from the
technical lemmas) have been received in the round. When this happens, C sig-
nals each Sj that round i is ending, whereupon Sj sends it SH(ρij). Then, C

computes SH(σi), updates its estimate Ĥ(σi), and outputs 1 iff Ĥ(σi) ≥ τ(1− ε
2 ).

Theorem 1. The above is a randomized algorithm for (k, H, τ, ε) functional
monitoring that communicates Õ(kε−3τ−3 log3 m logn log(mn)) bits.

Proof. We first analyze the correctness. In round 0, it is trivial for the coordinator
to output the correct answer. Now, for round i > 0, suppose the coordinator
outputs 0 at the end of round i − 1. Then, we must have Ĥ(σi−1) ≤ τ(1 −
ε
2 ), whence H(σi−1) < τ(1 − ε

4 ) by the bound on the sketching error. By the
correctness of the F1 monitoring algorithm, we receive at most τi items during
round i. Therefore by Lemmas 1 and 3, when going from σi−1 to σi, the total
entropy will be less than τ throughout round i. Hence, the coordinator is free to
output zero through the end of round i. If the coordinator instead outputs 1 at
the end of round i− 1, we are guaranteed to remain above τ(1 − ε) similarly.

To bound the communication cost, we need to estimate both the number of
rounds, and the number of bits exchanged in each round. It is easy to see that
for each round i, λi ≥ ετ/4. Suppose the stream ends during round r + 1. Then,

m ≥ mr ≥ mr−1 + τr/2 ≥ mr−1 (1 + min{1/2, τε/(16 log(2mr−1))})
≥ mr−1 (1 + min{1/2, τε/(16 log(2m))}) = mr−1β (say),

where the second inequality follows from the guarantee of the F1 monitoring
algorithm. Iterating the above recurrence for mr, we get m ≥ c0β

r, whence
r ≤ log(m/c0)/ log β = O(max{logm, log2 m/(τε)}), where the final bound uses
ln(1 + x) ≥ x/(x + 1) for all x > 0. In each round, we use O(k log m) bits
to send τi to the sites and O(k) bits for the F1 algorithm. These terms are
dominated by the sizes of the sketches that the sites send. Using the size bound
from Fact 1 and the above bound on r, we can bound the total communication
by Õ(kε−3τ−3 log3 m logn log(mn)), for m large enough (i.e., if log m ≥ τε). ��

Our algorithm for monitoring Tsallis entropy is similar. Lemma 2 bounds Tα

just as Lemma 1 bounds H , and a suitable sketch STα , analogous to SH , can be
obtained from [8]. We postpone the details to the full paper.
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Theorem 2. There is a randomized algorithm for (k, Tα, τ, ε) functional moni-
toring that communicates Õ(kε−3τ−3 log3 m logn log(mn)) bits. ��

3 Lower Bounds for Non-monotone Functions

We now give lower bounds for estimating entropy, and later, Fp. We give de-
terministic bounds first, and then randomized bounds. We abuse notation and
let H denote both the empirical entropy of a stream and the binary entropy
function H : [0, 1]→ [0, 1] given by H(x) = −x log x− (1 − x) log(1 − x).

Theorem 3. For any ε < 1/2 and m ≥ k/
√

ε, a deterministic algorithm solving
(k, H, τ, ε) functional monitoring must communicate Ω(kε−1/2 log(εm/k)) bits.

Proof. We use an adversarial argument that proceeds in rounds. Each round, the
adversary will force the protocol to send at least one bit. The result will follow by
showing a lower bound on the number of rounds r that the adversary can create,
using no more than m tokens. Let τ = 1, and let z be the unique positive real
such that H( z

2z+1 ) = 1 − ε. Note that this implies H( z
2z+1 ) > 1/2 > H(1/10),

whence z
2z+1 > 1/10, hence z > 1/8. An estimation of H using calculus shows

that z = Θ(1/
√

ε). Fix a monitoring protocol P . The adversary only uses tokens
from {0, 1}, i.e., the stream will induce a two-point probability distribution.

The adversary starts with a “round 0” in which he sends nine 1s followed by
a 0 to site S1. Note that at the end of round 0, the entropy of the stream is
H(1/10) < 1/2. For i ∈ {0, 1, . . . , r}, let ai denote the number of 0s and bi the
number of 1s in the stream at the end of round i. Then a0 = 1 and b0 = 9. For
all i > 0, the adversary maintains the invariant that bi = �ai(z + 1)/z�. This
ensures that at the end of round i, the empirical entropy of the stream is

H

(
ai

ai + bi

)
≤ H

(
ai

ai(1 + (z + 1)/z)

)
= H

(
z

2z + 1

)
= 1− ε ,

which requires the coordinator to output 0.
Consider the situation at the start of round i, where i ≥ 1. If each player

were to receive �(bi−1 − ai−1)/k� 0-tokens in this round, then at some point the
number of 0s in the stream would equal the number of 1s, which would make the
empirical entropy equal to 1 and require the coordinator to change his output to
1. Therefore, there must exist a site Sji , ji ∈ [k], who would communicate upon
receiving these many 0-tokens in round i. In actuality, the adversary does the
following in round i: he sends these many 0s to Sji , followed by as many 1s as
required to restore the invariant, i.e., to cause bi = �ai(z + 1)/z�. Clearly, this
strategy forces at least one bit of communication per round. It remains to bound
r from below. Note that the adversary’s invariant implies bi− ai ≤ ai/z + 1 and
ai + bi ≤ ai(2z + 1)/z + 1 = ai(2 + 1/z) + 1. Therefore, we have

ai = ai−1 +
⌈

bi−1 − ai−1

k

⌉
≤ ai−1 +

⌈
1 + ai−1/z

k

⌉
≤ ai−1

(
1 +

1
zk

)
+ 2 .
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Setting α = (1 + 1/zk) and iterating gives ar ≤ a0α
r + 2(αr − 1)/(α − 1) =

a0α
r + 2zk(αr− 1) = αr(a0 + 2zk)− 2zk. Using our upper bound on ai + bi, the

above inequality, and the facts that a0 = 1 and that z > 1/8, we obtain

ar + br ≤ αr (1 + 2zk) (2 + 1/z)− 2zk(2 + 1/z) + 1

≤ (2 + 1/z) (1 + 2zk)αr ≤ (2 + 1/z) (1 + 2zk) er/zk ≤ 60zker/zk .

Therefore, we can have ar + br ≤ m, provided r ≤ zk ln(m/(60zk)). Recalling
that z = Θ(1/

√
ε), we get the claimed lower bound of Ω(kε−1/2 log(εm/k)). ��

Our next lower bounds are for functional monitoring of frequency moments when
we allow for deletions. Specifically, we now consider update streams that consist
of tokens of the form (i, v), where i ∈ [n] and v ∈ {−1, 1}, to be thought of as
updates to a vector (f1, . . . , fn) of frequencies. The vector is initially zero and
is updated using fi ← fi + v upon receipt of the token (i, v): in English, each
update either adds or deletes one copy of item i.

As usual, we let m denote the length of an update stream whose tokens
are distributed amongst several sites. Our next results essentially show that no
nontrivial savings in communication is possible for the problem of monitoring
frequency moments in this setting. These bounds highlight the precise problem
caused by the non-monotonicity of the function being monitored. They should
be contrasted with the much smaller upper bounds achievable in the monotone
case, when there are no deletions (see Table 1).

Our proofs are again adversarial and proceed in rounds. They use appropriate
instantiations of the following generic lemma.

Definition 1. An update stream is said to be positive if it consists entirely of
tokens from [n] × {1}, i.e., insertions only. The inverse of an update stream
σ = 〈(i1, v1), . . . , (im, vm)〉 is defined to be σ−1 := 〈(im,−vm), . . . , (i1,−v1)〉.
A function G : Zn

+ → R+ on frequency vectors is said to be monotone if G is
nondecreasing in each parameter, separately. We extend such a G to a function
on streams (or update streams) in the natural way, and write G(σ) to denote
G(f ), where f is the frequency vector determined by σ.

Lemma 4. LetG : Zn
+ → R+ bemonotoneand letP beaprotocol for the (k, G, τ, ε)

functional monitoring problem with deletions allowed. Let σ0, σ1, . . . , σk be a collec-
tion of positive update streams such that (1) G(σ0) ≤ τ(1− ε), and (2) G(σ0 ◦ σ1 ◦
. . . ◦ σk) ≥ τ . If P is a deterministic protocol, then the number of bits communi-
cated is at least

⌊
|(m− |σ0|) / (2 ·maxj∈[k]{|σj |})

⌋
. If P is a δ-error randomized

protocol, then the expected number of bits communicated is at least ((1 − δ)/k) ·⌊
(m− |σ0|) / (2 ·maxj∈[k]{|σj |})

⌋
.

Proof. Let S1, . . . , Sk be the k sites involved in P . The adversary will send certain
tokens to certain sites, maintaining the invariant that the coordinator is always
required to output 0. In round 0, the adversary sends σ0 to S1; by condition (1),
this maintains the invariant.

Let s = maxj∈[k]{|σj |} and r = �(m − |σ0|)/2s�. The adversary uses r ad-
ditional rounds maintaining the additional invariant that at the start of each



102 C. Arackaparambil, J. Brody, and A. Chakrabarti

such round the value of G is G(σ0). Consider round i, where i ∈ [r]. By condi-
tion (2), if the adversary were to send σj to Sj in this round, for each j ∈ [k],
the coordinator’s output would have to change to 1.

Suppose P is a deterministic protocol. Then, since the coordinator’s output
would have to change to 1, there must exist a site Sji , with ji ∈ [k], that would
have to communicate upon receiving σji in this round. In actuality, the adversary
sends σji ◦ σ−1

ji
to Sji and nothing to any other site in round i. Clearly, this

maintains both invariants and causes at least one bit of communication. Also,
this adds at most 2s tokens to the overall input stream. Thus, the adversary can
cause r bits of communication using |σ0| + 2sr ≤ m tokens in all, which proves
the claim for deterministic protocols.

The proof when P is a δ-error randomized protocol proceeds in a similar
manner. The difference is that each round i has an associated collection of prob-
abilities (pi1, . . . , pik), where pij = Pr[Sj communicates in round i upon receiving
σj ]. As before, condition (2) implies that were each Sj to receive σj in this round,
correctness would require C’s output to change to 1. Thus,

1− δ ≤ Pr[P is correct] ≤ Pr[C receives a bit in round i] ≤
∑k

j=1 pij ,

where the final inequality uses a union bound. Therefore, there exists a site Sji ,
with ji ∈ [k], having piji ≥ (1 − δ)/k. Again, as in the deterministic case, the
adversary actually sends σji ◦ σ−1

ji
to Sji and nothing to any other site in round

i. By linearity of expectation, the expected total communication with r rounds
is at least r(1 − δ)/k, which proves the lemma. ��
The theorems that follow are for randomized protocols with error δ = 1/3. We
prove only the first of these, leaving the (similar) proofs of the other two to the
full paper.
Theorem 4. The expected communication cost of a randomized (k, F0, τ, ε) func-
tional monitoring protocol that allows for deletions is Ω(min{m/k, m/ετ}). ��
Proof. Let a := max{1, � τε

k �}, and instantiate σ0 as a stream of τ − ka distinct
elements and σ1, . . . , σk each as a stream of a distinct elements. Note that ka ≥
τε, so F0(σ0) = τ−ka ≤ τ(1−ε). Furthermore, note that F0(σ0◦σ1◦· · ·◦σk) = τ ,
hence the streams satisfy the conditions of Lemma 4 with G = F0. Applying
that lemma, and noting that |σj | = a gives us a lower bound of ((1 − δ)/k) ·
�(m− |σ0|)/(2a)� = Ω(min{m/k, m/ετ}) for m large enough. ��
Theorem 5. The expected communication cost of a randomized (k, Fp, τ, ε) mon-
itoring protocol (with p > 0) that allows deletions is Ω(min{m/k, m/τ1/pε}). ��
Theorem 6. The expected communication cost of a randomized (k, H, τ, ε) func-
tional monitoring protocol is Ω(ε−1/2 log(εm/k)) bits. ��
We note that the deterministic part of Lemma 4 implies corresponding lower
bounds that are k times larger. Of course, Ω(m) bounds were already known for
Fp, even without deletions, by the techniques of [1] for deterministic streaming
algorithms. We also note that Yi and Zhang [16] study problems similar to
ours but in terms of competitive ratio. The bounds in this section rely on the
construction of hard instances which might not be possible in their case.
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4 Frequency Moments without Deletions: New Bounds

We finish with another set of lower bounds, this time for monitoring Fp (for
various p) without deletions. Our bounds either improve or are incomparable
with previous lower bounds: see Table 1.

Theorem 7. A deterministic protocol that solves (k, F1, τ, ε) functional moni-
toring must communicate at least Ω

(
k log k+τ

k+ετ

)
bits. In particular, when τ ≥

k/εΩ(1), it must communicate Ω (k log(1/ε)) bits.

Proof. Again we use an adversary, who proceeds in rounds: each round, he gives
just enough tokens to a single site to force that site to communicate.

Let a0 = 0 and, for i ≥ 1, let ai be the total number of tokens received by
all sites (i.e., the value of F1 for the input stream) at the end of round i. The
adversary maintains the invariant that ai ≤ τ(1 − ε), so that the coordinator
must always output 0. For j ∈ [k], let bij be the maximum number of tokens
that site j can receive in round i without being required to communicate. The
correctness of the protocol requires ai−1 +

∑k
j=1 bij < τ , for otherwise the

desired output can change from 0 to 1 without the coordinator having received
any communication. Let j∗ = argminj∈[k]{bij}. In round i, the adversary sends
bij∗ + 1 tokens to site j∗, forcing it to communicate. We have

ai = ai−1 + bij∗ + 1 ≤ ai−1 +
τ − ai−1

k
+ 1 = 1 +

τ

k
+
(

1− 1
k

)
ai−1 .

Letting α = 1− 1/k and iterating the above recurrence gives ai ≤ (1 + τ/k)(1−
αi)/(1 − α) = (k + τ)(1 − αi). Now note that α ≥ e−2/k, so when i ≤ r :=
k
2 ln k+τ

k+ετ , we have αi ≥ k+ετ
k+τ , so that ai ≤ (τ+k)·(k+τ−k−ετ/(k+τ) = τ(1−ε).

This shows that the adversary can maintain the invariant for up to r rounds,
forcing Ω(r) bits of communication, as claimed. ��

Our next lower bounds use reductions from a fundamental problem in communi-
cation complexity: the “gap Hamming distance” problem, denoted GHDc, where
c ∈ R+ is a parameter. In this problem, Alice and Bob are given x, y ∈ {0, 1}n re-
spectively and want to output 1 if Δ(x, y) ≥ n

2 +c
√
n and 0 if Δ(x, y) ≤ n

2 −c
√
n;

they don’t care what happens if the input satisfies neither of these conditions.
We shall need the following lower bounds on the randomized communication
complexity R(GHDc), as well as the one-way randomized communication com-
plexity (where the only communication is from Alice to Bob) R→(GHDc). Proofs
of these bounds, as well as further background on the problem, can be found in
Woodruff [15].

Theorem 8. Suppose c > 0 is a constant. Then R(GHDc) = Ω(
√
n) and

R→(GHDc) = Ω(n). Here, the Ω notation hides factors dependent upon c.5 ��

5 The bounds in [15] restrict the range of c, but this turns out not to be necessary.
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It is conjectured that the general randomized bound is in fact as strong as
the one-way version. This is not just a tantalizing conjecture about a basic
communication problem. Settling it would have important consequences because,
for instance, the gap Hamming distance problem is central to a number of results
in streaming algorithms. As we shall soon see, it would also have consequences
for our work here.

Conjecture 1. For sufficiently small constants c, we have R(GHDc) = Ω(n).

Theorem 9. For any ε ≤ 1/2, a randomized protocol for (k, F0, τ, ε) functional
monitoring must communicate Ω(1/ε) bits.

Proof. We give a reduction from GHD1. Let P be a randomized protocol for
(k, F0, τ, ε) functional monitoring. Set N := �1/ε2� and τ = 3N/2 +

√
N . We

design a two-party public coin randomized communication protocolQ for GHD1

on N -bit inputs that simulates a run of P involving the coordinator, C, and two
sites, S1 and S2. Let x ∈ {0, 1}N be Alice’s input in Q and let y ∈ {0, 1}N be
Bob’s input. Alice creates a stream σa := 〈a1, . . . , aN 〉 of tokens from [N ]×{0, 1}
by letting ai := (i, xi) and Bob similarly creates a stream σb := 〈b1, . . . , bN〉,
where bi := (i, yi). They then simulate a run of P where S1 first receives all
of σa after which S2 receives all of σb. They output whatever the coordinator
would have output at the end of this run.

The simulation itself occurs as follows: Alice maintains the state of S1, Bob
maintains the state of S2, and they both maintain the state of C. Clearly, this
can be done by having Alice send to Bob all of S1’s messages to C plus C’s
messages to S2 (and having Bob act similarly). The total communication in Q
is at most that in P .

We now show that Q is correct. By construction, the combined input stream
σ = σa ◦σb seen by P has 2Δ(x, y) tokens with frequency 1 each and N−Δ(x, y)
tokens with frequency 2 each. Therefore F0(σ) = N +Δ(x, y). When Δ(x, y) ≥
N/2 +

√
N , we have F0(σ) ≥ τ and Q, following P , correctly outputs 1. On the

other hand, when Δ(x, y) ≤ N/2−
√

N , we have

F0(σ) ≤ 3N

2
−
√

N = τ

(
1− 2

√
N

3N/2 +
√

N

)
≤ τ

(
1− 1√

N

)
≤ τ(1− ε) .

Thus Q correctly outputs 0. Since Q is correct, by Theorem 8, it must commu-
nicate at least Ω(

√
N) = Ω(1/ε) bits. Therefore, so must P . ��

Theorem 10. For any ε < 1/2 and any constant p > 1, a randomized protocol
for (k, Fp, τ, ε) functional monitoring must communicate Ω(1/ε) bits.

Proof. For simplicity, we assume here that p ≥ 2. As before, we reduce from
GHD1 on N := �1/ε2�-bit inputs. For this reduction, we set τ := (N/2 +√

N)2p +(N −2
√

N). Let P be a protocol for (k, Fp, τ, ε) functional monitoring.
We design a protocol Q for GHD1 on input (x, y) that simulates a run of P
involving two sites, creating two streams 〈(i, xi)〉i∈[N ] and 〈(i, yi)〉i∈[N ], exactly
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as before; however, in this reduction, the output of Q is the opposite of the
coordinator’s output at the end of the run of P .

We now show that Q is correct. The input stream σ seen by P has the same
frequency distribution as before, which means that Fp(σ) = 2Δ(x, y) + (N −
Δ(x, y))·2p = N ·2p −Δ(x, y)(2p − 2). When Δ(x, y) ≤ N/2−

√
N , we have

Fp(σ) ≥ N · 2p − (N/2−
√

N)(2p − 2) = (N/2 +
√

N)2p + (N − 2
√

N) = τ .

Therefore P outputs 1, which means Q correctly outputs 0. On the other hand,
when Δ(x, y) ≥ N/2 +

√
N , we have

Fp(σ) ≤ N · 2p − (N/2 +
√

N)(2p − 2)

= τ

(
1− 2

√
N2p − 4

√
N

(N/2 +
√

N) · 2p + (N − 2
√

N)

)
≤ τ(1− 1/

√
N) ≤ τ(1− ε) ,

where the penultimate inequality uses p ≥ 2. Therefore P outputs 0, whence Q
correctly outputs 1. Theorem 8 now implies that Q, and hence P , must commu-
nicate Ω(

√
N) = Ω(1/ε) bits. ��

We remark that if Conjecture 1 holds (for a favorable c), then the lower bounds
in Theorems 9 and 10 would improve to Ω(1/ε2). This further strengthens the
motivation for settling the conjecture.

We also consider a restricted, yet natural, class of protocols that we call round-
based protocols; the precise definition follows. Note that all nontrivial protocols
in [4] are round-based, which illustrates the naturalness of this notion.

Definition 2. A round-based protocol for (k, f, τ, ε) functional monitoring is
one that proceeds in a series of rounds numbered 1, . . . , r. Each round has the
following four stages. (1) Coordinator C sends messages to the sites Si, based on
the past communication history. (2) Each Si read its tokens and sends messages
to C from time to time, based on these tokens and the Stage 1 message from C
to Si. (3) At some point, based on the messages it receives, C decides to end the
current round by sending a special, fixed, end-of-round message to each Si. (4)
Each Si sends C a final message for the round, based on all its knowledge, and
then resets itself, forgetting all previously read tokens and messages.

It is possible to improve the lower bounds above by restricting to round-based
protocols, as in Definition 2. The key is that if the functional monitoring protocol
P in the proofs of Theorems 9 and 10 is round-based, then the corresponding
communication protocol Q only requires messages from Alice to Bob. This is
because Alice can now simulate the coordinator C and both sites S1 and S2,
during P ’s processing of σa: she knows that S2 receives no tokens at this time,
so she has the information needed to compute any messages that S2 might need
to send. Consider the situation when Alice is done processing her tokens. At this
time the Stage 4 message (see Definition 2) from S1 to C in the current round
has been determined, so Alice can send this message to Bob. From here on, Bob
has all the information needed to continue simulating S1, because he knows that
S1 receives no further tokens. Thus, Bob can simulate P to the end of the run.
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Theorem 11. Suppose p is either 0 or a constant greater than 1. For any ε ≤
1/2, a round-based randomized protocol for (k, Fp, τ, ε) functional monitoring
must communicate Ω(1/ε2) bits.

Proof. We use the observations in the preceding paragraph, proceed as in the
proofs of Theorems 9 and 10 above, and plug in the one-way communication
lower bound from Theorem 8. ��
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1 Introduction

A dynamic dictionary is a fundamental data structure used for maintaining a
set of elements under insertions and deletions, while supporting membership
queries. The performance of a dynamic dictionary is measured mainly by its
update time, lookup time, and memory utilization. Extensive research has been
devoted over the years for studying dynamic dictionaries both on the theoretical
side by exploring upper and lower bounds on the performance guarantees, and
on the practical side by designing efficient dynamic dictionaries that are suitable
for real-world applications.

The most efficient dictionaries, in theory and in practice, are based on various
forms of hashing techniques. Specifically, in this work we focus on cuckoo hashing,
a hashing approach introduced by Pagh and Rodler [17]. Cuckoo hashing is an
efficient dynamic dictionary with highly practical performance guarantees. It
provides amortized constant insertion time, worst case constant deletion time
and lookup time, and good memory utilization. Additional attractive features of
cuckoo hashing are that no dynamic memory allocation is performed, and that
the lookup procedure queries only two memory entries which are independent
and can be queried in parallel.

Although the insertion time of cuckoo hashing is essentially constant, with
a noticeable probability during the insertion of n elements into the hash table,
some insertion requires Ω(logn) time. Whereas such an amortized performance
guarantee is suitable for a wide range of applications, in other applications this
is highly undesirable. For these applications, the time per operation must be
bounded in the worst case, or at least, the probability that some operation
requires a significant amount of time must be negligible. For example, Kirsch
and Mitzenmacher [9] considered the context of router hardware, where hash
tables implementing dynamic dictionaries are used for a variety of operations,
including various network measurements and monitoring tasks. In this setting,
routers must keep up with line speeds and memory accesses are at a premium.

Clocked Adversaries. An additional motivation for the construction of dicti-
onaries with worst case guarantees was first suggested by Lipton and Naughton
[12]. One of the basic assumptions in the analysis of probabilistic data structures
is that the elements that are inserted into the data structure are chosen indepen-
dently of the randomness used by the data structure. This assumption is violated
when the set of elements inserted might be influenced by the time it took the
data structure to complete previous operations. Such timing information may
reveal sensitive information on the randomness used by the data structure. For
example, if the data structure is used for an operating system, then the time a
process took to perform an operation affects which process is scheduled and that
in turns affects the values of the inserted elements.

This motivates considering “clocked adversaries” – adversaries that can mea-
sure the exact time for each operation. Lipton and Naughton showed that seve-
ral dynamic hashing schemes are susceptible to attacks by clocked adversaries,
and demonstrated that clocked adversaries can identify elements whose insertion
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results in poor running time. The concern regarding timing information is even
more acute in a cryptographic environment with an active adversary who might
use timing information to compromise the system. The adversary might use the
timing information to figure out sensitive information on the identity of the ele-
ments inserted, or as in the Lipton-Naughton case, to come up with a bad set
of elements where even the amortized performance is bad. Note that timing at-
tacks have been shown to be quite powerful and detrimental in cryptography
(see, for example, [11,16]). To combat such attacks, at the very least we want
the data structure to devote a fixed amount of time for each operation. There
are further concerns such as cashing effects, but these are beyond the scope
of this paper. Having a fixed upper bound on the time each operation (insert,
delete, and lookup) takes, and an exact clock we can, in principle, make the
response for each operation be independent of the input and the randomness
used.

Dynamic Real-Time Hashing. Dietzfelbinger and Meyer auf der Heide [5]
constructed the first dynamic dictionary with worst case time per operation and
linear space (the construction is based on the dynamic dictionary of Dietzfel-
binger et al. [4]). Specifically, for any constant c > 0 (determined prior to the
initialization phase) and for any sequence of operations involving n elements,
with probability at least 1 − n−c each operation is performed in constant time
(that depends on c). While this construction is a significant theoretical contri-
bution, it may be unsuitable for highly demanding applications. Most notably, it
suffers from hidden constant factors in its running time and memory utilization,
and from an inherently hierarchal structure. We are not aware of any other dy-
namic dictionary with such provable performance guarantees which is not based
on the approach of Dietzfelbinger and Meyer auf der Heide (but see Section 1.2
for a discussion on the hashing scheme of Dalal et al. [2]).

De-amortized Cuckoo Hashing. Motivated by the problem of constructing
a practical dynamic dictionary with constant worst-case operations, Kirsch and
Mitzenmacher [9] suggested an approach for de-amortizing the insertion time
of cuckoo hashing, while essentially preserving the attractive features of the
scheme. Specifically, Kirsch and Mitzenmacher suggested an approach for limi-
ting the number of moves per insertion by using a small content-addressable
memory as a queue for elements being moved. They demonstrated a significant
improvement to the worst case performance of cuckoo hashing via experimen-
tal results, but left open the problem of constructing a scheme with provable
properties.

1.1 Our Contributions

In this work we construct the first practical and efficient dynamic dictionary
that provably supports constant worst case operations. We follow the approach
of Kirsch and Mitzenmacher [9] for de-amortizing the insertion time of cuckoo
hashing using a queue, while preserving many of the attractive features of the
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scheme. Specifically, for any polynomial p(n) and constant ε > 0 the parameters
of our dictionary can be set such that the following properties hold1:

1. For any sequence of p(n) insertions, deletions, and lookups, in which at any
point in time at most n elements are stored in the data structure, with
probability at least 1−1/p(n) each operation is performed in constant time,
where the probability is over the randomness of the initialization phase2.

2. The memory utilization is essentially 50%. Specifically, the dictionary utilizes
2(1 + ε)n+ nε words.

An additional attractive property is that we never perform rehashing. Reha-
shing is highly undesirable in practice for various reasons, and in particular, it
significantly hurts the worst case performance. We avoid rehashing by follow-
ing Kirsch, Mitzenmacher and Wieder [10] who suggested an augmentation to
cuckoo hashing: exploiting a secondary data structure for “stashing” problem-
atic elements that cannot be otherwise stored. We show that in our case, this
can be achieved very efficiently by implicitly storing the stash inside the queue.

We provide a formal analysis of the worst-case performance of our dictionary,
by generalizing known results in the theory of random graphs. In addition, our
analysis involves an application of a recent result due to Braverman [1], to prove
that polylog(n)-wise independent hash functions are sufficient for our dictionary.
We note that this is a rather general technique, that may find additional appli-
cations in various similar settings. Our extensive experimental results clearly
demonstrate that the scheme is highly practical. This seems to be the first dy-
namic dictionary that simultaneously enjoys all of these properties.

1.2 Related Work

Cuckoo Hashing. Several generalizations of cuckoo hashing circumvent the
50% memory utilization barrier: Fotakis et al. [8] suggested to use more than
two hash functions; Panigrahy [18] and Dietzfelbinger and Weidling [6] suggested
to store more than one element in each entry. These generalizations led to essen-
tially optimal memory utilization, while preserving the update time and lookup
time. Kirsch, Mitzenmacher and Wieder [10] provided an augmentation to cuckoo
hashing in order to avoid rehashing. Their idea is to exploit a secondary data
structure, referred to as a stash, for storing elements that cannot be stored with-
out rehashing. Kirsch et al. proved that for cuckoo hashing with overwhelming
probability the number of stashed elements is a very small constant. This aug-
mentation was a crucial ingredient in the work of Naor, Segev, and Wieder [14],
who constructed a history independent variant of cuckoo hashing.

1 This is the same flavor of worst case guarantee as in the dynamic dictionary of
Dietzfelbinger and Meyer auf der Heide [5].

2 We note that the non-constant lower bound of Sundar for the membership problem
in deterministic dictionaries implies that this type of guarantee is essentially the
best possible (see the survey of Miltersen [13] who reports on Sundar’s unpublished
paper).



De-amortized Cuckoo Hashing 111

Dictionaries with Constant Worst-Case Guarantees. Dalal et al. [2] sug-
gested an interesting alternative to the scheme of Dietzfelbinger and Meyer auf
der Heide [5] by combining the two-choice paradigm with chaining. For each
entry in the table there is a doubly-linked list and each element appears in one
of two linked lists. In some sense the lists act as queues for each entry. Their
scheme provides worst case constant insertion time, and with high probability
lookup queries are performed in worst case constant time as well. However, their
scheme is not fully dynamic since it does not support deletions, has memory uti-
lization lower than 20%, allows only short sequences of insertions (no more than
O(n log n), if one wants to preserve the performance guarantees), and requires
dynamic memory allocation. Since lookup requires traversing two linked lists, it
appears less practical than cuckoo hashing and its variants.

Demaine et al. [3] proposed a dynamic dictionary with memory consumption
that asymptotically matches the information-theoretic lower bound (i.e., n ele-
ments from a universe of size u are stored using O(n log(u/n)) bits instead of
O(n log u) bits), where each operation is performed in constant time with high
probability. Their construction extends the one of Dietzfelbinger and Meyer auf
der Heide [5], and is the first dynamic dictionary that simultaneously provides
asymptotically optimal memory consumption and constant time operations (in
fact, when u ≥ n1+α for some constant α > 0, the memory consumption of
the dynamic dictionary of Dietzfelbinger and Meyer auf der Heide is already
asymptotically optimal since in this case O(n log u) = O(n log(u/n)), and there-
fore Demaine et al. only had to address the case u < n1+α). Note, however,
that asymptotically optimal memory consumption does not necessarily imply a
practical memory utilization due to large hidden constants.

Paper Organization. The remainder of this paper is organized as follows. In
Section 2 we provide a high-level overview of our construction. In Section 3 we
present experimental results, and in Section 4 we discuss concluding remarks
and open problems.

2 Overview of the Construction

In this section we provide an overview of our construction. We first provide
a high-level description of cuckoo hashing, and of the approach of Kirsch and
Mitzenmacher [9] for de-amortizing it. Then, we present our approach together
with the main ideas underlying its analysis (due to space limitations we refer
the reader to the full version of this paper for a complete description).

Cuckoo Hashing. Cuckoo hashing uses two tables T0 and T1, each consisting
of r = (1 + ε)n entries for some constant ε > 0, and two hash functions h0, h1 :
U → {0, . . . , r − 1}. An element x ∈ U is stored either in entry h0(x) of table
T0 or in entry h1(x) of table T1, but never in both. The lookup procedure is
straightforward: when given an element x ∈ U , query the two possible memory
entries in which x may be stored. The deletion procedure deletes x from the entry
in which it is stored. As for insertions, Pagh and Rodler [17] proved that the
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“cuckoo approach”, kicking other elements away until every element has its own
“nest”, leads to a highly efficient insertion procedure. More specifically, in order
to insert an element x ∈ U we first query entry T0[h0(x)]. If this entry is not
occupied, we store x in that entry. Otherwise, we store x in that entry anyway,
thus making the previous occupant “nestless”. This element is then inserted to
T1 in the same manner, and so forth iteratively. We refer the reader to [17] for
a more comprehensive description of cuckoo hashing.

De-amortization Using a Queue. Although the amortized insertion time of
cuckoo hashing is constant, with a noticeable probability during the insertion of
n elements into the hash table, some insertion requires moving Ω(logn) elements
before identifying an unoccupied entry. We follow the approach of Kirsch and
Mitzenmacher [9] for de-amortizing cuckoo hashing by using a queue. The main
idea underlying the construction of Kirsch and Mitzenmacher is as follows. A
new element is always inserted to the queue. Then, an element x is chosen from
the queue, according to some queueing policy, and is inserted into the tables. If
this is the first insertion attempt for the element x (i.e., x was never stored in one
of the tables), then we store it in entry T0[h0(x)]. If this entry is not occupied,
we are done. Otherwise, the previous occupant y of that entry is inserted into
the queue, together with an additional information bit specifying that the next
insertion attempt for y should begin with table T1. The queueing policy then
determines the next element to be chosen from the queue, and so on. To fully
specify a scheme in the family suggested by [9] one then needs to specify two
issues: the queuing policy and the number of operations that are performed upon
the insertion of a new element. In their experiments, Kirsch and Mitzenmacher
loaded the queue with many insert operations, and let the system run. The
number of operations that are performed upon the insertion of a new element
depends on the success (small queue size) of the experiment.

Our Approach. In this work we propose a de-amortization of cuckoo hashing
that provably guarantees worst case constant insertion time (with overwhelming
probability over the randomness of the initialization phase). Our insertion pro-
cedure is parameterized by a constant L, and is defined as follows. Given a new
element x ∈ U , we place the pair (x, 0) at the back of the queue (the additional
bit 0 indicates that the element should be inserted to table T0). Then, we carry
out the following procedure as long as no more than L moves are performed in
the cuckoo tables: we take the pair from the head of the queue, denoted (y, b),
and place y in entry Tb[hb(y)]. If this entry was unoccupied then we are done
with the current element y, this is counted as one move and the next element
is fetched from the head of the queue. However, if the entry Tb[hb(y)] was oc-
cupied, we place its previous occupant z in entry T1−b[h1−b(z)] and so on, as
in the above description of the standard cuckoo hashing. After L elements have
been moved, we place the current “nestless” element at the head of the queue,
together with a bit indicating the next table to which it should be inserted, and
terminate the insertion procedure (note that it may take less than L moves, if
the queue becomes empty).
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The deletion and lookup procedures are naturally defined by the property
that any element x is stored in one of T0[h0(x)] and T1[h1(x)], or in the queue.
However, unlike the standard cuckoo hashing, here it is not clear that these
procedures run in constant time. It may be the case that the insertion procedure
causes the queue to contain many elements, and then the deletion and lookup
procedures of the queue will require a significant amount of time.

The main property underlying our construction is that the constant L (i.e.,
the number of iterations of the insertion procedure) can be chosen such that with
overwhelming probability the queue does not contain more than a logarithmic
number of elements at any point in time. In this case we show that simple
and efficient instantiations of the queue can indeed support insertions, deletions
and lookups in worst case constant time. This is proved by considering the
distribution of the cuckoo graph, formally defined as follows:

Definition 2.1. Given a set S ⊆ U and two hash functions h0, h1 : U →
{0, . . . , r − 1}, the cuckoo graph is the bipartite graph G = (L, R, E), where
L = R = {0, . . . , r − 1} and E = {(h0(x), h1(x)) : x ∈ S}.

The main idea of our analysis is to consider logn insertions each time, and to
examine the total number of moves in the cuckoo graph that these logn insertions
require. Our main technical contribution in this setting is proving that the sum of
sizes of any logn connected components in the cuckoo graph is upper bounded
by O(log n) with overwhelming probability. This is a generalization of a well-
known bound in graph theory on the size of a single connected component. A
corollary of this result is that in the standard cuckoo hashing the insertion of
logn elements takes O(log n) time with high probability (ignoring the problem
of rehashing, which is discussed below).

Avoiding Rehashing. It is rather easy to see that a set S can be successfully
stored in the cuckoo graph using hash functions h0 and h1 if and only if no
connected component in the graph has more edges then nodes. In other words,
every component contains at most one cycle (unicyclic). It is known, however,
that even if h0 and h1 are completely random functions, then with probability
Θ(1/n) there will be a connected component with more than one cycle. In this
case the given set cannot be stored using h0 and h1. The standard solution for
this scenario is to choose new functions and rehash the entire data, but this
significantly hurts the worst case performance.

To overcome this difficulty, we follow the approach of Kirsch et al. [10] who
suggested an augmentation to cuckoo hashing in order to avoid rehashing: ex-
ploiting a secondary data structure, referred to as a stash, for storing elements
that create cycles, starting from the second cycle of each component. That is,
whenever an element is inserted into a unicyclic component and creates an ad-
ditional cycle in this component, the element is stashed. Kirsch et al. showed
that this approach performs remarkably well by proving that for any fixed set
S of size n, the probability that at least k elements are stashed is O(n−k). In
our setting, however, where the data structure has to support delete operations
in constant time, it is not straightforward to use a stash explicitly. Specifically,
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for the stash to remain of constant size, after every delete operation it may be
required to move some element back from the stash to one of the two tables.
Otherwise, the analysis of Kirsch et al. on the size of the stash no longer holds
when considering long sequences of operations on the data structure.

We overcome this difficulty by storing the stashed elements in the queue.
That is, whenever we identify an element that closes a second cycle in the cuckoo
graph, this element is placed at the back of the queue. Informally, this guarantees
that any stashed element is given a chance to be inserted back to the tables
after essentially log n invocations of the insertion procedure. This implies that
the number of stashed elements in the queue roughly corresponds to the number
of elements that close a second cycle in the cuckoo graph (up to intervals of logn
insertions). We can then use the result of Kirsch et al. [10] to argue that there
is a very small number of such elements in the queue at any point.

For detecting cycles in the cuckoo graph we implement a simple cycle detection
mechanism (CDM), as suggested by Kirsch et al. [10]. When inserting an element
we insert to the CDM all the elements that are encountered in its connected
component during the insertion process. Once we identify that a component
has more than one cycle we stash the current nestless element (i.e., place it
in the back of the queue) and reset the CDM. We note that in the classical
cuckoo hashing cycles are detected by allowing the insertion procedure to run
for O(log n) steps, and then announcing failure (which is followed by rehashing).
In our case, however, it is crucial that a cycle is detected in time that is linear
in the size of its connected component in the cuckoo graph.

A formal description of the lookup and update procedures is provided in
Figure 1. In the full version of the paper we propose simple instantiations of the
auxiliary data structures (i.e., the queue and the cycle-detection mechanism),
and prove the following theorem:

Theorem 2.2. For any polynomial p(n) and constant ε > 0, the parameters of
the dictionary can be set such that the following properties hold:

1. For any sequence of at most p(n) insertions, deletions, and lookups, in which
at any point in time at most n elements are stored in the dictionary, with
probability at least 1− 1/p(n) each operation is performed in constant time,
where the probability is over the randomness of the initialization phase.

2. The dictionary utilizes 2(1 + ε)n+ nε words.

Using polylog(n)-wise Independent Hash Functions. When analyzing the
performance of our scheme, we first assume the availability of truly random hash
functions. Then, we apply a recent result of Braverman [1] and show that the
same performance guarantees hold when instantiating our scheme with hash
functions that are only polylog(n)-wise independent (see [7,15] for efficient con-
structions of such functions with succinct representations and constant evalu-
ation time). Informally, Braverman proved that for any Boolean circuit C of
depth d, size m, and unbounded fan-in, and for any k-wise distribution X with
k = (log m)O(d2), it holds that E[C(Un)] ≈ E[C(X)]. That is, X “fools” the
circuit C into behaving as if X is the uniform distribution Un over {0, 1}n.
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Lookup(x):

1: if T0[h0(x)] = x or T1[h1(x)] = x
then

2: return true
3: if LookupQueue(x) then
4: return true
5: return false

Delete(x):

1: if T0[h0(x)] = x then
2: T0[h0(x)] ←⊥
3: return
4: if T1[h1(x)] = x then
5: T1[h1(x)] ←⊥
6: return
7: DeleteFromQueue(x)

Insert(x):

1: InsertIntoBackOfQueue(x, 0)
2: y ←⊥ // y denotes the current element we work with
3: for i = 1 to L do
4: if y =⊥ then // Fetching element y from the head of the queue
5: if IsQueueEmpty() then
6: return
7: else
8: (y, b) ← PopFromQueue()

9: if Tb[hb(y)] =⊥ then // Successful insert
10: Tb[hb(y)] ← y
11: ResetCDM()

12: y ←⊥
13: else
14: if LookupInCDM(y, b) then // Found the second cycle
15: InsertIntoBackOfQueue(y, b)
16: ResetCDM()

17: y ←⊥
18: else // Evict existing element
19: z ← Tb[hb(y)]
20: Tb[hb(y)] ← y
21: InsertIntoCDM(y, b)
22: y ← z
23: b ← 1 − b
24: if y �=⊥ then
25: InsertIntoHeadOfQueue(y, b)

Fig. 1. The LookUp, Delete and Insert procedures

Specifically, in our analysis we define a “bad” event with respect to the hash
values of h0 and h1, and prove that: (1) this event occurs with probability at
most n−c (for an arbitrarily large constant c) assuming truly random hash func-
tions, and (2) as long as this event does not occur each operation is performed in
constant time. We show that this event can be recognized by a Boolean circuit
of constant depth, size m = nO(log n), and unbounded fan-in. In turn, Braver-
man’s result implies that it suffices to use k-wise independent hash functions
for k = polylog(n). We note that applying Braverman’s result in such setting is
quite a general technique and may be found useful in other similar scenarios. In
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Fig. 2. The insertion time of classical cuckoo hashing vs. our dictionary (upper graph),
and the size of the queue in our dictionary (lower graph)

particular, our argument implies that the same holds for the analysis of Kirsch
et al. [10], who proved the above-mentioned bound on the number of stashed
elements assuming that the underlying hash functions are truly random.
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3 Experimental Results

We performed experiments to demonstrate the efficiency of the data structure
in practice (we refer the reader to the full version for more details on the imple-
mentation and the results). The upper graph in Figure 2 presents a comparison
between the insertion time of our scheme and the classical cuckoo hashing, and
the lower graph shows the size of the queue in our dictionary (n denotes the
number of inserted elements, we used two tables of size 1.2n, and the vertical
line represents a decrease in the number of experiments due to the large number
of elements). The insertion time is measured as the length of the path that an
element has traversed in the cuckoo graph. For our dictionary we plotted the
maximal insertion time that was set to 3. Note that the scale in the graphs is
logarithmic. Our experiments showed an excellent performance of our dictionary,
noting that 3 moves are sufficient per insertion. This clearly demonstrates that
adding an auxiliary memory of small (up to logarithmic) size reduces the worst
case insertion time from logarithmic to a small constant.

4 Concluding Remarks

Clocked Adversaries. The worst case guarantees of our dictionary are im-
portant if one wishes to protect against “clocked adversaries”, as discussed in
Section 1. In the traditional RAM model, such guarantees are also sufficient for
protecting against such attacks. However, for modern computer architectures
the RAM model has limited applicability, and is nowadays replaced by more
accurate hierarchical models, that capture the effect of several cache levels. Al-
though our construction enables the “brute force” solution that measures the
exact time every operation takes (see Section 1), a more elegant solution is de-
sirable, which will make a better utilization of the cache hierarchy. We believe
that our dictionary is an important step in this direction.

Memory Utilization. Our construction achieves memory utilization of essen-
tially 50%. More efficient variants of cuckoo hashing [8,18,6] circumvent the 50%
barrier and achieve better memory utilization by either using more than two hash
functions, or storing more than one element in each entry. As demonstrated by
Kirsch and Mitzenmacher [9], queue-based de-amortization performs very well
in practice on these generalized variants, and it would be interesting to extend
our analysis to these variants.

Optimal Memory Consumption. The memory consumption of our dictionary
is 2(1 + ε)n + nε words, and each word is represented using log u bits where
u is the size of the universe of elements (recall Theorem 2.2). As discussed
in Section 1.2, when u ≥ n1+α for some constant α > 0, this asymptotically
matches the information-theoretic lower bound since in this case O(n log u) =
O(n log(u/n)). An interesting open problem is to construct a dynamic dictionary
with asymptotically optimal memory consumption also for u < n1+α that will
provide a practical alternative to the construction of Demaine et al. [3].
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Abstract. We propose the study of graphs that are defined by low-
complexity distributed and deterministic agents. We suggest that this
viewpoint may help introduce the element of individual choice in models
of large scale social networks. This viewpoint may also provide interesting
new classes of graphs for which to design algorithms.

We focus largely on the case where the “low complexity” computa-
tion is AC0. We show that this is already a rich class of graphs that
includes examples of lossless expanders and power-law graphs. We give
evidence that even such low complexity graphs present a formidable chal-
lenge to algorithms designers. On the positive side, we show that many
algorithms from property testing and data sketching can be adapted to
give meaningful results for low-complexity graphs.

1 Introduction
This paper tries to highlight some interesting families of graphs that we call
low complexity graphs. These are graphs whose vertices are vectors of attributes
(without loss of generality, vectors in {0, 1}n for some n) and whose edge struc-
ture has low computational complexity, namely, determining whether (i, j) is
an edge or not is a low-complexity computation involving i, j. (This definition
assumes an adjacency matrix representation of the graph; we have an alternative
definition for an adjacency list representation.)

There are many motivations for studying this concept. First, from a
complexity-theoretic view such graphs are natural if we think of the graph as
being defined by computationally bounded distributed agents, and they only use
their personal information (namely, their names i, j) while computing their de-
cision. Concretely, one could hope that many graph problems are easier to solve
on low-complexity graphs than they are on general graphs (analogously to say,
fixed treewidth graphs or minor-excluded graphs).

Second, such low-complexity graphs represent a plausible way to incorporate
the concept of individual choice in models of formation of social network graphs
(e.g., graphs that arise on the Web, Myspace, Facebook, etc.). Empirically these
graphs are found to exhibit some strong properties such as power law distri-
bution of degrees and top eigenvalues. A large body of work has been used to
describe how such graphs can arise naturally as a result of distributed actions.
The dominant model is some variant of a preferential attachment process, in
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which nodes attach to the graph one by one, and when they try to (probabilis-
tically) decide which other nodes to attach to, they prefer nodes with higher
degree (i.e., “popular nodes”). By varying model parameters and assumptions
(see the survey by Mitzenmacher [1]) a rich variety of graphs can be obtained.

While it is highly plausible that random choice coupled with a “follow the
herd” behavior should be an important part of the story of how such networks
come about, it is unclear if this is the complete story. For instance, it has been
empirically observed that many graph problems are trivial to solve on the above
random models but quite difficult on real-life graphs obtained from social net-
works [2].

One obvious missing element in the above models is that of individual choice.
Clearly, people link to other people on Myspace or Facebook or the Web at
least in part due to their interest profile, and they seek out interesting people or
webpages using search tools (e.g., Google and other search engines) that allow
them to explicitly or implicitly express (via boolean expressions) their choice
function.

Our model of low-complexity graphs gives one way to incorporate the element
of individual choice: the choice of a person with attribute vector i to link to a
person with vector j is a low complexity computation involving i, j. For sake
of clarity the model has been kept very bare: (i) The attributes are distributed
uniformly in the population (i.e., the node set is {0, 1}n); (ii) The choice function
for all nodes uses the same low-complexity computation —only their inputs are
different, namely, their own attribute vectors. Note that this allows the adjacency
list of each node i to be different because its attribute vector is unique.

(iii) The issue of random choice has been left out entirely, or to be more
precise, is allowed only in very small doses as part of the choice function. The
point in this paper is that even with these restrictions, great expressive power
still remains —one can realize complicated graphs like power-law graphs and
lossless expanders and extractors (see Section 2).

Now we formally define low complexity graphs. If C is a complexity class
then an infinite family of graphs {Gn} is said to be a C-graph family in the
adjacency matrix representation if for every n ≥ 1, Gn has 2n nodes and there
is an algorithm in class C that, given indices i, j ∈ {0, 1}n, can compute whether
or not (i, j) is an edge in the graph. A C-graph family in the adjacency list
representation is similarly defined, except we restrict it to be d-regular for some
d (which could be a slowly growing function of n) and we require for each input
size n a sequence of dn algorithms from C that given i compute the individual
bits of the adjacency list of node i. (The output of each algorithm consists of one
bit.) We can similarly define other low-complexity objects such as hypergraphs,
circuits, etc.

Of course, similar definitions have been used in complexity theory before.
For instance, the case C = DSPACE(n) corresponds to logspace uniform
circuits/graphs, and also corresponds to a common notion of strongly explicit
constructions (used for example when we talk about explicit constructions of
expanders). The case C = P/poly coincides with succinctly described graphs [3].
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It is known that many standard problems (e.g., connectivity) are intractable for
succinctly represented graphs, when the input to the algorithm is the circuit that
represents the graph. Classes such as PPAD [4] are also defined in this context.
The difference in our paper is that we are interested in letting C be a very low
complexity classes: say, NC0,AC0, or the set of graphs with logn decision tree
complexity. AC0, the class of functions computable by bounded depth circuits
of unlimited fan-in and polynomial size, will be a frequent choice in this paper.
Furthermore, in our lower bound results we usually think of the entire graph as
being presented to the algorithm (as opposed to just the circuit). The algorithms
we present in Section 4 work even in the model where the algorithm is presented
the circuit defining the input graph.

In fact, one motivation for studying low-complexity graphs is that this fits
in the longer-term program of understanding low-complexity graphs (which are
just truth tables of low-complexity functions) as a prelude to proving complex-
ity lower bounds. Of course, the results of Razborov and Rudich [5] caution us
against hoping for quick successes in this endeavor if the C is too complex. Ac-
cordingly, this paper generally restricts attention to classes no more powerful
than AC0. Our results suggest that even these graphs can be quite complex and
difficult. In Section 3 we show that solving any of the standard NP or P prob-
lems on AC0-graphs is probably no easier than solving them on general graphs,
even when the entire graph is given as input.

In light of the hardness results one should relax one’s expectations of what
kind of algorithms can be possible. One could try for approximation algorithms.
We observe using the current proof of the PCP Theorem [6] that approximation
is intractable for a host of standard problems on NC1-graphs (Section 3.1). It
is an open problem whether this result can be extended to AC0-graphs, and a
positive resolution seems to require a new proof of the PCP Theorem. We can
show however that AC0 graphs can prove to be difficult (ie have high integrality
gaps) for current approximation algorithms that are based upon semidefinite
programming (Theorem 9).

In light of the results about seeming difficulties of approximation, one can try
to further relax what it means to solve the problem. An attractive approach is to
try sampling-based algorithms such as the ones developed in property testing and
streaming algorithms. We show that many known algorithms can be interpreted
as follows: given a circuit representing a low-complexity graph, these algorithms
return another low-complexity circuit that approximately represents a solution.
(See Section 4.)

Though many known sampling-based algorithms are tight when the graph is
given as a black box, it is conceivable that they can be improved upon when
the graph is given as a small circuit. (Theorem 11 explains why the black box
lower bounds don’t apply.) Perhaps designing such algorithms can be a new
motivation for revisiting lowerbound techniques for classes such as AC0, or even
NC0. For instance we do not currently know if constant degree NC0-graphs can
be expanders in the adjacency list representation. We observe in Section 2.1 that
expanders of logarithmic degree can be realized as NC0 graphs.
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This paper spans ideas from multiple areas, and consequently we have to
assume familiarity with many standard terms and results and necessarily omit
many details. We also see the results in this manuscript as representative rather
than exhaustive. Even the basic model can be extended in many ways. For
instance, if nodes are allowed a small amount of randomness and a small amount
of computation then one obtains complexity-based extension of the theory of
G(n, p) graphs. We hope that many such extensions will be studied in future.

The recently studied model of random dot product graphs [7,8] shares some
ideas with our low complexity graphs. There, the vertices are sampled from some
distribution on the sphere, and the probability of an edge is proportional to the
inner product of the endpoints. The inner product can be seen as a low-complexity
function of the endpoints (albeit not AC0) that determines the edge probability.

2 Constructions of Interesting AC0 Graphs

In this section we show how some well-known graphs can be realized as AC0

graphs. Throughout, N denotes the number of nodes in the graph, and the nodes
are assumed to be vectors of n bits (i.e., binary-valued attributes).

To set the context, we start with some simple examples of graphs that are not
AC0, by the well-known results of Ajtai [9] and of Furst, Saxe, and Sipser [10].

Example 1 (Graphs that are not AC0). Parity Graph: Its edge set is {(x, y) :
⊕i(xi ⊕ yi) = 1} where x, y ∈ GF (2)n and ⊕ addition mod 2.

Inner Product Graph: Its edge set is {(x, y) : x! y = 1} where x, y ∈ GF (2)n

and ! is inner product mod 2.
Threshold graph: Its edge set is {(x, y) : x and y agree on at least 2/3rd of their

bits.}.

The fact that such simple operations are impossible in AC0 makes the task of
designing AC0 graphs difficult. Next, we list simple graphs that are AC0. These
will be building blocks in more complicated constructions later on.

Example 2 (Some AC0 graphs). The N -cycle. The attribute vector labeling
the nodes can be interpreted as a binary number in [0, N − 1], and the set of
edges is {x, x + 1 mod N}. Since x → x + 1 is computable in AC0, we conclude
that this is an AC0 graph.

The r-dimensional grid on N vertices. Reasoning similarly as above, this is also
an AC0 graph for every fixed r. This will be useful in Theorem 5.

The following is also AC0 for every k ≤ n: the graph whose edge set is
{(x, y) : x, y agree on the first k bits}.

Next, since approximate thresholds can be computed probabilistically in AC0

(actually even in depth 3 [11]), we can construct an AC0 graph that is an approx-
imate and noisy version of the Threshold graph of Example 1. (This could be
useful in modeling social networks because “approximate threshold” of shared
attributes could be a plausible strategy for setting up connections.) For any con-
stant ε (to be thought of as o(1)), the following holds. For (x, y)’s such that x, y
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agree in ≥ 2/3 + ε of the bits, {x, y} is an edge. For (x, y)’s such that x, y agree
in < 2/3 − ε of the bits, (x, y) is a non-edge. All other pairs (x, y) may or may
not be edges.

Finally, by definition, the set of AC0 graphs is closed under taking graph
complements, union and intersection of edge sets, and taking AND product G1×
G2, which is the graph whose vertex set is V (G1) × V (G2) and the edge set is
{((u1, v1), (u2, v2)) : (u1, u2) ∈ E(G1) AND (v1, v2) ∈ E(G2)}.

The following fact, a consequence of H̊astad’s [12] lower bound for AC0, suggests
that every AC0 graph has some structure. More precisely, it shows that AC0-
graphs are never good Ramsey graphs (in contrast to random graphs where
the largest bipartite clique and the largest bipartite independent set are of size
O(log N)).

Proposition 1. There is a polynomial-time algorithm that given an AC0 graph
on N nodes (in the adjacency matrix representation) finds either a bipartite
clique or independent set of size 2Ω(log N/poly(log log N)) (in fact the algorithm can
find many —say, superlogarithmic—number of these).

2.1 Expanders and Lossless Expanders

In this subsection we show AC0-graphs can exhibit highly “pseudorandom” be-
havior. For a long time the only known explicit constructions of these graphs
involved algebraic operations that are provably impossible in AC0. We use recent
constructions involving the zig-zag product. For background and myriad appli-
cations of expanders please see the extensive survey of Hoory, Linial, Wigder-
son [13].

These graphs will be sparse and we choose to describe them in the adjacency
list representation. Note that for constant degree graphs the adjacency matrix
representation is at least as rich as the adjacency list representation. A d-regular
graph G = (V, E) is an eigenvalue c-expander if the second eigenvalue of the
normalized Laplacian of G is at least c (sometimes called the “spectral gap”).
In a lossless expander, vertex neighborhoods are essentially as large as possible.
Graph G is an expander with loss ε if every set S of size at most α|V | has
|Γ (S)| ≥ d(1 − ε)|S| (where α = α(ε, d) does not depend on the size of the
graph). Lossless expanders have proved useful in a host of settings. See Capalbo
et al. [14] for the first explicit construction and further references.

Theorem 3. For every ε > 0 there is a d = d(ε) > 0 such that there is an AC0

family of d-regular expanders with loss ε.

Proof. It will be convenient to think of the graph being represented by a circuit
that given (v, i) with v ∈ V and i ∈ [d] (given in binary), and its output will be
a vertex u ∈ V which is the ith neighbor of v.

Let G : N×M → N and H : M×D →M be two circuits (note that the degree
of G is the size of H). Then their zig-zag product G©z H : (N ×M)× (D2) →
(N ×M) is defined by (G©z H)((v, k), (i, j)) = (G(v, H(k, i)), H(H(k, i), j)).



124 S. Arora, D. Steurer, and A. Wigderson

Note that the output of G©z H is simply a composition of the given circuits
in serial, and its depth is the sum of depths of their depths (and size at most
twice the sum of their sizes).

Below we rely upon two works. We use the simplified expander construction
of Alon et al. [15] that gives a c-eigenvalue expander using only two applications
of the zig-zag product. Then we do a zigzag product with a constant size graph
as in Capalbo et al. [14] to end up with with a lossless expander. We assume
familiarity with these constructions and only describe why they work for us.

As in [15] start with a Cayley expander G on N = (F2)n of degree M = n2,
arising from construction of ε-biased sets. As addition in GF (2)n is carried out
in NC0, this graph is an AC0-graph (we must move from NC0 to AC0 when
using the edge index to obtain the actual representation of that vector from
the generating set). This graph is composed once with a smaller copy of itself
with n2 vertices, and then again with another expander that is small enough to
be trivially an AC0-graph. This gives an eigenvalue expander that is clearly an
AC0-graph.

Now let us say a few words about the construction of lossless expanders on [14].
For these constructions it is useful to have the circuits output “extra information.”
Above, given (v, i) they produce only the ith neighbor of v, and now we’ll ask them
to output more information (whose main function is ”keeping the entropy” in the
input) beyond the neighbor. E.g. in [16] the circuit G will also include the index
of the edge along which that neighboring vertex was reached. This modified cir-
cuit, G : N ×M → N ×M is called there a “rotation map”. The objects which
are multiplied using the extension of zig-zag in [14] are not expanders, but other
pseudorandom objects related to extractors. In some of them as well the output
has two parts, carrying a similar information as in the “rotation map”.

With this in mind, the construction of lossless expanders in [14] has the exact
same structure as the one above, and explicitly describes them as composition
of functions (and as noted above, easily interpreted in circuit terms). The two
components needed are an eigenvalue expander, which was constructed above in
AC0 and a constant-sized graph, which is in AC0 trivially. ��

Open questions for NC0 graphs. Can NC0-graphs be constant-degree expanders?
We note that in the adjacency matrix representation the answer is “No”, since
any nontrivial NC0 circuit cannot even represent a constant-degree graph.

However, in the adjacency list representation the answer to the question is
less clear (e.g., logarithmic degree NC0 expanders exist in this representation).

2.2 Constructions of Power-Law Graphs

Many real-life graphs have a degree distribution that satisfies the power law: for
some parameter α > 0, the number of nodes of degree > x is proportional to x−α.
As mentioned in the introduction, the standard explanation for these is some
form of randomized attachment process where nodes favor other nodes with high
degree (“popular nodes”). It has also been observed empirically that the largest
few eigenvalues also satisfy a power law with exponent α/2: if the largest degrees
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are d1, d2, d3, . . . , the largest eigenvalues are close to
√

d1,
√

d2,
√

d3, . . .. This has
also been explained for random graph models by Mihail and Papadimitriou [17].

Theorem 4. For every α > 2 there is an AC0 family of graphs whose degrees
satisfy the power-law with exponent α, and furthermore the top k = N1/2α eigen-
values satisfy the eigenvalue power law.

Proof. Many constructions are possible but since we only have to ensure power-
laws for the degrees and some top eigenvalues we give a particularly easy one.

We note that since α > 2 the number of edges is
∑

d N/dα−1 = O(N) and the
max degree is less than N1/α. For simplicity we make all degrees powers of 2.
We divide vertices into O(log n) classes S1, S2, . . . , Sk, where |Si| = N/2iα and
degree of vertices in Si is close to 2i (we say “close to” because the construction
will allow degrees to deviate a little). Thus the maximum degree vertex is in Sk

and has degree N1/α.
Vertices in Si consist of vectors in GF (2)n whose first iα bits are 0 and the

bit immediately after these is 1. Thus the Si’s are disjoint, and furthermore
verifying whether a vector x lies in Si is an AC0 computation.

For now we describe the construction as randomized and allow poly(n) random
bits, which can obviously be appropriately chosen and hardwired so that certain
bad events listed below do not happen. For each i pick a random shift ai ∈
GF (2)n and connect x ∈ Si to x + ai + b where b is a vector whose last n − i
bits are zero. If x + ai + b is in Sj for j ≥ 5 then leave out the edge. Note that
the adjacency matrix of these connections is computable in AC0.

By construction, the degree of each node in Si is almost 2i, except that an
occasional node x may have some missing edges because x+ai+b happened to lie
in ∪j≥5Sj . Since this set has size

∑
j≥5 N/2jα < N/25α−1 the chance that this

happens (since shift ai is random) is less than 1/25α−1. By Markov’s inequality
the fraction of nodes in Si (for i ≥ 7) that have more than 1/10 th of their edges
missing is less than 1/4.

Now we argue about the top eigenvalues along the lines of Mihail and Pa-
padimitriou. One can show that the edges of k highest-degree vertices form a
union of (mostly) disjoint stars with high probability. Since the largest eigenvalue
of a d-star is

√
d− 1, the graph formed by these edges has largest eigenvalues

roughly
√

d1, . . . ,
√

dk. Furthermore, it is true that with high probability, for all
i ∈ [k], our graph contains much less than

√
di edges between the leaves of the

di-star. Hence, by eigenvalue interlacing, even including these edges does not
spoil the eigenvalue power law. Finally, one can show that the maximum degree
of the remaining edges is too small to influence the first k eigenvalues. ��

3 Hardness Results

One reason to study specific graph families such as bounded tree-width graphs
is that one can often solve certain problems more easily on them as compared to
general graphs. In this section we explore whether such better algorithms exist
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for low-complexity graphs. The negative results in this section will guide the
choice of what kind of algorithms to expect.

Note that N is the number of nodes in the graph, n = log2 N is the number
of labels in the vertices, and the algorithm is provided the entire graph as input.

The first result shows that there are unlikely to be efficient algorithms for the
usual NP-complete problems on AC0-graphs. We say the NP-complete problem
is usual if its NP-completeness can be proved using the classical Cook-style proof
followed by a simple gadget-based reduction in the style of Karp. (This notion
is obviously not precise. The precise version of the next theorem would involve
replacing “usual NP-complete” by a list of a few thousand explicit problems.)

Theorem 5. If NEXP �= EXP then none of the usual NP-complete problem
can be solved on AC0-graphs in polynomial time.

Proof (sketch). Suppose a polynomial-time algorithm were to solve a usual NP-
complete problem, say CLIQUE, on AC0-graphs. We show how to use it to
decide any language L ∈ NTIME(2nc

) deterministically in time 2O(nc), which
contradicts the Theorem’s hypothesis.

For any input x ∈ {0, 1}n we can use the standard Cook-Karp style reduction
to produce a graph with 2O(nc) nodes which has a clique of a certain size iff
x ∈ L. Let us show that this instance is an AC0-graph, and therefore amenable
to be solved by the algorithm.

Recall that the Cook-style reduction consists of writing constraints for the
2 × 3 “windows” in the tableau of M ’s computation on x. The window —and
hence also each edge in the instance of CLIQUE—is defined by indices of the
type (i + b1, j + b2) where b1 ∈ {0, 1, 2}, b2 ∈ {0, 1}, and i, j ≤ 2nc

. As noted
in Example 2 the function i → i + 1 is computable in AC0 when i is given in
binary, we can easily design an AC0 circuit of size poly(nc) (with x hardwired
in it) that represents the CLIQUE instance. This shows that the instance is an
AC0-graph. ��
At first glance the use of the conjecture NEXP �= EXP (which implies P �= NP)
in the previous result may seem like overkill. But there is a (folklore) converse
of sorts known.

Theorem 6. If NEXP = EXP then every NP problem on P/poly-graphs
(thus, also on AC0-graphs) can be solved deterministically in npoly(log n) time.

Proof (sketch). Suppose A is an exponential time deterministic algorithm for a
NEXP-complete problem. Let L be any NP language. To solve it on P/poly-
graphs of size N , we note that the input can be represented by the circuit whose
size is poly(log N). Though the circuit is not provided as part of the input, it can
be recovered in exp(poly(log N)) time by exhaustive search. Now we can think
of the problem as really one in NEXP where the input is this circuit. Now we
can use A to solve this problem in time exp(poly(log N)). ��
How about P-complete problems on AC0 graphs? Can we solve them more
efficiently than on general graphs? The following theorem –proved completely
analogously to the previous two theorems—suggests that we cannot.
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Theorem 7. If EXP �= PSPACE then no usual P-complete problem can be
solved on AC0-graphs in polylog space. If EXP = PSPACE then every problem
in P can be solved on P/poly-graphs in polylog space.

3.1 Results about Hardness of Approximation

We already saw that problems like CLIQUE cannot be optimally solved on AC0-
graphs in polynomial time if NEXP �= EXP. What about approximation? We
note that the current proof of the PCP Theorem (specifically, the generalization
from NP to NEXP) and related results imply that current inapproximability
results can be transfered to show hardness of the same problem on NC1-graphs.
The following is a sample result.

Theorem 8. If NEXP �= EXP then the MAX-CLIQUE problem on NC1-
graphs cannot be approximated within any constant factor in polynomial time.

Proof (sketch). The only known proof [18,19,20] of the result NEXP =
PCP(poly(n), 1) involves taking polynomial extension and then using proce-
dures for polynomial testing/correcting and sum-check. These involve finite field
arithmetic on n-bit vectors (where the graph size is 2n), which is possible in NC1.
The proof has a second step involving verifier composition which is trivially in
NC1 because of the smaller inputs involved.

With these observations and the known reduction from PCP(poly(n), 1) to
approximating MAX-CLIQUE [21] we can finish the proof as in Theorem 5. ��

The stumbling block in proving a similar result for AC0 graphs is that current
PCP constructions rely upon field operations that cannot be done in AC0. It is
conceivable that this is inherent, and one way to show this would be to give a
better CLIQUE approximation algorithm for AC0 graphs. This would probably
involve an interesting new result about AC0.

At the same time, simple approximation algorithms such as basic SDP relax-
ations will probably not lead to better approximation in most cases. For example,
for MAX-CUT the integrality gap of the standard SDP relaxation is achieved
on instance of finite size, which are clearly AC0.

Theorem 9. The worst-case integrality gaps of the standard SDP relaxation
on AC0 graphs for MAX-CUT (see [22]) is 0.878.. (i.e., same as for general
graphs).

4 Algorithms for Low-Complexity Graphs

The hardness results in Section 3 greatly constrict our options in terms of what
kinds of algorithms to shoot for on AC0 graphs.

Of course, the only hope in designing such algorithms is to exploit something
about the structure of AC0 graphs (e.g., Proposition 1). Unfortunately, this
hope is somewhat dashed in Section 3.
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In light of these hardness results, it is reasonable to turn to sampling-based
algorithms from areas such as property testing and sublinear algorithms, which
result in a fairly weak approximation (necessarily so, since only a small portion
of the graph is examined). Since the introduction of the property testing idea
by Goldwasser, Goldreich, and Ron [23], a large body of literature has grown up
in this area. Note that such algorithms are natural to consider for AC0 graphs,
since we are given a circuit oracle for the edges.

We notice that many algorithms in this area implicitly give a stronger result
than formally stated: in many cases if the graph is AC0, then the approximate
solution to the problem (namely, a cut, assignment, etc.), which is an object
of size exp(n), can also be represented as an AC0 circuit. As an illustrative
example, we use MAX-CUT.

Theorem 10. For any ε > 0 there is a polynomial-time randomized algorithm
that, given an AC0 circuit computing f : {0, 1}n×{0, 1}n → {0, 1} representing a
graph in the adjacency matrix representation, produces an AC0 circuit computing
some g : {0, 1}n → {0, 1} circuit such that the cut (g−1(0), g−1(1)) in the graph
has capacity at least OPT − εn2 where OPT is the capacity of a MAX CUT in
the graph.

Proof. For any ε > 0, the sampling algorithm of Alon et al. [24] samples k =
O(1/ε5) vertex pairs and examines whether or not the corresponding edges are
present in the graph. This suffices for it to estimate the capacity of the maximum
cut within additive error εN2. In fact the proof of correctness shows something
stronger. It gives a function h : {0, 1}(

k
2)×{0, 1}k → {0, 1} such that the following

is true for any graph G = (V, E) of any size. For any subset of k vertices S let
ES ∈ {0, 1}(

k
2) be the characteristic vector showing which of the

(
k
2

)
pairs of S

are connected by an edge. If v is any other vertex, let vS be a characteristic
vector showing which of the k nodes of S are connected to v by an edge. For
every S let gS : V → {0, 1} be defined as gS(v) = h(ES , vS). (Thus gS implicitly
defines a cut of the graph.) Then if S is chosen uniformly at random, then the
probability is at least 0.99 that the cut represented by gS has capacity at least
OPT − εn2

Thus the randomized algorithm is to sample S at random and output the
function gS . Note that if the graph was AC0 then so is gS . ��
In fact, using the subsequent work of Alon et al. [25] there is a similar algorithm
(though again not mentioned explicitly) as in Theorem 10 for every testable
graph property. For example, the property of being C-colorable is testable for
any constant C. The analog of Theorem 10 for this problem shows that the final
AC0 circuit will compute a C-coloring that is a proper coloring of some graph
that differs in at most εn2 edges from G. The sampling complexity is much worse
than for MAX-CUT, though still constant for every constant ε > 0.

4.1 Algorithms for the Adjacency List Representation

Property testing has also been studied in the adjacency list representation, and
some algorithms transfer to the AC0 setting. For instance the work of [26] implies
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that it is possible to test in poly(n/ε) time whether the AC0-graph is ε-close
to a graph that is minor-free (ε-close means in this context that the symmetric
difference of the edge sets of the two graphs is at most εNd).

However, it has been shown that testing many interesting graph properties
require examining Ω(

√
N) vertices in the adjacency list model. We note that

this need not rule out existence of good algorithms for AC0 graphs in the sense
of Theorem 10. The reason is that the lowerbounds assume an edge oracle that
is black-box, whereas AC0 circuits of size n are learnable (albeit only with a very
inefficient algorithm) with poly(n) = poly(log N) queries.

Theorem 11. Every graph property is ε-testable (with 2-sided error) using
poly(log N/ε) evaluations of the AC0 circuit representing the adjacency list of
the d-regular graph.

Proof. The adjacency list consists of d log N bits, and each is computed by a cir-
cuit of size poly(log N) whose output is a single bit. Each of these d log N circuits
can be learnt after evaluating it on poly(log N/ε) random points. Namely, if we
simply pick the circuit that best fits those poly(log N/ε) values, then the stan-
dard Chernoff bound calculation shows that this circuit is with high probability
(over the choice of the sample points) correct for all but ε/10d logN fraction of
the inputs. Doing this for all d log N circuits ensures that we get an AC0 rep-
resentation of the graph that is ε/10-close to the true graph. Having obtained
such a representation, we can try all graphs that are ε/9-close to our graph and
check if any of them have the property. ��

4.2 Adapting Sketching Algorithms to Low-Complexity Graphs

Sketching algorithms are given a data matrix M , and using random sampling
they construct a sketch S(M) of this data which can be used to approximate the
value of some specific function f on M .

Here we note that if M is a low-complexity matrix —in other words, M(i, j)
can be produced by a low-complexity computation given i, j — many known
sketching algorithms produce the sketch S(M) that is also a low-complexity
object. Usually this is trivial to see if by “low complexity” we mean NC1 but
sometimes it is true for even AC0 thanks to the following fact about AC0.

Theorem 12 (Approximate counting). Let f : {0, 1}n × {0, 1}n → {0, 1}
be computable by an AC0 circuit and define g : {0, 1}n → {0, 1} as g(x) =∑

y f(x, y). Then for every ε, c > 0 there is a AC0 circuit that given x as input
outputs 1 if g(x) > c and 0 if g(x) < c− ε, and an arbitrary value otherwise.

Proof. We give a probabilistic construction. Pick m = poly(n) random vectors
y1, y2, . . . , ym and for any x try to compute

∑
i≤m f(x, yi). Using our observation

in Example 2 there is an AC0 circuit (even explicit thanks to [11]) that outputs
1 if

∑
i≤m f(x, yi) > c and 0 if

∑
i≤m f(x, yi) < c − ε/2. Letting m > n2/ε2

allows us to conclude via Chernoff bounds that
∑

i f(x, yi) correctly estimates
g(x) =

∑
y f(x, y) for all x ∈ {0, 1}n. ��
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As an example we describe how to compute a special sketch of a matrix M called
low rank decomposition.

Theorem 13. Let A be an N ×N matrix that is AC0, and whose entries have
absolute value at most log N . Then there is a randomized poly(n) time algorithm
that given ε > 0 produces an AC0 matrix M with all entries of absolute values
O(log N) such that |A−M |F ≤ |A−M∗|F + εN2, where | · |F denotes Frobenius
(i.e. sum of squares) norm and M∗ is the rank k matrix that minimizes |A −
M∗|F .

Proof. The theorem is implicit in the paper of Frieze, Kannan, Vempala [27]
together with some simple observations. For simplicity we assume the matrix is
0/1. The FKV algorithm starts by sampling s = poly(k, ε) columns according
to the probability distribution where column i is picked with probability propor-
tional to its squared �2 norm. Since we can estimate the squared �2 norm up to
additive error ε by Theorem 12 the sampling of columns is easily implemented
using standard rejection sampling. Next the FKV algorithm samples s rows us-
ing a similar sampling. Let S be the submatrix defined by the sampled columns
and W be the final s× s matrix.

Then it computes the top k singular vectors u1, u2, . . . , uk of the above s× s
submatrix and scaling factors c1, c2, . . . , ck (depending only on W ) and lets vt =
ctSut. The final approximation is M = A · (

∑
t vtv

T
t ).

Now we observe that if suffices to compute the ui’s up to precision 1/poly(s)
which is a constant. Thus the ui’s are computable in AC0 via brute force. Then
vt = ctSut is computable up to precision ε/k2 in AC0 by Theorem 12, which
implies that M is also computable up to precision ε in AC0. ��
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Decidability of Conjugacy
of Tree-Shifts of Finite Type
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Abstract. A one-sided (resp. two-sided) shift of finite type of dimension
one can be described as the set of infinite (resp. bi-infinite) sequences
of consecutive edges in a finite-state automaton. While the conjugacy
of shifts of finite type is decidable for one-sided shifts of finite type of
dimension one, the result is unknown in the two-sided case.

In this paper, we study the shifts of finite type defined by infinite
trees. Indeed, infinite trees have a natural structure of one-sided shifts,
between the shifts of dimension one and two. We prove a decomposition
theorem for these tree-shifts, i.e. we show that a conjugacy between two
tree-shifts of finite type can be broken down into a finite sequence of
elementary transformations called in-splittings and in-amalgamations.
We prove that the conjugacy problem is decidable for tree-shifts of finite
type. This result makes the class of tree-shifts closer to the class of one-
sided shifts of dimension one than to the class of two-sided ones. Our
proof uses the notion of bottom-up tree automata.

1 Introduction

Sofic shifts are bi-infinite sequences labeling paths in a finite automaton. Shifts
of finite type are a particular important subclass of sofic shifts. Two-sided (resp.
one-sided) shifts of finite type are bi-infinite (resp. right-infinite) sequences of
consecutive edges in a finite-state automaton (see [8, 13.8], [5]). They are well un-
derstood in the one-sided case since the conjugacy is decidable for such shifts [14].
The proof uses the decomposition theorem (see for instance [5]). This theorem
states that every conjugacy between two one-sided shifts of finite type can be
decomposed into a finite sequence of splittings and amalgamations, which are
elementary operations on automata presenting the two shifts.

In the two-sided case, the decidability of the conjugacy problem between two
shifts of finite type is still an open question. In higher dimension, many questions
become more difficult. The main reason is that there exists no good representa-
tion of multidimensional shifts comparable to finite automata in dimension one.
Even if there exists a generalization of finite automata to dimension two, which
are called textile systems (see [10], see also the automata for tiling systems in
[2]), results are more complex than in dimension one. The decomposition theo-
rem can be extended to two-sided multidimensional shifts of finite type, but an
additional operation, called an inversion, is needed (see [4]).

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 132–143, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In this paper, we introduce the notion of shifts of finite type defined on infinite
trees, that we call tree-shifts. Indeed, infinite trees have a natural structure of
one-sided symbolic systems equipped with several shift transformations. The
ith shift transformation applied to a tree gives the subtree rooted at the child
number i of the tree. This defines a new class of shifts between the class of
one-sided shifts of dimension one and the class of one-sided shifts of higher
dimension. Tree-shifts can be described thanks to top-down or bottom-up tree
automata which are used in automata theory for many purposes. Tree automata
have applications to logic and game theory (see [13], [1], [11], and [12]). The tree
automata that we consider here are bottom-up tree automata. They are simpler
than Büchi or Muller tree automata since they have all their states final.

We define two elementary operations on tree automata: the in-splitting opera-
tion and the in-amalgamation operation. They are very close to those existing on
finite automata. In particular two in-amalgamations commute. We prove a de-
composition theorem for tree-shifts of finite type, i.e. we show that a conjugacy
between two tree-shifts of finite type can be broken down into a finite sequence of
in-splittings and in-amalgamations. We then prove that the conjugacy problem
is decidable for this class of shifts. The heart of the proof is the commutation
property of in-amalgamations. We prove that two tree-shifts of finite type are
conjugate if and only if they have the same minimal in-am algamation. Further-
more, the minimal in-amalgamation of a tree automaton can be computed in a
polynomial time in the number of states of the automaton.

The paper is organized as follows. In Section 2 we give basic definitions about
tree-shifts and tree automata. The decomposition theorem is proved in Section 3.
Our main result together with an example are given in Section 4. We end the
paper with some concluding remarks.

2 Shifts, Automata and Infinite Trees

2.1 Tree-Shifts

We give here some basic definitions from symbolic dynamics which apply to
infinite trees. We consider infinite trees whose nodes have a fixed number of
children and are labeled in a finite alphabet.

Let Σ = {0, 1, . . , d − 1} be a finite alphabet of cardinal d. An infinite tree t
over a finite alphabet A is a complete function from Σ∗ to A. Unless otherwise
stated, a tree is an infinite tree. A node of a tree is a word of Σ∗. The empty
word, that corresponds to the root of the tree, is denoted by ε. If x is a node,
its children are xi with i ∈ Σ. Let t be a tree and let x be a node, we shall
sometimes denote t(x) by tx.

When Σ is fixed, we denote by T (A) the set of all infinite trees on A, hence
the set AΣ∗

. On this set we have a natural metric. If t, t′ are two trees, we define
the distance d(t, t′) = 1

n+1 , where n is the length of the shortest word x in Σ∗

such that t(x) �= t′(x) if such a word exists, and d(t, t) = 0. This metric induces
a topology equivalent to the usual product topology, where the topology in A is
the discrete one.
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We define the shift transformations σi for i ∈ Σ from T (A) to itself as follows.
If t is a tree, σi(t) is the tree rooted at the i-th child of t, i.e. σi(t)x = tix for
any x ∈ Σ∗. The set T (A) equipped with the shift transformations σi is called
the full shift of infinite trees over A.

A pattern is a function p : L → A, where L is a finite subset of Σ∗ containing
the empty word. The set L is called the support of the pattern. A block of height
n is a pattern with support Σ≤n, where n is some nonnegative integer, and Σ≤n

denotes the words of length at most n of letters of Σ.
We say that a pattern b of support L is a block of a tree t if there is a word

x ∈ Σ∗ such that txy = by for any y ∈ Σ∗. We say that b is a block of t rooted
at the node x. If b is not a block of t, one says that t avoids p. If b is a block of
some tree of tree-shift X , it is called an allowed block of X .

We define a tree-subshift (or tree-shift) X of T (A) as the set XF of all trees
avoiding each pattern of a set of blocks F . This tree-shift X is closed and for
any shift transformation σi, σi(X) ⊆ X . A tree-shift of finite type X of T (A) is
a set XF of all trees avoiding each block of a finite set of blocks F . The set F is
called a set of forbidden blocks of X .

We denote by L(X) the set of blocks of all trees of a tree-shift X , and by
Ln(X) the set of all blocks of height n of X . If b is a block of height n with
n ≥ 1, we denote by σi(b) the block of height n − 1 such that σi(b)x = bix for
x ∈ Σ≤n−1. The block b is written b = (bε, σ0(b), . . , σd−1(b)).

Example 1. In figure 1 is pictured an infinite tree of a tree-shift of finite type
XF on the binary alphabet {0, 1} defined by a finite set F of forbidden blocks
of height 1. The forbidden blocks are those whose labels have a sum equal to 1
modulus 2.

1

0

1 1

1

1 0

σ0 σ1

Fig. 1. A tree of the tree-shift of finite type XF on the alphabet {0, 1}, where F is the
set of blocks of height 1 whose sum of labels is 1 modulus 2

Let A, A′ be two finite alphabets, X be a tree-shift of T (A) and m be a nonneg-
ative integer. A map Φ : X ⊆ T (A) → T (A′) is called a (m + 1)-local map (or
a (m + 1)-block map ) if there exists a function φ : Lm+1(X) → A′ such that,
for any x ∈ Σ∗, Φ(t)x = φ(t|xΣ≤m+1), where t|xΣ≤m+1 is the pattern q such that
qy = txy for any y ∈ Σ≤m+1. The smallest integer m satisfying this property is
called the memory of the block map. A block map is a map which is (m+1)-local
for some nonnegative integer m.

It is known from the Curtis-Lyndon-Hedlund theorem (see [3]) that block
maps are exactly the maps Φ : X → Y which are continuous and commute with
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all tree-shifts transformations, i.e. such that σi(Φ(t)) = Φ(σi(t)) for any t ∈ X
and any i ∈ Σ. The image of X by a block map is also a tree-shift. A one-to-one
and onto block map from a tree-shift X onto a tree-shift Y has an inverse which
is also a block map. It is called a conjugacy from X onto Y . The tree-shifts X
and Y are then conjugate.

Example 2. Let X the tree-shift of finite type defined in Example 1. Let Y be
the tree-shift of finite type over the alphabet {a, b, c}, where the allowed blocks
of height 2 are (a, a, a), (a, b, c), (a, c, b), (a, c, c), (b, b, a), (b, c, a), (c, a, b) and
(c, a, c). The 1-block map Φ : X → Y , defined by φ(0, 0, 0) = a, φ(0, 1, 1) =
a, φ(1, 1, 0) = b, and φ(1, 0, 1) = c, is pictured in Figure 2. The map Φ is a
conjugacy. Its inverse is a 0-block map Ψ defined by ψ(a) = 0 and ψ(b) =
ψ(c) = 1.

1

0

1 1

1

1 0

c

a b

φ

Fig. 2. A 1-block map Φ : X → Y , where X is the tree-shift of Figure 1 and Y a
tree-shift of finite type over the alphabet {a, b, c}. The map Φ is a conjugacy.

Let X be a tree-shift on A. Let n be a positive integer. The higher block pre-
sentation of order n of X is the tree-shift X̂ on the alphabet Ln(X) made of
trees t such there is a tree t′ ∈ X such that, for any node x, tx is the block of
height n of t′ rooted at x. A tree-shift is conjugate to any of its higher block
presentations.

2.2 Tree Automata

In this section we consider bottom-up automata for infinite trees. Such an au-
tomata its computation from the infinite branches and moves upward. A tree
automaton is here a structure A = (V, A,Δ) where V is a finite set of states (or
vertices), A is a finite set of input symbols, and Δ is a set of transitions of the
form (q0, . . , qd−1), a → q, with q, qi ∈ V , a ∈ A. A transition (q0, . . , qd−1), a → q
is called a transition labeled by a, going out of the d-tuple of states (q0, . . , qd−1)
and coming in the state q. Note that no initial nor final states are specified. This
means that all states are both initial and final.

Such an automaton is deterministic if for all d-tuple of states (q0, . . , qd−1)
and for all a ∈ A, there is at most one transition (q0, . . , qd−1), a → q. Then the
set of transitions defines a partial function δ from V d ×A to V .

A (bottom-up) computation ofA on the infinite tree t is an infinite tree C on V
such that, for each node x, there is a transition (Cx0, . . , Cx(d−1), tx) → Cx ∈ Δ.
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A tree t is accepted by A if there exists a computation of A on t. The set of
infinite trees accepted by A is a tree-shift.

Let m be a nonnegative integer. An m-deterministic local tree automaton
(or an m-definite tree automaton) is a tree automaton A = (V, A, δ) such that
whenever t and t′ are two trees accepted by A with a same block b of height m
rooted at the node x in t and rooted at the node x′ in t′, for any computation C
of t and any computation C′ of t′, we have Cx = C′

x′ . A tree automaton is local
(or definite) if it is m-local for some nonnegative integer m.

Proposition 1. Any tree-shift of finite type is accepted by a deterministic local
tree automaton. Reciprocally any tree-shift accepted by a deterministic local tree
automaton is of finite type.

Let A = (V, A,Δ) be a tree automaton such that whenever

(q0, . . , qd−1, a) → q ∈ Δ and (q0, . . , qd−1, b)→ q ∈ Δ, one has a = b.

Note that the automaton built in the proof of Proposition 1 satisfies this condi-
tion. The set of computations in the tree automaton A defines a tree-shift called
the vertex tree-shift (or Markov tree-shift) defined by A. Equivalently, a vertex
tree-shift is a tree-shift accepted by a 2-local automaton, i.e. the tree-shift of
finite type XF where F is a set of forbidden blocks of height 2.

A vertex tree-shift is the set of computations of the unlabeled automaton
B = (V, Γ ) with transitions (q0, . . , qd−1)→ q.

Example 3. The tree-shift X of Example 1 is a vertex tree-shift accepted by the
automaton A = (V,Δ) with transitions (0, 0) → 0, (1, 1) → 0, (1, 0) → 1 and
(0, 1) → 1. These transitions are given in the following table t where (p, q) →
t[p, q] is a transition.

0 1
0 0 1
1 1 0

Proposition 2. Any tree-shift of finite type is conjugate to a vertex tree-shift.

Proof. Let X = XF be a tree-shift of finite type defined by a finite set of forbid-
den blocks of height m for some nonnegative integer m. Let A = (V, A, δ) be the
deterministic m-local automaton such that V = Lm(X) and, for pi ∈ V, a ∈ A,
the block q = (a, p0, . . , pd−1) of height m + 1 is an allowed block of X , then
δ(p0, . . , pd−1), a) = trunc(q), where trunc(q) is the block of height m such that
trunc(q)x = qx for x ∈ Σ≤m. The automaton A accepts X . Let Y be the vertex
tree-shift made of the all computations on A. Note that any tree t of X has a
unique computation C in A.

We define an m + 1-block map Φ from X to Y via φ : Lm(X)→ Y by setting
φ(p) = p. The map Φ associate to each tree of X its computation in A. The
one-block map Ψ from Y to X given by ψ : Y → A with ψ(p) = pε is the inverse
of φ. The tree-shifts X and Y are thus conjugate.

In the sequel, in order to simplify the notations, we restrict us to binary trees
(Σ = {0, 1}) but all results extend trivially to the case of trees with d children
for any d ≥ 1.
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3 A Decomposition Theorem for Trees

The decomposition theorem for shifts of infinite words states that any conjugacy
between shifts of finite type can be decomposed into a finite sequence of splittings
and amalgamations. We will prove an analogous theorem for infinite trees. The
crucial lemma will show that the memory of a block map can be reduced using
a notion of (input) splittings on tree automata defined below. We first consider
the case of vertex tree-shifts.

Let X be a binary vertex tree-shift defined by a deterministic 2-local au-
tomaton A = (V,Δ). Set V = {p1, . . , pn}. We define an in-splitting of A as an
automaton Ã = (Ṽ , Δ̃) obtained as follows. First, we in-split the automaton A
by refining the natural partition of Δ; for each vertex p ∈ V , we partition the
set Δp of transitions coming in p into subsets Δ1

p, . . ,Δ
l(p)
p . We set

Ṽ = {p1
1, . . , p

l(1)
1 , p1

2, . . , p
l(2)
2 , . . , p1

n, . . , pl(n)
n } (1)

and (pi, qj)→ rk ∈ Δ̃ if (p, q) → r ∈ Δk
r .

The tree-shift accepted by Ã is a vertex tree-shift denoted by X̃ and called
the in-splitting of X defined by the above partitioning of the transitions.

The same notion of in-splitting is defined for tree-shifts of finite type as follows.
Let X be a tree-shift of finite type accepted by a deterministic automaton A =
(V, A,Δ). An in-splitting of A is Ã = (Ṽ , Δ̃). For each vertex p ∈ V , we partition
the set Δp of transitions coming in p into subsets Δ1

p, . . ,Δ
l(p)
p and set Ṽ as in

Equation 1. We set (pi, qj), a → rk ∈ Δ̃ if (p, q), a → r ∈ Δk
r .

A tree in-amalgamation of an tree automaton A is an automaton B such that
B is an in-splitting of A. An in-amalgamation of an tree-shift X is a tree-shift
Y such that Y is an in-splitting of X .

Lemma 1. Let X̃ be an in-splitting of a vertex tree-shift X. Then X̃ and X are
conjugate.

Proof. Let X̃ be an in-splitting of X accepted by A = (V,Δ). Define a 1-block
map Φ : X̃ → X via φ(pi) = p for each state p ∈ V , and a 2-block map
Ψ : X → X̃ via ψ(r, p, q) = ri, where (p, q)→ r ∈ Δi

r.
It is not difficult to check that Φ(X̃) ⊆ X and Ψ(X) ⊆ X̃. It is clear that

Φ(Ψ(t))u = tu for all trees t ∈ X and each word u ∈ Σ∗ since adding and
removing superscripts has no effect. Thus we only need to check that Ψ(Φ(t))u =
tu for all trees t ∈ X̃ and each word u ∈ Σ∗. Let t ∈ X̃ and u ∈ Σ∗ = {0, 1}∗.
We need to show that

Ψ(Φ(t))u = ψ((φ(tu), φ(tu0), φ(tu1)) = tu.

Indeed, suppose tu0 = pi, tuj = qj and tu = rk where pi, qj ∈ Ṽ . Hence we have
(p, q)→ r ∈ Δk

r . We get ψ((φ(tu), φ(tu0), φ(tu1)) = ψ(r, p, q) = rk = tu.

When the partition of the set of transitions consists of singleton sets, then the
in-splitting X̃ of X is called the complete in-splitting of X .
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In the remainder of this section, we give a proof of the decomposition theorem
of vertex tree-shifts. In Lemma 3 we show that a higher block presentation of
the tree-shift is the composition of a finite sequence of in-splittings and in-
amalgamations. Then, by moving to a higher block presentation if necessary, we
may assume that the conjugacy Φ between two tree-shifts is a 1-block map with
an n-block map inverse. If n = 1, then this conjugacy is just a relabeling of the
symbols of the states and as such a trivial splitting. So we need a way to reduce
the memory of the inverse of Φ. We will reduce the memory in Lemmas 2 by
using tree in-splittings and in-amalgamations.

Lemma 2. Let Xk for k = 1 and 2, be two vertex tree-shift defined by the two
automata A1 = (V1,Δ) and A2 = (V2, Λ) respectively. Suppose Φ : X1 → X2

is a 1-block conjugacy with an n-block inverse. If n ≥ 1, then there are vertex
tree-shifts X̃k such that the following diagram commutes:

X1
Φ−−−−→ X2

Ψ1

⏐⏐6 ⏐⏐6Ψ2

X̃1
Φ̃−−−−→ X̃2

where Ψ1 and Ψ2 are in-splittings of X1 and X2 respectively, and where Φ̃ is a
1-block conjugacy with an (n− 1)-block inverse.

Proof. For p ∈ V1, we partition Δp into
⋃

(s,t)∈V2×V2
{(q, r) → p | φ(q) =

s and φ(r) = t}. Then we set

Ṽ1={ps,t : p ∈ V1, s, t ∈ V2 with φ(q)=s and φ(r)= t for some (q, r) → p∈Δp},

We set (ps,t, qu,v)→ rp,q ∈ Δ̃ if (p, q) → r ∈ Δ̃.
As shown in Lemma 1, Ψ1 : X1 → X̃1 is a conjugacy via Ψ1(t)u =

ψ1(tu, tu0, tu1) = t
φ(tu0),φ(tu1)
u , where u ∈ {0, 1}∗.

Now let X̃2 be the complete in-splitting of X2. So

Ṽ2 = {rp,q : p, q, r ∈ V2, with (p, q) → r ∈ Λr},

We set (rp,q , su,v) → tr,s ∈ Λ̃ if (r, s)→ t ∈ Λ. As shown in Lemma 1, Ψ2 : X2 →
X̃2 is a conjugacy via Ψ2(t)u = ψ2(tu, tu0, tu1) = ttu0,tu1

u , where u ∈ {0, 1}∗.
Now we define the 1-block map Φ̃ : X̃1 → X̃2 via

Φ̃(t)u = φ(tu)φ(tu0),φ(tu1),

where u ∈ {0, 1}∗. Clearly, the diagram commutes and thus Φ is one-to-one and
onto. It remains to check that Φ̃−1 = Ψ1 ◦ Φ−1 ◦ Ψ2 is an (n − 1)-block map.
That is, we must show that for any tree t ∈ X̃2, the coordinates in a block of
height n− 1 of t rooted at the node ε determines Φ̃−1(t)ε. But this follows from
the observation that the block of height n − 1 of t rooted at ε determines all
Ψ−1

2 (t)v0 and all Ψ−1
2 (t)v1 for v ∈ {0, 1}n−1, and therefore the block of height n

at the root of t.
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The proof of the above lemma is similar to the proof of the analogous result for
shifts of ΣZ (see [8, Lemma 7.3.1]) or shifts of ΣZ

2
(see [4]).

In general a conjugacy between vertex tree-shifts is an n-block map but the
following lemma shows that moving to a higher block presentation we may as-
sume it is a 1-block map.

Lemma 3. Let Xk, for k = 1 and 2, be vertex tree-shifts. Let n be a positive
integer. Suppose Φ : X1 → X2 is an n-block conjugacy and let X̂1 be the higher
block presentation of X1 of order n. There exists a map η : X1 → X̂1 which is a
sequence of tree in-splittings, such that Φ ◦ η−1 is a 1-block conjugacy.

Proof. Clearly, Φ ◦ η−1 is a 1-block conjugacy. We need to show that η is a
sequence of tree in-splitting.

If X is the vertex tree-shift defined by A = (V,Δ) and n is a nonnegative
integer, a higher block presentation of X of order n is the vertex tree-shift X̂
defined by Â = (V̂ , Δ̂), where V̂ is the set of allowed blocks of X of height
n. There is a transition (p, q) → r in Δ̂, where p, q, r ∈ Ln(X) if and only if
r0u = pu and r1u = qu for any u ∈ {0, 1}n−1.

A complete in-splitting of the tree-shift X yields a higher block presentation
of X of order 2 by Ψ(t)u = ttu0,tu1

u .
By iterating this construction on Ψ(X), we can find a sequence of in-splittings

η such that η̄ = η ◦ Ψ−1
1 is a 1-block conjugacy, or simply a relabeling. Then

η = η̄ ◦ Ψ1 and we have the result.

Lemma 4. Let X be tree-shift of finite type, there is a vertex tree-shift Y and
a conjugacy from X to Y which is a sequence of in-splittings.

Proof. Let X = XF be a tree-shift of finite type defined by a finite set of forbid-
den blocks of height m for some nonnegative integer m.

Let X̂ be the higher block presentation of X of order m. The tree-shift X̂ is
the vertex tree-shift defined by Â = (V̂ , Δ̂), where V̂ is the set of allowed blocks
of X of height m. There is a transition (p, q) → r in Δ̂, where p, q, r ∈ Lm(X)
if and only if r0u = pu and r1u = qu for any u ∈ {0, 1}m−1. We know from
Lemma 3 that X̂ is obtained from X with a sequence of in-splittings.

We are now ready to state the main result of this section.

Theorem 1. Let X1 and X2 be two tree-shifts of finite type. Every conjugacy
between X1 and X2 is the composition of a finite sequence of tree in-splittings
and tree in-amalgamations.

Proof. By Lemma 4, we can view any tree-shift of finite type as a vertex tree-
shift. The theorem follows then from Lemma 1 and Lemma 3.

4 Commutation of In-Amalgamations

Proposition 3. Suppose X1 is a vertex tree-shift and X2, X3 are vertex tree-
shifts obtained from X1 by in-amalgamations. Then there is a vertex tree-shift
X4 that can be obtained from both X3 and X4 by in-amalgamations.
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X4

X2 X3

X1

Φ Ψ

Ω Θ

Fig. 3. The commutation of in-amalgamations. If X2, X3 are vertex tree-shifts which
are in-amalgamations of X1, the there is a vertex tree-shift X4 which is a common
amalgamation of X2, X3.

In Figure 3, the maps Φ and Ψ are in-amalgamations. As a consequence of
Proposition 3 the maps Ω and Θ are also in-amalgamations.

Proof. Let us first assume that there is an in-amalgamation Φ : X1 → X2 and a
in-amalgamation Ψ : X1 → X3. Let us assume that states p1, . . , pl(p) of V1 are
amalgamated to a state p of V2.

By definition of an in-amalgamation, this implies that if (q, r) → pi ∈ Δ1,
then (q, r) → pj /∈ Δ1 for any states q, r ∈ V1 and any 1 ≤ i �= j ≤ l(p).
This implies also that (pi, q) → r ∈ Δ1 if an only if (pj , q) → r ∈ Δ1, and
(q, pi)→ r ∈ Δ1 if and only if (q, pj)→ r ∈ Δ1 for any states q, r ∈ V1 and any
1 ≤ i, j ≤ l(p).

Suppose also that states q1, . . , ql(q) of V1 are amalgamated to a state q of V3.
Let us first assume that the states p1, . . , pl(p) and q1, . . , ql(q) are all distinct.

We define X4 as the in-amalgamation of X2 obtained by amalgamating the
states p, q1, . . , ql(q) to a state q. It is also the in-amalgamation of X3 obtained
by amalgamating the states q, p1, . . , pl(p) to a state q.

Let us now assume that p1 = q1, . . , pl = ql for some integer 1 ≤ l ≤
min(l(p), l(q)). This implies that, for any 1 ≤ i ≤ l(p), 1 ≤ j ≤ l(q), one
has (pi, q) → r ∈ Δn if and only if (pj , q) → r ∈ Δn, and (q, pi) → r ∈ Δn if
and only if (q, pj)→ r ∈ Δn for n = 1 and n = 2.

We define X4 as the in-amalgamation of X2 obtained by amalgamating the
states p, ql+1, . . , ql(q) to the state p. It is also the in-amalgamation of X3 obtained
by amalgamating the states q, pl+1, . . , pl(p) to a state p. Hence, if Φ and Ψ are
in-amalgamations, then Ω and Θ also.

The previous theorem allows us to define the notion of minimal in-amalgamation
of a edge tree-shift X . It is defined as the vertex tree-shift defined by an au-
tomaton A = (V,Δ) with the smallest number of vertices which is obtained by
in-amalgamations of X .

Corollary 1. Any vertex tree-shift has a unique minimal in-amalgamation.

Proof. Let us assume that X has two minimal amalgamations X2 and X3. By
Proposition 3, X2 and X3 have a common in-amalgamation Y . By minimality,
Y = X2 = X3.
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We present the sketch of an algorithm that computes the minimal amalgamation
of a vertex tree-shift. Let us assume that X is a vertex shift defined by an n-
vertex automaton A = (V,Δ). We call out-degree of A the maximal number of
edges (p, q) → r or (q, p) → r for all pair of vertices (p, q). Let assume that the
out-degree of the automata that we consider is bounded by K. This assumption
is quite reasonable in our context.

We say that two vertices p, q are pre-mergeable if for any pair of vertices
(s, t), (s, t) → p ∈ Δ implies (s, t) → q /∈ Δ, and (s, t) → q ∈ Δ implies
(s, t) → p /∈ Δ. We call the signature of a vertex p the sequence ((0, q, r) |
(p, q)→ r ∈ Δ).((1, q, r) | (q, p) → r ∈ Δ) in lexicographic order. One can merge
two states p and q if they are pre-mergeable and σ(p) = σ(q). An algorithm
based on this idea can compute the minimal amalgamation of a vertex tree-shift
with a O(Kn3) overall time complexity of the procedure.

Theorem 2. Let X1 and X2 be two tree-shifts of finite type. It is decidable
whether X1 and X2 are conjugate.

Proof. By Proposition 2, one may assume that X1 and X2 are vertex tree-shifts.
By Theorem 1, there is a sequence of tree in-splittings and tree in-amalgamations
from X1 to X2.

Let us consider first that this sequence is decomposed into a sequence of tree
in-splittings from X1 to X followed (up to a relabeling of X), by a sequence of
tree in-amalgamations from X to X2. This case is illustrated in Figure 4. By
Proposition 3, there are vertex tree-shifts at the confluence of any two dashed
edges of Figure 4. As a consequence, X1 and X2 have a common amalgamation
and thus the same minimal amalgamation. Conversely, if X1 and X2 have the
same minimal amalgamation, there is a sequence of tree in-splittings and tree
in-amalgamations from X1 to X2.

We now consider the case where there is a sequence of tree in-splittings and
tree in-amalgamations from X1 to X2. This sequence is decomposed into a se-
quence of the form described in the previous case and the same result holds by
transitivity.

We can deduce from this proof an algorithm that computes, if it exists, a
conjugacy between two vertex tree-shifts of finite type X1 and X2: by Propo-
sition 3 , φ1(X1) = Y1 and φ2(X2) = Y2 where φi is a sequence of in-
amalgamations and Yi a minimal in-amalgamation. Then compare the Yi: if
they are different then X1 and X2 are not conjugated, if they are equal then
X1 = φ1

−1◦ψ◦φ2(X2) where ψ is a renimbering of the vertices. LetA1 = (V1,Δ1)
and A2 = (V2,Δ2) be two tree automata defining respectively Y1 and Y2. Let
us assume that V = V ′ = {0, 1, 2, . . ,n− 1}. Checking whether A1 and A2 are
equal up to a renumbering of their vertices consists in finding a permutation σ
of {0, 1, 2, . . ,n− 1} compatible with the transitions: (p, q) → r ∈ Δ if and only
if (σ(p), σ(q)) → σ(r) ∈ Δ′. This can be done in an exponential time, so that
the global time complexity of this procedure is exponential.

Example 4. Let X1 and X2 be two vertex tree-shifts over the alphabet V =
{a, b, c}. The tree-shift X1 is accepted by A1 = (V,Δ1) and the tree-shift X2
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X1 X2

X

Y

Φ1

Φ2

Ψ1

Ψ2

Fig. 4. A sequence of tree in-splittings from X1 to X is followed (up to a relabeling
of X), by a sequence of tree in-amalgamations from X to X2. Any edge represents an
in-amalgamation. The tree-shifts X1 and X2 have the same minimal amalgamation Y .

is accepted by A2 = (V,Δ2) where Δ1 and Δ2 are given in the two following
tables.

Δ1 =

a b c
a a c c
b b a a
c b a a

Δ2 =

a b c
a c a a
b a b b
c a b b

Δ3 =
a b

a a b
b b a

Δ4 =
a b

a b a
b a b

Since the second and third row of Δ1 and the second and third column of Δ1 are
equal, the vertices b and c can be amalgamated. There is an in-amalgamation from
A1 to A3 = (V3,Δ3) where V3 = {a, b} andΔ3 is given by the following tables.

No more in-amalgamation is possible from A3 and thus A3 is minimal. Simi-
larly, the second and third row of Δ2 and the second and third column of Δ2 are
equal, the vertices b and c can be amalgamated. There is an in-amalgamation
from A2 to A4 = (V4,Δ4) where V4 = {a, b} and Δ4 is given by the following
tables.

Finally, relabeling the states of A4 by exchanging a and b gives A3. Hence,
X1 and X2 have the same minimal amalgamation and are conjugate.

The 2-block map Φ : X2 → X1 of Figure 5 is a conjugacy. It is defined
by φ(a, a, b) = b, φ(a, b, a) = c, φ(a, a, c) = b, φ(a, c, a) = c, φ(b, b, b) = a,
φ(b, b, c) = a, φ(b, c, b) = a, φ(b, c, c) = a, φ(c, a, a) = a.

c

a

a b

a

c a

a

b

b a

c

a b

φ

Fig. 5. A 2-block map Φ : X → Y , where X is the tree-shift of Figure 1 and Y a
tree-shift of finite type over the alphabet {a, b, c}
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5 Conclusion

We have shown that it decidable whether two tree-shifts of finite type are con-
jugate. Further work will include the case of sofic trees. We conjecture that the
results that we have obtained for tree-shifts of finite type can be extended to
sofic tree-shifts using techniques similar to the one used for shifts of sequences
(see [9], [6], [7]). The decomposition theorem that we have proved for tree-shifts
of finite type will also allow us to define a notion of strong tree-shift equivalence
between tree-shifts and to deduce that two tree-shifts of finite type are equiva-
lent if and only if their transition matrices are related by a sequence of simple
algebraic matrix conditions.
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Abstract. Speed scaling is a power management technique that involves
dynamically changing the speed of a processor. This gives rise to dual-
objective scheduling problems, where the operating system both wants to
conserve energy and optimize some Quality of Service (QoS) measure of
the resulting schedule. In the most investigated speed scaling problem in
the literature, the QoS constraint is deadline feasibility, and the objective
is to minimize the energy used. The standard assumption is that the
power consumption is the speed to some constant power α. We give the
first non-trivial lower bound, namely eα−1/α, on the competitive ratio
for this problem. This comes close to the best upper bound which is
about 2eα+1.

We analyze a natural class of algorithms called qOA, where at any
time, the processor works at q ≥ 1 times the minimum speed required
to ensure feasibility assuming no new jobs arrive. For CMOS based pro-
cessors, and many other types of devices, α = 3, that is, they satisfy
the cube-root rule. When α = 3, we show that qOA is 6.7-competitive,
improving upon the previous best guarantee of 27 achieved by the algo-
rithm Optimal Available (OA). So when the cube-root rule holds, our
results reduce the range for the optimal competitive ratio from [1.2, 27]
to [2.4, 6.7]. We also analyze qOA for general α and give almost matching
upper and lower bounds.

1 Introduction

Current processors produced by Intel and AMD allow the speed of the processor
to be changed dynamically. Intel’s SpeedStep and AMD’s PowerNOW technolo-
gies allow the Windows XP operating system to dynamically change the speed
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of such a processor to conserve energy. In this setting, the operating system must
not only have a job selection policy to determine which job to run, but also a speed
scaling policy to determine the speed at which the job will be run. All theoretical
studies we know of assume a speed to power function P (s) = sα, where s is the
speed and α > 1 is some constant. Energy consumption is power integrated over
time. The operating system is faced with a dual objective optimization problem
as it both wants to conserve energy, and optimize some Quality of Service (QoS)
measure of the resulting schedule.

The first theoretical study of speed scaling algorithms was in the seminal pa-
per [16] by Yao, Demers, and Shenker. In the problem introduced in [16] the QoS
objective was deadline feasibility, and the objective was to minimize the energy
used. To date, this is the most investigated speed scaling problem in the litera-
ture [16,2,9,6,5,14,17,12,1,11]. In this problem, each job i has a release time ri when
it arrives in the system, a work requirement wi, and a deadline di by which the job
must be finished. The deadlines might come from the application, or might arise
from the system imposing a worst-case quality-of-servicemetric, such as maximum
response time or maximum slow-down. It is clear that an optimal job selection pol-
icy is Earliest Deadline First (EDF). Thus the remaining issue is to find an online
speed scaling policy to minimize energy.

1.1 The Story to Date

Yao, Demers and Shenker showed that the optimal offline schedule can be effi-
ciently computed by a greedy algorithm [16]. [16] proposed two natural online
speed scaling algorithms, Average Rate (AVR) and Optimal Available (OA).
Conceptually, AVR is oblivious in that it runs each job in the way that would
be optimal if there were no other jobs in the system. That is, AVR runs each
job i (in parallel with other jobs) at the constant speed wi/(di − ri) through-
out interval [ri, di]. The algorithm OA maintains the invariant that the speed
at each time is optimal given the current state, and under the assumption
that no more jobs will arrive in the future. In particular, let w(x) denote the
amount of unfinished work that has deadline within x time units from the cur-
rent time. Then the current speed of OA is maxx w(x)/x. Another online al-
gorithm BKP is proposed in [5]. BKP runs at speed e · v(t) at time t, where
v(t) = maxt′>t w(t, et− (e− 1)t′, t′)/(e(t′ − t)) and w(t, t1, t2) is the amount of
work that has release time at least t1, deadline at most t2, and that has already
arrived by time t. Clearly, if w(t1, t2) is the total work of jobs that are released
after t1 and have deadline before t2, then any algorithm must have an average
speed of at least w(t1, t2)/(t2 − t1) during [t1, t2]. Thus BKP can be viewed as
computing a lower bound on the average speed in an online manner and running
at e times that speed.

Table 1 summarizes the previous results. The competitive ratio of AVR is
at most 2α−1αα. This was first shown in [16], and a simpler amortized local
competitiveness analysis was given in [2]. The competitive ratio of AVR is least
(2 − δ)α−1αα, where δ is a function of α that approaches zero as α approaches
infinity [2]. The competitive ratio of OA is exactly αα [5], where the upper
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Table 1. Results on the competitive ratio for energy minimization with deadline fea-
sibility

Previous Results
Algorithm General α α = 2 α = 3

Upper Lower Upper Lower Upper Lower
General

(
4
3

)α
/2 1.1 1.2

AVR 2α−1αα (2 − δ)α−1αα 8 4 108 48.2
OA αα αα 4 4 27 27
BKP 2(α/(α − 1))αeα 59.1 135.6

Our Contributions
Algorithm General α α = 2 α = 3

Upper Lower Upper Lower Upper Lower
General eα−1/α 1.3 2.4

qOA 4α/(2
√

eα) 1
4α

4α(1 − 2
α
)α/2 2.4 6.7

bound is proved using an amortized local competitiveness argument. Thus the
competitive ratio of AVR is strictly inferior to that of OA. The competitive ratio
of BKP is at most 2(α/(α − 1))αeα [5], which is about 2eα+1 for large α . It is
better than that of OA only for α ≥ 5. On the other hand, the lower bounds for
general algorithms are rather weak. Somewhat surprisingly, the best known lower
bound instance is the worst-possible instance consisting of two jobs. [4] shows a
lower bound of

(
4
3

)α
/2 on the competitive ratio using a two job instance. If one

tries to find the worst 3, 4, . . . job instances, the calculations get messy quickly.
The most interesting value of α seems to be three. Most importantly, in cur-

rent CMOS based processors, the speed satisfies the well-known cube-root-rule,
that the speed is approximately the cube root of the power [8]. The power
is also roughly proportional to the cube of the speed in many common de-
vices/machines, such as vehicles/automobiles, and some types of motors. It seems
likely that α would be in the range [2, 3] for most conceivable devices. The best
known guarantee for α in this range is αα achieved by OA, which evaluates to
4 for α = 2 and 27 for α = 3. Our motivating goal is to focus on the case that
α = 3, and to a lesser extent on α = 2, and to obtain better algorithms and
lower bounds in these cases.

1.2 Our Contributions

We show, using an amortized local competitiveness analysis, that if q is set to
2 − 1

α , then the competitive ratio of qOA is at most 4α/(2
√

eα). This bound
is approximately 3.4 when α = 2, and 11.2 when α = 3. Using an analysis
specialized to the specific cases that α = 2 and α = 3, we show that qOA is at
worst 2.4-competitive when α = 2, and at worst 6.7-competitive when α = 3.
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Our main technical idea is to introduce a new potential function which is
quite different from the one used in the analysis of OA in [5] (and the potential
function used to analyze AVR in [2]). This is necessary, since potential functions
similar to those used earlier cannot yield guarantees of the form cα where c
is independent of α. The potential function we use is more similar to the one
used in [7] to analyze a speed scaling algorithm for the (different) objective
of minimizing flow time plus energy. However, here we will need a different
analysis approach. The analysis in [7], and almost all of the amortized local
competitiveness analyses in the speed scaling literature, rely critically on the
Young’s inequality. However, in the current setting, Young’s inequality gives a
bound that is too weak to be useful when analyzing qOA. The key insight that
allows us to avoid the use of Young’s inequality was to observe that certain
expressions that arise in the analysis are convex, which allows us to reduce the
analysis of the general case down to just two extreme cases. To the best of
our knowledge, this convexity technique can replace all of the uses of Young’s
inequality in the speed scaling literature. In all cases, the resulting bound that
one obtains using this convexity technique is at least as good as the bound that
one obtains using Young’s inequality, and the resulting proof is simpler and
more intuitive. In some cases, this convexity technique gives a better bound.
For example, if one applies this convexity technique to the analysis of the LAPS
algorithm in [10], one obtains a bound on the competitive ratio of O(α2/ log2 α),
whereas using Young’s technique one can only get a bound of O(α3).

In Section 4 we consider lower bounds. We give the first non-trivial lower
bound on the competitive ratio for any algorithm. We show that every deter-
ministic algorithm must have a competitive ratio of at least eα−1/α. The base of
the exponent, e, is the best possible since BKP achieves a ratio of about 2eα+1.
For α = 3, this raises the best known lower bound a modest amount, from 1.2 to
2.4. The instance is identical to the one used in [5] to lower bound the competi-
tive ratio with respect to the objective of minimizing the maximum speed. The
innovation required to get a lower bound for energy is to categorize the variety
of possible speed scaling policies in such a way that one can effectively reason
about them.

Given the general lower bound of eα−1/α, and that BKP achieves a ratio
with base of exponent e, a natural question is whether there is some choice of
the parameter q for which the competitive ratio of qOA varies with e as the base
of the exponent. Somewhat surprisingly, we show that this is not the case and
the base of the exponent cannot be improved beyond 4. In particular, we show
that the competitive ratio of qOA is at least 1

4α4α(1− 2
α )α/2. We note that this

lower bound is quite close to our upper bound for qOA, especially as α increases.
Our results are summarized in the last two rows of table 1. In particular we

give asymptotically matching upper and lower bounds for qOA and reduce the
range for the optimal competitive ratio in the case that the cube-root rule holds
from [1.2, 27] to [2.4, 6.7] and in the case that α = 2 from [1.1, 4] (obtained in
[16]) to [1.3, 2.4]. Due to the limitation of space, some proofs are omitted and
will be given in the full paper.
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1.3 Other Related Results

There are now enough speed scaling papers in the literature that it is not prac-
tical to survey all such papers here. We limit ourselves to those papers most
related to the results presented here.

A naive implementation of YDS runs in time O(n3). This can be improved
to O(n2) if the intervals have a tree structure [12]. Li, Yao and Yao [13] gave
an implementation that runs in O(n2 logn) time for the general case. For hard
real-time jobs with fixed priorities, Yun and Kim [17] showed that it is NP-hard
to compute a minimum-energy schedule. They also gave a fully polynomial time
approximation scheme for the problem. Kwon and Kim [11] gave a polynomial
time algorithm for the case of a processor with discrete speeds. Li and Yao [14]
gave an algorithm with running time O(d · n logn) where d is the number of
speeds. A simpler algorithm with this running time can be found in [13].

Albers, Müller, and Schmelzer [1] consider the problem of finding energy-
efficient deadline-feasible schedules on multiprocessors. [1] showed that the of-
fline problem is NP-hard, and gave O(1)-approximation algorithms. [1] also gave
online algorithms that are O(1)-competitive when job deadlines occur in the
same order as their release times. Chan et al. [9] considered the more general
and realistic speed scaling setting where there is an upper bound on the maxi-
mum processor speed. They gave an O(1)-competitive algorithm based on OA.
Recently, Bansal, Chan and Pruhs [3] investigated speed scaling for deadline
feasibility in devices with a regenerative energy source such as a solar cell.

2 Formal Problem Statement

A problem instance consists of n jobs. Job i has a release time ri, a deadline
di > ri, and work wi > 0. In the online version of the problem, the scheduler
learns about a job only at its release time; at this time, the scheduler also learns
the exact work requirement and the deadline of the job. We assume that time
is continuous. A schedule specifies for each time a job to be run and a speed
at which to run the job. The speed is the amount of work performed on the
job per unit time. A job with work w run at a constant speed s thus takes w

s
time to complete. More generally, the work done on a job during a time period
is the integral over that time period of the speed at which the job is run. A
schedule is feasible if for each job i, work at least wi is done on job i during
[ri, di]. Note that the times at which work is performed on job i do not have to
be contiguous. If the processor is run at speed s, then the power is P (s) = sα

for some constant α > 1. The energy used during a time period is the integral of
the power over that time period. Our objective is to minimize the total energy
used by the schedule. An algorithm A is said to be c-competitive if for any job
sequence, the energy usage of A is at most c times that of the optimal schedule.

3 Upper Bound Analysis of qOA

Our goal in this section is to show that qOA is about 4α/(2
√

eα)-competitive
when q = 2 − (1/α). We wish to point out that q = 2 − 1/α is not necessarily
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the optimum value of q. For general α it is not clear how to obtain the optimum
choice of q since it involves solving a system of high degree algebraic inequalities.
However, the lower bound for qOA will imply that the choice q = 2−1/α is close
to optimum. For the case of α = 3 and that of α = 2, we can explicitly determine
the optimum choice of q which gives better competitive ratios for these cases.

We use an amortized local competitiveness analysis, and use a potential func-
tion Φ(t) that is a function of time. In this setting, the value of Φ(t) will be
energy, and thus, the derivative of Φ(t) with respect to time will be power. We
need that Φ is initially and finally zero. Let sa and so be the current speed of
the online algorithm (qOA in our case) and the optimal algorithm OPT respec-
tively. Then in order to establish that the online algorithm is c-competitive, it
is sufficient to show that the following key equation holds at all times:

sα
a +

dΦ

dt
≤ c · sα

o (1)

The fact that equation (1) establishes c-competitiveness follows by integrating
this equation over time, and from the fact that Φ is initially and finally 0. For
more information on amortized local competitiveness arguments see [15].

Before defining the potential function Φ that we use, we need to introduce
some notation. We always denote the current time as t0. For any t0 ≤ t′ ≤ t′′,
let wa(t′, t′′) denote the total amount of work remaining in qOA at t0 with
deadline in (t′, t′′]. Define wo(t′, t′′) similarly for OPT. Recall that qOA runs at
speed q·maxt wa(t0, t)/(t−t0), which is q times the speed that OA would run. Let
d(t′, t′′) = max{0, wa(t′, t′′)− wo(t′, t′′)}, denote the amount of additional work
left under the online algorithm that has deadline in (t′, t′′]. We define a sequence
of time points t1 < t2 < . . . iteratively as follows: Let t1 be the time such
that d(t0, t1)/(t1 − t0) is maximized. If there are several such points, we choose
the furthest one. Given ti, let ti+1 > ti be the furthest point that maximizes
d(ti, ti+1)/(ti+1 − ti). We use gi to denote d(ti, ti+1)/(ti+1 − ti). Note that gi is
a non-negative monotonically decreasing sequence.

We first bound the offline and online speed, which will be useful in our analysis:

Lemma 1. (i) so ≥ maxt wo(t0, t)/(t− t0). (ii) sa ≥ qg0 and sa ≤ qg0 +qso.

We are now ready to define the potential function Φ that we use in our analysis
of qOA:

Φ = β

∞∑
i=0

((ti+1 − ti) · gα
i ) ,

where β is some constant (which will be set to qα(1 + α−1/(α−1))α−1).
We now make some observations about the potential function Φ. Φ is obviously

zero before any jobs are released, and after the last deadline. Job arrivals do not
affect Φ since d(t′, t′′) does not change upon a job arrival for any t′ and t′′.
Similarly, job completions by either qOA or optimal do not change Φ since it is
a continuous function of the unfinished work, and the unfinished work on a job
continuously decreases to 0 as it completes. Finally, structural changes in the ti
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and gi do not change the value of Φ. In particular, if g0 decreases (for instance
if online is working faster than offline on jobs with deadline in [t0, t1]), then at
some point g0 becomes equal to g1, and the intervals [t0, t1] and [t1, t2] merge
together. Upon this merge, the potential does not change as g0 = g1 at this
point. Similarly, if offline works too fast, the interval [tk, tk+1] (which contains
the earliest deadline among the unfinished jobs under offline) might split into
two critical intervals, [tk, t′] and [t′, tk+1], but again this change does not affect
Φ since at the time of splitting, the value of g for the newly formed intervals is
identical to the value of the interval [tk, tk+1]

Thus to complete our analysis, we are left to show the following lemma:

Lemma 2. For general α > 1, set q = 2 − (1/α), β = c = (2 − (1/α))α(1 +
α−1/(α−1))α−1. Consider a time t where no jobs are released, no jobs are com-
pleted by qOA or optimal, and there are no structural changes to the ti’s nor
gi’s. Then equation (1), sα

a + dΦ/dt− c · sα
o ≤ 0, holds at time t.

Proof. Suppose first that wa(t0, t1) < wo(t0, t1). In this case, d(t0, t1) = 0, g0 = 0
and t1 is basically infinity. Note that dΦ/dt = 0 since Φ remains zero until
wa(t0, t1) ≥ wo(t0, t1). Therefore, sα

a + dΦ/dt − c · sα
o ≤ 0 because sa ≤ qso and

c = qα(1 + α−1/(α−1))α−1 > qα.
Hence we assume wa(t0, t1) ≥ wo(t0, t1) in the following. Without loss of

generality, both OPT and qOA schedule jobs according to Earliest Deadline
First, and hence qOA is working on a job with deadline at most t1. Let t′ be
deadline of the job that OPT is working on, and let k be such that tk < t′ ≤ tk+1.

First consider the case that k > 0. When both qOA and OPT work, g0

decreases, the quantities g1, . . . , gk−1, and gk+1, . . . stay unchanged, and gk in-
creases. Note that (t1− t0) is decreasing, and the rate of decrease is the same as
the rate that time passes. Therefore, the rate of change of (t1 − t0) · gα

0 is

d

dt0
((t1 − t0) · gα

0 ) = (t1 − t0) · αgα−1
0

(
(t1 − t0)(−sa) + d(t0, t1)

(t1 − t0)2

)
− gα

0

= αgα−1
0 (−sa) + (α− 1)gα

0

For the rate of change of (tk+1− tk) ·gα
k , we note that tk+1− tk stays unchanged.

Also, the rate of change of d(tk, tk+1) may be −so or 0, depending on whether
wa(tk, tk+1) is greater than wo(kk, tk+1). Therefore,

d

dt0
((tk+1 − tk) · gα

k ) ≤ (tk+1 − tk) · αgα−1
k

(
(tk+1 − tk)(so)
(tk+1 − tk)2

)
= αgα−1

k (so) ≤ αgα−1
0 (so)

Thus to show sα
a + dΦ/dt− c · sα

o ≤ 0, it suffices to show that

sα
a + β(αgα−1

0 (−sa + so) + (α− 1)gα
0 )− c · sα

o ≤ 0. (2)

Now consider the case that k = 0. Note that for i ≥ 1, neither gi nor ti+1− ti
changes, so we need not consider these terms in the potential function. The rate
of change of (t1 − t0) · gα

o is
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d

dt0
((t1 − t0) · gα

0 ) = (t1 − t0) · αgα−1
0 ·

(
(t1 − t0)(−sa + so) + d(t0, t1)

(t1 − t0)2

)
− gα

0

= αgα−1
0 (−sa + so) + (α− 1)gα

0

which leads to the same inequality as equation (2).
Hence, we will focus on equation (2), and show that it is true for the stated

values of q, c and β. We consider the left hand side of equation (2) as a function
of sa while g and so are fixed. Note that it is a convex function of sa. Since
sa ∈ [qg0, qg0 + qso], it suffices to show that equation (2) holds at the endpoints
sa = qg0 and sa = qg0 + qso.

If sa = qg0, the left hand side of equation (2) becomes

qαgα
0 − βqαgα

0 + βαgα−1
0 so + β(α − 1)gα

0 − csα
o =

(qα − βαq + β(α − 1))gα
0 + βαgα−1

0 so − csα
o

Taking derivative with respect to so, we get that this is maximized at so satisfying

csα−1
o = βgα−1

0 , and hence so =
(

β
c

)1/(α−1)

g0. Substituting this for so and
canceling gα

0 , it follows that we need to satisfy the following equation:

(qα − βαq + β(α − 1)) + β(α − 1)
(

β

c

)1/(α−1)

≤ 0. (3)

If sa = qg0 + qso, the left hand side of equation (2) becomes

qα(g0 + so)α − βqα(g0 + so)gα−1
0 + βαgα−1

0 so + β(α − 1)gα
0 − csα

o

= qα(g0 + so)α − β(qα − (α− 1))gα
0 − βα(q − 1)gα−1

0 so − csα
o

Setting so = x · g0 and canceling gα
0 , it follows that we need to satisfy

qα(1 + x)α − β(qα − (α− 1))− βα(q − 1)x− cxα ≤ 0. (4)

We set q = 2 − (1/α) and β = c = qαηα−1 where η = 1 + α−1/(α−1). With
these choices of q, β and c, αq = 2α − 1, and to establish equation (3) it is
sufficient to show that qα − β ≤ 0, which is trivially true since η > 1. Similarly,
equation (4) is equivalent to (1 + x)α −αηα−1 − ηα−1(α− 1)x− ηα−1xα ≤ 0 for
all x ≥ 0. Since α ≥ 1, it suffices to show that

(1 + x)α − αηα−1 − ηα−1xα ≤ 0. (5)

To see this, note that if we take the derivative of the left side of equation (5), we
obtain that the maximum is attained at x such that (1 +x)α−1 − ηα−1xα−1 = 0
and hence x = 1/(η−1). For this value of x, the left side of equation (5) evaluates
to 0 and hence the result follows. Hence equation (2) is satisfied and the lemma
follows. ��

Now our main theorem follows as a direct consequence.

Theorem 1. qOA is (2− 1
α )α(1+α−1/(α−1))α−1-competitive for general α > 1.
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Note that for large values of α, this bound on the competitive ratio of qOA is
approximately 4α/(2

√
eα). For α = 3 this bound on the competitive ratio of

qOA evaluates to (5/3)3(1 + 1/
√

3)2 ≈ 11.52 (which is already better than the
best known bound of 27). However, for the cases of α = 2 and α = 3, we can
determine the optimum values of q and β to obtain Theorems 2 and 3.

Theorem 2. If q = 1.54, then qOA is 6.73-competitive for α = 3.

Proof. We follow the same proof structure as that for Lemma 2 to obtain the
inequalities (3) and (4). By putting α = 3, it follows that we need to satisfy:

(q3 − 3βq + 2β) + 2β

(
β

c

)1/2

≤ 0

q3(1 + x)3 − β(3q − 2)− 3β(q − 1)x− cx3 ≤ 0

We wrote a program to determine the values of q and β that minimize c. The
best values we obtained are q = 1.54, β = 7.78 and c = 6.73. It is easy to check
that the first inequality is satisfied. The left hand side of the second inequality
becomes −3.08x3 + 10.96x2− 1.65x− 16.73, which can be shown to be negative
by differentiation. Hence (3) and (4) are satisfied and the theorem follows. ��

Theorem 3. If q = 1.46 and β = 2.7, then qOA is 2.391-competitive for α = 2.

4 Lower Bounds

In this section, we show that any algorithm is at least 1
αeα−1-competitive. Note

that we assume α is fixed and is known to the algorithm. We first give an
adversarial strategy for constructing a job instance such that any algorithm uses
at least 1

αeα−1 times the energy of the optimal.

Adversarial Strategy: Let ε > 0 be some small fixed constant. Work is arriving
during [0, �], where 0 < � ≤ 1− ε. The rate of work arriving at time t ∈ [0, �] is

a(t) =
1

1− t

So the work that arrives during any time interval [u, v] is
∫ v

u a(t)dt. All work
has deadline 1. Let A be any online algorithm. The value of � will be set by the
adversary according to the action of A. Intuitively, if A spends too much energy
initially, then � will be set to be small. If A doesn’t spend enough energy early
on, then � will be set to 1− ε. In this case, A will have a lot of work left toward
the end and will have to spend too much energy finishing this work off. To make
this more formal, consider the function

E(t) =
∫ t

0

(
(1 +

b

ln ε
)

1
1− x

)α

dx ,
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where b is a constant (set to 1
(α−1)1/α later). This is the total energy usage up

to time t if A runs at speed s(t) = (1 + b
ln ε)

1
1−t . Of course, A may run at speed

other than s(t). If there is a first time 0 < h ≤ 1− ε such that total energy usage
of A up to h is at least E(h), then the value of � is set to h. If no such event
occurs, then � = 1− ε. �

In Lemma 5 we show that if the adversary ends the arrival of work at some time
0 < h ≤ 1− ε because the total energy usage of A is at least E(h), then A must
have used at least 1

αeα−1 times as much energy as optimal. Similarly, in Lemma
7, we show that if the adversary doesn’t end the arrival of work until the time
1 − ε, then the online algorithm uses at least 1

αeα−1 times as much energy as
optimal. Then our main result, that any algorithm is at least 1

αeα−1-competitive,
follows immediately. We start with two technical lemmas.

Lemma 3. For any 0 < h ≤ 1− 1
e , (− ln(1−h))α ≤ α

eα−1 ( 1
(α−1)(1−h)α−1 − 1

α−1 ).

Lemma 4. Let s1(t) and s2(t) be non-negative functions, and let α > 1 and
x > 0 be some real numbers. If s2(t) is continuous and monotonically increasing
and if

∫ y

0
(s1(t)α − s2(t)α)dt < 0 for all 0 < y ≤ x, then

∫ x

0
(s1(t)− s2(t))dt < 0.

Lemma 5. If there is a time 0 < h ≤ 1 − ε such that the total energy usage of
A is at least E(h), then A is at least 1

αeα−1-competitive.

Proof. Let EA be the total energy usage of A. Then,

EA≥E(h)=
∫ h

0

(
(1+

b

ln ε
)

1
1−x

)α

dx=(1 +
b

ln ε
)α(

1
(α − 1)(1− h)α−1

− 1
α− 1

)

Let Eopt be the energy usage of the optimal algorithm. There are two cases for
the value of Eopt: (i) 0 < h ≤ 1− 1

e and (ii) 1− 1
e < h ≤ 1− ε .

(i) If 0 < h ≤ 1 − 1
e , the total amount of work released is

∫ h

0
1

1−xdx =
− ln(1 − h) ≤ 1. Thus, the optimal algorithm can run at speed − ln(1 − h)
throughout [0, 1] to completes all work. Then

Eopt =
(
− ln(1− h)

)α ≤ α

eα−1
(

1
(α− 1)(1− h)α−1

− 1
α− 1

)

where the inequality comes from Lemma 3. The competitive ratio is EA/Eopt ≥
(1 + b

ln ε )
α 1

αeα−1, which is again at least 1
αeα−1 when ε tends to 0.

(ii) If 1 − 1
e < h ≤ 1 − ε, the optimal algorithm runs at speed a(t) for

t ∈ [0, 1− e(1− h)] and run at speed 1
e(1−h) for t ∈ [1− e(1− h), 1]. It is easy to

check that this schedule completes all work. Then,

Eopt =
∫ 1−e(1−h)

0

(
1

1− x
)αdx + (

1
e(1− h)

)α · e(1− h) (6)

=
α

eα−1

1
(α− 1)(1− h)α−1

− 1
α− 1

(7)

The competitive ratio is EA

Eopt
≥ (1 + b

ln ε )
α 1

αeα−1, which is at least 1
αeα−1 when

ε tends to 0. ��
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We now turn attention to the case that the energy usage of A is less than E(t)
for all 0 < t ≤ 1 − ε. We first show in Lemma 6 that A cannot complete too
much work by time 1− ε.

Lemma 6. Assume at any time 0 < t ≤ 1− ε, the energy usage of A up to time
t is less than E(t). Then, the amount of work done by A up to time 1− ε is less
than

∫ 1−ε

0
(1 + b

ln ε )
1

1−xdx.

Proof. Let s1(y) be the speed of the algorithm A and consider the algorithm B
that works at speed s2(t) = (1 + b

ln ε)
1

1−t . The energy consumed by B by time
t is exactly

∫ t

0
s2(y)αdy = E(t). The result now follows by applying Lemma 4

with x = 1− ε and observing that s2(t) is monotonically increasing. ��

We are now ready to show, in Lemma 7, that if the adversary doesn’t end the
arrival of work until time 1 − ε then the online algorithm uses at least 1

αeα−1

times as much energy as optimal.

Lemma 7. If at any time 0 < t ≤ 1− ε, the total energy usage of A is less than
E(t), then A is at least 1

αeα−1-competitive.

Proof. Note that the adversary ends the arrival of work at time 1 − ε and the
total amount of work arrived is

∫ 1−ε

0
1

1−xdx = − ln ε. By Lemma 6, the maximum
amount of work completed by A up to time 1− ε is∫ 1−ε

0

(1 +
b

ln ε
)

1
1 − x

dx = (1 +
b

ln ε
)[− ln(1− x)]1−ε

0 = − ln ε− b

Hence, A has at least b units of work remaining at time 1−ε. To finish it, the total
energy usage of A is at least bα

εα−1 , which equals 1
(α−1)εα−1 by setting b = 1

(α−1)1/α .
Using equation 7 we find that the energy usage of the optimal algorithm is at
most α

eα−1
1

(α−1)εα−1 . Thus, the competitive ratio is at least 1
αeα−1. ��

Theorem 4. Any algorithm is at least 1
αeα−1-competitive.

Lower bound for qOA. Finally, we give a job instance to show that qOA is at
least 1

4α4α(1− 2
α )α/2 competitive. The analysis is left to the full paper.

Job Instance: Let 1 > ε > 0 be some small fixed constant. Consider the input
job sequence where work is arriving during [0, 1 − ε] and the rate of arrival at
time t is

a(t) =
1

(1 − t)x
,

where x > 1
α is a constant (which will be set to 2

α later). All work has deadline
1. Finally, a job is released at time 1− ε with work ε1−x and deadline 1. �

Theorem 5. Let α be a known constant. For any choice of q, qOA is at least
1
4α4α(1− 2

α )α/2 competitive.
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Abstract. We consider the problem of maintaining a fixed number k
of items observed over a data stream, so as to optimize the maximum
value over a fixed number n of recent observations. Unlike previous ap-
proaches, we use the competitive analysis framework and compare the
performance of the online streaming algorithm against an optimal adver-
sary that knows the entire sequence in advance. We consider the problem
of maximizing the aggregate max, i.e., the sum of the values of the largest
items in the algorithm’s memory over the entire sequence. For this prob-
lem, we prove an asymptotically tight competitive ratio, achieved by a
simple heuristic, called partition-greedy, that performs stream updates
efficiently and has almost optimal performance. In contrast, we prove
that the problem of maximizing, for every time t, the value maintained
by the online algorithm in memory, is considerably harder: in particular,
we show a tight competitive ratio that depends on the maximum value
of the stream. We further prove negative results for the closely related
problem of maintaining the aggregate minimum and for the generalized
version of the aggregate max problem in which every item comes with
an individual window.

1 Introduction

In streaming applications, a sequence or stream of items arrives online to be
processed by an algorithm with memory much smaller than the length of the
sequence or the cardinality of the universe of possible items. The objective of the
algorithm is to maintain some statistical information about the stream. For many
statistical properties, only some recent part—called window—of the stream is
important. A typical assumption is that the window of interest has fixed size
n. In many cases of practical interest the window size is much larger than the
available memory size. This is the sliding window streaming model [12,23].

A typical application in the sliding window streaming model is the following:
A sensor measures continuously the temperature and maintains the maximum
temperature of the last hour. It should be clear that with limited memory, it is
� Partially supported by EU Projects AEOLUS and FRONTS and by MIUR FIRB

project N. RBIN047MH9: “Tecnologia e Scienza per le reti di prossima generazione”.
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not possible for the sensor to know at every time step the maximum temperature
of the past hour. The question is “how well can this task be done with limited
memory?” This is the main question that we address in this work. We naturally
treat this as an online problem and we use competitive analysis [6].

Our main focus is on a simple online problem defined by two parameters: n, the
window size, and k, the memory size of the algorithm. An online algorithm with
memory of size k processes a sequence of positive items with values a1, a2, . . ..
At every time t, the algorithm maintains in each of its k memory slots an item
from the recent window {at−n+1, . . . , at} of length n (for simplicity, we assume
that the stream extends to negative times with at = 0 for t ≤ 0). The objective
at every time t is to maximize the maximum value of the items in memory. More
precisely, if gt denotes the maximum value of the items in memory at time t, the
objective of the algorithm is to maximize

∑
t gt. We call this the online aggregate

max problem and study it using competitive analysis.
This kind of sliding window streaming problems have been addressed before

in the literature on streaming algorithms. In fact, much more general questions
have been answered with spectacular success. For example, the paper by Datar,
Gionis, Indyk, and Motwani [12] showed how to extend the pioneering paper of
Alon, Matias, and Szegedy [2] to estimate many statistics on sliding windows;
these results were improved and extended in many directions (for example, in
[7]). The difference between this body of work and our work lies mainly in the
approach: we use competitive analysis to study the performance of an algorithm.
To do this, we consider online algorithms with memory of fixed size k (in which
each memory position can hold one item) and then ask how good its competitive
ratio can be, whereas previous approaches impose a bound on the accuracy,
described by a parameter ε, and then try to minimize the amount of memory
necessary to guarantee (worst case or with high probability) the desired accuracy.

We summarize the main differences of our approach with the approaches in
the existing literature: We consider mainly the aggregate value of the maximum
value in memory (although we also give tight bounds for the worst case). This is
a weaker objective than requiring the maximum value in memory to be always
within a fraction ε from the optimal. The aggregate objective is more appropriate
for economic applications in which we care about the total value, rather than
the worst case. We measure memory in slots not bits; each slot can keep exactly
one item. This assumption is more realistic in practical settings where the items
carry large satellite information. We fix the memory size to some constant k
and we prefer the competitive ratio to depend mainly on k, not the window
length n. As it is usually the case with competitive analysis our focus is on
the information-theoretic constraints rather than the computational complexity
constraints; in particular, we don’t pay much attention to the execution time
of the online algorithms, although all our algorithms are very efficient. As a
result, the techniques of competitive analysis seem to be more appropriate to
address the kind of questions we are interested in than those usually adopted in
streaming algorithms, which often rely on embeddings (e.g., [2]).
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Our results are not directly comparable to the existing results on streaming
algorithms. To make this point clear, consider the results in [10] where they study
streaming algorithms that estimate the diameter of a set of points. Their result
for the 1-dimensional case (which resembles a lot our question about max) is
roughly as follows: There is an efficient ε-approximation algorithm with memory
that stores of O(1

ε log M) points, where M is the maximum diameter. Our result
is that for every k, there is a competitive algorithm of memory size of k slots
with approximation ratio 1+O(1/k). There is no direct translation of one result
to the other, mainly because one is a worst-case result while the other is an
aggregate result. The competitive ratio implied by the above result in [10] is
O( log M

k ), which is very high compared to our result (and depends on the values
of the stream).

Our contributions. We study the online aggregate max problem and give tight
results on its competitive ratio: We show that the competitive ratio of online
algorithms with memory size k is surprisingly low: 1 + Θ(1/k). The constants
inside our lower and upper bounds inside the Θ expression are quite different. In
particular, for upper bound, we give an intuitive deterministic online algorithm
(which we call partition-greedy), and show that it has competitive ratio k/(k−1).
The lower bound is technically more interesting: We show that every randomized
online algorithm has competitive ratio 1 + Ω( 1

66k ). These bounds hold in the
strongest possible sense: the upper bound holds even against offline algorithms
with unlimited memory, whereas the lower bound holds for offline algorithms
with memory k.

We also study from a competitive point of view the anytime max problem in
the sense that the competitive ratio is the worst-case ratio over all times t of the
optimal value at time t over the maximum value of the online algorithms memory
at time t. Naturally, this tighter objective results in much higher competitive
ratio which is not independent of the values of the stream. We show a tight
bound on the competitive ratio which is k+1

√
M , where M is the maximum value

in the stream.
We also explore natural extensions of the online aggregate max problem. An

interesting extension comes from viewing the items of the stream as expiring
after exactly n steps. We ask the question what happens when each item has
its own expiration time (selected by an adversary and revealed to the online
algorithm together with its value). We show that in this case the competitive
ratio is unbounded. We also explore the competitive ratio for the aggregate
min problem and show that it is completely different than the aggregate max
objective because its competitive ratio is unbounded.

Related work. We summarize here some relevant publications.
In [12], the authors introduce the sliding window model for streaming. They

also prove that maintaining the maximum/minimum over a size n sliding window
requires at least n log(M/n), where M is the size of the universe, i.e., the set of
all possible values for items in the stream.

In [16] the authors consider the problem of estimating the diameter of a set
of points in the windowed streaming model. The authors address mainly the
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2-dimensional case. This is a generalization of the problem of maintaining the
maximum. The authors propose streaming algorithms that use polylogarithmic
space with respect to the window size and the diameter.

The result above was improved in [10]. In particular, for the 1-dimensional
case, the authors provide an algorithm that maintains the diameter of a set of
points with ε-approximation storing in its memory O(1

ε log M) points, M being
the ratio between the diameter and the minimum distance between any non-
coincident pair of points. Notice that the memory in the above expression is
measured in number of points not number of bits, the same with this work.

In [7], the authors recast these results in a more general framework, prov-
ing among others that for a large class of “smooth” functions, including sum,
distance, maximum, and minimum, it is possible to maintain polylogarithmic
space sketches that allow to estimate their value within a sliding window with
ε-approximation.

2 Model and Notation

Windowed streaming. We consider a streaming model in which the algorithm
observes a sequence {a1, a2, . . .} of items over time, at being the item observed
during the t-th time step. In practical settings, every item is a record consisting
of several possible fields, including a distinguished value field. In the sequel we
assume without loss of generality that the value field of aj belongs to the (integer)
interval [1, M ] for some M > 1 and we denote by aj both the j-th item and its
value. We assume that, at every time t, we are only interested in maintaining
statistics over the (values of the) last n observations, i.e., over the window of
items observed in the interval {t− n+ 1, . . . , t}. For simplicity when t < n, we
assume that the sequence extends to negative times with value 0. In the sequel,
gt denotes the item of maximum value maintained by the algorithm at time t
and mt denotes the maximum value in the window at time t.

Since we study the problems using competitive analysis, we are not only in-
terested in the maximum value mt of the window at time t, but also in the
maximum value m̂t which is stored in the memory of an offline algorithm; the
offline algorithm has the same memory restrictions with the online algorithm,
but it knows the future. In the definition of the competitive ratio, we should use
m̂t. However, we study both ratios (against mt and m̂t) and we show that the
competitive ratio is essentially the same. We use mt to denote both values.

In the literature of streaming algorithms, a streaming algorithm is always
compared against the absolute optimum (such as mt). It may be useful for other
problems to adopt the competitive point of view and judge an algorithm against
the value (such as m̂t) of an offline algorithm with the same limitations on its
resources.

Memory space. We are interested in maintaining the items themselves, which
can in general be complex data structures, not just their values. As a result,
the required memory space is measured in units, each unit being the amount
of memory necessary to exactly store an item. We assume that the algorithm



160 L. Becchetti and E. Koutsoupias

Table 1. Notation

Symbol Meaning
aj The j-th item observed in the stream
n Window size
k Max. no. items kept by algorithm
M Maximum item value
gt Max. value in algorithm’s memory at t
mt Max. value in algorithm’s memory at t

r(k, n) Competitive ratio

maintains, at any time t, at most k items among those observed in {t − n +
1, . . . , t} (where, typically, k << n). Table 1 summarizes the notation we use.

Objective functions. While approximating the maximum value over a sliding
window can be done using polylogarithmic space [7], the basic task of maintain-
ing the maximum value exactly is not feasible, unless one stores a number of
elements in the order of n and this result also holds for randomized algorithms
[12]. We consider the following objective functions, that measure how far we are
from achieving this goal, both at every point in time and in the average over the
entire sequence.

Aggregate max: Maximize
∑

t gt, i.e., the average value of the largest item main-
tained by the algorithm.

Anytime max: For every t, maximize gt, i.e., maximize the value of the largest
item in the algorithm’s memory at time t. As shown further, this function is
harder to maintain for every t.

Competitive analysis. We compare the performance of the algorithm against
the optimal algorithm that knows the entire sequence in advance [6]. Hence, in
this case we define the competitive ratio r(k,n) as:

r(k,n) = max
a∈S

∑
t gt(a)∑
t m̂t(a)

,

where S is the set of possible input sequences and gt(a) (respectively, m̂t(a)) is
the online algorithm’s (respectively the offline algorithm’s) maximum value at
time t when input sequence a is observed. We also study the maximum value
mt(a) = max{at−n+1, . . . , at} of the last n values instead of m̂t. In the sequel
we drop the name of the sequence a to simplify the notation.

We note that our definition of the competitive ratio does not have an additive
constant [6]. It is a simple observation that such an additive constant cannot play
any role in this type of problems: the reason is that we can repeat a sequence
many times (probably by appropriate scaling) to make the effects of an additive
constant insignificant.
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3 Competitive Analysis of the Online Aggregate Max
Problem

In this section we study the online aggregate max problem. We first prove a 1 +
Ω( 1

k ) lower bound on the competitive ratio of any randomized on line algorithm
and then we prove an asymptotically tight deterministic upper bound for the
partition-greedy algorithm.

3.1 Randomized Lower Bound

Theorem 1. Every randomized online algorithm for the aggregate max problem
with memory k has competitive ratio 1 + Ω(1/k).

Proof. The proof is based on Yao’s Lemma [6]: We fix a probability distribution
on inputs and compute the ratio of the gain of the optimal online algorithm
(which knows the distribution but not the outcome of the random experiment)
against the optimal algorithm (which knows the exact input).

We select a simple probability distribution of inputs: The input consists of
two parts: the first part of n items has values f(t), t = 0, . . . ,n − 1, where f
is a decreasing function (to be determined later); the second part of the input
consists of x items of value 0, where x is random value uniformly distributed in
1, . . . ,n. Thus the online algorithm knows everything, except of when the input
sequence stops. For the above sequence, we compute the gain of the optimal
online algorithm–which is the hard part—and we lower bound the gain of the
optimal offline algorithm to get the desired ratio.

We can assume that the above sequence repeats arbitrarily many times (with
independent values x each time) so that we can ignore additive constants in the
definition of the competitive ratio.

Essentially, the online algorithm has only to decide which items to keep in
memory from the first part of the sequence. To simplify the situation, we as-
sume that the online gain during the first n steps is exactly n · f(0); this is an
overestimate when the online algorithm drops the value f(0) at some point, but
we are fine since we care to bound its cost from above. With this assumption, an
online algorithm is determined completely by the values f(t1),. . . ,f(tk) which
has in its memory at the end of the first part. To compute the expected online
gain we define t0 = 0, tk+1 = n, and

h(t) =

⎧⎪⎪⎨⎪⎪⎩
f(t1) t0 ≤ t ≤ t1
...
f(tk+1) tk ≤ t ≤ tk+1.

To simplify the presentation, we treat f and h as real functions. Also, by scaling
appropriately the time (by a factor 1/n) and the values (by a factor 1/f(0)), we
assume that n = 1, f(0) = 1 and that the values ti are real numbers in [0, 1]
with t0 = 0 and tk+1 = 1 (see Figure 1). The effects of these assumptions can
be safely ignored for large n and k. The function h approximates from below
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f(t0)

t0

f(t1)

t1

f(tk)

tk

f(tk+1)
tk+1

Fig. 1. The lower bound construction. The stream values follow the bold descending
line. The descending staircase line shows the maximum value in the memory of the
online algorithm. The area below the staircase is the online gain until some random
point of the right part.

the function f in k + 2 points; the situation resembles the Gaussian-Legendre
quadrature for approximating integrals, but with a different objective.

When the input sequence ends at time 1 + x, the online gain is 1+
∫ x

0
h(t) dt.

Therefore the expected online gain is given by

E[g] = 1+
∫ 1

0

h(t)(1−t) dt = 1+
∫ 1

0

h(t)d(1−(1−t)2) = 1+
∫ 1

0

h(1−
√

1− r)dr.

The change in the variable suggests to consider ri = 1 − (1 − ti)2 (and conse-
quently ti = 1−

√
1− ri). Notice that r0 = 0 and rk+1 = 1. The expected online

gain then is

E[g] = 1 +
k∑

i=0

∫ ri+1

ri

f(tt+1)dr = 1 +
k∑

i=0

(ri+1 − ri)f(ti+1).

We now want to select an appropriate f which simplifies the computations. In
fact, it is very possible that many choices of the function f result in a similar
lower bound—or even with a better coefficient of 1/k in the competitive ratio—
and in particular linear functions such as f(t) = 1 − t/2, but computing the
optimal online gain appears to be very complicated. The difficulty lies in finding
the optimum values for ti. We however choose

f(t) =
1
2

+
1
2
(1 − t)2.

With this choice, we get that fi = 1− ri/2, and the expected online cost is

E[g] = 1 +
k∑

i=0

(ri+1 − ri)(1−
ri+1

2
) = 1 +

1
2

(
3
4
− 1

4

k∑
i=0

(ri+1 − ri)2
)

=
11
8
− 1

8

k∑
i=0

(ri+1 − ri)2.
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It is now very easy to select t′is (or equivalently ri’s) to maximize the above
expression: Since

∑k
i=0(ri+1− ri) = rk+1− r0 = 1, the optimal online algorithm

for this particular f should select ri+1 − ri = 1/(k + 1), or equivalently ri =
i/(k + 1). With this choice, the expected online cost is

E[g] =
11
8
− 1

8

k∑
i=0

1
(k + 1)2

=
11
8
− 1

8(k + 1)
.

We now turn our attention to the offline algorithm. The advantage of this
algorithm over the online algorithm is that it knows x; therefore it keeps in
memory only items in [0, x] (as compared to the online algorithm which keeps
in memory items in [0, 1] but the items after x are useless). We do not need
to compute the optimal offline algorithm, it suffices to compute some lower
bound1. We consider the offline (suboptimal) algorithm which keeps in memory
the equidistant values t′i = i

k−1 · x. For a given x, the gain of this algorithm is

1 +
k−1∑
i=1

(t′i − t′i−1)f(t′i) = 1 +
k−1∑
i=1

x

k − 1

(
1
2

+
1
2

(
1− i

k − 1
· x
)2
)

.

For uniformly distributed x in [0, 1], we get that the expected offline gain is

1 +
k−1∑
i=1

∫ 1

0

x

k − 1

(
1
2

+
1
2

(
1− i

k − 1
· x
)2
)

dx =
11
8
− 1

48
5k − 6

(k − 1)2
.

Dividing it by the expected online cost 11
8 −

1
8(k+1) , we get the ratio

1 +
1

66k
+O(

1
k2

),

which proves the theorem.

3.2 Deterministic Upper Bound

In this subsection we give (almost) tight bounds on the competitive ratio for
large k. We will prove the result in the strongest possible sense: We will show
that the deterministic competitive ratio is r(k,n) = 1 +O(1/k).

We analyze a very natural algorithm which we call partition-greedy: We par-
tition the sequence into parts of size n/k. Part s starts at time (s − 1)n/k + 1
and ends at time sn/k. For every part s of the sequence, a particular slot of
memory is active, the memory slot i = 1 + (s (mod k)). For each part of the
sequence, the active slot of the memory accepts the first item. In every other
respect, the active slot in each part is updated greedily: the algorithm updates
1 It is not hard to compute that even with arbitrarily large memory the expected

optimal gain is 1 +
∫ 1

0
f(t)(1 − t)dt = 11/8 which also gives the same lower bound,

although with an improved coefficient of 1/k in the competitive ratio.
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PartitionGreedy(n, k)

1: t = 1

2: while Stream not finished {a is current item} do

3: for j: 0...k - 1 do

4: B[j].time = B[j].time + 1 {Window shifts 1 slot to the

right}
5: end for

6: i = �tk/n� {Compute part to which t belongs}
7: if B[i].time > n OR B[i].val ≤ a.val then

8: B[i] = a

9: end if

10: t = t + 1

11: end while

Fig. 2. Partition greedy algorithm. For an item a, a.val and a.time repsectively
denote the value of a and the time units elapsed since a was observed.

the slot value whenever an item of larger (or the same) value appears. Clearly,
the partition-greedy algorithm can be implemented very efficiently (using two
counters to keep track of the current active slot of memory and the number of
items seen in each part).

Theorem 2. The partition-greedy algorithm has competitive ratio k/(k − 1).

Proof. Let mt denote the maximum value in {at−n+1, . . . , at and let gt denote
the maximum value in the online algorithm memory at time t. Let also Pt denote
the values in the part of size n/k in which t belongs. If the value mt appeared
in the last k − 1 parts (i.e., in parts Pt−(k−1)n/k, . . . , Pt), it must be still in the
online memory. Therefore, when gt < mt, it must be the case that the value
mt appeared in part Pt−n and it was dropped in the current part Pt. Roughly
speaking, in a decreasing sequence the online algorithm maintains the maximum
value in memory for k− 1 parts, which gives the competitive ratio. However, we
need to be more careful as the sequence of values may not be decreasing. To do
this, we “charge” k − 1 online values gt, gt−n/k, . . . , gt−n(k−1)/k to the optimal
value mt, as follows: We first observe that the above implies

either gt = mt,
or gt−n/k ≥ mt and · · · and gt−n(k−1)/k ≥ mt

.

To simplify the presentation, we may use negative indices and we assume that
both mt and gt are 0 for negative t. Since the above condition compares only
values that differ by multiples of n/k (which we can assume to be an integer),
we will use the notation g′t = g�tk/n�+t (mod n/k), so that the above condition
becomes

either g′t = m′
t,

or g′t−1 ≥ m′
t and · · · and g′t−(k−1) ≥ m′

t
.

To prove the theorem, it suffices to show that k
∑

t g′t ≥ (k− 1)
∑

t m′
t, and this

is what we will do.
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We first show the following claim: For every t and every r = 0, . . . , k − 1,
there is an index �(t, r) ∈ {t− r, . . . , t} such that

−g′�(t,r) +
t∑

i=t−r

g′t−i ≥
t∑

i=t−r+1

m′
t−i. (1)

In words, for r consecutive optimal values there are equal values in r+1 consecu-
tive online values (and �(t, r) denotes the unmatched online value). The proof of
the claim is by induction on r: For r = 0 the claim is trivial by taking �(t, r) = t.
For the induction step,

– either g′t ≥ m′
t, in which case we take �(t, r) = �(t− 1, r − 1); i.e., we match

g′t to m′
t and leave the same element �(t− 1, m− 1) unmatched.

– or g′t < m′
t, in which case we take �(t, r) = t; i.e., we match g′t to the

unmatched element �(t − 1, r − 1) and leave t unmatched. For this, notice
that �(t− 1, r − 1) ≥ t− (k − 1) and therefore g′�(t−1,r−1) = m′

t.

From (1), by dropping the term involving the missing element, we get

t∑
i=t−r

g′t−i ≥
t∑

i=t−r+1

m′
t−i, (2)

for every r = 0, . . . , k − 1.
By summing up the above inequalities for every t and for r = k−1, we get that

the left side is approximately k
∑T

t=0 g′t and the right hand side is approximately
(k − 1)

∑T
t=1 mt, which would immediately prove the upper bound. There is a

slight complication, in that the last values in the above sums appear fewer than
k and k − 1 times respectively; for example, g′T and m′

T appears only once.
To take care of this, we also add the inequalities (2) for t = T and for every
r = 0, . . . , k − 2. In detail, we sum up the following inequalities (2)

T∑
t=0

t∑
i=t−(k−1)

g′t−i +
k−2∑
r=0

t∑
i=T−r

g′T−i ≤
T∑

t=0

t∑
i=t−(k−2)

m′
t−i +

k−2∑
r=0

t∑
i=T−r+1

m′
T−i,

which simplifies to the desired inequality

k

T∑
t=0

g′t ≥ (k − 1)
T∑

t=0

m′
t.

It is easy to give an example where the partition-greedy has competitive ratio
k/(k − 1): The sequence has length n(k + 1)/k (equal to k + 1 parts) and it
consists entirely of 0’s, except of the value at end of the first part which has
value 1, i.e. an/k−1 = 1. The online algorithm retains this value in memory for
k − 1 parts, while he optimal algorithm retains it for k parts.
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4 Generalizations and Other Variants of the Problem

In this section we investigate generalizations and variants of the problem.

4.1 Items with Different Expiration Times

A natural generalization of the aggregate max problem is when each item has its
own expiration time. In this generalization the input is a sequence (a1,n1), . . . ,
(an,nn), where ni is the time after which ai expires. The online algorithm must
decide for each item whether to keep it in memory or not. Again the restriction
is that only k items can be kept in memory at any time and that an expired
item has no value (or equivalently, that item i cannot be kept in memory for
more than ni steps). In the previous sections we have considered the special case
ni = n. We will show that no online algorithm can have bounded competitive
ratio for this problem.

Theorem 3. The deterministic aggregate max problem with variable expiration
times has unbounded competitive ratio.

Proof. The adversary gives k + 1 different types of items: items of type i, i =
1, . . . , k + 1, have value vi and duration Ti; the two sequences v1, v2, . . . , vk+1

and vk+1Tk+1, vkTk, . . . , v1T1 are steeply increasing. The items of every type are
repeated periodically so that most of the time there is exactly one alive (not
expired) item of each type. However, when the online algorithm rejects some
item of type j ∈ {1, . . . , k} to accept an item of type k + 1, the adversary stops
giving more items of types j + 1, . . . , k + 1 until the item of type j expires; the
adversary resumes giving all types of tasks once the item of type j expires.

The online algorithm faces the following dilemma: To optimize the long-term
gain, it should keep the items of the first k types in memory and reject the items
of type k + 1; this is so because the values of the items are such that viTi is a
steeply decreasing sequence. On the other hand, to optimize the short-term gain,
the items of type k+1 must be kept because their value is much higher than the
value of the rest. We show that there is no good way to resolve this dilemma.
To do this, we show by induction on i that an online algorithm with bounded
competitive ratio cannot reject an item of type i ≤ k. But then, the competitive
ratio against an offline algorithm which keeps the items of type k+ 1 is at least
vk+1/(v1 + · · ·+ vk); this ratio can be also unbounded.

We first show only the basis of the induction for i = 1, i.e., that an online
algorithm with bounded competitive ratio has to keep the items of type i = 1
in memory. Suppose that at some time t the online algorithm accepts the item
of type k+ 1 by rejecting an item of type 1. Then no new items arrive until the
expiration of the item of type 1. The online gain is at most t(v1 + . . . + vk) +
(v2T2 + · · · + vk+1Tk+1), while the optimal gain is at least max(v1T1, tvk+1) ≥
(v1T1 + tvk+1)/2. If we select values with v1T1 ≥ λ(v2T2 + · · ·+ vk+1Tk+1) and
vk+1 ≥ λ(v1 + . . .+vk) for some positive parameter λ, then the competitive ratio
is at least λ, which can be arbitrarily high.
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For the induction step, we focus only on online and offline algorithms that
always keep all items of type l < i in memory. Since the values v1, . . . , vi−1 are
much smaller than the values of higher-type items, they have small effect on the
competitive ratio and we can essentially repeat the above argument of the basis
case.

4.2 The Aggregate Min Problem

We show that when we change our objective from keeping the maximum value
to keeping the minimum value, the problem is transformed completely. In par-
ticular, we show that the competitive ratio is unbounded for the aggregate min
case.

Proposition 1. The aggregate min problem has unbounded competitive ratio.

Proof. Fix some online algorithm. The adversary gives a steeply increasing se-
quence a1, a2, . . .. Let at (for some t ≤ k + 1) be the first item that is not kept
by the online algorithm. The adversary ends the sequence at time t+n− 1. The
main point is that at time t +n− 1 the online algorithm has in its memory only
items that appeared after time t + 1, whereas the offline algorithm can have the
item at which has much smaller value. More precisely, the total online cost is
at least na1 + a2 + . . . + at−1 + at+1, while the cost of an offline algorithm who
keeps at (by replacing at−1, if it is needed) is na1 + a2 + . . . + at−2 + 2at

2. By
selecting at+1 to be much higher than na1 + a2 + . . . + at−2 + 2at, we get an
unbounded competitive ratio.

4.3 The Anytime Max Ratio

In this section we address the question of approximating at any time t the max-
imum value of the current window. In the aggregate max problem, the objective
is to optimize the sum of the maximum value whereas here it is to optimize the
maximum. That is, we are interested in minimizing

max
a

max
t

gt

mt
.

We show that the competitive ratio in this case cannot be independent of the
values. More precisely, we show that the competitive ratio is O( k+1

√
M), where

M is the maximum value in the stream. A similar result has been shown also
in [10] where they give an 1+ ε-approximation algorithm with memory 1

ε log M .
Although the results are essentially the same, this seems to be a cleaner (and
simpler) problem when we cast it in the framework of competitive analysis.

Proposition 2. The competitive ratio maxa maxt
gt

mt
is

O( k+1
√

M),

where M is the maximum value in the stream.
2 This expressions hold for t > 1. The case t = 1 is similar.
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Proof. To show the lower bound, consider a geometrically decreasing sequence
with aj = Mαj−1, where α = M1/n. Let t + 1 be the first time that the online
algorithm does not accept an item. In all previous times, the online algorithm
accepts the current item by possibly replacing previously kept items. From then
on, the adversary gives items with value 1. This means in particular that at time
t + n the online algorithm has only items with value 1 in its memory, while the
offline algorithm could have kept at+1 = M/αt. This gives a lower bound M/αt

for the online algorithm.
To obtain a different lower bound, observe that at time t + 1 there are at

most k items in the online memory. This means that there is a sequence of t/k
consecutive items ai, . . . , ai+t/k−1 none of which is in the online memory. Then
at time i + n − 1, the maximum item in the online memory is the item ai+t/k,
while an offline algorithm could have the item ai. This gives a lower bound on
the competitive ratio αt/k.

In summary, the competitive ratio is at least

max{M/αt, αt/k},

which is at least M1/(k+1) when α = M1/n.
This result is tight: we show that a simple, deterministic, bucket-based al-

gorithm can achieve the same approximation ratio. The algorithm arranges the
interval [1, . . . , M ] of possible values into k buckets as follows: for i = 1, . . . , k,
bucket i contains all values in the interval [( k

√
M)i−1, ( k

√
M)i). The algorithm

maintains a list of representatives, one for every bucket. Clearly, the competitive
ratio cannot be more than M1/k. When the maximum value M is not known
in advance, the online algorithm starts by assuming M = k; whenever a value
higher than the current M appears, the online algorithm accepts it (in its top
bucket) and updates M . The competitive ratio is not affected.

5 Conclusions and Open Problems

In this paper we considered windowed streaming problems from a competitive
analysis perspective. We proved (positive and negative) results for several prob-
lems, revolving around or extending the central problem of maintaining the
maximum value observed over the last n observations, while obeying stringent
memory constraints, consistent with realistic streaming applications.

Many interesting open questions remain. First, there is the problem of tight-
ening the results of Theorems 1 and 2, especially for the case of constant k and
in particular for k = 1. Also, an interesting direction is to study other statistical
questions using the competitive framework we considered in this work. One such
question, which is directly relevant to this work, is to maintain some aggregate of
the r largest values observed in the window, for some r ≤ k. Another direction is
to consider the order statistics of the items, rather than their actual value. This
is useful in settings where we are interested in maintaining a subset of elements
that are some of the largest ones in the current window. In this case, the quality
of the solution depends on how far the ranks of the top items maintained by the
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algorithm are from the actual top items in each window of interest. Performance
indices for this kind of questions are known in information retrieval and data
mining. Analyzing them in a competitive scenario is a challenging task.

Finally an interesting framework to study this type of problems is to assume
that the items appearing in the stream are chosen by an adversary, but then
presented to the algorithm in a random permutation. This assumption is com-
mon in a related, important problem in decision theory, namely the secretary
problem [17]. Variants of the secretary problem are to maximize the probability
to select the top r items [20] or to minimize the expected sum of the ranks of
the selected items [1]. The question is how to address these problems in a sliding
window setting.
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Abstract. Regular expression matching is a key task (and often the
computational bottleneck) in a variety of widely used software tools and
applications, for instance, the unix grep and sed commands, scripting
languages such as awk and perl, programs for analyzing massive data
streams, etc. We show how to solve this ubiquitous task in linear space
and O(nm(log log n)/(log n)3/2+n+m) time where m is the length of the
expression and n the length of the string. This is the first improvement for
the dominant O(nm/ log n) term in Myers’ O(nm/ log n+(n+m) log n)
bound [JACM 1992]. We also get improved bounds for external memory.

1 Introduction

Problem. Regular expression matching is performed commonly as a primitive by
many of today’s computer systems, and has been so for almost half a century.
With unix/linux, or on a Mac, we match regular expressions in large file sys-
tems using the command line utility grep. With the stream editor sed we further
specify a replacement of the occurrences of the regular expression. A more inte-
grated use of regular expression matching is found in the general text processing
language perl [22] which is commonly used to convert between input/output
formats. One of the basic features in perl is to match regular expressions and
substitute some of the subexpressions. The regular expression matching is often
the hard part whereas the subsequent substitution is easy, so if we could improve
regular expression matching, we would improve a lot of data processing.

Historically, regular expression matching goes back to Kleene in the 1950s [11].
It became popular for practical use in text editors in the 1960s [21]. Compilers use
regular expression matching for separating tokens in the lexical analysis phase [1].
New and interesting applications continue to appear in diverse areas such as
XML querying [12,15], protein searching [18], and Internet traffic analysis [9,24].

Computational model. We study the complexity of regular expression match-
ing on the RAM model with standard word operations. This means that our
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algorithms can be implemented directly in standard imperative programming
languages such as C [10] or C++ [20]. For the last thirty years, these program-
ming languages have been commonly used to write efficient and portable code.
Even if we code the main program in some higher level programming language,
it is normally possible to invoke subroutines written in C for parts that have to
run efficiently, and computational efficiency is what we study here. Most open
source implementations of algorithms for regular expression, e.g., grep, sed and
perl, are written in C. In practice, it would be impressive to gain a factor 2 in
speed for this well-studied problem, but as theoreticians we will focus on get-
ting the best asymptotic worst-case running time in terms of the problem size
n→∞.

Current Bounds. Let n and m be the lengths of the string Q and the regular
expression R, respectively. Typically we assume n > m. The classical textbook
solution to the problem by Thompson [21] from 1968 takes O(nm) time. It uses
a standard state-set simulation of a non-deterministic finite automaton (NFA)
with O(m) states produced from R. Using the NFA, we scan Q. Each of the n
characters is processed in O(m) time by progression of the NFA state set.

In 1985 Galil [7] asked if a faster algorithm could be derived. Myers [16] met
this challenge in 1992 with an O(nm/ logn+ (n+ m) log n) time solution, thus
improving the time complexity of Thompson algorithm by a logn factor for most
values of n and m. Since then there has been several works mostly addressing
issues of space and larger word length [3,4,19]. However, with no special assump-
tions on the word length the O(nm/ logn) term from Myers’ algorithms has not
been touched. The fundamental reason is that all the previous approaches aim to
speed-up the O(m) time the NFA needs to process one character from the string.
To do that we need at least Ω(m/w) time just to read or write the state set of
the NFA. In fact, Bille [3] obtained this bound within a log w factor. However,
we may have w = O(log n), so in terms of m and n, there is no hope of bypassing
Myers’ logarithmic improvement when working on one character at the time.

New Bounds. In this paper we present a linear space regular expression matching
algorithm with a running time of

O

(
nm log logn

log3/2 n
+ n+ m

)
.

If the alphabet is bounded or if m ≤ n1−ε for some positive constant ε, we can
avoid the log logn factor, getting a cleaner time bound of O(nm/(log n)3/2 +n+
m). In any case, assuming m,n ≥ log3/2 n, this increases the improvement over
Thompson’s O(nm) algorithm from the logn factor of Myers to almost a factor
(logn)3/2.

We bypass the logarithmic limitation of previous approaches with a speed-up
for the NFA processing of multiple characters at the time. This is, in itself, an
obvious idea, but challenging to realize due to the complex interaction between
the NFA and the input string (c.f. discussion at the end of Sec. 3).
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Tabulation. Our improved time bound is achieved via a better tabulation tech-
nique. The idea of using tables to improve calculations is old. As a nice early
example, in 1792, Gaspard de Prony started preparing nineteen volumes of
trigonometric and logarithm tables for the revolutionary French government.
With the assistance of a small group of mathematicians, Prony divided the com-
putations into a series of additions and subtractions. He then hired about eighty
(human) computers to do the arithmetic.

Tabulation is also used on today’s computers for the fastest regular expression
matching. In particular, the implementation of Myers’ algorithm [16], the agrep
tool [23] and the nrgrep tool [17] are all based on tabulations of NFAs, and
they outperform other tools. The basic point is to use table look-ups to replace
a complicated NFA simulation that would look up transitions from multiple
states.

Tabulation is a speed-up technique that only makes sense after we have settled
on the basic combinatorial algorithm, in this case Thompson’s algorithm which
has stood unbeaten since 1968. In fact, this might very well be the asymptotically
fastest worst-case efficient algorithm for regular expression matching if we ignore
polylogarithmic factors. The goal in tabulation is now to compactly represent
as complex subproblems as possible. Our contribution is to show that we with
x bits can represent subproblems requiring Θ(x3/2/ log x) steps in Thompson’s
algorithm. The limit of all previous tabulation approaches to this problem was
to represent x steps with Θ(x) bits. We are breaking the linear bound by moving
into a higher dimension of encoding, representing both part of the NFA and part
of the input string in the x bits. Higher dimensional encodings are known for
several other problems [2, 5, 13] but combining the NFA and string dimensions
has been a challenge for regular expression matching.

Our encoding allows us to construct fixed universal tables that can later be
used to solve arbitrary regular expression problems. The tables are constructed
once and for all in O(2x) time and space. Using them we can match an expression
of size m in a text of size n in O(nm(log x)/x3/2 + n+ m) time, and this works
well even in a streaming context. For the previous mentioned bounds, we could
set x = (log2 n)/2 thus using O(

√
n) time and space on the tables. However, the

same tables can be used to solve many regular expression matching problems.
Therefore we may chose a larger x to create some large and powerful tables once
and for all. These could be used when running perl where we often need to
match many different regular expressions in a text.

External memory. Our coding technique gives corresponding speed-ups for ex-
ternal memory with block size B and internal memory size M ≥ B. Of course
M and B could also represent smaller units in the memory hierarchy, e.g., cache
of size M registers and cache line of length B. If m = o(M), it is trivial to solve
the regular expression matching problem with O(n/B) I/O operations. Assuming
m = Ω(M) we solve the problem with O(nm/(

√
MB)) I/O operations. This is a

factor
√

M better than what would be possible with previous algorithms regard-
less of the block size. Technically speaking, we use the internal memory to pack
subproblems of complexity M3/2 in Thompson’s algorithm. Each subproblem is
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read with M/B I/O operations, so the saving is a factor M3/2/(M/B) =
√

MB.
Previous solutions could only pack problems of complexity linear in M , so they
could only save a factor M/(M/B) = B. In particular, our algorithm is the first
to gain substantially in I/O operations from a large internal memory even if the
blocks are small.

Summing up. The theorem below formally states our results in terms of a re-
source parameter t capturing how much time and space we are willing to spend
on the global tables.

Theorem 1. On a unit-cost RAM with word length w and standard instruction
set, for any parameter t < 2w, we can do a general preprocessing for regular
expression matching using O(t) time and space. Subsequently, given any regular
expression of length m and string of length n, we can perform the matching in

O

(
nm log log t

(log t)3/2
+ n+ m

)
time using O(t + m) space. Our matching only makes a single pass through the
string, which may hence be presented as a stream.

Cast in terms of external memory with block size B and internal memory size
M , 2B ≤ M = O(m), we solve the regular expression matching problem with
O(nm/(

√
MB)+m/B · logM/B(m/B)) I/O operations using O(m) space. Again

we only perform a single pass over the string. After an O(m/B · logM/B(m/B))
preprocessing of the pattern, we process string segments of length Θ(

√
M) using

O(m/B) I/O operations.

As mentioned above, in many practical applications it makes sense once and for
all to do the preprocessing with a fairly large t, fitting within the bounds of
fast memory, and subsequently be able to solve lots of smaller regular expression
matching problems quickly.

In connection with very large data, note how the unit-RAM result and the
external memory result complement each other. In both cases, the string may be
a stream passed only once, which is perfect. In the normal case where m = o(M),
we pick a large t such that the O(t+m) space fits in internal memory, and use the
unit-RAM algorithm to process the stream in O(n/B) I/O operations. However,
in the extreme event that m = Ω(M), we apply our external memory algorithm.

Overview. In this extended abstract, we only have room to present our algorithm
for bounded size alphabets on the unit-cost word RAM. In Sec. 2 we define
Thompson’s standard automaton construction for regular expressions [21] and
in Sec. 3 we describe how we decompose this automaton as done in the previous
algorithms with logarithmic speedup. After that, we embark on our new attack
on the problem. Our decomposition is different from that of Myers [16] because
we want to tabulate the action of subautomatons, not just on a single input
character, but on substrings of input characters. In Sec. 4 we describe the actual
action of subautomatons on substrings and how to tabulate it.
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2 Regular Expressions and Finite Automata

First we briefly review the classical concepts used in the paper. For more details
see, e.g., Aho et al. [1]. The set of regular expressions over Σ are defined recur-
sively as follows: A character α ∈ Σ is a regular expression, and if S and T are
regular expressions then so is the concatenation, (S) · (T ), the union, (S)|(T ),
and the star, (S)∗. The language L(R) generated by R is defined as follows:
L(α) = {α}, L(S · T ) = L(S) · L(T ), that is, any string formed by the concate-
nation of a string in L(S) with a string in L(T ), L(S)|L(T ) = L(S)∪L(T ), and
L(S∗) =

⋃
i≥0 L(S)i, where L(S)0 = {ε} and L(S)i = L(S)i−1 · L(S), for i > 0.

Here ε denotes the empty string. The parse tree T (R) for R is the unique rooted
binary tree representing the hierarchical structure of R. The leaves of T (R) are
labeled by a character from Σ and internal nodes are label by either ·, |, or ∗.

A finite automaton is a tuple A = (V, E, Σ, θ, φ), where V is a set of nodes
called states, E is a set of directed edges between states called transitions each
labeled by a character from Σ ∪ {ε}, θ ∈ V is a start state, and φ ∈ V is an
accepting state1. In short, A is an edge-labeled directed graph with a special start
and accepting node. A is a deterministic finite automaton (DFA) if A does not
contain any ε-transitions, and all outgoing transitions of any state have different
labels. Otherwise, A is a non-deterministic automaton (NFA). If dealing with
multiple automatons, we use a subscript A to indicate information associated
with automaton A, e.g., θA is the start state of automaton A.

Given a string q and a path p in A we say that p and q match if the concate-
nation of the labels on the transitions in p is q. We also say that two paths p
and p′ match if they match the same string. The set of strings matching some
path between states s and s′ in A is denoted by PA(s, s′). For state-sets S and
S′ we define PA(S, S′) =

⋃
s∈S,s′∈S′ PA(s, s′). For a subset S of states in A

and a string Q, define the state-set transition, δA(S, q), as the of states reach-
able from S through a path matching q. We say that A accepts the string q
if q ∈ PA(θA, φA). Otherwise A rejects q. One may use a sequence of state-set
transitions for a single character to test acceptance of a string Q of length n as
follows. First set S0 := {θA}. For i = 1, . . . ,n compute Si := {δA(Si−1, Q[i])}.
It follows inductively that q is accepted if and only if φA ∈ Sn.

Given a regular expression R, an NFA A accepting precisely the strings in
L(R) can be obtained by several classic methods [14,8,21]. In particular, Thomp-
son [21] gave the simple well-known construction in Fig. 1. We will call an au-
tomaton constructed with these rules a Thompson NFA (TNFA). Fig. 2 shows
the TNFA for the regular expression R = a·(a∗)·(b|c), along with lots of other
information to be discussed in later sections.

A TNFA N(R) for R has at most 2m states, at most 4m transitions, and can be
computed inO(m) time. With a breadth-first search of A we can compute a state-
set transition for a single character in O(m) time. Hence, we can test acceptance
of a string Q of length n in O(nm) time. This is Thompson’s algorithm [21].

1 Sometimes NFAs are allowed a set of accepting states, but this is not necessary for
our purposes.
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Fig. 1. Thompson’s recursive NFA construction. The regular expression for a character
α ∈ Σ corresponds to NFA (a). If S and T are regular expressions then N(ST ),
N(S|T ), and N(S∗) correspond to NFAs (b), (c), and (d), respectively. In each of these
figures, the leftmost node θ and rightmost node φ are the start and the accept nodes,
respectively. For the top recursive calls, these are the start and accept nodes of the
overall automaton. In the recursions indicated, e.g., for N(ST ) in (b), we take the start
node of the subautomaton N(S) and identify with the state immediately to the left of
N(S) in (b). Similarly the accept node of N(S) is identified with the state immediately
to the right of N(S) in (b).

3 1-Dimensional Speed-Up

Myers’ algorithm [16] and later variants [3, 4] all aim to speed-up Thompson’s
algorithm by improving the O(m) bound for a state-set transition for a single
character. We describe this approach in some detail below as we are going to
reuse much of it our own algorithm. The version we present is for bounded size
alphabets, i.e., each character can be coded with a constant number of bits.

For a desired speed-up of x < w, we will need some global tables of size 2O(x).
First we decompose N(R) into a tree AS of O(�m/x�) micro TNFAs, each of
size at most x. In each A ∈ AS, each child TNFA C is represented by a start
and accepting state and a pseudo-transition labeled β �∈ Σ connecting these. For
example, Fig. 2, shows the TNFAs for the regular expression R = a·(a∗)·(b|c)
divided into 3 TNFAs AS = {A1, A2, A3}, where A1 = N(a∗), A2 = N(b|c),
and A3 = N((a · β · β)∗). Here the βs represent A1 and A2, respectively. We
can always construct a decomposition of N(R) as described above since we can
partition the parse tree into subtrees using standard techniques and build the
decomposition from the TNFAs induced by the subtrees, see e.g., Myers [16] for
details.

The point in such a micro TNFA A is that we can code it uniquely via its
parse tree using O(x) bits. We shall use “A” to denote the bit coding of A.
If x = o(log m), there will be many micro TNFAs with the same bit code.
Technically A is an index to all information associated with A including both
the code “A” and the children and parents of A. Since A has only x states, we
can also code its local state set SA using x bits. Thus we can make a universal
table T of size 2O(x) that for every possible micro TNFA A of size ≤ x, local
state set SA, and α ∈ Σ ∪ {ε}, provides T [“A”, SA, α] = δA(SA, α) in constant
time. Note that parents and children share some local states, and these states
will have to be copies between their local state bitmaps.
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Recall that our target is to compute a state-set transition δN(R)(S, α) for a
single character α ∈ Σ. First we should traverse transitions labeled α from S
and then traverse paths of ε-transitions. The challenge here is that paths of
ε-transition may lead to distant TNFAs in the decomposition resulting in non-
trivial dependencies between TNFAs. For example, suppose we start with state
set S = {1} in Fig. 2, and that we get the input character a. First we follow
the only relevant a-transition in A3 to state 2. Next we follow ε-transitions in
A1, leading us to states 3 and 5, and from there we follow ε-transitions in A2 to
states 6 and 8. We end up concluding that δN(R)({1}, a) = {2, 3, 5, 6, 8}.

Following the character transitions of α is in itself easy using our global ta-
ble T . For every micro TNFA independently, we take the current local state set
SA and compute S′

A = T [“A”, SA, a] = δA(SA, α). To handle the subsequent
ε-transitions, Myers prove that any cycle-free path of ε-transition in a TNFA
uses at most one of the back transitions we get from the star operators. This
implies that we can compute the ε-closure in two depth-first traversals of the
decomposition. Each of these traversals starts at the root, and are defined re-
cursively for subtrees. When the traversal visits a micro TNFA A, it first sets
S′

A = T [A, S′
A, ε]. Next, considering the children in order, one C at the time,

it copies the accept state θC from S′
A to S′

C , perform an depth-first traversal
down from C, and copy the accept state φC from S′

C to SA. Finally, it sets
S′

A = T [A, S′
A, ε], and continue to the next child if any. If there were no back

transitions, we would need only one such depth-first traversal. The total time
we spend on a micro TNFA A is a constant plus a constant per child, adding up
to O(|AS|) = O(�m/x�) total time.

The above algorithm assumes that we have built the global table T in 2O(x)

time and space. It also requires that we for a new regular expression R first
construct the decomposition AS, and for each micro TNFA A ∈ AS find the bit
code “A”, but all this takes linear time. Thus, in total we can perform regular
expression matching in time O(nm/x + n+ m).

To get a better time bound, we have to deal with an input segment q of super-
constant length, yet we may only use constant time per micro TNFA. One basic
problem is that we have to consider matching paths that leave a micro TNFA and
returns as many times as there are characters in q, making a constant number of
depth-first traversal sound elusive. Also, each state can correspond to multiple
positions in q, but generally, we can only use a constant number of bits per state.

4 2-Dimensional Speed-Up

We will now show how to extend the 1-dimensional speed-up algorithm from the
previous section to handle an input segment of length y =

√
x within the same

O(�m/x�) time bound that we used before on a single character. We are going
to use some different global tables, but their total size will still be 2O(x).

We will need to impose the restriction on the decomposition that each micro
TNFA has at most two children. We get this if we decompose the parse tree
using the tree partition technique that Frederickson [6] used for topology trees.
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q = aab

SSA1 = {(1, 0), (1, 1), (1, 2), (2, 2)} SSA2 = {(3, 3)} SSA3 = {(1, 3), (2, 3)}

PPφ
A1

= {1, 2} PPφ
A2

= ∅ PPφ
A3

= {3}
PPθ
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= {1} PPθ
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= ∅ S′
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εε

c

b
A1 = N(a∗)

A3 = N(a · β · β)

A2 = N(b|c)

(a)

(b)

(c)

R = a·(a∗)·(b|c)

1

ε
2 3 4 5

6 7

8 9

10

A1(q) = N(ε|a|aa) A2(q) = N(b)

a
ε ε

A3(q) = N(a · (ε|a|aa) · b)

Fig. 2. (a) TNFA N(R) for regular expression R = a·(a∗)·(b|c). N(R) is decomposed
into 3 TNFAs AS = {A1, A2, A3}, where A1 = N(a∗), A2 = N(b|c), and A3 =
N((a ·β ·β)∗). Here the βs represent A1 and A2, respectively. The root of AS is A3 and
A1 and A2 are children of A3. (b) The accepted substrings of q = aab (the index (1, 0)
indicates the empty string) and A1(q), A2(q), and A3(q). (c) The state-set transition
computation for each phase on q on the state-set S = {1, 3}.

As before, we get a decomposition tree AS of O(�m/x�) micro TNFAs, each of
size at most x, and now of with at most two children.

As useful new definitions, for any A ∈ AS, define A to be the TNFA induced
by all states in A and descendants of A in the decomposition, and for any state-
set S define S|A to be the restriction of S to states in A.

Recall that one of our challenges we have is that a path p matching q may go
in and out of the same micro TNFA many times. We are going to shortcut any
downwards loop, that is, a segment s of p that leaves a micro TNFA A to go to
a child C and later returns from C to A. When all downwards loops have been
shortcut, we are left with a path p with a first part going up the decomposition
tree, and a second part going down the decomposition tree. Either part may be
empty. The basic point here is that we can follow all such shortcut paths if we
do a bottom-up traversal followed by a top-down traversal.

The special thing about the downwards loop s going from A to a child C and
later returning is that it matches an interval q[i, j] of q that is accepted by C.
To shortcut the loop, we augment A with the information about all substrings
accepted by C, and do that for each of the at most 2 children of A. Even though
C may be very large, there are only

(|q|
2

)
+ |q| + 1 =

(|q|+1
2

)
= O(y2) = O(x)

possible intervals of q.
In Sec. 4.1 we first show how to compute the augmented micro TNFAs and in

Sec. 4.2 we show how to use this information to compute state-set transitions. We
put the pieces together in Sec. 4.3 to get the full algorithm for regular expression
matching.

4.1 Computing Accepted Substrings

In a single bottom-up traversal of the decomposition we construct for each A ∈
AS the set SSA of substrings of q accepted by A. These are represented as pairs
of indices (i, j), that is, (i, j) ∈ SSA iff A accepts q[i, j]. To compute SSA, we
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first construct a “local” representation A(q) of A such that for any states s, s′

in A, we have
PA(q)(s, s′) = PA(s, s′).

We construct A(q) from A and the set SSC from each child C of A if any. More
precisely, we replace the pseudo-edge for child C with an NFA accepting the set
of substrings of q indexed by SSC . Having constructed A(q), we compute the set
SSA from A(q) as

SSA := {(i, j) | q[i, j] is accepted by A(q)}.

We use the pair (1, 0) as a unique representation of the empty substring. In our
example in Fig. 2, A1 accepts q[1, 0] = ε, q[1, 1] = a, q[1, 2] = aa, and q[2, 2] = a
and A2 accepts q[3, 3] = b. Therefore SSA1 = {(1, 0), (1, 1), (1, 2), (2, 2)} and
SSA2 = {(3, 3)}. Thus A1(q) = N(ε|a|aa) and A2(q) = N(b). Inserting A1(q)
and A2(q) in A3 we get A3(q) = N(a · (ε|a|aa) · b), accepting q[1, 3] = aab and
q[2, 3] = ab, hence SSA3 = {(1, 3), (2, 3)}.

Encoding and Tabulation. We encode q as a bit string “q” of length O(y) and
SSA as a bit string “SSA” with a bit for each possible interval of q, hence of
length

(|q|
2

)
+ |q| + 1 =

(|q|+1
2

)
= O(y2) = O(x). Our encoding “A(q)” of A(q)

consists of the bit-coding “A” of A from Sec. 3 followed by “q” and then the
interval end-points in “SSC” for each child C of A, that is,

“A(q)” = (“A”, “q”, {“SSC” | C child of A}).

Thus “A(q)” is represented with O(x + y + y2) = O(x) bits. We precompute a
global table SS providing

“SSA” = SS[“A(q)”]

as a constant time look-up. The entries take O(x) bits, so the table can be
constructed in 2O(x) time and space. Subsequently, for any substring q of length
at most y, we can compute “SSA” and “A(q)” for every A ∈ AS in a bottom-up
traversal in O(�m/x�) total time.

4.2 Computing State-Set Transitions

We now show how to compute state-set transitions using the “SSA” and “A(q)”
computed above. We divide the algorithm into 3 phases. The first phase computes
the set of prefixes of q that match a path from S|A to φA within A, the second
phase computes the set of prefixes of q that match a path from S to φA in N(R),
and finally, the third phase computes the local S′

A = δN(R)(S, q))|A.

Phase 1: Computing path prefixes in A to φA. The first phase is a bottom-up
traversal. For each A ∈ AS, it computes the set PPφ

A of prefixes of q matched by
a path in A from S|A to the accept state φA of A. The prefixes are represented
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via their end indices, so j ∈ PPφ
A iff q[1, j] ∈ PA(S|A, φA). The set PPφ

A is
constructed from A(q) and the sets PPφ

C from the children C of A:

PPφ
A := {j | q[1, j] ∈ PA(q)(SA, φA)} ∪⋃

C child of A

{j | i ∈ PPφ
C and q[i + 1, j] ∈ PA(q)(φC , φA)}

In Fig. 2 we can reach φA1 from state 3 in A1(q) using q[1, 1] or q[1, 2] and
therefore PPφ

A1
= {1, 2}. There are no states from S in A2 so PPφ

A2
= ∅. Finally,

we can reach φA3 both from state 1 and 3 parsing q[1, 3] so PPφ
A3

= {3}.

Phase 2: Computing path prefixes in N(R) to θA. The second phase is a top-
down traversal of the decomposition. For each A ∈ AS we compute the set
PPθ

A of prefixes of q matched by a path in all of N(R) from S to the start
state θA of A. The prefixes are represented via their end indices, so j ∈ PPφ

A iff
q[1, j] ∈ PN (S, θA).

If A is the root automaton, we trivially have PPθ
A = {0} if θA ∈ S and

otherwise PPθ
A = ∅. Hence we may assume that A has a parent B, and we will

use PPθ
B to compute PPθ

A. We also use B(q) and PPφ
C from phase 1 for each

child C of B, including C = A. The computation is now done as

PPθ
A :={j | q[1, j] ∈ PB(q)(SB, θA)}

∪ {j | i ∈ PPθ
B and q[i + 1, j] ∈ PB(q)(θB , θA)}

∪
⋃

C child of B

{j | i ∈ PPφ
C and q[i + 1, j] ∈ PB(q)(φC , θA)}

In Fig. 2 we have that PPθ
A3

= {0}. We can reach θA1 with q[1, 1] from state
1 in A3(q) and hence PPθ

A1
= {1}. We can reach θA2 with q[1, 1] and q[1, 2] in

A3(q) from state 1 and hence 1, 2 ∈ PPθ
A2

. From PPφ
A1

= {1, 2} we also get that
1, 2 ∈ PPθ

A2
. Hence, PPθ

A2
= {1, 2}.

Phase 3: Updating state-sets. The third and final phase traverses the decompo-
sition in any order. For each A ∈ AS, we compute the S′

A = δN(R)(S, q)|A. Then
the desired state set transition S′ = δN(R)(S, q) is just the union of these sets.
Recall that y = |q|.

The set S′ is now computed based on A(q), PPφ
C from phase 1 for each child

C of A, and PPθ
A from phase 2:

S′
A := {s′ | q ∈ PA(q)(SA, s′)} ∪ {s′ | i ∈ PPθ

A and q[i + 1, y] ∈ PA(q)(θA, s′)} ∪⋃
C child of A

{s′ | i ∈ PPφ
C and q[i + 1, y] ∈ PA(q)(φC , s′)}

In Fig. 2 we have that S′
A1

= ∅, S′
A2

= {7, 10}, and S′
A3

= {10}, so S′ =
δN(R)(S, q) = {7, 10}.



Faster Regular Expression Matching 181

Encoding and Tabulation. We encode each of the sets PPφ
A and PPθ

A as bit
strings “PPφ

A” and “PPθ
A” of length y =

√
x where the jth bit is set iff the index

j is in the set. The output set S′
A is represented as the input set SA with a local

bit string “S′
A” of length x.

For phase 1, we have a table PPφ so that we can set

“PPφ
A” := PPφ[“A(q)”, “SA”, {“PPφ

C” | C child of A}].

For phase 2, we have a table PPθ so that for a child A of B, we can set

“PPθ
A” := PPθ[“B(q)”, “SB”, “PPθ

B”, {“PPφ
C” | C child of B}].

Finally, for phase 3, we have a table S′, so that we can set

“S′
A” := S′[“A(q)”, “SA”, “PPθ

A”, {“PPφ
C” | C child of B}].

The entries in each table use O(x) bits and hence we can construct the tables in
2O(x) time and space. It follows that given any state-set S and input segment q
of length at most y, we can compute δN(R)(S, q) in O(�m/x�) total time.

Note that the construction only depends on the fixed alphabet Σ, and the
parameters x and y, so the tables may be reused for any regular expression
matching problem over the same alphabet.

4.3 The Algorithm

Let t < 2w be a bound on the space devoted to tables. Choosing x = y2 = ε log t
we construct and build all tables in O(t) time and space. Given a regular expres-
sion R of length m and a string Q of length n, we solve the regular matching
problem using �n/y� state-set transitions computations as described above. To
process a new input segment, we only need the global tables, the O(m) space de-
composition of R, and the state-set resulting from the preceeding input. Hence,
the full algorithm uses space O(t + m) and time O(m + (m/x + y) · n/y) =
O(n+ m + nm/ log3/2 t). Note that if Q is represented as a stream, we are sim-
ply processing substrings of length y, one at the time in a single pass, and hence
our algorithm also works in this context.
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Abstract. We consider the monotone duality problem i.e., checking
whether given monotone CNF ϕ and DNF ψ are equivalent, which is
a prominent open problem in NP-completeness. We construct a fast and
simple parallel algorithms for the problem, that run in polylogarithmic
time by using quasi-polynomially many processors. The algorithm ex-
hibits better parallel time complexity of the existing algorithms of El-
bassioni [11]. By using a different threshold of the degree parameter ε of
ϕ in the algorithm, we also present a stronger bound on the number of
processors for polylogarithmic-time parallel computation and improves
over the previously best known bound on the sequential time complexity
of the problem in the case when the magnitudes of |ϕ|, |ψ| and n are
different, e.g., |ψ| = |ϕ|α � n for α > 1, where n denotes the number of
variables. Furthermore, we show that, for several interesting well-known
classes of monotone CNFs ϕ such as bounded degree, clause-size, and
intersection-size, our parallel algorithm runs polylogarithmic time by us-
ing polynomially many processors.

1 Introduction

Let V = {1, 2, . . . , n} and let f : {0, 1}V → {0, 1} be a Boolean function. A
function is called monotone (also called positive) if for every pair of vectors
x, y ∈ {0, 1}V , x ≤ y (i.e., xi ≤ yi for all i) always implies f(x) ≤ f(y). Any
monotone function f has unique prime conjunctive normal form (CNF) and
disjunctive normal form (DNF) expressions

ϕ(x) =
∧

H∈H

(∨
i∈H

xi

)
(1)

ψ(x) =
∨

G∈G

(∧
i∈G

xi

)
, (2)

where H,G (⊆ 2V ) are both Sperner (i.e., I �⊆ J and I �⊇ J holds for any
two distinct sets I and J in the family). We note that H and G respectively
correspond to the sets of all prime implicates and prime implicants of f .

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 183–194, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The well-known monotone duality problem is to decide whether ϕ ≡ ψ for
given prime monotone CNF ϕ and DNF ψ. Equivalently, the problem is to check
if for two given Sperner hypergraphs H and G, G is the transversal hypergraph
Hd, consisting of all minimal transversals G of H (i.e., all subsets G ⊆ V such
that G∩H �= ∅ for all H ∈ H). This problem has received considerable attention
in the literature (see e.g., [1,7,9,27,29]), since it is known to be polynomially or
quasi-polynomially equivalent with many problems in diverse areas, such as ar-
tificial intelligence (e.g., [7,20]), database theory (e.g., [28]), distributed systems
(e.g., [14,17]), machine learning and data mining (e.g., [3,16,25]), and mathemat-
ical programming (e.g., [2]), matroid theory (e.g., [22,21]). However, it is open
(for more than 25 years now, e.g., [1,8,18,26,27,29]) whether monotone duality
problem is solvable in polynomial time or not. Any polynomial time algorithm
for the monotone duality problem would significantly advance the state of the
art of the problems in the application areas mentioned above. This is witnessed
by the fact that these problems are cited in a rapidly growing body of litera-
ture and have been referenced in various survey papers and complexity theory
retrospectives, e.g. [8,10,18,27,28,29].

In 1996, Fredman and Khachiyan [13] established a remarkable result that
the monotone duality problem can be solved in quasi-polynomial time O(nm)+
mO(log m/ log log m), where m = |ϕ| + |ψ|, thus putting the problem somewhere
between polynomiality and NP-completeness. We note that the monotone dual-
ity problem is solvable in (quasi-)polynomial time if and only if the monotone
dualization problem, i.e., to compute from a prime CNF ϕ of a monotone func-
tion f a prime DNF ψ of f , can be solved in output (quasi-)polynomial time [1],
and thus providing an efficient algorithm for the decision problem is equivalent
to providing the one for the computation problem. After Fredman-Khachiyan
result [13], several quasi-polynomial algorithms were proposed [12,15,30], but
it was open whether the monotone duality problem admits an efficient parallel
computation, i.e., it is computable in polylogarithmic time by using quasi-
polynomially many processors. In 2008, Elbassioni [11] proved this by construct-
ing two algorithms: (i) O(log n + χ(m, 2) log2m) time using O(nm4χ(m,2)+1)
processors and (ii) O(log n + χ(|G|, 3(lnn + 1)) log |H| log |G|/ logn) time using
O(n|G|2|H|χ(G,3(ln n+1))) processors,1 which are regarded as generalizations of
the sequential Fredman-Khachiyan algorithm. Here H and G are given in (1)
and (2), and for two positive reals a, b, χ(a, b) denotes the unique positive root

of the equation
(

χ(a,b)
b

)χ(a,b)

= a.
We further note that, the monotone duality problem is known to be solvable

in polynomial time, even NC solvable (i.e., solvable in polylogarithmic time using
polynomially many processors) for several special classes of monotone CNFs, e.g.,
when every clause has bounded-size [4,7,19], when every variable has bounded
degree [5,9,24], when clauses have bounded intersection-size [23], for read-once
formulae, etc.

1 We note that Theorem 1 in [11] only analyzes the number of nodes and depth of the
parallel computational tree.



A Fast and Simple Parallel Algorithm for the Monotone Duality Problem 185

Our Results. We provide a fast and simple parallel algorithm for the monotone
duality problem that runs in O(log n + log |H| log |G|) time by using O(n|H|
|G|1+�log |H|�) many processors. This exhibits better parallel time complexity
than the existing two algorithms of Elbassioni [11].

Our algorithm recursively decomposes the monotone duality problem into
polynomially many smaller problems which together are equivalent with the
original problem. The decomposition scheme makes use of full covers of ϕ based
on the degree information of ϕ, where Elbassioni [11] also used a particular
kind of full covers for the monotone duality problem. In order to have good full
covers for the decompositions, we apply a classical bottleneck minmax theorem
by Edmonds and Fulkerson [6].

We also show that, by using a different threshold of the degree parameter ε of
ϕ, the monotone duality problem can be solved in O

(
logn+χ

(
|G|, |H|

|H|−1(lnn+

1)
)
log |H| log |G|/ logn

)
time by using O

(
n|G||H|χ

(
|G|, |H|

|H|−1 (ln n+1)
)
+1
)

many
processors. This yields a stronger bound on the number of processors for poly-
logarithmic-time parallel algorithm for the monotone duality problem, when the
magnitudes of |G|, |H| and n are different, e.g., |G| = |H|α � n for α > 1.
We note that the sequential implementation of this algorithm improves over the
previously best known bound on the sequential time complexity of the problem
in the case when the magnitudes of |G|, |H| and n are different.

Furthermore, we show that, for several interesting well-known classes of mono-
tone CNF formulae such as bounded degree, clause-size, and intersection-size,
our parallel algorithm solves the monotone duality problem in NC (i.e., in poly-
logarithmic time by using polynomially many processors).

Organization. The rest of the paper is organized as follows. In the next section,
we fix our notations and show some basic properties on monotone duality. In
Section 3, we define full covers and present our decomposition rule. In Section
4, we present our algorithm and analyze the complexity for a general input,
and Section 5 discusses the time complexity of our algorithm when the input
CNF has some natural property such as bounded clause-size, bounded degree,
bounded clause-intersections, or read-once.

Due to space constraints, some proofs are omitted.

2 Notations and Basic Properties

We denote by V the set of variables (or their indices), and represent a monotone
CNF by the hypergraph A ⊆ 2V of its clauses. We let n = |V |. A hypergraph A
is called Sperner if A �⊆ A′ and A �⊇ A′ hold for all A,A′ ∈ A with A �= A′. We
call a subset T ⊆ V a transversal of A if T ∩A �= ∅ for all A ∈ A, and denote by
Ad the family of all minimal transversals of A. It is easy to see that Ad is Sperner
for any A ⊆ 2V , and Ad = B if and only if A = Bd for any Sperner hypergraphs
A,B ⊆ 2V . As is well-known, the monotone duality problem is the problem of
deciding whether B = Ad for two given Sperner hypergraphs A,B ⊆ 2V .
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For a subset S ⊆ V , we denote by Sc = V \ S its complementary set, and
for a family A ⊆ 2V , we denote by Ac the family of complementary sets, i.e.,
Ac = {V \ A | A ∈ A}. For A ⊆ 2V , we define the upward closure of A by
A+ = {X ⊆ V | ∃ A ∈ A s.t. A ⊆ X}, and the downward closure of A by
A− = {X ⊆ V | ∃ A ∈ A s.t. X ⊆ A}. Let us note that (Ad)+ = Ad+ is the
family of all transversals of A, while Adc− is the family of all independent sets
of A, i.e., all subsets X ⊆ V for which X �⊇ A for all A ∈ A, and Adc is the
family of all maximal independent sets of A.

Given a hypergraph A ⊆ 2V and a subfamily B of its transversals, B ⊆ Ad+,
we say that a subset X ⊆ V is a new transversal of A (with respect to B) if
X ∈ Ad+ ∩ Bdc−, i.e.,

X ∩A �= ∅ for all A ∈ A and X �⊇ B for all B ∈ B. (3)

Clearly, if B = Ad, then we cannot have any new transversal of A with respect
to B.

For a hypergraph A ⊆ 2V and a subset S ⊆ V , let us define the contraction
and deletion of Sc for A by

AS = {A ∩ S | A ∈ A} and AS = {A ∈ A | A ⊆ S},

respectively. By definition, if A is Sperner, then so is AS , while AS is not Sperner
in general. Let us also note that for subsets S,Q ⊆ V we have (AS)Q = AS∩Q

and (AS)Q = AS∩Q.
The following statement is a useful and important property of these subfam-

ilies.

Lemma 1. For all subsets S ⊆ V we have (AS)d = (Ad)S (⊆ Ad).

3 Full Covers and Decomposition Rules

Given a hypergraph A ⊆ 2V , we say that a family C ⊆ 2V forms a full cover of
the dual Ad if

Ad =
⋃

C∈C
(Ad)C . (4)

For example, {V } and Ad are clearly full covers of Ad. Here we describe an
interesting characterization of full covers of Ad in terms of operations c, d and +.

Lemma 2. Given A ⊆ 2V , a family C ⊆ 2V is a full cover of Ad if and only if

Ccd ⊆ Adcd+.

The following lemma shows that full covers C can be used to decompose the
monotone duality problem into |C| many ones.

Lemma 3. Let A ⊆ 2V . Then C ⊆ 2V is a full cover of Ad if and only if for
any B ⊆ Ad, the following statement holds.

B = Ad if and only if BC = (AC)d for all C ∈ C. (5)
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Proof. Let us assume that C is a full cover of Ad. If B = Ad, then we must have
(AC)d = BC for all C ⊆ V by Lemma 1. Assume for the reverse direction that
there exists a minimal transversal T ∈ Ad\B. Since C is a full cover of Ad, by (4)
we have that there must exists a set C ∈ C such that T ∈ (AC)d \ BC , implying
that such a C satisfies (AC)d �= BC .

We next assume that C is not a full cover of Ad, i.e., there exists a T ∈
Ad \ (

⋃
C∈C(Ad)C). Let B = Ad \ {T }. Then it is clear that B �= Ad, and

moreover we have BC = (AC)d for all C ∈ C, since BC = (Ad)C holds for all
C ∈ C. �
Let us now show two methods to construct full covers.

Lemma 4. For a hypergraph A ⊆ 2V and a hyperedge A0 ∈ A, the family

C(A0) = {V \ (A \ {i}) | A ∈ A \ AV \A0 and i ∈ A ∩A0} (6)

forms a full cover of Ad.

Lemma 5. For a hypergraph A ⊆ 2V and a minimal transversal B0 ∈ Ad, the
family

C(B0) = {V \ {i} | i ∈ B0} ∪ {B0} (7)

forms a full cover of Ad.

We remark that full covers of Lemma 5 are special types of full covers used in
[11].

We shall below show that Lemmas 4 and 5 are enough to construct a good
full cover for parallel computation of the monotone duality problem.

Lemma 6. Given A ⊆ 2V , B ⊆ Ad+, and I ⊆ V , we have exactly one of the
following three cases.

(i) there exists a A0 ∈ A such that A0 ∩ I = ∅,
(ii) there exists a B0 ∈ B such that B0 ⊆ I,
(iii) I is a new transversal of A with respect to B and its complement V \ I is

a new transversal of B with respect to A.

Proof. Immediate from the definitions. �
Since (i), (ii), and (iii) in the above lemma are mutually exclusive, if B = Ad,
then only (i) or (ii) is possible.

For a hypergraph B ⊆ 2V and a real ε with 0 ≤ ε ≤ 1, let us define

I(B, ε) = {i ∈ V | degB(i) > ε|B|}, (8)

where degB(i) denotes the number of hyperedges in B that contains vertex i.

Lemma 7. Given A ⊆ 2V , B ⊆ Ad+, and ε with 0 ≤ ε ≤ 1, let us assume that
A0 ∈ A satisfies condition (i) of Lemma 6 for I = I(B, ε). Then we have

|BC | ≤ ε|B| for all C ∈ C(A0). (9)
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Lemma 8. Given A ⊆ 2V , B ⊆ Ad+, and ε with 0 ≤ ε ≤ 1− 1
|B| , let us assume

that a minimal transversal B0 ∈ B of A satisfies condition (ii) of Lemma 6 for
I = I(B, ε). Then we have

|BC | ≤ (1− ε)|B| for all C ∈ C(B0). (10)

Lemma 9. Let A ⊆ 2V and B ⊆ Ad with |B| ≥ 2. Then either a new transversal
I of A with respect to B (i.e., a new transversal V \ I of B with respect to A) or
a full cover C of Ad such that |BC | ≤ 1/2|B| for all C ∈ C can be computed in
O(log n+ log |A|+ log |B|)) time with O(n(|A| + |B|)) processors.

Before concluding this section, let us remark that Lemma 6 with I = I(B, ε) can
be regarded as a corollary of a classical bottleneck minmax theorem by Edmonds
and Fulkerson [6]:

Theorem 1 (Edmonds and Fulkerson, 1970). For Sperner families A,B ⊆
2V , we have B = Ad if and only if

min
A∈A

max
i∈A

w(i) = max
B∈B

min
i∈B

w(i),

holds for any w ∈ RV .

Namely, if B = Ad and minA∈A maxi∈A degB(i)(= maxB∈B mini∈B degB(i)) ≤
ε|B|, then Theorem 1 implies that Lemma 6 (i) holds, but (ii) does not. On the
other hand if B = Ad and minA∈A maxi∈A degB(i)(= maxB∈B mini∈B degB(i)) >
ε|B|, then Theorem 1 implies that Lemma 6 (ii) holds, but (i) does not.

4 An Algorithm Based on Lemma 9

By Lemma 9, the monotone duality problem can be decomposed into polyno-
mially many smaller problems which together are equivalent with the original
problem (by Lemma 3). This immediately implies that the monotone duality
problem can be solved in polylogarithmic time with quasi-polynomially many
processors. In this section, we give a more careful analysis for our algorithm
based on Lemma 9.

For given Sperner families H,G ⊆ 2V , let nH= |
⋃

H∈HH | and nG = |
⋃

G∈G G|.
Then we first assume that

nH = nG ≤ |H||G|, (11)

where we assume that V contains no redundant element, i.e., n = nH (= nG).
For, if nH < nG , some hyperedge G ∈ G contains an element i ∈ V \ (

⋃
H∈HH).

This means that G is not a minimal transversal of H, since the transversality
of G implies that of G \ {i}. Therefore, this G is a witness of nonduality of H
and G. Similarly, we can prove the case of nH > nG . Moreover, for any minimal
transversal G of H and i ∈ G, there exists an H ∈ H such that H ∩ G = {i},
which implies |G| ≤ |H| and hence we have nG ≤ |H||G|.
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We also assume that
H ⊆ Gd and G ⊆ Hd. (12)

By Assumption (12), we can interchange the roles of H and G, when applying
some of the above lemmas. We assume without loss of generality that |H| ≤ |G|
and make use of the lemmas with A = G and B = H. Note that Assumptions
(11) and (12) can be checked (if the input does not satisfies at least one of the
assumptions, we can find an witness of the nonduality) in O(log n + log |H| +
log |G|) time by using O(n|H||G|) many processors.

Our algorithm recursively builds decomposition tree for this input. Every node
of this tree will correspond to the pair of hypergraphs (GSα ,HSα), and we say
that this node is labeled by Sα ⊆ V , where for convenience, we index the subsets
by integer sequences α ∈ ℵ = Z0 ∪ Z ∪ Z2 ∪ · · · ∪ Z�log |H|� (Here Z0 stands for
the sequence ∅). We denote by |α| the length of α, and we say that the node
labeled by Sα is at depth |α|.

We start building our decomposition tree with a root, labeled by S∅ = V ,
and we denote at any stage by Λ ⊆ ℵ the subset of indices which correspond to
the leaves of our decomposition tree. We maintain the following two properties
throughout the procedure.

(I) S = {Sα | α ∈ Λ} is a full cover of Gd, i.e., Gd =
⋃

α∈Λ(Gd)Sα .
(II) |HSα | ≤ 1

2|α| |H| for all α ∈ Λ.

Clearly, these properties hold initially, when Λ = {∅} since Gd = (Gd)V , and
|∅| = 0. In a general step of the algorithm for every α ∈ Λ for which |HSα | ≥ 2,
we apply Lemma 6 with V = Sα, A = GSα , B = HSα and I = I(B, 1

2 ). If case
(iii) occurs, then we output “NO” and halt. If case (i) occurs, then we consider
a full cover C of HSα given by (6), while if case (ii) occurs, then we consider a
full cover C of HSα given by (7). In either case, we denote by k(α) = |C| the
size of this full cover, and index its elements as C = {C1, C2, ..., Ck(α)}. We then
create and add to our decomposition tree k(α) new leaves, as children of the node
labeled by Sα. We label these new leaves respectively by S(α,j) = Cj for j =
1, . . . , k(α). Furthermore, we update Λ = (Λ \ {α}) ∪ {(α, j) | j = 1, . . . , k(α)},
and S = (S \ {Sα}) ∪ {S(α,j) | j = 1, . . . , k(α)}. Note that in case of (i) we have
k(α) ≤ n, while in case of (ii) we have k(α) ≤ |Sα||GSα | ≤ n|G|. Furthermore,
by Lemmas 7 and 8 we have |HSα,j | ≤ 1

2 |HSα | for all j = 1, . . . , k(α). These
inequalities, and Lemmas 4 and 5 guarantee that properties (I) and (II) remain
valid.

For indices α ∈ Λ with |HSα | ≤ 1 we proceed as follows:

Case 1. If |HSα | = 0 and ∅ �∈ GSα , then we can output “NO” and halt, since
V \ Sα is a new transversal of H with respect to G.
Case 2. If |HSα | = 0 and ∅ ∈ GSα , then we have Hd

Sα
= GSα , we can mark this

leaf as “DONE,” and update Λ := Λ \ {α} and S := S \ {Sα}.
Case 3. If HSα = {H}, by Assumption (12), we have ∅ �∈ GSα and for every i ∈
H , there exists a subset G ∈ GSα such that G∩H = {i}. If {{i} | i ∈ H} ⊆ GSα ,
then we have (HSα)d = GSα , we can mark this leaf as “DONE,” and update
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Λ := Λ\ {α} and S := S \{Sα}. Otherwise, we can output “NO” and halt, since
the set Sα ∪ {i} is a new transversal of H with respect to G for every element
i ∈ H with {i} �∈ GSα .

Finally, if we never have “NO” and if all leaves are labeled “DONE,” then we
have a proof, by Lemma 3 that Hd = G, and hence we output “YES” and halt.

To see the complexity of the above algorithm, let us first note that by Lemma 9
we have |α| ≤ �log |H|� for all α ∈ Λ throughout the algorithm. Thus the decom-
position tree we built has depth at most �log |H|�. Furthermore, each node has
at most n children (by decomposition (7)) or n|G| children (by decomposition
(6)), and thus the total number of nodes in the tree is O

(
(n|G|)�log |H|�).

Let us note next that we can slightly improve on this bound. Namely, when we
decompose a node by a hyperedge H0 ∈ H, as in Lemma 5, then each hyperedge
H ∈ H will belong to at most |H0 \ H | ≤ |G| children, since H0 ∈ Gd implies
|H0| ≤ |G|. Furthermore, when we decompose a node labeled by Sα by a minimal
transversalG0 ∈ G, as in Lemma 4, then each hyperedgeH ∈ H will belong to at
most |GSα | ≤ |G| children of this node, because H ∩G = {i}, i ∈ G0 can happen
at most |G| times. Thus, the total number of copies of a hyperedge H ∈ H in the
decomposition tree we built is limited by O

(
|G|�log |H|�). Since every non-leaf of

the complete decomposition tree contains at most one copy of each H ∈ H, we
get that the total number of nodes is O

(
|H|(|G|)�log |H|�).

Let us finally note that for each Sα, either applying Lemma 6 if |HSα | ≥ 2, or
processing it as a terminal leaf if |HSα | ≤ 1, can be implemented in O(log |G|)
time by using O(n|G|) processors, since we have |H| ≤ |G| and n ≤ |H||G| by our
assumption and initialization.

Therefore we get for the total time τ of our parallel algorithm that

τ = O(log n+ log |H| log |G|),

where O(log n) is required by the initialization, and that the total number of
processors we need is O

(
n|H||G|�log |H|�+1

)
. This proves the following theorem.

Theorem 2. Given two Sperner families H,G ⊆ 2V , we can check whether
G = Hd in O(log n + log |H| log |G|) time by using O

(
n|H||G|�log |H|�+1

)
many

processors.

Let us recall the complexity of two existing parallel algorithms for the mono-
tone dualization problem [11]: (i) O(log n+χ(m, 2) log2m) time by using O(nm
4χ(m,2)+1) processors and (ii) O(log n + χ(|G|, 3(lnn + 1)) log |H| log |G|/ logn)
time by using O(n|G|2|H|χ(G,3(ln n+1))) processors,2 where m = |H|+ |G|, and for
two positive reals a, b, χ(a, b) denotes the unique positive root of the equation(

χ(a,b)
b

)χ(a,b)

= a. We note that our algorithm is faster than these algorithms,

since χ(|G|, 3(lnn+1)) > 3(lnn+1). But our algorithm uses O
(
n|H||G|�log |H|�+1

)
many processors. To reduce the number of the processors in our algorithm, let
us fix ε as
2 We note that Theorem 1 in [11] only analyzes the number of nodes and depth of the

parallel computational tree.
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ε =
lnn+ 1

χ
(
|G|, |H|

|H|−1(lnn+ 1)
) .

Then we have the following theorem.

Theorem 3. Given two Sperner families H,G ⊆ 2V , we can check whether
G = Hd in O

(
log n+ χ

(
|G|, |H|

|H|−1 (lnn+ 1)
)
log |H| log |G|/ logn

)
time by using

O
(
n|G||H|χ(|G|, |H|

|H|−1 (ln n+1))+1
)

many processors.

Note that this algorithm is slower than the original one, but this yields a stronger
bound on the number of processors for polylogarithmic-time parallel algorithms
for the monotone duality problem, when the magnitudes of |G|, |H| and n are
different, e.g., |G| = |H|α � n for α > 1.

We also note that the sequential implementation of this algorithm improves
over the previously best known bound on the sequential time complexity of the
problem in the case when the magnitudes of |G|, |H| and n are different.

Corollary 1. Given two Sperner families H,G ⊆ 2V , we can check whether

G = Hd in O
(
n|G||H|χ

(
|G|, |H|

|H|−1 (ln n+1)
)
+1
)

time.

5 Polynomially Solvable Cases

In this section, we show that the algorithm described in the previous section is
in fact efficient for several natural classes of hypergraphs.

5.1 Bounded Degree and Dimension

For a hypergraph H ⊆ 2V , let us denote by

Δ(H) = max
i∈V

degH(i)

the maximum degree of H. For a given k, we say that H has bounded degree if
Δ(H) ≤ k.

Theorem 4. Given two Sperner families H,G ⊆ 2V , if H has bounded de-
gree, i.e., Δ(H) ≤ k for a fixed constant k, then Algorithm DualityTest

can check if G = Hd in O(log n + log kmax{log |H|, log |G|}) time by using
O
(
nmax{|H|, |G|}|H||G|�log k�+1

)
many processors.

Given H ⊆ 2V , we call
D1(H) = max

H∈H
|H | (13)

the dimension of H, and we say that H is of bounded dimension, if D1(H) ≤ k
for a given constant k.

Theorem 5. Given two Sperner families H,G ⊆ 2V , if H has bounded dimen-
sion, i.e., D1(H) ≤ k for a fixed constant k, then Algorithm DualityTest

can check if G = Hd in O(log n + log |H|max{log |H|, log |G|}) time by using
O(nmax{|H|, |G|}|H|log k+1|G|k) many processors.
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5.2 Bounded (p, r)-Intersections

Given a hypergraph H, let D2(H) denote the intersection size of H, i.e.,

D2(H) = max
H,H′∈ H:

H �=H′
|H ∩H ′|.

For a given constant k, we say that H has bounded intersections if D2(H) ≤ k.
Note that Algorithm DualityTest cannot show the NC solvability of the

monotone duality problem for hypergraphsH with bounded intersections. In this
section, we show that by using different thresholds ε, the problem for hypergraphs
H with bounded intersections is NC solvable. More generally, we consider the
following class of hypergraphs.

Let p ≥ 1 and r ≥ 0 be integers. We denote by A(p, r) the class of of hyper-
graphs with (p, r)-bounded intersections [23]: H ∈ A(p, r) if for any p distinct
hyperedges Hj1 , . . . , Hjp in H, we have |

⋂p
�=1Hj�

| ≤ r. Note that Δ(H) ≤ k iff
H ∈ A(k+ 1, 0), D1(H) ≤ k iff H ∈ A(1, k), and D2(H) ≤ k iff H ∈ A(2, k), and
hence the class A(p, r) contains hypergraphs of bounded degree, dimension, and
intersections.

Let us modify Algorithm DualityTest as follows.

We fix ε by ε := 1− 1/|H| if |α| ≤ r, and ε := 1/2, otherwise.

Theorem 6. Given two Sperner families H,G ⊆ 2V , if H is of bounded (p, r)-
intersections, then the modified version of Algorithm DualityTest can check if
G = Hd in O(log n+max{log |G|, log |H|}(r+log p)) time by using O(nmax{|H|,
|G|}|H||G|r+log p+1) many processors.

5.3 Read-Once Expressions

A Boolean formula ϕ is called read-once if it is an ∧−∨ formula in which every
variable appears at most once. In this section, we consider those hypergraphs
H such that the corresponding CNFs can be represented by read-once formulae.
A well-known equivalent definition of H is that ϕ =

∧
H∈H

(∨
i∈H xi

)
can be

represented by a read-once expression if and only if

|H ∩ G| = 1 for every H ∈ H and G ∈ Hd. (14)

Note that H is read-once if and only if is Hd is read-once.
If we know that A is read-once, then we can simplify Lemma 4 as follows.

Lemma 10. For a hypergraph A ⊆ 2V and a hyperedge A0 ∈ A, the family

C(A0) = {V \ (A0 \ {i}) | i ∈ A0} (15)

forms a full cover of Ad, if A is read-once.

Note that this full cover constructs a partition of B, i.e., B = ∪C∈C(A0)BC and
BC ∩ BC′ = ∅ for C,C′ ∈ C(A0) with C �= C′. Therefore, if we fix ε by ε :=
1− 1/|H|, we have the following theorem.
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Theorem 7. Given two Sperner families H,G ⊆ 2V , if H is read-once, then the
monotone duality problem can be solved in O(n|H||G|) time.

Acknowledgement. The authors thank Y. Crama, V. Gurvich and K. Elbas-
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Abstract. We show several unconditional lower bounds for exponential
time classes against polynomial time classes with advice, including:

1. For any constant c, NEXP �⊆ PNP[nc]/nc

2. For any constant c, MAEXP �⊆ MA/nc

3. BPEXP �⊆ BPP/no(1)

It was previously unknown even whether NEXP ⊆ NP/n0.01 . For
the probabilistic classes, no lower bounds for uniform exponential time
against advice were known before.

We also consider the question of whether these lower bounds can be
made to work on almost all input lengths rather than on infinitely many.
We give an oracle relative to which NEXP ⊆ i.o.NP, which provides
evidence that this is not possible with current techniques.

1 Introduction

Lower bounds are the holy grail of complexity theory. Showing P �= NP or sepa-
rating BPP from NEXP requires one to establish unconditional super polynomial
lower bounds, which are currently beyond our abilities. Most techniques we cur-
rently have run into “obstacles” such as relativization [BGS75], natural proofs
[RR97] and algebrization [AW08]. Consequently research has focused mainly on
conditional results, such as most work in derandomization and PCPs.

In this paper, we show unconditional lower bounds for exponential-time classes
such as NEXP, MAEXP, BPEXP and REXP against their polynomial-time ver-
sions with advice. We describe our results in more detail in the next subsection.

Lower bounds against advice are closely tied to derandomization. By showing
strong enough lower bounds, we hope to get new and interesting derandomiza-
tion results. Indeed, we illustrate this by showing that our results imply a new
separation of a probabilistic class from NEXP.

Unconditional separations are valuable not just in and of themselves, but as
components of more involved arguments. A number of major results in complex-
ity theory in recent years have required a hierarchy theorem or unconditional sep-
aration to finish the proof [AG94, FLvMV05, IKW02, KI03]. By giving stronger
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versions of such separations, we hope to derive tighter results. We illustrate this
in our paper by deriving an improved result of the form that derandomization
implies circuit lower bounds using the machinery of Impagliazzo, Kabanets and
Wigderson [IKW02].

Our results for probabilistic classes have an added significance. Probabilistic
classes are instances of semantic classes–classes for which there is no recursive
enumeration of machines defining languages in the classes and may not have
complete sets. We don’t understand semantic classes very well, indeed we do not
have a strict time hierarchy theorem for any semantic class that is not known to
be equal to a syntactic class. Much recent work [FS04, FST05, vMP06] has been
focused on showing hierarchies for semantic classes with advice. However, none
of the separation results in this line of work hold for uniform semantic classes.
By showing separation results for uniform semantic classes here, we extend our
understanding of them and are led to pose further questions which might lead
to more progress in this area.

How do our techniques face up to the lower bound obstacles mentioned earlier?
The natural proofs obstacle does not trouble us because our proofs ultimately
rely on diagonalization, which does not naturalize. Diagonalization does rela-
tivize, however our proofs of the lower bounds for BPEXP and MAEXP use an
indirect diagonalization technique which takes advantage of the non-relativizing
PCP machinery [BFL91]. Thus our proofs of these results do not relativize. We
suspect that all our proofs do algebrize in the sense of Aaronson and Wigder-
son [AW08]. This is not necessarily cause for pessimism since the Aaronson-
Wigderson results do not rule out the possibility of using non-relativizing results
in more than one place in a proof to derive a stronger lower bound, perhaps even
one as strong as NEXP �⊆ SIZE(poly).

1.1 Results

It is straightforward to show that NEXP �= NP, either by using the non-
deterministic hierarchy theorem or even more simply by a translation argu-
ment. This translation argument can be pushed to give NEXP �⊆ NP/no(1).
However, this is the limit of this translation argument, and it was unknown
whether NEXP �⊆ NP/nα for any fixed constant α > 0. We settle this, and in
fact prove a much stronger result.

Theorem. For any constant c, NEXP �⊆ PNP[nc]/nc.

Our proof relies on a combination of ideas, including careful use of the facts
that NE has a complete set with respect to linear-time reductions and that SAT
is NP-complete, together with translation, a census trick and diagonalization.

As a consequence of our lower bound for NEXP, we get that for each c, the
class BPTIME(nc)NP is different from NEXP–a previously unknown separation.
We also get that even a mild derandomization of MA in NP with nc bits of advice
for some fixed c, or even MA in PNP[nc]/nc, implies super-polynomial circuit lower
bounds for NEXP.



Unconditional Lower Bounds against Advice 197

For probabilistic classes, translation arguments with advice are not known
to work. Furthermore, these classes are not known to have complete languages
either. Thus we are forced to use very different techniques to prove analogous
results for these classes.

We use indirect arguments which take advantage of advice elimination for
carefully chosen complexity classes D. An advice elimination result for D with
respect to a class C says that if D is solvable in C with a certain amount of
advice, then D is in C uniformly. Among our contributions is a new advice elimi-
nation result with respect to MA. Our techniques allow us to derive the following
separations.

Theorem. For any constant c, MAEXP �⊆ MA/nc.

Theorem. BPEXP �⊆ BPP/no(1).

The proofs of the two results above do not relativize. We also get a relativizing
separation for REXP which is somewhat weaker in terms of the advice lower
bound.

Finally, we consider the question of whether our lower bounds can be strength-
ened by making them hold on almost all input lengths rather than on infinitely
many. We give some evidence that this is hard with current techniques by con-
structing an oracle with respect to which NEXP is infinitely often in NP, even
without advice. Note that all known techniques for separating non-deterministic
time classes relativize.

Theorem. There is an oracle respect to which NEXP ⊆ i.o.NP.

The rest of the paper is organized as follows. We give definitions and preliminar-
ies in Section 2, our lower bounds for NEXP and their consequences in Section
3, our lower bounds for probabilistic classes in Section 4, and our oracle results
in Section 5. We state a few open questions in Section 6.

2 Preliminaries

2.1 Complexity Classes, Promise Problems and Advice

We assume a basic familiarity with complexity classes such as P, RP, BPP, NP,
MA, AM, and their exponential-time versions. The Complexity Zoo (which can
be found at http://qwiki.caltech.edu/wiki/ComplexityZoo) is an excellent
resource for basic definitions and statements of results.

The class PNP[q(n)] is the class of languages accepted by polynomial-time oracle
machines making at most q(n) queries to an NP oracle on any input of length n.

Given a complexity class C, coC is the class of languages L such that L̄ ∈ C.
Given a function s : N → N, SIZE(s) is the class of Boolean functions f = {fn}
such that for each n, fn has Boolean circuits of size O(s(n)). Given a language L
and an integer n, Ln = L∩{0, 1}n. Given a class C, i.o.C is the class of languages
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L for which there is a language L′ ∈ C such that Ln = L′
n for infinitely many

length n.
In order to deal with promise classes in a general way, we take as fundamental

the notion of a complexity measure. A complexity measure CTIME is a mapping
which assigns to each pair (M,x), where M is a time-bounded machine (here
a time function tM (x) is implicit) and x an input, one of three values “0” (ac-
cept), “1” (reject) and “?” (failure of CTIME promise). We distinguish between
syntactic and semantic complexity measures. Syntactic measures have as their
range {0, 1} while semantic measures may map some machine-input pairs to “?”.
The complexity measures DTIME and NTIME are syntactic (each halting deter-
ministic or non-deterministic machine either accepts or rejects on each input),
while complexity measures such as BPTIME and MATIME are semantic (a prob-
abilistic machine may accept on an input with probability 1/2, thus failing the
bounded-error promise). For syntactic measures, any halting machine defines a
language, while for semantic measures, only a subset of halting machines define
languages.

A promise problem is a pair (Y,N), where Y,N ⊆ {0, 1}∗ and Y ∩ N = ∅.
We say that a promise problem (Y,N) belongs to a class CTIME(t) if there is a
machine M halting in time t on all inputs of length n such that M fulfils the
CTIME promise on inputs in Y ∪N , accepting on inputs in Y and rejecting on
inputs in N .

A language L is in CTIME(t)/a if there is a machine M halting in time t(·)
taking an auxiliary advice string of length a(·) such that for each n, there is
some advice string bn, |bn| = a(n) such that M fulfils the CTIME promise for
each input x with advice string bn and accepts x iff x ∈ L.

For syntactic classes, a lower bound with advice or for the promise version of
the class translates to a lower bound for the class itself.

3 Lower Bounds for NEXP

It can be shown that NEXP �= NP by using the non-deterministic time hierarchy
theorem [Coo72, SFM78, Ž8́3], or even by a simpler translation argument. In
fact, a modification of the translation argument also gives a separation against
no(1) bits of advice.

Proposition 1. NEXP �⊆ NP/no(1).

Until now, it’s been open whether the lower bound in terms of advice can be
pushed to linear or higher. The methods used in the translation argument or in
the proof of the non-deterministic hierarchy theorem do not give this. Here, we
prove the lower bound by an application of the fact that NE has complete sets
with respect to linear-time reductions.

Our method yields somewhat more general results. We state the simpler result
with proof first, and then show how to generalize it.

We first need the following lemma (a slightly stronger version of a result in
[HM95]) about lower bounds for deterministic exponential time against advice.
The proof we give is folklore.
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Lemma 1. For any constant d, EXP �⊆ i.o.DTIME(2nd

)/nd.

Proof. The proof is by diagonalization. We define a diagonalizing language L
which is not in i.o.DTIME(2nd

)/nd by defining a machine M which runs in ex-
ponential time and decides L.
M operates as follows on input x of length n. It enumerates advice taking

machines M1,M2 . . .Mlog(n) each running in time at most 2nd

and taking advice
of length nd. It then enumerates all log(n)2nd

truth tables computed by these
machines when every possible string of length nd is given as advice. It then
computes a truth table of an n-bit function f which is distinct from all the
truth tables enumerated so far–this can be done in exponential time by a simple
pruning strategy. Finally it outputs f(x).

Now we are ready to state and prove our lower bound for NEXP.

Theorem 1. For any constant c, NEXP �⊆ NP/nc.

Proof. We will show that either NEXP �⊆ NP/poly or NEXP �⊆ NE/nc. From this,
the result follows.

Assume, to the contrary, that both these inclusions hold, i.e., NEXP ⊆ NP/
poly and NEXP ⊆ NE/nc. We will derive a contradiction. Let L be a complete
language for NE with respect to linear-time reductions. Since NEXP ⊆ NP/poly,
we get that L ∈ NTIME(nk)/nk for some constant k. Since L is complete for NE
with respect to linear-time reductions, we get that NE ⊆ NTIME(nk)/O(nk).

By translation, we get that NE/nc ⊆ NTIME(nkc)/O(nkc). To see this, let L′

be a language in NE/nc, and let M ′ be an advice-taking NE machine accepting
L′ with advice length nc. Define a language L′′ ∈ NE as follows: a string < x, a >
is in L′′ iff M ′ accepts x with advice a. Since M ′ is an NE machine, it follows that
L′′ ∈ NE. Thus, by assumption L′′ ∈ NTIME(mk)/O(mk), where m is the input
length for L′′. Let M ′′ be an advice-taking machine solving L′′ using resources as
stated. Now we can solve L′ in NTIME(nkc)/O(nkc) as follows. The advice-taking
machine M we construct for solving L′ interprets its advice as consisting of two
parts: the first part is an advice string a of length nc, where n is the input size,
and the second part is an advice string b of length O((n + nc)k) = O(nkc). M
simulates M ′′ on input < x, a > with advice string b, where x is the input for L′.
M accepts iff M ′′ accepts. M operates within time O(nkc) (since it simulates an
O(nk) time machine on an input of length O(nc)), uses advice of length O(nkc),
and decides L′ correctly, by definition of L′′ and the assumption on M ′′.

Thus, we have NEXP ⊆ NE/nc and NE/nc ⊆ NTIME(nkc)/O(nkc), which
together imply NEXP ⊆ NTIME(nkc)/O(nkc). But since EXP ⊆ NEXP and
NTIME(nkc)/O(nkc) ⊆ DTIME(2nkc

)/O(nkc), we get that EXP ⊆ DTIME(2nkc

)/
O(nkc), which is a contradiction to Lemma 1.

Note that Theorem 1 is nearly optimal both with respect to the advice, and
with respect to the class for which we show a separation, modulo our inability
to prove superpolynomial circuit lower bounds for NEXP. If the advice allowed
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could be increased to an arbitrary polynomial, we would obtain non-trivial de-
randomizations of MA and AM, which is a long-standing open problem. In terms
of proving a separation for a weaker class, if we could separate say NE from
NP/nc for any c, this would also imply a superpolynomial circuit lower bound
for NEXP.

We generalize Theorem 1 in two ways. First we observe that an analogous
result holds for any syntactic complexity measure CTIME which is stronger than
deterministic time and can be simulated by deterministic exponential time.

Theorem 2. Let CTIME be any syntactic complexity measure such that for any
constructible t, DTIME(t) ⊆ CTIME(t) ⊆ DTIME(2O(t)). Then, for any constant
c, CEXP �⊆ CP/nc.

Proof. The proof goes through exactly like the proof of Theorem 1, since CE has
a linear-time complete set, and the same kind of translation argument can be
applied as CTIME is syntactic.

Theorem 2 can also be extended to a separation for promise classes satisfying
very general properties.

For the specific case of non-deterministic time, the lower bound holds not just
against NP with advice, but against PNP[nc] with advice, where PNP[nc] is the
class of languages accepted by polynomial-time oracle Turing machines making
at most nc queries to an NP oracle. Here c is a fixed constant.

To derive this extension, we’ll need to use the following lemma.

Lemma 2. For any c � 1, ESAT [O(nc)] ⊆ NTIME(2O(nc))/O(nc)

Proof. Let L be any language in ESAT [O(nc)]. Let M be an exponential linear-
time oracle machine making O(nc) queries to SAT on inputs of length n and
deciding L. We define an advice-taking non-deterministic machine M ′ which
operates in time O(2nc

) and decides L using at most O(nc) bits of advice.
On an input y of length n, M ′ first generates the query tree for M for every

possible input x of length n. By a query tree for x, we mean the tree whose nodes
are queries with the first query at the root, and for each query q, the children of
that query are the queries asked depending on whether query q is answered 0 or
1. For each x of length n, the query tree for x has size at most 2O(nc). Since c � 1,
the total number of queries asked in any query tree for an input of length n is
2O(nc). The advice for M ′ specifies how many of these queries are in SAT–this
is a number describable in O(nc) bits. In a computation path of M ′, for each
query q in a query tree for some x of length n in turn, M ′ guesses a witness
for q and verifies that q ∈ SAT . If the number of correct verifications is not the
number coded in the advice string, M ′ rejects. Otherwise, M ′ stores a list of all
queries that have been verified to be in SAT on the current computation path,
and then runs M on y. If M makes a query, M ′ takes the answer to be yes if the
query is in its list, otherwise it takes the answer to be no. Finally, M ′ accepts
iff M accepts.

Assuming the advice is correct, M ′ will have an accepting computation on y
iff the oracle machine M accepts y. This accepting computation will correspond
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to forming the correct list of queries in SAT among all queries asked in query
trees of length n inputs. It can be verified that M ′ runs in time 2O(nc).

We now use this fact to generalize Theorem 1. The following result also strength-
ens a result of Mocas [Moc96] separating NEXP from PNP[nc] for fixed c.

Theorem 3. For any c, NEXP �⊆ PNP[nc]/nc.

Proof. On the contrary, assume NEXP ⊆ PNP[nc]/nc. We derive a contradic-
tion. Since SAT is complete for NP under m-reductions, we get that NEXP ⊆
PSAT [nc]/nc. Now let L be a language complete for NE under linear-time re-
ductions. By assumption on NEXP, there is a constant k such that L ∈
DTIME(nk)SAT [nc]/nc. Since L is complete for NE under linear-time reductions,
it follows that NE ⊆ DTIME(nk)SAT [O(nc)]/O(nc).

Now we use the assumption on NEXP again, in a different way. Since NEXP ⊆
PNP[nc]/nc, we get that NEXP ⊆ PSAT [nc]/nc, by NP-completeness of SAT. Hence

NEXP ⊆ ESAT [nc]/nc, which implies NEXP ⊆ NTIME(2O(nc2))/O(nc2
), using

Lemma 2 and a translation argument exactly as in the proof of Theorem 1.
From the conclusion in the previous paragraph, and using a translation argument
again, we get that NEXP ⊆ DTIME(nkc2

)SAT [O(nc3 )]/O(nc3
). But the latter class

is in DTIME(2nkc2+1
)/O(nc3

), just by answering all SAT queries by exhaustive
search, since the length of any SAT query asked by a machine running in time
O(nkc2

) is O(nkc2
). Thus we get EXP ⊆ DTIME(2nkc2+1

)/O(nc3
), which is a

contradiction to Lemma 1.

Theorems 1 and 3 have some interesting consequences for the connection be-
tween circuit lower bounds and derandomization. Impagliazzo, Kabanets and
Wigderson [IKW02] showed that if MA is in NSUBEXP, then there is a language
in NEXP that is not computable with polynomial-size circuits. However, their re-
sult does not say anything about a derandomization of MA where the simulating
algorithm uses advice.

We will need to use the main result of [IKW02].

Theorem 4. [IKW02] if NEXP ⊆ SIZE(poly), then NEXP = MA.

Theorem 5. For any constant c, if MA ⊆ NP/nc, then NEXP �⊆ SIZE(poly).

Proof. If MA ⊆ NP/nc, then NEXP �⊆ MA, since otherwise we have a contra-
diction to Theorem 1. But this implies NEXP �⊆ SIZE(poly) by Theorem 4, and
thus the result follows.

In fact a circuit lower bound follows even from a simulation of MA in PNP[nc]/nc,
by using Theorem 3 rather than Theorem 1.

It is known that MA ⊆ NP/poly, since the randomness of a Merlin-Arthur
machine can be simulated by a polynomial-size advice string. Theorem 5 shows
that this simulation is essentially optimal with respect to advice–if we could
simulate MA in NP with fixed polynomial advice, that would imply a long sought-
after circuit lower bound for NEXP.
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Theorem 3 gives a separation for NEXP and against fixed polynomial advice,
but does it imply anything new for separating uniform classes? The answer is
yes: consider the class BPTIME(nc)NP of languages accepted by probabilistic
oracle machines running in time nc for some fixed c, and with access to an NP
oracle. This class lies between NP and BPPNP, and seems incomparable to BPP.
It is contained in NEXP, but it’s unclear if the containment is strict. This is
because the NP oracle could have arbitrarily high non-deterministic polynomial
time complexity.

Theorem 6. For any c, NEXP �⊆ BPTIME(nc)NP.

Proof. BPTIME(nc)NP ⊆ DTIME(nc+1)NP/O(nc+1). This follows simply by am-
plifying the acceptance probability of the probabilistic oracle machine so that it
is at most 2−n or at least 1−2−n, and then using Adleman’s trick to encode the
randomness in the advice. Note that this transformation relativizes. By Theo-
rem 3, we have that NEXP �⊆ DTIME(nc+1)NP/O(nc+1), which yields the desired
separation.

4 Lower Bounds for Probabilistic Exponential Time
Classes

Here we prove results analogous to those in the previous section for probabilistic
classes. Unlike in the case of non-deterministic time, it is not easy to show even
that BPEXP is not in BPP/1. It can be shown using a translation argument that
BPEXP is not in BPP [KV87], but this translation argument does not extend
to showing a lower bound against advice. Since BPP and BPEXP are semantic
classes, it is unknown whether for instance BPEXP ⊆ BPP/1 implies BPEXP/1 ⊆
BPP/2.

Recently, there’s been a lot of work on hierarchies for semantic classes with
advice, and one might ask whether similar techniques are applicable here. The
generic methods used in [FST04, vMP06] fail to work here for two reasons. First,
their upper bounds always require advice. Second, those methods are inherently
incapable of accommodating more than log(n) bits of advice in the lower bound.

We circumvent both these difficulties by using specific properties of the se-
mantic measures for which we prove bounds. Our general strategy is as follows.
Let’s say we’re trying to show CEXP �⊆ CP/a(n), where CEXP and CP are the
exponential-time and polynomial-time versions respectively of a semantic mea-
sure CTIME, and a(n) � log(n) is an advice bound. We choose a syntactic class
D such that D ⊆ CEXP . We then argue that if D ⊆ CP/a(n), then the advice can
be eliminated to place D uniformly in CTIME with some sub-exponential time
bound. Now there are two cases: if D �⊆ CP/a(n), we’re done since D ⊆ CEXP. In
case D ⊆ CP/a(n), we can use the advice elimination together with a translation
argument to diagonalize in CEXP against CP/a(n).

Our proofs vary depending on the class D, which needs to be chosen judi-
ciously, and the specific form of the advice elimination, which also dictates how
much advice we can accommodate in our lower bound.
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We now show how this general strategy works for the classes BPEXP,MAEXP
and REXP.

4.1 Lower Bound for BPEXP

Before we discuss the advice elimination strategy for BPEXP, we need a defini-
tion.

Definition 1. A language L is said to have instance-checkers if there is a prob-
abilistic polynomial-time oracle machine M outputting 1, 0 or ? such that:

1. If M is given L as oracle, then M(x) = L(x) with probability 1
2. For any oracle A, when M is given A as oracle, for any input x, either

M(x) = L(x) or M(x) =? with probability at least 1− 2−Ω(n).

It follows from the work of Babai, Fortnow and Lund [BFL91] on multi-prover
interactive protocols that EXP-complete languages have instance checkers.

Theorem 7. [BFL91] All EXP-complete languages have instance-checkers.

We will use Theorem 7 to eliminate the advice from a probabilistic polynomial-
time machine accepting an EXP-complete language. We use Theorem 7 in the
same way as Trevisan and Vadhan [TV02], but our choice of parameters is dif-
ferent.

Lemma 3. If EXP ⊆ BPP/no(1), then EXP ⊆ BPSUBEXP.

Proof. Let L be an EXP-complete language. By Theorem 7, L has instance-
checkers. Assume L ∈ BPP/no(1), and let M ′ be a probabilistic polynomial-time
machine deciding L with no(1) bits of advice and error bound � 2−ω(n). Let
M be an oracle machine witnessing the fact that L is instance-checkable. We
define a probabilistic sub-exponential time machine N deciding L. On input x,
N simulates the oracle machine M . Let nk be a bound on the size of queries
asked byM on inputs of length n. N uses each possible sequence of advice strings
a1, a2 . . . ank in turn as oracle for M ′, where for each i, |ai| � io(1). Namely, when
M asks a query of size i to the oracle, N simulates M ′ with advice ai to answer
the query. When the simulation of the oracle machine M is finished for a certain
oracle O, N returns an answer if the answer is either 0 or 1, otherwise it moves
on to the next possible sequence of advice strings. If M still doesn’t give a 0 or
1 answer after all possible sequences of advice strings have been used as oracles,
N outputs an arbitrary value, say 0.

Since there are at most sub-exponentially many sequences of advice strings
and each simulation of M with a sequence of advice strings takes polynomial
time, N halts in sub-exponential time, i.e. time 2no(1)

. We need to argue that N
decides L with low error. For this, we simply use the properties of the instance-
checker M . When the wrong sequence of advice strings is used as oracle, the
probability that M outputs a 0 or 1 answer wrongly is 2−Ω(n), hence by a union
bound, the probability thatM outputs a 0 or 1 answer wrongly on some sequence
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of advice strings is also 2−Ω(n). When the right sequence of advice strings is used,
M outputs the correct answer with probability at least 1−2−Ω(n), since the error
bound of M ′ is at most 2−Ω(n). Thus the right answer is always output with
probability at least 1− 2−Ω(n).

Thus we get L ∈ BPSUBEXP, and since L is complete for EXP under
polynomial-time reductions, we also get EXP ⊆ BPSUBEXP.

Now we are ready to prove our separation.

Theorem 8. BPEXP �⊆ BPP/no(1).

Proof. We consider two cases: either EXP ⊆ BPP/no(1) or not. In the first case,
by Lemma 3, we have that EXP ⊆ BPSUBEXP. By translation, this implies that
there is a super-exponential time bound t such that DTIME(t) ⊆ BPEXP. But we
can diagonalize in DTIME(t) against BPP/no(1), since BPP/no(1) ⊆ EXP/no(1).
Hence, in this case, we are done.

If EXP �⊆ BPP/no(1), we are done immediately, since EXP ⊆ BPEXP.

4.2 Lower Bound for MAEXP

The key to our separation for MAEXP is the following advice elimination re-
sult, which involves strengthening work of Impagliazzo, Kabanets and Wigderson
[IKW02].

Lemma 4. For any constant c > 0, if NEXP ⊆ MA/nc, then NEXP ⊆ MA.

Proof. We show that NEXP ⊆ MA/nc implies NEXP ⊆ SIZE(poly). NEXP ⊆
SIZE(poly implies NEXP = MA, by Theorem 4.

Assume, to the contrary, that NEXP ⊆ MA/nc and NEXP �⊆ SIZE(poly). We
derive a contradiction. Since NEXP ⊆ MA/nc, we have that NEXP ⊆ EXP/nc.
Thus we have EXP/nc �⊆ SIZE(poly). But this is equivalent to saying that EXP �⊆
SIZE(poly). To see this, let L be a language in EXP/nc such that L �∈ SIZE(poly),
and let M be a deterministic exponential-time machine taking nc bits of advice
and deciding L. We define a new language L′ ∈ EXP such that L′ �∈ SIZE(poly).
L′ consists of all pairs < x, a > such that M accepts x given advice a. L′ ∈ EXP
since deciding L merely involves simulating the exponential-time machine M .
Now suppose L′ ∈ SIZE(poly). Then we could define polynomial-size circuits for
L which simulate the polynomial-size circuits for L′ on < x, a >, where a is the
correct advice for L at length |x| - a is of polynomial size in n and depends only
on n.

If EXP �⊆ SIZE(poly), we have that MA/nc ⊆ i.o.NSUBEXP/nc ⊆ i.o.NE/nc.
This follows essentially from the connection between circuit lower bounds and
derandomization [NW94, KvM99] because circuit lower bounds derandomize not
just MA but also the promise version of MA. Now we use the assumption that
NEXP ⊆ EXP/nc again, along with the fact that there is a language Q which
is complete for NE with respect to linear-time reductions. Since Q ∈ EXP/nc,
Q ∈ DTIME(2nk

)/nc for some fixed k. By the fact that Q is complete for NE with
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respect to linear-time reductions, we have that NE ⊆ DTIME(2nk

)/O(nc). By us-
ing the same translation argument as in the proof of Theorem 1, we get that
NE/nc ⊆ DTIME(2nkc

)/O(nc2
). Hence i.o.NE/nc ⊆ i.o.DTIME(2nkc

)/O(nc2
).

By combining this with the derandomization result, we get that MA/nc ⊆
i.o.DTIME(2nkc

)/O(nc2
). By the assumption that NEXP ⊆ MA/nc, we get that

NEXP ⊆ i.o.DTIME(2nkc

)/O(nc2
), which is a contradiction to Lemma 1.

Note that Theorem 4 is an unusually strong advice elimination result. Typi-
cally, for polynomial-time classes, advice elimination cannot handle more than
Ω(log(n)) advice bits without blowing up the time to super-polynomial. Also,
Theorem 4 requires the assumption to hold for all languages in NEXP, not just
a complete language. Indeed, for a NEXP-complete language to be contained in
MA/nc for a fixed c is equivalent to NEXP ⊆ NP/poly.

Theorem 9. For any constant c, MAEXP �⊆ MA/nc.

Proof. We consider two cases. The first case is that NEXP �⊆ MA/nc. In this
case, we have that MAEXP �⊆ MA/nc, since NEXP ⊆ MAEXP.

The other case is that NEXP ⊆ MA/nc. In this case, by Lemma 4, NEXP =
MA. By translation, we get that NEEXP = MAEXP. In this case too, MAEXP �⊆
MA/nc, since we can diagonalize against MA/nc even in deterministic double-
exponential time.

Theorems 8 and 9 can be strengthened so that the lower bound holds against
certain superpolynomial time bounds, rather than just polynomial time. How-
ever, these time bounds are not easy to state, so we defer the statement of this
extension to the full version of the paper.

4.3 Lower Bound for REXP

The result we obtain for REXP which is somewhat weaker with respect to the
advice bound.

Theorem 10. REXP �⊆ RP/O(log(n)).

Proof. We consider two cases: NP ⊆ BPP/O(log(n)) or not. In the first case, we
can use the downward self-reducibility of SAT to eliminate the advice and get
NP ⊆ BPP, but this implies NP = RP, again using downward self-reducibility to
eliminate wrong accepting paths. Thus we get NEXP = REXP, and in this case
we even have REXP �⊆ RP/nc by using Theorem 1.

If NP �⊆ BPP/O(log(n)), then we directly have REXP �⊆ RP/O(log(n)), since
NP ⊆ REXP and RP/O(log(n)) ⊆ BPP/O(log(n)).

5 Relativizations

The results in Section 4 rely on tools from the theory of interactive proofs that
don’t relativize. But our results (and all other known results) on separating
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nondeterministic and deterministic time exponential and polynomial-time classes
do relativize. By examining known and new oracle results we see that we’ve come
close to the limit of what can be done using these relativizable techniques.

In Theorem 3 we showed that for any constant c, NEXP �⊆ PNP[nc]/nc. One
cannot remove the nc limit on queries even without the advice using non-
relativizable techniques because of the following result due to Buhrman, Fenner,
Fortnow and Torenvliet [BFFT01].

Theorem 11 (BFFT). There exists a relativized world where NEXP = PNP.

Eric Allender asked whether even Theorem 1 (NEXP �⊆ NP/nc) can be strength-
ened to a lower bound that works on almost all input lengths, rather than on
infinitely many. Direct diagonalizations tend to work on almost all input lengths–
our separation is indirect, and technique does not give this stronger property.
We give a new relativized world showing that relativizing techniques cannot get
the stronger separation even without the advice.

Theorem 12. There exists a relativized world such that NEXP ⊆ i.o.NP.

Proof. LetMi be a standard enumeration of non-deterministic relativized Turing
machines that runs in time at most 2ni

. Since these machines are paddable, for
any A and any L ∈ NEXPA there will some i such that L = L(MA

i ). We will
create A such that for every i there are an infinite number of n such that for all
x of length n,

x ∈ L(MA
i ) ⇔ there exists a y with |y| = 2|x|i and (i, x, y) ∈ A

which immediately implies Theorem 12.
Start with A = ∅. We construct A in stages (i, j) chosen in any order that

cover all possible (i, j).
Stage (i, j): Pick n such that n is larger than any frozen string as well as the

n chosen in any previous stage.
Set all strings x of length n to be unmarked.
Repeat the following as long as there is an unmarked x of length n such that

MA
i (x) accepts: Fix an accepting path of MA

i (x) and freeze every string queried
along that path. Mark x. Pick a y, |y| = 2|x|i such that (i, x, y) is not frozen
and let A = A ∪ {(i, x, y)}.

We can always find such a y since we have 22ni

possible (i, x, y) and at this
point since we have frozen at most 2ni

strings for at most 2n possible x’s for a
total of 2ni

2n < 22ni

frozen strings.

By adding every (i, x, y) that is non frozen in the proof above one can get an
even stronger oracle.

Corollary 1. There exists a relativized world such that NEXP ⊆ i.o.RP.

Theorem 12 has independent interest. Consider the nondeterministic time hier-
archy [Coo72, SFM78, Ž8́3].



Unconditional Lower Bounds against Advice 207

Theorem 13 (Cook,Seiferas-Fischer-Meyer,Žák)
For any time-constructible functions t1 and t2 such that t1(n+ 1) = o(t2(n)),

DTIME(t1(n)) � DTIME(t2(n)).

The proofs of Theorem 13 work by looking at collapsing several input lengths.
While Rackoff and Seiferas [RS81] showed that the bounds are tight in relativized
worlds, Theorem 12 directly shows that one needs to look at many input lengths
for a relativizable diagonalization.

Theorem 12 should be contrasted with the fact that by direct diagonalization,
it is easy to prove that NEXP �⊆ i.o.coNP and even that NEXP �⊆ i.o.coNP/(n−
o(n)). However, even the latter separation is nearly tight with respect to advice.

Corollary 2. There exists a relativized world such that NEXP ⊆ i.o.coNP/n+1.

This corollary immediately follows from Theorem 12 and the following folklore
theorem.

Theorem 14. NEXP ⊆ coNEXP/n+ 1.

Proof. Let L be a language in NEXP and let the advice for length n be the
number of strings in L of length n. Our NEXP algorithm with advice for L
simply guesses and verifies all the strings in L of length n (since we know how
many there are) and accepts x is x is not among them.

6 Conclusions and Open Questions

There are several open questions that remain. Are there explicit languages that
witness the lower bounds we obtain? Is BPEXP ⊆ i.o.BPP, or MAEXP ⊆ i.o.MA?
Is NEXP ⊆ NE/nc, for any fixed c? Is there a generic method for obtaining
separations for exponential time against polynomial time with advice that works
for semantic as well as syntactic classes? Can the advice bounds against which
separations are obtained for probabilistic time with two-sided error and one-sided
error be improved?

We showed a new advice elimination result for MA in this paper, but there are
several other semantic classes for which there are no advice elimination results
known: ZPP, NP ∩ coNP, AM etc.
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Abstract. We consider the problem of constructing decision trees for
entity identification from a given table. The input is a table containing
information about a set of entities over a fixed set of attributes. The goal
is to construct a decision tree that identifies each entity unambiguously
by testing the attribute values such that the average number of tests
is minimized. The previously best known approximation ratio for this
problem was O(log2 N). In this paper, we present a new greedy heuristic
that yields an improved approximation ratio of O(log N).

1 Introduction

In many situations (such as machine fault detection, medical diagnosis, species
identification), one is required to identify an unknown entity (among a possible
set of known entities), by performing a sequence of tests. Typically, each test is
restricted to checking the value of an attribute of the unknown entity. Naturally,
one wishes to design a testing procedure that minimizes the expected number of
tests needed to identify the unknown entity. As an example, consider a typical
medical diagnosis application. A hospital maintains a table containing informa-
tion about diseases. Each row represents a disease and each column is a medical
test and the corresponding entry specifies the outcome of the test for a per-
son suffering from the given disease. When the hospital receives a new patient
whose disease has not been identified, it would like to determine the shortest
sequence of tests which can unambiguously determine the disease of the patient.
Motivated by such applications, the problem of constructing decision trees for
entity identification from given data, has been well studied (See the surveys by
Murthy [1] and Moret [2]). In this paper, we present an improved approximation
algorithm for the above problem, when the tests are multi-valued.

Decision Trees for Entity Identification - Problem Statement. The input
is a table D having N rows and m columns. Each row is called an entity and the
columns are the attributes of these entities. A solution is a decision tree in which
each internal node is labeled by an attribute and its branches are labeled by the
values that the attribute can take. The entities are the leaves of the tree. The
tree should identify each entity correctly. The goal is to construct a decision tree
in which the average distance of a leaf from the root is minimized. Equivalently,
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Fig. 1. Example decision trees

we want to minimize the total external path length defined as the sum of the
distances of all the entities to the root. We call this the DT problem.

Example: Figure 1 shows an example table and two decision trees. The total
external path length of the first tree is 14 and that of the second (optimal) tree
is 8. An equivalent way of computing the cost is to sum over the internal nodes
v, the number leaves under v. For instance, in the first tree, the cost can be
computed as 6 + 3 + 3 + 2 = 14 and for the second tree, it is 6 + 2 = 8. �
A special case of theDT problem is when every attribute can take only two values
(say {0, 1}); this restricted version is called the 2−DT problem. In general, for
some K ≥ 2, if every attribute is restricted to take at most K distinct values
(say {0, 1, . . . ,K − 1}), we get the K −DT problem. The general DT problem
has no such restriction on the possible values of attributes.

Hyafil and Rivest [3] showed that the 2−DT problem is NP-Hard. Garey [4]
presented a dynamic programming based algorithm for the 2−DT problem that
finds the optimal solution, but the algorithm runs in exponential time in the
worst case. Kosaraju et al. [5] studied the 2−DT problem and showed that a pop-
ular greedy heuristic gives an O(logN) approximation. Adler and Heeringa [6]
gave an alternative proof and improved the approximation ratio by a constant
factor to (1 + lnN) (See also [7]).

Garey and Graham [8] showed that the natural greedy algorithm considered
in [5,6] has approximation ratio Ω(logN/ log logN). Chakaravarthy et al. [9]
studied the K − DT problem and gave an rK(1 + lnN)-approximation algo-
rithm, where rK is a suitably defined Ramsey number with a known bound
that rK ≤ 2 + 0.64 logK; thus, their approximation ratio is O(logK logN). On
the hardness front, they also showed that the 2 − DT problem and the gen-
eral DT problem cannot be approximated within factors of 2 and 4 respectively
unless NP=P. The weighted version of the DT problem has also been stud-
ied. Here, there is a probability distribution associated with the set of entities
and the goal is to minimize the expected path length. (The unweighted version
that we defined corresponds to the case where the distribution is uniform). The
O(logN)-approximation algorithm by Kosaraju et al. [5] can also handle the
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weighted 2−DT problem. For the weighted K−DT problem, Chakaravarthy et
al. [9] gave a O(logK logN)-approximation algorithm. On the hardness front, it
is known that the weighted 2 − DT problem cannot be approximated within a
factor of Ω(logN), unless NP=P [9].

In the general DT problem, K can be very large (up to N), in which case
the approximation ratio of [9] is O(log2N). So, a natural question is whether
there exists an approximation algorithm for the general DT problem matching
the approximation ratio of O(logN) for the 2−DT problem. In this paper, we
present an algorithm with an approximation ratio of O(logN) for the general
(unweighted) DT problem based on a new greedy heuristic.

We now mention the main ingredients of our algorithm and its analysis. Es-
sentially, each internal node of a decision tree narrows down the possibilities for
the unknown entity. The greedy heuristic considered in [9], at each internal node,
chooses the attribute that maximizes the number of pairs separated (two entities
are said to be separated if they do not take the same branch). In contrast, the
greedy heuristic that we propose chooses an attribute which minimizes the size
of the heaviest branch. In the case of the 2− DT problem, these two heuristics
are equivalent. One of the central ideas used in the analysis of [5] is that of
“centroidal path”. Our main insight lies in drawing a connection between the
notion of centroidal path and the objective function of the Minimum Sum Set
Cover (MSSC) problem [10]. This insight allows us to utilize some ideas from the
analysis of the greedy algorithm for the MSSC problem by Feige et al. [10]. It
is interesting to note that the hardness results in [9] are obtained via reductions
from the MSSC problem. In this paper, we utilize the MSSC problem in the other
direction, namely we use ideas from the analysis of the greedy algorithm for the
MSCC problem to obtained improved upper bounds on the approximation ratio.

Our analysis, in its current form, does not extend to the weightedDT problem.
It would be interesting to obtain a O(logN) approximation algorithm for the
weighted DT problem as that would give matching upper and lower bounds for
the problem.

2 Preliminaries

In this section, we define the DT problem and develop some notations. Let D
be a table having N rows and m columns. Each row is called an entity and each
column is called an attribute. Let E denote the set of all N entities and A denote
the set of m attributes. For e ∈ E and a ∈ A, denote by e.a the value taken by e
on attribute a. We are guaranteed that no two entities are identical. For a ∈ A,
let Va denote the set of values taken by the attribute a. Let K = maxa |Va|. We
have K ≤ N . For instance, if the table is binary, K = 2.

A decision tree T for the table D is a rooted tree satisfying the following
properties. Each internal node u is labeled by an attribute a and has at most
|Va| children. Every branch (edge) out of u is labeled by a distinct value from
the set Va. The entities are the leaves of the tree and thus the tree has exactly
N leaves. The tree should identify every entity correctly. In other words, for any
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entity e, the following traversal process should correctly lead to e. The process
starts at the root node. Let u be the current node and a be the attribute label of
u. Take the branch out of u labeled by e.a and move to the corresponding child
of u. The requirement is that this traversal process should reach the entity e.

Observe that the values of the attributes are used only for taking the correct
branch during the traversal. So, we can map each value of an attribute to a
distinct number from 1 to K and assume that Va is a subset of {1, 2, . . . ,K}.
Therefore, we assume that for any e ∈ E and a ∈ A, e.a ∈ {1, 2, . . . ,K}.

Let T be a decision tree for D. For an entity e ∈ E , path length of e is defined
to be the number of internal nodes in the path from the root to e; it is denoted
�T (e) (Note that this is the same as the number of edges on the path). The
sum of all path lengths is called total path length and is denoted cost(T ), i.e.,
cost(T ) = Σe∈E�T (e). We say that e pays a cost of �T (e) in T .

DT Problem: Given a table D, construct a decision tree for D having the
minimum cost.

Remark: In general, we can define a decision tree for any subset of entities of
the table (E ⊆ E) and its cost will be defined analogously.

3 Greedy Algorithm

In this section, we describe our greedy algorithm. Let D be the input table over
N entities E and m attributes A.

Consider a subset of entities E ⊆ E and an attribute a ∈ A. The coverage of a
on E is defined as below. The attribute a partitions the set E into K parts, given
by Ej = {e ∈ E : e.a = j}, for 1 ≤ j ≤ K. Let j∗ be denote the part having
the largest size, i.e., j∗ = argmaxj |Ej |. We say that a covers all the entities in
E, except those in Ej∗ and define

Cover(E, a) =
⋃

i∈({1,2,...,K}−j∗)

Ei

The entities in Ej∗ are said to be left uncovered. We note that some of the set
Ej could be empty.

The greedy algorithm works as follows. For the root of the decision tree, we
pick the attribute â having the maximum coverage; equivalently, we minimize the
size of the heaviest branch (containing the uncovered entities). The attribute â
partitions E into E1, E2, . . .EK , where Ei = {e : e.â = i}. We recursively apply
the greedy procedure on each of these subsets and get the required decision tree
(See Figure 2). Let T̃ denote the decision tree obtained by this procedure. Let
Topt denote the optimal decision tree for D. We claim that the greedy algorithm
has an approximation ratio of 4 logN . The theorem is proved in the next section.

Theorem 1. The greedy algorithm has an approximation ratio of 4 logN , mean-
ing cost(T̃ ) ≤ (4 logN)cost(Topt).
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Procedure Greedy(E)
Input: E ⊆ E , a set of entities in D; Output: A decision tree T for the set E
Begin

If E is empty, Return an empty tree.
If |E| = 1, Return a tree with x ∈ E as a singleton node.
Let â be the attribute that covers the maximum number of entities:

â = argmaxa∈ACover(E, a)
Create the root node r with â as its attribute label.
For 1 ≤ j ≤ K,

Let Ej = {e ∈ E|e.â = j}
Tj = Greedy(Ej)
Let rj be the root of Tj . Add a branch from r to rj with label j and join Tj to T .

Return T with r as the root.
End

Fig. 2. The Greedy Algorithm

4 Analysis of the Greedy Algorithm: Proof of Theorem 1

We extend the notion of cost to all subtrees of the greedy tree T̃ . Consider an
internal node v ∈ T̃ and let T̃v be the subtree rooted at v. Let L(v) denote the
entities (or leaves) in T̃v; these are the entities that appear below v in T̃ . For
instance, if r is the root of T̃ , then T̃ = T̃r and L(r) = E . Let I(T̃v) denote the
internal nodes of T̃v. Define

cost(T̃v) =
∑

e∈L(v)

(length of path from v to e).

Here, length refers to the number of internal nodes in the path from v to e.

Remark: Notice that T̃v is the output of the greedy procedure, if L(v) is the
input set of entities. We say that v handles the set of entities given by L(v).

Proposition 1. For any internal node v ∈ T , cost(T̃v) = Σx∈I(T̃v)|L(x)|.

Proof. Consider an entity e ∈ L(v). Let � be the length of the path from v to e;
this is the cost contributed by e in cost(Tv). Note that there are � internal nodes
on this path. We charge a unit cost to each of these internal nodes. Then, the
charge accumulated at each internal node x is exactly |L(x)|. The proposition
follows by summing up these accumulated charges over all the internal nodes
of T̃v. �
The following proposition is useful in proving Theorem 1.

Proposition 2. Let E ⊆ E be a set of entities. Let E1, E2, . . . , Ed be any disjoint
subsets of E. Let T ∗

1 , T
∗
2 , . . . T

∗
d be the optimal decision trees for E1, E2, . . . , Ed,

respectively and let T ∗ be the optimal decision tree for E. Then,

cost(T ∗
1 ) + cost(T ∗

2 ) + · · ·+ cost(T ∗
d ) ≤ cost(T ∗).
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Proof. Consider any Ei. We can construct a decision tree Ti for Ei from T ∗ as
follows. Remove from T ∗ any entity (i.e, leaf) not appearing in Ei; iteratively
remove any internal node having no children. Cleary, the resulting tree Ti is a
decision tree for Ei. For any entity e ∈ Ei, the cost paid by e in Ti is the same
as the cost paid by e in T ∗. Since Ei’s are disjoint, we have that

cost(T1) + cost(T2) + · · ·+ cost(Td) ≤ cost(T ∗).

The lemma now follows directly. �
We shall prove following lemma which generalizes Theorem 1. For a subset of
entities E ⊆ E , let T ∗

E denote the optimal decision tree for E. Consider an
internal node u ∈ T̃ . T ∗

L(u) is the optimal decision tree for L(u). Theorem 1 is

obtained by applying the following lemma to the root node r of T̃ .

Lemma 1. For any internal node u ∈ T̃ , cost(T̃u) ≤ (4 logn)cost(T ∗
L(u)) where

n = |L(ũ)|.

Proof. The lemma is proved by induction on the number of internal nodes in the
subtree under consideration. If T̃u has only one internal node, then each entity
pays a cost of 1; this is optimal. Now, let us prove the inductive step.

We state some important definitions first. An internal node x of T̃ is said
to be terminal, if all its children are leaves. For a non-terminal internal node x
of T̃ , its centroidal child is defined to be the child of x having the maximum
number of leaves (breaking ties arbitrarily). We now extend this to the notion
of centroidal path. Consider the subtree T̃v rooted at some internal node v of T̃ .
Starting at the root node of T̃v (i.e., the node v), iteratively keep picking the
centroidal child till we reach an internal node having only leaves as its children.
Such a path is called the centroidal path of T̃v and is denoted by Cent(T̃v). Cost
of the centroidal path is defined as

cost(Cent(T̃v)) =
∑

x∈Cent(T̃v)

|L(x)|.

Remark: It is easier to visualize the centroidal path if we make the centroidal
child of each node as the right most child. Then, the Cent(T̃v) will be the right
extreme path starting at v.

We now prove the inductive step in Lemma 1. Consider an internal node u.
We wish to show that cost(T̃u) ≤ (4 logn)cost(T ∗

L(u)), where n = |L(u)|
Cost of T̃u can be decomposed into two parts by considering cost incurred

along the centroidal path of T̃u and the remaining cost. We say that an internal
node v of T̃u is adjacent to the centroidal path Cent(T̃u), if v is not part of
the centroidal path, but it is a child of some node in the centroidal path. Let
Adj denote the set of all nodes adjacent to Cent(T̃u). Then, the cost of T̃ can
expressed as below; the expression follows from Proposition 1.

cost(T̃u) = cost(Cent(T̃u)) +
∑

v∈Adj

cost(T̃v). (1)
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Consider any v ∈ Adj. Since v is a non-centroidal node, we have |L(v)| ≤ n/2.
Moreover, the number of internal nodes in T̃v is less than that of u. Thus, by
the inductive hypothesis, we have that

cost(T̃v) ≤ 4 log(n/2)T ∗
L(v). (2)

In Lemma 2 (see Section 5), we show that

cost(Cent(T̃u)) ≤ 4cost(T ∗
L(u)) (3)

Assuming the above bound, we can complete the proof of Lemma 1. So,

cost(T̃u) = cost(Cent(T̃L(u))) +
∑

v∈Adj

cost(T̃v) (from Eqn. 1)

≤ 4cost(T ∗
L(u)) +

∑
v∈Adj

cost(T̃v) (from Eqn. 3)

≤ 4cost(T ∗
L(u)) +

∑
v∈Adj

4 log(n/2)cost(T ∗
L(v)) (from Eqn. 2)

≤ 4cost(T ∗
L(u)) + 4 log(n/2)cost(T ∗

L(u))
(from Prop. 2, taking E = L(u))

≤ 4 log(n)cost(T ∗
L(u))

We have completed the proof of Lemma 1 and hence, Theorem 1, assuming
Lemma 2. �

5 Bound on the Centroidal Cost

In this section, we will prove the following lemma.

Lemma 2. For any internal node u ∈ T̃ , cost(Cent(T̃u)) ≤ 4cost(T ∗
L(u)).

Proof. Let us start by simplifying the notation. Consider any internal node u ∈
T̃ . Let T̃ = T̃u be the greedy subtree rooted at u. and let E = L(u) be the
entities handled by T̃ . Notice that T̃ is nothing but the tree constructed by the
greedy algorithm, if E is the set of input entities. Let T ∗ = T ∗

L(u) be the optimal

tree for E. Our goal is to argue that cost(Cent(T̃u)) ≤ 4cost(T ∗).
Let r be the length of Cent(T̃ ) and let the nodes on the path be u1, u2, . . . , ur.

For 1 ≤ i ≤ r, write Ei = L(ui). Let a1, a2, . . . ar be the attributes associated
with u1, u2, . . . , ur, respectively. Consider a node ui, for some 1 ≤ i < r. Let
Ci = Cover(Ei, ai); we say that ui covers the entities in Ci. The node ur is a
boundary case, and is handled separately. The children of ur are all leaves and
these are given by Er. Recall that Cover(Er, ar) includes all the entities in Er,
except one. For the node ur, we define Cr = Er. Note that each entity in E is
covered by exactly one node among u1, u2, . . . , ur. See Figure 3(a); here, r = 4.
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Fig. 3. Centroidal paths of the greedy and the optimal tree

Remark: Each node ui handles the set of entities given by Ei. The node splits
Ei into two parts: the set Ci covered by ui and the set Ei+1 handled by ui+1.
An alternative way to view cost(Cent(T̃ )) is as follows. Each entity in Ci pays
a cost of i. Now, cost(Cent(T̃ )) is the sum of the cost paid by all the entities,
i.e., cost(Cent(T̃ )) =

∑r
i=1 i|Ci|. The above function is similar to the objective

function in the MSSC problem. This connection allows us to utilize ideas from
the analysis of the greedy algorithm for MSSC by Feige et al. [10].

Recall that the cost of the centroidal path cost(Cent(T̃ )) is given by Σr
i=1|Ei|.

Consider a node ui, for some 1 ≤ i ≤ r. We imagine that the node ui pays a
cost of |Ei| towards the centroidal cost. Distribute this cost equally among the
entities covered by ui: for each e ∈ Ci, define its price

pe =
|L(ui)|
|Ci|

Notice that
cost(Cent(T̃ )) =

∑
e∈E

pe.

Now, let us consider the optimal tree T ∗. For each entity e ∈ E, let �∗(e)
denote length of the path from the root to e in T ∗; this is viewed as the cost
paid by e in T ∗. Recall that cost(T ∗) = Σe∈E�

∗(e).
We will now bound the price paid by any entity e in the greedy solution T̃

by the cost paid by some entity e∗ in the optimal solution T ∗ (within a factor
of two). For this, we define a mapping π : E → E that maps entities in T̃ to
entities in T ∗ such that an entity e in T̃ will charge its price pe to the entity
π(e) in T ∗. Our mapping π will satisfy the following two properties:

1. For any entity e∗ ∈ E, there are at most two entities mapped to it (i.e.,
|{e : π(e) = e∗}| ≤ 2).

2. For any entity e ∈ E, pe ≤ 2�∗(π(e)).
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Fig. 4. Illustration of the mapping π and Left∗

We call such a mapping to be nice. We shall exhibit a nice mapping π in Section 6.
Given such a mapping, we can now see that cost(Cent(T̃ )) ≤ 4cost(T ∗). This
completes the proof of Lemma 2. �

6 A Nice Mapping

In this section, we exhibit a nice mapping π claimed in the proof of Lemma 2.
We arrange the nodes in E in the order in which they are covered by the

nodes u1, u2, . . . , ur. Namely, first place all the nodes in C1 (in some arbitrary
order), followed by those in C2 and so on, finally ending with those in Cr. Let
this ordering be denoted σ = e1, e2, . . . en (where n = |E|). In this ordering, the
entities come in blocks: first C1, then C2 and so on, ending with Cr.

Now, let us consider the optimal tree T ∗. Arrange the entities in ascending
order of cost �∗(·) they pay in T ∗. Namely, all the entities that pay a cost of 1 (if
any) are placed first (in some arbitrary order), followed by those paying a cost of
2 (if any) and so on. Let this ordering by denoted as σ∗ = e∗1, e

∗
2, . . . , e

∗
n. In σ∗, as

we scan from left to right, the cost paid by the entities increases monotonically.
We now define the mapping π as follows. Scan the lists σ and σ∗ from right

to left, picking two entities from σ and mapping them both to a single entity in
σ∗. Formally, if e is an entity appearing in position i from the right in σ, it will
be attached to the entity appearing in position �i/2� from the right in σ∗. See
Figure 4(a). Clearly, every entity in σ∗ has at most two entities from σ mapped
to it. Thus, the mapping π satisfies the Part (1) of the niceness property. Now,
we shall show that π also satisfies Part (2) of the niceness property.

6.1 Bounding Greedy Price

In this section, we will show that for any entity e in σ, p(e) ≤ 2�∗(π(e)). We will
use the following notations.

Consider any subset of entities S ⊆ E . We extend the notion of coverage
considering only the entities in S and define the concept of CoverS(·, ·). Let
X ⊆ E be a subset of entities and a be an attribute. The attribute a partitions
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the entities X into X1, X2, . . . , XK , where Xj = {e ∈ X : e.a = j}. Let Xj′

be set among these that has the maximum size, taking only entities in S into
account; meaning, let j′ = argmaxi|Xi ∩ S|. Then, CoverS(X, a) is defined to
include every set Xi, except Xj′ :

CoverS(X, a) =
⋃

i∈({1,2,...,K}−j′)

(Xi ∩ S)

Consider the optimal tree T ∗ and S ⊆ E be some subset of entities. In T ∗, we
define the notion of centroidal path with respect to S. For any internal node y ∈
T ∗, let L(y) be the leaves in the subtree rooted at y. By considering only those
entities in S, we get LS(y); i.e., define LS(y) = L(y) ∩ S. Consider an internal
node v ∈ T ∗. Among the children of v, let y be node having the maximum value
of LS(y) (breaking ties arbitrarily); such a y is called the S-centroidal child of v.
The S-centroidal path of T ∗ is defined next: starting with the root node of T ∗,
we traverse the tree by picking up the S-centroidal child in each step, until we
reach some node y in which the entities in LS(y) are all children of y.

We are now ready to prove the Part (2) of the niceness property.

Lemma 3. For any entity e in σ, �∗(π(e)) ≥ p(e)/2.

Proof. Consider some entity e in σ. Let uh be the node covering e, so that
e ∈ Ch. Recall that uh lies on the centroidal path of T̃ . It handles the entities
Eh = ∪r

i=hCi. If h < r, uh splits Eh into Ch (which it covers) and Eh+1 =
∪r

i=h+1Ci. Let R = Eh. Note that pe = |R|/|Ch|.
Let s be the length of R-centroidal path of T ∗ and let v1, v2, . . . , vs be nodes

appearing on the path. For 1 ≤ i ≤ s, let E∗
i = L(vi) be the entities handled by

vi. Let b1, b2, . . . , bs be the attributes associated with these nodes. We next define
the coverage obtained by each node along the R-centroidal path. For 1 ≤ i ≤ s,
define RC∗

i = CoverR(E∗
i , bi). Consider 1 ≤ t ≤ s. We say that the node vt

covers all the entities in RC∗
t and that each entity α ∈ RC∗

t is said to be covered
in the time-step t. The last node vs presents a boundary case. The entities in
LR(vs) are all children of vs; among these all, except one, are included in RC∗

s

and covered by vs; we call the excluded entity as orphan in T ∗. So, all entities
in σ∗, except the orphan, are covered by node vi. See Figure 3(b); here s = 4.

Let Left∗ is the entities in R that appear before π(e) in σ∗. Formally, let Pred
be the set of all entities that appear before π(e) in σ∗ (including π(e)). Then,
Left∗ = Pred ∩R. See Figure 4(b).

Observation 1: Notice that for any entity e′ ∈ Left∗, �∗(e′) ≤ �∗(π(e)) (since,
cost of entities in σ∗ is monotonically increasing).

We now present an outline of the proof. Intuitively, we will show the following
three claims: (i) |Left∗| ≥ |R|/2; (ii) an entity covered in time-step t pays a
cost of at least t in T ∗; (iii) in each time-step t, the optimal tree T ∗ can cover
at most |Ch| entities from R. It would follow that it takes at least |R|/(2|Ch|)
time-steps to cover Left∗. Therefore, some entity in Left∗ pays a cost of at least
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|R|/(2|Ch|). From Observation 1, it follows that �∗(π(e)) ≥ |R|/(2|Ch|). We now
formally prove the claims.

Claim 1: |Left∗| ≥ �R/2�.
Proof. Since e ∈ Ch and R = ∪r

i=hCi, we have that at most R entities (including
e) appear to the right of e in σ. By the definition of the mapping π, we have that
in σ∗, at most �R/2� entities appear to the right of π(e) including π(e). Thus,
in σ∗, at most �R/2� − 1 entities appear to the right of π(e) excluding π(e). It
follows that |Left∗| ≥ �R/2�+ 1 ≥ �R/2�. �
Claim 2: Consider any 1 ≤ t ≤ s. Any entity α covered in the time-step t in
T ∗ must satisfy �∗(α) ≥ t.

Proof. To reach to root of T ∗, α must climb up along the first t nodes of the
R-centroidal path. �
Claim 3: For 1 ≤ t ≤ s, at most |Ch| entities from R can be covered in time-
step t, i.e, |RC∗

t | ≤ |Ch|.
Proof. The claim is proved using the fact that the greedy procedure picked at-
tributes that give maximum coverage. Refer to Figure 5 for an illustration. Recall
that LR(vt) ⊆ R is the entities from R handled by vt and bt is the attribute as-
sociated with vt. The attribute bt partitions LR(vt) into X∗

1 , X
∗
2 , . . . , X

∗
K , where

X∗
i = {α ∈ LR(vt) : α.bt = i}. Let j∗ = argmaxi|X∗

i |. Then, note that

RC∗
t =

⋃
i∈{1,2,...,K}−j∗

X∗
i .

By contradiction, suppose |RC∗
t | > |Ch|. It is easy to see that the union of

any K − 1 distinct sets from X∗
1 , X

∗
2 , . . . , X

∗
K contains at least |Ch| entities.

In the greedy tree, imagine what would happen if we picked bt (instead ah)
as the attribute at the node uh to split R = Eh. Let the partition obtained
be Y1, Y2, . . . , YK , where Yi = {α ∈ R : α.bt = i}. So, Cover(R, bt) is the
union of some K − 1 distinct subsets from Y1, Y2, . . . , YK . Note that X∗

i ⊆
Yi, for all 1 ≤ i ≤ K. Therefore, Cover(R, bt) is a superset of the union of
some K − 1 subsets from X∗

1 , X
∗
2 , . . . , X

∗
K . This implies that |Cover(R, bt)| >

|Ch|. This contradicts the fact that greedy’s choice of ah has the maximum
coverage. �
The proof proceeds intuitively as follows. By Claim 3, at most Ch entities from R
are covered in each time step. Since Left∗ ⊆ R, it follows that at most Ch entities
in Left∗ are covered in each time step. Therefore, it takes at least |Left∗|/|Ch|
time-steps to cover all the entities in Left∗. Since |Left∗| ≥ �R/2� (by Claim 1),
it takes at least 
R/2�

|Ch| steps to cover all the entities in Left∗. Thus, by Claim 2,

some entity in Left∗ pays a cost of at least 
|R|/2�
|Ch| ) ≥ |R|

2|Ch| . From Observation

1, it follows that �∗(π(e)) ≥ |R|
2|Ch| .

The only issue in the above argument is that by definition, orphan is not
said to be covered by any node. This is a problem if orphan belongs to Left∗.
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Fig. 5. Illustration for Claim 3 of Lemma 3

However, this needs only a minor argument. Notice that orphan pays a cost of at
least s. Recall that any internal node of the R-centroidal path of T ∗ can cover at
most |Ch| entities from R. Therefore at most s|Ch| entities of R can be covered
in s time-steps. But, in the s time-steps all the entities in R, except the orphan
get covered. Therefore, s|Ch| ≥ R − 1 and hence, s ≥ (R − 1)/|Ch|. It follows
that s ≥ R/(2|Ch|), for R ≥ 2. It is assured that R ≥ 2, since ur is an internal
node of T̃ and therefore, has at least two children. Therefore, s ≥ R

2|Ch| . Thus,
orphan pays a cost of at least R

2|Ch| . Since orphan is in Left∗, by observation 1,

we conclude that �∗(π(e)) ≥ |R|
2|Ch| = pe/2. �
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Abstract. The central goal of data stream algorithms is to process massive
streams of data using sublinear storage space. Motivated by work in the database
community on outsourcing database and data stream processing, we ask whether
the space usage of such algorithms be further reduced by enlisting a more power-
ful “helper” who can annotate the stream as it is read. We do not wish to blindly
trust the helper, so we require that the algorithm be convinced of having com-
puted a correct answer. We show upper bounds that achieve a non-trivial trade-
off between the amount of annotation used and the space required to verify it.
We also prove lower bounds on such tradeoffs, often nearly matching the upper
bounds, via notions related to Merlin-Arthur communication complexity. Our re-
sults cover the classic data stream problems of selection, frequency moments,
and fundamental graph problems such as triangle-freeness and connectivity. Our
work is also part of a growing trend — including recent studies of multi-pass
streaming, read/write streams and randomly ordered streams — of asking more
complexity-theoretic questions about data stream processing. It is a recognition
that, in addition to practical relevance, the data stream model raises many inter-
esting theoretical questions in its own right.

1 Introduction

The data stream model has become a popular abstraction when designing algorithms
that process network traffic and massive data sets [4, 21]. The computational restric-
tions that define this model are severe: algorithms must use a relatively small amount
of working memory and process input in whatever order it arrives. This captures con-
straints in high-throughput data processing settings. For example, network monitoring
often requires (near) real-time response to anomalies and hence traffic must be pro-
cessed as it arrives, rather than being stored and processed offline. For massive data sets
stored in external memory, being able to process the data in any order avoids the I/O
bottlenecks that arise with algorithms that assume random access. Unfortunately, while
some problems admit efficient streaming algorithms, many others provably require a lot
of working memory or multiple passes over the data, which is typically not feasible.

This paper considers the potential for off-loading stream computation to a more pow-
erful “helper” so that single pass, small-space stream computation is possible even for
such “hard” functions. The additional power of the helper can arise in a variety of sit-
uations, e.g., multiple processing units, special purpose hardware, or a third party who
provide a commercial stream processing service. This last case has recently garnered

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 222–234, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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attention in the context of outsourcing database processing [27, 29, 34]. A key issue is
that we do not want to blindly trust the helper: hardware faults or outright deception
by a third-party would lead to incorrect results. So our protocols must have sufficient
information contained in the help to allow the “verifier” to be convinced that they have
obtained the correct answer. We think of this help as annotations augmenting the orig-
inal stream. Our goal is to design protocols so that the verifier finds the correct answer
with an honest helper, and is likely not fooled by a dishonest helper. The primary met-
rics are the amount of annotations provided by the helper and the amount of working
space used by the verifier.

Our approach is naturally related to Interactive Proofs and Merlin-Arthur commu-
nication protocols [1, 5, 25] but differs in two important regards. Firstly, the verifier
must process both the original data and the advice provided by the helper under the
usual restrictions of the data stream model. Secondly, we focus on annotations that can
be provided online. Note that in Merlin-Arthur communication, it is assumed that the
helper is omniscient and that the advice he provides can take into account data held
by any of the players. In the stream model, this would correspond to prescience where
the annotation in the stream at position t may depend on data that is yet to arrive. In
contrast we are primarily interested in designing algorithms with online annotation, i.e.,
annotation that only depends on data that has arrived before the annotation is written.
This corresponds to a helper who sees the data concurrently with the verifier.

Our Contributions: We first formally define the relevant models: traditional and online
Merlin-Arthur communication, and streaming models with either prescient or online
annotations. We then investigate the complexity of a range of problems in these models,
including selection, frequency moments, and graph problems such as triangle-counting
and connectivity. Estimating frequency moments in particular has become a canonical
problem when exploring variants of the data stream model such as random order streams
[10] and read/write streams [7]. Our results include:

– Selection. The problem of finding the median of m values in the range [n] high-
lights the difference between prescient and online annotation. For any h,v such
that hv ≥ m we present an O(v logm)-space algorithm that uses O(h logm logn)
bits of online annotation. Furthermore, we show that this trade-off is optimal up to
polylogarithmic factors. In contrast, a trivial O(logmn) space algorithm can verify
O(logn) bits of prescient annotation.

– Frequency Moments and Frequent Items. We next consider properties of { fi}i∈[n]
where fi is the frequency of the token “i”. For any h,v such that hv≥ n, we present
an O(h logm)-space algorithm that uses (φ−1v logm) bits of online annotation and
returns exactly the tokens whose frequency exceeds φm. We also show an O(logm)
space algorithm that uses O(ε−1 log2 m) bits of online annotation and returns a set
of tokens containing {i : fi ≥ φm} and no elements from {i : fi ≤ (φ − ε)m}. This
algorithm relies on a powerful way that annotation can be used in conjunction with
sketch-based algorithms. For any h,v such that hv≥ n, we present an O(kv logm)-
space algorithm that uses O(k2h logm) bits of online annotation and computes Fk =
∑i f k

i exactly (k ∈ Z+). The trade-off is optimal up to polylogarithmic factors even
if the algorithm is allowed to use prescient annotation. To prove this we present the
first Merlin-Arthur communication bounds for multi-party set-disjointness.
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– Graph Problems. For graphs defined by streams of m edges on n nodes, we show
that only O(logn) space is needed by the verifier to determine whether a graph is
connected, contains a perfect matching, or is triangle-free, with annotation propor-
tional to the input size. We show that our algorithms are optimal in many cases. For
any h,v such that hv ≥ n3, we also present an Õ(v) space algorithm for counting
triangles that uses Õ(h) bits of annotation where Õ hides poly-logarithmic factors.

Related Work: When multiple passes over the input are allowed, it is natural to con-
sider annotations that can be written to the “input tape” and are available to the stream
algorithm in subsequent passes [3,14,15]. The read/write stream model, which provides
both multiple passes and multiple working tapes, can be viewed as a natural extension
of the multi-pass annotation model [7, 8, 20]. However, such annotations are of no use
if only a single pass over the input is allowed.

Few examples of prior work have explicitly considered annotations that are provided
by an (untrusted) third party. Gertner et al. [19] showed that the set of languages recog-
nized by a verifier with logarithmic space given annotation polynomial in the input size
is exactly NP. In contrast, our focus is on the case where the annotation is (sub)linear
in the input size and can be provided online; the distinction between prescient and on-
line annotation was not relevant in their results because with polynomial annotation, the
entire input could be repeated. Feigenbaum et al. [17] observe that a logarithmic space
verifier can check a linear space annotation for the disjointness problem. In communica-
tion complexity, the role of non-deterministic advice has been studied more extensively,
see e.g., [5,26]. Recent works of Aaronson and Widgerson [1] and Klauck [25] are par-
ticularly relevant. They resolve the MA complexity of two-party set disjointness — we
extend some of their techniques to our streaming model.

There has also been more applied work which implicitly defines annotation proto-
cols. The notion of stream punctuations are, in our terminology, simple prescient anno-
tations, indicating facts such as that there are no more tuples relevant to timestamp t in
the remainder of the stream [33]. Work on stream outsourcing studies the problem of
verifying that a claimed “grouping” corresponds to the input data [34]. They solve exact
and approximate versions of the problem by using a linear amount of annotation. Lastly,
work on proof infused streams answers various selection and aggregation queries over
sliding windows [27] with logarithmic space and linear annotation. However, a critical
difference is that this work requires that the helper and verifier agree on a one-way hash
function, for which it is assumed the helper cannot find collisions. Our results are in a
stronger model without this assumption.

2 Models and Definitions

2.1 Communication Models

Let f : X1×·· ·×Xt → {0,1} be a function, where each Xi is a finite set. This naturally
gives a t-player number-in-hand communication problem, where Player i holds an input
xi ∈ Xi and the players wish to output f (x1, . . . ,xt) correctly, with high probability.

MA Communication: We first consider a variant of this communication model. A
Merlin-Arthur protocol (henceforth, “MA protocol”) for f is one that involves the
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usual t players, plus a “super-player,” called Merlin, who knows the entire input x =
(x1, . . . ,xt). The protocol works as follows: first Merlin deterministically writes a help
message h on the blackboard, and then Players 1 through t run a randomized protocol
P , using a public random string R, eventually outputting a bit out(P;x,R,h). To clar-
ify, R is not known to Merlin at the time he writes h. An MA protocol is δ -error if there
exists a function h : X1× . . .×Xt →{0,1}∗, such that:

1. If f (x) = 1 then PrR[out(P;x,R,h(x)) = 0]≤ δ .
2. If f (x) = 0 then ∀h′ PrR[out(P;x,R,h′) = 1]≤ δ .

We define err(P) to be the minimum δ such that the above conditions are satis-
fied. We also define the help cost hcost(P) to be the maximum length of h, over all
x, and the verification cost vcost(P) to be the maximum number of bits communi-
cated by Players 1 through t over all x and R. Finally, we define the cost of P to be
cost(P) = hcost(P)+ vcost(P). We then define the δ -error MA-complexity of f as
MAδ ( f ) = min{cost(P) : P is an MA protocol for f witherr(P) ≤ δ} . Further, we
define MA( f ) = MA1/3( f ).

Online-MA Communication: We also consider a variant of the above model, specific
to one-way protocols (i.e., protocols where the players speak once each, in increasing
order), where Merlin constructs t help messages h1, . . . ,ht so that the ith message is
only a function of the first i inputs. To make this precise we need to amend the definition
of δ -error: An online-MA protocol is δ -error if there exists a family of functions hi :
X1× . . .×Xi → {0,1}∗, such that:

1. If f (x) = 1 then PrR[out(P;x,R,h1(x1),h2(x1,x2), . . . ,ht(x1, . . . ,xt)) = 0]≤ δ .
2. If f (x) = 0 then ∀h′ = (h′1,h

′
2, . . . ,h

′
t) PrR[out(P;x,R,h′) = 1]≤ δ .

The message hi is revealed privately to the ith player. We define the help cost,
hcost(P), to be the maximum length of ∑i∈[t] |hi|. We define err(P),vcost(P), and
cost(P) as for MA. Define MA→δ ( f ) = min{cost(P) : P is an online MA protocol
for f with err(P)≤ δ} and write MA→( f ) = MA→1/3( f ).

2.2 Data Stream Models

The annotated data-stream models are most conveniently defined relative to the above
communication models. Again we consider the computation of a function f on a t-
tuple x ∈ U t for some universe U , e.g., {0,1} or [n]. The main difference from the
communication model is that we further insist that the message sent by player i must
be computed with limited memory and only sequential access to xi and hi. Without
advice, this is equivalent to the usual definition of the single-pass data stream model.
We will also consider non-Boolean functions f and a notion of approximation: we say
f is computed correctly if the answer returned is in some pre-defined set C( f (x)), e.g.,
{a : |a− f (x)| ≤ ε f (x)}.
Stream Model with Prescient Annotations: In the context of the stream model we
consider the help h provided by Merlin to be decomposed into t (deterministic) func-
tions that map the input to binary help strings: h1 : U t →{0,1}∗, . . . ,ht : U t →{0,1}∗.



226 A. Chakrabarti, G. Cormode, and A. McGregor

Let h(x) := (h1(x), . . . ,ht(x)). We then consider a randomized protocol, A , with ora-
cle access to a random string R, where Player i computes a message of size at most
w given only w bits of working memory and only sequential access to the bit stream
〈xi,hi(x)〉. The output of this protocol is allowed to include the special symbol ⊥ if
the verifier is not convinced of the validity of the annotation. Such a protocol is said
be δ -error if PrR[out(A ;x,R,h) �∈C( f (x))] ≤ δ and PrR[out(A ;x,R,h′) �= ⊥]≤ δ for
any h′ = (h′1,h

′
2, . . . ,h

′
t ) �= h(x). We define err(A ) to be the minimum δ such that the

above conditions are satisfied. We define the help cost hcost(A ) to be the maximum
length of ∑i |hi|, over all x, and the verification cost vcost(A ) = w. We say that A and
h forms an (h,v) prescient scheme if hcost(A ) = O(h + 1), vcost(A ) = O(v + 1) and
err(A )< 1/3.

Stream Model with Online Annotations: For online annotations we insist that the
ith help function is only a function of (x1, . . . ,xi). The other definitions are as above.
We say that A and h form an (h,v) online scheme as above if hcost(A ) = O(h + 1),
vcost(A ) = O(v + 1) and err(A )< 1/3.

2.3 Preliminary Lemmas

In multiple places we make use of basic fingerprinting techniques which enable a veri-
fier to test whether two large streams represent the same object using small space. Let
Z+ denote the set of non-negative integers, and let Fq denote the finite field with q ele-
ments (whenever it exists). Let A = 〈a1, . . . ,am〉 denote a data stream, with each ai ∈ [n].
Then A implicitly defines a frequency distribution f(A) := ( f1, . . . , fn), where f j =
|{i ∈ [m] : ai = j}|. Fingerprints are formed by computations over Fq, as BFq(r, f) :=
∏n

j=1(r− j) f j . To make fingerprints, we choose q based on an a priori bound m on ‖f‖1.

Lemma 1. Let q≥m be a prime, and choose r uniformly at random from Fq. Given an
input stream A of length m, the fingerprint BFq(r, f(A)) can be computed using O(logq)
storage. Suppose f′ ∈ Zn

+ is a vector with f′ �= f(A) and ‖f′‖1 ≤ m. Then the “collision
probability” Prr∈RFq [BFq(r, f′) = BFq(r, f(A))]≤ m/q.

The proof of this fact, along with other proofs, is deferred to the full version. This
fingerprint implies a prescient protocol for a multi-set inclusion problem:

Lemma 2. Let A⊂U be a set of size n and let B⊂U be multi-set of size t. Let B′ be
the set formed by removing all duplicate elements from B. Then, given a stream which
begins with the elements of A followed by the elements of B, there is a (t log t, logt)
prescient scheme that establishes whether B′ = A.

3 Warm-Up: Index and Selection

In this section, we present an online scheme for the SELECTION problem: Given desired
rank ρ ∈ [m], output an item ak from the stream A = 〈a1, . . . ,am〉 ∈ [n]m, such that
|{i : ai < ak}| < ρ and |{i : ai > ak}| ≤ m−ρ . We assume m = Θ(n) to simplify the
statement of bounds. An easy (logm, logm) prescient scheme is for the helper to give an
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answer s as annotation at the start of the stream. The verifier need only count how many
items in the stream are (a) smaller than s and (b) greater than s. The verifier returns s
if the rank of s satisfies the necessary conditions. Next, we present (almost) matching
upper and lower bounds when only online annotation is allowed.

To do this, we first consider the online MA complexity of the communication prob-
lem of INDEX: Alice holds a string x ∈ {0,1}N , Bob holds an integer i ∈ [N], and the
goal is for Bob to output INDEX(x, i) := xi. The lower bound for SELECTION will fol-
low from the lower bound for INDEX and a key idea for the SELECTION upper bound
follows from the communication protocol for INDEX.

Theorem 1 (Online MA complexity of INDEX). Let h and v be integers such that hv≥
N. There is a online MA protocol P for INDEX, with hcost(P) ≤ h and vcost(P) =
O(v logh); and any online MA protocol Q for INDEX must have hcost(Q)vcost(Q) =
Ω(N). So, in particular, MA→(INDEX) = Θ̃(

√
N).

Proof. For the lower bound, we use the given online MA protocol Q to build a ran-
domized one-way INDEX protocol Q′. Let h = hcost(Q). Let B(n, p) denote the bi-
nomial distribution with parameters n and p, and let k be the smallest integer such that
X ∼B(k,1/3)⇒ Pr[X > k/2] ≤ 2−h/3. A standard tail estimate gives k = Θ(h). Let
a(x,R) denote the message that Alice sends in Q when her random string is R, and
let b(a, i,h) be the bit Bob outputs upon receiving message a from Alice and h from
Merlin. In the protocol Q′, Alice chooses k independent random strings R1, . . . ,Rk

and sends Bob a(x,R1), . . . ,a(x,Rk). Bob then outputs 1 iff there exists a h-bit string
h such that MAJORITY (b(a(x,R1), i,h), . . . ,b(a(x,Rk), i,h)) = 1. Clearly, cost(Q′) ≤
k · vcost(Q) = O(hcost(Q)vcost(Q)). We claim that Q′ is a 1

3 -error protocol for IN-
DEX whence, by a standard lower bound (see, e.g., Ablayev [2]), cost(Q′) = Ω(N).

To prove the claim, consider the case when xi = 1. By the correctness of Q there
exists a suitable help message h from Merlin that causes Pr[b(a(x,R), i,h) = 0]≤ 1/3.
Thus, by construction and our choice of k, the probability that Bob outputs 0 in Q′ is at
most 2−h/3. Now suppose xi = 0. Then, every possible message h from Merlin satisfies
Pr[b(a(x,R), i,h) = 1] ≤ 1/3. Arguing as before, and using a union bound over all 2h

possible messages h, we see that Bob outputs 1 with probability at most 2h ·2−h/3 = 1
3 .

The upper bound follows as a special case of the two-party set-disjointness protocol
in [1, Theorem. 7.4] since the protocol there is actually online. We give a more di-
rect protocol which establishes intuition for our SELECTION result. Write Alice’s input
string x as x = y(1) · · ·y(v), where each y( j) is a string of at most h bits, and fix a prime q
with 3h< q< 6h. Let y(k) be the substring that contains the desired bit xi. Merlin sends
Bob a string z of length at most h, claiming that it equals y(k). Alice picks a random
r ∈ Fq and sends Bob r and the strings BFq(r,y(1)), . . . ,BFq(r,y(v)), thus communicat-
ing O(v logq) = O(v logh) bits. Bob checks if BFq(r,z) = BFq(r,y(k)), outputting 0 if
not. If the check passes, Bob assumes that z = y(k), and outputs xi from z under this
assumption. By Lemma 1, the error probability is at most h/q< 1/3.

Remark 1. The above lower bound argument in fact shows that an online MA protocol
P for an arbitrary two-party communication problem f satisfies hcost(P)vcost(P)
= Ω(R→( f )). Thus, MA→( f ) = Ω(

√
R→( f )) where R→( f ) is the one-way, random-

ized communication complexity of f .
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Theorem 2. For any h,v s.t. hv≥ m there is a (h logm,v logm) online scheme for SE-
LECTION and any (h,v) online scheme for SELECTION must have hv = Ω(m).

Proof. Conceptually, the verifier builds a vector r = (r1, . . . ,rn) ∈ Zn
+ where rk = |{ j ∈

[m] : a j < k}|. This is done by inducing a new stream A′ from the input stream A: each
token a j in A causes virtual tokens a j + 1,a j + 2, . . . ,n to be inserted into A′. Then
r = f(A′); note that ‖r‖1 = O(m2). As in the INDEX protocol, the vector r is arranged
into v subvectors of dimension h, and the verifier retains only fingerprints — based on
a prime q = O(m2) — on each subvector. After the stream is seen, the helper claims
that the answer is s, by providing the values of ri for all i in the subvector containing s.
The verifier fingerprints the provided block, and outputs s if it agrees with their stored
fingerprint, otherwise it returns ⊥. For the lower bound, we use a standard reduction
from the INDEX problem and this is deferred until the full version.

4 Frequency Moments and Frequent Items

In this section we consider properties of f = { fi : i ∈ [n]} where fi is the frequency of
the token “i” in the stream. In particular, the kth frequency moment is defined as Fk =
∑i∈[n] f k

i and the frequent items are defined as the set {i : fi > T}, for some threshold T .
Both problems have a long history in the data streams literature. It is well known that in
the traditional data stream model, exact computation of Fk (k �= 1) requires Ω(n) space.
Even constant factor approximation requires Ω(n1−2/k) space [11].

Frequent Items. We prove results on finding exact and approximate frequent items. The
approximate result relies on a powerful way that annotation can be used in conjunction
with sketch based algorithms (such as Count-Sketch [12] and Count-Min [13]) and we
expect this will have other applications. The approximate case is more complicated than
the exact case and further discussion is deferred to the full version.

A prescient helper can list the set of claimed frequent items, along with their fre-
quencies, for the verifier to check against the stream. But we must also ensure that the
helper is not able to omit any items that exceed the threshold. Our result shows a com-
pact witness set for the exact case, which leads to online schemes for the exact and
approximate versions of the problem.

Theorem 3. There exists a (φ−1 log2 m,φ−1 log2 m) prescient scheme and a
(φ−1nα logm, n1−α logm) online scheme (α ∈ [0,1]) for finding {i : fi > T := φm}.
Any (h,v) online scheme for this must have hv = Ω(n).

Proof. The lower bound follows from the hardness of INDEX and we omit the simple re-
duction from this presentation. For the upper bound consider a binary tree whose leaves
are the elements of the universe [n]. Associate each node v with the set of elements at the
leaves of the the subtree rooted at v. Call this set S(v) where S(u)= {i} if u is the ith leaf.
Let g(v) = ∑i∈S(v) fi. Note that if u is a node and v is any ancestor of u, then g(u)≤ g(v).
Now observe that there is a witness set of size O(φ−1 logn) to identify all leaves i with
fi > T : this consists of the set W of all such is in addition to pairs of nodes (u,v) such
that u is the child of v, and g(u)≤ T but g(v)> T . Here, each pair (u,v) ∈W is witness
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to the fact that no leaves i ∈ S(u) can have fi > T . The sets S(u) for such u together
with {i : fi > T} form a partition of [n]. Further, there can be at most φ−1 such nodes
v at any level of the binary tree, as the sum of g(v) is at most m. This bounds the size
of this witness set to |W | = O(φ−1 logn). This leads to two schemes for the problem.
In the first,prescient scheme, the helper lists the members of W and their corresponding
frequencies. The verifier remembers this information, and ensures that it agrees with
the frequencies in the stream. Assuming m = Ω(n) gives hcost = vcost = φ−1 log2 m.
In the second, online scheme, the 2n−1 nodes in the tree are divided into v groups of
h such that hv ≥ 2n. The verifier keeps a fingerprint of the frequency vector of each
group. After the stream is seen, the helper provides the witness set W , sorted by the
natural order on nodes, plus the frequency vector of all groups containing items named
in W . This totals min{O(|W |h),n} items, yielding a (min{n logm,hφ−1 logm},v logm)
online scheme. A subtlety here is that the output size can exceed the verifier’s memory,
so the verifier may output a partial result before returning⊥.

Frequency Moments. We now show a family of algorithms that exhibit an optimal ver-
ification/annotation trade-off for the exact computation of Fk. Our algorithm is inspired
by the “algebrization” results of Aaronson and Wigderson [1] but the key idea can be
traced back to classic interactive proof protocols of Lund et al. [28] and Shamir [31].

Theorem 4. Suppose h and v are positive integers with hv≥ n. Then, for integers k≥ 1,
there exists a (k2h logm,kv logm) online scheme for computing Fk exactly.

Proof. Let A be the input stream. We map the length n vector f(A) into an h× v matrix
( f (x,y))x∈[h],y∈[v], using any canonical bijection between [n] and [h]× [v]. Pick a prime
q≥max{mk,3kh}; since m≥ n, this can be done while ensuring that logq = O(k logm).
We shall work in the field Fq, which is safe because q exceeds the maximum possible
value of Fk(A). Let f̃ (X ,Y ) ∈ Fq[X ,Y ] be the unique polynomial satisfying degX( f̃ ) =
h−1, degY ( f̃ ) = v−1 and f̃ (x,y) = f (x,y) for all (x,y) ∈ [h]× [v]. The verifier picks a
random r ∈ Fq. As the stream is read, the verifier maintains a sketch consisting of the v
quantities f̃ (r,1), . . . , f̃ (r,v). Clearly, this sketch fits in O(v logq) bits of storage.

At the end of the stream, the annotator provides a polynomial s′(X) ∈ Fq[X ] that
is claimed to be equal to s(X) := ∑y∈[v] f̃ (X ,y)k, which has degree at most k(h− 1),
thus using O(kh logq) bits of annotation. The verifier evaluates s′(r) from the supplied
annotation and computes s(r) = ∑y∈[v] f̃ (r,y)k from his sketch, checks that s′(r) = s(r)
and outputs ⊥ if not. If the check passes, the verifier outputs ∑x∈[h] s

′(x) as the final
answer. Clearly, this answer is correct if the annotation was honest. Further, the verifier
is fooled only if s′ �= s, but s′(r) = s(r); the probability of this is at most k(h−1)/q≤ 1

3 ,
by choice of q.

It remains to show that the sketch can be computed incrementally in O(v logq)
space. To maintain each f̃ (r,y) for y ∈ [v], note that upon reading a new token i ∈ [n]
that maps to (a,b) ∈ [h]× [v], the necessary update is of the form f̃ (r,y)← f̃ (r,y)+
pa,b(r,y) , where pa,b(X ,Y ) = ∏i∈[h]\{a}(X − i)(a− i)−1 ·∏ j∈[v]\{b}(Y − j)(b− j)−1.
Since pa,b(r,y) = 0 for any y ∈ [v]\ {b}, the verifier need only update the single value
f̃ (r,b), by adding pa,b(r,b), upon reading this token. Note that using a table of O(v) ap-
propriate precomputed values, this update can be computed efficiently. For h = v =

√
n,

this takes a constant number of arithmetic operations per update.
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Numerous problems such as computing Hamming distance and Inner Product, and ap-
proximating F2 and F∞, can be solved using Fk as a primitive or using related techniques.
We defer discussion to the full version. We next present lower bounds on the trade-off
possible for computation of Fk.

Theorem 5. Any (h,v) scheme that exactly computes Fk requires hv = Ω(n) and any
(h,v) scheme that approximates Fk up to a constant factor requires hv = Ω(n1−5/k).

These bounds are based on bounds we prove on the MA complexity of DISJn,t :
{0,1}nt → {0,1}, the t-party communication problem defined as follows. The input
is a t×n Boolean matrix, with Player i holding the ith row, for i ∈ [t]. The desired out-
put is ∧t

i=1 ∨n
j=1¬xi j , i.e., 1 iff the subsets of [n] represented by the rows are disjoint.

We call an input x = (xi j)i∈[t], j∈[n] valid if every column of x has weight either 0 or
1 or t, and at most one column has weight t. Note that DISJn,t is naturally related to
frequency moments: for any valid input x, Fk(S)≥ tk if DISJn,t(x) = 0 and Fk(S)≤ n if
DISJn,t(x) = 1 where S is the multi-set { j : xi j = 1}. The next theorem, a generalization
of a result by Klauck [25], and reductions from DISJn,2 or DISJn,O(n1/k) establish the
first and second parts of Theorem 5 respectively in a straightforward manner. The next
theorem also resolves a question of Feigenbaum et al. [17].

Theorem 6. Let P be an ε-error MA protocol for DISJn,t , where ε ≤ 1/3. Then
hcost(P) ·vcost(P) = Ω(n/t4). In particular, MA(DISJn,t) = Ω(

√
n/t2).

Proof. A rectangle is defined as a subset of inputs of the form X1× ·· ·×Xt , where
each Xi ⊆ {0,1}n is a subset of all possible inputs for Player i. In deterministic com-
munication protocols, the inverse image of any transcript of such a protocol must be a
rectangle. Let A = DISJ−1

n,t (1) and B = DISJ−1
n,t (0).

Lemma 3 (Alon-Matias-Szegedy [4], generalizing Razborov [30]). There exists
distribution μ over valid inputs with 1) μ(A) = μ(B) = 1/2 and 2) μ(T ∩ B) =
(2e)−1μ(T ∩A)− t2−n/2t4

for each rectangle T . �

Assume t = ω(n1/4) since otherwise the bound is trivial. Put h = hcost(P) and
v = vcost(P). An input x ∈ A is said to be covered by a message h from Mer-
lin if PrR[out(P;x,R,h) = 0] ≤ ε . By correctness, every such input must be cov-
ered, so there exists a help message h∗ that covers every input in a set G ⊆ A, with
μ(G) ≥ 2−hμ(A) = 2−h−1. Fix Merlin’s message in P to h∗ and amplify the correct-
ness of the resulting randomized Merlin-free protocol by repeating it O(h) times and
taking the majority of the outputs. This gives us a randomized protocol P ′ for DISJn,t

with communication cost c = O(hv) whose error, on every input in G∪B, is at most
2−2h. Let μ ′ denote the distribution μ conditioned on G∪B. Note that, by condition (1)
of Lemma 3,

∀x ∈ {0,1}nt : either μ ′(x) = 0 or μ(x)≤ μ ′(x)≤ 2μ(x) . (1)

By fixing the random coins of P ′ we can obtain a deterministic protocol Q, for DISJn,t ,
such that errμ ′(Q) ≤ 2−2h and cost(Q) = c. By the rectangle property, there exist

disjoint rectangles T1,T2, . . . ,T2c such that out(Q;x) = 1 iff x ∈ ⋃2c

i=1 Ti. Therefore
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2c

∑
i=1

μ ′(Ti∩B)≤ 2−2h (2) and μ ′
(

A\
2c⋃

i=1

Ti

)
≤ 2−2h (3)

By (1), μ ′(A) = μ ′(G)≥ μ(G)≥ 2−h−1. Using (1), and a rearrangement of (3):

2c

∑
i=1

μ(Ti∩A) ≥ 1
2

2c

∑
i=1

μ ′(Ti∩A) ≥ 1
2

(
μ ′(A)−2−2h

)
≥ 2−h−3 .

Suppose c ≤ n/5t4 and n is large enough. Applying condition (2) of Lemma 3 we get

∑2c

i=1 μ(Ti ∩B) ≥ 2−h−3/(2e)− 2ct2−n/2t4 ≥ 2−h−6. However, by (1) and (2), we have
∑2c

i=1 μ(Ti∩B)≤ 2−2h, a contradiction. Hence hv = Ω(c) = Ω(n/t4).

5 Graph Problems

In this section we consider computing properties of graphs on n nodes, determined by
a stream of m edges [16, 21]. We present tight results for testing connectivity of sparse
graphs, determining if a bipartite graph has a perfect matching, and counting triangles.
Almost all proofs are deferred to the full version.

Triangles via Matrix Multiplication. Estimating the number of triangles in a graph
has received significant attention because of its relevance to database query planning
(knowing the degree of transitivity of a relation is useful when evaluating relational
queries) and investigating structure properties of the web-graph [6,9,23]. In the absence
of annotation, any single pass algorithm to determine if there is a non-zero number of
triangles requires Ω(n2) bits of space [6]. We show that the answer can be verified
with O(n2) annotation in logarithmic space. The following theorem, proved using ideas
from [6] coupled with Theorem 6, shows that this is best possible.

Theorem 7. Any (h,v) scheme for counting triangles must have hv = Ω(n2).

We now outline an online scheme with vcost = O(logn) and hcost = O(n2). A major
subroutine of our algorithm is the verification of matrix multiplication in our model.
That is, given n×n matrices A,B and C, verify that AB = C. Our technique extends the
classic result of Frievalds [18] by showing that if the helper presents the results in an
appropriate order, the verifier needs only O(logn) bits to check the claim. Note that this
much annotation is necessary if the helper is to provide C in his stream.

Theorem 8. There exists a (n2, logn) online scheme for matrix multiplication.

With this primitive, arbitrary matrix products A�,A�−1 . . .A2A1 are verified with O(�n2)
annotation by verifying A2,1 := A2A1, then A3,2,1 := A3A2,1, etc. Matrix powers A� are
verified with O(n2 log�) annotation.

Theorem 9. There is a (n2, logn) online scheme for counting triangles.

Proof. Denote the graph adjacency matrix by A, with Ai,i := 0. The helper lists Av,w

and A2
v,w for all pairs (v,w) in some canonical order. The verifier computes ∑v,w Av,wA2

v,w
as the number of triangles. The verifier uses fingerprints to check that A matches the
original set of edges, and the protocol in Theorem 8 to ensure that A2 is as claimed.

We also show that it is possible to trade-off the computation with the helper in a
“smooth” manner. The approach is based on an observation of Bar-Yossef et al. [6]:
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The frequency moments of a derived stream can be expressed in terms of the num-
ber of triples of nodes with exactly {0,1,2,3} edges between them. In small space we
can induce a length m(n− 2) stream by replacing each edge (u,v) by the set of triples
{(u,v,w) : w �= u,v}. It follows that the number of triangles can be expressed in terms
of the frequency moments of this derived stream, as (F3− 2F2 + F1)/12. By using the
protocol of Theorem 4, we obtain the following theorem.

Theorem 10. There is a (n3α ,n3−3α) online scheme for counting triangles (α ∈ [0,1]).

Bipartite Perfect Matchings. We now present an online scheme for testing whether a
bipartite graph has a perfect matching. Graph matchings have been considered in the
stream model [16,35] and it can be shown that any single pass algorithm for determining
the exact size of the maximum matching requires Ω(n2) space. We show that we can
off-load this computation to the helper such that, with only O(n2) annotation, the answer
can be verified in O(logn) space. This is shown to be best possible by combining a
reduction from [16] coupled with Theorem 1.

Theorem 11. There exists a (m, logn) online scheme for bipartite perfect matching and
any (h,v) online scheme for bipartite perfect matching requires hv = Ω(n2).

Connectivity. The problem of determining if a graph is connected was considered in
the standard stream model [16, 21] and the multi-pass W-stream model [15]. In both
models, it can be shown that any constant pass algorithm without annotations needs
Ω(n) bits of space. In our model, the helper can convince a verifier with O(logn) space
whether a graph is connected with only O(m) annotation. This is the best possible for
sparse graphs where m = O(n) by combining a reduction from [16] with Theorem 1.

Theorem 12. There exists a (m, logn) online scheme for connectivity and any (h,v)
online scheme for connectivity requires hv = Ω(n) even when m = O(n).
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Abstract. The conventional Tile Assembly Model (TAM) developed by
Winfree using Wang tiles is a powerful, Turing-universal theoretical frame-
work which models varied self-assembly processes. We describe a natural
extension to TAM called the Probabilistic Tile Assembly Model (PTAM)
to model the inherent probabilistic behavior in physically realized self-
assembled systems. A particular challenge in DNA nanoscience is to form
linear assemblies or rulers of a specified length using the smallest possible
tile set. These rulers can then be used as components for construction of
other complex structures. In TAM, a deterministic linear assembly of
length N requires a tile set of cardinality at least N . In contrast, for any
given N , we demonstrate linear assemblies of expected length N with a tile
set of cardinality Θ(log N) and prove a matching lower bound of Ω(log N).
We also propose a simple extension to PTAM called κ-pad systems in
which we associate κ pads with each side of a tile, allowing abutting tiles to
bind when at least one pair of corresponding pads match and prove analo-
gous results. All our probabilistic constructions are free from co-operative
tile binding errors and can be modified to produce assemblies whose prob-
ability distribution of lengths has arbitrarily small tail bounds dropping
exponentially with a given multiplicative factor increase in number of tile
types. Thus, for linear assembly systems, we have shown that randomiza-
tion can be exploited to get large improvements in tile complexity at a
small expense of precision in length.

1 Introduction

Biological systems show a remarkable range of form and function. How are these
multitude of systems constructed? What are the principles that govern them? In
particular, as computer scientists, we ask if there are simple rules whose repeated
application can give rise to such complex systems. This leads us to the study of
self-assembly.

1.1 Fundamental Nature of Self-assembly

Self-assembly is a fundamental pervasive natural phenomenon that gives rise to
complex structures and functions. It describes processes in which a disordered
system of pre-existing components form organized structures as a consequence of
specific, local interactions among the components themselves, without any exter-
nal direction. In its most complex form, self-assembly encompasses the processes
involved in growth and reproduction of higher order life. A simpler example of
self-assembly is the orderly growth of crystals. In the laboratory, self-assembly
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techniques have produced increasingly complex structures [1,2] and dynamical
systems [3]. The roots of attempts to model and study self-assembly begin with
the study of tilings.

A Wang tile [4] is an oriented unit square with a pad associated with each
side. Any two tiles with the same pad on corresponding sides are said to be
of the same tile type. Tile orientation is fixed, they cannot be rotated or re-
flected1. Given a finite set S of Wang tiles types, a valid arrangement of S on
a planar unit square grid consists of copies of Wang tiles from the set S such
that abutting pads of all pairs of neighboring tiles match. The tiling or domino
problem for a set of Wang tiles is: can tiles from S (chosen with replacement)
be arranged to cover the entire planar grid? Berger [5] proved the undecidability
of the tiling problem by reducing the halting problem [6] to it. Robinson [7]
gave an alternative proof involving a simulation of any single tape deterministic
Turing Machine by some set of Wang tiles. Garey and Johnson [8] and Lewis
and Papadimitrou [9] proved that the problem of tiling a finite rectangle is NP-
complete. These results paved the way for Wang tiling systems to be used for
computation. But, Wang tilings do not model coordinated growth and hence
do not describe complex self-assembly processes. Winfree [10] extended Wang
tilings to the Tile Assembly Model (TAM) with a view to model self-assembly
processes, laying a theoretical foundation [11,12] for a form of DNA based com-
putation, in particular, molecular computation via assembly of DNA lattices
with tiles in the form of DNA motifs.

The tile complexity [13] of assembling a shape is defined as the minimum
number of tile types for assembling that shape. Tile complexity, apart from cap-
turing the information complexity of shapes, is also important as there exist
fundamental limits on the number of tile types one can design using DNA se-
quences of fixed length. Various ingenious constructions for shapes like squares
[14], rectangles and computations like counting [15], XOR [16] etc. exist in this
model. Lower bounds on tile complexity have also been shown for various shapes.
Stochastic processes play a major role in self-assembly and have been investi-
gated theoretically by Winfree [17] and Adleman [11] and in the laboratory by
Schulman et al. [18]. However, TAM is deterministic in the sense that it produces
exactly one terminal assembly given a tile set. This is because at most one type
of tile is allowed to attach at any position in a partially formed assembly. See
Section 2 for more details. This work investigates the effects of relaxing these
constraints and reduces the number of tile types required to form linear assem-
blies of given length. In contrast to earlier work in stochastic self-assembly, we
make tile attachments irreversible (as in TAM) and allow multiple tile types to
attach at any position.

1.2 Motivation

A particular challenge in DNA nanoscience is to form linear assemblies or rulers
of a specified length from unit sized square tiles. These rulers can then be used
1 This is a valid assumption when implementing Wang tiles in the laboratory using

DNA due to the complimentary nature of DNA strand binding.
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as a component for construction of other complex structures. One can use these
structures as beams and struts within the nanoscale (See Fig.1a). Linear assem-
blies can also serve as boundaries [18] and nucleation sites for more complex
nanostructures. (Note that due to the inherent flexible nature of linear nanos-
tructures, most complex nanostructures will generally tolerate small deviations
from the intended lengths of these substructures). Various tile based techniques
for constructing linear assemblies have been successfully explored in the labora-
tory [19,18]. Hence, tile assembly models for linear assemblies are apt theoret-
ical frameworks for exploring a fundamental and important challenge in DNA
nanoscience. In TAM, rulers of length N can be trivially constructed by de-
terministic assembly of N distinct tile types. This is also the matching linear
lower bound for size of tile sets in deterministic TAM, as shown in Section 4.
Thus, it is impractical to form large linear structures using the deterministic
techniques of TAM. Long thin rectangles (which are approximations of linear
assemblies) can be formed using Θ( log N

log log N ) tile types but they suffer errors due
to co-operative tile binding. In contrast with linear assemblies, the number of
tile types to form an N × N square is only Θ( log N

log log N ) [14], which is exponen-
tially better than the lower bound for linear assemblies. This bound for squares
is asymptotically tight for almost all N as dictated by information theory[13]
while the one for linear assemblies is not. This begs the question: why are we not
able to reach information theoretic limit of Θ( log N

log log N ) in linear structures using
TAM? Is this lower bound tight? What is the longest (finite) linear assembly one
can assemble with a set of n tile types in realistic tiling models? What changes
to TAM will give us the power to specify the linear systems using a smaller tile
set? While square assemblies have been extensively studied [13,14,20,21], many
questions remain about linear assemblies, which are simpler constructs yet are
fundamental building blocks at the nanoscale. We answer a number of these
questions and show novel, interesting results using techniques that differ consid-
erably from existing ones. While there have been numerous variations on TAM
in recent years, their impact on laboratory techniques in DNA self-assembly are
minimal. At the same time, design principles used in DNA self-assembly do not
fully leverage the programmability and stochasticity inherent to self-assembly.
Hence, our goal is to develop a simple model that directs design principles of
experimental DNA self-assembly by taking advantage of inherent stochasticity
of self-assembly. It is noteworthy that the techniques for designing and analyzing
these simple constructs under our simple model are non-trivial and theoretically
rich.

(a) (b)

Fig. 1. (a) Possible nanostructures using rulers as substructures. (b) Diagonal tiles:
Colors indicate pad type. Red pads are implemented using complimentary DNA.
Strands for other pads are omitted.
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1.3 Related Work in Self-assembly Using Probabilistic and
Randomized Models

Non-determinism was used in tiling by Lagoudakis et al. [22] for implementing
an algorithm for SAT. Recently, Becker et al. [23] describe probabilistic tile sys-
tems that yield squares, rectangles and diamond in expectation using O(1) tile
types. This work was extended by Ming-Yang Kao et al. [21] to yield arbitrar-
ily close approximations to squares with arbitrarily high probability using O(1)
tile types. Both these papers allow precise arbitrary relative concentrations of
tile types with no cost incurred in tile complexity. In the laboratory, achiev-
ing precise arbitrary relative concentrations between tiles is infeasible. Also, the
descriptional complexity of tile systems in such models include not just the de-
scriptional complexity of the tile set, but also the descriptional complexity of
the concentration function. Thus, size of tile set producing an assembly is not
a true indicator of its complexity. In PTAM, the set of tiles is a multi-set that
implicity defines relative concentrations and precludes arbitrary relative concen-
trations. Thus, size of the tile set producing an assembly is a true indicator of its
complexity. In addition, all our constructions have equimolar tile concentration
and hence are experimentally feasible. Reif [24], and later Demaine et al. [25]
discuss staged self-assembly. Demaine et al. [25] show how to get various shapes
using O(1) pad types. Aggarwal et al. [20] introduce various extensions to TAM
and study the impact of these extension on both running time and the num-
ber of tile types. Compared to the above, PTAM is a simple extension to TAM
that requires no laboratory techniques beyond those used to implement TAM.
In particular, we consider standard one pot reaction mixtures with no interme-
diate purification steps. The Kinetic Tile Assembly Model (kTAM) proposed by
Winfree [17] models kinetics and thermodynamics of DNA hybridization reac-
tions. Schulman et al. [18] used DX tiles consisting of DNA stands to create one
dimensional boundaries within the nanoscale. Adleman [11] proposed a math-
ematical theory of self-assembly which is used to investigate linear assemblies.
While many fundamental theoretical questions arise in these models, the ques-
tion of tile complexity of linear assemblies is uninteresting due the existence
of the trivial lower bound mentioned in Section 1.2. Thus, the questions about
linear self-assemblies examined in this paper are original and the constructions
presented are novel.

1.4 Main Results

We describe a natural extension to TAM in Section 3 to allow randomized as-
sembly, called the Probabilistic Tile Assembly Model (PTAM). A restriction of
the model to diagonal, haltable, uni-seeded, and east-growing systems (defined
in Section 3), which we call the standard PTAM is considered in this paper. Prior
work in DNA self-assembly strongly suggests that standard PTAM can be real-
ized in the laboratory. We show various non-trivial probabilistic constructions in
PTAM for forming linear assemblies with a small tile set in Section 4, using tech-
niques that differ considerably from existing assembly techniques. In particular,
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for any given N , we demonstrate linear assemblies of expected length N with
tile set of cardinality Θ(logN) using one pad per side of each tile in Section 4.2.
We derive a matching lower bound of Ω(logN) on the tile complexity of linear
assemblies of any given expected length N in standard PTAM systems using one
pad per side of each tile in Section 4.3. This lower bound, which holds for all
N , is tight and better than the information theoretic lower bound of Ω( log N

log log N )
which holds only for almost all N . We also propose a simple extension to PTAM
in Section 5 called κ-pad systems in which we associate κ pads with each side of a
tile, allowing abutting tiles to bind when at least one pair of corresponding pads
match. This gives linear assemblies of expected length N with 2-pad (two pads
per side of each tile) tile set of cardinality Θ( log N

log log N ) tile types for infinitely
many N . We show that we cannot achieve smaller tile complexity by proving a
lower bound of Ω( log N

log log N ) for each N on the cardinality of the κ-pad (κ pads
per side of each tile) tile set required to form linear assemblies of expected length
N in standard κ-pad PTAM systems for any constant κ. The techniques used
for deriving these lower bounds are notable as they are stronger and differ from
traditional Kolmogorov complexity based information theoretic methods used
for lower bounds on tile complexity. Kolmogorov complexity based lower bounds
do not preclude the possibility of achieving assemblies of very small tile multiset
cardinality for infinitely many N while our lower bounds do, as they hold for
every N . All our probabilistic constructions can be modified to produce assem-
blies whose probability distribution of lengths has arbitrarily small tail bounds
dropping exponentially with a given k at the cost of a multiplicative factor k
increase in number of tile types, as proved in Section 6.

2 The Tile Assembly Model for Linear Assemblies

This section describes the Tile Assembly Model (TAM) by Winfree for linear
(1D) assemblies (henceforth referred to as LTAM). For a complete and formal
description of the model see [13]. LTAM describes deterministic linear assemblies.
The next section extends the model by introducing randomization. This paper
considers only one-dimensional grid of integers Z which simplifies the definitions
of the model. The directions D = {East,West} are functions from Z to Z, with
East(x) = x + 1 and West(x) = x − 1. We say that x and x′ are neighbors if
x′ ∈ {West(x),East(x)}. Note that East−1 = West and vice versa. N is the set
of natural numbers.

A Wang tile over the finite set of distinct pads Σ is a unit square where two
opposite sides have pads from the set Σ2. Formally, a tile t is an ordered pair of
pads (Wt, Et) ∈ Σ2 indicating pad types on the West and East sides respectively.
Thus, a tile cannot be reflected. For each tile t, we define padEast(t) = Et and
padWest(t) = Wt. Σ contains a special null pad, denoted by φ. The empty tile
(φ, φ) represents the absence of any tile. Pads determine when two tiles attach.
2 In general, for two dimensional assemblies, tiles have pads on all four sides. However,

we do not use any pads on the North and South sides in this paper and hence omit
them. Also, we allow for multiple pads on the sides of a tile in Section 5.
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A function g : Σ × Σ → {0, 1} is a binary pad strength function if it satisfies
∀x, y ∈ Σ, g(x, y) = g(y, x) and g(φ, x) = 0. Linear assemblies do not have co-
operative tile binding, i.e, interactions of more than one pair of pads at a given
step. Hence the temperature parameter used in TAM is redundant in linear
assemblies where tiles have only one pad per side. Throughout this paper we
assume only a binary pad strength function. In this model each tile has only a
single pad on each of its sides (West and East) whereas in Section 5 we allow
multiple pads per side for each tile.

A linear tiling system, T, is a tuple 〈T, S, g〉 where T containing the empty
tile is the finite set of tile types, S ⊂ T is the set of seed tiles and g is the
binary pad strength function. A configuration of T is a function A : Z → T with
A(0) = s for some s ∈ S. For D ∈ D we say the tiles at x and D(x) attach
if g(padD(A(x)), padD−1(A(D(x)))) = 1. Self-assembly is defined by a relation
between configurations,A→ B, if there exists a tile t ∈ T , a directionD ∈ D and
an empty position x such that t attaches to A(D(x)). We define A ∗−→ B as the
reflexive transitive closure of→ and say B is derived from A. For all s ∈ S a start
configuration starts is given by starts(0) = s and ∀x �= 0 : start(x) = empty.
A configuration B is produced if starts

∗−→ B for some s ∈ S. A configuration is
terminal if it is produced from starts for some s ∈ S and no other configuration
can be derived from it. Term(T) is the set of terminal configurations of T. In
TAM, a terminal configuration is thought of as the output of a tiling system given
a seed tile s ∈ S. TAM requires that there be a unique terminal configuration
for each seed. Note that it allows different attachment orders as long as they
produce the same terminal configuration. This unique terminal configuration
requirement means that given any non terminal configuration A, at most one
t ∈ T can attach at any given position. In this sense, TAM is deterministic. In
the next section we will explore the effect of relaxing this condition of TAM.

DNA nanostructures can physically realize TAM as shown by Winfree et al.
[10] with the DX tile and LaBean et al. [26] with the TX tile. Like the square tile
in TAM, the DX and TX have pads that specify their interaction with other tiles.
The pads are DNA sequences that attach via hybridization of complimentary nu-
cleotides. Mao et al. [27] performed a laboratory demonstration of computation
via tile assembly using TX tiles. Yan et al. [16] performed parallel XOR com-
putation in the test-tube using Winfree’s DX tile. Other simple computations
have also been demonstrated. However, large and more complex computations
are beset by errors and error correction remains a challenge towards general
computing using DNA tiles.

3 The Probabilistic Tile Assembly Model

In TAM, the output of a tile system is said to be a shape of given fixed size
(for example, square of side N , linear assemblies of length N) if the tile system
uniquely produces it. In this paper, we consider some implications of relaxing
this requirement. Instead of asking that a set of tiles produce a unique shape, we
allow the set of terminal assemblies to contain more than one shape by designing
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tile systems which admit multiple tile type attachment at a given position in a
configuration. Note that we do not allow pad mismatch errors. We also associate
a probability of formation with each terminal assembly. These extensions and
modifications to TAM are formalized for linear assemblies. Note that the defi-
nitions given below can be easily extended to assemblies in two-dimensions by
introducing pads on North and South sides of tiles and including a temperature
parameter τ as in [13] for co-operative binding effects.

3.1 The Probabilistic Tile Assembly Model (PTAM) for Linear
Assemblies

A probabilistic linear tiling system T is given by the tuple 〈T, S, g〉, where T is
a (finite) multiset of tile types, S ⊂ T is the multiset of seed tiles and g is the
binary pad strength function. The set of pad types Σ, tiles and configurations
for T are defined as in Section 2. The multiplicity M : Σ × Σ → N of a tile
type is the number of times it occurs in T . T contains the empty tile type with
M(empty) = 1. Multiplicity models concentration. We assume a well-mixed,
one pot reaction environment in which at each step some member of T is copied
(chosen with replacement) from the pot with uniform probability. If the tile thus
obtained can attach to the produced configuration, it does so, else a new member
of T is copied with uniform probability in the next step. This continues till either
a match is found or none exists, in which case the system halts. Note that this
is a Gillespie simulation [28] with a seed serving as a nucleation site. A system
with only one seed, S = {s}, is called uni-seeded. We consider only uni-seeded
systems in this paper. The function type(t), type : T → Σ ×Σ, returns the tile
type for any t ∈ T .

Self-assembly of a linear tiling system T is defined by a relation between
set of positive probabilities and pair of configurations A and B as: A →p

T
B

(read as A gives B with probability p) if there exists a tile t ∈ T , a direction
D ∈ D and an empty position x such that t attaches to A(D(x)) with positive
probability p to give B where p = M(type(t))/

∑
j∈ΔM(type(j)) where Δ =

{j| type(j) attaches to A(D(x))}. The closure of →p
T
, denoted by ∗−→

p̂

T (read as
‘derives’), is defined by the following transitive law: if A →p1

T
B and B →p2

T
C

then A →p1p2
T

C. A configuration B is produced with positive probability p if
starts

∗−→
p

T B. A configuration is terminal if it is produced from starts and no
other configuration can be derived from it with positive probability. Term(T) is
the set of terminal configurations of T. We associate a probability of formation,
P (A) to each produced configuration A recursively, as follows: P (starts) = 1
and P (B) =

∑
Γ pkP (Ak) where Γ = {k|Ak →pk

T
B}. Length of a produced

configuration A, written as |A|, is the number of non-empty tiles in it.
A configuration A is called a linear assembly of length N if it is terminal and

|A| = N . Following Rothemund and Winfree’s terminology [13], a linear tiling
system is defined to be diagonal iff g(x, y) = 0 for all x, y with x �= y and
g(x, x) = 1 for all x �= φ. A tile t is reachable in T if it is part of some produced
configuration. A tile t ∈ T is a capping tile if t is reachable and there exists
D ∈ D such that g(padD(t), padD−1(t′)) = 0 for each t′ ∈ T . For D = East the
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tile is called East capping and for D = West it is called West capping. A capping
tile halts growth in either the East or West direction. Note that a tile other
than the seed cannot be both East and West capping. A linear probabilistic
tiling system T is haltable iff for each produced configuration A, there exists a
terminal configuration B such that A ∗−→

p

T B with positive probability p. Each
terminal configuration has a probability of formation associated with it. If T is
haltable, some terminal configuration occurs with certainty as stated without
proof in the following Lemma.

Lemma 1. If T is a haltable probabilistic linear tiling system, then∑
A∈Term(T) P (A) = 1.

A linear tiling system is called east-growing if the West pad of the seed tile is
φ. A simulation of a probabilistic tile system T by a probabilistic tile system
Q is a bijection f between terminal configurations that preserves lengths and
probabilities of formation of assemblies, i.e. f : Term(T) → Term(Q) satisfying
|A| = |f(A)| and P (A) = P (f(A)) for each A ∈ Term(T). Any probabilistic
linear tiling system T can be simulated by an east-growing probabilistic linear
tiling system Q using no more than twice the number of tile types of T, in the
following manner. For the seed s = (Ws, Es) of T, let s′ = (φ,E′

s) be the seed
of Q and for each East-capping tile c = (Wc, Ec) of T let Q contain tile c′ =
(W ′

c,W
′′
s ). For all other tiles t = (Wt, Et) of T, let Q contain tiles tr = (W ′

t , E
′
t)

and tl = (E′′
t ,W

′′
t ). The reader may verify that this is a simulation. Hence, we

consider only east-growing tile systems in this paper. A probabilistic linear tiling
system is equimolar if ∀t ∈ T : M(t) = 1. Thus, for an equimolar tile system,
the cardinality of T equals the number of tile types in it. A probabilistic linear
tiling system is two-way branching if at most two tile types can attach at any
given position for any given configuration. A probabilistic linear tiling system is
standard if it is diagonal, haltable, uni-seeded and east-growing.

Diagonal tile systems were suggested by Winfree and Rothemund [13]. These
systems are implementable using DNA tiles. Matching pads are implemented as
perfect Watson-Crick complimentary DNA sequences (see Fig.1b). Non-diagonal
tile systems are not implementable using this technique. For tile systems produc-
ing linear assemblies that are not haltable, the expected length of the assembly
diverges. For linear assemblies, no advantage in tile complexity or tail bounds on
length of assemblies results from using multiple seeds. Thus, we consider only stan-
dard systems in this paper. Achieving arbitrary concentration vectors is infeasible
in laboratory implementations using molecules. In contrast, equimolar systems are
frequently achieved by chemists for various reactions. We demonstrate a equimo-
lar standard linear tiling system whose tile complexity matches the more general
lower bound of Ω(logN) applicable to all standard linear tiling systems.

3.2 Complexity Measures for Tile Systems

Recall that the tile complexity of a shape in TAM is defined as the number
of different tile types in the smallest tile set that realizes the shape. The tile
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complexity in TAM is closely related to the size of the smallest Turing machine
describing the shape [29]. While in TAM the shape is realized deterministically,
in PTAM we drop the requirement that a shape be obtained uniquely and in-
stead ask that it be approximated by our probabilistic tile systems. What should
be the correct measure of descriptional complexity of shapes in such probabilis-
tic systems? Consider a probabilistic linear tiling system with with three tile
types (Seed, Growth and Halt) at a 1 : N : 1 relative concentration such that
it assembles into a linear assembly of expected length N + 2. Clearly, the num-
ber of distinct tile types does not completely describe the assembly process in
the absence of information about relative concentrations. Thus concentrations
must be taken into account in any measure that hopes to intrinsically capture
descriptional complexity. There exist modifications of TAM [21,25,20] where the
number of tile types does not correspond to the descriptional complexity of the
shape. These systems encode the complexity elsewhere, like in the concentra-
tion, temperature, mechanism etc. In contrast, the standard systems of PTAM
encode all the description of the shape in the tile multiset through multiplicity
of a tile type which models its concentration. Thus, the (probabilistic) descrip-
tional complexity of shapes corresponds to the cardinality of the tile multiset
which we call tile complexity. Note that multiplicity of tiles in the multiset count
distinctly towards tile complexity.

What is the effect of the probabilistic model on tile complexity? We demon-
strate linear assemblies of fixed expected length N using a tile set of small
cardinality. In general, we are asking if there is any benefit in sacrificing the ex-
act description of a shape for a probabilistic description. For linear assemblies,
the answer is yes, as we show in the next section.

4 Constructing Linear Assemblies of Expected Length N

In the standard TAM, the tile complexity for a linear assembly of length N is N .
This is because if a tile type occurs at more than one position in the assembly,
the sub-unit between these two positions can repeat infinitely often. This does
not produce a linear assembly of length N . The PTAM does not suffer from this
drawback. By making longer and longer chains less likely, we ensure that most
chains are of length close to N . All our constructions can be shown to have expo-
nentially decaying tail with a linear multiplicative increase in the number of tile
types. So we focus on the expected lengths of linear assemblies in the following
sections. All of our constructions for linear assemblies of expected length N ∈ N
are standard, equimolar and two-way branching. The random variable L always
denotes the length of the assembly. Specific tiles systems in the rest of this sec-
tion are illustrated using tile binding diagrams. Each tile type is represented by
a square, with labels distinguishing different tile types. All possible interactions
among tiles are denoted via arrows that originate at the West side of some tile
and terminate on the East side of some tile, indicating pad strengths of 1 be-
tween these tiles along these sides. Absence of arrows indicate that no possible
attachment can occur, i.e. pad strength is 0. Thus, all our systems are temper-
ature 1 assemblies which are more resilient to errors than assemblies at greater
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temperatures. The latter suffer errors due to co-operative tile binding [30,31].
Moreover, temperature 1 systems are easier to implement in the laboratory than
higher temperature systems. Since we consider only equimolar systems for the
rest of this section, the cardinality of our tile multisets equal the number of tile
types. We use these terms interchangeably for equimolar systems.

4.1 Linear Assemblies of Expected Length N Using O(log2 N) Tile
Types

In this section we present a standard linear tiling system that achieves a linear
assembly of expected length N for any given N using O(log2N) tile types. First,
we give a construction for powers of two, i.e. for any givenN = 2i for some i ∈ N,
we show how to construct N length linear assemblies using Θ(logN) tile types.
Then we extend this construction to all N by expressing N in binary and linking
together the chains corresponding to 1s in the binary representation of N .

Fig. 2. Tile Binding Diagram for Powers of Two Construction

Powers of Two Construction: Fig.2 illustrates the tile set of size 3n + 2 =
Θ(n), used in a powers of two construction. The assembly halts only when the se-
quence T1, T2A, T2B, . . . T(n−1)A, T(n−1)B of attachments is achieved. The bridge
tiles Bi, i = 1, 2 . . . , n− 2, act as reset tiles at each stage of the assembly. Each
probabilistic choice is between a reset in the form of Bi and progress towards
completion in the form of T(i+1)A. Attachment of T1 to Bi and of TiB to TiA is
deterministic.

Lemma 2. Let L be the random variable equal to the length of the assembly.
Then, E[L] = 2n. Thus, an assembly of expected length 2n can be constructed
using Θ(n) tile types for any given n ∈ N.

Proof. We associate a sequence of independent Bernoulli trials, say coin flips,
with the assembly process. Let the addition of the 〈Bi, T1〉 complex correspond to
Tails and the addition of the 〈TiA, TiB〉 complex correspond to Heads. Halting of
the assembly then corresponds to achieving a sequence of n−2 successive heads,
corresponding to the sequence 〈T2A, T2B〉, . . . 〈T(n−1)A, T(n−1)B〉 of attachments.
The expected number of fair coin tosses for this to happen is 2(2(n−2) − 1) [32].
Each coin toss adds two tiles to the linear assembly. Hence E[L] = 4+4(2(n−2)−
1) = 2n.

Extension to Arbitrary N : We extend the powers of two construction to
all N by expressing N in binary, denoted by B(N). For each ith bit of B(N)
(i > 2) equal to 1, we have a power of two construction of expected length 2i,
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using 3i− 2 tile types as in 4.1. We simply append these various constructions
deterministically, and rely on linearity of expectation to achieve a linear assembly
of length N in expectation.

Theorem 1. An assembly of expected length N can be constructed using
O(log2N) tile types for any given N ∈ N.

4.2 Linear Assemblies of Expected Length N Using Θ(log N) Tile
Types

In this section we present a standard linear tiling system that achieves linear
assembly of length N in expectation for any given N using Θ(logN) tile types.
For powers of two, this construction reduces to one similar to that in Section
4.1. Our construction for general N is a more succinct than the one presented
in Section 4.1. This new construction rests on the observation that the expected
number of tiles of each type present in the powers of two construction decrease
geometrically.

(a) (b)

Fig. 3. Tile binding diagrams for O(log N) construction. (a) Tile Binding Diagram for
Section 4.2. (b) Tile Binding Diagram: N = 91; N ′′ = 90; N ′ = N′′

2
= 45 = (12221)alt2.

P is the prefix tile.

Consider the linear tiling system depicted in Fig.3a. The size of the tile set is
3n− 1 = Θ(n). The expected length of the assembly is N = 2n+1 − 2 = Θ(2n)
[32]. We observe that the number of bi-tiles 3 of type Ti decrease geometrically
as i decreases as stated below.

Lemma 3. Let Xi be the random variable equal to the number of bi-tiles of type
Ti in the final assembly. Then E[Xi−1] = E[Xi]

2 and hence E[Xi] = 2i−1 for
i = 2, 3, . . . , n

Proof. Every time a bi-tile of type Ti appears, a bi-tile of type Ti−1 follows
immediately in the resulting assembly with probability 1/2 for i = 2, 3 . . . n. So
E[Xi−1] = E[Xi]

2 . This property allows us to calculate the expected number of
bi-tiles of each type. T1 is the terminal bi-tile and appears exactly once. Hence
its expectation is 1 = 20. Repeated application of the above geometric decrease
property proves the claim.

3 A bi-tile Ti is a deterministic two tile complex TiA, TiB.
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Next, we give an alternate binary encoding [33] for all non-zero natural numbers
using {1, 2} instead of the standard {0, 1} encoding. This encoding will allow
us to exploit the geometric decay property to build succinct constructions. The
encoding of any non-zero natural number N is the N th string in the lexicographic
ordering of strings in {1,2}+. An equivalent characterization s given below.

Lemma 4. {1,2}-Binary Encoding: For all non-zero natural numbers N,
∃bi ∈ {1, 2} : N =

∑n−1
i=0 bi2

i where n ≤ �logN�. Every N has a unique {1,2}-
binary encoding.

Now we show how to encode any N using Θ(logN) tile types using the above
two Lemmas. Fig.3b is an example illustrating the construction for N = 91. For
any given N , let N ′′ be the greatest even number less than or equal to N . For
N ′ = N ′′

2 , let B(N ′) = bn−1bn−2 . . . b0 be its {1,2}-binary encoding of size n.
For each bit bi with i ∈ {0, 1, . . . , n − 2}, our construction has a tile complex
Ti+1 of size 2bi tiles that occurs Xi+1 times with E[Xi+1] = 2i. For the bit bn−1,
the tile complex T ′

n of size 2bn−1 − 1 tiles occurs X ′
n times with E[X ′

n] = 2n−1.
Each time T ′

n is deterministically preceded by either the seed or one of the bridge
tiles. Each such complex is called Tn. Thus Tn is of size of 2bn−1 tiles and occurs
Xn times with E[Xn] = 2n−1. For odd N , we deterministically prefix a single
tile to the West of the seed tile.

Theorem 2. The above construction has an expected length E[L] = N tiles and
uses Θ(logN) tile types.

Proof. The length of the assembly L is given by L = X1 + X2 + · · · + Xn +
(N mod 2) and hence by linearity of expectation, E[L] = 2(

∑n−1
i=0 bi2

i) + (N
mod 2) = N . The number of tile types is Θ(n) = Θ(logN).

4.3 Lower Bounds on the Tile Complexity of Linear Assemblies of
Expected Length N

In this section we prove that for all N the cardinality of any tile multiset that
forms linear assemblies of expected length N in standard PTAM systems is
Ω(logN). The techniques that we use for deriving these tile complexity lower
bounds are notable as they differ from traditional information theoretic methods
used for lower bounds on tile complexity and furthermore our low bound results
hold for each N , rather than for almost all N .

Fig. 4. T split into prefix and intermediates

Theorem 3. For any N , the cardinality of any tile multiset that forms linear
assemblies of expected length N in standard PTAM systems is Ω(logN).
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Proof. We will show that any standard linear PTAM system with tile multi-
set cardinality n has expected length of assembly at most O(2n). This implies
our result via the contrapositive. Recall that multiplicity of tiles in the multi-
set count distinctly towards tile complexity. Any standard PTAM linear tiling
multiset with cardinality n that produces linear assemblies of greatest (finite)
expected length is called n-optimal. Optimal linear tiling multisets must contain
exactly one capping tile. If one had multiple capping tiles, say term1, . . . , termk,
replacing the East pads of term1, . . . , termk−1 with the West pad of termk gives
a modified tile multiset of same cardinality, which is still standard, and has a
higher finite expected length, which is a contradiction. Define Ψn to be the ex-
pected length of the assembly produced by an n-optimal linear tiling multiset.
We will prove Ψn = O(2n) by a recursive argument on n.

Let T = 〈T, {s}, g〉 be any n-optimal linear tiling multiset. Let L be the ran-
dom variable equal to the length of the linear assembly produced by T and so
E[L] = Ψn. A run of a PTAM linear tiling system is a finite sequence of attach-
ment of tile types resulting in a terminal assembly. A run might be alternatively
thought of as a finite sequence of pad types where the number of pads in a run
is one more than the number of tiles. For any run of T, consider the pad type λ
appearing on the West side of the capping tile. Let Λ ⊂ T be the multiset of k1

(0 < k1 < n− 14) tiles with λ as their West pad, not including the capping tile.
Pad type λ might occur at many positions in this run. Define the prefix of the run
as the subsequence from the West pad of the seed tile to the first occurrence of λ.
Consider the subsequences that start and end in λ with no occurrence of λ within.
Such a subsequence, excluding the first λ, is called an intermediate (See Fig.4).
Define the following random variables: LP equal to the length of the prefix, LIi

equal to the length of the ith intermediate subsequence and r equal to number
of intermediates. The LIi are independent identical random variables and let LI

be a representative random variable with the same distribution. Length of the
assembly equals the sum of the lengths of the prefix and the intermediates. Thus,
L = LP +

∑r
i=1(LIi). For every i, the random variables r and LIi are independent

because of the memoryless property of linear tiling systems. Thus, by linearity
of expectation we get, Ψn = E[L] = E[LP ]+E[

∑r
i=1(LIi)] = E[LP ]+E[r]E[LI ]

Since T is standard, each of the tiles in Λ and the capping tile can attach with
equal probability 1

k1+1 to any tile with λ as its East pad. Thus, r is a geometric
random variable, with parameter 1

k1+1 , counting the number of times the capping
tile fails to attach. Thus E[r] = k1. We will show that E[LP ] and E[LI ] are at
most Ψn−k1 by simulating the assemblies that produce these subsequences via
linear tiling multisets of cardinality at most n − k1. The prefix is simulated by
the linear tiling system TP obtained from T in the following manner. Drop the

4 Note that Λ cannot be empty for an optimal linear tiling system. Suppose it were:
let Λ′ = {t1, . . . , tk}, be the set of tile types with λ as their East pad. Replacing
the East pads of t1, . . . , tk−1 with the West pad of tk gives a modified tile multiset
of same cardinality, which is still standard, and has a higher finite expected length,
which is a contradiction. The same arguments hold as we recurse. The seed s and
the capping tile are never part of Λ.
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tiles in Λ from T. Observe that there is a run of TP for every possible prefix and
vice-versa, with the same probabilities of formation. Thus, the expected length of
assembly produced by TP is equal to E[LP ]. Also, the cardinality of tile multiset
for TP is n− k1 and hence E[LP ] ≤ Ψn−k1 by definition. The intermediate sub-
assemblies are simulated by a family of k1 different tile systems. Each tile system
has a tile multiset of cardinality n− k1 obtained by (i.) dropping the tiles in Λ
from T and (ii.) replacing the seed tile by some t ∈ Λ and making padWest(t) =
φ. Each intermediate sub-assembly is simulated by some tile system from this
family. Thus E[LI ] ≤ Ψn−k1−1. Thus, Ψn = E[LP ]+E[r]E[LI ] ≤ (k1+1)Ψn−k1 .
In the next level of recursion, we drop k2 > 0 tiles to get Ψn ≤ (k1 + 1)Ψn−k1 ≤
(k1 +1)(k2 +1)Ψn−k1−k2 . In general, we drop ki tiles in the ith level of recursion
to get Ψn ≤

∏i
j=1(kj + 1)Ψn−∑ i

j=1 kj
. The base case is Ψ2 = 2 since the best one

can do with a single seed and capping tile is assembly of length 2. Also, let there
be z levels of recursion. Thus Ψn ≤

∏z
i=1(ki + 1) with

∑z
i=1 ki = n − 2. The

product
∏z

i=1(ki + 1) constrained by
∑z

i=1 ki = n− 2 has a maximum value of
2n−2. Hence Ψn ≤ O(2n).

5 κ-Pad Systems for Linear Assembly

In this section we will extend PTAM by modifying each tile to accommodate
multiple pads on each side. Tiles bind when one pair of adjacent pads match
(see Fig.5a). To ensure that tiles align fully and are not offset, each pad on a
side of a tile are drawn from different sets of pad types. Using such multi-padded
tiles, we will show it is possible to reduce the number of tile types to get linear
assemblies of expected length N .

(a) (b)

Fig. 5. κ-pad Systems. (a) κ-pad tiles A and B. (b) Pad binding diagram for linear
tiling system using Θi.o( log N

log log N
) 2-pad tile types. Small labeled rectangles on the sides

of the tiles indicate various types of pads. Arrows indicate possible attachment. Absent
pads are φ.

5.1 Definitions

A κ-pad tile t over the cartesian product Σ = Σ1 × Σ2 × · · · × Σκ is a unit
square whose two opposite sides each have a κ tuple of pads from Σ. Thus, tile
t ∈ T is an ordered pair5 (Wt, Et) where Wt and Et are row vectors of size
κ, where the ith component of each vector is from the set Σi. Thus, the East
5 Again, for two dimensional assemblies, tiles have pads on all four sides and the model

can be extended to include a temperature parameter τ for co-operative binding
interactions with multiple tiles.
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and West sides of each tile has κ pads. Σ1, . . . , Σκ are finite, mutually disjoint
set of distinct pad types. A κ-pad linear tiling system T is given by the tuple
〈T, S, g〉 where T is the finite multiset of κ-pad tile types, S ⊂ T is the set of
seed tiles and g is the binary pad strength function. Definitions from Section
3 hold with appropriate modifications to incorporate multiple pads on sides of
each tile. For each tile t, we define padEast(t, i) = (Et)i and padWest(t, i) = (Wt)i

where (Et)i and (Wt)i denote the ith component of the respective pad vectors.
For D ∈ D we say the tiles at x and D(x) attach if there exists an i such that
g(padD(A(x), i), padD−1(A(D(x)), i)) = 1. (See Fig.5a).

With these modifications, diagonal, uni-seeded and haltable linear tiling sys-
tems and self-assembly of κ-pad tiles are defined as in Sections 2 and 3. In
particular, probabilities of attachment of tiles is given by the same formula as in
Section 3 and Lemma 1 holds for κ-pad systems. We restrict ourselves to study-
ing diagonal, uni-seeded and haltable κ-pad linear tiling systems. Note that for
assemblies in Section 5.3, adjacent tiles that bind have exactly one match among
corresponding pads.

5.2 Implementing κ-Pad Systems Using DNA Self-assembly

κ-pad tiles can be feasibly realized using carefully designed self-assembled DNA
motifs. Indeed, the DX motif [10], one of the early demonstrations of DNA
motifs that self-assemble into two dimensional lattices, can serve as a 2-pad
tile. Other similar motifs that also self-assemble into two dimensional lattices,
like the TX [26], can serve as multipad systems. These motifs can be easily
modified to self-assemble in one dimension, as a linear structure. On a much
larger scale, Rothemund’s origami technique [1] can be used to manufacture
tiles with hundreds of pads. A drawback of such a system would be that the
connection between adjacent tiles will be quite flexible, making a linear assembly
behave more as a chain rather than a rigid ruler.

5.3 Linear Assemblies of Expected Length N Using Θi.o( log N
log log N

)
2-Pad Tile Types

In this section we present an equimolar, standard κ-pad linear tiling system with
κ = 2, i.e a 2-pad system, that achieves for any given N ′ ∈ N, a linear assembly
of expected length N > N ′ using Θ( log N

log log N ) 2-pad tile types, i.e., arbitrary
long fixed length assemblies of expected length N using Θ( log N

log log N ) 2-pad tile
types. Fig.5b illustrates the tile set used in our construction. Q2, Q3 . . .Qn are
bi-tiles with deterministic internal pads and so for simplicity we will treat them
as a single tile of length two. R is a tile type with multiplicity n − 1, drawn as
R1, . . . , Rn−1 in Fig.5b. Qi+1 can attach to Qi’s East side via the upper pad. For
j ∈ {1, 2, . . . , n−1}, R1, R2, . . . , Rn−1 can attach to Qj’s East side via the lower
pad and Q1 attaches deterministically to Rj ’s East side via the lower pad. Q1

attaches deterministically to the seed’s East side while Qn is the capping tile.
The assembly halts iff the consecutive sequence Q1, Q2, . . . , Qn occurs. At each
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stage, the assembly can restart by the attachment of Q1 via any of the n − 1
bridge tiles Rj . The number of tile types is 2n = Θ(n).

Theorem 4. Let X be the random variable that equals the length of the tile
system illustrated in Fig.5b. Then E[X ] = N = Θ(nn) using Θ( log N

log log N ) = Θ(n)
2-pad tile types.

Proof. We can think of the process as a series of Bernoulli trials, say biased coin
tosses. A Head corresponds to attachment of some Qi (i �= 1) and a Tail to some
Rj , Q1 complex. The probability of a Head is 1

n . The assembly halts iff n − 1
successive heads occur. Each toss adds exactly 2 tiles to the assembly and the
seed and Q1 appear once before the first toss. So, from [32], the expected length
of the assembly is given by E[X ] = N = Θ(nn). The number of tile types used
is Θ(n) = Θ( log N

log log N ).

5.4 Lower Bounds for κ-Pad Systems

In this section we prove for each N that the cardinality of κ-pad tile multiset
required to form linear assemblies of expected length N in standard PTAM
systems is Ω( log N

log log N ). Prior self-assembly lower bounds on numbers of tiles
for assembly used information theoretic methods, whereas this proof is via a
reduction to a problem in linear algebra, and furthermore holds for each N ,
rather than for almost all N .

Theorem 5. For each N , the cardinality of the smallest κ-pad tile multiset re-
quired to form linear assemblies of expected length N in standard PTAM systems
is Ω( log N

log log N ).

Proof. As in the Theorem 3, we will show that any κ-pad standard linear PTAM
system with tile multiset of cardinality n has expected length of assembly at
most O(n2n) and this implies our result via the contrapositive. The proof uses a
reduction to determining the expected time to first arrival at a vertex in a random
walk over a graph, which is further reduced to a problem in linear algebra,
namely determining magnitude bounds on the solution of a linear system, which
is bounded by the magnitude of a ratio of two determinants.

Any n-optimal κ-pad system T = 〈T, {s}, g〉 has exactly one seed and one
capping tile, by an argument similar to the one in Section 4.3. Let L be the
random variable equal to the length of linear assembly produced by T. Consider
the directed weighted graph G = (V,E,w) constructed from T as follows: i.
V is in one-to-one correspondence with T where vertices in V have distinct
labels for repeated tile types in T , ii. directed edge (u, v) ∈ E iff the East face
of tile corresponding to u and West face of tile corresponding to v can attach
and iii. for each (u, v) ∈ E, edge weights indicating transition probability are
given by w(u, v) = (outdegree(u))−1. Note that the sum of edge weights of all
edges leaving a node is 1 and all edges leaving a vertex have equal transition
probability. G has a start vertex corresponding to the seed s and a destination
vertex corresponding to the capping tile. Self-assembly is a random walk on G
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from the start to the destination, where paths in G from the start correspond
to produced configurations in T. Let expected time to destination, δ(u), be the
expected length of the random walk from u to destination for some u ∈ V . The
expected length of the assembly, E[L] = δ(start) and δ(destination) = 0.

For any u ∈ V (other than the destination), with edges to the k vertices
{v1, . . . , vk}, δ(u) = 1 +

∑k
i=1

1
k δ(vi). Writing such equations for each vertex in

V , with δ(destination) = 0 gives a system of n linear equations in n variables,
say Aδ = b where A is an n × n matrix of transition probabilities with values
from the set {0, 1

n ,
1

n−1 , . . . , 1}, b = [1 1 . . . 1 0]T is a vector of size n and δ
is the vector of expected times to destination. A is non-singular and therefore
the system has a unique solution6. Using Cramer’s rule δ(s) = |Ab|

|A| where Ab

is the appropriate column of A substituted by b. We upper and lower bound
the two determinants using Leibniz’s formula, |C| =

∑
π∈Sn

sgn(π)
∏n

i=1 Ci,π(i)

where the sum is computed over all n! permutations of Sn, where Sn is the
permutations of the set {1, 2, . . . , n} and sgn(σ) denotes the signature of the
permutation σ: +1 if σ is an even permutation and −1 if it is odd. Note that
the maximum value of the product

∏n
i=1 Ci,π(i) is 1 since the values in each of the

determinants are from the set {0, 1
n ,

1
n−1 , . . . , 1}. Thus |Ab| ≤ n! and similarly

|A| ≥ (1/n)n. Hence, δ(s) ≤ O(n2n). Thus the expected length of an assembly
of any κ-pad standard linear PTAM system with tile multiset of cardinality n is
at most O(n2n) which implies a lower bound of Ω( log N

log log N ).

6 Improving Tail Bounds of Distribution of Lengths of
Assembly

Linear tile systems that do not give assemblies with exponential tail bounds on
length can be modified by concatenating k independent, distinct versions of the
tile system into a new tile system with tail bounds that drop exponentially with
k. Both the central limit theorem and Chernoff bounds are used for bounding
the tail of this new distribution.

Given a tile multiset T (with single or κ-pads on each side of each tile) for
a linear assembly, let L̂ be the random variable equal to the length of the as-
sembly with mean �N

k � and variance σ2

k , and let f(�N
k �) be the cardinality of T .

Consider k distinct versions of T , say T1, T2, . . . , Tk, each mutually disjoint. We
deterministically concatenate the assemblies produced by these tile multisets by
introducing pads that allow the East side of each capping tile of Ti to attach
to the West side of the seed tile of Ti+1 for i = 1, 2, . . . , n − 1. We then add
N − k�N

k � ≤ k distinct tiles that deterministically extend the assembly beyond
the capping tile of Tk. Let L the random variable equal to the length of the
assembly produced by this construction. This new multiset, Tsh of cardinality
fsh(N) ≤ kf(�N

k �) + k gives linear assemblies of expected length E[L] = N
and variance σ2. k ∈ {1, . . . , N} determines how sharp the overall probability
distribution is.
6 The solution is unique as the expected number of transitions from any vertex to the

capping vertex is well defined.
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The central limit theorem gives: ∀δ ≥ 0 : P (|L−N | ≤ δσ) → Φ(δ) as k →∞,
where Φ and ψ are the probability density function and cumulative distribution
function respectively of the standard normal distribution. Thus, P (|L − N | ≥
δσ) → 2(1 − Φ(δ)) ≤ 2ψ(δ)/δ ≤

√
2/π(e−δ2/2/δ) as k → ∞. Thus, we achieve

an exponentially decaying tail bound with a linear multiplicative increase in tile
complexity for large k. Since Tsh is the concatenation of independent assemblies
Ti, Chernoff bounds for sums of independent random variables gives ∀δ, t > 0 :
P (L > (1 + δ)N) ≤ (M(t)/e(1+δ)�N

k �t)k and ∀δ > 0, t < 0 : P (L < (1 − δ)N) ≤
(M(t)/e(1−δ)�N

k �t)k whereM(t) is the moment generating function of the random
variable L̂. If M(t)/e(1+δ)�N

k �t < 1 for some t > 0 and M(t)/e(1−δ)�N
k �t < 1 for

some t < 0, we get tail bounds dropping exponentially with k.
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Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 370–384. Springer,
Heidelberg (2008)

22. Lagoudakis, M., LaBean, T.: 2D DNA Self-Assembly for Satisfiability. In: DIMACS
Workshop on DNA Based Computers (1999)
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Abstract. Given an undirected graph G = (V, E) and subset of termi-
nals T ⊆ V , the element-connectivity κ′

G(u, v) of two terminals u, v ∈ T
is the maximum number of u-v paths that are pairwise disjoint in both
edges and non-terminals V \ T (the paths need not be disjoint in termi-
nals). Element-connectivity is more general than edge-connectivity and
less general than vertex-connectivity. Hind and Oellermann [18] gave a
graph reduction step that preserves the global element-connectivity of
the graph. We show that this step also preserves local connectivity, that
is, all the pairwise element-connectivities of the terminals.

We give two applications of the step to connectivity and network de-
sign problems: First, we show a polylogarithmic approximation for the
problem of packing element-disjoint Steiner forests in general graphs, and
an O(1)-approximation in planar graphs. Second, we find a very short
and intuitive proof of a spider-decomposition theorem of Chuzhoy and
Khanna [10] in the context of the single-sink k-vertex-connectivity prob-
lem. Our results highlight the effectiveness of the element-connectivity
reduction step; we believe it will find more applications in the future.

1 Introduction

In this paper we consider several connectivity and network design problems.
Given an undirected graph G and two nodes u, v we let λG(u, v) and κG(u, v)
denote the edge and vertex connectivities between u and v in G. It is well-known
that edge-connectivity problems are “easier” than their vertex-connectivity coun-
terparts. Vertex-connectivity exhibits less structure than edge-connectivity and
this often translates into significant differences in the algorithmic and compu-
tational difficulty of the corresponding problems. As an example, consider the
well-known survivable network design problem (SNDP): the input consists of an
undirected edge-weighted graph G and connectivity requirements r : V × V →
Z+ between each pair of vertices. The goal is to find a min-cost subgraph H of G
such that each pair u, v has r(u, v) disjoint paths between them inH . If the paths
are required to be edge-disjoint (λH(u, v) ≥ r(u, v)) then the problem is referred
to as EC-SNDP and if the paths are required to be vertex-disjoint the problem is
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�� Partially supported by NSF grant CCF 07-28782.

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 254–265, 2009.
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referred to as VC-SNDP. Jain [19] gave a 2-approximation for EC-SNDP based
on the powerful iterated rounding technique. On the other hand, VC-SNDP is
known to be hard to within polynomial factors [24,3]. To address this gap, Jain
et al. [21] introduced a connectivity measure intermediate to edge and vertex
connectivities known as element-connectivity. The vertices are partitioned into
terminals T ⊆ V and non-terminals V \ T . The element-connectivity between
two terminals u, v, denoted by κ′G(u, v) is defined to be the maximum number
of paths between u and v that are pairwise disjoint in edges and non-terminals
(the paths can share terminals). In some respects, element-connectivity resem-
bles edge-connectivity: For example, κ′(u,w) ≥ min(κ′(u, v), κ′(v, w)) for any
three terminals u, v, w; this triangle inequality holds for edge-connectivity but
does not for vertex-connectivity. In element-connectivity SNDP (ELC-SNDP)
the requirements are only between terminals and the goal is to find a min-cost
subgraph H such that κ′H(u, v) ≥ r(u, v) for each u, v ∈ T . Fleischer, Jain
and Williamson [13] (see also [9]) generalized the iterated rounding technique of
Jain for EC-SNDP to give a 2-approximation for ELC-SNDP. In other respects,
element-connectivity is related to vertex connectivity. One class of problems
motivating this paper is on generalizing the classical theorem of Menger on s-t
vertex-connectivity; we discuss this below.

In studying element-connectivity, we often assume without loss of general-
ity that there are no edges between terminals (by subdividing each such edge)
and hence κ′(u, v) is the maximum number of non-terminal disjoint u-v paths.
Menger’s theorem shows that the maximum number of internally vertex-disjoint
s-t paths is equal to κ(s, t). Hind and Oellermann [18] considered a natural
generalization to multiple terminals. Given a terminal set T ⊆ V , what is the
maximum number of trees that each contain T and are disjoint in V \ T ? The
natural upper bound here is the element connectivity of T in G, in other words,
k = minu,v∈T κ

′(u, v). In [18] a graph reduction step was introduced to answer
this question. Cheriyan and Salavatiour [8] called this the problem of packing
element-disjoint Steiner trees; crucially using the graph reduction step, they
showed that there always exist Ω(k/ log |T |) element-disjoint Steiner trees and
moreover, this bound is tight (up to constant factors) in the worst case. In con-
trast, if we seek edge-disjoint Steiner trees then Lau [27] has shown that if T is
26k edge-connected in G, there are k edge-disjoint trees each of which spans T .

Finally, we remark that in some recent work Chuzhoy and Khanna [10] gave
an O(k log |T |) approximation for the special case of VC-SNDP in which a ter-
minal set T needs to be k-vertex-connected (this is equivalent to the single-sink
problem). Their algorithm and analysis are based on a structural characteri-
zation of feasible solutions — they use element-connectivity (they call it weak
connectivity) as a key stepping stone. Subsequent to this paper, Chuzhoy and
Khanna [11] gave a simple and elegant reduction from the the general VC-SNDP
problem to ELC-SNDP, obtaining an O(k3 logn)-approximation and reinforcing
the connection between element- and vertex-connectivity.

Thediscussionabovesuggests that it is fruitful to studyelement-connectivityasa
way to generalize edge-connectivity and attack problems on vertex-connectivity. In
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thispaperweconsider thegraphreductionstepforelement-connectivity introduced
by Hind and Oellermann [18] (and rediscovered by Cheriyan and Salavatipour [8]).
We generalize the applicability of the step and demonstrate applications to several
problems.

A Graph Reduction Step Preserving Element Connectivity. The well-
known splitting-off operation introduced by Lovász [29] is a standard tool in
the study of (primarily) edge-connectivity problems. Given an undirected multi-
graphG and two edges su and sv incident to s, the splitting-off operation replaces
su and sv by the single edge uv. Lovász proved the following theorem on splitting-
off to preserve global edge-connectivity.

Theorem 1 (Lovász). Let G = (V ∪ {s}, E) be an undirected multi-graph in
which V is k-edge-connected for some k ≥ 2 and degree of s is even. Then for
every edge su there is another edge sv such that V is k-edge-connected after
splitting-off su and sv.

Mader strengthened Theorem 1 to show the existence of a pair of edges incident
to s that when split-off preserve the local edge-connectivity of the graph.

Theorem 2 (Mader [30]). Let G = (V ∪{s}, E) be an undirected multi-graph,
where deg(s) �= 3 and s is not incident to a cut edge of G. Then s has two
neighbours u and v such that the graph G′ obtained from G by replacing su and
sv by uv satisfies λG′(x, y) = λG(x, y) for all x, y ∈ V \ {s}.

Generalization to directed graphs are also known [30,14,22]. The splitting-off
theorems have numerous applications in graph theory and combinatorial op-
timization. See [29,15,26,20,5,27,28,23] for various pointers and applications.
Although splitting-off techniques can be sometimes be used in the study of
vertex-connectivity, their use is limited and no generally applicable theorem akin
to Theorem 2 is known. On the other hand, Hind and Oellermann [18] proved
an elegant theorem on preserving global element connectivity. In the sequel we
use κ′G(S) to denote minu,v∈S κ

′
G(u, v) and G/pq to denote the graph obtained

from G by contracting vertices p, q.

Theorem 3 (Hind & Oellermann [18]). Let G = (V,E) be an undirected
graph and T ⊆ V be a terminal-set such that κ′G(T ) ≥ k. Let (p, q) be any edge
where p, q ∈ V \ T . Then κ′G1

(T ) ≥ k or κ′G2
(T ) ≥ k where G1 = G − pq and

G2 = G/pq.

This theorem has been used in two applications on element-connectivity [8,23].
We strengthen it to handle local connectivity, increasing its applicability.

Reduction Lemma. Let G = (V,E) be an undirected graph and T ⊆ V be a
terminal-set. Let (p, q) be any edge where p, q ∈ V \ T and let G1 = G− pq and
G2 = G/pq. Then one of the following holds: (i) ∀u, v ∈ T , κ′G1

(u, v) = κ′G(u, v)
(ii) ∀u, v ∈ T , κ′G2

(u, v) = κ′G(u, v).
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The Reduction Lemma, applied repeatedly, transforms a graph into another
graph in which the non-terminals form a stable set. Moreover, the reduced graph
is a minor of the original graph. Below, we discuss two problems, briefly alluded
to earlier, to which we apply the Reduction Lemma.

Packing Element-Disjoint Steiner Trees and Forests. There has been much
interest in the recent past on algorithms for (integer) packing of disjoint Steiner
trees in both the edge and element-connectivity settings [26,20,27,28,7,8,5]. (A
Steiner tree is simply a tree containing the entire terminal set T .) See [17] for ap-
plications of Steiner tree packing to VLSI design. An outstanding open problem is
Kriesell’s conjecture which states that if the terminal set T is 2k-edge-connected
then there are k-edge-disjoint Steiner trees each of which spans T ; this would gen-
eralize a classical theorem of Nash-Williams and Tutte on edge-disjoint spanning
trees. Lau made substantial progress [27] and proved that 26k-connectivity suf-
fices for k edge-disjoint Steiner trees; he extended his result for packing Steiner
forests [28]. We remark that Mader’s splitting-off theorem plays an important role
in Lau’s work. The element-disjoint Steiner tree packing problem was first consid-
ered by Hind and Oellermann. As we mentioned, Cheriyan and Salavatipour [8]
gave a nearly tight bound for this problem, since the problem of packing element-
disjoint Steiner trees is hard to approximate to within anΩ(logn) factor [7]. Their
result relies crucially on Theorem 3 followed by a simple randomized coloring al-
gorithm whose analysis extends that of a similar algorithm for computing the do-
matic number of a graph [12]. Here, we consider the more general problem posed by
[8] of packing Steiner forests. The input consists of a graphG = (V,E) and disjoint
terminal sets T1, T2, . . . , Tm, such that κ′G(Ti) ≥ k for 1 ≤ i ≤ k. What is the max-
imum number of element disjoint forests such that in each forest Ti is connected
for 1 ≤ i ≤ k? Our Reduction Lemma is primarily motivated by this question.
For general graphs we prove that there existΩ(k/(log |T | logm)) element disjoint
forests, where T =

⋃
i Ti. This can also be viewed as an O(log |T | logm) approxi-

mation for the problem.
We also study the packing problem in planar graphs and prove substantially

stronger results: We show that there exist �k/5�−1 disjoint forests. Our method
also extends to give an Ω(k) bound for graphs of fixed genus and an Ω(k) bound
for packing Steiner trees in graphs of fixed treewidth; we conjecture that one can
find Ω(k) disjoint forests in graphs excluding a fixed minor. These are the first
non-trivial bounds for packing element-disjoint Steiner forests in general graphs
or planar graphs; the bounds also imply corresponding approximation algorithms
for maximizing the number of disjoint forests. Since element-connectivity gener-
alizes edge-connectivity, our bounds in planar graphs are considerably stronger
than those of Lau [27,28] for edge-connectivity. Our proof is simple, and the sim-
plicity comes from thinking about element-connectivity (using the Reduction
Lemma) instead of edge-connectivity! Our proof also gives the strong property
that the non-terminals in the forests all have degree 2.

Single-Sink k-vertex-connectivity. Polynomial factor inapproximability re-
sults for VC-SNDP [24,3] have focused attention on restricted, yet useful,
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special cases of the problem. A recent focus of attention has been the single-
sink k-vertex-connectivity problem for small k; the goal is to k-vertex-connect
a set of terminals T to a given root r. The recent O(k log |T |)-approximation
of [10] relied on a beautiful decomposition result for k-connectivity which is in-
dependently interesting from a graph theoretic view point. The proof of this
theorem in [10] is long and complicated although it is based on only elementary
operations. Using the Reduction Lemma, we give a very short proof in Section 4
of the main technical result of [10]. Due to space constraints, we omit further
discussion of this application in this paper.

Related Work. We have already mentioned most of the closely related papers.
Our work on packing Steiner forests in planar graphs was inspired by a question
of Joseph Cheriyan [6]. Independent of our work, Aazami, Cheriyan and Jampani
[1] proved that if a terminal set T is k-element-connected in a planar graph, then
there exist k/2 − 1 element-disjoint Steiner trees. Moreover this is tight; they
also prove that it is NP-hard to obtain a (1/2+ε) approximation. Our bound for
packing Steiner Trees in planar graphs is slightly weaker than theirs; however,
our algorithms and proofs are simple and intuitive, and generalize to packing
Steiner forests. Their algorithm uses Theorem 3, followed by a reduction to a
theorem of Frank et al. [16] that uses Edmonds’ matroid partition theorem. One
could attempt to pack Steiner forests using their approach (with the stronger
Reduction Lemma in place of Theorem 3), but the theorem of [16] does not have
a natural generalization for Steiner forests. The techniques of both [1] and this
paper extend to graphs of small genus or treewidth; we discuss this further in
Section 3.2. We refer the reader to [3,10,4,31] for discussion of recent work on
single-sink vertex connectivity, including hardness results [3] and extensions to
related problems such as the node-weighted case [10] and buy-at-bulk network
design [4]. See also the survey on network design by Kortsarz and Nutov [25].

Several proofs have been omitted from this extended abstract; a longer version
can be found at http://arxiv.org/abs/0902.2795 or on the authors’ websites.

2 The Reduction Lemma

Let G(V,E) be a graph, with a given set T ⊆ V (G) of terminals. For ease of
notation, we subsequently refer to terminals as black vertices, and non-terminals
(also called Steiner vertices) as white. The elements of G are white vertices and
edges; two paths are element-disjoint if they have no white vertices or edges
in common. Recall that the element-connectivity of two black vertices u and
v, denoted by κ′G(u, v), is the maximum number of element-disjoint (that is,
disjoint in edges and white vertices) paths between u and v in G.

For this section, to simplify the proof, we will assume that G has no edges
between black vertices; any such edge can be subdivided, with a white vertex
inserted between the two black vertices. It is easy to see that two paths are
element-disjoint in the original graph iff they are element-disjoint in the modified
graph. Thus, we can say that paths are element disjoint if they share no white

http://arxiv.org/abs/0902.2795
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vertices, or that u and v are k-element-connected if the smallest set of white
vertices whose deletion separates u from v has size k.

Recall that our lemma strengthens Theorem 3 on preserving global connec-
tivity. We remark that our proof is based on a cutset argument unlike the path-
based proofs in [18,8] for the global case.

Proof of the Reduction Lemma: Consider an arbitrary edge pq. Deleting or
contracting an edge can reduce the element-connectivity of a pair by at most
1. Suppose the lemma were not true; there must be pairs s, t and x, y of black
vertices such that κ′G1

(s, t) = κ′G(s, t) − 1 and κ′G2
(x, y) = κ′G(x, y) − 1. The

pairs have to be distinct since it cannot be the case that κ′G1
(u, v) = κ′G2

(u, v) =
κ′G(u, v)− 1 for any pair u, v. (To see this, if one of the κ′G(u, v) u-v paths uses
pq, contracting the edge will not affect that path, and will leave the other paths
untouched. Otherwise, no path uses pq, and so it can be deleted.). Note that
one of s, t could be the same vertex as one of x, y; for simplicity we will assume
that {s, t} ∩ {x, y} = ∅, but this does not change our proof in any detail. We
show that our assumption on the existence of s, t and x, y with the properties
above leads to a contradiction. Let κ′G(s, t) = k1 and κ′G(x, y) = k2. We use the
following facts several times:

1. Any cutset of size less than k1 that separates s and t in G1 cannot include
p or q. (If it did, it would also separate s and t in G.)

2. κ′G1
(x, y) = k2 since κ′G2

(x, y) = k2 − 1.

We define a vertex tri-partition of a graph G as follows: (A,B,C) is a vertex
tri-partition of G if A,B, and C partition V (G), B contains only white vertices,
and there are no edges between A and C. (That is, removing the white vertices
in B disconnects A and C.)

Since κ′G1
(s, t) = k1 − 1, there is a vertex-tri-partition (S,M, T ) such that

|M | = k1 − 1 and s ∈ S and t ∈ T . From Fact 1 above, M cannot contain p or
q. For the same reason, it is also easy to see that p and q cannot both be in S
(or both in T ); otherwise M would be a cutset of size k1 − 1 in G. Therefore,
assume w.l.o.g. that p ∈ S, q ∈ T .

Similarly, since κ′G2
(x, y) = k2 − 1, there is a vertex-tri-partition (X,N ′, Y )

in G2 with |N ′| = k2 − 1 and x ∈ X and y ∈ Y . We claim that N ′ contains
the contracted vertex pq for otherwise N ′ would be a cutset of size k2 − 1 in G.
Therefore, it follows that (X,N, Y ) where N = N ′∪{p, q}−{pq} is a vertex-tri-
partition in G that separates x from y. Note that |N | = k2 and N includes both
p and q. For the latter reason we note that (X,N, Y ) is a vertex-tri-partition
also in G1.

Subsequently,weworkwiththe twovertex tri-partitions (S,M, T )and(X,N, Y )
in G1 (we stress that we work in G1 and not in G orG2). Recall that s, p ∈ S, and
t, q ∈ T , and thatM has size k1 − 1; also,N separates x from y, and p, q ∈ N . Fig.
1 (a) above shows these vertex tri-partitions. Since M and N contain only white
vertices, all terminals are in S or T , and inX or Y . We say that S ∩X is diagonally
opposite from T ∩ Y , and S ∩ Y is diagonally opposite from T ∩X . LetA,B,C,D
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Fig. 1. Part (a) illustrates the vertex tri-partitions (S,M, T ) and (X, N, Y ). In parts
(b) and (c), we consider possible locations of the terminals s, t, x, y.

denote S ∩N,X ∩M,T ∩N and Y ∩M respectively, with I denotingN ∩M ; note
thatA,B,C,D, I partitionM ∪N .

We assume w.l.o.g. that x ∈ S. If we also have y ∈ S, then x ∈ S ∩ X and
y ∈ S ∩ Y ; therefore, one of x, y is diagonally opposite from t, suppose this is x.
Fig. 1 (b) illustrates this case. Observe that A∪ I ∪B separates x from y; since
x and y are k2-connected and |N = A ∪ I ∪ C| = k2, it follows that |B| ≥ |C|.
Similarly, C ∪ I ∪D separates t from s, and since C contains q, Fact 1 implies
that |C ∪ I ∪D| ≥ k1 > |B ∪ I ∪D = M | = k1− 1. Therefore, |C| > |B|, and we
have a contradiction.

Hence, it must be that y /∈ S; so y ∈ T ∩ Y . The argument above shows that
x and t cannot be diagonally opposite, so t ∈ T ∩ X . Exactly as before, s and
y cannot be diagonally opposite, so s ∈ S ∩ Y . Fig. 1 (c) shows the required
positions of the vertices. Now, N separates s from t and contains p, q; so from
fact 1, |N | ≥ k1 > |M |. But M separates x from y, and fact 2 implies that x, y
are k2-connected in G1; therefore, |M | ≥ k2 = |N |, giving a contradiction. �

3 Packing Element-Disjoint Steiner Trees and Forests

Consider a graphG(V,E), with its vertex set V partitioned into T1, T2, . . . Tm,W .
We refer to each Ti as a group of terminals, and W as the set of Steiner or white
vertices; we use T =

⋃
i Ti to denote the set of all terminals. A Steiner Forest

for this graph is a forest that is a subgraph of G, such that each Ti is entirely
contained in a single tree of this forest. (Note that Ti and Tj can be in the same
tree.) For any group Ti of terminals, we define κ′(Ti), the element-connectivity
of Ti, as the largest k such that for every u, v ∈ Ti, the element-connectivity of
u and v in the graph G is at least k.

Two Steiner Forests forG are element-disjoint if they share no edges or Steiner
vertices. (Every Steiner Forest must contain all the terminals.) The Steiner Forest
packing problem is to find as many element-disjoint Steiner Forests for G as
possible. By inserting a Steiner vertex between any pair of adjacent terminals,
we can assume that there are no edges between terminals, so the problem of
finding element-disjoint Steiner forests is simply that of finding Steiner forests
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that do not share any Steiner vertices. In the special case when m = 1, we seek
a maximum number of element-disjoint Steiner trees. It is easy to see that if
k = mini κ

′
G(Ti), there are at most k element-disjoint Steiner Forests in G.

Cheriyan and Salavatipour [8] proved that if there is a single group T of ter-
minals, with κ′(T ) = k, then there always exist Ω(k/ log |T |) Steiner trees. Their
algorithm uses Theorem 3, the global element-connectivity reduction of [18], to
delete and contract edges between Steiner vertices, while preserving κ′(T ) = k.
After obtaining a bipartite graph G′ with terminals on one side and Steiner
vertices on the other side, randomly color the Steiner vertices using k/6 log |T |
colors; w.h.p., each color class connects the terminal set T . The bipartite case
can be cast as a special case of packing bases of a polymatroid and a variant
of the random coloring idea is applicable in this more general setting [2]; a de-
randomization is also provided in [2], yielding a deterministic polynomial-time
algorithm to find Ω(k/ log |T |) element-disjoint Steiner trees.

In this section, we give algorithms for packing element-disjoint Steiner Forests,
where we are given m groups of terminals T1, T2, . . . Tm. The approach of [8]
encounters two difficulties. First, we cannot reduce to a bipartite instance, us-
ing only the global-connectivity version of the Reduction Lemma. In fact, our
strengthening of the Reduction Lemma to preserve local connectivity was moti-
vated by this; using it allows us once again assume that we have a bipartite graph
G′(T ∪W,E). Second, we cannot apply the random coloring algorithm on the bi-
partite graph G′ directly. One reason for this is that, unlike the Steiner tree case,
it is no longer a problem of packing bases of a submodular function. To overcome
this second difficulty we use a decomposition technique followed by the random
coloring algorithm to prove that there always exist Ω(k/(log |T | logm)) element-
disjoint forests. We believe that the bound can be improved to Ω(k/ log |T |).

We also consider the packing problem in restricted classes of graphs, in partic-
ular planar graphs. We obtain a much stronger bound, showing the existence of
�k/5�−1 Steiner forests. The (simple) technique extends to graphs of fixed genus
to prove the existence of Ω(k) Steiner forests where the constant depends mildly
on the genus. We believe that there exist Ω(k) Steiner forests in any H-minor-
free graph where H is fixed. Our technique for planar graphs does not extend
directly, but generalizing this technique allows us to make partial progress; we
can prove that in graphs of any fixed treewidth, there exist Ω(k) element-disjoint
Steiner Trees if the terminal set is k-element-connected.

3.1 An O(log |T | log m)-Approximation for General Graphs

In order to pack element-disjoint Steiner forests we borrow the basic idea from
[5] in the edge-connectivity setting for Eulerian graphs; this idea was later used
by Lau [28] in the much more difficult non-Eulerian case. The idea at a high level
is as follows: If all the terminals are nearly k-connected then we can treat the
terminals as forming one group and reduce the problem to that of packing Steiner
trees. Otherwise, we can find a cut (S, V \ S) that separates some groups from
others. By choosing the cut appropriately, all terminals on one side, say S, are
Ω(k/2 logm)-element-connected, and we can pack Steiner trees in them without
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using the edges crossing the cut. Then we can shrink S and find Steiner forests
in the reduced graph; unshrinking of S is possible since we have many trees on S.
In [5,28] this scheme works to give Ω(k) edge-disjoint Steiner forests. However,
the approach relies strongly on properties of edge-connectivity as well as the
properties of the packing algorithm for Steiner trees. These do not generalize
easily for element-connectivity. Nevertheless, we show that the basic idea can be
applied in a slightly weaker way (resulting in the loss of an O(logm) factor over
the Steiner tree packing factor); the reduction to a bipartite instance using the
Reduction Lemma plays a critical role.

Theorem 4. GivenagraphG(V,E),with terminal setsT1 , T2, . . . Tm, such that for
all i, κ′(Ti) ≥ k, there is a polynomial-time algorithm to pack Ω(k/ log |T | logm)
element-disjoint Steiner Forests in G.

3.2 Packing Steiner Trees and Forests in Planar Graphs

We now prove much improved results for restricted classes of graphs, in particular
planar graphs. If G is planar, we show the existence of �k/5�−1 element-disjoint
Steiner Forests. The intuition and algorithm are easier to describe for the Steiner
tree packing problem and we do this first. We achieve the improved bound by
observing that planarity restricts the use of many white vertices as “branch
points” (that is, vertices of degree ≥ 3) in forests. Intuitively, even in the case
of packing trees, if there are terminals t1, t2, t3, . . . that must be in every tree,
and white vertices w1, w2, w3 . . . that all have degree 3, it is difficult to avoid a
K3,3 minor. Note, however, that degree 2 white vertices behave like edges and
do not form an obstruction. We capture this intuition more precisely by showing
that there must be a pair of terminals t1, t2 that are connected by Ω(k) degree-2
white vertices; we can contract these “parallel edges”, and recurse.

We now describe an algorithm for packing Steiner Trees: Given an instance
of the Steiner Tree packing problem in planar graphs, we construct a reduced
instance as follows: Use the Reduction Lemma to delete and contract edges
between white vertices to obtain a planar graph with vertex set T ∪W , such
that W is a stable set. Now, for each vertex w ∈ W of degree 2, connect the
two terminals that are its endpoints directly with an edge, and delete w. (All
edges have unit capacity.) We now have a planar multigraph, though the only
parallel edges are between terminals, as these were the only edges added while
deleting degree-2 vertices in W . Note that this reduction preserves the element-
connectivity of each pair of terminals; further, any set of element-disjoint trees
in this reduced instance corresponds to a set of element-disjoint trees in the
original instance. We can now prove the following lemma:

Lemma 1. In a reduced instance of the Planar Steiner Tree Packing problem,
if κ′(T ) ≥ k, there are two terminals t1, t2 with at least �k/5� − 1 parallel edges
between them.

It is now easy to prove by induction that we can pack �k/5� − 1 disjoint trees;
simply contract the terminals t1, t2 with many edges between them, and recurse.
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Theorem 5. Given an instance of the Steiner Tree packing problem on a planar
graph G with terminal set T , if κ′(T ) ≥ k, there is a polynomial-time algorithm
to find at least �k/5� − 1 element-disjoint Steiner trees in G. Moreover, in each
tree, the white (non-terminal) vertices all have degree 2.

Extensions. Our result for planar graphs can be generalized to graphs of fixed
genus; these results also hold for packing Steiner forests. These techniques can
also be used to pack Steiner trees in graphs of bounded treewidth; see the full
version for details. Aazami et al. [1] also give algorithms for packing Steiner trees
in these graph classes, and graphs excluding a fixed minor. We thus make the
following natural conjecture:

Conjecture 1. Let G = (V,E) be a H-minor-free graph, with terminal sets
T1, T2, . . . Tm, such that for all i, κ′(Ti) ≥ k. There exist Ω(k/c) element-disjoint
Steiner forests in G, where c depends only on the size of H .

4 A Spider Decomposition Theorem

In this section, we sketch a very short proof of the beautiful Spider Decomposi-
tion Theorem of [10]. A spider is a tree with at most one vertex of degree greater
than 2. If such a vertex exists, it is referred to as the head of the spider, and
each leaf is referred to as a foot. Thus, a spider may be viewed as a collection of
disjoint paths (called legs) from its feet to its head. If the spider has no vertex of
degree 3 or more, any vertex of the spider may be considered its head. Vertices
that are not the head or feet are called intermediate vertices of the spider.

Theorem 6 ([10]). Let G(V,E) be a graph with a set B ⊆ V of black vertices
such that every pair of black vertices is k-element connected. There is a subgraph
H of G whose edges can be partitioned into spiders such that: (i) For each spider,
its feet are distinct black vertices, and all intermediate vertices are white. (ii)
Each black vertex is a foot of exactly k spiders, and each white vertex appears
in at most one spider. (iii) If a white vertex is the head of a spider, the spider
has at least two feet.

Proof Sketch: Use induction on the number of edges between white vertices in
G: As the base case, we have a graph G with no edges between white vertices;
therefore, G is bipartite. (Recall that there are no edges between black vertices.)
Each pair of black vertices is k-element connected, and hence every black vertex
has at least k white neighbors. Let every b ∈ B mark k of its (white) neighbors
arbitrarily. Every white vertex w that is marked at least twice becomes the head
of a spider, the feet of which are the black vertices that marked w. For each
white vertex w marked only once, let b be its neighbor that marked it, and b′ be
another neighbor. We let b−w− b′ be a spider with foot b and head b′. It is easy
to see that the spiders are disjoint and satisfy all the other desired conditions.

For the inductive step, consider a graph G with an edge pq between white
vertices. If all black vertices are k-element connected in G1 = G − pq, then
we can apply induction, and find the desired subgraph of G1 and hence of G.
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Otherwise, by the Reduction Lemma , we can find the desired set of spiders in
G2 = G/pq. If the new vertex v = pq is not in any spider, this set of spiders
exists in G, and we are done. Otherwise, let S be the spider containing v. If v
is not the head of S, let x, y be its neighbors in S. We can replace the path
x− v− y in S with one of x− p− y, x− q− y, or x− p− q− y. If v is the head
of S, it is easy to see that we can either split S into two disjoint spiders with
heads at p and q, or create a single new spider S′ with head at p or q. �

5 Conclusions

Having strengthened the reduction step of [18] to handle local element connec-
tivity, we demonstrated applications of this stronger Reduction Lemma to con-
nectivity and network design problems. We believe that the Reduction Lemma
will find other applications in the future. We close with several open questions:

– We believe that our bound on the number of element-disjoint Steiner forests
in a general graph can be improved fromΩ(k/(log |T | logm)) toΩ(k/ log |T |).

– Prove or disprove Conjecture 1.
– In a natural generalization of the Steiner Forest packing problem, each non-

terminal/white vertex has a capacity, and the goal is to pack forests subject
to these capacity constraints. In general graphs, it is easy to reduce this prob-
lem to the uncapacitated/unit-capacity version, but this is not necessarily
the case for restricted classes of graphs. In particular, it would be interesting
to pack Ω(k) forests for the capacitated planar Steiner Forest problem.
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Abstract. Motivated by applications in online dating and kidney ex-
change, we study a stochastic matching problem in which we have a ran-
dom graph G given by a node set V and probabilities p(i, j) on all pairs
i, j ∈ V representing the probability that edge (i, j) exists. Additionally,
each node has an integer weight t(i) called its patience parameter. Nodes
represent agents in a matching market with dichotomous preferences, i.e.,
each agent finds every other agent either acceptable or unacceptable and
is indifferent between all acceptable agents. The goal is to maximize the
welfare, or produce a matching between acceptable agents of maximum
size. Preferences must be solicited based on probabilistic information
represented by p(i, j), and agent i can be asked at most t(i) questions
regarding his or her preferences.

A stochastic matching algorithm iteratively probes pairs of nodes i
and j with positive patience parameters. With probability p(i, j), an
edge exists and the nodes are irrevocably matched. With probability
1 − p(i, j), the edge does not exist and the patience parameters of the
nodes are decremented. We give a simple greedy strategy for selecting
probes which produces a matching whose cardinality is, in expectation,
at least a quarter of the size of this optimal algorithm’s matching. We
additionally show that variants of our algorithm (and our analysis) can
handle more complicated constraints, such as a limit on the maximum
number of rounds, or the number of pairs probed in each round.

1 Introduction

Matching is a fundamental primitive of many markets including job markets,
commercial markets, and even dating markets [3,4,5,14,15,16]. While matching
is a well understood graph-theoretic concept, its stochastic variants are con-
siderably less well-developed. Yet stochastic variants are precisely the relevant
framework for most markets which incorporate a degree of uncertainty regard-
ing the preferences of the agents. In this paper we study a stochastic variant of
matching motivated by applications in the kidney exchange and online dating
markets, or more generally, for matching markets with dichotomous preferences
in which each agent finds every other agent either acceptable or unacceptable
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and is indifferent between acceptable agents (see, e.g., [6]). The basic stochas-
tic matching problem, which is the main focus of this paper, can be stated as
follows:

Let G be a random undirected graph given by a node set V (representing
agents in the matching market) and a probability p(i, j) on any pair
i, j of nodes, representing the probability that an edge exists between
that pair of nodes (i.e., the probability that the corresponding agents
find each other acceptable). Whether or not there is an edge between a
pair of nodes is not revealed to us unless we probe this pair (solicit the
preference information from the relevant agents). Upon probing a pair,
if there is an edge between them, they are matched and removed from
the graph. In other words, when a pair (i, j) is probed, a coin is flipped
with probability p(i, j). Upon heads, the pair is matched and leaves the
system. In addition, for every node i, we are given a number t(i) called
the patience parameter of i, which specifies the maximum number of
failed probes i is willing to participate in.

The goal is to maximize the welfare, i.e., design a probing strategy to
maximize the expected number of matches.

The above formulation of the problem is similar in nature to the formulation
of other stochastic optimization problems such as stochastic shortest path [10,7]
and stochastic knapsack [8]. The stochastic matching problem is an exponential-
sized Markov Decision Process (MDP) and hence has an optimal dynamic pro-
gram, also exponential. Our goal is to approximate the expected value of this
dynamic program in polynomial time. We show that a simple non-adaptive
greedy algorithm that runs in near-linear time is a 4-approximation (Section 3).
The algorithm simply probes edges in order of decreasing probability. Our algo-
rithm is practical, intuitive, and near-optimal. Interestingly, the algorithm need
not even know the patience parameters, but just which edges are more probable.

It is easy to see that the above greedy algorithm is a good approximation when
the patience parameters are all one or all infinite: when the patience parameters
are all one, the optimal algorithm clearly selects a maximum matching and so the
maximal matching selected by the greedy algorithm is a 2-approximation; when
the patience parameters are all infinite, for any instantiation of the coin flips,
the greedy algorithm finds a maximal matching and hence is a 2-approximation
to the (ex-post) maximum matching. To prove that the greedy algorithm is a
constant approximation in general, we can no longer compare our performance
to the expected size of the maximum matching. Actually, the gap between the
expected size of the maximum matching and the expected value of the optimum
algorithm may be larger than any constant. Instead, we compare the decision
tree of the greedy algorithm to the decision tree of the optimum algorithm. Using
induction on the graph as well as a careful charging scheme, we are able to show
that the greedy algorithm is a 4-approximation for general patience parameters.
Unfortunately, we do not know if computing the optimal solution is even NP-
hard. Further, we do not know whether if the analysis of the greedy algorithm
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is tight. We leave these as open questions and conjecture that (i) computing the
optimal strategy is indeed NP-hard and (ii) the greedy algorithm is indeed a
2-approximation.

We also show that our algorithm and analysis can be adapted to handle more
complicated constraints (Section 4). In particular, if probes must be performed
in a limited number of rounds, each round consisting of probing a matching, a
natural generalization of the greedy algorithm gives a 6-approximation in the
uniform probability case. For this generalization, the problem does turn out to
be NP-hard. We can also generalize the algorithm to a case where we only probe
a limited number of edges in each round (Section 4).

1.1 Motivation

In addition to being an innately appealing and natural problem, the stochastic
matching problem has important applications. We outline here two applications
to kidney exchange and online dating.

Kidney Exchange. Currently, there are 98,167 people in need of an organ in the
United States. Of these, 74,047 patients are waiting for a kidney.1 Every healthy
person has two kidneys, and only needs one kidney to survive. Hence it is possi-
ble for a living friend or family of the patient to donate a kidney to the patient.
Unfortunately, not all patients have compatible donors. At the recommendation
of the medical community [12,13], in year 2000 the United Network for Organ
Sharing (UNOS) began performing kidney exchanges in which two incompatible
patient/donor pairs are identified such that each donor is compatible with the
other pair’s patient. Four simultaneous operations are then performed, exchang-
ing the kidneys between the pairs in order to have two successful transplants.

To maximize the total number of kidney transplants in the kidney exchange
program, it is important to match the maximum number of pairs. This problem
can be phrased as that of maximum matching on graphs in which the nodes
represent incompatible pairs and the edges represent possible transplants based
on medical tests [15,16]. There are three main tests which indicate the likelihood
of successful transplants. The first two tests, the blood-type test and the anti-
body screen, compare the blood of the recipient and donor. The third test, called
crossmatching, combines the recipient’s blood serum with some of the donor’s
red blood cells and checks to see if the antibodies in the serum kill the cells. If
this happens (the crossmatch is positive), the transplant can not be performed.
Otherwise (the crossmatch is negative), the transplant may be performed.2

Of course, the feasibility of a transplant can only be determined after the final
crossmatch test. As this test is time-consuming and must be performed close to
the surgery date [2,1], it is infeasible to perform crossmatch tests on all nodes
1 Data retrieved on November 19th, 2007 from United Network for Organ Shar-

ing (UNOS) — The Organ Procurement and Transplantation Network (OPTN),
http://www.optn.org/data

2 Recent advances in medicine actually allow positive crossmatch transplants as well,
but these are significantly more risky.
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in the graph. Furthermore, due to incentives facing doctors, it is important to
perform a transplant as soon as a pair with negative crossmatch tests is identified.
Thus the edges are really stochastic; they only reflect the probability, based on
the initial two tests and related factors, that an exchange is possible. Based on
this information alone, edges must be selected and, upon a negative crossmatch
test, the surgery performed. Hence the matching problem is actually a stochastic
matching problem. The patience parameters in the stochastic matching problem
can be used to model the unfortunate fact that patients will eventually die
without a successful match.

Online Dating. Another relevant marketplace for stochastic matching is the on-
line dating scene, the second-largest paid-content industry on the web, expected
to gross around $600 million in 2008 [9]. In many online dating sites, most no-
tably eHarmony and Just Lunch, users submit profiles to a central server. The
server then estimates the compatibility of a couple and sends plausibly compat-
ible couples on blind dates (and even virtual blind dates). The purported goal
of these sites is to create as many happily married couples as possible.

Again, this problem may be modeled as a stochastic matching problem. Here,
the people participating in the online match-making program are the nodes in
the graph. From the personal characteristics of these individuals, the system
deduces for each pair a probability that they are a good match. Whether or not
a pair is actually successful can only be known if they are sent on a date. In this
case, if the pair is a match, they will immediately leave the program. Also, each
person is willing to participate in at most a given number of unsuccessful dates
before he/she runs out of patience and leaves the match-making program. The
online dating problem is to design a schedule for dates to maximize the expected
number of matched couples.

2 Preliminaries

The stochastic matching problem can be represented by a random graph G =
(V,E), where for each pair (α, β) of vertices, there is an undirected edge between
α and β with a probability p(α, β) ∈ [0, 1].3 For the rest of the paper, without
loss of generality we assume that E contains exactly the pairs that have positive
probability. These probabilities are all independent. Additionally, for each vertex
γ ∈ V a number t(γ) called the patience parameter of γ is given. The existence
of an edge between a pair of vertices of the graph is only revealed to us after we
probe this pair. When a pair (α, β) is probed, a coin is flipped with probability
p(α, β). Upon heads, the pair is matched and is removed from the graph. Upon
tails, the patience parameter of both α and β are decremented by one. If the
patience parameter of a node reaches 0, this node is removed from the graph. This
guarantees that each vertex γ can be probed at most t(γ) times. The problem

3 Note that here we do not impose any constraint that the graph G should be bipartite.
In settings such as heterosexual dating where such a constraint is natural, it can be
imposed by setting the probabilities between vertices on the same side to zero.
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is to design (possibly adaptive) strategies to probe pairs of vertices in the graph
such that the expected number of matched pairs is maximized.

An instance of our problem is thus a tuple (G, t). For a given algorithm ALG,
let EALG(G, t) (or EALG(G) for simplicity, when t is clear from the context) be
the expected number of pairs matched by ALG, where the expectation is over the
realizations of probes and (possible) coin tosses of the algorithm itself.

Decision Tree Representation. For any deterministic algorithm ALG and any
instance (G, t) of the problem, the entire operation of ALG on (G, t) can be
represented as an (exponential-sized) decision tree TALG. The root of TALG, r,
represents the first pair e = (α, β) ∈ E probed by ALG. The left and the right
subtrees of r represent success and failure for the probe to (α, β), respectively.
In general, each node of this tree corresponds to a probe and the left and the
right subtrees correspond to the respective success or failure.

For each node v ∈ TALG, a corresponding sub-instance (Gv, tv) of the problem
can be defined recursively as follows: The root r corresponds to the initial in-
stance (G, t). If a node v that represents a probe to a pair (α, β) corresponds to
(Gv, tv),

– the left child of v corresponds to (Gv \ {α, β}, tv), and
– the right child of v corresponds to (Gv \ {(α, β)}, t′v), where Gv \ {(α, β)}

denotes the instance obtained from Gv by setting the probability of the edge
(α, β) to zero, and t′v(α) = tv(α) − 1, t′v(β) = tv(β) − 1 and t′v(γ) = tv(γ)
for any other vertex γ.

For each node v ∈ TALG, let Tv be the subtree rooted at v. Let TL(v) and
TR(v) be the left and right subtree of v, respectively. Observe that Tv essentially
defines an algorithm ALG′ on the sub-instance (Gv, tv) corresponding to v. Define
EALG(Tv) to be the expected value generated by the algorithm corresponding to
ALG′, i.e. EALG(Tv) = EALG′(Gv, tv).

The stochastic matching problem can be viewed as the problem of computing
the optimal policy in an exponential-sized Markov Decision Process (for more
details on MDPs, see the textbook by Puterman [11]). The states of this MDP
correspond to subgraphs of G that are already probed, and the outcome of
these probes. The actions that can be taken at a given state correspond to the
choice of the next pair to be probed. Given an action, the state transitions
probabilistically to one of two possible states, one corresponding to a success,
and the other corresponding to a failure in the probe. We denote by OPT the
optimal algorithm, i.e., the solution of this MDP. Note that we can assume
without loss of generality that OPT is deterministic, and therefore, a decision
tree TOPT representing OPT can be defined as described above. Observe that by
definition, for any node v of this tree, if the probability of reaching v from the
root is non-zero, the algorithm defined by Tv must be the optimal for the instance
(Gv, tv) corresponding to v. To simplify our arguments, we assume without loss
of generality that the algorithm defined by Tv is optimal for (Gv, tv) for every
v ∈ TOPT, even for nodes v that have probability zero of being reached. Note that
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such nodes can exist in TOPT, since OPT can probe edges of probability 1, in which
case the corresponding right subtree is never reached.

It is not even known if the optimal strategy OPT can be described in polynomial
space. Therefore, one might hope to use other benchmarks such as the optimal
offline solution (i.e., the expected size of maximum matching in G) as an upper
bound on OPT. However, in the full version of the paper, we show that the gap
between OPT and the optimal offline solution can be unbounded.

3 Greedy Algorithm

We consider the following greedy algorithm.

GREEDY

1. Sort all edges in E by probabilities, say, p(e1) ≥ p(e2) ≥ · · · ≥
p(em) (ties are broken arbitrarily)

2. For i = 1, . . . , m, if the two endpoints of ei are available, probe ei

Our main result is as follows.

Theorem 1. For any instance graph (G, t), GREEDY is a 4-approximation to the
optimal algorithm, i.e. EOPT(G, t) ≤ 4 ·EGREEDY(G, t).

In the rest of this section, we will prove Theorem 1. The proof is inductive
and based on carefully charging the value obtained at different nodes of TOPT to
TGREEDY. We begin by stating two lemmas that will be useful for the proof.

Lemma 1. For any node v ∈TOPT, EOPT

(
TL(v)

)
≤EOPT

(
TR(v)

)
≤1+EOPT

(
TL(v)

)
.

Lemma 2. For any node v ∈ TOPT, assume v represents the edge e = (α, β) ∈ E,
and let p = p(α, β) be the probability of e. If we increase the probability of v to
p′ > p in TOPT, then EOPT(TOPT) will not decrease.

Note that Lemma 2 does not mean we increase the probability of edge e in graph
G. It only says for a particular probe of e in TOPT, which corresponds to node v
in the claim, if the probability of e is increased, the expected value of OPT will
not decrease. (The proofs of the lemmas are deferred to the full version of the
paper.)

These two lemmas provide the key ingredients of our proof. To get an idea of
the proof, imagine that the first probe of the greedy algorithm is to edge (α, β)
represented by node r at the root of TGREEDY as in Figure 1 and suppose that TOPT
is as in Figure 2. Let pr be the probability of success of probe (α, β).

Note that the algorithm ALG1 defined by subtree A in TOPT is a valid algo-
rithm for the left subtree L of greedy (since the optimum algorithm has already
matched nodes α and β upon reaching subtree A, all probes in subtree A are
valid probes for the left-subtree L of TGREEDY). Furthermore, ALG1 achieves the
same value, in expectation, as the optimum algorithm on subtree A. Similarly
the algorithm ALG2 defined by subtree D in TOPT is a valid algorithm for the right
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r = (α, β)

L R

Fig. 1. Greedy tree TGREEDY

y = (. , β) z = (. , β)

x = (α, .)

A B C D

Fig. 2. Optimum tree TOPT

subtree R of greedy except ALG2 may perform a probe to (α, β). Thus we define
a secondary (randomized) algorithm ALG′2 which follows ALG2 but upon reaching
a probe to (α, β) simply flips a coin with probability pr to decide which subtree
to follow and does not probe the edge. Hence ALG′2 is a valid algorithm for the
right subtree R of greedy, and gets the same value as the optimum algorithm
on subtree D minus a penalty of pr for the missed probe to (α, β). The value
of ALG1 and ALG′2 on the left and right subtree L and R of TGREEDY respectively
is at most the value of the optimum algorithm on those subtrees and so, by the
inductive hypothesis, at most four times the value of the greedy algorithm on
those subtrees. By Lemma 2, we can assume that the probes at nodes x, y, and
z in TOPT have probability pr of success. Furthermore, we can use Lemma 1 to
bound the value of the optimum algorithm in terms of the left-most subtree A
and the right-most subtree D. With a slight abuse of notation, we use A to de-
note the expected value of the optimum algorithm on subtree A (and similarly,
B, C, and D). Summarizing the above observations, we then get:

EOPT(G, t) ≤ p2
r(A+ 2) + pr(1− pr)(B + 1) + pr(1− pr)(C + 1) + (1 − pr)2D

= 2pr + p2
rA+ pr(1− pr)B + pr(1 − pr)C + (1− pr)2D

≤ 2pr + p2
rA+ pr(1− pr)(A+ 1) + pr(1− pr)D + (1− pr)2D

= 3pr − p2
r + prA+ (1− pr)D

≤ 4pr + prA+ (1− pr)(D − pr)
= 4 ·

(
pr(1 + EALG1) + (1− pr)EALG′2

)
≤ 4EGREEDY(G, t)

where the first inequality is by Lemma 2, the second inequality is by Lemma 1,
and the last inequality is by the inductive hypothesis.

The above sketch represents the crux of the proof. To formalize the argument,
we must account for all possibilities of TOPT. We do this by considering “fron-
tiers” in TOPT representing initial probes to α and β, and then follow the general
accounting scheme suggested above via slightly more complicated algebraic ma-
nipulations.

Proof of Theorem 1. The proof is by induction on the set of edges in the graph
G and the patience parameters. In particular, (G′, t′) is a sub-instance of (G, t)
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if G′ is an edge subgraph of G and for every vertex v ∈ V (G′), t′(v) ≤ t(v). In
the base case where the graph has only one edge, the claim is obviously true.
Assume that for any sub-instance (G′, t′) of instance (G, t),

EOPT(G′, t′) ≤ 4 · EGREEDY(G′, t′)

Given the induction hypothesis, we will show that EOPT(G, t) ≤ 4 ·EGREEDY(G, t).
Let r be the root of TGREEDY, which represents probing the edge (α, β) ∈ E,

and pr be the probability of edge (α, β). Let (GL, tL) and (GR, tR) be the sub-
instances corresponding to the left and right child of r, respectively. Note that

EGREEDY(G, t) = pr + pr ·EGREEDY(GL, tL) + (1− pr) · EGREEDY(GR, tR) (1)

We consider two cases based on whether pr = 1 or pr < 1. If pr = 1, then
it is easy to see that the inductive hypothesis holds. Namely, let (G′, t′) be the
sub-instance of (G, t) obtained by removing edge (α, β). Then,

EOPT(G, t) ≤ EOPT(G′, t′) + 1 ≤ 4 · EGREEDY(G′, t′) + 1 ≤ 4 ·EGREEDY(G, t)

where the second inequality follows from the inductive hypothesis.
If pr < 1, then for every node v ∈ TOPT, the probability pv of the edge corre-

sponding to v satisfies 0 < pv ≤ pr < 1 by the definition of the greedy algorithm.
We define qv to be the probability that OPT reaches node v in TOPT. That is,

qv is the product of probabilities of all edges on the path from the root of TOPT
to v. The following equality follows from the definition of qv:

EOPT(G, t) =
∑

v∈TOPT

pv · qv (2)

Define X ⊆ TOPT to be the set of nodes that correspond to the first time where
OPT probes an edge incident to α or β. In other words, X is the set of nodes
v ∈ TOPT such that OPT probes an edge incident to α or β (or both) at v and at
none of the vertices on the path from the root to v. Observe that no node in X
lies in the subtree rooted at another node in X . Thus, X essentially defines a
“frontier” in TOPT.

Take a node v ∈ X . If v represents probing an edge incident to α, consider
the set of all nodes in TL(v) that correspond to the first time an edge incident to
β is probed; otherwise, consider all nodes in TL(v) that correspond to the first
time an edge incident to α is probed. Let Y1 be the union of all these sets, taken
over all v ∈ X . Define Y2 ⊆

⋃
v∈X TR(v) similarly, with L(v) replaced by R(v).

For any subset of nodes S ⊆ TOPT, define T (S) =
⋃

v∈S Tv. We show in the
full version of the paper that

EOPT(G, t) ≤ 3pr +
∑
v∈Y1

qv · EOPT

(
TL(v)

)
+

∑
u∈X

∑
v∈TL(u)\T (Y1)

pv · qv

+
∑
v∈Y2

qv · EOPT

(
TR(v)

)
+

∑
u∈X

∑
v∈TR(u)\T (Y2)

pv · qv +
∑

v∈TOPT\T (X)

pv · qv (3)



274 N. Chen et al.

Define an algorithm ALG1 that works as follows: ALG1 follows the decision tree
of OPT except that when the algorithm reaches a node v ∈ X ∪ Y1, it will not
probe the edge corresponding to v and go to the left subtree TL(v) directly. Since
in ALG1, every path from the root to a node in T (Y1) (and

⋃
u∈X TL(u) \ T (Y1))

has two (and one respectively) less successful probes in X ∪ Y1 than OPT, it
follows that

EALG1 =
∑
u∈X

∑
v∈Y1∩TL(u)

∑
w∈TL(v)

pw · qw

pupv
+

∑
u∈X

∑
w∈TL(u)\T (Y1)

pw · qw

pu

+
∑

w∈TOPT\T (X)

pw · qw =
∑
u∈X

∑
v∈Y1∩TL(u)

qv

pu
· EOPT

(
TL(v)

)
+

∑
u∈X

∑
w∈TL(u)\T (Y1)

pw · qw

pu
+

∑
w∈TOPT\T (X)

pw · qw (4)

(recall pu > 0, and hence the division is valid). In the second equality above, we
have used the following fact: Fix v ∈ Y1. For every w ∈ TL(v), let qw = qv ·pv ·q′w.
Then EOPT

(
TL(v)

)
=

∑
w∈TL(u)

q′w · pw.
On the other hand, by the definition of X and Y1, ALG1 will not probe any

edge incident to α and β. Thus it is a valid algorithm for the instance (GL, tL).
By the induction hypothesis, we have

EALG1 ≤ EOPT(GL, tL) ≤ 4 · EGREEDY(GL, tL) (5)

Define an algorithm ALG2 that works as follows: ALG2 follows the decision
tree of OPT except that when the algorithm reaches a node v ∈ X ∪ Y2, it will
not probe the edge corresponding to v and proceed to the right subtree TR(v)

directly. Using an argument similar to the one used for EALG1 , we get

EALG2 =
∑
u∈X

∑
v∈Y2∩TR(u)

∑
w∈TR(v)

pw · qw

(1 − pu)(1 − pv)

+
∑
u∈X

∑
w∈TR(u)\T (Y2)

pw · qw

1 − pu
+

∑
w∈TOPT\T (X)

pw · qw

=
∑
u∈X

∑
v∈Y2∩TR(u)

qv

1 − pu
· EOPT

(
TR(v)

)
+

∑
u∈X

∑
w∈TR(u)\T (Y2)

pw · qw

1 − pu
+

∑
w∈TOPT\T (X)

pw · qw (6)

(recall pu < 1, and hence the division is valid).
We define a variant ALG′2 from ALG2 where whenever ALG2 reaches a node

corresponding to edge (α, β), ALG′2 will only make a coin toss with the same
distribution to decide which subtree to go, but not probe the edge (α, β). That
is, the contribution of edge (α, β) is not included in ALG′2. It is easy to see that

EALG2 ≤ EALG′2 + pr (7)

By the definition of X and Y2, ALG′2 is a valid algorithm for the instance (GR, tR).
By the induction hypothesis, we have

EALG′2 ≤ EOPT(GR, tR) ≤ 4 · EGREEDY(GR, tR) (8)
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Now consider nodes u ∈ X and imagine increasing the probability of success,
pu, to pr for each such node. By Lemma 2, this can only increase the value of
EOPT(G, t) but it clearly does not change the value of ALG1 or ALG2. Let EOPT(G, t)′
be the value of the algorithm TOPT on this new instance. From (3), we have

EOPT(G, t)′ ≤ 3pr +
∑
u∈X

∑
v∈Y1∩TL(u)

pr
qv

pu
· EOPT

(
TL(v)

)
+

∑
u∈X

∑
v∈TL(u)\T (Y1)

pv · pr
qv

pu

+
∑
u∈X

∑
v∈Y2∩TR(u)

(1 − pr)
qv

1 − pu
· EOPT

(
TR(v)

)
+

∑
u∈X

∑
v∈TR(u)\T (Y2)

pv · (1 − pr)
qv

1 − pu
+

∑
v∈TOPT\T (X)

pv · qv

= 3pr + pr · EALG1 + (1 − pr) · EALG2 (9)

where the last line follows from (4) and (6). Therefore, we have

EOPT(G, t) ≤ EOPT(G, t)′ ≤ 3pr + pr ·EALG1 + (1− pr) · EALG2

≤ 4pr + pr ·EALG1 + (1 − pr) ·EALG′2 (10)
≤ 4pr + 4pr · EGREEDY(GL, tL) + 4(1− pr) · EGREEDY(GR, tR) (11)
= 4 · EGREEDY(G, t) (12)

where (10) follows from (7), (11) follows from (5) and (8), and (12) follows from
(1). This completes the proof.

4 Multiple Rounds Matching

In this section, we consider a generalization of the stochastic matching problem
defined in Section 2. In this generalization, the algorithm proceeds in rounds, and
is allowed to probe a set of edges (which have to be a matching) in each round.
The additional constraint is a bound, k, on the maximum number of rounds.
In the full version of the paper, we show that finding the optimal strategy in
this new model is NP-hard. Note that when k is large enough, the problem is
equivalent to the model discussed in previous sections.

In the rest of this section, we will study approximation algorithms for the
problem. By looking at the probabilities as the weights on edges, we have the
following natural generalization of the greedy algorithm.

GREEDYk

1. For each round i = 1, . . . , k
(a) compute the maximum weighted matching in the current graph

(b) probe all edges in the matching

Let OPTk be the optimal algorithm under this setting. We would like to com-
pare EGREEDYk against EOPTk . Unfortunately, with no restriction on the instance,
GREEDYk can be arbitrarily bad.
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However, we can still prove that GREEDYk is a constant-factor approximation
algorithm in two important special cases: when all nodes have infinite patience,
and when nodes have arbitrary patience but all non-zero probability edges of
G have bounded probability (which contains the equal probability case). Fur-
thermore, we observe that the latter result can be used to give a logarithmic
approximation for the general case of the problem.

Special Cases. When the patience of all vertices are infinity, we can show that
GREEDYk is a 4-approximation.

Theorem 2. For any graph G = (V,E), EOPTk(G) ≤ 4 · EGREEDYk(G), when the
patience of all vertices are infinity.

Next, we study the approximability of GREEDYk on instances where nodes have
arbitrary patience, but all edges of G have probabilities in a bounded range.

Theorem 3. Let (G, t) be an instance such that for all pairs α, β of vertices,
p(α, β) is either 0 or in [pmin, pmax], for 0 < pmin ≤ pmax ≤ 1. Then EOPTk(G) ≤
(4 + 2pmax/pmin) · EGREEDYk(G).

Note that this implies that GREEDYk is a 6-approximation in the uniform proba-
bility case, i.e. pmin = pmax.

The General Case. Theorem 3 can be used to obtain a (randomized) approx-
imation algorithm for the general case of the multi-round stochastic matching
problem with an approximation factor of O(log n). This follows from the obser-
vations that one can delete all edges with probability less than pmax/n

2 and the
fact that Theorem 3 gives a constant factor approximation on subgraphs of G
with edge weight in the range (pmax/2i, pmax/2i+1], for some integer i ≥ 0.

A Further Extension. We also consider the following extension of the multi-
round model. In each round, an algorithm is only allowed to probe a matching
of size at most C, where 1 ≤ C ≤ �|V |/2� is another parameter (V is the set
of vertices in the graph). Note that till now we have only considered the cases
C = 1 and C = �|V |/2�. Theorems 2 and 3 for the natural extension of the
GREEDYk algorithm also hold in this model. Further, for the arbitrary patience
and probability case, GREEDYk is a Θ(min(k, C))-approximation algorithm. (The
details are deferred to the full version of the paper.)

5 Conclusions

We studied natural greedy algorithms for the stochastic matching problem with
patience parameters and proved that these algorithms are constant factor ap-
proximations. A natural question to ask is if designing the optimal strategy is
computationally hard (this is even unknown for infinite patience parameters).
Actually, we can show the following two variants are NP-hard: (i) The algo-
rithm can probe a matching in at most k rounds (the model we studied in
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Section 4) and (ii) the order in which the edges need to be probed are fixed
(and the algorithm just needs to decide whether to probe an edge or not). In
terms of positive results, it is well known that the greedy algorithm in Sec-
tion 3 for the special cases of (i) all probabilities being 1 and (ii) all patience
parameters being infinity is a 2-approximation. However, we proved that the
greedy algorithm is a factor of 4-approximation. We conjecture that the greedy
algorithm is in fact a 2-approximation even for the general stochastic matching
problem.

Another interesting variant of the problem is when edges also have weights as-
sociated with them and the objective is to maximize the (expected) total weight
of the matched edges. In the full version of the paper, we exhibit an example
that shows that the natural greedy algorithm has an unbounded approximation
ratio. In addition, the greedy algorithm considered in Section 3 is non-adaptive,
that is, the order of edges to probe are decided before the first probe. A natu-
ral question to ask is what is the “gap” between the non-adaptive and adaptive
optimal values (e.g. [8])? In the full version of the paper, we present an exam-
ple to show that the adaptive optimal is strictly larger than the non-adaptive
optimal.
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Abstract. Strong Nash equilibria and Pareto-optimal Nash equilibria are natural
and important strengthenings of the Nash equilibrium concept. We study these
stronger notions of equilibrium in congestion games, focusing on the relation-
ships between the price of anarchy for these equilibria and that for standard Nash
equilibria (which is well understood). For symmetric congestion games with poly-
nomial or exponential latency functions, we show that the price of anarchy for
strong and Pareto-optimal equilibria is much smaller than the standard price of
anarchy. On the other hand, for asymmetric congestion games with polynomial
latencies the strong and Pareto prices of anarchy are essentially as large as the
standard price of anarchy; while for asymmetric games with exponential laten-
cies the Pareto and standard prices of anarchy are the same but the strong price of
anarchy is substantially smaller. Finally, in the special case of linear latencies, we
show that in asymmetric games the strong and Pareto prices of anarchy coincide
exactly with the known value 5

2
for standard Nash, but are strictly smaller for

symmetric games.

1 Introduction

1.1 Background

In algorithmic game theory, the price of anarchy [14] is defined as the ratio of the
social cost of a worst Nash equilibrium to that of a social optimum (i.e., an assign-
ment of strategies to players achieving optimal social cost). This highly successful and
influential concept is frequently thought of as the standard measure of the potential ef-
ficiency loss due to individual selfishness, when players are concerned only with their
own utility and not with the overall social welfare. However, because a Nash equilib-
rium guarantees only that no single player (as opposed to no coalition) can improve his
utility by moving to a new strategy, the price of anarchy arguably conflates the effects
of selfishness and lack of coordination. Indeed, for several natural classes of games, the
worst-case price of anarchy is achieved at a Nash equilibrium in which a group of self-
ish players can all improve their individual utilities by moving simultaneously to new
strategies; in some cases, the worst Nash equilibrium may not even be Pareto-optimal—
i.e., it may be possible that a group of players can move to new strategies so that every
player is better off (or no worse off) than before.
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In this context, two stronger equilibrium concepts perhaps better isolate the effi-
ciency loss due only to selfishness. A strong Nash equilibrium [5] is defined as a state
in which no subset of the players may simultaneously change their strategies so as to
improve all of their costs. The strong price of anarchy (e.g., [3]) is the ratio between
the cost of the worst strong equilibrium and the optimum cost. A weaker concept that
is very widely studied in the economics literature (see, e.g., [15]) is that of a Pareto-
optimal Nash equilibrium, which is defined as a Nash equilibrium for which there is no
other state in which every player is better off. (Equivalently, one may think of a Pareto-
optimal equilibrium as being stable under moves by single players or the coalition of all
players, but not necessarily arbitrary coalitions.) One can argue that Pareto-optimality
should be a minimum requirement for any equilibrium concept intended to capture the
notion of selfishness, in that it should not be in every player’s self-interest to move to
another state. The Pareto price of anarchy is then defined in the obvious way.1

A natural question to ask is whether the strong and/or Pareto prices of anarchy are
significantly less than the standard price of anarchy. In other words, does the require-
ment that the equilibrium be stable against coalitions lead to greater efficiency? We note
that this question has been addressed recently for several specific families of games in
the case of the strong (though not Pareto) price of anarchy [2, 3, 10]; see the related work
section below. In this paper, we investigate the question for the large and well-studied
class of congestion games with linear, polynomial or exponential latency functions.

A congestion game is an n-player game in which each player’s strategy consists of
a set of resources, and the cost of the strategy depends only on the number of play-
ers using each resource, i.e., the cost takes the form

∑
r �r(f(r)), where f(r) is the

number of players using resource r, and �r is a non-negative increasing function. A
standard example is a network congestion game on a directed graph, in which each
player selects a path from some source to some destination, and each edge has an asso-
ciated cost function, or “latency”, �r that increases with the number of players using it.
(Throughout, we shall use the term “latency” even though we will always be discussing
general (non-network) congestion games.) Frequently the latencies are assumed to have
a simple form, such as linear, polynomial, or exponential.

Congestion games were introduced in Economics by Rosenthal [18], and further
studied in an influential paper by Monderer and Shapley [16]. They have since featured
prominently in algorithmic game theory, partly because they capture a large class of
routing and resource allocation scenarios, and partly because they are known to possess
pure Nash equilibria [18]. The price of anarchy for congestion games is by now quite
well understood, starting with Koutsoupias and Papadimitriou [14] who considered a
(weighted) congestion game on a set of parallel edges. The seminal work of Roughgar-
den and Tardos [20] established the value 4

3 as the price of anarchy of network con-
gestion games with linear latencies in the nonatomic or Wardrop case [7] (where there
are infinitely many players, each of whom controls an infinitesimal amount of traffic);
this was extended to polynomial latencies in [21]. The more delicate n-player case was
solved independently by Awerbuch, Azar and Epstein [6] and by Christodoulou and
Koutsoupias [8], who obtained the tight value 5

2 for the price of anarchy in the linear

1 Note that throughout we are assuming that cost (or utility) is non-transferable, i.e., players in
a coalition cannot share their costs with each other. If costs can be shared, the situation is very
different; see, e.g., [12] for a discussion of this alternative scenario.
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case, and the asymptotically tight value kk(1−o(1)) for the case of polynomial latencies.
Subsequently Aland et al. [1] gave an exact value for the polynomial case.

Much less is known about strong or Pareto-optimal Nash equilibria in congestion
games. Note that such equilibria need not exist. Holzman and Law-Yone [13] give a
sufficient condition for the existence of a strong equilibrium based on the absence of
a certain structural feature in the game, and also discuss the uniqueness and Pareto-
optimality of Nash equilibria under the same condition. For the strong or Pareto price
of anarchy, however, there appear to be no results for general congestion games.

1.2 Results

We investigate the strong and Pareto price of anarchy for congestion games with linear,
polynomial and exponential latencies. Roughly speaking, we find that in symmetric2

games the resulting price of anarchy can be much less than the standard (Nash) price of
anarchy, while in asymmetric games the behavior is more complicated: for linear and
polynomial latencies all three prices of anarchy are essentially the same, but for expo-
nential latencies the standard and Pareto prices of anarchy are equal, while the strong
price of anarchy is substantially smaller. (We note that this gap between symmetric
and asymmetric games does not appear for standard Nash equilibria. Understanding the
reason for this difference may be worthy of further study.)

More specifically, we show that the strong and Pareto prices of anarchy for symmet-
ric congestion games with polynomial latencies of degree k are at most 2k+1 (and that
this is tight up to a constant factor); this is in sharp contrast to the Nash price of anarchy
of kk(1−o(1)) obtained in [1, 6, 8]. In the special case of linear latency, we show that the
strong and Pareto prices of anarchy are strictly less than the exact value 5

2 for standard
Nash obtained in [6, 8]. For symmetric games with exponential latency αt, we show
that the strong and Pareto prices of anarchy are at most max{α, n}, while the standard
Nash price of anarchy is at least βn, where β > 1 is a constant that depends on α.

On the other hand, for asymmetric games with polynomial latency of degree k, we
show that the strong (and therefore also the Pareto) price of anarchy is kk(1−o(1)),
matching the asymptotic value for standard Nash derived in [6, 8]. Moreover, in the
linear case all three prices of anarchy coincide exactly. For exponential latencies, we
show that the Pareto price of anarchy is the same as for standard Nash (which is ex-
ponentially large), and also that the strong price of anarchy is much smaller; thus we
exhibit a separation between strong and Pareto prices of anarchy for a natural class of
games.

Since strong and Pareto-optimal equilibria do not always exist, we should clarify the
meaning of the above statements. An upper bound on the strong (respectively, Pareto)
price of anarchy for a certain class of games bounds the price of anarchy whenever
a strong (respectively, Pareto-optimal) equilibrium exists. A lower bound means that
there is a specific game in the class that has a strong (respectively, Pareto-optimal)
equilibrium achieving the stated price of anarchy.

We now briefly highlight a few of our proof techniques. To obtain upper bounds on
the Pareto (and hence also strong) price of anarchy in symmetric games, we show that
this price of anarchy can always be bounded above by the maximum ratio of the costs of

2 A game is symmetric if all players have the same sets of allowable strategies.
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individual players at equilibrium and the same ratio at the social optimum. This allows
us to study the equilibrium and the optimum separately, greatly simplifying the analysis.
We note that this fact holds for arbitrary symmetric games, not only congestion games,
and thus may be of wider interest. Our upper bound on the Pareto price of anarchy
for linear latencies requires a much more intricate analysis, and makes use of a matrix
M = (mij), where mij is the relative cost increase to player i’s cost at optimum when
a new player moves to player j’s strategy. This turns out to be a stochastic matrix with
several useful properties. Finally, our lower bound arguments are based on constructions
used in [1, 6, 8], suitably modified so as to handle the stronger requirements of strong
and Pareto equilibria. (These constructions typically have the property that the social
optimum is a strong Nash equilibrium, so they are not applicable in our setting.)

1.3 Related Work

We briefly mention here some other related results not discussed above. A fair amount
is known about the standard price of anarchy for variations of congestion games. The
previously mentioned [6] and [1] both extend their results to congestion games with
weighted players, while [8] handles the case where social cost is defined as the maxi-
mum, rather than total player cost. This latter case is also addressed by the papers [9, 19]
for the Wardrop model.

For the strong equilibrium concept, several authors have considered the strong price
of anarchy and the existence of strong Nash equilibria in various specific classes of
games, often deriving significant gaps between the strong and standard price of anarchy.
For example, Andelman et al. [3] study job scheduling and network creation games,
Epstein et al. [10] cost-sharing connection games, and Albers [2] network design games.

Other measures stronger than the standard Nash price of anarchy have also been
studied recently. Anshelevich et al. [4] consider the price of stability, or the ratio of the
cost of a best Nash equilibrium to the social optimum, for network design games. And
Hayrepeyan et al. [12] define and study the “price of collusion” in analogous fashion to
the strong price of anarchy, with the crucial difference that coalitions aim to minimize
not the cost of each of their members but the combined cost of all members.

On the issue of existence of strong Nash equilibria in congestion games, Rozenfeld
and Tennenholtz [17] follow on from the above-mentioned [13] and consider the case
where the “latencies” are monotonically decreasing.

2 Preliminaries

A game consists of a finite set of players P = {1, . . . , n}, each of which is assigned
a finite set of strategies Si and a cost function ci : S1 × · · · × Sn → N that he
wishes to minimize. A game is called symmetric if all of the Si are identical. A state
s = (s1, . . . , sn) ∈ S1 × · · · × Sn is any combination of strategies for the play-
ers. A state s is a pure Nash equilibrium if for all players i, ci(s1, . . . , si, . . . , sn) ≤
ci(s1, . . . , s′i, . . . , sn) for all s′i ∈ Si; thus at a Nash equilibrium, no player can improve
his cost by unilaterally changing his strategy. It is well known that while every (finite)
game has a mixed Nash equilibrium3, not every game has a pure Nash equilibrium. A

3 In a mixed Nash equilbrium, a player’s strategy is any probability distribution over available
strategies, and no player can improve his expected cost by choosing another distribution.
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state s = (s1, . . . , sn) is a Pareto-optimal Nash equilibrium if it is a pure Nash equilib-
rium and there is no other state in which every player has lower4 cost than at s; in other
words, for all s′ = (s′1, . . . , s′n) ∈ S1 × · · · × Sn, there exists some player j ∈ P such
that cj(s′) ≥ cj(s). A state s = (s1, . . . , sn) is a strong Nash equilibrium if there does
not exist any coalition of players that can move in such a way that every member of the
coalition pays lower cost than at equilibrium; i.e. for any other state s′ �= s, there exists
a player j such that sj �= s′j and cj(s′) ≥ cj(s). Finally, for any given state s, we define
the social cost c(s) to be the sum of the players’ costs in s, i.e., c(s) =

∑
i∈P ci(s). A

state minimizing the social cost in a game is called a social optimum.
We will focus on the class of games known as congestion games, which are known to

always possess a pure Nash equilibrium [18]. In a congestion game, players’ costs are
based on the shared usage of a common set of resources R = {r1, . . . , rm}. A player’s
strategy set Si ⊆ 2R is a collection of subsets of R; his strategy si ∈ Si will thus be a
subset of R. Each resource r ∈ R has an associated non-decreasing cost or “latency”
function �r : {1, . . . , n} → N; if t players are using resource r, they each incur a cost of
�r(t). Thus in a state s = (s1, . . . , sn), the cost of player i is ci(s) =

∑
r∈si

�r(fs(r)),
where fs(r) = |{j : r ∈ sj}| is the number of players using r under s.

Of particular interest are congestion games where the latency functions are linear
(�r(t) = αrt+ βr), polynomial (�r(t) is a degree-k polynomial in t with non-negative
coefficients), or exponential (�r(t) = αt

r for 1 ≤ αr ≤ α.) For simplicity of notation,
we shall assume that �r(t) = t for all r in the linear case, �r(t) = tk for all r in the
polynomial case, and �r(t) = αt for all r in the exponential case. This will not affect
our lower bounds, which are based on explicit constructions of this restricted form, and
it is not hard to check that the upper bounds go through as well. We omit the details,
which are technical but standard. We note that in our congestion games, Pareto-optimal
and strong equilibria may not exist, and games may have the first without the second
(see the full version for such an example).

As is standard, we measure the relative efficiency loss for a specific type of equi-
librium for a given family of games G as the maximum possible ratio, over all games
in the family, of the social cost of an equilibrium state e in that game to the cost of
a social optimum o of the same game, or supG,e

c(e)
c(o) . This measure is known as the

price of anarchy (or coordination ratio) in the case of Nash equilibria, and the strong
price of anarchy for strong Nash equilibria. In addition to these, we will also consider
Pareto-optimal Nash equilibria, in which case we call the above ratio the Pareto price
of anarchy. Clearly the strong price of anarchy is no larger than the Pareto price of
anarchy, which in turn is no larger than the standard (Nash) price of anarchy.

3 Symmetric Games

In this section we prove upper bounds on the strong and Pareto price of anarchy for
symmetric congestion games with polynomial and exponential latencies. We shall see

4 Some definitions of Pareto-optimality require there to be no other state in which no player has
higher cost than at s and at least one player has lower cost. It is easy to check that our results
carry over to this alternative definition with minor modifications to the proofs.
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that these are much smaller than the known values for the standard Nash price of anar-
chy. Thus for symmetric games, increased coordination, when possible, leads to greater
efficiency.

3.1 The Basic Framework

The main vehicle for these proofs is a simple framework that allows us to bound the
price of anarchy in terms of the maximum ratio of the player costs at equilibrium and
the maximum ratio of the player costs at a social optimum. This is the content of the
following theorem, which applies to all symmetric games, not only congestion games.

Theorem 3.1. Given a particular symmetric game with n players, let the state e be
a Pareto-optimal Nash equilibrium and s be any other state. Let ρe be defined as
maxi,j ci(e)/cj(e) over all players i, j, and ρs be defined as maxi,j ci(s)/cj(s). Then
c(e)
c(s) ≤ max {ρe, ρs}.

Proof. By symmetry, we can assume w.l.o.g. that the players are ordered by cost in both
e and s: that is, c1(e) ≤ · · · ≤ cn(e) and c1(s) ≤ · · · ≤ cn(s). Thus cn(e)/c1(e) = ρe,
and cn(s)/c1(s) = ρs. We start from e, and consider the hypothetical move in which
every player i moves from ei to his corresponding strategy si in s. Since e is Pareto-
optimal, there must exist some player j for whom cj(s) ≥ cj(e).

We now upper bound the social cost of equilibrium, c(e) =
∑

i ci(e), and lower
bound the social cost c(s) =

∑
i ci(s) of state s. Consider first the ci(e) values. We

have c1(e) ≤ · · · ≤ cj(e) ≤ · · · ≤ cn(e) = ρec1(e). The sum
∑

i ci(e) is therefore
maximized when c1(e) = c2(e) = · · · = cj(e) and cj+1(e) = · · · = ρec1(e), giving an
upper bound of jcj(e)+(n−j)ρecj(e). Similarly, for the ci(s) values, we have c1(s) ≤
· · · ≤ cj(s) ≤ · · · ≤ ρscn(s). The sum

∑
i ci(s) is minimized when c1(s) = · · · =

cj−1(s) = cj(s)/ρs and cj(s) = · · · = cn(s), and is therefore at least (j−1)cj(s)
ρs

+(n−
j + 1)cj(s). Recalling that cj(s) ≥ cj(e) and combining the two bounds, we obtain∑

i ci(e)∑
i ci(s)

≤ jcj(s) + (n− j)ρecj(s)
(j−1)cj(s)

ρs
+ (n− j + 1)cj(s)

≤ j + (n− j)ρe

(j−1)
ρs

+ (n− j + 1)
. (1)

Differentiating with respect to j, we find that this expression is maximized at j = 1 or
j = n. In the former case the quotient is at most 1+(n−1)ρe

n ≤ ρe, while in the latter
case it is at most n

(n−1)/ρs+1 ≤ ρs. �

Thus, for a family of symmetric games, if we can find ρe and ρo such that ci(e)/cj(e) ≤
ρe for all Pareto-optimal equilibria e, and ci(o)/cj(o) ≤ ρo for all social optima o, we
can bound the Pareto (and hence the strong) price of anarchy by max{ρe, ρo}. We now
proceed to do this for polynomial and exponential symmetric congestion games.

3.2 Polynomial Latencies

For the case of polynomial latencies, where each resource r has latency function �r(t) =
tk, we show the following:
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Theorem 3.2. For symmetric congestion games with polynomial latencies of degree k,
the Pareto price of anarchy (and hence also the strong price of anarchy) is at most 2k+1.

Remarks. (i) Note that the Pareto price of anarchy is much smaller than the known
value of kk(1−o(1)) for the standard Nash price of anarchy [6, 8, 1]. (ii) The upper bound
in Theorem 3.2 is tight up to a constant factor; see the full version for an example.

Proof of Theorem 3.2. Following the framework of Theorem 3.1, it suffices to derive
upper bounds on the ratios of player costs both at equilibrium and at a social optimum.
This we do in the following two claims.

Claim 3.3. In the situation of Theorem 3.2, we have maxi,j∈P
ci(e)
cj(e)

≤ 2k.

Proof. Consider any two players i and j at an equilibrium e, and the hypothetical move
in which player i switches from his current strategy ei to j’s strategy ej , resulting in the
new state e′. We can now bound ci(e′) in terms of cj(e). Note that

ci(e′) =
∑
r∈ej

fe′(r)k =
∑

r∈ej\ei

(fe(r) + 1)k +
∑

r∈ej∩ei

fe(r)k ≤
∑
r∈ej

(fe(r) + 1)k.

(This captures the intuition that in switching to ej , player i pays at most what player j
would pay if there were one more player using each resource.) From this, it follows that

ci(e′)
cj(e)

≤
∑

r∈ej
(fe(r) + 1)k∑

r∈ej
fe(r)k

≤ max
r∈ej

(fe(r) + 1)k

fe(r)k
≤ 2k.

Since e is a Nash equilibrium, we have ci(e) ≤ ci(e′), and thus ci(e) ≤ 2kcj(e). �

Claim 3.4. In the situation of Theorem 3.2, we have maxi,j∈P
ci(o)
cj(o) ≤ 2k+1.

Proof. As in the proof of Claim 3.3, consider any two players i and j at a social opti-
mum o. Assume that ci(o) ≥ cj(o) as the claim is immediately true otherwise. Again,
consider the move in which i moves from his current strategy oi to j’s strategy oj ,
resulting in the new state o′.

Since o is a social optimum, the social cost of o′ must be at least that of o; i.e.,∑
l cl(o

′)−
∑

l cl(o) ≥ 0. Also, as
∑

l cl(s) =
∑

r fs(r)k+1 for any state s, we have

0 ≤
∑

r

fo′(r)k+1 −
∑

r

fo(r)k+1 =
∑

r∈oi⊕oj

fo′(r)k+1 −
∑

r∈oi⊕oj

fo(r)k+1

=
∑

r∈oj\oi

(
(fo(r) + 1)k+1 − fo(r)k+1

)
−

∑
r∈oi\oj

(
fo(r)k+1 − (fo(r) − 1)k+1

)
,

where the second equality in the first line follows since fo′(r) = fo(r) for r �∈ oi ⊕ oj .
Now observe that ci(o) =

∑
r∈oi

fo(r)k =
∑

r∈oi\oj
fo(r)k +

∑
r∈oi∩oj

fo(r)k ,
and add this to both sides of the above to get

ci(o) ≤
∑

r∈oj\oi

(
(fo(r) + 1)k+1 − fo(r)k+1

)
+

∑
r∈oi∩oj

fo(r)k

−
∑

r∈oi\oj

(
fo(r)k+1 − (fo(r) − 1)k+1 − fo(r)k

)
.

It is not hard to verify that the last summation here is always non-negative.
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Since cj(o) =
∑

r∈oj\oi
fo(r)k +

∑
r∈oi∩oj

fo(r)k , we have

ci(o)
cj(o)

≤
∑

r∈oj\oi
((fo(r) + 1)k+1 − fo(r)k+1) +

∑
r∈oi∩oj

fo(r)k∑
r∈oj\oi

fo(r)k +
∑

r∈oi∩oj
fo(r)k

≤
∑

r∈oj\oi
((fo(r) + 1)k+1 − fo(r)k+1)∑

r∈oj\oi
fo(r)k

≤ max
r∈oj\oi

(fo(r) + 1)k+1 − fo(r)k+1

fo(r)k
,

where the second line follows because the ratio of the first sums in the numerator and
denominator is greater than 1. This last quantity is at most 2k+1, proving the claim. �

Combining these claims with Theorem 3.1 finishes the proof of Theorem 3.2. �

3.3 Exponential Latencies

For the case of exponential latencies �r(t) = αt, we show the following upper bound
on the Pareto and strong prices of anarchy. The proof follows the same structure as that
of Theorem 3.2 and is left to the full version.

Theorem 3.5. For symmetric congestion games with n players and exponential laten-
cies αt, the Pareto (and hence also the strong) price of anarchy is at most max{α, n}.
In contrast to the above upper bound, we now show that the standard Nash price of
anarchy in exponential congestion games is much larger—indeed, exponential in n.

Proposition 3.6. For symmetric n-player congestion games with exponential laten-

cies αt, the (standard Nash) price of anarchy is at least (α
2 )α( α/2−1

α−1 )n.

Proof. Our construction is based on that of [8] for the case of linear latencies. Our game
containsm groups of resources, and n = mt players divided evenly intom equivalence
classes, labeled {1, . . . ,m}, with t players per class. Each of the m groups of resources
consists of

(
m
k

)
resources, each labeled with a different k-tuple of equivalence classes.

The available strategies for all players are to take either (1) all resources in a single
group of resources, or (2) for any i in {1, . . . ,m}, all resources that are labeled with i.

Given the value of α, we choose m and k so that m ≤ 1 + (m
k − 1)α; for example,

k = α
2 and m = α − 1 for integer α ≥ 4. It can be verified that, with these settings,

the state in which each player takes all resources labeled with his equivalence class
number is a Nash equilibrium, while the state in which each player takes the group of
resources corresponding to his equivalence class is a social optimum. A straightforward
calculation then shows that the ratio of a player’s Nash cost to his cost at social optimum

is kαt(k−1), which is (α
2 )α( α/2−1

α−1 )n for the above values of k and m. �

For completeness, we show that this same price of anarchy for standard Nash is upper
bounded by αn:

Proposition 3.7. For asymmetric (and hence also symmetric) congestion games with
exponential latencies, the (standard Nash) price of anarchy is at most αn.
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Proof (sketch). Following [6, 8, 1], in a game with latencies �(t) we can prove an upper
bound on the price of anarchy by finding c1, c2 ≥ 0 such that the inequality y�(x+1) ≤
c1x�(x) + c2y�(y) holds for all 0 ≤ x ≤ n, 1 ≤ y ≤ n; this implies a price of anarchy
of at most c2

1−c1
. For �(t) = αt, this clearly holds with c1 = 0 and c2 = αx ≤ αn. �

Remark. With some extra work, this bound can be improved to O(α(1− 1
α )n).

4 Asymmetric Games

In this section we extend the investigation of the previous section to asymmetric games,
and find that the situation is quite different. First we will see that, for asymmetric con-
gestion games with polynomial latencies, the strong (and therefore also the Pareto) price
of anarchy is essentially the same as the standard Nash price of anarchy. We will then
go on to consider exponential latencies, where we find that the Pareto price of anarchy
is the same as standard Nash, but the strong price of anarchy is significantly smaller.

Theorem 4.1. For asymmetric congestion games with polynomial latencies tk, the
strong price of anarchy is at least �Φk�k, where Φk is the positive solution of (x+1)k =
xk+1.

Remark. Φk is a generalization of the golden ratio (which is just Φ1); its value is
k

log k (1+o(1)). Hence the lower bound of Theorem 4.1 is of the form kk(1−o(1)), which
is asymptotically the same value for the Nash price of anarchy obtained in [6, 8], and
very close to the exact value obtained by Aland et al. [1].

Proof. Our lower bound construction is based on that of Aland et al., extended so as to
handle the stricter requirement of a strong equilibrium. Consider an (asymmetric) game
with n players (n assumed sufficiently large). Each player i has exactly two possible
strategies, ei and oi. There are n + m resources labeled {r1, . . . , rn+m}, where m
is a constant to be chosen later. For each player i, strategy oi consists of the single
resource ri. (We shall modify this slightly for some of the players shortly.) Strategy ei

consists of the resources {ri+1, . . . , ri+m}.
We claim that the state e = (e1, . . . , en) is a strong Nash equilibrium. To see this,

note that under e the cost for player i is ci(e) =
∑i+m

j=i+1 min{j − 1,m}k. If now

player i moves to his alternative strategy oi, resulting in a new state e(i), his cost be-
comes ci(e(i)) = min{i,m + 1}k. To show that e is a Nash equilibrium, we need to
show that ci(e(i)) ≥ ci(e) for all i.

Now note that, for all players i ≥ m+1, we have ci(e(i))−ci(e) = (m+1)k−mk+1.
Thus if we choose m = �Φk� to be the smallest integer such that (m + 1)k ≥ mk+1,
we ensure that ci(e(i)) ≥ ci(e) for all i ≥ m + 1. To obtain the same condition for
players 1 ≤ i ≤ m, we append to the strategy oi the minimum number ai of additional
resources (unique to i) so that ci(e(i)) = ik + ai ≥ ci(e). (Note that all the ai are less
than mk+1.) This ensures that e is a Nash equilibrium.

To see that it is a strong equilibrium, consider a move by an arbitrary coalition of
players to their alternative strategies oi. We claim that the lowest numbered player in
the coalition does not see an improvement in cost. This follows because the resource ri,
which i occupies under oi, is still occupied by the same players as under e, so by the
Nash property i’s cost does not decrease.
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Thus the strong price of anarchy is bounded below by c(e)
c(o) . But c(e) ≥ (n−m)mk,

and c(o) ≤ mmk+1 + (n−m). Thus c(e)
c(o) ≥

(n−m)mk

mk+2+n−m
→ �Φk�k as n→∞. �

We now turn to exponential latencies. Our next result shows that the Pareto price of
anarchy is bounded below by, and hence equal to, the standard Nash price of anarchy
(which we showed to be exponential in n in Proposition 3.6).

Theorem 4.2. For asymmetric congestion games with exponential latencies αt, the
Pareto price of anarchy is equal to the standard Nash price of anarchy.

Proof. Consider any n-player congestion game with exponential latencies αt with Nash
equilibrium e. We create a modified game in which the Pareto price of anarchy is only
a (1 −O( 1

n ))-factor smaller than the Nash price of anarchy of the original game.
To do this, we first replace each resource in the original game with a set of n re-

sources in the modified game; strategies in the modified game correspond to those in
the original game, except that the former include all n copies of the resources of the lat-
ter. This has the effect of multiplying player costs by a factor of n, but does not change
the set of Nash and Pareto-optimal Nash equilibria. We then add one more player, n+1,
to the modified game; this player has a single strategy sn+1 consisting of new resources
{r̂i : i = 1, . . . , n}. Also, for players 1, . . . , n, we append resource r̂i to every strategy
of player i except for the equilibrium strategy ei. Note that this makes the modified
game asymmetric even if the original one is not. There is an obvious bijection between
states of the original game and those of the modified game, and it can be verified that
the original equilibrium is now a Pareto-optimal equilibrium (as any move increases the
cost of player n + 1). A routine calculation now shows that the ratio of the cost of the
modified equilibrium to the cost of the modified social optimum is at least 1

1+ 2α
n

c(e)
c(o) ,

which approaches the Nash price of anarchy as n increases. �

Finally, we exhibit a separation between the Pareto and strong price of anarchy by
showing that the latter (while still exponential) is significantly smaller than the value
we obtained for the standard Nash price of anarchy in Proposition 3.6. We make the
reasonable assumption that the number of resources is polynomially bounded in the
number of players, as is the case in our lower bound construction in Proposition 3.6.

Theorem 4.3. For asymmetric congestion games with n players and exponential laten-
cies αt, in which every strategy contains at most p(n) resources for some fixed polyno-
mial p, the strong price of anarchy is at most α( 1

3+o(1))n.

Proof. Let e be a strong equilibrium state and o be a social optimum state. As before, we
will consider moves in which subsets of players move from their equilibrium strategies
ei to their strategies at optimum oi. Let c∗(o) denote the maximum cost of any player
in state o. We need the following lemma, whose proof we leave to the full version:

Lemma 4.4. Let S be a subset of players each of whose strategies at e contains at least
one resource that is shared by at least ue players at e (i.e., for all i ∈ S, ∃r ∈ ei such
that fe(r) ≥ ue). Then at least one of the following must be true: (1) αue ≤ c∗(o); or
(2) there exist at least u′e = ue − logα p(n)− logα c∗(o) players outside of S, each of
whose strategies at e contains a resource that is shared by at least u′e players not in S.
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(The intuition is as follows: let the players holding a resource r form a coalition C
and deviate by taking their strategies at o. Since e is a strong equilibrium, one of these
players must have higher cost as a result. This might happen if this player shares a
resource at owith many members ofC, in which case (1) holds; or if one of this player’s
resources at o is shared by enough non-coalition players at e, in which case (2) holds.)

Suppose now that there exists a strong equilibrium e in a game fitting the description
of the theorem such that ce

c∗(o) ≥ αδn for a social optimum o. Then there must exist

a player j for whom cj(e) ≥ αδn

n c∗(o). Thus ej must contain a resource r for which

fr(e) ≥ logα

(
αδn

np(n)c∗(o)
)

= δn+ logα c∗(o) − logα(np(n)).
Let S1 denote the players holding this resource. Consider the move in which we try to

move all players in S1 to their strategies at o. Applying Lemma 4.4 to these players, we
find that either (1) αδn ≤ np(n), in which case the theorem is proven; or (2) there exist
δn − logα(np2(n)) additional players, each of whose equilibrium strategies contains
a resource shared by at least that many players not in S1. Let these additional players
form the set S2. Since the game has n players, this implies that

n ≥ |S1 ∪ S2| ≥ 2δn+ logα c∗(o)− logα(n2p(n)3). (2)

We can then apply Lemma 4.4 again to S1 ∪ S2, which again yields two possi-
ble outcomes. In case (1), we have that αδn ≤ c∗(o)np(n)2, or δn ≤ logα c∗(o) +
logα(np(n)2). Combining this with inequality (2) gives 3δn ≤ n + logα(n3p(n)5),
or δ ≤ 1

3 + o(1), as claimed. In case (2), we are guaranteed the existence of δn −
logα c∗(o)− logα(np(n)3) players not in S1∪S2. Combining this with the lower bound
on |S1 ∪ S2| from Eqn (2), we must have at least 3δn− logα(n3p(n)6) players. Since
this cannot exceed n, we have δ ≤ 1

3 + o(1), again as claimed. �

5 Linear Latencies

This section presents more detailed results for the special case of linear latencies.

Exact price of anarchy for asymmetric games. We first show that the strong (and thus
also the Pareto) price of anarchy for asymmetric games with linear latencies coincides
exactly with the standard Nash price of anarchy, which is known to be 5

2 [6, 8]. To do
this, we exhibit a lower bound of 5

2 on the strong price of anarchy, using a refinement
of the construction in the proof of Theorem 4.1; the proof is left to the full version.

Theorem 5.1. For asymmetric linear congestion games, the strong price of anarchy is
at least 5

2 .

Upper bound for symmetric games. We now show that, for symmetric linear conges-
tion games, the Pareto (and hence also strong) price of anarchy is less than the known
value 5

2 for standard Nash equilibria in both symmetric and asymmetric games. For
linear latencies, the framework of Theorem 3.1 only gives an upper bound of 3, so we
must resort to a more involved analysis. We prove the following, stressing that our goal
is not to find the best possible upper bound but to show that it is strictly less than 5

2 .

Theorem 5.2. For symmetric congestion games with linear latencies, the Pareto price
of anarchy (and hence also the strong price of anarchy) is strictly less than 5

2 .
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The proof of this is quite involved and is left to the full version; we roughly outline the
approach here. As in the proof of Theorem 3.1 we first sort the strategies at equilibrium e
and optimum o by cost. A key idea in that proof is the hypothetical move from e in
which every player moves from his current strategy ei to his strategy oi at o, and the
realization that there exists at least one player j for whom cj(e)

cj(o) ≤ 1. Here we extend
this to a more complicated sequence of player moves in which, after the players move
to o, we attempt to reassign a subset of them, including all those for whom the ratio
ci(e)
ci(o) is at most 1, to the strategies of other players at o for whom the corresponding

ratios are larger than 5
2 . In a technical analysis that again exploits the fact that at least

one player must pay higher cost at the end of this sequence than at e, we are able to use
the probabilistic method to bound the number of large-ratio players to the number of
small-ratio players, and thus show that the Pareto price of anarchy is strictly below 5

2 .
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Abstract. Let Φ be a uniformly distributed random k-SAT formula
with n variables and m clauses. We present a polynomial time algorithm
that finds a satisfying assignment of Φ with high probability for con-
straint densities m/n < (1− εk)2k ln(k)/k, where εk → 0. Previously no
efficient algorithm was known to find solutions with non-vanishing proba-
bility beyond m/n = 1.817·2k/k [Frieze and Suen, Journal of Algorithms
1996].

1 Introduction

The k-SAT problem is well known to be NP-hard for k ≥ 3. But this merely
indicates that no algorithm can solve all possible inputs efficiently. Therefore,
a significant amount of research has been conducted on heuristics for k-SAT,
i.e., algorithms that solve ‘most’ inputs efficiently (where the meaning of ‘most’
depends on the scope of the respective paper). While some heuristics for k-SAT
are very sophisticated, virtually all of them are based on at least one of the
following basic paradigms.

Pure literal rule. If a variable x occurs only positively (resp. negatively) in
the formula, set it to true (resp. false). Simplify the formula by substituting
the newly assigned value for x and repeat.

Unit clause propagation. If the formula contains a clause that consists of
only a single literal (‘unit clause’), then set the underlying variable so as to
satisfy this clause. Simplify and repeat.

Walksat. Initially pick a random assignment. Then repeat the following. While
there is an unsatisfied clause, pick one at random, pick a variable occurring
in the chosen clause randomly, and flip its value.

Backtracking. Assign a variable x, simplify the formula, and recurse. If the
recursion fails to find a satisfying assignment, assign x the opposite value
and recurse.

Heuristics based on these paradigms can be surprisingly successful (given that
k-SAT is NP-hard) on certain types of inputs. However, it remains remarkably
simple to generate formulas that elude all known algorithms/heuristics. Indeed,
the simplest conceivable type of random instances does the trick: let Φ denote a
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k-SAT formula over the variable set V = {x1, . . . , xn} that is obtained by choos-
ing m clauses uniformly at random and independently from the set of all (2n)k

possible clauses. Then for a large regime of densities m/n satisfying assignments
are known to exist due to non-constructive arguments, but no efficient algorithm
is known to find one.

To be precise, keeping k fixed and letting m = �rn� for a fixed r > 0, we say
that Φ has some property with high probability (‘w.h.p.’) if the probability of
the property tends to one as n→∞. Via the (non-algorithmic) second moment
method [3,4] it can be shown that Φ has a satisfying assignment w.h.p. if m/n <
(1− εk)2k ln 2. Here εk tends to 0 for large k. On the other hand, a simple first
moment argument shows that no satisfying assignment exists w.h.p. if m/n >
2k ln 2. In summary, the threshold for Φ being satisfiable is asymptotically 2k ln 2.

Yet for densities m/n beyond c·2k/k, where c is a constant (independent of k),
no algorithm has been known to find a satisfying assignment in polynomial time
with a probability that does not tend to zero. Using merely the Unit Clause rule
yields a linear time algorithm that succeeds up to m/n = c ·2k/k with c ∼ e/2 ≈
1.36. The best previous rigorous result, based on a somewhat more involved
algorithm, achieved c ∼ 1.817 (cf. Section 2). Conversely, many algorithms,
including Pure Literal, Unit Clause, and DPLL, are known to fail or exhibit an
exponential running time beyond c · 2k/k. There is experimental evidence that
the same is true of Walksat. In effect, devising an algorithm to solve random
formulas w.h.p. for densities m/n up to 2kω(k)/k for any (howsoever slowly
growing) ω(k)→∞ has been a prominent open problem [3,4,8,15].

Theorem 1. There are a sequence εk → 0 and a polynomial time algorithm
Fix such that Fix applied to a random formula Φ with m/n ≤ (1−εk)2k ln(k)/k
outputs a satisfying assignment w.h.p.

Fix is a deterministic local search algorithm and runs in time O(n + m)3/2. The
recent paper [2] provides evidence that the density m/n = 2k ln(k)/k may be a
barrier for (at least) a large class of algorithms to find satisfying assignments in
polynomial time. Hence, Theorem 1 may mark, at least up to the precise second
order term hidden in the εks, the end of the algorithmic road for random k-SAT. To
explain this, we need to discuss a concept that originates from statistical physics.

A digression: replica symmetry breaking. For the last decade random k-SAT has
been studied by statistical physicists via sophisticated, insightful, but mathe-
matically non-rigorous techniques from the theory of spin glasses. Their results
suggest that below the threshold density 2k ln 2 for the existence of satisfying as-
signments various other phase transitions take place that affect the performance
of algorithms.

To us the most important one is the dynamic replica symmetry breaking
(dRSB) transition. Let S(Φ) ⊂ {0, 1}V be the set of all satisfying assignments
of the random formula Φ. Very roughly speaking, according to the dRSB hy-
pothesis there is a density rRSB such that for m/n < rRSB the correlations that
shape the set S(Φ) are purely local, whereas for densities m/n > rRSB long
range correlations occur. Furthermore, rRSB ∼ 2k ln(k)/k.
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Confirming and elaborating on this hypothesis, we recently established a good
part of the dRSB phenomenon rigorously [2]. In particular, we proved that there
is a sequence εk → 0 such that for m/n > (1 + εk)2k ln(k)/k the values that
the solutions σ ∈ S(Φ) assign to the variables are mutually heavily correlated in
the following sense. Let us call a variable x frozen in a satisfying assignment σ
if any satisfying assignment τ such that σ(x) �= τ(x) is at Hamming distance at
least Ω(n) from σ. Then for m/n > (1 + εk)2k ln(k)/k in all but a o(1)-fraction
of all solutions σ ∈ S(Φ) all but an εk-fraction of the variables are frozen w.h.p.,
where εk → 0.

This suggests that on random formulas with density m/n > (1 + εk)2k ln(k)/k
local search algorithms (such as Pure Literal, Unit Clause, or Walksat) are un-
likely to succeed. For think of the factor graph, whose vertices are the variables
and the clauses, and where a variable is adjacent to all clauses in which it occurs.
Then a local search algorithm assigns a value to a variable x on the basis of the
values of variables that have distance O(1) from x in the factor graph. But in the
random formula Φ withm/n > (1+εk)2k ln(k)/k assigning one variable x is likely
to impose constraints on the values that can be assigned to variables at distance
Ω(lnn) from x in the factor graph (due to the occurrence of frozen variables).

The above discussion applies to ‘large’ values of k (say, k ≥ 8). In fact, non-
rigorous arguments as well as experimental evidence [5] suggest that the picture
is quite different and rather more complicated for ‘small’ k (say, k = 3, 4, 5). In
this case the various phenomena that occur at (or very near) the point 2k ln(k)/k
for k ≥ 8 appear to happen at vastly different points in the satisfiable regime,
and in a different order. To keep matters as simple as possible we focus on ‘large’
k in this paper.

Notation. We let V = Vn = {x1, . . . , xn} be a set of propositional variables. For a
set Z ⊂ V let Z̄ = {x̄ : x ∈ Z} contain the corresponding set of negative literals.
If l is a literal, then |l| signifies the underlying variable. Let [μ] = {1, 2, . . . , μ}
for integers μ.

Let Ωk(n,m) be the set of all k-SAT formulas over V . Throughout the paper
we denote a random element of Ωk(n,m) by Φ; unless otherwise specified, Φ is
uniformly distributed. We use the letter Φ to denote specific (i.e., non-random)
elements of Ωk(n,m). Further, Φi denotes the ith clause of Φ, and Φij is the jth
literal of Φi.

2 Related Work

Quite a few papers deal with efficient algorithms for random k-SAT, contribut-
ing either rigorous results, non-rigorous evidence based on physics arguments,
or experimental evidence. Table 1 summarizes the part of this work that is most
relevant to us. The best rigorous result prior to this work is due to Frieze and
Suen [11], who proved that ‘SCB’ succeeds for densities ηk2k/k, where ηk in-
creases to 1.817 as k → ∞. SCB combines the shortest clause rule, which is a
generalization of Unit Clause, with (very limited) backtracking.
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Table 1. Algorithms for random k-SAT

Algorithm Density m/n < · · · Success probability Ref., year
Pure Literal o(1) as k → ∞ w.h.p. [14], 2006

Walksat, rigorous 1
6
· 2k/k2 w.h.p. [9], 2009

Walksat, non-rigorous 2k/k w.h.p. [16], 2003

Unit Clause 1
2

(
k−1
k−2

)k−2

· 2k

k
Ω(1) [7], 1990

Shortest Clause 1
8

(
k−1
k−3

)k−3
k−1
k−2

· 2k

k
w.h.p. [8], 1992

SCB ∼ 1.817 · 2k

k
w.h.p. [11], 1996

BP+decimation e · 2k/k w.h.p. [15], 2007
(non-rigorous)

Montanari, Ricci-Tersenghi, and Semerjian [15] provide evidence that Belief
Propagation guided decimation may succeed up to density e · 2k/k. This algo-
rithm is based on a very different paradigm than the others mentioned in Table 1.
The basic idea is to run a message passing algorithm (‘Belief Propagation’) to
compute for each variable the marginal probability that this variable takes the
value true/false in a uniformly random satisfying assignment. Then, the decima-
tion step selects a variable, assigns it the value true/false with the corresponding
marginal probability, and simplifies the formula. Ideally, repeating this proce-
dure will lead to a satisfying assignment, provided that Belief Propagation keeps
yielding the correct marginals. Proving (or disproving) this remains a major
open problem.

Survey Propagation is a modification of Belief Propagation that aims to
approximate the marginal probabilities induced by a particular (non-uniform)
probability distribution on the set of satisfying assignments [6]. It can be com-
bined with a decimation procedure as well to obtain a heuristic for finding a
satisfying assignment. Analyzing Survey Propagation guided decimation is a
further outstanding open problem.

The discussion so far concerns the case of general k. In addition, a large num-
ber of papers deal with the case k = 3. Flaxman [10] provides a survey. Currently
the best rigorously analyzed algorithm for random 3-SAT is known to succeed
up to m/n = 3.52 [12,13]. This is also the best known lower bound on the 3-SAT
threshold. Non-rigorous arguments suggest the threshold to be ≈ 4.267 [6]. As
mentioned earlier, there is non-rigorous evidence that the structure of the set of
all satisfying assignment evolves differently in random 3-SAT than in random k-
SAT for ‘large’ k. This may be why experiments suggest that Survey Propagation
guided decimation for 3-SAT succeeds for densities m/n up to 4.2 [6].

3 The Algorithm Fix

In this section we present the algorithm Fix. To establish Theorem 1 we will
prove the following: for any 0 < ε < 0.1 there is k0 = k0(ε) > 3 such that for all
k ≥ k0 the algorithm Fix outputs a satisfying assignment w.h.p. when applied
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to Φ with m = �n ·(1−ε)2kk−1 ln k�. Thus, we assume that k exceeds some large
enough number k0 depending on ε only. In addition, we assume throughout that
n > n0 for some large n0 = n0(ε, k). We set ω = (1− ε) ln k and k1 = �k/2�.

When applied to a k-SAT instance Φ the algorithm basically tries to ‘fix’ the
all-true assignment by setting ‘a few’ variables Z ⊂ V to false so as to satisfy all
clauses. Obviously, the set Z will have to contain one variable from each clause
consisting of negative literals only. The key issue is to pick ‘the right’ variables.
To this end, the algorithm goes over the all-negative clauses in the natural order.
If the present all-negative clause Φi does not contain a variable from Z yet, Fix
(tries to) identify a ‘safe’ variable in Φi, which it then adds to Z. Here ‘safe’
means that setting the variable to false does not create new unsatisfied clauses.
More precisely, we say that a clause Φi is Z-unique if Φi contains exactly one
positive literal from V \Z and no negative literal whose underlying variable is in
Z. Moreover, x ∈ V \ Z is Z-unsafe if it occurs positively in a Z-unique clause,
and Z-safe if this is not the case. Then in order to fix an all-negative clause Φi

we prefer Z-safe variables.
To implement this idea, Fix proceeds in three phases. Phase 1 performs the

operation described in the previous paragraph: try to identify a Z-safe variable
in each all-negative clause. Of course, not every all-negative clause will contain
one. In this case Fix just picks the variable in position k1. This entails that the
assignment constructed in Phase 1 will not satisfy all clauses. However, we will
prove that the number of unsatisfied clauses is very small, and the purpose of
Phases 2 and 3 is to deal with them. Before we come to this, let us describe
Phase 1 precisely.

Algorithm 2. Fix(Φ)
Input: A k-SAT formula Φ. Output: Either a satisfying assignment or ‘fail’.

1a. Let Z = ∅.
1b. For i = 1, . . . , m do

1c. If Φi is all-negative and contains no variable from Z

1d. If there is 1 ≤ j < k1 such that |Φij | is Z-safe, then pick the least such
j and add |Φij | to Z.

1e. Otherwise add |Φi k1 | to Z.

Let σZ be the assignment that sets all variables in V \ Z to true and all
variables in Z to false.

Proposition 3. At the end of the first phase of Fix(Φ) the following statements
are true w.h.p.

1. We have |Z| ≤ 4nk−1 lnω.
2. At most (1 + ε/3)ωn clauses are Z-unique.
3. At most exp(−kε/8)n clauses are unsatisfied under σZ .

Since the probability that a random clause is all-negative is 2−k, under the all-
true assignment (1+o(1))2−km ∼ ωn/k clauses are unsatisfied w.h.p. Hence, the
outcome σZ of Phase 1 is already a lot better than the all-true assignment w.h.p.
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Phase 2 deals with the clauses that are unsatisfied under σZ . The general
plan is similar to Phase 1: we (try to) identify a set Z ′ of ‘safe’ variables that
can be used to satisfy the σZ -unsatisfied clauses without ‘endangering’ further
clauses. More precisely, we say that a clause Φi is (Z,Z ′)-endangered if there is
no 1 ≤ j ≤ k such that the literal Φij is true under σZ and |Φij | ∈ V \ Z ′. In
words, Φi is (Z,Z ′)-endangered if it is unsatisfied under σZ or it relies on one
of the variables in Z ′ to be satisfied. Call Φi (Z,Z ′)-secure if it is not (Z,Z ′)-
endangered. Phase 2 will construct a set Z ′ such that for all 1 ≤ i ≤ m either Φi

is (Z,Z ′)-secure, or there are at least three indices 1 ≤ j ≤ k such that |Φij | ∈ Z ′.
To achieve this, we say that a variable x is (Z,Z ′)-unsafe if x ∈ Z ∪Z ′ or there
are indices (i, l) ∈ [m]× [k] such that the following two conditions hold:

a. For all j �= l we have Φij ∈ Z ∪ Z ′ ∪ V \ Z.
b. Φil = x.

(In words, x occurs positively in Φi, and all other literals of Φi are either positive
but in Z ∪ Z ′ or negative but not in Z.) Otherwise we call x (Z,Z ′)-safe. Fix
greedily tries to add as few (Z,Z ′)-unsafe variables to Z ′ as possible.

2a. Let Q consist of all i ∈ [m] such that Φi is unsatisfied under σZ . Let Z′ = ∅.
2b. While Q �= ∅
2c. Let i = min Q.

2d. If there are indices k1 < j1 < j2 < j3 ≤ k − 5 such that |Φijl | is (Z, Z′)-safe
for l = 1, 2, 3,

pick the lexicographically first such sequence and add the variables
|Φij1 |, |Φij2 |, |Φij3 | to Z′.

2e. else

let k − 5 < j1 < j2 < j3 ≤ k be the lexicographically first sequence such
that |Φijl | �∈ Z′ and add |Φijl | to Z′ (l = 1, 2, 3).

2f. Let Q be the set of all (Z, Z′)-endangered clauses that contain less than 3
variables from Z′.

Note that the While-loop gets executed at most n/3 times, because Z ′ gains
three new elements in each iteration. Actually the final set Z ′ is fairly small
w.h.p.:

Proposition 4. The set Z ′ obtained in Phase 2 of Fix(Φ) has size |Z ′| ≤ nk−12

w.h.p.

After completing Phase 2, Fix is going to set the variables in V \ (Z ∪ Z ′)
to true and the variables in Z \ Z ′ to false. This will satisfy all (Z,Z ′)-secure
clauses. In order to satisfy the (Z,Z ′)-endangered clauses as well, Fix needs
to set the variables in Z ′ appropriately. Since each (Z,Z ′)-endangered clause
contains three variables from Z ′, this is essentially equivalent to solving a 3-SAT
problem, in which Z ′ is the set of variables. As we shall see, w.h.p. the resulting
formula is sufficiently sparse for the following ‘matching heuristic’ to succeed:
set up a bipartite graph G(Φ,Z, Z ′) whose vertex set consists of the (Z,Z ′)-
endangered clauses and the set Z ′. Each (Z,Z ′)-endangered clause is adjacent
to the variables from Z ′ that occur in it. If M is a matching in G(Φ,Z, Z ′) that
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covers all (Z,Z ′)-endangered clauses, we construct an assignment σZ,Z′,M as
follows: for each variable x ∈ V we define

σZ,Z′,M (x) =

⎧⎨⎩
false if x ∈ Z \ Z ′

false if {Φi, x} ∈M for some i and x occurs negatively in Φi,
true otherwise.

To be precise, Phase 3 proceeds as follows.

3. If G(Φ, Z, Z′) has a matching that covers all (Z, Z′)-endangered clauses, then com-
pute an (arbitrary) such matching M and output σZ,Z′,M . If not, output ‘fail’.

Proposition 5. W.h.p. G(Φ, Z, Z ′) has a matching that covers all (Z,Z ′)-en-
dangered clauses.

Proof of Theorem 1. Fix is clearly a deterministic algorithm with running time
O(n + m)3/2 (if we use the Hopcroft-Karp algorithm to compute the matching
in Phase 3). It remains to show that Fix(Φ) outputs a satisfying assignment
w.h.p. By Proposition 5 Phase 3 will find a matching M that covers all (Z,Z ′)-
endangered clauses w.h.p., and thus the output will be the assignment σ =
σZ,Z′,M w.h.p. Assume that this is the case. Then σ sets all variables in Z \ Z ′

to false and all variables in V \ (Z ∪ Z ′) to true, thereby satisfying all (Z,Z ′)-
secure clauses. Furthermore, for each (Z,Z ′)-endangered clause Φi there is an
edge {Φi, |Φij |} in M . If Φij is negative, then σ(|Φij |) = false, and if if Φij is
positive, then σ(Φij) = true. In either case σ satisfies Φi. �
In the next section we sketch the analysis of Phase 1, i.e., the proof of Propo-
sition 3. The analysis of Phase 2 (Proposition 4) is based on very similar ideas
(details omitted). Furthermore, the proof of Proposition 5 combines ideas from
the analysis of Phase 1 with a first moment argument.

4 Analyzing Phase 1

In this section we let 0 < ε < 0.1 and assume that k ≥ k0 for a sufficiently large
k0 = k0(ε). Moreover, we assume that m = �(1− ε)2kk−1 ln k� and that n > n0

for some large enough n0 = n0(ε, k). Let ω = (1− ε) ln k and k1 = �k/2�.
It is worthwhile giving a brief intuitive explanation as to why Phase 1 ‘works’.

Namely, let us just consider the first all-negative clause Φi of the random input
formula. Assume that i = 1. If we condition on Φ1 being all-negative, the k-
tuple of variables (|Φ1j |)j∈[k] is uniformly distributed. Furthermore, at this point
Z = ∅. Hence, a variable x is Z-safe unless it occurs as the unique positive literal
in some clause. For any x the expected number of such clauses is k2−km/n ∼ ω
(for in each clause there are k slots where to put x, the probability that x
occurs in any slot is 1/n, and the probability that x occurs positively and all
other literals are negative is 2−k). In fact, for each variable the number of such
clauses is asymptotically Poisson. Consequently, the probability that x is Z-safe
is exp(−ω). Returning to the clause Φ1, we conclude that the expected number of
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indices 1 ≤ j ≤ k1 such that |Φ1j | is Z-safe is k1 exp(−ω). Since ω = (1− ε) ln k,
we have k1 exp(−ω) ≥ kε/3. Indeed, the number of indices 1 ≤ j ≤ k1 so that
|Φ1j | is Z-safe is binomially distributed, and hence the probability that there is
no Z-safe |Φ1j | is at most exp(−kε/3). Thinking of k ‘large’ (in terms of ε), we
see that there is a good chance that Φ1 can be satisfied by setting some variable
to false without creating any new unsatisfied clauses. Of course, this argument
only applies to the first all-negative clause, and the challenge lies in dealing
with the stochastic dependencies that arise in the course of the execution of the
algorithm.

To this end, we need to investigate how the set Z computed in Phase 1 evolves
over time. Thus, we will analyze the execution of Phase 1 as a stochastic process,
in which Z corresponds to a sequence (Zt)t≥0 of sets. The time parameter t is the
number of all-negative clauses for which either Step 1d or 1e has been executed.
We will represent the execution of Phase 1 on input Φ by a sequence of (random)
maps

πt : [m]× [k]→ {−1, 1} ∪ V ∪ V̄ .
The map πt is meant to capture the information that has determined the first t
steps of the process. If πt(i, j) = 1 (resp. πt(i, j) = −1), then Fix has only taken
into account that Φij is a positive (negative) literal, but not what the underlying
variable is. If πt(i, j) ∈ V ∪ V̄ , then Fix has revealed the actual literal Φij .

Let us define the sequence πt(i, j) precisely. Let Z0 = ∅. Moreover, let U0 be
the set of all i such that there is exactly one j such that Φij is positive. Further,
define π0(i, j) for (i, j) ∈ [m]× [k] as follows. If i ∈ U0 and Φij is positive, then
let π0(i, j) = Φij . Otherwise, let π0(i, j) be 1 if Φij is a positive literal and −1
if Φij is a negative literal. In addition, for x ∈ V let U0(x) be the number of
i ∈ U0 such that x occurs positively in Φi. For t ≥ 1 we define πt as follows.

PI1. If there is no index i ∈ [m] such that Φi is all-negative but contains no
variable from Zt−1, the process stops. Otherwise let φt be the smallest
such index.

PI2. If there is 1 ≤ j < k1 such that Ut−1(|Φφtj |) = 0, then choose the smallest
such index; otherwise let j = k1. Let zt = Φφtj and Zt = Zt−1 ∪ {zt}.

PI3. Let Ut be the set of all i ∈ [m] such that Φi is Zt-unique. For x ∈ V let
Ut(x) be the number of indices i ∈ Ut such that x occurs positively in Φi.

PI4. For any (i, j) ∈ [m]× [k] let

πt(i, j) =

⎧⎨⎩
Φij if (i = φt ∧ j ≤ k1) ∨ |Φij | ∈ Zt

∨(i ∈ Ut ∧ π0(i, j) = 1),
πt−1(i, j) otherwise.

Let T be the total number of iterations before the process stops and define
πt = πT , Zt = ZT , Ut = UT , Ut(x) = UT (x), φt = zt = 0 for all t > T .

The process mirrors Phase 1 of Fix as follows. Step PI1 selects the least
index φt such that clause Φφt is all-negative but contains none of the variables
Zt−1 that have been selected to be set to false so far. In terms of Fix, this
corresponds to fast-forwarding to the next execution of Steps 1d–e. Since Ut−1(x)
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is the number of Zt−1-unique clauses in which variable x occurs positively, PI2
applies the same rule as steps 1d–e of Fix to select the new element zt to be
included in the set Zt. Step PI3 then ‘updates’ the numbers Ut(x). Finally, step
PI4 sets up the map πt to represent the information that has guided the process
so far: we reveal the first k1 literals of the current clause Φφt , all occurrences of
the variable zt, and all positive literals of Zt-unique clauses.

The process PI1–PI4 can be applied to any concrete k-SAT formula Φ (rather
than the random Φ). It then yields a sequence πt [Φ] of maps, variables zt [Φ], etc.
For each integer t ≥ 0 we define an equivalence relation ≡t on the set Ωk(n,m)
of k-SAT formulas by letting Φ ≡t Ψ iff πs [Φ] = πs [Ψ ] for all 0 ≤ s ≤ t. Let
Ft be the σ-algebra generated by the equivalence classes of ≡t. Then (loosely
speaking) a random variable X(Φ) is Ft-measurable if its value is determined
by time t.

Fact 6. For any t ≥ 0 the random map πt, the random variables φt+1, zt, the
random sets Ut and Zt, and the random variables Ut(x) for x ∈ V are Ft-
measurable.

The first t steps of the process PI1–PI4 are only driven by the information
encoded in the map πt, Hence, for (i, j) such that πt(i, j) = ±1 the process has
only taken into accout the sign of the literal Φij and the fact that |Φij | �∈ Zt.
But the process has been oblivious to the actual underlying variable |Φij |. This
implies the following.

Proposition 7. Let Et be the set of all pairs (i, j) such that πt(i, j) ∈ {−1, 1}.
The conditional joint distribution of the variables (|Φij |)(i,j)∈Et

given Ft is uni-
form over (V \ Zt)Et . That is, for any map f : Et → V \ Zt we have

P [∀(i, j) ∈ Et : |Φij | = f(i, j)|Ft] = |V \ Zt|−|Et|.

In each step of the process PI1–PI4 one variable zt is added to Zt. There is a
chance that this variable occurs in several other all-negative clauses. Hence, the
stopping time T should be smaller than the total number of all-negative clauses.
To prove this, we need the following lemma.

Lemma 8. W.h.p. the following is true for all 1 ≤ t ≤ min{T, n}: the num-
ber of indices i ∈ [m] such that πt(i, j) = −1 for all 1 ≤ j ≤ k is at most
2nω exp(−kt/n)/k.

Proof. The proof illustrates the use of Proposition 7. LetNtij = 1 if πt(i, j) = −1
and t ≤ T , and let Ntij = 0 otherwise. Let t ≤ n, μ = �ln2 n�, and let I ⊂ [m]
be a set of size μ. Let Yi = 1 if t ≤ T and πt(i, j) = −1 for all j ∈ [k], and let
Yi = 0 otherwise. Set J = [t]×I × [k] . If Yi = 1 for all i ∈ I, then N0ij = 1 for
all (i, j) ∈ I × [k] and Nsij = 1 for all (s, i, j) ∈ J . We will prove below that

E

⎡⎣ ∏
(i,j)∈I×[k]

N0ij ·
∏

(t,i,j)∈J
Ntij

⎤⎦ ≤ 2−k|I|(1− 1/n)|J |, whence (1)

E

[∏
i∈I

Yi

]
≤ λμ, where λ = 2−k exp(−kt/n). (2)



A Better Algorithm for Random k-SAT 301

Let Y =
∑

i∈[m] Yi. Then (2) entails that E [Y μ] ≤ (1 + o(1))(λm)μ. Therefore,
Markov’s inequality yields P [Y > 2nω exp(−kt/n) ≥ 1.9λm] ≤ 1.9−μ, and thus
the assertion follows from the union bound.

To complete the proof, we need to establish (1). Let

N0 =
∏

(i,j)∈I×[k]

N0ij , Js = {(i, j) : (s, i, j) ∈ J }, and Ns =
∏

(i,j)∈Js

Nsij .

Since the signs of the literals Φij are mutually independent, we have E [N0] =
2−k|I|. Furthermore, we will prove below that E [Ns|Fs−1] ≤ (1−1/n)|Js|. Since
Ns is Fs-measurable for any s, we obtain

E

[
t∏

s=0

Ns

]
= E

[
E
[
Nt

∣∣Ft−1

]
·

t−1∏
s=0

Ns

]
≤ (1− 1/n)|Jt| · E

[
t−1∏
s=0

Ns

]
.

Proceeding inductively, we obtain (1).
Finally, we bound E [Ns|Fs−1] for s ≥ 1. If T < s or πs−1(i, j) �= −1 for some

(i, j) ∈ Js, then Ns = Nsij = 0. Hence, suppose that T ≥ s and πs−1(i, j) = −1
for all (i, j) ∈ Js. Then at time s PI2 selects some variable zs ∈ V \ Zs−1, and
Nsij = 1 only if |Φij | �= zs. As πt−1(i, j) = −1 for all (i, j) ∈ Js, given Fs−1 the
variables (|Φij |)(i,j)∈Js

are independently uniformly distributed over V \Zs−1 by
Proposition 7. Therefore, for each (i, j) ∈ Js we have |Φij | = zs with probability
at least 1/n. Hence, E [Ns|Fs−1] ≤ (1− 1/n)|Js|. �

Corollary 9. W.h.p. we have T < 4nk−1 lnω.

Proof. Let t0 = 2nk−1 lnω and let It be the number of indices i such that
πt(i, j) = −1 for all 1 ≤ j ≤ k. By PI2 It ≤ It−1−1 for all t ≤ T . Consequently,
if T ≥ 2t0, then 0 ≤ IT ≤ It0 − t0, and thus It0 ≥ t0. But Lemma 8 entails that
It0 < t0 w.h.p. �

Let θ = �4nk−1 lnω�. The next goal is to estimate the number of Zt-unique
clauses, i.e., the size of the set Ut. Using a similar (if slightly more involved)
argument as in the proof of Lemma 8, we can infer the following.

Lemma 10. W.h.p. max0≤t≤T |Ut| ≤ (1 + ε/3)ωn.

Let us think of the variables x ∈ V \Zt as bins and of the clauses Φi with i ∈ Ut as
balls. If we place each ball i into the (unique) bin x such that x occurs positively
in Φi, then by Lemma 10 and Corollary 9 for t ≤ T the average number of balls
in a bin is ≤ (1+ε/3)ωn/|V \Zt| ≤ (1−0.6ε) lnk w.h.p. Hence, if the balls were
thrown uniformly at random into the bins, we would expect

|V \ Zt| exp(−|Ut|/|V \ Zt|) ≥ (n− t)k0.6ε−1 ≥ nkε/2−1

bins to be empty (i.e., Ut(x) = 0). The next corollary shows that this is accurate.

Corollary 11. Let Qt = |{x ∈ V \ Zt : Ut(x) = 0}|. W.h.p. we have

min
t≤T

Qt ≥ nkε/2−1.
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Now that we know that w.h.p. there are ‘a lot’ of variables x ∈ V \ Zt−1 such
that Ut(x) = 0, we expect that it is quite likely for clause Φφt to contain one.
More precisely, we have the following.

Corollary 12. Let Bt = 1 if minj<k1 Ut−1(|Φφtj |) > 0, Qt−1 ≥ nkε/2−1, |Ut| ≤
(1 + ε/3)ωn, and T ≥ t. Let Bt = 0 otherwise. Then E [Bt|Ft−1] ≤ exp(−kε/6)
for all 1 ≤ t ≤ θ.

Proof of Proposition 3. The definition of the process PI1–PI4 mirrors the exe-
cution of the algorithm, i.e., the set Z obtained after Steps 1a–1d of Fix equals
the set ZT . Therefore, the first assertion is a consequence of Corollary 9 and
the fact that |Zt| = t for all t ≤ T . Furthermore, the second assertion follows
directly from Lemma 10.

To prove the third claim, we need to bound the number of clauses that are
unsatisfied under σZT . It is not difficult to see that the construction PI1–PI4
ensures that for any i ∈ [m] such that Φi is unsatisfied under σZT one of the
following is true.

a. There is t ≤ T such that i ∈ Ut−1 and zt occurs positively in Φi.
b. There are 1 ≤ j1 < j2 ≤ k such that Φij1 = Φij2 .

Let X be the number of indices i ∈ [m] such that a. occurs. We will show that

X ≤ n exp(−kε/7) w.h.p. (3)

Since the number of ‘degenerate’ i ∈ [m] for which b. occurs is O(lnn) w.h.p.
(by a simple first moment argument), (3) implies the third assertion.

To establish (3), let Bt be as in Corollary 12 and set Dt = Bt · Ut−1(zt).
Invoking Corollary 11 and Lemma 10, it is easy to show that X ≤

∑
1≤t≤θ Dt

w.h.p. Further, the random variable Dt is Ft-measurable and Dt = 0 for all
t > θ. Let

D̄t = E [Dt|Ft−1] and Mt =
t∑

s=1

Ds − D̄s.

Then M1, . . . ,Mθ is a martingale with E [Mθ] = 0. Azuma’s inequality entails
that Mθ = o(n) w.h.p. Hence, w.h.p.

∑
1≤t≤θ Dt = o(n) +

∑
1≤t≤θ D̄t.

We claim that D̄t ≤ 2ω exp(−kε/6) for all 1 ≤ t ≤ θ. For by Corollary 12 we
have E [Bt|Ft−1] ≤ exp(−kε/6).Moreover, given Ft−1 we have πt−1(φt, k1) = −1,
whence zt is uniformly distributed over V \Zt−1 (by Proposition 7). Since Bt = 1
implies |Ut−1| ≤ (1 + ε/3)ωn, the conditional expectation of Ut−1(zt) is

≤ |Ut−1|/|V \ Zt−1| ≤ (1 + ε/3)ωn/(n− t) ≤ 2ω.

Combining these estimates, we obtain that w.h.p.∑
1≤t≤θ

Dt ≤ 2ω exp(−kε/2/3)θ + o(n) ≤ n exp(−kε/7).

Thus, (3) follows from the fact that X ≤
∑

1≤t≤θ Dt w.h.p. �
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Abstract. In this paper we gather several improvements in the field of exact
and approximate exponential-time algorithms for the BANDWIDTH problem. For
graphs with treewidth t we present a O(nO(t)2n) exact algorithm. Moreover for
the same class of graphs we introduce a subexponential constant-approximation
scheme – for any α > 0 there exists a (1 + α)-approximation algorithm running
in O(exp(c(t +

√
n/α) log n)) time where c is a universal constant. These re-

sults seem interesting since Unger has proved that BANDWIDTH does not belong
to APX even when the input graph is a tree (assuming P �= NP). So some-
what surprisingly, despite Unger’s result it turns out that not only a subexponen-
tial constant approximation is possible but also a subexponential approximation
scheme exists. Furthermore, for any positive integer r, we present a (4r − 1)-
approximation algorithm that solves BANDWIDTH for an arbitrary input graph
in O∗(2

n
r ) time and polynomial space.1 Finally we improve the currently best

known exact algorithm for arbitrary graphs with a O(4.473n) time and space
algorithm.

In the algorithms for the small treewidth we develop a technique based on
the Fast Fourier Transform, parallel to the Fast Subset Convolution techniques
introduced by Björklund et al. This technique can be also used as a simple method
of finding a chromatic number of all subgraphs of a given graph in O∗(2n) time
and space, what matches the best known results.

1 Introduction

Notation. In this paper we focus on exponential-time exact and approximation algo-
rithms for the BANDWIDTH problem. Let G = (V,E) be an undirected graph with
n = |V |. For a given one-to-one function π : V → {1, 2 . . . , n} (called an ordering)
its bandwidth is the maximum difference between positions of adjacent vertices, i.e.
maxuv∈E |π(u) − π(v)|. The bandwidth of the graph, denoted by bw(G), is the mini-
mum bandwidth over all orderings. The BANDWIDTH problem asks to find an ordering
with bandwidth bw(G). W.l.o.g. we can assume that G is connected, otherwise we can
consider all connected components of G independently.

Motivation. The BANDWIDTH problem seems to be hard from many perspectives. It is
NP-hard even on some subfamilies of trees [10,12], does not belong to APX even whenG
is a caterpillar [15] and is hard for any fixed level of the W hierarchy [3]. The best known
polynomial-time approximation, due to Feige [7], has a O(log3 n

√
logn log logn) ap-

proximation guarantee. At WG’08 we presented an exact algorithm for arbitrary graphs

1 By O∗ we denote standard big O notation but omitting polynomial factors.

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 304–315, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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that runs inO∗(5n) time andO∗(2n) space [5]; we were able to enhance this algorithm to
run inO(4.83n) time at the cost ofO∗(4n) space complexity [4]. However, the fastest ex-
act algorithm that runs in a polynomial space needsO∗(10n) time [8]. We are not aware of
any published faster algorithms for trees or graphs with bounded treewidth, but we were
informed [9] that very recently, Amini, Fomin and Saurabh independently developed a
O(nO(t)2n) algorithm for graphs with treewidth t, using completely different approach
than ours.

Since a polynomial time constant approximation for the BANDWIDTH problem is
probably not possible, it seems reasonable to search for approximation algorithms that
are faster than the exact ones, but still give us a constant approximation guarantee at
the cost of a superpolynomial time complexity. This area was considered recently by
Bourgeois et al. [13].

Our results. We present several results in the field of exponential solutions to the
BANDWIDTH problem, both approximate and exact.

First, we define a DISJOINT SET SUM problem and show how to solve it using the
Fast Fourier Transform in a similar time complexity as the Fast Subset Convolution [2].
This problem appears to be a crucial part in some NP-hard problems like CHROMATIC

NUMBER. We solve these problems in time matching the best known results.
Then we use DISJOINT SET SUM to develop a simple O∗(2n) time and space ex-

act algorithm for the BANDWIDTH problem for trees. We enhance this algorithm to
work in O(nO(t)2n) time and space for graphs with treewidth t (for more about the
treewidth see [6]). Later, we exploit the idea from the exact algorithm to obtain a
subexponential approximation scheme for trees and graphs with bounded treewidth.
Precisely, for a parameter α > 0, we get a (1 +α)-approximation algorithm that works
in O(exp(c(t +

√
n/α) logn)) time and space. As far as we know this is the first ex-

ample of a problem that is not approximable with a constant factor in a polynomial time
and admits a subexponential approximation scheme.

Further we switch to arbitrary graphs and develop, for a fixed integer r ≥ 1, an
exponential approximation algorithm with a (4r − 1)–approximation guarantee that
works in O∗(2n/r) time and polynomial space. Finally, we present a O∗(20n/2) =
O(4.473n) time and space exact algorithm for arbitrary graphs, improving the previous
O(4.83n) bound from [4].

Organization. In Section 2 we present a definition and solution using the Fast Fourier
Transform for DISJOINT SET SUM and discuss usage of the Fast Subset Convolution.
In Section 3 we use DISJOINT SET SUM to develop an exact algorithm for graphs with
bounded treewidth and in Section 4 we describe an approximation scheme for the same
class of graphs. Sections 5 and 6 contain approximate and exact algorithms for arbitrary
graphs respectively.

2 DISJOINT SET SUM and Its Solutions

In this section we focus on the DISJOINT SET SUM problem, defined as follows. Con-
sider a set N = {1, . . . , n} and two sets A,B containing subsets of N as its elements
(A,B ⊆ 2N ). Our goal is to compute A⊕B = {A∪B : A ∈ A, B ∈ B, A∩B = ∅}—
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explaining in words we would like to find all subsets of N which can be represented as
a disjoint sum of two sets, where one of them is contained in A and one in B. Moreover
for each set in A ⊕ B we would like to know in how many ways one can obtain it as
such a disjoint sum.

Let us first solve the DISJOINT SET SUM naively. Taking each pair of sets from
A and B would take us O∗(4n) time, but we easily improve this result by considering
all subsets of N and for each such set X ⊆ N iterate through all its subsets A ⊆ X
and check whether A ∈ A and X \ A ∈ B (which can be decided in polynomial of
n time using any balanced search tree). This improvement leads to O∗(3n) time, since∑n

i=0

(
n
i

)
2i = (2 + 1)n = 3n. However, this can be done much better.

Theorem 1. Let A,B ⊆ 2N , we can compute A⊕B in O∗(2n) time and space. More-
over for each element in A⊕B we obtain the number of ways it can be composed as a
disjoint sum.

Note that Theorem 1 is a quite straightforward corollary from the Fast Subset Con-
volution algorithm by Björklund et al. [2]. The SUBSET CONVOLUTION problem can
be defined as follows: given functions f and g defined on the lattice of subsets of an
n-element set N , compute their subset convolution f ∗ g defined for all S ⊆ N by
(f ∗ g)(S) =

∑
T⊆S f(T )g(S \ T ). Björklund et al. [2] developed a very clever algo-

rithm that computes SUBSET CONVOLUTION in O∗(2n) time. By taking f = 1A and
g = 1B this algorithm solves DISJOINT SET SUM in O∗(2n) time.

Here we present a different approach to the DISJOINT SET SUM problem. In Section
2.1 we show how to solve it using the Fast Fourier Transform. The FFT solution has
a few advantages over FSC. As to our best knowledge it is new, gives the same time
complexity as FSC (up to a polynomial factor), FFT is probably more widely known in
the computer science community than FSC and, most important, although the methods
are somehow similar, FFT allows some extensions that seems hard for FSC approach;
since we use in Section 4 the extension defined in Section 2.2, we prefer the FFT solu-
tion. On the other hand, note that the FSC solution allows a smaller polynomial factor
hidden in the O∗() notation.

2.1 Solution Using the Fast Fourier Transform

The Fast Fourier Transform is an efficient algorithm which computes the discrete
Fourier transform and its inverse. Due to its efficiency it has several applications, in-
cluding digital signal processing and big integer or polynomial multiplication. However
surprisingly enough, FFT happened to be a handy tool in DISJOINT SET SUM.

We can group subsets ofN belonging to A and B according to their cardinality, thus
it is sufficient to solve the reduced problem, where sets in A and B have fixed sizes,
denote them by kA and kB. This grouping gives us only n2 overhead which is omitted
in the O∗ notation. To use FFT we need to look at our problem from a different angle,
we treat subsetA ⊂ N as a monomial xbin(A), where bin(A) ∈ [0, 2n−1] is the binary
representation of a subset A. Grouping sets according to their size allows us to use the
following observation:

Lemma 2. Let A,B be subsets of {1, . . . , n}. Then A ∩ B = ∅ iff the number of ones
in the binary representation of their sum bin(A) + bin(B) is equal to |A|+ |B|.
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Now we represent A and B as polynomials (where each element from A and B is a
monomial) and multiply those polynomials using FFT in O∗(2n) time. We iterate over
all subsets I ⊆ N having exactly kA + kB elements and check what coefficient stands
in front of xbin(I) in the resulting polynomial. This coefficient is clearly the number of
ways in which I can be composed as a disjoint sum.

We perform n2 polynomial multiplications using FFT. Each multiplication needs
O(2n log(2n)) arithmetic operations, which consume a polynomial time, thus we get a
O∗(2n) time and space algorithm.

2.2 FFT and DISJOINT SET SUM Extension

We can extend the FFT solution to DISJOINT SET SUM to the following problem. Fix
an integer r ≥ 1. Instead of having A,B ⊆ 2N we can have A,B ⊆ {0, 1, . . . , r}N ,
i.e., A and B are sets of n-tuples of integers from the set {0, 1, . . . , r}. In this setting,
for every n-tuple X ∈ {0, 1, . . . , r}N we ask for the number of partitions of X into a
sum A + B, where A ∈ A, B ∈ B and the addition is defined pointwise, i.e., X(i) =
A(i) +B(i) for i ∈ N . In other words, A⊕B = {(A1 +B1, . . . , An +Bn) : (Ai) ∈
A ∧ (Bi) ∈ B}. Note that classical DISJOINT SET SUM is the extended problem with
r = 1.

Using FFT, we can solve the extended DISJOINT SET SUM inO∗((r+1)n), assum-
ing r = O(nγ) for some constant γ (in our applications r ≤ n). We simply apply the
previous solution, but treat tuple X ∈ {0, 1, . . . , r}n as a number written in the base
r + 1. As before, we split summands in respect of their sum of digits.

2.3 Applications

We can use the disjoint sets merging in all kinds of partition problems which fit into the
following framework. Consider an n-element set U and a family S ⊆ 2U of its subsets.

Definition 3. For a positive integer k ≤ n and subset X ⊆ U let pk(X) be the number
of ordered k-partitions of X into subsets being elements of S, i.e., pk(X) is the number
of ways to choose S1, . . . , Sk ∈ S, which are pairwise disjoint and

⋃
Si = X .

Using tools introduced in the previous subsection we calculate a series of sets Pi, where
P1 = S and Pi+1 = Pi ⊕ S (for i = 2, . . . , n). With each element of Pi we store the
number of ways it can be represented as a disjoint sum of elements from S (which
are extracted easily from the presented polynomials). Clearly pk(X) is the coefficient
stored in Pk related to X (or pk(X) = 0 if X �∈ Pk).

Theorem 4. For each k and X we can compute all values pk(X) at once in O∗(2n)
time and space.

Despite simplicity, our tool can be used to solve the CHROMATIC NUMBER problem in
O∗(2n) time, which was a major open problem in the exact algorithms field, solved in
2006 independently by Björklund and Husfeldt in [1] and by Koivisto in [11] via the
inclusion-exclusion principle. To achieve it we simply take all independent sets of the
given graph as a family S. Another problems that fit into the partition problems category
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are DOMATIC NUMBER, BOUNDED COMPONENT SPANNING FOREST, PARTITION

INTO HAMILTONIAN SUBGRAPHS and BIN PACKING (all of those were mentioned
in [1]). For all those problems we get O∗(2n) time and space algorithms, which are
the same as the best known results. Moreover this framework also counts the number
of solutions for those problems and calculates the number of partitions not only for the
whole set, but also for all its subsets.

3 Exact Algorithm for Trees

In this section let us assume that the input graph for the BANDWIDTH problem is a tree
T . We are given an integer 1 ≤ b < n and we are to decide whether b ≥ bw(G).
For convenience we root this tree at some arbitrary vertex r. By parent(v) we de-
note a vertex which is a parent of the vertex v in the rooted tree, additionally we set
parent(r) = r. For a vertex v by T (v) we denote a set of vertices of the subtree rooted
at v.

Algorithms that operate on trees usually perform some computation on nodes recur-
sively and join results from children to obtain results for the currently processed node.
This also is the case here, hence we firstly define what do we want to calculate for each
subtree.

Definition 5. Let v be a vertex of the given tree and posv be a positive integer (1 ≤
posv ≤ n). By assignments(v, posv) we denote a set of all such subsets mask ⊆
{1, . . . , n} for which there exists a surjective function f : T (v)→ mask satisfying:

– ∀w∈T (v)\{v}|f(w) − f(parent(w))| ≤ b.
– f(v) = posv.

Less formally assignments(v, posv) is corresponding to the set of all legal (with band-
width not greater than b) assignments of vertices T (v) with the vertex v having a fixed
position posv , where from each assignment we remember only the set of used positions
(since relative order of vertices from T (v) does not matter outside this subtree).

To find assignments(v, posv) for the vertex v and every posv firstly we set
assignments(v, posv) to contain only the set {posv}, which is the position used by
v. Now we have to join assignments(v, posv) with assignments for each child, one by
one. We can join assignments of v with assignments for a child u iff u and v are not
too far away from each other (which is easy to control using positions of those vertices)
and sets of used positions are disjoint, and this is the place where we can use disjoint
sets merging via FFT or FSC (see Pseudocode 1 for details).

To check whether there exists an ordering of T with bandwidth not greater than b we
run the GENERATEASSIGNMENTS(r) procedure and check whether there exists i such
that assignments(r, i) is not empty, since the only element that can be in this set is the
set of all positions {1, . . . , n}.

Theorem 6. Algorithm 1 solves the Bandwidth problem for trees in O∗(2n) time and
space. For each edge of our tree we solve O(n2) DISJOINT SET SUM instances.
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Algorithm 1. Exact algorithm for trees
1: procedure GENERATEASSIGNMENTS(v)
2: for posv ← 1 to n do
3: assignments(v, posv) ← {{posv}}
4: for each child u of v do
5: GENERATEASSIGNMENTS(u)
6: for posv ← 1 to n do
7: temp assignments ← ∅
8: for posu ← max(1, posv − b) to min(n, posv + b) do
9: temp assignments ← temp assignments∪

10: (assignments(v, posv) ⊕ assignments(u, posu))
11: assignments(v, posv) ← temp assignments

12: procedure BANDWIDTH(T ,b)
13: GENERATEASSIGNMENTS(r)  We start from the root.
14: for i ← 1 to n do
15: if assignments(r, i) �= ∅ then
16: return true
17: return false

In case of a positive answer, we could also be interested in finding an ordering with
bandwidth not greater than b. This is not hard, but due to the space limitations we omit
details here.

At the end, let us note that the aforementioned algorithm, at the cost of a polynomial
factor in the complexity, can count the number of orderings with bandwidth at most
b. As mentioned in Section 2, in the DISJOINT SET SUM problem we can count the
number of possible partitions, thus in the end obtaining the number of orderings. Note
that in this approach the coefficients in FFT (FSC) are of size O(n!), thus they have
O(n log n) bits and still all arithmetic operations can be done in polynomial time.

It is not hard to guess that our algorithm can be modified to handle not only trees,
but also graphs with a fixed treewidth. If a graph has treewidth at most t this leads to a
O(nO(t)2n) algorithm. Since this modification does not introduce more understanding
for the bandwidth problem and can be easily performed by anyone familiar with the
treewidth we omit details here.

4 Approximation Scheme for Trees

Now we modify the algorithm presented in the previous section to construct an ap-
proximation scheme, still assuming that the input graph is a tree. The bottleneck of the
exact algorithm for trees is the number of elements in assignments set, which is 2n,
because we assign vertices to specific positions. We can, however, loose this constraint
and instead of an ordering construct a coarse ordering.

Definition 7. A coarse ordering is a function A : V → 2Z, assigning to every vertex
v ∈ V an interval A(v) = [av, bv] ⊂ Z. An ordering π is consistent with the coarse
ordering A if for all v ∈ V we have π(v) ∈ A(v).

Assume we want to have a (1 + α)-approximation algorithm for a constant α > 0.
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Let us recall that the exact algorithm introduced by Saxe (see [14]) performs well
for a small bandwidth of the given graph. Saxe’s algorithm checks whether graph has
bandwidth at most b, and if so constructs an ordering, in O∗((4n)b) time and space.

Our algorithm, given an integer 1 ≤ b < n, produces an ordering π satisfying
bw(π) ≤ (1 + α)b or states that b < bw(G). Using a binary search over b, we find
the smallest b for which the algorithm finds an ordering. This ordering has bandwidth
at most (1 + α)bw(G).

First, let k := �0.5bα�. If b ≤ n
k we simply use the Saxe’s algorithm to determine if

b ≥ bw(G) in time O(exp(cb logn)) for universal constant c. Note that for b ≤ n
k we

have b = O(
√
n/α) therefore Saxe’s algorithm works in O(exp(c

√
n/α logn)) time.

Now we deal with the case b > n
k .

We use coarse orderings where values of A can be intervals of length k (except pos-
sibly the last interval which has size n mod k). The i-th interval contains positions
{(i−1)k+1, . . . ,min((i+1)k, n)}. Like in the previous section assignments(v, posv)
corresponds to the set of all legal orderings ofT (v) (trying to have bandwidth not greater
than b), but this time from each assignment we remember only to which interval vertex
v was assigned and the number of vertices assigned to each interval.

The following algorithm, given an integer n
k < b < n, produces an ordering π

satisfying bw(π) ≤ b + 2k or states that b < bw(G). Note that this means that the
produced ordering satisfies bw(π) ≤ (1 + α)b by the choice of k.

Definition 8. Lev v be a vertex of the given tree and posv be a positive integer (1 ≤
posv ≤ �n

k �). By assignments(v, posv) we denote a set of all tuples (a1, . . . , a
n
k �),

where 0 ≤ ai ≤ k, such that there exists a function f : T (v)→ {1, ..., �n
k �} satisfying:

– ∀w∈T (v)\{v}(|f(w) − f(parent(w))| − 1) · k < b.
– f(v) = posv,
– ∀1≤i≤
n

k �|f−1(i)| = ai,

One may notice that we allow assigning more vertices (up to k) to the last segment than
the number of positions it contains (n mod k), we do it for simplicity and this issue is
fixed later.

Now let us recall the operation⊕ defined on tuples in Section 2.2. It is easy to see that
this ⊕ definition is exactly what we need when merging assignments, taking r = k and
using �n/k�-tuples. In the sum we take each pair of tuples, such that for each segment
the number of vertices assigned in both tuples in sum is not greater than k, which means
that we can merge those two assignments without exceeding the capacity of intervals.
Therefore this merge can be done in O∗((k + 1)
n/k�) time.

To check whether a coarse ordering exists we run our algorithm and check whether
there exists a tuple in assignments(r, i) for any i, such that the number of vertices as-
signed to the last interval is equal to n mod k. The whole algorithm works inO∗((k+
1)


n
k �).

Similarly as in the previous section the algorithm can be modified to return not only
the binary answer, but also a coarse ordering (in case of a positive answer) A. Let
fA : V → {1, 2, . . . , �n

k �} be such thatA(v) = {(fA(v)−1)k+1, . . . , fA(v)k}. Then,
by Definition 8, we have for every edge uv in the tree (|fA(u) − fA(v)| − 1) · k < b,
thus
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maxA(v) −minA(u) = (fA(v)− fA(u)) · k + k − 1 ≤ 2k + b− 1.

Since segments — values of the coarse ordering — are disjoint, one can easily find any
ordering consistent with the given coarse ordering. This ordering has bandwidth at most
2k + b− 1.

Note that if b ≥ bw(G), the algorithm does not fail to find a coarse ordering. Indeed,
if π is an ordering with bw(π) ≤ b, the algorithm may generate an assignment fA(v) =
�π(v)

k �.
Note that n

k < b means that b = Ω(
√
n/α) and k = �0.5αb� ≥ c

√
nα for some

universal constant c. Thus the algorithm works in O(exp(c
√
n/α logn)) time.

Theorem 9. For arbitrary b at least one algorithm, Saxe’s or ours, runs in
O(exp(c

√
n/α log n)) time.

Note that, similarly as the algorithm described in Section 3, this algorithm extends to
the class of graphs with treewidth not greater than t at the cost of a O(nO(t)) time and
space overhead. In this case the presented algorithm works in O(nO(t)(k+1)


n
k �) time

and space, whereas the Saxe’s algorithm does not use any treewidth assumption, thus
the approximation scheme is still subexponential.

5 Approximation Algorithm for General Graphs

In this section we describe an approximation algorithm that, for a fixed integer r ≥ 1,
computes, given an undirected connected graph G = (V,E), an ordering π satisfy-
ing bw(G) ≤ bw(π) ≤ (4r − 1)bw(G). The algorithm works in O∗(2n/r) time and
polynomial space and uses coarse orderings (see Definition 7).

Note that, given a coarse ordering A, checking if there exists any ordering consis-
tent with A can be done in O(n log n) time. We use a simple greedy algorithm that
assigns vertices to successive positions 1, 2, . . . , n. For any position i, it chooses still
unassigned vertex v such that i ∈ A(v) and for any other unassigned vertex w with
i ∈ A(w), maxA(v) ≤ maxA(w).

Lemma 10. Let A be a coarse ordering for an input graph G = (V,E). Let s be the
size of the largest interval in A, i.e., s = maxv∈V |A(v)|. If there exists an ordering
π∗ of bandwidth at most b consistent with A, then one can find in a polynomial time an
ordering π that is consistent with A and has bandwidth at most s+ b.

Proof. For every edge uv replace A(u) by A(u) ∩ [minA(v) − b,maxA(v) + b] and
similarly for A(v). This operation maintains the invariant that π∗ is consistent with A.
Then find any ordering consistent with the new coarse ordering.

Let us now describe our algorithm. For a fixed positive integer r we obtain a (4r − 1)-
approximation algorithm. Let T be any fixed spanning tree of G and take any vertex of
G as a root of T . For any vertex v different from the root, by parent of v we denote the
parent of v in the rooted tree T .

The algorithm, given an integer 1 ≤ b < n, produces an ordering π satisfying
bw(π) ≤ (4r − 1)b or states that b < bw(G). By a binary search over b we find the
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smallest b for which the algorithm produces an ordering. For this b we have b ≤ bw(G)
and bw(π) ≤ (4r − 1)b.

By Ij,2i we denote the interval of length 2ib starting at jb + 1, for j ∈ Z and r ≤
i ≤ 2r − 1. The algorithm is sketched in Pseudocode 2.

Algorithm 2. Generating assignments in the (4r − 1)-approximation algorithm
1: procedure GENERATEASSIGNMENTS(A)
2: if all nodes in T are assigned then
3: Cut all intervals in A to make them contained in {1, . . . , n}.
4: Use Lemma 10 to find ordering consistent with A.
5: else
6: v ← a node in T such that v’s parent w is assigned; let Ij,2i = A(w).
7: if i + 1 ≤ 2r − 1 then
8: GENERATEASSIGNMENTS(A∪ {(v, Ij−1,2(i+1)})
9: else

10: GENERATEASSIGNMENTS(A∪ {(v, Ij−1,2r})
11: GENERATEASSIGNMENTS(A∪ {(v, Ij−1+2r,2r})

12: procedure MAIN(i0)
13: for j ← 0 to �n/b� − 1 do
14: GENERATEASSIGNMENTS ({(r, Ij,2i0)})  Generate all assignments with root in

Ij,2i0

Let i0 ∈ {r, . . . , 2r − 1} be a parameter that we determine later. The algorithm
assigns the root of T to all possible intervals of size 2i0b that overlap with {1, . . . , n}
and extends each of these partial assignments recursively.

To extend a given assignment, the algorithm chooses a node v of T such that the
parent w of v has been already assigned an interval, say Ij,2i. Consider the interval
Ij−1,2(i+1) which is obtained from Ij,2i by “extending” it by b positions both at the left
and right side. Note that in any ordering consistent with the current assignment, v is put
in a position from Ij−1,2(i+1). Hence, if Ij−1,2(i+1) is not too big, i.e. i+ 1 ≤ 2r − 1,
the algorithm simply assigns Ij−1,2(i+1) to v and proceeds with no branching (just
one recursive call). Otherwise, if i + 1 = 2r, the interval Ij−1,2(i+1) is split into two
intervals of size 2r, namely Ij−1,2r and Ij−1+2r,2r and two recursive calls follow: with
v assigned to Ij−1,2r and Ij−1+2r,2r respectively.

For every generated assignment (after cutting the intervals to make them contained
in {1, . . . , n}) the algorithm applies Lemma 10 to verify whether it is consistent with
an ordering of bandwidth [2(2r − 1) + 1]b = (4r − 1)b.

It is clear that the produced ordering has bandwidth at most (4r−1)b. The following
lemma finishes the proof of correctness of the Algorithm 2.

Lemma 11. If there exists an ordering π with bw(π) ≤ b, then Algorithm 2 produces
at least one coarse ordering consistent with π.

Proof. To produce such a coarse ordering, just simulate Algorithm 2 and at each step,
whenever the algorithm has a choice for a vertex v between Ij−1,2r and Ij−1+2r,2r ,
choose the interval containing π(v). Since bw(π) ≤ b, the produced coarse ordering is
consistent with π.
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We conclude with the time complexity analysis. Observe that the nodes at tree distance
d from the root are assigned intervals of size 2[(i0 + d) mod r + r]. It follows that
branching appears only when i0 + d ≡ 0 (mod r). Let n̂(i0) denote the number of
nodes at tree distance d satisfying this condition. It is clear that the above algorithm
works in timeO∗(2n̂(i0)). Since

∑
i∈{r,...,2r−1} n̂(i) = n, for some i ∈ {r, . . . , 2r−1},

n̂(i) ≤ n/r. By choosing this value as i0, we get the O∗(2n/r) time bound.

Theorem 12. For any positive integer r, there is a (4r − 1)-approximation algorithm
for BANDWIDTH running in O∗(2n/r) time and polynomial space. �

6 Exact Algorithm for General Graphs

In this section we focus on the exact algorithm for the BANDWIDTH problem on general
graphs. This algorithm works in O∗(20n/2) ≤ O(4.473n) time, improving previous
results [4] [5]. As an input, the algorithm takes a connected undirected graph G =
(V,E), where |V | = n, and a number b, 1 ≤ b < n and checks if there exists an
ordering π with bw(π) ≤ b.

This algorithm uses major ideas from algorithmsO∗(5n) [5] and O(4.83n) [4], i.e.,
placing vertices in the color order of positions (all important definitions are recalled in
Section 6.1). However, the major difference is that we perform both phases (segment
placing and depth-first search over states) of the previous algorithms at once, thus reduc-
ing the total number of possible states of the algorithm, at the cost of space complexity
— we need to store all used states in memory.

6.1 Segments and Colors

First, let us recall some important observations made in [5]. An ordering π is called a b-
ordering if bw(π) ≤ b. Let Pos = {1, 2, . . . , n} be the set of possible positions and for
every position i ∈ Pos we define the segment it belongs to by segment(i) = � i

b+1� and
the color of it by color(i) = (i− 1) mod (b + 1) + 1. By Seg = {1, 2, . . . , � n

b+1�}
we denote the set of possible segments, and by Col = {1, 2, . . . , b + 1} the set of
possible colors. The pair (color(i), segment(i)) defines the position i uniquely. We
order positions lexicographically by pairs (color(i), segment(i)), i.e., the color has
higher order that the segment number, and call this order the color order of positions.
By Posi we denote the set of the first i positions in the color order. Given some (maybe
partial) ordering π, and v ∈ V for which π(v) is defined, by color(v) and segment(v)
we understand color(π(v)) and segment(π(v)) respectively.

Let us recall the crucial observation made in [5].

Lemma 13 ([5], Lemma 8). Let π be an ordering. It is a b-ordering iff, for every uv ∈
E, |segment(u) − segment(v)| ≤ 1 and if segment(u) + 1 = segment(v) then
color(u) > color(v) (equivalently, π(u) is later in color order than π(v)).

6.2 The Algorithm

In the algorithm, the state and extension are defined as follows.
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Definition 14. A pair (A, f) where A ⊂ V and f : A → Seg is called a state iff the
following condition holds:

1. The multiset {f(v) : v ∈ A} is equal to the multiset {segment(i) : i ∈ Pos|A|}.
2. If uv ∈ E and u, v ∈ A, then |f(u)− f(v)| ≤ 1.
3. There exists f̄ : V → Seg with f ⊂ f̄ such that for every edge uv ∈ E, we have
|f̄(u)− f̄(v)| ≤ 1 and if u ∈ A, v /∈ A then f̄(u) ≥ f̄(v).

Definition 15. A state (A ∪ {v}, f ′) is an extension of a state (A, f) with a vertex
v /∈ A iff f = f ′|A and for all uv ∈ E with u ∈ A we have f(u) ≥ f ′(v).

The following equivalence holds (compare to [5], Lemma 11).

Lemma 16. Let π be a b-ordering. For 0 ≤ k ≤ n let Ak = {v ∈ V : π(v) ∈ Posk}
and fk = segment|Ak

. Then every (Ak, fk) is a state and for every 0 ≤ k < n state
(Ak+1, fk+1) is an extension of state (Ak, fk).

Lemma 17. Assume we have states (Ak, fk) for 0 ≤ k ≤ n and for all 0 ≤ k < n
state (Ak+1, fk+1) is an extension of state (Ak, fk) by vertex vk+1. Let π be an ordering
assigning vk to the k-th position in the color order. Then π is a b-ordering.

Theorem 18. There are at most O∗(20n/2) states.

Due to the space limit, we omit details of the proof of Theorem 18, but we quickly
sketch it. First, note that if we remove some edges of G, the number of states does not
decrease, so we can assume that G is a tree and we root it at some vertex vr. Let B be
the set of vertices that have at least two children in G. We define prestate (A, f) as a
state, but with the function f defined on A ∪ B instead of A. The number of prestates
is not smaller that the number of states and the number of prestates can be bounded
inductively for every subtree of G.

Note that checking if a pair (A, f) is a state can be done in a polynomial time. Points
1 and 2 are trivial to check. For Point 3 we can iteratively calculate for every v ∈ V \A
function p(v) ⊂ Seg, intuitively the set of possible values for f̄(v), by the following
algorithm.

Algorithm 3. Check if (A, f) satisfies Point 3 of the state definition
1: Set p(v) := Seg for all v ∈ V \ A.
2: repeat
3: for all v ∈ V \ A do
4: p(v) := p(v)∩⋂

u∈N(v)∩A{f(u)−1, f(u)}∩⋂
u∈N(v)\A

⋃
i∈p(u){i−1, i, i+1}

5: until some p(v) is empty or we do not made any change of any p(v) in the inner loop
6: return True iff all p(v) remain nonempty.

This algorithm performs at most |Seg|n ≤ n2 runs of the outer loop, since reevalu-
ated p(v) can only be a subset of the previous value. The proof of correctness of Algo-
rithm 3 is quite straightforward, but due to the space limit we omit it here. It is easy to
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see that checking if (A′, f ′) is an extension of (A, f) and generating all extensions of
the given state (A, f) can be done in polynomial time, too.

The algorithm is quite simple now. We do the depth-first search over states, starting
from the state (∅, ∅). From a state (A, f) we can move to any of its extension and we
seek for any state (A, f) with A = V . We remember (in some balanced search tree) all
visited states and do not go into into the same state twice. By Lemmas 16 and 17, we
reach such state iff there exists a b-ordering in G. Therefore Theorem 18 implies that:

Theorem 19. The Bandwidth problem can be solved in O∗(20n/2) time and space.

Acknowledgments. We would like to deeply thank Lukasz Kowalik for supervising
our work in the BANDWIDTH problem area and giving us a lot of valuable comments
and remarks.
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Abstract. We develop new structural results for apex-minor-free graphs
and show their power by developing two new approximation algorithms.
The first is an additive approximation for coloring within 2 of the optimal
chromatic number, which is essentially best possible, and generalizes the
seminal result by Thomassen [32] for bounded-genus graphs. This result
also improves our understanding from an algorithmic point of view of the
venerable Hadwiger conjecture about coloring H-minor-free graphs. The
second approximation result is a PTAS for unweighted TSP in apex-
minor-free graphs, which generalizes PTASs for TSP in planar graphs
and bounded-genus graphs [20,2,24,15].

We strengthen the structural results from the seminal Graph Minor
Theory of Robertson and Seymour in the case of apex-minor-free graphs,
showing that apices can be made adjacent only to vortices if we generalize
the notion of vortices to “quasivortices” of bounded treewidth, proving a
conjecture from [10]. We show that this structure theorem is a powerful
tool for developing algorithms on apex-minor-free graphs, including for
the classic problems of coloring and TSP. In particular, we use this the-
orem to partition the edges of a graph into k pieces, for any k, such that
contracting any piece results in a bounded-treewidth graph, generalizing
previous similar results for planar graphs [24] and bounded-genus graphs
[15]. We also highlight the difficulties in extending our results to general
H-minor-free graphs.

1 Introduction

Structural graph theory provides powerful tools for designing efficient algorithms
in large families of graphs. The seminal work about the structure of graphs is
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Robertson and Seymour’s Graph Minors series of over twenty papers over the
past twenty years. From this work, particularly the decomposition theorem for
graphs excluding any fixed minor H [28], has been made increasingly algorith-
mic and has led to increasingly general approximation and fixed-parameter al-
gorithms; see, e.g., [14,21,8,7,12,1]. In general, it is interesting to explore how
the combinatorial structure of the graph family influences the approximability
of classic computational problems.

One such structural graph family that has played an important role in the-
oretical computer science (e.g., in [17,9,10,7]) is apex-minor-free graphs: graphs
excluding a fixed apex graph H , where the removal of some vertex of H results
in a planar graph. Apex-minor-free graphs include all bounded-genus graphs and
many, many more graph families, almost to the extent of general H-minor-free
graphs. For example, K5 is an apex graph, and the class of K5-minor-free graphs
includesK3,n for all n, but the genus ofK3,n goes to infinity as n grows.1 Another
example is K3,k-minor-free graphs, which according to personal communication
were Robertson and Seymour’s first step toward their core decomposition result
for H-minor-free graphs, because K3,k-minor-free graphs can have arbitrarily
large genus. More generally, apex-minor-free graphs have all the structural ele-
ments of H-minor-free graphs: clique-sums, bounded-genus graphs, apices, and
vortices. Thus apex-minor-free graphs serve as an important testbed for algo-
rithmic graph minor theory.

Eppstein [17] showed that apex-minor-free graphs are the largest minor-closed
family of graphs that have a property called bounded local treewidth. This prop-
erty has important algorithmic implications: such graphs admit a general family
of PTASs following a generalization of Baker’s approach for planar graphs [3].
Since this work, apex-minor-free graphs have been studied extensively, in partic-
ular in the bidimensionality theory (see [13]), with many algorithmic applications
including more general PTASs and subexponential fixed-parameter algorithms
[10,7,11,12,9,13]. On the structural side, it has been shown that apex-minor-
free graphs have linear local treewidth, i.e., every radius-r neighborhood of every
vertex has treewidth O(r) [10]. This bound is best possible and substantially
improves the bounds on the running of PTASs based on the generalized Baker’s

approach, from the previous bound of 222O(1/ε)

nO(1) to the likely best possible
bound of 2O(1/ε)nO(1).

To advance our understanding of how structural graph theory impacts ap-
proximation algorithms, we develop new such tools for apex-minor-free graphs.
In particular, we develop two new decomposition results, strengthening previous
results from Graph Minors [28] and from [15], and proving a conjecture from
[10]. We use these decompositions to obtain an additive 2-approximation for
graph coloring, improving previous results from [14], and to obtain a PTAS for
unweighted TSP, generalizing results from [20] and from [15].

1 Also, because K3,k has arbitrarily large genus, and K3,k is itself an apex graph, for
any genus g there is a k such that K3,k has genus more than g and thus K3,k-minor-
free graphs include all genus-g graphs.
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Graph coloring. Graph coloring is one of the hardest problems to approximate.
In general graphs, the chromatic number is inapproximable within n1−ε for any
ε > 0, unless ZPP = NP [18]. Even for 3-colorable graphs, the best approx-
imation algorithm achieves a factor of O(n3/14 lgO(1) n) [5]. In planar graphs,
the problem is 4/3-approximable in the multiplicative sense, but more interest-
ingly can be approximated within an additive 1, essentially because all planar
graphs are 4-colorable; these approximations are the best possible unless P =
NP. In contrast, graphs excluding a fixed minor H (or even graphs embeddable
on a bounded-genus surface) are not O(1)-colorable for a constant independent
of H (or the genus); the worst-case chromatic number is between Ω(|V (H)|) and
O(|V (H)|

√
lg |V (H)|). Therefore we need different approaches to approximate

coloring of such graphs within small factors (independent of H or genus).
In a seminal paper, Thomassen [32] gives an additive approximation algorithm

for coloring graphs embeddable on bounded-genus surfaces that is within 2 of
optimal. More precisely, for any k ≥ 5, he gives a polynomial-time algorithm to
test k-colorability of graphs embeddable on a bounded-genus surface. Thus, for
bounded-genus graphs, we do not know how to efficiently distinguish between
3, 4, and 5 colorability, but we can otherwise compute the chromatic number,
and in all cases we can color within an additive 2 of the chromatic number. This
result is essentially best possible: distinguishing between 3 and 4 colorability
is NP-complete on any fixed surface, and distinguishing between 4 and 5 col-
orability would require a significant generalization of the Four Color Theorem
characterizing 4-colorability in fixed surfaces.

More recently, a 2-approximation to graph coloring has been obtained for
the more general family of graphs excluding any fixed minor H [14]. However,
additive approximations have remained elusive for this general situation.

The challenge of an improved approximation for H-minor-free graphs is par-
ticularly interesting given its relation to Hadwiger’s conjecture, one of the major
unsolved problems in graph theory. This conjecture states that every H-minor-
free graph has a vertex coloring with |V (H)|−1 colors. Hadwiger [22] posed this
problem in 1943, and proved the conjecture for |V (H)| ≤ 4. As mentioned above,
the best general upper bound on the chromatic number is O(|V (H)|

√
lg |V (H)|)

[26,29]. Thus, Hadwiger’s conjecture is not resolved even up to constant factors,
and the conjecture itself is only a worst-case bound, while an approximation
algorithm must do better when possible.

Here we develop an additive approximation for graph coloring in apex-minor-
free graphs, which are between bounded-genus graphs and H-minor-free graphs.
We obtain the same additive error of 2 that Thomassen does for bounded-genus
graphs:

Theorem 1. For any apex graph H, there is an additive approximation algo-
rithm that colors any given H-minor-free graph using at most 2 more colors than
the optimal chromatic number.

As mentioned above, the additive constant of 2 is essentially best possible. Also,
Thomassen’s proof method for bounded-genus graphs [32] does not work for
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apex-minor-free graphs. More precisely, Thomassen’s main result in [32] says
that, for any k ≥ 6, there are only finitely many “k-color-critical graphs” em-
beddable in a fixed surface. Here a graph G is k-color-critical if G is not (k−1)-
colorable, but removing any edge from G makes it (k − 1)-colorable. However,
for any k, there is any apex graph H such that there are infinitely many k-color-
critical H-minor-free graphs.2

TSP and related problems. The Traveling Salesman Problem is a classic problem
that has served as a testbed for almost every new algorithmic idea over the past
50 years. It has been considered extensively in planar graphs and its generaliza-
tions, starting with a PTAS for unweighted planar graphs [20], then a PTAS for
weighted planar graphs [2], recently improved to linear time [24], then a quasi-
polynomial-time approximation scheme (QPTAS) for weighted bounded-genus
graphs [19], recently improved to a PTAS [15]. Grohe [21] posed as an open
problem whether TSP has a PTAS in general H-minor-free graphs.

We advance the state-of-the-art in TSP approximation by obtaining a PTAS
for unweighted apex-minor-free graphs. Furthermore, we obtain a PTAS for min-
imum c-edge-connected submultigraph3 in unweighted apex-minor-free graphs,
for any constant c ≥ 2, which generalizes and improves previous algorithms for
c = 2 on planar graphs [4,6] and for general c on bounded-genus graphs [15].

Theorem 2. For any fixed apex graph H, any constant c ≥ 2, and any 0 < ε ≤
1, there is a polynomial-time (1 + ε)-approximation algorithm for TSP, and for
minimum c-edge-connected submultigraph, in unweighted H-minor-free graphs.

TSP and minimum c-edge-connected submultigraph are examples of a general
class of problems called contraction-closed problems, where the optimal solu-
tion only improves when contracting an edge. Many other classic problems are
contraction-closed but not minor-closed, for example, dominating set (and its
many variations) and minimum chordal completion. For this reason, contraction-
closed problems have been highlighted as particularly interesting in the bidimen-
sionality theory (see [13]).

To obtain the PTASs for TSP and minimum c-edge-connected submultigraph,
as well as general family of approximation algorithms for contraction-closed prob-
lems, we study a structural decomposition problem introduced in [15]: partition
the edges of a graph into k pieces such that contracting any one of the pieces
2 Start with any k-color-critical graph G, e.g., Kk. Pick an apex graph H so that

G is H-minor-free, which is possible because there is an apex graph of arbitrarily
large genus. Now we can combine two vertex-disjoint copies G1 and G2 of G into an
H-minor-free k-color-critical graph G′ using the following Hajós construction. Start
from the union graph G1 ∪ G2. Pick any edge {v1, w1} in G1 and any edge {v2, w2}
in G2. Remove both of these edges, identify v1 and v2, and join w1 and w2 by a
new edge. The resulting graph G′ is H-minor-free and k-color-critical provided G
is. By repeating this construction starting from G′, etc., we obtain infinitely many
k-color-critical H-minor-free graphs.

3 This problem allows using multiple copies of an edge in the input graph—hence
submultigraph—but the solution must pay for every copy.
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results in a bounded-treewidth graph (where the bound depends on k). Such a
result has been obtained for bounded-genus graphs [15] and for planar graphs
with a variation of contraction called compression (deletion in the dual graph)
[24,25]. These results parallel similar decomposition results for edge deletions in
planar graphs [3], apex-minor-free graphs [17], and H-minor-free graphs [16,14].
However, contraction decomposition results are not known for graphs beyond
bounded genus.

In this paper, we prove such a contraction decomposition result for apex-
minor-free graphs:

Theorem 3. For any fixed apex graph H, any integer k ≥ 2, and every H-
minor-free graph G, the edges of G can be partitioned into k sets such that
contracting any one of the sets results in a graph of treewidth at most f(k,H).
Furthermore, such a partition can be found in polynomial time.

In [15], it is shown how Theorem 3 leads to a general family of PTASs for any
contraction-closed problem satisfying a few simple criteria, including TSP and
minimum c-edge-connected submultigraph, thus proving Theorem 2.

Structural results. In order to prove both Theorem 1 about coloring approxi-
mation and Theorem 3 about contraction decomposition, we need to strengthen
the structural results from the seminal Graph Minor Theory in the case of apex-
minor-free graphs. Roughly speaking, Robertson and Seymour [28] prove that
every H-minor-free graph is a clique sum of graphs “almost embeddable” into
bounded-genus surfaces, with the exception of a bounded number of “apex” ver-
tices and a bounded number of “local areas of non-planarity”, called “vortices”,
which have bounded pathwidth. See [14] for the relevant definitions. More re-
cently, this result was made algorithmic [14]. We prove that, when H is an apex
graph, the apex vertices can be constrained to have edges only to vertices of vor-
tices, but we have to generalize vortices to what we call “quasivortices”, which
have bounded treewidth instead of pathwidth. Our result is also algorithmic:

Theorem 4. For any fixed apex graph H, there is a constant h such that any H-
minor-free graph can be written as a clique-sum of h-almost embeddable graphs
such that the apex vertices in each piece are only adjacent to quasivortices. More-
over, apices in each piece are not involved in the surface part of other pieces.
Furthermore, there is a polynomial-time algorithm to construct this clique-sum
decomposition for a given H-minor-free graph.

Let us observe that it is obviously necessary for the running time of the coloring
algorithm to depend exponentially on the excluded apex graph H .

This theorem is a powerful tool for the design of approximation algorithms
in apex-minor-free graphs, as we show here for graph coloring and TSP. By
analogy, the structural result for H-minor-free graphs has already proved crit-
ical throughout graph algorithms—see, e.g., [21,8,12,14,1]—and the additional
structure we establish for apex-minor-free graphs seems essential. Indeed, this
theorem was conjectured in the context of proving that apex-minor-free graphs
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have linear local treewidth [10], where it was suggested that this theorem would
make it substantially easier to prove linear local treewidth and thereby improve

the running time of many PTASs from 222O(1/ε)

nO(1) to 2O(1/ε)nO(1). In fact, the
conjecture of [10] used the standard notion of vortices, and one of our insights
is to introduce quasivortices, which are just as good for algorithmic purposes;
there is evidence that the use of quasivortices in Theorem 4 is necessary.

In Section 3, we describe the significant difficulties in generalizing our results
to general H-minor-free graphs, as we crucially rely on our structure theorems
for apex-minor-free graphs.

2 Overview

In this section,wegive overviewsof theproofs andalgorithmsbehindour threemain
results. We start in Section 2.1 with our structural theorem about apex-minor-free
graphs,which strengthens theRobertson-Seymour clique-sumdecomposition.The
structure determined by this theorem can be computed in polynomial time, and
forms the foundation for our other results. The most direct use is our additive 2-
approximation for coloring apex-minor-free graphs, described in Sections 2.2–2.3,
which shows how to combine Thomassen’s bounded-genus techniques over the new
structure of apex-minor-free graphs. The PTASs for unweighted TSP and related
problems are based on the contraction decomposition result, as described in Sec-
tion 2.4, which in turn is based on the new structure of apex-minor-free graphs.

2.1 Overview of Structure Theorem for Apex-Minor-Free Graphs

Our main structure theorem, Theorem 4, builds upon the seminal Graph Minor
decomposition theorem together with a new technique that is also developed in
the Graph Minors series. The main challenge for our structure theorem is to
control the neighborhood of apex vertices. How do we do it? Consider an apex v
in the apex set. If v is adjacent to a vertex set W in the surface part in such
a way that each vertex in W is far apart from other vertices in W , then we
should be able to find a desired apex graph minor, because one of lemmas in
Graph Minors tells us that, if a given vertex set is located far apart from each
other on a planar graph or a graph on a fixed surface with sufficiently large
representativity, then we can find any desired “rooted” planar graph minor. By
choosing v to be the apex vertex of H , if there is a rooted H − v minor in the
surface part of some piece, we find that the graph actually has an H minor.

Otherwise, the neighbors of each apex vertex in the surface part of each piece
are covered by a bounded number of bounded-radius disks. Because the number
of apex vertices in each piece is bounded, this implies that there are bounded
number of bounded-radius disks in the surface part such that these disks take
care of all the neighbors of apices in the surface part of each piece. Now these
bounded-radius disks become quasivortices after some modification. More pre-
cisely, these disks can decompose into a linear decomposition such that the in-
tersection of two consecutive bags has bounded size. Then we can decompose
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each bag to extend our structure in such a way that each apex vertex is adjacent
only to quasivortices.

This result is quite powerful. For example, it follows that apices in each piece
are not involved in the surface part of other pieces. This is because there are no
≤ 3-separations in the surface part (excluding vortices) that have a neighbor in
the apex vertex set. Otherwise, we could find a “neighbor” of some apex vertex
v by finding a path from v to the surface part through the component. So the
surface part could involve a clique-sum, but this is really a ≤ 3-separation. This
property helps a lot in our algorithm.

2.2 Overview of Coloring Algorithm

Next we turn to our coloring algorithm. As pointed out before, Thomassen’s
proof method in [32] does not work for H-minor-free graphs for a fixed apex
graph H , because there are infinitely many k-color-critical graphs without H
minors for a fixed apex graph H . Nonetheless, some of the results proved in
[32] are useful for us. Let us point out that Thomassen’s result [32] depends on
many other results, mostly by Thomassen himself; see [31,30,33,27]. The result
in [32] is considered by many to be one of the deepest results in chromatic graph
theory. This is because the series of results obtained by Thomassen opens up
how topological graph theory can be used in chromatic graph theory.

At a high level, by our structure theorem, we have a clique-sum decomposition
such that each torso (intersection of two pieces) in the surface part involves at
most three vertices (in the surface), and no other vertices at all. Because there
are at most three vertices in the intersection of pieces in the surface part, we
can focus on each bag individually, and the coloring of each bag can be matched
nicely by putting cliques in the intersections of two pieces. Let us observe that
the clique size here is at most three.

Hence we can really focus on one piece, which has h-almost embeddable struc-
ture without any 3-separations in the surface part. Call this graph G. Roughly,
what we will do is to decompose G into two parts V1 and V2 such that V1 has
bounded treewidth, and V2 is a union of bounded-genus graphs. We can find such
a decomposition such that the boundary of V1 in V2 is, roughly, the vertices on the
cuffs to which quasivortices are attached. We shall add these boundary vertices of
V2 to V1, and let V ′

1 be the resulting graph obtained from V1. It turns out to be
possible to prove that V ′

1 also has bounded treewidth. To find such a partition, we
use the properties of our structure theorem for apex-minor-free graphs.

Next, we color V1 ∪ V2. It is well-known that we can color graphs of bounded
treewidth in polynomial time. So we can color V ′

1 using at most χ(G) colors.
The main challenge is how to extend the precoloring of the vertices in V1 ∩ V2

to the rest of vertices in V2. To achieve this, we shall need some deep results by
Thomassen [32], as described in the next subsection.

2.3 Coloring Extensions in Bounded-Genus Graphs

As we pointed out above, we shall decompose a given graph G into two parts V1

and V2 (possibly with V1 ∩ V2 �= ∅) such that V1 has bounded treewidth, V2 is
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union of bounded-genus graphs, and V1 ∩V2 is, roughly, the vertices on the cuffs
to which quasivortices are attached. So we can color the vertices in V1 using the
bounded-treewidth method. Then the vertices in V1 ∩ V2 are precolored.

Our challenge is the following. Suppose the vertices in the bounded number of
cuffs are precolored. Can we extend this precoloring to the whole surface part? To
answer this question, we use the following tool developed by Thomassen [32]. In
fact, our statement below is different from the original by Thomassen. The list-
coloring version of the following theorem is proved in [23]. So this immediately
implies Theorem 5. But if we only need graph-coloring version of the result, let
us point out that it follows from the same proof as in [32] by combining with
the metric of Robertson and Seymour.

Theorem 5. For any two nonnegative integer g, q, d, there exists a natural num-
ber r(g, q, d) such that the following holds: Suppose that G is embedded on a fixed
surface S of genus g and of the representativity at least r(g, q, d) and there are
d disjoint cuffs S1, S2, . . . , Sd such that the distance (in a sense of Robertson
and Seymour’s metric) of any two cuffs of S1, S2, . . . , Sd is at least q. Suppose
furthermore that all the vertices in S1, S2, . . . , Sd are precolored with at most five
colors such that

1. all the faces except for S1, S2, . . . , Sd are triangles, and
2. no vertex v of G − (S1 ∪ S2 ∪ · · · ∪ Sd) is joined to more than two colors

unless v has degree 4 or v has degree 5 and v is joined to two vertices of the
same color.

Then the precoloring of S1, S2, . . . , Sd can be extended to a 5-coloring of G. Also,
there is a polynomial time algorithm to 5-color G.

For the reader’s convenience, let us make some remarks for the proof of Theorem
5. The above statement follows from Theorem 8.1 (by putting p = 0) of [32].
The large distance of the metric of Robertson and Seymour implies the existence
of large number of canonical cycles in the statement of Theorem 8.1. Then we
can extend the result of Theorem 8.1 to the above statement. But as we pointed
out above, there is now a stronger theorem, which is the list-coloring version of
Theorem 5, see [23].

By a small modification to the theorem above, we obtain the following theorem
which we will use:

Theorem 6. For any two nonnegative integer g, q, d, there exists a natural num-
ber r(g, q, d) such that the following holds: Suppose that G is embedded on a fixed
surface S of genus g and of the representativity at least r(g, q, d) and there are
d disjoint cuffs S1, S2, . . . , Sd such that the distance (in a sense of Robertson
and Seymour’s metric) of any two cuffs of S1, S2, . . . , Sd is at least q. Suppose
furthermore that all the vertices in S1, S2, . . . , Sd are precolored such that

1. all the faces except for S1, S2, . . . , Sd are triangles, and
2. no vertex v of G− (S1 ∪S2 ∪ . . .∪Sd) is joined to more than χ(G)−1 colors

unless v has degree 4 or v has degree 5 and v is joined to two vertices of the
same color.
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Then the precoloring of S1, S2, . . . , Sd using at most χ(G) colors can be extended
to a (χ(G)+2)-coloring of G. In fact, in the surface part, we only need five colors
for most of vertices. (Precoloring may use more than five colors and vertices that
are adjacent to precolored vertices may need some other color, though.) Also,
there is a polynomial time algorithm for such a coloring G.

The list-coloring version of Theorem 6 is also proved in [23]. So this immediately
implies Theorem 6, but for the reader’s convenience, let us make some remarks.
By the assumption of Theorem 6, each vertex not on the cuffs S1, S2, . . . , Sd has
a list with at least 5 colors available, and each vertex that has a neighbor in the
cuffs S1, S2, . . . , Sd has a list with at least 3 colors available. If we delete all the
cuffs S1, S2, . . . , Sd in Theorem 5, then each vertex that has a neighbor in the cuffs
S1, S2, . . . , Sd has a list with at least 3 colors available. So it follows that the condi-
tions in Theorem 6 are equivalent to that in Theorem 5. Hence Theorem 6 follows
from Theorem 5.

Let us observe that the coloring of Theorem 6 may use more than five colors
because the precoloring vertices may use χ(G) colors. On the other hand, most of
the vertices in the surface part use only five colors. The exceptional vertices are
the precolored vertices on the cuffs, and vertices that are adjacent to precolored
vertices.

2.4 Contraction Decomposition Result and PTASs

Finally, we sketch our proof of the contraction decomposition result and its
applications to PTASs.

Our proof of Theorem 3 heavily depends on our decomposition theorem. Let
us focus on one piece that has an h-almost embeddable structure without any
3-separations in the surface part. Call this graph G. As we did in our coloring
algorithm, we decompose the graph G into two parts V1 and V2 such that V1

has bounded treewidth, and V2 is union of bounded-genus graphs. We can find
such a decomposition such that the boundary of V1 in V2 is, roughly, the vertices
on the cuffs to which quasivortices are attached. We shall add these boundary
vertices of V2 to V1, and let V ′

1 be the resulting graph obtained from V1. Again we
can prove that V ′

1 also has bounded treewidth and V ′
2 is union of bounded-genus

graphs.
Now our goal is to label the edges of the graph such that contracting any

label set results in a bounded-treewidth graph. One challenge is the following.
Suppose that the edges in the bounded number of cuffs are prelabeled. Can we
extend this prelabeling to the whole surface part? Fortunately, this extension
can be done by pushing the proof of the result in [15] just a little.

The main challenge is in handling the clique-sums. As we mentioned in the
context of the coloring algorithm, we have a clique-sum decomposition such
that each torso (intersection of two pieces) in the surface part involves at most
three vertices, and nothing else. Because there are at most three vertices in the
intersection of two pieces in the surface part, so for our coloring algorithm, we
could really focus on each piece separately, and combine the colorings of each
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piece nicely by putting cliques in the intersection of two pieces. But for the
contraction decomposition, this is a serious issue. Fortunately, the clique-sum
in the surface part involves at most three vertices. We now put cliques in the
intersection of two pieces (i.e., we add all the possible edges in the intersection
of two pieces) and precolor these edges. What we need are edge-disjoint paths
connecting these at most three vertices such that each path has the same label
as the prelabeling of the corresponding edge. This is possible because we only
need to control at most three edge-disjoint paths. All we need is to modify the
argument in [15] to prove this, and the proof is identical to that in [15]. The
details will be provided in the appendix.

As described in [15], the contraction decomposition result of Theorem 3 is
strong enough to obtain a PTAS for TSP, minimum c-edge-connected submulti-
graph, and a variety of other contraction-closed problems, for an unweighted
apex-minor-free graph, in particular proving Theorem 2. But it seems very hard
to extend this result to H-minor-free graphs, because we do not know how many
vertices are involved in the clique-sum—the number is bounded, but it seems to
us that the precise number of vertices involved in the clique-sum is important—so
we may not be able to control the neighbors of each apex vertex.

3 Difficulties with H-Minor-Free Graphs

One natural question is whether it is possible to extend our approach in this
paper to H-minor-free graphs. More specifically, Robin Thomas (private com-
munication) asked whether there is an additive c-approximation for chromatic
number in H-minor-free graphs, where c is independent of H . One obvious way
to attack this question is to prove the following conjecture:

Conjecture 1. Every H-minor-free graph has a partition of vertices into two
vertex sets V1 and V2 such that V1 has bounded treewidth and V2 has chromatic
number at most c for some absolute constant c.

We could add some moderate connectivity condition on the conjecture.
Our approach clearly breaks down for general H-minor-free graphs. Let us

highlight some technical difficulties.

1. We need to consider separations of huge order, dependent on H instead of
an absolute constant like 3.

2. We can no longer control the neighbors of apices: they can be all over the
surface part of the piece.

3. Clique-sums become problematic. In particular, clique-sums involving ver-
tices in the surface part are difficult to handle because of so-called virtual
edges : edges present in the pieces but not in the clique-sum (the actual
graph). Many pieces may be clique-summed to a common piece, making all
of the surface edges in that piece virtual, effectively nonexistent.

So far we have been unable to surmount any of these difficulties, which is why
apex-minor-free graphs seems like a natural limiting point.
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Abstract. We improve the approximation ratios for two optimization
problems in planar graphs. For node-weighted Steiner tree, a classical
network-optimization problem, the best achievable approximation ra-
tio in general graphs is Θ(log n), and nothing better was previously
known for planar graphs. We give a constant-factor approximation for
planar graphs. Our algorithm generalizes to allow as input any nontriv-
ial minor-closed graph family, and also generalizes to address other op-
timization problems such as Steiner forest, prize-collecting Steiner tree,
and network-formation games.

The second problem we address is group Steiner tree: given a graph
with edge weights and a collection of groups (subsets of nodes), find
a minimum-weight connected subgraph that includes at least one node
from each group. The best approximation ratio known in general graphs
is O(log3 n), or O(log2 n) when the host graph is a tree. We obtain an
O(log n polyloglog n) approximation algorithm for the special case where
the graph is planar embedded and each group is the set of nodes on a
face. We obtain the same approximation ratio for the minimum-weight
tour that must visit each group.

1 Introduction

One of the most fundamental problems in combinatorial optimization is the
network Steiner tree problem. This was one of the first problems shown NP-hard
by Karp [19]. In the traditional formulation, we are given an undirected graph
with edge costs and a subset of nodes called terminals. The goal is to find a
minimum-cost subgraph of G that connects the terminals. A long sequence of
papers give polynomial-time constant-factor approximation algorithms for this
problem; the current best approximation ratio is 1.55 [3].

The generalization1 of network Steiner tree in which the nodes are also as-
signed costs is of both practical and theoretical significance. On the practical
1 The case of both edge costs and node costs can be reduced to the case of node costs.
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side, in telecommunications for example, expensive equipment such as routers
and switches are at the nodes of the underlying network and it is natural to
model such problems as node-weighted. On the theoretical side, node-weighted
versions of many classic edge-weighted problems have been considered by many
authors so far; see, e.g., [8,10,15,17,22] for some recent work.

Unfortunately, set cover can be reduced to node-weighted Steiner tree in gen-
eral graphs, so an approximation ratio better than lnn is not achievable in poly-
nomial time unless P = NP [9,26]. Klein and Ravi [20] gave a polynomial-time
approximation algorithm with a performance ratio of O(log n), so this result is
within a constant factor of optimal. To achieve a better bound, we must restrict
the class of inputs.

A natural restriction is planarity. In practical scenarios of physical networking,
with cable or fiber embedded in the ground, crossings are rare or nonexistent.
Somewhat surprisingly, no one has yet addressed this classic problem of node-
weighted Steiner tree in this natural class of graphs. In this paper, we achieve a
much better approximation ratio for this problem:

Theorem 1. There is a polynomial-time 6-approximation algorithm for node-
weighted Steiner tree in planar graphs.

Our algorithm is a simple and natural extension of primal-dual techniques to
node weights, which to our knowledge has never been explored. We suspect that
the factor 6 can be improved.

In fact, our result is more general in two senses: we show that a constant
approximation ratio is achievable for a much broader family of graphs, and we
show that a much more general optimization problem can be approximated.

1.1 Broader Graph Classes

A minor of a graph G is a graph obtainable from G by deleting and contracting
edges.

It is well-known that planar graphs are the graphs with no minor isomorphic
to K3,3 or K5. More generally, for any graph H , we can consider the family
of graphs excluding H as a minor. We obtain the following generalization of
Theorem 1.

Theorem 2. For any graph H, there is a constant cH and a polynomial-time
cH-approximation algorithm for node-weighted Steiner tree on H-minor-free
graphs.

1.2 More Network-Design Problems

Our algorithm can solve a broader range of network-design problems. The
node-weighted Steiner forest problem takes as input an undirected graph with
node costs and a set of unordered pairs {si, ti} of nodes. The goal is to find
the minimum-cost network that includes a path between each given pair of
nodes. For the edge-weighted case, there is a polynomial-time 2-approximation
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algorithm [2]. For the node-weighted case, an O(log n)-approximation can be
achieved [20]. In this paper, we achieve a constant-factor approximation for pla-
nar graphs, and more generally, graphs excluding a fixed minor.

Theorem 3. There is a polynomial-time 6-approximation algorithm for node-
weighted Steiner forest in planar graphs. For any graph H, there is a constant
cH and a polynomial-time cH-approximation algorithm for this problem on H-
minor-free graphs.

More generally, in Section 2, we show how our framework applies to a node-
weighted variation of proper 0-1 functions by Goemans and Williamson [12].
These functions model node-weighted versions of several other problems, e.g.,
T -joins and nonfixed point-to-point connections. We thus obtain constant-factor
approximation algorithms for all of these problems when the input is restricted
to be a planar graph or a graph excluding a fixed minor.

We also consider the prize-collecting version of Steiner tree, where some ter-
minal pairs can remain disconnected, but we pay a specific penalty for each such
pair. The best approximation algorithm for this problem achieves an O(log n)
approximation ratio [25]. (See also the related work on the dual quota version
of the problem [15,25].) Similar to [7,16], we can prove the following:

Theorem 4. The prize-collecting Steiner forest problem has a constant-factor
approximation algorithm in graphs excluding a fixed minor.

1.3 Other Applications

Node-weighted Steiner tree is a network design problem with many practical ap-
plications and theoretical implications. Enumerating such applications is beyond
the scope of this paper. We point out, however, that it has an application even
in network formation games.

Anshelevich et al. [4] consider a network formation game in which k terminals
(players) buy edges in a directed graph, equally sharing the unit cost of an edge
bought by multiple players, to form a Steiner tree. They prove that the price of
stability in this game is at mostHk (the kth harmonic number, which is within an
additive 1 of ln k) by defining a dynamics that converges to an equilibrium within
an Hk factor of the social optimum. However, their dynamics [4, Theorem 2.2]
starts by computing an optimal Steiner tree, which cannot even be efficiently
approximated. With our results, we can obtain a polynomially computable Nash
equilibrium within an Hk factor of the social optimum for their game in node-
weighted undirected planar graphs. Furthermore, this bound is tight: there is a
node-weighted graph whose only Nash equilibrium is a factor Hk worse than the
social optimum.2

2 The graph has terminals t1, t2, . . . , tk, additional nodes u1, u2, . . . , uk, where ui has
weight 1/i, and another node v of weight 1 + ε. Each terminal ti has two candidate
paths to the root r, one through ui and the other through v. (This construction is
similar to [4, Figure 1].) The social optimum buys v at cost 1 + ε, but the Nash
equilibrium buys u1, u2, . . . , uk at cost Hk.
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1.4 Planar Group Steiner Tree

In the wire-routing phase of VLSI design, a net is a set of pins on the boundaries
of various components that must be connected. A minimum-length Steiner tree is
a natural choice for routing the net. (The routing must avoid previously routed
nets and other obstacles.) Reich and Widmayer [27] observed that, for each
component, there is flexibility as to the location of the pin used, and that the
routing of the net should exploit that flexibility.

With that as motivation, they introduced the group Steiner tree problem: we
are given a graph G with edge weights, and a collection g1, g2, . . . , gk of node
sets called groups. The goal is to find a minimum-weight connected subgraph of
G that contains at least one node from each group.

Much research has gone into finding good approximation algorithms for this
problem. For general graphs, the best approximation ratio known to be achiev-
able in polynomial time [11] is O(log3 n), and for trees, the best known is
O(log2 n).

Even when the host graph is a tree and hence planar, the problem cannot be
approximated better than Ω(log2−ε n) unless NP admits quasipolynomial-time
Las Vegas algorithms [18]. It would thus appear that restricting the input to
planar graphs cannot lead to a substantially improved approximation.

Returning to the origin of the problem provides some inspiration. In a VLSI
instance, the elements of a single group are all located on the boundary of a
component, which occupies a region on the plane. Motivated by this real-world
restriction, we define an instance of the planar group Steiner tree problem to
be a planar embedded graph G with edge weights, and a collection of groups
g1, g2, . . . , gk and corresponding distinct faces f1, f2, . . . , fk of G, such that the
nodes belonging to each group gi lie on the boundary of the corresponding face fi.

We can without loss of generality require that each group gi consists of exactly
the nodes on the boundary of fi. (The more general problem can be reduced to
this one by the introduction of high-weight edges.) Therefore, an equivalent and
more concise definition of an instance of planar group Steiner tree is a planar
embedded graph G and a set of faces f1, f2, . . . , fk, which implicitly define a
group for each fi consisting of the nodes on the boundary of fi.

Theorem 5. Planar group Steiner tree has a polynomial-time O(log n
polyloglogn)-approximation algorithm.

Our proof of this theorem uses probabilistic embedding into spanning trees with
expected distortion O(log n log logn(log log logn)3) [1]. (We cannot use the orig-
inal result of Bartal [6] which does not preserve the planar structure of the
problem.) On trees, we can solve the problem via dynamic programming. Alter-
natively, because paths in trees cannot properly cross, we can use the following
rounding result of independent interest:

Theorem 6. Any solution f to the noncrossing-flow relaxation of directed
Steiner tree can be converted in polynomial time into an integral solution f ′′

of weight c(f ′′) ≤ 6 c(f).
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Recall the directed Steiner tree problem: we are given a directed graph G with
edge costs, a sink node s, and a set T of terminal nodes. The goal is to find a
minimum-cost subgraph of G that, for each terminal ti, contains a directed path
from ti to s. The noncrossing-flow variation is a natural relaxation of directed
Steiner tree in planar graphs, a kind of minimum-cost flow where flow paths
cannot cross; see Appendix A. Using a novel approach for rounding such planar
flows, we show that a (fractional) solution to this noncrossing relaxation can be
converted into an (integral) directed Steiner tree whose cost is at most 6 times
the value of the solution to the relaxation.

Unfortunately, we do not know a polynomial-time algorithm for finding an
optimal solution to the noncrossing-flow formulation for an arbitrary planar
instance of directed Steiner tree. Such a result would yield a constant-factor
approximation algorithm for planar directed Steiner tree.

Related Work. Motivated in part by the VLSI application, Mata and Mitchell
[23] consider the following problem: given a set of n polygonal regions in the
plane, find a tour that visits at least one point from each region. They describe
this problem as a special case of the problem TSP with neighborhoods (also called
group TSP). They give a polynomial-time O(log n)-approximation algorithm.
Because the tour contains a spanning tree, and doubling each edge of a tree
yields a tour, it is also an approximation algorithm for group Steiner tree where
the groups are the polygonal regions. Gudmundsson and Levcopoulos [14] gave
a faster algorithm for the same problem. No known polynomial-time algorithm
achieves an approximation ratio better than Θ(log n) for this problem. On the
lower-bound side, unless P = NP, no constant-factor approximation is possible
for disjoint disconnected regions, and no (2 − ε)-approximation is possible for
(nondisjoint) connected regions [28].

Arkin and Hassin [5] gave constant-factor approximation algorithms for the
special cases of parallel unit-length line segments, translated copies of a polygonal
region, and circles. Mitchell [24] recently gave a PTAS for group TSP when the
groups are disjoint and “fat”.

Our bound for planar group Steiner tree nearly matches the bound of Mata and
Mitchell. Our approach has the advantage that planar graphs can capture metrics
that are not captured by the Euclidean metric, useful e.g. in the VLSI problem
where the routing of a net must avoid obstacles and previously routed nets.

2 Node-Weighted Network Design in Planar and
Minor-Excluding Graphs

For a graph G and a set S of nodes, we use G[S] to denote the subgraph of G
induced by the nodes of S.

To formulate the node-weighted network-design problems we address, we
adapt an approach due to Goemans and Williamson [12].

Proper Function. Let V be the set of nodes in an undirected graph G. A
function f : 2V → {0, 1} is proper if f(∅) = 0 and the following two properties
hold:
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1. (Symmetry) f(S) = f(V − S).
2. (Disjointness) If S1 and S2 are disjoint, then f(S1) = f(S2) = 0 implies
f(S1 ∪ S2) = 0.

In [12], proper functions are used in a formulation of edge-weighted network-
design problems as cut-covering problems. A proper function specifies a family
of cuts, and the goal is to minimize the cost of a set of edges that covers all cuts
in this family.

Following Klein and Ravi [20], we adapt this formulation for node-weighted
problems. We use Γ (S) to denote the set of nodes that are not in S but have
neighbors in S. The problems we address can be formulated by the following
integer linear program with a variable x(v) for each node v ∈ V :

minimize
∑

v∈V w(v)x(v)
subject to

∑
v∈Γ (S) x(v) ≥ f(S) for all S ⊆ V,

x(v) ∈ {0, 1} for all v ∈ V.
(1)

where f is a proper 0-1 function. The minimum solution x to this integer program
assigns 1’s to a subset X of nodes, and X is then considered the solution to
the network-design problem. Conversely, a subset X of nodes is considered a
feasible solution if the corresponding {0, 1}-assignment to nodes of G satisfies
the inequalities.

For example, consider the node-weighted Steiner forest problem. The input
is an undirected graph G with node weights w(v), and a set of pairs {si, ti}
of nodes. For a set S of nodes, define f(S) to be 1 if, for some pair {si, ti}, S
contains one element of the pair but not the other. Otherwise, define f(S) to be
0. It is easy to verify that this function is proper. To see that the solution to the
integer linear program is a solution to the Steiner forest instance, assume for a
contradiction that some pair si, ti are not connected via nodes assigned 1’s by
x. Let S be the set of nodes connected to si via such nodes. By our assumption,
f(S) ≥ 1 but by the choice of S, every node v ∈ Γ (S) is assigned 0 by x,
contradicting the linear constraint.

We assume in our algorithm that f(·) can be queried for a specific set S in
polynomial time. For the analysis, we assume that each node v with f({v}) = 1
has zero cost. For the Steiner forest problem, for example, each such node belongs
to some pair, so must belong to the solution, so we can make this assumption
without loss of generality.

For a subset X of nodes in a graph G, let CC(X) denote the node sets of
connected components of the subgraph of G induced by X .

Lemma 1. Let X be a subset of nodes of G that contains every node v such that
f({v}) = 1. Suppose that f(C) = 0 for every C ∈ CC(X). Then X is a feasible
solution to the integer program.

Proof. Let x be the function that assigns 1 to nodes in X and 0 to nodes not
in X . Let S be any subset of nodes such that

∑
v∈Γ (S) x(v) = 0. We shall show

that f(S) = 0.
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For each C ∈ CC(X), we claim that S ∩C is either ∅ or C. (Otherwise, there
would be a pair u, v of adjacent nodes in X such that u ∈ S and v �∈ S, so
v ∈ Γ (S). Since x(v) = 1, this would contradict the choice of S.)

The claim implies that S is the disjoint union of some of the connected com-
ponents C ∈ CC(X) together with some singletons {v} with v /∈ X . We assumed
that X contains all nodes v with f({v}) = 1, so f({v}) = 0 for v /∈ X . We also
assumed that each connected component C of X has f(C) = 0. Combining these
facts using the disjointness property of f , we infer that f(S) = 0. �

Dual. The linear relaxation of the above integer program is obtained by re-
placing the constraint x(v) ∈ {0, 1} with the constraint x(v) ≥ 0. The dual of
the resulting linear program is as follows:

maximize
∑

S⊆V f(S) y(S)

subject to
∑

S⊆V :v∈Γ (S) y(S) ≤ w(v) for all v ∈ V,
y(S) ≥ 0 for all S ⊆ V.

There is a dual variable y(S) for each subset S of V . However, the only such
variables that affect the objective function (and therefore the only variables we
need to consider) are those variables y(S) where f(S) = 1. Intuitively, the goal
of the dual linear program is to find a maximum-size family of node sets S with
f(S) = 1 subject to the constraint that each node v is the neighbor of at most
w(v) sets in the family.

Primal-Dual Algorithm. Goemans and Williamson [13] gave a generic ver-
sion of the primal-dual approximation algorithm. In this section, we give an
algorithm that is a specialization (and slight modification) of their generic algo-
rithm. We start with some terminology.

Let G be the input graph. A node set S is a violated connected component
with respect to X if S ∈ CC(X) and f(S) = 1. Define a partial solution to be
a set X of nodes containing {v : f(v) = 1} such that there is some violated
connected component with respect to X .

Goemans and Williamson’s generic algorithm is defined in terms of an oracle.
We will use an oracle Viol(·) that takes a partial solution X as input, and that
outputs the violated connected components with respect to X . This oracle can
be implemented in polynomial time using a connected-components subroutine
and queries to the function f(·).

Now we give our specialization and modification of the generic algorithm.
The modification is as follows. Their algorithm maintains a solution X , initially
empty, and adds to it in a series of iterations; finally, the algorithm removes
some elements from it. In our modified version, X initially consists of all nodes
v such that f({v}) = 1, and these elements are never removed from X . However,
these nodes are required to have weight zero, so their presence in X does not
affect the approximation performance.

The algorithm also maintains a dual feasible solution y. Recall that the dual
linear program has a constraint

∑
S⊆V :v∈Γ (S) y(S) ≤ w(v) for each node v ∈ V .
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1. y ← 0
2. X ← {v : f({v}) = 1}
3. While there is a violated connected component with respect to X :

(a) Increase y(S) uniformly for all sets S ∈ Viol(X) until the
dual linear-program inequality for some v becomes tight:∑

S⊆V :v∈Γ (S) y(S) = w(v).
(b) Add v to X , i.e., x(v) ← 1.

4. For each v in X in the reverse of the order in which they were added
during the while-loop:
(a) If f(S) = 0 for every connected component S ∈ CC(X − {v}),

then remove v from X .
5. Return X .

The algorithm above is almost an instantiation of an algorithm of Goemans
and Williamson [13]. The difference is that, in our algorithm, X is required at
all times to contain every node v such that f({v}) = 1. Because these nodes are
assumed to have zero cost, the proof of Theorem 4.2 of [13] can be adapted to
show the theorem below (see the full paper). For a set X of nodes of G, a set F
of nodes is a feasible augmentation of X if F ⊇ X and F is a feasible solution.
If in addition no proper subset of F is a feasible augmentation of X then F is a
minimal feasible augmentation of X .

Theorem 7. Suppose γ is a number such that, for any partial solution X ⊆ V
and any minimal feasible augmentation F of X, we have∑

{|F ∩ Γ (S)| : S ∈ Viol(X)} ≤ γ |Viol(X)|. (2)

Then the algorithm described above returns a feasible solution of weight at most
γ
∑

S⊆V y(S) ≤ γ LP-OPT where LP-OPT denotes the weight of an optimal
solution to the linear program (1).

In order to apply Theorem 7, we need to prove (2) for some γ.

Theorem 8. Let X be a partial solution, and let F be any minimal feasible
augmentation of X.

If G is planar, then
∑
{|F ∩ Γ (S)| : S ∈ Viol(X)} ≤ 6 |Viol(X)|.

If G is H-minor-free, then
∑
{|F ∩ Γ (S)| : S ∈ Viol(X)} ≤

O(|V (H)|
√

log |V (H)|) |Viol(X)|.

The proof of Theorem 8 will be given in this section. By using the bounds proved
in Theorem 8 in Theorem 7, we obtain

Theorem 9. The primal-dual algorithm above is a 6-approximation on planar
graphs and, more generally, an O(1)-approximation in H-minor-free graphs for
any fixed graph H.

Now we give the proof of Theorem 8.
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The sum
∑
{|F ∩ Γ (S)| : S ∈ Viol(X)} counts the number of adjacencies

between F and violated connected components of X , counting multiply if one
violated connected component of X is adjacent to several nodes in F , but count-
ing only once if multiple nodes in a common violated connected component of
X are adjacent to one node of F .

Let F̂ = F −X . For any S ∈ Viol(X), since S is the node set of a connected
component of G[X ], no neighbor of S belongs to X . This shows that |F̂ ∩Γ (S)| =
|F ∩ Γ (S)|. To prove Theorem 8, it therefore suffices to bound∑

{|F̂ ∩ Γ (S)| : S ∈ Viol(X)}. (3)

Let Ĝ be the graph obtained from G by contracting each violated connected
component of X to a single node, which we call a terminal. Let R be the set
of terminals. Because of the contractions, no two nodes of R are adjacent in
Ĝ. We discard multiple copies of edges in Ĝ so that the sum (3) in G becomes
the number of edges in Ĝ between nodes in F̂ and terminals. Our goal is to
bound the number of such edges in terms of |R|. We do this separately for each
connected component of Ĝ[F̂ ∪ R]. Let G′ = Ĝ[F ′ ∪ R′] be one such connected
component, where F ′ ⊆ F̂ and R′ ⊆ R.

By minimality of F , R′ is nonempty. Assign distinct integers as IDs to the
nodes of G′. Let r be a node in R′. For each node v in F ′∪R′, define its level �(v)
to be its breadth-first-search distance from r in G′. We next define the parent
p(v) of each node v �= r. For v ∈ R′−{r}, define p(v) to be a neighbor of v in G′

having level �(v)− 1, namely that neighbor having minimum ID. For each node
v ∈ F ′, select p(v) as follows. If v has a neighbor w in R′ such that p(w) �= v,
then p(v) is any such neighbor. Suppose that v has no neighbor w in R′ such
that p(w) �= v. By the properties of breadth-first-search distances, v has some
neighbor w′ such that �(w′) = �(v)− 1. Let p(v) be this node w′. We show that
in this case that w′ ∈ F ′.

Assume for a contradiction that w′ ∈ R′. Its parent would have level �(w′)−
1 = �(v)− 2, so its parent could not be v. This implies that v has a neighbor in
R′ whose parent is not v, a contradiction.

Lemma 2. The parent pointers do not form a cycle.

Proof. Suppose for contradiction that C = x0x1x2 . . . xk−1x0 were a minimal
(simple) cycle with p(xi) = xi+1 for all i (where the indices are taken modulo k).
The root r cannot be in the cycle C because it has no parent. Because xixi+1 is
an edge of the graph, �(xi+1) ≤ �(xi) +1 for every i. By construction, �(xi+1) =
�(xi)−1 for each i where xi ∈ R′ and for each i where xi ∈ F ′ and xi+1 ∈ F ′, So
the only case in which �(xi+1) could be �(xi)+1 is when xi ∈ F ′ and xi+1 ∈ R′.
But then by construction �(xi+2) = �(xi+1) − 1 = �(xi). Thus every increase in
level is immediately followed in the cycle C by a strict decrease in level.

Suppose there were two consecutive strict decreases: �(xi+1) = �(xi) − 1 and
�(xi+2) = �(xi+1)−1. Then all nodes after xi+2 would have level at most �(xi)−1,
contradicting the fact that C is a cycle. It follows that the xi’s must alternate
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between R′ and F ′, and that, for some positive integer d, the levels of the nodes
in C ∩R′ are d, and the levels of the nodes in C ∩ F ′ are d− 1. Now consider the
minimum-ID node xi in C ∩ F ′. By construction, xi−1 and xi+1 must have xi as
their parent. But this contradicts p(xi+1) = xi+2 given that the cycle is simple. �

Lemma 2 shows that the parent pointers define a rooted spanning tree of Ĝ[F ′∪
R′]. Let F ′′ be the subset of nodes in F ′ with a neighbor in R′. We need to
compute the number of edges in Ĝ[F ′′ ∪R′].

Lemma 3. |F ′′| ≤ 2 |R′|.

Proof. As we show in Figure 1, to
each node u of R′, we charge at

Fig. 1. Charging nodes of F ′′ to terminals

most two nodes of F ′′: u’s par-
ent and the nearest ancestor of u
whose parent is in R′. We claim
that every node of F ′′ gets counted
by this charging.

By minimality of F , every node
of F ′ is on a path in the tree T
from some terminal in R′ to the
root r. Let v be any node of F ′′.
Let P be the shortest terminal-to-
terminal path in T that includes v.
Since v ∈ F ′′, v has a neighbor w in R. If v is the second node of P then v is
charged to the first node of P . Otherwise, by minimality of P , v is not the parent
of a terminal, so p(w) �= v, so v’s parent is a terminal (not necessarily w), so
again v is charged to the first node of P . �

Now we can complete the proof of Theorem 8. Since G is H-minor free, and
Ĝ[F ′′ ∪R′] is a minor of G, Ĝ[F ′′ ∪R′] is also H-minor free. Hence the number
of edges in G[F ′ ∪ R] is O((|F ′| + |R|) |V (H)|

√
log |V (H)|) [21,29], which is

O(|R| |V (H)|
√

log |V (H)|) as desired. If G is planar then the number of edges
in Ĝ[F ′′ ∪R′] is at most 2 (|F ′′|+ |R′|) ≤ 6 |R′| because Ĝ[F ′′ ∪ R′] is a simple
planar bipartite graph [30].

Corollary 1. Node-weighted Steiner tree, Steiner forest, T-join, point-to-point
communication, exact tree/cycle/path partitioning problems, lower capacitated
partitioning, and location-design and location-routing problems [12] have
polynomial-time O(1)-approximation algorithms for any family of graphs exclud-
ing a fixed minor.
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A Noncrossing-Flow Directed Steiner Tree

Our relaxation is related to a standard linear-program relaxation of directed
Steiner tree, one based on min-cost flows. For each terminal t ∈ T and each arc
e, there is a variable ft(e). For each arc e, there is a variable c(e). The linear
program is as follows:

minimize
∑
e∈E

c(e) max
t
ft(e)

subject to
∑

w:vw∈E

ft(vw) −
∑

u:uv∈E

ft(uv) =

⎧⎨⎩
1 if v = t

−1 if v = s
0 otherwise

for all t ∈ T, v ∈ V

ft(e) ≥ 0 for all t ∈ T, e ∈ E,
(4)

(The inner max in the objective function can be removed using auxiliary vari-
ables, one for each arc.) We denote an assignment to all the variables ft(e) by
f , and we denote by c(f) the corresponding value of the objective function.

Consider the case where G is a planar embedded graph. We say that two paths
P and Q in G cross if P enters Q on the left, shares zero or more edges with
Q, and then exits Q on the right, or vice versa. For a terminal t, a flow path for
t is a path consisting of arcs e such that ft(e) > 0. We say that an assignment
to the variables ft(e) of the linear program is noncrossing if, for every pair t, t′

of distinct terminals, every flow path p for t, and every flow path q for t′, p and
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q do not cross. The noncrossing-flow formulation of directed Steiner tree refers
to the linear program augmented with the (nonlinear) constraint that the flow
assignment is noncrossing.

Any minimal solution to directed Steiner tree is a directed tree, so flow paths
in the solution do not cross. It follows that the noncrossing-flow formulation is a
relaxation for directed Steiner tree in a planar graph. In particular, the optimum
of that noncrossing-flow formulation is a lower bound on the minimum cost of a
directed Steiner problem. Theorem 6 provides a converse.



On Cartesian Trees and
Range Minimum Queries

Erik D. Demaine1,�, Gad M. Landau2,3,��, and Oren Weimann1,∗

1 MIT Computer Science and Artificial Intelligence Laboratory,
Cambridge, MA, USA

{edemaine,oweimann}@mit.edu
2 Department of Computer Science, University of Haifa, Haifa, Israeal

3 Department of Computer and Information Science, Polytechnic Institute of NYU
landau@cs.haifa.ac.il

Abstract. We present new results on Cartesian trees with applications
in range minimum queries and bottleneck edge queries. We introduce
a cache-oblivious Cartesian tree for solving the range minimum query
problem, a Cartesian tree of a tree for the bottleneck edge query problem
on trees and undirected graphs, and a proof that no Cartesian tree exists
for the two-dimensional version of the range minimum query problem.

1 Introduction

In the Range Minimum Query (RMQ) problem, we wish to preprocess an array
A of n numbers for subsequent queries asking for min{A[i], . . . , A[j]}. In the two-
dimensional version of RMQ, an n×n matrix is preprocessed and the queries ask
for the minimum element in a given rectangle. The Bottleneck Edge Query (BEQ)
problem further generalizes RMQ to graphs. In this problem, we preprocess a
graph for subsequent queries asking for the maximum amount of flow that can
be routed between some vertices u and v along any single path. The capacity of
a path is captured by its edge with minimal capacity (weight). Thus, RMQ can
be seen as a special case of BEQ on line-like graphs.

In all solutions to the RMQ problem the Cartesian tree plays a central role.
Given an array A of n numbers its Cartesian tree is defined as follows: The root
of the Cartesian tree is A[i] = min{A[1], . . . , A[n]}, its left subtree is computed
recursively on A[1], . . . , A[i−1] and its right subtree on A[i+1], . . . , A[n]. In this
paper we present new results on Cartesian trees with applications in RMQ and
BEQ. We introduce a cache-oblivious version of the Cartesian tree that leads to
an optimal cache-oblivious RMQ solution. We then give a natural generalization
of the Cartesian tree from arrays to trees and show how it can be used for
solving BEQ on undirected graphs and on trees. Finally, we show that there is
no two-dimensional generalization of a Cartesian tree.
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Range Minimum Queries and Lowest Common Ancestors. The tradi-
tional RMQ solutions rely on the tight connection between RMQ and the Lowest
Common Ancestor (LCA) problem. In LCA, we wish to preprocess a rooted tree
T for subsequent queries asking for the common ancestor of two nodes that is
located farthest from the root. RMQ and LCA were shown by Gabowet al. [18]
to be equivalent in the sense that either one can be reduced in linear time to
the other. An LCA instance can be obtained from an RMQ instance on an array
A by letting T be the Cartesian tree of A that can be constructed in linear
time [18]. It is easy to see that RMQ(i, j) in A translates to LCA(A[i], A[j]) in
A’s Cartesian tree. In the other direction, an RMQ instance A can be obtained
from an LCA instance on a tree T by writing down the depths of the nodes
visited during an Euler tour of T . That is, A is obtained by listing all first and
last node-visitations in a DFS traversal of T that starts from the root. The LCA
of two nodes translates to a range minimum query between the first occurrences
of these nodes in A. An important property of the array A is that the difference
between any two adjacent cells is ±1.

As the classical RMQ and LCA problems are equally hard, it is tempting to
think that this is also the case in the cache-oblivious model, where the complexity
is measured in terms of the number of memory-blocks transferred between cache
and disk (see Section 2 for a description of the cache-oblivious model). Indeed, to
solve RMQ on array A, one could solve LCA on the Cartesian tree of A that can
be constructed optimally using O( n

B ) memory transfers (where B is the block-
transfer size). An optimal O( n

B ) cache-oblivious LCA solution follows directly
from [9] after obtaining the Euler tour of the Cartesian tree. However, the best
cache-oblivious algorithm for obtaining the Euler tour requires Θ( n

B logM/B
n
B )

memory transfers [6] where M is the cache-size. The first result of our paper
is an optimal cache-oblivious RMQ data structure that requires O( n

B ) memory
transfers and gives constant-time queries. This makes RMQ cache-obliviously
easier than LCA (unless the LCA instance is given in Euler tour form).

Bottleneck Edge Queries on Graphs and Trees. Given an edge weighted
graph, the bottleneck edge e between a pair of vertices s, t is defined as fol-
lows: If P is the set of all simple paths from s to t then e’s weight is given
by maxp∈P (lightest edge in p). In the BEQ problem, we wish to preprocess a
graph for subsequent bottleneck edge queries. Hu [20] proved that in undirected
graphs bottleneck edges can be obtained by considering only the unique paths
in a maximum spanning tree. This means that BEQ on undirected graphs can
be solved by BEQ on trees. Another reason for the importance of BEQ on trees
is the equivalent online minimum spanning tree verification problem. Given a
spanning tree T of some edge weighted graph G, the problem is to preprocess
T for queries verifying if an edge e ∈ G − T can replace some edge in T and
decrease T ’s weight. It is easy to see that this is equivalent to a bottleneck edge
query between e’s endpoints.

The second result in our paper is a natural generalization of the Cartesian tree
from arrays to trees. We show that a Cartesian tree of a tree can be constructed in
linear time plus the time required to sort the edges-weights. It can then be used to
answer bottleneck edge queries in constant time for trees and undirected graphs.
In the full version of this paper, we show how to maintain this Cartesian tree
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and constant-time bottleneck edge queries while leaf insertions and deletions are
performed on the input tree. Insertions and deletions require O(log n) amortized
time and O(log log u) amortized time for integral edge weights bounded by u.

Two-dimensional RMQ. In the two-dimensional version of RMQ, we wish
to preprocess an n × n matrix for subsequent queries asking for the minimum
element in a given rectangle. Amir, Fischer, and Lewenstein [5] conjectured that
it should be possible to show that in two dimensions there is no such nice relation
as the one between RMQs and Cartesian Trees in the one-dimensional case. Our
third result proves this conjecture to be true by proving that the number of
different RMQ matrices is roughly (n2)!, where two RMQ matrices are different
if their range minimum is in different locations for some rectangular range.

1.1 Relation to Previous Work

Practically all known solutions to the range minimum query (RMQ) problem, its
two-dimensional version (2D-RMQ), and its bottleneck edge version (BEQ) on
trees share the same high-level description. They all partition the problem into
some n/s smaller subproblems of size s each. From each of the small subproblems,
one representative (the minimal element of the subproblem) is chosen and the
problem is solved recursively on the n/s representatives. A similar recursion is
applied on each one of the small subproblems. Besides different choices of s, the
main difference between these solutions is the recursion’s halting conditions that
can take one of the following forms.

(I) keep recursing - the recursive procedure is applied until the subproblem is
of constant size.

(II) handle at query - for small enough s do nothing and handle during query-
time.

(III) sort - for small enough s use a linear-space O(s log s)-time solution with
constant query time.

(IV) table-lookup - for roughly logarithmic size s construct a lookup-table for all
possible subproblems.

(V) table-lookup & handle at query - for roughly logarithmic size s construct a
lookup-table. A query to this table will return a fixed number of candidates
to be compared during query-time.

Table 1 describes how our solutions (in bold) and the existing solutions relate
to the above four options. We next describe the existing solutions in detail.

RMQ and LCA. As we mentioned before, RMQ can be solved by solving LCA.
Harel and Tarjan [19] were the first to show that the LCA problem can be opti-
mally solved with linear-time preprocessing and constant-time queries by relying
on word-level parallelism. Their data structure was later simplified by Schieber
and Vishkin [28] but remained rather complicated and impractical. Berkman
and Vishkin [10], and then Bender et al. [9] presented further simplifications
and removed the need for word-level parallelism by actually reducing the LCA
problem back to an RMQ problem. This time, the RMQ array has the property
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Table 1. Our results (in bold) and their relation to the existing solu-
tions. We denote a solution by 〈preprocessing time, space, query time〉 and by
〈memory transfers in preprocessing, memory transfers in query〉 for a cache-oblivious
solution.

RMQ BEQ on trees 2D-RMQ

keep recursing 〈nαk(n), nαk(n), k〉 [3] 〈n2αk(n)2, n2αk(n)2, k〉 [13]

handle at query 〈n, n, α(n)〉 [3] 〈n2, n2, α2(n)〉 [13]

sort 〈n log[k] n, n, k〉 〈n2 log[k] n, n2, k〉 [5]

table-lookup
〈n, n, 1〉 [19]

〈n/B, 1〉 impossible [24] impossible

table-lookup &
handle at query

impossible [24] 〈n2, n2, 1〉 [7]

that any two adjacent cells differ by ±1. This property was used in [9,10,16] to
enable table lookups as we now explain.

It is not hard to see that two arrays that admit the same ±1 vector have
the same location of minimum element for every possible range. Therefore, it is
possible to compute a lookup-table P storing the answers to all range minimum
queries of all possible ±1 vectors of length s = 1

2 logn. Since there are O(s2)
possible queries, the size of P is O(s2 ·2s) = o(n). Fischer and Heun [16] recently
presented the first optimal RMQ solution that makes no use of LCA algorithms
or the ±1 property. Their solution uses the Cartesian tree but in a different
manner. It uses the fact that the number of different1 RMQ arrays is equal to
the number of possible Cartesian trees and thus to the Catalan number which
is 1

s+1

(
2s
s

)
= O( 4s

s1.5 ). This means that if we pick s = 1
4 logn then again the

lookup-table P requires only O(s2 · 4s

s1.5 ) = O(n) space.

BEQ. On directed edge weighted graphs, the BEQ problem has been studied
in its offline version, where we need to determine the bottleneck edge for every
pair of vertices. Pollack [27] introduced the problem and showed how to solve it
in O(n3) time. Vassilevska, Williams, and Yuster [31] gave an O(n2+ω/3)-time
algorithm, where ω is the exponent of matrix multiplication over a ring. This
was recently improved by Duan and Pettie [14] to O(n(3+ω)/2). For the case of
vertex weighted graphs, Shapira et al. [30] gave an O(n2.575)-time algorithm.

On trees, the BEQ problem was studied when the tree T is a spanning tree of
some graph and a bottleneck edge query verifies if an edge e �∈ T can replace some
edge in T and decrease T ’s weight. A celebrated result of Komlós [23] is a linear-
time algorithm that verifies all edges in G. The idea of progressively improving an
approximately minimum solution T is the basis of all recent minimum spanning
tree algorithms [12,21,25,26]. Alon and Schieber [3] show that after an almost
linear O(n · αk(n)) preprocessing time and space bottleneck edge queries can
be done in constant time for any fixed k. Here, αk(n) is the inverse of the kth

1 Two RMQ arrays are different if their range minimum is in different locations for
some range.
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row of Ackerman’s function2: αk(n) = 1 + αk(αk−1(n)) so that α1(n) = n/2,
α2(n) = logn, α3(n) = log∗ n, α4(n) = log∗∗ n and so on3. Pettie [24] gave a
tight lower bound of Ω(n · αk(n)) preprocessing time required for O(k) query
time. Alon and Schieber further prove that if optimal O(n) preprocessing space
is required, it can be done with α(n) query time.

If the edge-weights are already sorted, our solution is better than the one
of [3]. For arbitrary unsorted edge-weights, we can improve [3] in terms of space
complexity. Namely, we give a linear space and constant query time solution that
requires O(n log[k] n) preprocessing time for any fixed k, where log[k] n denotes
the iterated application of k logarithms.

2D-RMQ. For the two-dimensional version of RMQ on an n×nmatrix, Gabow,
Bentley and Tarjan [18] suggested an O(n2 logn) preprocessing time and space
and O(log n) query time solution. This was improved by Chazelle and Rosen-
berg [13] to O(n2 · αk(n)2) preprocessing time and space and O(1) query time
for any fixed k. Chazelle and Rosenberg further prove that if optimal O(n2)
preprocessing space is required, it can be done with α2(n) query time. Amir,
Fischer, and Lewenstein [5] showed that O(n2) space and constant query time
can be obtained by allowing O(n2 log[k] n) preprocessing time for any fixed k.

Amir, Fischer, and Lewenstein also conjectured that in two dimensions there
is no such nice relation as the one between the number of different RMQs and
the number of different Cartesian Trees in the one-dimensional case. We prove
this conjecture to be true thereby showing that O(n2) preprocessing time and
constant query time can not be achieved using the existing methods for one-
dimensional RMQ. Indeed, shortly after we proved this, Atallah and Yuan (in
a yet unpublished result [7]) discovered a new optimal RMQ solution that does
not use Cartesian trees and extends to two dimensions.

2 A Cache-Oblivious Cartesian Tree

While modern memory systems consist of several levels of cache, main memory,
and disk, the traditional RAM model of computation assumes a flat memory with
uniform access time. The I/O-model, developed by Aggarwal and Vitter [2], is
a two-level memory model designed to account for the large difference in the
access times of cache and disks. In this model, the disk is partitioned into blocks
of B elements each, and accessing one element on disk copies its entire block
to cache. The cache can store up to M/B blocks, for a total size of M . The
efficiency of an algorithm is captured by the number of block transfers it makes
between the disk and cache.

The cache-oblivious model, introduced by Frigo et al. [17], extends the I/O-
model to a multi-level memory model by a simple measure: the algorithm is not
2 We follow Seidel [29]. The function α(·) is usually defined slightly differently, but all

variants are equivalent up to an additive constant.
3 log∗∗ n is the number of times log∗ function is applied to n to produce a constant,

αk(n) = log

k times︷ ︸︸ ︷∗ ∗ · · · ∗ n and the inverse Ackerman function α(n) is the smallest k such
that αk(n) is a constant.
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allowed to know the value of B and M . More precisely, a cache-oblivious algo-
rithm is an algorithm formulated in the standard RAM model, but analyzed in
the I/O-model, with an analysis valid for any value of B and M and between
any two adjacent memory-levels. When the cache is full, a cache-oblivious algo-
rithm can assume that the ideal block in cache is selected for replacement based
on the future characteristics of the algorithm, that is, an optimal offline paging
strategy is assumed. This assumption is fair as most memory systems (such as
LRU and FIFO) approximate the omniscient strategy within a constant factor.
See [17] for full details on the cache-oblivious model.

It is easy to see that the number of memory transfers needed to read or write
n contiguous elements from disk is scan(n) = Θ( n

B ), even if B is unknown. A
stack that is implemented using a doubling array can support n push\pop oper-
ations in scan(n) memory transfers. This is because the optimal paging strategy
can always keep the last block of the array (accessed by both push and pop)
in cache. Other optimal cache-oblivious data structures have been recently pro-
posed, including priority queues [6], B-trees [8], string dictionaries [11], kd-trees
and Range trees [1]. An important result of Frigo et al. shows that the number
of memory transfers needed to sort n elements is sort(n) = Θ( n

B logM/B
n
B ).

For the RMQ problem on array A, the Cartesian tree of A can be constructed
optimally using scan(n) memory transfers by implementing the following con-
struction of [18]. Let Ci be the Cartesian tree of A[1, . . . , i]. To build Ci+1, we
notice that node A[i+ 1] will belong to the rightmost path of Ci+1, so we climb
up the rightmost path of Ci until we find the position where A[i+1] belongs. It is
easy to see that every “climbed” node will be removed from the rightmost path
and so the total time complexity is O(n). A cache-oblivious stack can therefore
maintain the current rightmost path and the construction outputs the nodes of
the Cartesian tree in postorder. However, in order to use an LCA data structure
on the Cartesian tree we need an Euler tour order and not a postorder. The
most efficient way to obtain an Euler tour [6] requires sort(n) memory transfers.
Therefore sort(n) was until now the upper bound for cache-oblivious RMQ. In
this section we prove the following result.

Theorem 1. An optimal RMQ data structure with constant query-time can be
constructed using scan(n) memory transfers.

We start by showing a simple constant-time RMQ data structure [9] that can
be constructed using scan(n) logn memory transfers. The idea is to precom-
pute the answers to all range minimum queries whose length is a power of two.
Then, to answer RMQ(i, j) we can find (in constant time) two such overlap-
ping ranges that exactly cover the interval [i, j], and return the minimum be-
tween them. We therefore wish to construct arrays M0,M1, . . . ,Mlog n where
Mj[i] = min{A[i], . . . , A[i + 2j − 1]} for every i = 1, 2, . . . , n. M0 is simply
A. For j > 0, we construct Mj by doing two parallel scans of Mj−1 using
scan(n) memory transfers (we assume M ≥ 2B). The first scan starts at Mj−1[1]
and the second at Mj−1[1 + 2j−1]. During the parallel scan we set Mj [i] =
min{Mj−1[i],Mj−1[i+ 2j−1]} for every i = 1, 2, . . . , n.

After describing this scan(n) logn solution, we can now describe the scan(n)
solution. Consider the partition of A into disjoint intervals (blocks) of s = 1

4 logn
consecutive elements. The representative of every block is the minimal element
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in this block. Clearly, using scan(n) memory transfers we can compute an array
of the n/s representatives. We use the RMQ data structure above on the repre-
sentatives array. This data structure is constructed with scan(n/s) log(n/s) =
scan(n) memory transfers and is used to handle queries whose range spans more
than one block. The additional in-block prefix and suffix of such queries can be
accounted for by pre-computing RMQ(i, j) of every block prefix or suffix. This
again can easily be done using scan(n) memory transfers.

We are therefore left only with the problem of answering queries whose range
is entirely inside one block. Recall that two RMQ arrays are different if their
range minima are in different locations for some range. Fischer and Heun [16]
observed that the number of different blocks is equal to the number of possible
Cartesian trees of s elements and thus to the s’th Catalan number which is
o(4s). For each such unique block type, the number of possible in-block ranges
[i, j] is O(s2). We can therefore construct an s2 × 4s lookup-table P of size
O(s2 · 4s) = o(n) that stores the locations of all range minimum queries for all
possible blocks.

It remains to show how to index table P (i.e. how to identify the type of
every block in the partition of A) and how to construct P using scan(n) memory
transfers. We begin with the former. The most naive way to calculate the block
types would be to actually construct the Cartesian tree of each block in A,
and then use an inverse enumeration of binary trees [22] to compute its type.
This approach however can not be implemented via scans. Instead, consider the
Cartesian tree signature of a block as the sequence �1�2 · · · �s where 0 ≤ �i < s is
the number of nodes removed from the rightmost path of the block’s Cartesian
tree when inserting the i’th element. For example, the block “3421” has signature
“0021”.

Notice that for every signature �1�2 · · · �s we have
∑i

k=1 �k < i for every 1 ≤
i ≤ s. This is because one cannot remove more elements from the rightmost path
than one has inserted before. Fischer and Heun used this property to identify
each signature by a special sum of the so-called Ballot Numbers [22]. We suggest
a simpler and cache-oblivious way of computing a unique number f(�1�2 · · · �s) ∈
{0, 1, . . . , 4s−1} for every signature �1�2 · · · �s. The binary representation of this
number is simply

�1︷ ︸︸ ︷
11 · · ·1 0

�2︷ ︸︸ ︷
11 · · ·1 0 · · · 0

�s︷ ︸︸ ︷
11 · · ·1 0.

Clearly, each signature is assigned a different number and since
∑s

i=1 �i < s
this number is between 0 and 22s − 1 as its binary representation is of length
at most 2s. Notice that some binary strings of length at most 2s (for example,
strings starting with 1 or with 011) are not really an f(�1�2 · · · �s) of a valid
signature �1�2 · · · �s (i.e. f is not surjective). Using a stack, in one scan of A we
can compute the signatures of all blocks in the partition of A in the order they
appear. We refer to the sequence of signatures as S(A), this sequence has n/s
signatures each of length s. In a single scan of S(A) we can compute f(�1�2 · · · �s)
for all signatures in S(A) thus solving our problem of indexing P .

We are left only with showing how to construct P using scan(n) memory
transfers. In the non cache-oblivious world (that Fischer and Heun consider)
this is easy. We really only need to compute the entries in P that correspond to
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blocks that actually appear in the partition of A. During a scan of S(A), for each
signature �1�2 · · · �s we check if column f(�1�2 · · · �s) in P was already computed
(this requires n/s such checks). If not, we can compute all O(s2) range minima of
the block trivially in O(s) time per range. In the cache-oblivious model however,
each of the n/s checks might bring a new block to cache. If s < B then this
incurs more than scan(n) memory transfers.

Therefore, for an optimal cache-oblivious performance, we must construct the
entire table P and not only the columns that correspond to signatures in S(A).
Instead of computing P ’s entries for all possible RMQ arrays of length s we
compute P ’s entries for all possible binary strings of length 2s. Consider an
RMQ block A′ of length s with signature �1�2 · · · �s. In Fig. 1 we give a simple
procedure that computes RMQ(i, j) in A′ for any 1 ≤ i ≤ j ≤ s by a single
scan of f ′ = f(�1�2 · · · �s). Again, we note that for binary strings f ′ that are not
really an f(�1�2 · · · �s) of a valid signature �1�2 · · · �s this procedure computes
“garbage” that will never be queried.

1: initialize min← i and x← 0
2: scan f ′ until the ith 0
3: for j′ = i+ 1, . . . , j
4: continue scanning f ′ until the next 0
5: set x← x+ 1− the number of 1’s read between the last two 0’s
6: if x ≤ 0 set min← j′ and x← 0
7: return min as the location of RMQ(i, j)

Fig. 1. Pseudocode for computing RMQ(i, j) for some 1 ≤ i ≤ j ≤ s using one scan
of the binary string f ′ = f(�1�2 · · · �s) of some signature �1�2 · · · �s

In order to use the procedure of Fig. 1 on all possible signatures, we con-
struct a sequence S of all binary strings of length 2s in lexicographic order.
S is the concatenation of 4s substrings each of length 2s, and S can be writ-
ten using scan(2s · 4s) = o(scan(n)) memory transfers. For correctness of the
above procedure, a parallel scan of S can be used to apply the procedure
only on those substrings that have exactly s 0’s. We can thus compute each
row of P using scan(2s · 4s) memory transfers and the entire table P using
s2 · scan(2s · 4s) = o(scan(n)) memory transfers4. This concludes the descrip-
tion of our cache-oblivious RMQ data structure that can be constructed using a
constant number of scans.

3 A Cartesian Tree of a Tree

In this section we address bottleneck edge queries on trees. We introduce the
Cartesian tree of a tree and show how to construct it in O(n) time plus the

4 Since the (unknown) B can be greater than the length of S we don’t really scan S
for s2 times. Instead, we scan once a sequence of s copies of S.
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time required to sort the edge weights. Recall that an LCA data structure on
the standard Cartesian tree can be constructed in linear time to answer range
minimum queries in constant time. Similarly, an LCA data structure on our
Cartesian tree can be constructed in linear time to answer bottleneck edge queries
in constant time for trees.

Given an edge weighted input tree T , we define its Cartesian tree C as follows.
The root r of C represents the edge e = (u, v) of T with minimum weight (ties
are resolved arbitrarily). The two children of r correspond to the two connected
component of T − e: the left child is the recursively constructed Cartesian tree
of the connected component containing u, and the right child is the recursive
construction for v. Notice that C’s internal nodes correspond to T ’s edges and
C’s leaves correspond to T ’s vertices.

Theorem 2. The Cartesian tree of a weighted input tree with n edges can be
constructed in O(n) time plus the time required to sort the weights.

Decremental connectivity in trees. The proof of Theorem 2 uses a data
structure by Alstrup and Spork [4] for decremental connectivity in trees. This
data structure maintains a forest subject to two operations: deleting an edge in
O(1) amortized time, and testing whether two vertices u and v are in the same
connected component in O(1) worst-case time.

The data structure is based on a micro-macro decomposition of the input
tree T . The set of nodes of T is partitioned into disjoint subsets where each
subset induces a connected component of T called the micro tree. The division is
constructed such that each micro tree is of size Θ(lg n) and at most two nodes in
a micro tree (the boundary nodes) are incident with nodes in other micro trees.
The nodes of the macro tree are exactly the boundary nodes and it contains an
edge between two nodes iff T has a path between the two nodes which does not
contain any other boundary nodes.

It is easy to see that deletions and connectivity queries can be performed by
a constant number of deletions and connectivity queries on the micro and macro
trees. The macro tree can afford to use a standardO(lg n) amortized solution [15],
which explicitly relabels all nodes in the smaller of the two components resulting
from a deletion. The micro trees use simple word-level parallelism to manipulate
the logarithmic-size subtrees.

Although not explicitly stated in [4], the data structure can in fact maintain a
canonical name (record) for each connected component, and can support finding
the canonical name of the connected component containing a given vertex inO(1)
worst-case time. The macro structure explicitly maintains such names, and the
existing tools in the micro structure can find the highest node (common ancestor)
of the connected component of a vertex, which serves as a name. This slight
modification enables us to store a constant amount of additional information
with each connected component, and find that information given just a vertex
in the component.

Proof of Theorem 2. We next describe the algorithm for constructing the
Cartesian tree C of an input tree T . The algorithm essentially bounces around
T , considering the edges in increasing weight order, and uses the decremental



350 E.D. Demaine, G.M. Landau, and O. Weimann

connectivity data structure on T to pick up where it left off in each component.
Precisely:

1. initialize the decremental connectivity structure on T . Each connected com-
ponent has two fields: “parent” and “side”.

2. set the “parent” of the single connected component to null.
3. sort the edge weights.
4. for each edge e = (u, v) in increasing order by weight:

(a) make a vertex w in C corresponding to e, whose parent is the “parent”
of e’s connected component in the forest, and who is the left or right
child of that parent according to the “side” of that component.

(b) delete edge e from the forest.
(c) find the connected component containing u and set its “parent” to w

and its “side” to “left”.
(d) find the connected component containing v and set its “parent” to w

and its “side” to “right”.

After sorting the edge weights, this algorithm does O(n) work plus the work
spent for O(n) operations in the decremental connectivity data structure, for a
total of O(n) time.

Optimality. It is not hard to see that sorting the edge weights is unavoidable
when computing a Cartesian tree of a tree. Consider a tree T with a root and
n children, where the ith child edge has weight A[i]. Then the Cartesian tree
consists of a path, with weights equal to the array A in increasing order. Thus
we obtain a linear-time reduction from sorting to computing a Cartesian tree.
If you prefer to compute Cartesian trees only of bounded-degree trees, you can
expand the root vertex into a path of n vertices, and put on every edge on the
path a weight larger than max{A[1], . . . , A[n]}.

BEQ on Trees. For the BEQ problem on a tree T , if the edge weights are
integers or are already sorted, our solution is optimal. We now show that for ar-
bitrary unsorted edge-weights we can use our Cartesian tree to get an O(n)-space
O(1)-query BEQ solution for trees that requires O(n lg[k] n) preprocessing time
for any fixed k (recall lg[k] n denotes the iterated application of k logarithms).
We present an O(n lg lg n) preprocessing time algorithm, O(n lg[k] n) is achieved
by recursively applying our solution for k times.

Consider the micro-macro decomposition of T described above. Recall that
each micro tree is of size Θ(lg n). We can therefore sort the edges in each micro
tree in Θ(lg n lg lgn) time and construct the Θ( n

lg n ) Cartesian trees of all micro
trees in a total of Θ(n lg lg n) time. This allows us to solve BEQ within a micro
tree in constant time. To handle BEQ between vertices in different micro trees,
we construct the Cartesian tree of the macro tree. Recall that the macro tree
contains Θ( n

lg n ) nodes (all boundary nodes). The edges of the macro tree are
of two types: edges between boundary nodes of different micro trees, and edges
between boundary nodes of the same micro tree. For the former, we set their
weights according to their weights in T . For the latter, we set the weight of an
edge between two boundary nodes u, v of the same micro tree to be equal to
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BEQ(u, v) in this micro tree. BEQ(u, v) is computed in constant time from the
Cartesian tree of the appropriate micro tree. Thus, we can compute all edge
weights of the macro tree and then sort them in O( n

lg n lg n
lg n ) = O(n) time and

construct the Cartesian tree of the macro tree.
To conclude, we notice that any bottleneck edge query on T can be solved by

a constant number of bottleneck edge queries on the Cartesian tree of the macro
tree and on two more Cartesian trees of micro trees.

In the full version of this paper, we show how to maintain the Cartesian tree
along with its LCA data structure on a dynamic input tree.

Theorem 3. We can maintain constant-time bottleneck edge queries on a tree
while leaf insertions/deletions are performed in O(lg n) amortized time and in
O(lg lg u) amortized time when the edge-weights are integers bounded by u.

4 Two-Dimensional RMQ

Apart from the new result of [7], the known solutions [9,10,16,19,28] to the stan-
dard one dimensional RMQ problem make use of the Cartesian tree. Whether
as a tool for reducing the problem to LCA or in order to enable table-lookups
for all different Cartesian trees. Amir, Fischer, and Lewenstein [5] conjectured
that no Cartesian tree equivalent exists in the two-dimensional version of RMQ
denoted 2D-RMQ. In the full version of this paper we prove this conjecture to
be true.

Theorem 4. The number of different5 2D-RMQ n×n matrices is Ω
((

n
4 !
)n/4).

References

1. Agarwal, P.K., Arge, L., Danner, A., Holland-Minkley, B.: Cache-oblivious data
structures for orthogonal range searching. In: Proceedings of the 19th annual ACM
Symposium on Computational Geometry (SCG), pp. 237–245 (2003)

2. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Communications of the ACM 31(9), 1116–1127 (1988)

3. Alon, N., Schieber, B.: Optimal preprocessing for answering on-line product
queries. Technical report, TR-71/87, Institute of Computer Science, Tel Aviv Uni-
versity (1987)

4. Alstrup, S., Spork, M.: Optimal on-line decremental connectivity in trees. Infor-
mation Processing Letters 64(4), 161–164 (1997)

5. Amir, A., Fischer, J., Lewenstein, M.: Two-dimensional range minimum queries.
In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 286–294. Springer,
Heidelberg (2007)

6. Arge, L., Bender, M.A., Demaine, E.D., Holland-Minkley, B., Munro, J.I.: An op-
timal cache-oblivious priority queue and its application to graph algorithms. SIAM
Journal on Computing 36(6), 1672–1695 (2007)

5 Two matrices are different if their range minima are in different locations for some
rectangular range.



352 E.D. Demaine, G.M. Landau, and O. Weimann

7. Atallah, M.J., Yuan, H.: Data structures for range minimum queries in multidi-
mensional arrays (manuscript, 2009)

8. Bender, M.A., Demaine, E.D., Farach-colton, M.: Cache-oblivious B-trees. SIAM
Journal on Computing, 399–409 (2000)

9. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Low-
est common ancestors in trees and directed acyclic graphs. Journal of Algo-
rithms 57(2), 75–94 (2005)

10. Berkman, O., Vishkin, U.: Recursive star-tree parallel data structure. SIAM Jour-
nal on Computing 22(2), 221–242 (1993)

11. Brodal, G.S., Fagerberg, R.: Cache-oblivious string dictionaries. In: Proceedings of
the 17th annual Symp. On Discrete Algorithms (SODA), pp. 581–590 (2006)

12. Chazelle, B.: A minimum spanning tree algorithm with inverse-ackermann type
complexity. Journal of the ACM 47(6), 1028–1047 (2000)

13. Chazelle, B., Rosenberg, B.: Computing partial sums in multidimensional arrays.
In: Proceedings of the 5th annual ACM Symposium on Computational Geometry
(SCG), pp. 131–139 (1989)

14. Duan, R., Pettie, S.: Fast algorithms for (max,min)-matrix multiplication and bot-
tleneck shortest paths. In: Proceedings of the 20th annual Symposium On Discrete
Algorithms, SODA (2009)

15. Even, S., Shiloach, Y.: An on-line edge deletion problem. Journal of the ACM 28,
1–4 (1981)

16. Fischer, J., Heun, V.: Theoretical and practical improvements on the RMQ-
problem, with applications to LCA and LCE. In: Lewenstein, M., Valiente, G.
(eds.) CPM 2006. LNCS, vol. 4009, pp. 36–48. Springer, Heidelberg (2006)

17. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. In: Proceedings of the 40th symposium on Foundations Of Computer Sci-
ence (FOCS), pp. 285–298 (1999)

18. Gabow, H., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry
problems. In: Proceedings of the 16th annual ACM Symposium on Theory Of
Computing (STOC), pp. 135–143 (1984)

19. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing 13(2), 338–355 (1984)

20. Hu, T.C.: The maximum capacity route problem. Operations Research 9(6), 898–
900 (1961)

21. Karger, D.R., Klein, P.N., Tarjan, R.E.: A randomized linear-time algorithm for
finding minimum spanning trees. Journal of the ACM 42, 321–329 (1995)

22. Knuth, D.E.: The Art of Computer Programming Volume 4 Fascicle 4: Generating
All Trees; History of Combinatorial Generation. Addison-Wesley, Reading (2006)

23. Komlós, J.: Linear verification for spanning trees. Combinatorica 5(1), 57–65 (1985)
24. Pettie, S.: An inverse-ackermann style lower bound for the online minimum span-

ning tree. In: Proceedings of the 43rd symposium on Foundations Of Computer
Science (FOCS), pp. 155–163 (2002)

25. Pettie, S., Ramachandran, V.: Minimizing randomness in minimum spanning tree,
parallel connectivity and set maxima algorithms. In: Proceedings of the 13th annual
Symposium On Discrete Algorithms (SODA), pp. 713–722 (2002)

26. Pettie, S., Ramachandran, V.: An optimal minimum spanning tree algorithm. Jour-
nal of the ACM 49(1), 16–34 (2002)

27. Pollack, M.: The maximum capacity through a network. Operations Research 8(5),
733–736 (1960)



On Cartesian Trees and Range Minimum Queries 353

28. Schieber, B., Vishkin, U.: On finding lowest common ancestors: Simplification and
parallelization. SIAM Journal on Computing 17, 1253–1262 (1988)

29. Seidel, R.: Understanding the inverse ackermann function. PDF presenttion,
http://cgi.di.uoa.gr/~ewcg06/invited/Seidel.pdf

30. Shapira, A., Yuster, R., Zwick, U.: All-pairs bottleneck paths in vertex weighted
graphs. In: Proceedings of the 18th annual Symposium On Discrete Algorithms
(SODA), pp. 978–985 (2007)

31. Vassilevska, V., Williams, R., Yuster, R.: All-pairs bottleneck paths for general
graphs in truly sub-cubic time. In: Proceedings of the 39th annual ACM Sympo-
sium on Theory Of Computing (STOC), pp. 585–589 (2007)

http://cgi.di.uoa.gr/~ewcg06/invited/Seidel.pdf


Applications of a Splitting Trick�

Martin Dietzfelbinger and Michael Rink

Technische Universität Ilmenau, 98693 Ilmenau, Germany
{martin.dietzfelbinger,michael.rink}@tu-ilmenau.de

Abstract. We study applications of a simple method for circumventing
the “full randomness assumption” when building a hashing-based data
structure for a set S of keys. The general approach is to “split” S into
“pieces” Si, by a splitting hash function. On a piece Si, a method or
data structure for generating full randomness is used that uses more
space than |Si|. Under certain circumstances, this data structure can
be “shared” among the constructions for the pieces Si, which leads to a
tighter overall space bound. The method was introduced in the context
of cuckoo hashing and its variants, but it seems to have wider appli-
cability. To demonstrate its power and some subtleties, we study three
new applications, improving previous constructions: (i) Space-efficient
simulation of full randomness on S (following work by Pagh and Pagh
(2003/08) and Dietzfelbinger and Woelfel (2003)); (ii) Construction of
highly independent functions in the style of Siegel (1989/2004); (iii) One-
probe schemes as in work by Buhrman, Miltersen, Radhakrishnan, and
Venkatesh (2000/02) and Pagh and Pagh (2002).

1 Introduction

A hash function h, in the data structures setting, maps keys from a universe U
to some range R. Normally, one would like such a hash function to satisfy certain
randomness properties. (Often, but not always, it is sufficient to assume these
properties on all keys from a set S ⊆ U , the keys that occur in an application.) In
the data structures literature, there are two fundamentally different approaches
to this situation.

“Full randomness assumption”: Assume that h(x), x ∈ U (or h(x), x ∈ S)
is fully random (uniform in R, independent), uses no (or marginal) space and
has constant evaluation time.

“Universal hashing”: Consider a set H of hash functions and choose h from
H at random. Depending on this choice, at a certain cost in terms of time or
space consumption, partial or full randomness is generated [1].

Let us take cuckoo hashing [2] as an example. This elegant implementation of a
dynamic dictionary for a set S ⊆ U of n keys using only slightly more than 2n
memory cells offers constant lookup time and expected constant insertion time.
The analysis requires that on each set of c logn keys in S the two hash functions
used behave fully randomly, and that these hash functions can be evaluated in
� Research supported by DFG, Grant Di 412/10-1.
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constant time. One can now just assume this kind of randomness (and justify
this by experience) or use universal hashing methods — and justify (c logn)-
wise independence by a sophisticated construction like in [3]. Generalizations
of cuckoo hashing [4,5] explicitly require that the hash functions used are fully
random on S and that new hash functions can be supplied if needed. A combi-
nation of the two approaches is suggested by a recent paper by Mitzenmacher
and Vadhan [6], who showed that under certain circumstances the combination
of relatively weak universal hash classes with key sets that have a certain partial
randomness will result in a behavior close to full randomness.

A slightly different approach is the “split-and-share” trick originally observed
by the first author, mentioned in [4] and sketched in [5], but present in principle
in other works before, e. g., [7]. One uses a hash function h to split the set S of n
“interesting” keys into subsets Si, 0 ≤ i < t, for t = n1−δ, say. If h is chosen from a
suitably strong universal class, which can be supplied easily, the pieces Si can be
made to have size close to nδ, whp.1 Then there is a simple randomized data struc-
tureD that (whp) provides hash functions that behave fully randomly on a single
Si, at the price of using space nα for δ < α < 1. One runs cuckoo hashing (original
[2] or generalized [4,5]) for each piece Si separately, using these fully random hash
functions. (It is very simple to provide even a whole sequence of independent hash
functions in this manner.) The crux is that the data structure D can be “shared”
among all Si, and hence the extra space paid for getting full randomness on each
Si is o(n) and hence negligible. Instead of the cuckoo hashing structure, we may
use other data structures or combinatorial structures like expander graphs that
are based on having fully random functions available. In [8] it was described how
to use this idea for building space-efficient static hash tables, where the data struc-
tures can be checked against S. In the present paper we give three more involved
applications, which improve existing data structures; the first two constructions
are carried out completely without knowledge of S and still succeed whp.

1.1 Simulating Full Randomness

Only in 2003 [9,10], solutions to the following problem were provided. Construct
a randomized data structure D with the following behavior: For each S ⊆ U ,
|S| = n, there is a 1/nc probability of failure, but if failure does not occur, then
D calculates a hash function h : U → R that is fully random on S. (R is some
abelian group.) The space for D is O(n log |R|) + o(n) + O(log log |U |) bits.2
In [11], the space bound was even reduced to (1 + σ)n log |R| for an arbitrary
constant σ > 0, with evaluation time O(1/σ2). (Note that, as far as not stated
otherwise, we measure time complexity in word operations and space complexity
in bits.) For a thorough discussion of the relevance of simulating full randomness
on a set S we refer to [11]. Using “split-and-share”, we provide an alternative
construction with the same functionality (an additional “cache friendly” variant
will be given in the full version), following a totally new approach which, if one
1 whp: with high probability, i.e., probability 1 − n−c for some c > 0.
2 In the following, we will ignore the summand log log |U |, which is relevant only for

extremely long keys.
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wishes to see it that way, leads to functions of a simpler structure than in [11]
(especially, the use of Siegel’s functions is avoided) and an exponentially faster
evaluation time of O(log(1/σ)).

Theorem 1. For arbitrary σ ∈ (0, 1) and c > 0 there is a class H ⊆ {h | U →
R} of hash functions and a set B ⊆ H such that for arbitrary S ⊆ U , with |S| =
n, and h ∈ H chosen at random the following holds : (i) Pr (h ∈ B) = O(1/nc);
(ii) under the condition h �∈ B the function h behaves fully randomly on S; (iii)
the space used to store h is asymptotically (1+σ)n log |R| bits ; (iv) the evaluation
time of h is O(max{c, log(1/σ)}).

1.2 Siegel’s Hash Functions without Graph Powers

Siegel’s [12,3] important construction of 1989/2004 provides universal hash
classes with a high (nη) degree of independence on U, |U | = nr, with functions
that can be evaluated in constant time, and take space nγ for some γ ∈ (η, 1).
The core of Siegel’s construction SI is a bipartite graph GSI (left side U , right
side [nγ ], left degree d, a constant) with certain expansion properties. If one
insists on constant evaluation time, up to now no explicit constructions of such
graphs are known; rather, the graph is supplied by the probabilistic method,
and must be stored as part of the data structure. In order to avoid using space
nr for the neighborhood lists of the nodes in U , Siegel uses graph powers to
“blow up” a small expander graph of description size o(n) to obtain large ones.
Unfortunately, this approach increases the left degree and hence the evaluation
time drastically (although it remains constant as long as |U | is polynomial in
n), and requires that η < 1/r. Utilizing the “split-and-share” trick, to provide
and share the randomness needed for the probabilistic expander graph construc-
tion, we show how nη-wise independence on an arbitrary (unknown) set S ⊆ U
of size n can be achieved whp, for arbitrary η < 1, avoiding the graph power
construction.

Theorem 2. For arbitrary η ∈ (0, 1) and c > 0 there is a class H ⊆ {h | U →
R} of hash functions and a set B ⊆ H such that for arbitrary S ⊆ U , with |S| =
n, and h ∈ H chosen at random the following holds : (i) Pr (h ∈ B) = O(1/nc);
(ii) under the condition h �∈ B the function h is nη-wise independent on S; (iii)
the space used to store h is o(n log |R|); (iv) the evaluation time of h is constant.
(No graph powering is used.)

1.3 One-Probe Storage Schemes

Buhrman, Miltersen, Radhakrishnan, and Venkatesh [13] showed that there ex-
ist storage schemes that can solve the membership problem for a set S ⊆ U by
probing just one bit of a data structure in a lookup. The lookup procedure is
randomized, and there is a two-sided error probability of ε for each lookup and
each x ∈ U . The space needed is s = O

(n log |U|
ε2

)
bits, which is close to the opti-

mal lower bound of Ω
( n log |U|

ε log(1/ε)

)
shown in [13]. The core of the construction is a

bipartite graph GBMRV, with left side U and right side V, |V | = s, and left degree
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d = Θ
(
(log |U |)/ε

)
, that has certain expansion properties on subsets of U of size

up to 2n. A drawback of the BMRV construction is that it is nonuniform in that
GBMRV has to be assumed to be given for free and not be counted towards the
space consumption. Uniform (“explicit”) constructions with constant evaluation
time need much more space. Ta-Shma [14] gave an extractor/condenser-based
construction for such graphs, which makes it superfluous to store the graph,
at the price of nonconstant evaluation time. The construction time in [13] is
O(|U |+ poly(s)), in [14] it is poly(s). Östlin and Pagh [15] extended the BMRV
construction (using essentially the same graph) to the problem of storing a func-
tion f : S → R and retrieving values by probing just one word of size log |R| in
the range, i. e., a dictionary is realized. We use “split-and-share” to construct a
data structure with a functionality close to the structures from [13,15], which
makes it unnecessary to store the expander graph GBMRV (at the cost of o(n)
extra random bits), and has constant evaluation time. The construction time is
poly(s).

Theorem 3. Let |U | ≤ nr for a constant r > 0 and let n be sufficiently
large. Then for every ε ∈ (0, 1) there exists an explicit one-probe membership
tester [dictionary] with size s = O((n log |U |)/ε2) bits [words ], construction time
poly(s) and evaluation time O(1), that returns the correct result with probability
at least 1− ε, with probability at most ε a wrong result [“don’t know” ].

The result can be extended to universes larger than poly(n).

2 Preliminaries

We introduce some notation and definitions and recall the high performance
hash classes from [3,16] as well as the static membership tester from [13] and
the static dictionary from [15]. Define [i] = {0, 1, 2, . . . , i− 1}. We write log for
the logarithm to the base 2 and ln for the logarithm to the base e. We omit � �
and � � where they are not important for our argumentation. We will assume
that the universe U has size nr for some constant r. If this is not the case we can
resort to a standard technique known as “collapsing the universe” [3, Appendix
1] for reducing the size of U , at the cost of extra but negligible components in
space usage and error probability.

2.1 Random Hash Functions, κ-Wise Independence, Expanders

A hash function h : U → R determined by some random experiment is called
fully random if the values h(x), x ∈ U, are independent and uniformly distributed
in R. To circumvent the assumption of fully random hash functions one often
utilizes the concept of universal hashing [1].

Definition 1. A set Hκ
r ⊆ {h | h : U → [r]} is called a κ-wise independent hash

class if for each sequence x0, x1, . . . , xκ−1 of distinct elements from U and all
y0, y1, . . . , yκ−1 from [r] and h chosen uniformly at random from Hκ

r we have:

Pr (h(x0) = y0 ∧ . . . ∧ h(xκ−1) = yκ−1) = r−κ .
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A hash function randomly chosen from a κ-wise independent hash class behaves
fully randomly on each subset S of U of size at most κ. A simple (almost) κ-wise
independent class is the set of polynomials over a field Fp of degree up to κ− 1,
prime p > |U |, projected into [r]. The space needed to store such a function
h ∈ Hκ

r is O(κ log |U |); the evaluation time is O(κ).

Definition 2. For integers m, s, d, t ≥ 1 and real ρ ≥ 1, a bipartite graph G =
(U, V,E) with node sets U, V and edge set E is an (m, s, d, t, ρ)-expander if:

(i) |U | = m, |V | = s;
(ii) every node x ∈ U has exactly d distinct neighbors;
(iii) ∀T ⊆ U, |T | ≤ t : |Γ (T )| ≥ ρ · |T |, for Γ (T ) = {y ∈ V | ∃x ∈ T : (x, y) ∈ E}.

The standard way to obtain an (m, s, d, t, ρ)-expander is the probabilistic method,
where one assumes that for each node x ∈ U a set of d neighbors is chosen uni-
formly at random. In known explicit constructions it is necessary to store the edges
of the graph [3] or accept non-constant time for finding a neighbor [14]. In our con-
structions, the edges of the expander graphs are given by hash functions, rather
than being stored explicitly. Using d hash functions h0, h1, . . . , hd−1 chosen uni-
formly at random from a t-wise independent hash class, with hk : U → [s/d], k ∈
[d], one can define the edge set as E =

{(
x, k · s

d +hk(x)
)
| k ∈ [d]

}
(thus avoiding

collisions of the hash values of one node x ∈ U).

2.2 High Performance Hash Classes

In this paper we utilize two “high performance” hash classes, viz. class R from
[16] and SI from [3], roughly described in the following.

Hash Class R. A hash function h from R for range [n1−δ], δ ∈ (0, 1), is built
as follows:

h(x) = (g(x) + V [f(x)]) mod n1−δ, for x ∈ U , (1)

where g and f are chosen uniformly at random from (κ + 1)-wise independent
classes Hκ+1

n1−δ and Hκ+1
nα , resp., for α ∈ (δ, 1), and V is a vector of size nα filled

with fully random elements from [n1−δ]. We will use R to sharply split a given
key set S, |S| = n, into n1−δ subsets Si, i ∈ [n1−δ], of size about nδ via:

Si = {x ∈ S | h(x) = i}, h ∈ R . (2)

The proof of the following lemma can be found in the full version of this paper:

Lemma 1 ([16, Theorem 4.6]). Let λ > 0 be arbitrary. If h is chosen uni-
formly at random from R, then:

Pr
(
∃i : |Si| ≥ (1 + λ)nδ

)
= O(n1−(α−δ)κ + n1−δcn

δ

), for c = c(κ, λ) < 1 . �
If f and g are polynomials of degree κ and |U | = nr, for constants κ and r, the
description size for h is O(nα logn) and the evaluation time is O(κ) = O(1).

Hash Class SI. We outline Siegel’s construction [3] of a κ-wise independent
hash class SI for non-constant κ = κ(n), but constant evaluation time. The
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central building block of SI ⊆ {h | h : U → R} is a d-left-regular, bipartite
graph GSI = (U, [nγ ], E), γ ∈ (0, 1). Each hash function h from SI uses GSI
and a vector V of size nγ , which is filled with elements from a group (R,⊕); to
choose h, one chooses V ∈ Rnγ

at random. The hash function h ∈ SI is then
defined as:

h(x) =
⊕

y:(x,y)∈E

V [y], for x ∈ U . (3)

Siegel shows that to achieve κ-wise independence it is sufficient that for each
T ⊆ U with |T | ≤ κ the κ rows of the adjacency matrix of G corresponding to T
contain a square submatrix that up to row/column permutations has triangular
form. Siegel referred to this as κ-locally peelable and showed that if GSI is an
(|U |, nγ , d, κ, d/2 + ν)-expander, for some ν(n) > 0, then it has this property
[3, Lemma 3]. Since up to now no deterministic construction of such expanders
(with constant degree) is known, the graph GSI has to be chosen at random
and then stored. In order to avoid storing a graph GSI with left side as large
as U , a smaller expander graph G0 is chosen at random and stored instead.
This graph makes it possible to compute the neighbors for all elements from U
using a certain graph product [3, Definition 6]. This graph product operation ⊗
preserves the property of being κ-locally peelable [3, Lemma 5]; thus we get:
If G0 is an (nδ, nγ·δ/r, d, κ, d/2 + ν)-expander then the graph power GSI =⊗r/δ

i=1G0 = ([nr], [nγ ], E) is κ-locally peelable. If we use GSI in (3), we obtain
κ-wise independence and evaluation time Θ(dr/δ).

2.3 One-Probe Schemes

The static one-probe schemes of Buhrman et al. [13] and Östlin and Pagh [15]
rely on bipartite graphs with near optimal expansion. The one-probe scheme
from [13] stores a data structure for a subset S, |S| = n, of a universe U , such
that membership in S can be tested by reading one bit of this data structure.
The lookup procedure is randomized and has some error probability ε. Consider
the bipartite graph G = (U, V,E) and think of the left nodes as elements from
U and the right nodes as elements of a binary vector V . On lookup(x) one of
the positions V [y], y ∈ Γ ({x}), is chosen randomly and answer “yes” is returned
if V [y] = 1, otherwise “no”. To get a two-sided error of at most ε, at least a
(1 − ε) fraction of the neighbors of each x ∈ U must carry the correct bit.
Buhrman et al. showed that a legal {0, 1}-assignment of V exists if G = (U, V,E)
is an (|U |, |V |, d, 2n, (1 − ε/2)d)-expander. It is assumed that G is found (e.g.
by a probabilistic construction) and is hardwired into the system. — The static
dictionary from [15] has basically the same structure but stores key-value pairs,
where the value for each x ∈ S is individual and for each x ∈ U − S the same
(“element �∈ S”). It is assumed that each key-value pair fits into one word of
memory. The randomized lookup procedure never returns the wrong value but
there is a small probability ε that the answer is “don’t know”. Again, as Östlin
and Pagh showed, for a scheme as required to exist it is sufficient that G is an
(|U |, |V |, d, 2n, (1− ε/2)d)-expander.
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3 Uniform Hashing in Close to Optimal Space

In this section we use “split-and-share” to prove Theorem 1. Our construction is
similar to the construction of the “basic retrieval data structure” in [17, Section
2.2]. In fact we use exactly the same tools from linear algebra. The big difference
is that in [17] the set S is known while here the construction must work whp for
an arbitrary, unknown set S.

3.1 Splitting the Key Set Evenly

We need to partition the key set S into t = n1−δ disjoint subsets S0, S1, . . . , St−1

such that for all i ∈ [t] it holds |Si| ≤ (1+λ)nδ for an arbitrary λ > 0. For this we
choose a function h′ from class R ⊆ {h | h : U → [t]} (Section 2.2) at random,
and define Si as in (2). Let δ, α and κ be constant, 0 < δ < α < 1. According to
Lemma 1 we have:

(i) ε1 = Pr
(
∃i : |Si| ≥ (1 + λ)nδ

)
= O(n1−(α−δ)κ + n1−δcn

δ

), c = c(κ, λ).
(ii) The space usage for h′ is O(nα logn).
(iii) The evaluation time for h′ is O(1).
From now on we assume all subsets Si have size at most (1 + λ)nδ.

3.2 Fully Random Functions on Si

First we focus on one subset Si. It is easy to construct hash functions that are
fully random on Si if one allows spending many more random words than the size
of Si. We sketch one such (folklore) construction. Let κ be a suitable constant.
Choose h′′ : U → [nα], from a (κ + 1)-wise independent hash class Hκ+1

nα . This
function splits Si into nα buckets Bj = {x ∈ Si | j = h′′(x)}. With probability
1−O(nδ−(α−δ)κ) the function h′′ is κ-perfect for Si, that is ∀j ∈ [nα] : |Bj | ≤ κ.
Under this assumption we obtain a hash function h that is fully random on Si

via:

h(x) = hj(x), j = h′′(x) , (4)

by using (and storing) t = nα hash functions h0, h1, . . . , ht−1 drawn uniformly at
random from a κ-wise independent hash class. Overall we get for such a function
h : U → [s], s ≤ |U |:

(i) The probability ε2 that the construction fails is O(nδ−(α−δ)κ).
(ii) The space usage for h is O(nα logn).
(iii) The evaluation time for h is O(1).

If we need b > 1 many hash functions hk : U → [s], k ∈ [b], that are fully random
on Si we simply use one splitting function h′′ and b lists of t hash functions
h0

k, h
1
k, . . . , h

t−1
k , maintaining the same error probability ε2.

3.3 Linearly Independent Vectors

Still focussing on one Si, we now show how the fully random hash functions from
Section 3.2 can be used to assign a random vector vx ∈ {0, 1}s to each element
x ∈ Si such that the family of the vectors vx is linearly independent whp.
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Random Weight-b Binary Vectors. One can use b random hash functions
h0, h1, . . . , hb−1, where hk : U → [s− k], k ∈ [b], to obtain amappingx )→ Ax ⊆ [s]
with |Ax| = b [8, Section 4.1]. Let vx be the characteristic vector of Ax and write:

Ax = φ(hj
0(x), h

j
1(x), . . . , h

j
b−1(x)), j = h′′(x) . (5)

Linear Independence over F2. We consider a family of random vectors as
above and want to bound the probability that this family is linearly independent.
Such bounds can be obtained as functions of dimension and number of non-zero
entries of the vectors. According to [18, Theorem 1.2] it holds that if we have
|Si| weight-b binary vectors chosen uniformly at random from Fs

2 then they are
linearly independent whp as long as the dimension/length s is large enough, for
which it is sufficient that:

s ≥ (1 + μ) · (1 + λ)nδ ≥ (1 + μ)|Si| , (6)

for some suitable μ ∈ (0, 1). More precisely it holds that for each b ≥ 3 there
is some ηb > 0 and a threshold βb such that if 1

1+μ < βb then the probability
that the family of random binary vectors of weight b is linearly independent
is 1 − O(s−ηb). Suitable parameters, which can be derived from the proof of
Theorem 1.2 in [18, Lemma 4.1] are η3 = 2

7 , η4 = 5
7 , η≥5 = 1 and β3 < 0.91, β4 <

0.97, β5 < 0.99. Asymptotically, βb− (1−e−b/ln 2)→ 0 as b→∞, exponentially
fast in b. Therefore the number b of non-zero entries needed can be bounded by:

b = c · log( 1
μ) ≥ 3, for some constant c . (7)

We obtain:

(i) ε3 = Pr (the family (vx)x∈Si is linearly dependent) = O(s−ηb ).
(ii) The space usage for the function φ is O(b · nα logn) bits.
(iii) The evaluation time for φ is O(log(1/μ)).

From here on we assume that the keys from Si are mapped to linearly indepen-
dent weight-b vectors from Fs

2.

3.4 Stochastic Independence

With the help of the family of linearly independent vectors vx, x ∈ Si, we can
now construct a function hi : U → R that is fully random on Si. For that purpose
we choose R = {0, 1}q, q ≥ 1, and a vector V ∈ Rs at random. We define hi(x)
as the bitwise XOR (⊕, addition in (F2)q) of the components of V at places
ak ∈ Ax, k ∈ [b], that is:

hi(x) = V [a0]⊕ V [a1]⊕ . . .⊕ V [ab−1], where Ax = {a0, . . . , ab−1} . (8)

Proposition 1. hi is fully random on Si.

Proof. Assume first R = {0, 1}, that is, V is a random binary vector. Then
hi(x) = <vx, V >. Let M = (v�x )x∈Si ∈ {0, 1}|Si|×s. Since the matrix M has full
row rank, the linear mapping {0, 1}s * V )→ M · V is onto {0, 1}|Si|. All 2|Si|

cosets of the kernel of this mapping have the same cardinality. Hence the vector
M · V is uniformly distributed. If R = {0, 1}q, we also get independence, since
the operations in the q bit positions are carried out independently. �
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3.5 Sharing the Hash Functions

We replicate the construction described so far for all subsets Si, i ∈ [n1−δ]. The
crucial observation is that since a κ-wise independent hash function with domain
U is fully random not only on each subset of at most κ elements from Si but on
each subset of at most κ elements from U we can share h′′ and the b · nα extra
hash functions hj

k among all subsets Si. The vector V cannot be shared, and we
need to choose a separate random vector Vi from Rs for each subset Si. Hence
the desired uniform hash function h : U → R is calculated as follows:

Ax = φ(hj
0(x), h

j
1(x), . . . , h

j
b−1(x)), j = h′′(x)∈[nα]

h(x) = Vi[a0]⊕ Vi[a1]⊕ . . .⊕ Vi[ab−1], i = h′(x) ∈[n1−δ]

with Ax = {a0, . . . , ab−1} and h′ ∈ R, h′′ ∈ Hκ+1
nα and hj

k ∈ Hκ
s , k ∈ [b]. We have:

(i) The probability ε that the hash function h : U → R fails to provide the
desired full randomness can be bounded by: ε ≤ ε1 + n1−δ(ε2 + ε3) =
O(n1−2δ), for 1

2 < δ < α < 1, sufficiently large κ and ηb = 1, i.e. b ≥ 5.
(ii) The overall space usage for the hash functions h′, h′′, hj

k is o(n), the space
usage for the vectors Vi is (1 + μ)(1 + λ)n log |R| ≤ (1 + σ)n log |R|, for
σ > μ+ λ. By Lemma 1 we can achieve λ ≤ μ.

(iii) The evaluation time of h(x) is O(log(1/μ)) = O(log(1/σ)) (by (7)).

Remark 1. A finer analysis of [18, Lemma 4.1] shows that ε3 can be bounded by
n−Ω(b), which leads to an overall error ε of O(1/nc), c > 0, and an evaluation
time of O(max{c, log(1/σ)}). Details can be found in the full version.

This finishes the proof of Theorem 1. �

4 Siegel’s Functions without Graph Powering

In this section we prove Theorem 2. The difference to Siegel’s construction is
that we get nη-wise independence on an arbitrary key set S (whp), and not on
the whole universe U, |U | = nr, r > 1, but we can choose η from (0, 1) instead
from (0, 1/r). The graph powering construction is avoided.

4.1 Virtual Expander Graph

As explained in Section 2.2, the critical building block of an nη-wise independent
hash class SI is a bipartite left-regular graph GSI = (U, [nγ ], E), γ ∈ (η, 1), with
constant left degree d and expansion larger than d/2 · |T | for each T ⊆ U with
|T | ≤ nη. Thus, for our hash class SI ′ we need a graph GSI′ that expands each
T ⊆ S with |T | ≤ nη. We split the set S into subsets Si, i ∈ [n1−δ], of size close to
nδ, δ ∈ (γ, 1), via a hash function h′. As described in Section 3.2, we get d hash
functions hk : U → [nγ/d], k ∈ [d], that are fully random on an arbitrary but
fixed Si. With these functions we can build an expander graph G = (U, [nγ ], E)
for Si, with E = {(x, k · nγ

d + hk(x)) | k ∈ [d]}, utilizing the following Lemma.
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Lemma 2. Let η, γ, δ be fixed with 0 < η < γ < δ < 1 and let δ < (γ − η)d/2
for an integer constant d. Let n be sufficiently large and G = ([nδ], [nγ ], E) be a
d-left regular bipartite graph with E = {(x, k · nγ

d + hk(x)) | k ∈ [d]} for nη-wise
independent hash functions hk : [nδ]→ [nγ/d]. Then G is an (nδ, nγ , d, nη, d/2+
ν)-expander with probability 1− O(n2δ−(γ−η)d).

Proof. This is proved in essence as in [3, Lemma 4], using nη-wise independence.

So for appropriate constants η, γ, δ the graphG has expansion larger than d/2·|T |
for all T ⊆ Si with |T | ≤ nη, whp.

4.2 Sharing the Expander

Using the same hash functions hk, k ∈ [d], we obtain an expander graph Gi for
each subset Si whp. We define GSI′ = (U, [nγ′

], E) as a certain kind of union of
these Gi (left hand sides identical, right hand sides put next to each other), via:

E =
{(
x, i · nγ + k · nγ

d + hk(x)
)
| i = h′(x) ∈ [n1−δ], k ∈ [d]

}
, (9)

for γ′ = γ + (1 − δ) < 1. We observe that for all T =
⋃

i Ti, with Ti ⊆ Si and
|T | ≤ nη it holds: |Γ (T )| =

∑
i |Γ (Ti)| > d

2 · |T |. Besides the graph GSI′ , the
hash class SI ′ uses a vector of size n1−δ+γ filled with random words (see Section
2.2). Hence for 1 > α > δ > γ > η > 0 and integer constants d and κ we obtain
the following properties for a randomly chosen h ∈ SI ′:

(i) h is nη-wise independent on S with probability 1−O(n1−(α−δ)κ+n2−(γ−η)d).
(ii) The space usage for h is O(nα · logn+ n1−δ+γ · log |R|).
(iii) The evaluation time for h is O(d · κ) = O(1).

This finishes the proof of Theorem 2. �

5 Constant Time Explicit One-Probe Schemes

In this section we prove Theorem 3. The main building block of the one-probe
schemes from [13] and [15] is an expander graph. As in Section 4 we construct this
graph with hash functions and the help of “split-and-share”. Since we need expan-
sion not only on one set but on all sets of size O(nδ) we must use Siegel’s high per-
formance hash class SI in the original version with the graph product operation.
For using Siegel’s class we have to assume that the universe U has size polynomial
in the size of the key set S. So we restrict ourselves to the special case |U | = nr for
a constant r > 0. At the end of this section we consider larger universes.

5.1 Virtual Expander Graph via Siegel’s Hash Class

Both one-probe schemes rely on an (nr, s, d, 2n, (1 − ε/2)d)-expander with d =
Θ
( log |U|

ε

)
and s = O

(
n · d

ε

)
. Once again we start by splitting the key set S (as

in Section 3.1) into n1−δ disjoint subsets Si via a hash function h′ ∈ R. A minor
difference is that now S is given and therefore we can keep choosing new split
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functions h′ until |Si| ≤ (1 + λ)nδ for each i ∈ [n1−δ]. So for a universe with at
most (1+λ)nδ key elements we can consider the reduced problem of constructing
an (nr, s′, d, c · nδ, (1− ε/2)d)-expander with s′ = O

(
nδ · d

ε

)
and c = 2(1 + λ).

To get such an expander we use d hash functions h0, h1, . . . , hd−1 with disjoint
ranges, hk : U → [s′/d], k ∈ [d], from the c · nδ-wise independent hash class SI,
where SI is based on a small random graph G0 (as described in Section 2.2),
which is stored explicitly in space o(n).

Lemma 3. Let |U | = nr, d = log |U|
ε , V = [s′] with s′ = c′ · c·nδ·d

ε , c′ ≥ e22l+1,
l ≥ 2, and hk : U → [s′/d], k ∈ [d], chosen uniformly at random from a c ·nδ-wise
independent hash class. Then G = (U, V,E) with E =

{(
x, k · s′

d + hk(x)
)
| k ∈

[d]
}
, is an (nr, s′, d, c · nδ, (1− ε/2)d)-expander with probability 1−O(n2r(1−l)).

Proof. Exactly as in [13, Lemma 3.10], using c · nδ-wise independence. �

5.2 Sharing the Expander

We replicate the construction just described for each Si and thus obtain a storing
scheme for the whole key set S by juxtaposing the distinct storing schemes for
all sets Si. However, we can share one expander G among these storing schemes,
since the expansion in G holds for all T ⊆ U with |T | ≤ c · nδ. The complete
storing scheme consists of a vector V of size s = n1−δ · s′, subdivided into n1−δ

parts, one for each subset Si, and the (nr, s′, d, c ·nδ, (1−ε/2)d)-expander graph
G. Using an offset of i · s′ for the i-th partial storing scheme, the access to V
during the randomized lookup for an element x ∈ U is realized as follows:

lookup(x) = V [i · s′ + k · s′
d + hk(x)], for a random k ∈ [d], i = h′(x) . (10)

Our construction has the following properties:
(i) The probability that the construction fails (given SI) is O(n−2r).
(ii) The space usage is o(n) for all hash functions (i.e the implicit expander)

and s = n1−δ · s′ = O((n log n)/ε2) bits or words of memory for V .
(iii) Since h′ ∈ R and hk ∈ SI have constant evaluation time, the evaluation

time of the one-probe scheme is constant.
With the methods from [13,15] one can show that time O(|U |) = poly(s) is
sufficient to construct the entries of V . This finishes the proof of Theorem 3. �
Remark 2. If |U | cannot be bounded by nr for a constant r, we may use a
collapse function h : U → [nr] [3,11]. The additional space is negligible, but the
change comes at the cost of an extra component in the error probability since
keys in S and in U −S may collide under h. In the case of the dictionary we can
avoid errors by making sure that h is one-to-one on S and store for each x ∈ S
the original key x, not only h(x). Details are provided in the full version. The
following corollary summarizes the new error probabilities for both one-probe
schemes.

Corollary 1. Let |U | be superpolynomial in n. Then there exists an explicit one-
probe membership tester [dictionary] with properties as described in Theorem 3,
except that for an arbitrary key x ∈ U a query returns with probability:
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(i) at least (1 − εrev) · (1− ε) the correct result ;
(ii) at most ε+ εrev a wrong result [“don’t know” ] ;

where εrev = O(nl+1−r), if the number of queries during the lifetime of the one-
probe scheme is at most nl for a constant r > l + 1.
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Abstract. Randomized rumor spreading is an efficient protocol to distribute in-
formation in networks. Recently, a quasirandom version has been proposed and
proven to work equally well on many graphs and better for sparse random graphs.
In this work we show three main results for the quasirandom rumor spreading
model.

We exhibit a natural expansion property for networks which suffices to make
quasirandom rumor spreading inform all nodes of the network in logarithmic
time with high probability. This expansion property is satisfied, among others, by
many expander graphs, random regular graphs, and Erdős-Rényi random graphs.

For all network topologies, we show that if one of the push or pull model
works well, so does the other. We also show that quasirandom rumor spreading
is robust against transmission failures. If each message sent out gets lost with
probability f , then the runtime increases only by a factor of O(1/(1 − f)).

1 Introduction

Randomized rumor spreading or random phone call protocols are simple randomized
epidemic algorithms designed to distribute a piece of information in a network. They
build on the simple approach that informed nodes call random neighbors and make them
informed (push model), or that uninformed nodes call random neighbors and become
informed if the neighbor was (pull model). In spite of the simple concept, these algo-
rithms succeed in distributing information extremely fast. In contrast to many natural
deterministic approaches, they are also highly robust against transmission failures.

Such algorithms have been applied successfully both in the context where a single
news has to be distributed from one processor to all others (cf. [11]), and in the one
where news may be injected at various nodes at different times. The latter problem oc-
curs when maintaining data integrity in a distributed databases, e.g., name servers in
large corporate networks [3, 15]. For a more extensive, but still concise discussion of
various central aspects of this area, we refer the reader to the paper by Karp, Schindel-
hauer, Shenker, and Vöcking [14].

1.1 Quasirandom Rumor Spreading

Rumor spreading protocols often assume that all nodes have access to a central clock.
The protocols then proceed in rounds, in each of which each node independent from the
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others can perform certain actions. In the classical randomized rumor spreading proto-
cols, in each round each node contacts a neighbor chosen independently and uniformly
at random. In the push model, the latter node becomes informed if the first was, and
vice versa in the pull model.

In [4], we proposed a quasirandom version of randomized rumor spreading. It as-
sumes that each node has a (cyclic) list of its neighbors. Except that each node starts at
a random position in the list, this list describes the order in which the node contacts its
neighbors. We make no particular assumption on the structure of the list. This allows to
use any list that is already present to technically organize the communication. In such,
this protocol is simpler than the classical, fully-random model.

Surprisingly, even though the amount of independent randomness is greatly reduced,
similar or even better results could be shown. For the push model, with high probability
logn rounds suffice to inform all nodes of an n–vertex hypercube or random graph
G ∈ G(n, p), if p � (ln(n) + ω(1))/n). The same results are known for the classical
model [8], except that for random graphs this only holds for p � (1+ε) ln(n)/n, ε > 0
constant. For smaller p, Θ((log n)2) rounds are necessary.

These theoretical results are complemented by an experimental investigation [5],
which observes that the quasirandom model typically needs less time than the fully-
random one, e.g., by more than 10% for the 12-dimensional hypercube.

1.2 Our Results

In this paper, we greatly expand the first results of [4]. We (a) exhibit a natural expan-
sion property that guarantees that quasirandom rumor spreading succeeds in O(log n)
iterations, (b) prove the surprising result that for each graph, the quasirandom push and
pull model need the same time to inform all nodes with probability 1 − n−Θ(1), and
(c) demonstrate that robustness is no problem for the quasirandom model in spite its
greatly reduced use of independent randomness.

Our expansion properties (see Definition 3.1) are fulfilled by expander graphs (de-
fined via the second largest eigenvalue, see Definition 3.4). In consequence, random
regular graphs fulfill these properties with probability 1 − o(1). However, regularity is
not necessary. These expansion properties are also satisfied by random graphs G(n, p)
with probability 1 − o(1), where p can be as small as (ln(n) + ω(1))/n. Such graphs
typically have vertices of constant degree and of logarithmic degree. Hence our result
also subsumes (and improves in terms of the failure probability) the result on random
graphs in [4], which gave a runtime of O(log n) with probability 1− o(1).

For all these graphs, we show that with probability 1 − n−γ , where γ can be an
arbitrary constant, the quasirandom rumor spreading model succeeds in informing all
vertices from a single initially informed one in O(log n) rounds. This result holds in-
dependent of how the cyclic lists look like. To the best of our knowledge, this is first
attempt to analyze rumor spreading on several diverse graph classes (some of which are
even far from being regular) altogether.

We then show two results that hold for all graphs. The first concerns the pull model,
where vertices call others to retrieve information. This model is traditionally regarded
less frequently in the literature, though some beautiful results exist. In particular, it is
known that combining both push and pull model can lead to a drastic reduction of the
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number of messages needed (some restrictions apply to the underlying model, though).
The first result of this type is Karp et al. [14].

The pull model has quite different characteristics from the push model. For example,
in the push model, the number of informed vertices can at most double each round. In
the pull model, an increase by a factor of Δ(G) is possible.

In spite of these differences, we can show the following surprising result. If for some
graph, one of the two quasirandom broadcasting models has the property that for all lists
and all starting vertices all other vertices become informed in time T with probability
1− n−Θ(1), then the other variant has this property as well. In consequence, our result
that the expansion property implies efficient broadcasting holds as well for the pull
model.

We finally analyze the robustness of quasirandom rumor spreading. By robustness
we mean that we want the protocol still to work well, even if some transmissions get
lost. Since quasirandom rumor spreading uses much fewer independent random bits,
some colleagues after publication of [4] expressed the concern that robustness might be
a problem here. However, we are now able to show that such problems do not occur.
We prove that if each transmission independently fails with probability f < 1, the
time needed to inform all vertices with high probability increases only by a factor of
O(1/(1− f)). This again holds for all graphs.

Due to lack of space, several of our proofs are abbreviated or deferred to the full
version of the paper.

2 Precise Model and Preliminaries

In the quasirandom model, each vertex v ∈ V is equipped with a cyclic permutation
πv : Γ (v)→ Γ (v) of its neighborsΓ (v). This can also be seen as a list of its neighbors.

At the start of the protocol each vertex chooses a first neighbor iv uniformly at ran-
dom from Γ (v). This is the neighbor it contacts at time t = 1. In each following time
step t = 2, 3, . . ., the vertex v contacts a vertex πt−1

v (iv). For the quasirandom push1

model the result of one vertex contacting another one is as follows. If v was informed
at time t− 1, then πt

v(iv) becomes informed at time t.
This model slightly deviates from the description in the introduction, where each

vertex chooses the starting point on its list only when it gets informed. However, the two
variants are clearly equivalent and in the following it will be advantageous to assume
that all vertices start contacting their neighbors already when they are uninformed.

We shall analyze how long it takes until a rumor known to a single vertex is broad-
casted to all other vertices. We adapt a worst-case view in that we aim at bounds that
are independent of the starting vertex and of all the lists present in the model. For the
quasirandom model the probability space consists of the initial positions of the fixed
neighborhood lists of all vertices.

In the analysis it will occasionally be convenient to assume that a vertex after receiv-
ing the rumor does not transfer it on for a certain number of time steps. We call this
a delayed model. Clearly, delaying only results in other vertices receiving the rumor

1 Here we focus on the push model. In the pull model the result of a node u contacting a vertex v
is opposite, that is, if v is informed, u gets informed. The differences are discussed in Section 5.
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later. Consequently, the random variable describing the broadcast time of this model
strictly dominates the original one. This, of course, also holds if several vertices delay
the propagation of the rumor.

We will also need chains of contacting vertices. So, a vertex u1 ∈ V contacts another
vertex um ∈ V within the time-interval [a, b], if there is a path (u1, u2, . . . , um) in G
and t1 < t2 < · · · < tm−1 ∈ [a, b] such that for all j ∈ [1,m− 1], πtj

uj (iuj ) = uj+1.
Throughout the paper, we use the following graph-theoretical notation. Let n = |V |

denote the number of vertices. For a vertex v of a graphG = (V,E), let Γ (v) := {u ∈
V | {u, v} ∈ E} the set of its neighbors and by deg(v) := |Γ (v)| its degree. For any
S ⊆ V , let degS(v) := |Γ (v) ∩ S|. Let δ := minv∈V deg(v) be the minimum degree,
d := 2|E|/n be the average degree, andΔ := maxv∈V deg(v) be the maximum degree.
The distance dist(x, y) between vertices x and y is the length of the shortest path fromx
to y. The diameter diam(G) of a connected graphG is the largest distance between two
vertices. We will also use Γ k(u) := {v ∈ V | dist(u, v) = k} and Γ�k(u) := {v ∈
V | dist(u, v) � k}. For sets S we define Γ (S) := {v ∈ V | ∃u ∈ S, (u, v) ∈ E} as
the set of neighbors of S.

All logarithms logn are natural logarithms to the base e. As we are only interested
in the asymptotic behavior, we will sometimes assume that n is sufficiently large.

3 Expanding Graphs

Instead of analyzing specific graphs, we distill three simple properties. For these prop-
erties we can prove that the quasirandom rumor spreading model succeeds in a loga-
rithmic runtime to inform all vertices. This is independent of which vertex is initially
informed and independent of the order of the lists. The properties are as follows.

Definition 3.1 (expanding graphs). We call a connected graph expanding if the fol-
lowing properties hold:

(P1) For all constantsCα with 0 < Cα � d/2 there is a constantCβ ∈ (0, 1) such that
for any connected S ⊆ V with 3 � |S| � Cα n/d, we have |Γ (S) \S| � Cβ d |S|.

(P2) There are constants Cδ ∈ (0, 1) and Cω > 0 such that for any S ⊆ V , the
number of vertices in Sc which have at least Cδd(|S|/n) neighbors in S is at least

|S|c − Cωn2

d|S| .
(P3) d = Ω(Δ). If d = ω(logn) then d = O(δ).

We will now describe the properties in detail and argue why each of them is intrinsic for
the analysis. (P1) describes a vertex expansion which means that connected sets have
a neighborhood which is roughly in the order of the average degree larger than the set
itself. Without this property, the broadcasting process could end up in a set with a tiny
neighborhood and slow down thereby too much. Note that in (P1), Cβ depends on Cα.
As Cα has to be a constant, the upper limit on Cα only applies for constant d.

(P2) is a certain edge-expansion property implying that a large portion of uninformed
vertices have a sufficiently number of informed neighbors. This avoids that the broad-
casting process stumbles upon a point when it has informed many vertices but most
of the remaining uninformed vertices have very few informed neighbors and therefore
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only a small chance to get informed. Note that (P2) is only useful for |S| = Ω(n/d)
and |S| � n/2.

The last property (P3) demands a certain regularity of the graph. It is trivially fulfilled
for regular graphs, which most definitions of expanders require. The condition d =
Ω(Δ) for the case d = O(log n) does not limit any of our graph classes below. If the
average degree is at most logarithmic, (P3) applies no further restrictions. Otherwise,
we require δ, d and Δ to be of the same order of magnitude. Without this condition,
there could be an uninformed vertex with δ informed neighbors of degree ω(δ) which
does not get informed in logarithmic time with a good probability. With an additional
factor of Δ/δ this could be resolved, but as we aim at a logarithmic bound, we require
δ = Θ(Δ) for d = ω(logn). Note that we do not require d = ω(1), but the proof
techniques for constant and non-constant average degrees will differ in Section 4.

We describe three important graph classes which are expanding, i.e., satisfy all three
properties of Definition 3.1, with high probability.

Random Graphs G(n, p), p � (logn+ω(1))/n. Here, we show that sparse and dense
random graphs are expanding with probability 1− o(1). We use the popular random
graph model G(n, p) introduced by Erdős and Rényi [7] where each edge of an n-vertex
graph is picked independently with probability p. We distinguish two kinds of random
graphs with slightly different properties:

Definition 3.2 (sparse and dense random graph). We call a random graph G(n, p)
sparse if p = (logn + fn)/n with fn = ω(1) and fn = O(log n), and dense if
p = ω(log(n)/n).

Note that our definition of sparse random graph coincides with the one of Cooper and
Frieze [2] who set p = cn log(n)/n with (cn − 1) logn→∞ and cn = O(1).

Theorem 3.3. Sparse and dense random graphs are expanding with probability
1− o(1).

By setting p = 1 this also shows that complete graphs are expanding.

Expander Graphs. In order to define a (regular) expander graph formally (see Hoory,
Linial, and Wigderson [12] for a survey on expander graphs), we have to introduce a
bit of notation. For a d-regular graph, its adjacency matrix A ofG is symmetric and has
real eigenvalues d = λ1 � λ2 � · · · � λn. Define λ := max {|λ2|, |λn|}.

Definition 3.4 (expander). We call a d-regular graphG = (V,E) expander if λ(G) �
min{d/C,C′√d}, where C > 1, C′ > 0 are arbitrary constants.

Hence for the case when d = O(1), Definition 3.4 requires that λ(G) � d/C, C > 1,
which is the classic (algebraic) definition of expander graphs. For larger d, we require
the bound λ(G) � C′√d. We point out that graphs that satisfy the even stronger con-
dition λ � 2

√
d− 1 are called Ramanujan graphs and the construction of them has

received a lot of attention in mathematics and computer science (cf. Hoory et al. [12]).

Theorem 3.5. Let G be a d-regular expander. Then G is expanding.
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Random Regular Graphs. Random regular graphs are a natural extension of the clas-
sic Erdős-Rényi-Graph model, satisfying the additional property of being regular.

Definition 3.6 (random regular graph). For any even d, a random d-regular graph
G ∈ G(n, d) is chosen uniformly among all labeled d-regular graphs with n vertices.

Using a result of [9], we can prove that a random d-regular graph is also an expander in
the sense of Definition 3.4. Hence, applying Theorem 3.5 gives the following.

Theorem 3.7. A random d-regular graphG ∈ G(n, d) is expanding w. p. 1− o(1).

3.1 Previous Results on Expanding Graphs

We summarize what is known for the runtime of the fully-random and the quasirandom
model for expanding graphs as defined in Definition 3.1.

The complete graph is the simplest expanding graph. Frieze and Grimmett [10] and
later Pittel [16] analyzed the fully random model on this graph. It was shown that with
probability 1− o(1), log2 n+ lnn+ ω(1) rounds suffice. For the quasirandom model,
[4] proved a bound of O(log n) rounds with probability 1− o(1).

Feige et al. [8] showed that on random graphsG(n, p), p ≥ (1+ε) logn/n, the fully
random model satisfies a runtime bound ofO(logn) with probability 1−n−1. They also
showed that this failure probability can be achieved for p = (log n +O(log logn))/n
only in Ω(log2 n) rounds. For the quasirandom model, [4] showed that a runtime of
O(log n) holds with probability 1− o(1), already if p ≥ (logn+ ω(1))/n.

For expanders with Δ/δ = O(1), it was shown in [17] that the fully random model
completes its broadcast campaign in O(logn) rounds with probability 1− 1/n. For the
quasirandom model, no such results have been known so far.

The situation is the same for random regular graphs. Berenbrink, Elsässer, and
Friedetzky [1] investigated the fully-random model on random regular graphs and
proved, amongst other results, an upper bound of O(log n) with probability 1 − n−1.
However, the runtime of the quasirandom model was not considered therein.

As a unified answer to these open questions, this work shows for all aforementioned
graphs a runtime of the quasirandom model of O(log n) with probability 1 − n−γ ,
where γ � 1 is an arbitrary constant.

4 Analysis of the Quasirandom Push Model

In this section, we prove the following theorem, which is one of the three main results.

Theorem 4.1. Let γ � 1 be a constant. The probability that the quasirandom push
model started at an arbitrary vertex of an expanding graph informs all other vertices
within O(log n) rounds is 1−O(n−γ).

To analyze the propagation process, we decompose it in a forward and a backward part.
In the forward part we show that one informed vertex informs n − O(n/d) vertices
in O(logn) steps (cf. Theorem 4.2). In the backward part we show that if a vertex is
uninformed,O(logn) steps earlier, at least ω(n/d) vertices must be uninformed as well
(cf. Theorem 4.7). Combining both yields Theorem 4.1.
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We will show that all this holds with probability 1 − n−γ for any γ � 1. As Theo-
rem 4.1 is easy to show for d = O(1), we handle this case separately in Section 4.3 and
now consider the case d = ω(1). This makes the proofs of the lemmas of this section
shorter. Therefore in Sections 4.1 and 4.2 we may use the following adjusted property:

(P3’) d = ω(1) and d = Ω(Δ). If d = ω(logn) then d = O(δ).

As the precise constants will be crucial in parts of the following proofs, we use the
following notation. Constants with a lower case Greek letter index (e.g., Cα and Cβ)
stem from Definition 3.1. Constants without an index or with a numbered index (e.g.,
C and C1) are local constants in lemmas. K is used to denote a number of time steps.

4.1 Forward Analysis

Theorem 4.2. Let γ � 1 be a constant. The probability that the quasirandom push
model started in a fixed vertex u does not inform n−O(n/d) vertices within O(log n)
rounds, is at most n−γ .

In our analysis we will use the following two notations for sets of informed vertices.
Let It be the set of vertices that know the rumor after the t-th step. Let Nt ⊆ It be the
set of “newly informed” vertices that know the rumor after the t-th step, but have not
spread this information yet. The latter set will be especially important as these are the
vertices which have preserved their independent random choice.

Each of the following Lemmas 4.3–4.6 examines one phase consisting of several
steps. Within each phase, we will only consider information spread from vertices Nt−1

that became informed in the previous phase.
Let u be (newly) informed at time step 0. To get a sufficiently large set of (newly)

informed vertices to start with, we first show how to obtain a set Nt of size Θ(log n)
within t = O(log n) steps. If d = ω(logn), it suffices to inform enough vertices in
Γ (u).Otherwise, we use that (P1) implies that the neighborhoodsΓ k(u) grow exponen-
tially with k. Since within Δ steps, Γ k(u) can be informed if Γ k−1(u) was informed
beforehand, the claim follows in this case. More precisely:

Lemma 4.3. Let C > 0 be an arbitrary constant. Then with probability 1 there is a
time step t = O(log n) such that

• |Nt| � C logn,
• |It \Nt| = o(|Nt|).

We can now assume that we have a set Nt of size Ω(log n). The next step aims at
informingΩ(n/d) vertices. For the very dense case of d = Ω(n/ logn) it can obviously
be skipped. Note that in the following we can always assume that we have not informed
too many vertices as the number of informed vertices will always at most double in each
time step. The following lemma shows that given a set of informed vertices matching
the conditions of (P1) within a constant number of steps the set of informed vertices
increases by a factor strictly larger than one.

Lemma 4.4. For all constants γ � 1 and Cα > 0 there are constants K > 1, C1 > 1,
C2 > 1, and C3 ∈ (3/4, 1) such that for all time steps t, if



Quasirandom Rumor Spreading: Expanders, Push vs. Pull, and Robustness 373

• C1 logn � |It| � Cα (n/d),
• |Nt| � C3 |It|,

then with probability 1− n−γ ,

• |It+K | � C2 |It|,
• |Nt+K | � C3 |It+K |.

To avoid the process dying out, it is important that a large fraction of the vertices is
newly informed in each phase. With every application of Lemma 4.4, the number of
informed vertices increases by a factor of C2 > 1 which depends on Cβ which in turn
depends on Cα. As the precondition of the next Lemma 4.5 is |It| = 16Cω(n/d), we
chooseCα = 16Cω in every application of Lemma 4.4. This implies a constantC2 > 0
in every phase and therefore at most logC2

(
16Cω (n/d)

)
= O(log n) applications of

Lemma 4.4 suffice to reach 16Cω(n/d) informed vertices with a constant fraction of
them newly informed.

The next aim is informing a linear number of vertices. Note that as long as that is not
achieved, (P2) says that there is always a large set of uninformed vertices which have
many neighbors in Nt. Lemma 4.5 below shows that under these conditions, a phase of
a constant number of steps suffices to triple the number of informed vertices.

Lemma 4.5. For all constants γ � 1 there are constants K > 1, C > 1, and Cω > 0
such that for all time steps t, if

• C logn � |It| � n/16,
• |It| � 16Cω(n/d),
• |Nt| � 3/4 |It|,

then with probability 1− n−γ ,

• |It+K | � 3 |It|,
• |Nt+K | � 3/4 |It+K |.

Applying Lemma 4.5 at most O(log n) times, a linear fraction of the vertices gets in-
formed. In a final phase ofO(log n) steps, one can then inform all butO(n/d) vertices
as shown in the following Lemma 4.6.

Lemma 4.6. Let γ � 1 be a constant and t be a time step such that |Nt| = Θ(n). Then
with probability 1− n−γ , |It+O(log n)| = n−O(n/d).

Combining all above phases, a union bound gives that |IO(log n)| = n − O(n/d) with
probability 1−O(log(n)n−γ), and Theorem 4.2 follows.

4.2 Backward Analysis

The forward analysis has shown that within O(log n) steps, at most O(n/d) vertices
stay uninformed. We now analyze the reverse. The question here is, how many vertices
have to be uninformed at time t− O(logn) if there is an uninformed vertex at time t?
We will show that this is at least ω(n/d) which finishes the overall proof. For this, we
introduce a further piece of notation needed in the backward analysis. We denote by
U[t1,t2](w) the set of nodes that contact the vertex w within the time-interval [t1, t2].
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Theorem 4.7. Let γ � 1 be a constant. If the quasirandom rumor spreading process
does not inform a fixed vertex w at some time t, then there are ω(n/d) uninformed
vertices at time t−O(log n) with probability at least 1− n−γ .

To prove Theorem 4.7, we fix an arbitrary vertex w and a time t. Ignoring some tech-
nicalities, our aim is now to lower bound the number of vertices which have to be
uniformed at times < t to keepw uniformed at time t. As before in Lemma 4.3, we first
show the set of uninformed vertices is at least of logarithmic size.

For d = O(log n) this follows from (P1) as all vertices of ΓO(log log n/ log d)(w) =
Ω(log n) contact w within O(logn) steps. For d = ω(logn), simple Chernoff bounds
show that enough vertices of Γ (w) contact w within O(log n) steps.

Lemma 4.8. Let γ � 1 and C � 1 be constants, w a vertex, and t2 = Ω(log n) a time
step. Then with probability 1− 2n−γ there is a time step t1 = t2 −O(log n) such that

|U[t1,t2](w)| � C logn.

We now know that within a logarithmic number of time steps, there are at least logn
vertices which have contacted w. Very similar to Lemmas 4.4 and 4.5 in the forward
analysis, we can increase the set of vertices that contact w by a multiplicative factor
within a constant number of time steps. The following lemma again mainly draws on
(P1). For the very dense case of d = Ω(n/ logn) it can again be ignored.

Lemma 4.9. For all constants γ � 1 there is a time step K such that for all vertices w
and time steps t1, t2, if

logn � |U[t1,t2](w)| = O(n/d),

then with probability 1− n−γ ,

|U[t1−K,t2](w)| � 4 |U[t1,t2](w)|.

Using Lemma 4.9 at mostO(log n) times reaches a set of vertices that contactw of size
Ω(n/d). If we have already reached ω(n/d), we are done. Otherwise, the following
Lemma 4.10 shows that a phase consisting of O(log n) suffices to reach it. This is the
only lemma which substantially draws on (P3’).

Lemma 4.10. Let γ � 1 be a constant, w a vertex, and t1, t2 time steps such that

|U[t1,t2](w)| = Θ(n/d).

Then with probability 1− n−γ ,

|U[t1−O(log n),t2](w)| = ω(n/d).

This finishes the backward analysis and shows that ω(n/d) vertices have to uninformed
to keep a single vertex uninformed within O(log n) steps. Together with the forward
analysis which proved that only O(n/d) vertices remain uninformed after O(log n)
steps, this finishes the overall proof of Theorem 4.1 for d = ω(1).
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4.3 Analysis for Graphs with Constant Degree

It remains to show that the quasirandom push model also succeeds on expanding graphs
with constant degree d = O(1). For this, it is easy to see (cf. [4, Theorem 2]) that for any
graph the quasirandom push model succeeds in time � Δ·diam(G) with probability 1.2

Naturally, the diameter of expanding graphs can be bounded easily.

Lemma 4.11. For any expanding graph G with d = O(1), diam(G) = O(log n).

Plugging Lemma 4.11 into the boundΔ · diam(G) yields Theorem 4.1 for d = O(1).

5 Quasirandom Pull Model

In this section, we analyze a second broadcasting model called pull model. Its only
difference to the push model defined in Section 2 is that here non-informed vertices call
other vertices to gain the information. More precisely, let G be a graph equipped with
a list of neighbors for each vertex as defined in Section 2. Again, each vertex chooses a
random initial neighbor and contacts its neighbors in the order of the list.

The only difference is the result of such a contact. Assume that u and v are vertices
in G and that u contacts v. Then if v is informed, u becomes informed (and not vice
versa). To avoid misunderstanding, we say that v asks u instead of contacts, to stress
the fact that v is the vertex possibly becoming informed.

Besides being equally natural as the push model, there is a second reason to analyze
both models. For the fully-random broadcasting scenario, it is well known that typi-
cally the push model works more efficiently when still many vertices are uninformed,
whereas the pull model is more efficient in informing the remaining few vertices after
the majority is already informed. Combining the two models in a non-trivial manner
allows to develop protocols that still work in time O(log n), but need fewer messages
sent than O(n log n). See Karp et al. [14] for more details.

While we shall not go that far and discuss optimizing the number of messages sent,
we shall prove bounds for the pull model along. In fact, we shall prove the surprising
result that both models are equally efficient. This comes unexpected in the light, e.g., of
the following simple example.

Assume that G is a star, that is, a tree with one central vertex c which is neighbor
to all other vertices. If c is initially informed, then the quasirandom push model needs
exactly n− 1 rounds with probability one. For the pull model, things are very different
as in this case the quasirandom pull model3 needs only a single round. At first sight
this might suggest that the push and pull models are not related at all, but as the initial
position is chosen worst-case we can in fact show the following result.

Theorem 5.1. LetG be a graph such that for all lists and all initially informed vertices,
the quasirandom push model needs T rounds to inform all other vertices with proba-
bility 1 − n−γ , where γ � 1. Then the quasirandom pull model, again for all lists and

2 The corresponding bound for the fully-random model is O(Δ · (diam(G) + log n)) with
probability 1 − n−1 [8, Theorem 2.2].

3 The corresponding bound for the fully-random push model is Θ(n log n) with probability
1 − n−1 while the fully-random pull model also succeeds within a single round.
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starting vertices, within T rounds informs all other nodes with probability 1 − n−γ+1.
The same holds with the roles of push and pull reversed.

6 Robustness

To demonstrate that quasirandom rumor spreading is robust against failures, we con-
sider a natural model similar to the one considered in [6, 13]. Here, each sent message
reaches its destination only with a certain probability. These failures are assumed to be
stochastically independent.

We assume that each vertex sends an acknowledgment to each neighbor from which
it has received a correctly sent message. However, also the acknowledged message may
not be sent correctly. Only after a vertex has received the acknowledged message, it
continues to broadcast the message to the next neighbor on its list, otherwise it tries to
send the message to the same neighbor in the next round again. We assume that a node
sends a message and receives an acknowledgment with probability f , 0 < f < 1 (again
independently of all other messages). Note that we do not require f to be a constant.

We believe that the assumption of acknowledged messages is inline with practical
considerations since the required communication only increases by a constant factor.

Theorem 6.1. LetG be any graph and let T such that the quasirandom model started at
an arbitrary vertex needsT rounds to inform all vertices with probability 1−n−γ , where
γ � 1. Then the quasirandom model started at an arbitrary vertex needs 4γ/(1− f)T
rounds to inform all vertices with probability 1− 2n−γ .

7 Conclusion and Outlook

In this work, we made significant progress to understand quasirandom rumor spreading.
In particular, we answered the question if it is robust affirmatively, and showed that
both push and pull model achieve logarithmic broadcast times on the large class of
expanding graphs. From the broader view-point of randomized algorithmics, this work
again shows that a reduced amount of randomness can yield superior algorithms, but
still can be analyzed with theoretical means.

One open problem is to analyze to what extent push and pull model can be combined
to reduce the number of messages needed. We should note, though, that the quasiran-
dom push model naturally never needs more than 2m = nd messages. Hence for re-
ally sparse networks, e.g., constant-degree expander graphs, the standard quasirandom
model is both time and message efficient.
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41st IEEE Symposium on Foundations of Computer Science (FOCS), pp. 565–574 (2000)
[15] Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In:

44th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 482–491 (2003)
[16] Pittel, B.: On spreading a rumor. SIAM Journal on Applied Mathematics 47, 213–223

(1987)
[17] Sauerwald, T.: On mixing and edge expansion properties in randomized broadcasting. In:

Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 196–207. Springer, Heidelberg
(2007)



Incompressibility through Colors and IDs

Michael Dom1, Daniel Lokshtanov2, and Saket Saurabh2

1 Institut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2,
07743 Jena, Germany

michael.dom@uni-jena.de
2 Department of Informatics, University of Bergen, 5020 Bergen, Norway

{daniello,saket.saurabh}@ii.uib.no

Abstract. In parameterized complexity each problem instance comes
with a parameter k, and a parameterized problem is said to admit a
polynomial kernel if there are polynomial time preprocessing rules that
reduce the input instance to an instance with size polynomial in k. Many
problems have been shown to admit polynomial kernels, but it is only
recently that a framework for showing the non-existence of polynomial
kernels has been developed by Bodlaender et al. [4] and Fortnow and
Santhanam [9]. In this paper we show how to combine these results with
combinatorial reductions which use colors and IDs in order to prove
kernelization lower bounds for a variety of basic problems:

— We show that the Steiner Tree problem parameterized by the num-
ber of terminals and solution size k, and the Connected Vertex

Cover and Capacitated Vertex Cover problems do not admit a
polynomial kernel. The two latter results are surprising because the
closely related Vertex Cover problem admits a kernel of size 2k.

— Alon and Gutner obtain a kpoly(h) kernel for Dominating Set in H-

Minor Free Graphs parameterized by h = |H | and solution size k
and ask whether kernels of smaller size exist [2]. We partially resolve
this question by showing that Dominating Set in H-Minor Free

Graphs does not admit a kernel with size polynomial in k + h.
— Harnik and Naor obtain a “compression algorithm” for the Sparse

Subset Sum problem [13]. We show that their algorithm is essen-
tially optimal since the instances cannot be compressed further.

— Hitting Set and Set Cover admit a kernel of size kO(d) when pa-
rameterized by solution size k and maximum set size d. We show that
neither of them, along with the Unique Coverage and Bounded

Rank Disjoint Sets problems, admits a polynomial kernel.

All results are under the assumption that the polynomial hierarchy
does not collapse to the third level. The existence of polynomial kernels
for several of the problems mentioned above were open problems explic-
itly stated in the literature [2,3,11,12,14]. Many of our results also rule
out the existence of compression algorithms, a notion similar to kernel-
ization defined by Harnik and Naor [13], for the problems in question.

1 Introduction

Polynomial time preprocessing to reduce instance size is one of the most widely
used approaches to tackle computationally hard problems. A natural question

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 378–389, 2009.
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in this regard is how to measure the quality of preprocessing rules. Parameter-
ized complexity provides a natural mathematical framework to give performance
guarantees of preprocessing rules: A parameterized problem is said to admit a
polynomial kernel if there is a polynomial time algorithm, called a kernelization,
that reduces the input instance to an instance with size bounded by a polyno-
mial p(k) in the parameter k, while preserving the answer. This reduced instance
is called a p(k) kernel for the problem. (See [6,8,15] for further introductions.)
While positive kernelization results have appeared regularly over the last two
decades, the first results establishing infeasibility of polynomial kernels for spe-
cific problems have appeared only recently. In particular, Bodlaender et al. [4]
and Fortnow and Santhanam [9] have developed a framework for showing that
a problem does not admit a polynomial kernel unless the polynomial hierarchy
collapses to the third level (PH = Σ3

p), which is deemed unlikely.
Bodlaender et al. [4] observed that their framework can be directly applied

to show kernelization lower bounds for many parameterized problems, including
Longest Path and Longest Cycle. To the authors’ best knowledge, the only
non-trivial applications of this framework are in a recent result of Fernau et al. [7]
showing that the Directed Max Leaf Out-Branching problem does not
have a polynomial kernel, and a result by Bodlaender et al. [5] showing that the
Disjoint Paths and Disjoint Cycles problems do not admit a polynomial
kernel unless PH = Σ3

p .

Our Results & Techniques. At present, there are two ways of showing that a
particular problem does not admit a polynomial kernel unless PH = Σ3

p . One
is to give a “composition algorithm” for the problem in question. The other is
to reduce from a problem for which a kernelization lower bound is known to the
problem in question, such that a polynomial kernel for the considered problem
would transfer to a polynomial kernel for the problem we reduced from. Such a
reduction is called a polynomial parameter transformation and was introduced by
Bodlaender et al. [5]. In order to show our results, we apply both methods. First,
we present in Section 3 a “cookbook” approach for showing kernelization lower
bounds by using composition algorithms together with polynomial parameter
transformations. In the subsequent sections, we apply our approach to show
that Unique Coverage parameterized by solution size k and Hitting Set

and Set Cover parameterized by solution size k and universe size |U | do not
admit polynomial kernels unless PH = Σ3

p. These problems turn out to be useful
starting points for polynomial parameter transformations, showing that a variety
of basic problems do not have a polynomial kernel. All our results summarized
below are under the assumption that PH �= Σ3

p and unless explicitly stated
otherwise, all the problems considered are parameterized by the solution size.

Connectivity and Covering Problems. In Section 4, we show that the Set Cover

problem parameterized by solution size k and the size |U | of the universe does
not have a polynomial kernel. Using this result, we prove that Steiner Tree

parameterized by the number of terminals and solution size k does not have
a polynomial kernel, resolving an open problem stated in [3]. We proceed to
show that the Connected Vertex Cover and Capacitated Vertex Cover
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problems do not admit a polynomial kernel for the parameter k. The existence of
polynomial kernels for these problems was an open problem explicitly stated in
the literature [11,12], and the negative answer is surprising because the closely
related Vertex Cover problem admits a kernel of size 2k. Finally, Bounded

Rank Disjoint Sets and Unique Coverage do not admit a polynomial ker-
nel. The latter result resolves an open problem of Moser et al. [14].

Domination and Transversals. In Section 5, we show that the Hitting Set

problem parameterized by solution size k and the size |U | of the universe does
not have a polynomial kernel. This implies that the Dominating Set problem
parameterized by solution size k and the size of a minimum vertex cover of
the input graph does not admit a polynomial kernel. The latter result in turn
implies that Dominating Set in H-Minor Free Graphs parameterized by
h = |H | and k does not admit kernel with size polynomial in k + h, partially
resolving an open problem by Alon and Gutner [2], who obtain a kpoly(h) kernel
for Dominating Set in H-Minor Free Graphs and ask whether kernels of
smaller size exist. Another implication of the results in Sections 4 and 5 is that
the Hitting Set and Set Cover problems parameterized by solution size k
and maximum set size d do not have a kernel polynomial in k, d. Both Hitting

Set and Set Cover admit a kO(d) kernel [1].

Numeric Problems. Harnik and Naor obtain a compression algorithm for the
Sparse Subset Sum problem [13]. Essentially, Harnik and Naor show that if
the input instance to Subset Sum is a relatively small set of huge numbers,
the instance can be reduced. In Section 6, we show in contrast that if the input
instance is a huge set of relatively small numbers, the instance cannot be reduced.

Harnik and Naor [13] define compression, a notion with applications in cryp-
tography and similar to kernelization in spirit. It is implicit from the discussion
in [9] that for a large class of problems the notions of kernelization and com-
pression are equivalent. Due to this, our kernelization lower bounds imply that
several of the problems we considered do not admit compression to a language in
NP. These problems are Connected Vertex Cover, Capacitated Vertex

Cover, Steiner Tree, Unique Coverage, and Small Subset Sum.

2 Preliminaries

A parameterized problem L is a subset of Σ∗ × N for some finite alphabet Σ.
An instance of a parameterized problem consists of (x, k), where k is called
the parameter. A central notion in parameterized complexity is fixed parameter
tractability (FPT), which means solvability in time f(k) · p(|x|) for any instance
(x, k), where f is an arbitrary function of k and p is a polynomial.

Definition 1. A kernelization algorithm, or in short, a kernel for a parameter-
ized problem Q ⊆ Σ∗ × N is an algorithm that, given (x, k) ∈ Σ∗ × N, outputs
in time polynomial in |x| + k a pair (x′, k′) ∈ Σ∗ × N such that (a) (x, k) ∈ Q
if and only if (x′, k′) ∈ Q and (b) |x′| + k′ ≤ g(k), where g is an arbitrary com-
putable function. The function g is referred to as the size of the kernel. If g is a
polynomial function then we say that Q admits a polynomial kernel.
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Definition 2. [Composition [4]] A composition algorithm for a parameterized
problem L ⊆ Σ∗×N is an algorithm that receives as input a sequence ((x1, k), . . . ,
(xt, k)), with (xi, k) ∈ Σ∗ × N+ for each 1 ≤ i ≤ t, uses time polynomial in∑t

i=1 |xi|+k, and outputs (y, k′) ∈ Σ∗×N+ with (a) (y, k′) ∈ L ⇐⇒ (xi, k) ∈
L for some 1 ≤ i ≤ t and (b) k′ is polynomial in k. A parameterized problem is
compositional if there is a composition algorithm for it.

We utilize a recent result of Bodlaender et al. [4] and Fortnow and Santhanam [9]
concerning the non-existence of polynomial kernels. To this end, we define the
unparameterized version L̃ of a parameterized problem L as the language L̃ =
{x#1k | (x, k) ∈ L}, that is, the mapping of parameterized problems to unpa-
rameterized problems is done by mapping an instance (x, k) to the string x#1k,
where 1 is an arbitrary fixed letter in Σ and # /∈ Σ.

Theorem 1 ([4,9]). Let L be a compositional parameterized problem whose un-
parameterized version L̃ is NP-complete. Then, unless PH=Σ3

p, there is no poly-
nomial kernel for L.

Finally we define the notion of polynomial parameter transformations.

Definition 3 ([5]). Let P and Q be parameterized problems. We say that P
is polynomial parameter reducible to Q, written P ≤Ptp Q, if there exists a
polynomial time computable function f : Σ∗ × N → Σ∗ ×N and a polynomial p,
such that for all (x, k) ∈ Σ∗×N (a) (x, k) ∈ P if and only (x′, k′) = f(x, k) ∈ Q
and (b) k′ ≤ p(k). The function f is called polynomial parameter transformation.

Proposition 1 ([5]). Let P and Q be the parameterized problems and P̃ and
Q̃ be the unparameterized versions of P and Q respectively. Suppose that P̃
is NP-hard and Q̃ is in NP. Furthermore if there is a polynomial parameter
transformation from P to Q, then if Q has a polynomial kernel then P also has
a polynomial kernel.

A notion similar to polynomial parameter transformation was independently
used by Fernau et al. [7] albeit without being explicitly defined.

We close with some definitions from graph theory. For a vertex v in a graph G,
we write NG(v) to denote the set of v’s neighbors in G, and we write degG(v) to
denote the degree of v. The subgraph of G induced by a vertex set V ′ is denoted
with G[V ′]. A vertex v dominates a vertex u if u ∈ NG(v).

3 A Systematic Approach to Prove Kernelization Lower
Bounds

In this section we describe a “cookbook” for showing kernelization and com-
pressibility lower bounds. To show that a problem does not admit a polynomial
size kernel we go through the following steps.

1. Define a suitable colored version of the problem. This is in order to get more
control over how solutions to problem instances can look.
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2. Show that the unparameterized version of the considered problem is in NP
and that the unparameterized version of the colored version of the problem is
NP-hard.
3. Give a polynomial parameter transformation from the colored to the uncolored
version. This will imply that kernelization lower bounds for the colored version
directly transfer to the original problem.
4. Show that the colored version parameterized by k is solvable in time 2kc ·nO(1)

for a fixed constant c.
5. Finally, show that the colored version is compositional and thus has no poly-
nomial kernel. To do so, proceed as follows.

(a) If the number of instances in the input to the composition algorithm is at
least 2kc

then running the parameterized algorithm on each instance takes
time polynomial in input size. This automatically yields a composition algo-
rithm [5].

(b) If the number of instances is less than 2kc

, every instance receives a unique
identifier. Notice that in order to uniquely code the identifiers (ID) of all
instances, kc bits per instance is sufficient. The IDs are coded either as an
integer, or as a subset of a poly(k) sized set.

(c) Use the coding power provided by colors and IDs to complete the composition
algorithm.

4 Connectivity and Covering Problems

Set Cover, Steiner Tree, and Variants of Vertex Cover. The problems Steiner

Tree, Connected Vertex Cover (ConVC), Capacitated Vertex Cover

(CapVC), and Small Universe Set Cover are defined as follows. In Steiner

Tree we are given a graph G = (T ∪ N,E) and an integer k and asked for a
vertex set N ′ ⊆ N of size at most k such that G[T ∪N ′] is connected. In ConVC

we are given a graph G = (V,E) and an integer k and asked for a vertex cover
of size at most k that induces a connected subgraph in G. A vertex cover is a
set C ⊆ V such that each edge in E has at least one endpoint in C. The problem
CapVC takes as input a graph G = (V,E), a capacity function cap : V → N+

and an integer k, and the task is to find a vertex cover C and a mapping from E
to C in such a way that at most cap(v) edges are mapped to every vertex v ∈ C.
Finally, an instance of Small Universe Set Cover consists of a set family F
over a universe U with |U | ≤ d and a positive integer k. The task is to find a
subfamily F ′ ⊆ F of size at most k such that ∪S∈F ′S = U . All four problems
are known to be NP-complete (e.g., see [10] and the proof of Theorem 2); in
this section, we show that the problems do not admit polynomial kernels for the
parameter (|T |, k) (in the case of Steiner Tree), k (in the case of ConVC and
CapVC), and (d, k) (in the case of Small Universe Set Cover), respectively.
To this end, we first use the framework presented in Section 3 to prove that
another problem, which is called RBDS, does not have a polynomial kernel.
Then, by giving polynomial parameter transformations from RBDS to the above
problems, we show the non-existence of polynomial kernels for these problems.
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In Red-Blue Dominating Set (RBDS) we are given a bipartite graph
G = (T ∪ N,E) and an integer k and asked whether there exists a vertex
set N ′ ⊆ N of size at most k such that every vertex in T has at least one
neighbor in N ′. We show that RBDS parameterized by (|T |, k) does not have a
polynomial kernel. In the literature, the sets T and N are called “blue vertices”
and “red vertices”, respectively. In this paper we will call the vertices “terminals”
and “nonterminals” in order to avoid confusion with the colored version of the
problem that we are going to introduce. RBDS is equivalent to Set Cover and
Hitting Set and, therefore, NP-complete [10]. In the colored version of RBDS,
denoted by Colored Red-Blue Dominating Set (Col-RBDS), the vertices
of N are colored with colors chosen from {1, . . . , k}, that is, we are additionally
given a function col : N → {1, . . . , k}, and N ′ is required to contain exactly one
vertex of each color. We will now follow the framework from Section 3.

Lemma 1. [�]1 (1) The unparameterized version of RBDS is in NP, and the
unparameterized version of Col-RBDS is NP-hard. (2) There is a polynomial
parameter transformation from Col-RBDS to RBDS. (3) Col-RBDS is solv-
able in 2|T |+k · |T ∪N |O(1) time.

Lemma 2. Col-RBDS parameterized by (|T |, k) is compositional.

Proof. For a sequence (G1 = (T1∪N1, E1), k, col1), . . . , (Gt =(Tt∪Nt, Et), k, colt)
of Col-RBDS instances with |T1| = |T2| = . . . = |Tt| = p, we show how
to construct a Col-RBDS instance (G = (T ∪ N,E), k, col) as described in
Definition 2.

For i ∈ {1, . . . , t}, let Ti := {ui
1, . . . , u

i
p} and Ni := {vi

1, . . . , v
i
qi
}. We start

with adding p vertices u1, . . . , up to the set T of terminals to be constructed.
(We will add more vertices to T later.) Next, we add to the set N of nonterminals
all vertices from the vertex sets N1, . . . , Nt, preserving the colors of the vertices.
That is, we set N =

⋃
i∈{1,...,t}Ni, and col(vi

j) = coli(vi
j). Now, we add the edge

set
⋃

i∈{1,...,t}
{
{uj1 , v

i
j2} | {ui

j1 , v
i
j2} ∈ Ei

}
to G (see Figure 1). The graph G and

the coloring col constructed so far have the following property: If at least one
of (G1, k, col1), . . . , (Gt, k, colt) is a yes-instance, then (G, k, col) is also a yes-
instance. However, (G, k, col) may even be a yes-instance in the case where all
instances (G1, k, col1), . . . , (Gt, k, colt) are no-instances, because in G one can
select vertices into the solution that originate from different instances of the
input sequence.

To ensure the correctness of the composition, we add more vertices and
edges to G. We define for every graph Gi of the input sequence a unique
identifier ID(Gi), which consists of a size-(p + k) subset of {1, . . . , 2(p + k)}.
Since

(
2(p+k)

p+k

)
≥ 2p+k and since we can assume that the input sequence does not

contain more than 2p+k instances, it is always possible to assign unique identifiers
to all instances of the input sequence. For each color pair (a, b) ∈ {1, . . . , k} ×
{1, . . . , k} with a �= b, we add a vertex set W(a,b) = {w(a,b)

1 , . . . , w
(a,b)
2(p+k)} to T ,

(see Figure 1), and we add to E the edge set
1 Proofs of results labelled with [�] have been omitted, whole or in part.
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N1

T1

N2

N2

T2

W(white,black)

. . .. . .
w

(white,black)
1 . . . w

(white,black)
4 . . . w

(white,black)
7

ID(G1) =
{1, 2, 5, 7}

ID(G2) =
{2, 6, 7, 8}

N

Fig. 1. Example for the composition algorithm for Col-RBDS. The upper part of the
figure shows an input sequence consisting of two instances with k = 3 (there are three
colors: white, checkered, and black). The lower part of the figure shows the output of
the composition algorithm. For the sake of clarity, only the vertex set W(white,black) is
displayed, whereas five other vertex sets W(a,b) with a, b ∈ {white, checkered, black}
are omitted. Since k = 3 and p = 5, each ID should consist of eight numbers,
and W(white,black) should contain 16 vertices. For the sake of clarity, the displayed
IDs consist of only four numbers each, and W(white,black) contains only eight vertices.

⋃
i∈{1,...,t},j1∈{1,...,qi}

{
{vi

j1 , w
(a,b)
j2

} | a = col(vi
j1) ∧ b �= a ∧ j2 ∈ ID(Gi)

}
∪

⋃
i∈{1,...,t},j1∈{1,...,qi}

{
{vi

j1 , w
(a,b)
j2

} | b = col(vi
j1) ∧ a �= b ∧ j2 /∈ ID(Gi)

}
.

Note that the construction conforms to the definition of a composition algo-
rithm; in particular, k remains unchanged and the size of T is polynomial in p, k
because |T | = p + k(k − 1) · 2(p + k). To prove the correctness of the construc-
tion, we show that (G, k, col) has a solution N ′ ⊆ N if and only if at least one
instance (Gi, k, coli) from the input sequence has a solution N ′

i ⊆ Ni.
In one direction, if N ′

i ⊆ Ni is a solution for (Gi, k, coli), then the same vertex
set chosen from N forms a solution for (G, k, col). To see this, note that for every
color pair (a, b) ∈ {1, . . . , k} × {1, . . . , k} with a �= b, each vertex from W(a,b) is
either connected to all vertices v from Ni with col(v) = a or to all vertices v
from Ni with col(v) = b.

In the other direction, to show that any solution N ′ ⊆ N for (G, k, col) is a
solution for at least one instance (Gi, k, coli), we prove that N ′ cannot contain
vertices originating from different instances of the input sequence. To this end,
note that each two vertices in N ′ must have different colors: Assume, for the sake
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of a contradiction, that N ′ contains a vertex vi1
j1

with col(vi1
j1

) = a originating
from the instance (Gi1 , k, coli1) and a vertex vi2

j2
with col(vi2

j2
) = b originating

from a different instance (Gi2 , k, coli2). Due to the construction of the IDs, we
have ID(Gi1)\ ID(Gi2) �= ∅ and ID(Gi2 )\ ID(Gi1 ) �= ∅. No vertex w

(a,b)
j with j ∈

ID(Gi2 ) \ ID(Gi1) and no vertex w
(b,a)
j with j ∈ ID(Gi1 ) \ ID(Gi2) is adjacent

to one of vi1
j1

and vi2
j2

. Therefore, N ′ does not dominate all vertices from T—a
contradiction. �
Theorem 2. The problems Red-Blue Dominating Set and Steiner Tree,
both parameterized by (|T |, k), the problems Connected Vertex Cover and
Capacitated Vertex Cover, both parameterized by k, the problem Small

Universe Set Cover parameterized by (k, d), and the problem Set Cover

parameterized by solution size k and the maximum size of any set in F do not
admit polynomial kernels unless PH = Σ3

p .

Proof. For RBDS the statement of the theorem follows directly by Theorem 1
together with Lemmata 1 and 2.

To show that the statement is true for the other four problems, we give poly-
nomial parameter transformations from RBDS to each of them—due to Propo-
sition 1, this suffices to prove the statement. Let (G = (T ∪ N,E), k) be an
instance of RBDS. To transform it into an instance (G′ = (T ′ ∪ N,E′), k) of
Steiner Tree, define T ′ = T ∪ {ũ} where ũ is a new vertex and let E′ =
E ∪ {{ũ, vi} | vi ∈ N}. It is easy to see that every solution for Steiner Tree

on (G′, k) one-to-one corresponds to a solution for RBDS on (G, k).
To transform (G, k) into an instance (G′′ = (V ′′, E′′), k′′) of ConVC, first

construct the graph G′ = (T ′ ∪ N,E′) as described above. The graph G′′ is
then obtained from G′ by attaching a leaf to every vertex in T ′. Now, G′′ has a
connected vertex cover of size k′′ = |T ′| + k = |T | + 1 + k iff G′ has a Steiner
tree containing k vertices from N iff all vertices from T can be dominated in G
by k vertices from N .

Next, we describe how to transform (G, k) into an instance (G′′′ = (V ′′′, E′′′),
cap, k′′′) of CapVC. First, for each vertex ui ∈ T , add a clique to G′′′ that
contains four vertices u0

i , u
1
i , u

2
i , u

3
i . Second, for each vertex vi ∈ N , add a ver-

tex v′′′i to G′′′. Finally, for each edge {ui, vj} ∈ E with ui ∈ T and vj ∈ N ,
add the edge {u0

i , v
′′′
j } to G′′′. The capacities of the vertices are defined as fol-

lows: For each vertex ui ∈ T , the vertices u1
i , u

2
i , u

3
i ∈ V ′′′ have capacity 1 and

the vertex u0
i ∈ V ′′′ has capacity degG′′′(u0

i ) − 1. Each vertex v′′′i has capac-
ity degG′′′(v′′′i ). Clearly, in order to cover the edges of the size-4 cliques inserted
for the vertices of T , every capacitated vertex cover for G′′′ must contain all
vertices u0

i , u
1
i , u

2
i , u

3
i . Moreover, since the capacity of each vertex u0

i is too small
to cover all edges incident to u0

i , at least one neighbor v′′′j of u0
i must be selected

into every capacitated vertex cover for G′′′. Therefore, it is not hard to see that
G′′′ has a capacitated vertex cover of size k′′′ = 4 · |T |+ k iff all vertices from T
can be dominated in G by k vertices from N .

The results for Small Universe Set Cover and Set Cover follow from
the equivalence of Set Cover and RBDS. �
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Unique Coverage. In the Unique Coverage problem we are given a universe
U , a family of sets F over U and an integer k. The problem is to find a subfamily
F ′ of F and a set S of elements in U such that |S| ≥ k and every element of
S appears in exactly one set in F ′, that is, the number of elements uniquely
covered by F ′ is at least k.

In order to obtain our negative results we have to utilize positive kernelization
results for the problem. In some sense, we have to compress our instances as much
as possible in order to show that what remains is incompressible even though
it is big. We utilize the following well-known and simple reduction rules for the
problem: (a) If any set S ∈ F contains at least k elements, return yes; (b) If any
element e is not contained in any set in F , remove e from U ; and (c) If none of
the above rules can be applied and |U | ≥ k(k − 1) return yes.

We show that the Unique Coverage problem does not have a polynomial ker-
nel unless PH=Σ3

p. Notice that while the above reduction rules will compress the
instance to an instance with atmostO(k2) elements, this is not a polynomial kernel
because there is no polynomial bound on the size ofF . We start by defining the col-
orful reduced version Colored Reduced Unique Coverage (Col-Red-UC)
of the Unique Coverage problem. In this version the sets of F are colored with
colors from {1, . . . , k} and F ′ is required to contain exactly one set of each color.
Furthermore, in Col-Red-UC every setS inF has size atmost k−1 and |U | ≤ k2.

Lemma 3. [�] (1) The unparameterized version of Unique Coverage is in
NP, and the unparameterized version of Col-Red-UC is NP-hard. (2) There
is a polynomial parameter transformation from Col-Red-UC to Unique Cov-

erage. (3) Col-Red-UC parameterized by k is solvable in time O(k2k2
).

Lemma 4. [�] The Col-Red-UC problem is compositional.

Proof. Given a sequence of Col-Red-UC instances I1 = (U,F1, k), . . . , It =
(U,Ft, k), we construct a Col-Red-UC instance I = (U ′,F , k′). If the number
of instances t is at least 22k2 log k then running the algorithm from Lemma 3 on all
instances takes time polynomial in the input size yielding a trivial composition
algorithm. Thus we assume that t is at most 22k2 log k. We now construct ID’s for
for every instance, this is done in two steps. In the first step every instance i gets
a unique small id ID′(Ii) which is a subset of size k3/2 of the set {1, . . . , k3}.
The identifier of instance i is the set ID(Ii) which is defined to be ID(Ii) = {x ∈
N : �x/k3� ∈ ID′(Ii)}. In other words, ID(Ii) = {k3 · j + j′ | j ∈ ID′(Ii) ∧ j′ ∈
{0, . . . , k3 − 1}}. Notice that the identifier of every instance is now a subset of
size k6/2 of the set {1, . . . , k6} and that the IDs of two different instances differ
in at least k3 places.

We start building the instance I by letting U ′ = U and F = F1 ∪ F2 . . . ∪ Ft.
The sets have the same color as in their respective instance. For every distinct
ordered pair of colors i, j ≤ k we add the set Ui,j = {u1

i,j, . . . , u
k6

i,j} to U ′. For
every instance Ip we consider the sets colored i and j respectively in Fp. To every
set S with color i inFp we add the set {ux

i,j : x ∈ ID(Ip)}. Also, to every set S with
color j in Fp we add the set {ux

i,j : x /∈ ID(Ip)}. Finally we set k′ = k(k−1)k6+k.
This concludes the construction. The correctness proof is omitted. �
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Theorem 3. The Unique Coverage problem parameterized by k does not
admit a polynomial kernel unless PH = Σ3

p .

Bounded Rank Disjoint Sets. In the Bounded Rank Disjoint Sets problem
we are given a family F over a universe U with every set S ∈ F having size at
most d together with a positive integer k. The question is whether there exists a
subfamily F ′ of F with |F ′| ≥ k such that for every pair of sets S1, S2 ∈ F ′ we
have that S1∩S2 = ∅. The problem can be solved in time 2O(dk)nO(1) using color-
coding and an application of dk-perfect hash families. To show that this problem
does not admit a poly(k, d) kernel, we define a variation of the Perfect Code

problem on graphs: In Bipartite Regular Perfect Code we are given a
bipartite graph G = (T ∪N,E), where every vertex in N has the same degree,
and an integer k and asked whether there exists a vertex set N ′ ⊆ N of size at
most k such that every vertex in T has exactly one neighbor in N ′.

Theorem 4. [�] Bipartite Regular Perfect Code parameterized by (|T |, k)
and Bounded Rank Disjoint Sets parameterized by (d, k) do not have a poly-
nomial kernel unless PH = Σ3

p.

5 Domination and Transversals
In the Small Universe Hitting Set problem we are given a set family F over
a universe U with |U | ≤ d together with a positive integer k. The question is
whether there exists a subset S in U of size at most k such that every set in F has
a non-empty intersection with S. We show that the Small Universe Hitting

Set problem parameterized by the solution size k and the size d = |U | of the
universe does not have a kernel of size polynomial in (k, d) unless PH = Σ3

p .
We define the colored version of Small Universe Hitting Set, called Col-

SUHS as follows. We are given a set family F over a universe U with |U | ≤ d,
and a positive integer k. The elements of U are colored with colors from the set
{1, . . . , k} and the question is whether there exists a subset S ⊆ U containing
exactly one element of each color such that every set in F has a non-empty
intersection with S.

Lemma 5. [�] (1) The unparameterized version of Small Universe Hitting

Set is in NP, and the unparameterized version of Col-SUHS is NP-hard. (2)
There is a polynomial parameter transformation from Col-SUHS to Small

Universe Hitting Set. (3) Col-SUHS parameterized by d, k is solvable in
time O(2d · nO(1)).

Lemma 6. The problem Col-SUHS is compositional.

Proof. Given a sequence (F1, U, d, k), . . . , (Ft, U, d, k) of Col-SUHS instances
where |U | ≤ d, we construct an instance (F , U ′, d′, k′) of Col-SUHS as de-
scribed in Definition 2. Due to the time-O(2d · nO(1)) algorithm from Lemma 5,
we can assume that t ≤ 2d. Furthermore, we need the number of instances to be
a power of 2. To make this true we add an appropriate number of no-instances,
such that the total number of instances is 2l. Since t ≤ 2d we have that l ≤ d.
Now, let every instance be identified by a unique number from 0 to t− 1.



388 M. Dom, D. Lokshtanov, and S. Saurabh

We let k′ = k+l and start building (F , U ′, d′, k′) from (F1, U, d, k), . . . , (Ft, U,
d, k) by letting U ′ = U and letting elements keep their color. For every i ≤ t
we add the family Fi to F . We now add 2l new elements C = {a1, b1, . . . , al, bl}
to U ′ and for every i ≤ l, {ai, bi} comprise a new color class. We conclude the
construction by modifying the sets in F that came from the input instances
to the composition algorithm. For every j ≤ t we consider all sets in Fj . For
every such set S we proceed as follows. Let ID(j) be the identification number
of instance number j. For every i ≤ l we look at the i’th bit in the binary
representation of ID(j). If this bit is set to 1 we add ai to S and if the bit is set
to 0 we add bi to S. This concludes the construction.

Now, if there is a colored hitting set S for Fj with |S| ≤ k, one can construct
a colored hitting set S′ for F of size k + l as follows. First, add S to S′ and
then consider the identification number ID(j) of instance j. For every i between
1 and l consider the i’th bit of ID(j). If this bit is set to 1 add bj to S′ else add
aj to S′. Clearly S′ is a hitting set for Fi, has size k+ l and contains one vertex
of each color. Moreover, one can easily prove that S′ hits all other sets of F .

In the other direction, suppose there is a colored hitting set S′ of size l+ k of
F . For every i ≤ l, exactly one out of the vertices ai and bi is in S′. Let p be the
number between 0 and 2l − 1 such that for every i the i’th bit of p is 1 if and
only if bi ∈ S′. Observe that the sets in F originating from the family Fj such
that ID(j) = p do not contain any of the elements of S′ ∩C. Thus S′′ = S′ ∩ U
is a colored hitting set for Fj containing at most one element from each color
class. S′′ can thus be extended to a colored hitting set S of Fj with |S| = k. �

Theorem 5. [�] Small Universe Hitting Set parameterized by solution size k
and universe size |U | = d does not have a polynomial kernel unless PH = Σ3

p . The
Dominating Set problem parameterized by the solution size k and the size c of a
minimum vertex cover of the input graph does not have a polynomial kernel.

Theorem 5 has some interesting consequences. For instance, the second part of
Theorem 5 implies that the Dominating Set problem in graphs excluding a
fixed graph H as a minor parameterized by (k, |H |) does not have a kernel of
size poly(k, |H |) unless PH = Σ3

p .

Theorem 6. Unless PH = Σ3
p the problems Hitting Set parameterized by

solution size k and the maximum size d of any set in F , Dominating Set

in H-Minor Free Graphs parameterized by (k, |H |), and Dominating Set

parameterized by solution size k and degeneracy d of the input graph do not have
a polynomial kernel.

6 Numeric Problem: Small Subset Sum

In the Subset Sum problem we are given a set S of n integers and a target t and
asked whether there is a subset S′ of S that adds up to exactly t. In the most
common parameterization of the problem one is also given an integer k, and S′
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may contain not more than k numbers. This parameterization is W [1]-hard. We
consider a stronger parameterization where in addition to k a parameter d is
provided and the integers in S must have size at most 2d. This version, Small

Subset Sum, is trivially fixed parameter tractable by dynamic programming.

Theorem 7. [�] Small Subset Sum parameterized by (d, k) does not admit a
kernel polynomial in (d, k) unless PH = Σ3

p.
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Abstract. Consider the “Number in Hand” multiparty communication complex-
ity model, where k players P1, . . . , Pk holding inputs x1, . . . , xk ∈ {0, 1}n (re-
spectively) communicate in order to compute the value f(x1, . . . , xk). The main
lower bound technique for the communication complexity of such problems is
that of partition arguments: partition the k players into two disjoint sets of play-
ers and find a lower bound for the induced two-party communication complexity
problem. In this paper, we study the power of the partition arguments method.
Our two main results are very different in nature:

(i) For randomized communication complexity we show that partition arguments
may be exponentially far from the true communication complexity. Specifically,
we prove that there exists a 3-argument function f whose communication com-
plexity is Ω(n) but partition arguments can only yield an Ω(log n) lower bound.
The same holds for nondeterministic communication complexity.
(ii) For deterministic communication complexity, we prove that finding signifi-
cant gaps, between the true communication complexity and the best lower bound
that can be obtained via partition arguments, would imply progress on (a gener-
alized version of) the “log rank conjecture” of communication complexity.

1 Introduction

Yao’s two-party communication complexity [23] is a well studied model (see [16] for
background). Several extensions of this model for multiparty settings were considered
in the literature. In this paper, we consider the following extension that is arguably
the simplest one (alternative mutltiparty models are discussed below): there are k > 2
players P1, . . . , Pk, where each player Pi holds an input xi ∈ {0, 1}n. The players
communicate by using a broadcast channel (sometimes referred to as a “blackboard” in
the communication complexity literature) and their goal is to compute some function f
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evaluated at their inputs, i.e., the value f(x1, . . . , xk), while minimizing the number of
bits communicated.1

As in the two-party case, the most interesting question for such a model is proving
lower bounds, with an emphasis on “generic” methods. The main lower bound method
known for the above multiparty model is the so-called partition argument method.
Namely, the k players are partitioned into two disjoint sets of players A and B and we
look at the induced two-argument function fA,B defined by fA,B({xi}i∈A, {xi}i∈B) def=
f(x1, . . . , xk). Then, by applying any of the various lower-bound methods known for
the two-party case, we obtain some lower bound �A,B on the (two-party) communica-
tion complexity of fA,B. This value is obviously a lower bound also for the (multiparty)
communication complexity of f . Finally, the partition arguments bound �PAR is the best
lower bound that can be obtained in this way; namely, �PAR = maxA,B {�A,B}, where
the maximum is taken over all possible partitions A,B as above.

The fundamental question studied in this work is whether the partition argument
method suffices for determining the multiparty communication complexity of every
k-argument function f ; or, how close is the partition argument bound to the true com-
munication complexity of f . More specifically,

Question. Is there a constant c ≥ 1 such that, for every k-argument function f , the
k-party communication complexity of f is between �PAR and (�PAR)c ?

As usual, this question can be studied with respect to various communication com-
plexity measures (deterministic, non-deterministic, randomized etc.).

Our Results. On one hand, for the deterministic case, we explain the current state of af-
fairs where partition arguments seem to yield essentially the best known lower bounds.
We do this by relating the above question, in the deterministic setting, to one of the
central open problems in the study of communication complexity, the so-called “log-
rank conjecture” (see [21, 20] and the references therein), stating that the deterministic
communication complexity of every two-argument boolean function g is polynomially-
related to the log of the algebraic rank (over the reals) of the matrix Mg corresponding
to the function. Specifically, we show that if (a natural extension of) the log-rank con-
jecture holds then the answer to the above question is positive; namely, in this case, the
partition arguments bound is polynomially close to the true multiparty communication
complexity. In other words, a negative answer to the above question implies refuting
the (generalized) log-rank conjecture. Furthermore, we characterize the collections of
partitions one has to consider in order to decide if the rank lower bound is applica-
ble for a given k-argument function. Specifically, these are the collections of partitions
such that for every two players Pi and Pj there is a partition A,B such that i ∈ A and
j ∈ B. That is, if all induced functions in such a collection are easy, then, assuming the
generalized “log rank” conjecture, the original function is easy as well.

On the other hand, we show that both in the case of randomized communication
complexity and in the case of non-deterministic communication complexity, the answer
to the above question is negative (in a very strong manner). Namely, there exists a

1 If broadcast is not available, but rather the players are connected via point-to-point channels,
this influences the communication complexity by a factor of at most k; we will mostly view k
as a constant (e.g., k = 3) and hence the difference is minor.
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3-argument function f , for which the partition-argument bound cannot yield a lower
bound better than Ω(log n) (or, in other words, each of the induced two-party functions
has an upper bound of O(log n)); however, the true 3-party communication complexity
of f is exponentially larger, i.e. Ω(n) (of course, our lower bound should be proved
using a different method; specifically, we pick the function f from a carefully designed
family of functions, where the induced two-argument functions for all of them have
low complexity, and show that with positive probability we will get a function with
large multiparty communication complexity).2 In the full version of the paper, we show
that there exist search problems (relations) that require Ω(n) bits of communication
while all their induced relations can be solved without communication at all. The full
version also contains a comparison between the lower bounds achieved by applying
“fooling set” technique to a function f and the bounds we get by applying the same
lower bound technique to the induced functions of f .

Related work. Multiparty communication complexity was studied in other models as
well. Dolev and Feder [9, 8] (see also [10, 11]) studied a k-party model where the com-
munication is managed via an additional party referred to as the “coordinator”. Their
main result is a proof that the gap between the deterministic and the non-deterministic
communication complexity of every function is quadratic even in this multiparty set-
ting. Their motivation was bridging between the two-party communication complexity
model and the model of decision trees, where both have such quadratic gaps. Our model
differs from theirs in terms of the communication among players and in that we con-
centrate on the case of a small number of players.

Another popular model in the study of multiparty communication complexity is the
so-called “Number On the Forehead” (NOF) model [6, 3], where each party Pi gets all
the inputs x1, . . . , xk except for xi. This model is less natural in distributed systems
settings but it has a wide variety of other applications. It is interesting to note that in
the NOF model, partition arguments are useless (because every two players when put
together know the entire input to f ).

Our results concern the “Number in Hand” k-party model. Lower bound techniques
different from partition arguments were presented by Chakrabarti et al. [5], following [2,
4]. These lower bounds are for the “disjointness with unique intersection” promise prob-
lem. In this problem, the k inputs are subsets of a universe of size n, together with the
promise that the k sets are either pairwise disjoint or uniquely intersecting, i.e. they
have one element in common but are otherwise disjoint. Note that partition arguments
are useless for this promise problem: any two inputs determine the output. Chakrabarti
et al. prove a near optimal lower bound of Ω(n/k log k) for this function, using infor-
mation theoretical tools from [4]. Their result is improved to the optimal lower bound
of Ω(n/k) in [13]. This problem has applications to the space complexity of approx-
imating frequency moments in the data stream model (see [1, 2]). It should be noted,
however, that there are several contexts where the communication complexity of rela-
tions and, in particular, of promise problems, seems to behave differently than that of
functions (e.g, the context of the “direct-sum” problem [12]). Indeed, for functions, no
lower bound technique different than partition arguments is known.

2 Note that, in order to give a negative answer to the above question, it is enough to discuss the
case k = 3. This immediately yields a gap also for larger values of k.
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2 Preliminaries

Notation. For a positive integer m, we denote by [m] the set {1, 2, . . . ,m}. All the
logarithms in this paper are to the base 2. For two strings x, y ∈ {0, 1}∗, we use x◦y to
denote their concatenation. We refer by poly(n) to the set of functions that are asymp-
totically bounded by a polynomial in n.

Two-Party Communication Complexity. For a Boolean function g : {0, 1}n ×
{0, 1}n → {0, 1}, denote by D(g) the deterministic communication complexity of
g, i.e., the number of bits Alice, holding x ∈ {0, 1}n, and Bob, holding y ∈ {0, 1}n,
need to exchange in order to jointly compute g(x, y). Denote by Mg ∈ {0, 1}2n×2n

the
matrix representing g, i.e., Mg[x, y] = g(x, y) for every (x, y) ∈ {0, 1}n × {0, 1}n.

k-Party Communication Complexity. Let f : ({0, 1}n)k → {0, 1} be a Boolean
function. A set of k players P1, . . . , Pk hold inputs x1, . . . , xk respectively, and wish
to compute f(x1, . . . , xk). The means of communication is broadcast. Again, we de-
note by D(f) the complexity of the best deterministic protocol for computing f in this
model, where the complexity of a protocol is the number of bits sent on the worst-case
input. Generalizing the two-argument case, we represent f using a k-dimensional tensor
Mf .

Non-Deterministic Communication Complexity. For b ∈ {0, 1}, a b-monochromatic
(combinatorial) rectangle of a function g : {0, 1}n × {0, 1}n → {0, 1} is a set of pairs
R = X × Y , where X,Y⊆{0, 1}n, such that for every x ∈ X and y ∈ Y it holds
that g(x, y) = b. A b-cover of g of size t is a set of (possibly overlapping) rectangles
R = {R1, . . . , Rt} such that, for every pair (x, y) ∈ {0, 1}n × {0, 1}n, if g(x, y) = b
then there exists an index i ∈ [t] such that (x, y) ∈ Ri. Denote by Cb(g) the size of the
smallest b-cover of g. The non-deterministic communication complexity of g is denoted
by N1(g) = logC1(g). Similarly, the co-non-deterministic communication complexity
of g is denoted by N0(g) = logC0(g). Finally, denote C(g) = C0(g) + C1(g) and
N(g) = logC(g) ≤ max(N0(g), N1(g)) + 1. (An alternative to this combinatorial
definition asks for the number of bits that the parties need to exchange so as to verify
that f(x, y) = b.) All these definitions generalize naturally to k-argument functions,
where we consider combinatorial k-boxesB = X1×· · ·×Xk, rather than combinatorial
rectangles.

Randomized Communication Complexity. For a function g : {0, 1}n × {0, 1}n →
{0, 1} and a positive number 0 ≤ ε < 1

2 , denote by Rε(g) the communication com-
plexity of the best randomized protocol for g that errs on every input with probability
at most ε, and denote R(g) = R 1

3
(g). Newman [19] proved that the public-coin model,

where the players share a public random string, is equivalent, up to an additive factor
of O(log n) communication, to the private-coin model, where each party uses a private
independent random string. Moreover, he proved that w.l.o.g, the number of random
strings used by the players in the public-coin model is polynomial in n. All these re-
sults can be easily extended to k-argument functions.

Lemma 2.1 ([19]). There exist constants c > 0, c′ ≥ 1 such that for every Boolean
function g : {0, 1}n×{0, 1}n → {0, 1}, if R(g) = r(n) then there exists a protocol for
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g in the public-coin model with communication complexity c′ · r(n) that uses random
strings taken from a set of size O(nc).

3 The Deterministic Case

In this section we study the power of partition-argument lower bounds in the determin-
istic case.

Question 1. Let k ≥ 3 be a constant integer and f be a k-argument function. What is
the maximal gap between D(f) and the maximum maxA,B D(fA,B) over all partitions
of [k] into (disjoint) subsets A and B?

In Section 3.2, we use properties of tensor algebra to show that under a generalized
version of the well known “log rank” conjecture, partition arguments are universal for
multi-party communication complexity. We also characterize the set of partitions one
needs to study in order to analyze the communication complexity of a k-argument func-
tion. Before that, we give in Section 3.1 a simpler proof for the case k = 3. This proof
avoids the use of tensor algebra that is needed in the general case.

Let g : {0, 1}n × {0, 1}n → {0, 1} be a Boolean two-argument function and Mg ∈
{0, 1}2n×2n

be the matrix representing it. It is well known that log rank(Mg) serves as
a lower bound on the (two-party) deterministic communication complexity of g.

Theorem 3.1 ([18]). For any function g : {0, 1}n×{0, 1}n → {0, 1}, we haveD(g) ≥
log rank(Mg).

An important open problem in communication complexity is whether the converse is
true. This problem is known as the “log rank conjecture.” Formally,

Conjecture 3.2 (Log Rank Conjecture). There exists a constant c > 0 such that every
function g : {0, 1}n × {0, 1}n → {0, 1} satisfies D(g) = O((logc rank(Mg)).

It is known that if such a constant c exists, then c > 1/0.58 = 1.724 [20]. As in
the two-party case, in k-party communication complexity still log rank(Mf ) ≤ D(f)
(formal definition of rank(Mf ) appears in Subsection 3.2). This is true for exactly the
same reason as in the two-party case: any deterministic protocol whose complexity is c
induces a partition of the tensor Mf into 2c monochromatic k-boxes. Such boxes are, in
particular, rank-1 tensors whose sum is Mf . This, in turn, leads to the following natural
generalization of the above conjecture.

Conjecture 3.3 (Log Rank Conjecture for k-Party Computation). Let k be a constant.
There exists a constant c′ = c′(k) > 0, such that for every function f : ({0, 1}n)k →
{0, 1} it holds that D(f) = O(logc′ rank(Mf)).

Computationally, even tensor rank in three dimensions is very different than rank in two
dimensions. While the former is NP-Complete (see [14]), the latter can be computed
very efficiently using, e.g., Gaussian elimination. However, in the (combinatorial) con-
text of communication complexity, much of the properties are the same in two and three
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dimensions. We will show below that, assuming Conjecture 3.3 is correct, the answer
to Question 1 is that the partition argument technique always produces a bound that is
within a polynomial factor of the true bound. We start with the case k = 3 whose proof
is similar in nature to the general case but is somewhat simpler and avoids the tensor
notation.

3.1 The Three-Party Case

We start with the definition of a rank of three dimensinal matrices, known as tensor
rank.

Definition 3.4 (Rank of A Three Dimensional Matrix). A three dimensional matrix
M ∈ �m×m×m is of rank 1 if there exist three non-zero vectors v, u, w ∈ �m such that,
for every x, y, z ∈ [m], it holds that M [x, y, z] = v[x]u[y]w[z]. In this case3, we write
M = v⊗u⊗w. A matrix M ∈ �m×m×m is of rank r if it can be represented as a sum
of r rank 1 matrices (i.e., for some rank-1 three-dimensional matrices M1, . . . ,Mr ∈
�

m×m×m we have M = M1 + . . . + Mr), but cannot be represented as the sum of
r − 1 rank 1 matrices.

The next theorem states that, assuming the log rank conjecture for 3-party protocols,
partition arguments are universal. Furthermore, it is enough to study the communication
complexity of any two of the three induced functions, in order to understand the commu-
nication complexity of the original function. We will use the notation f1 := f{1},{2,3},
f2 := f{2},{1,3}, and f3 := f{3},{1,2}.

Theorem 3.5. Let f : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1} be a Boolean function.
Consider any two induced functions of f , say f1, f2, and assume that Conjecture 3.3
holds with a constant c′ > 0. Then D(f) = O((D(f1) +D(f2))c′).

Towards proving Theorem 3.5, we analyze the connection between the rank of a three-
dimensional matrix M ∈ �m×m×m and some related two-dimensional matrices. More
specifically, given M , consider the following two-dimensional matrices M1,M2,M3 ∈
�

m×m2
, which we call the induced matrices of M :

M1[x, 〈y, z〉] = M [x, y, z], M2[y, 〈x, z〉] = M [x, y, z], M3[z, 〈x, y〉] = M [x, y, z]

We show that if M has “large” rank, then at least two of its induced matrices have large
rank, as well 4.

Lemma 3.6. Let r1 = rank(M1) and r2 = rank(M2). Then rank(M) ≤ r1r2.

Proof. Let v1, . . . , vr1 ∈ �n be a basis to the columns of M1. Let u1, . . . , ur2 ∈ �n

be a basis to the columns of M2. We claim that there are r1r2 vectors w1,1, . . . , wr1,r2

3 Note that the definition is symmetric with respect to v, u, and w.
4 It is possible to have one induced matrix with small rank. For example, if M is defined so that
M [x, y, z] = 1 if y = z and M [x, y, z] = 0 otherwise, then M has rank m while its induced
matrix M1 is of rank 1.
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such that M =
∑r1

i=1

∑r2
j=1 vi ⊗ uj ⊗ wi,j . This implies that rank(M) ≤ r1r2, as

required.
Fix z ∈ [m], and consider the matrix Az ∈ �m×m defined by Az[x, y] = M [x, y, z].

Observe that the columns of the matrix Az belong to the set of columns of the matrix
M1 (note that along each column of Az only the x coordinate changes, exactly as is the
case along the columns of the matrixM1). Therefore, the columns of Az are spanned by
the vectors v1, . . . vr1 . Similarly, the rows of the matrix Az belong to the set of columns
of the matrix M2 (in each row of Az , the value x is fixed and y is changed as is the case
along the columns of the matrix M2) and are thus spanned by the vectors u1, . . . ur2

Let V ∈ �
m×r1 be the matrix whose columns are the vectors v1, . . . vr1 . Sim-

ilarly, let U ∈ �
r2×m be the matrix whose rows are u1, . . . , ur2 . The above ar-

guments show that there exists a matrix Q′
z ∈ �

m×r2 such that Az = Q′
zU and

rank(Q′
z) = rank(Az). This is since the row space of Az is spanned by the rows of U ,

and since the rows of U are independent. Hence, the column space of the matrix Q′
z is

identical to the column space of the matrix Az , and so it is also spanned by the columns
of the matrix V . Therefore, there exists a matrix Qz ∈ �r1×r2 such that Q′

z = V Qz .
Altogether, we get that Az = V QzU . Simple linear algebraic manipulations show that
this means that Az =

∑r1
i=1

∑r2
j=1 Qz[i, j]vi ⊗ uj .

Now, for every i ∈ [r1] and j ∈ [r2], define wi,j ∈ �n such that, for every z ∈ [m],
it holds that wi,j [z] = Qz[i, j]. Then M =

∑r1
i=1

∑r2
j=1 vi ⊗ uj ⊗ wi,j . �

Proof. (of Theorem 3.5) By the rank lower bound, log rank(Mf1) ≤ D(f1) and
log rank(Mf2) ≤ D(f2). By Lemma 3.6, rank(Mf ) ≤ rank(Mf1)rank(Mf2).
Therefore,

log rank(Mf) ≤ log rank(Mf1) + log rank(Mf2) ≤ D(f1) +D(f2).

Finally, assuming Conjecture 3.3, we get D(f) = O(logc′ rank(Mf )) = O((D(f1) +
D(f2))c′). �

3.2 The k-Party Case

We start with some mathematical background.

Tensors, Flattening, Pairing, and Rank. Let V1, . . . , Vk be vector spaces over the
same field F ; all tensor products are understood to be over that field. For any subset
I of [k] write VI :=

⊗
i∈I Vi. An element T of V[k] is called a k-tensor, and can be

written as a sum of pure tensors v1 ⊗ · · · ⊗ vk where vi ∈ Vi. The minimal number of
pure tensors in such an expression for T is called the rank of T . Hence, pure tensors
have rank 1.

If each Vi is some Fni , then an element of the tensor product can be thought of as a
k-dimensional array of numbers from F , of size n1 × · · · × nk. A rank-1 tensor is an
array whose (j1, . . . , jk)-entry is the product a1,j1 · · ·ak,jk

where (ai,j)j is an element
of Fni .

For any partition {I1, . . . , Im} of [k], we can view T as an element of
⊗

l∈[m](VIl
);

this is called the flattening �I1,...,ImT of T or just an m-flattening of T . It is the same
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tensor—or more precisely, its image under a canonical isomorphism—but the notion of
rank changes: the rank of this m-flattening is the rank of T considered as an m-tensor
in the space

⊗
l∈[m] Ul, where Ul happens to be the space VIl

.
If one views a k-tensor as a k-dimensional array of numbers, then an m-flattening is

an m-dimensional array. For instance, if k = 3 and n1 = 2, n2 = 3, n3 = 5, then the
partition {{1, 2}, {3}} gives rise to the flattening where the 2× 3× 5-array T is turned
into a 6 × 5-matrix.

Another operation that we will use is pairing. For a vector space U , denote by U∗

the dual space of functions φ : U → F that are F -linear, i.e., that satisfy φ(u + v) =
φ(u) + φ(v) and φ(cu) = cφ(u) for all u, v ∈ U and c ∈ F . Let I be a subset of [k],
let ξ = ⊗i∈Iξi ∈

⊗
i∈I(V

∗
i ) be a pure tensor, and let T = ⊗i∈[k]vi ∈ V[k] be a pure

tensor. Then, the pairing 〈T, ξ〉 ∈ V[k]\I is defined as 〈T, ξ〉 = c · ⊗i∈[k]\Ivi; where
c ∈ F is defined as c :=

(∏
i∈I〈vi, ξi〉

)
. The pairing is extended bilinearly in ξ and T

to general tensors. Note that ξ induces a natural linear map V[k] → V[k]\I , sending T to
the pairing 〈T, ξ〉.

If one views a k-tensor as a k-dimensional array of numbers, then pairing also re-
duces the dimension of the array. For instance, pairing a tensor T ∈ F2 ⊗ F3 ⊗ F5

with a vector in the dual of the last factor F5 gives a linear combination of the five
2× 3-matrices of which T consists. Pairing with pure tensors corresponds to a repeated
pairing with dual vectors in individual factors.

Here are some elementary facts about tensors, rank, flattening, and pairing:

Submultiplicativity. If T is a k-tensor in
⊗

i∈[k] Vi and S is an l-tensor in
⊗

j∈[l] Wj ,
then the rank of the (k + l)-tensor T ⊗ S is at most the product of the ranks of T
and S.

Subadditivity. If T1, T2 are k-tensors in
⊗

i∈[k] Vi, then the rank of the k-tensor T1 +
T2 is at most the sum of the ranks of T1 and T2.

Pairing with pure tensors does not increase rank. If T ∈ V[k] and ξ = ⊗i∈Iξi then
the rank of 〈T, ξ〉 is at most that of T .

Linear independence for 2-tensors. If a 2-tensor T in V1 ⊗V2 has rank d, then in any
expression

∑d
p=1 Rp ⊗ Sp = T with Rp ∈ V1 and Sp ∈ V2 the set {S1, . . . , Sp}

(and also the set {R1, . . . , Rp}) is linearly independent.

To state our theorem, we need the following definition.

Definition 3.7 (Separating Collection of Partitions). Let k be a positive integer. Let
C be a collection of partitions {I, J} of [k] = {1, . . . , k} into two non-empty parts. We
say that C is separating if, for every i, j ∈ [k] such that i �= j, there exists a partition
{I, J} ∈ C with i ∈ I and j ∈ J .

Theorem 3.8. Let f : ({0, 1}n)k → {0, 1} be a Boolean function. Let C be a separat-
ing collection of partitions of [k] and assume that Conjecture 3.3 holds with a constant
c′ > 0. Then

D(f) = O( (2(k − 1) max
{I,J}∈C

D(f I,J) )c′ ).

For a special separating collection of partitions we can give the following better bound.
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Theorem 3.9. Let f : ({0, 1}n)k → {0, 1} be a Boolean function. Set di :=
D(f{i},[k]\{i}) and assume that Conjecture 3.3 holds with a constant c′ > 0. Then
D(f) = O((

∑k−1
i=1 di)c′).

These results will follow from upper bounds on the rank of k-tensors, given upper
bounds on the ranks of the 2-flattenings corresponding to C.

Theorem 3.10. Let V1, . . . , Vk be finite-dimensional vector spaces and let T be a ten-
sor in their tensor product

⊗
i∈[k] Vi. Let C be a separating collection of partitions of

[k], and let dmax be the maximal rank of any 2-flattening �I,JT with {I, J} ∈ C. Then

rankT ≤ d
2(k−1)
max .

Proof. We prove the statement by induction on k. For k = 1 the statement is that
rankT ≤ 1, which is true. Now suppose that k > 1 and that the result is true for all l-
tensors with l < k and all separating collections of partitions of [l]. Pick {I, J} ∈ C and
write T =

∑d
p=1 Rp⊗Sp, whereRp ∈ VI , Sp ∈ VJ , d ≤ dmax, and the setsR1, . . . , Rd

and S1, . . . , Sd are both linearly independent. This is possible by the condition that the
2-tensor (or matrix) �I,JT has rank at most dmax. As the Sp are linearly independent,
we can find pure tensors ζ1, . . . , ζd ∈ V ∗

J such that the matrix (〈Sp, ζq〉)p,q is invertible.
For each q = 1, . . . , d set Tq := 〈T, ζq〉 ∈ VI . By invertibility of the ma-

trix (〈Sp, ζq〉)p,q every Rp is a linear combination of the Tq, so we can write T as
T =

∑d
p=1 Tp⊗S′

p, where S′
1, . . . , S

′
d are the linear combinations of the Si that satisfy

〈S′
p, ζq〉 = δp,q . Now we may apply the induction hypothesis to each Tq ∈ VI . Indeed,

for every {I ′, J ′} ∈ C such that I∩I ′, I∩J ′ �= ∅ we have �I∩I′,I∩J′Tq = 〈�I′,J′T, ζq〉,
and since ζq is a pure tensor, the rank of the right-hand side is at most that of �I′,J′T ,
hence at most dmax by assumption. Moreover, the collection

{{I ∩ I ′, I ∩ J ′} | {I ′, J ′} ∈ C with I ∩ I ′, I ∩ J ′ �= ∅}

is a separating collection of partitions of I . Hence each Tq satisfies the induction hy-

pothesis and we conclude that rankTq ≤ d
2(|I|−1)
max . A similar, albeit slightly asymmet-

ric, argument shows that rankS′
q ≤ d

2(|J|−1)+1
max : there exist pure tensors ξ1, . . . , ξd ∈

V ∗
I such that the matrix (〈Tp, ξr〉)p,r is invertible. This means that each S′

q is a linear
combination of the d tensors T ′

r := 〈T, ξr〉 ∈ VJ . The induction hypothesis applies
to each of these, and hence rankS′

q ≤ dmax · d2(|J|−1)
max by subadditivity. Finally, using

submultiplicativity and subadditivity we find

rankT ≤ dmax ·d2|I|−1
max ·dmax ·d2|J|−1

max = d2(k−1)
max , �

Proof. (of Theorem 3.8) By Conjecture 3.3, we have D(f) = O(logc′ rank(Mf)).
Theorem 3.10 yields log rank(Mf ) ≤ 2(k − 1)max{I,J}∈C log rank(MfI,J ), which
by the rank lower bound is at most 2(k − 1)max{I,J}∈C D(f I,J). This proves the
theorem. �

Just like Theorem 3.8 follows from Theorem 3.10, Theorem 3.9 follows immediately
from the following proposition.
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Proposition 3.11. Let V1, . . . , Vk be finite-dimensional vector spaces and let T be a
tensor in their tensor product

⊗
i∈[k] Vi. Denote the rank of the 2-flattening �{i},[k]\{i}T

by di. Then rankT ≤ d1 · · · dk−1.

Proof. Denote by Ui the subspace of Vi consisting of all pairings 〈T, ξ〉 as ξ runs over
V ∗

[k]\{i}. Then dimUi = di and the k-tensor T already lies in (
⊗

i∈[k−1] Ui)⊗Uk. After
choosing a basis of

⊗
i∈[k−1] Ui consisting of pure tensors Tl (l = 1, . . . , d1 · · · dk−1),

T can be written (in a unique manner) as
∑

l Tl ⊗ ul for some vectors ul ∈ Uk. Hence,
T has rank at most d1 · · ·dk−1. �

4 Other Models of Communication Complexity

4.1 The Nondeterministic Model

In this section, we show that in the nondeterministic model there are functions with
large communication complexity, for which all induced functions have low communi-
cation complexity. As in the deterministic case, the non-deterministic communication
complexity of the induced functions of f give a lower bound on the non-deterministic
communication complexity of f . It is natural to ask the analogue of Question 1 for non-
deterministic communication complexity. We will show however that there can be an
exponential gap between the non-deterministic communication complexity of a func-
tion and its induced functions. Note that, for proving the existence of a gap, it is enough
to present such a gap in the 3-party setting. Not being able to find an explicit function f
for which partition arguments result in lower bounds that are exponentially weaker than
the true non-deterministic communication complexity of f , we turn to proving that such
functions exist. Towards this goal, we use a well known combinatorial object – Latin
squares.

Definition 4.1 (Latin square). Let m be an integer. A matrix L ∈ [m]m×m is a Latin
square of dimension m if every row and every column of L is a permutation of [m].

The following lemma gives a lower bound on the number of Latin squares of dimension
m (see, for example, [22, Chapter 17]).

Lemma 4.2. The number of Latin squares of dimension m is at least
∏m

j=0 j!. In par-

ticular, this is larger than 2m2/4.

Let n be an integer and set m = 2n. Let L be a Latin square of dimension m. Define
the function fL : [m] × [m] × [m] → {0, 1} such that fL(x, y, z) = 1 if and only
if L[x, y] �= z. The non-deterministic communication complexity of f1

L, f2
L and f3

L is
at most logn = log logm since each of the induced functions locally reduces to the
function NEn : {0, 1}n × {0, 1}n → {0, 1}, defined by NEn(a, b) = 1 iff a �= b
for which it is known that N1(NEn) = logn + 1 (e.g., for f1

L, the player holding
(y, z) locally computes the unique value x0 such that L[x0, y] = z; then, the players
verify that x0 �= x). It is left to prove that there exists a Latin square L such that the
non-deterministic communication complexity of fL is Ω(n).
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Lemma 4.3. The number of different covers of size t of the [m] × [m] × [m] cube is at
most 23mt. (The proof is by simple counting and is omitted for lack of space.)

Theorem 4.4. There exists a Latin square L of dimension m = 2n such that the non-
deterministic communication complexity of fL is n−O(1).

Proof. For two different Latin squares L0 �= L1 of dimension m, it holds that fL0 �=
fL1 . In addition, no 1-cover R corresponds to two distinct functions f0 �= f1. Hence,
the number of covers needed to cover all the functions fL, where L is a Latin square
of dimension m, is at least 2m2/4. Let t be the size of the largest 1-cover among this
set of covers. Then we get that 23mt ≥ 2m2/4. Hence, 3mt ≥ m2/4, which implies
t ≥ m/12. Therefore, log t ≥ logm− log 12 = n− log 12. �

4.2 The Randomized Model

Next, we show that partition arguments are also not sufficient for proving tight lower
bounds on the randomized communication complexity. Let f : {0, 1}n × {0, 1}n →
{0, 1} be a Boolean function. Recall that R(f) denotes the communication complexity
of a best randomized protocol for f that errs with probability at most 1/3. It is well
known that R(NEn) = O(log n). Again, we use the functions defined by Latin squares
of dimension m = 2n. Our argument follows the, somewhat simpler, non-deterministic
case. On one hand, as before, the three induced functions are easily reduced to NE and
hence their randomized communication complexity is O(log n). To prove that some of
the functions fL are hard (i.e., an analog of Theorem 4.4), we need to count the number
of distinct randomized protocols of communication complexity log t.

Lemma 4.5. The number of different randomized protocols over inputs from [m] ×
[m] × [m] of communication complexity r is 2m2O(r)poly(log m).

Proof. By Lemma 2.1, any randomized protocol P , with communication complexity
r can be transformed into another protocol P ′ with communication complexity O(r)
that uses just O(log n) random bits (or, alternatively, poly(n) = poly(logm) possible
random tapes). Hence, we can view any randomized protocol of complexity r as a set
of poly(logm) disjoint covers of the cube [m] × [m] × [m], each consisting of at most
2O(r) boxes. The number of ways for choosing each such box is 23m and so the total
number of such protocols is 2m2O(r)poly(log m). �

Theorem 4.6. There exists a Latin square L of dimension m = 2n such that the ran-
domized communication complexity of fL is Ω(n).

Proof. By Lemma 4.2, the number of randomized protocols needed to solve all the
functions fL where L is a Latin square of dimension m must be at least 2m2/4 (again,
each randomized protocol corresponds to at most one function, according to the major-
ity value for each input). Let r be the maximum randomized complexity of a function
fL over the set of all Latin squares L. Then we get that 2m2O(r)poly(log m) ≥ 2m2/4.
Hence, m2O(r)poly(logm) ≥ m2/4, which implies 2O(r) ≥ m/poly(logm). There-
fore, r = Ω(logm− log logm) = Ω(n). �
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[14] Håstad, J.: Tensor rank is NP-complete. J. Algorithms 11(4), 644–654 (1990)
[15] Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require super-

logarithmic depth. In: Proc. of the 20th ACM Symp. on the Theory of Computing, pp.
539–550 (1988)

[16] Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cam-
bridge (1997)

[17] Lipton, R.J., Sedgewick, R.: Lower bounds for VLSI. In: Proc. of the 13rd ACM Symp. on
the Theory of Computing, pp. 300–307 (1981)

[18] Mehlhorn, K., Schmidt, E.M.: Las vegas is better than determinism in VLSI and distributed
computing. In: Proc. of the 14th ACM Symp. on the Theory of Computing, pp. 330–337
(1982)

[19] Newman, I.: Private vs. common random bits in communication complexity. Inf. Process.
Lett. 39(2), 67–71 (1991)

[20] Nisan, N., Wigderson, A.: On rank vs. communication complexity. Combinatorica 15(4),
557–565 (1995)



402 J. Draisma, E. Kushilevitz, and E. Weinreb

[21] Raz, R., Spieker, B.: On the “log rank”-conjecture in communication complexity. Combi-
natorica 15(4), 567–588 (1995)

[22] van Lint, J.H., Wilson, R.M.: A Course in Combinatorics. Cambridge University Press,
Cambridge (1992)

[23] Yao, A.C.: Some complexity questions related to distributed computing. In: Proc. of the
11th ACM Symp. on the Theory of Computing, pp. 209–213 (1979)



High Complexity Tilings with Sparse Errors�

Bruno Durand1, Andrei Romashchenko2, and Alexander Shen3

1 LIF Marseille, CNRS & Univ. Aix–Marseille
Bruno.Durand@lif.univ-mrs.fr

2 LIF Marseille, CNRS & Univ. Aix–Marseille, on leave from IITP RAS
andrei.romashchenko@gmail.com

3 LIF Marseille, CNRS & Univ. Aix–Marseille, on leave from IITP RAS
alexander.shen@lif.univ-mrs.fr

Abstract. Tile sets and tilings of the plane appear in many topics rang-
ing from logic (the Entscheidungsproblem) to physics (quasicrystals).
The idea is to enforce some global properties (of the entire tiling) by
means of local rules (for neighbor tiles). A fundamental question: Can
local rules enforce a complex (highly irregular) structure of a tiling?

The minimal (and weak) notion of irregularity is aperiodicity. R. Berger
constructed a tile set such that every tiling is aperiodic. Though Berger’s
tilings are not periodic, they are very regular in an intuitive sense.

In [3] a stronger result was proven: There exists a tile set such that
all n × n squares in all tilings have Kolmogorov complexity Ω(n), i.e.,
contain Ω(n) bits of information. Such a tiling cannot be periodic or
even computable.

In the present paper we apply the fixed-point argument from [5] to give
a new construction of a tile set that enforces high Kolmogorov complexity
tilings (thus providing an alternative proof of the results of [3]). The new
construction is quite flexible, and we use it to prove a much stronger
result: there exists a tile set such that all tilings have high Kolmogorov
complexity even if (sparse enough) tiling errors are allowed.

1 Introduction

Tiles are unit squares with colored sides. We may place translated copies of the
same tile into different cells of a cell paper (rotations are not allowed). Tiles
in the neighbor cells should match (common side must have the same color in
both).

More formally, we consider a finite set C of colors. A tile is a quadruple of
colors (left, right, top and bottom ones), i.e., an element of C4. A tile set is a
subset τ ⊂ C4. A tiling of the plane with tiles from τ (τ-tiling) is a mapping
U : Z2 → τ that respects the color matching condition.

It is well known that local rules can enforce some kind of irregularity in
tilings. This first and simplest example of irregularity property is aperiodicity.
The following classical result was proven by Berger [1]:

� Supported by NAFIT ANR-08-EMER-008-01 and RFBR 09-01-00709-a grants.

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 403–414, 2009.
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Theorem 1. There exists a tile set τ such that τ-tilings exist and all of them
are not periodic. [1]

Berger’s tilings are aperiodic, but their structure is very regular and rather simple
to describe. A tile set which enforces irregularity in a much stronger sense was
constructed in [3]: it is a tile set that accepts only tilings of high Kolmogorov
complexity. As a tiling is an infinite object, we look at finite patterns in a tiling
and measure their Kolmogorov complexity:

Theorem 2. There exists a tile set τ such that τ-tilings exist and all n × n
squares in all τ-tilings have Kolmogorov complexity Ω(n).

More precisely the result can be reformulated as follows: there exists a tile set
τ and constants c1 and c2 such that τ -tilings exist and in every τ -tiling every
n × n-square has Kolmogorov complexity at least c1n − c2. The lower bound
Ω(n) in this theorem is tight: if τ -tilings exist, in one of them every n×n square
has complexity O(n) (see the discussion in [3]).

We stress that it is more reasonable to investigate the minimal complexity of a
τ -tiling (for a given tile set τ), not its maximal complexity. Indeed, the maximal
complexity can be very large (of order O(n2)) for a trivial tile set. E.g., for the
set τ of all tiles with black and white edges, there is a τ -tiling that contains
every n× n pattern, and maximal complexity is Ω(n2).

We refer to [3] for a more detailed discussion and philosophical motivation
of Theorem 2. In this paper we give a proof of Theorem 2 and generalize it for
tilings with sparse random errors.

The precise statement of our result about tilings with random errors requires
some technical definitions, see Section 4. Here we explain the intuitive idea. We
consider ‘faulty’ tilings of the plane, where the local tiling rules are not true
for the entire plane (as we required in the usual definition of tiling) but can
be violated on a sparse randomly chosen set of cells. (This generalization of
the standard definition of tiling looks rather natural: in physical crystal grids
we usually expect that local rules can be violated at sparse points.) Then we
construct such a tile set that even ‘faulty’ tilings (for almost all sets of faults)
must have high Kolmogorov complexity.

The paper is organized as follows. In Section 2 we remind the fixed-point
construction of an aperiodic tile set [5] that is used as a starting point.

In Section 3 we provide a new proof of Theorem 2 using fixed point construc-
tion with variable zoom factors. The new proof is simpler in some respects then
the original one from [3], and can be generalized to the case when sparse errors
are allowed.

Finally, in Section 4 we briefly explain our most difficult result: a “robust” tile
set such that all tilings, even with a sparsely placed errors, have linear complexity
of fragments. To achieve this result, we combine several ideas: (1) a fixed-point
tile set with variable zoom factors; (2) calculation and propagation of Reed–
Solomon’s checksums, and (3) covering of a random sparse set by a hierarchical
family of isolated islands (technically, we need to update the construction from
[5,14] and use bi-islands instead of simple islands). For the lack of space, the
technical details are omitted in the conference version of the paper.
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2 Fixed-Point Aperiodic Tile Set

In this section we remind the fixed point construction of aperiodic tile sets from
[5] (the reader familiar with the arguments from [5] can safely skip this part).

2.1 Macro-tiles

Fix a tile set τ and an integer N > 1 (zoom factor). A macro-tile is an N ×N
square tiled by matching τ -tiles. Every side of a macro-tile carries a sequence of
N colors called a macro-color.

Let ρ be a set of τ -macro-tiles. We say that τ simulates ρ if (a) τ -tilings exist,
and (b) for every τ -tiling there exists a unique grid of vertical and horizontal
lines that cuts this tiling into N ×N macro-tiles from ρ.

Example 1. Assume that we have only one (‘white’) color and τ consists of a
single tile with 4 white sides. Fix some N . There exists a single macro-tile of size
N × N . Let ρ be a singleton that contains this macro-tile. Then every τ -tiling
can be cut into macro-tiles from ρ. However, τ does not simulate ρ since the
placement of cutting lines is not unique.

(i+ 1, j)(i, j)

(i, j)

(i, j + 1)

Fig. 1. Tiles of the set τ for Example 2

Example 2. In this example a set ρ that consists of a single macro-tile (that
matches itself horizontally and vertically) is simulated by some tile set τ . The
tile set τ consists of N2 tiles indexed by pairs (i, j) of integers modulo N . A tile
from τ has colors on its sides as shown (Fig. 1). The macro-tile in ρ has colors
(0, 0), . . . , (0, N − 1) and (0, 0), . . . , (N − 1, 0) on its borders. (Fig. 2).

0

0

0 0

N

Fig. 2. Macro-tile of size N × N for Example 2

If a tile set τ simulates some set ρ of τ -macro-tiles with zoom factor N > 1
and ρ is isomorphic to τ , the set τ is called self-similar (an isomorphism between
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τ and ρ is a bijection that respects the relations “one tile can be placed on the
right of another one” and “one tile can be placed on the top of another one”).

The idea of self-similarity is used (more or less explicitly) in most constructions
of aperiodic tile sets ([8,2] are exceptions). The usage of self-similarity is based
on the following remark:

Proposition 1 (folklore). All self-similar tile sets τ have only aperiodic tilings.

(A simple proof of this statement can be found, e.g., in [4] or [5].)
So to prove the existence of aperiodic tile sets it is enough to construct a

self-similar tile set.

Theorem 3. There exists a self-similar tile set τ .

In the rest of this section we explain some technique (similar to the classical
proof of Kleene’s fixed-point theorem) that can be used to construct self-similar
tile sets. In particular, we get a proof of Theorem 3. In the sequel we generalize
this argument and use it in more complicated situations.

First of all, we explain some technique used in our construction: how to sim-
ulate a given tile set by embedding computations.

2.2 Simulating a Tile Set

For brevity we say that a tile set τ simulates a tile set ρ when τ simulates
some set of macro-tiles ρ̃ isomorphic to ρ (e.g., we say that a self-similar tile set
simulates itself).

Let us start with some informal discussion. Assume that we have a tile set
ρ whose colors are k-bit strings (C = {0, 1}k) and the set of tiles ρ ⊂ C4 is
presented as a predicate R(c1, c2, c3, c4) of four k-bit arguments. Assume that
we have some Turing machine R that computes R. Let us show how to simulate
ρ using some other tile set τ .

This construction extends Example 2, but simulates a tile set ρ that con-
tains not a single tile but many tiles. We keep the coordinate system modulo N
embedded into tiles of τ ; these coordinates guarantee that all τ -tilings can be
uniquely cut into blocks of size N × N and every tile “knows” its position in
the block (as in Example 2). In addition to the coordinate system, now each tile
in τ carries supplementary colors (from a finite set specified below) on its sides.
These colors form a new “layer” superimposed with the old one, i.e., the set of
colors is now a Cartesian product of the old one and the set of colors used in
this layer.

On the border of a macro-tile (i.e., when one of the coordinates is zero) only
two supplementary colors (say, 0 and 1) are allowed. So the macro-color encodes
a string of N bits (where N is the size of macro-tiles). We assume that N ≥ k
and let k bits in the middle of macro-tile sides represent colors from C. All other
bits on the sides are zeros (this is a restriction on tiles: each tile “knows” its
coordinates so it also knows whether non-zero supplementary colors are allowed).

Now we need additional restrictions on tiles in τ that guarantee that macro-
colors on the sides of each macro-tile satisfy the relation R. To achieve this, we
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ensure that bits from the macro-tile sides are transferred to the central part of
the tile where the checking computation of R is simulated.

For that we need to fix which tiles in a macro-tile form “wires” (this can be
done in any reasonable way; let us assume that wires do not cross each other)
and then require that each of these tiles carries equal bits on two sides (so some
bit propagates along the entire wire); again it is easy to arrange since each tile
knows its coordinates.

Then we check R by a local rule that guarantees that the central part of
a macro-tile represents a time-space diagram of R’s computation (the tape is
horizontal, time goes up). This is done in a standard way. We require that
computation terminates in an accepting state: if not, the tiling cannot be formed.

To make this construction work, the size of macro-tile (N) should be large
enough: we need enough space for k bits to propagate and enough time and
space (=height and width) for all accepting computations of R to terminate.

Universal

Turing

machine

program

Fig. 3. Checking tiles with a universal TM

In this construction the number of supplementary colors depends on the ma-
chine R (the more states it has, the more colors are needed in the computation
zone). To avoid this dependency, we replace R by a fixed universal Turing ma-
chine U that runs a program simulating R. Let us agree that the tape of the
universal Turing machine has an additional read-only layer. Each cell carries a
bit that is not changed during the computation; these bits are used as a program
for the universal machine U (Fig. 3). In terms of our simulation, the columns of
the computation zone carry unchanged bits (considered as a program for U), and
the tile set restrictions guarantee that the central zone represents the protocol
of an accepting computation of U (with this program). In this way we get a tile
set τ that simulates ρ with zoom factor N using O(N2) tiles. (Again we need N
to be large enough, but the constant in O(N2) does not depend on N .)
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2.3 Simulating Itself

We know how to simulate a given tile set ρ (represented as a program for the
universal TM) by another tile set τ with a large enough zoom factor N . Now
we want τ to be isomorphic to ρ (then Proposition 1 guarantees aperiodicity).
For this we use a construction that follows Kleene’s recursion (fixed-point) the-
orem [9].

Note that most rules of τ do not depend on the program for R, dealing with
information transfer along the wires, the vertical propagation of unchanged pro-
gram bits, and the space-time diagram for the universal TM in the computation
zone. Making these rules a part of ρ’s definition (we let k = 2 logN + O(1) and
encode O(N2) colors by 2 logN +O(1) bits), we get a program that checks that
macro-tiles behave like τ -tiles in this respect.

The only remaining part of the rules for τ is the hardwired program. We need
to ensure that macro-tiles carry the same program as τ -tiles do. For that our
program (for the universal TM) needs to access the bits of its own text. (This
self-referential action is in fact quite legal: the program is written on the tape,
and the machine can read it.) The program checks that if a macro-tile belongs
to the first line of the computation zone, this macro-tile carries the correct bit
of the program.

How should we choose N (hardwired in the program)? We need it to be large
enough so the computation described (which deals with O(logN) bits) can fit
in the computation zone. The computation is rather simple (polynomial in the
input size, i.e., O(logN)), so for large N it easily fits in Ω(N) available time.

This finishes the construction of a self-similar aperiodic tile set.

2.4 Variable Zoom Factor

This construction is flexible enough and can be used in other contexts. For
example, the “zoom factor” N could depend on the level k (i.e., be different
for macro-tiles, macro-macro-tiles etc.) For this each macro-tile should have k
encoded at its sides; this labeling should be consistent when switching to the
next level. Using the anthropomorphic terminology, we say that each macro-tile
“knows” its level, i.e., the sequence of bits that form a binary representation of
the level is transferred from the sides to the tape and the computation checks
that all these numbers (level bits for all four sides) are the same. This is, so
to say, a “conscious” information processed by a computation in the central
region of the macro-tile. One may say also that a macro-tile of any level contains
“subconscious” information (“existing in mind but not immediately available to
consciousness”, as the dictionary says): this is the information that is conscious
for the sub-tiles that form a macro-tile, and their sub-tiles (all the way down to
the ground level).

Using this terminology, we can say that each macro-tile knows its coordinates
in the macro-tile of the next level: for a tile of level k these coordinates are
integers modulo Nk+1, so in total log k+O(logNk+1) bits are required for keeping
both the level and these coordinates. Note that Nk steps should be enough
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to perform increment operation modulo Nk+1; we assume that both log k and
logNk+1 are much less than Nk. This means that Nk should not increase too
fast or too slow (say, Nk = log k is too slow and Nk+1 = 2Nk is too fast). Also
we need to compute Nk+1 when k is known, so we assume that not only the size
of Nk+1 (i.e., logNk+1) but also the time needed to compute it given k are small
compared to Nk. These restrictions still allow many possibilities, say, Nk =

√
k,

Nk = k, Nk = 2k, Nk = 2(2k), Nk = k! etc.
There is one more important point that needs to be covered. How do we

guarantee that the bits representing the level k (on the tape of a macro-tile) are
correct? In other terms, we need to ensure that the levels known to a macro-tile
and to one of its tiles differ by one. (In psychoanalytic terms we need to check
that conscious and subconscious information in a tile match each other.) This
is done as follows. The tile knows its level and also knows its position in the
macro-tile it belongs (its father). So it knows whether it is in the place where
father should keep level bits, and can check whether indeed the level bit that
father keeps in this place is consistent with the level information the tile has.

3 Tile Set That Has Only Complex Tilings

In this section we provide a new proof of Theorem 2.

3.1 A Bi-infinite Bit Sequence

Proof. We start the proof in the same way as in [3]: we assume that each tile
keeps a bit that propagates (unchanged) in the vertical direction. Then any
tiling contains a bi-infinite sequence of bits ωi (where i ∈ Z). Any N ×N square
contains a N -bit substring of this string, so if (for large enough N) any N -bit
substring of ω has complexity at least c1N for some fixed c1, we are done.

Such a bi-infinite sequence indeed exists (see [3]; another proof can be obtained
by using Lovasz local lemma, see [15]). So our goal is to formulate tilings rules in
such a way that a correct tiling “ensures” that the bi-infinite sequence embedded
in it indeed has this property.

The set of all “forbidden” binary strings, i.e., strings x such that K(x) <
c1|x|−c2 (hereK(x) stands for Kolmogorov complexity of x and |x| stands for the
length of x) is enumerable: there is a program that generates all forbidden strings.
It would be nice to embed into the tiling a computation that runs this program
and compares its output strings with the substrings of ω; such a computation
may blow up (create a tiling error) if a forbidden substring is found.

However, this is not easy. There are several difficulties.

– First of all, our self-similar tiling contains only finite computations; the du-
ration depends on the zoom factor and may increase as the level increases
(bigger macro-tiles keep longer computations), but at any level the compu-
tations are finite.

– The computation at some level deals with bits encoded in the cells of that
level, i.e., with macro-tile states. So the computation cannot access the bits
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of the sequence directly (they are “deep in the subconscious”), and some
mechanism to dig them out is needed.

Let us explain how to overcome these difficulties.

3.2 Bits Delegation

Macro-tile of level k is a square whose side is Lk = N0 ·N1 · . . .·Nk−1, so there are
Lk vertical lines (carrying the bits of the sequence) that intersect this macro-tile.
Let us delegate each of these bits to one of the macro-tiles of level k that cover
the corresponding line. Note that a macro-tile of the next (k+1)-th level is made
of Nk × Nk macro-tiles of level k. We assume that Nk is much bigger than Lk

(more about choice of Nk later); this guarantees that there is enough macro-tiles
of level k (in the next level macro-tile) to serve all bits that intersect them. Let
us decide that ith macro-tile of level k (from bottom to top) in a (k + 1)-level
macro-tile serves (consciously knows, so to say) (i mod Lk)-th bit (from the left)
in its zone. (In this way we have several macro-tiles of level k in each macro-tile
of level k+ 1 that are responsible for the same bit, but this does not create any
problems.)

N
k

ti
le

s
of

si
ze

L
k
×
L

k

Fig. 4. Bit delegation

So each bit (each vertical line) has a representative on every level — a macro-
tile that consciously knows this bit. However, we need some mechanisms that
guarantee that this information is indeed true (consistent on different levels).
On the bottom level it is easy, since the bits are available directly.

To guarantee the consistency we use the same trick as in Section 2.4: at
each level we keep the information not only for this level but also for the next
(father) level, and made necessary consistency checks. Namely, each macro-tile
knows (has on its computation tape):

– the bit delegated to this macro-tile;
– the coordinates of this macro-tile in its father macro-tile (that are already

used in the fixed-point construction); the y-coordinate determines the posi-
tion of the bit delegated to this macro-tile (relative to the left boundary of
the macro-tile).
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– the bit delegated to the father of this macro-tile;
– the coordinates of the father macro-tile in the grandfather macro-tile.

This information is subject to consistency checks:

– the information about the father macro-tile should coincide with the same
information in neighbor tiles (unless they have a different father, i.e., one of
the coordinates is zero).

– if it happens that the bit delegated to the father macro-tile is the same bit
as delegated for the tile, these bits should match;

– it can happen that the macro-tile occupies a place in its father macro-tile
where some bits of its coordinates (inside grandfather macro-tile) or the bit
delegated to the father are kept; then this partial information on the father
level should be checked against the information about father coordinates and
bit.

These tests guarantee that the information about father is the same in all
brothers, and some of these brothers (that are located on the father tape) can
check it against actual father information; at the same time some other brother
(that has the same delegated bit as the father) checks the consistency of the
delegated bits information.

Note that this scheme requires that both logNk and logNk+1 are much smaller
than Nk−1. This is the case, for example, if Nk = 24k

; note that Lk = N0 ·N1 ·
. . . · Nk−1 is then less than

√
Nk (which is even better than the requirement

Lk ≤ Nk mentioned earlier).
In Section 4 we set Nk = Q2.5k

for some large enough Q. (In fact, any constant
between 2 and 3 can be used instead of 2.5.)

3.3 Bit Blocks Checked

We explained how macro-tile of any level can get a true information about one
bit (delegated to it). However, we need to check not bits, but substrings (and
create a tiling error if a forbidden string appears). Note that it is OK to test only
very short substrings compared to the macro-tile size (Nk): if this test is done
on all levels, this short substring becomes long enough to detect any violation.
(Also note the short forbidden substrings can appear very late in the generation
process, so we need computation in arbitrary high levels for this reason, too.)

So we need to provide more information to tiles. It can be done in the following
way. Let us assume that a tile contains not one bit but a group of bits that starts
at the delegated bit and has length depending on the level k (and growing very
slowly with k, say, log log log k is slow enough). If this group goes out of the
region occupied by a tile, we truncate it.

Similarly, a macro-tile should have this information for the father macro-tile
(even if the bits are outside its own region), this information should be the same
for brothers and needs to be checked against the delegated bits on the macro-tile
level and pieces of information on the father level.
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Then the computation in the computation zone can start the generating pro-
cess checking the forbidden strings that appear against all the substrings of the
group of bits available to this computation. This process is time- and space-
bounded, but this does not matter since every string if considered on a high
enough level.

3.4 Last Correction

The argument explained above still needs some correction. We claim that every
forbidden string will be detected at some level where it is short enough compared
to the level parameters. However, there could be strings that never become a
part of one macro-tile. Imagine that there is some vertical line that is a boundary
between macro-tiles of all levels (so we have bigger and bigger tiles on both sides,
and this line still separates them). Then a substring that crosses this line will
be never checked and therefore we cannot guarantee that it is not forbidden.

There are several ways to get around this problem. One can decide that each
macro-tile contains information not only about blocks inside its father macro-tile
but in a wider regions (say, three times wider including uncle macro-tiles); this
information should be checked for consistency between cousins, too.

But there is a simpler solution. Note that even if a string that crosses the
boundary is never checked, its parts (on both sides of the boundary) are, so
their complexity is proportional to their length. And one of the parts has length
at least half of the original length, so we still have a complexity bound, just the
constant is twice smaller.

This finishes the proof of Theorem 2. �

4 Robust Tile Set That Enforces Complex Tilings

We want to construct a “robustified” tile set such that any tiling with “sparse
enough” errors or holes can be patched (by changing a small fraction of tiles). It
does not matter whether we speak about errors (places where two neighbor tiles
do not match) or holes (places without tiles). Indeed, we can convert a tiling
error into a hole by deleting one of the two non-matching tiles and convert a
hole into a small number of errors by placing an arbitrary tile there.

Let E be a subset of Z2 and let τ be a tile set.

Definition 1. A (τ, E)-tiling is a mapping

T : (Z2 \ E) → τ

such that for every two neighbor cells x, y ∈ Z2 \ E, the tiles T (x) and T (y)
match.

In other terms, T is a τ -tiling of the complement of E.
We assume that a set of errors E is chosen at random, according to the

Bernoulli distribution Bε: every point in Z2 belongs to E with some probability
ε > 0; the random choices at different points are done independently.
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Theorem 4. There exist a tile set τ and constants c1, c2 > 0 with the following
properties:

(1) a τ-tiling of Z2 exists;
(2) for every τ-tiling T of the plane, every N×N -square in T has Kolmogorov

complexity at least c1N − C2;
(3) for all sufficiently small ε for almost every (with respect to the Bernoulli

distribution Bε) subset E ⊂ Z2 every (τ, E)-tiling is at most 1/10 Besicovitch-
apart from some τ-tiling of the entire plane Z2;

(4) for all sufficiently small ε for almost every (with respect to Bε) subset
E ⊂ Z2 and every (τ, E)-tiling T , Kolmogorov complexity of centered frames of
T of size n× n is Ω(n).

Note that in (4) we speak about complexity of squares with “holes” understood
as the minimal complexity for all possible ways to fill the holes. Note also that we
cannot claim that every n× n square has high complexity since this square can
be completely isolated from the rest of the tiling by elements of E and therefore
can be simple: lexicographically first tiling of the n × n square has complexity
O(log n).

This is the main result of our paper. Its proof is based on a generalization of
the construction from Section 3. Here we outline the plan of the proof:

– bi-islands (probabilistic part): we prove that with probability 1 random
errors can be split into isolated ‘doubled islands’ of different rank (an n-level
doubled island, or a bi-island, consists of two sets of diameter O(Q2.5n

) and
is isolated from other bi-islands of the same rank). This construction slightly
improves the technique used in [5] (the general idea of splitting a random
sparse set in ranked ‘islands’ goes back to [7]).

– robustification (combinatorial part): we embed into the primary struc-
ture of a self-similar tiling (with variable zoom factors) some redundancy,
so that every single isolated island (and even a bi-island) of errors can be
patched. The patching procedure involves correction of the tiling only in a
small neighborhood of the island (bi-island). So we can sequentially ‘patch’
all errors, starting from bi-islands of low rank.

– checksums (error-correction trick): high level macro-tiles calculate some
checksums for the bits in their ‘subconscious’ and communicate them to their
neighbors. This guarantees that most macro-tiles on all levels have coherent
bits in their subconscious, even if there are sparse errors.

– patching errors (join everything together): we check that with prob-
ability 1, for a randomly chosen set of errors E every tiling of Z2 \ E can
be converted into a (close enough) tiling of the entire plane. Composing this
fact with the proof from Section 3 we get the theorem.

The full proof of this theorem is rather technical, and exceeds the conference
paper limits.
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Abstract. We study the cover time of multiple random walks. Given a
graph G of n vertices, assume that k independent random walks start
from the same vertex. The parameter of interest is the speed-up defined
as the ratio between the cover time of one and the cover time of k random
walks. Recently Alon et al. developed several bounds that are based on
the quotient between the cover time and maximum hitting times. Their
technique gives a speed-up of Ω(k) on many graphs, however, for many
graph classes, k has to be bounded by O(log n). They also conjectured
that, for any 1 � k � n, the speed-up is at most O(k) on any graph. As
our main results, we prove the following:

– We present a new lower bound on the speed-up that depends on the
mixing-time. It gives a speed-up of Ω(k) on many graphs, even if k
is as large as n.

– We prove that the speed-up is O(k log n) on any graph. Under rather
mild conditions, we can also improve this bound to O(k), matching
exactly the conjecture of Alon et al.

– We find the correct order of the speed-up for any value of 1 � k � n
on hypercubes, random graphs and expanders. For d-dimensional
torus graphs (d > 2), our bounds are tight up to a factor of O(log n).

– Our findings also reveal a surprisingly sharp dichotomy on several
graphs (including d-dim. torus and hypercubes): up to a certain
threshold the speed-up is k, while there is no additional speed-up
above the threshold.

1 Introduction

Random walks come up and are studied in many sciences like mathematics,
physics, computer science etc. While mathematicians have studied random walks
on infinite graphs for a long time, computer scientists have spurred an interest
on random walks on finite graphs during the last two decades. Roughly speaking,
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there have been two main lines of research. One is concerned with the develop-
ment of rapidly mixing random walks, resulting in approximation schemes of
#P hard problems (cf. [17] for more details and a survey on random walks). The
second line of research deals with the time to explore a graph, formally known
as cover time.

Random walks are an attractive tool for graph exploration due to their inher-
ent simplicity, locality and robustness to dynamical changes. For example, Avin,
Koucky, and Lotker [4] recently proved that a (slighly modified) random walk
can still explore all vertices of a graph efficiently, even if the graph is dynamically
changing during the covering procedure. Other algorithmic applications where
random walks have been used are searching [13], routing [18], gossiping [16] and
self-stabilization [12] etc.

Probably the first theoretical applications of the cover time traces back to
Aleliunas, Karp, Lipton, Lovász, and Rackoff [2]. It was shown that by taking a
random walk, it is possible to explore every undirected graph in polynomial time
and logarithmic space. In response to their question about time-space tradeoffs,
Broder, Karlin, Raghavan, and Upfal [7] studied the cover time of many, inde-
pendent random walks, each of which starts from the stationary distribution.

Certainly, the situation becomes more challenging if all random walks start
from the same vertex. Will they stick together and cover more or less the same
set of vertices, or will they quickly disperse in different regions to ensure a fast
covering? Alon, Avin, Koucky, Kozma, Lotker, and Tuttle [3] posed this question
and studied the speed-up defined as the ratio between the cover time of a single
random walk and the cover time of k random walks, where 1 � k � n. As it
turns out, the answer depends very much on the underlying graph: on complete
graphs, a speed-up of k is always possible, while on the cycle the speed-up is
only O(log k). On certain graphs, there are even starting positions of the k walks
such that the speed-up is Ω(2k) (for small k).

Another reason why the cover time of random walks has been investigated is
its intimate relation to other graph-theoretical parameters. For example, Broder
and Karlin [6] gave a comprehensive collection of bounds relating the cover time
to spectral properties of G. Chandra, Raghavan, Ruzzo, Smolensky, and Tiwari
[9] established a tight connection between random walks and electrical networks
and related the cover time to other properties such as the vertex-expansion.

1.1 Related Work

One slight drawback of the cover time of a single random walk is that it takes at
least Ω(n log n) steps on every graph, and may even increase to Ω(n2) on regular
and Ω(n3) steps on non-regular graphs. This has led to several modified covering
schemes. Adler, Halperin, Karp, and Vazirani [1] introduced a covering process
where in each round one first chooses a vertex uniformly at random, and then
chooses an uncovered neighbor of this vertex (if there is one). Later Dimitrov and
Plaxton [11] proved that this process achieves a cover time of O(n+(n log n)/d)
on any d-regular graph. Note that in this scheme, one has to sample uniformly
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among all vertices (not just among visited neighbors) which is not completely
inline with the scenario of a decentralized exploration process.

Another approach taken by Ikeda, Kubo, Okumoto, and Yamashita [14] and
Avin and Krishnamachari [5] is to change the transition probabilities of the
random walk. For example, Ikeda et al. [14] devised a way of locally computable
transition probabilities which results in a cover time of O(n2 log n) on any graph.
However, one limitation of all these approaches is that they can only explore a
graph within Ω(n) steps.

Multiple random walks can break this barrier of Ω(n) and have been used
by Broder et al. [7] to obtain tradeoffs between space and time for the s-t-
connectivity problem. As mentioned before, they assumed that each random
walk starts from an independent sample of the stationary distribution. While
this indeed significantly speeds up the covering process, one has to sample again
among all vertices. This could be one reason why researchers have recently stud-
ied multiple random walks which start all from the same vertex ([3, 10]). Alon
et al. [3] derived several (asymptotic) lower and upper bounds on the speed-up
on several graph classes, while Cooper et al. [10] focused on the class of random
regular graphs and derived nearly exact bounds on the speed-up. Finally, multi-
ple random walks starting from the same vertex are also a fundamental tool for
property testing, cf. [15] for a recent analysis of a property tester of expanders.
The basic idea is to count the collisions of random walks that start from the
same vertex to estimate the expansion properties of a graph.

1.2 Our Contribution

Before describing our main results, we have to introduce a little bit of notation.
Let G be any undirected, connected graph with n vertices. For any 1 � k � n, let
E

[
COVk

u

]
be the expected time for k random walks that start from u to cover all

vertices. Let E
[
COVk

max

]
= maxu∈V E

[
COVk

u

]
(we also use E [COVmax(G) ] =

E
[
COV1

max(G)
]

to stick to the common notation). For any undirected, con-

nected graphG, we define the speed-up Sk :=E [COVmax(G) ] /E
[
COVk

max(G)
]
.

By H(u, v) we denote the expected time for the random walk to get from u to
v; it is a well-known fact that maxu,v H(u, v) approximates E [ COVmax(G) ] up
to a factor of O(log n) (see Theorem 2.2). The mixing time MIX1/2(G) is the
time required for the random walk to approach its stationary distribution (exact
definition in Section 2).

We first present a general lower bound on the speed-up. It is based on the
following upper bound on E

[
COVk

max(G)
]
:

Theorem 3.4 (from page 421). For any graph G and any k with 1 � k � n,

E
[
COVk

max(G)
]

= O
(

logn · (maxu,v H(u, v) + MIX1/2(G))
k

+ MIX1/2(G)
)
.
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Graph COV(G) Hmax MIX1/2(G) Speed up Sk(G)

k ∈ bounds

cycle n2 n2 n2 [1, n] = log k [3, Thm. 6]

2-dim. torus n log2 n n log n n
[1, log n] � k [3, Thm. 4]

[1, n] � log2 n log k [3, Cor. 25]

d-dim. torus,
n log n n n2/d

[1, log n] � k [3, Thm. 4]

d > 2
[1, n1−2/d log n] � k [�, Cor. 1]

[1, n] � n1−2/d log n log k [3, Thm. 24]

[1, n] � k [�, Cor. 4.6]

Hypercube n log n n log n log log n
[1, log n] � k [3, Thm. 4]

[1, n
log log n ] = k [�, Thm. 3.4 & Cor. 4.6]

[ n
log log n , n] = n

log log n [�, Thm. 3.4 & 5.3]

Complete n log n n 1 [1, n] = k [3, Lem. 12]

Expander n log n n log n
[1, n] � k [3, Thm. 18]

[1, n] = k [�, Cor. 5.1]

Random n log n n log n
[1, log n] � k [3, Thm. 4]

[1, n] = k [�, Cor. 5.1]

Fig. 1. Summary of the new and old results for the graphs mentioned by [3], where
constant factors are neglected in all columns. Hmax stands for maxu,v H(u, v). Our new
results are marked with �. For torus graphs, the bounds are tight up to a logarithmic
factor and for all other graphs, the bounds are tight (for each 1 � k � n).

This shows that E
[
COVk

max(G)
]

is upper bounded by logn · maxu,v H(u, v)/k,
as long as maxu,v H(u, v)/k is not smaller than the mixing time (see Corollary 3.5
for a simpler, but slightly weaker statement than Theorem 3.4).

We point out that most previous general upper bounds on E
[
COVk

max(G)
]

in Alon et al. [3] are at least Ω(n) [3, Thm. 4,5,13,14], and therefore only useful
on most graphs when k = O(log n). A similar bound to Theorem 3.4 from [3] is:

Theorem 1.1 ([3, Proof of Theorem 9]). For any graph G and 1 � k � n,

E
[
COVk

max(G)
]

= O
(

MIXn−1(G)n (log n)2

k

)
.

Note that the bound of Alon et al. [3] includes the mixing time as a factor, while
in our bound (Theorem 3.4 above), for any k, the mixing time does not come into
play at all, as long as maxu,v H(u, v)/k is larger than MIX1/2(G). Since for most
graph classes (cmp. Figure 1) maxu,v H(u, v) = Θ(n) and MIX1/2(G) = o(n),
our theorem gives a lower bound on the speed-up of k for a wide range of k
(cf. Figure 1, or Section 5 for more details).

The main idea to establish Theorem 3.4 is based on a coupling argument
between one random walk and k random walks (see Theorem 3.3 for details).
We believe that this technique might be very useful for deriving further bounds
on the cover time of one or many random walks.

We continue to prove a general upper bound for any graph, namely that
Sk = O(k logn) for any 1 � k � n. This already matches the conjecture of
Alon et al. [3] up to a logarithmic factor. Under a rather mild condition on
the mixing-time and cover time of one random walk, we improve this upper
bound to Sk = O(k), establishing the conjecture of [3] for a large class of graphs
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(Corollary 4.7). Finally, we also present an upper bound based on the diameter
of the graph (Theorem 4.8).

Applications of our lower and upper bounds to concrete graphs are summa-
rized in Figure 1, completing Table 1 of [3]. As an example, consider the hyper-
cube with n vertices. We prove that Sk = Θ(k) as long as k = O(n/ log logn).
However, for k = Ω(n/ log log n), Sk = Θ(n/ log logn). The same dichotomy
is established for d-dimensional torus graphs (d > 2), where also n/MIX1/2(G)
represents as a ”sharp threshold” on the speed-up.

1.3 Road Map

In Section 2 we introduce our notation and some preliminary results. Section 3
contains the proof of our upper bound on Sk. This is followed by Section 4
consisting of several lower bounds on Sk. In Section 5 we show how to apply
our general results to obtain tight bounds on Sk for concrete graph classes. We
close in Section 6 with the conclusions. Several proofs are omitted due to space
limitations.

2 Notations, Definitions and Preliminaries

Random Walk. A random walk (cf. [17] for a survey) on an undirected, con-
nected graph G = (V,E) starts at some specified vertex u ∈ V and moves in each
step along some adjacent edge chosen uniformly at random. To ensure conver-
gence also on non-bipartite graphs, a common way is to add loop probabilities:
at each step the random walk stays with probability 1/2 at the current vertex
and otherwise it moves to a randomly chosen neighbor. It is a well-known fact
that the loops only increase the cover time by a factor of 2.

There are two ways to represent the walk. The first and concrete one is to
view the walk as an infinite sequence of vertices X0, X1, . . ., where X0 = u is the
starting vertex and Xt is the vertex visited at step t.

A more abstract way is to only consider the distribution of the walk. To this
end, let P be the transition matrix of the walk, i.e., pu,v = 1

2 deg(u) if {u, v} ∈ E,
pu,u = 1

2 and pu,v = 0 otherwise. Note that P is symmetric if and only if G
is regular. Now define for each pair of vertices u, v, pt

u,v as the probability that
a random walk starting at u visits the vertex v at step t. Hence the vector
pt

u = (pt
u,v)v∈V represents the distribution of Xt, i.e., the visited vertex at step

t. It is a well-known fact that under our assumptions on G, pu(t) converges for
t → ∞ towards the stationary distribution π given by π(v) = deg(v)/(2|E|).
Mixing Time. To quantify the convergence speed, we define the relative point-
wise distance ([20, p. 45]) as

Δ(t) := max
u,v∈V

|pt
u,v − π(v)|
π(v)

.
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Definition 1. The mixing time of a random walk on G with transition matrix
P is defined for any 0 < ε < 1 by

MIXP
ε (G) := min{t ∈ N : Δ(t) � ε}.

If the reference to P is obvious, we shall also just write MIXε(G). Our definition
of mixing time should be compared with the one based on the variation distance
used by Alon et al. [3], MIXε(G) := maxu∈V min {t ∈ N : ‖pt

u − π‖1 � ε} . The
next lemma shows that MIXn−1(G) is not larger than MIXn−1(G).

Lemma 2.1. For any graph G = (V,E), MIXn−1(G) = O(MIXn−1(G)).

Hitting Time and Cover Time. For two vertices u, v ∈ V (G), we define the
hitting time from u to v as H(u, v) := E [min{t ∈ N\{0} : Xt = v,X0 = u} ], i. e.,
the expected number of steps to reach v from u. Denote by COVs(G) the first
time when a (single) random walk starting from s has visited all n vertices of G.
Then the cover time is defined as E [ COVmax(G) ] := maxu∈V E [ COVu(G) ]. (We
point out that in several previous work the cover time is written without E [ · ],
however, in this work we also have to deal with the random variable COVu(G)).
The following well-known result relates the maximum hitting time to the cover
time.

Theorem 2.2 ([9, 18]). For any graph G = (V,E) we have maxu,v∈V H(u, v) �
E [COVmax(G) ] � 2e3 · maxu,v∈V H(u, v) lnn+ n

We shall consider the cover time when k random walks start at the same vertex,
where 1 � k � n. To this end, we study E

[
COVk

u(G)
]
, defined as the ex-

pected time for k random walks starting from u to cover all n vertices of G. Set
E

[
COVk

max(G)
]

= maxu∈V E
[
COVk

u(G)
]
. Clearly, E

[
COVk

max(G)
]

decreases
in k. Hence several of our lower bounds stated for E [ COVn

max(G) ] directly im-
ply the same bound on E

[
COVk

max(G)
]

with k � n. Sometimes, we will also

consider E
[
COVk

π(G)
]
. In this case, each starting point of the k random walks

is chosen independently from the stationary distribution π. We recall:

Theorem 2.3 ([7, Theorem 1]). Let G be any graph with m edges. Then we
have for any 1 � k � n, E

[
COVk

π(G)
]

= O
(

m2

k2 · log3 n
)
.

We continue with an auxiliary lemma.

Lemma 2.4. Let X1 and X2 be two random variables taking values in a finite
set S. Assume that there is a number 0 < C < 1 such that for every s ∈ S,
Pr [X1 = s ] � C Pr [X2 = s ] . Then there exists a coupling X̂ = (X̂1, X̂2) of
X1 and X2 such that Pr

[
X̂1 = X̂2

]
� C.
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3 Lower Bounds on the Speed-Up

A natural relation that has been also used by Alon et al. [3] is the following.

Lemma 3.1. For any 1� k � n, E
[
COVk

max(G)
]
� E

[
COVk

π(G)
]
+MIXn−3(G).

We prove an extension where the threshold for the mixing time is much smaller.
This apparently small difference will be crucial to obtain tight bounds for hy-
percubes (Section 5).

Lemma 3.2. For any 1 � k � n, E
[
COVk

max(G)
]

� 16E
[
COVk/2

π (G)
]

+
4 MIX1/2(G).

Proof Sketch. The basic idea is as follows. Let X1, X2, . . . , Xk be k random
walks starting from the same vertex u. Moreover, let Y 1, Y 2, . . . , Y k be k random
walks, all starting from independent samples of π. Our goal is to relate the set of
covered vertices by X1, . . . , Xk to the covered ones by Y 1, . . . , Y k/2 at the cost
of an additional MIX1/2(G)-term. In order to do so, we will prove that at least
half of the random walks among X1, . . . , Xk are located on a uniformly chosen
vertex after MIX1/2(G) steps.

Theorem 3.3. For every graph G and k with 1 � k � n,

E
[
COVk

π(G)
]

= O
(

log n · (maxu,v H(u, v) + MIX1/2(G))
k

+ MIX1/2(G)
)
.

Before we outline the proof of Theorem 3.3, let us point out that the result also
improves over Theorem 2.3 for a wide range of k, provided that MIX1/2(G) and
maxu,v H(u, v) are not too large.

Proof Sketch. We devise a coupling of a single random walk X to k random
walks, each of which starts according to π. We shall divide the single random
walk X into consecutive sections of length MIX1/2(G). We then argue that a
random walk starting from the stationary distribution has (almost) the same
chance of visiting a vertex within MIX1/2(G) steps as the single random walk
has in one fixed section. This implies that the probability that the k random
walks visit this vertex is (nearly) the probability that X visits the same vertex
in one of the even sections. Here it is crucial to consider only the even (or odd)
sections, so that the random walk X is located on a vertex according to π each
time a new section begins.

Combining this result with Lemma 3.2 we get immediately:

Theorem 3.4. For any graph G and any k with 1 � k � n,

E
[
COVk

max(G)
]

= O
(

logn · (maxu,v H(u, v) + MIX1/2(G))
k

+ MIX1/2(G)
)
.

Let us state a simpler, slightly weaker bound on the speed-up that follows directly
from Theorem 3.4:
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Corollary 3.5. Let G be a graph that satisfies MIX1/2(G) = O(maxu,v H(u, v))
and E [ COVmax(G) ] = Θ(maxu,v H(u, v) logn). Then for any 1 � k � n,

Sk(G) = Ω

⎛⎝ k

1 + MIX1/2(G)

E[ COVmax(G) ] · k

⎞⎠ .

Hence as long as k = O
(

E[ COVmax(G) ]
MIX1/2(G)

)
, Corollary 3.5 yields a speed-up of

Ω(k). Note that all graphs (except cycles and 2-dim. torus) in Figure 1 satisfy
the conditions of Corollary 3.5.

4 Upper Bounds on the Speed-Up

Alon et al. [3] gave a graph G and vertex u such that E[ COVu(G) ]

E[COVk
u(G) ] = Ω(2k)

for k = Θ(log n), so the speed-up is exponential in k. However, their example
does not work when u is replaced by a worst-case starting vertex. This lead
to their conjecture that the speed-up is always polynomial in k, if the starting
vertex is worst-case. More precisely, they conjectured that for any graph and
any 1 � k � n, Sk = O(k).

We shall prove that Sk = O(k logn) for any graph and k, matching the con-
jecture up to a factor of O(log n). This also shows that while for an arbitary
starting vertex an exponential speed-up is possible, the speed-up is always poly-
nomial, if the starting vertex is worst-case.

Proposition 4.1. For any graph G and any 1 � k � n, Sk = O(k logn).

Proof. Fix a vertex w. Choose a vertex u such that

Pr
[
walk of length E

[
COVk

u(G)
]

starting at u visits v
]

is minimized. We claim by way of contradiction that

Pr
[
walk of length 2E

[
COVk

u(G)
]

starting at u visits v
]

� 1
4k

.

Assuming the converse, the probability that all k random walks starting at u do
not cover w would be at least

∏k
i=1

(
1 − 1

4k

)
� 1 −

∑k
i=1

1
4k = 3

4 , which in turn

would imply E
[
COVk

u(G)
]

� 3
2 E

[
COVk

u(G)
]
, a contradiction.

Consider now a single random walk of length 16E
[
COVk

u(G)
]
k lnn. Then,

Pr
[
walk of length 16E

[
COVk

u(G)
]
k lnn starting at u visits v

]
� 1 −

(
1 − 1

4k

)8k ln n

� 1 − 1
n2

.

Taking the union bound over all n vertices yields the claim.
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4.1 Special Upper Bounds

Additionally, we shall derive three more specific lower bounds onE
[
COVk

max(G)
]
.

As a consequence, they are most useful to upper bound the speed-up when the
graph satisfies E [COVmax(G) ] = O(n log n) (which is the case for most inter-
esting graphs (cmp. Figure 1)).

We start by deriving a lower bound of Ω((n/k) logn) for not too small k by
using a relatively simple coupon-collecting argument. After that we present a
lower bound of Ω((n/k) logn) for not too large k, requiring that the mixing
time is sublinear. Combining these bounds, we obtain that E

[
COVk

max(G)
]

=
Ω((n/k) logn) for any 1 � k � n (if the mixing time is sublinear).

We start with a bound based on a coupon-collecting argument. We view each
random walk as an independent string of n letters (corresponding to n vertices).
Then we bound the probability that all letters occur in a sample of k random
strings.

Theorem 4.2. Let k be an arbitrary integer satisfying k � nε for an arbitrary
constant 0 < ε < 1. Then, E

[
COVk

max(G)
]

= Ω
(

n
k logn

)
.

For k < nε, we devise a lower bound on E
[
COVk

max(G)
]

that requires a sublin-
ear mixing time. We use the following result from Broder and Karlin [6].

Lemma 4.3 ([6, Lemma 12]). Consider a single random walk X1, X2, . . . with
a symmetric transition matrix P. Let Ts be the first time when s different vertices
are covered. Then for any m ∈ N,

E
[
T�(m+1)n/(m+2)� − T�(m)n/(m+1)�

]
� 1

2
n

m+ 2
−O(MIXn−1(G) ·m).

Using the lemma above, we can show the following corollary:

Corollary 4.4. Let X = (X1, X2, . . .) be a random walk on regular graph. Let
Ts be the first time that s different vertices are covered. Let 1 � m � n be any
positive integer. Define γm := 1

2
n

m+2 −O(MIXn−1(G) ·m). Then,

Pr
[
T�(m+1)n/(m+2)� − T�(m)n/(m+1)� � 1

4
γm

]
� 1

16
.

Theorem 4.5. Assume that MIXn−1(G) = O(n1−ε) for a constant ε > 0. Then
for any regular graph G and k � 4

√
n/MIXn−1(G), E

[
COVk

max

]
= Ω

(
n
k logn

)
.

Proof Sketch. As in [6] our goal is to divide the random walks viewing one after
another into a certain number of epochs, where a new epoch starts if a certain
number of new vertices has been covered. Then we can bound the remaining
time in each epoch by Corollary 4.4. The technical difficulty arises when the
lower bound by Corollary 4.4 is larger than the remaining time of the walk. In
this case we assume (quite pessimistically) that the random walk has finished
one epoch, but this suffices, since k is rather small.
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Combining Theorem 4.2 and Theorem 4.5 we obtain immediately:

Corollary 4.6. For any regular graph G with MIXn−1(G) = O(n1−ε) for a con-
stant ε > 0 and any 1 � k � n, we have E

[
COVk

max(G)
]

= Ω
(

n
k logn

)
.

Turning back to the original question on upper bounding Sk we get:

Corollary 4.7. For any regular graph G that satisfies MIXn−1(G) = O(n1−ε)
and E [ COVmax(G) ] = Θ(n log n), we have for any 1 � k � n, Sk = O(k).

This establishes the conjecture of Alon et al. [3] for a large class of graphs
including most graphs of Figure 1.

Obviously, diam(G) is a lower bound on E
[
COVk

max(G)
]

for each k. Using a
result of [8], we can prove the following improvement (if diam(G) � logn):

Theorem 4.8. For any graph G with diameter diam(G), E [ COVn
max(G) ] =

Ω
(

diam(G)2

log n

)
.

5 Applications to Concrete Graphs

Expanders and Random Graphs. There are several (mostly equivalent) defini-
tions of expanders. Here, we call a regular graph an expander if MIXn−1(G) =
O(log n) (this is a more general definition than [3], where additionally the degree
has to be constant). It is also a well-known fact that any expander graph satisfies
maxu,v H(u, v) = O(n) (cf. [6, 17]). Hence Corollary 3.5 implies a speed-up of
Ω(k) for any 1 � k � n. Moreover, Corollary 4.6 establishes tightness.

For any given (1 + ε) log(n)/n < p < 1, ε > 0, an Erdős-Rényi random graph
is constructed by placing an edge between each pair of vertices independently
with probability p. Similar to regular expanders, we can prove the same result
for random graphs leading to the following corollary.

Corollary 5.1. For any regular expander graph and almost all Erdős-Rényi ran-
dom graphs with p � (1+ε) log(n)/n, we have for any 1 � k � n that Sk = Θ(k).

Hypercubes. Let us consider the speed-up on the logn-dimensional hypercube
Hn with n vertices. It is known that maxu,v∈V H(u, v) = O(n) (cf. [17]) which
readily implies that E [ COVmax(Hn) ] = Θ(n log n).

Lemma 5.2. For the hypercube Hn, MIX1/2(G) = O(log n log log n).

We remark that MIXn−1(Hn) = Ω(log2 n), so it is crucial to use MIX1/2(Hn).
Hence, as long as k � C1n/(logn log logn) for a sufficiently small constant C1,
Corollary 3.5 and Corollary 4.7 imply that the speed up is Θ(k). (We point out
that using the techniques of [10], a more precise bound on the speed could be
obtained). Let us now consider the case when k is large.

Theorem 5.3. For the hypercube Hn, E [COVn
max(Hn) ] = Ω(log n log logn).

Hence the speed-up on hypercubes undergoes a surprisingly sharp transition: it
equals k if k = O(n/ log logn), but as soon as k = Θ(n/ log logn) the speed-up
does not increase further.
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Cayley Graphs with Small Degree (including Torus Graphs). Let us now consider
torus graphs. For cycles, Alon et al. [3, Theorem 6] prove that Sk = Θ(log k) for
any 1 � k � n. For the two-dimensional torus graph, they proved [3, Theorem 4
& 8, Corollary 25] that Sk(G) = Ω(k) for k � logn, but Sk(G) = O(log2 n log k)
for any 1 � k � n. Therefore, we only have to consider the d-dimensional torus
with d � 3 in the following. In fact, we shall look at Cayley graphs more generally.
Recall that an undirected Cayley graph is a graph whose vertex set is equal to
the elements of a finite group and the edge set is given by a set of self-inverse
group generators (cf. [19]). We recall the following lemma.

Lemma 5.4 ([19]). For any Cayley graph G,MIX1/2(G)=O(Δdiam(G)2 logn).

Now applying Corollary 3.5 and Theorem 4.8 we obtain the following.

Theorem 5.5. Let G be a Δ-regular Cayley graph such that E [COVmax(G) ] =
Θ(maxu,v H(u, v) logn). Then, for any k � E[ COVmax(G) ]

Δ diam(G)2 log n , Sk(G) = Ω (k) .

Moreover for any 1 � k � n, Sk(G) = O
(

E[ COVmax(G) ]
diam(G)2 logn

)
.

Hence for any Cayley graph with small degree Δ, there is a sharp threshold point
near E[ COVmax(G) ]

diam(G)2 . For d-dimensional torus with d > 2 we can prove a slightly
stronger result, since it is known that maxu,v H(u, v) = Θ(n) and MIX1/2(G) =
Θ(diam(G)2) = Θ(n2/d) (cf. [3, 17]). Applying Corollary 3.5 for the lower bound,
and, Theorem 4.8 and Corollary 4.7 for the upper bound gives:

Corollary 1. Let G be a d-dimensional torus with d > 2. Then for any 1 �
k � n1−2/d logn, Sk(G) = Ω (k) . Moreover for any 1 � k � n, Sk(G) =
O

(
min{k, n1−2/d log2 n}

)
.

6 Conclusions
We presented several lower and upper bounds on the speed-up defined as the
ratio between the cover time of one and the cover time of k random walks. On a
concrete level, our results fill several gaps left open in the previous work of Alon
et al. [3] (cmp. Figure 1). From a higher perspective, our findings also provide
an answer to the question raised by [3] about a good characterization of a best-
possible speed-up. For a large class of graphs, a speed-up of Ω(k) is possible up
to a certain threshold (roughly n logn divided by the mixing time), while above
the threshold the speed-up does not increase further.
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Abstract. We consider a model for online computation in which the
online algorithm receives, together with each request, some information
regarding the future, referred to as advice. The advice provided to the
online algorithm may allow an improvement in its performance, com-
pared to the classical model of complete lack of information regarding
the future. We are interested in the impact of such advice on the com-
petitive ratio, and in particular, in the relation between the size b of the
advice, measured in terms of bits of information per request, and the
(improved) competitive ratio. Since b = 0 corresponds to the classical
online model, and b = �log |A|�, where A is the algorithm’s action space,
corresponds to the optimal (offline) one, our model spans a spectrum of
settings ranging from classical online algorithms to offline ones.

In this paper we propose the above model and illustrate its applicabil-
ity by considering two of the most extensively studied online problems,
namely, metrical task systems (MTS) and the k-server problem. For MTS
we establish tight (up to constant factors) upper and lower bounds on
the competitive ratio of deterministic and randomized online algorithms
with advice for any choice of 1 ≤ b ≤ Θ(log n), where n is the number
of states in the system: we prove that any randomized online algorithm
for MTS has competitive ratio Ω(log(n)/b) and we present a determin-
istic online algorithm for MTS with competitive ratio O(log(n)/b). For
the k-server problem we construct a deterministic online algorithm for
general metric spaces with competitive ratio kO(1/b) for any choice of
Θ(1) ≤ b ≤ log k.

1 Introduction

Online algorithms are algorithms that receive their input piece by piece and
have to act upon the receipt of each piece of input (a.k.a. request). Yet, their
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goal is usually to guarantee a performance which is as close as possible to the
optimal performance achievable if the entire input is known in advance. How
close do they get to this optimal performance is usually analyzed by means of
competitive analysis (cf. [4]).

From a theoretical standpoint, the complete lack of knowledge about the future
makes it many times impossible to achieve “reasonable” competitive ratios. From
a practical standpoint, complete lack of knowledge about the future does not
always accurately model realistic situations. Consequently, several attempts have
been made in the literature to somewhat relax the “absolutely no knowledge”
setting, and achieve better competitive ratios in such relaxed settings. Most
notable are the setting where a limited number of steps into the future is known
at any time (lookahead) (e.g., [1,7,19]), and the “access graph” setting for paging
(e.g., [5,13]). These settings and their analyses are usually specific to the problem
they address.

In this paper we study a new, general framework whose purpose is to model
online algorithms which have access to some information about the future. This
framework is intended to analyze the impact of such information on the achiev-
able competitive ratio. One important feature of our framework is that it takes
a quantitative approach for measuring the amount of information about the fu-
ture available to an online algorithm. Roughly speaking, we define a finite advice
space U , and augment the power of the online algorithm Alg (and thus reduce
the power of the adversary) by means of a series of queries ut, t = 1, 2, . . ., where
ut maps the whole request sequence σ (including the future requests) to an ad-
vice ut(σ) ∈ U provided to Alg in conjunction with the tth request of σ. This
advice can then be used by the online algorithm to improve its performance. At
the risk of a small loss of generality, we assume that the advice space is of size
2b for some integer b ≥ 0 and consider the advice to be a string of b bits.

Example 1. For the paging problem, it is relatively easy to verify that the fol-
lowing is a 1-competitive algorithm which uses 1 bit of advice per request (i.e.,
|U| = 2) [10]. The bit of advice indicates whether the optimal offline algorithm
keeps in memory the requested page until the next request to that same page.
The online algorithm tries to imitate the behavior of the optimal algorithm:
if the optimal algorithm indeed keeps in memory the requested page until the
next request to that same page, then so does the online algorithm. Whenever a
page must be swapped out from memory, the online algorithm picks an arbitrary
page among all pages that are not supposed to remain in memory until they are
requested again.

Clearly, since for a “usual” online problem the set of all possible request se-
quences is often infinite and in any case would typically be larger than the
advice space U , our framework just imposes some “commitment” of the adver-
sary regarding the future. This reduces the power of the adversary, and gives
to the online algorithm some information about the future. Since (typically) an
online algorithm has at any time a finite set of possible actions, our setting ad-
ditionally provides a smooth spectrum of computation models whose extremes
are (classical) online computation with no advice (advice space of size 1) and
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optimal, offline computation, where the advice is simply the optimal action (the
advice space corresponds to the set of all possible actions).

The main motivation for studying online algorithms that receive a small advice
with each request is purely theoretical. Nevertheless, this framework may be
motivated by settings such as the following, which may be dubbed “spy behind
enemy lines”: an entity which is aware of the plans of the adversary collaborates
with the online algorithm, however the communication between this entity and
the online algorithm is limited in terms of its capacity.

In this work we concentrate on two classical and extensively studied online
problems, metrical task systems (MTS) and the k-server problem. We establish
several (upper and lower) bounds on the achievable competitive ratios for these
problems by online algorithms with advice, thus demonstrating the applicability
of our approach for online problems, and giving a more refined analysis for online
algorithms having some information about the future. Specifically, for MTS we
establish asymptotically tight upper and lower bounds by proving Theorems 1
and 2.

Theorem 1. Any randomized online algorithm for uniform n-node MTS with
1 ≤ b ≤ Θ(log n) bits of advice per request cannot be ρ-competitive against an
oblivious adversary unless ρ = Ω(log(n)/b).

Theorem 2. For any choice of 1 ≤ b ≤ logn, there exists a deterministic online
algorithm for general n-node metrical task systems that receives b bits of advice
per request and whose competitive ratio is O(log(n)/b).

For the k-server problem we first prove Theorem 3 and then generalize it to
establish Theorem 4.

Theorem 3. There exists an O(
√
k)-competitive deterministic algorithm for the

k-server problem that receives O(1) bits of advice per request.

Theorem 4. For any choice of Θ(1) ≤ b ≤ log k, there exists a deterministic
online algorithm for the k-server problem that receives b bits of advice per request
and whose competitive ratio is kO(1/b).

Related work. Online algorithms operating against restricted adversaries have
been considered in the literature on many occasions, and under different settings.
For example, online algorithms that operate against an adversary that has to
provide some lookahead into the future have been considered, e.g., for the list
accessing problem [1], the bin-packing problem [19], and the paging problem [7].
Another example is the model of “access graph” for the paging problem [5,13].

The notion of advice is central in computer science (actually, checking mem-
bership in NP-languages can be seen as computing with advice). In particular,
the concept of advice and the analysis of its size and its impact on various com-
putations has recently found various applications in distributed computing. It is
for instance present in frameworks such as informative labeling for graphs [27],
distance oracles [28], and proof labeling [22,23]. A formalism of computing with
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advice based on a pair of collaborative entities, usually referred to as an oracle
and an algorithm, has been defined in [17] for the purpose of differentiating the
broadcast problem from the wake-up problem. This framework has been recently
used in [16] for the design of distributed algorithms for computing minimum
spanning trees (MST), in [15] for tackling the distributed coloring problem, and
in [26] for analyzing the graph searching problem (a.k.a. the cops-and-robbers
problem). Other applications can be found in [8,18,20]. In the framework of com-
puting with advice, the work probably most closely related to the present one
is the work of Dobrev, Královič, and Pardubská [10] who essentially prove that
there is a 1-competitive online algorithm for the paging problem, with 1 bit of
advice1 (see Example 1).

Online algorithms (without advice) for metrical task systems have been ex-
tensively studied. For deterministic algorithms it is known that the competitive
ratio is exactly 2n−1, where n is the number of states in the system [6]. For ran-
domized algorithms, the known upper bound for general metrical task systems
is O(log2 n log logn) [12,14] and the known lower bound is Ω(logn/ log logn)
[2,3]. For uniform metric spaces the randomized competitive ratio is known to
be Θ(log n) [6,21].

For the k-server problem the best competitive ratio for deterministic algo-
rithms on general metric spaces is 2k − 1 [24], and the lower bound is k [25].
Randomized algorithms for the k-server problem (against oblivious adversaries)
are not well understood: it is known that in general metric spaces no algorithm
has competitive ratio better than Ω(log k/ log log k) [2,3], but no upper bound
better than the one of [24] (that holds for deterministic algorithms) is known.

Organization. The rest of the paper is organized as follows. In Section 2 we
give the necessary preliminaries. The lower bound for metrical task systems is
presented in Section 3; the matching upper bound is established in Section 4.
In Section 5 we prove Theorem 3 regarding the k-Server problem. Due to space
limitations we only give outlines of these three results, while the proof of Theo-
rem 4 is omitted entirely. We conclude in Section 6 with some further discussion
and open problems.

2 Preliminaries

An online algorithm is an algorithm that receives its input piece by piece. Each
such piece is an element in some set S and we refer to it as a request. Let σ
be a finite request sequence. The tth request is denoted by σ[t] ∈ S. The online
algorithm has to perform an action upon the receipt of each request, that is, at
1 The model and interests of [10] actually differ from ours in two aspects. First, they are

interested in the amount of information required in order to obtain online algorithms
with optimal performance, rather than improved competitive ratios. Second, they
allow the advice to be of variable size, including size zero, and concentrate their work
on the question of how much below 1 can the average size of the advice be. This is
done by means of encoding methods such as encoding the 3-letter alphabet {∅, 0, 1}
using one bit only.
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round t, 1 ≤ t ≤ |σ|, this action has to be performed when the online algorithm
only knows the requests σ[1], . . . , σ[t]. For this action it incurs some cost (in the
case of minimization problems).

To formally define a deterministic online algorithm we use the formulation of
[4] (cf. Chapter 7). A deterministic online algorithm is a sequence of functions
gt : St → At, t ≥ 1, where At is the set of possible actions for request t (in many
cases all At are identical and we denote them by A.) In this work we strengthen
the online algorithm (and thus weaken the adversary) in the following manner.
For some finite set U , referred to as the advice space, the online algorithm is
augmented by means of a sequence of queries ut : S∗ → U , t ≥ 1. The value of
ut(σ), referred to as advice, is provided to the online algorithm in each round
1 ≤ t ≤ |σ|. The complexity of the advice is defined to be log |U|. For simplicity
of presentation, and at the risk of an inaccuracy in our results by a factor of at
most 2, we only consider advice spaces of size 2b for some integer b ≥ 0, and
view the advice as a string of b bits.

Formally, a deterministic online algorithm with advice is a sequence of pairs
(gt, ut), t ≥ 1, where gt : St×U t → At, and ut : S∗ → U . Given a finite sequence
of requests σ = (σ[1], . . . , σ[�]), the action taken by the online algorithm in round
t is gt(σ[1], . . . , σ[t], u1(σ), . . . , ut(σ)).

A randomized online algorithm with advice is allowed to make random choices
(i.e., “toss coins”) to determine its actions (the functions gt) and the advice
scheme (the queries ut). Formally, then, a randomized online algorithm with
advice is a probability distribution over deterministic online algorithms with
advice.

A deterministic online algorithm Alg (with or without advice) is said to be
c-competitive if for all finite request sequences σ, we have Alg(σ) ≤ c ·Opt(σ)+β,
where Alg(σ) is the cost incurred by Alg on σ, Opt(σ) is the cost incurred by
an optimal (offline) algorithm on σ, and β is a constant which does not depend
on σ. If the above holds with β = 0, then Alg is said to be strictly c-competitive.
For a randomized online algorithm (with or without advice) we consider the
expectation (over the random choices of the algorithm) of the cost incurred by
Alg on σ. Therefore a randomized online algorithm Alg (with or without advice)
is said to be c-competitive (against an oblivious adversary) if for all finite request
sequences σ, we have E[Alg(σ)] ≤ c · Opt(σ) + β.

As commonly done for the analysis of online algorithms, one may view the
setting as a game between the online algorithm and an adversary that issues the
request sequence round by round. In this framework, the values of the queries
ut can be thought of as commitments made by the adversary to issue a request
sequence which is consistent with the advice seen so far. For an online algorithm
Alg, augmented with advices in U , we are interested in the competitive ratio of
Alg, the advice complexity log |U|, and the interplay between these values.

Metrical Task Systems. A metrical task system (MTS) is a pair (M,R),
where M = (V, δ) is an n-point metric space2, and R ⊆ (R≥0 ∪ {∞})n is a set
2 Throughout the paper, we use the standard definition of a metric space consisting

of a set V of points and a distance function δ.
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of allowable tasks. The points in V are usually referred to as states. We assume
without loss of generality that M is scaled so that the minimum distance between
two distinct states is 1.

An instance I of (M,R) consists of an initial state s0 and a finite task sequence
r1, . . . , rm, where rt ∈ R for all 1 ≤ t ≤ m. Consider some algorithm Alg for
(M,R) and suppose that Alg is in state s at the beginning of round t (the
algorithm is in state s0 at the beginning of round 1). In round t Alg first moves
to some state s′ (possibly equal to s), incurring a transition cost of δ(s, s′), and
then processes the task rt in state s′, incurring a processing cost of rt(s′). The
cost incurred by Alg on I is the sum of the total transition cost in all rounds
and the total processing cost in all rounds.

The k-server problem. Let M = (V, δ) be a metric space. We consider in-
stances of the k-server problem on M, and when clear from the context, omit
the mention of the metric space. At any given time, each server resides in some
node v ∈ V . A subset X ⊆ V , |X | = k, where the servers reside is called a
configuration. The distance between two configurations X and Y , denoted by
D(X,Y ), is defined as the weight of a minimum weight matching between X
and Y .

An instance I of the k-server problem on M consists of an initial configura-
tion X0 and a finite request sequence r1, . . . , rm, where rt ∈ V for all 1 ≤ t ≤ m.
Consider some algorithm Alg for the k-server problem on M and suppose that
Alg is in configuration X at the beginning of round t (the algorithm is in con-
figuration X0 at the beginning of round 1). The request rt must be processed by
one of the k servers in round t, which means that Alg moves to some configu-
ration Y such that rt ∈ Y (Y may be equal to X if r ∈ X), incurring a cost of
D(X,Y ). The cost incurred by Alg on I is the total cost in all rounds.

3 A Lower Bound for MTS

In this section we sketch the proof of Theorem 1, that is, we show that if a
randomized online algorithm for uniform n-node MTS with 1 ≤ b ≤ Θ(log n)
bits of advice per request is ρ-competitive, then ρ = 1+Ω(log(n)/b). For the sake
of the analysis, we consider a stronger model for the online algorithms, where
the whole advice is provided at the beginning of the execution rather than round
by round.

Before dwelling into the details of the lower bound, we describe a key ingre-
dient in the proof that relates to a basic two-player zero-sum game, referred to
as generalized matching pennies (GMP). In GMP both the min-player and the
max-player have the same discrete action space {1, . . . , k}. The cost incurred by
the min-player is 0 if both players play the same action 1 ≤ i ≤ k; otherwise, it
is 1. Let S be the random variable that takes on the action of the max-player (S
reflects the mixed strategy of the max-player). Clearly, if H(S) = log k, namely,
if the entropy of S is maximal (which means that the max-player chooses its
action uniformly at random), then the expected cost incurred by the min-player
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is 1− 1/k. The following lemma, whose proof is omitted from this extended ab-
stract, provides a lower bound on the expected cost incurred by the min-player
when the entropy in S is not maximal.

Lemma 1. For every mixed strategy of the max-player, if H(S) ≥ δ log k, where
0 < δ < 1, then the expected cost incurred by the min-player is greater than
δ − 1/ log k.

Given some integer 1 ≤ b ≤ Θ(log n) (the size of the advice per round), fix
φ = 2Θ(b) and τ = �logφ(n/2)�. The hidden constants in the Theta notations
are chosen to guarantee the following properties: (P1) 4 ≤ φ <

√
n/2; and (P2)

1 < τ = Ω(log(n)/b).
Let L be a sufficiently large integer. By repeating the GMP game with k = φ

for Lτ rounds, we obtain the following online GMP problem. Each round 1 ≤ t ≤
Lτ of the online GMP problem is characterized by some letter �t in the alphabet
[φ]. This letter (chosen by an oblivious adversary) is revealed immediately after
round t. The alphabet [φ] also serves as the action space of the algorithms
for the online GMP problem, that is, the action of an algorithm in round t is
characterized by some letter �′t ∈ [φ]. The cost incurred by the algorithm in
round t is 0 if �′t = �t and 1 if �′t �= �t. The online GMP problem is defined such
that any algorithm incurs additional L units of dummy cost regardless of its
choices of letters �′t. Clearly, an optimal (offline) algorithm for the online GMP
problem does not incur any cost other than the dummy cost as its action in
round t is �′t = �t for every 1 ≤ t ≤ Lτ .

The remainder of the proof consists of two parts. First, we employ an infor-
mation theoretic argument to show that if the request sequence σ ∈ [φ]Lτ of
the online GMP problem is chosen uniformly at random among all Lτ -letter
words over the alphabet [φ], then the expected cost incurred on σ by any de-
terministic online algorithm that receives bL(τ + 1) bits of advice in advance is
L(1 + Ω(τ)). Therefore by Yao’s principle, it follows that for every randomized
online algorithm Alg that receives bL(τ + 1) bits of advice in advance, there ex-
ists a request sequence σ ∈ [φ]Lτ such that E[Alg(σ)] = L(1+Ω(τ)). Second, we
reduce the online GMP problem to uniform n-node MTS showing that a request
sequence of length Lτ for the former problem can be implemented as a request
sequence of length L(τ + 1) for the latter. By combining these two parts, and
since Opt(σ) = L for every σ ∈ [φ]Lτ , we conclude that the competitive ratio
of any randomized algorithm for uniform n-node MTS with advice of b bits per
round is 1+Ω(τ) = 1+Ω(log(n)/b) (even if the whole advice is provided to the
algorithm at the beginning of the execution).

The information theoretic argument. Let σ = (σ1, . . . , σLτ ) be a sequence
of Lτ letters of the alphabet φ chosen independently and uniformly at random.
Consider some deterministic online algorithm Alg for the online GMP problem
that receives bL(τ + 1) = Θ(Lτ logφ) bits of advice, denoted by U , at the
beginning of the execution.

The entropy in σ is H(σ) = Lτ logφ. By definition, the advice U is a random
variable which is fully determined by σ, thus H(σ | U) = H(σ, U) − H(U) =
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H(σ) − H(U) = Ω(Lτ logφ). A straightforward variant of the chain rule of con-
ditional entropy implies that H(σ | U) = H(σ1 | U)+H(σ2 | σ1, U)+· · ·+H(σLτ |
σ1, . . . , σLτ−1, U). Since H(σt) = logφ for all t, it follows by an averaging argu-
ment that in a constant fraction of the rounds t the entropy that remains in σt

after Alg saw the advice U and the outcomes σ1, . . . , σt−1 of the previous rounds
is Ω(logφ). Lemma 1 can now be used to deduce that the expected cost incurred
by Alg in each such round t is Ω(1). Therefore the expected cost (including the
dummy cost) incurred by Alg throughout the execution is L(1 +Ω(τ)).

The reduction. We now turn to reduce the online GMP problem to the MTS
problem. The online GMP problem is implemented as an n-node MTS (M,R),
where R = {0,∞}n. That is, each task r ∈ R has 0 processing cost for some
states and infinite processing cost for the rest. (It is assumed that in every task,
at least one state has 0 processing cost.) Clearly, a competitive algorithm for
(M,R) must have 0 total processing cost.

Given a request sequence of length Lτ over the alphabet [φ] (for the online
GMP problem), fix n′ = φτ . The corresponding MTS request sequence is divided
into L cycles, where each cycle consists of τ+1 rounds, so the total length of the
request sequence is L(τ + 1). (Consequently, the advice provided to the online
algorithm at the beginning of the execution contains bL(τ + 1) bits.) A request
r = 〈r(1), . . . , r(n)〉 in odd (respectively, even) cycles satisfies r(i) = ∞ for every
n′+1 ≤ i ≤ 2n′ (resp., for every 1 ≤ i ≤ n′). For states 2n′+1 ≤ i ≤ n, we always
have r(i) = ∞. Therefore, throughout an odd (respectively, even) cycle, every
algorithm must be in state i for some 1 ≤ i ≤ n′ (resp., for some n′+1 ≤ i ≤ 2n′).
This means that between cycle c and cycle c+1 every algorithm must move from
some state in {1, . . . , n′} to some state in {n′ + 1, . . . , 2n′} or vice versa, which
sums up to L units of cost referred to as the dummy cost.

In what follows we describe the structure of cycle c for some odd c. The
structure of the even cycles is analogous. States 1, . . . , n′ are organized in con-
tiguous ranges. For every round 1 ≤ t ≤ τ + 1 of cycle c, there exists some
range Rt ⊆ {1, . . . , n′} such that the processing cost of state i is 0 if i ∈ Rt; and
∞ if i /∈ Rt. Clearly, every competitive algorithm must process the request of
round t in some state of Rt. In round 1 all states have zero processing cost, i.e.,
R1 = {1, . . . , n′}. For t = 1, . . . , τ , we have Rt+1 ⊆ Rt. Specifically, the range Rt

is partitioned into φ equally-sized contiguous subranges ; range Rt+1 will be one
of these subranges (determined by the letter in [φ] that characterizes the cor-
responding round in the online GMP request sequence). Eventually, in the last
round of the cycle, the range Rτ+1 consists of a single state. This is consistent
with our choice of parameters since τ = logφ n

′.
Note that the only unknown in each round 1 ≤ t ≤ τ of cycle c is which of

the φ subranges of Rt corresponds to the range rt+1. If at the end of round t the
algorithm is located in some state of Rt+1, then no cost is incurred in round t+1;
otherwise, a unit cost is incurred. So, we have Lτ rounds characterized by some
letter in [φ] and L additional rounds in which every algorithm incurs a unit cost.
Therefore a ρ-competitive online algorithm for (M,R) implies a ρ-competitive
online GMP algorithm.
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4 An Upper Bound for MTS

In this section we establish Theorem 2 by presenting a deterministic online algo-
rithm for general MTS that gets b, 1 ≤ b ≤ logn, bits of advice per request and
achieves a competitive ratio of � 
log n�

b � = O(log(n)/b). We call this algorithm
Follow.

Let (M,R) be a metrical task system. The request sequence is divided into
cycles, each consisting of α = � 
log n�

b � requests, with the last cycle possibly
shorter. The first cycle, cycle 0, consists of the first α requests, and so on. During
cycle i ≥ 0, Follow receives advice of �logn� bits, which indicate the state in
which the optimal algorithm serves (will serve) the first request of cycle i+ 1.

For cycle i, let si be the state in which the optimal algorithm serves the first
request of the cycle, and let OPTi be the cost of the optimal algorithm during
cycle i. Let OPT be the cost of the optimal algorithm on the whole request
sequence.

Definition of Follow. Before starting to serve cycle i, i ≥ 0, Follow places
itself at state si. This is possible for cycle 0 because both the optimal algorithm
and Follow start at the same initial state s0. This is possible for any cycle i > 0
by moving, at the end of phase i− 1, to state si, known to Follow by the advice
given in cycle i− 1.

To describe how Follow serves the requests in a cycle we give the following
definition. Let Bi(j), j ≥ 0, be the set of states in the metrical task system
that are at distance less than 2j from si. I.e., Bi(j) = {s : d(s, si) < 2j}. We
now partition the (at most) α requests of cycle i, into phases. When the cycle
starts, phase 0 starts. During phase j, Follow serves the requests by moving to
the state, among the states in Bi(j), which has the least processing cost for the
given task, and serving the request there. A request no longer belongs to phase
j, and phase j + 1 starts, if serving the request according to the above rule will
bring the total processing cost since the cycle started to be at least 2j . Note that
if a given request belongs to some phase j, the next request may belong to phase
j′ > j + 1. That is, there may be phases with no request.

We first give a lower bound on the cost of the optimal algorithm in each cycle
(proof omitted), and then give the main theorem of this section.

Lemma 2. If the last request of cycle i belongs to phase k, k ≥ 1, then OPTi ≥
2k−2.

Theorem 5. Follow is O(α)-competitive.

Proof sketch: We consider the cost incurred by Follow cycle by cycle. We denote
by Ci the cost of Follow during cycle i. Ci = Cs

i + Ct
i + C∗

i , where Cs
i is the

processing cost during cycle i, Ct
i is the transition cost during cycle i, and C∗

i

is the cost incurred by Follow, at the end of cycle i, to move to state si+1

(we do not count this cost in Ct
i ). First note that by the triangle inequality

C∗
i ≤ Ct

i + d(si, si+1). Then, for each cycle we consider two cases.
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Case 1: The last request of cycle i is in phase k = 0. In this case Cs
i +Ct

i ≤ OPTi

because Follow does not incur any transition cost, and the optimal algorithm
either moved away from si, incurring a cost of at least 1, or serves the whole
cycle in si, incurring processing cost equal to that of Follow.
Case 2: The last request of cycle i is in phase k > 0. In this case we have
Cs

i +Ct
i ≤ 8α·OPTi. This is because (1) by Lemma 2 we have that OPTi ≥ 2k−2;

and (2) Cs
i < 2k by the definition of the phases, and Ct

i ≤ (α − 1)2k+1 since
Follow does not leave Bi(k) during the phase.

Since
∑

i d(si, si+1) ≤ OPT , summing over all cycles gives the result. �

5 An Upper Bound for the k-Server Problem

In this section we present a deterministic algorithm for the k-server problem that
receives 4 bits of advice per request and admits a competitive ratio of O(

√
k),

thus establishing Theorem 3.
The algorithm, denoted Partition, works in iterations, where each iteration

consists of k requests. Fix some optimal (offline) algorithm Opt and let Ai denote
the configuration of Opt at the beginning of iteration i. Partition uses two bits
of advice per round of iteration i to identify Ai+1 as follows. The first bit of
advice, received in round 1 ≤ j ≤ k of iteration i, determines whether the node
corresponding to the current request belongs to Ai+1. The second bit of advice,
received in round 1 ≤ j ≤ k of iteration i, determines whether the jth (according
to some predefined order) node of Ai is still occupied in Ai+1. Based on these
two bits of advice, and based on the knowledge of Ai, Partition computes the
configuration Ai+1 and moves to it at the end of iteration i. The cost incurred
by this move is bounded from above by the sum of the total cost incurred by
Partition in iteration i (tracing the steps of Partition back to configuration
Ai) and the total cost incurred by Opt in iteration i (tracing the steps of Opt
from Ai to Ai+1), thus increasing the overall competitive ratio of Partition
only by a constant factor.

In order to serve the requests of iteration i, the k servers are partitioned into
heavy servers and light servers according to the role they play in Opt during iter-
ation i: those serving (in Opt) at least

√
k requests are classified as heavy servers;

the rest are classified as light servers. The third bit of advice, received in round
1 ≤ j ≤ k of iteration i− 1, determines whether the server that occupies the jth

node of configuration Ai is heavy or light. Consequently, at the beginning of it-
eration i Partition knows the heavy/light classification of all the servers. (The
details related to the first iteration are omitted from this extended abstract.) The
fourth bit of advice, received in round 1 ≤ j ≤ k of iteration i, determines whether
Opt serves the current request with a heavy server or with a light one. Note that
this partitions the requests of iteration i into heavy requests (served in Opt by a
heavy server) and light requests (served in Opt by a light server).

To actually serve the requests of iteration i, Partition invokes the Work
Function Algorithm (WFA) [9], with the heavy servers, on the subsequence con-
sisting of the heavy requests of iteration i. WFA has a competitive ratio of 2k′−1,
where k′ is the number of servers in the problem [24]. Moreover, it is shown in
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[11] that WFA is in fact strictly O(k′)-competitive. In our case k′ ≤
√
k as there

cannot be more than
√
k heavy servers. Thus the cost incurred by Partition on

the heavy requests of iteration i is at most O(
√
k) times larger than that of Opt.

The subsequence consisting of the light requests of iteration i is served by
the light servers according to the following greedy strategy: each light request is
served by the closest light server, which then immediately returns to its initial
position in Ai. This strategy is strictlyO(�)-competitive, where � is the maximum
number of requests served by any (light) server in Opt. By the definition of the
light servers, � in our case is at most

√
k, which implies that the cost incurred by

Partition on the light requests of iteration i is at most O(
√
k) times larger than

that of Opt. By summing over all iterations, we conclude that the competitive
ratio of Partition is O(

√
k), thus establishing Theorem 3.

6 Conclusions

We define a model for online computation with advice. The advice provides the
online algorithm with some (limited) information regarding future requests. Our
model quantifies the amount of this information in terms of the size b of the
advice measured in bits per request. This model does not depend on the specific
online problem.

The applicability and usefulness of our model is demonstrated by studying,
within its framework, two of the most extensively studied online problems:
metrical task systems (MTS) and the k-server problem. For general metrical
task systems we present a deterministic algorithm whose competitive ratio is
O(log(n)/b). We further show that any online algorithm, even randomized, for
MTS has competitive ratio Ω(log(n)/b) if it receives b bits of advice per request.
This lower bound is proved on uniform metric spaces. For the k-server problem
we present a deterministic online algorithm whose competitive ratio is kO(1/b).
Whether this is best possible is left as an open problem.

We believe that employing our model of online computation with advice may
lead to other results, thus enhancing our understanding of the exact impact of
the amount of knowledge an online algorithm has regarding the future on its
competitive ratio.
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Abstract. We study the problem of maintaining a dynamic tree suc-
cinctly, in 2n + o(n) bits, under updates of the following form: insertion
or deletion of a leaf, insertion of a node on an edge (edge subdivision)
or deletion of a node with only one child (the child becomes a child of
the grandparent). We allow satellite data of a fixed (but not necessarily
constant) size to be associated to the nodes of the tree.

We support update operations in constant amortized time and sup-
port access to satellite data and basic navigation operations in worst-
case constant time; the basic navigation operations includes parent,
first/last-child, previous/next-child. We demonstrate that to al-
low fast support for more extended operations such as determining the
i-th child of a node, rank of a child among its siblings, or subtree size,
we require a restrictive update strategy for which we propose the finger-
update model where updates are performed by a finger which is only
allowed to crawl on the tree (between a child and a parent or between
consecutive siblings). Under this model, we describe how the named op-
erations can be performed in worst-case constant time.

Previous work on dynamic succinct ordered trees [1,2] is mainly
restricted to binary trees and achieves poly-logarithmic [1] or “poly-log-
log” [2] update time under a more restricted model. Best previous re-
sult on ordinal trees achieves only sublinear amortized update time and
“poly-log-log” query time [3].

1 Introduction

A succinct representation of a combinatorial object is an encoding which sup-
ports a reasonable set of operations on the object in constant time and has a
storage requirement matching the information theoretic lower bound, to within
lower order terms. Succinct data structures perform under the uniform-time
word-RAM model with Θ (lg n) word size.

Ordered trees are trees in which the order of children of nodes is significant
and preserved. Ordered trees, as a fundamental data structure, have attracted
a great deal of research on their succinct representation [4,5,6,7,8,9,10]. All such
approaches achieves the information-theory lower bound of 2n bits (to within
lower order terms) to encode an ordered tree with n nodes, and their difference
is in what queries they support.

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 439–450, 2009.
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The main drawback with most of the succinct tree representations is their
lack of flexibility to allow dynamic updates, which necessitates an entire struc-
ture rebuild on modifications. Storm [11] in his thesis gives some main obsta-
cles in dynamising the previously existing approaches and introduces a new
succinct representation for binary trees allowing updates in poly-logarithmic
time [1]. Raman and Rao [2] improve updates to poly-log-log time for binary
trees. Gupta et al. [3] propose a framework for dynamising various succinct
structures which, when applied to ordered trees, results in a dynamic succinct
representation that performs updates in O (nε) time for any constant ε > 0 and
performs basic navigation queries in O (log logn) time. Arroyuelo [12] proposes
a dynamic succinct structure for cardinal trees.

A recent decomposition-based approach exists [10] to represent static ordered
trees which greatly simplifies the encoding of trees and implementation of many
operations on such trees. This paper demonstrates that the approach is of use
in attaining a dynamic succinct representation of ordered trees which allows fast
updates and operations.

1.1 Overview of the Results

We use the general representation approach of [10] and show how to maintain
the representation under insertions and deletions. The type of insertions and
deletions supported is the same as in [1,2] and are as follows: insertion or deletion
of a leaf, insertion of a node with one child on an edge or deletion of a node with
only one child (by connecting its parent to its child directly).

Basic navigation operations which we support permit crawls on trees and
include parent, first-child, last-child, previous-child, and next-child
operations. These are supported in worst-case constant time. We note that these
operations subsume the parent, left-child, and right-child operations in
binary trees supported in previous work [1,2].

Associated with each node v is a piece of data of length b bits (b = O (logn)).
Given a node v, we support operations access-data(v) and change-data(v)
in worst-case constant time.

We show that, to support more advanced operations, one needs to restrict
the pattern of updates. The operations, we consider, are child(v, i) which
returns the i-th child of a given node v, child-rank(v) which returns the rank
of a given node v among its siblings, and subtree-size(v) which returns the
number of descendants of a given node v. child(v,i), child-rank(v) are two
natural operations to consider as we move from binary trees to ordered trees
where nodes can have arbitrary large degrees. The subtree-size(v) operation
was considered and supported by previous work on dynamic binary trees [1,2]
using the traversal pattern for update. Under the traversal pattern updates are
performed during the course of a traversal which starts at the root and ends
at the root and subtree-size queries can be answered only on completion of the
traversal.

We relax the update pattern by introducing the finger-update model. In the
finger-update model, there is a finger maintained on a node of the tree which
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is initially on the root and it can move from a parent to the leftmost or the
rightmost child or can move from a node to its immediate next or previous
siblings. Updates are only allowed on the node currently under the finger. Any
number of updates can be performed as the finger crawls on the tree and queries
(such as subtree-size) can be asked at any time at any node. Updates are
supported in amortized constant time over the number of movements of the
finger and the number of updates performed.

In the course of showing support for these operations, we design a partial-sum
data structure which works optimally in the finger-update model. This structure
is very useful and is of independent interest.

2 Succinct Representation

It is shown in [10] how an ordered tree with n nodes can be decomposed into
n/L subtrees of size roughly L for any value of parameter L. Strictly speaking:

Theorem 1. [10] A tree with n nodes can be decomposed into Θ (n/L) sub-
trees of size at most 2L which are pairwise disjoint aside from the subtree roots.
Furthermore, aside from edges stemming from the subtree root nodes, there is at
most one edge leaving a node of a component to its child in another component.

The representation that we use is analogous to the static representation of [10].
It is based on a two-level recursive decomposition of a given tree. In the first
level of recursion, the tree with n nodes is decomposed into subtrees using value
L =

⌈
lg2 n

⌉
, and subsequently these subtrees are, in turn, decomposed into yet

smaller subtrees using value L = �(lg n) /16� to obtain the subtrees on the second
level of recursion. Using the standard terminology of [8], we refer to the subtrees
on the first level by mini-trees and the second level by micro-trees.

Micro-trees of size less than �(lg n) /8� are small enough to be represented by
a look-up table. The representation of a micro-tree with k nodes consists of two
fields: the first field simply is the size of the micro-tree (O (log k) = O (lg lg n)
bits) and the second field is an index to the look-up table (2k bits). These
indices sum up to 2n bits over all micro trees and are the dominant term in our
representation; other auxiliary data amounts to o (n) bits.

The table stores encodings of all trees with sizes up to �(lgn) /8� along with
answers to variety of queries types for each such tree. For all possible updates,
each tree contains a pointer to the destination tree, i.e. the tree resulting from
the application of that update. The size of the auxiliary data for each tree will
be poly-logarithmic in n and thus the size of the entire table is o (n).

Mini-trees consist of micro-trees and links between them. Links between dif-
ferent micro-trees can be in either of the three following forms: 1) a common root
node, 2) edges from a single-node micro-tree to its children micro-tree or 3) an
edge from a non-root node from a micro-tree to the root of another micro-tree.
We represent the latter edges by introducing a dummy node on them. Due to the
manner in which the tree is decomposed, there is at most one such edge leaving
a non-root node in a micro-tree and hence, at most one dummy node in each
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micro-tree. We keep explicit pointers (of size O (log logn)) to represent dummy
edges, which are edges from dummy nodes to their children.

To represent a common root among micro-trees, or edges emanating from
a single-vertex micro-tree, we use explicit O (log log n)-bit pointers to form a
doubly-linked list on sibling micro-trees such that two consecutive micro-trees
on the chain contain two immediate sibling children of the root. This is in con-
trast to the use of dictionary structures in [10], as there is no dynamic dictionary
structure with the desired functionalities. The linked list does not facilitate ran-
dom accesses to children of a node, and we can overcome this issue by introducing
a substitute structure that supports fast updates under the finger-update model
in section 5.3.

The tree consists of mini-trees and links between them. The tree over mini-
trees is represented analogously to the mini-tree representation over micro-trees:
i.e. explicit pointers for edges coming out of mini-trees from non-root nodes and
explicit O (logn)-bit pointers to reference left and right sibling mini-trees.

3 Performing Updates

In this section, we show how the succinct structure of section 2 is maintained
under insertions and deletions of nodes. To allow for dynamic updates, we relax
the maximum size of a micro-tree to be �(lgn) /4� which is twice the maximum
size we allowed in the static representation. Analogously, we allow the maximum
size of a mini-tree to be 4

⌈
lg2 n

⌉
, twice the maximum mini-tree size in the static

representation. When a node is inserted or deleted, the topology of the corre-
sponding micro-tree changes. The look-up table which lists all trees of size up to
�(lg n) /4�, also contains, for each tree and all possible insertions and deletions
on the tree, the reference to the resulting tree under the update. Therefore, the
update can be performed in constant time, provided the size of the corresponding
micro-tree or mini-tree does not exceed the limits.

When a micro-tree exceeds the maximum size, it is decomposed into (at most
4) subtrees using theorem 1 with value L = �(lg n) /16�. The decomposition
is performed in constant time using the look-up table: each entry of maximum
size in the look-up table contains its decomposition information. Some of the
newly created micro-trees resulted from the micro-tree decomposition could be
undersized. However, we can charge them to the Θ (logn) insertions that made
the original micro-tree exceed over limits. Since we rebuild the containing mini-
tree after O

(
log2 n

)
such insertions, there are O (logn) undersized micro-trees

at any point and the representation remains valid.
Analogously, when a mini-tree exceeds the maximum mini-tree size, it is de-

composed into (at most 4) subtrees using theorem 1 with value L =
⌈
lg2 n

⌉
.

The decomposition is performed in Θ
(
log2 n

)
time which is amortized over the

Θ
(
log2 n

)
insertions which brought the mini-tree over the limits. Some of the

newly created mini-trees could be undersized. We charge these to the Θ
(
log2 n

)
insertions which caused the mini-tree to overflow. As we rebuild the entire tree
after n insertions, there are O

(
n/ log2 n

)
such undersized mini-trees at any point
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and hence the representation remains valid. Together with creation of a mini-
tree, micro-trees inside it are recomputed and represented.

Handling of deletions from micro-trees and mini-trees is easier. No particular
action is required to the point that the micro-tree or the mini-tree being deleted
from becomes empty. In this event, the corresponding entries are removed from
the representation. The entry removal costs Θ (logn) time for a micro-tree and
Θ

(
log2 n

)
for a mini-tree. These costs are amortized over the deletions that

emptied the micro-tree or mini-tree. This is justified if the micro-tree or the mini-
tree are not undersized and have sizes Θ (logn) and Θ

(
log2 n

)
respectively. If the

original mini-tree or micro-tree are undersized, they are either created as a result
of a split or they were initially undersized before any updates. In the former case,
we showed there are Θ (logn) and Θ

(
log2 n

)
insertions which push the micro-

tree or the mini-tree over limits, we charge these insertions instead. In the latter
case, a one-time linear fund of Θ (logn) for each micro-tree and Θ

(
log2 n

)
for

each mini-tree is enough to deal with deletions of these components.
One crucial part of dealing with updates is memory management. Micro-trees

and mini-trees grow and shrink as a result of insertions and deletions, and new
ones are created as a result of splits, and they disappear when they become
empty. We show in section 3.1 how these structures are handled in memory.

3.1 Memory Management

Following the path of previous work [2], we assume the memory model in which
the working space of the algorithm is from word 0 to the highest word h the
algorithm is using at the time, and the space usage at any given time is the
highest word being used.

In the work of Munro et al. [1], they insist on having blocks and subblocks
sit on a continuous segment of memory. We completely revise the memory man-
agement part of the structure to obtain constant amortized update time. We
relax the requirement that mini/micro trees be stored in a continuous segment
of memory; each may be spread over many segments.

Mini trees are stored in blocks of memory and micro trees are stored in
subblocks of memory. Each block consists of many continuous memory chunks
called blocklets and similarly, each subblock consists of many continuous memory
chunks called subblocklets.

Subblock memory management. Within a mini tree (of size Θ
(
log2 n

)
), there

are Θ (logn) micro trees (of size Θ (logn)). Therefore, a block of size O
(
log2 n

)
consists of O (logn) subblocks of size O (logn).

As depicted in figure 1, a block is divided into two areas: a clean area con-
taining the main portion of subblocks and an overflow area of lg3/2 n bits which
contains the overflow portion of subblocks that have overflown. Occasionally,
once enough updates have been performed, the entire structure is rebuilt: every-
thing is moved to the clean area and the overflow area is emptied.

A subblock can be spread over two subblocklets: one in the main area and the
other one in the overflow area. Each subblock has a header which contains a table
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√
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√

log n

Fig. 1. Subblock layout within a block

of (two) references to the subblocklets and their sizes. This subblock reference
table is used to resolve a memory address within a subblock. There are only two
O (log logn)-bit pointers to store and the size of each blocklets can be stored in
O (log logn) bits and the space overhead is negligible.

We first explain how we handle insertions. We keep the count of the number
of insertions and rebuild the entire structure at every 1

16 lg n insertions. The
overflow area has lg3/2 n bits which are allocated in chunks of

√
lg n bits. If

a subblocklet in the clean area overflows, a
√

lg n-bit chunk is allocated as the
second subblocklet and the subblock reference table is updated accordingly. If the
subblocklet in the overflow area becomes full, we must allocate another chunk to
the subblock. As we require this chunk to be the immediate following chunk, we
may have to move several following chunks if they belong to the same subblocklet
to the end of the allocated chunks in the overflow area. Moreover, the references
to these chunks must be updated accordingly in the subblock’s reference table.
Moving takes O

(√
logn

)
time in the worst case if the entire overflow area must

be moved. This cost can be amortized over the O
(√

logn
)

insertions in the
overflowing subblocklet. Therefore, the amortized time is constant.

When the overflow area is full, we rebuild the entire block and the overload
area is emptied. This takes O (logn) time which can be amortized over O (logn)
insertions that filled up the overflow area.

Thus far, we have dealt only with insertions which cause subblocks to overflow.
However, nodes can be deleted and as a result subblocks shrink. Deletions are
easier to handle. We keep a count of the number of deletions in a block and if
they go over 1

48 lg n, we rebuild the entire block1. The key observation is that
since there has been O (logn) deletions since last rebuilt, the structure remains
dense enough.

Block memory management. In the previous section, we explained how subblocks
are organized within an individual block. In this section, we explain how blocks
are fragmented and laid out in memory. An outline of the memory layout is
depicted in figure 2.

At the block level, memory is allocated in chunks of lg3/2 n bits; when a block
outgrows its allocated space a chunk of lg3/2 n bits at the end of the currently
used space is allocated for it. Since the block takes Θ

(
log2 n

)
bits and chunks

1 Constants such as 1
48

are chosen to make things work either by keeping table sizes
sublinear or to allow for growth and contraction of substructures.
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Fig. 2. Block memory layout: memory blocklets relative to a same block are not nec-
essarily in a consecutive zone

are lg3/2 n bits, a block consists of Θ
(√

logn
)

chunks (i.e. blocklets). Thus, a
table can be stored for each block which keeps tracks of pointers to blocklets of
a block. We refer to this table as block reference table. Since blocklets have the
same size, addressing inside a block using the block reference table is easy.

Deletions are easier to deal with; We only keep a count of the number of
deletions and if it exceeds n/ lgn, we compactify and rebuild the entire structure.
Since, there can only be n/ lgn deleted nodes (and thus bits) in the structure,
it remains dense enough.

Furthermore, we can have keys and satellite data associated with each nodes
and manage them efficiently in memory upon insertions and deletions. Due to
lack of space, we defer the detailed discussion of this subject to a full version of
this paper.

4 Navigation Queries

In this section, we explain how the basic navigation operations are supported.
The basic navigational operations are parent (parent), leftmost/rightmost child
(first/last-child) and right/left siblings (previous/next-child). More en-
hanced operations such as i-th child of a node are to be discussed in section 5. We
note that previous work [1,2] functions only on binary trees and our basic nav-
igation operations (leftmost child, right sibling) supports all of their supported
navigational operations.

We recall that the tree decomposition of [10] guarantees that each component
subtree C has at most one edge going out of the component with the exception of
the root of the component which can be shared by many components or can have
many edges emanating if it is a single-node component. We refer to component
D which contains the other end of the edge from a non-root node as the child
of component C (C is the component parent of D). If a component root has
children in different components, these components are referred to as the sibling
components. Two immediate sibling components are each other’s left and right
sibling components.

As mentioned in section 2, each mini-tree keeps (long) pointers to its par-
ent, leftmost/rightmost children and left/right sibling mini-trees. Similarly, each
micro-tree keeps (short) pointers to its parent, child, and left/right sibling micro-
trees. These pointers can be trivially maintained under updates. Given these
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pointers, the basic navigation operations named are easy to implement. For in-
stance, given a node to find its right sibling, we first consult the look-up table
and if there is no right sibling there and the node is a micro-tree root, we locate
the right sibling micro-tree and consult the look-up table for that micro-tree. If
there is no right sibling micro-tree and the node is a mini-tree root, we find the
right sibling mini-tree and find the leftmost child therein. The edge going out of
a component from a non-root node v is dealt with as an exception and data is
explicitly stored to accommodate for it. Thus, we can support basic navigation
queries on the succinct tree:

Theorem 2. A tree with n nodes and satellite data of length b bits associated
with all nodes can be represented in (2 + b)n + o (bn) bits and maintained in
constant amortized time per insertions and deletions such that it facilitates
navigation by supporting parent, first/last-child, previous/next-child in
worst-case constant time. Furthermore, given any node, its data can be accessed
and modified in worst-case constant time. �

5 Support for Enhanced Queries

We showed in section 4 how basic navigation on tree can be performed in constant
time. Nevertheless, more enhanced operations that allow us to gallop in the tree
(such as going directly to the i-th child of a node) or obtaining useful information
on nodes of the tree (such as subtree size of a node) are of interest.

As we will discuss in section 5.1, it is infeasible to support such enhanced
queries in constant time when insertion and deletions are performed in arbi-
trary locations. In previous work [1,2] on binary trees, the difficulty is felt and
restrictions are put in place to support queries such as subtree size of a node
in constant time. The restriction is updates are performed during a course of
a traversal which starts and ends at the root, and furthermore, queries can be
answered only after the traversal is completed.

We strengthen the model by separating the issue of updates from queries
while supporting updates in amortized constant time and queries in worst-case
constant time. We allow queries to be performed anywhere in the tree while
restrict updates to a crawl on the tree.

5.1 Lower Bounds

In this section, we show the infeasibility of supporting enhanced operations in
constant time, if dynamic updates are performed in arbitrary locations and not
in form of a crawl. Our lower bounds derive from the lower bounds on the
List representation and subset rank problems proved by Fredman and Saks [13].
Chan et al. [14] also derive lower bounds for dynamic succinct texts using the
same set of results. The proofs are ommitted due to lack of space.

Theorem 3. Maintaining an ordered tree under insertions and deletions of
leaves to support navigation queries parent and child(v, k) and access satel-
lite data requires Ω (logn/ log logn) amortized time per operation. �
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Theorem 4. Maintaining an ordered tree under insertions and deletions in
arbitrary locations to support sub-tree size queries requires Ω (logn/ log logn)
amortized time per operation. �

5.2 The Dynamic Model

As mentioned previously, we allow queries to be asked anywhere in the tree,
however we require the updates not to jump from a node to a distant node and
therefore only crawl on the tree. One can visualize this as if there is a finger
which is initially at the root of the tree. The finger can travel from a node to
its leftmost or rightmost child. Inversely, the finger can go from a child to its
parent. The finger can move from a node to its immediate left/right siblings. We
note that we charge for each movement of the finger and thus the update time
is amortized over the movement of finger as well as the updates performed.

Queries other than updates, on the other hand, can be asked anywhere on
the tree and a query can be asked on a node independent of the history of the
locations where previous queries have been asked.

5.3 Succinct Dynamic Prefix Sum Data Structure

In support for enhanced queries, we use a data structure which indexes prefix
sums in a dynamic array. The dynamic model is the finger-update model where
there is a finger and only the position which is under the finger can be updated
at any time and the finger moves from an element one step to the left or right
at a time. The desired queries to support are ps rank and ps select queries.
Query ps rank(t) simply reports

∑t
i=1 A[i] and ps select(s) returns index k

such that
∑k

i=1 A[i] ≤ s <
∑k+1

i=1 A[i]. Hon et al. [15] studied the same problem,
although in the fully-dynamic model where updates perform in arbitrary inde-
pendent locations, and thus operations are supported in non-constant time as
there are similar lower bounds as discussed in section 5.1.

We will show in the proof of theorem 5 that the finger dynamic array problem
can be reduced to the case where the array is only updated from one end. This
case is captured in the following lemma whose proof we omit due to lack of space.

Lemma 1. Let A[1..t] be a non-negative array of integers such that
∑t

i=1 A[i] ≤
n for some previously known n and ∀i;A[i] < lgc n for some absolute constant
c > 0. There exists a data structure which requires O (t logn) + o (n) bits and
maintains the array under insertions at the end, and deletions from the end in
worst-case constant time per update and it can answer ps rank and ps select
queries in worst-case constant time. �
Theorem 5. Let A[1..t] be a non-negative array of integers such that∑t

i=1 A[i] ≤ n for some previously known n and ∀i;A[i] < lgc n for some absolute
constant c > 0. There exists a data structure which requires O (t logn)+o (n) bits
and maintains the array under insertions/deletions in the finger-update model
in worst-case constant time per update. This structure can answer ps rank and
ps select queries in worst-case constant time.
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Proof. The idea is to break the array from where the finger lies into two arrays
Left and Right. These two arrays grow/shrink from the end to simulate the
finger-update array. Movement of the finger to left and right corresponds to
insertion of an element from one piece and its deletion from the other.

A ps rank(i) query where i is to the left of the update finger can be answered
by the same query in Left array. In case i lies in the Right array the answer to
ps rank(n-i) in the Right array is deducted from the total sum of all elements
and returned. Similarly, ps select(i) can be derived from the answer to such
queries in Left or Right array depending on whether i is less than or larger
than the total sum of elements in array Left. �

As we delete and insert elements the sum of elements changes. In lemma 1
and theorem 5 we assumed prior knowledge of an upper bound on the sum.
However, such knowledge does not always exist in advance and the structure
must be adaptive to the total sum as it changes. We allow updates which are
increments and decrements by one and insertion and deletions of zeros. Under
this model, we can afford to rebuild the structure as the value of the total sum
doubles or halves and always stay within the desired space bound.

Corollary 1. Let A[1..t] be an array of non-negative integers such that
∀i;A[i] < lgc n for some absolute constant c > 0 where n =

∑t
i=1 A[i]. There

exists a data structure which requires O (t logn) + o (n) bits and maintains the
array under decrement and increment by one and insertion and deletion of zeros
in the finger-update model in constant amortized time per update. This structure
can answer ps rank and ps select queries in worst-case constant time. �

5.4 Implementing Child(v,i) and child rank(v) Operations

On a node which is not a micro-tree or a mini-tree root, the queries are answered
from the look-up table. A micro/mini-tree root is dealt with using the prefix
sum structure (corollary 1). For each mini/micro-tree root, we maintain an array
which lists the number of children the roots has in different mini-trees (or micro-
trees). As children are inserted or deleted one by one and in order, the increment
and decrement model of the corollary applies.

Operation child(v,i) is implemented by a ps select to find the right mini-
tree followed by a ps select to find the right micro-tree in which the a ta-
ble look-up gives the answer. Similarly, operation child rank is performed by
ps rank queries on the mini-tree and micro-tree and finally a table-lookup to
find the rank within a micro-tree.

Using corollary 1, a structure on a node v which is a mini-tree root requires
O (mini-deg(v) ∗ logn)+o (deg(v)) bits where mini-deg(v) is the number of mini-
trees in which v has children and deg(v) is the actual degree of v. These terms
sum to o (n) over the entire tree. Similarly, a structure on a node u which is micro-
tree root within a mini-tree requires O (micro-deg(v) ∗ log logn)+ o

(
log2 n

)
bits

where micro-deg(v) is the number of micro-trees within the mini-tre in which v
has children. Over all mini-trees these terms sum to o (n) bits.
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5.5 Implementation of Subtree size Operation

The implementation of subtree size in a static tree is that each mini-tree
explicitly stores its subtree size and, within a mini-tree, each micro-tree stores
its subtree size within the mini-tree [10]. To determine subtree size(v), we
determine the subtree size within the containing micro-tree using the look-up
table, the descendent micro-tree (if any) has the subtree size within the mini-tree
stored explicitly. Finally, the descendent mini-tree (if any) has the subtree size
in the entire tree explicitly stored.

A dynamic implementation of subtree size resembles the static tree rep-
resentation: the same information is retained at the mini-tree and micro-tree
roots. However, the information is not necessarily valid at all nodes at all times.
Particularly, the subtree sizes stored at mini-tree and micro-tree roots which are
ancestors of the update finger node are not up-to-date. We maintain the invari-
ant that roots which are not an ancestor of the current node, with the update
finger, possess up-to-date information. This is easily maintainable by updating
the sub-tree size of a root when the finger is moved up from one of its children.

Thus, nodes other than those on the path from the root to the finger node can
determine their subtree size as in the static case. We denote by m1,m2, . . .mi

the mini-trees that the root-to-finger path crosses. For each such mini-tree mk,
we maintain a value ai which is the net additions to the mini-tree (i.e. number of
insertions minus the number of deletions). We store values ai in an array which
is maintained as the ps rank structure in lemma 1 which allows constant-time
prefix sum and thus quick suffix sum computation (we note that as we only
need the ps rank functionality of the structure, numbers do not have to satisfy
the non-negativity criteria).Within each mini-tree we repeat the same structure,
for the micro-trees that the path crosses. Now given a node on the path, we
determine the subtree size within the micro-tree using a table-lookup. We read
the subtree size within the mini-tree from the descending micro-tree. This values
is adjusted using the array structure on the micro-trees. Finally, the subtree size
in the entire subtree is read from the descending mini-tree. This value is adjusted
using the array structure on mini-trees.

6 Conclusion

We have studied the problem of maintaining an ordered tree under insertions
and deletions of nodes where nodes have associated satellite data. We showed
how insertions and deletions can be performed in constant amortized time to
allow support for basic navigational queries and access to satellite data in worst-
case constant time. This is an improvement over the poly-logarithmic update
time [1] and a poly-log-log update time [2] presented for a more restricted trees
(i.e. binary trees). It also improves a sublinear update time with poly-log-log
query time on ordered trees [3].

We proved a lower bound to allow more enhanced operations such as deter-
mining the i-th child of a node or obtaining the subtree-size of a node. To allow
constant time support for these operations, we introduced the finger-update
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model where updates are performed where the update finger lies, and the up-
date finger crawls on the tree. Nevertheless, queries other than updates can be
asked on any node of the tree independent of where the update finger is.

Extending permitted updates on trees to a more enhanced set, such as a set
that also includes cutting and attaching entire subtrees or left/right rotations,
remains open as a possible future work.
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Abstract. We consider the succinct representation of ordinal and car-
dinal trees on the RAM with logarithmic word size. Given a tree T ,
our representations support the following operations in O(1) time: (i)
BP-substring(i, b), which reports the substring of length b bits (b is at
most the wordsize) beginning at position i of the balanced parenthesis
representation of T , (ii) DFUDS-substring(i, b), which does the same for
the depth first unary degree sequence representation, and (iii) a similar
operation for tree-partition based representations of T . We give:
– an asymptotically space-optimal 2n + o(n) bit representation of n-

node ordinal trees that supports all the above operations with b =
Θ(log n), answering an open question from [He et al., ICALP’07].

– an asymptotically space-optimal C(n, k)+o(n)-bit representation of
k-ary cardinal trees, that supports (with b = Θ(

√
log n)) the opera-

tions (ii) and (iii) above, on the ordinal tree obtained by removing
labels from the cardinal tree, as well as the usual label-based oper-
ations. As a result, we obtain a fully-functional cardinal tree rep-
resentation with the above space complexity. This answers an open
question from [Raman et al, SODA’02].

Our new representations are able to simultaneously emulate the BP,
DFUDS and partitioned representations using a single instance of the
data structure, and thus aim towards universality. They not only support
the union of all the ordinal tree operations supported by these represen-
tations, but will also automatically inherit any new operations supported
by these representations in the future.

1 Introduction

Succinct, or highly space-efficient, representations of trees have found an in-
creasing number of applications in indexing massive collections of textual and
semi-structured data [15], and have consequently been intensively studied in re-
cent years. Using succinct representations, one can, for example, represent an
n-node binary tree in 2n + o(n) bits and support standard navigational and
other operations in O(1) time on the RAM model with word size w bits, where
w = O(lg n) [10,14,18]; by contrast, the standard representation takes Θ(n)
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words, or Θ(n lg n) bits, of memory. Minimizing the constant factor in the lead-
ing term of the space usage of a succinct data structure helps to show the asymp-
totic optimality of the space usage (and is important in practice); e.g., as there
are Cn = 1

n+1

(
2n
n

)
binary trees on n nodes, there is an information-theoretic

lower bound of lgCn = 2n−O(lg n) bits on any binary tree representation.
Succinct tree representations often store the structure of the tree as a bit-string

of length 2n+o(n) bits — even fewer, if the tree is “compressible” [11] — in one
of many ways, together with an index of o(n) bits (the index depends upon the
choice of structure bit-string and the operations to be supported). Operations are
supported in O(1) time on the RAM model with logarithmic word size by reading
O(1) words from the structure bit-string and/or the index. This approach gives
rise to the following undesirable properties of succinct representations:

– The numbering of nodes is based upon the position of the representation of
the nodes in the structure bit-string; different representations number nodes
differently. This is problematic because one often uses the node-number to
associate information with a node, and different numberings are convenient
for associating different kinds of information with the nodes of the same tree
(e.g. element labels [5], and text data [3] in XML documents).

– Certain operations can be implemented efficiently in one representation, but
are hard or impossible to implement in another: to create a representation
that supports the union of the sets of operations of two representations, one
would need to represent the given tree as two separate copies, each using the
respective structure bit-strings and index data structures, thereby doubling
the space usage and losing optimality.

This situation is clearly unsatisfactory. For instance, in the case of succinct
ordinal trees, there are at least three kinds of representations: the balanced paren-
thesis (BP), the depth-first unary degree sequence (DFUDS) and various ‘parti-
tioned’ representations (see below for definitions); a sequence of papers has been
written that attempts to update each representation with the latest additional
functionality supported by the others [6,8,11,12,13,16]. At the very least, this
‘arms race’ is confusing for someone wishing to use these results, or for someone
seeking to understand the relative power of these representations.

In this paper, we take a step towards an universal encoding of succinct trees
by giving encodings that can be used to emulate other encodings. Specifically,
we provide optimal-space succinct encodings that can return b consecutive bits
from the structure bit-strings of other encodings, where b is close to the word-
size w, in O(1) time. Since we can emulate access to the structure bit-strings of
other encodings, by adding the appropriate index of o(n) bits, one can directly
support any operations supported by those encodings, with only a constant
factor slowdown and negligible space cost. We consider representing ordinal and
cardinal trees succinctly, and now summarize previous work and our results.

Ordinal Trees. An ordinal tree is an arbitrary rooted tree where the children of
each node are ordered. As there are 1

n

(
2n−2
n−1

)
ordinal trees on n nodes, storing an

ordinal tree requires 2n−O(lgn) bits. A plethora of operations has been defined
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Structure Reference Functionality
(1) BP navigation, subtree size, leaf operations
(2) DFUDS [1] (1) plus i-th child
(3) BP [2] (1) plus degree
(4) Tree covering [6] (2), (3) plus level-ancestor
(5) BP [16] (2), (3) plus level-ancestor, level-successor/predecessor
(6) BP [12] (4) plus i-th child, depth, height, distance
(7) DFUDS [11] (4) plus depth, height, distance, leaf operations
(8) Tree covering [8] (6) plus level-successor/predecessor, level-first/last
(9) Tree covering [4] (8) plus level-descendant

Fig. 1. Functionality of 2n + o(n)-bit ordinal tree representations

on ordinal trees (see Fig. 1). Equally, there are many 2n+O(1)-bit alternatives for
the structure bit-string of ordinal trees. The BP structure bit-string is obtained
by traversing the tree in pre-order, outputting ‘(’ when a node is visited for the
first time, and ‘)’ when leaving it. In BP, nodes may be numbered in either pre-
order or post-order. The DFUDS [1] structure bit-string is obtained by visiting
nodes in depth-first order, and outputting i ‘(’s and one ‘)’ if the current node
has i children. The resulting parenthesis string is prefixed with ‘(’ to balance it.
In DFUDS numbering, nodes are visited in depth-first order, but upon visiting
a node, all its children are numbered consecutively. Further structure bit-strings
are obtained from the level-order unary degree sequence [10], or by viewing an
ordinal tree as a binary tree and using the binary tree representation of [10], but
these have limited functionality and are not considered here.

Ordinal trees can also be represented using a tree covering approach. These
approaches are based on a two-level decomposition of trees into mini-trees and
micro-trees [6,8,14] (an encoding of all microtrees is basically the structure bit-
string). We select the uniform approach of Farzan and Munro [4] as the represen-
tative from this class of tree representations; as this approach satisfies relevant
properties of earlier tree covering approaches, any operation supported in O(1)
time in previous tree covering representations can naturally be supported in O(1)
time in the uniform representation. Hence, in the rest of the paper, we refer to
this uniform approach [4] as the tree covering (TC) approach. Fig. 1 summarizes
the development of the functionality of ordinal tree representations.

In this paper, we consider 2n + o(n)-bit representations of an ordinal tree T
that support the following operations in O(1) time (w is the word-size):

– BP-substring(i, b) - this returns the substring of b consecutive bits begin-
ning at position i in the BP structure bit-string of T , for some b ≤ w.

– DFUDS-substring(i, b) - as above, but for the DFUDS structure bit-string.
– TC-microtree(μ,m) - returns the μ-th microtree of the minitree numbered
m in the TC representation.

Define BP-word(k) as BP-substring((k − 1)w + 1, w), i.e., BP-word(k) returns
the k-th word in the BP structure bitstring (DFUDS-word is defined analogously).

The tree-covering representation of Geary et al. [6] was able to output the
position of the i-th opening or closing parenthesis in the BP structure bit-string.
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However, this functionality is too weak to replace the kind of access to the
BP structure bit-string required by ‘native’ BP representations. He et al. [8]
extended the functionality of this representation, and showed the following: for
any given f ≤ w = Θ(lg n), one can support BP-substring(i, f) in O(1) time
using O(nf/ lgn) additional bits. To support BP-word in O(1) time, this requires
O(n) additional bits giving an overall space bound of O(n) bits, rather than
2n + o(n) bits. Indeed, supporting BP-word while keeping the overall space at
2n+ o(n) bits was stated as an open problem in [8].

We give a 2n+o(n)-bit representation that not only supports BP-word in O(1)
time, but also DFUDS-word and TC-microtree.

Cardinal Trees. A cardinal tree (or trie) of degree k is a tree in which each node
has k positions for an edge to a child. Each node has up to k children, each labeled
by a unique integer from the set {1, 2, . . . , k} (a binary tree is a cardinal tree of
degree 2). We assume k ≤ n, but k is taken to be a nondecreasing function of n.
Since there are 1

n

(
kn

n−1

)
cardinal trees of degree k [7], C(n, k) = lg

(
kn

n−1

)
−lg n bits

is a lower bound on the space required to store an arbitrary k-ary cardinal tree.
In addition to the above-mentioned set of ordinal tree operations, a cardinal tree
representation must also support the operation of returning the child labelled
i (if there is one). As all representations below support the latter operation in
O(1) time, we do not explicitly mention it.

Jacobson [9] gave a cardinal tree representation that uses kn+o(kn) bits, but
this is optimal only for k = 2. The representation of Benoit et al. [1] uses C(n, k)+
O(n) bits and supports the full set of DFUDS operations. Raman et al. [17]
improved the space bound to C(n, k) + o(n) bits, but their data structure only
supports basic navigational operations. Obtaining space C(n, k)+o(n) bits while
supporting a full range of operations was stated as an open problem in [17]. The
representation of Farzan and Munro [4] supported the full range of known ordinal
tree operations, but using C(n, k)+o(n lg k) bits. In this paper, we give a cardinal
tree representation that uses C(n, k) + o(n) bits for all values of k and supports
DFUDS-substring(i, b) in O(1) time1, for some b = Θ(

√
lgn) (TC-microtree

is also supported, if microtrees are of size Θ(
√

lg n)). By storing indexes of size
o(n) bits for the DFUDS/TC representations, we can support all the DFUDS/TC
operations in O(1) time, thus solving the open problem in [17].

Preliminaries. Given a subset S from a universe U , we define a fully indexable
dictionary (FID, from now on) on S to be any data structure that supports the
following operations on S in constant time, for any x ∈ U , and 1 ≤ i ≤ |U |:
– rank(x): return the number of elements in S that are less than x,
– select(i, S): return the i-th smallest element in S, and
– select(i, S̄): return the i-th smallest element in U \ S.

Lemma 1. [17] Given a subset of size n from the universe [m], there is a FID
that uses lg

(
m
n

)
+O(m lg lgm/ lgm) bits.

1 More precisely, BP/DFUDS-substring for cardinal trees returns a substring of the
DFUDS structure bit-string of the ordinal tree obtained by removing vertex labels
from the cardinal tree.
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Given a bitvector B, we define its FID to be the FID for the set S where B is
the characteristic vector of set S.

2 Unifying Different Representations of Ordinal Trees

In this section, we present the new representation that unifies the three previous
ones: BP, DFUDS, and TC. As noted already, those representations consist of
two parts: the structure bit-string (occupying 2n + o(n) bits) and the index
(occupying o(n) bits). In the new unified representation, we replicate the indices
of all the approaches as they only contribute to lower order terms. The challenge
is to provide access to the structure bit-strings of all three representations while
still using only 2n + o(n) bits. We show that the new unified representation
supports BP-word(k), DFUDS-word(k) and TC-microtree(m,μ) in O(1) time,
and thereby prove that the new representation can be used as a black box to
emulate BP, DFUDS, and TC representations at the same time.

We decompose the tree into Θ(n/ lg2 n) mini-trees each of size O(lg2 n), using
the decomposition algorithm in [4]. The representation of these mini-trees is
described in Section 2.1.

We first demonstrate that the problem of supporting previous representations
(BP, DFUDS, and TC) can be confined to within mini-trees. In other words,
that if any BP or DFUDS word or any micro-tree encoding corresponding to
a mini-tree can be generated in constant time, then any BP or DFUDS word
or any micro-tree encoding corresponding to the entire tree can be generated
in constant time. The claim is obvious for the micro-tree encodings of the TC
representation as micro-tree encodings within a mini-tree are the same as for the
entire tree. We prove the claim for the BP and DFUDS representations:

Theorem 1. If there is a structure which represents a mini-tree with m nodes
(m = O(lg2 n)) in 2m + o(m) bits and supports operations BP-word() and
DFUDS-word() on the mini-tree in constant time, then the entire tree with n nodes
can be represented in 2n+o(n) bits and operations BP-word() and DFUDS-word()
on the entire tree can be supported in constant time.

Proof. In both the BP and DFUDS representations of a given tree, each node
corresponds to two bits (one open and one closing parenthesis); in the BP rep-
resentation, these are the ’(’ output when the node is first discovered in the
pre-order traversal, and the ’)’ output when the subtree of the node is fully
discovered in the pre-order traversal. In the DFUDS representation, a node is
represented by the ’(’ in the unary representation of its parent’s degree, and by
the ’)’ which concludes the unary representation of its own degree. (The root
of the entire tree is an exception in that it misses the first bit; the exception is
handled by adding an extra opening parenthesis at the beginning of the repre-
sentation.) Thus given any subset of the nodes, one can talk about the set of
bits corresponding to that subset of nodes.

We note that as mini-trees may share their roots, their corresponding set of
bits may share bits which represent their roots. The key observation is Lemma 2,
from which Theorem 1 follows.
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Lemma 2. In the BP or the DFUDS sequence of a tree, the bits corresponding
to a mini-tree (micro-tree) form a set of constant number of substrings. Fur-
thermore, these substrings concatenated together in order, form the BP or the
DFUDS sequence of the mini-tree (micro-tree). �

2.1 Supporting Representations within a Mini-Tree

In this section, we confine our attention to mini-trees. We give our new represen-
tation and argue how the representation supports the operations of BP-word(),
DFUDS-word() and TC-microtree() within an individual mini-tree.

Support for the BP and DFUDS Encodings. Given a mini tree consisting
of k = O(lg2 n) nodes, we now describe how to represent it using 2k + o(k) bits
to support BP-word() and DFUDS-word() in constant time.

Definition 1. We call a node in the mini tree significant if its subtree size
(with respect to the mini-tree) is larger than lg n

16 . All the significant nodes form
a connected subtree as each of their ancestors is also significant. We call this
subtree the skeleton of the mini tree. Since each leaf in the skeleton has at least
lg n
16 nodes in its subtree (which are not part of the skeleton), the number of leaves
in the skeleton is O(lg n). We call a mini-tree skinny if its skeleton is only a path.

Skinny Trees: We first start with the case of skinny trees and then focus on
the general case.

Let u be the leaf of the skeleton (which is a path) and let v be the last
(rightmost) child of u in the tree. Let S be the set of all immediate children of
the nodes of the skeleton. We denote the set of all nodes of S whose preorder
numbers are at most the preorder number of v (including v) by SD, and the set
of all nodes of S which are after v in preorder by SU . The new representation
consists of the following four components (see Fig. 2):

– Path down, PD: Consists of unary representations of the number of children
of each node of the skeleton in the set SD, in order from the root down to
leaf u.

– Path up, PU : Consists of the unary representations of the number of children
of each node of the skeleton in the set SU , from leaf u up to the root.

– Trees on path down, TD: Let D1, D2, D3, . . . be all the subtrees attached to
the nodes of SD, ordered by the preorder numbers of their roots. The bit
sequence TD is obtained by concatenating the BP representations of each of
the trees Ti with the first bit (opening parenthesis) removed.

– Trees on path up, TU : Let U1, U2, U3, . . . be all the subtrees attached to
the nodes of SU , ordered by the preorder numbers of their roots. The bit
sequence TU is obtained by concatenating the BP representations of each of
the trees Ti with the first bit (opening parenthesis) removed.

We first show how to reconstruct the original tree from these four components.
This can be done by first reconstructing the skeleton and all its immediate
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TU = 0101000100101001110000.
U1 U2 U3 U4 U5 U6

TU : 0 10100 0 100 10100 1110000

Fig. 2. Four components of a skinny tree representation (PD, PU , TD, and TU ) are
given for a skinny tree

children using PD and PU . Then we attach the subtrees to the immediate children
of the skeleton using TD and TU . The important fact to observe is that the
representations of subtrees in both TD and TU are self-delimiting, as these are
the BP representations of a tree with the first bit (open parenthesis) removed.

The sum of the sizes of the four components is exactly twice the number of
nodes in the mini tree: each node of the skeleton is represented using one bit
in PD and one bit in PU ; each of the immediate children of the skeleton are
represented using one bit in either PD or PU , and one bit in either TD or TU ;
and each of the other nodes is represented by two bits in either TD or TU .

We now show how to produce a word of the BP/DFUDS sequence from the
four-component representation of the skinny tree. The proof starts by showing
that each consecutive �(lg n)/8� bits of the BP sequence can be generated in
constant time. Analogously, we show that each consecutive block of �(lg n)/24�
bits of the DFUDS sequence can be produced in constant time. Thus we have

Theorem 2. The new unified representation supports operations DFUDS-word()
and BP-word() in O(1) time in a skinny mini-tree using o(lg2 n) extra space.

General trees: In this case where the skeleton is an arbitrary tree, we decom-
pose the skeleton into O(lg n) paths using the following recursive procedure.

If the given subtree of the skeleton is a path, then return it as the only path of
that subtree. Otherwise, find the maximal leftmost path of the skeleton subtree
from the root to the leftmost skeleton leaf, and remove it. The remaining nodes
of the subtree form a set of disjoint subtrees. Among these subtrees, we first
identify all the “rightmost” subtrees, i.e. subtrees whose roots are the rightmost
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Left-leaning paths:

Right-leaning paths:

Nodes not in the skeleton:

Fig. 3. The skeleton of a tree is decomposed into left-leaning and right-leaning paths
to partition the tree into skinny trees

children of their parents, and remove the rightmost paths of each. For each
of the disjoint subtrees thus obtained, we apply the decomposition algorithm
recursively. Figure 3 shows the partitioning of a tree into these left-leaning and
right-leaning paths. This recursive decomposition produces O(lg n) paths since
each leaf in the skeleton is associated with exactly one path, and the number of
leaves in the skeleton is O(lg n) (See Definition 1).

We associate each of the nodes of the mini-tree that is not part of the skeleton
with its lowest ancestor that is in the skeleton. Thus the above procedure decom-
poses the mini-tree into O(lg n) skinny trees. We use the previously-described
skinny tree representation for each of these skinny trees.

We now show how each word of lgn bits long from the BP/DFUDS sequence
can be produced in constant time in a general tree. As the tree is partitioned
into skinny trees, the BP/DFUDS sequences are split into parts each of which
is obtained from a skinny tree.

Definition 2. We split the BP/DFUDS sequences into maximal substrings such
that bits of each substring can be extracted from the representation of the same
skinny-tree. We refer to these maximal substrings as skinny chunks.

The main feature with our way of decomposing a general tree into skinny-trees
is that any lg n

16 -bit substring of the BP/DFUDS sequences consists of at most
four skinny chunks.

Lemma 3. Each lgn-bit substring of the BP or the DFUDS sequences spans
over O(1) skinny chunks. �

As a consequence of Lemma 3, it follows that the number of skinny chunks in the
BP/DFUDS sequences of a mini-tree is O(lg n). We are now ready to present
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the main result of this section that any lgn-bit substring of the BP/DFUDS
sequences can be reported in constant time:

Theorem 3. Any substring of length lg n from the BP/DFUDS sequences of a
mini-tree can be reported in O(1) time using o(lg2 n) bits of extra storage.

Proof. We build an FID structure over the universe of 2n bits of the BP and the
DFUDS sequences which indicates the starting points of the skinny chunks. For
each skinny chunk, we store a pointer to the representation of the corresponding
skinny tree and the offset within the BP/DFUDS sequences of the skinny tree
where the chunk starts. This dictionary requires o(lg2 n) bits as the number of
skinny chunks is O(lg n) and each pointer/offset requires only O(lg lg n) bits.

Using the FID, for any skinny chunk c, we can produce the bits of the inter-
section of the BP or the DFUDS word and the chunk within the skinny tree in
constant time by Theorem 2. Lemma 3 states that at most O(1) skinny chunks
can intersect a word of length lg n bits, so by repeating the procedure for each
chunk that intersects the word, we discover the entire word in O(1) time. �

Support for the Tree Covering Representation. We now show how the
new unified representation can generate micro-trees of the tree-covering repre-
sentation; specifically, that the new representation can produce the BP/DFUDS
bit sequence of any micro-tree in constant time.

Lemma 4. Within a mini-tree, the BP/DFUDS bit sequence of any micro-tree
in the tree-covering representation can be produced in constant time using the
new unified representation with an additional space of o(lg2 n) bits. �

Since we can generate the BP (or the DFUDS) sequence corresponding to any
mico-tree in constant time, using a translation table we can get the actual micro-
tree representation.

Theorem 4. The encoding of any micro-tree in the tree-covering representation
can be determined in the new unified representation in constant time by using
an additional o(lg2 n) bits for each mini-tree (of size Θ(lg2 n)). �

Theorems 1, 3 and 4 together imply the desired final result:

Theorem 5. Given an ordinal tree on n nodes, the unified representation uses
2n + o(n) bits and supports the BP, DFUDS, and TC representations by sup-
porting operations BP-word(k), DFUDS-word(k), and TC-microtree(m,μ) in
constant time. �

3 Cardinal Tree Representation

The BP and DFUDS representations of ordinal trees can be easily modified to
obtain the following result:
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Lemma 5. Given an ordinal tree on n nodes, suppose there exists a structure
that supports BP-substring(i, f(n)) (DFUDS-substring(i, f(n))) in O(1) time,
then one can augment the structure with an additional O(n(lg f(n))/f(n)) bits
to support all the navigational operations supported by the BP (DFUDS) repre-
sentation, where f(n) < lg n is any increasing function of n.

Proof (Sketch). The BP/DFUDS representations support queries by reading
O(1) words (of lgn bits each) from the BP/DFUDS structure bit-string and
the indices. The indices can be easily modified so that the query algorithm reads
smaller words (of f(n) bits each) from the structure bit-string, by increasing
the size of the index slightly. One can go through all the indices for supporting
various operations on the BP/DFUDS representations and verify that the above
statement is true for each of the operations. �

We use the following simple extension of Lemma 1.

Lemma 6. Given a bitvector B of length m with n ones in it, there exists an
FID for B that uses lg

(
m
n

)
+O(m lg lgm/ lgm) bits which also supports retrieving

any lgm-bit substring of B in constant time.

We now prove the main result of this section.

Theorem 6. A k-ary tree on n nodes can be represented using C(k, n)+ o(n) +
O(lg lg k) bits to support all the ordinal operations on the underlying tree struc-
ture that are supported by DFUDS representation, and also the cardinal operation
of finding the child of a node with a given label, all in constant time.

Proof. The k-ary tree representation is similar to the representation of Raman
et al. [17, Lemma 6.2] with the difference that instead of numbering the nodes in
level-order, we number them in depth-first order. More specifically, we number
the n nodes of the given cardinal tree with the numbers from the set [n] in
depth-first order. Let Sx be the set of labels of the edges to the children of the
vertex numbered x. Then the sets S0, S1, . . . Sn−1 form a sequence of n sets of
total cardinality n − 1, each being a subset of [k]. We represent these subsets
using the multiple dictionary structure of Raman et al. [17, Theorem 6.1], which
occupies lg

(
nk

n−1

)
+o(n)+O(lg lg k) = C(n, k)+o(n)+O(lg lg k) bits, and supports

(partial) rank and select on each Sx in O(1) time. These are enough to support
the operation of finding the child of a node with a given label, in constant
time. We now show how to support the operation DFUDS-substring(i,

√
lg n)

in constant time (over the DFUDS sequence of the underlying tree structure).
The result then follows from Lemma 5.

The above multiple dictionary structure represents the set S = {(x, a)|x ∈
[n], a ∈ Sx} (obtained by adding the pair (x, a) for each edge labeled a out
of the node numbered x) as an indexable dictionary. This indexable dictionary
structure in turn considers the following two cases depending on whether the
universe size, kn, is large or small relative to the set size, n− 1:

Dense case, k ≤
√

lg n: In this case, we represent S using the structure of
Lemma 6. This structure enables us to extract any lg n-bit substring of the
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characteristic vector B of S (which is a bit vector of length nk with n−1 ones in
it) in constant time. Note that the (ik+j)th bit in B is a 1 if node i+1 in preorder
has a child labeled j, and 0 otherwise. Thus from the sequence of bits ik + 1 to
(i+1)k in the bit vector B, we can obtain the (unary) degree of the node (i+1).
And in fact from any lgn-bit substring of B, we can obtain the unary degrees of
Θ((lg n)/k) consecutive nodes in preorder, in constant time using precomputed
tables. Since k ≤

√
lg n, we can extract any

√
lgn-bit subsequence of the DFUDS

sequence in constant time (recall that the DFUDS sequence is obtained by
concatenating the unary degrees of the nodes in preorder). To find out which
lgn-bit subsequence of B to read to extract the required DFUDS subsequence,
we store the following. Let pi be the position in B which corresponds to the
(i
√

lg n)-th bit in the DFUDS sequence. We store an fid for the set of all
pi’s, 1 ≤ i ≤ 2n/

√
lg n. This fid, which stores a set of size n/

√
lgn from the

universe [nk], uses O((n/
√

lg n) lg(k
√

lg n)) = o(n) bits, and enables us to find
the position in B which corresponds to a given position in the DFUDS sequence,
in constant time.

Sparse case, k >
√

lgn: In this case, we divide universe [nk] into n
√

lgn equal-
sized buckets, and distribute the elements of S into the corresponding buckets.
Let Btop be the bit vector representing the bucket cardinalities in unary (a
number j is represented in unary by j ones followed by a zero). The bit vector
Btop is stored using the structure of Lemma 6. From this fid structure one can
extract any lg n-bit substring of Btop in constant time. Note that Btop is a bit
vector of length n

√
lg n+n− 1 containing n− 1 ones. Also the degree of the ith

node in preorder is stored between the (i
√

lgn)-th and the ((i+ 1)
√

lg n− 1)-th
zeroes in Btop, and the unary degree of this node can in fact be obtained by
removing all but the last zero. In general, every one in Btop corresponds to an ‘(’
in the DFUDS string, and every

√
lg n-th zero corresponds to a ‘)’. Thus, using

the fid for Btop we can obtain Ω(
√

lgn) bits of the DFUDS bit-string (using
table lookup) and thereby support DFUDS-substring(i,

√
lgn) in O(1) time. As

in the previous case, we also store an additional o(n) bit structure to efficiently
find the correspondence between Btop and the DFUDS sequence. �

From the proof of Lemma 4, if we can support DFUDS-substring(i, b) in O(1)
time, then using o(n) additional bits we can also support TC-microtree in O(1)
time, where the micro-trees are of size Θ(b). Thus the structure of Theorem 6 can
also support TC-microtree in O(1) time, if the micro-trees are of size Θ(

√
lg n).
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Abstract. We study low-distortion embedding of metric spaces into the
line, and more generally, into the shortest path metric of trees, from the
parameterized complexity perspective. Let M = M(G) be the shortest
path metric of an edge weighted graph G, with the vertex set V (G)
and the edge set E(G), on n vertices. We give the first fixed parameter
tractable algorithm that for an unweighted graph metric M and integer d
either constructs an embedding of M into the line with distortion at most
d, or concludes that no such embedding exists. Our algorithm requires
O(nd4(2d + 1)2d) time which is a significant improvement over the best
previous algorithm of Bădoiu et al. that runs in time O(n4d+2dO(1)).
We find it surprising that this problem turns out to be fixed parame-
ter tractable, because of its apparent similarity to the notoriously hard
Bandwidth Minimization problem.

We extend our results on embedding unweighted graph metric into
the line in two ways. First, we give an algorithm to construct small
distortion embeddings of weighted graph metrics. The running time of
our algorithm is O(n(dW )4(2d + 1)2dW ) where W is the largest edge
weight of the input graph. To complement this result, we show that the
exponential dependence on the maximum edge weight is unavoidable.
In particular, we show that deciding whether a weighted graph metric
M(G) with maximum weight W < |V (G)| can be embedded into the
line with distortion at most d is NP-Complete for every fixed rational
d ≥ 2. This rules out any possibility of an algorithm with running time
O((nW )h(d)) where h is a function of d alone. Secondly, we consider more
general host metrics for which analogous results hold. In particular, we
prove that for any tree T with maximum degree Δ, embedding M into
a shortest path metric of T is fixed parameter tractable, parameterized
by (Δ, d).

1 Introduction

Given an undirected graph G with the vertex set V (G) and the edge set E(G)
together with a weight function w that assigns a positive weight w(uv) to every
edge uv ∈ E(G), a natural metric associated with G is M(G) = (V (G), DG)

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 463–474, 2009.
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where the distance function DG
1 is the weighted shortest path distance be-

tween u and v for each pair of vertices u, v ∈ V (G). We call M(G) as the
(weighted) graph metric of G. If w(uv) = 1 for every edge uv ∈ E(G), we say
that M(G) = (V (G), DG) is an unweighted graph metric. For a subset S of V (G),
we say that M [S] = (S,D′′) (where D′′ is D restricted to S2) is the submetric of
M(G) induced by S. Given a graph metric M and another metric space M ′ with
distance functions D andD′, a mapping f : M → M ′ is called an embedding ofM
into M ′. The mapping f has contraction cf and expansion ef if for every pair of
points p, q in M , D(p, q) ≤ D′(f(p), f(q))·cf and D(p, q)·ef ≥ D′(f(p), f(q)) re-
spectively. We say that f is non-contracting if cf is at most 1. A non-contracting
mapping f has distortion d if ef is at most d.

Embedding a graph metric into a simple metric space like the real line has
proved to be a useful tool in designing algorithms in various fields. A long list of
applications given in [8] includes approximation algorithms for graph and net-
work problems, such as sparsest cut, minimum bandwidth, low-diameter decom-
position and optimal group steiner trees, and online algorithms for metrical task
systems and file migration problems. These applications often require algorithms
for finding low distortion embeddings, and the study of the algorithmic issues of
metric embeddings has recently begun to develop [1,2,3,11]. For example, Bădoiu
et al. [1,3] describe approximation algorithms and hardness results for embed-
ding general metrics into the line and tree metrics respectively. In particular
they show that the minimum distortion for a line embedding is hard to approx-
imate up to a factor polynomial in n even for weighted trees with polynomial
spread (the ratio of maximum/minimum weights). Hall and Papadimitriou [9]
studied the hardness of approximation for bijective embeddings. Independently
from the algorithmic viewpoint, the problem of finding a low-distortion embed-
ding between metric spaces is a fundamental mathematical problem [10,12] that
has been studied intensively.

In many applications one needs the distortion of the required embedding to
be relatively small. Hence it is natural to study the algorithmic issues related
to small distortion embeddings within the framework of parameterized complex-
ity [6,7,13]. This paradigm associates a natural secondary measurement to the
problem and studies the algorithmic behavior of the problem in terms of the as-
sociated measurement, called the parameter. In this paper we consider a natural
parameter, the distortion d, and consider the feasibility of having an algorithm
of time complexity g(d) · nO(1) for the problem of embedding weighted graph
metrics into the line with distortion at most d.

What would one expect about the complexity of embedding an unweighted
graph metric into the line, parameterized by the distortion d? At a glance, the
problem seems to closely resemble the Bandwidth Minimization problem. In
the Bandwidth Minimization problem one is given a graph G and asked to
find a bijective mapping f : V (G) → {1, . . . , n}, for which the bandwidth,
i.e. b = max(u,v)∈E(G) |f(u) − f(v)|, is minimized. This problem is known to be

1 We also denote the distance function DG by D if the graph in consideration is clear
from the context.
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W [t]-hard for all t ≥ 1 [4,5], when parameterized by b. Unless an unlikely collapse
of parameterized complexity classes occurs, this rules out any possibility of hav-
ing an algorithm with running time g(b) · nO(1) for Bandwidth Minimization

and thus the algorithm of Saxe [14] running in time O(4bnb+1) is essentially the
best possible. Previous to this paper, the best algorithm (by Bădoiu et al. [2])
to decide whether an unweighted graph metric can be embedded into the line
with distortion at most d has a running time where d appears in the exponent of
n, that is O(n4d+2 · dO(1)). Because of the apparent similarity to the notoriously
hard bandwidth problem, it is very surprising that, in fact, this fundamental
problem of embedding unweighted graph metrics into the line turns out to be
fixed parameter tractable (FPT).

Theorem 1. Given an unweighted graph G on n vertices we can decide whether
M(G) can be embedded into the real line with distortion at most d in time
O(nd4(2d+ 1)2d).

The running time of the algorithm is linear for every fixed d and clearly improves
the running time of the previously known algorithm. In fact, one can apply The-
orem 1 in order to check whether the unweighted graph metric can be embedded
into the line with distortion at most lgn/ lg lg n in time polynomial in n.

Having coped with the unweighted case, we return to the study of low dis-
tortion embeddings of weighted graph metrics into the line. We show that if the
maximum weight of any edge is bounded by W , then we can modify the algorithm
presented in Theorem 1 to give an algorithm to decide whether M(G) can be
embedded into the line with distortion at most d in time O(n(dW )4(2d+1)2dW ).
However the weights in a graph metric do not need to be small, and hence this
algorithm is not sufficient to give a g(d) ·nO(1) time algorithm for the problem of
embedding weighted graph metrics into the line. Can such an algorithm exist?
Unfortunately, it turns out that our O(n(dW )4(2d + 1)2dW ) algorithm essen-
tially is the best one can hope for. In fact, our next result rules out not only any
possibility of having an algorithm with running time of the form g(d) ·nO(1), but
also any algorithm with running time (nW )h(d), where h only depends on d.

Theorem 2. Deciding whether a weighted graph metric M(G) with maximum
weight W < |V (G)| can be embedded into the line with distortion at most d is
NP-Complete for every fixed rational d ≥ 2.

Another direction for generalizing Theorem 1 is to look for other simple topolo-
gies or host metrics for which an analogous result to Theorem 1 holds. Kenyon
et al. [11] provided FPT algorithms for the bijective embedding of unweighted
graph metrics into the metric of a tree with bounded maximum degree Δ. The
running time of their algorithm is n2 · 2Δα3

where α is the maximum of cf and
ef . An important point, observed in [2], is that constraining the embedding to
be bijective (not just injective, as in our case) is crucial for the correctness of
the algorithms from [11]. We complement the FPT result of Kenyon, Rabani
and Sinclair [11] by extending our results to give an algorithm for the problem
of embedding unweighted graph metrics into a metric generated by a tree with
maximum degree bounded by Δ, parameterized by distortion d and Δ.
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Theorem 3. Given a graph G, a tree T with maximum degree Δ and an integer
d we can decide whether G can be embedded into T with distortion at most d in
time n2 · |V (T )| · 2O((5d)Δd+1 ·d).

2 Algorithms for Embedding Graph Metrics into the Line

2.1 Unweighted Graph Metrics into the Line

In this section we give an algorithm for embedding unweighted graph metrics
into the line. We slightly abuse the terminology here by saying embedding of
a graph G instead of embedding of the unweighted graph metric M(G) of G.
Before we proceed to the details of the algorithm we need a few observations that
allow us to only consider a specific kind of embeddings. For a non-contracting
embedding f of a graph G into the line, we say that vertex u pushes vertex v if
D(u, v) = |f(u) − f(v)|.

Observation 1. [�] 2 If f(u) < f(v) < f(w) and u pushes w, then u pushes v
and v pushes w.

For an embedding f , let v1, v2, . . . , vn be an ordering of the vertices such that
f(v1) < f(v2) < . . . < f(vn). We say that f is pushing if vi pushes vi+1, for each
1 ≤ i ≤ n− 1.

Observation 2. [�] If G can be embedded into the line with distortion d, then
there is a pushing embedding of G into the line with distortion d. Furthermore,
every pushing embedding of G into the line is non-contracting.

Observation 3. Let f be a pushing embedding of a connected graph G into the
line with distortion at most d. Then D(vi−1, vi) ≤ d for every 1 ≤ i ≤ n.

By Observation 2, it is sufficient to work only with pushing embeddings. Our
algorithm is based on dynamic programming over small intervals of the line.
The intuition behind the algorithm is as follows. Let us consider a distortion d
embedding of G into the line and an interval of length 2d+ 1 of the line. First,
observe that no edge can have one end-point to the left of this interval and one
end-point to the right. This means that if there is a vertex u embedded to the left
of this interval and another vertex v that has been embedded to the right, then
the set of vertices embedded into the interval form an u, v-separator. Moreover,
for each edge, its end-points can be mapped at most d apart, and hence there is
no edge with one end-point to the left of this interval and the other end-point in
the rightmost part of this interval. Thus just by looking at the vertices mapped
into an interval of length 2d + 1, we deduce which of the remaining vertices of
G were mapped to the left and which were mapped to the right of this interval.
This is a natural division of the problem into independent subproblems and the
solutions to these subproblems can be used to find an embedding of G. Next we
2 Proofs of results labelled with [�] will appear in the full version of the paper.
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formalize this intuition by defining partial embeddings and showing how they are
glued onto each other to form a distortion d embedding of the input graph.

It is well known (and it follows from Observation 2) that there always exists
an optimal embedding with all the vertices embedded into integer coordinates of
the line. Without loss of generality, in the rest of this section we only consider
pushing embeddings of this type. We also assume that our input graph G is
connected.

Definition 1. For a graph G and a subset S ⊆ V (G), a partial embedding of S
is a function f : S → {−(d+1), . . . , d+1}. We define S[a,b]

f , −(d+1) ≤ a ≤ b ≤
d+1, to be the set of all vertices of S which are mapped into {a, . . . , b} by f (let us
remark that this can be ∅). We also define SL

f = S
[−(d+1),−1]
f and SR

f = S
[1,d+1]
f .

For an integer x, −(d + 1) ≤ x ≤ d + 1, we put Sx
f = S

[x,x]
f . Finally, we put

L(f) (R(f)) to denote the union of the vertex sets of all connected components
of G \ S that have neighbors in SL

f (SR
f ).

Definition 2. A partial embedding f of a subset S ⊆ V (G) is called feasible if
(1) f is a non-contracting distortion d embedding of S; (2) L(f) ∩ R(f) = ∅;
(3) Every neighbor of S0

f is in S; (4) if R(f) = ∅, then Sd+1
f is nonempty; (5) if

L(f) = ∅, then S
−(d+1)
f is nonempty; (6) if f(u)+1 < f(v) and S[f(u)+1,f(v)−1]

f =
∅, then f(v) − f(u) = D(u, v). (Basically, u pushes v.)

The properties 1, 2, and 3 of this definition will be used to show that every
distortion d embedding of G into the line can be described as a sequence of
feasible partial embeddings that have been glued onto each other. Properties 4,
5 and 6 are helpful to bound the number of feasible partial embeddings.

Definition 3. Let f and g be feasible partial embeddings of a graph G, with
domains Sf and Sg, respectively. We say that g succeeds f if (1) S

[−d,d+1]
f =

S
[−(d+1),d]
g = Sf∩Sg; (2) for every u ∈ Sf∩Sg, f(u) = g(u)+1; (3) Sd+1

g ⊆ R(f);

(4) S−(d+1)
f ⊆ L(g).

The properties 1 and 2 describe how one can glue a partial embedding g that
has been shifted one to the right onto another partial embedding f . Properties 3
and 4 are employed to enforce “intuitive” behavior of the sets L(f), R(f), L(g)
and R(g). That is, since g is glued on the right side of f , everything to the right
of g should appear in the right side of f . Similarly, everything to the left of f
should be to the left of g.

Lemma 1. [�] For every pair of feasible partial embeddings f and g of subsets
Sf and Sg of V (G) such that g succeeds f , we have R(f) = R(g) ∪ Sd+1

g and
L(g) = L(f) ∪ S

−(d+1)
f .

Lemma 2. [�] For every integer d, a graph G has an embedding of distortion
at most d if and only if there exists a sequence of feasible partial embeddings
f0, f1, f2, . . . , ft such that for each 0 ≤ i ≤ t− 1, fi+1 succeeds fi, and L(f0) =
R(ft) = ∅.
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For a vertex v of a graph G and integer r ≥ 0 we denote the ball of radius r
centered in v, which is the set of vertices at distance at most r in G, by B(v, r).
The local density of a graph G is δ = maxv∈V (G),r>0

|B(v,r)−1|
2r . We will apply

the following well known lower bound on distortion.

Lemma 3 ([1]). [Local Density] Let G be a graph that can be embedded into
the line with distortion d. Then d is at least the local density δ of G.

Applying Lemma 3 we can bound the number of possible feasible partial em-
beddings. Observe that each feasible partial embedding f can be represented
as a number 1 ≤ t ≤ d and a sequence of vertices v0v1 . . . vq such that t +∑q

i=1 D(vi−1, vi) ≤ 2d + 1 and D(vi−1, vi) ≤ d for every i ≥ 1. This is done
by simply saying that the domain S of f is the set {v0, v1, . . . , vq} and that
f(va) = −(d+ 1) + t+

∑a
i=1 D(vi−1, vi). Let N (x) be the maximum number of

sequences v0v1 . . . vq such that
∑q

i=1 D(vi−1, vi) = x, where maximum is taken
over all v0 ∈ V (G). For any negative number x, N (x) = 0.

Lemma 4. [�] For x ∈ Z, N (x) ≤ (2d+ 1)x.

Corollary 1. [�] For a graph G with local density at most d the number of
possible feasible partial embeddings of subsets of V (G) is at most O(n(2d+1)2d).

Now we are in the position to prove Theorem 1.

Proof [of Theorem 1]. The algorithm proceeds as follows. First, check whether
G has local density δ bounded by d. Checking the local density of G can be
done in time linear in n because if |E(G)| ≥ nd we can immediately answer
“no”. If δ > d, answer “no”. Otherwise, we can test whether the conditions of
Lemma 2 apply. That is, we construct a directed graph D where the vertices are
feasible partial embeddings and there is an edge from a partial embedding fx to
a partial embedding fy if fy succeeds fx. Checking the conditions of Lemma 2,
reduces to checking for the existence of a directed path starting in a feasible
partial embedding f0 with L(f0) = ∅ and ending in a feasible partial embedding
ft with R(ft) = ∅. This can be done in linear time in the size of D by running a
depth first search in D. The number of vertices in D is at most O(n(2d+ 1)2d).
Every vertex of D has at most O(d2) edges going out of it, as a feasible partial
embedding fy succeeding another feasible partial embedding fx is completely
determined by fx together with the vertex that fy maps to d + 1 (or the fact
that fy does not map anything there). Using prefix-tree-like data structures one
can test whether a given partial embedding fx succeeds another in O(d2) time.
The total running time is then bounded by O(nd4(2d+ 1)2d). �

2.2 Weighted Graph Metrics into the Line Parameterized by d
and W

In the previous section, we gave an FPT algorithm for embedding unweighted
graph metrics into the line. Here, we generalize this result to handle metrics
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generated by weighted graphs. More precisely, let G be a graph with weight
function w : E(G) → Z+ \ {0} and M = (V (G), D) be the weighted shortest
path distance metric of G. Now we give an outline of an algorithm for embedding
M into the line, parameterized by the distortion d and the maximum edge weight
W , that is, W = maxe∈E(G){w(e)}. The definition of a pushing embedding and
Observations 1 and 2 work out even when G is a weighted graph. Once we define
the notion of partial embeddings, other notions like feasibility and succession are
adapted in an obvious way. Given a graph G and a subset S ⊆ V (G), a partial
embedding of S is a function f : S → {−(dW +1), . . . , (dW +1)}. We can prove
results analogous to Lemma 1 and Theorem 2 with the new definitions of partial
embeddings, feasibility and succession. Thus, we can give an algorithm for this
problem similar to the algorithm presented in Theorem 1. The runtime of this
algorithm is dominated by the number of different feasible partial embeddings.
Let Bw(v, r) denote the set of vertices at weighted distance at most r from v
and δw be the analogous notion of weighted local density of a graph G. It is easy
to see that if M can be embedded into the line with distortion at most d then
d ≥ δw. This result immediately upper bounds the number of feasible partial
embeddings by n · (dW )O(dW ). In what follows next we show that the number of
feasible partial embeddings actually is bounded by n · (2d+ 1)2dW . Let N (x) be
as in Lemma 4. For each fixed first vertex v0 in the partial embedding, and each
value of 1 ≤ t ≤ (2dW + 1), there are at most N (2dW + 1 − t) feasible partial
embeddings that map v0 to −(dW + 1) + t. Thus the number of feasible partial
embeddings is at most

∑dW
t=1 n · N (2dW + 1 − t). By Lemma 4, this is at most

n ·
∑dW

t=1(2d+ 1)2dW+1−t ≤ 3
2n(2d+ 1)2dW .

Theorem 4. Given a weighted graph G with maximum edge weight W we can
decide whether M(G) can be embedded into the real line with distortion at most
d in time O(n(dW )4(2d+ 1)2dW ).

3 Graph Metrics into the Line Is Hard for Fixed Rational
d ≥ 2

We complement Theorem 4 by proving that deciding whether a given weighted
graph metric can be embedded into the line with distortion at most d is NP-
complete for every fixed rational d ≥ 2. Our reduction is from 3-Coloring, one
of the classical NP -complete problems. On input G to 3-Coloring we show
how to construct an edge weighted graph G′. For an edge uv ∈ E(G′), w(uv)
will be the weight if the edge uv. The weighted shortest path metric M(G′)
will then be the input to our embedding problem. Let n = |V (G)|, m = |E(G)|
and d = a

b ≥ 2 for some integers a and b. Let e1, e2, . . . , em be an ordering of
the edges of G, and choose the integers g = 5a − 1, r = 10b, q = m(2n + 1),
L = 10qb and t = abL + 1. We start constructing G′ by making two cliques
C1 and C2 of size t. Let C1 = {c1, c2, . . . , ct} and C2 = {c′1, c′2, . . . , c′t}. Let
w(cicj) = w(c′ic

′
j) = �|i − j|/d�. Now, we make q − 1 separator vertices and

label them s1, . . . , sq−1. We make q gadgets T1, . . . , Tq encoding the edges of



470 M.R. Fellows et al.

G. For every edge ei = uv there are 2n + 1 gadgets, namely Ti+mp for every
0 ≤ p < 2n+1. Each such gadget, say Ti+mp, consists of three vertices, one vertex
corresponding to u, one vertex corresponding to v and one vertex corresponding
to ei. These three vertices form a triangle with edges of weight 1. For every j
between 1 and q we connect all vertices of Tj to sj−1 and sj with edges of weight
g. Whenever this implies that we need to connect something to the non-existing
vertices s0 and sq we connect to ct and c′1 respectively. Now, for every pair of
vertices x ∈ Ti and y ∈ Tj that correspond to the same vertex or edge of G we
add an edge of weight r|i − j| between x and y. Finally, we add an edge with
weight L between ct and c′1. This concludes the construction of G′. The next
lemma essentially shows that if there is an edge uv ∈ E(G′) then that is the
shortest weight path between u and v in G′.

Lemma 5. [�] For every edge uv in E(G′), DG′(u, v) = w(uv).

Lemma 6. [�] If G is 3-colorable then there is an embedding f of M(G′) into
the line with distortion at most d.

Lemma 7. [�] If there is an embedding f of M(G′) into the line with distortion
at most d then G is 3-colorable.

Together with the construction of G′ from G, Lemmas 6 and 7 imply Theorem 2.

4 Embedding Graphs into Trees of Bounded Degree

Given a graph G with shortest path metric DG and a tree T with maximum
degree Δ, having shortest path metric DT , we give an algorithm that decides
whether G can be embedded into T with distortion at most d in time n2 · |V (T )| ·
2O((5d)Δd+1 ·d). We assume that the tree T is rooted, and we will refer to the root
of T as r(T ). For a vertex v in the tree, Tv is the subtree of T rooted at v, and
C(v) is the set of v’s children. Finally, for an edge uv of T , let Tu(uv) and Tv(uv)
be the tree of T \ uv that contains u and v respectively. Notice that if u is the
parent of v in the tree, then Tv(uv) = Tv and Tu(uv) = T \ V (Tv). As in the
previous section, we need to define feasible partial embeddings together with the
notion of succession. For a vertex u ∈ V (T ) and a subset S of V (G), a u-partial
embedding is a function fu : S → B(u, d+ 1).

Definition 4. For a u-partial embedding fu of a subset S ⊆ V (G) and a vertex
v ∈ N(u) we define S[v, fu] = {x ∈ S : fu(x) ∈ V (Tv(uv))}. Given two
integers i and j, 0 ≤ i ≤ j ≤ k, let S[i,j][fu] = {x ∈ S : i ≤ D(fu(x), u) ≤ j}.
Finally, let S[i,j][v, fu] = S[i,j][fu] ∩ S[v, fu], Sk[v, fu] = S[k,k][v, fu] for k ≥ 1
and S0[fu] = S[0,0][fu].

Definition 5. For a u-partial embedding fu of a subset S ⊆ V (G) and a vertex
v ∈ N(u) we define M [v, fu] to be the union of the vertex sets of all connected
components of G \ S that have neighbors in S[v, fu].
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Definition 6. A u-partial embedding fu of a subset S of V (G) is called feasible
if (1) fu is a non-contracting distortion d embedding of S into B(u, d + 1); (2)
for any distinct pair v, w ∈ N(u), M [v, fu] ∩M [w, fu] = ∅; (3) N(S0[fu]) ⊆ S.

Definition 7. For a feasible u-partial embedding fu of a subset Su of V (G) and
a feasible v-partial embedding fv of a subset Sv of V (G) with v ∈ C(u) we say
that fv succeeds fu if (1) Su ∩ Sv = (S[0,d]

u [fu] ∪ Sd+1
u [v, fu]) = (S[0,d]

v [fv] ∪
Sd+1

v [u, fv]); (2) for every x ∈ Su∩Sv , fu(x) = fv(x); (3) M [v, fu] =
⋃

x∈N(v)\u

(M [x, fv] � Sd+1
u [x, fv]); and (4) M [u, fv] =

⋃
x∈N(u)\v(M [x, fu] � Sd+1

v [x, fu]).

Suppose we have picked out a subtree Tv for a vertex v ∈ V (T ) and found a
non-contracting embedding f ′ with distortion at most d of a subset Z of V (G)
into T ′ = T [

⋃
u∈V (Tv) B(u, d+ 1)]. We wish to find a non-contracting distortion

d embedding of G into T such that for every vertex u with f(u) ∈ V (T ′), we
have that u ∈ Z and such that if u ∈ Z then f(u) = f ′(u). At this point, a
natural question arises. Can we impose constraints on the restriction of f to
V (T ) \ V (Tv) such that f restricted to V (T ) \ V (Tv) satisfies these conditions
if and only if f is a non-contracting distortion d embedding of G into T ? One
necessary condition is that f restricted to V (T )\V (Tv) must be a non-contracting
distortion d embedding of {u ∈ V (G) : f(u) ∈ V (T ) \ V (Tv)}. We can obtain
another condition by applying the definition of feasible u-partial embeddings.
For each vertex u, we can use arguments similar to the ones in Section 2 in order
to determine which connected components of T \ V (Tv) f must map u to in
order to be a non-contracting distortion d embedding of G into T .

For the line, these two conditions are both necessary and sufficient. Unfor-
tunately, for the case of bounded degree trees, this is not the case. The reason
the conditions are sufficient when we restrict ourselves to the line is that every
embedding of a graph metric into the line that is locally non-contracting and
locally expanding by a factor at most d, also is globally non-contracting and ex-
panding by a factor at most d. When we embed into trees of bounded degree,
every embedding that is locally expanding by a factor at most d, also has this
property globally. However, every locally non-contracting embedding need not
be globally non-contracting. To cope with this issue, we introduce the concept
of vertex types. Intuitively, vertices of the same type in Tv are indistinguishable
when viewed from T \ V (Tv). We show that the set of possible vertex types can
be bounded by a function of d and Δ. Then, to complete f from f ′ we only need
to know the restriction of f ′ to B(v, d+1) and which vertex types appear in Tv.
Then the amount of information we need to pass on from f ′ to f is bounded by
n ·h(d,Δ). We exploit this fact to give an algorithm for the problem. In the rest
of this section, we formalize this intuition.

For a vertex u ∈ V (T ), a neighbor v of u and a feasible u-partial embedding
fu of a subset S of V (G) we define a [v, fu]-type to be a function t : S[v, fu] →
{∞, 3d+ 2, d, . . . ,−d,−(d+ 1)} and a [v, fu]-typelist to be a set of [v, fu]-types.
For an integer k let β(k) = k if k ≤ 3d+ 2 and β(k) = ∞ otherwise.

Definition 8. For a vertex u ∈ V (T ) with two neighbors v and w, and a feasible
u-partial embedding fu of a subset S of V (G) together with a [v, fu]-typelist L1
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and a [w, fu]-typelist L2 we say that L1 and L2 agree if for every type t1 ∈ L1

and t2 ∈ L2 there is a vertex x ∈ S[v, fu] and a vertex y ∈ S[w, fu] such that
t1(x) + t2(y) ≥ DG(x, y).

Definition 9. For a vertex u ∈ V (T ), a neighbor v of u, a feasible u-partial
embedding fu of a subset S of V (G) and a [v, fu]-typelist L we say that L is
compatible with S[v, fu] if for every vertex x in S[v, fu] there is a type t ∈ L
such that for every y ∈ S[v, fu], DT (fu(x), u) −DG(x, y) = t(y).

Definition 10. A feasible u-state is a feasible partial embedding fu of a subset
S of V (G) together with a [v, fu]-typelist L[v, fu] for every v ∈ N(u) such that
the following conditions are satisfied: (1) L[v, fu] is compatible with S[v, fu] for
every v ∈ N(u); and (2) For every pair of distinct vertices x and y in N(u),
L[x, fu] agrees with L[y, fu].

Definition 11. Let u ∈ V (T ), v ∈ C(u). Let Xu be a feasible u-state and Xv be
a feasible v-state. We say that Xv succeeds Xu if

1. fv succeeds fu;
2. For every w ∈ (N(v)\u) and a type t1 ∈ L[w, fv] there is a type t2 ∈ L[v, fu]

such that
(a) For every node x ∈ S[v, fu] ∩ S[w, fv], t2(x) = β(t1(x) + 1);
(b) For every node x ∈ (S[v, fu] \ S[w, fv]), t2(x) = β(maxy∈S[w,fv](t1(y) +

1 −DG(x, y))).
3. For every w ∈ (N(u)\v) and a type t1 ∈ L[w, fu] there is a type t2 ∈ L[u, fv]

such that
(a) For every node x ∈ S[u, fv] ∩ S[w, fu], t2(x) = β(t1(x) + 1);
(b) For every node x ∈ (S[u, fv] \ S[w, fu]), t2(x) = β(maxy∈S[w,fu](t1(y) +

1 −DG(x, y))).

The main result of this section relies on the next two lemmas.

Lemma 8. [�] If there is a distortion d embedding F of G into T then, for
every vertex u of V (T ) there is a feasible u-state Xu such that for every vertex
v ∈ V (T ), w ∈ C(v), Xw succeeds Xv.

Lemma 9. [�] If there is a feasible u-state Xu for every vertex u of V (T ) such
that for every vertex v ∈ V (T ), w ∈ C(v), Xw succeeds Xv then there is a distor-
tion d embedding F of G into T .

Next we give the proof of Theorem 3.

Proof [of Theorem 3]. The algorithm proceeds as follows. First, check that
Δ(G) ≤ Δd (follows from local density argument). Now, we do bottom up dy-
namic programming on the tree T . For each vertex u of the tree we make a
boolean table with an entry for each possible feasible u-state. For every leaf of
the tree all the entries are set to true. For an inner node u and a feasible u-state
Xu we set Xu’s entry to true if for each child v of u there is a feasible v-state Xv

that succeeds Xu and so that Xv’s entry is set to true. The algorithm returns
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“yes” if, at the termination of this procedure, there is a feasible r(T )-state Xr(T )

with its table entry set to true. The algorithm clearly terminates, and correctness
of this algorithm follows from Lemmas 9 and 8.

We now proceed to the running time analysis. In our bottom up sweep of T ,
we consider every edge and every vertex of T exactly once, which yields a factor
of nt = |V (T )|. For each vertex u we consider each feasible u-state Xu once, and
for each such state and every child v of u of the state we need to enumerate all
feasible v-states that succeed Xu. In fact, we enumerate a larger set of candidate
feasible v-states and for each such state Xv we check whether Xv succeeds Xu.

First we show that the number of feasible u-partial embeddings is at most
n · ΔO(d2·Δd+1). This follows from the fact that for any vertex u of the tree
|B(u, d+ 1)| ≤ Δd+1 and that the domain of a any feasible u-partial embedding
fu is contained in a ball of radius at most 2d+ 2 in G. Because the degree of G
is bounded, a ball of radius 2d+ 2 in G can contain at most ΔO(d2) vertices.

One can easily prove that if the feasible partial embedding fu is given, the
number of types and typelists that can appear in a feasible u-state together
with fu is bounded by (5d)Δd+1

and 2O((5d)Δd+1
) respectively. Thus, the number

of feasible u-states is bounded by 2O((5d)Δd+1 ·d). If the domain Sv of a feasible
partial embedding fv for a child v of u is non-empty then we can use the fact
that Sv must have a non-empty intersection with the domain of fu to bound the
number of potential successors of a u-state by 2O((5d)Δd+1 ·d) ·Δd ≤ 2O((5d)Δd+1 ·d).
Since we can check whether a particular u-feasible state succeeds another in
time n · 2O((5d)Δd+1 ·d) the overall running time of the algorithm is bounded by
n2nt · 2O((5d)Δd+1 ·d). �

5 Concluding Remarks and Open Problems

In this paper we described FPT algorithms for embedding unweighted graph
metrics into a tree metric for a tree of maximum degree Δ, parameterized by
(Δ, d) where d is the distortion. For the case when the host metric is the line,
we generalized our result and showed that embedding weighted graph metrics
into the line is FPT parameterized by distortion d and maximum edge weight
W . A similar generalization can also be obtained for embedding weighted graph
metrics into weighted bounded degree tree metrics, parameterized by d, Δ and
W where W is the maximum edge weight in the input graph. We postpone the
details for the full version of the paper. Our hardness result that embedding a
weighted metric into the line is NP-hard for every fixed distortion d ≥ 2 showed
that our algorithms qualitatively are the best possible.

We believe that our results will lead to further investigation of the combi-
natorially challenging field of low distortion embeddings within the framework
of multivariate algorithmics. We conclude with two concrete interesting open
problems:

– What is the parameterized complexity of embedding unweighted graph met-
rics into unbounded degree trees, parameterized by distortion d?
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– What is the parameterized complexity of embedding unweighted graph met-
rics into target metrics that are minimum distance metrics of cycles, param-
eterized by d?
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Abstract. We consider the following problem: given an unsorted array
of n elements, and a sequence of intervals in the array, compute the
median in each of the subarrays defined by the intervals. We describe a
simple algorithm which uses O(n) space and needs O(n log k + k log n)
time to answer k such median queries. This improves previous algorithms
by a logarithmic factor and matches a lower bound for k = O(n). Since,
in contrast to previous approaches, the algorithm decomposes the range
of element values rather than the array, it has natural generalizations
to higher-dimensional problems – it reduces a range median query to a
logarithmic number of range counting queries.

1 Introduction and Related Work

The classic problem of finding the median is to find the element of rank �n/2� in
an unsorted array of n elements.1 Clearly, the median can be found in O(n log n)
time by sorting the elements. However, a classic algorithm finds the median in
O(n) time [BFP+72], which is asymptotically optimal.

More recently, the following generalization, called the Range Median Problem
(RMP), has been considered [KMS05, HPM08]:

Input: An unsorted array A with n elements, each having a value. Furthermore,
a sequence of k queries Q1, . . . , Qk, each defined as an interval Qi = [Li, Ri].
In general, the sequence is given in an online fashion, we want an answer after
every query, and k is not known in advance.

Output: A sequence x1, . . . , xk of values, where xi is the median of the elements
in A[Li, Ri]. Here, A[L,R] denotes the set of all elements whose index in A is at
least L and at most R.

The RMP naturally fits into a larger group of problems, in which an unsorted
array is given, and in a query one wants to compute a certain function of all the
� The author gratefully acknowledges the support of the Swiss SBF under contract

no. C05.0047 within COST-295 (DYNAMO) of the European Union.
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1 An element has rank i if it is the i-th element in some sorted order. Actually, any

specified rank might be of interest. We restrict ourselves to the median to simplify
notation but a generalization to arbitrary ranks is straightforward for all our results
except the ones in Section 6.
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elements in a given interval. Instead of the median, natural candidates for such
a function are:

– Sum: this problem can be trivially solved with O(n) preprocessing time and
O(1) query time by computing prefix sums.

– Semigroup operator: this problem is significantly more difficult than the sum.
However, there exists a very efficient solution: for any constant c, preprocess-
ing in O(nc) time and space allows to answer queries in O(αc(n)) time, where
αc is the inverse of a certain function at the (c/2)th level of the primitive re-
cursion hierarchy. In particular, using O(n) processing time and space, each
query can be answered in O(α(n)) time, where α(n) is the inverse Ackerman
function [Yao82]. A matching lower bound is known [Yao85].

– Maximum, Minimum: This is a special case of a semigroup operator, for
which the problem can be solved slightly more efficiently: O(n) preprocessing
time and space is sufficient to allow O(1) time queries (see e.g. [BFC04]).

– Mode: the problem of finding the most frequent element within a given array
range is still rather open. Using O(n2 log logn/ log2 n) space (in words), con-
stant query time is possible [PG09], and with O(n2−2ε) space, 0 < ε ≤ 1/2,
O(nε) query time can be achieved [Pet08]. Some earlier space-time tradeoffs
were given in [KMS05].

In addition to being a natural extension of the median problem, the RMP has
applications in practice, namely obtaining a “typical” element in a given time
series out of a given time interval [HPM08].

Natural special cases of the RMP are an offline variant, where all queries are
given in a batch, and a variant where we want to do all preprocessing up front
and are then interested in good worst case bounds for answering a single query.

The authors of [HPM08] give a solution of the online RMP which requires
O(n log k + k logn log k) time and O(n log k) space. In addition, they give a
lower bound of Ω(n log k) time for comparison-based algorithms. They basically
use a one-dimensional range tree over the input array, where each inner node
corresponds to a subarray defined by an interval. Each such subarray is sorted,
and stored with the node. A range median query then corresponds to selecting
the median from O(log k) sorted subarrays (whose union is the queried subarray)
of total length O(n), which requires O(log n log k) time. The main difficulty of
their approach is to show that the subarrays need not be fully sorted, but only
presorted in a particular way, which reduces the construction time of the tree
from O(n log n) to O(n log k).

Concerning thepreprocessingvariantof theRMP, [KMS05] give adata structure
to answer queries in O(log n) time, which uses O(n log2 n/ log logn) space. They
do not analyze the required preprocessing time, but it is clearly at least as large as
the required space in machine words. Moreover, they give a structure which uses
only O(n) space, but query time O(nε) for arbitrary ε > 0. To obtain O(1) query
time, the best-knowndata structure [PG09] requiresO(n2(log logn/ logn)2) space
(in words), which improves upon [KMS05] and [Pet08].2

2 Note that the data structures in [KMS05, Pet08, PG09] work only for a specific quantile
(e.g. the median), which must be the same for all queries.
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Our Results. First, in Section 2 we give an algorithm for the pointer-machine
model which solves the RMP for an online sequence of k queries in O(n log k +
k logn) time and O(n log k) space. This improves the running time of O(n log k+
k logn log k) reported in [HPM08] for k ∈ ω(n/ logn). Our algorithm is also
considerably simpler. The idea is to reduce a range median query to a logarithmic
number of related range counting queries. Similar to quicksort, we descend a tree
that stems from recursively partitioning the values in array A. The final time
bound is achieved using the technique of Fractional Cascading. In Section 2.1,
we explain why our algorithm is optimal for k ∈ O(n) and at most Ω(logn) from
optimal for k ∈ ω(n).

In Section 3 we achieve linear space in the RAM model using techniques
from succinct data structures – the range counting problems are reduced to
rank computations in bit arrays. To achieve the desired bound, we compress
the recursive subproblems in such a way that the bit arrays remain dense at all
times. The latter algorithm can be easily modified to obtain a linear space data
structure using O(n log n) preprocessing time that allows arbitrary subsequent
range median queries to be answered in time O(log n). Note that the previously
best linear-space data structure required O(nε) query time [KMS05].

After a few remarks on generalizations for higher dimensional inputs in Sec-
tion 4, we discuss dynamic variants of the RMP problem in Section 5. In Sec-
tion 6, we consider random input arrays and give a construction with constant
expected query time using O(n3/2) space in expectation. Section 7 concludes
with a summary and some open problems.

We would like to note that a preliminary version of our paper (which excludes
Section 6) appeared earlier as a technical report [GS09]. Furthermore, during the
preparation of the final version of this paper, we learned that Gerth Stølting Bro-
dal and Allan Grønlund Jørgensen have independently obtained results similar
to ours, which have not been published yet.

2 A Pointer Machine Algorithm

Our algorithm is based on the following key observation: Suppose we partition
the elements in array A of length n into two smaller arrays:A.low which contains
all elements with the n/2 smallest3 values in A, and A.high which contains all
elements with the n/2 largest values. The elements in A.low and A.high are
sorted by their index in A, and each element e in A.low and A.high is associated
with its index e.i in the original input array, and its value e.v. Now, if we want
to find the element of rank p in the subarray A[L,R], we can do the following:
We count the number m of elements in A.low which are contained in A[L,R].
To obtain m, we do a binary search for both L and R in A.low (using the e.i
fields). If p ≤ m, then the element of rank p in A[L,R] is the element of rank p

3 To simplify notation we ignore some trivial rounding issues and also sometimes as-
sume that all elements have unique values. This is without loss of generality because
we could artificially expand the size of A to the next power of two and because we
can use the index of an element in A to break ties in element comparisons.
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in A.low[L,R]. Otherwise, the element of rank p is the element of rank p−m in
A.high[L,R].

Hence, using the partition of A into A.low and A.high, we can reduce the
problem of finding an element of a given rank in array A[L,R] to the same prob-
lem, but on a smaller array (either A.low[L,R] or A.high[L,R]). Our algorithm
applies this reduction recursively.

Algorithm overview. The basic idea is therefore to subdivide the n elements
in the array into two parts of (almost) equal size by computing the median of
their values and using it to split the list into a list of the n/2 elements with
smaller values and a list of the n/2 elements with larger values. The two parts
are recursively subdivided further, but only when required by a query. To an-
swer a range median query, we determine in which of the two parts the ele-
ment of the desired rank lies (initially, this rank corresponds to the median, but
this may change during the search). Once this is known, the search continues
recursively in the appropriate part until a trivial problem of constant size is
encountered.

We will show that the total work involved in splitting the subarrays is
O(n log k) and that the search required for any query can be completed in
O(log n) time using Fractional Cascading [CG86]. Hence, the total running time
is O(n log k + k logn).

Algorithm 1. Query(A,L,R, p)
Input: range select data structure A, query range [L, R], desired rank p1

if |A| = 1 then return A[1]2

if A.low is undefined then3

Compute median x value of the pairs in A4

A.low := 〈e ∈ A : e.v ≤ x〉5

A.high := 〈e ∈ A : e.v > x〉6

{ 〈e ∈ A : Q〉 is an array containing all elements e of A satisfying the given7

condition Q, ordered as in A }
{ Find(A, q) returns max {j : A[j].i ≤ q} (with Find(A, 0) = 0) }8

l := Find(A.low, L − 1) ; // # of low elements left of L9

r := Find(A.low, R) ; // # of low elements up to R10

m := r − l ; // # of low elements between L and R11

if p ≤ m then return Query(A.low, L, R, p)12

else return Query(A.high, L, R, p − m)13

Detailed description and analysis. Algorithm 1 gives pseudocode for the query,
which performs preprocessing (i.e., splitting the array into two smaller arrays)
only where needed. Note that we have to keep three things separate here: values
that are relevant for median computation and partitioning the input, positions
in the input sequence that are relevant for finding the elements within the range
[L,R], and positions in the subdivided arrays that are important for counting
elements.
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Let us first analyze the time required for processing a query not counting
the ‘preprocessing’ time within lines 4–6: The query descends log2 n levels of
recursion. On each level, Find-operations for L and R are performed on the
lower half of the current subproblem. If we used binary search, we would get a
total execution time of up to

∑log2 n
i=1 O(log n

2i ) = Θ
(
log2 n

)
. However, the fact

that in all these searches, we search for the same key (L or R) allows us to use a
standard technique called Fractional Cascading [CG86] that reduces the search
time to a constant, once the resulting position of the first search is known. Indeed,
we only need a rather basic variant of Fractional Cascading, which applies when
each successor list is a sublist of the previous one [dBvKOS00]. Here, it suffices
to augment an element e of a list with a pointer to the position of some element
e′ in each subsequent list (we have two successors – A.low and A.high). In our
case, we need to point to the largest element in the successor that is no larger
than e. We get a total search time of O(log n).

Now we turn to the preprocessing code in lines 4–6 of Algorithm 1. Let s(i)
denote the level of recursion at which query i encountered an undefined array
A.low for the first time. Then the preprocessing time invested during query i
is O(n/2s(i)) if a linear time algorithm is used for median selection [BFP+72]
(note that we have a linear recursion with geometrically decreasing execution
times). This preprocessing time also includes the cost of finding the pointers for
Fractional Cascading while splitting the list in lines 4–6. Since the preprocessing
time during query i decreases with s(i), the total preprocessing time is maximized
if small levels s(i) appear as often as possible. However, level j can appear no
more than 2j times in the sequence s(1), s(2), . . . , s(k).4 Hence, we get an upper
bound for the preprocessing time when the smallest �log k� levels are used as
often as possible (‘filled’) and the remaining levels are �log k�. The preprocessing
time at every used level is O(n) giving a total time of O(n log k). The same bound
applies to the space consumption since we never allocate memory that is not used
later. We summarize the main result of this section in a theorem:

Theorem 1. The online range median problem (RMP) on an array with n el-
ements and k range queries can be solved in time O(n log k + k logn) and space
O(n log k).

Another variant of the above algorithm invests O(n log n) time and space into
complete preprocessing up front. Subsequently, any range median query can
be answered in O(log n) time. This improves the preprocessing space of the
corresponding result in [KMS05] by a factor logn/ log logn and the preprocessing
time by at least this factor.

2.1 Lower Bounds

We briefly discuss how far our algorithm is from optimality. In [HPM08], a
comparison-based lower bound of Ω(n log k) is shown for the range median
4 Indeed, for j > 0 the maximal number is 2j−1 since the other half of the available

subintervals have already been covered by the preprocessing happening in the layer
above.
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problem5. As our algorithm shows, this bound is (asymptotically) tight if k ∈
O(n). For larger k, the above lower bound is no longer valid, as the construction
requires k < n. Yet, a lower bound of Ω(n log n) is immediate for k ≥ n, consid-
ering only the first n−1 queries. Furthermore, Ω(k) is a trivial lower bound. Note
that in our algorithm, the number of levels of the recursion is actually bounded
by O(min{log k, logn}), and thus for any k ≥ n our algorithm has running time
O(n log n+ k logn), which is up to Ω(logn) from the trivial linear bound.

In a very restricted model (sometimes called “Pointer Machine”), where a
memory location can be reached only by following pointers, and not by direct
addressing, our algorithm is indeed optimal also for k ≥ n: it takes Ω(log n) time
to even access an arbitrary element of the input (which is initially given as a
linked list). Since every element of the input is the answer to at least one range
query (e.g. the query whose range contains only this element), the lower bound
follows. For a matching upper bound, the array based algorithm described in this
section can be transformed into an algorithm for the strict pointer machine model
by replacing the arrays A.low and A.high by balanced binary search trees. An
interesting question is whether a lower bound Ω(k logn) could be shown in more
realistic models. However, note that any comparison-based lower bound (as the
one in [HPM08]) cannot be higher than Ω(n log n): With O(n log n) comparisons,
an algorithm can determine the permutation of the array elements, which suffices
to answer any query without further element comparisons. Therefore, one would
need to consider more realistic models (e.g. the “cell-probe” model), in which
proving lower bounds is significantly more difficult.

3 A Linear Space RAM Implementation

Our starting point for a more space efficient implementation of Algorithm 1 is
the observation that we do not actually need all the information available in the
arrays stored at the interior nodes of our data structure. All we need is support
for the operation Find(x) that counts the number of elements e in A.low that
have index e.i ≤ x. This information can already be obtained from a bit-vector
where a 1-bit indicates whether an element of the original array is in A.low.
For this bit-vector, the operation corresponding to Find is called rank . In the
RAM model, there are data structures that need space n+o(n) bits, can be con-
structed in linear time and support rank in constant time (e.g., [Cla88, OS06]6).
Unfortunately, this idea alone is not enough since we would need to store 2j bit

5 The authors derive a lower bound of l := n!
k!((n/k−1)!)k , where n is a multiple of k < n.

Unfortunately, the analysis of the asymptotics of l given in [HPM08] is erroneous;
however, a corrected analysis shows that the claimed Ω(n log k) bound holds.

6 Indeed, since we only need the rank operation, there are very simple and effi-
cient implementations: store a table with ranks for indices that are a multiple of
w = Θ(log n). General ranks are then the sum of the next smaller table entry and
the number of 1-bits in the bit array between this rounded position and the query
position. Some processors have a POPCNT instruction for this purpose. Otherwise
we can use lookup tables.
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Algorithm 2. Query(A,L,R, p)
Input: range select data structure A, query range [L, R] and desired rank p1

if |A| = 1 then return A[1]2

if A.low is undefined then3

Compute median x value of the values in A4

A.lowbits := BitVector(|A|, {i ∈ [1, |A|] : A[i] ≤ x})5

A.low := 〈A[i] : i ∈ [1, |A|], A[i] ≤ x〉6

A.high := 〈A[i] : i ∈ [1, |A|], A[i] > x〉7

deallocate the value array of A itself8

l := A.lowbits.rank(L − 1)9

r := A.lowbits.rank(R)10

m := r − l11

if p ≤ m then return Query(A.low, l + 1, r, p)12

else return Query(A.high, L − l, R − r, p − m)13

arrays consisting of n positions each on every level j. Summed over all levels,
this would still need Ω(n log2 n) bits of space even if optimally compressed data
structures were used. This problem is solved using an additional idea: for a node
of our data structure with value array A, we do not store a bit array with n
possible positions but only with |A| possible positions, i.e., bits represent posi-
tions in A rather than in the original input array. This way, we have n positions
on every level leading to a total space consumption of O(n logn) bits. For this
idea to work, we need to transform the query range in the recursive call in such
a way that rank operations in the contracted bit arrays are meaningful. Fortu-
nately, this is easy because the rank information we compute also defines the
query range in the contracted arrays. Algorithm 2 gives pseudocode specifying
the details. Note that the algorithm is largely analogous to Algorithm 1. In some
sense, the algorithm becomes simpler because the distinction between query po-
sitions and array positions for counting disappears (If we still want to report the
positions of the median values in the input, we can store this information at the
leaves of the data structure using linear space). Using an analysis analogous to
the analysis of Algorithm 1, we obtain the following theorem:

Theorem 2. The online range median problem (RMP) on an array with n el-
ements and k range queries can be solved in time O(n log k + k logn) and space
O(n) words in the RAM model.

By doing all the preprocessing up front, we obtain an algorithm with preprocess-
ing time O(n log n) using O(n) space and query time O(log n). This improves
the space consumption compared to [KMS05] by a factor log2 n/ log log n.

4 Higher Dimensions

Since our algorithm decomposes the values rather than the positions of elements,
it can be naturally generalized to higher dimensional point sets. We obtain an
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algorithm that needs O(n log k) preprocessing time plus the time for supporting
range counting queries on each level. The amortized query time is the time
for O(log n) range counting queries. Note that query ranges can be specified in
any way we wish: (hyper)-rectangles, circles, etc., without affecting the way we
handle values. For example, using the data structure for 2D range counting from
[JMS04] we obtain a data structure for the 2D rectangular range median problem
that needs O(n log n log k) preprocessing time, O(n log k/ log logn) space, and
O(log2 n/ log logn) query time. This not only applies to 2D arrays consisting of
n input points but to arbitrary two-dimensional point sets with n elements.

Unfortunately, further improvements, e.g. to logarithmic query time seem dif-
ficult. Although the query range is the same at all levels of recursion, Fractional
Cascading becomes less effective when the result of a rectangular range count-
ing query is defined by more than a constant number of positions within the
data structure because we would have to follow many forwarding pointers. Also,
the array contraction trick that allowed us to use dense bit arrays in Section 3
does not work anymore because an array with half the number of bits need not
contain any empty rows or columns.

Another indication that logarithmic query time in two dimensions might be
difficult to achieve is that there has been intensive work on the more specialized
median-filtering problem in image processing where we ask for all range medians
with query ranges that are squares of size (2r+ 1)× (2r+ 1) in an image with n
pixels. The best previous algorithms known here need time Θ

(
n log2 r

)
[GW93]

unless the range of values is very small [PH07, CWE07]. Our result above im-
proves this by a factor log log r (by applying the general algorithm to input pieces
of size 3r × 3r) but this seems to be of theoretical interest only.

5 Dynamic Range Medians

In this section, we consider a dynamic variant of the RMP, where we have a linked
list instead of an array, and elements can be deleted or inserted arbitrarily. In
this setting, we still want to answer median queries, whose range is given by two
pointers to the first and the last element in the query range.

In the following, we sketch a solution which allows inserts and deletes in
O(log2 n) amortized time each, and range median queries in O(log2 n) worst
case time. The basic idea is to use a BB(α) tree [NR72] as a primary structure,
in which all elements are ordered by their value. With each inner node, we
associate a secondary structure, which contains all the elements of the node’s
subtree, ordered by their position in the input list. More precisely, we store these
elements in a balanced binary search tree, where nodes are augmented with a field
indicating the size of their subtree, see e.g. [Rou01]. This data structure permits
to answer a range query by a simple adaptation of Algorithm 1: starting at the
root, we determine the number of elements within the query range which are in
the left subtree, and depending on the result continue the search for the median in
the left or in the right subtree. The required counting in each secondary structure
takes O(log n) time, and we need to perform at most O(log n) such searches for
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any query. When an element is inserted or deleted, we follow the search path
in the BB(α) tree according to its value, and update all the O(log n) secondary
structures of the visited nodes. The main difficulty arises when a rotation in
the BB(α) tree is required: in this case, the secondary structures are rebuilt
from scratch, which costs O(p log p) time if the subtree which is rotated contains
p nodes. However, as shown in [Meh84, WL85], such rotations are required so
rarely that the amortized time of such an event is onlyO(log p logn) = O(log2 n).

We note that using this dynamic data structure for the one-dimensional RMP,
we can implement a two-dimensional median filter, by scanning over the image,
maintaining all the pixels in a strip of width r. In this way, we obtain a running
time of O(log2 r) per pixel, which matches the state-of-the-art solution for this
problem [GW93]. This indicates that obtaining a solution with O(log n) time for
all operations could be difficult.

6 Towards Constant Query Time

In this section we restrict ourselves to computing range medians rather than gen-
eral range selection. Using O(n2) space, we can trivially precompute all medians
so that the query time becomes constant. This space requirement is reduced
by somewhat less than a logarithmic factor in [KMS05, Pet08]. An interesting
question is whether we can save more than a polylogarithmic factor. We now
outline an algorithm that needs space O(n3/2) (machine words), preprocessing
time O(n3/2 logn) and achieves constant query time on the average, i.e., the
expected query time is constant for random inputs. 7

We first consider median queries for a range [L,R] where L ≤ a+1 andR ≥ n−
a with a ∈ Θ(

√
n), i.e., the range contains a large middle part C = A[a+1, n−a]

of the input array. Furthermore let B = A[1, a] and D = A[n− a+ 1, n].

A =

B︷ ︸︸ ︷
1 · · · L · · · a

C⊇C′︷ ︸︸ ︷
a+ 1 · · · n− a

D︷ ︸︸ ︷
n−a+1 · · ·R · · · n

If the median value v of A[L,R] comes from C, then its rank within C must be
in [�n

2 � − 2a, �n
2 �] because the median of the elements in C has rank �n

2 � − a,
and adding at most 2a elements outside C can increase or decrease the rank
of the median by at most a. The basic idea is to precompute a sorted array
C′[1, 2a+ 1] of these central elements. The result of a query then only depends
on A[L, a], C′, and A[n−a+1, R]. For a start, let us assume that all elements in
B and D are either smaller than C′[1] or larger than C′[2a+1]. Suppose A[L, a]
and A[n − a + 1, R] contain sl and sr values smaller than C′[1], respectively.
Then the median of A[L,R] is C′[a + 1 + � b−s

2 �], where s := sl + sr and b :=
R − L + 1 + 2a − n − s (b is the number of values larger than C′[2a + 1] in
A[L, a] and A[n − a + 1, R]). Note that sl can be precomputed for all possible
values of L using using time and space O(

√
n) (and the same is true for sr

7 The analysis is for inputs with distinct elements where every permutation of ranks
is equally likely. The queries can be arbitrary.
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and R). For general contents of B and D, elements in B and D with value
between C′[1] and C′[2a + 1] are stored explicitly. Since, for a random input,
each element from B and D has probability Θ(1/a) to lie within this range,
only O(1) elements have to be stored on the average. During a query, these
extra elements are scanned8 and those with position within [L,R] are moved to
a sorted extra array X . The median of A[L,R] is then the element with rank
a+ 1 + � b−s

2 �+ |X|
2 in C′ ∪X . Equivalently, we can take the element with rank

|X |/2 in C′[a + 1 + � b−s
2 �, a + 1 + � b−s

2 � + |X |] ∪X . We are facing a selection
problem from two sorted arrays of size |X | which is possible in time O(log |X |)
(see e.g. [VSIR91]), i.e., O(1) on the average.

To generalize for arbitrary ranges, we can cover the input array A with sub-
arrays obeying the above rules in such a way that every possible query can be
performed in one subarray. Here is one possible covering scheme: In category
i ∈ [1, �

√
n�] we want to cover all queries with ranges R − L + 1 in [i2, i2 + 2i].

Note that these ranges cover all of [1, n] since i2+2i+1 = (i+1)2, i.e. subsequent
range intervals [i2, i2 + 2i] and [(i + 1)2, (i + 1)2 + 2(i + 1)] are contiguous. In
category i, we use subarrays of size 2i+ (i2 − i) + 2i such that the central part
C of the j-th subarray starts at position ij + 1 for j ∈ [0, n/i − i].9 A query
[L,R] is now handled by category i =

⌊√
R− L+ 1

⌋
.10 It remains to determine

the number j of the subarray within category i. If R−L+1 ∈ [i2, i2 +1] we use
j = �L/i�, otherwise j = �L/i�+1. In both cases, L is within part B of the j-th
subarray and R is within part D of the j-th subarray.

A subarray of category i needs space O(i) and there are O(n/i) arrays from
category i. Hence in total, the arrays of category i need space O(n). Since O(

√
n)

categories suffice to cover the entire array, the overall space consumption is
O(n3/2). Precomputing the arrays of category i can be done in time O(n log i) by
keeping the elements of the current subarray in a search tree sorted by element
values. Finding the central elements for the next subarray then amounts to i
deletions, i insertions and one range reporting query in this search tree. This
takes time O(i log i). The remaining precomputations can be performed in time
O(i). Summing over all categories yields preprocessing time O(n3/2 logn).

The above bounds for space and preprocessing time are deterministic worst
case bounds. The average space consumption can be reduced by a factor logn:
First, instead of precomputing the counts for sl and sr they can be computed
using a bit array with fast rank operation (see also Section 3). Second, instead
of blindly storing the worst case number of 2a+1 central elements, we may only
store the elements actually needed by any query. This number is upper bounded
by the number of elements needed for queries of the form [a + 1, R] plus the

8 An algorithm that is more robust for nonrandom inputs could avoid scanning by
using a selection algorithm working on one sorted array and a data structure that
supports fast range-rank queries (see also Section 3). This way, we would get an
algorithm running in time logarithmic in the number of extra elements.

9 We pad the input array A on both sides with random values in order to avoid special
cases.

10 Note that we can precompute all required square roots if desired.
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number of elements needed for queries of the form [L, n − a]. Let us consider
the position of the median in queries of the form [a + 1, R] as a function of
R. This position (ignoring rounding) performs a random walk on the line with
step-width 1/2. In a = O(

√
n) steps, the expected maximum distance from its

starting point reached by such a random walk is O(
√√

n) = O(n1/4). Queries
of the form [L, n− a] behave analogously.

7 Conclusion

We have presented improved upper bounds for the range median problem.
The query time of our solution is asymptotically optimal for k ∈ O(n), or when

all preprocessing has to be done up front. For larger values of k, our solution is
at most a factor logn from optimal. In a very restricted model where no arrays
are allowed, our solution is optimal for all k. Moreover, in the RAM model,
our data structure requires only O(n) space, which is clearly optimal. It is open
whether the term O(k logn) in the query time could be reduced to O(k) in the
RAM model when k is sufficiently large. The interesting range here is when k
lies between Θ(n) and Θ(n2). Making the data structure dynamic adds a factor
logn to the query time.

Given the simplicity of our data structure, a practical implementation would
be easily possible. To avoid the large constants involved when computing medians
for recursively splitting the array, one could use a pivot chosen uniformly at
random. This should work well in expectation.

It would be interesting to find faster solutions for the dynamic RMP or the
two-dimensional (static) RMP: Either would lead to a faster median filter for
images, which is a basic tool in image processing.
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B-Treaps: A Uniquely Represented Alternative to
B-Trees

Daniel Golovin�
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Abstract. We present the first uniquely represented data structure for an external
memory model of computation, a B-tree analogue called a B-treap. Uniquely rep-
resented data structures represent each logical state with a unique machine state.
Such data structures are strongly history-independent; they reveal no information
about the historical sequence of operations that led to the current logical state. For
example, a uniquely represented file-system would support the deletion of a file
in a way that, in a strong information-theoretic sense, provably removes all evi-
dence that the file ever existed. Like the B-tree, the B-treap has depth O(logB n),
uses linear space with high probability, where B is the block transfer size of the
external memory, and supports efficient one-dimensional range queries.

1 Introduction

Most computer applications store a significant amount of information that is hidden
from the application interface—sometimes intentionally but more often not. This infor-
mation might consist of data left behind in memory or disk, but can also consist of much
more subtle variations in the state of a structure due to previous actions or the ordering
of the actions. To address the concern of releasing historical and potentially private
information various notions of history independence have been derived along with data
structures that support these notions [10,12,9,6,1]. Roughly, a data structure is history
independent if someone with complete access to the memory layout of the data structure
(henceforth called the “observer”) can learn no more information than a legitimate user
accessing the data structure via its standard interface (e.g., what is visible on screen).
The most stringent form of history independence, strong history independence, requires
that the behavior of the data structure under its standard interface along with a sequence
of randomly generated bits, which are revealed to the observer, uniquely determine its
memory representation. We say that such structures are uniquely represented.

Unique representation had been studied even earlier [15,16,2], in the context of the-
oretical investigations into the need for redundancy in efficient data structures. The
results were mostly negative, however they were for various comparison-based and
pointer machine-based models of computation, and did not hold for the RAM model.

There has been much recent progress on efficient uniquely represented data struc-
tures in the RAM model. Blelloch and Golovin [4] described a uniquely represented
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hash table for the RAM model supporting insertion, deletion and queries in expected
constant time, using linear space and only O(log n) random bits. They also provided a
perfect hashing scheme that allows for O(1) worst-case queries, and efficient uniquely
represented data structures for ordered dictionaries and the order maintenance problem.
Naor et al. [11] developed a second uniquely represented dynamic perfect hash table
supporting deletions, based on cuckoo hashing. Finally, Blelloch et al. [5] developed
efficient uniquely represented data structures for some common data structures in com-
putational geometry. Several other results, as well as a more comprehensive discussion
of uniquely represented data structures, may be found in the author’s doctoral thesis [8].

Recent progress on uniquely represented data structures for the RAM opens up the
possibility of full-fledged uniquely represented (and thus strongly history independent)
systems. Consider a filesystem that supports a delete operation that provably leaves no
trace that a file ever existed on the system, or a database that reveals nothing about the
previous updates or queries to the system. Existing uniquely represented data structures
allow us to build efficient versions of such systems on a RAM, however these systems
are best modeled not in the RAM model of computation but in external memory (EM)
models of computation [17] which account for the fact that modern computers have a
memory hierarchy in which external memory (e.g., a disk drive) is several orders of
magnitude slower than internal memory (e.g., DRAM).

To the best of my knowledge, there is no previous work on uniquely represented
data structures in an EM model of computation. For background on the extensive work
on conventional data structures in EM models, we refer the interested reader to the
excellent book by Vitter [17]. Within this body of work, extendible hash tables and the
B-tree and its variants (e.g., the B+-tree and the B∗-tree) play a prominent role.

It is worth noting here that the extendible hashing construction of Fagin et al. [7] is
almost uniquely represented, and in fact can be made uniquely represented with some
minor modifications, the most significant of which is to use a uniquely represented
hash table [4,11] to layout blocks on disk. However in this paper we focus on uniquely
represented B-tree analogs, which can support efficient one-dimensional range queries.

The B-tree was invented by Bayer and McCreight [3], to organize information on
magnetic disk drives so as to minimize disk I/O operations. The salient features of
the B-tree are that it stores Θ(B) keys in each node and each node (other than the
root) has degree Θ(B), where B is a parameter of the tree. Thus the B-tree has height
roughly logB(n) and Θ(n/B) nodes. We will construct a uniquely represented tree that
is analogous to a B-tree, based on the treap data structure [14]. Recall a treap is a binary
search tree where each key also has an associated priority. In addition to the standard
search tree constraint on keys, the keys must also be in heap order with respect to their
priorities; each key must have priority less than its parent. We call the resulting data
structure a B-treap, for “bushy-treap.” It supports the following operations.

• insert(x): insert key x into the B-treap.
• delete(x): delete key x from the B-treap.
• lookup(x): determine if x is present in the B-treap, and if so, return a pointer to it.
• range-query(x, y): return all keys between x and y in the B-treap.

It is easy to associate auxiliary data with the keys, though for simplicity of exposition
we will assume there is no auxiliary data being stored. We will prove the following
result.
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Theorem 1. There exists a uniquely represented B-treap that stores elements of a fixed
size, such that if the B-treap contains n keys and B = Ω

(
(ln(n))1/(1−ε)

)
for some

ε > 0, then lookup, insert, and delete each touch at most O(1
ε logB(n)) B-treap nodes

in expectation, and range-query touches at most O(1
ε logB(n) + k/B) B-treap nodes

in expectation where k is the size of the output. Furthermore, if B = O(n
1
2−δ) for some

δ > 0, then with high probability the B-treap has depth O(1
ε logB(n)) and requires

only linear space to store.

The External Memory Model. We use a variant of the parallel disk model of Vitter [17]
with one processor and one disk, which measures performance in terms of disk I/Os.
Internal memory is modeled as a 1-D array of data items, as in a RAM. External memory
is modeled as a large 1-D array of blocks of data items. A block is a sequence of B data
items, where B is a parameter called the block transfer size. The external memory can
read (or write) a single block of data items to (or from) internal memory during a single
I/O. Other parameters include the problem size, n, and the internal memory size m,
both measured in units of data items. We will assume m = ω(B).

Uniquely Represented Memory Allocation. Uniquely represented hash tables [4,11]
can be used as the basis for a uniquely represented memory allocator. Intuitively, if the
nodes of a pointer structure can be labeled with distinct hashable labels in a uniquely
represented (i.e., strongly history independent) manner, and the pointer structure itself
is uniquely represented in a pointer based model of computation, then these hash tables
provide a way of mapping the pointer structure into a one dimensional memory array
while preserving unique representation. Pointers are replaced by labels, and pointer
dereferencing is replaced by hash table lookups. We will assume that the data items
have distinct hashable labels. Similarly, we assume that the B-treap nodes are assigned
distinct hashable labels in a uniquely represented manner. This can be achieved in any
number of ways. For example, if the B-treap is the only object on disk, we may use the
label of the minimum data item stored in the B-treap node.

Given these labels, we will hash B-treap nodes (one per block) into external memory.
If we use distinct random bits for the hash table and everything else, this inflates number
of the expected I/Os by a constant factor. (For B-treaps, uniquely represented dynamic
perfect hash tables [4,11] may be an attractive option, since in expectation most of the
I/Os will involve reads, even in the case of insertions and deletions.) We thus focus
on the problem of building a uniquely represented pointer structure with the desired
properties.

Notation. For n ∈ Z, let [n] denote {1, 2, . . . , n}. For a tree T , let |T | be the number
of nodes in T , and for a node v ∈ T , let Tv denote the subtree rooted at v. Finally, let
node(k) denote the tree node with key k.

2 The Treap Partitioning Technique

The treap partitioning technique was introduced in [4], and is a crucial element in the
design of B-treaps. It is a uniquely represented scheme that partitions a dynamic ordered
setU into small contiguous subsets. It works as follows. Given a treap T and an element
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x ∈ T , let its weight |Tx| be the number of its descendants, including itself. For a
parameter s, let

Ls[T ] := {x ∈ T : |Tx| ≥ s} ∪ {root(T )}

be the weight s partition leaders of T 1. We will often refer to these nodes simply as
leaders. For every x ∈ T let �(x, T ) be the least (deepest) ancestor of x in T that is a
partition leader. Here, each node is considered an ancestor of itself. We will call a node
x a follower of its leader �(x, T ). The weight s partition leaders partition the treap into
the sets {{y ∈ T : �(y, T ) = x} : x ∈ Ls[T ]}, each of which is a contiguous block of
keys from T consisting of the followers of some leader. It is not hard to see that each
set in the partition has at most 2s− 1 elements.

We implement treap partitioning by storing the set U in a treap, where each node v
has a key field storing an element ofU that induces an ordering on treap nodes. Also, the
treap priority for a node u is generated by hashing u.key, and the treap nodes are hashed
into memory using their keys. Each node v additionally has a leader field which stores
the representative of the set it is in. With some additional subtree size information, we
can support finger insertions, finger deletions, and leader queries in expected constant
time. For simplicity, however, we will describe a variant that supports finger insertions
and deletions in expectedO(log s) time. Each node v will have a size field, and we will
maintain the following invariant on the contents of these fields: For all v with |Tv| < s,
v.size = |Tv|. Otherwise v.size = ∞.

The treap partitioning scheme has several useful properties. We will make use of the
following lemmata, which are proved in Section 5.3.4 of [8].

Lemma 1. Fix any treap T . Inserting or deleting a node u can alter the assignment of
nodes to their weight s leaders in T or the size fields for at most 2s other nodes in T ,
namely those within distance s of u in key-order.

Lemma 2. Let T be a treap of size n with priorities generated by an 11-wise indepen-
dent hash function h from keys to [r] for some r ≥ n3. Then Pr[|Tv| = k] = O(1/k2)
for any 1 ≤ k < n, Pr[|Tv| = n] = O(1/n), and for any k ≥ 1, Pr[|Tv| ≥ k] =
O(1/k), so for any s ≥ 1 each node is a weight s partition leader with probability
O(1/s).

Lemma 3. Let T be a random treap with relative priorities determined by a random
permutation selected uniformly at random. Let n be the number of nodes in T and fix

s ≤ n. Then |Ls[T ]| = O(n/s) with probability 1 −O
(
exp{− 2n

s(s+1)}
)

.

3 B-Treap Organization

Fix a parameter α, such that 2 < α = Θ(B). We will say the B-treap described below
is of order α. For convenience, we will analyze the B-treap in terms of α rather than B.
Our construction will store at most 2α − 1 keys in any given node. See Figure 1 for a
depiction of a B-treap. Suppose we wish to store a set of keys U . We first describe how
the B-treap is organized, and then discuss how to implement the operations.

1 For technical reasons we include root(T ) in Ls[T ] ensuring that Ls[T ] is nonempty.
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Fig. 1. A depiction of a B-treap

First consider a uniquely represented treap T storing U [4]. We first describe the
organization of the B-treap informally, and then give a formal description. We make
use of a refinement of the treap partitioning scheme. Let Lα[T ] be the weight α leaders
of T , and let �(u) be the leader of u in Lα[T ]. We will make use of the following
definition.

Definition 1 (Frontier). For a set of nodes S ⊆ U , let the frontier of S, denoted F [S],
be the nodes in S that have at least one child not in S.

We will store the followers in the partition sets whose leaders are in the frontier, one
set of followers per node of the B-treap. That is, for each v ∈ F [Lα[T ]], we create a
node for the B-treap and store {u : �(u) = v} \ {v} in it. These will be the leaves
of the B-treap. We then remove all the followers (i.e., elements of U \ Lα[T ]), and
perform the same procedure on the remaining portion of T . A B-treap leaf storing key
set {u : �(u) = v} \ {v} has as its parent the node containing key v. We repeat the
process until T has less than α nodes left, in which case all the remaining nodes are
assigned to the root node of the B-treap.

To formally describe the B-treap’s organization, we will need the following defini-
tions. Fix the random bits of the RAM. Given a set of keys S ⊆ U , let treap(S) be the
uniquely represented treap on key set S.

Definition 2 (Iterated Leaders of T ). The ith–iterated weight α leaders of T , denoted
Li

α[T ], are defined inductively as follows.

• If i = 0, Li
α[T ] is the set of all keys in T .

• If i ≥ 1 and |Li−1
α [T ]| > 1, then Li

α[T ] = Lα[treap(Li−1
α [T ])].

• If i ≥ 1 and |Li−1
α [T ]| ≤ 1 then Li

α[T ] = ∅.

Furthermore, let �i(u) be the deepest ancestor of u in T that is an ith–iterated weight
α leader of T .

Definition 3 (Rank). The rank of a node v in T , denoted rank(v), is the maximum
integer k such that v ∈ Lk

α[T ]. The rank of a tree is the rank of its root.

Let k = rank(T ) be the rank of the root of T . We store the keys in Lk−1
α [T ] and the root

of T at the root of the B-treap T̄ . For i = k − 1 to 1 in decreasing order, for each node
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v ∈ F [Li
α[T ]], construct a node v̄ in T̄ with a key set consisting of the followers of v

in the ith level treap partition, excluding v. In this case we will say that v̄ corresponds
to v. Formally, the key set of v̄ is {u : u �= v, �i(u) = v, and u ∈ Li−1

α [T ]}. Finally,
make v̄ a child of the node in T̄ corresponding to �i+1(v). Note that it is possible for
a node v to be in two different frontiers, so that v ∈ F [Li

α[T ]] and v ∈ F [Lj
α[T ]]

for i < j. In this case, we create a B-treap node corresponding to each instance in
which v is in some frontier. In other words, we create a B-treap node corresponding to
(v, i) and another one corresponding to (v, j). In this case, the key set of the former
is {u : u �= v, �i(u) = v, and u ∈ Li−1

α [T ]} and the key set of the latter is {u :
u �= v, �j(u) = v, and u ∈ Lj−1

α [T ]}. In the future, we will simply refer to the B-treap
node corresponding to v, since it can always be inferred from the context which copy is
meant.

We have described above how to assign keys to B-treap nodes. In fact, the B-treap
will not store merely a set of keys in each node, rather it will store the corresponding
treap nodes, with left and right fields for the left and right child of the current node.
Finally, if a treap node v stored in B-treap node v̄ has a child u that is stored in a
different B-treap node ū, we store the label of ū with v.

By storing small regions of the treap in each B-treap nodes, and storing abstract
pointers (in the form of labels) corresponding to treap edges that cross from one re-
gion to another, we can search the B-treap for a key by using the underlying treap that
it stores. However, to dynamically maintain the B-treap’s organization we also must
implement several layers of treap partitioning. Specifically, we must dynamically main-
tain rank(T ) treap partitioning instances simultaneously on the same treap T , where
the ith instance stores the weight α partition of treap(Li−1

α [T ]). Consider the treap par-
titioning scheme of Section 2, particularly the size field invariant. For the iterated treap
partitioning scheme, we can modify the size fields to store a pair of integers and modify
the invariant as follows. (Below, for a treap T and set of nodes S, we define T ∩ S as
though T were the set of the nodes it contains.)

The size field invariant (iterated version). For each treap node v,

v.size = (rank(v), |Tv ∩ Lrank(v)
α [T ]|).

The invariant describing what the leader fields should be set to must also be modi-
fied. In particular, each node v with v.size ∈ {i} × N should have its leader field set
to �i+1(v), its deepest ancestor in Li+1

α [T ]. Then v will be stored in the B-treap node
corresponding to node(v.leader).

4 Implementing B-Treaps

Let T̄ be a B-treap storing a treap T . We implement the operations as follows.

Lookup: Given an input key u, start at the root r̄ of T̄ , find the root r of the treap T (by
finding the highest priority node stored in r̄) and proceed as in a regular treap lookup,
jumping from one B-treap node to the next as necessary.

Insertion: To insert a key, create a new node u with that key and search for the leaf
position leaf(u) that u would occupy in the treap T , if it had the lowest priority of any
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node. Rotate u up to its proper position in T , updating the size fields appropriately
during the rotations, so as to maintain the iterated size field invariant. This can be done
in O(1) time per rotation, and ensures the size fields of all descendants of u are correct.

Suppose u is a leader in some partition – that is, rank(u) > 0. Find the predecessor
a and successor b of u in T . Proceed up the a-to-u and b-to-u paths looking for �i(a)
and �i(b) for all i ∈ {1, 2, . . . , rank(u)}. (Recall �i(v) is the deepest ancestor of v in
Li

α[T ].) These are easy to find given the size fields. If a node v was in F [Li
α[T ]] and no

longer is, then the corresponding B-treap node must be destroyed. Similarly, if a node
v is now in F [Li

α[T ]] and was not previously, then a corresponding B-treap node must
be created. Furthermore, whenever a node has its leader field changed, we must move
it to the B-treap node corresponding to its new leader.

Let a′i and b′i be the children of �i(a) and �i(b) that are ancestors of a and b, respec-
tively. For each i ∈ 1, 2, . . . rank(u), update the leader fields of all of the descendants
of a′i in Li−1

α [T ] to �i(a).key and move them to the B-treap node corresponding to �i(a).
Do likewise for the the descendants of b′i in Li−1

α [T ], with �i(b) in place of �i(a). Make
sure to destroy all B-treap nodes that become empty of treap nodes during this process.

That addresses the descendants of u with rank less than rank(u). The descendants
of u with rank equal to rank(u) will have their fields set correctly unless inserting u
causes some node to be “promoted” (i.e., its rank increases). We will deal with that
possibility later, and will now focus on setting u’s leader field correctly. To do so,
we find �rank(u)+1(u). As in the case with treap partitioning, inserting u may cause a

promotion of some ancestor of u into Lrank(u)+1
α [T ]. We can determine this as in treap

partitioning. Specifically, set the leader field of u equal to the leader field of its parent
node. Find the child of node(u.leader) that is an ancestor of u, which we denote by u′.
Then there is a promotion if and only if u′.size ∈ N × {α − 1} and u′ �= u. If there
is no promotion, then merely increment the second coordinate of w.size for each w on
the path from u to u′ (excluding u and including u′), and insert u into the B-treap node
corresponding to node(u.leader).

If u′ is promoted, create a new B-treap node ū′ corresponding to it. Traverse Tu′ ∩
Lrank(u)

α [T ], move all nodes therein to ū′, and change their leader fields to u′.key. Note
that this correctly updates the leader fields and placements of the descendants of u
with rank equal to rank(u). Make sure to destroy any B-treap node that is emptied of
treap nodes in the process. Next, increment the second coordinate of w.size for each
w on the path from u to u′ (excluding u and u′), and update u′.size appropriately by
incrementing the first coordinate and setting the second coordinate to one. Additionally,
increment of second coordinate of the size field for each node on the path from u′’s
parent to its parent’s leader (i.e., �rank(u)+2(u′)), excluding �rank(u)+2(u′).

Finally, we must consider the possibility that the promotion of u′ into Lrank(u)+1
α [T ]

may cause cascading promotions, potentially all the way up to the root. However, the
promotion of a node w into Lk

α[T ] is like an insertion of w into the weight α partition
on Lk

α[T ] with the additional fact thatw is a leaf of treap(Lk
α[T ]). Hence we can handle

it as discussed above.

Deletion: Let u be the node to be deleted. First, we handle potentially cascading “de-
motions” (i.e., decreases in rank). We repeat the following steps until the demotion or
deletion of the current node w does not cause a demotion of its leader. Initialize w to u.
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(1) Proceed up the path P from w to wl := node(w.leader), decrementing the second
coordinate of w′.size for each w′ ∈ P \{w,wl}. Use the size fields of the children

of wl to check if |Twl
∩ Lrank(wl)−1

α [T ]| = α before the deletion or demotion of w.
(2) If |Twl

∩ Lrank(wl)−1
α [T ]| = α then wl will be demoted, in which case we create

a new B-treap node corresponding to the parent of wl (if it does not already exist),
traverse Twl

∩ Lrank(w)
α [T ], move all of the nodes therein to the newly created B-

treap node, and set their leader fields to the key of the parent of wl. Delete any
B-treap node that becomes empty. Also, decrement the first coordinate of wl.size
(i.e., its rank) and set its second coordinate to α− 1.

(3) Set w = wl.

Next, rotate u down to a leaf position, updating the subtree size and rank informa-
tion appropriately on each rotation (this can be done in constant time per rotation).
Make sure to account for the fact that u will ultimately be deleted from the treap when
updating these size fields.

If initially rank(u) = 0, then just delete u. If initially rank(u) ≥ 1, maintain a
list L of nodes x such that we rotated on edge {x, u} when rotating u down to a leaf
position. Delete u from the treap, but retain a temporary copy of its fields. Let rank(u)
denote the initial rank of u. For i ∈ {1, 2, . . . , rank(u)} in increasing order, find the
deepest element vi of Li

α[T ] in L using the recently updated size fields. For each i, if
there is no B-treap node corresponding to vi then create one. For each node x ∈ L,
in order of increasing priority, if x ∈ Li−1

α [T ] is a descendant of vi and has a child
x′ ∈ Li−1

α [T ] with x′.leader �= vi.key, update the leader field of each node in Tx′ ∩
Li−1

α [T ] to vi.key. Move all such nodes to the B-treap node corresponding to vi. Also
set x.leader = vi.key and move it to the B-treap node corresponding to vi. Throughout
the whole operation, make sure to destroy all B-treap nodes that are emptied of treap
nodes. If the deletion of u did not cause any demotions, then for each ancestor x of
vrank(u) in L set x.leader = u.leader. Also, if x has a child y of with rank(y) <
rank(x) then for each such child y test if y.leader �= x.key. If so, do a traversal of

Ty ∩ Lrank(y)
α [T ], update the leader field of each node in that subtree to x.key, and

move each such node to the B-treap node corresponding to x.

Range Query: To return all keys between x and y, simply lookup x, then proceed to
simulate an in-order traversal of the underlying treap until reaching y.

5 The Analysis of B-Treaps

For simplicity of exposition we assume the nodes have relative priorities determined by
a random permutation selected uniformly at random. To remove this assumption and
prove Theorem 1, it suffices to use the hash family of Östlin and Pagh [13] to generate
priorities by hashing keys to a sufficiently large set of integers (e.g., [n3]).

Unique Representation. The data structure is uniquely represented assuming the oper-
ations maintain the size and leader field invariants and the proper B-treap organization.
In this case, the B-treap’s representation in external memory is a deterministic function
of the treap it stores and the hash table used to map it onto external memory. Thus it is
independent of the historical sequence of operations that led to the current logical state,
and must be the same for all such sequences of operations.
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Bounding the Space Usage. If the treap priorities are generated via a random permuta-
tion and α = O(n

1
2−ε), then the space usage is linear with overwhelming probability

(roughly 1 − exp
(
n/α2

)
). While it is unfortunate that the analysis depends on the

branching factor, the assumption that α = O(n
1
2−ε) is not unreasonable, and I conjec-

ture that this dependence can be removed. In any event, Proposition 1 bounds the space
needed for any given B-treap node at O(α) data items, and Lemmas 4 and 5 together
bound the number of B-treap nodes atO(n/α). IfB = Θ(α), this implies that a B-treap
with n keys uses only O(n/B) blocks of space with high probability, thus proving the
space bounds of Theorem 1. The following proposition is straightforward to prove.

Proposition 1. Each B-treap node v̄ has at most 2α− 1 treap nodes stored in it.

Lemma 4. A B-treap T̄ on n ≥ α keys obtained from the iterated weight α partition of
a random treap T has O(n/α+ l) nodes, where l is the number of leaves in the B-treap.

Proof. A chain C of T is a connected set of degree two nodes in T such that for all
u, v ∈ C, u is an ancestor of v or v is an ancestor of u. Thus, each chain C can
be written as ancestors(u) ∩ descendants(v) for some nodes u, v ∈ C, called the
endpoints of C. It is not hard to see that any chain C of T has all of its nodes stored

in at most
⌊
|C|
α

⌋
+ 2 nodes in the B-treap T̄ . If, for example, |C| ≥ α/2, then we may

amortize the storage required for these
⌊
|C|
α

⌋
+2 nodes (each of which takes O(α) data

items worth of space) against the |C| treap nodes. We thus mark all B-treap nodes that
store at least one treap node from any chain of T of length at least α/2. As per our
previous remarks, there are at most O(n/α) marked nodes.

Next, consider the unmarked nodes. We claim that the number of unmarked nodes is
at most 2l, where l is the number of leaves in the B-treap (either marked or unmarked).
To prove this, we first prove that in the B-treap, each unmarked internal node v̄ other
than the root has at least two children. Since v̄ is an internal node, each treap node u
stored in it has rank(u) ≥ 1, so that |Tu| ≥ α. Suppose the treap nodes in v̄ have rank
k. Then each u ∈ F [Lk

α[T ]] stored in v̄ corresponds to a child of v̄ in T̄ . However,
if there were only one such node, then v̄ must store a chain of length at least α − 1,
contradicting the fact that v̄ is an unmarked, internal, non-root node. This allows us to
bound the number of unmarked nodes by 2l via a standard argument using the well-
known facts that in any undirected graph G = (V,E),

∑
v∈V deg(v) = 2|E| and in a

tree |E| = |V | − 1.

Lemma 5. Let T̄ be a B-treap on n ≥ α keys obtained from the iterated weight α par-
tition of a random treap T with relative priorities determined by a random permutation
selected uniformly at random. Let l be the number of leaves of T̄ . Then l = O(n/α)
with probability 1 −O

(
exp{− 2n

α(α+1)}
)

.

Proof. The number of leaves in T̄ equals |F [Lα[T ]]|, which is bounded by |Lα[T ]|.
The result thus follows from Lemma 3.

Bounding the Depth. The main purpose of the B-tree is to reduce the depth of the
search tree from, e.g., 2 log2(n) (for red-black trees) or ∼ 1.44 log2(n) (for AVL trees),
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to logα n for a suitable parameter α. Indeed, α is often nε for some constant ε, so
that the tree height is roughly 1/ε. So it is reasonable to require any proper B-tree
alternative to also have height O(logα(n)). The B-treap does indeed have this property
with high probability if α is sufficiently large. Proving this fact involves some inductive
probabilistic conditioning. Due to space limitations, we only sketch the proof below,
and omit the proof of Lemma 6. For the full proof, see Section 5.5.4 of [8].

Theorem 2. Fix a random treap T on n nodes with relative priorities determined by
a random permutation selected uniformly at random. Let T̄ be the corresponding B-
treap generated from the iterated weight α partitioning of T . If α = Ω

(
ln(n)1/(1−ε)

)
for some positive constant ε, then rank(T ) = O

(
1
ε logα(n)

)
with high probability.

Furthermore, since the B-treap depth is bounded by the rank of its root node, these
bounds apply to the B-treap depth as well.

Proof. Let f(m, k) := Pr[A random treap T on m nodes has rank(T ) > k]. In the
definition of f , we assume the treap T has priorities determined by a random permu-
tation on the keys. We claim that for any m and k, f(m, r) ≤ f(m + 1, r), and then
proceed by induction on the treap size. Specifically, we use the following induction
hypothesis, for suitable constants c1, c2 and c3.

f

((
α

c2 ln(n)

)k

, c1k

)
≤ (3(α + 1))k

nc3
(5.1)

The basis k = 1 is straightforward. For the induction step, consider a treap T on

m =
(

α
c2 ln(n)

)k

nodes, with keys X := {1, 2, . . . ,m}. Let Y be the α nodes of

T with the highest priorities. Since the priorities are random, Y is will be distributed
uniformly at random on {V : V ⊂ X, |V | = α}. Let Y = {y1, y2, . . . , yα}, with y1 <
y2 < · · · < yα, and let y0 := 0, yα+1 := m+ 1. Define Zi := {z : yi < z < yi+1} for
all 0 ≤ i ≤ α. We claim that

rank(T ) ≤ max
0≤i≤α

(rank(treap(Zi))) + 2 (5.2)

Let ρ := max0≤i≤α (rank(treap(Zi))). Note that the only nodes in T with rank ρ + 1
must be in Y itself, since all the nodes in any Zi have rank at most ρ. Thus T contains
at most α nodes of rank ρ+ 1, and hence the root of T can have rank at most ρ + 2.

Next we obtain a high probability bound on max0≤i≤α (rank(treap(Zi))) using

Lemma 6 and the induction hypothesis. Let Ai be the event that |Zi| >
(

α
c2 ln(n)

)k−1

,

and let A := ∪iAi. Use Lemma 6 below to bound Pr[A]. Note that if we condition
on all the Zi’s being sufficiently small (i.e., the event Ā), then the priorities on the
nodes of each Zi are still random. Let B be the event that there exists an i such that
rank(treap(Zi)) > c1(k − 1). Apply the induction hypothesis to bound Pr

[
B|Ā

]
.

Equation (5.2) then implies that f

((
α

c2 ln(n)

)k

, c1(k − 1) + 2
)

≤ Pr[A ∪B] ≤

Pr[A] + Pr
[
B|Ā

]
. If c1 ≥ 2, then c1(k − 1) + 2 ≤ c1k, and thus we have a bound for

f

((
α

c2 ln(n)

)k

, c1 · k
)

. This completes the induction. Next, let d(n) := ln(n)

ln( 3(α+1)
c2 ln(n) )
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and use the fact that f(m, r) ≤ f(m + 1, r) to show f(n, c1 �d(n)�) ≤ (3(α+1))�d(n)�

nc3 .
The rest of the proof follows from suitable assumptions on the size of α, c1, c2 and c3.

Lemma 6. Fix α,m ∈ N with α < m. Let X = {1, 2, . . . ,m}. Select a subset Y of
X uniformly at random from {V : V ⊂ X, |V | = α}. Let Y = {y1, y2, . . . , yα}, with
y1 < y2 < · · · < yα, let y0 := 0, yα+1 := m + 1, and let Δ = maxi{yi+1 − yi − 1},
where i ranges from zero to α. Then for all c and n, Pr

[
Δ > cm+1

α ln(n)
]
≤ m

nc .

Bounding the Running Time. We measure the running time of the B-treap operations in
terms of the number t of B-treap nodes they inspect or alter. This is in line with the EM
model, since the number of I/Os is O(t) in expectation.

By this measure, lookups clearly inspect only depth(T̄ ) B-treap nodes. Inserting u
may require inspecting up to depth(T̄ ) nodes to find leaf(u). After that, if P is the
rotation path of u from leaf(u) to its proper location in treap T , then the operation
might modify every B-treap node containing treap nodes in P , as well as B-treap nodes
corresponding to elements of F := P ∩

(
∪i≥1F [Li

α[T ]]
)
. Moreover, it is not hard to

see that these are the only B-treap nodes that need to be updated. The number of B-
treap nodes storing treap nodes in P is bounded by depth(T̄ ). Bounding |F | is trickier.
Note that E[|F |] = O(1), since |F | ≤ |P | is bounded by the number of rotations
in P , and E[|P |] = O(1) in a random treap [14]. The same argument holds true for
deletions.

For range queries between x and y, it is not hard to see that the inspected B-treap
nodes consist of the set Q of nodes containing treap nodes in the root-to-x and root-to-y
paths, as well as the set of B-treap nodes R containing keys strictly between x and y.
Using the analysis for the size of a B-treap on n treap nodes, it is not too difficult to show
that |R| = O(k/α + depth(T̄ )) with high probability, where k is the number of treap
nodes in the output. Clearly |Q| ≤ 2 depth(T̄ ), so this implies onlyO(k/α+depth(T̄ ))
B-treap nodes are inspected during the range query. If the internal memory has size
m ≥ B ·depth(T̄ ), and we store the depth(T̄ ) previously accessed B-treap nodes, then
we need lookup each node in external memory at most once. Otherwise, if m = O(B),
we can bound the number of B-treap node lookups by the number of edges in the subtree
of the B-treap containing Q∩R, which is also O(k/α+depth(T̄ )) in expectation. We
have now proven the following result.

Lemma 7. In a B-treap T̄ , the lookup operation inspects depth(T̄ ) nodes, updates
inspect or modify depth(T̄ ) + O(1) nodes in expectation, and range queries inspect
O(k/α+ depth(T̄ )) nodes in expectation, where k is the size of the output.

Combining Lemma 7 with Theorem 2 and noting that α = Θ(B) then proves the
running time bounds of Theorem 1.

Additional Supported Operations. There are several additional properties of treaps that
the B-treap can exploit. Based on the reasoning above, it follows that finger insertions
and deletions touch O(1) B-treap nodes in expectation. Similarly, predecessor and suc-
cessor queries can be answered by inspecting O(1) B-treap nodes in expectation. Fi-
nally, given a sorted list of elements, a B-treap on them can be constructed in expected
linear time.
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6 Empirical Observations

Simulations in which the treap priorities were provided by a psuedorandom number
generator suggest the B-treap has small depth (e.g., empirically bounded by 1.5 logα(n)
for α = 100 and n ≤ 106) and space utilization of roughly 1/3 rd. Refer to Section 5.5.5
of [8] for more detail. If the 1/3 rd space utilization is judged unacceptably low, there
are various ways to improve it, at the cost of increasing the average number of I/Os per
operation. For example, for any fixed k ∈ N we may divide each block into k equally
sized block-parts, and store a B-treap node containing q treap nodes in �kq/(2α− 1)�
block-parts dynamically allocated to it. This ensures there is at most one block-part of
unused space per B-treap node, rather than a whole block.
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Abstract. We present a range of new results for testing properties of Boolean
functions that are defined in terms of the Fourier spectrum. Broadly speaking,
our results show that the property of a Boolean function having a concise Fourier
representation is locally testable.

We first give an efficient algorithm for testing whether the Fourier spectrum
of a Boolean function is supported in a low-dimensional subspace of Fn

2 (equiv-
alently, for testing whether f is a junta over a small number of parities). We next
give an efficient algorithm for testing whether a Boolean function has a sparse
Fourier spectrum (small number of nonzero coefficients). In both cases we also
prove lower bounds showing that any testing algorithm — even an adaptive one
— must have query complexity within a polynomial factor of our algorithms,
which are nonadaptive. Finally, we give an “implicit learning” algorithm that lets
us test any sub-property of Fourier concision.

Our technical contributions include new structural results about sparse
Boolean functions and new analysis of the pairwise independent hashing of
Fourier coefficients from [12].

1 Introduction

Recent years have witnessed broad research interest in the local testability of mathemat-
ical objects such as graphs, error-correcting codes, and Boolean functions. One of the
goals of this study is to understand the minimal conditions required to make a property
locally testable. For graphs and codes, works such as [1,5,3,4] and [16,17] have given
fairly general characterizations of when a property is testable. For Boolean functions,
however, testability is less well understood. On one hand, there are a fair number of
testing algorithms for specific classes of functions such as F2-linear functions [10,6],
dictators [7,21], low-degree F2-polynomials [2,22], juntas [14,9], and halfspaces [20].
But there is not much by way of general characterizations of what makes a property of
Boolean functions testable. Perhaps the only example is the work of [11], showing that
any class of functions sufficiently well-approximated by juntas is locally testable.

It is natural to think that general characterizations of testability for Boolean functions
might come from analyzing the Fourier spectrum (see e.g. [13, Section 9.1]). For one
thing, many of the known tests — for linearity, dictators, juntas, and halfspaces —
involve a careful analysis of the Fourier spectrum. Further intuition comes from learning
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theory, where the class of functions that are learnable using many of the well-known
algorithms [19,18,15] can be characterized in terms of the Fourier spectrum.

In this paper we make some progress toward this goal, by giving efficient algorithms
for testing Boolean functions that have low-dimensional or sparse Fourier representa-
tions. These are two natural ways to formalize what it means for a Boolean function to
have a “concise” Fourier representation; thus, roughly speaking our results show that
the property of having a concise Fourier representation is efficiently testable. Further,
as we explain below, Boolean functions with low-dimensional or sparse Fourier repre-
sentations are closely related to linear functions, juntas, and low-degree polynomials
whose testability has been intensively studied, and thus the testability of these classes
is a natural question in its own right. Building on our testing algorithms, we are able
to give an “implicit learner” (in the sense of [11]), which determines the “truth table”
of a sparse Fourier spectrum without actually knowing the identities of the underlying
Fourier characters. This lets us test any sub-property of having a concise Fourier repre-
sentation. We view this as a step toward the goal of a more unified understanding of the
testability of Boolean functions.

Our algorithms rely on new structural results on Boolean functions with sparse and
close-to-sparse Fourier spectrums, which may find applications elsewhere. As one such
application, we show that the well-known Kushilevitz-Mansour algorithm is in fact an
exact proper learning algorithm for Boolean functions with sparse Fourier representa-
tions. As another application, we give polynomial-time unique-decoding algorithms for
sparse functions and k-dimensional functions; due to space limitations these results will
only appear in the full version of the paper.

1.1 The Fourier Spectrum, Dimensionality, and Sparsity

We are concerned with testing various properties defined in terms of the Fourier rep-
resentation of Boolean functions f : Fn

2 → {−1, 1}. Input bits will be treated as
0, 1 ∈ F2, the field with two elements; output bits will be treated as −1, 1 ∈ R. Every
Boolean function f : Fn

2 → R has a unique representation as

f(x) =
∑

α∈Fn
2

f̂(α)χα(x) where χα(x) def= (−1)〈α,x〉 = (−1)
∑n

i=1 αixi . (1)

The coefficients f̂(α) are the Fourier coefficients of f , and the functions χα(·) are
sometimes referred to as linear functions or characters. In addition to treating input
strings x as lying in Fn

2 , we also index the characters by vectors α ∈ Fn
2 . This is to

emphasize the fact that we are concerned with the linear-algebraic structure. We write
Spec(f) for the Fourier spectrum of f , i.e. the set {α ∈ Fn

2 : f̂(α) �= 0}.

Dimensionality and sparsity (and degree). A function f : Fn
2 → {−1, 1} is said to

be k-dimensional if Spec(f) lies in a k-dimensional subspace of Fn
2 . An equivalent

definition is that f is k-dimensional if it is a function of k characters χα1 , . . . , χαk
, i.e.

f is a junta over k parity functions (this is easily seen by picking {αi} to be a basis for
Spec(f)). We write dim(f) to denote the smallest k for which f is k-dimensional. A
function f is said to be s-sparse if |Spec(f)| ≤ s. We write sp(f) to denote |Spec(f)|,
i.e. the smallest s for which f is s-sparse.
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We recall the notion of the F2-degree of a Boolean function, deg2(f), which is the
degree of the unique multilinear F2-polynomial representation for f when viewed as a
function Fn

2 → F2. (This should not be confused with the real-degree/Fourier-degree.
For example, deg2(χα) = 1 for all α �= 0.) Let us note some relations between dim(f)
and sp(f). For any Boolean function f , we have

deg2(f) ≤ log sp(f) ≤ dim(f), (2)

except that the first inequality fails when deg2(f) = 1. (Throughout this paper, log
always means log2.) The first inequality above is not difficult (see e.g. [8, Lemma 3])
and the second one is essentially immediate. Either of the above inequalities can be quite
loose; for the first inequality, the inner product function on n variables has deg2(f) =
2 but log sp(f) = n. For the second inequality, the addressing function with 1

2 log s
addressing variables and s1/2 addressee variables can be shown to be s-sparse but has
dim(f) ≥ s1/2. (It is trivially true that dim(f) ≤ s for any s-sparse function.)

We may rephrase these bounds as containments between classes of functions:

{k-dimensional} ⊆ {2k-sparse} ⊆ {F2 − degree-k}} (3)

where the right containment is proper for k > 1 and the left is proper for k larger than
some small constant such as 6. Alon et al. [2] gave essentially matching upper and lower
bounds for testing the class of F2-degree-k functions, showing that 2Θ(k) nonadaptive
queries are necessary and sufficient. We show that 2Θ(k) queries are also necessary and
sufficient for testing each of the first two classes as well; in fact, by our implicit learning
result, we can test any sub-class of k-dimensional functions using 2O(k) queries.1

1.2 Our Results and Techniques

Testing Low-Dimensionality. We give nearly matching upper and lower bounds for
testing whether a function is k-dimensional:

Theorem 1 [Testing k-dimensionality – informal]. There is a nonadaptiveO(k22k/ε)-
query algorithm for ε-testing whether f is k-dimensional. Moreover, any algorithm
(adaptive, even) for 0.49-testing this property must make Ω(2k/2) queries.

We outline the basic idea behind our dimensionality test. Given h ∈ Fn
2 , we say that

f : Fn
2 → R is h-invariant if it satisfies f(x + h) = f(x) for all x ∈ Fn

2 . We define
the subspace Inv(f) = {h : f is h-invariant}. If f is truly k-dimensional, then Inv(f)
has codimension k; we use this as the characterization of k-dimensional functions. We
estimate the size of Inv(f) by randomly sampling vectors h and testing if they belong
to Inv(f). We reject if the fraction of such h is much smaller than 2−k. The crux of our
soundness analysis is to show that if a function passes the test with good probability,
most of its Fourier spectrum is concentrated on a k-dimensional subspace. From this
we conclude that it must in fact be close to a k-dimensional function. Because of space
constraints, this algorithm is omitted from this version of the paper.

Testing Sparsity. We next give an algorithm for testing whether a function is s-sparse.
Its query complexity is poly(s), which is optimal up to the degree of the polynomial:

1 We remind the reader that efficient testability does not translate downward: if C1 is a class of
functions that is efficiently testable and C2 � C1, the class C2 need not be efficiently testable.
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Theorem 2 [Testing s-sparsity – informal]. There is a nonadaptive poly(s, 1/ε)-
query algorithm for ε-testing whether f is s-sparse. Moreover, any algorithm (adaptive,
even) for 0.49-testing this property must make Ω(

√
s) queries.

The high-level idea behind our tester is that of “hashing” the Fourier coefficients, fol-
lowing [12]. We choose a random subspace H of Fn

2 with codimension O(s2). This
partitions all the Fourier coefficients into the cosets (affine subspaces) defined by H .
If f is s-sparse, then each vector in Spec(f) is likely to land in a distinct coset. We
define the “projection” of f to a coset r + H to be the real-valued function given by
zeroing out all Fourier coefficients not in r + H . Given query access to f , one can ob-
tain approximate query access to a projection of f by a certain averaging. Now if each
vector in Spec(f) is hashed to a different coset, then each projection function will have
sparsity either 1 or 0, so we can try to test that at most s of the projection functions
have sparsity 1, and the rest have sparsity 0.

A similar argument to the one used for k-dimensionality shows that if f passes this
test, most of its Fourier mass lies on a few coefficients. However, unlike in the low-
dimensionality test, this is not a priori enough to conclude that f is close to a sparse
Boolean function. The obvious way to get a Boolean function close to f would be to
truncate the Fourier spectrum to its s largest coefficients and then take the sign, but
taking the sign could destroy the sparsity and give a function which is not at all sparse.

We circumvent this obstacle by using some new structural theorems about sparse
Boolean functions. We show that if most of the Fourier mass of a function f lies on its
largest s coefficients, then these coefficients are close to being “�log s�–granular,” i.e.
close to integer multiples of 1/2
log s�. We then prove that truncating the Fourier expan-
sion to these coefficients and rounding them to nearby granular values gives a sparse
Boolean-valued function (Theorem 6). Thus our sparsity test and its analysis depart
significantly from the tests for juntas [14] and from our test for low-dimensionality.

Testing subclasses of k-dimensional functions. Finally, we show that a broad range
of subclasses of k-dimensional functions are also testable with 2O(k) queries. Recall
that k-dimensional functions are all functions f(x) = g(χα1(x), . . . , χαk

(x)) where
g is any k-variable Boolean function. We say that a class C is an induced subclass of
k-dimensional functions if there is some collection C′ of k-variable Boolean functions
such that C is the class of all functions f = g(χα1 , . . . , χαk

) where g is any function in
C′ and χα1 , . . . , χαk

are any linear functions from Fn
2 to F2 as before. For example, let

C be the class of all k-sparse polynomial threshold functions over {−1, 1}n; i.e., each
function in C is the sign of a real polynomial with at most k nonzero terms. This is an
induced subclass of k-dimensional functions, corresponding to the collection C′ = { all
linear threshold functions over k Boolean variables}.

We show that any induced subclass of k-dimensional functions can be tested:

Theorem 3 [Testing induced subclasses of k-dimensional functions – informal].
Let C be any induced subclass of k-dimensional functions. There is a nonadaptive
poly(2k, 1/ε)-query algorithm for ε-testing C.

We note that the upper bound of Theorem 3 is essentially best possible in general, by
the 2Ω(k) lower bound for testing the whole class of k-dimensional functions.
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Our algorithm for Theorem 3 extends the approach of Theorem 2 with ideas from the
“testing by implicit learning” work of [11]. Briefly, by hashing the Fourier coefficients
we are able to construct a matrix of size 2k × 2k whose entries are the values taken by
the characters χα in the spectrum of f . This matrix, together with a vector of the cor-
responding values of f , serves as a data set for “implicit learning” (we say the learning
is “implicit” since we do not actually know the names of the relevant characters). Our
test inspects sub-matrices of this matrix and tries to find one which, together with the
vector of f -values, matches the truth table of some k-variable function g ∈ C′.

Organization of the paper. We give standard preliminaries and an explanation of our
techniques for hashing the Fourier spectrum in Section 2. Section 3 gives our new struc-
tural theorems about sparse Boolean functions, and Section 4 uses these theorems to
give our test for s-sparse functions. Because of space constraints, our results for test-
ing k-dimensional functions, for unique-decoding, for testing induced subclasses of
k-dimensional functions, and our lower bounds are given in the full version.

2 Preliminaries

Throughout the paper we view Boolean functions as mappings from Fn
2 to {−1, 1}. We

will also consider functions which map from Fn
2 to R. Such functions have a unique

Fourier expansion as in Equation (1). For A a collection of vectors α ∈ Fn
2 , we write

wt(A) to denote the “Fourier weight” wt(A) =
∑

α∈A f̂(α)2 on the elements of
A. This notation suppresses the dependence on f , but it will always be clear from

context. We frequently use Parseval’s identity: wt(Fn
2 ) =

∑
α∈Fn

2
f̂(α)2 = ‖f‖2

2
def=

Ex∈Fn
2
[f(x)2]. Here and elsewhere, an expectation or probability over “x ∈ X” refers

to the uniform distribution on X .
As defined in the previous section, the sparsity of f is sp(f) = |Spec(f)|. We may

concisely restate the definition of dimension as dim(f) = dim(span(Spec(f))).
Given two Boolean functions f and g, we say that f and g are ε-close if Prx∈Fn

2
[f(x)

�= g(x)] ≤ ε and say they are ε-far if Prx∈Fn
2
[f(x) �= g(x)] ≥ ε. We use the standard

definition of property testing:

Definition 1. Let C be a class of functions mapping Fn
2 to {−1, 1}. A property tester

for C is an oracle algorithm A which is given a distance parameter ε > 0 and oracle
access to a function f : Fn

2 → {−1, 1} and satisfies the following conditions:

1. if f ∈ C then A outputs “accept” with probability at least 2/3;
2. if f is ε-far from every g ∈ C then A outputs “accept” with probability at most 1/3.

We also say that A ε-tests C. The main interest is in the number of queries the testing
algorithm makes.

All of our testing upper and lower bounds allow “two-sided error” as described above.
Our lower bounds are for adaptive query algorithms and our upper bounds are via non-
adaptive query algorithms.
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2.1 Projections of the Fourier Spectrum

The idea of “isolating” or “hashing” Fourier coefficients by projection, as done in [12]
in a learning-theoretic context, plays an important role in our tests.

Definition 2. Given a subspace H ≤ Fn
2 and a coset r + H , define the projection

operator Pr+H on functions f : Fn
2 → R as follows:

P̂r+Hf(α)
def
=

{
f̂(α) if α ∈ r +H ,

0 otherwise.

In other words, we have Pr+Hf = Ar+H ∗ f, where Ar+H
def
=

∑
α∈r+H χα and ∗ is

the convolution operator: f ∗ g(x) = Ey[f(x+ y) · g(y)].

Clearly Ar+H =χr ·
∑

h∈H χh, and it is a simple and well-known fact that
∑

h∈H χh =
|H | · 1H⊥ . Thus we conclude the following (see also Lemma 1 of [12]):

Fact 4. Pr+Hf(x) = Ey∈H⊥ [χr(y)f(x+ y)].

We now show that for any coset r+H , we can approximately determine both Pr+Hf(x)
and ‖Pr+Hf‖2

2.

Proposition 1. For any x ∈ Fn
2 , the value Pr+Hf(x) can be estimated to within ±τ

with confidence 1 − δ using O(log(1/δ)/τ2) queries to f .

Proof. Empirically estimate the right-hand side in Fact 4. Since the quantity inside the
expectation is bounded in [−1, 1], the result follows from a Chernoff bound. �

Recall that wt(r +H) =
∑

α∈r+H f̂(α)2 = ‖Pr+Hf‖2
2. We have:

Fact 5. wt(r +H) = Ex∈Fn
2 ,z∈H⊥ [χr(z)f(x)f(x + z)].

Proof. Using Parseval and Fact 4, we have

wt(r + H) = E
w∈Fn

2

[(Pr+Hf(w))2] = E
w∈F

n
2 ,y1,y2∈H⊥

[χr(y1)f(w + y1)χr(y2)f(w + y2)],

which reduces to the desired equality upon writing x = w + y1, z = y1 + y2. �

Proposition 2. The value wt(r + H) can be estimated to within ±τ with confidence
1 − δ using O(log(1/δ)/τ2) queries to f .

Proof. Empirically estimate the right-hand side in Fact 5. Since the quantity inside the
expectation is bounded in [−1, 1], the result follows from a Chernoff bound. �

2.2 Hashing to a Random Coset Structure

In this section we present our technique for pairwise independently hashing the Fourier
characters.
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Definition 3. For t ∈ N, we define a random t-dimensional coset structure (H, C) as
follows: We choose vectors β1, . . . , βt ∈ Fn

2 independently and uniformly at random
and set H = span{β1, . . . , βt}⊥. For each b ∈ Ft

2 we define the “bucket”

C(b)
def
= {α ∈ Fn

2 : 〈α, βi〉 = bi for all i}.

We take C to be the set of C(b)’s, which has cardinality 2t.

Remark 1. Given such a random coset structure, if the βi’s are linearly independent
then the buckets C(b) are precisely the cosets in Fn

2/H , and the coset-projection func-
tion PC(b)f is defined according to Definition 2. In the (usually unlikely) case that the
βi’s are linearly dependent, some of the C(b)’s will be cosets in Fn

2/H and some of
them will be empty. For the empty buckets C(b) we define PC(b)f to be identically 0.
It is algorithmically easy to distinguish empty buckets from genuine coset buckets.

We now derive some simple but important facts about this random hashing process:

Proposition 3. Let (H, C) be a random t-dimensional coset structure. Define the indi-
cator random variable Iα→b for the event that α ∈ C(b).

1. For each α ∈ Fn
2 \ {0} and each b we have Pr[α ∈ C(b)] = E[Iα→b] = 2−t.

2. Let α, α′ ∈ Fn
2 be distinct. Then Pr[α, α′ belong to the same bucket] = 2−t.

3. Fix any set S ⊆ Fn
2 with |S| ≤ s + 1. If t ≥ 2 log s + log(1/δ) then except with

probability at most δ, all vectors in S fall into different buckets.
4. For each b, the collection of random variables (Iα→b)α∈Fn

2
is pairwise independent.

Proof. Part 1 is because for any α �= 0, each 〈α, βi〉 is an independent uniformly ran-
dom bit. Part 2 is because each 〈α − α′, βi〉 is an independent uniformly random bit,
and hence the probability that 〈α, βi〉 = 〈α′, βi〉 for all i is 2−t. Part 3 follows from
Part 2 and taking a union bound over the at most

(
s+1
2

)
≤ s2 distinct pairs in S. For

Part 4, assume first that α �= α′ are both nonzero. Then from the fact that α and α′ are
linearly independent, it follows that Pr[α, α′ ∈ C(b)] = 2−2t as required. On the other
hand, if one of α �= α′ is zero, then Pr[α, α′ ∈ C(b)] = Pr[α ∈ C(b)]Pr[α′ ∈ C(b)]
follows immediately by checking the two cases b = 0, b �= 0. �

With Proposition 3 in mind, we give the following simple deviation bound for the sum
of pairwise independent random variables:

Proposition 4. Let X =
∑n

i=1 Xi, where the Xi’s are pairwise independent random
variables satisfying 0 ≤ Xi ≤ τ . Assume μ = E[X ] > 0. Then for any ε > 0, we have
Pr[X ≤ (1 − ε)μ] ≤ τ

ε2μ .

Proof. By pairwise independence, we have Var[X ] =
∑

Var[Xi] ≤
∑

E[X2
i ] ≤∑

τE[Xi] = τμ. The result now follows from Chebyshev’s inequality. �

Finally, it is slightly annoying that Part 1 of Proposition 3 fails for α = 0 (because 0
is always hashed to C(0)). However we can easily handle this issue by renaming the
buckets with a simple random permutation.
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Definition 4. In a random permuted t-dimensional coset structure, we additionally
choose a random z ∈ Ft

2 and rename C(b) by C(b+ z).

Proposition 5. For a random permuted t-dimensional coset structure, Proposition 3
continues to hold, with Part 1 even holding for α = 0.

Proof. Use Proposition 3 and the fact that adding a random z permutes the buckets. �

3 Structural Theorems about s-Sparse Functions

In this section we prove structural theorems about close-to-sparse Boolean functions.
These theorems are crucial to the analysis of our test for s-sparsity; we also present a
learning application in the full version.

Definition 5. Let B = {α1, · · · , αs} denote the (subsets of [n] with the) s largest
Fourier coefficients of f , and let S = B̄ be its complement. We say that f is μ-close to
s-sparse in �2 if

∑
α∈S f̂(α)2 ≤ μ2.

Definition 6. We say a rational number has granularity k ∈ N, or is k-granular, if it
is of the form (integer)/2k. We say a function f : Fn

2 → R is k-granular if f̂(α) is k-
granular for every α. We say that a number v is μ-close to k-granular if |v− j/2k| ≤ μ
for some integer j.

The following structural result is the key theorem for the completeness of our sparsity
test; it says that in any function that is close to being sparse in �2, all the large Fourier
coefficients are close to being granular.

Theorem 1 [Completeness Theorem]. If f is μ-close to s-sparse in �2, then each f̂(α)
for α ∈ B is μ√

s
-close to �log s�-granular.

Proof. Pick a set of k = �log s� + 1 equations Aα = b at random (i.e. pick a k × n
random matrix A and a random vector b ∈ Fk

2). Let A⊥ ⊂ Fn
2 be the set of solutions to

Aα = 0. Define H to be the coset of A⊥ of solutions to Aα = b. We have

PHf(x) =
∑
α∈H

f̂(α)χα(x).

Fix αi ∈ B. We will show that with non-zero probability the following two events
happen together: the vectorαi is the unique coefficient inB∩H , and the �2 Fourier mass
of the set S ∩H is bounded by μ2

s . Clearly, PrA,b[Aαi = b] = 2−k. Let us condition
on this event. By pairwise independence, for any j �= i, PrA,b[Aαj = b|Aαi = b] =
2−k ≤ 1

2s . Thus EA,b

[
|{j �= i such that Aαj = b}|

∣∣Aαi = b
]

= (s−1)
2k < 1

2 . Hence
by Markov’s inequality

PrA,b[∃j �= i such that Aαj = b
∣∣Aαi = b] <

1
2
. (4)
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Now consider the coefficients from S. We have

EA,b

⎡⎣ ∑
β∈S∩H

f̂(β)2
∣∣Aαi = b

⎤⎦ =
∑
β∈S

Pr[β ∈ H |Aαi = b]f̂(β)2 ≤ 2−kμ2 ≤ μ2

2s
.

Hence by Markov’s inequality,

PrA,b

⎡⎣ ∑
β∈S∩H

f̂(β)2 ≥ μ2

s

∣∣Aαi = b

⎤⎦ ≤ 1
2
. (5)

Thus by applying the union bound to Equations 4 and 5, we have both the desired
events (αi being the unique solution from B, and small �2 mass from S) happening
with non-zero probability over the choice of A, b. Fixing this choice, we have

PHf(x) = f̂(αi)χαi(x) +
∑

β∈S∩H

f̂(β)χβ(x) where
∑

β∈S∩H

f̂(β)2 ≤ μ2

s
.

But by Fact 4 we also have PHf(x) = Ey∈A[χb(y)f(x + y)] (here we abuse no-
tations and think of A as both the matrix A and the space spanned by the rows of A.
In particular, A = (A⊥)⊥). Thus the function PHf(x) is the average of a Boolean
function over 2k points, hence it is (k − 1)-granular.

We now consider the function g(x) =
∑

β∈S∩H f̂(β)χβ(x). Since Ex[g(x)2] ≤ μ2

s ,

for some x0 ∈ Fn
2 we have g(x0)2 ≤ μ2

s , hence |g(x0)| ≤ μ√
s
. Fixing this x0, we have

PHf(x0) = f̂(αi)χαi(x0) + g(x0), and hence |f̂(αi)| = |PHf(x0) − g(x0)|. Since
PHf(x0) is (k − 1)-granular and |g(x0)| ≤ μ√

s
, the claim follows. �

Thus, if f has its Fourier mass concentrated on s coefficients, then it is close in �2 to
an s-sparse, �log s� granular real-valued function. We next show that this real-valued
function must in fact be Boolean.

Theorem 6 [Soundness Theorem]. Let f : Fn
2 → {−1, 1} be μ ≤ 1

20s2 close to s-
sparse in �2. Then there is an s-sparse Boolean function F : Fn

2 → {−1, 1} within

Hamming distance μ2

2 from f .

Proof. Let B = {α1, · · · , αs} be the s largest Fourier coefficients of f and let k =
�log s�. By Theorem 1, each f̂(αi) is μ√

s
close to k-granular. So we can write

f̂(αi) = F̂ (αi) + Ĝ(αi)

where F̂ (αi) is k-granular and |Ĝ(αi)| ≤ μ√
s
. Set F̂ (β) = 0 and Ĝ(β) = f̂(β) for

β ∈ S = B̄. Thus we have f(x) = F (x) +G(x), further F is s-sparse and k-granular,
while

E[G(x)2] ≤ s
μ2

s
+ μ2 ≤ 2μ2.
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It suffices to show that F ’s range is {−1, 1}. In this case, G’s range must be
{−2, 0, 2}, the value G(x)2 is exactly 4 whenever f and F differ, and therefore f and
F satisfy

Prx[f(x) �= F (x)] = Pr[|G(x)| = 2] =
1
4
Ex[G(x)2] ≤ μ2

2
.

As f is a Boolean function on Fn
2 we have

1 = f2 = F 2 + 2FG+G2 = F 2 +G(2f −G). (6)

Writing H = G(2f −G), from Fact 7 below we have that for all α,

|Ĥ(α)| ≤ ‖G‖2‖2f −G‖2 ≤ ‖G‖2(‖2f‖2 + ‖G‖2) ≤ 2
√

2μ + 2μ2 < 4μ ≤ 1
5s2

.

On the other hand, since F has granularity k it is easy to see that F 2 has granularity
2k; in particular, |F̂ 2(α)| is either an integer or at least 2−2k ≥ 1

4s2 -far from being an

integer. But for (6) to hold as a functional identity, we must have F̂ 2(0) + Ĥ(0) = 1
and F̂ 2(α)+ Ĥ(α) = 0 for all α �= 0. It follows then that we must have F̂ 2(0) = 1 and

F̂ 2(α) = 0 for all α �= 0; i.e., F 2 = 1 and hence F has range {−1, 1}, as claimed. �

Fact 7. Let f, g : Fn
2 → R. Then |f̂ g(α)| ≤ ‖f‖2‖g‖2 for every α.

Proof. Using Cauchy-Schwarz and Parseval,

|f̂ g(α)| = |
∑
β

f̂(β)ĝ(α+ β)| ≤
√∑

β

f̂(β)2
√∑

β

ĝ(α + β)2 = ‖f‖2‖g‖2. �

4 Testing s-Sparsity

The following is our algorithm for testing whether f : Fn
2 → {−1, 1} is s-sparse:

Algorithm 1. Testing s-sparsity
Inputs: s, ε

Parameters: μ = min(
√

2ε, 1
20s2 ), t = �2 log s + log 100�, τ = μ2

100·2t.

1. Choose a random permuted t-dimensional coset structure
(H, C).

2. For each bucket C ∈ C, estimate wt(C) =
∑

α∈C f̂(α)2

to accuracy ±τ with confidence 1 − (1/100)2−t, using
Proposition 2.

3. Let L be the set of buckets where the estimate is at
least 2τ. If |L| ≥ s+ 1, reject.

Roughly speaking, Step 1 pairwise independently hashes the Fourier coefficients of f
into Θ(s2) buckets. If f is s-sparse then at most s buckets have nonzero weight and the
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test accepts. On the other hand, if f passes the test with high probability then we show
that almost all the Fourier mass of f is concentrated on at most s nonzero coefficients
(one for each bucket in L). Theorem 6 now shows that f is close to a sparse function.
Our theorem about the test is the following:

Theorem 8. Algorithm 1 ε-tests whether f : Fn
2 → {−1, 1} is s-sparse (with confi-

dence 3/4), making O
(

s6 log s
ε2 + s14 log s

)
nonadaptive queries.

The query complexity of Theorem 8 follows immediately from Proposition 2 and the
fact that there are 2t = O(s2) buckets. In the remainder of this section we present
the completeness (Lemma 1) and the soundness (Lemma 4) of the test. We begin with
the completeness, which is straightforward.

Lemma 1. If f is s-sparse then the test accepts with probability at least 0.9.

Proof. Write f =
∑s′

i=1 f̂(αi)χαi , where each f̂(αi) �= 0 and s′ ≤ s. Since there are
2t buckets, all of the estimates in Step 2 are indeed τ -accurate, except with probability
at most 1/100. If the estimates are indeed accurate, the only buckets with weight at least
τ are those that contain a nonzero Fourier coefficient, which are at most s in number.
So f passes the test with probability at least 0.9. �

We now analyze the soundness. We partition the Fourier coefficients of f into two sets:
B of big coefficients and S of small coefficients. Formally, let

B
def= {α : f̂(α)2 ≥ 3τ}, S

def= {α : f̂(α)2 < 3τ}.

We observe that if there are too many big coefficients the test will probably reject:

Lemma 2. If |B| ≥ s+ 1 then the test rejects with probability at least 3/4.

Proof. Proposition 5(3) implies that after Step 1, except with probability at most 1/100
there are at least s + 1 buckets C containing an element of B. In Step 2, except with
probability at most 1/100, we get an estimate of at least 3τ − τ ≥ 2τ for each such
bucket. Then |L| will be at least s+ 1 in Step 3. Hence the overall rejection probability
is at least 1 − 2/100. �

Next we show that if the weight on small coefficients, wt(S) =
∑

α∈S f̂(α)2, is too
large then the test will probably reject:

Lemma 3. If wt(S) ≥ μ2 then the test rejects with probability at least 3/4.

Proof. Suppose that indeed wt(S) ≥ μ2. Fix a bucket index b and define the random
variable Mb := wt(C(b) ∩ S) =

∑
α∈C(b)∩S f̂(α)2 =

∑
α∈S f̂(α)2 · Iα→b. Here

the randomness is from the choice of (H, C), and we have used the pairwise indepen-
dent indicator random variables defined in Proposition 5(3). Let us say that the bucket
C(b) is good if Mb ≥ 1

2E[Mb]. We have E[Mb] = 2−t wt(S) ≥ 100τ > 0, and by
Proposition 4 we deduce Pr[Mb ≤ 1

2E[Mb]] ≤ 3τ
(1/2)2E[Mb]

≤ 3/25. Thus the ex-
pected fraction of bad buckets is at most 3/25, so by Markov’s inequality there are
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at most (3/5)2t bad buckets except with probability at most 1/5. But if there are at
least (2/5)2t good buckets, we have at least (2/5)(100s2) ≥ s + 1 buckets b with
wt(C(b) ∩ S) ≥ 1

2E[Mb] ≥ 50τ . Assuming all estimates in Step 2 of the test are ac-
curate to within ±τ (which fails with probability at most 1/100), Step 3 of the test will
reject. Thus we reject except with probability at most 1/5 + 1/100 < 1/4. �

Now we put together the pieces to establish soundness of the test:

Lemma 4. Suppose the test accepts f with probability exceeding 1/4. Then f is ε-close
to an s-sparse Boolean function.

Proof. Assuming the test accepts f with probability exceeding 1/4, by Lemma 2 we
have |B| ≤ s, by Lemma 3 we have wt(S) ≤ μ2. Thus f is μ ≤ 1

20s2 close in �2 to
being s-sparse. We now apply the soundness theorem, Theorem 6 to conclude that f
must be μ2

2 ≤ ε-close in Hamming distance to an s-sparse Boolean function. �
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Abstract. Estimating frequency moments and Lp distances are well
studied problems in the adversarial data stream model and tight space
bounds are known for these two problems. There has been growing in-
terest in revisiting these problems in the framework of random-order
streams. The best space lower bound known for computing the kth fre-
quency moment in random-order streams is Ω(n1−2.5/k) by Andoni et al.,
and it is conjectured that the real lower bound shall be Ω(n1−2/k). In this
paper, we resolve this conjecture. In our approach, we revisit the direct
sum theorem developed by Bar-Yossef et al. in a random-partition pri-
vate messages model and provide a tight Ω(n1−2/k/�) space lower bound
for any �-pass algorithm that approximates the frequency moment in
random-order stream model to a constant factor. Finally, we also intro-
duce the notion of space-entropy tradeoffs in random order streams, as
a means of studying intermediate models between adversarial and fully
random order streams. We show an almost tight space-entropy tradeoff
for L∞ distance and a non-trivial tradeoff for Lp distances.

1 Introduction

The data stream model is a very useful computational model for designing effi-
cient algorithms for massive data sets. In the data stream model, the algorithm
can only access the data in a given order and for a limited number of times
(passes). Designing sub-linear space algorithms and proving space lower bound
for numerous problems have received a lot of attention.

The problem of estimating the Frequency Moments is one of the most studied
problems in data stream model. Given an alphabet Σ = {σ1, σ2, · · · , σm} of
size m and a sequence of n numbers x1, x2, · · · , xn in Σ, yi is the number of
occurrence of σi in the sequence, and the kth frequency moment fk is defined as
fk =

∑m
i=1 y

k
i .

Usually, it is assumed that the order is given by an adversary and the model
is known as adversarially ordered streaming. In this model, there are approxima-
tion algorithms for computing the kth frequency moment using only Õ(n1−2/k)
space [4,13]. Alon et al. [1] proved the first lower bound of Ω(n1−5/k) for the
space required to estimate the kth frequency moment to a constant factor. Bar-
Yossef et al. [3] gave an improved lower bound of Ω(n1−3/k) via their direct
� This research was supported in part by NSF award CCF-0644119.

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 513–524, 2009.
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sum theorem. And Chakrabarti et al. [7] showed that any single-pass algorithm
required Ω(n1−2/k) space in order to approximate the kth frequency moment,
while for algorithms with a constant number of passes require Ω(n1−2/k/ logn)
space. Very recently, Gronemeier [9] improved the lower bound for constant-pass
algorithms to Ω(n1−2/k).

A related and almost equally well studied problem in the data stream model
is the approximation of L∞ and Lp distances. Given x = (x1, x2, · · · , xn) ∈
[0, �]n and y = (y1, y2, · · · , yn) ∈ [0, �]n, the Lp distance between x and y is
defined as Lp(x, y) = (

∑n
i=1 (xi − yi)p)1/p. The L∞ distance between x and y

is maxi |xi − yi|. Saks and Sun [15] proved that any two-party one-way protocol
that distinguishes L∞(x, y) = 1 from L∞(x, y) = � with probability at least
2/3 uses at least Ω(n/�2) communication. Later, Bar-Yossef et al. [3] use their
direct sum theorem to prove the same space lower bound for general two-party
protocols. Matching protocols for this problem are also known. Using a reduction
from L∞ to Lp proposed by Saks and Sun, a space lower bound of Ω(n1−2/p/�2)
holds for Lp, p > 2.

In many scenarios, however, an adversarially ordered data stream is not the
best model, and recently, random-order data streams has received a lot of at-
tention [12,5,6]. The work which is closest to this paper, by Chakrabarti et al.
[5] show that the space complexity of estimating the kth frequency moment is
Ω(n1−3/k) and Ω(n1−3/k/ logn) for single-pass and constant-passes algorithms
respectively for the random order stream model. Andoni et al. [2] improve these
lower bounds to Ω(n1−2.5/k/ logn) and conjecture that the lower bound for ad-
versarially ordered streams holds for random-order streams.

Communication complexity [14,16] plays a central role in proofs of most re-
sults on space lower bound results. There are two models of communication
complexity which are useful in this context. The blackboard model refers to
the communication games in which players can broadcast their message to all
other players. In the private messages model, only one-to-one communication
is allowed. In the literature to date, most lower bound results are based on re-
ductions from various communication complexity problems in the blackboard
model. And a key technique is the direct sum theorem developed by Bar-Yossef
et al. [3]. In contrast, the private messages model has received less attention so
far. The private messages model is more restrictive than the broadcast model,
may lead to better space lower bounds; and further, to prove lower bounds in the
streaming model, the private message model is more relevant (in fact the order
in which he players speak is also preordained). To the best of our knowledge, the
only effort on proving space lower bound from communication complexity in pri-
vate messages model is the work on the longest increasing sequence problem by
Gal and Gopalan [8]. We note that direct lower bounds for streaming problems
that bypass communication games as in [11] also use ideas which are similar in
spirit to the private messages model.

Our Contributions. In this paper, we revisit the notion of information cost
and information complexity in the framework of private messages model. We
prove that the private information cost of a decomposable function is at least
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as large as the sum of the private information costs of the primitive functions.
Using this direct sum theorem, we prove a tight Ω(nm/t2) lower bound for the
communication complexity of random-partition multiparty set disjointness. Here
n is the number of different items, m is the number of players. The players try
to distinguish the case that all items are distinct and the case that there are
t identical items. As a corollary of this result, we show that any �-pass algo-
rithm which gives constant factor approximation of the kth frequency moment
in random-order stream model requires Ω(n1−2/k/�) space. This result resolves
the conjecture by Andoni et al. [2]. It also provides an alternate approach for
space lower bound for constant-pass algorithms in adversarially ordered streams.

We then study protocols for L∞ and the tradeoff of the entropy of the input
order and the communication complexity used by the protocol. We show that if
the protocol can distinguish L∞ = � and L∞ ≤ 1, and 2n logn− E = αn logn,
then the 2n-party communication complexity is at least Ω(n2−α(1+ε)/�2) for any
constant ε > 0. As a corollary, we haveΩ(n1−α(1+ε)/�2) andΩ(n1−2/p−α(1+ε)/�2)
space lower bounds for data stream algorithms which approximates L∞ and Lp

for p > 2 respectively. We also prove this tradeoff is essentially tight for L∞ and
give algorithm matching the lower bound.

2 Preliminaries

2.1 Definitions and Notations

Definition 1. Suppose Σ is a finite set. A function f : ΣT  → {0, 1} is de-
fined to be decomposable if there exists t, n and functions g : {0, 1}n  → {0, 1}
and h : Σt  → {0, 1} such that T = tn and the function f is of the form
f(x1, x2, · · · , xT ) = g

(
h(x1, x2, · · · , xt), · · · , h(x(n−1)t+1, · · · , xT )

)
. We call

function h the primitive function.

We shall consider the following two special cases of decomposable functions in
this paper. If h is the Andt function with t input bits, and g is function Orn with
n input bits, the decomposable function f is denoted as the Set Disjointness

function:
SetDisjn,t = Orn (Andt(x1), · · · ,Andt(xn)) .

If h is the bivariate gap function BiGap� such that BiGap�(x, y) = 1 when
|x− y| = � and BiGap�(x, y) = 0 when |x− y| = 0, 1, and g is function Or with
n input bits, then the decomposable function f is denoted as the Gap Distance

function:

GapDistn,� = Orn (BiGap�(x1, x2), · · · ,BiGap�(x2n−1, x2n)) .

We use capital letters X , Y , and Z to denote random variables. We use bold-
face letters X and Y to denote vectors. Moreover, we shall let X1,X2, · · · ,Xn

denote the input vectors of primitive functions and let X = X1×X2×· · ·×Xn

denote the input vector of the decomposable function f . We let ν denote the in-
put distribution of the primitive function and let μ denote the input distribution
of the decomposable function. Usually we shall have μ = νn.
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We use [d] to denote the set {1, 2, · · · , d}. We say a distribution μ is symmetric
if and only if for any permutation π of [T ], X ∼ π(X) ∼ μ.

Definition 2. A distribution μ is defined as a collapsing distribution if for any
input x drawn from the distribution μ and any Xi ∈ Σt, we always have that
f(x1, · · · ,xi−1,Xi,xi+1, · · · ,xn) = h(Xi).

We shall use η to denote the distribution of random variable Yi and let ζ to
denote the distribution of random vector Y . We shall have ζ = ηn. We will
consider the distribution of random vector X conditioned on Y .

Definition 3. Y is defined to partition X if the distribution of X given Y is
a product distribution.

2.2 Communication Games and Various Models

We let P denote a communication protocol. We shall always use δ to denote the
error rate of a protocol. Let Γ denote the set of all protocols and let Γδ denote
the set of all protocols whose error rate is at most δ. Similarly we shall use Φ and
Φδ to denote the set of all deterministic protocols and the set of all deterministic
protocols with error rate at most δ.

The term ε be denote the relevant approximation parameter (we shall consider
either (1 + ε)-approximation or nε-approximation depending on the problem we
study). We use ρ to denote other small values.

Private Messages Model: We shall focus on the communication complexity of
various (decomposable) functions in private messages model (with public coins)
in this paper. A multiparty communication game in private messages model with
m players is as follows. In step 1, the first player sends a message M1

1 to the
second player based merely on her own input. In general, in step im+j such that
i ≥ 0 and 1 ≤ j ≤ m the jth player sends a message M j

i+1 to the (j+1)th player
based on her own input and all messages she received from the (j − 1)th player.
Note that in private messages model, each message is known only by the sender
and recipient. This is a major difference from the blackboard model. We shall
use CCP

δ (f) to denote the multiparty communication complexity of computing
a decomposable function f in private messages model with error rate at most δ.

The transcript of the �th player is the union of all messages sent by player
� and is denoted by Π�(X). The transcript Π(X) is the union of Π�(X) for
1 ≤ � ≤ m. We sometimes abbreviate these notations with Π� and Π . The
communication complexity CCP

δ = minP∈Γδ
maxx∈{0,1}T |Π(x)|.

Random Partitioned Communication Games: An allocation is a function σ :
[T ]  → [m]. Let [m]T denote the set of all allocations. In a random partitioned
communication game with respect to function f and a distribution Σ on [m]T ,
an allocation σ is drawn from distribution Σ, and each input bit xi is given to the
σ(i)th player. The players then play a communication game in private messages
model to compute the function value of f for the given input. Let UT,m denote
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the uniformly random distribution over [m]T . The special case when Σ = UT,m

is of particular interest in proving robust communication complexity and space
lower bounds for various functions.

We shall use Γδ,Σ to denote the set of protocols whose error rate is at most δ
in the random partitioned communication game with respect to function f and
distribution Σ. And the communication complexity in a random partitioned
communication game is CCP

δ,Σ = minP∈Γδ,Σ
maxx∈{0,1}T |Π |.

3 Revisiting the Direct Sum Theorem

Now we revisit the definition of information cost and information complexity
in the literature of private messages model. A major difference between private
messages model and blackboard model is that a player may need to forward
information in the messages she received to the other players, while in blackboard
model that information is already known by every player.

Therefore, any optimal protocol in blackboard model shall satisfies that
I(Πi;Πj) = 0 for any 1 ≤ i �= j ≤ m. Thus we shall have that I(X;Π) =∑m

i=1 I(X;Πi). However, similar statement is not true in private messages
model. Based on this observation, we consider the following definition of in-
formation cost and information complexity in private messages model.

Definition 4. Suppose P is a communication protocol and Π is its transcript.
The information cost of P with respect to the input distribution X ∼ μ is
ICostμ(X ;Π) =

∑m
i=1 Iμ(X ;Πi). The δ-error information complexity with

respect to function f and input distribution X ∼ μ is the minimal information
cost among all δ-error protocols, that is, ICμ,δ(f) = minP∈Γδ

ICostμ(X ;Π).

Similar to the results in blackboard model, we sometimes need to consider the
conditional information cost and conditional information complexity, which are
defined as follows.

Definition 5. The conditional information cost of a protocol P with respect to
distribution X ∼ μ and Y ∼ ζ is ICostμ,ζ(X;Π |Y ) =

∑m
i=1 Iμ,ζ(X;Πi|Y ).

The δ-error conditional information complexity with respect to function f and
distribution X ∼ μ and Y ∼ ζ is ICμ,ζ,δ(f |Y ) = minP∈Γδ

ICostμ(X;Π |Y ).

Given the modified definition of information cost and information complexity, we
now rephrase the direct sum theorem in the context of private messages model
as follows.

Theorem 1 (Direct Sum Theorem). Recall that f : {0, 1}T  → {0, 1} is
a decomposable function with primitive function h : {0, 1}t  → {0, 1}. Suppose
the input distribution X ∼ μ = νn is a collapsing distribution and random
variable Y ∼ ζ = ηn partitions X. Consider a random partitioned communica-
tion game with respect to function f and distribution Σ, then ICμ,ζ,δ,Σ(f |Y ) ≥∑n

i=1 ICν,η,δ,Σ(h|Yi) .

The proof of Theorem 1 is an analogue of the proof by Bar-Yossef et. al. [3], and
can be found in the full version [10].
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4 Near Optimal Lower Bound for Frequency Moments

In this section, we will prove the following asymptotically optimal space lower
bound for computing the kth frequency moments for k > 2.

Theorem 2. Suppose ε and δ are small constants. If an algorithm correctly
gives a (1 + ε)-approximation of the kth frequency moment of n numbers with
probability at least 1−δ in a random order stream within � passes, then the space
it needs is at least Ω

(
n1−2/k/�

)
.

We consider the decomposable function SetDisjn,t. The intuition is the follow-
ing. Suppose m = td and we shall assume that m is large enough such that if
the allocation σ ∼ Ut,m, then with probability 1 − o(1) we have σ(i) �= σ(j)
for all 1 ≤ i �= j ≤ t. Consider a collapsing and symmetric distribution X ∼ ν
partitioned by Y ∼ η, where η is a uniform distribution over [t] and conditioned
on Yi = j we have Xi = ej with probability 1/2 and Xi = 0 with probability
1/2. From Theorem 1, it suffices to prove lower bound for the primitive function.
Recall that the information complexity for Andt is at least IC

B = Ω(1/t) in
a blackboard fixed-partition t-player communication game with respect to this
input distribution [7,9]. Conditioned on a particular allocation σ, suppose the
indexes of the players who get the t bits of the input Xi are i1 < i2 < · · · < it.
We can imagine that these t players play a communication game to compute the
function value of Andt and only the messages these t players receive contribute
to the information cost. So the effective information cost is

I(Xi;Πi1−1|Yi) + I(Xi;Πi2−1|Yi) + · · · + I(Xi;Πit−1|Yi) .

Now we use the simple fact that the information cost in private messages
model is at least as large as the information cost in blackboard model. We get
that the above information cost is at least IC

B. Note that for each 1 ≤ � ≤ t,
player i� + 1, i� + 2, · · · , i�+1 − 1 do not have any bit of the input Xi, we have

I(Xi;Πi�
|Yi) ≥ I(Xi;Πi�+1|Yi) ≥ · · · ≥ I(Xi;Πi�+1−1|Yi) .

Since the expected distance between ij and ij+1 is d, the next lemma is
intuitive.

Lemma 1. Suppose Xi ∼ ν is a collapsing symmetric distribution partitioned
by Yi ∼ η, then the information cost of computing the function value of Andt

with small constant error rate δ is at least IC(Andt|Yi) = Ω(d/t).

Now we formally prove this key lemma. Given an allocation σ : [t] → [m], m = td,
let σ(�) be the image of �, and π(�) be the smallest σ(�′) such that �′ ∈ [t] \ {�}
and σ(�′) ≥ σ(�) (if σ(�) = max�′∈[t] σ(�′) then π(�) = min�′∈[t] σ(�′) + m). Let
pj denote the probability that π(�) − σ(�) = j when σ ∼ Ut,m. We have pj =
(t/m) (1 − j/m)t−1 = (1 − j/m)t−1

/d. We first prove the following lemmas.

Lemma 2. For any 0 ≤ i < j ≤ m− 1,

pj(pi + pi+1 + · · · + pm−1) ≥ pi(pj + pj+1 + · · · + pm−1) .
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Proof. Consider the function p(x) = (1 − x)t−1/d. It is easy to verify that this
function is log-concave. Note that i < j and i ≤ i+ k < j + k for k ≥ 0, we get
that pjpi+k ≥ pipj+k and thus pi+k/pi ≥ pj+k/pj. So
pi + pi+1 + · · · + pm−1

pi
≥ pi + pi+1 + · · · + pi+m−j−1

pi
≥ pj + pj+1 + · · · + pm−1

pj
. �

Lemma 3. If c1 ≥ c2 ≥ · · · ≥ cm−1 ≥ 0, then
m−1∑
i=1

m−1∑
j=i

pjci ≥
m−1∑
i=1

ipi

m−1∑
j=1

pjcj .

Proof. Note
m−1∑
j=1

pj = 1. Now,

m−1∑
i=1

m−1∑
j=i

pjci −
m−1∑
i=1

ipi

m−1∑
j=1

pjcj =
m−1∑
j=1

j∑
i=1

pjci −
m−1∑
i=1

ipi

m−1∑
j=1

pjcj

=
m−1∑
i=1

m−1∑
j=1

i∑
�=1

pipjc� −
m−1∑
i=1

m−1∑
j=1

i∑
�=1

pipjcj

=
m−1∑
i=1

m−1∑
j=1

i∑
�=1

pipj(c� − cj) =
m−1∑
j=1

m−1∑
�=1

m−1∑
i=�

pipj(c� − cj)

=
∑
�<j

[pj(p� + · · · + pm−1) − p�(pj + · · · + pm−1)](c� − cj) ≥ 0 .

The last step follows from Lemma 2. �
Proof (of Lemma 1). Suppose P is a δ-error protocol and Π is its transcript. Let
1 ≤ � ≤ t. Let cj denote the expected communication cost contributed by player
σ(�)+ j− 1 if π(�)− σ(�) ≥ j, that is, cj = I(Xi;Πσ(�)+j−1|Yi, π(�)− σ(�) ≥ j).
Since we consider private messages model we shall have that c1 ≥ c2 ≥ · · · ≥
cm−1 ≥ 0. By Lemma 3 we get that

m−1∑
i′=1

ci′
m−1∑
j=i′

pj =
m−1∑
i′=1

m−1∑
j=i′

pjci′ ≥
m−1∑
i′=1

i′pi′

m−1∑
j=1

pjcj . (1)

Note that
∑m−1

j=i′ pj is the probability that π(�) − σ(�) ≥ i′. The left-hand side
of Equation 1 is the communication cost contributed by players σ(�), σ(�) +
1, · · · , π(�) − 1. The first term on the right-hand side

∑m−1
i′=1 i

′pi′ is the ex-
pected distance between σ(�) and π(�), which equals d. The second term on
the right-hand side

∑m−1
j=1 pjcj is the information cost contributed by player

π(�) − 1. So we have
∑π(�)−1

j=σ(�) I(X i;Πj |Yi) ≥ d · I(Xi;Ππ(�)−1|Yi). Recall that∑t
�=1 I(X i;Ππ(�)−1|Yi) ≥ IC

B = Ω(1/t). We have

ICost(X i; Π |Yi) =
t∑

�=1

π(�)−1∑
j=σ(�)

I(X i; Πj |Yi) ≥
t∑

�=1

d · I(X i; Ππ(�)−1|Yi) = Ω

(
d

t

)
.

Since the above result is true for any δ-error protocol, we prove Lemma 1. �
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Remark 1. We realize the reduction technique we introduce in Lemma 1, 2, and
3 works for other decomposable functions if we can prove information complexity
lower bound for some symmetric collapsing input distribution.

Using the direct sum theorem we have the following corollaries.

Corollary 1. If a protocol P correctly computes the value of SetDisjn,t with
probability at least 1 − δ in a random partition communication game, then the
total communication complexity is at least

CC(SetDisjn,t) ≥
n∑

i=1

IC(Andt|Yi) = Ω

(
nd

t

)
= Ω

(nm
t2

)
.

Now we can prove Theorem 2 via the a reduction as follows.

Proof (of Theorem 2). Suppose an algorithm gives (1 + ε)-approximation of the
kth frequency moment using s bits of space and within � passes. Consider the
following �-round protocol which compute the function value of SetDisjn,t when
t = (5ε · n)1/k. Set m to be large1, m = Ω(t2), which rules out collisions with
constant probability. Each player shall receive some bits of the input. For each
bit of value 1, that indicates some value v in one of the set. And the player
take that as probing a number v in the data stream. The first player runs the
algorithm on the inputs she receives, then sends the s bits of memory and another
O(log n) bits that indicates the number of 1’s she receives to the second player.
The second player continues the algorithm on her own inputs, then sends the
memory bits and the number of 1’s the first two players receive to the third
player. And so on and so forth.

Now assume the number of 1’s in the input is n′, we get that n′ < n + t <
(1 + ε)n. If the function value of SetDisjn,t is 1, then one of the value appears
t times in the data stream. So the frequency moment is at least (n′ − t) + tk =
n′ − t + 5ε · n ≥ n′ + 4ε · n > n′(1 + ε)2. On the other hand, if the function
value of SetDisjn,t is 0, then the frequency moment is n′. Therefore, if the last
player claims the function value is 1 if the the frequency moment given by the
algorithm is at least (1 + ε)n′ and claims the function value is 0 otherwise, she
will be correct with probability at least 1 − δ.

The total communication complexity of this protocol is O (�m(s+ logn)).
Recall that this value is at least Ω(nm/t2), we get that

s = Ω
( n

t2�

)
= Ω

(
n1−2/k

�

)
. �

1 Note that the private communication model allows a large number of players, say
even one corresponding to each input, which is one of the reasons for getting the
improved space lower bounds for streaming algorithms compared to the blackboard
model.
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5 Entropy–Space Tradeoff for L∞ and Lp Distances

In this section, we consider the entropy–space tradeoff of finding an nε-
approximation of the L∞ distance.

We consider the following communication game. The two vectors correspond
to 〈x1, x3, . . . , x2n−1〉 and 〈x2, x4, . . . , x2n〉 (we can use any fixed permutation).
There are 2n players. The input allocation σ : [2n]  → [2n] is drawn from a
distribution over all permutations of [2n]. The entire input xi is allocated to
player σ(i). The players then communicate in the private messages model in
order to compute the function value of GapDistn,�.

We shall show the following theorems.

Theorem 3. Let δ > 0 be a small constant. Let Σ be a distribution of input
order with entropy E. Any δ-error nε-approximation algorithm for L∞ distances
with respect to input order distribution Σ requires space at least

Ω

(
n1−4ε

2(2n log n−E)/(1−2δ)n

)
.

Theorem 4. Theorem 3 is tight, given E there exists an order distribution Σ′

with entropy at least E, and a δ-error nε-approximation algorithm of L∞ distance
with respect to Σ′, using O

(
n1−4ε

2(2n log n−E)/n

)
space.

Proof (of Theorem 3). We consider the function GapDistn,�. Recall that the
function BiGap� is defined as: BiGap�(x, y) = 1 when |x− y| = � and
BiGap�(x, y) = 0 when |x− y| = 0, 1. The decomposable function GapDistn,�

is defined as GapDistn,� = Orn (BiGap�(x1, x2), · · · ,BiGap�(x2n−1, x2n)). If
an algorithm can correctly compute the L∞ distance of two n dimensional vectors
up to a nε factor, then it shall be able to distinguish whether the L∞ distance
is at most 1 or the L∞ distance is at least n2ε. Therefore, the space needed by
such an algorithm is as large as the space needed to compute the function value
of GapDistn,n2ε with probability at least 1 − δ. Hence to prove a space lower
bound for computing the L∞ distances, it suffices to show strong lower bound
for the communication complexity of GapDistn,�.

We shall consider the following input distribution of GapDistn,�. For each
1 ≤ i ≤ n, Yi ∼ η is randomly drawn from [2�]. Conditioned on Yi = 2j + 1,
0 ≤ j < �, X2i−1 = j and X2i is uniformly distributed in {j, j+1}. Conditioned
on Yi = 2j, 1 ≤ j ≤ �, X2i−1 is uniformly distributed in {j, j − 1} and X2i = j.
It is clear that X ∼ μ = νn is a collapsing distribution since we always have
the value of each primitive function is BiGap� = 0. Bar-Yossef et. al. [3] shows
the following lower bound for the primitive function BiGap� in the literature of
blackboard model:

Lemma 4 (Lemma 8.2 in [3]). Suppose 0 < δ < 1/4 is a constant, the two-
party communication complexity of computing the function value of BiGap� with
probability 1 − δ is IC

B = Ω
(
1/�2

)
.
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Now we consider the information complexity lower bound for the ith primitive
function BiGap� in the private messages model. Suppose player u and player
v receive the input X2i−1 and X2i. Effectively these two players play a com-
muncation game to compute the primitive function and Πu−1 and Πv−1 are
the effective transcripts. So from Lemma 4 we get that I(X2i−1, X2i;Πu−1) +
I(X2i−1, X2i;Πv−1) = Ω(1/�2). Moreover, we shall have I(X2i−1, X2i;Πu) ≥
I(X2i−1, X2i;Πu+1) ≥ · · · ≥ I(X2i−1, X2i;Πv−1) as well as I(X2i−1, X2i;Πv) ≥
I(X2i−1, X2i;Πv+1) ≥ · · · ≥ I(X2i−1, X2i;Πu−1). So the information cost in pri-
vate messages model is at least Ω(min{|u− v|, n− |u− v|}/�2). If we can prove
with some constant probability the value of min{|u− v|, n− |u− v|} is large and
the protocol correctly gets the function value of BiGap�, then we shall have a
lower bound for the primitive function.

Suppose Ei is the entropy the allocation distribution for the ith primitive
function. We let d′ denote the value n/2(2n log 2n−E1)/(1−2δ) for the sake of con-
venience. We shall prove by contradiction that with probability at least 2δ,
min{|u− v|, n− |u− v|} ≥ d′.

Suppose not. Note that the total number of different allocations for a primitive
function σi : [2]  → [2n] is 2n(2n − 1), and the number of different allocations
such that min{|u− v|, n− |u− v|} ≥ d′ is 2n(2n− 2d′ + 1).

Hence if the probability of getting an allocation σi ∼ Σi satisfying min{|u−
v|, n− |u− v|} ≥ d′ is at most 2δ, then the entropy of distribution is

Ei < 2δ log 2n(2n− 2d′ + 1) + (1 − 2δ) log (2n(2n− 1) − 2n(2n− 2d′ + 1))

< 2 log 2n+ (1 − 2δ) log
(
d′

n

)
.

Thus we have d > n/2(2 log 2n−Ei)/(1−2δ), a contradiction. Therefore, the in-
formation cost for the ith primitive function is at least

Ω(d′/�2) = Ω
( n

�22(2 log 2n−Ei)/(1−2δ)

)
.

Note that we shall have
∑n

i=1 Ei ≥ E and the function 2x is convex. Using
Theorem 1 and Jensen’s inequality we get that

IC(GapDistn,�|Y ) =
n∑

i=1

IC(BiGap�|Yi) ≥ Ω

(
n2

�22(2n log n−E)/(1−2δ)/n

)
.

Therefore, to compute the function value of GapDistn,n2ε or to compute the
L∞ distance of two n-dimensional vectors up to a nε factor, we shall need the
memory space to be

Ω

(
n1−4ε

2(2n log n−E)/(1−2δ)n

)
. �

Proof (of Theorem 4). We let d denote the value c · n/2(2n log n−E)/n for the
sake of convenience, where c is a large constant, then we shall have log d =
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log c+E/n−n logn. Consider the distribution of allocations σ generated by the
following algorithm:

1: Pick a random permutation π of [n].
2: Let σ(2j − 1) = 2π(j) − 1 for 1 ≤ j ≤ n.
3: for all 1 ≤ i ≤ n/d do
4: Pick a random permutation πi of [d]
5: Let σ(2d · i+ 2j) = 2π(d · i+ πi(j)) for 1 ≤ j ≤ d.
6: end for

This allocation distribution is a uniform distribution over n!(d!)n/d different
allocations. So the entropy is n logn+(n/d) ·d log d+O(n) > E for large c. Here
we use the following simple corollary of Stirling’s approximation for factorials.

Lemma 5. Suppose n > 0 is a positive integer, then

log(n!) = n logn +O(n) .

For each allocation in this distribution, the first 2d numbers are the inputs of
d dimensions, and the next 2d numbers are the inputs of another d dimensions,
and so on and so forth. Therefore, we can divide the original problem into n/d
subproblems of computing the L∞ distance for d dimensional vectors. And the
space can be reused for each subproblem. Saks and Sun [15] showed these sub-
problems can be resolve using only O(d/n4ε) space. So we can nε-approximate
the L∞ distance using O(d/n4ε) = O(n1−4ε/2(2n log n−E)/n) of space. �

Using a reduction proposed by Saks and Sun [15] we get the following entropy
space tradeoff for approximating Lp distances.

Theorem 5. Let δ > 0 be a small constant and p > 2. Let Σ be a distribution
of input order with entropy E. Any δ-error nε-approximation algorithm for Lp

distances with respect to input order distribution Σ requires space

Ω

(
n1−2/p−4ε

2(2n log n−E)/(1−2δ)n

)
.
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Abstract. In this paper we address a common question in wireless com-
munication: How long does it take to satisfy an arbitrary set of wireless
communication requests? This problem is known as the wireless schedul-
ing problem. Our main result proves that wireless scheduling is in APX.
In addition we present a robustness result, showing that constant pa-
rameter and model changes will modify the result only by a constant.

1 Introduction

Despite the omnipresence of wireless networks, surprisingly little is known about
their algorithmic complexity and efficiency: Designing and tuning a wireless net-
work is a matter of experience, regardless whether it is a Wireless LAN in an
office building, a GSM phone network, or a sensor network on a volcano.

We are interested in the fundamental communication limits of wireless net-
works. In particular, we would like to know what communication throughput
can possibly be achieved. This question essentially boils down to spatial reuse,
i.e., which devices can transmit concurrently, without interfering. More precisely,
formulated as an optimization problem: Given a set of communication requests,
how much time does it take to schedule them?

Evidently the answer to this question depends on the wireless transmission
model. In the past, algorithmic research has focused on graph-based models, also
known as protocol models. Unfortunately, graph-based models are too simplistic.
Consider for instance a case of three wireless transmissions, every two of which
can be scheduled concurrently without a conflict. In a graph-based model one
will conclude that all three transmissions may be scheduled concurrently as well,
while in reality this might not be the case since wireless signals sum up. Instead,
it may be that two transmissions together generate too much interference, hin-
dering the third receiver from correctly receiving the signal of its sender. This
many-to-many relationship makes understanding wireless transmissions difficult
– a model where interference sums up seems paramount to truly comprehending
wireless communication. Similarly, a graph-based model oversimplifies wireless
attenuation. In graph-based models the signal is “binary”, as if there was an
invisible wall at which the signal immediately drops. Not surprisingly, in reality
the signal decreases gracefully with distance.
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In contrast to the algorithmic (“CS”) community which focuses on graph-
based models, researchers in information, communication, or network theory
(“EE”) are working with wireless models that sum up interference and respect
attenuation. The standard model is the signal-to-interference-plus-noise (SINR)
model – we will formally introduce it in Section 3. The SINR model is reflect-
ing the physical reality more precisely, it is therefore often simply called the
physical model. On the other hand, “EE researchers” are not really looking for
algorithmic results. Instead, they usually propose heuristics that are evaluated
by simulation. Analytical work is only done for special cases, e.g. the network has
a grid structure, or traffic is random. However, these special cases do neither give
insights into the complexity of the problem, nor do they give algorithmic results
that may ultimately lead to new protocols. Since the SINR model is somewhere
between graph-theory and geometry, we believe that it will be interesting for the
algorithms community, as a new set of tools will be necessary.

The specific question we are addressing in this paper is a classic question in
wireless communication: How long does it take to satisfy an arbitrary set of wire-
less communication requests? This problem is known as the wireless scheduling
problem. It is at the heart of wireless communication. Our solution is hopefully
pleasing to the EE community as it is using their models, and it is hopefully
pleasing to the CS community because we make no restrictions on the input.
Our main result proves that wireless scheduling is in APX.

2 Related Work

Most work in wireless scheduling in the physical (SINR) model is of heuristic na-
ture, e.g. [3,7]. Only after the work of Gupta and Kumar [14], analytical results
became en vogue. The analytical results however are restricted to networks with
a well-behaving topology and traffic pattern. On the one hand this restriction
keeps the math involved tractable, on the other hand, it allows for presenting
the results in a concise form, i.e., “the throughput capacity of a wireless net-
work with X and Y is Z”, where X and Y are some parameters defining the
network, and Z is a function of the network size. This area of research has been
exceptionally popular, with a multi-dimensional parameter space (e.g. node dis-
tribution, traffic pattern, transport layer, mobility), and consequently literally
thousands of publications. The intrinsic problem with this line of research is
that real networks often do not resemble the models studied here, so one cannot
learn much about the capacity of a real network. Moreover, one cannot devise
protocols since the results are not algorithmic.

In contrast there is a body of algorithmic work, however, mostly on graph-
based models. Studying wireless communication in graph-based models
commonly implies studying some variants of independent set, matching, or col-
oring [18,26]. Although these algorithms present extensive theoretical analysis,
they are constrained to the limitations of a model that ultimately abstracts away
the nature of wireless communication. The inefficiency of graph-based protocols
in the SINR model is well documented and has been shown theoretically as well
as experimentally [13,19,23].
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Algorithmic work in the SINR model is fairly new; to the best of our knowl-
edge it was started just three years ago [22]. In this paper Moscibroda et al.
present an algorithm that successfully schedules a set of links (carefully chosen
to strongly connect an arbitrary set of nodes) in polylogarithmic time, even in
arbitrary worst-case networks. In contrast to our work the links themselves are
not arbitrary (but do have structure that will simplify the problem). This work
has been extended and applied to topology control [8,24], sensor networks [20],
combined scheduling and routing [5], or ultra-wideband [15], or analog network
coding [12]. Recently a moderately exponential-time algorithm has been pro-
posed [16]. Apart from these papers, algorithmic SINR results also started pop-
ping up here and there, for instance in a game theoretic context or a distributed
algorithms context, e.g., [1,2,4,10,17,25]

So far there are only a few papers that tackle the general problem of scheduling
arbitrary wireless links. Goussevskaia et al. give a simple proof that the problem
is NP-complete [11], and [21] test popular heuristics. Both papers also present
approximation algorithms, however, in both cases the approximation ratio may
grow linearly with the network size.

The work most relevant for this paper is by Goussevskaia et al. [9]. Among
other things, [9] presents the first wireless scheduling algorithm with approxima-
tion guarantee independent of the topology of the network. The paper accom-
plishes a constant approximation guarantee for the problem of maximizing the
number of links scheduled in one single time-slot. Furthermore, by applying that
single-slot subroutine repeatedly the paper realizes a O(log n) approximation for
the problem of minimizing the number of time slots needed to schedule a given
set of arbitrary requests.

Our present paper removes the logarithmic approximation overhead of [9].
Hence the problem of wireless scheduling is in APX. Moreover, our algorithm
is simpler than [9], and will be easier to build on. In addition we are able to
present a quite general robustness result, showing that constant parameter and
model changes will modify the result only by a constant.

3 Notation and Model

Given is a set of links �1, �2, . . . , �n, where each link �v represents a commu-
nication request from a sender sv to a receiver rv. We assume the senders and
receivers are points in the Euclidean plane; this can be extended to other metrics.
The Euclidean distance between two points p and q is denoted d(p, q). The asym-
metric distance from link v to link w is the distance from v’s sender to w’s re-
ceiver, denoted dvw = d(sv, rw). The length of link �v is denoted dvv = d(sv, rv).
We shall assume for simplicity of exposition that all links are of different length;
this does not affect the results. We assume that each link has a unit-traffic de-
mand, and model the case of non-unit traffic demands by replicating the links.
We also assume that all nodes transmit with the same power level P . We show
later how to extend the results to variable power levels, with a slight increase in
the performance ratio.
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We assume the path loss radio propagation model for the reception of signals,
where the received signal from w at receiver v is Pwv = P/dα

wv and α > 2 denotes
the path-loss exponent. When w �= v, we write Iwv = Pwv. We adopt the physical
interference model, in which a node rv successfully receives a message from a
sender sv if and only if the following condition holds:

Pvv∑
�w∈S\{�v} Iwv +N

≥ β, (1)

whereN is the ambientnoise,β denotes theminimumSINR(signal-to-interference-
plus-noise-ratio) required for a message to be successfully received, and S is the set
of concurrently scheduled links in the same channel or slot. We say that S is SINR-
feasible if (1) is satisfied for each link in S.

The problems we treat are the following. In all cases are we given a set of
links of arbitrary lengths. In the Scheduling problem, we want to partition the
set of input links into minimum number of SINR-feasible sets, each referred to
as a slot. In the Single-Shot Scheduling (SSS) problem, we seek the maximum
cardinality subset of links that is SINR-feasible. And, in the k-Thruput problem,
for a positive integer k, we seek a collection of k disjoint SINR-feasible sets with
maximum combined cardinality. Let χ denote the minimum number of slots in
an SINR-feasible schedule.

We make crucial use of the following new definitions.

Definition 1. The relative interference (RI) of link �w on link �v is the increase
caused by �w in the inverse of the SINR at �v, namely RIw(v) = Iwv/Pvv. For
convenience, define RIv(v) = 0. Let cv = β

1−βN/Pvv
= 1

1
β − N

Pvv

be a constant that

indicates the extent to which the ambient noise approaches the required signal at
receiver rv. The affectance1 of link �v, caused by a set S of links, is the sum of
the relative interferences of the links in S on �v, scaled by cv, or

aS(�v) = cv ·
∑

�w∈S

RIw(v).

For a single link �w, we use the shorthand aw(�v) = a{�w}(�v). We define a
p-signal set or schedule to be one where the affectance of any link is at most 1/p.

Observation 1. The affectance function satisfies the following properties for a
set S of links:

1. (Range) S is SINR-feasible iff, for all �v ∈ S, aS(�v) ≤ 1.
2. (Additivity) aS = aS1 + aS2 , whenever (S1, S2) is a partition of S.

3. (Distance bound) aw(�v) = cv ·
(

dvv

dwv

)α

, for any pair �w, �v in S.

1 Affectance is closely related to affectedness, defined in [9], but treats the effect of
noise more accurately.
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4 Robustness of SINR

We present here properties of schedules in the SINR model, which double as
tools for the algorithm designer. The results of this section apply equally to
scheduling links of different powers, including involving topology control. In the
next subsection, we examine the desirable property of link dispersion, and how
any schedule can be dispersed at a limited cost.

We now explore how signal requirements (in the value of β), or equivalently
interference tolerance, affects schedule length. It is not a priori obvious that
minor discrepancies cause only minor changes in schedule length, but by showing
that it is so, we can give our algorithms the advantage of being compared with
a stricter optimal schedule. This also has implications regarding the robustness
of SINR models with respect to perturbations in signal transmissions.

The pure geometric version of SINR given in (1) is an idealization of true
physical characteristics. It assumes, e.g., perfectly isotropic radios, no obstruc-
tions, and a constant ambient noise level. That begs the question, why move
algorithm analysis from analytically amenable graph-based models to a more
realistic model if the latter isn’t all that realistic? Fortunately, the fact that
schedule lengths are relatively invariant to signal requirements shows that these
concerns are largely unnecessary.

The following result on signal requirement applies also to throughput opti-
mization.

Theorem 1. There is a polynomial-time algorithm that takes a p-signal schedule
and refines into a p′-signal schedule, for p′ > p, increasing the number of slots
by a factor of at most �2p′/p�2.

Proof. Consider a p-signal schedule S and a slot S in S. We partition S into a
sequence S1, S2, . . . of sets. Order the links in S in some order, e.g., decreasing
order. For each link �v, assign �v to the first set Sj for which aSj(�v) ≤ 1/2p′,
i.e. the accumulated affectance on �v among the previous, longer links in Sj is
at most 1/2p′. Since each link �v originally had affectance at most 1/p, then by
the additivity of affectance, the number of sets used is at most � 1/p

1/2p′ � = � 2p′
p �.

We then repeat the same approach on each of the sets Si, processing the links
this time in increasing order. The number of sets is again � 2p′

p � for each Si, or

� 2p′

p �2 in total. In each final slot (set), the affectance on a link by shorter links
in the same slot is at most 1/2p′. In total, then, the affectance on each link is at
most 2 · 1/2p′ = 1/p′.

This result applies in particular to optimal solutions. Let OPTp be an optimal
p-signal schedule and let χp be the number of slots in OPTp. It is not a priori
clear that a smooth relationship exists between χp and χ, for p > 1.

Corollary 1. χp ≤ �2p�2χ.

This has significant implications. One regards the validity of studying the pure
SINR model. As asked in [9], “what if the signal is attenuated by a certain
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factor in one direction but by another factor in another direction?” A generalized
physical model was introduced in [24] to allow for such a deviation.

Theorem 1 implies that scheduling is relatively robust under discrepancies in
the SINR model. This validates the analytic study of the pure SINR model, in
spite of its simplifying assumptions.

Corollary 2. If a scheduling algorithm gives a ρ-approximation in the SINR
model, it provides a O(θ2ρ)-approximation in variations in the SINR model with
a discrepancy of up to a factor of θ in signal attenuation or ambient noise levels.

This result can be contrasted with the strong n1−ε-approximation hardness of
scheduling in an abstract (non-geometric) SINR model that allows for arbitrary
distances between nodes [11]. Alternatively, Theorem 1 allows us to analyze
algorithms under more relaxed situations than the optimal solutions that we
compare to.

4.1 Dispersion Properties

One desirable property of schedules is that links in the same slot be spatially
well separated. This blurs the difference in position between sender and receiver
of a link, since it affects distances only by a small constant. Intuitively, we
want to measure nearness as a fraction of the lengths of the respective links.
Given the affectance measure, it proves to be useful to define it somewhat less
restrictively.

Definition 2. Link �w is said to be q-near link �v, if dwv < q · c1/α
v · dvv. A

set of links is q-dispersed if no (ordered) pairs of links in the set are q-near. A
schedule is q-dispersed if all the slots are formed by q-dispersed sets.

Observation 1, item 3, states that link w is q-near a link �v iff aw(�v) > q−α.
This immediately gives the following strengthening of Lemma 4.2 in [9].

Lemma 2. Fewer than qα senders in an SINR-feasible set S are q-near to any
given link �v ∈ S.

At a cost of a constant factor, any schedule can be made dispersed.

Lemma 3. There is a polynomial-time algorithm that takes a SINR-feasible
schedule and refines it into a q-dispersed schedule, increasing the number of slots
by a factor of at most (q + 2)α.

Proof. Let S be a slot in the schedule. We show how to partition S into sets
S1, S2, . . . , St that are q-dispersed, where t ≤ (q + 2)α + 1.

Process the links of S in increasing order of length, assigning each link �v

“first-fit” to the first set Sj in which the receiver rv is at least
(
qc

1/α
v + 2

)
· dvv

away from any other link. Let �w be a link previously in Sj, and note that �w
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is shorter than �v. By the selection rule, dwv ≥
(
qc

1/α
v + 2

)
· dvv ≥ qc

1/α
v · dvv.

Also,

dvw ≥ dwv − dww − dvv ≥
(
qc1/α

v + 1
)
dvv − dww ≥ qc1/α

v dww.

Since this holds for every pair in the same set, the schedule is q-dispersed.
Suppose St is the last set used by the algorithm, and let �v be a link in it.
Then, each Si, for i = 1, 2, . . . , t− 1, contains a link whose sender is closer than
(qc1/α

v + 2) · dvv ≤ (q + 2)c1/α
v dvv to rv, i.e., is (q + 2)-near to �v. By Lemma 2,

t− 1 < (q + 2)α.

Let χq denote the minimum number of slots in a q-dispersed schedule.

Corollary 3. χq ≤ (q + 2)α · χ.

Intuitively, there is a correlation between low affectance and high dispersion in
schedules. The following result makes this connection clearer. The converse is,
however, not true, since interference can be caused by far-away links.

Lemma 4. A p-signal schedule is also p1/α-dispersed.

Proof. Let �v and �w be an ordered pair of links in a slot S in a p-signal schedule.
By definition, aw(�v) ≤ aS(�v) ≤ 1/p. By Observation 1, item 3, dwv ≥ p1/αc

1/α
v ·

dvv. Hence, the lemma.

5 Scheduling Approximation

The algorithm we analyze is a slightly simplified version of the algorithm of [9].
It involves repeated application of the following algorithm for the Single-Shot
Scheduling problem.

Let c = 1/τα, where τ = 2 + max
(

2,
(
263β α−1

α−2

) 1
α

)
.

A(c)
sort the links �1, �2, . . . , �n by non-decreasing order of length
S ← ∅
for v ← 1 to n do

if (aS(�v) ≤ c)
add �v to S

output S

We shortly show that this algorithm also gives a O(1)-approximation to the
Single-Shot Scheduling problem. It is rather surprising that a O(1)-approximation
algorithm can be obtained in a single sweep. This should help in applying the
ideas further, e.g., in distributed implementations. Simulation results in [9] also
indicate very good practical performance, in relation to previous algorithms, and
the simplification given here is likely to perform at least as well.

Instead of applying algorithm A repeatedly, we equivalently implement it as
the following algorithm B:
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B(c)
sort the links �1, �2, . . . , �n by non-decreasing order of length
Si ← ∅, for i = 1, 2, . . .
for v ← 1 to n do

assign �v to the first set Si for which aSi(�v) ≤ c
output S = (S1, S2, . . .)

It is not immediate that algorithm A (or, equivalently, B) produces a feasible
solution.

Lemma 5. Algorithms A and B produce a τ − 2-dispersed solution.

Proof. Let �w be a link in the set S output by algorithm A. Let N− (N+) be the
set of links in S that are shorter (longer) than �w. Consider first a link �u ∈ N−.
Since �w was added by the algorithm after adding �u, au(�w) ≤ c = 1/τα,
which implies by Observation 1, item 3, that duw ≥ τc

1/α
w dww > (τ −2)c1/α

w dww.
Consider next a link �v ∈ N+. Since �v was added after �w, it holds that aw(�v) ≤
c = 1/τα. So by Observation 1, dwv ≥ τ · c1/α

v dvv. Note that cv ≥ cw whenever
dvv ≥ dww. Then, using the triangular inequality,

dvw = d(sv, rw) ≥ dwv − dvv − dww ≥
(
τc1/α

v − 2
)
dvv ≥ (τ − 2)c1/α

w dww.

Since this holds for every ordered pair in S, we have that S is (τ − 2)-dispersed.

The following appeared as part of Lemma 4.1 in [9], and has also been applied
in similar forms directly or indirectly elsewhere (e.g. [6]).

Lemma 6. Let �v be a link in an SINR-feasible set S. Let N+
z be the set of links

in S that are at least as long as �v and whose senders are of distance greater
than z · dvv from rv. Then,

aN+
z

(�v) <
(
α− 1
α− 2

253
)
z−αcv.

Theorem 2. Algorithms A and B produce an SINR-feasible solution.

Proof. Let �w be a link in the set S output by algorithm A. Let N− (N+) be
the set of links in S that are shorter (longer) than �w. The links in N− were
processed before �w, so by the if-condition in the algorithm, aN−(�v) ≤ c. By
Lemma 5, S is τ − 2-dispersed, so by Lemma 6 and the definitions of τ and
dispersion,

aN+(�w) <
(
α− 1
α− 2

253
)

cv
(τ − 2)αcv

cv ≤ 1
2
.

Hence, the affectance of each link in S is at most c + 1/2 < 1.
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5.1 Performance Analysis

We need an extension of a geometric result from [9]. Let R and B be two disjoint
sets of points in a metric space, called the red and the blue points. A blue point
g guards a red point w, with respect to a point b, if d(g, w) ≤ d(b, w) and the
angle ∠gwb is at most 30◦. That is, g is contained in the 60◦ sector emanating
from w whose centerline goes through b. See Fig. 1. We say that a point b in B is
blue-shadowed if each red point has a private guard in B with respect to b; i.e.,
there is an injective function f : R → B \ {b} such that f(w) guards w from b
for any w ∈ R.

sb

g

w

rb

Fig. 1. Blue point g guards red point w from blue point sb. If the blue points are
sufficiently dispersed, then the receiver rb will also be closer to g than to w.

The following result is a variation on Lemma 4.4 (“Blue-dominant centers
lemma”) of [9].

Lemma 7 (Blue-shadowed lemma). Let R and B be two disjoint sets of red
and blue points in 2-dimensional Euclidean space. If |B| > 12 · |R|, then there is
a blue-shadowed point in B.

Proof. Process the points in R in an arbitrary order, we work with a subset B′

of B initially set at B′ = B. We shall assign each r ∈ R a set {gr
1, g

r
2, . . . , g

r
12} of

guards.
For each point r ∈ R in order, let gr

i be the blue point closest to r among
the points in B′ that are contained in the 30◦-sector seci at angle in the range
[(i − 1) · 30◦, i · 30◦) emanating from r. If a sector i contains no blue point in
B′, then no point is assigned as gr

i . We then remove these points gr
i from B′ and

continue with the next point in R.
After going through all the points in R, the set B′ is still nonempty by the

assumption on the relative sizes of R and B. We claim that every point in B′ is
now blue-shadowed. Let b be such a point and consider a point r ∈ R. Consider
the 60◦-sector emanating from r whose centerline goes through b. This sector
properly contains one of the 30◦-sectors seci, and thus contains one of r’s guards.
Since b was not selected as a guard, there was a guard selected for that sector
and it is closer to r than b is. Since this holds for any point r, b is blue-shadowed.
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The following lemma builds on Lemma 4.5 of [9]. Note that the straightforward
modification of that lemma appears insufficient. Instead, we need something like
our Theorem 1, allowing us to compare the algorithm’s solution with the stricter
optimal solution OPTc. We also utilize the dispersion property to simplify the
proof argument.

Lemma 8. Let ρ = 12. Let Sk be the set of links scheduled by algorithm B in
slot k, and let Xk be the set of links scheduled in slot k of OPTc. Further, let
Sk = ∪k

i=1Si and Xk = ∪k
i=1Xi. Then, for any positive integer k, |Sρk| ≥ |Xk|.

Proof. Suppose the claim is false for some integer k. Then, |Sρk| < |Xk| or,
equivalently, |Sρk \ Xk| < |Xk \ Sρk|. Thus, there are slots i0, 1 ≤ i0 ≤ ρk, and
j0, 1 ≤ j0 ≤ k, for which |Si0 \ Xk| < |Xj0 \ Sρk|/ρ. Let S = Si0 , S′ = S \ Xk,
X = Xj0 , and X ′ = X \ Sρk.

Since OPTc is a 1/c-signal schedule and 1/c = τα, X ′ is also a τα-signal set.
By Lemma 4, X ′ is then τ -dispersed. In particular, it is 3-dispersed.

Let B = {sv|�v ∈ X ′} and R = {sw|�w ∈ S′} be the sets of senders in X ′

and S′; we call them blue and red points, respectively. By Lemma 7, there is a
blue-shadowed point (sender) sb in B. We shall argue that the link �b = (sb, rb)
would have been picked up by our algorithm for the slot i0.

Consider any red point (sender) w ∈ R, and let g = f(w) be the guard for w
guaranteed by the blue-shadowed lemma. Since g guards w, d(sb, w) ≥ d(sb, g).
By the dispersion property, d(g, rb) ≥ τ · dbb. Thus,

d(sb, w) ≥ d(sb, g) ≥ d(rb, g) − dbb ≥ (τ − 1) · dbb = (τ − 1)d(sb, rb).

Then, the angle ∠rbwsb is at most arcsin 1/(τ − 1) ≤ 30◦, since τ − 1 ≥ 2. That
implies that rb is contained in the 60◦-sector emanating from w with centerline
going through sb, just like the guard g. See Fig. 1 for the relative positions of
the points. Then, rb is closer to g than to w. Thus, ag(�b) > aw(�b). Summing
up over all links w in R and their guards f(w), we get

aS′(�b) =
∑
w∈R

aw(�b) <
∑
w∈R

af(w)(�b) ≤
∑
v∈B

av(�b) = aX′(�b).

Thus, since the affectance threshold of X is c,

aS(�b) = aS′(�b) + aS∩X(�b) < aX′(�b) + aS∩X(�b) = aX(�b) ≤ c,

which contradicts the fact that �b was not selected into S.

The following result is largely immediate from Lemma 8.

Theorem 3. Algorithm B outputs a schedule that approximates both the
Scheduling and k-Thruput problems, for every k ≥ 1, within a constant factor.

Proof. By Lemma 8 and Theorem 1, the number ALG of slots used by algorithm
B is bounded by

ALG ≤ ρχc ≤ ρ

⌈
2
c

⌉2

χ.



Wireless Communication Is in APX 535

Also, by Lemma 8, the number of links scheduled by B in the first 12k slots is
at least the number of links in an optimal c-signal k-Thruput solution. Again by
Theorem 1, we obtain a constant factor approximation to k-Thruput.

5.2 Handling Different Transmission Powers

We can treat the case when links transmit with different powers in two different
ways. Let Pmax (Pmin) be the maximum (minimum) power used by a link,
respectively. By introducing a factor of Pmin/Pmax into the affectance threshold
c, the algorithm B still produces a feasible schedule, that is longer by a factor
of at most Pmax/Pmin.

Alternatively, we can partition the instance into “power regimes”, where each
regime consists of links whose powers are equal up to a factor of 2. We schedule
each power regime separately, obtaining an approximation factor of at most
logPmax/Pmin, or at most the number of different power values.

6 Conclusions

This paper shows that wireless scheduling is in APX. Having a constant ap-
proximation algorithm for wireless scheduling implies that we can derive the
single-hop throughput capacity of an arbitrary wireless network, up to a con-
stant factor. As such this paper basically solves the scheduling complexity in-
troduced by Moscibroda et al. [22]. However, various parameter combinations
are still open, and deserve more research, e.g. power control, multi-hop traffic,
scheduling and routing, analog network coding, models beyond SINR such as
log-normal shadowing, to name just a few of the obvious ones.
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Abstract. We consider repetitions in words and solve a longstanding
open problem about the relation between the period and the length of
its longest unbordered factor. A word u is called bordered if there exists
a proper prefix that is also a suffix of u, otherwise it is called unbordered.
In 1979 Ehrenfeucht and Silberger raised the following problem: What
is the maximum length of a word w, w.r.t. the length τ of its longest
unbordered factor, still allowing that τ is shorter than the period π of w.
We show that if w is longer than 7(τ − 1)/3 then τ = π which gives the
optimal asymtotic bound.

Introduction

Combinatorial problems about repetitions lie at the core of algorithmic ques-
tions regarding strings (called words here), being it search, compression, or cod-
ing algorithms. Despite a long tradition of research many questions about the
combinatorial properties of data structures as simple as words remain open. The
focus of this paper is on the solution of such a question namely the problem
by Ehrenfeucht and Silberger which had been open for about three decades.

When repetitions in words of symbols are considered then two notions are
central: the period, which gives the least amount by which a word has to be
shifted in order to overlap with itself, and the shortest border, which denotes the
least (nontrivial) overlap of a word with itself. Both notions are related in several
ways, for example, the length of the shortest border of a word w is not larger
than the period of w, and hence, the period of an unbordered word is its length.
Moreover, a shortest border itself is always unbordered. Deeper dependencies
between the period of a word and its unbordered factors have been investigated
and exploited in applications for decades; see also the references to related work
below.

Let us recall the problem by Ehrenfeucht and Silberger. Let w be a (finite)
word of length |w|, let τ(w) denote the length of the largest unbordered factor
of w, and let π(w) denote the period of w. Certainly, τ(w) ≤ π(w) since the
period of a factor of w cannot be larger than the period of w itself. Moreover,

� The work on this article has been supported by the research project MSM
0021620839.

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 537–548, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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it is well-known that τ(w) = π(w) when |w| ≥ 2π(w). So, the interesting cases
are those where |w| < 2π(w). Actually, the interesting cases are also the most
common ones since by far most words have a period that is longer than one half of
their length. When such words are considered, a bound on |w|, enforcing τ(w) =
π(w), that depends on τ(w) becomes more interesting than one depending on
π(w).

The problem by Ehrenfeucht and Silberger asks about a bound of |w| depend-
ing on τ(w) such that τ(w) = π(w) is enforced. In this paper we establish the
following fact for all finite words w:

If |w| > 7
3
(τ(w) − 1) then τ(w) = π(w) .

This bound on the length of w is asymtotically tight (see the following example).

Previous Work. Ehrenfeucht and Silberger raised the problem described above
in [7]. They conjectured that |w| ≥ 2 τ(w) implies τ(w) = π(w). That conjec-
ture was falsified shortly thereafter by Assous and Pouzet [1] by the following
example:

w = anban+1banban+2banban+1ban

where n ≥ 1 and τ(w) = 3n + 6 (note that ban+1banban+2 and an+2banban+1b
are the two longest unbordered factors of w) and π(w) = 4n+7 and |w| = 7n+10,
that is, τ(w) < π(w) and |w| = 7/3 τ(w) − 4 > 2τ(w). Assous and Pouzet in
turn conjectured that 3τ(w) is the bound on the length of w for establishing
τ(w) = π(w). Duval [5] did the next step towards answering the conjecture. He
established that |w| ≥ 4 τ(w) − 6 implies τ(w) = π(w) and conjectured that,
if w possesses an unbordered prefix of length τ(w), then |w| ≥ 2 τ(w) implies
τ(w) = π(w). Note that a positive answer to Duval’s conjecture yields the bound
3 τ(w) for the general question. Despite some partial results [12,6,8] towards a
solution Duval’s conjecture was only solved in 2004 [9,10] with a new proof
given in [11]. The proof of (the extended version of) Duval’s conjecture lowered
the bound for Ehrenfeucht and Silberger’s problem to 3 τ(w)− 2 as conjectured
by Assous and Pouzet [1]. However, there remained a gap of τ(w)/3 between
that bound and the largest known example which is given above. The bound of
7τ(w)/3 has been conjectured in [9,10]. This conjecture is proved in this paper,
and the problem by Ehrenfeucht and Silberger is finally solved.

Other Related Work. The result related most closely to the problem by
Ehrenfeucht and Silberger is the so called critical factorization theorem (CFT).

What is the CFT? Let w = uv be a factorization of a word w into u and
v. The local period of w at the point |u| is the length q of the shortest square
centered at |u|. More formally, let x be the shortest word such that x is a prefix
of vy and a suffix of zu for some y and z, then q = |x|. It is straightforward
to see that q is not larger than the period of w. The factorization uv is called
critical if q equals the period of w. The CFT states that a critical factorization
exists for every nonempty word w, and moreover, a critical factorization uv can
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always be found such that |u| is shorter than the period of w. The CFT was
conjectured first by Schützenberger [13], proved by Césari and Vincent [2], and
brought into its current form by Duval [4]. Crochemore and Perrin [3] found a
new elegant proof of the CFT using lexicographic orders, and realized a direct
application of the theorem in a new string-matching algorithm.

How does the CFT relate to the problem by Ehrenfeucht and Silberger? Ob-
serve that the shortest square x2 centered at some point in w is always such
that x is unbordered. If x results from a critical factorization and occurs in w,
then w contains an unbordered factor of the length of its period. Therefore, it
follows from the CFT that |w| > 2π(w)− 2 implies τ(w) = π(w). This bound is
asymptotically optimal. In this paper, we establish the asymptotically optimal
bound on |w| enforcing the equality τ(w) = π(w) in terms of τ(w) instead of
π(w). This rounds off the long lasting research effort on the mutual relationship
between the two basic properties of a word w, that is τ(w) and π(w).

1 Notation and Basic Facts

Let us fix a finite set A of letters, called alphabet, for the rest of this paper.
Let A∗ denote the monoid of all finite words over A including the empty word
denoted by ε. Let w = uv ∈ A∗. Then u−1w = v and wv−1 = u. In general, we
denote variables overA by a, b, c, and d and variables overA∗ are usually denoted
by f , g, h, r through z, and α through δ, and ξ including their subscripted and
primed versions. The letters i through q are to range over the set of nonnegative
integers.

Let w = a1a2 · · · an. The word anan−1 · · ·a1 is called the reversal of w denoted
by w. We denote the length n of w by |w|, in particular |ε| = 0. Let 0 ≤ i ≤ n.
Then u = a1a2 · · · ai is called a prefix of w, denoted by u ≤p w, and v =
ai+1ai+2 · · · an is called a suffix of w, denoted by v ≤s w. A prefix or suffix is
called proper when 0 < i < n. The longest common prefix w of two words u
and v is denoted by u ∧p v and is defined by w = u, if u ≤p v, or w = v, if
v ≤p u, or wa ≤p u and wb ≤p v for some different letters a and b. The longest
common suffix of u and v, denoted u ∧s v, is defined similarly, as one would
expect. An integer 1 ≤ p ≤ n is a period of w if ai = ai+p for all 1 ≤ i ≤ n− p.
The smallest period of w is called the period of w, denoted by π(w). A nonempty
word u is called a border of a word w, if w = uy = zu for some nonempty words
y and z. We call w bordered, if it has a border, otherwise w is called unbordered.
Let τ(w) denote the maximum length of unbordered factors of w, and τ2(w)
denote the maximum length of unbordered factors occurring at least twice in w.
We have that

τ(w) ≤ π(w) .

Indeed, let u = b1b2 · · · bτ(w) be an unbordered factor of w. If τ(w) > π(w) then
bi = bi+π(w) for all 1 ≤ i ≤ τ(w) − π(w) and b1b2 · · · bτ(w)−π(w) is a border of u;
a contradiction.

Let � be a total order on A. Then � extends to a lexicographic order, also
denoted by �, on A∗ with u � v if either u ≤p v or xa ≤p u and xb ≤p v and
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a � b. Let � denote a lexicographic order on the reversals, that is, u � v if
u � v. Let �a and �b denote lexicographic orders where the maximum letter a
or the minimum letter b is fixed in the respective orders on A. A �-maximum
prefix (suffix ) α of a word w is defined as a prefix (suffix) of w such that v � α
(v � α) for all v ≤p w (v ≤s w).

The notions of maximum pre- and suffix are symmetric. It is general prac-
tice that facts involving the maximum ends of words are mostly formulated for
maximum suffixes. The analogue version involving maximum prefixes is tacitly
assumed.

The following remarks state some facts about maximum suffixes which are
folklore. They are included in this paper to make it self-contained.

Remark 1. Let w be a bordered word. The shortest border u of w is unbordered,
and w = uzu. The longest border of w has length equal to |w| − π(w).

Indeed, if u is a border of w, then each border of u is also a border of w.
Therefore u is unbordered, and it does not overlap with itself. If v is a border
of w then |w|−|v| is a period of w. Conversely, the prefix of w of length |w|−π(w)
is a border of w.

Remark 2. Any maximum suffix of a word w occurs only once in w and is longer
than |w| − π(w).

Indeed, let α be the �-maximum suffix of w for some order �. Then w = xαy
and α � αy implies y = ε by the maximality of α. If w = uvα with |v| = π(w),
then uα ≤p w gives a contradiction again.

Remark 3. Let α be its own maximum suffix w.r.t. some order �, and let x be
a prefix of α of length π(α). Then x is unbordered.

Indeed, suppose on the contrary that x is bordered, that is, x = ghg for
some nonempty g. Let α = xy. We have gy � α, by assumption, which implies
y � hgy. Note that gy is not a prefix of α otherwise |gh| < |x| is a period of α
contradicting the choice of x. Hence, za ≤p y and zb ≤p hgy for some different
letters a and b with a � b. But, y ≤p α, since |x| = π(w), implies za ≤p α which
contradicts the maximality of α (since za ≤p α � zb ≤p hgy).

Let an integer q with 0 ≤ q < |w| be called point in w. A nonempty word x
is called a repetition word at point q if w = uv with |u| = q and there exist
words y and z such that x ≤s yu and x ≤p vz. Let π(w, q) denote the length
of the shortest repetition word at point q in w. We call π(w, q) the local period
at point q in w. Note that the repetition word of length π(w, q) at point q
is necessarily unbordered and π(w, q) ≤ π(w). A factorization w = uv, with
u, v �= ε and |u| = q, is called critical, if π(w, q) = π(w), and if this holds, then
q is called a critical point. Let � be an order on A and 	 be its inverse. Then
the shorter of the �-maximum suffix and the 	-maximum suffix of some word
w is called a critical suffix of w. Similarly, we define a critical prefix of w by the
shorter of the two maximum prefixes resulting from some order and its inverse.
This notation is justified by the following formulation of the so called critical
factorization theorem (CFT) [3] which relates maximum suffixes and critical
points.
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Theorem 1 (CFT). Let w be a nonempty word and γ be a critical suffix of w.
Then |w| − |γ| is a critical point.

Remark 4. Let rs be an unbordered word where |r| is a critical point. Then s
and r do not overlap and sr is unbordered with |s| as a critical point.

Let us highlight the following definitions. They are not standard but will be
central in the proof of Theorem 2.

Definition 1. Let words g and w be given. The longest prefix of g shorter than g
that is also a suffix of w will be called the g-suffix of w.

The number |ws−1|, where s is the g-suffix of w, is called the g-period of w,
denoted by πg(w).

The shortest prefix w′ of w satisfying πg(w′) = πg(w) is called the g-critical
prefix of w.

Remark 5. Note that zd, where d is a letter, is the g-critical prefix of w if and
only if zd is the longest prefix of w satisfying πg(z) < πg(zd).

Example 1. Consider w = ababbaababab of length 12 and g = ababb. The g-
suffix of w is abab, whence πg(w) = 8. The g-critical prefix of w is ababbaababa
of length 11, since

πg(ababbaababa) = 8 , and πg(ababbaabab) = 6 .

a b a b b a a b a b a b

Note that, by definition, the g-suffix of w can be empty, but it cannot be equal
to g. For example, the abb-suffix of aabb is empty. Therefore, the abb-critical
prefix of aabb is aabb itself.

2 Solution of the Ehrenfeucht-Silberger Problem

This entire section is devoted to the proof of the main result of this paper: the
solution of the Ehrenfeucht-Silberger problem.

Theorem 2. Let w ∈ A∗. If |w| > 7
3 (τ(w) − 1) then τ(w) = π(w).

We identify two particular unbordered factors of w and show that the assumption
of the theorem, namely that these factors are strictly smaller than 3

7 |w|+1, leads
either to a contradiction or to τ(w) = π(w).

Note that the claim holds trivially if every letter in w occurs only once because
τ(w) = π(w) = |w| holds in that case. Let

w = v′uzuv
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such that |u| = τ2(w) and z is of maximum length (recall that τ2(w) denotes the
maximum length of unbordered factors occurring at least twice in w). It is clear
that such a factorization exists whenever a letter occurs more than once in w.
Based on such a factorization of w we fix some more notation for the rest of this
proof. Let

t = v ∧p zu and t′ = v′ ∧s uz .

If t �= v, then let

– ta be a prefix of zu and tb be a prefix of v with a �= b,
– δa be the �a-maximum suffix of t′uta for some fixed order �a such that a

is the maximum in A,
– α be the �a-maximum suffix of t′u, and
– β be the 	a-maximum suffix of t′u where 	a is the inverse order of �a.

The notation introduced so far is exemplified by the following figure where we
assume that t �= v and t′ �= v′ and |t′| < |z| < |t| < |δ| < |αt| and |α| < |β| < |u|.

v′

t′
u

β

α

t

δ

a

z

t′
u

β

α

t

δ

b

v

The example of long words where the period exceeds the length of the longest
unbordered factors by Assous and Pouzet (see page 538) turns out to highlight
the most interesting cases of this proof. We therefore use it as a running example
throughout this section. The notation introduced above applied to a word of
Assous and Pouzet is illustrated by the following figure. In this case t′ is empty.

a a b a a a b a a b a a a a b a a b a a a b a a

v′ u z u v

ta = δa tb

α

β

α

β

We can suppose w.l.o.g. that v′ is as short as possible. This in particular implies
the following claim.

Claim 3
|α| ≤ |u| and |β| ≤ |u| . (1)

Proof. If α is longer than u, then the prefix û of α of length π(α) is unbordered by
Remark 3. It is of length at least |u|, otherwise u is bordered. From |u| = τ2(w)
follows |û| = |u| since û occurs at least twice in w. We have a factorization
v̂′ûẑûv̂ of w where v̂′ = v′uα−1 and |ẑ| = |z| and v̂ = û−1αv; contradicting the
minimality of |v′|. �
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2.1 The First Factor

In this subsection we describe, using the factorization introduced above, a partic-
ular factor of w, which is likely to be unbordered and long; see the factor uzuv0d
in the proof of Claim 5 below. The basic assumption of our proof, namely that
there are no too long unbordered factors, will yield important additional restric-
tions on w.

Let γ denote the shorter of α and β, and let yα and yβ denote the α- and
β-suffix of uv for the rest of this proof. Moreover, let y be the shorter of yα and
yβ and let ξ be either α or β so that y = yξ. The following figure shall illustrate
the considered setting by an example where |α| < |β| and |yα| > |yβ|, that is, we
have γ = α, y = yβ and ξ = β.

v′ u

β = ξ

yβ = y

α = γ

yα

ta

z u

β = ξ

α = γ

tb

v

yα

yβ = y

The same situation for our running example is depicted next.

a a b a a a b a a b a a a a b a a b a a a b a a

v′ u z u v

yβ = y ta tb

yαα = u

β = ξ = γ

yβ = y

α = u

β = ξ = γ yβ = y

Claim 4. If v0γ is a prefix of γv with v0 �= ε, then uzuγ−1v0γ is unborderd.

Proof. Suppose on the contrary that uzuγ−1v0γ has a shortest border h. Note
that h is, like every shortest border of a factor in w, not longer than |u| = τ2(w).
In fact |h| < |u| since |h| = |u| contradicts the maximality of |z|. If |γ| < |h| <
|u| then γ occurs more than once in u contradicting Remark 2. And finally, if
|h| ≤ |γ| then u is bordered by h since then h ≤s γ ≤s u; a contradiction which
concludes the proof. �

We shall now consider the ξ-critical prefix of w in order to prove the following
inequalities.

Claim 5

|v′| < |u| and |v| < |u| and |v| ≤ |ty|.

Proof. Within this proof suppose w.l.o.g. that |v′| ≤ |v|. Note, the assumption
that v′ is as short as possible does not harm generality.



544 Š. Holub and D. Nowotka

The claim is trivial if |y| ≥ |v|. We therefore suppose that the ξ-critical prefix
of w can be written as v′uzuv0d, where d is a letter. We let g denote the ξ-suffix
of v′uzuv0. Assume first that gd = ξ as illustrated in the next figure.

v′ u

y = yξ

ξ = gd

z u

ξ = gd

v

y = yξ

v0d

gd = ξ

Then the word uzuv0d is unbordered, by Claim 4. From |v| < |v0dξ| we obtain
|uzuv0d| > |zuv|. Therefore |uzuv0d| ≥ |w|/2 + 1 > 3

7 |w| + 1; a contradiction.
This implies that gc is a prefix of ξ with c �= d. Suppose c �a d and consider
βzuv0d. Since |βzuv0d| > |zuv|, it must be bordered, as above. Let hd be its
shortest border.

Suppose |h| ≤ |g| as illustrated in the next figure.

v′ u

gc

hc

β

hd

z u

β

v

v0d

gd

hd

Then hd is a prefix of β and the occurrence of hc ≤s gc in ξ, and hence also in
β, contradicts the maximality of β since hd 	a hc.

Suppose |g| < |h| < |β| as illustrated in the next figure.

v′ u

β = ξ

gc

hd

gd

z u

β = ξ

v

v0d

gd

hd

Then gd occurs in u and ξ = β since gd 	a gc. Therefore h contradicts the
assumption that g is the ξ-suffix of v′uzuv0.

It remains that |h| ≥ |β| which implies β ≤p h as illustrated next.

v′ u

β t

hd

z u

β

v

v0d

β

hd

The choice of u implies |h| < |u|, whence either h = βv0 or the word uzuv0h
−1β is

unbordered, by Claim 4. From |h| < |u| we have |uzuv0h
−1β| > |zuv| > |w|/2+1.

Therefore, h = βv0, which implies v0d ≤p t, and |v| ≤ |ty|. The remaining
inequalities follow from |βv| ≤ |βv0dy| = |hdy| < |uβ|, where the last inequality
uses |hd| ≤ |u| and |y| ≤ |yβ | < |β|. The possibility d �a c is similar considering
αzuv0d. �
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Suppose that v �= t. Recall that tb is a prefix of v, and ta a prefix of zu. From
|v| ≤ |ty|, and from |y| ≤ |yα| we deduce that utb and yα have in uv an overlap rb
where r is nonempty. In other words, r is a suffix of ut such that uv = utr−1yα.

u v

t b

yα

r

Since |yα| < |α|, we have

|t| > |v| − |α| + |r| . (2)

The word rb is a prefix of α, and ra is a suffix of uta, which is a prefix of uzu.
The maximality of α implies that ra is not a factor of t′u, and thus

|r| > |t| + |t′| − |z| . (3)

2.2 The Second Factor

Let us now turn our attention to the word δ. In particular, we consider the factor
δt−1zuvδd as defined below in the proof of Claim 7.

The following claim points out that every factor of t′uv is strictly less than
δa w.r.t. �a. In particular, δa does not occur in t′uv.

Claim 6. Let f be a factor of t′uv. Then f �a δa and f �= δa.

Proof. Suppose on the contrary that there exists a factor f of t′uv such that
δa �a f . Note that the maximality of δ is contradicted, if f occurs in t′ut or yα.
Therefore, we have that there exists a prefix f ′b of f such that f ′ ≤s t

′ut. But,
we have f ′a ≤s t

′uta, and hence, f ′a �a δa. The contradiction follows now from
f ′b �a f ′a. �
Let yδ denote the δa-suffix of w. Note that

|yδ| < |v| − |t|, (4)

since otherwise there is a suffix t0 of t′ut such t0b is a prefix of yδ, and t0a is
a suffix of t′uta contradicting the maximality of δ.

Consider the following figure which already gives an illustration of the factor
δt−1zuvδd that will be defined below in the proof of Claim 7.

v′ u

t

δ

yδ a

z u

t

δ

b

v

yδ

vδdδt−1zuvδd
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Our running example gives the following setting, with d = b.

a a b a a a b a a b a a a a b a a b a a a b a a

v′ u z u v

ta = δa tb yδ

δt−1zuvδd
vδd

Claim 7
|δ| − |t| + |z| + |u| + |v| − |yδ| <

3
7
|w| + 1 (5)

Proof. Let δt−1zuvδd be the δa-critical prefix of v′uzuv and let g denote the
δa-suffix of δt−1zuvδ. This implies that |vδd| ≥ |v|− |yδ| (in particular, |vδ| ≥ |t|)
and that gc is a prefix of δa and c �= d. Note that d �a c, since all factors of uv
are less than δa w.r.t. �a by Claim 6.

Finally, we claim that δt−1zuvδd is unbordered. Indeed, suppose on the con-
trary that there exists a shortest border hd. Since δa does not occur in uv and
hd has to be shorter than u, we deduce that |h| < |δ|. The maximality of g
implies that |h| ≤ |g|. But now hd is a suffix of gd whence hc is a factor of δa;
a contradiction, since hd ≤p δ and hd �a hc. �

2.3 Case Analysis

In order to complete the proof we distinguish the following cases.

A Special Case. Consider first the special case where t �= v and z is empty
and u = α. It is not difficult to see that uutb is unbordered.

Indeed, suppose that hb is the shortest border of uutb. The choice of u implies
|h| < |u|, and since u is unbordered, we have h ≤s t. Now hb is a prefix of u and
ha a factor of u; a contradiction to the maximality of α.

By |uutb| ≥ |w|/2 + 1 > 3
7 |w| + 1 we can exclude this case.

Case 1. Let now either t = v or t′ = v′ but not both. By symmetry, we can
suppose t �= v and t′ = v′. Note that the assumption that v′ is as short as
possible does not harm the symmetry.

We are now going to show that the inequalities we have obtained in the
previous subsections do not have a common solution. It is an exercise in the
application of the simplex algorithm.

Inequality (3) can be transformed into

L1 := |r| − |t| − |t′| + |z| − 1 ≥ 0. (6)

The inequalities (4) and (5) imply,

|δ| + |z| + |u| < 3
7
|w|,
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which together with |δ| ≥ |r| and |w| = |v| + |v′| + 2|u| + |z| yield

L2 := 3|v′| + 3|v| − |u| − 4|z| − 7|r| > 0. (7)

Similarly, if we use (5) with |δ| ≥ |yδ|, we obtain

L3 := 7|t| − 4|v| + 3|v′| − |u| − 4|z|+ 7 > 0. (8)

One can now check that under the assumption |v′| = |t′| we have

28 L1 + 4 L2 + 3 L3 + 7 |v′ut| = −7,

a contradiction.

Case 2. Suppose t �= v and t′ �= v′. By the special case above, we can assume

L0 := |u| − |α| + |z| − 1 ≥ 0. (9)

Inequality (2) can be transformed into

L4 := |t| + |α| − |r| − |v| − 1 ≥ 0, (10)

The symmetry of v and v′ yields, as a mirror variant of (8), the inequality

L5 := 7|t′| + 3|v| − 4|v′| − |u| − 4|z|+ 7 > 0. (11)

One can now check that

7 L0 + 21 L1 + 2 L2 + 2 L3 + 7 L4 + 3 L5 = 0,

again a contradiction.
Now, we have already proved that if τ(w) < 3

7 |w|+ 1, then v is a prefix of zu,
and v′ is a suffix of uz. It remains to consider this one more case.

Case 3. Let t = v and t′ = v′. Then π(w) ≤ |uz|. Clearly, we can suppose that
π(w) > |u|, since otherwise trivially π(w) = τ(w) = |u|. Let w = rs be a critical
factorization of u. Then szr is unbordered of length π(w), unless r is a prefix,
and s is a suffix of z; see Remark 4. Suppose the latter possibility. Now, either
one of the words uz and zu is unbordered of length π(w) or u is both prefix and
suffix of z. We are therefore left with the case w = v′uiz′ujv, with i, j ≥ 2, where
u is not a suffix of uz′ and not a prefix of z′u. Moreover, v′ is a suffix of u and
v is a prefix of u. The assumption π(w) > |u| now implies that z′ is nonempty.
Suppose, without loss of generality, i ≤ j.

Similarly as above, we have that either sz′uj−1r or z′uj is unbordered. From
|ujz′| < 3

7 |w| + 1 we deduce

|v′v| >
(

4
3
j − i

)
|u| + 4

3
|z′| − 7

3
≥

(
4
3
j − i

)
|u| − 1 . (12)
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Case 3.1. i = j. If v′ is a suffix of uz′ and v a prefix of z′u, then we have π(w) =
τ(w) = |z′uj |. Otherwise we obtain from Case 1 and Case 2 an unbordered factor
of v′uz′uv of length at least 3

7 |v′uz′uv| + 1. Moreover, this factor contains u as
a factor, which can be substituted with uj to obtain an unbordered factor of w
of length at least 3

7 |v′ujz′ujv| + 1.

Case 3.2. i < j. Since j ≥ 3, we obtain from (12) that |v′v| ≥ 2|u| − 1;
a contradiction with Claim 5.

This concludes the proof of Theorem 2.
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2. Césari, Y., Vincent, M.: Une caractérisation des mots périodiques. C. R. Acad. Sci.
Paris Sér. A 286, 1175–1177 (1978)

3. Crochemore, M., Perrin, D.: Two-way string-matching. J. ACM 38(3), 651–675
(1991)

4. Duval, J.-P.: Périodes et répétitions des mots du monöıde libre. Theoret. Com-
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Abstract. We pursue the study of the framework of layerwise com-
putability introduced in a preceding paper and give three applications.
(i) We prove a general version of Birkhoff’s ergodic theorem for random
points, where the transformation and the observable are supposed to
be effectively measurable instead of computable. This result significantly
improves V’yugin and Nandakumar’s ones. (ii) We provide a general
framework for deriving sharper theorems for random points, sensitive to
the speed of convergence. This offers a systematic approach to obtain
results in the spirit of Davie’s ones. (iii) Proving an effective version
of Prokhorov theorem, we positively answer a question recently raised
by Fouché: can random Brownian paths reach any random number? All
this shows that layerwise computability is a powerful framework to study
Martin-Löf randomness, with a wide range of applications.

1 Introduction

Algorithmic randomness emerged as an early achievement of Kolmogorov’s pro-
gram to base probability theory on the theory of computing. Yet a framework
allowing the combination of these two theories is still lacking: for instance, com-
putable analysis is mainly concerned with effective versions of topological no-
tions, and not probabilistic/measure-theoretic ones. For this reason, the study
of algorithmic randomness has not reached its expected range of application:
general probability theory. Let us recall the main contributions of algorithmic
randomness to probability theory developed so far.

Theorems for random points. The main novelty brought by algorithmic ran-
domness is that probabilistic laws can be strengthened in principle, holding at
every random point and not only with probability one. Classical examples can
be found in [1, 2, 3] for instance. When proving this kind of result the key hy-
pothesis is the computability of the random variables involved. However, it is
well-known that computability notions are the effective versions of topological
ones (the computable functions are precisely the effectively continuous ones, the
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semi-decidable sets are precisely the effectively open sets, and so on). Hence the
computability assumption on random variables is (i) inappropriate in principle,
as probability theory is grounded on measure theory and not on topology; (ii)
a priori too strong, as in the classical setting only properties as measurability,
integrability are required. This leads to the following:

Problem 1. Theorems for random points should hold for “effectively measur-
able” objects and not only computable ones.

This problem has already been independently investigated in [4,5] where ergodic
theorems for random points are proved for different types of “almost everywhere
computable” functions. These works are, however, still far from catching the ef-
fective version of measurable functions. For instance in Birkhoff’s ergodic theo-
rem, nothing can be said about the mean sojourn time of algorithmically random
points in fractal sets having effective constructions, as the Smith-Volterra-Cantor
(or fat Cantor) set A ⊆ [0, 1], which is homeomorphic to the Cantor set and has
Lebesgue measure 1

2 .

Information given by the randomness degree. A further contribution of algorith-
mic randomness to probability theory consists in making use of the “randomness
degree” of a random point x to get additional information about the way x satis-
fies a given probabilistic law. For instance in [6], the speed of convergence in the
Strong Law of Large Numbers is computed from the compressibility coefficient,
or deficiency of randomness of each random sequence. This kind of result gives
a much sharper insight into probabilistic phenomena and, we believe, new tools
are needed in order to make this approach systematic and applicable on abstract
spaces:

Problem 2. Having a general framework to get sharper theorems for random
points, using the information given by the randomness degree.

Layerwise computability. In [7], working in the context of computable probability
spaces (to which Martin-Löf randomness has been recently extended, see [8,
9]), effective versions of measure-theoretic notions were examined and another
contribution of algorithmic randomness to probability theory was developed:
the setting of a new framework for computability adapted to the probabilistic
context. This was achieved by making a fundamental use of the existence of a
universal Martin-Löf test to endow the space with what we call the Martin-Löf
layering. In this new framework, which we call layerwise computability, the
layerwise versions of virtually all computability notions can be naturally defined.
The contributions of this setting can be summarized in the following principle,
supported by the main results in [7]:

Correspondence Principle (CP). Under effectivity assumptions, measure-
theoretic notions correspond exactly to layerwise versions of topological ones.

Intuitively, this gives evidence that the layering structure grasps a large part
of the probabilistic phenomena: each probabilistic notion, that by nature inti-
mately depends on the underlying measure μ, can be expressed without referring
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to μ but only to its imprint on the space, captured by the layering. In this pa-
per, elaborating on [7] and developing layerwise computability further, we give
solutions to Problems 1 and 2. The CP is at the core of these solutions, that we
briefly present now.

Solution to Problem 1. We prove general versions of theorems for random
points and effectively measurable random variables, in particular Birkhoff’s er-
godic theorem. This is a significant improvement of [4,5] as it implies in particu-
lar a positive result for the Smith-Volterra-Cantor set. To prove these results we
develop tools allowing to adapt the existent techniques (used in the computable
context) to the layerwise computable context. Then, the results for effectively
measurable objects follow from the CP. This strategy is very general and appli-
cable in a wide range of situations.

Solution to Problem 2. As a further illustration of the CP we prove that
under effectivity assumptions, almost everywhere convergence corresponds to
the layerwise version of uniform convergence. This result gives evidence that the
layering encodes information from which sharper results can be stated, providing
a systematic approach to obtain results in the spirit of [6]. In particular, we use
it to compute the speed of convergence of random points in both the Strong
Law of Large Number and the Ergodic Theorem, in their general versions. The
explicit connection between our framework and [6] is also given.

Our framework also enables us to give a simple answer to a question raised
in [10] for algorithmically random Brownian motion (see Sect. 5.3).

In Sect. 2 we recall the background on computable probability spaces and
Martin-Löf randomness and prove the effective version of a Prokhorov’s result.
In Sect. 3 we set the framework for layerwise computability and state the results
relating it to effective measurability. In Sect. 4 we study the convergence of
random variables from the effective point of view. We finish in Section 5 by
applying all this machinery to obtain the general results announced above, giving
solutions to Problems 1 and 2.

2 Preliminaries

2.1 Computable Probability Spaces

We work on the well-studied computable metric spaces (see [11]).

Definition 1. A computable metric space is a triple (X, d,S) where:

1. (X, d) is a separable metric space,
2. S = {si : i ∈ IN} is a countable dense subset of X with a fixed numbering,
3. d(si, sj) are uniformly computable real numbers.

S is called the set of ideal points. If x ∈ X and r > 0, the metric ball B(x, r) is
defined as {y ∈ X : d(x, y) < r}. The set B := {B(s, q) : s ∈ S, q ∈ Q, q > 0} of
ideal balls has a canonical numbering B = {Bi : i ∈ IN}. An effectively open
set is an open set U such that there is a r.e. set E ⊆ IN with U =

⋃
i∈E Bi. A
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compact set K is effectively compact if the set {〈i1, . . . , in〉 : K ⊆ Bi1 ∪ . . . ∪
Bin} ⊆ IN is r.e. Let K ⊂ X . A set V is effectively open in K if there is an
effective open set U such that V ∩K = U ∩K. A set V is decidable in K if V
and X \ V are effectively open in K. A function f : X → Y is computable on
K if the preimages of effectively open sets are effectively open in K, in a uniform
way. A real function f : X → [−∞,+∞] is lower semi-computable if the sets
f−1(qi,+∞) are uniformly effectively open, it is upper semi-computable if −f
is lower semi-computable. Any object that has some effectivity can be naturally
encoded into a (possible more than one) integer, called its Gödel number.

Remark 1. Let K be effectively compact. It is not difficult to see that the com-
plement X \ K is an effective open set, uniformly in K, and that if U is an
effective open set, then K \ U is effectively compact, uniformly in U,K.

Several approaches to the computability of Borel probability measures have been
proposed and happen to give the same notion, which can then be considered as
a robust one.

Definition 2 (from [12,13,9]). Let (X, d,S) be a computable metric space. A
Borel probability measure μ on X is computable if μ(Bi1 ∪ . . .∪Bin) are lower
semi-computable, uniformly in i1, . . . , in.

A computable probability space is a pair (X,μ) where X is a computable
metric space and μ is a computable Borel probability measure on X.

Algorithmic Randomness. Martin-Löf randomness was first defined in [1] on
the space of infinite symbolic sequences. Its generalization to abstract spaces has
been investigated in [8, 9, 14, 15]. We follow the approaches [8, 9] developed on
any computable probability space (X,μ).

Definition 3. A Martin-Löf test (ML-test) V is a sequence of uniformly
effective open sets Vn such that μ(Vn) < 2−n. A point x passes a ML-test V
if x /∈

⋂
n Vn. A point is Martin-Löf random (ML-random) if it passes all

ML-tests. The set of ML-random points is denoted by MLμ.

Theorem 1 (adapted from [1]). Every computable probability space (X,μ)
admits a universal Martin-Löf test, i.e. a ML-test U such that for all x ∈ X, x
is ML-random ⇐⇒ x passes the test U . Moreover, for each ML-test V there
is a constant c (computable from any Gödel number of V ) such that Vn+c ⊆ Un

for all n.

From now and beyond, we fix a particular universal ML-test U . One can as-
sume w.l.o.g. that Un+1 ⊆ Un. When the underlying space is complete, even if
it is unbounded the finite character of probability measures makes the proba-
bilistic phenomena concentrate in a small region. This is formally expressed by
Prokhorov’s theorem: on a complete separable metric every Borel probability
measure is tight. We prove its effective version:

Theorem 2 (Effective Prokhorov theorem). On a complete computable
metric space, every computable Borel probability measure is effectively tight: the
sets Kn := X \ Un are uniformly effective compact sets and μ(Kn) > 1 − 2−n.
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Effective Measurability. The following is an adaptation of [7] to complete
spaces.

Definition 4. A set A is effectively μ-measurable if there are uniformly
effective compact sets Cn and open sets Un such that Cn ⊆ A ⊆ Un and μ(Un \
Cn) < 2−n. A function f : X → Y is effectively μ-measurable if there is
a basis B̂ = {B̂1, B̂2, . . .} of Y effectively equivalent to B such that f−1(B̂i) are
uniformly effectively μ-measurable.

In the original definition the sets Cn are complements of effective open sets.
When the space is complete, requiring Cn to be effectively compact gives the
same notion, using effective tightness (Thm. 2) and Rmk. 1. Any effective open
set whose μ-measure is computable, as the complement of the fat Cantor set for
the Lebesgue measure, is effectively μ-measurable. Conversely, the measure of
any effectively μ-measurable set is computable. Decidable sets and computable
functions are always effectively μ-measurable, whatever the computable measure
μ may be. A set is effectively μ-measurable if and only if so is its indicator
function.

3 Layerwise Computability

Now we enter in the main novelty of this article. With effective versions of
measure-theoretic notions at our disposal, we can hope to solve Problem 1. How-
ever the notions developed so far are difficult to handle and rather heavy, see
Def. 4. It was demonstrated in [7] that algorithmic randomness and the universal
test offer an alternative elegant way of handling effective measurability notions.

Let (X,μ) be a complete computable probability space. It comes with a
canonical universal ML-test Un, with Un+1 ⊆ Un. Hence the set of ML-random
points is layered by an increasing sequence of uniformly effective compact sets:
ML =

⋃
n Kn (Thm. 2).

Definition 5 (Martin-Löf Layering). Let (X,μ) be a computable probability
space. We call the sequence (Kn)n∈IN the Martin-Löf layering of the space.

Definition 6 (Layerwise computability notions)

1. A set A ⊆ X is layerwise semi-decidable if for all n, A is effectively open
on Kn, uniformly in n, i.e. there are uniformly effective open sets Un such
that A ∩Kn = Un ∩Kn,

2. A set A ⊆ X is layerwise decidable if for all n, A is decidable on Kn,
uniformly in n, i.e. both A and X \A are layerwise semi-decidable,

3. A function f : (X,μ) → Y is layerwise computable if for all n, f is
computable on Kn, uniformly in n, i.e. f−1(Bi) are uniformly layerwise
semi-decidable (Bi are the canonical ideal open balls).

More generally, every computability (or effective topological) notion has its lay-
erwise counterpart. For instance, the layerwise counterpart of effective uniform
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convergence (i.e., in the sup norm) of functions will be examined in Sect. 4.
In general, layerwise computability is not stable under composition, simply be-
cause layerwise computable functions may not preserve randomness. This can
be overcome under measure-preservation:

Proposition 1 (from [7]). Let (X,μ) be a computable probability space, T :
X → X a layerwise computable function which preserves μ (i.e. μ ◦ T−1 = μ)
and f : X → Y a layerwise computable function. Then:

1. T preserves ML-randomness. Moreover there is a contant c such that T (Kn)
⊆ Kn+c for all n.

2. f ◦ T is layerwise computable, uniformly in f and T .

3.1 Relation with Effective Measurability

In [7], we prove the following equivalences:

Theorem 3. Let A ⊆ X be a set and f : X → Y a function.

1. A is effectively μ-measurable ⇐⇒ A is layerwise decidable,
2. f : X → Y is effectively μ-measurable ⇐⇒ f is layerwise computable.

Therefore, under effectivity assumptions measure-theoretical notions are the lay-
erwise versions of topological ones. Observe that the latter are expressed without
referring to μ but only to the Martin-Löf layering. In other words, the layering
catches the essential part of the probabilistic features. This is the first illustration
of the Correspondence Principle (see Introduction).

3.2 Layerwise Tests

We now state the theorem which will allow to solve Problem 1: making theorems
on random points hold under effective measurability assumptions. The surprising
point is that weakening randomness tests to their layerwise versions leave them
close to plain tests and does not spawn higher-order tests. This will enable us to
strengthen many existing results.

Definition 7. A layerwise Martin-Löf test A is a sequence of uniformly lay-
erwise semi-decidable sets An such that μ(An) < 2−n. A layerwise integrable
test is a layerwise lower semi-computable function t : X → [0,+∞] such that∫
t dμ < ∞.

Theorem 4. Let U be a layerwise semi-decidable set, A a layerwise ML-test
and t a layerwise integrable test.

1. If μ(U) = 1 then MLμ ⊆ U .
2. If x is ML-random, then x /∈

⋂
n An. Moreover, there is a constant c (com-

putable from a Gödel number of the sequence A) such that An+c ∩Kn = ∅
for all n.

3. If x is ML-random, then t(x) < ∞. Moreover, there is a constant c such that
t < 2n+c on Kn.



Applications of Effective Probability Theory 555

4 Convergence of Random Variables

In [3] the following result for convergence of random variables on random points
is stated: if computable functions converge almost everywhere in an effective way
then they converge on ML-random points. Here we improve this in several ways:

• using layerwise tests, we weaken the hypothesis: the functions are now as-
sumed to be effectively measurable only, which gives a solution to Problem 1,

• using the layering, we get information about the speed of convergence on
random points, providing a solution to Problem 2,

• under effectivity assumptions, we get a characterization of a probabilistic
notion (namely, almost everywhere convergence) as the layerwise version of
a topological one (namely, uniform convergence), which further illustrate the
Correspondence Principle, beyond Theorem 3.

• we give other results for random points under different types of assumptions
on the convergence of the sequence.

Observe that what follows works on any computable probability space (algo-
rithmic randomness was only developed on the Cantor space when [3] was writ-
ten). Let fi : X → IR be a sequence of random variables and f another random
variable (expected to be the limit of fi). Let Dn(δ) := {x : ∃i ≥ n, |fi − f | > δ}.
It is a standard observation that the sequence fi converge almost everywhere to
f if and only if the measure of the sets Dn(δ) tends to zero, for each δ. This
motivates the following:

Definition 8. Functions fn converge effectively almost everywhere (effec-
tively a.e.) if μ(Dn(δ)) converge to 0, effectively from δ. In other words there
is a computable function n(δ, ε) such that μ(Dn(δ,ε)(δ)) < ε.

As already said, V’yugin [3] proved that if fn are uniformly computable func-
tions that converge effectively a.e. then they converge at each ML-random point.
Actually, the result also holds when the functions fn are uniformly effectively
μ-measurable and we can even go further. Let us first introduce the layerwise
version of effective convergence for the uniform norm:

Definition 9. Functions fi converge layerwise effectively uniformly to f
if for each k, the restrictions of fi to Kk converge to the restriction of f to Kk

for the uniform norm, effectively from k. In other words, there is a computable
function n(δ, k) such that ‖fi − f‖Kk

:= supKk
|fi − f | ≤ δ for all i ≥ n(δ, k).

In the same way that uniform convergence implies pointwise convergence, such
functions converge on each ML random point.

Proposition 2. If fi are uniformly layerwise computable functions that con-
verge layerwise effectively uniformly to f then f is layerwise computable.

As said above, effective a.e. convergence implies layerwise effective uniform con-
vergence. Actually this is a characterization, which provides another illustration
of the Correspondence Principle:
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Theorem 5. Let fn be uniformly effectively μ-measurable functions. Then fn

converge effectively a.e. if and only if fn converge layerwise effectively uniformly.

At the same time, this result gives evidence that layerwise computability is a
solution to Problems 1 and 2: this convergence for random points holds for
effectively μ-measurable functions and not only computable ones, and the speed
of convergence can be computed from the layer a random point belongs to.

Corollary 1. If fi are uniformly effectively μ-measurable functions that con-
verge effectively a.e. to f , then f is effectively μ-measurable.

The simplicity of this proof shall be very general, as soon as the Correspondence
Principle holds: a result about effective measure-theoretical notions can be split
into two parts (i) the layerwise version of the corresponding result for effective
topological (i.e. computability) notions (as Prop. 2) and (ii) the characterizations
of effective measure-theoretical notions as layerwise topological ones (as Thm. 3
and 5).

Non-effective Convergence. When the convergence a.e. is not effective we
can still say something concerning random points.

Theorem 6. Let fn, f be uniformly layerwise computable functions, and c some
(not necessarily computable) constant.

– If fn converge a.e. to a constant c then lim inf fn(x) ≤ c ≤ lim sup fn(x) for
all x ∈ ML.

– If fn converge a.e. to a layerwise computable function f , then lim inf fn(x) ≤
f(x) ≤ lim sup fn(x) for all x ∈ ML.

5 Applications

5.1 Ergodic Theorems for Effectively Measurable Functions

We now apply the tools developed so far to solve Problem 1 for Poincaré recur-
rence theorem and Birkhoff’s ergodic theorem. The version of the latter theo-
rem for random points has been proved by V’yugin [3] (i) on the Cantor space
X = {0, 1}IN and (ii) for a computable transformation T : X → X and a com-
putable observable f : X → IR. Point (i) is not a real restriction as the proof for
general spaces remains unchanged. However the condition (ii) is an unnatural
and a priori too strong restriction, as explained in the introduction. Moreover,
on general spaces this restriction becomes much more important since the the-
orem cannot be applied to indicators of sets anymore (in connected spaces they
cannot be computable as they are not continuous).

In [4], Birkhoff’s ergodic theorem for random points is extended to include
functions having some discontinuities at computable points. A further step is
given in [5] where the result is proved to hold for the indicator functions of every
(not necessarily constructive) set of continuity (i.e., a set whose boundary has



Applications of Effective Probability Theory 557

measure zero). Yet, nothing can be said about some natural sets having effective
constructions, like the Smith-Volterra-Cantor set (or fat Cantor set) whose
Lebesgue measure is 1

2 but has empty interior, and hence is not a continuity
set.

We now give a definite solution by proving the ergodic theorems for effectively
measurable functions. In particular, indicator functions of sets like the fat Cantor
set fall in this class.

Theorem 7 (Poincaré recurrence theorem for random points). Let
(X,μ) be a computable probability space, T : X → X an effectively μ-measurable
measure-preserving map and A a layerwise semi-decidable set with positive mea-
sure. Every ML-random point x ∈ A falls infinitely often in A by iteration of T .
If the system is moreover ergodic, then every ML-random point falls infinitely
often in A by iteration of T .

Theorem 8 (Ergodic theorem for random points). Let (X,μ) be a com-
putable probability space, T : X → X an effectively μ-measurable measure-
preserving map and f ∈ L1(X,μ) be an effectively μ-measurable observable.
Then:

(i) For every ML-random point x, the limit f(x) := limn→∞ 1
n

∑n−1
i=0 f ◦ T i(x)

exists.
(ii) If the system is moreover ergodic, then f(x) =

∫
f dμ for every ML-

random x.

5.2 Layerwise Computable Speed of Convergence on Random
Points

In this section we show how the framework developed so far provides a solution
to Problem 2. Let us first recall some results established by Davie [6].

Davie’s Results. To state them some background is needed first. On the
Cantor space, implicitely endowed with the uniform measure λ, the compress-
ibility coefficient or deficiency of randomness of a sequence ω is defined as
dλ(ω) = supn{n − H(ω1:n)} where H(w) is the Kolmogorov-Chaitin complex-
ity of the finite word w. A fundamental result from algorithmic randomness and
information theory is that a sequence is ML-random w.r.t. λ if and only if dλ(ω)
is finite. Davie defines Kc := {ω : dλ(ω) ≤ c} and proves:

Theorem 9 (Davie, 2001). If Ai are uniformly effective open sets such that∑
i μ(Ai) is a finite computable real number, then there is a computable function

n(c) such that for all ω ∈ Kc and all m > n(c), ω /∈ Am.

Theorem 10 (Davie, 2001). There is a computable function n(c, ε) such that
for all ω ∈ Kc and all n > n(c, ε),

∣∣∣Sn(ω)
n − 1

2

∣∣∣ < ε where Sn(ω) is the number
of ones in the prefix of ω of length n.
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The equivalence between the paradigm of effective measure theory (Martin-Löf’s
approach) and the paradigm of compressibility (Chaitin’s approach) is a strong
non-trivial result, partly based on the technical coding theorem. Davie’s results
follow this line as they relate the compressibility coefficient of a sequence to
the way the sequence satisfies a probability law, and thus their proofs consist
in a finer use of the coding theorem. In our framework, we stay on the side of
effective measure theory. In this way, the relation between the layer a random
point belongs to and the way it satisfy laws is much simpler to derive, as it is
essentially already contained in the existing proofs. This provides a solution to
Problem 2. At the same time, as layerwise computability provides a solution to
Problem 1 too, our results hold for effectively measurable sets/functions.

As an illustration, we first state here the refined version of classical results in
algorithmic randomness due to Solovay. The proofs are straightforward combi-
nations of the usual proofs together with Thm. 4. Note that the first one is the
generalization of Thm. 9 due to Davie.

Proposition 3 (Borel-Cantelli 1). There is a computable function n(c, p)
such that if An are uniformly layerwise semi-decidable sets such that α :=∑

n μ(An) is finite and computable, then there is a constant c, computable from
a Gödel number of the sequence An and α, such that if x ∈ Kp then x /∈ An for
all n ≥ n(c, p).

We can also get a weaker result when the sum is not computable.

Proposition 4 (Borel-Cantelli 2). Let Ai be uniformly layerwise semi-
decidable sets such that

∑
i μ(Ai) < ∞. There is c, computable from a descrip-

tion of the sequence Ai, such that every x in Kn falls in the Ai’s at most 2n+c

times.

We can now easily prove:

Theorem 11 ((Very) Strong Law of Large Numbers.). Let Xi : (X,μ) →
IR be i.i.d. effectively μ-measurable random variables such that

∫
|Xi|4 dμ < +∞.

Let Sn := X0 + · · · + Xn−1. Hence, there is a computable function n(c, ε) such
that if x ∈ Kc then for all n > n(c, ε),

∣∣∣Sn(x)
n −

∫
X0 dμ

∣∣∣ < ε.

Effective Convergence in Birkhoff’s Theorem. The convergence of the
Birkhoff averages is not effective in general. In [3], on the Cantor space V’yugin
builds a computable probability measure which is invariant under the shift trans-
formation, and such that the convergence of the averages of 1[1] is not effective.
This measure is an infinite combination of ergodic measures and it is still an
open question if a computable ergodic measure could be built for which the
convergence is not effective.

However, in [16] it is shown that for a class of ergodic systems, the conver-
gence in Birkhoff theorem is effective. Let us recall that a system is ergodic if
and only if for any two integrable functions f and g, the quantity γn(f, g) :=
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n

∑
i<n

∫
f ◦ T i.g dμ−

∫
f dμ

∫
g dμ

∣∣ goes to 0. A system is said to be ln2-
ergodic for (f, g), if there is a constant cf,g > 0 such that γn(f, g) ≤ cf,g

(ln(n))2

for all n ≥ 2.

Theorem 12 (Ergodic theorem for random points). Let (X,μ) be a com-
putable probability space, T : X → X be an effectively measurable measure-
preserving map and f ∈ L1(X,μ) be an effectively measurable function. If T
is ln2-ergodic for (f, f), then there is a computable function n(c, ε) such that if
x ∈ Kc then for all n > n(c, ε),

∣∣ 1
n

∑
i<n f(x) ◦ T i(x) −

∫
f dμ

∣∣ < ε.

Relation between Kn and Kn. Let X be the Cantor space endowed with a
computable Borel probability measure μ. The version of the compressibility coef-
ficient or deficiency of randomness adapted to μ is dμ(ω) := supn{− logμ[ω1:n]−
H(ω1:n)}. This function is known to be the logarithm of a universal integrable
μ-test, which means that for every integrable μ-test t there is a constant a such
that log t ≤ a + dμ. On the other hand, every computable probability space ad-
mits a universal integrable test tμ (see [8, 9]). Generalizing Davie, let us define
Kc := {x : tμ(x) ≤ 2c}. As MLμ =

⋃
c K

c, the sequence (Kc)c∈IN can be used as
an alternative layering and underly alternative versions of Def. 6 and 9. Actually,
this would lead to the same notions. Indeed, using classical results from algorith-
mic randomness and information theory (see [17,18]), it can be proved that there
is a constant c such that Kn ⊆ Kn+c and Kn ⊆ Kn+2 log n+c for all n. Hence Kn

are also uniformly effective compact sets and all layerwise computability notions
relative to Kn are equivalent to the notions relative to Kn.

5.3 An Application to Brownian Motion

The study of Brownian motion from the algorithmic randomness point of view is
carried out in [19,10]. Algorithmically random paths, called complex oscillations
as they are defined in terms of Kolmogorov-Chaitin complexity, are the Martin-
Löf random points of the computable probability space (C([0, 1]),W ), where
C([0, 1]) is the space of continuous functions x : [0, 1] → IR with the uniform norm
and W is the Wiener probability measure. In [19] it is proved that if t ∈ [0, 1] is
computable and x is a complex oscillation then x(t) is not computable. At the
end of [10] the following question is raised: can it be lower semi-computable?

We say that y ∈ IR is λ-ML-random if y = n + z where n ∈ ZZ and z ∈ [0, 1]
is ML-random w.r.t. the Lebesgue measure λ on [0, 1]. As noticed in [10], it is a
corollary of [20] that x(t) is actually λ-ML-random. But then can it be a Chaitin’s
Ω (which are lower semi-computable λ-ML-random reals)? The compactness of
the layers (Thm. 2) enables us to give a positive answer. Indeed, Prop. 1 can be
reinforced using Thm. 2:

Proposition 5. Let (X,μ) and (Y, ν) be computable probability spaces such that
X is complete. Let T : X → Y be a layerwise computable function which maps
μ to ν. Then T (MLμ) = MLν , i.e. T preserves randomness but it is also onto.
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Now, given a computable t ∈ (0, 1], the function Tt : C([0, 1]) → IR mapping x
to x(t) is computable. It pushes the Wiener measure W to a gaussian measure
G. As G has bounded density w.r.t. the uniform measure and vice versa, MLG

is exactly the set of λ-ML-random reals. Hence,

Corollary 2. Let x be a complex oscillation. For each computable t ∈ (0, 1],
x(t) is λ-ML-random. Moreover, given any λ-ML-random y and any non-zero
computable t, there exists a complex oscillation x such that x(t) = y.

References
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Abstract. In this paper, we present an efficient polynomial time ap-
proximation scheme (EPTAS) for scheduling on uniform processors, i.e.
finding a minimum length schedule for a set of n independent jobs on m
processors with different speeds (a fundamental NP-hard scheduling
problem). The previous best polynomial time approximation scheme
(PTAS) by Hochbaum and Shmoys has a running time of (n/ε)O(1/ε2).
Our algorithm, based on a new mixed integer linear programming (MILP)
formulation with a constant number of integral variables and an interest-
ing rounding method, finds a schedule whose length is within a relative
error ε of the optimum, and has running time 2O(1/ε2 log(1/ε)3)poly(n).

1 Introduction

We consider the following fundamental problem in scheduling theory. Suppose
that we are given a set J of n independent jobs Jj with processing time pj and a
set P of m non-identical processors Pi that run at different speeds si. If job Jj is
executed on processor Pi, the machine needs pj/si time units to complete the job.
The problem is to find an assignment a : J → P for the jobs to the processors
that minimizes the total execution time, maxi=1,...,m

∑
Jj :a(Jj)=Pi

pj/si. This is
the minimum time needed to complete the execution of all jobs on the processors.
The problem is denoted Q||Cmax and it is also called the minimum makespan
problem on uniform parallel processors. We may assume that the number m of
processors is bounded by the number of jobs (otherwise select only the fastest n
machines in O(m) time). Furthermore, for simplicity we suppose that s1 ≥ s2 ≥
. . . ≥ sm (otherwise we have to sort the speed values).

Results. The problem for uniform (and also identical) processors has been
demonstrated to be NP-hard [5,7] and the existence of a polynomial time al-
gorithm for it would imply P = NP . Hochbaum and Shmoys [10,11] presented
a family of polynomial time approximation algorithms {Aε|ε > 0} for schedul-
ing on identical and uniform processors, where each algorithm Aε generates a
schedule of length (1+ε)OPT (I) for each instance I and has running time poly-
nomial in the input size |I|. Such a family of algorithms is called a polynomial
� Research supported in part by EU research project AEOLUS, Algorithmic Principles
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time approximation scheme (PTAS). It is allowed that the running time of each
algorithm Aε is exponential in 1/ε. In fact, the running time of the PTAS for
uniform processors by Hochbaum and Shmoys [11] is (n/ε)O(1/ε2). If ε is small,
then the running time of the algorithm can be very large. Two restricted classes
of approximation schemes were defined that avoid this problem. An efficient
polynomial time approximation scheme (EPTAS) is a PTAS with running time
f(1/ε)poly(|I|) (for some function f), while a fully polynomial time approxima-
tion scheme (FPTAS) runs in time poly(1/ε, |I|) (polynomial in 1/ε and the size
|I| of the instance). Since the scheduling problem on uniform (and also identi-
cal) processors is NP-hard in the strong sense (as it contains bin packing and
3-partition as special cases) [5], we cannot hope for an FPTAS. For identical
processors, Hochbaum and Shmoys (see [9]) and Alon at el. [1] gave an EPTAS
with running time f(1/ε) + O(n), where f is doubly exponential in 1/ε. The
existence of an EPTAS for uniform processors is mentioned as an open problem
by Epstein and Sgall [3]. Our main result is the following:

Theorem 1. There is an EPTAS (a family of algorithms {Aε|ε > 0}) which,
given an instance I of Q||Cmax with n jobs and m processors with different
speeds and a positive number ε > 0, produces a schedule for the jobs of length
Aε(I) ≤ (1 + ε)OPT (I). The running time of Aε is 2O(1/ε2 log(1/ε)3)poly(n).

Interestingly, the running time of our EPTAS is singly exponential in 1/ε.

Methods. We use the dual approximation method proposed by Hochbaum and
Shmoys [11] to transform the scheduling problem into a bin packing problem
with different bin sizes. Next, we structure the input by rounding bin sizes and
processing times to values of the form (1 + δ)i and δ(1 + δ)i with i ∈ Z, respec-
tively. After sorting the bins according to their sizes, c1 ≥ . . . ≥ cm, we build
three groups of bins: B1 with the largest K bins (where K is constant). Let G
be the smallest index such that capacity cK+G+1 ≤ γcK where γ < 1 depends
on ε (such an index G exists for cm ≤ γcK). In this case B2 is with the set of the
next G largest bins where the maximum size cmax(B2) = cK+1 divided by the
minimum size cmin(B2) = cK+G is bounded by a constant 1/γ and B3 is the set
with the remaining smaller bins of size smaller than γcK . This generates a gap
of constant size between the capacities of bins in B1 and B3. If the rate cm/cK
(where cm is the smallest bin size) is larger than the constant γ, then we obtain
a simpler instance with only two groups B1 and B2 of bins. For B1 we compute
all packings for the very large items (those which only fit there).

If there is a feasible packing, then we set up a mixed integer linear program
(MILP), or an integer linear program (ILP) in the simpler case, to place the
other items into the bins. The placement of a large item into the second group
B2 is done via integral configuration variables (similar to the ILP formulation
for bin packing by Fernandez de la Vega and Lueker [4]). We use fractional
configuration variables for the placement of large items into B3. Furthermore,
we use additional fractional variables to place small items into B1, B2, and B3.
The MILP (and the ILP in the simpler case) has only a constant number of
integral variables and, therefore, can be solved via the algorithm by Lenstra or
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Kannan [13,14]. In order to avoid that the running time is doubly exponential in
1/ε, we use a recent result by Eisenbrand and Shmonin [2] about integer cones.

To apply their result we consider a system of equalities for the integral con-
figuration variables and round the corresponding coefficients. Then each feasible
solution of the modified MILP and ILP contains at most O(1/δ log(1/δ)2) in-
tegral variables with values larger than zero. By choosing the strictly positive
integral variables in the MILP and ILP, we are able to reduce the number of inte-
gral configuration variables from 2O(1/δ log(1/δ)) to O(1/δ log(1/δ)2). The number
of choices is bounded by 2O(1/δ2 log(1/δ)3). Next, we consider a rounded version
of the modified smaller MILP and ILP formulations in order to solve the corre-
sponding LP feasibility problem more efficiently. Although we still have a huge
number of variables, one can solve the LP feasibility problem for the MILP via
the separation problem of the dual linear program and then using techniques
from Grötschel, Lovasz and Schrijver [8].

Afterwards, we round the fractional variables in the MILP solution to integral
values. In the first phase of the rounding we reduce the number of strictly posi-
tive fractional configuration variables for each block B� (that contains bins with
similar capacities) from 2O(1/δ log(1/δ)) to O(1/δ log(1/δ)) using ideas from [12].
Afterwards we round down each such fractional variable to the next smaller in-
tegral value. In the second phase we transform a system of (in-)equalities for the
other variables corresponding to the packing of the small items into a scheduling
problem on unrelated machines. The fractional solution of the scheduling prob-
lem can be rounded into another solution with only few fractional values using
ideas from [15]. The corresponding remaining fractional variables in the system
of (in-)equalities are rounded down again to the next integral values. The effect
of the rounding is that most of the items can be placed directly into the bins.
Only a few of them cannot be placed this way, and here is where the K largest
bins and the gap between B1 and B3 come into play. We prove that these items
can be moved to the K largest bins by increasing their size only slightly.

Organization of the paper. In Section 2 we give definitions, notations and
show how to structure the input and how to define the three bin groups. In
Section 3 and 4 we consider the more general case with three groups of bins. In
Section 3.1 we set up our MILP relaxation and in Section 3.2 we show how to
solve it. Then in Section 4.1 we describe the rounding technique and in Section
4.2 we show how to pack the jobs via the rounded MILP solution. Here we bound
also the total size of items that cannot be placed directly into bins. In the full
paper we give additional details about how to solve and round the MILP.

2 Modifying the Input

First, we compute a 2-approximate solution using the algorithm by Gonzales et
al. [6]. It generates a schedule of length B(I) ≤ 2OPT (I). Then we take the
interval [B(I)/2, B(I)] and use binary search to test values for the optimum or
approximate schedule. In the following we choose a value δ < ε such that 1/δ
is integral (we specify the value later). Notice that OPT (I) ∈ [B(I)/2, B(I)]
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and that the length (δ/2)B(I) ≤ δOPT (I). That implies that the interval
[B(I)/2, B(I)] can be divided into 1/δ subintervals of length δB(I)/2 and that
there is at least one subinterval [B(I)/2+ i(δ/2)B(I), B(I)/2+(i+1)(δ/2)B(I)]
with i ∈ {0, . . . , 1/δ−1} that contains the optimum length OPT (I). To find one
of these intervals, we use a standard dual approximation method that for each
value T either computes an approximate schedule of length T (1 + αδ) (where
α is a constant) or shows that there is no schedule of length T . The scheduling
problem can be transformed into a bin packing problem with variable bin sizes as
described by Hochbaum and Shmoys [11]. For a given value T for the makespan
we can generate m bins with capacities ci = T ·si. Using the ordering of the speed
values we have c1 ≥ c2 ≥ . . . ≥ cm. The goal is now to find a packing for the jobs
into these m bins. Let us round the processing time pj of each job to the next
pale p̄j of the form δ(1 + δ)kj with kj ∈ Z, so pj ≤ p̄j = δ(1 + δ)kj ≤ (1 + δ)pj .
If we have a subset A of jobs with

∑
j∈A pj ≤ ci, then the total increased

processing time
∑

j∈A p̄j is bounded by ci(1 + δ). Furthermore, we can round
the enlarged capacities ci(1 + δ) to the next power c′i of (1 + δ). That implies
ci(1 + δ) ≤ c′i = (1 + δ)�i ≤ ci(1 + δ)2 with �i ∈ Z. By normalization we may
suppose that the minimum capacity c′min = mini=1,...,m c′i = 1.

Lemma 1. If there is a feasible packing of n jobs with processing times pj into
m bins with capacities c1 ≥ . . . ≥ cm, then there is also a packing of n jobs with
rounded processing times p̄j = δ(1 + δ)kj ≤ (1 + δ)pj into m bins with rounded
bin capacities c′i = (1 + δ)�i ≤ ci(1 + δ)2.

In the next step we divide the bins into different bin groups. The first bin group
B1 consists of the K largest bins, where K = O(1/δ log(1/δ)).

Lemma 2. If cmax(B)/cmin(B) ≤ C for some constant C and the set of capac-
ities in B is c(B) = {(1+ δ)x, (1+ δ)x+1, . . . , (1+ δ)y} with x, y ∈ Z+ and x < y,
then |c(B)| ≤ 2 log(C)/δ + 1 for any δ ∈ (0, 1/2].

If cmin(B)/cmax(B′) ≥ C for two bin groups B and B′ with C > 1, then there is
a gap of size C between the capacities of the bins in the two groups. Depending
on a constant γ = Θ(δ2) we have two bin or three bin groups:

Case 1: There is at least one bin with capacity at most γc′K . Let G be the
smallest index such that c′K+G+1 ≤ γc′K . This implies that c′K+G > γc′K . In this
case we have three groups of bins: B1 = {b1, . . . , bK}, B2 = {bK+1, . . . , bK+G},
and B3 = {bK+G+1, . . . , bm}. Notice that B2 has a constant number of different
capacities (using c′K+1/c

′
K+G ≤ c′K+1/γc

′
K ≤ 1/γ). In addition we obtain a gap

of at least 1/γ between the capacities in B1 and B3.

Case 2: All bins have capacity larger than γc′K . This implies that c′m > γc′K .
In this case we have only two groups of bins B1 = {b1, . . . , bK} and B2 =
{bK+1, . . . , bm}. In this case B2 has a constant number of different capacities
(using c′K+1/c

′
m ≤ c′K+1/γc

′
K ≤ 1/γ).

Let B′
1 = {b1, . . . , bK′} be the subset of B1 with the bins that have capacity

larger than δ/(K − 1)cmax(B1). By a further modification of the bin packing
instances we obtain the following result.
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Lemma 3. If there a solution for the original instance (J ,M) of our scheduling
problem with makespan T and corresponding bin sizes c1 ≥ . . . ≥ cm, then there
is a feasible packing for instance (J ,B′

1 ∪ B2 ∪ B3) or instance (J ,B′
1 ∪ B2)

with rounded bin capacities c̄i = (1 + δ)�̄i ≤ ci(1 + δ)3 and rounded processing
times p̄j = δ(1 + δ)kj ≤ (1 + δ)pj. In addition we have one of the following four
scenarios:

1. three bin groups B′
1,B2,B3 with gap of 1/δ between cmin(B′

1) and cmax(B2)
and gap of 1/γ between cmin(B1) and cmax(B3). Furthermore B2 has a con-
stant number of different capacities.

2. three bin groups B′
1,B2,B3 with gap of 1/γ between cmin(B1) and cmax(B3)

and constant number of different capacities in B′
1 ∪ B2.

3. two bin groups B′
1,B2 with gap of 1/δ between cmin(B′

1) and cmax(B2) and
constant number of different capacities in B2.

4. two bin groups B′
1,B2 with a constant number of different capacities in B′

1 ∪
B2.

Notice that we have a set Jtiny of jobs with tiny processing time ≤ δc̄m. Let
Stiny be the total size of tiny jobs, i.e. Stiny =

∑
Jj∈Jtiny

p̄j . If there is a feasible
schedule with makespan T , then the total processing time

∑
j∈J p̄j is smaller

or equal to the total area of the corresponding bins
∑m

i=1 c̄i. If this inequality
does not hold, then we can discard the choice with makespan T (in fact we have
to increase the makespan in this case). Therefore, we can eliminate in a first
step all tiny jobs. If there exists a packing for the other jobs into bins of size
c̄i, then we can generate a feasible packing for all jobs into enlarged bins of size
c̄i(1 + δ). This can be done by a greedy algorithm that packs the tiny jobs into
the free space left (by allowing to use an additional δ-fraction of the capacities).
This works, since the processing time of each tiny job is at most δc̄m ≤ δc̄i for
i = 1, . . . ,m and the inequality above holds.

3 General Case with Three Groups

In this section we consider scenario 1 (with three bin groups). For the other
simpler scenarios 2 − 4 we refer to the full version of the paper. Let us suppose
that B′

1 contains K ′ ≤ K bins with capacities c̄1 ≥ c̄2 ≥ . . . ≥ c̄K′ where
c̄K′ ≥ δ/((K − 1)(δ + 1))c̄1 and that B2 contains further bins c̄K+1 ≥ · · · ≥ c̄m
with c̄K+1 ≤ δc̄K′ (the other bins in B1 with smaller size can be neglected). This
implies that we have a gap between B′

1 and B2. In the first part of our algorithm
we pre-assign the huge jobs with processing time larger than δc̄K′ to the first
K ′ ≤ K machines. Using the properties above, there are at most K ′c̄1/(δc̄K′) ≤
K(K − 1)(1 + δ)/δ2 many such jobs. If there are more jobs, then there is no
feasible solution with makespan T and we are done. Here we use also the fact that
c̄K+1 ≤ δc̄K′ and that, therefore, the huge jobs fit only on the first K ′ machines.
Now we have to assign the huge jobs to the first K ′ machines. Since the number
of machines K ′ ≤ K = O(1/δ log(1/δ)) and the number of jobs H ≤ K(K −
1)(1+ δ)/δ2 ≤ O(1/δ4 log(1/δ)2) are both constant (where the values depend on
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1/ε), this can be done in constant time f(1/ε). In fact the number of possible
assignments can be bounded by (1/δ log(1/δ))O(1/δ4 log(1/δ)2) ≤ 2O(1/δ4 log(1/δ)3).
Again, if there is no feasible assignment, then there is no corresponding schedule
with makespan T . As an alternative we compute an approximate solution with
accuracy ρ for the huge jobs. For this step we use the PTAS for scheduling
on uniform machines [11]. The running time of the PTAS for uniform machines
with a constant number of jobs (as above calculated) is (1/δ4 log(1/δ)2)O(1/ρ2) ≤
2O(1/ρ2 log(1/δ)) = 2O(1/δ2 log(1/δ)) (using ρ = δ). On the other hand, this increases
the first K ′ bin capacities from c̄i to c̄i(1+δ) for i = 1, . . . ,K ′ and the makespan
from T (1 + δ)3 to T (1 + δ)4. If there is no assignment for the huge jobs into the
first K ′ enlarged bins of group B′

1, then there is no schedule of length T and
we are done. Otherwise we will find a feasible approximate assignment with free
space S0 =

∑K′

i=1 c̄i(1 + δ) −
∑H

j=1 p̄j and use a mixed integer linear program
(MILP) as described below.

3.1 The MILP Relaxation

Suppose that the set of different capacities in B2 and B3 is denoted by {c̄(1), . . . ,
c̄(L)} and {c̄(L+1), . . . , c̄(L+N)}, respectively. Let m1, . . . ,mL+N be the num-
ber of machines (bins) of size c̄(�) = (1 + δ)r� for � = 1, . . . , L + N . The m�

machines of the same speed form a block B� of bins with the same capacity
c̄(�). We specify in the following the capacity of a bin group by c̄(�). Note
that c̄(1) = c̄K+1, c̄(L) = c̄K+G, c̄(L + 1) = c̄K+G+1 and c̄(L + N) = c̄m.
Using our assumptions we have a constant number of different capacities in
B2, i.e. cmax(B2)/cmin(B2) ≤ 1/γ. In addition, there is a gap of 1/γ between
cmin(B1) and cmax(B3). Furthermore, we have nj jobs of size δ(1 + δ)kj for
j = 1, . . . , P (all with processing time larger than δc̄(L + N) = δ(1 + δ)rL+N

and smaller or equal to δc̄K′). In the MILP below we use C
(�)
1 , . . . , C

(�)
h�

as
configurations or multisets with numbers δ(1 + δ)j ∈ [δ(1 + δ)r� , (1 + δ)r� ]
(these are large processing times corresponding to B�) where the total sum
is bounded by c̄(�) = (1 + δ)r� (the capacity of the bins in block B�). Let
a(j, C(�)

i ) be the number of occurrences of number δ(1 + δ)j in configuration
C

(�)
i and let size(C(�)

i ) =
∑

j a(j, C
(�)
i )δ(1 + δ)j ≤ c̄(�) be the total sum of

the numbers in C
(�)
i . In the MILP below we use an integral or fractional vari-

able x
(�)
i to indicate the length of the configuration C

(�)
i . For each job size

δ(1 + δ)kj ≤ (1 + δ)r1 , let aj be the smallest index in {1, . . . , L + N} such
that δ(1 + δ)kj ≥ δ(1 + δ)raj . If there is no such index, then we have a tiny pro-
cessing time δ(1+δ)kj < δ(1+δ)rL+N = δc̄m. These jobs are removed in the first
step of our algorithm and will be added at the end. In addition for j = 1, . . . , P
and � = 0, . . . , aj − 1 we use variables yj,� to indicate the number of jobs of size
δ(1+ δ)kj to be placed as a small one in group B� with bin sizes c̄(�) = (1+ δ)r� .
B0 represents here for simplicity the block with the largest K ′ bins. Suppose
that the first P ′ (non-huge) job sizes (1+ δ)kj are within ((1+ δ)r1, δcK′ ]. These
job sizes do not fit into the bins in group B2 ∪ B3. Therefore we use for these
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job sizes only one variable yj,0 = nj and set aj = 0. We use now the following
MILP:∑

i x
(�)
i ≤ m� for � = 1, . . . , L+N∑

�,i a(kj , C
(�)
i )x(�)

i +
∑aj−1

�=0 yj,� = nj for j = P ′ + 1, . . . , P∑
i size(C

(�)
i )x(�)

i +
∑

j:�<aj
yj,�δ(1 + δ)kj ≤ m�c̄(�) for � = 1, . . . , L+N∑P

j=1 yj,0δ(1 + δ)kj ≤ S0

x
(�)
i integral ≥ 0 for � = 1, . . . , L and i = 1, . . . , h�

x
(�)
i ≥ 0 for � = L+ 1, . . . , L+N and i = 1, . . . , h�

yj,� ≥ 0 for j = P ′ + 1, . . . , P and � = 0, . . . , aj − 1
yj,0 = nj for j = 1, . . . , P ′

In the full version we show the following two results.

Lemma 4. Each feasible packing for the jobs into the bins corresponds to a
feasible solution of the MILP.

Lemma 5. The number of variables in the MILP is n2 + n2O(1/δ log(1/δ)), the
number of integral variables is at most 2O(1/δ log(1/δ)), and the number of con-
straints (not counting the non-negativity constraints) is at most O(n). Further-
more, the cardinalities of the sets P� = |{j ∈ {P ′ + 1, . . . , P}|δ(1 + δ)kj ∈
(δ(1+ δ)r� , (1+ δ)r� ]}| (numbers of different large job sizes used in block B�) and
the number L are bounded by O(1/δ log(1/δ)).

3.2 How to Solve the MILP?

The natural way to solve the MILP with a constant number of integral variables
is to use the classical algorithm by Lenstra [14]. This would give running time
dO(d2)poly(s) = 2O(d2 log(d))poly(s) where the dimension d = 2O(1/δ log(1/δ)) and
s is the length of the input. Therefore, the running time can be bounded by
22O(1/δ2(log(1/δ))2)

poly(s) — doubly exponential in 1/δ. A better way is to use
the algorithm by Kannan [13] with running time dO(d)poly(s) and to use a nice
result by Eisenbrand and Shmonin [2] about integer cones int − cone(X) =
{λ1x1 + . . .+ λtxt|t ≥ 0;x1, . . . , xt ∈ X ;λ1, . . . , λt ∈ Z≥0}, where X ⊂ IRm is a
finite set and m corresponds to the number of constraints.

Theorem 2. [2] Let X ⊂ Zm be a finite set of integer vectors and let b ∈
int− cone(X). Then there exists a subset X̃ ⊂ X such that b ∈ int − cone(X̃)
and |X̃| ≤ 2m log(4mM) where M = maxx∈X‖x‖∞.

In our context t corresponds to the number of integral variables, λi to the vari-
ables and xi to the vectors with the coefficients of the variables. In the following
we show how to apply this result to our integral variables (x(�)

i ). To do this we
need integer coefficients with small size. In a second step we round the sizes
or processing times of jobs to reduce the length s of the instance and to solve
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later the corresponding LP in the underlying algorithm of Kannan more effi-
ciently. In the first step, each large size δ(1 + δ)kj ∈ C

(�)
i is rounded up to

the next multiple of δ2(1 + δ)r� for � = 1, . . . , L. Let round�[δ(1 + δ)kj ] be
the rounded number in block B�. This generates also modified configurations
with total size at most c̄(�)(1 + δ) = (1 + δ)r�+1 (since at most 1/δ items in
each configuration are rounded up). Notice that rounding up different num-
bers δ(1 + δ)i ∈ (δ(1 + δ)r� , (1 + δ)r� ] up to round�[δ(1 + δ)i] generates different
rounded numbers. Suppose by contradiction that two rounded numbers are equal
round�[δ(1 + δ)i+1] = round�[δ(1 + δ)i]. Then the distance between the original
numbers δ(1+δ)i+1−δ(1+δ)i = δ2(1+δ)i is at most δ2(1+δ)r� , and this is possi-
ble only if i ≤ r�. But this is a contradiction, since i should be larger than r�. Let
C̄

(�)
1 , . . . , C̄

(�)

h̄�
be the sequence of all configuration or partitions of c̄(�)(1+δ) into

the rounded numbers {round�[δ(1 + δ)kj ]|δ(1 + δ)kj ∈ (δ(1 + δ)r� , (1 + δ)r� ]} for
� = 1, . . . , L. Then, the equality for each job size j ∈ {P ′+1, . . . , P} has now the
form

∑
�,i:round[δ(1+δ)kj ]∈C̄

(�)
i

a(kj , C̄
(�)
i )x(�)

i +
∑aj−1

�=0 yj,� = nj where a(kj , C̄
(�)
i )

is the number of occurrences of the rounded value round[δ(1 + δ)kj ] in C̄
(�)
i .

In addition we have as new constraints
∑

i size(C̄
(�)
i )x(�)

i +
∑

j yj,�δ(1 + δ)kj ≤
m�c̄(�)(1 + δ) for � = 1, . . . , L and

∑P
j=1 yj,0δ(1 + δ)kj ≤ S0.

Clearly, if there is a feasible solution for the original MILP, then there is
also a feasible solution for the MILP with modified coefficients. Now, the values
size(C̄(�)

i ) are multiples of δ2(1 + δ)r� and bounded by (1 + δ)r�+1. By dividing
the corresponding constraints by δ2(1 + δ)r� , the coefficients of x(�)

i are integral
and bounded by 2/δ2. We can prove now that each feasible integral solution of
the modified MILP has at most O(1/δ(log(1/δ))2) integral variables with values
larger than zero. Let P (B2) be indices of the large job sizes corresponding to
a block B� ∈ B2 (i.e. P (B2) = {j|δ(1 + δ)kj ∈ (δ(1 + δ)rL , (1 + δ)r1 ]}). The
cardinality of P (B2) can be bounded by O(1/δ log(1/δ)). To prove the bound
above for the number of integral variables consider for the x

(�)
i variables of the

blocks B� ∈ B2 the following system of equalities:∑
i x

(�)
i = m̄� for � = 1, . . . , L∑

�,i a(kj , C̄
(�)
i )x(�)

i = n̄j for j ∈ P (B2)∑
i

size(C̄
(�)
i )

δ2c̄(�) x
(�)
i = Area(�, large) for � = 1, . . . , L,

where the values m̄�, n̄j and Area(�, large) are given by the feasible solution.
Then, the result by Eisenbrand and Shmonin [2] implies that there is an integral
solution of this system with at most 2m log(4mM) = 2(2L+ |P (B2)|) log(4(2L+
|P (B2)|)2/δ2) ≤ O(1/δ(log(1/δ))2) many integral variables with value larger
than zero (using m = 2L + |P (B2)|, and L, |P (B2)| ≤ O(1/δ log(1/δ)) and
maxx∈X‖x‖ ≤ 2/δ2). Therefore, a feasible solution of the modified MILP con-
tains only O(1/δ(log(1/δ))2) integral nonzero variables x(�)

i > 0 with � ∈ {1, . . . ,
L}. For each choice with only O(1/δ(log(1/δ))2) integral variables for B2, we
set the remaining integral variables equal to 0 and obtain a smaller MILP
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instance. The number of choices or smaller MILP instances is bounded by(
2O(1/δ log(1/δ))

O(1/δ(log(1/δ))2)

)
≤ 2O(1/δ2 log(1/δ)3). In order to solve such MILP instances ef-

ficiently, we round the coefficients a second time (also in order to reduce the
length s of the input). We round here the coefficients size(C̄(�)

i ) for � = 1, . . . , L,
size(C(�)

i ) for � = L+ 1, . . . , L+N and the values δ(1 + δ)kj for each bin group
B� to the next multiples of δ/(2n)(1 + δ)r� , i.e. to ai,�δ/(2n)(1 + δ)r� and to
bj,�δ/(2n)(1 + δ)r� . In this process we have to enlarge the capacities of the bins
to c̄′(�) = c̄(�)(1 + 2δ) for each bin group B� (� = 1, . . . , L +N) and the capac-
ities of the first K ′ bins to c̄′i = c̄i(1 + 3δ). We obtain modified MILP’s with
O(1/δ log(1/δ)2) integral non-negative variables, n2 + n2O(1/δ log(1/δ)) fractional
non-negative variables, and the following constraints:∑

i x
(�)
i ≤ m� for � = 1, . . . , L+N∑

�,i a(kj , C̄
(�)
i )x(�)

i +
∑aj−1

�=0 yj,� = nj for j = P ′ + 1, . . . , P∑
i āi,�x

(�)
i +

∑
j:�<aj

b̄j,�yj,� ≤ �m�(1+2δ)(2n)
δ � for � = 1, . . . , L+N∑P

j=P ′+1 b̄j,0yj,0 ≤ � S̄new
0 (2n)
δc̄(1) �

where S̄
(new)
0 =

∑K′

i=1 c̄i(1 + δ)2 −
∑H

j=1 p̄j −
∑P ′

j=1 njδ(1 + δ)kj . In the full
version we give more details about the second rounding and show how to solve
each modified MILP instance within 2O(1/δ(log(1/δ))3)poly(n) time. Among all
choices we obtain in 2O(1/δ2(log(1/δ))3)poly(n) time a feasible solution of one of
the MILP instances (if there is a schedule with makespan at most T ).

4 Generating an Approximate Schedule

4.1 Rounding the MILP Solution

First, we consider one block B� after another and round the (x(�)
i ) variables. For

bins in B� that belong to the second group B2, the values of the variables x̄(�)
i

in our MILP solution are all integral. Let us study now a block B� that belongs
to B3. Notice that again only a subset P� = {j ∈ P |δ(1 + δ)kj ∈ (δ(1 + δ)r� , (1 +
δ)r� ]} of job sizes that are large corresponding to B� have to be considered and
that |P�| can be bounded as before by �2/δ log(1/δ)�. We denote with m̄� the
fractional number of bins assigned to B�, i.e. m̄� =

∑
i x̄

(�)
i . In addition, let n(�)

j

be the fractional number of jobs of size δ(1 + δ)kj assigned to block B�, i.e.∑
i a(kj , C̄

(�)
i ) x̄(�)

i = n
(�)
j . The total scaled area covered by the configurations

is Area(large, �) =
∑

i āi,� x̄
(�)
i (using the rounded values āi,�δ/(2n)(1 + δ)r� for

size(C(�)
i ); see also our full version). The generated solution (x̄(�)

i ) of our MILP
instance satisfies the following constraints:∑

i x
(�)
i = m̄�∑

i a(kj , C̄
(�)
i )x(�)

i = n
(�)
j for j ∈ P�∑

i āi,� x
(�)
i = Area(large, �)

x
(�)
i ≥ 0 for i = 1, . . . , h�.
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This is a system with |P�| + 2 ≤ O(1/δ log(1/δ)) linear equalities where all
variables x(�)

i should be positive. The number q of variables x̄(�)
i > 0 is at most

2O(1/δ log(1/δ)) for each block B�, but can be rounded down to a subset X� with at
most |P�|+2 configurations and corresponding variables (x̃(�)

i ) without violating
the linear constraints (see our full version). For each configuration C

(�)
i ∈ X� we

round down the fractional value x̃(�)
i to the next integral value �x̃(�)

i � ≥ x̃
(�)
i − 1.

Then we use for the bin group B� exactly �x̃(�)
i � configurations of the type C(�)

i

and place jobs of size δ(1 + δ)kj for j ∈ P� according to the multiset into the
corresponding bins. For each configuration C

(�)
i ∈ X� with non-integral x̃(�)

i we
need one additional bin to cover all n(�)

j jobs of size δ(1 + δ)kj for j ∈ P�. For

block B� let J� be a collection with
∑

C
(�)
i ∈X�:x̃

(�)
i non−integral

a(kj , C
(�)
i ) jobs of

size δ(1 + δ)kj for j ∈ P�.
The next step is to round the (ȳj,�) values of the MILP over all bin groups B�

and job sizes j ∈ P . Since the values ȳj,� = nj are integral for each j ≤ P ′, we
have only to round the other variables ȳj,� with j > P ′. Let Nj be the fractional
total number of jobs assigned as a small job of size δ(1 + δ)kj to the blocks
(i.e. Nj =

∑aj−1
�=0 ȳj,� for j = P ′ + 1, . . . , P ). Let Area(small, �) be the corre-

sponding total scaled area of small jobs in bin group B� (i.e. Area(small, �) =∑
j:�<aj

b̄j,� ȳj,� for � = 1, . . . , L+N). For group B0 (these are the first K or K ′

bins) we denote with Area(small, 0) the total scaled area of the assigned jobs∑P
j=P ′+1 b̄j,0 ȳj,0. Then our values (ȳj,�) satisfy the following system of (in-)

equalities:∑aj−1
�=0 yj,� = Nj for j = P ′ + 1, . . . , P ,∑
j:�<aj

b̄j,� yj,� = Area(small, �) for � = 0, . . . , L+N ,
yj,� ≥ 0 for j = P ′ + 1, . . . , P and � = 0, . . . , L+N .

In the full version we show how to round the (ȳj,�) values such that there is at
most one fractional variable ỹj,� for each group B�. Let JB be a collection with
one job of size δ(1+δ)kj for each fractional variable ỹj,�. These jobs are executed
later as additional jobs on one of the machines in group B�. In the full version
we show how to obtain the following result:

Lemma 6. We can round a feasible solution (x̄, ȳ) of the MILP (with at most
O(1/δ log(1/δ)2) integral variables x

(�)
i for bins in B2) into another solution

(x̃, ỹ) with c̄′(�) = c̄(�)(1 + 2δ) such that it holds:∑
i�x̃

(�)
i � ≤ m� for � = 1, . . . , L+N∑

�,i a(kj , C
(�)
i )�x̃(�)

i � +
∑aj−1

�=0 �ỹj,�� ≥ nj for j = P ′ + 1, . . . , P∑
i size(C

(�)
i )�x̃(�)

i � +
∑

j:�<aj
�ỹj,�� δ(1 + δ)kj ≤ m�c̄

′(�) for � = 1, . . . , L+N∑P
j=P ′+1�ỹj,0� δ(1 + δ)kj ≤ S̄

(new)
0 ,

where x̃
(�)
i ≥ 0 and ỹj,� ≥ 0. Furthermore, |{i|x(�)

i > 0}| ≤ O(1/δ log(1/δ)) for
each block B� in B3. Furthermore, for each block B� with � ∈ {0, . . . , L + N}
there is at most one fractional variable ỹj,�.



572 K. Jansen

4.2 Packing the Jobs via the Rounded MILP Solution

We place in a first phase the jobs as large ones according to the configurations
and �x̃(�)

i � values and in a second phase the jobs as small ones according to the
�ỹj,�� values in slightly enlarged bins. In the third phase we place the tiny jobs in
Jtiny in the free space of the bins. This can be done due to the rounding phases
and the area constraints. In the placement phases of the small and tiny jobs
we have to enlarge the capacities c̄′(�) = c̄(�)(1 + 2δ) of the bins to c̄′(�)(1 + δ)
for each bin in B�. In addition, we have to enlarge the capacities of the first
K ′ bins to c̄′i(1 + δ). After this step we place the set JB on the machines: for
each non-integral value ỹj,� we place a job of size δ(1 + δ)kj on one machine in
group B�. Since for each group B� there is at most one job size j ∈ {P ′, . . . , P}
with ỹj,� non-integral and this size is small corresponding to the group B�, this
increases the size of one bin in B� from c̄′(�)(1 + δ) to c̄′(�)(1 + 2δ). Since we
could have also one job size for group B0, the size of one of the largest K bins
is also increased to c̄′i(1 + 2δ).

Finally, we bound the total execution time of the non-placed jobs in ∪�J�.
For each block B� in B3 with � ∈ {L + 1, . . . , L + N} we obtain |P�| + 2 =
�2/δ log(1/δ)�+2 additional bins of size c̄′(�) = c̄(�)(1+2δ) ≤ (1+δ)r�+2. These
bins or the corresponding jobs are placed later on the first K machines. In this
step we use also the machines K ′+1, . . . ,K. Let us specify K := �2/δ log(1/δ)�+
2. Now take one bin per group and estimate the total size of these bins among all
groups � = L+1, . . . , L+N . Using the order rL+1 > rL+2 > . . . > rL+N , the in-
equality r(L+1)+� ≤ r(L+1)−�, and the geometric series, we obtain

∑L+N
�=L+1 c̄(�) ≤∑N−1

�=0 (1 + δ)rL+1−� ≤ (1 + δ)rL+1
∑∞

�=0
1

(1+δ)� = (1 + δ)rL+1+1/δ. Therefore, the

sum of the enlarged bin sizes
∑L+N

�=L+1 c̄(�)(1 + δ)2 ≤ (1 + δ)r(L+1)+3/δ. Now we
have (1+δ)rL+1+3/δ ≤ δc′K , if and only if (1+δ)rL+1 ≤ δ2/(1+δ)3c′K . Note that
(1+δ)rL+1 = cmax(B3), c′K = cmin(B1) and cmax(B3) ≤ γcmin(B1) using the gap
construction in Section 2. The property above is satisfied for γ ≤ δ2/(1 + δ)3.
Therefore, we specify γ := δ2/(1 + δ)3. In this case the sum of the capacities
above is bounded by δ times the minimum capacity among bins in B1. In other
words, we can take one bin per group B� among all groups in B3 and the corre-
sponding jobs and place them on one of the K machines. Since the total size of
these jobs is at most δc′K , this enlarges the size of the i.th bin from c̄′i(1 + 2δ) to
c̄′i(1 + 2δ) + δc′K ≤ c̄′i(1 + 3δ) for i = 1, . . . ,K. In total we obtain the following
result:

Lemma 7. If there is a feasible solution of an MILP instance with bin capacities
c̄(�) for blocks B� ∈ B2 ∪ B3 and capacities c̄i for the first K largest bins, then
the entire job set J can be packed into bins with enlarged capacities c̄(�)(1+2δ)2

for blocks B� ∈ B2 ∪ B3 and enlarged capacities c̄i(1 + 3δ)2 for the first K bins.

If there is a schedule with makespan at most T (and with corresponding bin
sizes ci), then the Lemma above implies a packing into bins of size at most
ci(1 + δ)3(1 + 3δ)2 and a corresponding schedule of length T (1 + δ)3(1 + 3δ)2 ≤
OPT (1 + δ)4(1 + 3δ)2 ≤ OPT (1 + 16δ) ≤ OPT (1 + ε) for δ ≤ ε/16 and ε ≤ 1.
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We simply set δ = 1
�16/ε	 and obtain δ ≤ ε/16, δ ≥ ε/(16 + ε) ≥ ε/(16 + 1) and

that 1/δ = �16/ε� is integral.

Acknowledgments. The author thanks Fritz Eisenbrand and Roberto Solis-
Oba for many helpful discussions.

References

1. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for schedul-
ing on parallel machines. Journal on Scheduling 1, 55–66 (1998)

2. Eisenbrand, F., Shmonin, G.: Caratheodory bounds for integer cones. Operations
Research Letters 34, 564–568 (2006)

3. Epstein, L., Sgall, J.: Approximation schemes for scheduling on uniformly related
and identical parallel machines. Algorithmica 39, 43–57 (2004)

4. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1 + ε in
linear time. Combinatorica 1, 349–355 (1981)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. W.H. Freeman, San Francisco (1979)

6. Gonzales, T., Ibarra, O.H., Sahni, S.: Bounds for LPT schedules on uniform pro-
cessors. SIAM Journal on Computing 6, 155–166 (1977)

7. Graham, R.J., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals
of Discrete Mathematics 5, 287–326 (1979)

8. Grötschel, M., Lovasz, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer, Heidelberg (1987)

9. Hochbaum, D.S.: Various notions of approximations: good, better, best, and more.
In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems, ch. 9,
pp. 346–398. Prentice Hall, Englewood Cliffs (1997)

10. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems: practical and theoretical results. Journal of the ACM 34, 144–162
(1987)

11. Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for schedul-
ing on uniform processors: using the dual approximation approach. SIAM Journal
on Computing 17, 539–551 (1988)

12. Jansen, K., Solis-Oba, R., Sviridenko, M.: Makespan minimization in job shops:
a linear time approximation acheme. SIAM Journal on Discrete Mathematics 16,
288–300 (2003)

13. Kannan, R.: Minkowski’s convex body theorem and integer programming. Mathe-
matics of Operations Research 12, 415–440 (1987)

14. Lenstra, H.W.: Integer programming with a fixed number of variables. Mathematics
of Operations Research 8, 538–548 (1983)

15. Plotkin, S.A., Shmoys, D.B., Tardos, E.: Fast approximation algorithms for frac-
tional packing and covering problems. Mathematics of Operations Research 20,
257–301 (1995)



Popular Mixed Matchings�

Telikepalli Kavitha1, Julián Mestre2, and Meghana Nasre1

1 Indian Institute of Science, Bangalore, India
{kavitha,meghana}@csa.iisc.ernet.in

2 Max-Plank-Institut für Informatik, Saarbrücken, Germany
jmestre@mpi-inf.mpg.de

Abstract. We study the problem of matching applicants to jobs under
one-sided preferences; that is, each applicant ranks a non-empty subset
of jobs under an order of preference, possibly involving ties. A matching
M is said to be more popular than T if the applicants that prefer M to
T outnumber those that prefer T to M . A matching is said to be popular
if there is no matching more popular than it. Equivalently, a matching
M is popular if φ(M, T ) ≥ φ(T, M) for all matchings T , where φ(X, Y )
is the number of applicants that prefer X to Y .

Previously studied solution concepts based on the popularity crite-
rion are either not guaranteed to exist for every instance (e.g., popular
matchings) or are NP-hard to compute (e.g., least unpopular matchings).
This paper addresses this issue by considering mixed matchings. A mixed
matching is simply a probability distributions over matchings in the in-
put graph. The function φ that compares two matchings generalizes in
a natural manner to mixed matchings by taking expectation. A mixed
matching P is popular if φ(P, Q) ≥ φ(Q, P ) for all mixed matchings Q.

We show that popular mixed matchings always exist and we design
polynomial time algorithms for finding them. Then we study their effi-
ciency and give tight bounds on the price of anarchy and price of stability
of the popular matching problem.

1 Introduction

We study the problem of matching a set of applicants A to a set of jobs J
under one-sided preferences. More formally, the input consists of a bipartite
graph G = (A,J , E) and a rank function r : E → � that captures applicant
preferences over the jobs. Given two jobs i and j in J , an applicant a in A is said
to prefer i to j if r(a, i) < r(a, j); similarly, the applicant is indifferent between
i and j if r(a, i) = r(a, j).

For a given applicant a in A, a’s preference over jobs extends in a straight-
forward manner to matchings: Given matchings M and T , we say a prefers
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matching M to T if a prefers M(a) to T (a), or if a is matched in M but not in
T . Let φ(M,T ) be the total number of applicants that prefer M to T :

φ(M,T ) = |{a ∈ A : a prefers M to T}| . (1)

We say M is more popular than T and write M # T , if φ(M,T ) > φ(T,M).
The matching M is popular if there is no matching more popular than M .

Definition 1. A matching M is popular if φ(M,T ) ≥ φ(T,M) for every match-
ing T .

When dealing with a set of independent agents, it is always desirable that the
solution concept used is stable. Popular matchings have this property in the sense
that an applicant majority vote cannot force a migration to another matching.

Thus a popular matching seems a stable and desirable answer to the ques-
tion of how to assign applicants to jobs bearing their preferences in mind.
However, popular matchings do not provide a complete answer since there are
instances that do not admit any popular matching [8]. Consider the instance
A = {a1, a2, a3}, J = {j1, j2, j3} where all applicants rank the jobs in the same
way, say j1 is better than j2, which in turn is better than j3.

a1 j1 j2 j3

a2 j1 j2 j3

a3 j1 j2 j3

The following three matchings M1 = {(a1, j1), (a2, j2), (a3, j3)}, M2 = {(a2, j1),
(a3, j2), (a1, j3)}, and M3 = {(a3, j1), (a1, j2), (a2, j3)} demonstrate that the
more-popular-than relation need not be acyclic since M1 ≺ M2 ≺ M3 ≺ M1.
In fact, it is easy to see that this instance admits no popular matching. There
are, however, efficient algorithms for determining if a given instance admits a
popular matching and computing such a matching provided one exists [3].

In an attempt to deal with the issue that not every instance admits a popular
matching, McCutchen [15] proposed a measure that captures how unpopular a
matching is. Let Δ(M,T ) be the difference between the number of applicants
who prefer T and the number of applicants who prefer M , that is,

Δ(M,T ) = φ(T,M) − φ(M,T ). (2)

He defined the unpopularity margin of M as maxT Δ(M,T ) and showed that
computing a matching M minimizing this quantity is NP-hard.

Hence, we are faced with the unpleasant prospect of choosing between a so-
lution concept that can be computed efficiently but may not exist, or one that
always exists but cannot be computed efficiently. The main contribution of our
paper is to introduce a new solution concept based on the popularity criterion
that has the best characteristics of previous work. Namely, it is guaranteed to
exist and can be computed efficiently.
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Mixed matchings. Motivated by the notions of pure and mixed strategies from
Game Theory we propose to study popular mixed matchings. A mixed matching
P is a set {(M1, p1) . . . , (Mk, pk)}, where

∑k
i=1 pi = 1 and for each i = 1, . . . , k,

Mi is a matching in G and pi ≥ 0. Thus a mixed matching is simply a probability
distribution over matchings in G and a pure matching M can be thought of as
the mixed matching {(M, 1)}.

The function φ(M,T ) that allowed us to compare two pure matchings M
and T generalizes to mixed matchings in a natural way. For mixed matchings
P = {(M1, p1) . . . , (Mk, pk)} and Q = {(T1, q1) . . . , (Tl, ql)} we let φ(P,Q) be the
expected number of applicants that prefer M to T where M and T are drawn
from the probability distributions P and Q respectively; in other words,

φ(P,Q) =
k∑

i=1

l∑
j=1

pi qj φ(Mi, Tj). (3)

We are now ready to give the definition of popular mixed matching.

Definition 2. A mixed matching P is popular if φ(P,Q) ≥ φ(Q,P ) for all mixed
matchings Q.

For example, consider the instance above on jobs {j1, j2, j3} and applicants
{a1, a2, a3} with identical preference lists that admits no popular (pure) match-
ing. Consider the mixed matching

P = {(M1, 1/3), (M2, 1/3), (M3, 1/3)}.

It is easy to see that we have φ(P, T ) ≥ φ(T, P ) for all matchings T in this graph,
which in turn implies that φ(P,Q) ≥ φ(Q,P ) for all mixed matchings Q in this
graph. Thus the mixed matching P is popular in the instance above.

The rest of the paper is organized as follows. In Section 2 we prove that
every instance admits a popular mixed matching by establishing a connection
with a certain exponentially-large zero-sum game. In Section 3 we give efficient
algorithms for solving these large game, which translate into efficient algorithms
for computing a popular mixed matching. Our technique applies to a larger class
of games and may be of independent interest. In Section 4, we give tight bounds
on the efficiency of mixed popular matchings using the standard measures of
price of anarchy and price of stability.

1.1 Related Work

Popular matchings were first studied by Gardenfors [8] in the context of the
stable marriage problem where each side has preferences over members of the
other side. When only one side has preferences, Abraham et al. [3] gave polyno-
mial time algorithms to find a popular matching, or to report none exists. Their
algorithm takes O(m+n) time when the preference lists are strictly ordered and
when the preference lists contain ties, they gave an O(m

√
n) time algorithm.

Subsequently, Mahdian [11] showed that a popular matching exists with high
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probability, when preference lists are randomly constructed, and the number of
jobs is a factor of α ≈ 1.42 larger than the number of applicants. In fact, he
showed that a phase transition occurs at α; namely, if the ratio |J |

|A| is smaller
than α then with high probability popular matchings do not exist.

Manlove and Sng [14] generalized the algorithms of [3] to the case where
each job has an associated capacity, the number of applicants that it can ac-
commodate. Mestre [16] designed an efficient algorithm for the weighted popular
matching problem, where each applicant is assigned a priority or weight and the
definition of popularity takes into account these priorities.

McCutchen [15] proposed two quantities to measure the unpopularity of a
matching and showed polynomial time algorithms to compute these measures
for any fixed matching. He also showed that the problem of computing a match-
ing that minimizes either of these measures is NP-hard. Huang et al. [9] gave
algorithms to compute matchings with bounded values of these unpopularity
measures in certain graphs.

The topic of mixed matchings has been studied extensively in the Economics
literature; we are aware of [10,5,4,18,2,1,12,13]. This line of research is concerned
with designing mechanisms that have a number of properties, such as envy-free,
Pareto optimal, and strategy-proof. These properties can be defined in slightly
different ways—the interested reader is referred to the article by Katta et al. [10]
for an excellent overview of the various definitions commonly used. Roughly
speaking, a mixed matching is envy-free if no applicant prefers to get other
applicant’s allocation to his own; it is Pareto optimal if it is not possible to
improve someone’s allocation without hurting someone else; and the mechanism
is strategy proof if the applicants do not have an incentive to lie about their true
preferences. Depending on how one defines an applicant’s preference over mixed
matchings it may [10,5] or may not [18] be possible to achieve simultaneously
all these properties. Note that popular matchings take an orthogonal approach
to this, placing emphasis not on individual applicants but on their aggregate or
majority.

2 Existence of Popular Mixed Matchings

Recall that our input is a bipartite graph G = (A ∪ J , E) with n = |A| + |J |
vertices and m = |E| edges, where each applicant a ∈ A has a preference list (can
include ties) over its neighboring jobs. For ease of exposition we will introduce
a unique last-resort job �a for every a ∈ A, which we append at the end of
a’s preference list. This modification does not change the fact of whether the
instance has a popular (mixed) matching or not, but it has the benefit that we
can restrict our attention to applicant-complete assignments.

Theorem 1. Every instance admits a popular mixed matching.

Proof. We will model our problem as a two-person zero-sum game. The rows
and columns of the payoff matrix S are indexed by all the possible matchings
M1, . . . ,MN in G. The (i, j)-th entry of the matrix S is Δ(Mi,Mj). Recall that
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Δ(Mi,Mj) is the difference between the number of applicants who prefer Mj

to Mi and the number of applicants who prefer Mi to Mj. A mixed strategy of
the row player is a probability distribution π = 〈p1, . . . , pN 〉 over the rows of S;
similarly, a mixed strategy of the column player is a probability distribution
σ = 〈q1, . . . , qN 〉 over the columns of S.

The row player seeks a strategy π so that maxσ Δ(π, σ) is minimized, where
Δ(π, σ) =

∑N
i=1

∑N
j pi qj Δ(Mi,Mj). Notice that π and σ can also be regarded

as mixed matchings, in which case we can think of the row player as trying to
find a mixed matching with least expected unpopularity margin.

It follows that the given instance admits a popular mixed matching if and
only if

min
π

max
σ

N∑
i=1

N∑
j=1

pi qjΔ(Mi,Mj) ≤ 0.

It is easy to see that

min
π

max
σ

N∑
i=1

N∑
j=1

pi qjΔ(Mi,Mj) ≥ min
π

N∑
i=1

pi pj Δ(Mi,Mj) = 0 (4)

where the inequality follows from taking σ = π and the equality from the fact
that Δ(Mi,Mj) = −Δ(Mj,Mi) for all i and j. Thus minπ maxσ Δ(π, σ) must
be 0 if the instance admits a popular mixed matching.

The column player seeks a strategy σ so that minπ Δ(π, σ) is maximized. By
Von Neumann’s Minimax Theorem [17] we have

min
π

max
σ

N∑
i,j=1

pi qj Δ(Mi,Mj) = max
σ

min
π

N∑
i,j=1

pi qj Δ(Mi,Mj). (5)

We can bound the right hand side of (5) analogous to (4) to get

max
σ

min
π

N∑
i,j=1

pi qj Δ(Mi,Mj) ≤ max
σ

N∑
i,j=1

qi qj Δ(Mi,Mj) = 0. (6)

Combining Equations (4), (5), and (6) we get minπ maxσ Δ(π, σ) = 0. There-
fore every instance admits a popular mixed matching. �

3 Finding a Popular Mixed Matching

The proof of Theorem 1 implicitly provides an algorithm for computing a popular
mixed matching. Namely, given a zero-sum game, its value and mixed strategies
attaining that value can be computed using linear programming. Here we need
to determine p1, . . . , pN adding up to 1, such that

∑N
i=1 pi Δ(Mi, T ) ≤ 0 for all

pure matchings T and pi ≥ 0 for all i.
Unfortunately, the linear program (shown below) is too large to be solved

efficiently.



Popular Mixed Matchings 579

minimize τ (LP1)

subject to ∑
i pi Δ(Mi, T ) ≤ τ ∀matchings T∑

i pi = 1
pi ≥ 0 ∀ i = 1, . . . , N.

Because the number of variables and the number of constraints in (LP1) is
typically exponential, the ellipsoid algorithm cannot be applied directly. In order
to do so, we must first reduce the number of variables. This can be achieved by
working with fractional matchings instead of mixed matchings.

Let X be the set of fractional A-complete matchings in G, that is,

X =
{
x ∈ �m

+

∣∣∣∣ ∑
e∈E(a) x(e) = 1 for a ∈ A and∑
e∈E(j) x(e) ≤ 1 for j ∈ J .

}
(7)

where E(u) is the set of edges incident on vertex u.
Let X̂ be the set of extreme points of X . Note that because X is integral

we have X̂ = X ∩ {0, 1}m, which corresponds to the set of integral A-complete
matchings in G.

Clearly, every mixed matching P = 〈p1, . . . , pN 〉 induces a fractional matching
x =

∑
Mi

pi IMi , where IMi ∈ {0, 1}m is the characteristic vector of the matching
Mi. In turn, every x ∈ X can be expressed as a convex combination of the
extreme points of X . This implies a many-to-one mapping between mixed and
fractional matchings. Furthermore, given a fractional matching, we can build in
polynomial time an equivalent mixed matching whose support is no larger than
m using Carathéodory’s Theorem [6].

The plan, therefore, is to replace the mixed matching in (LP1) with a frac-
tional matching. In order to do so, we need to define the function Δ(·) for
fractional matchings x1,x2 ∈ X :

Δ(x1,x2) =
∑
a∈A

∑
(a,i)∈E(a)
(a,j)∈E(a)

x1(a, i)x2(a, j) votea(i, j). (8)

where the term votea(i, j) captures a’s willingness to switch from i to j:

votea(i, j) =

⎧⎪⎨⎪⎩
−1 if a prefers i over j,

1 if a prefers j over i,
0 if a is indifferent between i and j.

Lemma 1. Let P and Q be two mixed matchings and let x1 and x2 be their
corresponding fractional matchings. Then Δ(P,Q) = Δ(x1,x2).
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Proof. P and Q are probability distributions 〈p1, . . . , pN 〉 and 〈q1, . . . , qN 〉 re-
spectively, over matchings M1, . . . ,MN .

Δ(P,Q) =
N∑

g,h=1

pg qh Δ(Mg, Mh)

=
N∑

g,h=1

pg qh

∑
a∈A

votea(Mg(a),Mh(a))

=
N∑

g,h=1

pg qh

∑
a∈A

∑
(a,i)∈E(a)
(a,j)∈E(a)

IMg (a, i) IMh
(a, j) votea(i, j)

=
∑
a∈A

∑
(a,i)∈E(a)
(a,j)∈E(a)

N∑
g,h=1

pg qh IMg (a, i) IMh
(a, j) votea(i, j).

Regrouping the terms in the innermost sum we get

Δ(P,Q) =
∑
a∈A

∑
(a,i)∈E(a)
(a,j)∈E(a)

(
N∑

g=1

pg IMg (a, i)

)(
N∑

h=1

qh IMh
(a, j)

)
votea(i, j)

=
∑
a∈A

∑
(a,i)∈E(a)
(a,j)∈E(a)

x1(a, i)x2(a, j) votea(i, j)

= Δ(x1,x2). �
It should be clear now that the following linear program is equivalent to (LP1).

minimize τ (LP2)
subject to

Δ(x, T ) ≤ τ ∀matchings T
x ∈ X

Unlike (LP1), the linear program (LP2) has only m + 1 variables: τ and the
coordinates x1, . . . , xm of x. This new program can be solved in polynomial time
using the ellipsoid method. To prove this we only need to design a polynomial-
time separation oracle, which given an infeasible solution (x, τ) returns a violated
constraint of (LP2). It is trivial how to test x ∈ X efficiently; so we only need
to test whether there is a matching T such that Δ(x, T ) > τ . This is done by
computing the unpopularity margin of x.

Definition 3. The unpopularity margin of x ∈ X is maxT Δ(x, T ).

As mentioned earlier, McCutchen [15] studied the above measure for pure match-
ings. He gave a polynomial time algorithm based on min-cost flows to measure
the unpopularity margin maxT Δ(M,T ) of a given matching M . We describe his
algorithm below in the equivalent language of the maximum weight assignment
problem and then show that it can be used to compute the unpopularity margin
of a fractional matching also.
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McCutchen’s algorithm to determine the unpopularity margin of a
matching T . Given a matching M we want to compute its unpopularity mar-
gin. The idea is to define a weight function wM on the edges of G such that for
any matching T , the weight of T under wM equals Δ(M,T ). Computing a un-
popularity margin of M then reduces to solving the maximum weight assignment
problem (G,wM ), which can be done in O(n (m+n logn)) time [7].

The quantity Δ(M,T ) can be expressed as a sum of individual votes∑
a∈A votea(T (a),M(a)). Therefore, setting wM (a, j) = votea(j,M(a)) achieves

the desired effect that Δ(M,T ) = wM (T ).
McCutchen’s method readily generalizes to fractional matchings. Let x be a

fractional matching. We define the weight of an edge (a, j) ∈ E as

wx(a, j) =
∑

(a,i)∈E(a)

x(a, i) votea(i, j). (9)

It is straightforward to verify that indeed Δ(x, T ) = wx(T ). Computing the
unpopularity margin of a fractional matching then reduces to computing a max-
imum weight assignment.

The procedure for computing the unpopularity margin of a fractional match-
ing provides the necessary oracle to apply the ellipsoid method to solve (LP2).
Therefore we can find a popular mixed matching in polynomial time. While this
settles the complexity of our problem, the scheme presented is not truly efficient
as the ellipsoid algorithm is notoriously slow in practice. We will address this
issue now by giving an alternative linear programming formulation whose size is
only linear in the size of G.

Theorem 2. There exists a linear programming formulation for finding a pop-
ular fractional matching with m+ n variables and constraints.

Proof. Let us start by rewriting (LP2) as a mathematical program

min
x∈X

max
z∈X̂

wx(z). (10)

Because X is integral, the mathematical program (10) is in fact equivalent to
the following program

min
x∈X

max
y∈X

wx(y). (11)

The main obstacle that we must overcome in order to formulate (11) as a
pure linear program is the non-linear objective wx(y). We can overcome this
hurdle with the aid of linear programming duality. Consider the primal program
max {wx(y) : y ∈ X} and let Dx denote the feasible region of its dual:

Dx =
{
α ∈ �|A|, β ∈ �|J |

+ : αa + βj ≥ wx(a, j) for each (a, j) ∈ E
}
.

By the Strong Duality Theorem we get

max
y∈X

wx(y) = min
(α,β)∈Dx

∑
a∈A

αa +
∑
j∈J

βj .
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Therefore, (11) is equivalent to the following succinct linear program

minimize
∑
a∈A

αa +
∑
j∈J

βj (LP3)

subject to

αa + βj ≥
∑

(a,i)∈E(a) x(a, i) votea(i, j) ∀ (a, j) ∈ E∑
(a,j)∈E(a)

x(a, j) = 1 ∀ a ∈ A

∑
(a,j)∈E(j)

x(a, j) ≤ 1 ∀ j ∈ J

x ∈ �m
+

β ∈ �|J |
+

α ∈ �|A|

Recall that (11) in turn is equivalent to (LP1). The new linear program has
only m+ n variables and m+ n constraints. �

4 Efficiency of Popular Mixed Matchings

Now that we have settled the existence and computability of popular mixed
matchings, the next logical step is to study how efficient this solution concept
is. Recall that we inserted a last resort job for each applicant. Perhaps the most
natural measure of efficiency is the actual cardinality of the matching, that is,
the number of applicants that get a real job.

Of course, when we restrict our attention to popular matchings we may be
ignoring larger matchings. The question we would like to investigate is how do
popular mixed matchings compare to a maximum size matching that is not
restricted by the popularity requirement. To answer this question we use the
standard analytical tools used to measure the efficiency of Nash equilibria: the
price of anarchy and stability.

Theorem 3. The price of anarchy and the price of stability of the popular
matching problem is 2.

Due to lack of space, the proof of Theorem 3 is left for the journal version of the
paper.

5 Concluding Remarks

In this paper we introduced the concept of popular mixed matchings and showed
that they enjoy the best qualities of previously proposed solution concepts based
in the popularity criterion; namely, they always exist and can be computed
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efficiently. For simplicity, we focused on the setting where all applicants are
treated equally and there is a single copy of every job, but we note here that the
same ideas apply to the more general setting where applicants have priorities
or weights [16], multiple copies of the jobs are available [14], and two-sided
preferences [8].

At the heart of our proofs is an interesting connection between popular match-
ings and the Nash equilibria of a certain zero-sum game with exponentially-many
strategies. In general, finding these equilibria is equivalent to linear program-
ming1; in our case, however, by exploiting problem-specific properties we could
find an equivalent linear program whose size is polynomial on the size of the in-
put graph. Our technique works for more general zero-sum games whose strate-
gies correspond to the extreme points of a polytope Q and whose payoff matrix
S(x,y) can be expressed as a bilinear function of fractional vectors x,y ∈ Q.

We leave it as an open problem to design purely combinatorial algorithms for
computing popular mixed matchings.

Acknowledgments. We thank Naveen Garg for helpful discussions, Khaled El-
bassioni for suggesting the generalization to bilinear payoffs, and Debasis Mishra
for asking us about popular fractional assignments.
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Abstract. We give a polynomial time algorithm that computes a de-
composition of a finite group G given in the form of its multiplication
table. That is, given G, the algorithm outputs two subgroups A and B of
G such that G is the direct product of A and B, if such a decomposition
exists.

1 Introduction

1.1 Background

Groups are basic mathematical structures and a number of computer algebra
systems do computations involving finite groups. One very successful area of re-
search has been the design of algorithms that handle a given permutation group
G. It is customary to specify G via a small set of generating permutations. De-
spite the succinctnesness of such representations, a substantial polynomial-time
machinery has developed for computing with permutation groups [Luk]. A major
stimulus for this activity was the application to the graph isomorphism problem
(it is easily seen for example that the graph isomorphism problem reduces to
the problem of computing the intersection of two permutation groups). Ensu-
ing studies resulted in algorithms for deciphering the basic building blocks of
the group making available constructive versions of standard theoretical tools
[BKL79], [Luk87], [KT88], [Kan85a], [Kan85b], [Kan90], [BSL87]. But problems
such as subgroup intersection and computing sylow subgroups are trivial for
verbosely encoded groups - groups which are specified via their multiplication
tables. On the other hand, the verbose representation begets its own set of prob-
lems. The central problem here is to design a polynomial-time algorithm that
given two finite groups G1 and G2 decides whether they are isomorphic or not.
Towards this end, the classification theorem for finite simple groups helps us
by giving a polynomial time algorithm for isomorphism of finite simple groups.
What prevents us in going from simple groups to arbitary groups is our lack
of understanding of ‘group products’ - how to put together two groups to get
a new one. So far, despite much effort [Mil78, AT04, Gal09] not much progress
has been made in resolving the complexity of the general group isomorphism
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problem. For example, even for groups whose derived series has length two, we
do not know how to do isomorphism testing in NP∩coNP. A less ambitious goal
(a cowardly alternative?) is to develop algorithms that unravel the structure of
a verbosely given group. In this work we devise an algorithm that accomplishes
one such unravelling.

1.2 Direct Product of Groups

Given two groups A and B one of the most natural ways to form a new group
is the direct product, denoted A × B. As a set, the direct product group is the
Cartesian product of A and B consisting of ordered pairs (a, b) and the group
operation is component-wise.

(a1, b1) · (a2, b2) = (a1 · a2, b1 · b2).

Given (the Cayley representation of) groups A and B, its trivial to compute
(Cayley representation of) the group G = A×B. In this article, we consider the
inverse problem of factoring or decomposing a groupG as a direct product of two
of its subgroups. There are some very natural motivations for such a study. The
fundamental theorem of finite abelian groups (Theorem 2) states that any finite
abelian group can be written uniquely upto permutation as the direct product
of cyclic groups of prime power order. This theorem means that the problem of
finding an isomorphism between two given abelian groups [Kav07] is essentially
the same as the problem of factoring an abelian group. In the general case, the
Remak-Krull-Shcmidt theorem (Theorem 3) tells us that the factorization of a
group as a direct product of indecomposable groups is “unique” in the sense
that the isomorphism class of each of the components of the factorization is
uniquely determined. This means that all such decompositions are structurally
the same. This motivates us to devise an efficient algorithm which finds such a
factorization. Computing the direct factorization of a group has also been found
to be useful in practice. The computer algebra system GAP (Groups, Algorithms
and Programming) implements an inefficient algorithm for this purpose [Hul].

1.3 Algorithm Outline

Notice that if we have an algorithm that efficiently computes any nontrivial fac-
torization G = A×B, we can also efficiently compute the complete factorization
of G into indecomposable subgroups by recursing on A and B. Therefore we
formulate our problem as follows: given a group G, find subgroups A and B such
that G = A×B and both A and B are nontrivial subgroups of G. The algorithm
is developed in stages, at each stage we solve a progressively harder version of
the GroupDecomposition problem until we arrive at a complete solution to
the problem. Each stage uses the solution of the previous stage as a subroutine.

– G is abelian. The proof of the fundamental theorem of finite abelian groups
(Theorem 2) is constructive and gives a polynomial-time algorithm. This
case has also been studied previously and a linear time algorithm is given in
[CF07].
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– The subgroup A is known. In this case we have to just find a B such that
G = A × B. We call it the GroupDivision problem and in section 4, an
algorithm is devised in two substages.
• B is abelian.
• B is nonabelian.

– A is unknown but an abelian A exists. We call this the SemiAbelian-

GroupDecomposition problem and the algorithm is given in section 5.
– A is unknown and all indecomposable direct factors of G are nonabelian. In

section 6 we describe the algorithm for this most general form of GroupDe-

composition.

Let us now assume that we have an efficient algorithm for both GroupDivi-

sion and for SemiAbelianGroupDecomposition and outline the algorithm
for solving GroupDecomposition using these subroutines. One of the main
sources of difficulty in devising an efficient algorithm is that the decomposition
of a group is not unique. Indeed, there can be superpolynomially many different
decompositions of G. We fix a reference decomposition. We first analyze the dif-
ferent ways a group can decompose and come up with some invariants which do
not depend on the particular decomposition at hand. Assume G is decomposable
and let us fix a decomposition of G,

G = G1 ×G2 × . . .×Gt.

with each Gi indecomposable. Let Z1
def= CentG(G2 × . . . × Gt), where for any

A ⊆ G, CentG(A) denotes the subgroup of G consisting of all the elements of
G that commutes with every element of A (it is called the centralizer of A in
G). Our algorithm first computes Z1 (the group Z1 is invariant across different
decompositions) and then uses this subgroup in order to solve GroupDecom-

position. Notice that Z1 = G1×Cent(G2× . . .×Gt). By a repeated application
of the subroutine SemiAbelianGroupDecomposition , we can obtain a de-
composition of Z1 into

Z1 = H1 × Y,

where Y is an abelian group and H1 has no abelian direct factors. An application
of theorem 4 allows us to deduce that any such decomposition of Z1 has the
following properties:

1. H1 is indecomposable and isomorphic to G1.
2. ∃Y1 
G such that G = H1 × Y1.

Having obtained H1, we obtain an appropriate Y1 by invoking GroupDivi-

sion on (G,H1) and thereby get a decomposition of G. We will now introduce
some notation and then outline the procedure used to compute Z1.

Notation. For a positive integer s, [s] denotes the set {1, 2, . . . , s}. We will
denote the center of the group G by Z. For a set A of elements of G, 〈A〉 will
denote the subgroup of G generated by the elements in A.

Computing Z1. From the given group G, we construct a graph ΓG which has
the following properties:
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1. The nodes of G correspond to conjugacy classes of G; however not all conju-
gacy classes of G are nodes of ΓG. For a connected component Λ of ΓG, let
Elts(Λ) ⊆ G denote the set of all g ∈ G that are members of some conjugacy
class occuring in Λ.

2. (Proposition 3). If a decomposition of G contains t nonabelian indecompos-
able components then the number of connected components in ΓG is at least
t.

3. (Proposition 3). Let G = G1 × . . .× Gt, with each Gi indecomposable. Let
Z be the center of G and let Λ1, . . . , Λs be the set of connected components
of ΓG. Then there exists a partition

[s] = S1 � . . . � St

such that for any i,

Gi (mod Z) =
∏
j∈Si

〈Elts(Λj)〉 (mod Z).

4. (Proposition 5). The number of connected components s ≤ log |G| and G/Z
has a decomposition given by

G/Z = 〈Elts(Λ1)〉 (mod Z) × . . .× 〈Elts(Λs)〉 (mod Z).

Now given only the group G and the constructed graph ΓG, we do not the set
S1 ⊆ [s] apriori. But s ≤ log |G|, so we can simply iterate over all possible sets
S1 in just |G| iterations. Let us therefore assume that we have the appropriate
S1. Then the sought-after set Z1 can be obtained as follows:

Z1
def= CentG(

⋃
j /∈S1

Elts(Λj)).

This completes the outline of the algorithm. Let us summarize the algorithm.

Algorithm 1. GroupDecomposition

Input. A group G in the form of a Cayley table.

1. Construct the conjugacy class graph ΓG associated to the group G.
2. Compute the connected components Λ1, . . . , Λs of ΓG.
3. For each S1 ⊆ [s] do the following:

(a) Let Z1
def= CentG(

〈⋃
j /∈S1

Elts(Λj)
〉
).

(b) By repeated invocations to SemiAbelianGroupDecomposi-

tion determine H1, Y 
 G such that Z1 = H1 × Y and H1 has
no abelian direct factors and Y is abelian.

(c) Invoke GroupDivision on (G,H1) to determine if there exists
a Y1 
 G such that G = H1 × Y1. If such a Y1 is found then
output (H1, Y1).

4. If no decomposition has been found, output NO SUCH DECOM-
POSITION.
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2 Preliminaries

2.1 Notation and Terminology

Cent(G) will denote the center of a group G and |G| its size. For an element
a ∈ G, we will denote |〈a〉| by ord(a). We will denote the conjugacy class of the
element a by Ca, i.e.

Ca
def= {g · a · g−1 | g ∈ G} ⊂ G.

Let A,B ⊆ G. We write A ≤ G when A is a subgroup of G and A
 G when A
is a normal subgroup of G. CentG(A) will denote the subgroup of elements of G
that commute with every element of A. i.e.

CentG(A) def= {g ∈ G | a · g = g · a ∀a ∈ A}.

We will denote by [A,B] the subgroup of G generated by the set of elements

{a · b · a−1 · b−1|a ∈ A, b ∈ B}.

We shall denote by A ·B the set

{a · b | a ∈ A, b ∈ B} ⊆ G.

We say that a group G is decomposable if there exist nontrivial subgroups A and
B such that G = A × B and indecomposable otherwise. When A is a normal
subroup of G we will denote by B (mod A) the set of cosets {A · b | b ∈ B} of
the quotient group G/A. We will say that a subgroup A of G is a direct factor
of G if there exists another subgroup B of G such that G = A× B and we will
call B a direct complement of A.

The canonical projection endomorphisms. When a group G has a decom-
position

G = G1 ×G2 × . . .×Gt

then associated with this decomposition is a set of endomorphisms π1, . . . , πt of
G with

πi : G  → Gi, πi(g1 · g2 · . . . · gt) = gi.

where g = g1 ·g2 · . . . ·gt ∈ G (∀i ∈ [t] : gi ∈ Gi) is an arbitary element of G. The
πi’s we call the canonical projection endomorphisms of the above decomposition.

2.2 Background

Theorem 1. (Expressing G as a direct product of A and B, cf. [Her75]) Let G
be a finite group and A,B be subgroups of G. Then G = A×B if and only if the
following three conditions hold:

– Both A and B are normal subgroups of G.
– |G| = |A| · |B|.
– A

⋂
B = {e}.
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Theorem 2. (The fundamental theorem of finite abelian groups, cf. [Her75])
Every finite abelian group G can be as the written product of cyclic groups of
prime power order.

Theorem 3. (Remak-Krull-Schmidt, cf. [Hun74]) Let G be a finite group. If

G = G1 ×G2 × . . .×Gs

and
G = H1 ×H2 × . . .×Ht

with each Gi, Hj indecomposable, then s = t and after reindexing Gi
∼= Hi for

every i and for each r < t,

G = G1 × . . .×Gr ×Hr+1 × . . .×Ht.

Notice that the uniqueness statement is stronger than simply saying that the
indecomposable factors are determined upto isomorphism.

3 Invariants of Group Factorization

The main source of difficulty in devising an efficient algorithm for the decompo-
sition of a group lies in the fact that the decomposition need not be unique. Let
us therefore analyze what one decomposition should be in reference of another.

Lemma 1. For a group G, suppose that G = A×B. Then for a subset C ⊂ G,

G=C×B⇐⇒C={α·φ(α) | α ∈ A}, where φ : A  → Cent(B) is a homomorphism.

Theorem 4. (Characterization of the various decompositions of a group.) Let
G be a finite group with

G = G1 ×G2 × . . .×Gt (1)

with each Gi indecomposable. For i ∈ [t], define Mi to be the normal subgroup
of G as follows:

Mi
def= G1 × . . .×Gi−1 ×Gi+1 × . . .×Gt,

so that G = Gi ×Mi∀i ∈ [t]. If G has another decomposition

G = H1 ×H2 × . . .×Ht (2)

(the number of Hj’s must equal t by Theorem 3) with each Hj indecomposable,
then there exist t homomorphisms {φr : Gr  → Cent(Mr)}r∈[t] so that after
reindexing, for each r ∈ [t],

Hr = {α · φr(α) | α ∈ Gr, φr(α) ∈ Cent(Mr)}
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4 An Algorithm for GroupDivision

In this section we solve the group division problem which is used in step 3 of
Algorithm I. Let us recall that GroupDivision is the following problem: given
a group G and a normal subgroup A 
 G, find a B 
 G such that G = A × B,
if such a decomposition exists. We will solve this problem itself in two stages.
First, we devise an efficient algorithm assuming that the quotient group G/A is
abelian and then use this as a subroutine in the algorithm for the general case.

4.1 When the Quotient Group G/A Is Abelian

In this case we can assume that G = A×B where B is abelian. Observe that in
this case, for every coset A · g of A in G, we can pick an element b ∈ A · g such
that b ∈ Cent(G) and ordG(b) = ordG/A(A · g). Also, the quotient group G/A is
abelian and therefore using the abelian group decomposition algorithm, we can
efficiently find a complete decomposition of G/A. So let

G/A = 〈A · g1〉 × . . .× 〈A · gt〉

Now from each coset A · gi we pick a representative element bi such that bi ∈
Cent(G) and ordG(bi) = ordG/A(A · bi). For any such set of bi’s, its an easy
verification that G = A× 〈b1〉 × . . .× 〈bt〉.

4.2 When the Quotient Group G/A Is Nonabelian

We first give the algorithm and then prove its correctness.

Algorithm 2. GroupDivision

Input. A group G and a normal subgroup A of G.
Output. A subgroup C of G such that G = A× C, if such a C exists.

1. Compute T def=
〈
{a · g · a−1 · g−1 | a ∈ CentG(A), g ∈ G}

〉
.

2. If T is not a normal subgroup of G then output NO SUCH DE-
COMPOSITION.

3. Compute G̃ def= G/T and Ã
def= {T · a | a ∈ A} 
 G̃.

4. Verify that T
⋂
A = {e}. If not, output NO SUCH DECOMPOSI-

TION. If yes, then we deduce that the canonical map a  → Ta is an
isomorphism from A to Ã.

5. Using the abelian group division algorithm given above, determine
if there exists a B̃ 
 G̃, with B̃ abelian, so that G̃ = Ã × B̃. If so,
determine elements Tg1, T g2, . . . , T gt ∈ G/T such that

G̃ = Ã× 〈Tg1〉 × 〈Tg2〉 × . . .× 〈Tgt〉 .

6. From each coset Tgi, pick any representative element ci. Compute
C

def= 〈T
⋃
{c1, . . . , ct}〉 ≤ G.

7. If G = A× C then output C else output NO SUCH DECOMPO-
SITION.
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The algorithm clearly has polynomial running time and it remains for us
to prove its correctness. To see whats going on in the algorithm above, let us
assume that G = A×B and fix this decomposition of G. Its easy to verify that
the subgroup T computed in step 1 is a normal subgroup of G and T = [B,B].
Also, T = [B,B] ⊆ B and therefore A

⋂
T must be {e}. This implies that the

canonical mapping a  → T ·a is an isomorphism from A to Ã This explains step 4
of the algorithm. Observe that the G̃ computed in step 3 has the decomposition

G̃ = Ã× (B/[B,B]).

But B/[B,B] is an abelian group so we can use the previous algorithm and
decompose G̃ into product of Ã times a number of cyclic groups. By the end of
step 6, we would have computed c1, . . . , ct ∈ G such that

G̃ = Ã× C̃, where C̃ def= 〈Tc1〉 × 〈Tc2〉 × . . .× 〈Tct〉 ≤ G.

Proposition 1. C 
G and the elements of C and A together generate G. Fur-
thermore, C

⋂
A = {e}.

Summarizing, we have A and C are normal subgroups of G that span G and
have a trivial intersection which means that G = A × C, as required to prove
the correctness of the algorithm.

5 An Algorithm for SemiAbelianGroupDecomposition

In this section, we solve the special case of GroupDecomposition when some
of the indecomposable components of G are abelian groups. That is given G, we
wish to find an abelian subgroup B and another subgroup A of G so that

G = A×B, where B is abelian. (3)

Since B is abelian, it has a decomposition into a direct product of cyclic groups.
So let

B = 〈b1〉 × . . .× 〈bt〉 .

so that G becomes
G = A× 〈b1〉 × . . .× 〈bt〉 .

Thus, if G has a decomposition of the form (3) then there exists a b ∈ G such
that 〈b〉 is a direct factor of G. Conversely, to find a decomposition of the form
(3) it is sufficient to find a b such that 〈b〉 is a direct factor of G. Knowing B, we
can find an appropriate direct complement of 〈b〉 efficiently using the algorithm
for GroupDivision given previously. Lastly, given the group G, we find an
appropriate b in polynomial-time by iterating over all the elements of G and
using the algorithm for GroupDivision to verify whether 〈b〉 is a direct factor
of G or not.
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6 The Conjugacy Class Graph of a Group and Its
Properties

Here we give the construction of the conjugacy class graph of a group. Consider
a group G which has a decomposition

G = A×B.

Fixing this decomposition, consider the conjugacy class Cg of an arbitary element
g = α · β ∈ G, where α ∈ A, β ∈ B. Observe that Cg = Cα · Cβ and the elements
of Cα and Cβ commute. More generally, we have

Observation 5. If G = G1 × . . .×Gt and g = g1 · . . . · gt is an arbitary element
of G, with each gi ∈ Gi then

Cg = Cg1 · Cg2 · . . . · Cgt .

Furthermore for all i �= j each element of Cgi commutes with every element of
Cgj .

For the rest of this section, we fix the group G and a reference decomposition

G = G1 ×G2 × . . .×Gt.

Let {πi : G  → Gi | i ∈ [t]} be the set of canonical projection endomorphisms
associated with the above decomposition. If any of the Gi’s are abelian groups
then we can obtain a decomposition of G using the algorithm for SemiAbelian-

GroupDecomposition given in section 5. So henceforth we will assume that all
the Gi’s are nonabelian. Observation 5 above motivates the following definitions.

Definition 1. We say that two conjugacy classes Ca and Cb commute when for
every α ∈ Ca and β ∈ Cb, α and β commute.

Definition 2. Call a conjugacy class reducible Cg if it is either a conjugacy
class of an element from the center of G, or there exist two conjugacy classes Ca

and Cb such that

– Neither a nor b belongs to the center of G.
– Ca and Cb commute.
– Cg = Ca · Cb

– |Cg| = |Ca| · |Cb|

If a conjugacy class is not reducible, then call it irreducible.

Proposition 2. If a conjugacy class Cg is irreducible then there exists a unique
i ∈ [t] such that πi(g) /∈ Cent(Gi).

Proof. If it happens that for all i ∈ [t], πi(g) ∈ Cent(Gi) then g ∈ Cent(G) so
that the conjugacy class Cg is reducible by definition. If more than one πi(G) are
noncentral elements then by observation 5, we would get that Cg is reducible.
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The converse of this proposition is not true in general. The above proposition
implies that corresponding to a conjugacy class Cg, there exists a unique Gi

such that πi(g) /∈ Cent(Gi). Let us call this subgroup Gi the indecomposable
component associated to the conjugacy class Cg. Let us now define the conjugacy
class graph ΓG associated to a group G.

Definition 3. The graph of a group G (denoted ΓG) is a graph with irreducible
conjugacy classes as nodes and such that a pair of nodes is connected by an edge
iff the corresponding pair of conjugacy classes does not commute.

The connected components of Γg can be computed efficiently and they give us
information about the direct factors of G.

Proposition 3. Let Λ1, . . . , Λs be the connected components of ΓG. Then s ≥ t
and there is a partition

[s] = S1 � S2 � . . . � St

such that
〈
∪i∈Sj Elts(Λi)

〉
(mod Z) = Gj (mod Z) for all j where Z = Cent(G).

Proof. Let us consider two irreducible conjugacy classes Cg and Ch. Let the in-
decomposable components associated with Cg and Ch be Gi and Gj respectively.
Suppose that i �= j. Then πj(g) and πi(h) are central elements of G so that every
element of Cg commutes with every other element of Ch. Thus there is no edge
between the nodes corresponding to Cg and Ch. This implies that if Cg and Ch are
in the same connected component of ΓG then the indecomposable components
associated with Cg and Ch are the same. Each nonabelian component of G gives
rise to at least one irreducible conjugacy class so that the number of connected
components s of ΓG is at least the number of indecomposable nonabelian com-
ponents of G. The above argument shows that there exists a partition of [s] into
Si such that

〈
∪i∈SjΛi

〉
(mod Z) ⊆ Gj (mod Z) for all j. The inclusion is in

fact an equality because all the irreducible conjugacy classes generate all the
noncentral elements of G by construction.

In general it is not true that the number of connected components of ΓG equals
the number of indecomposable nonabelian groups in the factorization of G. The
irreducible conjugacy classes of each of the Gi may be divided into more than
one component. However we have the following:

Proposition 4. If the center of group G is trivial, then the number of connected
components of its graph is equal to the number of indecomposable groups in the
factorization of G. Moreover, the subgroups generated by the conjugacy classes
of each of the components are normal disjoint subgroups which together span G;
thus we have the factorization of G.

Using the proposition we can efficiently factor a group with a trivial center.
When the center of the group is non-trivial it is no longer the case that each
component of ΓG generates one of the factors in the factorization of G. We would
need to search through the partitions of the set of connected components to find
the components associated to an indecomposable factor, say G1. For that we
need a bound on the number of components of the graph:
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Proposition 5. The number of connected components is upper bounded by log |G|.

7 Putting Everything together

We now have all the component steps of Algorithm I. So let us conclude with
the proof of correctness of Algoritm I.

Theorem 6. If the input to Algorithm I is a decomposable group G then it
necessarily computes a nontrivial decomposition of G, otherwise it outputs NO
SUCH DECOMPOSITION. Moreover, Algorithm I has running time polynomial
in |G|.
Proof. Clearly, if the group is indecomposable our algorithm outputs NO SUCH
DECOMPOSITION. By Proposition 5, s ≤ log |G| so that the number of itera-
tions in step 3 is at most |G|. All the operations inside the loop (steps 3a to 3c)
are polynomial-time computable so that the overall running time also poly(|G|).
It remains to show that if G is decomposable then our algorithm outputs a
nontrivial decomposition. Let the given group G have a decomposition

G = G1 × . . .×Gt (4)

with each Gi indecomposable. Let Z be the center of G. In the algorithm we
iterate over all subsets of the connected components of ΓG so let us assume that
we have found the subset S1 of indices of connected components corresponding
to conjugacy class of elements of G1. By Proposition 5 we have

G2 ×G3 × . . .×Gt (mod Z) =
〈
∪j /∈S1Elts(Λj)

〉
(mod Z).

This means that in step 3a we would have computed

Z1
def= CentG(

〈
∪j /∈S1Elts(Λj)

〉
)

= CentG(G2 ×G3 × . . .×Gt)
= G1 × Cent(G2) × Cent(G3) × . . .× Cent(Gt)

Let us now consider the decomposition Z1 = H1 × Y obtained in step 3b of
Algorithm I. By the Remak-Krull-Schmidt theorem (Theorem 3), all decompo-
sitions of Z1 are isomorphic so that if H1 is any direct factor of Z1 which has no
abelian direct factors then H1 must be indecomposable and isomorphic to G1.
Furthermore by an application of theorem 4, we must have that H1 must be of
the form

H1 = {α · φ(α) | α ∈ G1, φ(α) ∈ (Cent(G2) × Cent(G3) × . . .× Cent(Gt))},

where φ : H1  → Cent(G2)×Cent(G3)× . . .×Cent(Gt) is a homomorphism. By
lemma 1, we can replace G1 by H1 in the factorization (4) so that in fact

G = H1 ×G2 ×G3 × . . .×Gt.

In particular, this means that H1 is a direct factor of G so that in step (3c),
using the algorithm for GroupDivision , we necessarily recover a nontrivial
factorization of G.
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On Finding Dense Subgraphs�
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University of Maryland College Park
{samir,barna}@cs.umd.edu

Abstract. Given an undirected graph G = (V, E), the density of a subgraph
on vertex set S is defined as d(S) = |E(S)|

|S| , where E(S) is the set of edges
in the subgraph induced by nodes in S. Finding subgraphs of maximum density
is a very well studied problem. One can also generalize this notion to directed
graphs. For a directed graph one notion of density given by Kannan and Vinay
[12] is as follows: given subsets S and T of vertices, the density of the subgraph
is d(S, T ) = |E(S,T )|√

|S||T | , where E(S, T ) is the set of edges going from S to T .

Without any size constraints, a subgraph of maximum density can be found in
polynomial time. When we require the subgraph to have a specified size, the
problem of finding a maximum density subgraph becomes NP -hard. In this paper
we focus on developing fast polynomial time algorithms for several variations of
dense subgraph problems for both directed and undirected graphs. When there
is no size bound, we extend the flow based technique for obtaining a densest
subgraph in directed graphs and also give a linear time 2-approximation algorithm
for it. When a size lower bound is specified for both directed and undirected
cases, we show that the problem is NP-complete and give fast algorithms to find
subgraphs within a factor 2 of the optimum density. We also show that solving
the densest subgraph problem with an upper bound on size is as hard as solving
the problem with an exact size constraint, within a constant factor.

1 Introduction

Given an undirected graph G = (V,E), the density of a subgraph on vertex set S is
defined as d(S) = |E(S)|

|S| , whereE(S) is the set of edges in the subgraph induced by S.
The problem of finding a densest subgraph of a given graph G can be solved optimally
in polynomial time, despite the fact that there are exponentially many subgraphs to
consider [16,11]. In addition, Charikar [6] showed that we can find a 2 approximation
to the densest subgraph problem in linear time using a very simple greedy algorithm (the
greedy algorithm was previously studied by Asahiro et. al. [4]). This result is interesting
because in many applications of analyzing social networks, web graphs etc., the size
of the graph involved could be very large and so having a fast algorithm for finding
an approximately dense subgraph is extremely useful. However when there is a size
constraint specified - namely find a densest subgraph of exactly k vertices (DkS), the
densest k subgraph problem becomesNP -hard [8,3]. When k = Θ(|V |), Asahiro et. al.
[4] gave a constant factor approximation algorithm for the DkS problem. However for
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general k, the algorithm developed by Feige, Kortsarz and Peleg [8] achieves the best
approximation guarantee of O(na), where a < 1

3 . Khot [13] showed that there does
not exist any PTAS for the DkS problem under a reasonable complexity assumption.
Closing the gap between the approximation factor and the hardness guarantee is an
important open problem.

Recently, Andersen and Chellapilla [2] considered two variations of the problem of
finding a densest k subgraph. The first problem, the densest at-least-k-subgraph prob-
lem (DalkS) asks for an induced subgraph of highest density among all subgraphs with
at least k nodes. This relaxation makes DalkS significantly easier to approximate and
Andersen et.al. gave a fast algorithm based on Charikar’s greedy algorithm that guar-
antees a 3 approximation for the DalkS problem. In addition, Andersen [1] showed that
this problem has a polynomial time 2 approximation, albeit with significantly higher
running time. However it was left open as to whether or not this problem is NP -
complete. The second problem studied was the densest at-most-k-subgraph problem
(DamkS), which asks for an induced subgraph of highest density among all subgraphs
with at most k nodes. For the DamkS problem, Andersen et.al. showed that if there
exists an α approximation for DamkS, then there is a Θ(α2) approximation for the
DkS problem, indicating that this problem is likely to be quite difficult as well.

For directed graphs, Kannan and Vinay [12] defined a suitable notion of density
to detect highly connected subgraphs and provided a Θ(log n) approximation algo-
rithm for finding such dense components. Let G = (V,E) be a directed graph and S
and T be two subsets of nodes of V . Density corresponding to S and T is defined as
d(S, T ) = |E(S,T )|√

|S||T | , where E(S, T ) consists of the edges going from S to T . Charikar

[6] showed that the problem can be solved in polynomial time by solving an LP using
n2 different values of a parameter. However a max-flow based technique similar to the
one developed by Goldberg [11] for the densest subgraph problem in undirected graphs
was not known for directed graphs. It was mentioned as one of the open problems in
[6]. In addition to providing a polynomial time solution for the densest subgraph prob-
lem in directed graphs, Charikar also gave a 2 approximation algorithm which runs in
O(|V |3 + |V |2|E|) time.

Densest subgraph problems have received significant attention for detecting impor-
tant substructures in massive graphs like web and different social networks. In a web
graph, hubs (resource lists) and authorities (authoritative pages) on a topic are charac-
terized by large number of links between them [15]. Finding dense subgraphs also acts
as a useful primitive for discovering communities in web and social networks, for com-
pressed representation of a graph and for spam detection [7,5,10]. Gibson et. al. [10]
provided effective heuristics based on two-level fingerprints for finding large dense sub-
graphs in massive graphs. Their aim was to incorporate this step into web search engine
for link spam control. Dourisboure gave a scalable method for identifying small dense
communities in web graph [7]. Buehrer showed how large dense subgraphs can be use-
ful in web graph compression and sub-sampling a graph [5]. In all these applications
the underlying graph is massive and thus fast scalable algorithms for detecting dense
subgraphs are required to be effective.

One of the main new insights in this paper is to illustrate the power of the flow based
methods [11,16] to find dense subgraphs not only when there is no requirement on the
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size of the obtained subgraph, but also for cases when there is a constraint on the size
of the obtained subgraph. Precisely our contributions are as follows:

1.1 Contributions

– For the densest subgraph problem without any size restrictions (Section 2):
• We give a max-flow based polynomial time algorithm for solving the densest

subgraph problem in directed graphs.
• We give a linear time 2-approximation algorithm for the densest subgraph prob-

lem in directed graphs.
– For the densest at least k subgraph problem (Section 3):

• We show that the densest at least k subgraph problem is NP-Hard.
• For undirected graphs, we give a flow-based and LP based approximation al-

gorithms, for the densest at least k subgraph problem. These run much faster
than the polynomial time approximation algorithm of Andersen and deliver the
same worst case approximation factor of 2.

• We define the notion of densest at least k1, k2 subgraph problem for directed
graphs and give a 2-approximation algorithm for it.

– Densest at most k subgraph problem (Section 4):
• We show that approximating the densest at most k subgraph problem is as hard

as the densest k subgraph problem within a constant factor, specifically an α
approximation for DamkS, implies a 4α approximation for DkS.

2 Densest Subgraph without Any Size Restriction

In this section, first we give a max-flow based algorithm for the densest subgraph prob-
lem in directed graphs. For undirected graphs, Goldberg [11] developed a flow based
algorithm, that finds a densest subgraph in polynomial time. However, for directed
graphs, no flow based algorithm was known. Next we consider the greedy algorithm
for densest subgraph in undirected graphs proposed by Charikar [6] and develop an
extension of this algorithm to give a 2 approximation algorithm for finding a densest
subgraph in directed graphs. This improves the running time from O(|V |3 + |V |2|E|)
to O(|V | + |E|). We also give a very simple proof of 2-approximation for the greedy
algorithm developed by Charikar [6] to obtain a densest subgraph in undirected graphs.

2.1 Max-flow Based Algorithm for Finding Densest Subgraphs in Directed
Graphs

For a directed graph G = (V,E), we wish to find two subsets of nodes S and T , such
that d(S, T ) = |E(S,T )|√

|S||T | is maximized. Let us denote the optimum subsets of nodes by

S∗ and T ∗ respectively. To detect such subsets of nodes, we first guess the value of
|S∗|
|T∗| in the optimum solution. Since there are |V |2 possible values, in Θ(|V |2) time, it

is possible to guess this ratio exactly1. Let this ratio be a. We create a bipartite graph

1 If we want (1 + ε) approximation, only O( log |V |
ε

) guessed values suffice.
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G′ = (V1, V2, E), where V1 = V2 = V and for every directed edge (i, j) in the original
graph, we add an edge from vertex i ∈ V1 to j ∈ V2. We now wish to find S ⊆ V1 and
T ⊆ V2, such that |E(S,T )|√

|S||T | is maximized. We also know, |S∗|
|T∗| = a.

We add a source s and a sink t to G′ = (V1, V2, E). We guess the value of the
optimum (maximum) density. Let our guessed value be g. The following edges with
weights are then inserted into G′ = (V1, V2, E):

– We add an edge of weight m from source s to each vertex of V1 and V2, where
m = |E|.

– We add an edge of weight (m + g√
a
) from each vertex of V1 to the sink t.

– We add an edge from each vertex j of V2 to sink t of weightm+
√
ag−2dj , where

dj is the in-degree of j.
– All the edges going from V1 to V2 are given weight 0. For each edge going from V1

to V2, a reverse edge of weight 2 is added.

Now consider a s-t min-cut in this weighted graph. Since the cut {s}, {t, V1, V2} has
weight m(|V1| + |V2|), the min-cut value is ≤ m(|V1| + |V2|). Now consider the cut
{s, S ⊆ V1, T ⊆ V2},{t, (V1 \S) ⊆ V1, (V2 \T ) ⊆ V2}. The number of edges crossing
the cut is,

m(|V1|−|S|+|V2|−|T |) + (m+
g√
a
)|S| +

∑
i∈T

(m+
√
ag − 2di) +

∑
i∈T,j∈V1−S,
(j,i)∈E(G)

2

= m(|V1| + |V2|) + |S| g√
a

+ |T |
√
ag − 2|E(S, T )|

= m(|V1| + |V2|) +
|S|√
a

(
g − |E(S, T )|

|S|/
√
a

)
+ |T |

√
a

(
g − |E(S, T )|

|T |
√
a

)
Let us denote the optimum density value by dOPT . If g < dOPT , then there exists

S and T (corresponding to the optimum solution), such that both
(
g − |E(S,T )|

|S|/√a

)
and(

g − E(S,T )
|T |√a

)
are negative. Therefore S and T are nonempty. If the guessed value g >

dOPT , let if possible S and T be non-empty. Let in this returned solution, |S|
|T | = b. We

have,

|S|√
a

(
g − |E(S, T )|

|S|/
√
a

)
+ |T |

√
a

(
g − E(S, T )

|T |
√
a

)
=

√
|S||T |

√
b√
a

(
g − d(S, T )√

b/
√
a

)
+

√
|S||T |

√
a√
b

(
g − d(S, T )

√
a/

√
b

)

=
√
|S||T |

((√
b√
a

+
√
a√
b

)
g − 2d(S, T )

)
(1)

Now,
(√

b√
a

+
√

a√
b

)
≥ 2 ∀ reals a, b and we have, g > dOPT ≥ d(S, T ). Hence

the value of (1) is > 0. Thus if S and T are non-empty, then this cut has value >
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m(|V1| + |V2|). Hence if g > dOPT , min-cut is ({s}, {t, V1, V2}). If the guessed value
g = dOPT , then we get a cut of the same cost as the trivial min-cut, even by having S
and T corresponding to S∗ and T ∗ respectively. We can always ensure that we obtain
a min-cut, which has the biggest size on the source side. Thus when the guessed value
is correct, the optimum subsets S and T are obtained from the subsets of vertices of
V1 and V2 that belong to the side of the cut that contains s. The algorithm detects the
correct value of g using a binary search, similar to Goldberg’s algorithm for finding
a densest subgraph in undirected graphs [11]. Also it is easy to verify that, when the
correct value of g is guessed, we have b = a. Using a parametric max-flow algorithm
[9], the total time required is same as one flow computation within a constant factor.

2.2 2 Approximation Algorithm for the Densest Subgraph Problem in
Undirected and Directed Graphs

We first consider Charikar’s greedy algorithm [6] for densest subgraphs in undirected
graphs. The greedy algorithm at each step chooses a vertex of minimum degree, deletes
it and proceeds for (n − 1) steps, where |V | = n. At every step the density of the
remaining subgraph is calculated and finally the one with maximum density is returned.

Algorithm 1. DENSEST-SUBGRAPH(G = (V,E))

n ← |V |, Hn ← G
for i = n to 2

do
{

Let v be a vertex in Hi of minimum degree
Hi−1 ← Hi − {v}

return (Hj , which has the maximum density among H ′
is, i = 1, 2, .., n)

We show that the above greedy algorithm Densest-Subgraph achieves an approx-
imation factor of 2 for undirected networks. This is not a new result. However our
proof is simpler than the one given by Charikar. For directed graphs, Charikar devel-
oped a different greedy algorithm, that has a significantly higher time-complexity of
O(|V |3 + |V |2|E|). We show that the algorithm Densest-Subgraph-Directed, which is
a generalization of the algorithm Densest-Subgraph detects a subgraph, with density
within a factor of 2 of the optimum for directed graphs. This reduces the time complex-
ity from O(|V |3 + |V |2|E|) to O(|V | + |E|).

Theorem 1. The greedy algorithm Densest-Subgraph achieves a 2-approximation for
the densest subgraph problem in undirected networks.

Proof. Let dOPT = λ. Observe that in an optimum solution, every vertex has degree ≥
λ. Otherwise removing a vertex of degree< λ, will give a subgraph with higher density.
Consider the iteration of the greedy algorithm when the first vertex of the optimum
solution is removed. At this stage all the vertices in the remaining subgraph have degree
≥ λ. If the number of vertices in the subgraph is s, then the total number of edges is
≥ λs/2, and the density is ≥ λ/2. Since the greedy algorithm returns the subgraph with
the highest density over all the iterations, it always returns a subgraph with density at
least 1

2 of the optimum. �
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With a little work, one can make examples showing that the bound of 2 is tight for
Charikar’s algorithm (details omitted).

We now consider the case of directed graphs. In a directed graph, for each vertex
we count its in-degree and out-degree separately. Let vi be a vertex with minimum in-
degree and vo be a vertex with minimum out-degree. Then we say vi has minimum
degree, if the in-degree of vi is at most the out-degree of vo, else vo is said to have
the minimum degree. In the first case, the vertex with minimum degree belongs to the
category IN. In the second case, it belongs to the category OUT. The greedy algorithm
for directed graphs deletes the vertex with minimum degree and then depending on
whether it is of category IN or OUT, either deletes all the incoming edges or all the
outgoing edges incident on that vertex, respectively. If the vertex becomes a singleton,
the vertex is deleted. To compute the density of the remaining graph after an iteration
of Densest-Subgraph-Directed, any vertex that has nonzero out-degree is counted in the
S side and all the vertices with non-zero in-degree are counted in the T side. Therefore
the same vertex might appear both in S and T and will be counted once in S and once
in T . We denote the optimum solution by (S∗, T ∗).

Algorithm 2. DENSEST-SUBGRAPH-DIRECTED(G = (V,E))

n ← |V |, H2n ← G, i ← 2n
while Hi �= ∅

do

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Let v be a vertex in Hi of minimum degree
if category(v) = IN

then Delete all the incoming edges incident on v
else Delete all the outgoing edges incident on v

if v has no edges incident on it then Delete v
Call the new graph Hi−1, i ← i− 1

return (Hj which has the maximum density among H ′
is)

Define λi = |E(S∗, T ∗)|
(
1−

√
1 − 1

|T∗|
)

and λo = |E(S∗, T ∗)|
(
1 −

√
1 − 1

|S∗|
)

.

Lemma 1. In an optimal solution, each vertex in S∗, has out-degree ≥ λo and each
vertex in T ∗ has in-degree ≥ λi.

Proof. Suppose if possible, ∃v ∈ S∗ with out-degree < λo. Remove v from S∗. The
density of the remaining subgraph is > E(S∗,T∗)−λo√

(|S∗|−1)|T∗| = dOPT , which is not possible.

Similarly, every vertex v ∈ T ∗ has degree ≥ λi. �

Theorem 2. The greedy algorithm Densest-Subgraph-Directed achieves a 2 approx-
imation for the densest subgraph problem in directed networks.

Proof. Consider the iteration of the greedy algorithm, when the vertices in S have out-
degree ≥ λo and the vertices in T have in-degree ≥ λi. Let us call the set of ver-
tices on the side of S and T by S′ and T ′ respectively. Then the number of edges,

E′ ≥ |S′|λo, and also E′ ≥ |T ′|λi. Hence, the density d(S′, T ′) ≥
√

|S′|λo|T ′|λi

|S′||T ′| =
√
λoλi. Substituting the values of λo and λi from Lemma 1, we get d(S′, T ′)2 ≥
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|E(S∗, T ∗)|2
(
1 −

√
1 − 1

|S∗|
)(

1 −
√

1 − 1
|T∗|

)
. Now putting |S∗| = 1

sin2 θ and |T ∗|

= 1
sin2 α , we get d(S′, T ′) ≥ |E(S∗,T∗)|√

|S∗||T∗|

√
(1−cosθ)(1−cosα)

sinθsinα = dOP T

2cos θ
2 cos α

2
≥ dOP T

2 . �

3 Densest at Least k Subgraph Problem

For undirected graphs, the DalkS algorithm tries to find a subgraph of highest den-
sity among all subgraphs, that have size ≥ k. We prove that the DalkS problem is
NP-complete. and develop two algorithms; a combinatorial algorithm and one based
on solving a linear programming formulation of the DalkS problem. Each algorithm
achieves an approximation factor of 2. Finally we consider the DalkS problem in di-
rected graphs, and give a 2-approximation algorithm for the problem.

Theorem 3. DalkS is NP-Hard.

Proof. We reduce the densest k subgraph problem (this problem is NP -hard [8,3]) to
densest at least k subgraph problem. The entire proof can be found in [14]. �
We develop two algorithms for DalkS that both achieve an approximation factor of
2. We note that Andersen [1] proposed a 2 approximation algorithm, that requires n3

max-flow computations. Even using the parametric flow computation [9] the running
time is within a constant factor of n2 flow computations. Whereas our first algorithm
uses at most max(1, (k − γ)) flow computations using parametric flow algorithm and
in general much less than that. Here γ is the size of the densest subgraph without any
size constraint. The second algorithm is based on a linear programming formulation for
DalkS and requires only a single solution of a LP.

3.1 Algorithm 1: Densest at Least k Subgraph

Let H∗ denote the optimum subgraph and let d∗ be the optimum density. The algorithm
starts with the original graph G as G0, and D0 as ∅. In the ith iteration, the algorithm
finds the densest subgraph Hi from Gi−1 without any size constraint. If |V (Di−1)| +
|V (Hi)| ≥ k, the algorithm stops. Otherwise the algorithm adds Hi to Di−1 to obtain
Di. All the edges and the vertices of Hi are removed from Gi−1. For every vertex
v ∈ Gi−1 \Hi, if v has l edges to the vertices in Hi, then in Gi a self loop of weight
l is added to v. The algorithm then continues with Gi. When the algorithm stops, each
subgraph Di is padded with arbitrary vertices to make their size k. The algorithm then
returns the Dj with maximum density.

Algorithm 3. DENSEST AT LEAST-K(G, k)

D0 ← ∅, G0 ← G, i ← 1
while |V (Di)| < k

do

⎧⎨⎩
Hi ← maximum-density-subgraph(Gi−1)
Di ← Di−1 ∪Hi

Gi = shrink(Gi−1, Hi), i ← i+ 1
for each Di

do Add an arbitrary set of max(k − |V (Di)|, 0) vertices to it to form D′
i

return (D′
j , which has the maximum density among the D′

is)
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We prove that algorithm Densest At least-k achieves an approximation factor of 2.

Theorem 4. The algorithm Densest At least-k achieves an approximation factor of 2
for the DalkS problem.

Proof. If the number of iterations is 1, then H1 is the maximum density subgraph of
the original graph whose size is ≥ k. Therefore H∗ = H1 and the algorithm returns it.
Otherwise, say the algorithm iterates for l ≥ 2 rounds. There can be two cases:

Case 1: There exists a l′ < l such that E(Dl′−1) ∩ E(H∗) ≤ E(H∗)
2 and E(Dl′ ) ∩

E(H∗) ≥ E(H∗)
2 .

Case 2: There exists no such l′ ≤ l.
For case 2, we have for any j ≤ l−1,E(Dj)∩E(H∗) ≤ E(H∗)

2 . Therefore,E(Gj)∩
E(H∗) ≥ E(H∗)

2 . Consider V ′ = V (Gj)∩V (H∗). The density of the subgraph induced

by V ′ in Gj is ≥ E(Gj)∩E(H∗)
|V ′| ≥ E(H∗)

2V (H∗) = d∗/2. Hence the density of Hl must be
≥ d∗/2. So in case 1, for each j ≤ l, the density of Hj is ≥ d∗/2. Therefore the

total number of edges in the subgraph Dl is ≥ d∗ ∑ l′
j=1 |V (Hj)|

2 , or the density of Dl′ is
≥ d∗/2 and it has ≥ k vertices.

For case 1, the subgraph Dl′ has at least E(H∗)/2 edges and since V (Dl′) ≤ k, the
density of D′

l′ is ≥ d∗
2 .

Since the algorithm returns the subgraph D′
j with maximum density among all the

D′
is, the returned subgraph has density at least d∗/2. �

There are example of graphs (see the extended version [14]) over which the approxima-
tion factor of 1

2 is tight for algorithm Densest At least-k Subgraph.

3.2 Algorithm 2: Densest at Least k Subgraph

Next we give a LP based solution for the DalkS problem. Define a variable xi,j for
every edge (i, j) ∈ E(G) and a variable yi for every vertex i ∈ V (G). Consider now
the following LP:

maximize
∑
i,j

xi,j (2)

xi,j ≤ yi , ∀(i, j) ∈ E(G); xi,j ≤ yj , ∀(i, j) ∈ E(G)

∑
i

yi =1; yi≤
1
l
, ∀i∈V (G); xi,j , yi≥0 , ∀(i, j)∈E(G), ∀i ∈ V (G)

Here l ≥ k is the size of the optimum solution of the DalkS problem. Since there
can be n − k + 1 possible sizes of the optimum solution, we can guess this value,
putting different values for l. In Section 3.3 we show that by first running the algorithm
Densest-Subgraph and then solving one single LP, we can guarantee a 2-approximation.

Lemma 2. The optimum solution of LP (2) is greater than or equal to the optimum
value of DalkS.
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Proof. Let the optimum solution for DalkS be obtained for a subgraph H having l ≥ k
vertices and density λ. Consider a solution for the above LP, where each of the variables
yi corresponding to the vertices of H have value 1

l . All the variable xi,j corresponding
to the induced edges of H have value 1

l . The solution is feasible, since it satisfies all the
constraints of LP (2). The value of the objective function of the LP is

∑
(i,j)∈H xi,j =

E(H)
l = E(H)

V (H) = λ. Therefore the optimum value of the LP is ≥ λ �

Lemma 3. If the value of the optimum solution of LP (2) is λ, a subgraph of size ≥ k
with density ≥ λ/2 can be constructed from that solution of LP (2).

The proof can be found in the extended version [14]. The key idea is to show that there
exists a value of r ∈ [0, 1], such that if we consider the subgraph induced by the vertices
with y value ≥ r, then either it has density ≥ λ/2 and size ≥ k, or its size is < k, but it
has more than half the number of edges the optimum solution has. In the later case, we
can add arbitrary vertices to increase the size of the subgraph to k.

Theorem 5. If the value of the optimum solution of LP (2) is λ, a subset S of vertices
can be computed from the optimum solution of LP (2), such that

d(G(S)) ≥ λ and |S| ≥ k

Proof. Consider every possible subgraph by setting r = yi for all distinct values of yi.
By Lemma 3, there exists a value of r such that |S(r)| ≥ k and |E(r)|

|S(r)| ≥ v/2, where v
is an optimum solution of the LP. By Lemma 2 , v ≥ λ and hence the proof. �
The integrality gap of LP 2 is at least 5

4 . Also the approximation factor of 1
2 is tight (see

the extended version [14]).

3.3 Reducing the Number of LP Solutions

To reduce the number of LP solutions, we first run the algorithm Densest-Subgraph,
consider the solutions over all the iterations that have > k vertices and obtain the one
with maximum density. We call this modified algorithm Densest-Subgraph>k. We com-
pare the obtained subgraph from Densest-Subgraph>k with the solution returned by the
LP based algorithm with l = k. The final solution is the one which has higher density.

When the optimum solution for DalkS has exactly k vertices, Theorem 5 guarantees
that we obtain a 2 approximation. Otherwise, the optimum subgraph has size > k.
In this situation, the following lemma shows that the solution returned by Densest-
Subgraph>k has density at least 1

2 of the optimum solution of DalkS. Therefore using
only a single solution of LP 2 along with the linear time algorithm Densest-Subgraph>k,
we can guarantee a 2 approximate solution for DalkS.

Lemma 4. If the optimum subgraph of DalkS problem has size > k, then Densest-
Subgraph>k returns a 2 approximate solution.

Proof. Let the optimum density be λ. Since the size of the optimum solution is > k,
if there exists any vertex in the optimum solution with degree < λ, then removing that
we would get higher density and the size of the subgraph still remains ≥ k. Hence all
the vertices in the optimum solution has degree ≥ λ. Now from Theorem 1, we get the
required claim. �
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3.4 Densest at Least k Subgraph Problem for Directed Graphs

Given a directed graph G = (V,E) and integers k1, k2, the densest at least k directed
subgraph (DaLkDS) problem finds two subsets of nodes S and T containing at least k1

and k2 vertices respectively for which E(S,T )√
|S||T | is maximized.

In this section we give a 2 approximation algorithm for the DaLkDS problem. Since
there are two parameters, k1, k2; we refer to this problem by densest at least-k1, k2

problem from now on.

3.5 Densest at Least k1, k2 Directed Subgraph Problem

Let S∗, T ∗ represent the optimum solution of DaLkDS and d∗ represent the value of
the density corresponding to S∗, T ∗. Let the ratio |S∗|

|T∗| be a. Since the possible values

of a can be i
j , where i ≥ k1, j ≥ k2 and i, j ≤ |V |, we can guess the value of a. We

run the max-flow based algorithm of Section 2.1 (maximum-directed-density-subgraph)
with the chosen a to obtain the densest directed subgraph without any size constraints.
Instead of shrinking and removing the vertices and the edges in the densest directed
subgraph, as in algorithm Densest At least-k for DalkS, we only remove the edges and
maintain the vertices. We continue this procedure for the same choice of a, until at some
round both the sizes of S and T thus obtained exceed k1 and k2 respectively. Let Si and
Ti be the partial subsets of vertices obtained up to the ith round. We append arbitrary
vertices A and B to Si and Ti to form S′

i and T ′
i respectively, such that |S′

i| ≥ k1 and
|T ′

i | ≥ k2. The algorithm returns S′
j , T

′
j , such that d(S′

j , T
′
j) is maximum over all the

iterations.

Algorithm 4. DENSEST AT LEAST-k1, k2(G, k1, k2, a)

S0 ← ∅, T0 ← ∅, G0 ← G, i ← 1
while |Si−1| < k1 or |Ti−1| < k2

do

⎧⎪⎪⎨⎪⎪⎩
Hi(S, T ) ← maximum-directed-density-subgraph(Gi−1, a)
Si ← Si−1 ∪Hi(S)
Ti ← Ti−1 ∪Hi(T )
Gi = shrink(Gi−1, Hi), i ← i+ 1

for each Si, Ti

do
{

Add arbitrary max(k1 − |Si|, 0) vertices to Si to form S′
i

Add arbitrary max(k2 − |Ti|, 0) vertices to Ti to form T ′
i

return (S′
j , T

′
j) which has maximum density among the (S′

i, T
′
i )s

Theorem 6. Algorithm Densest At least-k1, k2 achieves an approximation factor of 2
for the DaLkDS problem.

Proof. For a chosen a, algorithm Densest At least-k1, k2 returns subsets Hi(S) and
Hi(T ) at iteration i, such that |Hi(S)|

|Hi(T )| = a. Suppose up to l1th iteration, |Sl1 | < k1 and
|Tl1 | < k2. Let |Sl1+1| ≥ k1, but up to l2th iteration, |Tl2 | < k2. At iteration l2 + 1,
|Tl2+1| ≥ k2. Now we consider the following cases,

Case 1: |E(Sl1 , Tl1)| ≥ |E(S∗, T ∗)|/2.

Case 2: |E(Sl2 , Tl2)
⋂
E(S∗, T ∗)| ≤ |E(S∗, T ∗)|/2.
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Case 3: ∃l′, l1 < l′ ≤ l2, such that |E(Sl′ , Tl′)| > |E(S∗, T ∗)|/2 and
|E(Sl′−1, Tl′−1)| ≤ |E(S∗, T ∗)|/2.

These three cases are mutually exclusive and exhaustive. When case 1 occurs, we
can append arbitrary vertices to Sl1 and Tl1 to make their sizes respectively k1 and

k2. In that case
E(S′

l1
,T ′

l1
)√|S′

l1
||T ′

l1
| ≥ E(S∗,T∗)

2
√

|S∗||T∗| = d∗/2. When case 2 occurs, at iteration

l2 at least half of the edges of the optimum are still not covered. Since no
vertices are ever deleted, choice of S∗ and T ∗ maintains the ratio a and returns a den-
sity which is at least d∗

2 . Then we have ∀i = 1, 2, .., l2, E(Hi(S),Hi(T ))√
|Hi(S)||Hi(T )| ≥ d∗

2 , or

we have, E(Hi(S), Hi(T )) ≥
√
|Hi(S)||Hi(T )|d∗

2 =
√
a|Hi(T )|d∗

2 . Hence by sum-

ming over the iterations 1 to l2 +1 we get, E(Sl2+1, Tl2+1) ≥
√
a
∑l2+1

i=1 |Hi(T )|d∗
2 ≥

d∗
2

√
a|Tl2+1| = d∗

2

√
|Tl2+1||Sl2+1|. Hence we have,

E(S′
l2+1,T ′

l2+1)√|S′
l2+1||T ′

l2+1|
= E(Sl2+1,Tl2+1)√

|Sl2+1||Tl2+1|
≥ d∗

2 .

When case 3 occurs, we have again ∀i = 1, 2, .., l′, E(Hi(S),Hi(T ))√
|Hi(S)||Hi(T )| ≥ d∗

2 . Now

following the same analysis as in case 2, E(Sl′ ,Tl′)√
|Sl′ ||Tl′ |

≥ d∗
2 . Since |S′

l′ | = |Sl′ | might be

much larger than k1, the analysis as in case 1 cannot guarantee a 2-approximation. Let

X1 = |
⋃l′

i=1 Hi(S)| = |Sl′ | and X2 =
∑l′

i=1|Hi(S)|. Similarly Y1 = |
⋃l′

i=1 Hi(T )| =
|Tl′ | and Y2 =

∑l′

i=1|Hi(T )|. We have Y2 = X2
a ≥ X1

a ≥ k1
a = k2. Also we have,

E(X1,Y1)√
|X2||Y2|

≥ d∗
2 . So E(X1,Y1)√|S′

l′ |
= E(X1,Y1)√

|X1|
≥ E(X1,Y1)√

|X2|
≥

√
Y2

d∗
2 ≥

√
k2

d∗
2 . We add

arbitrary vertices to Y1 to make its size equal to k2. Hence, E(X1,Y1)√|S′
l′ |

≥
√
|T ′

l′ |d
∗
2 .

Also E(X1,Y1)√
|T ′

l′ |
= E(X1,Y1)√

k2
≥ E(X1,Y1)√

|Y2|
≥

√
|X2|d

∗
2 ≥

√
|S′

l′ |d
∗
2 . Multiplying we get,

E(S′
l′ ,T

′
l′)

2
√

|S′
l′ ||T ′

l′ |
≥

√
|S′

l′ ||T ′
l′ |d

∗2

4 , or we have,
E(S′

l′ ,T
′
l′ )√

|S′
l′ ||T ′

l′ |
≥ d∗

2 . �

For a particular value of a, using parametric max-flow, algorithm Densest At least-k1, k2

requires time of a single flow computation within a constant factor. However there are
|V |2 possible choices of a. An algorithm that does not need to guess the value of a, like
Densest- Subgraph-Directed, is needed to reduce the time complexity, which is still
open. Here we note that a LP based solution for this problem can be designed in the line
of LP based algorithm for DalkS (details omitted).

4 Densest at Most k Subgraph Problem

Densest at most k subgraph problem (DamkS) tries to find a subgraph of highest den-
sity, whose size is at most k. Andersen et. al. [2] showed that an α approximation for
DamkS implies a Θ(α2) approximation for the densest k subgraph problem. We prove
that approximating DamkS is as hard as the DkS problem, within a constant factor. Pre-
cisely we prove the following theorem:

Theorem 7. An α approximation algorithm for DamkS implies an 4α approximation
algorithm for the densest k subgraph problem

The proof can be found in an extended version [14].
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5 Conclusion

In this paper, we have discussed different variations of the densest subgraph problems
with and without size constraints. We have considered hardness issues related to these
problems and have developed fast algorithms for them for both undirected and directed
networks. All these problems can be generalized to weighted setting, with same time-
complexity or sometimes with only a log |V | increase in running time. An interesting
open question will be to design linear time algorithm with an approximation factor bet-
ter than 2 for densest subgraph without any size constraint or to improve the approxima-
tion factor for DalkS problem. Obtaining faster algorithms for densest at lease-k1, k2

subgraph problem, or removing the requirement of guessing a in it or in the flow graph
construction of maximum density directed subgraph will also be useful.
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Abstract. We give new algorithms for learning halfspaces in the challenging
malicious noise model, where an adversary may corrupt both the labels and the
underlying distribution of examples. Our algorithms can tolerate malicious noise
rates exponentially larger than previous work in terms of the dependence on the
dimension n, and succeed for the fairly broad class of all isotropic log-concave
distributions.

We give poly(n, 1/ε)-time algorithms for solving the following problems to
accuracy ε:

– Learning origin-centered halfspaces in Rn with respect to the uniform dis-
tribution on the unit ball with malicious noise rate η = Ω(ε2/ log(n/ε)).
(The best previous result was Ω(ε/(n log(n/ε))1/4).)

– Learning origin-centered halfspaces with respect to any isotropic log-
concave distribution on Rn with malicious noise rate η = Ω(ε3/ log(n/ε)).
This is the first efficient algorithm for learning under isotropic log-concave
distributions in the presence of malicious noise.

We also give a poly(n, 1/ε)-time algorithm for learning origin-centered half-
spaces under any isotropic log-concave distribution on Rn in the presence of ad-
versarial label noise at rate η = Ω(ε3/ log(1/ε)). In the adversarial label noise
setting (or agnostic model), labels can be noisy, but not example points them-
selves. Previous results could handle η = Ω(ε) but had running time exponential
in an unspecified function of 1/ε.

Our analysis crucially exploits both concentration and anti-concentration
properties of isotropic log-concave distributions. Our algorithms combine an it-
erative outlier removal procedure using Principal Component Analysis together
with “smooth” boosting.

1 Introduction

A halfspace is a Boolean-valued function of the form f = sign(
∑n

i=1 wixi − θ).
Learning halfspaces in the presence of noisy data is a fundamental problem in ma-
chine learning. In addition to its practical relevance, the problem has connections to
many well-studied topics such as kernel methods [26], cryptographic hardness of learn-
ing [15], hardness of approximation [6, 9], learning Boolean circuits [2], and addi-
tive/multiplicative update learning algorithms [17, 7].

Learning an unknown halfspace from correctly labeled (non-noisy) examples is one
of the best-understood problems in learning theory, with work dating back to the famous
Perceptron algorithm of the 1950s [21] and a range of efficient algorithms known for

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 609–621, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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different settings [20, 16, 3, 18]. Much less is known, however, about the more difficult
problem of learning halfspaces in the presence of noise.

Important progress was made by Blum et al. [2] who gave a polynomial-time al-
gorithm for learning a halfspace under classification noise. In this model each label
presented to the learner is flipped independently with some fixed probability; the noise
does not affect the actual example points themselves, which are generated according to
an arbitrary probability distribution over Rn.

In the current paper we consider a much more challenging malicious noise model.
In this model, introduced by Valiant [27] (see also [12]), there is an unknown target
function f and distributionD over examples. Each time the learner receives an example,
independently with probability 1−η it is drawn from D and labeled correctly according
to f , but with probability η it is an arbitrary pair (x, y) which may be generated by an
omniscient adversary. The parameter η is known as the “noise rate.”

Malicious noise is a notoriously difficult model with few positive results. It was al-
ready shown in [12] that for essentially all concept classes, it is information-theoretically
impossible to learn to accuracy 1− ε if the noise rate η is greater than ε/(1+ ε). Indeed,
known algorithms for learning halfspaces [25, 11] or even simpler target functions [19]
with malicious noise typically make strong assumptions about the underlying distribu-
tion D, and can learn to accuracy 1 − ε only for noise rates η much smaller than ε. We
describe the most closely related work that we know of in Section 1.2.

In this paper we consider learning under the uniform distribution on the unit ball
in Rn, and more generally under any isotropic log-concave distribution. The latter is
a fairly broad class of distributions that includes spherical Gaussians and uniform dis-
tributions over a wide range of convex sets. Our algorithms can learn from malicious
noise rates that are quite high, as we now describe.

1.1 Main Results

Our first result is an algorithm for learning halfspaces in the malicious noise model with
respect to the uniform distribution on the n-dimensional unit ball:

Theorem 1. There is a poly(n, 1/ε)-time algorithm that learns origin-centered half-
spaces to accuracy 1 − ε with respect to the uniform distribution on the unit ball in n
dimensions in the presence of malicious noise at rate η = Ω(ε2/ log(n/ε)).

Via a more sophisticated algorithm, we can learn in the presence of malicious noise
under any isotropic log-concave distribution:

Theorem 2. There is a poly(n, 1/ε)-time algorithm that learns origin-centered half-
spaces to accuracy 1− ε with respect to any isotropic log-concave distribution over Rn

and can tolerate malicious noise at rate η = Ω(ε3/ log(n/ε)).

We are not aware of any previous polynomial-time algorithms for learning under
isotropic log-concave distributions in the presence of malicious noise.

Finally, we also consider a somewhat relaxed noise model known as adversarial
label noise. In this model there is a fixed probability distribution P over Rn × {−1, 1}
(i.e. over labeled examples) for which a 1 − η fraction of draws are labeled according
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to an unknown halfspace. The marginal distribution over Rn is assumed to be isotropic
log-concave; so the idea is that an “adversary” chooses an η fraction of examples to
mislabel, but unlike the malicious noise model she cannot change the (isotropic log-
concave) distribution of the actual example points in Rn. For this model we prove:

Theorem 3. There is a poly(n, 1/ε)-time algorithm that learns origin-centered half-
spaces to accuracy 1− ε with respect to any isotropic log-concave distribution over Rn

and can tolerate adversarial label noise at rate η = Ω(ε3/ log(1/ε)).

1.2 Previous Work

Here is some of the most closely related previous work.

Malicious noise. General-purpose tools developed by Kearns and Li [12, 13] directly
imply that halfspaces can be learned for any distribution over the domain in randomized
poly(n,1/ε) time with malicious noise at a rate Ω(ε/n); the algorithm repeatedly picks
a random subsample of the training data, hoping to miss all the noisy examples. Kan-
nan (see [1]) devised a deterministic algorithm with a Ω(ε/n) bound that repeatedly
finds a group of n+1 examples that includes a noisy example, then removes the group.
Kalai, et al. [11] showed that the poly(n,1/ε)-time the averaging algorithm [24] toler-
ates noise at a rate Ω(ε/

√
n) when the distribution is uniform. They also described an

improvement to Ω̃(ε/n1/4) based on the observation that uniform examples will tend
to be well-separated, so that pairs of examples that are too close to one another can be
removed.

Adversarial label noise. Kalai, et al. showed that if the distribution over the instances
is uniform over the unit ball, the averaging algorithm tolerates adversarial label noise
at a rate O(ε/

√
log(1/ε)) in poly(n,1/ε) time. (In that paper, adversarial label noise

was called “agnostic learning”.) They also described an algorithm that fits low-degree
polynomials that tolerates noise at a rate within an additive ε of the accuracy, but in

poly
(
n1/ε4

)
time; for log-concave distributions, their algorithm took poly

(
nd(1/ε)

)
time, for an unspecified function d. The latter algorithm does not require that the distri-
bution is isotropic, as ours does.

Robust PCA. Independently of this work, Xu et al. [28] designed and analyzed an
algorithm that performs principal component analysis when some of the examples are
corrupted arbitrarily, as in the malicious noise model studied here.

1.3 Techniques

Outlier Removal. Consider first the simplest problem of learning an origin-centered
halfspace with respect to the uniform distribution on the n-dimensional ball. A natural
idea is to use a simple “averaging” algorithm that takes the vector average of the positive
examples it receives and uses this as the normal vector of its hypothesis halfspace.
Servedio [24] analyzed this algorithm for the random classification noise model, and
Kalai et al. [11] extended the analysis to the adversarial label noise model.

Intuitively the “averaging” algorithm can only tolerate low malicious noise rates be-
cause the adversary can generate noisy examples which “pull” the average vector far
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from its true location. Our main insight is that the adversary does this most effectively
when the noisy examples are coordinated to pull in roughly the same direction. We use
a form of outlier detection based on Principal Component Analysis to detect such co-
ordination. This is done by computing the direction w of maximal variance of the data
set; if the variance in direction w is suspiciously large, we remove from the sample all
points x for which (w · x)2 is large. Our analysis shows that this causes many noisy
examples, and only a few non-noisy examples, to be removed.

We repeat this process until the variance in every direction is not too large. (This
cannot take too many stages since many noisy examples are removed in each stage.)
While some noisy examples may remain, we show that their scattered effects cannot
hurt the algorithm much.

Thus, in a nutshell, our overall algorithm for the uniform distribution is to first do
outlier removal1 by an iterated PCA-type procedure, and then simply run the averaging
algorithm on the remaining “cleaned-up” data set.

Extending to Log-Concave Distributions via Smooth Boosting. We are able to show
that the iterative outlier removal procedure described above is useful for isotropic log-
concave distributions as well as the uniform distribution: if examples are removed in a
given stage, then many of the removed examples are noisy and only a few are non-noisy
(the analysis here uses concentration bounds for isotropic log-concave distributions).
However, even if there were no noise in the data, the average of the positive examples
under an isotropic log-concave distribution need not give a high-accuracy hypothesis.
Thus the averaging algorithm alone will not suffice after outlier removal.

To get around this, we show that after outlier removal the average of the positive
examples gives a (real-valued) weak hypothesis that has some nontrivial predictive ac-
curacy. (Interestingly, the proof of this relies heavily on anti-concentration properties
of isotropic log-concave distributions!) A natural approach is then to use a boosting
algorithm to convert this weak learner into a strong learner. This is not entirely straight-
forward because boosting “skews” the distribution of examples; this has the undesirable
effects of both increasing the effective malicious noise rate, and causing the distribu-
tion to no longer be isotropic log-concave. However, by using a “smooth” boosting
algorithm [25] that skews the distribution as little as possible, we are able to control
these undesirable effects and make the analysis go through. (The extra factor of ε in the
bound of Theorem 2 compared with Theorem 1 comes from the fact that the boosting
algorithm constructs “1/ε-skewed” distributions.)

We note that our approach of using smooth boosting is reminiscent of [23, 25], but
the current algorithm goes well beyond that earlier work. [23] did not consider a noisy
scenario, and [25] only considered the averaging algorithm without any outlier removal
as the weak learner (and thus could only handle quite low rates of malicious noise in
our isotropic log-concave setting).

Finally, our results for learning under isotropic log-concave distributions with ad-
versarial label noise are obtained using a similar approach. The algorithm here is in

1 We note briefly that the sophisticated outlier removal techniques of [2, 5] do not seem to be
useful in our setting; those works deal with a strong notion of outliers, which is such that
no point on the unit ball can be an outlier if a significant fraction of points are uniformly
distributed on the unit ball.
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fact simpler than the malicious noise algorithm: since the adversarial label noise model
does not allow the adversary to alter the distribution of the examples in Rn, we can
dispense with the outlier removal and simply use smooth boosting with the averaging
algorithm as the weak learner. (This is why we get a slightly better quantitative bound
in Theorem 3 than Theorem 2).

Organization. We present the simpler and more easily understood uniform distribution
analysis first, proving Theorem 1 in Section 2. The proof of Theorem 2, which builds
on the ideas of Theorem 1, is sketched in Section 3. In Section 1.2, we described some
of the most closely related previous work. Because of space constraints the proof of
Theorem 3 is omitted here and is given in the full version [14].

2 The Uniform Distribution and Malicious Noise

In this section we prove Theorem 1. As described above, our algorithm first does outlier
removal using PCA and then applies the “averaging algorithm.”

We may assume throughout that the noise rate η is smaller than some absolute con-
stant, and that the dimension n is larger than some absolute constant.

2.1 The Algorithm: Removing Outliers and Averaging

Consider the following Algorithm Amu:

1. Draw a sample S of m = poly(n/ε) many examples from the malicious oracle.
2. Identify the direction w ∈ Sn−1 that maximizes

σ2
w

def
=

∑
(x,y)∈S

(w · x)2.

If σ2
w < 10m log m

n then go to Step 4 otherwise go to Step 3.
3. Remove from S every example that has (w · x)2 ≥ 10 log m

n . Go to Step 2.
4. For the examples S that remain let v = 1

|S|
∑

(x,y)∈S yx and output the linear
classifier hv defined by hv(x) = sgn(v · x).

We first observe that Step 2 can be carried out in polynomial time:

Lemma 1. There is a polynomial-time algorithm that, given a finite collection S of
points in Rn, outputs w ∈ Sn−1 that maximizes

∑
x∈S(w · x)2.

Proof. By applying Lagrange multipliers, we can see that the optimal w is an eigen-
vector of A =

∑
x∈S xx

T . Further, if λ is the eigenvalue of w, then
∑

x∈S(w · x)2 =
wTAw = wT (λw) = λ. The eigenvector w with the largest eigenvalue can be found
in polynomial time (see e.g. [10]). �

Before embarking on the analysis we establish a terminological convention. Much of
our analysis deals with high-probability statements over the draw of the m-element
sample S; it is straightforward but quite cumbersome to explicitly keep track of all of
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the failure probabilities. Thus we write “with high probability” (or “w.h.p.”) in various
places below as a shorthand for “with probability at least 1 − 1/poly(n/ε).” The inter-
ested reader can easily verify that an appropriate poly(n/ε) choice of m makes all the
failure probabilities small enough so that the entire algorithm succeeds with probability
at least 1/2 as required.

2.2 Properties of the Clean Examples

In this subsection we establish properties of the clean examples that were sampled in
Step 1 ofAmu. The first says that no direction has much more variance than the expected
variance of 1/n. Its proof, which uses standard tools from VC theory, is omitted due to
space constraints.

Lemma 2. W.h.p. over a random draw of � clean examples Sclean, we have

max
a∈Sn−1

{
1
�

∑
(x,y)∈Sclean

(a · x)2
}

≤ 1
n

+

√
O(n) logm

�
.

The next lemma says that in fact no direction has too many clean examples lying far
out in that direction. Its proof, which uses Lemma 7 of [4], is omitted due to space
constraints.

Lemma 3. For any β > 0 and κ > 1, if Sclean is a random set of � ≥ O(1)·n2β2eβ2n/2

(1+κ) ln(1+κ)

clean examples then w.h.p. we have

max
a∈Sn−1

{
1
�

∑
x∈Sclean

1(a·x)2>β2

}
≤ (1 + κ)e−β2n/2.

2.3 What Is Removed

In this section, we provide bounds on the number of clean and dirty examples removed
in Step 3.

The first bound is a Corollary of Lemma 3.

Corollary 1. W.h.p. over the random draw of the m-element sample S, the number of
clean examples removed during the any execution of Step 3 in Amu is at most 6n logm.

Proof. Since the noise rate η is sufficiently small, w.h.p. the number � of clean examples
is at least (say) m/2. We would like to apply Lemma 3 with κ = 5�4n log � and β =√

10 log m
n , and indeed we may do this because we have

O(1) · n2β2eβ2n/2

(1 + κ) ln(1 + κ)
≤ O(1) · n(logm)m5

(1 + κ) ln(1 + κ)
≤ O

(
m

logm

)
≤ m

2
≤ �

for n sufficiently large. Since clean points are only removed if they have (a · x)2 > β2,
Lemma 3 gives us that the number of clean points removed is at most

m(1+κ)e−β2n/2 ≤ 6m5n log(�)/m5 ≤ 6n logm. �
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The counterpart to Corollary 1 is the following lemma. It tells us that if examples are
removed in Step 3, then there must be many dirty examples removed. It exploits the fact
that Lemma 2 bounds the variance in all directions a, so that it can be reused to reason
about what happens in different executions of step 3.

Lemma 4. W.h.p. over the random draw of S, whenever Amu executes step 3, it re-
moves at least 4m log m

n noisy examples from Sdirty, the set of dirty examples in S.

Proof. As stated earlier we may assume that η ≤ 1/4. This implies that w.h.p. the
fraction η̂ of noisy examples in the initial set S is at most 1/2. Finally, Lemma 2 implies
that m = Ω̃(n2) suffices for it to be the case that w.h.p., for all a ∈ Sn−1, for the
original multiset Sclean of clean examples drawn in step 1, we have∑

(x,y)∈Sclean

(a · x)2 ≤ 2m
n
. (1)

We shall say that a random sample S that satisfies all these requirements is “reason-
able”. We will show that for any reasonable dataset, the number of noisy examples
removed during the execution of step 3 of Amu is at least 4m log m

n .
If we remove examples using direction w then it means

∑
(x,y)∈S(w · x)2 ≥

10m log m
n . Since S is reasonable, by (1) the contribution to the sum from the clean

examples that survived to the current stage is at most 2m/n so we must have∑
(x,y)∈Sdirty

(w · x)2 ≥ 10m log(m)/n− 2m/n > 9m log(m)/n.

Let us decompose Sdirty into N ∪ F where N (“near”) consists of those points x
s.t. (w · x)2 ≤ 10 log(m)/n and F (“far”) is the remaining points for which (w ·
x)2 > 10 log(m)/n. Since |N | ≤ |Sdirty| ≤ η̂m, (any dirty examples removed
in earlier rounds will only reduce the size of Sdirty) we have

∑
(x,y)∈N(w · x)2 ≤

(η̂m)10 log(m)/n and so

|F | ≥
∑

(x,y)∈F

(w · x)2 ≥ 9m log(m)/n− (η̂m)10 log(m)/n ≥ 4m log(m)/n

(the last line used the fact that η̂ < 1/2). Since the points in F are removed in Step 3,
the lemma is proved. �

2.4 Exploiting Limited Variance in Any Direction

In this section, we show that if all directional variances are small, then the algorithm’s
final hypothesis will have high accuracy.

We first recall a simple lemma which shows that a sample of “clean” examples results
in a high-accuracy hypothesis for the averaging algorithm:

Lemma 5 ([24]). Suppose x1, ...,xm are chosen uniformly at random from Sn−1, and
a target weight vector u ∈ Sn−1 produces labels y1 = sign(u · x1), ..., ym = sign(u ·
xm). Let v = 1

m

∑m
t=1 ytxt. Then w.h.p. the component of v in the direction of u

satisfies u ·v = Ω( 1√
n
), while the rest of v satisfies ||v−(u ·v)u|| = O(

√
log(n)/m).
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Now we can state Lemma 6.

Lemma 6. Let S = Sclean ∪ Sdirty be the sample of m examples drawn from the noisy
oracle EXη(f,U). Let

– S′
clean be those clean examples that were never removed during step 3 of Amu,

– S′
dirty be those dirty examples that were never removed during step 3 of Amu,

– η′ = |S′
dirty|

|S′
clean∪S′

dirty| , i.e. the fraction of dirty examples among the examples that

survive step 3, and

– α = |Sclean−S′
clean|

|S′
clean∪S′

dirty| , the ratio of the number of clean points that were erroneously

removed to the size of the final surviving data set.

Let S′ def
= S′

clean ∪ S′
dirty. Suppose that , for every direction w ∈ Sn−1 we have

σ2
w

def
=

∑
(x,y)∈S′

(w · x)2 ≤ 10m logm
n

.

Then w.h.p. over the draw of S, the halfspace with normal vector v
def
=

1
|S′|

∑
(x,y)∈S′ yx has error rate

O

(√
η′ logm+ α

√
n+

√
n logn
m

)
.

Proof. The claimed bound is trivial unless η′ ≤ o(1)/ logm and α ≤ o(1)/
√
n, so we

shall freely use these bounds in what follows.
Let u be the unit length normal vector for the target halfspace. Let vclean be the

average of all the clean examples, v′
dirty be the average of the dirty (noisy) examples

that were not deleted (i.e. the examples in S′
dirty), and vdel be the average of the clean

examples that were deleted. Then

v =
1

|S′
clean ∪ S′

dirty|
∑

(x,y)∈S′
clean∪S′

dirty

yx

=
1

|S′
clean ∪ S′

dirty|

(( ∑
(x,y)∈Sclean

yx

)
+

( ∑
(x,y)∈S′

dirty

yx

)

−
( ∑

(x,y)∈Sclean−S′
clean

yx

))
v = (1 − η′ + α)vclean + η′v′

dirty − αvdel. (2)

Let us begin by exploiting the bound on the variance in every direction to bound the
length of v′

dirty. For any w ∈ Sn−1 we know that

∑
(x,y)∈S′

(w · x)2 ≤ 10m logm
n

, and hence
∑

(x,y)∈S′
dirty

(w · x)2 ≤ 10m logm
n
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since S′
dirty ⊆ S′. The Cauchy-Schwarz inequality now gives

∑
(x,y)∈S′

dirty

|w · x| ≤

√
10m|S′

dirty| logm
n

.

Taking w to be the unit vector in the direction of v′
dirty, we have ‖v′

dirty‖ =

w · v′
dirty = w · 1

|S′
dirty|

∑
(x,y)∈S′

dirty

yx ≤ 1
|S′

dirty|
∑

(x,y)∈S′
dirty

|w · x| ≤
√

10m logm
|S′

dirty|n
.

(3)
Because the domain distribution is uniform, the error of hv is proportional to the

angle between v and u, in particular,

Pr[hv �= f ] =
1
π

arctan
(
||v − (v · u)u||

u · v

)
≤ (1/π)

||v − (v · u)u||
u · v . (4)

We have that ||v − (v · u)u|| equals

||(1−η′ + α)(vclean−(vclean · u)u) + η′(v′
dirty − (v′

dirty · u)u) − α(vdel − (vdel · u)u)||
≤ 2||vclean − (vclean · u)u|| + η′||v′

dirty|| + α||vdel||
where we have used the triangle inequality and the fact that α, η are “small.” Lemma 5
lets us bound the first term in the sum by O(

√
log(n)/m), and the fact that vdel is

an average of vectors of length 1 lets us bound the third by α. For the second term,
Equation (3) gives us

η′‖v′
dirty‖ ≤

√
10m(η′)2 logm

|S′
dirty|n

=

√
10mη′ logm

|S′|n ≤
√

20η′ logm
n

,

where for the last equality we used |S′| ≥ m/2 (which is an easy consequence of
Corollary 1 and the fact that w.h.p. |Sclean| ≥ 3m/4). We thus get

||v − (v · u)u|| ≤ O
(√

log(n)/m
)

+
√

20η′ log(m)/n+ α. (5)

Now we consider the denominator of (4). We have

u · v = (1 − η′ + α)(u · vclean) + η′u · v′
dirty − αu · vdel.

Similar to the above analysis, we again use Lemma 5 (but now the lower bound u ·v ≥
Ω(1/

√
n), Equation (3), and the fact that ||vdel|| ≤ 1. Since α and η′ are “small,” we

get that there is an absolute constant c such that u ·v ≥ c/
√
n−

√
20η′ log(m)/n−α.

Combining this with (5) and (4), we get

Pr[hv �= f ] ≤
O

(√
log n

m

)
+

√
20η′ log m

n
+ α

c√
n
−

√
20η′ log m

n
− α

= O

(√
n log n

m
+

√
η′ log m + α

√
n

)
.

�
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2.5 Proof of Theorem 1

By Corollary 1, with high probability, each outlier removal stage removes at most
6n logm clean points.

Since each outlier removal stage removes at least 4m log m
n noisy examples, there

must be at most O(n/(logm)) such stages. Consequently the total number of clean
examples removed across all stages is O(n2). Since w.h.p. the initial number of clean
examples is at least m/2, this means that the final data set (on which the averaging
algorithm is run) contains at least m/2 − O(n2) clean examples, and hence at least
m/2 − O(n2) examples in total. Consequently the value of α from Lemma 6 after the
final outlier removal stage (the ratio of the total number of clean examples deleted, to
the total number of surviving examples) is at most 2n2

m/2−n2 .
The standard Hoeffding bound implies that w.h.p. the actual fraction of noisy exam-

ples in the original sample S is at most η+
√
O(logm)/m. It is easy to see that w.h.p.

the fraction of dirty examples does not increase (since each stage of outlier removal re-
moves more dirty points than clean points, for a suitably large poly(n/ε) value of m),
and thus the fraction η′ of dirty examples among the remaining examples after the final
outlier removal stage is at most η+

√
O(logm)/m. Applying Lemma 6, for a suitably

large value m = poly(n/ε), we obtain Pr[hv �= f ] ≤ O
(√

η logm
)
. Rearranging this

bound, we can learn to accuracy ε even for η = Ω(ε2/ log(n/ε)). This completes the
proof of the theorem. �

3 Isotropic Log-Concave Distributions and Malicious Noise

Our algorithm Amlc that works for arbitrary log-concave distributions uses smooth
boosting.

3.1 Smooth Boosting

A boosting algorithm uses a subroutine, called a weak learner, that is only guaran-
teed to output hypotheses with a non-negligible advantage over random guessing.2 The
boosting algorithm that we consider uses a confidence-rated weak learner [22], which
predicts {−1, 1} labels using continuous values in [−1, 1]. Formally, the advantage of
a hypothesis h′ with respect to a distribution D′ is defined to be Ex∼D′[h′(x)f(x)],
where f is the target function.

For the purposes of this paper, a boosting algorithm makes use of the weak learner,
an example oracle (possibly corrupted with noise), a desired accuracy ε, and a bound γ
on the advantage of the hypothesis output by the weak learner.

A boosting algorithm that is trying to learn an unknown target function f with respect
to some distribution D repeatedly simulates a (possibly noisy) example oracle for f
with respect to some other distribution D′ calls a subroutine Aweak with respect to this
oracle, receiving a weak hypothesis, which maps Rn to the continuous interval [−1, 1].

2 For simplicity of presentation we ignore the confidence parameter of the weak learner in our
discussion; this can be handled in an entirely standard way.
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After repeating this for some number of stages, the boosting algorithm combines
the weak hypotheses generated during its various calls to the weak learner into a final
aggregate hypothesis which it outputs.

Let D,D′ be two distributions over Rn. We say that D′ is (1/ε)-smooth with respect
to D if D(x) ≤ (1/ε)D′(x) for all x ∈ Rn.

The following lemma from [25] (similar results can be readily found elsewhere, see
e.g. [8]) identifies the properties that we need from a boosting algorithm for our analy-
sis.

Lemma 7 ([25]). There is a boosting algorithm B and a polynomial p such that, for
any ε, γ > 0, the following properties hold. When learning a target function f us-
ing EXη(f,D), we have: (a) If each call to Aweak takes time t, then B takes time
p(t, 1/γ, 1/ε). (b) The weak learner is always called with an oracle EXη′(f,D′) where
D′ is (1/ε)-smooth with respect to D and η′ ≤ η/ε. (c) Suppose that for each distri-
bution EXη′(f,D′) passed to Aweak by B, the output of Aweak has advantage γ. Then
the final output h of B satisfies Prx∈D[h(x) �= f(x)] ≤ ε.

3.2 The Algorithm

Our algorithm for learning under isotropic log-concave distributions with malicious
noise, Algorithm Amlc, applies the smooth booster from Lemma 7 with the following
weak learner, which we call Algorithm Amlcw. (The value c0 is an absolute constant
that will emerge from our analysis.)

1. Draw m = poly(n/ε) examples from the oracle EXη′(f,D′).
2. Remove all those examples (x, y) for which ||x|| >

√
3n logm.

3. Repeatedly
– find a direction (unit vector) w that maximizes

∑
(x,y)∈S(w · x)2 (see

Lemma 1)
– if

∑
(x,y)∈S(w ·x)2 ≤ c0m log(n/ε) then move on to Step 4, and otherwise

– remove from S all examples (x, y) for which (w · x)2 > c0 log(n/ε), and
iterate again.

4. Let v = 1
|S|

∑
(x,y)∈S yx, and return h defined by h(x) = v·x

3n log m , if |v · x| ≤
3n logm, and h(x) = sgn(v · x) otherwise.

Our main task is to analyze the weak learner. Given the following Lemma, Theorem 2
will be an immediate consequence of Lemma 7. The proof is omitted due to space
constraints.

Lemma 8. Suppose Algorithm Amlcw is run using EXη′(f,D′) where f is an origin-
centered halfspace, D′ is (1/ε)-smooth w.r.t. an isotropic log-concave distribution D,
η′ ≤ η/ε, and η ≤ Ω(ε3/ log(n/ε)). Then w.h.p. the hypothesis h returned by Amlcw

has advantage Ω
(

ε2

n log(n/ε)

)
.

Proof Sketch. We exploit the fact that isotropic logconcave distributions are not very
concentrated to show that clean examples tend to be classified correctly by a large
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margin. We then use concentration bounds to prove analogs of Lemmas 2 and 3, and
put them together in a roughly similar way. �
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Abstract. This paper considers the problem of efficiently transmitting
quantum states through a network. It has been known for some time
that without additional assumptions it is impossible to achieve this task
perfectly in general — indeed, it is impossible even for the simple butterfly
network. As additional resource we allow free classical communication
between any pair of network nodes. It is shown that perfect quantum
network coding is achievable in this model whenever classical network
coding is possible over the same network when replacing all quantum
capacities by classical capacities. More precisely, it is proved that perfect
quantum network coding using free classical communication is possible
over a network with k source-target pairs if there exists a classical linear
(or even vector-linear) coding scheme over a finite ring. Our proof is
constructive in that we give explicit quantum coding operations for each
network node. This paper also gives an upper bound on the number of
classical communication required in terms of k, the maximal fan-in of
any network node, and the size of the network.

1 Introduction

Network coding was introduced by Ahlswede, Cai, Li and Yeung [1] to send
multiple messages efficiently through a network. Usually, the network itself is
given as a weighted, directed acyclic graph with the weights denoting the ca-
pacities of the edges. A typical example is the butterfly network in Fig. 1. In
this example the task is to send one bit from s1 to t1 and another bit from s2
to t2, where each edge is a channel of unit capacity. It is obviously impossible
to send two bits simultaneously by routing since the edge between n1 and n2

becomes a bottleneck. However, using coding at the nodes as shown in Fig. 1,
it is feasible to send the two bits as desired. Two fundamental observations are
in order: First, copying classical information is possible. In the example of the
butterfly network, this is used for the operations performed at nodes s1, s2, and
n2. Second, and perhaps more importantly, information can be encoded. In the
example, this is used at nodes n1, t1, and t2 where the XOR operation (i.e.,

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 622–633, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. The butterfly network and a classical linear coding protocol. The node s1

(resp. s2) has for input a bit x1 (resp. x2). The task is to send x1 to t1 and x2 to t2.
The capacity of each edge is assumed to be one bit.

addition over the finite field F2) is applied. After the seminal result [1], network
coding has been widely studied from both theoretical and experimental points
of view and many applications have been found. A good resource is the network
coding home page [11].

The multicast problem is a task that can be elegantly solved by network cod-
ing. In this problem, all messages at one source node must be sent to each of
several target nodes. Ahlswede et al. [1] showed that the upper bound on the
achievable rate given by the min-cut/max-flow condition is in fact always achiev-
able. In other words, network coding allows one to send m messages if and only
if the value of any cut between the source node and each target node is at least
m. Li, Yeung and Cai [14] showed that such a rate is always achievable by linear
coding over a sufficiently large finite field (in which the operation performed
at each node is a linear combination over some finite field). Furthermore, this
result was improved by Jaggi et al. [10] who showed that such encoding can
be constructed in polynomial time with respect to the number of nodes. This
implies that deciding whether a given multicast network has a (linear) network
coding scheme can be solved in polynomial time. This contrasts with the general
network coding problem for which Lehman and Lehman [12] showed that it is
NP-hard to decide whether there exists a linear coding solution.

Another important subclass of network coding problems is the k-pair problem
(also called the multiple-unicast problem). In this setting the network has k pairs
of source/target nodes (si, ti), and each source si wants to send a message xi to
the target ti. Notice that Fig. 1 can be considered as a solution of a two-pair
problem. It was shown by Dougherty and Zeger [4] that the solvability (resp. lin-
ear solvability) of any network coding problem can be reduced to the solvability
(resp. linear solvability) of some instance of the k-pair problem. Combined with
the Lehman-Lehman result, this implies that the linear solvability of the k-pair
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problem is NP-hard. Polynomial-time constructions of linear coding for fixed k
have been investigated [8,19,20], but no complete answer has been obtained yet.

Recently, network coding has become a topic of research in quantum com-
putation and information, giving rise to a theory of quantum network coding.
The most basic setting is the following. The messages are quantum states, and
the network is also quantum, i.e., each edge corresponds to a quantum channel.
The question is whether quantum messages can be sent efficiently to the tar-
get nodes through the network (possibly using the idea of network coding). A
very basic difficulty immediately arises as opposed to the classical case: quantum
information cannot be copied [17]. Hence, multicasting quantum messages is im-
possible without imposing any extra conditions. One approach to work around
this problem has been developed by Shi and Soljanin [18], who constructed a
perfect multicasting scheme over families of quantum networks under the condi-
tion that the source owns many copies of quantum states. A more natural target
may be the k-pair problem since here the number of inputs matches the number
of outputs. For this problem, however, there are already a number of negative
results known for the above basic setting. First, Hayashi et al. [7] showed that
sending two qubits simultaneously and perfectly (i.e., with fidelity one) on the
butterfly network is impossible. Leung, Oppenheim and Winter [13] extended
this impossibility result to the case where the messages have to be sent in an
asymptotically perfect way, and also to classes of networks other than the butter-
fly network. This means that some extra condition is needed to achieve perfect
quantum network coding for the k-pair problem case as well.

Main results. The extra condition considered in this paper is to allow free clas-
sical communication to assist with sending quantum messages perfectly through
the network. That is, any two nodes can communicate with each other through
a classical channel which can be used freely (i.e., at no cost). Free classical com-
munication as an extra resource often appears in quantum information theory,
e.g., entanglement distillation and dilution (see Ref. [17]). Also, from a practi-
cal viewpoint, quantum communication is a very limited resource while classical
communication is much easier to implement. Thus it would be desirable if the
amount of quantum communication could be reduced using network coding with
the help of classical communication. Another extra resource that may be consid-
ered (and rather popular in quantum information processing) is entanglement,
such as shared EPR pairs. However, it has the weakness that, once used, quan-
tum communication is needed to recreate it. Therefore, allowing free classical
communication arguably is a comparatively mild additional resource for perfect
quantum network coding.

The first result of this paper (Theorem 1) can be summarized as follows: if
there exists a classical linear coding scheme over a ring R for a k-pair problem
given by a graph G = (V,E), then there exists a solution to the quantum k-
pair problem over the same graph G if free classical communication is allowed.
The idea to obtain this result is to perform a node-by-node simulation of the
coding scheme solving the classical problem. For example, suppose that, in the
classical coding scheme, a node v of G performs the map (z1, z2)  → f(z1, z2)
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where f : R2 → R is some function. In the quantum case, this node will perform
the quantum map |z1, z2〉|0〉  → |z1, z2〉|f(z1, z2)〉. A basic observation is that
the first two registers should be ideally “removed” in order to simulate properly
the classical scheme. This task does not seem straightforward since the quantum
state is in general a superposition of basis states, and this superposition has
to be preserved so that the input state can be recovered at target nodes. Our
key technique shows that this can be done if free classical communication is
allowed, and if the classical scheme to be simulated is linear. More precisely, these
registers are “removed” by measuring them in the Fourier basis associated with
the additive group of R. An extra phase then appears, but it can be corrected
locally at each target node as will be proved in Section 3. This requires (free)
classical communication. In our construction it is sufficient to send at most
kM |V | elements of R, where M is the maximal fan-in of nodes of G.

A classical coding scheme is called vector-linear if the operation at each node
is of the form

∑
i Aivi, where the vi’s are the vectors input to the node and Ai

is a matrix to apply to vi. The result above can be extended to the vector-linear
coding case as well (Theorem 2). That is, if there exists a classical vector-linear
coding scheme over a ring R for a k-pair problem given by a graph G, then there
also exists a solution to the quantum k-pair problem over the same graph G
(again if free classical communication is allowed). Notice that there are examples
of graphs over which a vector-linear solution is known but no linear coding
scheme exists (see Refs. [16,12]). There are also examples for which even vector-
linear coding is not sufficient [3]. However, most of known networks solvable by
network coding have vector-linear solutions, and hence our result is applicable
quite widely (and actually is even applicable to the examples in Ref. [3]).

Related work. There are several papers studying quantum network coding on
the k-pair problem in situations different from the most basic setting (perfect
transmission of quantum states using only a quantum network of limited capac-
ity). Hayashi et al. [7] and Iwama et al. [9] considered “approximate” transmis-
sion of qubits in the k-pair problem, and showed that transmission with fidelity
larger than 1/2 is possible for a class of networks. Hayashi [6] showed how to
achieve perfect transmission of two qubits on the butterfly network if two source
nodes have prior entanglement, and if, at each edge, we can choose between send-
ing two classical bits and sending one qubit. Leung, Oppenheim and Winter [13]
considered various extra resources such as free forward/backward/two-way clas-
sical communication and entanglement, and investigated the lower/upper bounds
of the rate of quantum network coding for their settings. The setting of the
present paper is close to their model allowing free two-way classical communi-
cation. The difference is that Ref. [13] considered asymptotically perfect trans-
mission while this paper focuses on perfect transmission. Also, Ref. [13] showed
optimal rates for a few classes of networks while the present paper gives lower
bounds for much wider classes of networks.

As mentioned in Ref. [13], free classical communication essentially makes the
underlying directed graph of the quantum network undirected since quantum
teleportation enables one to send a quantum message to the reverse direction
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of a directed edge. In this context, our result gives a lower bound of the rate
of quantum network coding that might not be optimal even if its corresponding
classical coding is optimal in the directed graph. However, even in the classical
case, network coding over an undirected graph is much less known than that over
a directed one. In the multicast network, the gap between the rates by network
coding and by routing is known to be at most two [15], while there is an example
for which the min-cut rate bound cannot be achieved by network coding [15,2].
Also notice that, in the k-pair problem, it is conjectured that fractional routing
achieves the optimal rate for any undirected graph (see for example Ref. [5]).
However, this conjecture has been proved only for very few families of networks,
and remains one of the main open problems in the field of network coding.

2 The k-Pair Problem

The classical k-pair problem. We recall the statement of the k-pair problem
in the classical case, and the definition of a solution to this problem. The reader
is referred to, for example, Ref. [4] for further details.

An instance of a k-pair problem is a directed graph G = (V,E) and k pairs of
nodes (s1, t1), . . . , (sk, tk). For i ∈ {1, . . . , k}, each xi is given at the source si,
and has to be sent to the target ti through G under the condition that each edge
has unit capacity. Let Σ be a finite set. A coding scheme over Σ is a choice of
operations for all nodes in V : for each node v ∈ V with fan-in m and fan-out n,
the operation at v is written as n functions fv,1, . . . , fv,n, each from Σm to Σ,
where the value fv,i(z1, . . . , zm) represents the message sent through the i-th
outgoing edge of v when the inputs of the m incoming edges are z1, . . . , zm. A
solution over Σ to an instance of the k-pair problem is a coding scheme over
Σ that enables one to send simultaneously k messages xi from si to ti, for
all i ∈ {1, . . . , k}. For example, the coding scheme in Fig. 1 is a solution over F2

to the two-pair problem associated with the butterfly graph.
For convenience, the following simple but very useful convention is assumed

when describing a classical coding scheme. Each source si is supposed to have a
“virtual” incoming edge from which it receives its input xi. Also, each target ti is
supposed to have a “virtual” outgoing edge, where xi must be output through. In
this way, the source and target nodes perform coding operations on their inputs,
and this convention enables us to ignore the distinction between source/target
nodes and internal nodes. These conventions are illustrated in Fig. 1.

The quantum k-pair problem. We suppose that the reader is familiar with
the basics of quantum information theory and refer to Ref. [17] for a good refer-
ence. In this paper we will consider d-dimensional quantum systems, i.e., quan-
tum states that are normalized vectors in a complex Hilbert space of dimension d,
for some positive integer d.

An instance of a quantum k-pair problem is, as in the classical case, a directed
graph G = (V,E) and k pairs of nodes (s1, t1), . . . , (sk, tk). Let H be a Hilbert
space. The goal is to send a quantum state |ψ〉 ∈ H⊗k supported on the source
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nodes s1, . . . , sk (in this order) to the target nodes t1, . . . , tk (in this order).
We consider the model where each edge of G can transmit one quantum state
over H. However, free classical communication is allowed between any two nodes
of G. Let d be a positive integer. We say that an instance of the quantum k-
pair problem is solvable over Cd if there exists a protocol solving this problem
for H = Cd.

3 Perfect Quantum Network Coding

3.1 Linear Coding over Rings

This subsection considers instances of the k-pair problem for which there exists
a solution using classical linear coding over rings, i.e., Σ is supposed to be a
finite ring R (not necessarily commutative). A coding scheme is said linear over
R if the functions fv,i corresponding to the encoding operations performed at
each node v ∈ V are linear.

The main result of this subsection is the following theorem.

Theorem 1. Let G = (V,E) be a directed graph and (s1, t1), . . . , (sk, tk) be k
pairs of nodes. Let M be the maximal fan-in of nodes in G and R be a finite ring.
Suppose that there exists a linear solution over R to the associated classical k-pair
problem. Then the corresponding quantum k-pair problem is solvable over C|R|.
Moreover, there exists a quantum protocol for this task that sends at most kM |V |
elements of R as free classical communication, i.e., at most kM |V |�log2 |R|� bits
of classical communication.

The basic strategy for proving Theorem 1 is to perform a quantum simulation
of the classical coding scheme. Before presenting the proof of this theorem, we
need some preliminaries.

Let φ be a group isomorphism from the additive group of R to some abelian
group A = Zr1 × · · · × Zr�

with Π�
i=1ri = |R| (but φ is not necessarily a ring

isomorphism). There are many possibilities for the choice of A and φ. One con-
venient choice is to take Zr1 × · · ·×Zr�

to be the invariant factor decomposition
of the additive group of R. For any x ∈ R and i ∈ {1, . . . , �}, let φi(x) denote
the i-th coordinate of φ(x), i.e., an element of Zri . In the quantum setting, we
suppose that each register contains a quantum state over H = C|R|, and denote
by {|z〉}z∈R an orthonormal basis of H. We define a unitary operator W over
the Hilbert space H as follows: for any y ∈ R, the operator W maps the basis
state |y〉 to the state

1√
|R|

∑
z∈R

exp
(
2πι

�∑
i=1

φi(y) · φi(z)
ri

)
|z〉.

Here φi(y) ·φi(z) denotes the product of φi(y) and φi(z), seen in the natural way
as an element of the set {0, . . . , ri − 1}. Note that W is basically the quantum
Fourier transform over the additive group of R.
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Let m and n be two positive integers and f1, . . . , fn be n functions from Rm

to R. Let Uf1,...,fn be the unitary operator over the Hilbert space H⊗m ⊗H⊗n

defined as follows: for any m elements y1, . . . , ym and any n elements z1, . . . , zn

of R, the operator Uf1,...,fn maps the basis state |y1, . . . , ym〉|z1, . . . , zn〉 to the
state

|y1, . . . , ym〉|z1 + f1(y1, . . . , ym), . . . , zn + fn(y1, . . . , ym)〉.
Now let us define the following quantum procedure Encoding(f1, . . . , fn).

Procedure Encoding(f1, . . . , fn)
input: quantum registers Q1, . . . ,Qm, each corresponding to H
output: quantum registers Q′

1, . . . ,Q
′
n, each corresponding to H,

and elements a1, . . . , am of R
1 Introduce n registers Q′

1, . . . ,Q
′
n, each initialized to |0H〉.

2 Apply the operator Uf1,...,fn to (Q1, . . . ,Qm,Q
′
1, . . . ,Q

′
n).

3 For each i ∈ {1, . . . ,m}, apply W to Qi.
4 Measure the first m registers Q1, . . . ,Qm in the computational basis.

Let a1, . . . , am ∈ R denote the outcomes of the measurements.
5 Output Q′

1, . . . ,Q
′
n and the m elements a1, . . . , am.

The behavior of this procedure on a basis state is described in the next propo-
sition.

Proposition 1. Suppose that the contents of the registers Q1, . . . ,Qm is the
state |y1, . . . , ym〉(Q1,...,Qm) for some elements y1, . . . , ym of R. Then the contents
of the registers Q′

1, . . . ,Q
′
n after applying Procedure Encoding(f1, . . . , fn) is a

state of the form

exp (2πιg(y1, . . . , ym)) |f1(y1, . . . , ym), . . . , fn(y1, . . . , ym)〉(Q′
1,...,Q′

n),

where g : Rm → Q is an additive group homomorphism determined by the mea-
surement outcomes a1, . . . , am.

Proof. After Step 3, the resulting state is

1√
|R|m

∑
z1,...,zm∈R

exp

⎛⎝2πι
�∑

i=1

m∑
j=1

φi(yj) · φi(zj)
ri

⎞⎠
× |z1, . . . , zm〉(Q1,...,Qm)|f1(y1, . . . , ym), . . . , fn(y1, . . . , ym)〉(Q′

1,...,Q′
n).

At Step 4, if the measurement outcomes are a1, . . . , am, where each ai is an
element of R, then the state in (Q′

1, . . . ,Q
′
n) becomes

exp

⎛⎝2πι
�∑

i=1

m∑
j=1

φi(aj) · φi(yj)
ri

⎞⎠ |f1(y1, . . . , ym), . . . , fn(y1, . . . , ym)〉(Q′
1,...,Q′

n).

This can be rewritten as

exp (2πιg(y1, . . . , ym))|f1(y1, . . . , ym), . . . , fn(y1, . . . , ym)〉(Q′
1,...,Q′

n),
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where g(y1, . . . , ym) =
∑�

i=1

∑m
j=1

φi(aj)·φi(yj)
ri

. Notice that g is an additive group
homomorphism determined by the values of a1, . . . , am. �

Now we are ready to give the proof of Theorem 1.

Proof (of Theorem 1). Let G = (V,E) be a graph on which there exists a linear
solution over R to the classical k-pair problem associated with the pairs (si, ti).
For each node v ∈ V with fan-in m and fan-out n, let fv,1, . . . , fv,n be the coding
operations performed at node v in such a solution, where each fv,i is from Rm

to R. Suppose that the input state of the quantum task is

|ψS〉(S1,...,Sk) =
∑

x1,...,xk∈R

αx1,...,xk
|x1〉S1 ⊗ · · · ⊗ |xk〉Sk

,

where the αx1,...,xk
’s are complex numbers such that

∑
x1,...,xk∈R |αx1,...,xk

|2 = 1.
Here, for each i ∈ {1, . . . , k}, Si is a register owned by the node si.

The strategy is to simulate the solution to the associated classical task node
by node. We shall show that the classical coding operation performed at a node
with fan-in m can be simulated by sending km elements of R using free classi-
cal communication. The general bound kM |V | claimed in the statement of the
theorem then follows.

More precisely, let v ∈ V be a node of G with fan-in m and fan-out n.
The coding performed at node v is simulated as follows: the quantum proce-
dure Encoding(fv,1, . . . , fv,n) is used on the m quantum registers input to v
through its m incoming edges. The procedure outputs n registers and m ele-
ments a1, . . . , am of R. Then all the elements a1, . . . , am are sent to each target
node (via free classical communication), and the n registers are sent along on
the n outgoing edges of v. Such a simulation is done for all the nodes in V .

In what follows, we denote by B this strategy. We first describe the behavior
of B when the input is a basis state.

Lemma 1. Let x1, . . . , xk be k elements of R. Then the state after applying B
to |x1〉S1 ⊗ · · · ⊗ |xk〉Sk

is of the form

e2πιh(x1,...,xk)|x1〉T1 ⊗ · · · ⊗ |xk〉Tk
,

where h : Rk → Q is an additive group homomorphism depending only on the
outcomes of the measurements done during the procedure. Here, for each i ∈
{1, . . . , k}, the register Ti is owned by the target node ti.

Proof (of Lemma 1). Since the classical coding scheme is linear, Proposition 1
ensures that, at any step of the protocol, the quantum state of the system is of
the form

β|y1〉Q1 ⊗ · · · ⊗ |yD〉QD (1)

for some positive integer D (depending on the step of the protocol) and some
phase β (depending on the step of the protocol, the outcomes of the measure-
ments done, and the values x1, . . . , xk), such that each yi ∈ R can be written



630 H. Kobayashi et al.

as a linear combination of the xj ’s, in a way that corresponds to the associated
classical coding scheme. Here each Qi is a register owned by some node of the
graph G.

Let us get back to the simulation at node v described above to work out
the general form of the phase β. Suppose that the current state of the quan-
tum system is given by Eq. (1). Suppose, without loss of generality, that the
coding at node v is done on the first m registers. In other words, the sim-
ulation performed at node v is done over the state β|y1, . . . , ym〉(Q1,...,Qm) ⊗
|ym+1, . . . , yD〉(Qm+1,...,QD) where each yi =

∑k
j=1 γi,jxj for some constants γi,j ∈

R (depending on the step of the protocol). Then, from Proposition 1, the simu-
lation done at this step (using the procedure Encoding(fv,1, . . . , fv,n)) can be
seen as transforming this state into the state

βe(2πιhv(x1,...,xk))|fv,1(y1, . . . , ym), . . . , fv,n(y1, . . . , ym)〉(Q′
1,...,Q′

n)

⊗|ym+1, . . . , yD〉(Qm+1,...,QD),

where, if g denotes the function in the statement of Proposition 1,

hv(x1, . . . , xk) = g

⎛⎝ k∑
j=1

γ1,jxj , . . . ,

k∑
j=1

γm,jxj

⎞⎠ .

Since g is a group homomorphism, the function hv : Rk → Q is a group homo-
morphism also.

From the observation that the classical coding scheme solves the associated
classical k-pair problem, we conclude that the state after applying B can be
written as

e2πι
∑

v∈V hv(x1,...,xk)|x1〉T1 ⊗ · · · ⊗ |xk〉Tk
.

The claimed form is obtained by defining the function h as h(x1, . . . , xk) =∑
v∈V hv(x1, . . . , xk). Notice that h is determined only by the values of the

measurements (the constants γi,j are fixed by the choice of the classical coding
scheme). �

Now we proceed with the proof of Theorem 1. Lemma 1 implies that the state
after applying B must be of the form∑

x1,...,xk∈R

αx1,...,xk
e2πιh(x1,...,xk)|x1〉T1 ⊗ · · · ⊗ |xk〉Tk

,

where, for each i ∈ {1, . . . , k}, the register Ti is owned by the target node ti.
Also, Lemma 1 guarantees that each target node ti knows the function h since
the values of all the measurement have been sent to it. Since h is an additive
group homomorphism, it can be written as h(x1, . . . , xk) = h1(x1)+ · · ·+hk(xk),
where the function hi : R → Q maps xi to h(0, . . . , 0, xi, 0, . . . , 0), for each i ∈
{1, . . . , k}.
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Now for each i ∈ {1, . . . , k} the target node ti applies the map Yi to its
register, where Yi is defined as

Yi : |x〉Ti  → e−2πιhi(x)|x〉Ti ,

for any x ∈ R. This step corrects the phases and the resulting state is
|ψS〉(T1,...,Tk). This concludes the proof of Theorem 1. �

In Theorem 1, for the clarity of the proof, we gave the bound kM |V |�log2 |R|� of
the number of classical bits to be sent. For concrete networks, this bound can be
improved significantly: (i) at each node, the measurement outcomes a1, . . . , am

have only to be sent to the target nodes tj such that γi,j �= 0 for some index i ∈
{1, . . . ,m}, and (ii) any node performing only a copy operation does not require
any free classical communication to be simulated quantumly. Furthermore, we
can reduce the amount of classical communication to O(1) in the subclass of
k-pair problems considered in Ref. [8], as shown in the following corollary.

Corollary 1. Suppose that there exists a classical linear coding scheme over a
constant-size finite field F that solves a k-pair problem for a fixed constant k.
Then the corresponding quantum k-pair problem is solvable over C|F| by sending
at most O(1) elements of F as free classical communication.

Proof. Iwama et al. [8] showed that if k and |F| are constant, we can find a
classical linear coding scheme such that the total number of non-trivial linear
operations is a constant (only depending on k and |F|). Then the corollary follows
from Theorem 1. �

3.2 Vector-Linear Coding

This subsection shows how to simulate classical vector-linear coding over any
ring R (possibly not commutative). This is one of the most general settings
considered in the literature, see for example Ref. [3].

Let R be a finite ring. Let Σ be the R-module Rq for some positive integer q.
Informally, this module is the analogue of the usual vector space Fq of dimen-
sion q over a finite field F, but here F is replaced by the ring R. A coding scheme
is said q-vector-linear over R if, for each function fv,i : (Rq)m → Rq correspond-
ing to the i-th encoding operation performed at the node v ∈ V , there exist
matrices B(v,i)

j of size q × q over R such that fv,i(y1, . . . ,ym) =
∑m

j=1 B
(v,i)
j yj

for all (y1, . . . ,ym) ∈ (Rq)m.
Again let φ be a group isomorphism from R to an abelian group Zr1×· · ·×Zr�

,
and, for any x ∈ R and i ∈ {1, . . . , �}, denote by φi(x) the i-th coordinate of φ(x),
i.e., an element of Zri . Given an element x = (x1, . . . , xq) ∈ Rq, let ψi(x) denote
the element (φi(x1), . . . , φi(xq)) in Zq

ri
corresponding to the projections of all

the coordinates of x to Zri .
The following theorem is proved in a manner similar to Theorem 1.

Theorem 2. Let G = (V,E) be a directed graph and (s1, t1), . . . , (sk, tk) be k
pairs of nodes. Let M be the maximal fan-in of nodes in G, R be a finite ring
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and q be a positive integer. Suppose that there exists a q-vector-linear solution
over R to the associated classical k-pair problem. Then the corresponding quan-
tum k-pair problem is solvable over C|R|q . Moreover, there exists a quantum
protocol that sends at most kM |V | elements of Rq as free classical communica-
tion.

Proof. All the results of Subsection 3.1 hold similarly by using the following
Fourier transform W ′ instead of W . The unitary operator W ′ is defined over
the Hilbert space H = C|R|q by its action on the basis states of H: for any
y ∈ Rq, the operator W ′ maps the state |y〉 to the state

1√
|R|q

∑
z∈Rq

exp
(
2πι

�∑
i=1

ψi(y) · ψi(z)
ri

)
|z〉,

where ψi(y) · ψi(z) denotes the inner product of the vectors ψi(y) and ψi(z).
If we denote by A the abelian group of R, then W ′ is basically the quantum
Fourier transform over the abelian group Aq. �

4 Concluding Remarks

This paper has presented a protocol to achieve perfect quantum network coding
with free classical communication. The proposed protocol works for all k-pair
problems that can be solved by linear or by vector-linear coding over any finite
ring, encompassing a broad class of networks that have been studied classically.

There are still several open problems. A natural question is whether perfect
quantum network coding (with free classical communication) is possible for any
instance of the k-pair problem solvable classically. Another open problem is a
converse of the results of this paper, i. e., to determine whether there exists an
undirected network such that quantum coding is possible (with free classical
communication) but classical coding is not possible.
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and Submodular Cost
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Abstract. This paper describes a greedy Δ-approximation algorithm for MONO-
TONE COVERING, a generalization of many fundamental NP-hard covering prob-
lems. The approximation ratio Δ is the maximum number of variables on which
any constraint depends. (For example, for vertex cover, Δ is 2.) The algorithm
unifies, generalizes, and improves many previous algorithms for fundamental
covering problems such as vertex cover, set cover, facilities location, and integer
and mixed-integer covering linear programs with upper bound on the variables.

The algorithm is also the first Δ-competitive algorithm for online monotone
covering, which generalizes online versions of the above-mentioned covering
problems as well as many fundamental online paging and caching problems. As
such it also generalizes many classical online algorithms, including LRU, FIFO,
FWF, BALANCE, GREEDY-DUAL, GREEDY-DUAL SIZE (a.k.a. LANDLORD), and
algorithms for connection caching, where Δ is the cache size. It also gives new Δ-
competitive algorithms for upgradable variants of these problems, which model
choosing the caching strategy and an appropriate hardware configuration (cache
size, CPU, bus, network, etc.).

1 Introduction

The classification of general techniques is an important research program within the
field of approximation algorithms. What are the scopes of, and the relationships be-
tween, the various algorithm-design techniques such as the primal-dual method, the
local-ratio method [5], and randomized rounding? Within this research program, an
important question is which problems admit optimal and fast greedy approximation
algorithms, and by what techniques [25,11]?

We give here a single online greedy Δ-approximation algorithm for a combinatori-
ally rich class of monotone covering problems, including many classical covering prob-
lems as well as online paging and caching problems. The approximation ratio, Δ, is the
maximum number of variables on which any constraint depends. (For VERTEX COVER,
Δ = 2.)

For some problems in the class, no greedy (or other) Δ-approximation algorithms
were known. For others, previous greedyΔ-approximation algorithms were known, but
with non-trivial and seemingly problem-specific analyses. For VERTEX COVER and SET
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problem approximation ratio method where comment
VERTEX COVER 2 − ln ln Δ̂/ ln Δ̂ local ratio [28] see also [32,7,44,27,29,21,37]

SET COVER Δ greedy; LP [6]; [31,32] Δ = maxi |{j : Aij > 0}| �
CIP, 0/1-variables maxi

∑
j Aij greedy [10,26] �

CIP Δ ellipsoid [15,46] KC-ineq., high-degree-poly time �

MONOTONE COVER Δ greedy [our §2] min{c(x) : x ∈ S (∀S ∈ C)} new
CMIP Δ greedy [our §3] near-linear-time implementation new
FACILITY LOCATION Δ greedy [our §4] linear-time implementation new
PROBABILISTIC CMIP Δ greedy [our §4] quadratic-time implementation new

online problem competitive ratio deterministic online
PAGING k = Δ potential function [48,47] e.g. LRU, FIFO, FWF, Harmonic �
CONNECTION CACHING O(k) reduction to paging [18,1] �
WEIGHTED CACHING k primal-dual [52,47] e.g. Harmonic, Greedy-Dual �
FILE CACHING k primal-dual [53,14] e.g. Greedy-Dual-Size, Landlord �
UNW. SET COVER O(log(Δ) log(n/opt)) primal-dual [13] unweighted
CLP O(log n) fractional [13] min{c · x : Ax ≥ b; x ≤ u},

MONOTONE COVER Δ potential function [our §2] includes the above and CMIP... new
UPGRADABLE CACHING d + k reduction to mono. cover [our §5] d components, k files in cache new

Fig. 1. Some Δ-approximation covering algorithms and deterministic online algorithms. “�” =
generalized or strengthened here.

COVER, in the early 1980’s, Hochbaum gave an algorithm that rounds a solution to the
standard LP relaxation [33]; Bar-Yehuda and Even gave a linear-time greedy algorithm
[6]. A few years later, for SET MULTICOVER, Hall and Hochbaum gave a quadratic-time
primal-dual algorithm [26]. In the late 1990’s, Bertsimas and Vohra generalized all of
these results with a quadratic-time primal-dual algorithm for covering integer programs
(CIP), restricted to {0, 1}-variables and integer constraint matrix A, and with approxi-
mation ratio maxi

∑
j Aij ≥ Δ [10]. Most recently, in 2000, Carr et al. gave the first

(and only previous) Δ-approximation for general CIP with {0, 1} variables [15].1 They
state (without details) that their result extends to allow general upper bounds on the
variables (restricting xj ∈ {0, 1, 2, . . . , uj}). In 2009 (independently of this work),
[46] gives details of an extension to CIP with general upper bounds on the variables.
Both [15] and [46] use exponentially many valid “Knapsack Cover” (KC) inequalities
to reduce the integrality gap to Δ. Their algorithms solve the LP using the ellipsoid
method, so the running time is a high-degree polynomial.

Online paging and caching algorithms are also (online) monotone covering prob-
lems, as they can be formulated as online SET COVER [2]. These problems also have a
rich history (see Fig. 1, and [12]).

All of the classical covering problems above (vertex cover, set cover, mixed
integer linear programs with variable upper bounds (CMIP) and others (facility loca-
tion, probabilistic variants of these problems, etc.), as well as online variants (pag-
ing, weighted caching, file caching, (generalized) connection caching, etc.) are special
cases of what we call monotone covering. Formally, a monotone covering instance is
specified by a collection C ⊂ 2IR+ of constraints and a non-negative, non-decreasing,

1 The standard LP relaxation has an arbitrarily large integrality gap (e.g. min{x1 : 10x1 +
10x2 ≥ 11; x2 ≤ 1} has gap 10).
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submodular2 objective function, c : IRn
+ → IR+. The problem is to compute min{c(x) :

x ∈ IRn
+, (∀S ∈ C) x ∈ S}. Each constraint S ∈ C must be monotone (i.e., closed

upwards), but can be non-convex.
Monotone covering allows each variable to take values throughout IR+, but can still

model problems with restricted variable domains. For example, formulate vertex cover
as min{

∑
v cvxv : x ∈ IRV

+ , (∀(u,w) ∈ E) �xu� + �xw� ≥ 1}. Given any 2-
approximate solution x to this formulation (which allows xu ∈ IR+), rounding each
xu down to its floor gives a 2-approximate integer solution. Generally, to model prob-
lems where each variable xj should take values in some closed set Uj ⊂ IR+ (e.g.
Uj = {0, 1} or Uj = ZZ+), one allows x ∈ IRn

+ but replaces each monotone constraint
x ∈ S by the monotone constraint x ∈ μ−1(S), where μ−1(S) = {x : μ(x) ∈ S}
and μj(x) = max{z ∈ Uj , z ≤ xj}. If x ∈ IRn

+ is any Δ-approximate solution to the
modified problem, then μ(x) will be a Δ-approximate solution respecting the variable
domains. (For vertex cover each Uj = ZZ+ so μj(x) = �xj�.)3

Section 2 describes our greedy Δ-approximation algorithm (Alg. 1) for monotone
covering. It is roughly the following: consider the constraints in any order; to satisfy
a constraint, raise each variable in the constraint continuously and simultaneously, at
rate inversely proportional to its cost. At termination, round x down to μ(x) if appro-
priate.

The proof of the approximation ratio is relatively simple: with each step, the cost
incurred by the algorithm is at most Δ times the reduction in the residual cost — the
minimum possible cost to augment the current x to feasibility. The algorithm is online
(as described below), and admits distributed implementations (see [39]).

The running time depends on the implementation, which is problem specific, but can
be fast. Section 2 describes linear-time implementations for vertex cover, set cover, and
(non-metric) facility location. Section 3 describes a nearly linear-time implementation
for covering mixed integer linear programs with variable upper bounds (CMIP). (In
contrast, the only previous Δ-approximation algorithm (for CIP, a slight restriction of
CMIP) uses the ellipsoid method; its running time is a high-degree polynomial [15].)
Section 4 describes an extension to a probabilistic (two-stage) variant of monotone
covering, which naturally has submodular cost. The implementation for this case takes
time O(NΔ̂ logΔ), where N is the number of non-zeros in the constraint matrix and
Δ̂ is the maximum number of constraints in which any variable appears. (For compari-
son, [30] gives a ln(n)-approximation algorithm for the special case of probabilistic set

2 Formally, c(x)+ c(y) ≥ c(x∧y)+ c(x∨y), where x∧y (and x∨y) are the component-wise
minimum (and maximum) of x and y. Intuitively, there is no positive synergy between the
variables: let ∂jc(x) denote the rate at which increasing xj would increase c(x); then, increas-
ing xi (for i �= j) does not increase ∂jc(x). Any separable function c(x) =

∑
j cj(xj) is

submodular, the product c(x) =
∏

j xj is not. The maximum c(x) = maxj xj is submodular,
the minimum c(x) = minj xj is not.

3 In this setting, if the cost is defined only on the restricted domain, it should be extended to IRn
+

for the algorithm. One way is to take the cost of x ∈ IRn
+ to be the expected cost of x̂, where

x̂j is rounded up or down to its nearest elements a, b in Uj such that a ≤ xj ≤ b: take x̂j = b

with probability
b−xj

b−a
, otherwise take x̂j = a. If a or b doesn’t exist, let x̂j be the one that

does.
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cover; the algorithm is based on submodular-function minimization [45], resulting in
high-degree-polynomial run-time.4)

Section 5 discusses online monotone covering. Following [13], an online algorithm
must maintain a current x; as constraints S ∈ C are revealed one by one, the algorithm
must increase coordinates of x to satisfy x ∈ S. The algorithm can’t decrease coordi-
nates of x. An algorithm is Δ-competitive if c(x) is at most Δ times the minimum cost
of any solution x∗ that meets all the constraints.

The greedy algorithm (Alg. 1) is an online algorithm. Thus, it gives Δ-competitive
algorithms for online versions of all of the covering problems mentioned above. It also
generalizes many classical deterministic online algorithms for paging and caching, in-
cluding LRU, FIFO, FWF for paging [48], Balance and Greedy Dual for weighted
caching [16,52], Landlord [53], a.k.a. Greedy Dual Size [14], for file caching, and al-
gorithms for connection caching [18,19,20,1]. The competitive ratio Δ is the cache
size, commonly denoted k, or, in the case of file caching, the maximum number of
files ever held in cache — at most k or k + 1, depending on the specification. This
is the best possible competitive ratio for deterministic online algorithms for these
problems.

Section 5 also illustrates the generality of online monotone covering by describing
a (k + d)-competitive algorithm for a new class of upgradable caching problems. In
upgradable caching, the online algorithm chooses not only which pages to evict, but also
how to configure and upgrade the relevant hardware components (determining such pa-
rameters as the cache size, CPU, bus, and network speeds, etc.) In the competitive ratio,
d is the number of configurable hardware parameters. We know of no previous results
for upgradable caching, although the classical online rent-or-buy (a.k.a. ski rental) prob-
lem [36] and its “multislope” generalization [41] have the basic characteristic (paying a
fixed cost now can reduce many later costs; these are special cases of online monotone
covering with Δ = 2).

Section 6 describes a natural randomized generalization of Alg. 1, with more flexibil-
ity in incrementing the variables. This yields a stateless online algorithm, generalizing
the Harmonic k-server algorithm (as it specializes for paging and weighted caching
[47]) and Pitt’s weighted vertex-cover algorithm [4].

Section 7 concludes by discussing the relation of the analysis here to the primal-
dual and local-ratio methods. As a rule of thumb, greedy approximation algorithms
can generally be analysed naturally via the primal-dual method, and sometimes even
more naturally via the local-ratio method. The results here extend many primal-dual and
local-ratio results. We conjecture that it is possible, but unwieldy, to recast the analysis
here via primal-dual. It can be recast as a local-ratio analysis, but in a non-traditional
form.

For distributed implementations of Alg. 1 running in O(log2 n) rounds (or O(log n)
for Δ = 2), see [39].

We assume throughout that the reader is familiar with classical covering problems
[51,34] as well as classical online paging and caching problems and algorithms [12].

4 [30] also mentions a 2-approximation for probabilistic vertex cover, without details.
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Alternatives to Δ-Approximation: log-Approximations, Randomized Online Algo-
rithms. In spite of extensive work, no (2 − ε)-approximation algorithm for constant
ε > 0 is yet known for vertex cover [28,32,7,44,27,29,21,37]. For small Δ, it seems
that Δ-approximation may be the best possible in polynomial time.

As an alternative when Δ is large, many covering problems considered here also
admit O(log Δ̂)-approximation algorithms, where Δ̂ is the maximum number of con-
straints in which any variable occurs. Examples include a greedy algorithm for set
cover [35,42,17] (1975) and greedyO(log maxj

∑
i Aij)-approximation algorithms for

CIP with {0, 1}-variables and integer A [22,24] (1982). Srinivasan gave O(log Δ̂)-
approximation algorithms for general CIP without variable upper bounds [49,50]
(2000); these were extended to CIP with variable upper bounds by Kolliopoulos et
al. [38] (2005). (The latter algorithm solves the CIP relaxation with KC inequalities,
then randomly rounds the solution.) The class of O(log(Δ̂))-approximation algorithms
for general CIP is not yet fully understood; these algorithms could yet be subsumed by
a single fast greedy algorithm.

For most online problems here, no deterministic online algorithm can be better than
Δ-competitive. But many online problems admit better-than-Δ-competitive randomized
algorithms. Examples include rent-or-buy [36,40], paging [23,43], weighted caching
[2,14], connection caching [18], and file caching [3]. Some cases of online monotone
covering (e.g. vertex cover) are unlikely to have better-than-Δ-competitive randomized
algorithms. It would interesting to classify which cases admit better-than-Δ-competitive
randomized online algorithms.

greedy algorithm for monotone covering (monotone constraints C, submodular objective c) alg. 1
output: feasible x ∈ S (∀S ∈ C), Δ-approximately minimizing c(x) (see Thm. 1)
1. Let x ← 0. . . . Δ = maxS∈C |vars(S)| is the max # of vars any constraint depends on
2. While ∃ S ∈ C such that x �∈ S, do step(x, S) for any S such that x �∈ S.
3. Return x. . . . or μ(x) in the case of restricted variable domains; see the introduction.

subroutine stepc(x, S): . . .makes progress towards satisfying x ∈ S.
1. Choose a scalar step size β ≥ 0. . . . choose β subject to restriction in Thm. 1.
2. For j ∈ vars(S), let x′j ∈ IR+ ∪ {∞} be the maximum such that raising xj to x′j would raise c(x) by at most β.
3. For j ∈ vars(S), let xj ← x′j . . . . if c is linear, then x′j = xj + β/cj for j ∈ vars(S).

2 The Greedy Algorithm for Monotone Covering (Alg. 1)

Fix an instance of monotone covering. Let vars(S) denote the variables in x that con-
straint x ∈ S depends on, so that Δ = maxS∈C |vars(S)|.

The algorithm (Alg. 1) starts with x = 0, then repeats the following step until all
constraints are satisfied: choose any unmet constraint and a step size β > 0; for each
variable xj that the constraint depends on (j ∈ vars(S)), raise that variable so as to
increase the cost c(x) by at most β. (The step increases the total cost by at most Δβ.)

The algorithm returns x (or, if variable domains are restricted as described in the
introduction, μ(x)).
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The algorithm returns a Δ-approximation, as long as each step size β is at most the
minimum cost to optimally augment x to satisfy S, that is, min{c(x̂) − c(x) : x̂ ∈
S, x̂ ≥ x}. Denote this cost distancec(x, S). Also, let residualc(x) be the residual cost
of x — the minimum cost to augment x to full feasibility, i.e., distancec(x,∩S∈CS).

Theorem 1. For monotone covering, the greedy algorithm (Alg. 1) returns a
Δ-approximate solution as long as it chooses step size β ≤ distancec(x, S) in each
step (and eventually terminates).

Proof. First, a rough intuition. Each step starts with x �∈ S. Since the optimal solution
x∗ is in S and S is monotone, there must be at least one k ∈ vars(S) such that xk < x∗k.
By raising all xj for j ∈ vars(S), the algorithm makes progress “covering” at least that
coordinate x∗k of x∗. Provided the step increases xk to x′k ≤ x∗k, the cost incurred can
be charged to a corresponding portion of the cost of x∗k (intuitively, to the cost of the
part of x∗k in the interval [xk, x

′
k]; formally, to the decrease in the residual cost from

increasing xk, provably at least β). Since the step increases c(x) by at most βΔ, and
results in a charge to c(x∗) of at least β, this proves the Δ-approximation.

Here is the formal proof. By inspection (using that c is submodular) each step of
the algorithm increases c(x) by at most β|vars(S)| ≤ βΔ. We show that residual(x)
decreases by at least β, so the invariant c(x)/Δ+ residual(x) ≤ opt holds, proving the
theorem.

Let x and x′, respectively, be x before and after a given step. Let feasible x∗ ≥ x
be an optimal augmentation of x to full feasibility, so c(x∗) − c(x) = residual(x). Let
x ∧ y (resp. x ∨ y) denote the component-wise minimum (resp. maximum) of x and y.
By the submodularity of c, c(x′) + c(x∗) ≥ c(x′ ∨ x∗) + c(x′ ∧ x∗). (Equality holds if
c is separable (e.g. linear).)

Rewriting gives [c(x∗) − c(x)] − [c(x′ ∨ x∗) − c(x′)] ≥ c(x′ ∧ x∗) − c(x).
The first bracketed term is residual(x). The second is at least residual(x′), because

x∗ ∨ x′ ≥ x′ is feasible. Thus,

residual(x) − residual(x′) ≥ c(x′ ∧ x∗) − c(x). (1)

To complete the proof, we show the right-hand side of (1) is at least β.

Case 1. Suppose x′k < x∗k for some k ∈ vars(S). (In this case it must be that increasing
xk to x′k costs β.)

Let y be x with just xk raised to x′k. Then c(x′ ∧ x∗) ≥ c(y) = c(x) + β.

Case 2. Otherwise x′ ∧ x∗ ∈ S, because x∗ ∈ S and x′j ≥ x∗j for all j ∈ vars(S). Also
x′ ∧ x∗ ≥ x.

Thus, the right-hand side of (1) is at least distancec(x, S). By assumption this is at
least β. �

Choosing the step size, β. In a sense, the algorithm reduces the given problem to
a sequence of subproblems, each of which requires computing a lower bound on
distance(x, S) for the current x and a given unmet constraint S. To completely specify
the algorithm, one must specify how to choose β in each step.
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Thm. 1 allows β to be small. At a minimum, distance(x, S) > 0 when x �∈ S, so
one can take β to be infinitesimal. Then Alg. 1 raises xj for j ∈ vars(S) continuously
at rate inversely proportional to ∂c(x)/∂xj (at most until x ∈ S).

Another, generic, choice is to take β just large enough to satisfy x ∈ S. This also
satisfies the theorem:

Observation 1. Let β be the minimum step size so that step(x, S) brings x into S. Then
β ≤ distancec(x, S).

Thm. 1 can also allow β to be more than large enough to satisfy the constraint. Consider
min{x1 + 2x2 : x ∈ S} where S = {x : x1 + x2 ≥ 1}. Start with x = 0. Then
distance(x, S) = 1. The theorem allows β = 1. A single step with β = 1 gives x1 = 1
and x2 = 1/2, so that x1 + x2 = 3/2 > 1.

Generally, one has to choose β small enough to satisfy the theorem, but large enough
so that the algorithm doesn’t take too many steps. The computational complexity of
doing this has to be addressed on a per-application basis. Consider a simple subset-
sum example: min{c · x : x ∈ S} where the single constraint S contains x ≥ 0 such
that

∑
j cj min(1, �xj�) ≥ 1. Computing distance(0, S) is NP-hard, but it is easy to

compute a useful β, for example β = minj:xj<1 cj(1 − xj). With this choice, the
algorithm will satisfy S within Δ steps.

As a warm-up, here are linear-time implementations for facility location, set cover,
and vertex cover.

Theorem 2. For (non-metric) facility location, set cover, and vertex cover, the greedy
Δ-approximation algorithm (Alg. 1) has a linear-time implementation. For facility lo-
cation Δ is the maximum number of facilities that might serve any given customer.

Proof. Formulate facility location as minimizing the submodular objective∑
j fj maxi xij +

∑
ij dijxij subject to, for each customer i,

∑
j∈N(i)�xij� ≥ 1

(where j ∈ N(i) if customer i can use facility j).5

The implementation starts with all xij = 0. It considers the customers i in any
order. For each it does the following: let β = minj∈N(i)[dij + fj(1−maxi′ xi′j)] (the
minimum cost to raise xij to 1 for any j ∈ N(i)). Then, for each j ∈ N(i), raise xij

by min[β/dij , (β + fj maxi′ xi′j)/(dij + fj)] (just enough to increase the cost by β).
By maintaining, for each facility j, maxi′ xi′j , the above can be done in linear time,
O(

∑
i |N(i)|).

Vertex cover and set cover are the special cases when dij = 0. �

3 Nearly Linear-Time Implementation for Covering Mixed
Integer Linear Programs

Theorem 3. For CMIP (covering mixed integer linear programs with upper bounds),
the greedy algorithm (Alg. 1) can be implemented to return a Δ-approximation in

5 The standard ILP is not a covering ILP due to constraints xij ≤ yj . The standard reduction to
set cover increases Δ exponentially.
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subroutine stepsizec(x, S(I,Ai, u, bi)) (for CMIP) alg. 2
1. Order I = (j1, j2, . . . , jk) by decreasing Aij . . . . So Aij1 ≥ Aij2 ≥ · · · ≥ Aijk

.
Let J = J(x, S) contain the minimal prefix of I such that x �∈ S(J,Ai, u, bi).
Let S′ denote the relaxed constraint S(J,Ai, u, bi).

2. Let U = U(x, S) = {j : xj ≥ uj ;Aij > 0} contain the variables that have hit their upper bounds.
3. Let βJ = minj∈J−U (1 − xj + �xj�)cj be the minimum cost to increase any floored term in S′.
4. Let βJ = minj∈J−U cjb

′
i/Aij , where b′i is the slack (bi minus the value of the left-hand side of S′),

be the minimum cost to increase the sum of fractional terms in S′ to satisfy S′.
5. Return β = min{βJ , βJ}.

O(N logΔ) time, where Δ is the maximum number of non-zeroes in any constraint and
N is the total number of non-zeroes in the constraint matrix.

Proof (sketch). Fix any CMIP instance min{c · x : x ∈ IRn
+;Ax ≥ b;x ≤ u;xj ∈

ZZ (j ∈ I)}.
Model each constraint Aix ≥ bi using a monotone constraint S ∈ C of the form∑

j∈I

Aij�min(xj , uj)� +
∑
j∈I

Aij min(xj , uj) ≥ bi S(I, Ai, u, bi)

where set I contains the indexes of the integer variables.
Given such a constraint S and an x �∈ S, the subroutine stepsize(x, S) (Alg. 2) com-

putes a step size β satisfying Thm. 1 as follows. Let S′, J , U , βJ , βJ , and β be as in
Alg. 2. That is, S′ = S(J,Ai, u, bi) is the relaxation of S(I, Ai, u, bi) obtained by re-
laxing the floors in S (in order of increasingAij ) as much as possible, while maintaining
x �∈ S′; J ⊆ I contains the indices j of variables whose floors are not relaxed. Increas-
ing x to satisfy S′ requires (at least) either: (i) increasing

∑
j∈J−U Aij�xj�, at cost at

least βJ , or (ii) increasing
∑

j∈J−U Aijxj by at least the slack b′i of the constraint S′,
at cost at least βJ . Thus, distance(x, S) ≥ distance(x, S′) ≥ min{βJ , βJ} = β. This
choice satisfies Thm. 1, so the algorithm returns a Δ-approximate solution.

Lemma 1. For any S, Alg. 1 calls step(x, S) with β = stepsize(x, S) (from Alg. 2) at
most 2|vars(S)| times.

Proof (sketch). Let j be the index of the variable xj that determines β in the algorithm
(βJ in case (i) of the previous proof, or βJ in case (ii)). The step increases xj by β/cj .
This may bring xj to (or above) its upper bound uj . If not, then, in case (i), the left-hand
side of S′ increases by at least Aij , which, by the minimality of J(x) and the ordering
of I , is enough to satisfy S′. Or, in case (ii), the left-hand side increases by the slack b′i
(also enough to satisfy S′). Thus the step either the increases the set U(x) or satisfies
S′, increasing the set J(x). �

The naive implementations of stepsize() and step() run in time O(|vars(S)|) (after
the Aij ’s within each constraint are sorted in preprocessing). By the lemma, with this
implementation, the total time for the algorithm is O(

∑
S |vars(S)|2) ≤ O(NΔ). By
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a careful heap-based implementation, this time can be reduced to O(N logΔ) (proof
omitted). �

4 (Two-Stage) Probabilistic Monotone Covering

An instance of probabilistic monotone covering is specified by an instance (c, C) of
monotone covering, along with activation probabilities pS for each constraint S ∈ C
and a non-decreasing, submodular first-stage objective W . The first stage requires the
algorithm to commit to a vector xS ∈ S for each S ∈ C. In the second stage, the algo-
rithm must pay to satisfy the activated constraints, where each constraint S is indepen-
dently activated with probability pS . The algorithm pays c(x̂), where x̂ is the minimal
vector such that x̂ ≥ xS for each active S (x̂j = max{xS

j : S active}). The problem
is to choose the first-stage vectors to minimize the first-stage cost W (xS : S ∈ C) plus
the expected second-stage cost, E[c(x̂)]. This (expected) cost is submodular as long as
c is.

Observation 2. Probabilistic monotone covering reduces to monotone covering.

Probabilistic CMIP is the special case where W is linear and the pair (c, C) define a
CMIP.

For example, consider a two-stage probabilistic facilities location problem specified
by first-stage costs f1, d1, an activation probability pi for each customer i, and second-
stage costs f2, c2. The algorithm assigns to each customer i a facility j(i) ∈ N(i) (those
that can serve i), by setting xij(i) = 1 (satisfying constraints

∑
j∈N(i)�xij� ≥ 1),

then paying the first-stage cost
∑

j f
1
j maxi xij +

∑
ij d

1
ijxij . Then, each customer i is

activated with probability pi. Facilities assigned to activated customers are opened by
setting x̂ij = 1 if xij = 1 and i is active. The algorithm then pays the second-stage
cost

∑
j f

2
j maxi x̂ij +

∑
ij d

2
ij x̂ij . The algorithm should minimize its total expected

payment. The degree Δ = maxi |N(i)| is the maximum number of facilities that any
given customer is eligible to use.

Theorem 4. For probabilistic CMIP,

(a) The greedy Δ-approximation algorithm can be implemented to run in
O(NΔ̂ logΔ) time, where Δ̂ is the maximum number of constraints per variable and
N =

∑
S∈C |vars(S)| is the input size.

(b) When p = 1, it can be implemented to run in time O(N logΔ) (generalizes
CMIP and facilities location).

Proof (sketch). Let X = (xS)S∈C be the matrix formed by the first-stage vectors.
Let random variable x̂ be as described in the problem definition (x̂j = max{x̂S

j :
S active}), so the problem is to choose X subject to xS ∈ S for each S to minimize
C(X) = W · X + E[c · x̂]. This function is submodular, increasing, and continuous
in X .

To satisfy Thm. 1, the subroutine step(X,S) must compute the step size β to be at
most distance(X,S) (the minimum possible increase in C(X) required to satisfy S).
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For a given X and S, have step(X,S) compute β as follows. For a given X , the rate at
which increasing xS

j would increase C(X) is

c′j = wS
j + cj Pr[xS

j = x̂j ] = wS
j + cjpS

∏
{1 − pR : xR

j > xS
j , j ∈ vars(R)}.

This rate does not change until xS
j reaches tj = min{xR

j : xR
j > xS

j , j ∈ vars(R)}.
Take β = min(βt, stepsizec′(x

S , S)), where βt = min{(tj − xS
j )c′j : j ∈ vars(S)}

is the minimum cost to bring any xS
j to its threshold, and stepsize() is the subroutine

from Section 3, using the (linear) cost vector c′ defined above. This β is a valid lower
bound on distance(X,S), because βt is a lower bound on the cost to bring any xS

j to its
next threshold, while stepsizec′(xS , S) is a lower bound on the cost to satisfy S without
bringing any xS

j to its threshold.

If step(X,S) uses this β, the number of steps to satisfy S is at most O(|vars(S)|Δ̂).
Each step either (i) makes some xS

j reach its next threshold (and each xS
j crosses at

most Δ̂ thresholds), or (ii) increases the number of “floored” variables or increases the
number of variables at their upper bounds (which by the analysis of stepsize() from
Section 3, can happen at most 2|vars(S)| times). Thus, the total number of steps is
O(

∑
S |vars(S)|Δ̂), that is, O(NΔ̂). (Implementation details needed to achieve amor-

tized time O(logΔ) per step are omitted.) This completes the proof sketch for part
(a).

For part (b) of the theorem, note that in this case the product in the equation for
CS

j (X) is 1 if xS
j = maxR xR

j and 0 otherwise. Each variable has at most one threshold
to reach, so the number of calls to step(X,S) is reduced to O(|vars(S)|). This allows
an implementation in total time O(N logΔ). �

5 Online Monotone Covering and Caching with Upgradable
Hardware

Recall that in online monotone covering, each constraint S ∈ C is revealed one at a
time; an online algorithm must raise variables in x to bring x into the given S, without
knowing the remaining constraints. Alg. 1 (with, say, step(x, S) taking β just large
enough to bring x ∈ S; see Observation 1) can do this, so it yields a Δ-competitive
online algorithm.6

Corollary 1. The greedy algorithm (Alg. 1) gives a Δ-competitive online monotone
covering algorithm.

Example: generalized connection caching. As discussed in the introduction (follow-
ing the formulation of weighted caching as online set cover from [2]) this result natu-
rally generalizes a number of known results for paging, weighted caching, file caching,

6 If the cost function is linear, in responding to S this algorithm needs to know S and the values
of variables in S and their cost coefficients. For general submodular costs, the algorithm may
need to know not only S, but all variables’ values and the whole cost function.
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connection caching, etc. To give just one example, consider connection caching. A re-
quest sequence r is given online. Each request rt = (ut, wt) activates the connection
(ut, wt) (if not already activated) between nodes ut and wt. If either node has more
than k active connections, then one of them other than rt (say rs) must be closed at cost
cost(rs). Model this problem as follows. Let variable xt indicate whether connection
rt is closed before the next request to rt after time t, so the total cost is

∑
t cost(rt)xt.

For each node u and each time t, for any (k + 1)-subset Q ⊆ {rs : s ≤ t;u ∈ rs}, at
least one connection rs ∈ Q − {rt} (where s is the time of the most recent request to
rs) must have been closed, so the following constraint7 is met:

∑
rs∈Q−{rt}�xs� ≥ 1.

Corollary 1 gives the following k-competitive algorithm for online connection
caching. When a connection request (u,w) occurs at time t, the connection is acti-
vated and xt is set to 0. If a node, say u, has more than k active connections, the current
x violates the constraint above for the set Q containing u’s active connections. Node
u applies the step() subroutine for this constraint: it raises xs for all the connections
rs ∈ Q−{rt} at rate 1/cost(rs) simultaneously, until some xs reaches 1. It closes any
such connection rs.

Remark on k/(k−h+1)-competitiveness. The classic ratio of k/(k−h+1) (versus
opt with cache size h ≤ k) can be reproduced in such a setting as follows. For any set Q
as described above, opt must meet the stronger constraint

∑
rs∈Q−{rt}�xs� ≥ k−h+1.

In this scenario, the proof of Thm. 1 extends to show a ratio of k/(k − h+ 1) (use that
the variables are {0, 1}, so there are at least k − h+ 1 variables xj such that xj < x∗j ).

Upgradable online problems. Standard online caching problems model only the
caching strategy. In practice other parameters (e.g., the size of the cache, the speed
of the CPU, bus, network, etc.) must also be chosen well. In upgradable caching, the
algorithm chooses not only the caching strategy, but also the hardware configuration.
The hardware configuration is assumed to be determined by how much has been spent
on each of some d components. The configuration is modeled by a vector y ∈ IRd

+,
where yi has been spent so far on component i.

In response to each request, the algorithm can upgrade the hardware by increasing the
yi’s. Then, if the requested item rt is not in cache, it is brought in. Then items in cache
must be selected for eviction until the set Q of items remaining in cache is cachable, as
determined by some specified predicate cachablet(Q, y). The cost of evicting an item
rs is specified by a function cost(rs, y).

The cachable() predicate and cost() function can be specified arbitrarily, subject
to the following restrictions. Predicate cachablet(Q, y) must be non-decreasing in y
(upgrading the hardware doesn’t cause a cachable set to become uncachable) and non-
increasing with Q (any subset of a cachable set is cachable). The function cost(rs, y)
must be non-increasing in y (upgrading the hardware doesn’t increase the eviction cost
of any item). To model (standard, non-upgradable) file caching, take cachablet(Q, y) to
be true if

∑
rs∈Q size(rs) ≤ k.

7 This presentation assumes that the last request must stay in cache. If not, don’t subtract {rt}
from Q in the constraints. The competitive ratio goes from k to k + 1.
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In general, the adversary is free to constrain the cache contents at each step t in any
way that depends on t and the hardware configuration, as long as upgrading the cache or
removing items does not make a cachable set uncachable. Likewise, the cost of evicting
any item can be determined by the adversary in any way that depends on the item and
the hardware configuration, as long as upgrading the configuration does not increase
any eviction cost. This gives a great deal of flexibility in comparison to the standard
model. For example, the adversary could insist (among other constraints) that no set
containing both of two (presumably conflicting) files can be cached. Or, upgrading the
hardware could reduce the eviction cost of some items arbitrarily, even to zero.

The optimal cost is achieved by choosing an optimal hardware configuration at the
start, then handling all caching decisions optimally. To be competitive, an algorithm
must also choose a good hardware configuration: an algorithm is Δ-competitive if its
total cost (eviction cost plus final hardware configuration cost,

∑
i yi) is at mostΔ times

the optimum. (Naturally, when the algorithm evicts an item, it pays the eviction cost in
its current hardware configuration. Later upgrades do not reduce earlier costs.)

Next we describe how to model the upgradable problem via online monotone cover-
ing with degreeΔ = k+ d, where k is the maximum number of files ever held in cache
and d is the number of hardware components. This gives a simple (k + d)-competitive
online algorithm for upgradable caching.

Theorem 5. Upgradable caching has a (d+ k)-competitive online algorithm, where d
is the number of upgradable components and k is the maximum number of files that can
be held in the cache.

Proof (sketch). Let variable yi for i = 1, . . . , d denote the amount invested in compo-
nent i, so that the vector y gives the current hardware configuration. Let xt be the cost
(if any) incurred for evicting the tth requested item rt at any time before its next request.
The total final cost is

∑
i yi +

∑
t xt. At time t, if some subset Q ⊆ {rs : s ≤ t} of the

items is not cachable, then at least one item rs ∈ Q− {rt} (where s is the time of the
most recent request to rs) must have been evicted, so the following constraint is met:

cachablet(Q, y) or
∑

rs∈Q−{rt}�xs/cost(rs, y)� ≥ 1. St(Q)
The restrictions on cachable and cost ensure that this constraint is monotone in x

and y.
The greedy algorithm initializes y = 0, x = 0 and Q = ∅. It caches the subset Q

of requested items rs with xs < cost(rs, y). To respond to request rt (which adds rt to
the cache if not present), the algorithm raises each yi and each xs for rs in Q − {rt}
at unit rate. It evicts any rs with xs ≥ cost(rs, y), until cachablet(Q, y) holds for the
cached set Q. The degree8 Δ is the maximum size of Q− {rt}, plus d for y. �

This result generalizes easily to “upgradable” monotone caching, where investing in
some d components can relax constraints or reduce costs.

Restricting groups of items (such as segments within files). The http protocol
allows retrieval of segments of files. To model this in this setting, consider each file f

8 The algorithm enforces just some constraints St(Q); Δ is defined w.r.t. the problem defined
by those constraints.
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subroutine rstepc(x, S) alg. 3
1. Fix an arbitrary probability pj ∈ [0, 1] for each j ∈ vars(S). . . . taking each pj = 1 gives Alg. 1
2. Choose a scalar step size β ≥ 0.
3. For j ∈ vars(S) with pj > 0, let Xj be the max. s.t. raising xj to Xj would raise c(x) by ≤ β/pj .
4. For j ∈ vars(S) with pj > 0, with probability pj , let xj ← Xj . . . . these events can be dependent if desired!

subroutine stateless-rstepc(x, S, U): · · · do rstep, and keep each xj in its (countable) domain Uj · · · alg. 4
1. For j ∈ vars(S), let Xj = min{z ∈ Uj ; z > xj} (or Xj = xj if the minimum is undefined).
2. Let αj be the increase in c(x) that would result from increasing just xj to Xj .
3. Do rstepc(x, S), choosing any β ∈ (0,minj αj ] and pj = β/αj (or pj = 0 if Xj = xj).

as a group of arbitrary segments (e.g. bytes or pages). Let xt be the number of segments
of file rt evicted before its next request. Let c(xt) be the cost to retrieve the cheapest
xt segments of the file, so the total cost is

∑
t c(xt). Then, for example, to say that the

cache can hold at most k segments total, add constraints of the form (for appropriate
subsets Q of requests)

∑
s∈Q size(rs) − �xs� ≤ k (where size(rs) is the number of

segments in rs). When the greedy algorithm increases xs to x′s, the online algorithm
evicts segments �xs� + 1 through �x′s� of file rs (assuming segments are ordered by
cheapest retrieval).

Generally, any monotone restriction that is a function of just the number of seg-
ments evicted from each file (as opposed to which specific segments are evicted), can
be modeled. (For example, “evict at least 3 segments of rs or at least 4 segments from
rt”: �xs/3�+ �xt/4� ≥ 1.) Although the caching constraints constrain file segments,
the competitive ratio will be the maximum number of files (as opposed to segments)
referred to in any constraint.

6 Randomized Variant of Alg. 1 and Stateless Online Algorithm

This section describes a randomized, online generalization of Alg. 1. It has more flex-
ibility than Alg. 1 in how it increases variables. This can be useful, for example, in
distributed settings, in dealing with numerical precision issues, and in obtaining state-
less online algorithms (an example follows).

The algorithm is Alg. 1, modified to call subroutine rstepc(x, S) (shown in Alg. 3)
instead of stepc(x, S). The subroutine has more flexibility in incrementing x. Its step-
size requirement is a bit more complicated.

Theorem 6. For monotone covering suppose the randomized greedy algorithm termi-
nates, and, in each step, β is at most min{E[c(x ↑p x̂)− c(x)] : x̂ ≥ x; x̂ ∈ S}, where
x ↑p x̂ is a random vector obtained from x by raising xj to x̂j with probability pj for
each j ∈ vars(S). Then the algorithm returns a Δ-approximate solution in expectation.

If the objective c(x) is linear, the required upper bound on β above simplifies to
distancec′(x, S) where c′j = pjcj .
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Proof (sketch). We claim that, in each step, the expected increase in c(x) is at most
Δ times the expected decrease in residual(x). This implies (by the optional stopping
theorem) that E[c(xfinal)] ≤ Δ× residual(0), proving the theorem.

Fix any step starting with a given x. Let (r.v.) x′ be x after the step. Fix feasible
x∗ ≥ x s.t. residual(x) = c(x∗) − c(x). Inequality (1) holds; to prove the claim we
show Ex′ [c(x′ ∧ x∗)− c(x)] ≥ β. Since x∗ ≥ x and x′ = x ↑p X , this is equivalent to
E[c(x ↑p X) − c(x)] ≥ β.

(Case 1.) SupposeXk < x∗k for some k ∈ vars(S) with pk > 0. Let y be obtained from
x by raising just xk to Xk. Then with probability pk or more, c(x ↑p X) ≥ c(y) ≥
c(x) + β/pk. Thus the expectation is at least β.

(Case 2.) Otherwise, Xj ≥ x∗j for all j with pj > 0. Then E[c(x ↑p X) − c(x)] ≥
E[c(x ↑p x∗) − c(x)]. Since x∗ ≥ x and x∗ ∈ S, this is at least β by the assumption
on β. �
A stateless online algorithm. As described in the introduction, when the variables
have restricted domains (xj ∈ Uj), Alg. 1 constructs x and then “rounds” x down to
μ(x). In the online setting, Alg. 1 maintains x as constraints are revealed; meanwhile,
it uses μ(x) as its current online solution. In this sense, it is not stateless. A stateless
algorithm can maintain only one online solution, each variable of which should stay in
its restricted domain.

Next we use Thm. 6 to give a stateless online algorithm. The algorithm generalizes
the Harmonic k-server algorithm as it specializes for paging and caching [47], and Pitt’s
weighted vertex cover algorithm [4]. Given an unsatisfied constraint S, the algorithm
increases each xj for j ∈ vars(S) to its next largest allowed value, with probability
inversely proportional to the resulting increase in cost. (The algorithm can be tuned
to increase just one, or more than one, xj . It repeats the step until the constraint is
satisfied.)

Formally, the stateless algorithm is the randomized algorithm from Thm. 6, but with
the subroutine rstepc(x, S) replaced by stateless-rstepc(x, S, U) (in Alg. 4), which
executes rstepc(x, S) in a particular way. (A¡ technicality: if 0 �∈ Uj , then xj should be
initialized to minUj instead of 0. This does not affect the approximation ratio.)

Theorem 7. For monotone covering with discrete variable domains as described
above, there is a stateless randomized online Δ-approximation algorithm.

Proof (sketch). By inspection stateless-rstepc(x, S, U) maintains each xj ∈ Uj .
We show that stateless-rstepc(x, S, U) performs rstepc(x, S) in a way that satisfies

the requirement on β in Thm. 6. Let x̂ be as in the proof of Thm. 6, with the added
restriction that each x̂j ∈ Uj . Since x̂ ∈ S but x �∈ S, there is a k ∈ vars(S) with
x̂k > xk . Since x̂k ∈ Uk, the choice of Xk ensures x̂k ≥ Xk. Let y be obtained from
x by raising xk to Xk. Then, E[c(x ↑p x̂) − c(x)] ≥ pk[c(y) − c(x)] = pkαk = β,
satisfying Thm. 6. �

7 Relation to Primal-Dual and Local-Ratio Methods

Primal-Dual. Here we speculate about how Thm. 1 might be cast as a primal-dual anal-
ysis. Given a vector v, consider its “shadow” s(v) = {x : ∃jxj ≥ vj}. Any monotone
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set S is the intersection of the shadows of its boundary points: S =
⋂

v∈∂S s(v). Thus,
any monotone covering instance can be recast to use only shadow sets for constraints.
Any shadow set s(v) is of the form s(v) = {x :

∑
j�xj/vj� ≥ 1}, a form similar to that

of the CMIP constraints S(I, Ai, u, bi, d) in Section 3. We conjecture that the Knapsack
Cover (KC) inequalities from [15] for CIP can be generalized to give valid inequalities
with integrality gap Δ for constraints of this form. (Indeed, the result in Section 3 easily
extends to handle such constraints.) This could yield an appropriate relaxation on which
a primal-dual analysis could be based.

For even simple instances, generating a Δ-approximate primal-dual pair for the
greedy algorithm here requires a “tail-recursive” dual solution implicit in some local-
ratio analyses [9], as opposed to the typical forward-greedy dual solution.9 Even if the
above program (extended to non-linear cost functions!) can be carried out, it seems
likely to lead to a less intuitive proof than that of Thm. 1.

Local-Ratio. The local-ratio method has most commonly been applied to problems
with variables xj taking values in {0, 1} and with linear objective function c · x (see
[7,4,9,5]; for one exception, see [8]). In these cases, each step of the algorithm is typ-
ically interpreted as modifying the problem by repeatedly reducing selected objective
function weights cj by some β. At the end, the x, where xj is raised from 0 to 1 if
cj = 0, gives the solution. At each step, the weights to lower are chosen so that the
change must decrease OPT’s cost by at least β, while increasing the cost for the algo-
rithm’s solution by at most Δβ. This guarantees a Δ-approximate solution.

In contrast, recall that Alg. 1 raises selected xj ’s fractionally by β/cj . At the end,
xj is rounded down to �xj�. Each step costs βΔ, but reduces the residual cost by at
least β.

For problems with variables xj taking values in {0, 1} and with linear objective
function c·x, Alg. 1 can be given the following straightforward local-ratio interpretation.
Instead of raising xj by β/cj , reduce cj by β. At the end, instead of setting xj to �xj�,
set xj = 1 if cj = 0. With this reinterpretation, a standard local-ratio analysis applies.

To understand the relation between the two interpretations, let c′ denote the mod-
ified weights in the above reinterpretation. The reinterpreted algorithm maintains the
following invariants: Each modified weight c′j stays equal to cj(1 − xj) (for c and x
in the original interpretation; this is the cost to raise xj the rest of the way to 1). Also,
the residual cost residual(x) in the original interpretation equals (in the reinterpreted
algorithm) the minimum cost to solve the original problem but with weights c′.

This local-ratio reinterpretation is straightforward and intuitive for problems with
{0, 1} variables and a linear objective. But for problems whose variables take values in
more general domains, it does not extend cleanly. For example, suppose a variable xj

takes values in {0, 1, 2, . . . , u}. The algorithm cannot afford to reduce the weight cj ,

9 For example, consider min{x1+x2+x3 : x1+x2 ≥ 1, x1+x3 ≥ 2}. If the greedy algorithm
does the constraints in either order and chooses β maximally, it gives a solution of cost 4. In
the dual max{y12 + 2y13 : y12 + y13 ≤ 1}, the only way to generate a solution of cost 2
is to set y13 = 1 and y12 = 0. If the primal constraint for y12 is considered first, y12 cannot
be assigned a non-zero value. Instead, one should consider the dual variables for constraints
for which steps were done, in the reverse order of those steps, raising each until a constraint is
tight.
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and then, at termination, set xj to u for j with cj = 0 (this can lose a factor of u in
the approximation). Instead, one has to reinterpret the modified weight c′j as a vector of
weights c′j : {1, . . . , u} → IR+ where c′j(i) is the cost to raise xj from max{xj , i− 1}
to min{xj , i} (initially c′j(i) = cj). When the original algorithm lowers xj by β/cj ,
reinterpret this as leaving xj at zero, but lowering the non-zero c′j(i) with minimum i
by β. At the end, take xj to be the maximum i such that c′j(i) = 0. We show next that
this approach is doable (if less intuitive) for monotone covering.

At a high level, the local-ratio method requires only that the objective be decomposed
into “locally approximable” objectives. The common weight-reduction presentation of
local ratio described above gives one decomposition, but others have been used. A local-
ratio analysis for an integer programming problem with non-{0, 1} variable domains,
based on something like residual(x), is used in [8]. Here, the following decomposition
(different than [8]) works:

Lemma 2. Any algorithm returns aΔ-approximate solution x provided there exist {ct}
and r such that

(a) for any x, c(x) = c(0) + r(x) +
∑T

t=1 c
t(x),

(b) for all t, and any x and feasible x∗, ct(x) ≤ ct(x∗)Δ,
(c) the algorithm returns x such that r(x) = 0.

Proof. Let x∗ be an optimal solution. Applying properties (a) and (c), then (b), then (a),

c(x) = c(0) +
∑T

t=1 c
t(x) ≤ c(0)Δ+

∑T
t=1 c

t(x∗)Δ + r(x∗)Δ = c(x∗)Δ.
�

Next we describe how to use the proof of Thm. 1 (based on residual cost) to generate
such a decomposition.

Let distance(x, y) = c(x ∨ y) − c(x) (the cost to raise x to dominate y).
For any x, define ct(x) = distance(xt−1, x) − distance(xt, x), where xt is Alg. 1’s

x after t calls to step().
Define r(x) = distance(xT , x), where xT is the algorithm’s solution.
For linear c note ct(x) =

∑
j cj

∣∣[0, xj ] ∩ [xt−1
j , xt

j ]
∣∣, the cost for x “between” xt−1

and xt.

Lemma 3. These ct and r have properties (a-c) from Lemma 2, so the algorithm gives
a Δ-approximation.

Proof. Part (a) holds because the sum in (a) telescopes to distance(0, x) −
distance(xT , x) = c(x) − c(0) − r(x).

Part (c) holds because the algorithm returns xT , and r(xT ) = distance(xT , xT ) = 0.
For (b), consider the tth call to step(). Let β be as in that call.
The triangle inequality holds for distance(), so, for any x̂, ct(x̂) ≤

distancec(xt−1, xt) = c(xt) − c(xt−1).
As proved in the proof of Thm. 1, c(xt) − c(xt−1) is at most βΔ.
Also in the proof of Thm. 1, it is argued that β ≤ distance(xt−1,∩S∈CS) −

distance(xt,∩S∈CS).
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By inspection that argument holds for any x∗ ∈ ∩S∈CS, giving β ≤
distance(xt−1, x∗) − distance(xt, x∗).

The latter quantity is ct(x∗). Thus, ct(x̂) ≤ βΔ ≤ ct(x∗)Δ. �
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Abstract. The algebraic framework introduced in [Koutis, Proc. of the
35th ICALP 2008] reduces several combinatorial problems in parameter-
ized complexity to the problem of detecting multilinear degree-k mono-
mials in polynomials presented as circuits. The best known (randomized)
algorithm for this problem requires only O∗(2k) time and oracle access to
an arithmetic circuit, i.e. the ability to evaluate the circuit on elements
from a suitable group algebra. This algorithm has been used to obtain
the best known algorithms for several parameterized problems. In this
paper we use communication complexity to show that the O∗(2k) algo-
rithm is essentially optimal within this evaluation oracle framework. On
the positive side, we give new applications of the method: finding a copy
of a given tree on k nodes, a spanning tree with at least k leaves, a mini-
mum set of nodes that dominate at least t nodes, and an m-dimensional
k-matching. In each case we achieve a faster algorithm than what was
known. We also apply the algebraic method to problems in exact count-
ing. Among other results, we show that a combination of dynamic pro-
gramming and a variation of the algebraic method can break the trivial
upper bounds for exact parameterized counting in fairly general settings.

1 Introduction

The algebraic framework introduced in [14] reduces several parameterized prob-
lems including the k-path problem, the m-set k-packing problem, and several
graph packing problems to the following ground problem:

The k-monomial detection problem. Given a (commutative) arithmetic circuit C
over a set of variables X , decide whether the polynomial P (X) represented by
C contains a multilinear monomial of degree k.

In other words, construing P (X) as a sum of products, we wish to know if the
sum contains a degree-k monomial with no squares. Here, an arithmetic circuit
is a directed acyclic graph with a single sink, sources labelled by variables from
a set X , and multiplication and addition gate labels at all other nodes. The deci-
sion algorithm given in [14] solves the odd k-monomial detection problem where
the additional assumption that P (X) contains an odd number of multilinear
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monomials is made. The technique used in [14] to reduce the parameterized
packing problems to the odd k-monomial detection problem was extended and
completed in [19] where the general k-term problem was essentially reduced to
the odd problem by working over a larger group algebra.

The algebraic method of [14,19] is based on choosing a commutative algebra
A and randomized assignments X → A such that (i) squares (and by commu-
tativity, non-multilinear monomials) evaluate to the zero element of A, and (ii)
some multilinear monomial does not evaluate to zero, with good probability. For
instance, the algorithm presented in [19] uses certain assignments from the group
algebraGF (23+log2 k)[Zk

2 ] (for the definition of a group algebra, see the Appendix).
Elements in GF (2�)[Zk

2 ] can be described in space O(�2k) and the complexity of
addition and multiplication in the algebra is O∗(�2k).1 This gives an O∗(2kt) al-
gorithm for k-monomial detection, where t is the number of gates in C. The algo-
rithm requires only oracle access to an “extended version” C′ of C, and it can be
implemented as one evaluation of C′ over GF (2�)[Zk

2 ], or as O∗(�2k) evaluations
of C′ over small polynomials in Z[x].

The technique yields the fastest known parameterized algorithms for the k-
path problem, the m-set k-packing problem (packing k sets, each of size m), and
more. In Section 2 we also show how to obtain faster algorithms for finding a copy
of a given tree on k nodes, a spanning tree with k leaves, a minimum set of nodes
that dominate at least t nodes in a graph, and an m-dimensional k-matching,
all by simple reductions to k-monomial detection. Some of these algorithms
match the best known upper bounds for the original NP-hard problems, i.e. the
Hamiltonian path problem, and the k-set (n/k)-packing problem, in the sense
that further improvement on the parameterized algorithms will imply further
progress on the original problems. Thus, an intriguing and natural question is
whether k-monomial detection can be solved faster, by evaluating circuits over
a more exotic A, with a significant reduction in the lengths of descriptions for
elements in A (much less than 2k), and the related complexity of arithmetic in
A. If so, this would have tremendous implications in exact algorithms.

The answer is, unfortunately, negative. In Section 3 we use communication
complexity to show that for any commutative algebra A used to evaluate the cir-
cuit C, the lengths of elements in A must be at least Ω(2k/k) in order to perform
k-monomial detection. For all of the applications listed above, commutativity of
multiplication is required.2 Thus the O∗(2k) algorithm for k-monomial detec-
tion is optimal in some sense, and further progress on the relevant parameter-
ized problems are only via algorithms that exploit specific properties of circuits
for k-path and set packing, or perform different kinds of operations altogether.
Much research in complexity theory focuses on understanding the limits of
restricted algorithmic frameworks. Such cases include the study of deterministic

1 Throughout the paper the O∗() notation hides factors polynomial in the instance size
n and the parameter k.

2 We state our result for commutative algebras, for the sake of clarity and coherence
with our algorithmic results that all use commutativity. However, our lower bound
holds in the non-commutative setting as well, under the appropriate definition.
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oracle-based algorithms for the computation of convex volumes [7], of random-
ized oracle-based volume computation algorithms [16], of local minimum search
algorithms for black-box functions [1], or in the area of parameterized kerneliza-
tion [5]. Apart from the obvious potential of saving unneeded efforts on upper
bounds, this type of research often reveals surprising connections.

Although the algebraic method is superior to older approaches such as color
coding [3] and the divide-and-color approaches [11,6] for decision problems, its
potential has not been explored in the context of the related counting problem:

Exact multilinear k-monomial counting. Given a (commutative) arithmetic cir-
cuit C describing an n-variate polynomial P over R, compute the sum of the
coefficients of the degree-k multilinear monomials in P .

A simple enumeration-based algorithm for the problem runs in O∗(2k
(
n
k

)
)

time. Given the #W[1] hardness of exact counting of k-paths [8] (a special
case), an O(f(k)poly(n)) algorithm for the counting problem is unlikely to ex-
ist. However, certain recent results indicate that improvements may be possible.
Björklund et al. gave an O∗

((
n

k/2

))
algorithm for computing the number of

k-paths [4]. Using rectangular permanents, Vassilevska and Williams gave algo-
rithms for counting small subgraphs with large independent sets [18]. In Section
4 we show that a combination of enumeration-based algorithm and the algebraic
method is able to break the naive

(
n
k

)
upper bound for this problem when the

polynomial P is a product of two polynomials P1, P2 each of which have to-
tal degree less than k. One application of this is an O∗(nmk/2) algorithm for
counting k-packings of m-sets over a universe of size n.

2 Faster Parameterized Algorithms

To further demonstrate the power of k-monomial detection, we show how it can
be used to obtain faster randomized algorithms for the following problems:

k-Tree. Given a tree T on k nodes and a graph G on n nodes, decide if there is
a (not necessarily induced) copy of T in G.

k-Leaf Spanning Tree. Given an undirected graph G on n nodes, decide if G
contains a spanning tree with at least k leaves.

t-Dominating Set. Given a graph G = (V,E), find a minimum set of nodes S
that dominate at least t nodes in the graph. That is, |S ∪ N(S)| ≥ t where
N(S) = {v | (u, v) ∈ E, u ∈ S}.
m-Dimensional k-Matching. Given mutually disjoint sets Ui, for i = 1, . . . ,m,
and a collection C of m-tuples from U1 × . . .× Um, decide whether C contains a
sub-collection of k mutually disjoint m-tuples.

Each of these can be solved by formulating them as k-monomial detection
instances in some way. To the best of our knowledge, the only other algo-
rithm we know for k-Tree follows from the color-coding method [3], running
in O∗((2e)k) time. For k-Leaf Spanning Tree, the best known algorithm is deter-
ministic and runs in O∗(4k) time [10]. The best known (randomized) algorithm
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for t-Dominating Set runs in time O∗((4+ε)t) [12]. The best known (randomized)
algorithm for the k m-Dimensional Matching Problem runs in time O∗(2mk) [14].
In addition, in all these problems, given an algorithm for the decision version of
the problem, standard reductions can be used to recover an algorithm for the
search version, with the same exponential dependence on the parameter.

Before we proceed to showing the reductions we consider the following gener-
alization of the results in [14,19].

Lemma 1. Let P (X, z) be a polynomial represented by a commutative arith-
metic circuit C. The existence of a term of the form ztQ(X) in P (X, z), where
Q(X) is a multilinear monomial of degree at most k, can be decided in time
O∗(2kt2|C|) and space O(t|C|).
The idea of the proof is to assign values X from the appropriate algebra A to
the variables X , in exactly the same fashion as in [19], evaluate the polynomial
P (X , z) symbolically, then read off the answer from the coefficient Q(X ) ∈ A of
zt. The details will appear in the full version of the paper.

Theorem 1. The k-Tree problem can be solved in O∗(2k) time.

Proof. Suppose T is a k-node tree we wish to find in G. Let the nodes of T be
{1, . . . , k}, and let the nodes of G be {1, . . . , n}. We define an arithmetic circuit
CT,i,j(x1, . . . , xn) inductively, for all i ∈ [k] and j ∈ [n].

– If |V (T )| = 1, simply define CT,i,j := xj .
– If |V (T )| > 1, let Ti,1, . . . , Ti,� be the connected subtrees of T remaining after

node i is removed from T . For all t = 1, . . . , �, let ni,t ∈ [k] be the (unique)
node in Ti,t that is a neighbor of i in T . Define

CT,i,j :=
�∏

t=1

⎛⎝ ∑
j′:(j,j′)∈E(G)

xj · CTi,t,ni,t,j′

⎞⎠ .

Observe that the size of CT,i,j(x1, . . . , xn) is at most O(|V (T )| · |E(G)|). The
polynomial CT,i,j enumerates those homomorphisms that map nodes of T into
nodes ofG, such that node i in T is mapped to node j inG. Each monomial repre-
sents the range of some homomorphism. More precisely, the monomial xj1 · · ·xjk

is present in the polynomial if and only if there is a homomorphism where the
nodes of T are mapped to the vertices {j1, . . . , jk} ⊆ V of G. These mappings
are all homomorphisms, since i′ ∈ V (T ) can only be mapped to j′ ∈ V (G) if
(i, i′) ∈ E(T ), (j, j′) ∈ E(G), and i ∈ V (T ) is already mapped to j ∈ V (G).

Now consider the sum-product expansion of Q =
∑

j∈V (G),i∈V (T ) CT,i,j . Q is
a sum over all connected subgraphs S of G on k vertices, where each monomial
corresponds to the range of some homomorphism from T into S. Note Q also
includes homomorphisms that map distinct nodes of T to a common node in G.
However, those homomorphisms correspond precisely to monomials with squares
in them. That is, the multilinear monomials of Q correspond to homomorphisms
that map all nodes in T to distinct nodes in G, i.e. an isomorphic copy of T in
G. Therefore, by calling k-monomial detection on the arithmetic circuit defined
by Q, we can detect whether G contains a copy of T in O∗(2k) time. �
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Theorem 2. The k-Leaf Spanning Tree problem can be solved in O∗(2k) time.

Proof. To find a spanning tree with at least k leaves, first observe that it suffices
to find a connected subgraph S with at least k nodes of degree one. To get a
spanning tree for G, compute a spanning tree T over G with the nodes and edges
of S removed. Connect T and S by an edge, and take the spanning tree to be
the union of these two subgraphs (removing any extraneous edges that may form
cycles). This was observed in [10].

It suffices to show how to detect if G has a connected subgraph with at least
k degree one nodes. Let the vertices of G be {1, . . . , n}. We define an arithmetic
circuit Ck,t,i(x1, . . . , xn, z) inductively.

– Define C1,1,i := xi · z. If t < k or k ≤ 0, define Ck,t,i := 1.
– For k > 1, define

Ck,t,i :=
t∑

t′=1

k∑
k′=1

∑
j:(i,j)∈E

(Ck′,t′,j · Ck−k′,t−t′,i) .

By induction, one can prove that the monomials of Ck,t,i correspond to the
connected subgraphs on t nodes which include node i of G and have up to k
degree ≤ 1 nodes. Each such subgraph has a monomial corresponding to its
leaves. A multilinear monomial of degree k in the coefficient of zk implies that
there is a subgraph rooted at i that has k nodes of degree one. Testing whether
the circuit Q =

∑n
t=k+1

∑n
i=1 Ck,t,i has a multilinear monomial in the coefficient

of zk determines if G has a connected subgraph with at least k degree-one nodes.
By Lemma 1 this can be done. Finally, note that the size of Q as an arithmetic
circuit is poly(n, k). �

Theorem 3. The t-Dominating Set problem can be solved in O∗(2t) time.

Proof. Let the vertex set be V = {1, . . . , n} and X = {x1, . . . , xn}, where xi

corresponds to the vertex i. Consider the polynomial

P (X, z) =

⎛⎝∑
i∈V

⎛⎝(1 + z · xi) ·
∏

j : (i,j)∈E

(1 + z · xj)

⎞⎠⎞⎠k

,

where z is an extra indeterminate. P is a sum of monomials in which each
monomial of the form ztxi1 · · ·xit for distinct ij appears if and only if the t
nodes {i1, . . . , it} are dominated by a set of at most k nodes. In addition, every
other term of the form ztQ(X) contains a square since Q(X) has total degree t.
Then, the proof follows from Lemma 1 and trials with increasing values of k. �

Theorem 4. The m-Dimensional k-Matching problem can be solved in time
O∗(2(m−1)k).

Proof (Sketch). Encode each element u in U =
⋃m

i=2 Ui by a variable xu ∈ X .
Encode each m-tuple t = (u1, . . . , um) ∈ C ⊆ U1 × · · · × Um by the monomial
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Mt =
∏m

i=2 xui . Assume U1 = {u1,1, . . . , u1,n}, and let Tj ⊆ C denote the subset
of m-tuples whose first coordinate is u1,j. Consider the polynomial

P (X, z) =
n∏

j=1

⎛⎝1 +
∑
t∈Tj

(z ·Mt)

⎞⎠ ,

where z is an extra indeterminate. The coefficient of zk is a polynomial Q(X)
which contains a multilinear ((m − 1)k)-term if and only if C contains a k-
matching. The proof follows from Lemma 1. �

3 Lower Bound for Multilinear Detection

We now investigate whether the approach to finding k-paths in [14,19] can be
improved upon further. One burning question from this work is whether is it
possible to determine if an arbitrary arithmetic circuit C has a multilinear k-
monomial in much less time than O(2k|C|), by evaluating C over a more exotic
algebraic structure. We shall prove that this is not the case. For any commu-
tative A, we show that if it can be used to detect multilinear monomials in an
arithmetic circuit (even randomly), then |A| ≥ 2Ω(2k/

√
k). This implies a lower

bound of Ω( 2k√
k
|C|). That is, the group algebras used in [14,19] (which have

|A| ≤ 2O(2k log k)) are essentially optimal for their purpose: commutativity of A
is required for all the applications of k-monomial detection that we have shown.

At a high level, our proof uses hypothetical fast multilinear monomial de-
tection in order to design communication protocols that are too efficient to ex-
ist. Let us informally recall some notions from communication complexity. Let
f : {0, 1}n ×{0, 1}n → {0, 1}. Suppose two parties wish to compute f(x, y), but
one party is given x (the x-party), the other is given y (the y-party). The parties
must communicate bits about their inputs in order to compute f . A simultane-
ous public-coin protocol for f on n-bits is specified by a pair of functions (g1, g2),
and works as follows on all n-bit strings. Initially, the x-party and y-party see
a common string z chosen at random from a distribution independent of x and
y (to maximize the parties’ capabilities, we assume the distribution is uniform).
The x-party computes g1(x, z), the y-party computes g2(y, z), and both send
their answers to a third party. We require that the third party holding the two
messages can compute f (with high probability), on all x and y of length n. The
randomized public-coin simultaneous communication complexity of (g1, g2) is the
maximum length L(n) of a message sent in the protocol (g1, g2) over all n-bit
strings. The corresponding communication complexity of f is the minimum L(n)
achieved by any n-bit protocol (g1, g2) for f .

The set disjointness function DISJn(x, y) on x, y ∈ {0, 1}n is defined to be
∨n

i=1(xi ∧ yi). We utilize the following fact:

Theorem 5 ([15],p.79). The randomized public-coin communication complex-
ity of DISJn is Ω(n).
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Theorem 6. Let A be a commutative semiring. Suppose there is a distribution
D on elements from A, an element e ∈ A, and constants d1, d2 ∈ [0, 1], d1 < d2

such that for every circuit C(x1, . . . , xn) representing a degree-k polynomial:

– C has a multilinear monomial
=⇒ Pr(e1,...,en)∈Dn [C(e1, . . . , en) = e] ≤ d1

– C does not have a multilinear monomial
=⇒ Pr(e1,...,en)∈Dn [C(e1, . . . , en) = e] ≥ d2.

Then |A| ≥ 2Ω(2k/
√

k). Furthermore, for every k there is a circuit C with
n = k for which this lower bound holds.

In other words, the group algebra utilized in [19] is optimal within poly(k) fac-
tors: any other algebra could only yield a slightly better asymptotic upper bound.
As a consequence it is not possible to solve Hamilton Path much faster than
O(2n) by solving k-monomial detection over a more interesting algebra.

Proof. Using multilinear detection, we design a protocol for DISJN . Let N > 0
and k = n = logN+ 1

2 log logN+c where c > 0 is sufficiently large. Without loss
of generality, assume k is even. Let S = {S1, . . . , S�} be an intersecting set system
over [k] such that |Si| = k/2, for all i, and � ≥ N . That is, we have Si ∩ Sj �= ∅
for all i, j. For example, we may take S = {S ⊆ [k] | |S| = k/2 & 1 ∈ S}.
Observe that for this collection, when c is large enough we have

|S| =
(
k − 1
k/2

)
≥ Ω

(
2k

√
k

)
= Ω

⎛⎝ 2log N+ 1
2 log log N+c√

logN + 1
2 log logN + c

⎞⎠ ≥ N

by Stirling’s inequality. Hence � ≥ N .
We now give a protocol for set disjointness, assuming the existence of a good

A. Let a, b ∈ {0, 1}N . For all i = 1, . . . , �, define the monomials

Pi =
∏
j∈Si

xj and Qi =
∏
j /∈Si

xj .

Now define an arithmetic circuit

C(x1, . . . , xk) =

(
n∑

i=1

aiPi

)
·
(

n∑
i=1

biQi

)
.

Note that C represents a homogeneous polynomial of degree k. We claim that
C has a square-free monomial if and only if DISJN(a, b) = 1. This follows from
the fact that the monomial Pi ·Qj has a square if and only if i �= j.3

3 Note this is the portion of the argument where commutativity of multiplication is
used. In the non-commutative setting, the condition is that the monomial Pi · Qj

contains two instances of the same variable in its product. This condition is precisely
the same as that required for all the algorithmic applications.
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Let Ca =
∑n

i=1 aiPi and Cb =
∑n

i=1 biQi. To get a communication protocol
for set disjointness, the x-party uses public randomness to obtain ei ∈ A for
each xi, computes v = Ca(e1, . . . , ek) ∈ A, and sends an O(log |A|)-bit string
corresponding to v. Similarly, the y-party obtains all ei ∈ A, evaluates w =
Cb(e1, . . . , ek), and sends w. The third party outputs disjoint if and only if e =
v · w (where e ∈ A has the properties of the theorem’s hypothesis).

Under the hypotheses of the theorem (and repeating the protocol O(1) times
to obtain a good estimate of Pr(e1,...,en)∈Dn [C(e1, . . . , en) = e]), the above is a
correct public-coin protocol for DISJn. It follows from Theorem 5 that log |A| ≥
cN , for some constant c > 0. Finally, note that N ≥ Ω

(
2k√

k

)
. �

4 Exact Parameterized Multilinear Counting

We will base our algorithm on the following lemma.

Lemma 2. Let P (x1, . . . , xn) be a commutative polynomial with coefficients
from R, given by an arithmetic circuit C. For all {i1, . . . , ik} ⊆ [n], the co-
efficient of the monomial xi1 · · ·xik

in P can be computed in time O∗(2k). It
follows that the restriction of P to its multilinear monomials of degree k can be
computed in time O∗(2k

(
n
k

)
).

Proof (Sketch). Without loss of generality, we can assume that all gates of C
have two inputs. Consider the coefficient of x1 · · ·xk. Note that it is easy to find
the sub-circuit C′ that computes P ′ = P (x1, . . . , xk, 0, . . . , 0). We will view C′ as
a circuit acting on polynomials. Let R(Q) denote the operation that restricts the
polynomial Q to its multilinear terms. The key idea is to place an R-gate in the
output of every multiplication and addition gate of C′. Note that this does not
change the coefficient of x1 · · ·xk in the output of C′, because all the terms that
get deleted produce only non-multilinear terms in the rest of the computation.

Note now that the inputs of all multiplication and addition gates in C′ con-
tain only multilinear terms. There are at most 2k such terms. It follows that
the complexity of computing R(P1 +P2) is O∗(2k). It remains to show that the
complexity of computing R(P1 · P2) is also O∗(2k). First observe that the oper-
ation can be written as the sum of at most k2 operations of the form R(Q1 ·Q2)
where Q1, Q2 are k-variate homogeneous polynomials consisting of those mul-
tilinear terms in P1, P2 that have degrees exactly d and t − d respectively, for
t ∈ [1, k] and d ∈ [1, t]. Let Q′

1(z) and Q′
2(z) be the polynomials resulting by

the substitution xi → z2i−1
in Q1, Q2. The degrees of Q′

1 and Q′
2 are at most

2k−1, hence Q′
1 ·Q′

2 can be computed in O∗(2k) via the Fast Fourier Transform.
Now observe that R(Q1 · Q2) can be recovered by the restriction of Q′

1 · Q′
2 to

its terms of the form zj where the binary form of j contains exactly t bits. �

This lemma gives an upper bound for the exact multilinear k-monomial counting
problem. We show that this upper bound can be improved upon for polynomials
of the form P · Q, where the multilinear terms of P,Q both have total degree
smaller than k. We need the following (properly adapted) theorem from the
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theory of error correcting codes [17][Chap. 5, Theorem 8], also used in the de-
terministic construction of k-wise probability spaces [2][Proposition 6.5].

Theorem 7. There is a 0-1 matrix M with n columns and m rows with 2m ≤
2(n+ 1)�k/2�, such that every k columns of M are linearly independent over Z2.
Moreover, the matrix can be constructed in O(nk/2+1) time.

We are now ready to prove the key theorem of this section. We use the group
algebra R[Zk

2 ].

Theorem 8. Let P · Q ∈ R[X ] be an n-variate polynomial over R, such that
P and Q contain only multilinear monomials of degree at most d. The sum of
the coefficients of the multilinear k-terms in P · Q, can be computed in time
O∗(2d

(
n
d

)
+ n�k/2�).

Proof. Applying the algorithm of Lemma 2 to the circuits for P and Q, we can
assume that P,Q contain only multilinear terms. Furthermore, assume (for now)
that all multilinear terms of P ·Q have degree exactly k. Let m be the number
of rows of the matrix M in Theorem 7. Note m ≈ k

2 logn. The algorithm is as
follows. Let A : X → R[Zm

2 ] be the assignment xi  → (v0 +Mi), where Mi ∈ Zm
2

is the ith column of M , and v0 ∈ Zm
2 is the zero vector. Let Ā be the assignment

xi  → (v0−Mi). Compute Π = P (A)·Q(Ā) over R[Zm
2 ], and return the coefficient

of v0 in Π .
Let us first consider the algorithm’s correctness. Every term in P · Q is a

multiple of the form tP (A) · tQ(Ā) where tP , tQ are multilinear monomials in P
and Q respectively. If tP and tQ both contain a variable xi, then tP (A) · tQ(Ā)
is a multiple of (v0 +Mi)(v0 −Mi) which is equal to 0, since v0

2 = M2
i = v0. If

tP tQ is multilinear, then because columns of Mi are independent and by Lemma
2.2 of [14], the coefficient of v0 in tP (A) ·tQ(Ā) equals 1. This proves correctness.

Now we concentrate on the time complexity. We first note that we can compute
each product t(A) inductively, as follows. Assume we have evaluated t′(A) where
t′ consists of the first d′ factors of t. By Lemma 2.2 of [14] the product t′(A)
is a sum of 2d′

distinct vectors from Zm
2 . Hence, we can store t′(A) in a sparse

form, where only the identities of 2d′
vectors are kept. The identity of each of

the 2m vectors of Zm
2 requires just m bits. Given this sparse storage, a sparse

form product of the form t′(A)(v0 +Mi) can be evaluated fairly simply in time
O∗(2d′

). Hence, t(A) can be evaluated in sparse form in time
∑d

i=1 2i = O(2d).
For the sum P (A), we keep a single vector of size 2m, which we update every
time a term t(A) is computed. The discussion is very similar for the assignment
Ā. Hence, P (A) and Q(A) can be computed in time O(2d

(
n
d

)
), as there are at

most
(
n
d

)
monomials in P and Q.

Finally, we want P (A) · Q(Ā). Since P (A) and Q(Ā) are both elements of
R[Zm

2 ], their multiplication can be performed via a Fast Fourier Transform
method in time O∗(2m) [19]. Finally note that if P · Q contains multilinear
terms of degree different than k, these can be treated by the introduction of a
free indeterminate z, as in Lemma 1. �
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To show an application of Theorem 8 we consider the m-set k-packing problem,
over a universe of n elements and an instance consisting of t sets. It is clear
that the number of k-packings can be counted exactly in time O∗(

(
t
k

)
). For large

enough t, we can do better. The “algebraization” of this problem gives a simple
polynomial I which is a product of sums [13], satisfying the requirements of
Theorem 8. This gives the following corollary.

Corollary 1. The number of m-set k-packings can be counted in O∗(n�mk/2	).

It is also interesting that the above construction can be used to compute the
parity of the coefficient without restrictions in the type of the circuit, as stated
in the following theorem whose proof is given in the full version of the paper.

Theorem 9. Let C be a circuit describing a degree-k polynomial P over Z. The
parity of the sum of the coefficients of the multilinear monomials in P can be
computed in time O∗(nk/2) and poly(|C|) space.

5 Final Remarks

Using the techniques of this paper the following theorem can also be shown.

Theorem 10. Let A be a k×n matrix with entries from a commutative semiring
S. The permanent of A can be computed in time and space O∗(2k), assuming a
unit cost for the addition and multiplication operations over S. If S = R, the
space complexity can be reduced to poly(n).

To the best of our knowledge the only previous related results were an O∗(3k)
time, O∗(2k) space algorithm in [9], and more recently an O∗(4k) time poly(n)
space algorithm for matrices over arbitrary commutative semirings [18]. The
proof of this result along with other proofs omitted in this paper will appear in
the full version of the paper. A number of interesting questions remain open:

– Theorem 7 can be used to get a weak derandomization of our earlier results,
and solve more sophisticated problems. To what extent can we improve on
the construction of M in this result?

– Is there an algorithm for multilinear k-monomial counting that improves
over the naive upper bounds for general circuits?

– Can the algebraic method be applied to improve the time complexity for
approximate counting? For this question, color coding is still the best known
approach.
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A Appendix Group Algebras of Zk
2

Let Zk
2 be the group consisting of k-dimensional 0-1 vectors with the group

multiplication being entry-wise addition modulo 2. The group algebra R[Zk
2 ],

where R is a ring, is the set of all linear combinations of the form
∑

v∈Zk
2
avv

where av ∈ K. The addition operator of R[Zk
2 ] is defined by∑

v∈Zk
2

avv +
∑
v∈Zk

2

bvv =
∑
v∈Zk

2

(av + bv)v.

Multiplication by a scalar α ∈ R is defined by

α
∑
v∈Zk

2

avv =
∑
v∈Zk

2

(αav)v.

The multiplication operator of R[Zk
2 ] is defined by⎛⎝∑

v∈Zk
2

avv

⎞⎠ ·

⎛⎝ ∑
u∈Zk

2

buu

⎞⎠ =
∑

v,u∈Zk
2

(avbu)(uv).

It can be verified that R[Zk
2 ] is commutative, provided that R is commutative.
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Abstract. In this paper we extend the study of flow-energy scheduling
to a model that allows both sleep management and speed scaling. Our
main result is a sleep management algorithm called IdleLonger, which
works online for a processor with one or multiple levels of sleep states.
The design of IdleLonger is interesting; among others, it may force the
processor to idle or even sleep even though new jobs have already ar-
rived. IdleLonger works in both clairvoyant and non-clairvoyant settings.
We show how to adapt two existing speed scaling algorithms AJC [15]
(clairvoyant) and LAPS [9] (non-clairvoyant) to the new model. The
adapted algorithms, when coupled with IdleLonger, are shown to be
O(1)-competitive clairvoyant and non-clairvoyant algorithms for mini-
mizing flow plus energy on a processor that allows sleep management
and speed scaling.

The above results are based on the traditional model with no limit
on processor speed. If the processor has a maximum speed, the problem
becomes more difficult as the processor, once overslept, cannot rely on
unlimited extra speed to catch up the delay. Nevertheless, we are able
to enhance IdleLonger and AJC so that they remain O(1)-competitive
for flow plus energy under the bounded speed model. Non-clairvoyant
scheduling in the bounded speed model is left as an open problem.

1 Introduction

Speed scaling, flow and energy. Energy consumption has become a major
issue in the design of microprocessors, especially for battery-operated devices.
Many modern processors support dynamic speed scaling to reduce energy usage.
Recently there is a lot of theory research on online job scheduling taking speed
scaling and energy usage into consideration (see [10] for a survey). The challenge
arises from the conflicting objectives of providing good quality of service and
conserving energy. Among others, the study of minimizing flow time plus energy
has attracted much attention [1,3,4,5,9,14,15]. The results to date are based on
a speed scaling model in which a processor, when running at speed s, consumes
energy at the rate of sα, where α is typically 3 (the cube-root rule [7]). Most
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research assumes the traditional infinite speed model [16] where any speed is
allowed; some considers the more realistic bounded speed model [8], which imposes
a maximum processor speed T .

Total flow time is a commonly used QoS measure for job scheduling. The
flow time (or simply flow) of a job is the time elapsed since the job arrives
until it is completed. In the online setting, jobs with arbitrary sizes arrive at
unpredictable times. They are to be run on a processor which allows preemption
without penalty. To understand the tradeoff between flow and energy, Albers
and Fujiwara [1] initiated the study of minimizing a linear combination of total
flow and total energy. The intuition is that, from an economic viewpoint, users
are willing to pay a certain (say, ρ) units of energy to reduce one unit of time.
By changing the units of time and energy, one can further assume that ρ = 1
and thus would like to optimize flow plus energy.

Under the infinite speed model, Albers and Fujiwara [1] considered jobs of unit
size, and their work was extended to jobs of arbitrary sizes by Bansal, Pruhs and
Stein [5]. The BPS algorithm scales the speed as a function of unfinished work
and is O(( α

ln α )2)-competitive for minimizing flow plus energy. Bansal et al. [3]
later adapted the BPS algorithm to the bounded speed model; the competitive
ratio remains O(( α

ln α )2) if the online algorithm is given extra speed. Recently,
Lam et al. [15] gave a new algorithm AJC whose speed function depends on
the number of unfinished jobs. AJC avoids the extra speed requirement and
improves the competitive ratio to O( α

ln α ). Recall that α is typically equal to
3. Then the competitive ratios of BPS are estimated to be 7.9 and 11.9, and
AJC 3.25 and 4 under the infinite and bounded speed model, respectively. More
recently, Bansal et al. [4] further showed that AJC can be adapted to be 3-
competitive, independent of α. All these results assume clairvoyance, i.e., the
size of a job is known when the job arrives.

The non-clairvoyant setting, where job size is known only when the job is
completed, is practically important. Chan et al. [9] have recently given a non-
clairvoyant speed scaling algorithm LAPS that is O(α3)-competitive for total
flow plus energy in the infinite speed model.

Sleep management. In earlier days, energy reduction was mostly achieved by
allowing a processor to enter a low-power sleep state, yet waking up requires extra
energy. In the (embedded systems) literature, there are different energy-efficient
strategies to bring a processor to sleep during a period of zero load [6]. This is an
online problem, usually referred to as dynamic power management. The input
is the length of the period, known only when the period ends. There are several
interesting results with competitive analysis (e.g., [2, 11, 13]). In its simplest
form, the problem assumes the processor is in either the awake state or the sleep
state. The awake state always requires a static power σ > 0. To have zero energy
usage, the processor must enter the sleep state, but a wake-up back to the awake
state requires ω > 0 energy. In general, there can be multiple intermediate sleep
states, which demand some static power but less wake-up energy.

It is natural to study job scheduling on a processor that allows both sleep
states and speed scaling. More specifically, a processor in the awake state can
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run at any speed s ≥ 0 and consumes energy at the rate sα + σ, where σ > 0
is static power and sα is the dynamic power1. Here job scheduling requires two
components: a sleep management algorithm to determine when to sleep or work,
and a speed scaling algorithm to determine which job and at what speed to
run. Notice that sleep management here is not the same as in dynamic power
management; in particular, the length of a sleep or idle period is part of the
optimization (rather than the input). Adding a sleep state actually changes the
nature of speed scaling. Assume no sleep state, running a job slower is a natural
way to save energy. Now one can also save energy by sleeping more and working
faster later. It is even more complicated when flow is concerned. Prolonging a
sleeping period by delaying job execution can save energy, yet it also incurs extra
flow. Striking a balance is not trivial. In the theory literature, the only relevant
work is by Irani et al. [12]; they studied deadline scheduling on a processor with
one sleep state and infinite speed scaling. They showed an O(1)-competitive
algorithm to minimize the energy for meeting the deadlines of all jobs.

Our contributions. This paper initiates the study of flow-energy scheduling
that exploits both speed scaling and multiple sleep states. We give a sleep man-
agement algorithm called IdleLonger, which works for a processor with one or
multiple levels of sleep states. IdleLonger works in both clairvoyant and non-
clairvoyant settings. We adapt the clairvoyant speed scaling algorithm AJC [15]
and the non-clairvoyant algorithm LAPS [9] to take the static power σ into con-
sideration. Under the infinite speed model, these adapted algorithms together
with IdleLonger are shown to be O(1)-competitive for minimizing flow plus en-
ergy in the clairvoyant and non-clairvoyant settings, respectively. More precisely,
the ratios are O( α

lnα ) and O(α3) (recall that α is a constant).
For the bounded speed model, the problem becomes more difficult since the

processor, once overslept, cannot rely on unlimited extra speed to catch up the
delay. Nevertheless, we are able to enhance IdleLonger and AJC to observe
the maximum processor speed. They remain O(1)-competitive for flow plus en-
ergy under the bounded speed model.

Sleep management algorithm IdleLonger. When the processor is sleeping,
it is natural to delay waking up until sufficient jobs have arrived. The non-trivial
case is when the processor is idle (i.e., awake but at zero speed), IdleLonger has
to determine when to start working again or go to sleep. At first glance, if some
new jobs arrive while the processor is idle, the processor should run the jobs
immediately so as to avoid extra flow. Yet this would allow the adversary to easily
keep the processor awake, and it is difficult to achieve O(1)-competitiveness. In
an idle period, IdleLonger considers the (static) energy and flow accumulated
during the period as two competing quantities. Only if the flow exceeds the
energy, IdleLonger would start to work. Otherwise, IdleLonger will remain idle
until the energy reaches to a certain level; then the processor goes to sleep even
in the presence of jobs.

1 Static power is dissipated due to leakage current and is independent of processor speed,
and dynamic power is due to dynamic switching loss and increases with the speed.
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Analysis framework. Apparently, a sleep management algorithm and a speed
scaling algorithm would affect each other; analyzing their relationship and their
total cost could be a complicated task. Interestingly, the results of this paper
stem from the fact that we can isolate the analysis of these algorithms. We di-
vide the total cost (flow plus energy) into two parts, working cost (incurred while
working on jobs) and inactive cost (incurred at other times). We upper bound the
inactive cost of IdleLonger independent of the speed scaling algorithm. For the
working cost, although it does depend on both algorithms, our potential analysis
of the speed scaling algorithms reveals that the dependency on the sleep man-
agement algorithm is limited to a simple quantity called inactive flow, which is
the flow part of the inactive cost. Intuitively, large inactive flow means many jobs
are delayed due to prolonged sleep, and hence the processor has to work faster
later to catch up, incurring a higher working cost. It is easy to minimize inactive
flow at the sacrifice of the energy part of the inactive cost. IdleLonger is designed
to maintain a good balance between them. In conclusion, coupling IdleLonger
with AJC and LAPS, we obtain competitive algorithms for flow plus energy.

Organization of the paper. Section 1.1 defines the model formally. Sections 2
and 3 focus on the infinite speed model and discuss the sleep management algo-
rithm IdleLonger and two speed scaling algorithms. Finally, Section 4 presents
our results on the bounded speed model.

1.1 Model and Notations

The input is a sequence of jobs arriving online. We denote the release time and
work requirement (or size) of a job J as r(J) and w(J), respectively.

Speed and power. We first consider the setting with one sleep state. At any time,
a processor is in either the awake state or the sleep state. In the former, the pro-
cessor can run at any speed s ≥ 0 and demands power in the form sα + σ, where
α > 1 and σ > 0 are constants. We call sα the dynamic power and σ the static
power. In the sleep state, the speed is zero and the power is zero. State transition
requires energy; without loss of generality, we assume a transition from the sleep
state to the awake state requires an amount ω of energy, and the reverse takes zero
energy. To simplify our work, we assume state transition takes no time.

Next we consider the setting with m > 1 levels of sleep. A processor is in
either the awake state or the sleep-i state, where 1 ≤ i ≤ m. The awake state
is the same as before, demanding static power σ and dynamic power sα. For
convenience, we let σ0 = σ. The sleep-m state is the only “real” sleep state,
which has static power σm = 0; other sleep-i states have decreasing positive
static power σi such that σ0 > σ1 > σ2 > · · · > σm−1 > σm = 0. We denote
the wake-up energy from the sleep-i state to the awake state as ωi. Note that
ωm > ωm−1 > · · · > ω1 > 0.

It is useful to differentiate two types of awake state: with zero speed and with
positive speed. The former is called idle state and the latter is working state.

Flow and energy. Consider any schedule of jobs. The flow F (J) of a job J
is the time elapsed since it arrives and until it is completed. The total flow is
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F =
∑

J F (J). Note that F =
∫ ∞
0

n(t) dt, where n(t) is the number of unfinished
jobs at time t. Based on this view, we divide F into two parts: Fw is the flow
incurred during time intervals of working state, and Fi for idle or sleep state.
The energy usage is also divided into three parts: W denotes the energy due to
wake-up transitions, Ei is the idling energy (static power consumption in the idle
or intermediate sleep state), and Ew is the working energy (static and dynamic
power consumption in the working state). Our objective is to minimize the total
cost G = Fw + Fi + Ei + Ew + W . We call Fw + Ew the working cost, and
Fi + Ei +W the inactive cost.

2 Sleep Management Algorithm IdleLonger

This section presents a sleep management algorithm called IdleLonger that de-
termines when the processor should sleep, idle, and work (with speed > 0).
IdleLonger can be coupled with any speed scaling algorithm, which specifies which
job and at what speed the processor should run when the processor is working.
As a warm-up, we first consider the case with a single sleep state. Afterwards,
we consider the general case of multiple sleep states.

In this section, we derive an upper bound of the inactive cost of IdleLonger in-
dependent of the choice of the speed scaling algorithm. Section 3 will present two
speed scaling algorithms for the clairvoyant and non-clairvoyant settings, respec-
tively, and analyze their working costs when they are coupled with IdleLonger. In
conclusion, putting IdleLonger and each of these two speed scaling algorithms
together, we can show that both the inactive cost and working cost are O(1)
times of the total cost of the optimal offline algorithm OPT.

2.1 Sleep Management Algorithm for a Single Sleep State

When the processor is in the working state and sleep state, it is relatively simple
to determine the next transition. In the former, the processor keeps on working as
long as there is an unfinished job; otherwise switch to the idle state. In the sleep
state, we avoid waking up immediately after a new job arrives as this requires
energy. It is natural to wait until the new jobs have accumulated enough flow,
say, at least the wake-up energy ω, then we let the processor to switch to working
state direct. Below we refer the flow accumulated due to new jobs over a period
of idle or sleep state as the inactive flow of that period.

When the processor is in idle state, it is non-trivial when to switch to the
sleep or working state. Intuitively, the processor should not stay in idle state too
long, because it consumes energy (at the rate of σ) but does not get any work
done. Yet to avoid frequent wake-up in future, the processor should not sleep
immediately. Instead the processor should wait for possible job arrival and sleep
only after the idling energy (i.e., σ times the length of idling interval) reaches
the wake-up energy ω. When a new job arrives in the idle state, a naive idea is
to let the processor switch to the working state to process the job immediately;
this avoids accumulating inactive flow. Yet this turns out to be a bad strategy
as it becomes too difficult to sleep; e.g., the adversary can use some tiny jobs
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sporadically, then the processor would never accumulate enough idling energy
to sleep.

It is perhaps counter-intuitive that IdleLonger always prefers to idle a bit
longer, and it can switch to the sleep state even in the presence of unfinished
jobs. The idea is to consider the inactive flow and idling energy at the same time.
Note that when an idling period gets longer, both the inactive flow and idling
energy increase, but at different rates. We imagine that these two quantities are
competing with each other.

The processor switches from the idle state to the working state once the
inactive flow catches up with the idling energy. If the idling energy has
exceeded ω before the inactive flow catches up with the idling energy,
the processor switches to the sleep state.

Below is a summary of the above discussion. For simplicity, IdleLonger is written
in a way that it is being executed continuously. In practice, we can rewrite the
algorithm such that the execution is driven by discrete events like job arrival,
job completion and wake-up.

Algorithm 1. IdleLonger(A): A is any speed scaling algorithm
At any time t, let n(t) be the number of unfinished jobs at t.
In working state: If n(t) > 0, keep working on jobs according to the algorithm A;
else (i.e., n(t) = 0), switch to idle state.
In idle state: Let t′ ≤ t be the last time in working state (t′ = 0 if undefined). If the
inactive flow over [t′, t] equals (t − t′)σ, then switch to working state;
Else if (t − t′)σ = ω, switch to sleep state.
In sleep state: Let t′ ≤ t be the last time in working state (t′ = 0 if undefined). If
the inactive flow over [t′, t] equals ω, switch to working state.

Below we upper bound the inactive cost of IdleLonger (the working cost will
be dealt with in Section 3). It is useful to define three types of time intervals. An
Iw-interval is a maximal interval in idling state with a transition to the working
state at the end, and similarly an Is-interval for that with a transition to the
sleep state. Furthermore, an ISw-interval is a maximal interval comprising an
Is-interval, a sleeping interval, and finally a wake-up transition. As the processor
starts in the sleep state, we allow the first ISw-interval containing no Is-interval.

Consider a schedule of IdleLonger(A). Recall that the inactive cost is com-
posed of W (wake-up energy), Fi (inactive flow), and Ei (idling energy). We
further divide Ei into two types: Eiw is the idling energy incurred in all Iw-
intervals, and Eis for all Is-intervals.

By the definition of IdleLonger, we have the following property.

Property 1. (i) Fi ≤ W + Eiw, and (ii) Eis = W .

Therefore, the inactive cost of IdleLonger, defined as W + Fi + Eiw + Eis, is at
most 3W + 2Eiw. The non-trivial part is to upper bound W and Eiw. Our main
result is stated below. For the optimal offline algorithm OPT, we divide its total
cost G∗ into two parts: W ∗ is the total wake-up energy, and C∗ = G∗−W ∗ (i.e.,
the total flow plus the working and idling energy).
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Theorem 1. W + Eiw ≤ C∗ + 2W ∗.

Corollary 1. The inactive cost of IdleLonger is at most 3C∗ + 6W ∗.

The rest of this section is devoted to proving Theorem 1. Note that W is the
wake-up energy consumed at the end of all ISw-intervals, and Eiw is the idling
energy of all Iw-intervals. All these intervals are disjoint. Below we show a charg-
ing scheme such that, for each ISw-interval, we charge OPT a cost at least ω, and
for each Iw-interval, we charge OPT at least the idling energy of this interval.
Thus, the total charge to OPT is at least W +Eiw. On the other hand, we argue
that the total charge is at most C∗ + 2W ∗. Therefore, W + Eiw ≤ C∗ + 2W ∗.

The charging scheme for an ISw-interval [t1, t2] is as follows. The target is at
least ω.
Case 1. If OPT switches from or to the sleep state in [t1, t2], we charge OPT

the cost ω of the first wake-up in [t1, t2] (if it exists) or of the last wake-up
before t1.

Case 2. If OPT is awake throughout [t1, t2], we charge OPT the static energy
(t2 − t1)σ. Note that in an ISw-interval, IdleLonger has an idle-sleep transi-
tion, and hence (t2 − t1)σ > ω.

Case 3. If OPT is sleeping throughout [t1, t2], we charge OPT the inactive
flow (i.e., the flow incurred by new jobs) over [t1, t2]. In this case, OPT
and IdleLonger have the same amount of inactive flow during [t1, t2], which
equals ω (because IdleLonger wakes up at t2).

For an Iw-interval, we use the above charging scheme again. The definition of
Iw-interval allows the scheme to guarantee a charge of (t2 − t1)σ instead of ω.
Specifically, as an Iw-interval ends with an idle-working transition, the inactive
flow accumulated in [t1, t2] is (t2−t1)σ, and the latter cannot exceed ω. Therefore,
the charge of Case 1, which equals ω, is at least (t2−t1)σ. Case 2 charges exactly
(t2− t1)σ. For Case 3, we charge OPT the inactive flow during [t1, t2]. Note that
OPT and IdleLonger accumulate the same inactive flow, which is (t2 − t1)σ.

Summing over all Iw- and ISw-intervals, we have charged OPT at least W +
Eiw. On the other hand, since all these intervals are disjoint, in Cases 2 and 3,
the charge comes from non-overlapping flow and energy of C∗. In Case 1, each
OPT’s wake-up from the sleep state is charged for ω at most twice, thus the
total charge is at most 2W ∗. In conclusion, W + Eiw ≤ C∗ + 2W ∗.

2.2 Sleep Management Algorithm for m ≥ 2 Levels of Sleep States

We extend the previous sleep management algorithm to allow intermediate sleep
states, which demand less idling (static) energy than the idling state, and also
less wake-up energy than the final sleep state (i.e., sleep-m state). We treat the
sleep-m state as the only sleep state in the single-level setting, and adapt the
transition rules of the idling state for the intermediate sleep states. The key idea
is again to compare inactive flow against idling energy continuously. To ease
our discussion, we treat the idle state as the sleep-0 state with wake-up energy
ω0 = 0.
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Algorithm 2. IdleLonger(A): A is any speed scaling algorithm
At any time t, let n(t) be the number of unfinished jobs at t.
In working state: If n(t) > 0, keep working on the jobs according to the algorithm
A; else if n(t) = 0, switch to idle state.
In sleep-j state, where 0 ≤ j ≤ m − 1: Let t′ ≤ t be the last time in the working
state, and let t′′, where t′ ≤ t′′ ≤ t, be the last time switching from sleep-(j − 1) state
to sleep-j state. If the inactive flow over [t′, t] equals (t − t′′)σj + ωj , then wake up to
the working state;
Else if (t − t′′)σj = (ωj+1 − ωj), switch to sleep-(j + 1) state.
In sleep-m state: Let t′ ≤ t be the last time in the working state. If the inactive flow
over [t′, t] equals ωm, then wake up to the working state.

When we analyze the multi-level algorithm, the definition of W (total wake-up
cost) and Fi (total inactive flow) remain the same, but Eis and Eiw have to be
generalized. Below we refer a maximal interval during which the processor is in a
particular sleep-j state, where 0 ≤ j ≤ m, as a sleep interval or more specifically,
a sleep-j interval. Note that all sleep intervals, except sleep-m intervals, demand
idling (static) energy. We denote Eiw as the idling energy for all sleep intervals
that end with a wake-up transition, and Eis the idling energy of all sleep intervals
ending with a (deeper) sleep transition.

IdleLonger imposes a rigid structure of sleep intervals. Define �j = (ωj+1 −
ωj)/σj . A sleep-j interval can appear only after a sequence of lower level sleep
intervals, which starts with an sleep-0 interval of length �0, followed by a sleep-
1 interval of length �1, . . . , and finally a sleep-(j − 1) interval of length �j−1.
Consider a maximum sequence of such sleep intervals that ends with a transition
to the working state. We call the entire time interval enclosed by this sequence an
ISw[j]-interval for some 0 ≤ j ≤ m if the deepest (also the last) sleep subinterval
is of level j. It is useful to observe the following lemma about an ISw[j]-interval.
Its proof is left in the full paper.

Lemma 1. Consider any ISw[j]-interval [t1, t2], where 0 ≤ j ≤ m. Assume that
the last sleep-j (sub)interval is of length �. Then, ωj + �σj ≤ ωk +(t2 − t1)σk for
any 0 ≤ k ≤ m.

It is not hard to see that the rigid sleeping structure of IdleLonger allows us to
maintain Property 1 as before. That is, (i) Fi ≤ W + Eiw, and (ii) Eis = W .
Thus, the inactive cost, which is equal to Fi + Eiw + Eis + W , is still at most
3W + 2Eiw. In the rest of this section, we prove that W and Eiw have the same
upper bound as before.

Theorem 2. In the setting of m ≥ 2 sleep states, W + Eiw ≤ C∗ + 2W ∗.

To account for W and Eiw, it suffices to look at all ISw[j]-intervals, where 0 ≤
j ≤ m. For each ISw[j]-interval, we show how to charge OPT a cost ωj + �σj ,
where � is length of the deepest sleep subinterval (it is useful to recall that ω0 = 0
and σm = 0). Then we argue that the total cost charged is at least W +Eiw and
at most C∗ + 2W ∗.
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Without loss of generality, we can assume that in a maximal interval [r1, r2]
that OPT is not working, if OPT has ever slept (in sleep-1 or deeper sleep
state), then [r1, r2] contains only one sleep transition, which occurs at r1, and
the processor remains in the same sleep state until r2.

Charging scheme. Consider any ISw[j]-interval [t1, t2], where 0 ≤ j ≤ m. Let
� be the length of the sleep-j (sub)interval in this interval.

Case 1. If OPT has ever switched from or to the sleep-1 or deeper sleep state
in [t1, t2], let k ≥ 1 be the deepest sleep level involved in the entire interval.
Note that OPT uses static energy at least (t2 − t1)σk during [t1, t2]. We
charge OPT the sum of (t2 − t1)σk and ωk (in view of a wake-up from sleep-
k state inside [t1, t2] or after t2; if there is no-wake up after t2, then we charge
OPT the first wake-up). By Lemma 1, this charge is at least ωj + �σj .

Case 2. If OPT is working or idle throughout [t1, t2], we charge OPT the static
energy (t2 − t1)σ0, which, by Lemma 1, is at least ωj + �σj .

Case 3. If OPT is sleeping (at any level except zero) throughout [t1, t2], we
charge OPT the inactive flow over [t1, t2]. Note that OPT has the same
amount of inactive flow as IdleLonger. By definition of a wake-up transition
in IdleLonger, the inactive flow equals ωj + �σj .

Since ISw[j]-intervals are all disjoint, the flow and idling (static) energy charged
to OPT by Cases 1, 2 and 3 come from different parts of C∗. For Case 1, each of
OPT’s wake-up from a sleep state is charged at most twice. Thus, W + Eiw ≤
C∗ + 2W ∗, completing the proof of Theorem 2.

3 Clairvoyant and Non-clairvoyant Speed Scaling

We consider both the clairvoyant and non-clairvoyant settings; in the latter, job
size is only known when the job completes. IdleLonger can actually work in both
settings as its decision does not depend on the job size. When there is no sleep
state and the power function is in the form of sα, [15] and [9] gave respectively
a clairvoyant speed scaling algorithm AJC and a non-clairvoyant speed scaling
algorithm LAPS that areO(1)-competitive for flow plus energy. These algorithms
always run the jobs at a speed proportional to n(t)1/α, where n(t) is the number
of unfinished jobs at time t. In the sleep setting, when the processor is working, it
requires at least the static power σ; if σ is large, running at a speed comparable
to n(t)1/α would be too slow to be cost effective as the dynamic power could be
way smaller than σ. Indeed AJC and LAPS have unbounded competitive ratios
no matter what sleep management algorithm is used. This section shows how to
analyze the following simple adaptations of AJC and LAPS to the sleep setting,
and upper bound their working costs in terms of OPT’s total cost.

Clairvoyant algorithm SAJC. At any time t, SAJC runs the job with
the shortest remaining work at the speed (n(t) + σ)1/α.
Non-clairvoyant algorithm SLS. At any time t, SLS runs at speed
(1 + 3

α )(n(t) + σ)1/α, and runs the
⌈
( 1
2α )n(t)

⌉
unfinished jobs with the

latest release times by splitting the speed equally among these jobs.
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The analysis of SAJC (resp. SLS) is valid no matter what (non-clairvoyant)
sleep management algorithm Slp is being used together. Ideally we want to upper
bound the working cost of SAJC and SLS solely in terms of the total cost of
OPT, yet this is not possible as the working cost also depends on Slp. Below we
give an analysis in which the dependency on Slp is bounded by the inactive flow
incurred by Slp. More specifically, let Gw and Fi be respectively the working
cost and the inactive flow of Slp(SAJC) (resp. Slp(SLS)). Again, we use C∗ to
denote the total cost of OPT minus the wake-up energy; the latter is denoted
by W ∗. We will show that Gw = O(C∗ + Fi).

Let us look at a simple case. If Slp always switches to working state whenever
there are unfinished jobs, then Fi = 0. In this case we can easily adapt the
analysis of [15] (resp. [9]) to bound Gw in terms of C∗ only. However, the inactive
cost of Slp may be unbounded in this case. On the other hand, consider a sleep
management algorithm that prefers to wait for more jobs before waking up to
work (e.g., IdleLonger). Then SAJC (resp. SLS) would start at a higher speed
and Gw can be much larger than C∗. Roughly speaking, the excess is due to the
fact that the online algorithm is sleeping while OPT is working. Note that the
cost to catch up the work lagged behind increases at a rate depending on n(t).
This motivates us to bound the excess in terms of Fi. Based on this idea, we can
adapt the potential analyses of AJC [15] and LAPS [9] to show Theorem 3 below,
where β = 2/(1− α−1

αα/(α−1) ) and γ = (1 + (1 + 3
α )α) ≤ 1 + e3. Together with the

results on inactive cost of IdleLonger (Property 1 and Corollary 1), it implies that
the clairvoyant algorithm IdleLonger(SAJC) is (2β+2)-competitive for flow plus
energy, and the non-clairvoyant algorithm IdleLonger(SLS) is ((4α3 + α)γ + 3)-
competitive for flow plus energy. Detailed proofs will be given in the full paper.

Theorem 3. (i) With respect to Slp(SAJC), Gw ≤ βC∗ + (β − 2)Fi. (ii) With
respect to Slp(SLS), Gw ≤ (4α3 + 1)γC∗ + (α− 1)γFi.

Corollary 2. In the setting of single sleep state or multiple sleep states,

(i) the total cost of the clairvoyant algorithm IdleLonger(SAJC) is at most
(2β + 2) times of the total cost of OPT, and

(ii) the total cost of the non-clairvoyant algorithm IdleLonger(SLS) is at most
((4α3 + α)γ + 3) times of the total cost of OPT.

4 Bounded Speed Model

This section extends the sleep management algorithm IdleLonger and the clair-
voyant speed scaling algorithm SAJC to the bounded speed model. We consider
the setting where the processor speed is upper bounded by a constant T > 0, and
there are m ≥ 1 levels of sleep states. We show that the total cost (comprising
inactive and working cost) of IdleLonger(SAJC) is O(1) times of the optimal
offline algorithm OPT.

Adaptation. In the bounded speed model, IdleLonger (see Section 2) still works
and the inactive cost is O(1) times of OPT’s total cost. However, IdleLonger
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often allows a long sleep, then a speed scaling algorithm, without the capability
to speed up arbitrarily, cannot always catch up the progress of OPT and may
have unbounded working cost. Thus, we adapt IdleLonger to wake up earlier,
especially when too many new jobs have arrived. To this end, we add one more
wake-up condition to IdleLonger. Recall that σ(= σ0) is the static power in the
working state.

In the sleep-j state, where 0 ≤ j ≤ m, if the number of unfinished jobs
exceeds σ, the processor wakes up to the working state.

Recall that SAJC runs at the speed (n(t) + σ)1/α, where n(t) is the number
of unfinished jobs at time t. To adapt SAJC to the bounded speed model, we
simply cap the speed at T . I.e., at any time t, the processor runs at the speed
min{(n(t) + σ)1/α, T }.
Inactive cost of IdleLonger. The rigid structure of sleep intervals remains
the same as before, and the inactive cost is still at most 3W + 2Eiw, where W
is the wake-up energy and Eiw is the idling energy incurred in those idling or
intermediate sleep intervals that end with a wake-up transition (see Section 2 for
details). However, due to the additional wake-up rule, IdleLonger has a slightly
worse bound on W plus Eiw. Our main result is stated in Theorem 4. Again, W ∗

denotes the wake-up energy of OPT, and C∗ is the total cost of OPT minus W ∗.

Theorem 4. (i) W + Eiw ≤ C∗ + 3W ∗. (ii) The inactive cost of IdleLonger is
at most 3C∗ + 9W ∗.

To prove Theorem 4(i), we extend the charging scheme in Section 2.2 to show
that for each ISw[j]-interval, OPT can be charged with a cost at least ωj + �σj ,
where � is the length of the deepest sleep subinterval (recall that ω0 = 0, σ0 = σ
and σm = 0). The three cases of the old charging scheme remain the same, except
that Case 3 is restricted to ISw[j]-intervals where IdleLonger wakes up at the end
due to excessive inactive flow. We supplement Case 3 with a new scheme (Case
4) to handle ISw[j]-intervals with wake-ups due to more than σ unfinished jobs.

Charging scheme – Case 4. If OPT is sleeping (at any level except zero)
throughout an ISw[j]-interval [t1, t2], and IdleLonger has accumulated more than
σ unfinished jobs at t2, we consider two scenarios to charge OPT, depending on
no(t1), the number of unfinished jobs in OPT at t1.

(a) Suppose no(t1) ≥ σ0. We charge OPT the inactive flow of these jobs over
[t1, t2], which is at least (t2− t1)σ0. By Lemma 1, this charge is at least ωj + �σj .

(b) Suppose no(t1) < σ0. Note that OPT stays in a sleep-k state, for some k ≥ 1,
in the entire interval and uses static energy (t2 − t1)σk during [t1, t2]. We charge
OPT the sum of (t2 − t1)σk and ωk (in view of OPT’s first wake-up after t2,
which must exist because new jobs have arrived within [t1, t2]). By Lemma 1,
this charge is at least ωj + �σj .

In conclusion, we are able to charge OPT, for each ISw[j]-interval, a cost at
least ωj + �σj . Therefore, the sum of the charges to all ISw[j]-intervals is at
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least W +Eiw. On the other hand, recall that Case 1 has a total charge at most
2W ∗. Case 2, 3 and 4(a) have a total charge at most C∗. We can argue that
OPT is charged by Case (4b) with a cost at most W ∗; details are left in the full
paper. Then we have W +Eiw ≤ C∗ + 3W ∗. And Theorem 4(ii) follows directly.
In the full paper, we will adapt the potential analysis of AJC [15] and show
that the working cost of SAJC is still O( α

ln α ) times OPT’s total cost. Therefore,
IdleLonger(SAJC) remains O( α

ln α )-competitive for flow plus energy.
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Abstract. We resolve an open question raised by Feige & Scheideler by
showing that the best known approximation algorithm for flow shops is
essentially tight with respect to the used lower bound on the optimal
makespan. We also obtain a nearly tight hardness result for the general
version of flow shops, where jobs are not required to be processed on
each machine.

Similar results hold true when the objective is to minimize the sum
of completion times.

1 Introduction

In the flow shop scheduling problem we have a set of n jobs that must be processed
on a given set of m machines that are located in a fixed order. Each job j consists
of a sequence of m operations, where the i-th operation must be processed during
pij ∈ Z+ time units without interruption on the i-th machine. A feasible schedule
is one in which each operation is scheduled only after all operations preceding
it in its job have been completed, and each machine processes at most one
operation at a time. A natural generalization of the flow shop problem is to
not require jobs to be processed on all machines, i.e., a job still requests the
machines in compliance with their fixed order but may skip some of them. We
will refer to this more general version as generalized flow shops or flow shops with
jumps. Generalized flow shop (and thus flow shop) scheduling is a special case
of the acyclic job shop scheduling, which only requires that within each job all
operations are performed on different machines, which in turn is a special case
of the general job shop scheduling, where each job may have many operations
on a single machine.

For any given schedule, let Cj be the completion time of the last operation of
job j. We consider the natural and typically considered objectives of minimizing
the makespan, Cmax = maxj Cj , and the sum of weighted completion times,∑

wjCj , where wj are positive integers. The goal is to find a feasible schedule
which minimizes the considered objective function. In the notation of Graham
et al. [6] the flow shop scheduling problem is denoted as F ||γ, where γ denotes the
objective function to be minimized. We will sometimes abbreviate the generalized
flow shop problem by F |jumps|γ.

1.1 Literature Review

Flow shops have long been identified as having a number of important practi-
cal applications and have been widely studied since the late 50’s (the reader is

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 677–688, 2009.
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referred to the survey papers of Lawler et al. [9] and of Chen, Potts & Woegin-
ger [2]). To find a schedule that minimizes the makespan, or one that minimizes
the sum of completion times, was proved to be strongly NP-hard in the 70’s,
even for severely restricted instances (see e.g. [2]).

From then, many approximation methods have been proposed. Since the qual-
ity of an approximation algorithm is measured by comparing the returned so-
lution value with a polynomial time computable lower bound on the optimal
value, the goodness of the latter is very important. For a given instance, let
C∗

max denote the minimum makespan taken over all possible feasible schedules.
If D denotes the length of the longest job (the dilation), and C denotes the
time units requested by all jobs on the most loaded machine (the congestion),
then lb = max[C,D] is a known trivial lower bound on C∗

max. To the best of
our knowledge, no significant stronger lower bound is known on C∗

max, and all
the proposed approximation algorithms for flow shops (but also for the more
general job shop, acyclic job shop and the more constrained case of permuta-
tion flow shops) have been analyzed with respect to this lower bound (see, e.g.,
[10,11,4,17,5,13]).

Even though the trivial lower bound might seem weak a surprising result by
Leighton, Maggs & Rao [10] says that for acyclic job shops, if all operations
are of unit length, then C∗

max = Θ(lb). If we allow operations of any length,
then Feige & Scheideler [4] showed that C∗

max = O(lb · log lb log log lb). They also
showed their analysis to be nearly tight by providing acyclic job shop instances
with C∗

max = Ω(lb · log lb/ log log lb). The proofs of the upper bounds in [10,4]
are nonconstructive and make repeated use of (a general version) of Lovasz local
lemma. Algorithmic versions appeared in [1,3]. Recently, the authors showed
that the best known approximation algorithm for acyclic job shops is basically
tight [12]. More specifically, it was shown that for every ε > 0, the (acyclic) job
shop problem cannot be approximated within ratio O(log1−ε lb), unless NP has
quasi-polynomial Las-Vegas algorithms.

In contrast to acyclic job shops, the strength of the lower bound lb for flow
shop scheduling is not well understood, and tight results are only known for
some variants. A notable example is given by the permutation flow shop problem,
that is a flow shop problem with the additional constraint that each machine
processes all the jobs in the same order. Potts, Shmoys & Williamson [14] gave a
family of permutation flow shop instances with C∗

max = Ω(lb ·
√

min[m,n]). This
lower bound was recently showed to be tight, by Nagarajan & Sviridenko [13],
who gave an approximation algorithm that returns a permutation schedule with
makespan O(lb ·

√
min[m,n]).

Feige & Scheideler’s upper bound for acyclic jobs [4] is also the best upper
bound for the special case of flow shops. As flow shops have more structure
than acyclic job shops and no flow shop instances with C∗

max = ω(lb) were
known, one could hope for a significant better upper bound for flow shops. The
existence of such a bound was raised as an open question in [4]. Unfortunately
our recent inapproximability results for acyclic job shops do not apply to flow
shops, since in [12] our construction builds upon the lower bound construction
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for acyclic job shop, which does not seem to generalize to flow shop [4]. The only
known inapproximability result is due to Williamson et al. [18], and states that
when the number of machines and jobs are part of the input, it is NP-hard to
approximate F ||Cmax with unit time operations, and at most three operations
per job, within a ratio better than 5/4. It is a long standing open problem if
the above algorithms F ||Cmax, are tight or even nearly tight (see, e.g. “Open
problem 6 ” in [16]).

A similar situation holds for the objective
∑

wjCj . Queyranne & Sviridenko
[15] showed that an approximation algorithm for the above mentioned problems
that produces a schedule with makespan a factorO(ρ) away from the lower bound
lb can be used to obtain a O(ρ)-approximation algorithms for other objectives,
including the sum of weighted completion times. The only known inapproxima-
bility result is by Hoogeveen, Schuurman & Woeginger [7], who showed that
F ||

∑
Cj is NP-hard to approximate within a ratio better than 1 + ε for some

small ε > 0.

1.2 Our Results

In this paper, we show that the best known upper bound [4] is essentially the best
possible, by proving the existence of instances of flow shop scheduling for which
the shortest feasible schedule is of length Ω(lb · log lb/ log log lb). This resolves
(negatively) the aforementioned open question by Feige & Scheideler [4].

Theorem 1. There are flow shop instances for which any schedule has makespan
Ω(lb · log lb/ log log lb).

If we do not require a job to be processed on all machines, i.e. generalized flow
shops, we prove that it is hard to improve the approximation guarantee. Theo-
rem 2 shows that generalized flow shops, with the objective to either minimize
makespan or sum of completion times, have no constant approximation algo-
rithm unless P = NP .

Theorem 2. For all sufficiently large constants K, it is NP-hard to distinguish
between generalized flow shop instances that have a schedule with makespan 2K ·lb
and those that have no solution that schedules more than half of the jobs within
(1/8)K

1
25 (log K) ·lb time units. Moreover this hardness result holds for generalized

flow shop instances with bounded number of operations per job, that only depends
on K.

By using a similar reduction, but using a stronger assumption, we give a hard-
ness result that essentially shows that the current approximation algorithms for
generalized flow shops, with both makespan and sum of weighted completion
times objective, are tight.

Theorem 3. Let ε > 0 be an arbitrarily small constant. There is no
O

(
(log lb)1−ε

)
-approximation algorithm for F |jumps|Cmax or F |jumps|

∑
Cj,

unless NP ⊆ ZTIME(2O(log n)O(1/ε)
).
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No results of this kind were known for a flow shop problem. Moreover, this paper
extends and significantly simplifies the recent hardness results by the authors
for the acyclic job shop problem [12].

In summary, the consequences of our results are among others that in order
to improve the approximation guarantee for flow shops, it is necessary to (i)
improve the used lower bound on the optimal makespan and (ii) use the fact
that a job needs to be processed on all machines.

2 Job and Flow Shops Instances with Large Makespan

We first exhibit an instance of general job scheduling for which it is relatively
simple to show that any optimal schedule is of length Ω(lb · log lb). The con-
struction builds upon the idea of jobs of different “frequencies”, by Feige &
Scheideler [4], but we will introduce some important differences that will be de-
cisive for the flow shop case. The resulting instance slightly improves1 on the
bound by Feige & Scheideler [4], who showed the existence of job shop instances
with optimal makespan Ω(lb · log lb/ log log lb).

The construction of flow shop instances with “large” makespan is more com-
plicated, as each job is required to have exactly one operation for every machine,
and all jobs are required to go through all the machines in the same order. The
main idea is to start with the aforementioned job shop construction, which has
very cyclic jobs, i.e., jobs have many operations on a single machine. The flow
shop instance is then obtained by “copying” the job shop instance several times
and, instead of having cyclic jobs, we let the i-th long operation of a job to be
processed in the i-th copy of the original job shop instance. Finally, we insert
additional zero-length operations to obtain a flow shop instance. We show that
the resulting instance has optimal length Ω(lb · log lb/ log log lb).

2.1 Job Shops with Large Makespan

Construction. For any integer d ≥ 1 consider the job shop instance with d
machines m1, . . . ,md and d jobs j1, . . . , jd. We say that job ji has frequency
i, which means that it has 3i so-called long-operations on machine mi, each
one of them requires 3d−i time units. And between any two consecutive long-
operations, job ji has short-operations that requires 0 time units on the machines
m1, . . . ,mi−1. Note that the length of all jobs and the load on all machines are
3d, which we denote by lb. For a small example see Figure 1.

m1

m2

m3

Fig. 1. An example of the construction for job shop with d = 3

1 However, in their construction all operations of a job have the same length which is
not the case for our construction.
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Analysis. Fix an arbitrarily feasible schedule for the jobs. We shall show that
the length of the schedule must be Ω(lb · log lb).

Lemma 1. For i, j : 1 ≤ i < j ≤ d, the number of time units during which both
ji and jj perform operations is at most lb

3j−i .

Proof. During the execution of a long-operation of ji (that requires 3d−i time
units), job jj can complete at most one long-operation that requires 3d−j time
units (since its short-operation on machine mi has to wait). As ji has 3i long-
operations, the two jobs can perform operations at the same time during at most
3i · 3d−j = 3d

3j−i = lb
3j−i time units.

It follows that, for each i = 1, . . . , d, at most a fraction 1/3+1/32+ · · ·+1/3i ≤
1/3+1/32+ · · ·+1/3d ≤ 1

3−1 = 1/2 of the time spent for long-operations of a job
ji is performed at the same time as long-operations of jobs with lower frequency.
Hence a feasible schedule has makespan at least d · lb/2. As d = Ω(log lb) (recall
that lb = 3d), the optimal makespan of the constructed job shop instance is
Ω(lb · log lb).

2.2 Flow Shops with Large Makespan

Construction. For sufficiently large integers d and r, consider the flow shop
instance defined as follows:

– There are r2d groups of machines2, denoted byM1,M2, . . . ,Mr2d . Each group
Mg consists of d machines mg,1,mg,2, . . . ,mg,d (one for each frequency).
Finally the machines are ordered in such a way so that mg,i is before mh,j

if either (i) g < h or (ii) g = h and i > j. The latter case will ensure that,
within each group of machines, long-operations of jobs with high frequency
will be scheduled before long-operations of jobs with low frequency, a fact
that is used to prove Lemma 3.

– For each frequency f = 1, . . . , d, there are r2(d−f) groups of jobs, denoted
by Jf

1 , J
f
2 , . . . , J

f
r2(d−f) . Each group Jf

g consists of r2f copies, referred to as
jf
g,1, j

f
g,2, . . . , j

f
g,r2f , of the job that must be processed during r2(d−f) time

units on the machines

ma+1,f ,ma+2,f , . . . ,ma+r2f ,f where a = (g − 1) · r2f

and during 0 time units on all the other machines that are required to create
a flow shop instance. Let Jf be the set of jobs that correspond to frequency
f , i.e., Jf = {jf

g,a : 1 ≤ g ≤ r2(d−f), 1 ≤ a ≤ r2f}.

Note that the length of all jobs and the load on all machines are r2d, which we
denote by lb. Moreover, the total number of machines and number of jobs are
both r2d ·d. In the subsequent we will call the operations that require more than
0 time units long-operations and the operations that only require 0 time units
short-operations. For an example of the construction see Figure 2.
2 These groups of machines “correspond” to copies of the job shop instance in

subsection 2.1.
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Fig. 2. An example of the construction for flow shop scheduling with r = d = 2.
Only long-operations on the first 4 and last 4 groups of machines are depicted. The
long-operations of one job of each frequency are highlighted in dark gray.

Analysis. We shall show that the length of the schedule must be Ω(lb·min[r, d]).
As lb = r2d, instances constructed with r = d has optimal makespan Ω(lb ·
log lb/ log log lb).

Fix an arbitrarily feasible schedule for the jobs. We start by showing a useful
property. For a job j, let dj(i) denote the delay between job j’s i-th and i+1-th
long-operations, i.e., the time units between the end of job j’s i-th long-operation
and the start of its i + 1-th long-operation (let dj(i) = ∞ for the last long-
operation). We say that the i-th long-operation of a job j of frequency f is good
if dj(i) ≤ r2

4 · r2(d−f).

Lemma 2. If the schedule has makespan less than r · lb then the fraction of good
long-operations of each job is at least

(
1 − 4

r

)
.

Proof. Assume that the considered schedule has makespan less than r · lb. Sup-
pose toward contradiction that there exists a job j of frequency f so that j has
at least 4

r r
2f long-operations that are not good. But then the length of j is at

least 4
r r

2f · r2

4 · r2(d−f) = r · r2d = r · lb, which contradicts that the makespan of
the considered schedule is less than r · lb.

We continue by analyzing the schedule with the assumption that its makespan
is less than r · lb (otherwise we are done). In each group Mg of machines we
will associate a set Tg,f of time intervals with each frequency f = 1, . . . , d. The
set Tg,f contains the time intervals corresponding to the first half of all good
long-operations scheduled on the machine mg,f .

Lemma 3. Let k, � : 1 ≤ k < � ≤ d be two different frequencies. Then the sets
Tg,k and Tg,� , for all g : 1 ≤ g ≤ r2d, contain disjoint time intervals.

Proof. Suppose toward contradiction that there exist time intervals tk ∈ Tg,k

and t� ∈ Tg,� that overlap, i.e., tk ∩ t� �= ∅. Note that tk and t� correspond to
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good long-operations of jobs of frequencies k and �, respectively. Let us say that
the good long-operation corresponding to t� is the a-th operation of some job j.
As t� and tk overlap, the a-th long-operation of j must overlap the first half of the
long-operation corresponding to tk. As job j has a short operation on machine
mg,k after its long-operation on machine mg,� (recall that machines are ordered
mg,d,mg,d−1, . . . ,mg,1 and � > k), job j’s (a + 1)-th operation must be delayed
by at least r2(d−k)/2− r2(d−�) time units and thus dj(a) > r2(d−k)/2− r2(d−�) >
r2

4 r
2(d−�), which contradicts that the a-th long-operation of job j is good.

Let L(Tg,f) denote the total time units covered by the time intervals in Tg,f . We
continue by showing that there exists a g such that

∑d
f=1 L(Tg,f ) ≥ lb

4 · d. With
this in place, it is easy to see that any schedule has makespan Ω(d · lb) since all
the time intervals {Tg,f : f = 1, . . . , d} are disjoint (Lemma 3).

Lemma 4. There exists a g ∈ {1, . . . , r2d} such that

d∑
f=1

L(Tg,f) ≥ lb

4
· d

Proof. As
∑d

f=1 L(Tg,f ) adds up the time units required by the first half of each
good long-operation scheduled on a machine in Mg, the claim follows by showing
that there exist one group of machines Mg from {M1,M2, . . . ,Mr2d} so that the
total time units required by the good long-operations on the machines in Mg is
at least lb·d

2 .
By lemma 2 we have that the good long-operations of each job requires at least

lb ·
(
1 − 4

r

)
time units. Since the total number of jobs is r2dd the total time units

required by all good long-operations is at least lb ·
(
1 − 4

r

)
· r2dd. As there are

r2d many groups of machines, a simple averaging argument guarantees that in at
least one group of machines, say Mg, the total time units required by the good
long-operations on the machines in Mg is at least lb ·

(
1 − 4

r

)
d > lb · d/2.

3 Hardness of Generalized Flow Shops

Theorem 2 and Theorem 3 are proved by presenting a gap-preserving reduction
Γ from the graph coloring problem to the generalized flow shop problem. Γ
has two parameters r and d. Given an n-vertex graph G whose vertices are
partitioned into d independent sets, it computes in time polynomial in n and rd,
a generalized flow shop instance S(r, d) where all jobs have the same length r2d

and all machines the same load r2d. Hence, lb = r2d. Instance S(r, d) has a set
of r2d jobs and and a set of r2d machines for each vertex in G. The total number
of jobs and the total number of machines are thus both r2dn. Moreover, each
job has at most (Δ + 1)r2d operations. By using jobs of different frequencies,
as done in the gap construction, we have the property that “many” of the jobs
corresponding to adjacent vertices cannot be scheduled in parallel in any feasible
schedule. On the other hand, by letting jobs skip those machines corresponding
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to non-adjacent vertices, jobs corresponding to an independent set in G can be
scheduled in parallel (their operations can overlap in time) in a feasible schedule.
This ensures that the following completeness and soundness hold for the resulting
generalized flow shop instance S(r, d).

– Completeness case: If G can be colored using L colors then C∗
max ≤ lb · 2L;

– Soundness case: For any L ≤ r. Given a schedule where at least half the jobs
finish within lb · L time units, we can, in time polynomial in n and rd, find
an independent set of G of size n/(8L).

In Section 3.1 we describe the gap-preserving reduction Γ . With this construction
in place, Theorem 2 easily follows by using a result by Khot [8], that states that
it is NP-hard to color a K-colorable graph with K

1
25 (log k) colors, for sufficiently

large constants K. The result was obtained by presenting a polynomial time
reduction that takes as input a SAT formula φ together with a sufficiently large
constant K, and outputs an n-vertex graph G with degree at most 2KO(log K)

.
Moreover, (completeness) if φ is satisfiable then graph G can be colored using K
colors and (soundness) if φ is not satisfiable then graph G has no independent set
containing n/K

1
25 (log K) vertices (see Section 6 in [8]). Note that the soundness

case implies that any feasible coloring of the graph uses at least K
1
25 (log K) colors.

We let G[c, i] be the family of graphs that either can be colored using c colors or
have no independent set containing a fraction i of the vertices. To summarize,
for sufficiently large K and Δ = 2KO(log K)

, it is NP-hard to decide if an n-vertex
graph G in G[K, 1/K

1
25 (log K)] with bounded degree Δ has

χ(G) ≤ K or α(G) ≤ n

K
1
25 (log K)

where χ(G) and α(G) denote the chromatic number and the size of a maximum
independent set of G, respectively. As the vertices of a graph with bounded
degree Δ can, in polynomial time, be partitioned into Δ + 1 independent sets,
we can use Γ with parameters d = Δ+1 and r = K

1
25 (log K) (r is chosen such that

the condition L ≤ r in the soundness case of Γ is satisfied for L = K
1
25 (log K)/8).

It follows, by the completeness case and soundness case of Γ , that it is NP-hard
to distinguish if the obtained scheduling instance has a schedule with makespan
at most lb · 2K, or no solution schedules more than half of the jobs within
lb·K 1

25 (log K)/8 time units. Moreover, each job has at most (Δ+1)r2d operations,
which is a constant that only depends on K.

The proof of Theorem 3 is similar to the proof of Theorem 2 with the exception
that the graphs have no longer bounded degree. Due to space limits the proof
is omitted; it follows the one provided by the authors for the acyclic job shop
problem [12].

3.1 Construction

Here, we present the reduction Γ for the general flow shop problem where jobs are
allowed to skip machines. Given an n-vertex graph G = (V,E) whose vertices are
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partitioned into d independent sets, we create a generalized flow shop instance
S(r, d), where r and d are the parameters of the reduction. Let I1, I2, . . . Id denote
the independent sets that form a partition of V .
S(r, d) is very similar to the gap instance described in Section 2.2. The main

difference is that in S(r, d) distinct jobs can be scheduled in parallel if their
corresponding vertices in G are not adjacent. This is obtained by letting a job to
skip those machines corresponding to non-adjacent vertices. (The gap instance of
Section 2.2 can be seen as the result of the following reduction when the graph
G is a complete graph with d nodes). For convenience, we give the complete
description with the necessary changes.

– There are r2d groups of machines, denoted by M1,M2, . . . ,Mr2d . Each group
Mg consists of n machines {mg,v : v ∈ V } (one for each vertex in G). Finally
the machines are ordered in such a way so that mg,u is before mh,v if either
(i) g < h or (ii) g = h and u ∈ Ik, v ∈ I� with k > �. The latter case
will ensure that, within each group of machines, long-operations of jobs with
high frequency will be scheduled before long-operations of jobs with low
frequency, a fact that is used to prove Lemma 8.

– For each f : 1 ≤ f ≤ d and for each vertex v ∈ If there are r2(d−f) groups of
jobs, denoted by Jv

1 , J
v
2 , . . . , J

v
r2(d−f) . Each group Jv

g consists of r2f copies,
referred to as jv

g,1, j
v
g,2, . . . , j

v
g,r2f , of the job that must be processed during

r2(d−f) time units on the machines

ma+1,v,ma+2,v, . . . ,ma+r2f ,v where a = (g − 1) · r2f

and during 0 time units on machines corresponding to adjacent vertices,
i.e., {ma,u : 1 ≤ a ≤ r2d, {u, v} ∈ E} in an order such that it results in a
generalized flow shop instance. Let Jv be the jobs that correspond to the
vertex v, i.e., Jv = {jv

g,i : 1 ≤ g ≤ r2(d−f), 1 ≤ i ≤ r2f}.

Note that the length of all jobs and the load on all machines are r2d, which we
denote by lb. The total number of machines and total number of jobs are both
r2d·n. Moreover, each job has at most (Δ+1)r2d operations. In the subsequent we
will call the operations that require more than 0 time units long-operations and
the operations that only require 0 time units short-operations. For an example
of the construction see Figure 3.

Fig. 3. An example of the reduction with r = 2, d = 2, I1 = {A} and I2 = {B, C}.
Only the two first out of r2d = 16 groups of machines are depicted with the jobs
corresponding to A,B, and C to the left, center, and right respectively.
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Completeness. We prove that if the graph G can be colored with “few” colors
then there is a relatively “short” schedule to the general flow shop instance.

Lemma 5. There is a schedule of S(r, d) with makespan 2lb · χ(G).

Proof. We start by showing that all jobs corresponding to non-adjacent vertices
can be scheduled within 2 · lb time units.

Claim. Let IS be an independent set of G. Then all the jobs
⋃

v∈IS J
v can be

scheduled within 2 · lb time units.

Proof of Claim. Consider the schedule defined by scheduling the jobs corre-
sponding to each vertex v ∈ IS as follows. Let If be the independent set with
v ∈ If . A job jv

g,i corresponding to vertex v is then scheduled without interrup-
tion starting from time r2(d−f) · (i− 1).

The schedule has makespan at most 2 · lb since a job is started at latest at
time r2(d−f) · (r2f − 1) < lb and requires lb time units in total.

To see that the schedule is feasible, observe that no short-operations of the jobs
in

⋃
v∈IS J

v need to be processed on the same machines as the long-operations
of the jobs in

⋃
v∈IS J

v (this follows from the construction and that the jobs
correspond to non-adjacent vertices). Moreover, two jobs jv

g,i, j
v′
g′,i′ , with either

g �= g′ or v �= v′, have no two long-operations that must be processed on the same
machine. Hence, the only jobs that might delay each other are jobs belonging
to the same vertex v and the same group g, but these jobs are started with
appropriate delays (depending on the frequency of the job).

We partition set V into χ(G) independent subsets V1, V2, . . . , Vχ(G). By the above
lemma, the jobs corresponding to each of these independent sets can be scheduled
within 2 · lb time units. We can thus schedule the jobs in χ(G)-”blocks”, one
block of length 2 · lb for each independent set. The total length of this schedule
is 2lb · χ(G).

Soundness. We prove that, given a schedule where many jobs are completed
“early”, we can, in polynomial time, find a “big” independent set of G.

Lemma 6. For any L ≤ r. Given a schedule of S(r, d) where at least half the
jobs finish within lb ·L time units , we can, in time polynomial in n and rd, find
an independent set of G of size at least n/(8L).

Proof. Fix an arbitrarily schedule of S(r, d) where at least half the jobs finish
within lb ·L time units. In the subsequent we will disregard the jobs that do not
finish within lb · L time units throughout the analysis. Note that the remaining
jobs are at least r2dn/2 many. As for the gap construction (see Section 2.2), we
say that the i-th long-operation of a job j of frequency f is good if the delay
dj(i) between job j’s i-th and i + 1-th long-operations is at most r2

4 · r2(d−f).
In each group Mg of machines we will associate a set Tg,v of time intervals with
each vertex v ∈ V . The set Tg,v contains the time intervals corresponding to
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the first half of all good long-operations scheduled on the machine mg,v. We
also let L(Tg,v) denote the total time units covered by the time intervals in Tg,v.
Scheduling instance S(r, d) has a similar structure as the gap instances created
in Section 2.2 and has similar properties. By using the fact that all jobs (that
were not disregarded) have completion time at most L·lb which is by assumption
at most r · lb, Lemma 7 follows from the same arguments as Lemma 2.

Lemma 7. The fraction of good long-operations of each job is at least
(
1 − 4

r

)
.

Consider a groupMg of machines and two jobs corresponding to adjacent vertices
that have long-operations on machines in Mg. Recall that jobs corresponding to
adjacent vertices have different frequencies. By the ordering of the machines, we
are guaranteed that the job of higher frequency has, after its long-operation on
a machine in Mg, a short-operation on the machine in Mg where the job of lower
frequency has its long-operation. The following lemma now follows by observing,
as in the proof of Lemma 3, that the long-operation of the high frequency job
can only be good if it is not scheduled in parallel with the first half of the
long-operation of the low frequency job.

Lemma 8. Let u ∈ Ik and v ∈ Il be two adjacent vertices in G with k > l. Then
the sets Tg,u and Tg,v , for all g : 1 ≤ g ≤ r2d, contain disjoint time intervals.

Finally, Lemma 9 is proved in the very same way as Lemma 4. Their different
inequalities arise because in the gap instance we had d · r2d jobs and here we are
considering at least r2dn/2 jobs that were not disregarded.

Lemma 9. There exists a g ∈ {1, . . . , r2d} such that∑
v∈V

L(Tg,v) ≥
lb · n

8
.

We conclude by a simple averaging argument. Set g so that
∑

v∈V L(Tg,v) is at
least lb·n

8 , such a g is guaranteed to exist by the lemma above. As all jobs that
were not disregarded finish within L · lb time units, at least lb·n

8 /(L · lb) = n
8L

time intervals must overlap at some point during the first L · lb time units of
the schedule, and, since they overlap, they correspond to different vertices that
form an independent set in G (Lemma 8). Moreover, we can find such a point in
the schedule by, for example, considering all different blocks and, in each block,
verify the start and end points of the time intervals.
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A 3/2-Approximation Algorithm
for General Stable Marriage

Eric McDermid�
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Abstract. In an instance of the stable marriage problem with ties and
incomplete preference lists, stable matchings can have different sizes. It is
APX-hard to compute a maximum cardinality stable matching, but there
have recently been proposed polynomial-time approximation algorithms,
with constant performance guarantees for both the general version of this
problem, and for several special cases. Our contribution is to describe a
3
2
-approximation algorithm for the general version of this problem, im-

proving upon the recent 5
3
-approximation algorithm of Király. Interest

in such algorithms arises because of the problem’s application to central-
ized matching schemes, the best known of which involve the assignment
of graduating medical students to hospitals in various countries.

1 Introduction

1.1 Classical Stable Marriage

An instance I of the classical stable marriage problem (SM) involves a set of n
men and n women, each of whom provides a linearly ordered preference list of all
the members of the opposite sex. A matching M is a one-to-one correspondence
between the men and women of I. A (man,woman) pair (m, w) is said to be
a blocking pair for a matching M if m and w are not matched to each other
in M , but m prefers w to his partner in M and w prefers m to her partner in
M . A matching that admits no blocking pairs is called a stable matching. Every
SM instance admits a stable matching (in general there may be exponentially
many [13,7]) and such a matching can be found in O(n2) time by the well-known
Gale/Shapley algorithm [2].

The stable marriage problem has received much attention from researchers be-
cause of the problem’s widespread practical applications to centralized matching
schemes. Several nations, including the US, Canada, and Japan use centralized
matching algorithms to assign graduating medical students to their first hospital
jobs, based on the medical students’ and hospitals’ preferences for one another
(see for example [17,16,18]). Larger-scale schemes than these exist, for example
in Hungary, the annual assignment of over 100,000 first-year students to univer-
sities is handled by a centralized matching algorithm [1].
� Supported by Engineering and Physical Sciences Research Council grant

EP/E011993/1.
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1.2 Stable Marriage with Ties and Incomplete Lists

Primarily because of the scale of such applications, it is unrealistic to assume
that the agents involved will be able to produce preference lists ranking every
member of the opposite set. Indeed, in all of the above-mentioned applications,
the agents submit incomplete preference lists. So one natural generalization of
the stable marriage problem is to allow incomplete preference lists, in which the
men and women rank a subset of the members of the opposite set. As in the case
of SM, a stable matching always exists, and can be found by a straightforward
generalization of the Gale/Shapley algorithm [4]. While a stable matching may
not match everyone, every stable matching matches precisely the same set of
men and women [3] – thus all stable matchings have the same size. An alterna-
tive generalization of SM arises when we relax the requirement that an agent’s
preference list be strictly ordered, thus allowing ties to appear in the preference
lists. Such a relaxation is realistic – consider, for example, a hospital that must
otherwise attempt to produce a genuinely strict ranking of hundreds of medical
students. In the case of ties it is still computationally easy to find a perfect
stable matching by arbitrarily breaking the ties and running the Gale/Shapley
algorithm.

When both ties and incomplete lists are allowed, the stable matchings for the
instance may have different sizes, and, in the worst case, an arbitrary stable
matching can be as little as one-half the size of a maximum cardinality stable
matching [15]. Since a prime objective of most centralized matching schemes
is to match as many agents as possible, the obvious question is the following:
“Given an instance of the stable marriage problem with ties and incomplete lists
(SMTI), how can we efficiently compute a maximum cardinality stable match-
ing?”. Unfortunately, it is NP-hard to do so [15], and hard to approximate [19,5].

1.3 Approximation Results for MAX-SMTI

A straightforward approximation algorithm for MAX-SMTI arises by breaking
the ties of the given instance and computing an arbitrary stable matching [15]. A
stable matching must always be a maximal matching, hence a 2-approximation
is easy. A number of approximation algorithms with a performance guarantee
better than 2 have appeared in the literature for both the general version of this
problem [9,10,11] and for several special cases [5,6,8].

In a very recent paper, Király [12] provided two simple and elegant algorithms
which effectively superseded all previously known approximation algorithms for
MAX-SMTI, (save only the randomized algorithm given for the very special
case studied in [6]). Király’s first algorithm provides a 3

2 -approximation for the
restricted case of MAX-SMTI in which ties are allowed to appear only on the
women’s side (this is the only restriction). The second algorithm provides a 5

3 -
approximation for general MAX-SMTI, in which the preference lists and ties of
the men and women are completely unrestricted.
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set every man to be unmatched, unpromoted, and unexhausted;
while (∃m: m is unmatched and (m is unpromoted or m is unexhausted))

if (m is exhausted)
promote m and set m to be unexhausted;
reactivate m so that he begins proposing again from the start of his list;

w ← next woman on m’s preference list; /* m proposes to w */
if (w is unmatched)

M ← M ∪ (m,w); /* w accepts m */
else if (w prefers m to her partner m′)

M ← M ∪ {(m, w)}− {(m′, w)}; /* w rejects m′ and accepts m */
set m′ to be exhausted if w is the last woman on his list;

else /* w rejects m */
set m to be exhausted if w is the last woman on his list;

Fig. 1. Király’s algorithm

1.4 Our Contribution

Our contribution in this paper is to provide a three phase 3
2 -approximation

algorithm for general MAX-SMTI, improving upon Király’s general performance
guarantee of 5

3 . Our work builds from some ideas used in Király’s first algorithm
(henceforth Király’s algorithm) in the sense that one of the three phases uses a
generalization of that algorithm.

2 Background

2.1 Király’s Algorithm

For completeness of presentation, we describe a version of Király’s algorithm
using the concept of promotion from a tie rather than that of extra score used
by Király [12]. For convenience, we will henceforth refer to the entries of an
agent’s preference list as a series of ties, where each tie is of size ≥ 1. As input to
this algorithm, the men of the instance have strictly ordered preference lists and
the women have no restriction on the nature of the ties in their preference lists.
The idea behind the algorithm is to iteratively allow men to make proposals to
the women on their preference lists, as in the Gale/Shapley algorithm, but with
an additional feature. The change here is that a man m who is unmatched after
proposing to every woman on his preference list – we use the term exhausted
to describe such a man – is given one “second chance” in which m is promoted
ahead of each tie in which he appears, and is then allowed to propose to each
woman on his list a second time.

At the start of the algorithm, each man is set to be unmatched, unpromoted,
and unexhausted. The main body of the algorithm is a while loop, which con-
tinues as long as there exists a man m who is (i) unmatched and (ii) either
unpromoted or unexhausted (or both). If m is exhausted, m is set to be pro-
moted. The operation of promoting m involves examining each woman w who
finds m acceptable, and, if m is in a tie of size at least 2 on w’s list, m is pro-
moted immediately ahead of this tie on w’s preference list. Furthermore, m is
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set to be unexhausted and is reactivated, meaning he will now begin again mak-
ing proposals to women starting from the beginning of his preference list. The
algorithm proceeds by m proposing to the top woman w on his preference list
to whom he has not yet proposed (or to whom he has proposed only once, if he
has been reactivated). When a man m proposes to a woman w, she rejects her
current partner (if any) and accepts m if m is a strict improvement for her, tak-
ing into account any promotions that may have occurred. Otherwise, she retains
her current partner and rejects m. On rejection, a man becomes (or remains)
unmatched. When a man has been rejected by every woman on his list, he is set
to be exhausted.

When Király’s algorithm ends, each man is either (i) matched (possibly having
been previously promoted as well), or (ii) promoted, exhausted, and unmatched.
A pseudocode description of Király’s algorithm is given in Figure 1.

2.2 Gallai-Edmonds Decomposition Theorem

Phase 2 of our approximation algorithm uses a classical result regarding bipartite
matchings known as the Gallai-Edmonds decomposition theorem. In this subsec-
tion we review the parts of this theorem that we will need in the forthcoming
sections. To this end, let G = (U ∪V, E) be a bipartite graph and M a maximum
cardinality matching of G. With respect to M , we partition the vertex set of G
in the following way. A vertex v is said to be odd (respectively, even) if there
exists an odd (respectively, even) length alternating path from some unmatched
vertex to v. A vertex v is said to be unreachable if there is no alternating path to
v beginning at some unmatched vertex. The following Gallai-Edmonds decom-
position theorem provides an important characterization of the set of maximum
cardinality matchings of G with respect to this vertex partition [14].

Theorem 1. Let G = (U ∪ V, E) be a bipartite graph and M be a maximum
cardinality matching for G. Let E, O, and U be the set of even, odd, and un-
reachable vertices as defined above with respect to G and M . Then,

(1) E, O, and U are pairwise disjoint. Every maximum matching for G partitions
the vertex set of G into the same sets of even, odd, and unreachable vertices.
(2) In any maximum-cardinality matching of G, every vertex in O is matched
with some vertex in E, and every vertex in U is matched with another vertex in
U . The size of a maximum-cardinality matching is |O| + |U|/2.
(3) There is no edge in G connecting a vertex in E with another vertex in E or
a vertex in U .

We note that the Gallai-Edmonds decomposition of a bipartite graph can be
obtained as a by-product of a maximum cardinality matching algorithm. Having
reviewed this important theorem, we proceed to the discussion of our approxi-
mation algorithm.

3 The Approximation Algorithm
Our approximation algorithm consists of 3 phases. A pseudocode description
is given in Figures 2 and 3. In the first phase, we use an approach somewhat
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M ← ∅;
set all men to be unmatched, unpromoted, unexhausted, and unstalled;
Phase 1:
while (∃m: m is unmatched and unstalled and (m is unpromoted or m is unexhausted))

if (m is exhausted)
promote m and set m to be unexhausted;
reactivate m so that he begins proposing again from the start of his list;

t ← m’s current tie;
if (|t| ≥ 2)

if (t contains exactly one unmatched woman w)
promote w ahead of t;

else if (t contains no unmatched woman)
break t arbitrarily;

else
set m to be stalled;

else
w ← only woman in t; /* m proposes to w */
if (w is unmatched)

M ← M ∪ (m,w); /* w accepts m */
unstall the appropriate men, if any;

else if (w prefers m to her partner m′)
M ← M ∪ {(m, w)}− {(m′, w)}; /* w rejects m′ and accepts m */
set m′ to be exhausted if w is the last woman on his list;

else /* w rejects m */
set m to be exhausted if w is the last woman on his list;

if (the set S of stalled men is empty)
return M ;

else
go to phase 2;

Fig. 2. Phase 1 of the approximation algorithm

similar to the Király algorithm, adapted to take into account the ties in the men’s
preference lists. In this phase men again may become promoted, exhausted, and
matched, but may also enter a different state in which they become stalled. The
meaning of this state will become clear in the description of phase 1 below.
Phase 1 takes as input a matching M , and the set of women and men. Prior to
calling the phase 1 algorithm for the first time, each man is set to be unmatched,
unpromoted, unexhausted, and unstalled, and the matching M is initialized to
be empty.

3.1 Phase 1

In the first phase of the algorithm, the men iteratively make proposals to the
women on their preference lists in a similar way to the Király algorithm. The
main body of this phase is again a while loop, which continues as long as there
exists a man m who is (i) unmatched and unstalled and (ii) unpromoted or
unexhausted (or both). If m is exhausted, he is promoted, set to be unexhausted,
and is reactivated, precisely as described in the Király algorithm. Next, we let
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Phase 2:
Construct the phase-2 graph G = (U ∪ V, E);
N ← maximum cardinality matching in G;
identify the sets E , O, and U ;
N ′ ← subset of N obtained by removing all pairs

(m, w) such that m ∈ O and w ∈ E ;
if (N ′ = ∅)

go to phase 3;
else

for (m, w) ∈ N ′

promote w ahead of m’s current tie; /* m proposes to w */
M ← M ∪ (m,w);
set m to be unstalled;

unstall all men in U who are unmatched in N ;
go to phase 1;

Phase 3:
for (m, w) ∈ N /* m proposes to w */

M ← M ∪ (m,w);
return M ;

Fig. 3. Phases 2 and 3 of the approximation algorithm

t denote the first tie on m’s preference list containing a woman w to whom
m has not yet proposed (or to whom he has proposed only once, if he has been
reactivated). We refer to t as m’s current tie. The algorithm then proceeds based
on the following cases concerning t. The first case is if the size of t is at least 2. If t
also contains exactly one unmatched woman w, w is promoted ahead of t on m’s
preference list. If instead t contains no unmatched women, t is broken arbitrarily
on m’s preference list, creating a total order of these women to replace t on his
list. Otherwise, t must contain at least 2 unmatched women, and m is set to be
stalled. The second case is if the size of t is exactly one. In this case m proposes
to w, the only woman in t. When a man m proposes to a woman w, she accepts if
m is a strict improvement for her, taking into account any promotions that have
been made. Otherwise, she rejects m. When an unmatched woman w becomes
matched, the men who, as a result, have now just one unmatched woman in
their current tie are unstalled. As before, when a man has been rejected by
every woman on his preference list, he is set to be exhausted.

The primary task of phase 1 ends with the termination of this while loop. At
this point in the execution of the approximation algorithm every man m is in
exactly one of three categories: (i) m is matched to an acceptable woman (and
possibly is promoted as well), or (ii) m is exhausted, promoted and unmatched,
having been rejected by every woman on his preference list despite his promotion,
or (iii) m is stalled.

If the set S of stalled men is empty, the algorithm returns the current matching
and halts. Otherwise, we proceed to phase 2.



A 3/2-Approximation Algorithm for General Stable Marriage 695

3.2 Phase 2

Phase 2 of the algorithm takes as input a matching M , along with the set of men
and women. The goal of the algorithm in this phase is to attempt to match a
certain subset of the stalled men. We construct a bipartite graph G = (U ∪V, E)
with U being the set of men in S and V being the set of unmatched women
appearing in the current tie of some man in S. We refer to these men and women
and the vertices of G representing them interchangeably. The set of edges are
those (man,woman) pairs (m, w) such that w ∈ V appears in m’s current tie.
We call this graph the phase-2 graph. The algorithm then computes a maximum
cardinality matching N in G.

We proceed by removing selected pairs from N in the following way. We
identify the sets E , O, and U of vertices as described according to the Gallai-
Edmonds decomposition theorem in Section 2.2. All pairs in N consisting of a
man m ∈ O and a woman w ∈ E are removed from N , yielding a new matching
N ′ ⊆ N . One of the crucial properties of N ′ (proved in Lemma 2) is that, for each
man m who is matched in N ′, if w1, w2, . . . wt are the unmatched (in M) women
in m’s current tie, then w1, w2, . . . , wt are also matched in N ′. This important
property of N ′ is key to the establishment of the performance guarantee of the
algorithm.

If N ′ is empty, we proceed to phase 3. Otherwise, for every pair (m, w) ∈ N ′,
w is promoted locally ahead of m’s current tie. Man m then proposes to w, who
accepts because she is unmatched in M , and this pair is added to M . All the
men matched in N ′ are now set to be unstalled.

At this point in phase 2, the assignment of any man not in S has remained
unchanged, as the matching has changed only by matching previously unmatched
women to men in S. However, the situation of the men who were in S at the
beginning of phase 2 has, of course, changed. We claim (proven in Lemma 2) that
those men m remaining in S fall into one of two categories: (i) m was matched
in N , is not matched in N ′, and still has at least 2 unmatched women in his
current tie, or (ii) m was unmatched in N and every woman in his current tie is
now matched in M . The men in (ii) are set to be unstalled, and the algorithm
returns to phase 1.

3.3 Phase 3

Phase 3 takes as input the current matching M along with the matching N
constructed in the execution of phase 2 which passed control to phase 3. The
algorithm arrives at phase 3 if and only if the matching N ′ of phase 2 is empty.
We will show (in Lemma 1) that this implies that N matches every man in
S. The algorithm terminates after the man in each pair in N proposes to his
partner in N – all of these women are single – and these pairs are added to M .
The current matching M is returned.

4 Correctness

We next establish a few key properties of the algorithm, and verify certain claims
made in the description of the pseudocode.
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Lemma 1. Let S denote the set of stalled men at the start of an arbitrary exe-
cution of phase 2 of the approximation algorithm. If the matching N ′ constructed
in this call is empty, then the corresponding maximum cardinality matching N
matches every man in S.

Proof. Suppose N ′ is empty, and that a man m is unmatched by N . Let w be
an arbitrary neighbor of m in G. Since m is not matched in N , m is even (i.e.
m ∈ E), and therefore w is odd (w ∈ O). Since N is maximal, w was matched
to a man m′ in N , who therefore must also be even. But this implies the pair
(m′, w) could not have been removed from N , as it consists of an even man and
an odd woman.

Corollary 1. Phase 3 of the approximation algorithm finds a matching that
matches every man who was in S in the preceding execution of phase 2.

Lemma 2. Let m be a stalled man in the set S with current tie t at the start
of an arbitrary execution of phase 2. Then, exactly one of the following is true
of m when that execution of phase 2 ends (i.e., the instant before either goto
statement in phase 2 is invoked).

(1) m was matched in N ′, so m is now matched in M to a woman in t, and
every woman in t is matched in M .
(2) m was matched in N but not in N ′, m’s current tie is still t, and there are
at least two women in t who are still unmatched in M .
(3) m was unmatched in N , m’s current tie is still t, and every woman in his
current tie is now matched in M .

Proof. (1) Suppose m was matched in N ′. Then, m was an even or unreachable
vertex with respect to M . Therefore, all neighbors of m in G are either odd or
unreachable, and could not have been deleted from N , for only even women are
removed from N . It follows that all of m’s neighbors are in N ′, and therefore
they all receive proposals in this execution of phase 2, and are matched in M .

(2) If instead m is matched to a woman w in N but is unmatched in N ′, then
m was removed from N because he is an odd vertex. We establish the claim
by showing there is another even woman w′ �= w who is adjacent to m and is
unmatched in N ′ as well. To see this, consider the path of odd length that makes
m an odd vertex. This path cannot reach him via his partner in the matching,
for alternate edges in that path would have to be edges in the matching. Hence
the first edge in the path would be in the matching (since the last edge is),
contradicting the fact that the starting vertex in the path must be unmatched.
Therefore this path must reach him from another neighboring vertex w′, which
must be even. This woman is unmatched in N ′, for she can only be matched to
an odd man in N or unmatched in N .

(3) Finally, if m is unmatched by N he is an even vertex. All women in his
current tie are therefore odd vertices, are matched in N because N is maxi-
mal, and could not have been removed from N . Therefore, these women are all
matched in N ′ and all receive proposals in this execution of phase 2, and hence
are matched in M .
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Lemma 3. On termination of the approximation algorithm, any man who re-
mains unmatched has been promoted, and has been rejected by every woman on
his list even after becoming promoted.

Proof. The execution of the algorithm can only halt in one of two places. The
first place is at the end of phase 1, on the condition that there are no stalled
men. This implies that every unmatched man is promoted and has still been
rejected by every woman on his list. The other point at which the algorithm
may terminate is in phase 3. Now, control reaches phase 3 only if, in phase 2,
it is discovered that N ′ is empty, implying that N matches every man in S by
Corollary 1. Notice that when this happens nothing is done in phase 2 to modify
the assignment of any agent, rather phase 2 simply passes control to phase 3,
which matches every man in S. Hence, the unmatched men are those who were
unmatched after the final call to phase 1, and, as described above, they must
have become exhausted while promoted.

Lemma 4. Suppose a woman w becomes matched to a man m at some point
in the execution of the approximation algorithm. Then, w only rejects m if she
accepts a proposal from a man ranked at least as highly as m on w’s (original)
preference list.

Proof. Matched women can only change their partner in one place in the ap-
proximation algorithm, and that is when receiving a proposal from a man they
strictly prefer, possibly after promotions, to their current partner in phase 1.
This new suitor must be ranked at least as highly as w’s current partner on w’s
original preference list.

Lemma 5. The matching M returned at the end of the approximation algorithm
is a stable matching.

Proof. Suppose that (m, w) blocks M . The essence of the approximation algo-
rithm from a man’s point of view is a left-to-right sweep of his preference list in
which, if necessary, he becomes promoted and again makes another left-to-right
sweep of his preference list. Hence, for m to prefer w, he must have proposed to
her at least once, whether it be in phase 1 or phase 2 (he cannot have proposed
to her in phase 3, for otherwise they would be matched in M). The fact that
w has rejected m along with Lemma 4 implies that w does not prefer m to her
current partner in M , and hence (m, w) do not block M .

Lemma 6. The approximation algorithm runs in O(n3/2L) time, where n is the
sum of the men and women and L is the sum of the lengths of the preference
lists.

Proof. The algorithm essentially constitutes one or two partial or complete left
to right sweeps of the men’s preference lists, interleaved with calls to phase 2.
The total number of calls to phase 2 is bounded by the number of men, as each
call to phase 2 either strictly increases the size of M or passes control to phase 3,
in which phase the algorithm terminates. Any one execution of phase 2 requires
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a total of O(
√

|V ||E|) = O(
√

nL) time, as the construction of N is the dominant
step of phase 2. In the worst case Ω(n) calls could be made to phase 2, each
of which computes a matching N of size Ω(n) but a matching N ′ of size O(1).
These successive calls to phase 2 would clearly dominate the complexity, yielding
a bound of O(n3/2L).

5 The Performance Guarantee

Let M be the stable matching returned by the approximation algorithm and let
Mopt denote an optimal stable matching for a given instance of MAX-SMTI.
Consider the symmetric difference M ⊕ Mopt of these two matchings. The com-
ponents of the underlying graph of M ⊕ Mopt consist of alternating cycles and
paths. Each cycle component in M ⊕ Mopt is of even length, so the ratio of
M -edges to Mopt-edges in these components is one. For an alternating path
component, the ratio of Mopt-edges to M -edges is always at most 3/2 except for
a component which is a path of length 3 with its endpoints in Mopt. Therefore,
if we can establish that M ⊕Mopt contains no such path, we will have shown the
ratio of Mopt-edges to M -edges in each component is at most 3/2, establishing
that the approximation algorithm is a 3

2 -approximation algorithm. To this end,
suppose for a contradiction that P4 = w′ − m − w − m′ exists in M ⊕ Mopt

such that (m, w) is the M -edge, and (m, w′) and (m′, w) are the Mopt-edges. We
begin with several facts with easy proofs.

Fact 1. The man m′ in P4 must be exhausted and promoted. This follows from
Lemma 3 and the fact that m′ is unmatched in M .

Fact 2. The man m in P4 was never promoted by the approximation algorithm.
This is because he has an unmatched woman w′ on his preference list, and thus
could never have become exhausted, for w′ can never have received a proposal.

Fact 3. Woman w in P4 strictly prefers m to m′ in her original preference
list. If w strictly prefers m′ to m, then (m′, w) is a blocking pair for M , a
contradiction. If, instead, she were indifferent between these two men, she could
not have rejected m′, who, by Lemma 3, must have proposed to w at some point
after being promoted. But at that moment w was matched to m or someone
ranked lower, and m was never promoted.

Fact 4. Man m in P4 is indifferent between w and w′ in his original preference
list. If he strictly prefers w′ to w, then (m, w′) blocks M . But by the previous
fact, m forms a blocking pair with w in Mopt if he strictly prefers w to w′.

Lemma 7. Man m′ proposed to woman w prior to the end of the final execution
of phase 1 and was rejected by her. Hence, w is matched prior to any potential
call to phase 3.

Proof. Every man who participates in phase 3 becomes matched, hence m′ did
not participate in phase 3, and since no matched man becomes unmatched during
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phase 3 or phase 2, man m′ was unmatched at the end of the final call to phase
1. By Lemma 3, m′ proposed to w even after becoming promoted, but since he
is single in M , she must have rejected him. Hence, w is matched to someone at
least as good as m′ at the final call to phase 1.

Now, we arrive at the contradiction. Since matched women never become un-
matched, man m always had woman w′ unmatched on his preference list, and by
Fact 4 she is tied with w. In which phase of the algorithm can m have become
matched to w? It cannot have been in phase 1, for the phase 1 algorithm does not
allow him to propose to w, regardless of whether or not w is matched, because
of w′ being tied with w and unmatched. But m cannot become matched to w in
some call to phase 2 either, for the fact that w′ is unmatched at the end of the
algorithm implies she could never be in N ′ at any call to phase 2. By Lemma 2,
this implies that the pair (m, w) would have to be deleted in the creation of N ′

as well. Thus, we conclude that m became matched to w in phase 3. However,
men only become matched to unmatched women in phase 3, implying that w is
single at the start of phase 3, a contradiction to Lemma 7.

Theorem 2. The polynomial-time approximation algorithm outputs a stable
matching at least 2

3 the size of an optimal stable matching.

6 Conclusion

We have presented a polynomial-time approximation algorithm for general
MAX-SMTI with a performance guarantee of 3/2, improving the previously
best known algorithm for this problem. There is an example, due to Yanagi-
sawa [20], which shows this analysis is tight. We note that our approximation
algorithm also extends to the many-to-one generalization of SMTI (the Hospi-
tals/Residents setting) by a technique involving “cloning” [8], with the same
performance guarantee of 3/2.
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Abstract. Negation-limited circuits have been studied as a circuit model
between general circuits and monotone circuits. In this paper, we consider
limiting negations in formulas. The minimum number of NOT gates in a
Boolean circuit computing a Boolean function f is called the inversion
complexity of f . In 1958, Markov determined the inversion complexity of
every Boolean function and particularly proved that �log2(n + 1)� NOT
gates are sufficient to compute any Boolean function on n variables. We
determine the inversion complexity of every Boolean function in formulas,
i.e., the minimum number of NOT gates (NOT operators) in a Boolean
formula computing (representing) a Boolean function, and particularly
prove that �n/2� NOT gates are sufficient to compute any Boolean func-
tion on n variables. Moreover we show that if there is a polynomial-size
formula computing a Boolean function f , then there is a polynomial-size
formula computing f with at most �n/2� NOT gates. We consider also the
inversion complexity in formulas of negation normal form and prove that
the inversion complexity is at most polynomials of n for every Boolean
function on n variables.

1 Introduction

When we consider Boolean circuits with a limited number of NOT gates, there
is a basic question: Can a given Boolean function be computed by a circuit with
a limited number of NOT gates? This question has been answered by Markov
[11] in 1958. The inversion complexity of a Boolean function f is the minimum
number of NOT gates required to construct a Boolean circuit computing f ,
and Markov completely determined the inversion complexity of every Boolean
function f . In particular, it has been shown that �log2(n + 1)� NOT gates are
sufficient to compute any Boolean function.

After more than 30 years from the result of Markov, Santha and Wilson [17]
investigated the inversion complexity in constant depth circuits and showed that
on the restriction �log2(n+1)� NOT gates are not sufficient to compute a Boolean
function. The result has been extended to bounded depth circuits by Sung and
Tanaka [19]. Recently we completely determined the inversion complexity of
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every Boolean function in non-deterministic circuits, and particularly proved
that one NOT gate is sufficient to compute any Boolean function if we can use
an arbitrary number of guess inputs [13].

A Boolean circuit whose gates have fan-out one is called a formula. Formulas
are one of well-studied circuit models in circuit complexity theory [6,21]. Note
that a Boolean circuit whose gates have fan-out one corresponds to a Boolean
formula. In this paper, we consider the inversion complexity in formulas, which
corresponds to the minimum number of NOT operators in a Boolean formula
representing a Boolean function. As far as we know, there is no result for the
inversion complexity in formulas. We completely determine the inversion com-
plexity of every Boolean function in formulas, and particularly prove that �n/2�
NOT gates are sufficient to compute any Boolean function on n variables. (Sec-
tion 3)

The best known lower bound on the size of formulas computing an explicit
Boolean function is Ω(n3−o(1)) by H̊astad [9], while exponential lower bounds
have been known on the size of monotone formulas (actually even monotone
circuits [1,4,16]). This situation is similar to the present situation on the size
of circuits. More precisely, while exponential lower bounds have been known on
the size of monotone circuits, no superlinear lower bound has been known so
far on the size of circuits. The study of negation-limited circuits [2,3,5,10,18] is
motivated by the situation: what happens if a limited number of NOT gates are
allowed? By the reason above, we consider negation-limited formulas and show
that if there is a polynomial-size formula computing a Boolean function f , then
there is a polynomial-size formula computing f with at most �n/2� NOT gates.
(Section 4) The fact means that when one try to prove a superpolynomial size
lower bound for formulas, it is enough to prove a superpolynomial size lower
bound for formulas with at most �n/2� NOT gates. To prove a superpolynomial
lower bound on the size of formulas computing an explicit function is one of the
most challenging open problems in computational complexity theory.

We consider also the inversion complexity in negation normal form (NNF)
formulas, which are formulas with a restriction that all NOT operators are used
in literals. The restriction does not affect the size of formulas since DeMorgan’s
laws convert an arbitrary formula to an NNF formula with the same size. On the
other hand, the restriction strongly affects the inversion complexity. (An example
is in Section 5.) We prove that the inversion complexity in NNF formulas is at
most polynomials of n for every Boolean function on n variables. (Section 5)

2 Preliminaries

2.1 Definitions

A circuit is an acyclic Boolean circuit which consists of AND gates of fan-in
two, OR gates of fan-in two and NOT gates. A formula is a circuit whose gates
have fan-out one. A negation normal form (NNF) formula is a formula with a
restriction that NOT gates are connected only from inputs. (Formulas (with no
restriction) and NNF formulas often are not distinguished if we are interested in
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the size, since the restriction does not affect the size. In this paper we distinguish
formulas and NNF formulas since the restriction strongly affects the number of
NOT gates.) A monotone formula is a formula which consists of only AND gates
and OR gates. The size of a formula is defined to be the number of inputs in
the formula. (Each of inputs corresponding to a same variable is distinguished.)
By the definition, the size of a formula is precisely one more than the number
of AND gates and OR gates in the formula. We denote by L(f) the size of the
smallest formula computing a function f . We denote by not(C) the number of
NOT gates in a formula C.

Let x and x′ be Boolean vectors in {0, 1}n. x ≤ x′ means xi ≤ x′
i for all

1 ≤ i ≤ n. x < x′ means x ≤ x′ and xi < x′
i for some i. A Boolean function f is

called monotone iff f(x) ≤ f(x′) whenever x ≤ x′.
The threshold-k-function T n

k (x1, . . . , xn) is 1 iff Σn
i=1xi ≥ k. The k-th slice fk

(0 ≤ k ≤ n) of a Boolean function f is defined by

fk(x1, . . . , xn) =

⎧⎨⎩
0 for Σn

i=1xi < k;
f(x1, . . . , xn) for Σn

i=1xi = k;
1 for Σn

i=1xi > k.

By the definition, the threshold-k-function T n
k and the k-th slice fk are monotone

for all 0 ≤ k ≤ n.

2.2 Markov’s Theorem

We denote the inversion complexity of a Boolean function f in circuits by I(f).
Markov gave the tight bound of I(f) for every Boolean function f . A chain is
an increasing sequence x1 < x2 < · · · < xk of Boolean vectors in {0, 1}n. The
decrease dX(f) of a Boolean function f on a chain X is the number of indices
i such that f(xi) �≤ f(xi+1) for 1 ≤ i ≤ k − 1. The decrease d(f) of f is the
maximum of dX(f) over all increasing sequences X .

Theorem 1 (Markov[11]). For every Boolean function f ,

I(f) = �log2(d(f) + 1)�.

In Theorem 1, the Boolean function f can also be a multi-output function.

3 Inversion Complexity in Formulas

3.1 Result

We denote by IF(f) the inversion complexity of a Boolean function f in formulas.
In discussion about formulas, we consider only single-output Boolean functions.
We completely determine the inversion complexity of every Boolean function in
formulas.

Theorem 2. For every Boolean function f ,

IF(f) = d(f).
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Since d(f) ≤ �n/2� for every n-input Boolean function f by the definition of
d(f), IF(f) ≤ �n/2� for every f . IF(f) is exponentially larger than I(f), i.e.,
inversion complexity in circuits as shown in the following corollary:

Corollary 1. For every Boolean function f ,

I(f) = �log2(IF(f) + 1)�.

Proof. It is proved by Theorem 1 and Theorem 2. �

In the rest of this section, we prove Theorem 2.

3.2 Upper Bound

We prove IF(f) ≤ d(f). We use a similar argument to the one which is used to
prove Theorem 1 [8].

Proof (the upper bound of IF(f)). We use induction on d(f).

Base: d(f) = 0. Then f is monotone and IF(f) = 0.
Induction Step: Suppose

IF(f ′) ≤ d(f ′)

for every Boolean function f ′ such that d(f ′) ≤ d(f) − 1.
First we separate f to two functions f1 and f2 as follows. See Fig. 1. Let S

be the set of all vectors x ∈ {0, 1}n such that for every chain X starting with x,
dX(f) = 0. We define f1 and f2 as follows:

f1(x) =
{

f(x) if x ∈ S;
0 otherwise,

Fig. 1. The separation of f
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and

f2(x) =
{

1 if x ∈ S;
f(x) otherwise.

We define ft as follows:

ft(x) =
{ 1 if x ∈ S;

0 otherwise.

By the definitions of f1 and S,

d(f1) = 0. (1)

Next we show that d(ft) = 0. Let x and x′ be Boolean vectors in {0, 1}n such
that x ≤ x′. Suppose that ft(x′) = 0, i.e., x′ �∈ S. Since x′ �∈ S, there is a chain
X ′ starting with x′ and such that dX′(f) ≥ 1. Then for a chain X which starts
with x and includes X ′, dX(f) ≥ 1. Therefore x �∈ S. Thus if ft(x′) = 0, then
ft(x) = 0, which means

d(ft) = 0. (2)

Finally we show that
d(f2) ≤ d(f) − 1. (3)

We assume that d(f2) > d(f)− 1. Since f2(x) = 1 for x ∈ S, there is a chain X1

ending in a vector x′ �∈ S and such that dX1(f2) > d(f) − 1. Since x′ is not in
S, there is a chain X2 starting with x′ and such that dX2(f) ≥ 1. Let X ′ be the
chain which is obtained by connecting X1 and X2. Then,

dX(f) = dX1(f) + dX2(f)
= dX1(f2) + dX2(f)
> (d(f) − 1) + 1 = d(f).

Thus a contradiction happens.
By the supposition and Eq. (1) to (3), there are a formula C2 computing f2

such that not(C2) ≤ d(f2) ≤ d(f) − 1 and formulas C1 and Ct computing f1

and ft respectively such that not(C1) = not(Ct) = 0. We construct a formula C
computing f from C1, C2 and Ct as follows:

f1 ∨ (f2 ∧ ¬ft).

The number of NOT gates in C is

not(C) = not(C1) + not(C2) + not(Ct) + 1
≤ d(f).

We show that C computes f for each of the following two cases.

Case 1: The input x is in S.
Then f1(x) = f(x) and ft(x) = 1. Therefore

f1 ∨ (f2 ∧ ¬ft) = f1 = f.
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Case 2: The input x is not in S.
Then f1(x) = 0, f2(x) = f(x) and ft(x) = 0. Therefore

f1 ∨ (f2 ∧ ¬ft) = f2 = f.

Thus the formula C computes f and has at most d(f) NOT gates. Therefore
IF(f) ≤ d(f). �

3.3 Lower Bound

We prove IF(f) ≥ d(f). If the input of a NOT gate N is 0 and the output is 1,
then we call the state of N up. If otherwise, we call the state down. We denote
by notd(C, x) the number of NOT gates whose states are down in a formula C
given x as the input of C.

Proof (the lower bound of IF(f)). Let C be a formula computing f . Let X be
an increasing sequence x1 < x2 < · · · < xk of Boolean vectors in {0, 1}n such
that dX(f) = d(f).

Lemma 1. Let x and x′ be Boolean vectors in {0, 1}n such that x < x′, f(x) = 1
and f(x′) = 0. Then,

notd(C, x′) − notd(C, x) ≥ 1.

Proof. We change the input of C from x to x′. Let N1, N2, . . . , Nm be all NOT
gates which change from down state to up state at the time. Since x < x′, each
Ni for 1 ≤ i ≤ m is connected from N ′

i which changes from up state to down
state by a path including no NOT gate. Since the output of C changes from 1
to 0, the output of C is also connected from N ′

o which changes from up state
to down state by a path including no NOT gate. N ′

1, N
′
2, . . . , N

′
m and N ′

o are
distinguished from each other, since C is a formula. Thus the number of NOT
gates whose states are down increases by at least one. �

Lemma 2. Let x and x′ be Boolean vectors in {0, 1}n such that x < x′. Then,

notd(C, x′) − notd(C, x) ≥ 0.

Proof. We can use a similar argument to the one of Lemma 1 except we do not
consider N ′

o. �
Since on X the number of indices i such that f(xi) = 1 and f(xi+1) = 0 is at

least d(f), by Lemma 1 and 2,

notd(C, xk) − notd(C, x1) ≥ d(f).

Thus C includes at least d(f) NOT gates. �
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4 The Size of Negation-Limited Formulas

4.1 Result

In this section, we show that a relation between the size of negation-limited
formulas and general formulas. We denote by Lr(f) the size of the smallest
formula with at most r NOT gates computing f . In Section 3, we showed that
IF(f) ≤ �n/2� for any function f . In this section, we show that an arbitrary
formula can be converted to a formula with at most �n/2� NOT gates and the
size increases only polynomially.

Theorem 3. For every n-input Boolean function f ,

L�n/2	(f) ≤ L(f) · O(n6.3).

Theorem 3 implies that when one try to prove a superpolynomial lower bound
for L(f), it is enough to prove a superpolynomial lower bound for L�n/2	(f). In
the rest of this section, we prove Theorem 3.

4.2 Proof

Similar relations to Theorem 3 are known in circuits [5,7,8,14]. (We will mention
it again in Sec. 6.) All of these proofs are based on a construction of negation-
limited inverters. In formulas, we cannot use a similar proof method by the
obstacle that the fan-out of gates in a formula is bounded to one.

We denote the vector (x1, . . . , xi−1, xi+1, . . . , xn) by (x)i. It is known that the
monotone function T n−1

k ((x)i) operates as ¬xi on some conditions, which fact
relates to monotone circuit complexity for slice functions. (See, e.g., Sec. 6.13 of
[21].) We use a similar idea as the following lemma.

Lemma 3. T n−1
k ((x)i) = ¬xi if Σn

j=1xj = k.

Proof. If xi = 0, then (Σn
j=1xj) − xi = k. Therefore T n−1

k ((x)i) = 1 = ¬xi. If
xi = 1, then (Σn

j=1xj) − xi = k − 1. Therefore T n−1
k ((x)i) = 0 = ¬xi. �

We call a Boolean function g a pseudo k-th slice of f iff g(x) = f(x) for all x
such that Σn

j=1xj = k. By Lemma 3, T n−1
k ((x)i) is a pseudo k-th slice of ¬xi.

(Actually T n−1
k ((x)i) is the k-th slice of ¬xi, though it is not needed for the

proof of Theorem 3.)

Proof (Theorem 3). We suppose that n is an even number and omit the case
that n is an odd number, which is easier than the case that n is even. We
construct a formula C which computes f and includes n/2 NOT gates and has
size L(f) · O(n6.3).

First we construct n monotone formulas Ck’s (0 ≤ k ≤ n − 1) computing a
pseudo k-th slice of f if k is an even number and computing a pseudo k-th slice
of ¬f if k is an odd number by the following way. See also Fig. 2.
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Fig. 2. The construction of Ck (k is an even number)

1. Construct a formula computing f if k is even and computing ¬f if k is odd
whose size is L(f).

2. Move all NOT gates to the input side by DeMorgan’s laws.
3. Replace each ¬xi (precisely, each xi which connect to a NOT gate and the

NOT gate) to a formula computing a pseudo k-th slice of ¬xi.

In the third step, we use T n−1
k ((x)i) as a pseudo k-th slice of xi. Since T n−1

k ((x)i)
is monotone, we can construct a monotone formula computing T n−1

k ((x)i). Thus
the obtained formula Ck has no NOT gate. If an input x given to Ck satisfies
Σn

j=1xj = k, then pseudo k-th slices of ¬xi equal ¬xi and Ck computes f if k
is even and ¬f if k is odd. Therefore Ck computes a pseudo k-th slice of f or
¬f . The size of each Ck’s is L(f) · O(n5.3) for all 0 ≤ k ≤ n − 1, since each
¬xi was replaced to a monotone formula computing T n−1

k ((x)i) and the known
best upper bound on the size of monotone formulas computing the threshold
functions is O(n5.3) [20].

Let gk be the function computed by Ck for 0 ≤ k ≤ n − 1. As shown above,
gk is a pseudo k-th slice of f (resp. ¬f) if k is even (resp. odd). We construct a
formula C as follows:

∨n/2
i=0 hi
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where

hi = T n
2i ∧ (g2i ∨ T n

2i+1) ∧ ¬((g2i+1 ∧ T n
2i+1) ∨ T n

2i+2) for 0 ≤ i ≤ n/2 − 1,

hn/2 =
{

T n
n if f(1, 1, . . . , 1) = 1;

0 otherwise.
Since we construct formulas computing threshold functions (T n

i (0 ≤ i ≤ n+1))
with no NOT gate, not(C) = n/2. The size of C is L(f) ·O(n6.3), since the size
of each Ck’s is L(f) · (n5.3) for all 0 ≤ k ≤ n − 1 and at most O(n) monotone
formulas computing the threshold functions, which can be constructed with size
O(n5.3) [20], are used.

We show that C computes f , i.e., ∨n/2
i=0 hi = f . To show it, it is enough that

we prove the following equation:

hi =
{

f if Σn
j=1xj = 2i or 2i + 1;

0 otherwise, for 0 ≤ i ≤ n/2.

Case 1: 0 ≤ i ≤ n/2 − 1.
If Σn

j=1xj < 2i, then T n
2i(x) = 0. Therefore hi = 0.

If Σn
j=1xj = 2i, then T n

2i(x) = 1, T n
2i+1(x) = 0 and T n

2i+2(x) = 0. Therefore
hi = g2i. Since g2i is a pseudo 2i-th slice of f , hi = f .

If Σn
j=1xj = 2i+1, then T n

2i(x) = 1, T n
2i+1(x) = 1 and T n

2i+2(x) = 0. Therefore
hi = ¬g2i+1. Since g2i+1 is a pseudo (2i + 1)-th slice of ¬f , hi = f .

If Σn
j=1xj > 2i + 1, then T n

2i+2(x) = 1. Therefore hi = 0.

Case 2: i = n/2.
If Σn

j=1xj < 2i = n, then T n
n (x) = 0. Therefore hi = hn/2 = 0.

If Σn
j=1xj = 2i = n, then T n

n (x) = 1. Therefore hi = hn/2 = f(x).
The case that Σn

j=1xj > 2i = n does not happen since Σn
j=1xj ≤ n. �

5 Inversion Complexity in NNF Formulas

5.1 Result

In this section, we consider the inversion complexity in NNF formulas. The re-
striction that formulas are NNF strongly affects the inversion complexity. Con-
sider ¬T n

�n/2	 which is a function such that it equals the negation of the majority
function for example. The inversion complexity of ¬T n

�n/2	 in formulas is 1, since
T n
�n/2	 is a monotone function. On the other hand, the inversion complexity of

¬T n
�n/2	 in NNF formulas is at least n by the following simple observation. Sup-

pose an input such that xi = 0 and Σn
j=1xj = �n/2� − 1. If we change xi from

0 to 1, the output changes from 1 to 0. Therefore there is at least one input of
¬xi in any NNF formula computing ¬T n

�n/2	 for all 1 ≤ i ≤ n.
We prove that the inversion complexity in NNF formulas is at most polyno-

mials of n for every Boolean function on n variables. Note that the minimum
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size of formulas is exponential for almost all Boolean functions by the count-
ing argument. (See, e.g., Sec. 4.3 of [21].) We denote by INNF(f) the inversion
complexity of a Boolean function f in NNF formulas.

Theorem 4. For every n-input Boolean function f ,

INNF(f) ≤ O(n5.57).

In the rest of this section, we prove Theorem 4.

5.2 Proof

The proof of Theorem 4 is based on the following lemma:

Lemma 4. For every n-input Boolean function f ,

INNF(f) ≤ Σn
i=0INNF(¬T n

i ).

Proof. We construct an NNF formula C computing f using Σn
i=0INNF(¬T n

i )
NOT gates as follows:

∧n
i=0(f

i ∨ ¬T n
i ).

In the construction, we use monotone formulas computing f i’s (the i-th slices
of f) and NNF formulas computing ¬T n

i ’s with INNF(¬T n
i ) NOT gates for all

0 ≤ i ≤ n. Since f i is monotone for all i, one can construct a monotone formula
computing f i. By the construction above, the obtained formula C is an NNF
formula and has Σn

i=0INNF(¬T n
i ) NOT gates.

We prove that C computes f , i.e., ∧n
i=0(f

i ∨ ¬T n
i ) = f . Let s be the number

such that s = Σn
j=1xj . If i < s, then (f i ∨ ¬T n

i ) = 1 since f i(x) = 1. If i > s,
then (f i ∨ ¬T n

i ) = 1 since T n
i (x) = 0. Therefore ∧n

i=0(f
i ∨ ¬T n

i ) = (fs ∨ ¬T n
s ).

Since fs(x) = f(x) and T n
s (x) = 1, (fs ∨ ¬T n

s ) = f . Thus C computes f . �

Theorem 4 is easily obtained from Lemma 4.

Proof (Theorem 4). A formula computing ¬T n
i can be converted to an NNF

formula computing ¬T n
i with the same size by DeMorgan’s laws. The number

of NOT gates in a formula is less than or equal the size of the formula. Thus

INNF(¬T n
i ) ≤ L(¬T n

i ).

The known best upper bound on the size of formulas computing the threshold
functions T n

i for 0 ≤ i ≤ n is O(n4.57) [15]. By the upper bound and Lemma 4,

INNF(f) ≤ Σn
i=0INNF(¬T n

i )
≤ (n + 1) · L(¬T n

i )
≤ (n + 1) · O(n4.57)
≤ O(n5.57). �
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6 Concluding Remarks

In this paper, we studied negation-limited formulas. In Section 4, we gave a
relation between the size of general formulas and the size of negation-limited
formulas. Also for circuits, similar relations are known, which are obtained from
a construction of negation-limited inverters. We denote by size(f) the size of
the smallest circuit computing a function f and denote by sizer(f) the size of
the smallest circuit with at most r NOT gates computing f .

Proposition 1. ([5]) For every function f ,

size�log(n+1)	(f) ≤ 2size(f) + O(n log n).

Proposition 2. ([14]) For every function f ,

sizelog1+o(1) n(f) ≤ 2size(f) + O(n).

These propositions imply that when one try to prove a ω(n log n) (resp. su-
perlinear) lower bound for size(f), it is enough to prove a ω(n logn) (resp.
superlinear) lower bound for size�log(n+1)	(f) (resp. sizelog1+o(1) n(f)). The at-
tempt has not given a lower bound for size(f) so far. One of the reasons is that
¬x1, . . . ,¬xn can be generated by an inverter with the limited number of NOT
gates and it is also difficult to prove a size lower bound for circuits which have
x1, . . . , xn,¬x1 . . . ,¬xn as the input and consist of AND gates and OR gates.
In formulas, negation-limited inverters are not efficient since fan-out of all gates
is bounded to 1. Although Theorem 3 may not be useful to prove a size lower
bound for formulas, we expect that one can know the effect of NOT gates in
formulas better through Theorem 3.

In Section 5, we proved a polynomial upper bound of the inversion complexity
of every Boolean function in NNF formulas. Lower bounds of it and the deter-
mination of the exact value remain open. It seems to be not so easy even to
determine the inversion complexity of ¬T n

�n/2	, i.e., the negation of the majority
function. It is easily obtained that INNF(f) ≤ L(f) since a formula C which
computes f and has size L(f) can be converted an NNF formula C′ computing
f and not(C′) is at most the size of C′, i.e., L(f). Therefore it seems to be a dif-
ficult problem to prove a large lower bound on INNF(f) for an explicit function
f since it also means a large lower bound on L(f). In the proof of Theorem 4,
we use a trivial upper bound as the upper bound of INNF(¬T n

i ). If we can prove
a better upper bound of INNF(¬T n

i ), Theorem 4 is improved.
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Abstract. Given a graph with n vertices, k terminals and bounded in-
teger weights on the edges, we compute the minimum Steiner Tree in
O∗(2k) time andpolynomial space,where theO∗ notation omitspoly(n, k)
factors. Among our results are also polynomial-space O∗(2n) algorithms
for several NP-complete spanning tree and partition problems.

The previous fastest known algorithms for these problems use the
technique of dynamic programming among subsets, and require exponen-
tial space. We introduce the concept of branching walks and extend the
Inclusion-Exclusion algorithm of Karp for counting Hamiltonian paths.
Moreover, we show that our algorithms can also be obtained by applying
Möbius inversion on the recurrences used for the dynamic programming
algorithms.

1 Introduction

One of the most widely used techniques for achieving moderately exponential
time algorithms for NP-hard problems is dynamic programming among subsets,
but unfortunately an exponential storage requirement seems to be inherent to
this technique. As mentioned by Woeginger [20] this requirement makes them
useless in practice. Therefore polynomial-space exact algorithms have already
been studied for several NP-hard problems [6,7,11,16,17,20]. Hence, from both
a theoretical and a practical perspective it is desirable to identify those dynamic
programming algorithms that can be improved to require polynomial space,
preferably maintaining the best known upper bound on the running time. In
this paper we improve several algorithms in this way.

In 2006, Björklund et al. [6] drew new attention to the principle of Inclusion-
Exclusion: they gave O∗(2n)-time algorithms1 for several set partition problems,
the most prominent one being k-Coloring. They also mention a simple adjust-
ment to their algorithm to achieve an O∗(2.24n)-time algorithm with polynomial
space for k-Coloring. Also related to this are the O∗(2n)-time polynomial-space
algorithms for #Hamiltonian path by Karp [16] and (implicitly) Kohn et al.
[17], and for #Perfect Matching by Björklund and Husfeldt [2].
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1 The O∗ notation omits polynomial factors, and n denotes the number of nodes of
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Table 1. An overview of problems that can be solved using polynomial space and with
the given time bound using Inclusion-Exclusion. For the problems indicated with a *,
we provide the first polynomial-space algorithm with the given running time.

Problem References
O∗(2k) Steiner tree

∗2 [3,9,11,12]

O∗(2n)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Degree constrained spanning tree
∗ [13]

Max internal spanning tree
∗ [10]

#c-Spanning forests
∗ [4,15]

Cover polynomial
∗ [4]

#Hamiltonian path [16,17]
#Perfect matching [2]

O∗(2.24n) k-Coloring [6,7]

We show that some dynamic programming algorithms can be improved to
obtain polynomial-space algorithms with the same worst-case running time. Our
algorithms heavily rely on the work of Björklund et al. [2,3,4,5,6]. The results
can be read from Table 1: we add five problems to the list of polynomial space
Inclusion-Exclusion algorithms (note that this list is not exhaustive).

Steiner Tree is one of the most well-studied NP-complete problems. The
Dreyfus-Wagner [9] dynamic programming algorithm has been the fastest ex-
act algorithm for over 30 years. However, recently Björklund et al. [3] gave an
O∗(2k)-time algorithm2 for the variant with bounded integer weights, and Fuchs
et al. [12] gave an O∗(ck)-time algorithm for the general case, for any c > 2. Both
algorithms use Ω(2k) space. In [11], Fomin et al. initiated the study of polynomial
space algorithms for Steiner Tree. They gave polynomial space algorithms
with running time bounded by O(5.96knO(log k)) and O(1.60n) where n is the
number of nodes in the graph. They pose the question whether Steiner Tree

is fixed parameter tractable with respect to k when there is a polynomial space
restriction. We answer this question affirmatively by providing an algorithm that
runs in O∗(2k) time and meets the restriction. Using the techniques of [11], this
also leads to a polynomial-space O∗(1.3533n)-time algorithm.

The Max Internal Spanning Tree (MIST) and Degree Constrained

Spanning Tree (DCST, also called Min-Max Degree Spanning Tree)
problems are natural generalizations of Hamiltonian path. In [10], Fernau et
al. ask if there exists an O∗(2n)-time algorithm to solve MIST. In [13], Gaspers
et al. ask if there exists an O∗(2n)-time algorithm solving DCST. We answer
both questions by giving polynomial-space algorithms with this running time.

The Cover polynomial of a directed graph introduced by Graham and
Chung [8] generalizes all problems that can be solved using two operations named
deletion and contraction of edges, and is designed to be the directed analogue of
the Tutte polynomial. We improve the O∗(3n)-time polynomial-space algorithm
of Björklund et al. [4] to an O∗(2n)-time polynomial-space algorithm. We also
give the same improvement for #c-Spanning forests, which is one particular

2 k stands for the number of terminals.
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case of the Tutte polynomial. For more information about the Tutte polynomial
we refer to [4].

The paper is organised as follows: in Section 2 we recall the principle of
Inclusion-Exclusion and the well-known Hamiltonian path algorithm. After this
we provide a natural extension by introducing the concept of branching walks
and give the resulting algorithms. In the next section we show how the Inclusion-
Exclusion algorithms can be obtained from dynamic programming algorithms
by taking the zeta transform of the associated recurrences. After this, we give a
more structural approach to the subset products introduced in [3] and provide
applications.

We use the following definitions: for any set S, 2S is the power set of S, i.e.
the set consisting of all subsets of S. For a boolean expression b, [b] stands for
1 if b is true, and for 0 if b is false. Let G = (V, E) be a (directed) graph.
Throughout the paper, we use |V | = n. The graph induced by X , where X ⊆ V ,
is the graph G[X ] with nodeset X and all edges in E only adjacent to nodes in
X . For v ∈ V , N(V ) are all nodes adjacent to v. A walk of length k in G is a
tuple W = (v1, . . . , vk+1) ∈ V k+1 such that (vi, vi+1) ∈ E for each 0 ≤ i ≤ k.
W is from v if v1 = v, and W is cyclic if v1 = vk+1. Let G′ = (V ′, E′) also be
a graph, a homomorphism from G to G′ is a function φ : V → V ′ such that
(u, v) ∈ E implies (φ(u), φ(v)) ∈ E′.

2 Inclusion-Exclusion Formulations

Let us start this section by stating the principle of Inclusion-Exclusion. The
following theorem can be found in many textbooks on discrete mathematics. For
a proof see for example Bax [1].

Theorem 1 (Folklore). Let U be a set and A1, . . . , An ⊆ U . With the conven-
tion

⋂
i∈∅ Ai = U , the following holds:∣∣ ⋂

i∈{1,...,n}
Ai

∣∣ =
∑

X⊆{1,...,n}
(−1)|X|∣∣ ⋂

i∈X

Ai

∣∣ (1)

In this paper, we call any application of the above theorem an IE-formulation. In
this context we will refer to the set U as the universe, and to A1, . . . , An as the
requirements. Moreover, we call the task of computing |

⋂
i∈X Ai| for an arbitrary

X ⊆ {1, . . . , n} the simplified problem. Note that if the simplified problem can
be computed in polynomial time, there exists an O∗(2n)-time polynomial-space
algorithm that evaluates Equation 1.

We mention that it is also possible to break Theorem 1 down into smaller
steps, i.e. we choose a subset of {1, . . . , n} and apply the theorem. This has
recently been used for a faster exact algorithm for Dominating Set in van
Rooij et al. [19]; see also Bax [1]. Other methods to speed up IE-formulations
are given by Björklund et al. [2,5] and are surveyed in [18].

We continue this section by giving some IE-formulations. The first one is
well-known, but illustrative and it will be extended in the next subsections.
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2.1 Hamiltonian Paths

Given a graph G = (V, E), a Hamiltonian path is a walk that contains each
node exactly once3. The #Hamiltonian Path problem is to count the number
of Hamiltonian paths. The following IE-formulation is due to Karp [16]: define
the universe U as all walks of length n − 1 in G, and define Av as all walks of
length n − 1 that contain node v, for each v ∈ V . With these definitions, the
left-hand side of Equation 1, |

⋂
v∈V Av|, is the number of Hamiltonian paths in

G. Now it remains to show how to solve the simplified problem: given R ⊆ V
and s ∈ R, let wk(s, R) be the number of walks from s of length k in G[R]. Then
wk(s, R) admits the following recurrence:

wk(s, R) =

⎧⎪⎨⎪⎩
1 if k = 0∑
t∈N(s)∩R

wk−1(t, R) otherwise (2)

Notice that wk(s, R) is O(nn), hence the number of bits needed to represent
this value is polynomially bounded, and that

|
⋂

v∈X

Av| =
∑

s∈V \X

wn−1(s, V \ X)

Hence, the simplified problem can be solved in polynomial time using dynamic
programming on Equation 2 (the parameter R is fixed but is added for clearness).
Thus it takes O∗(2n) time and polynomial space to evaluate Equation 1.

2.2 Steiner Tree

Now we are ready for our first new result. Assume a graph G = (V, E) and
weight function w : E → Z+ are given. The Steiner Tree problem is the
following: given a set of terminals K ⊆ V and an integer c, does there exist
a subtree T = (V ′, E′) of G such that K ⊆ V ′ and

∑
e∈E′ w(e) ≤ c. In this

section we will give an extension of the results in the previous section to obtain
a new IE-formulation for Steiner Tree with unit weights, meaning w(e) = 1
for every edge e ∈ E. We introduce the following definition:

Definition 2. A branching walk B in G = (V, E) is a pair (TB, φ) where TB =
(VB , EB) is an ordered tree and φ : VB → V is a homomorphism from TB to G.
The length of B, denoted with |B|, is |EB |. For a node s ∈ V , B is from s if
the root of TB is mapped to s by φ. If a branching walk is said to be unordered,
TB is an unordered tree.

We will use φ(VB) = {φ(u)|u ∈ VB} and φ(EB) = {(φ(u), φ(v))|(u, v) ∈ EB},
hence φ(VB) ⊆ V and φ(EB) ⊆ EB . A branching walk is a natural generalization
of a walk: notice that a branching walk is a walk if TB is a path. The definition
is particularly useful in combination with the following lemma:
3 This is slightly different from the usual definition, since a path corresponds to two

walks in both directions.
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Lemma 3. Let s ∈ K. There exists a subtree T = (V ′, E′) of G such that
K ⊆ V ′ and |E′| ≤ c if and only if there exists a branching walk B = (TB =
(VB , EB), φ) from s such that K ⊆ φ(VB) and |B| ≤ c.

Proof. For the first part, choose TB = T and φ : VB → V ′ = VB to be the
identity function. For the second part, we can take T to be a spanning tree of
the graph (φ(VB), φ(EB)), and it has the required properties. �

Consider the following IE-formulation: let s ∈ K be an arbitrarily chosen termi-
nal, and define the universe U as all branching walks from s of length c. For each
v ∈ K, define a requirement Av that consists of all elements of U that contain
terminal v (i.e. v ∈ φ(VB)). It follows that the left-hand side of Equation 1,
|
⋂

v∈X Av|, is the number of branching walks that contain all terminals. Using
Lemma 3 this is larger than 0 if and only if the instance of Steiner Tree is a
yes-instance.

It remains to show how the simplified problem can be solved. For R ⊆ K, let
R′ = (V \K) ∪R, and define bR

j (s) as the number of branching walks from s of
length j in G[R′], where s ∈ R′. Note that the simplified problem is to compute

|
⋂

v∈X

Av| = bK\X
c (s)

for a given set X ⊆ K of terminals. Now bR
c (s) can be computed in polynomial

time using the following lemma:

Lemma 4. Let R ⊆ K and s ∈ R′, then

bR
j (s) =

⎧⎨⎩
1 if j = 0 (3a)∑
t∈N(s)∩R′

∑
j1+j2=j−1

bR
j1(t) bR

j2(s) otherwise (3b)

Proof. There is one branching walk of length 0, B = (TB, φ), from s with TB

being a single node and φ mapping this single node to s, hence Case 3a. If the
length j = |EB | is larger than 0, take the first child c1 of the root of TB. Notice
that (s, φ(c1)) has to be in E; therefore, t ∈ N(s)∩R′. Now any tree TB consists
of an edge from the root r to c1, and two trees rooted at r and c1. Hence, B
also consists a two branching walks, one from t and one from s. The lengths
of these branching walks have to sum up to j − 1 since the edge (r, c1) already
contributes 1 to the length of B. Now it remains to sum over all possibilities of
distributions of the length, and hence Case 3b also holds. �

From Equation 3 it follows that for each j > 0 and s ∈ R′, bR
j (s) is O((nj)j).

Hence, the number of bits needed to represent bR
j (s) is polynomially bounded.

Theorem 5. The Steiner tree problem with unit weights can be solved in
O∗(2k) time and polynomial space, where k is the number of terminals.

Proof. Due to Lemma 3 the considered IE-formulation solves Steiner Tree,
and we can use dynamic programming on Equation 3b to compute the simplified
problem in polynomial time. �
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The following result is a direct consequence of Theorem 5 and the considerations
of Section 4 in [11]:

Corollary 6. Steiner Tree with unit weights can be solved in O∗(1.3533n)
time using polynomial space.

2.3 Further IE-Formulations

In this section we give IE-formulations for two problems that lead to algorithms
running in O∗(2n)-time and using polynomial space. In the following assume we
are given a graph G = (V, E) and an integer c. In both IE-formulations we define
Av, for each v ∈ V , to be all elements of U that contain node v. The universe U
itself will be more tailor-made for both problems.

Degree constrained spanning tree. The Degree Constrained Spanning

Tree problem, also called Min-Max Degree Spanning Tree, asks whether
G has a spanning tree with maximum degree at most c. Define U as all branching
walks (TB, φ) of length n− 1 such that TB has maximum degree at most c. For
R ⊆ V , define dR

j (g, s) as the number of branching walks (TB, φ) from s of length
j in G[R] such that the degree of the root of TB is at most g. The simplified
problem is to compute

|
⋂

v∈X

Av| =
∑

s∈V \X

d
V \X
n−1 (c, s)

and it can be computed in polynomial time with dynamic programming using:

dR
j (g, s) =

⎧⎪⎨⎪⎩
[g ≥ 0] if j = 0∑
t∈N(s)∩R

∑
j1+j2=j−1

dR
j1(c − 1, t) dR

j2(g − 1, s) otherwise

To see that the equation holds, notice that dR
0 (g, s) = [g ≥ 0] by definition and

if j > 0, we count combinations of two branching walks: in the branching walk
from t we are allowed to choose c − 1 neighbors, and in the one from s we are
allowed to use one neighbor less than before.

Max internal spanning tree. The Max Internal Spanning Tree asks
whether G has a spanning tree with at least c internal nodes (i.e. nodes with
degree at least 2). Define the universe U as all branching walks (TB, φ) of length
n − 1 such that TB has at most n − (c + 1) leaves. For R ⊆ V , define mR

g,j(s)
as the number of branching walks in G[R] of length j from s having at most g
leaves.

mR
g,j(s) =

⎧⎪⎨⎪⎩
[g ≤ 1] if j = 0∑
t∈N(s)∩R

∑
g1+g2=g

∑
j1+j2=j−1

mR
g1,j1(t) mR

g2,j2(s) otherwise
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In the equation we count all possible distributions of the length and the number
of leaves in the branching walks from s and t. Now the simplified problem is
to compute

∑
s∈V \X m

V \X
n−(c+1),j(s). To see that the IE-formulation solves the

problem, note there exists B ∈
⋂

v∈V Av if and only if there exists (TB, φ) ∈⋂
v∈V Av such that the root of TB has degree 1. And in TB, the number of

internal nodes is the number of non-leaves minus 1.

Theorem 7. Degree Constrained Spanning Tree and Max Internal

Spanning Tree can be solved in O∗(2n) time and polynomial space.

Proof. The discussed IE-formulations solve the problems due to Lemma 3 and
the above considerations, and the simplified problems can be solved in polyno-
mial time with dynamic programming on the stated recurrences. �

3 Möbius Inversion

In this section we study an algebraic equivalent of Inclusion-Exclusion, called
Möbius inversion. Basically, it consists of the following two transforms:

Definition 8. Given a function f : 2V → Z+ and Y ⊆ V , the zeta transform
ζf(Y ) and the Möbius transform μf(Y ), are defined as:

ζf(Y ) =
∑

X⊆Y

f(X) μf(Y ) =
∑

X⊆Y

(−1)|Y \X|f(X)

Now the principle of Möbius inversion can be formulated as the following theorem
(this is already folklore, but we make the equivalence relation more clear with a
proof):

Theorem 9 (Folklore). The Möbius transform is the inverse of the zeta trans-
form; that is, for every Y ⊆ V , f(Y ) = μζf(Y ).

Proof. Define U and Av ⊆ U for v ∈ V such that for X ⊆ V we have:

f(X) = |
⋂

v∈X

Av \
⋃

v∈V \X

Av|

This can be done by defining U = {eX
i |X ⊆ V, 1 ≤ i ≤ f(X)} such that eX

i ∈ Av

if and only if v ∈ X . Now ζf(Y ) = |
⋂

i∈V \Y Ai|, and hence μζf(Y ) is equal
to the right-hand of Equation 1. Since f(Y ) is equal to the left-hand side of
Equation 1, the result follows from Theorem 1. �

So intuitively, using the terminology of the previous section, any IE-formulation
is equivalent to applying Möbius inversion and the simplified problem is to com-
pute ζf(V \X). Now we will reobtain the IE-formulation of Karp [16] discussed
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in Subsection 2.1 by applying Möbius inversion to the classical dynamic pro-
gramming approach.

Hamiltonian path revisited. Let us again consider #Hamiltonian Path.
Let h(s, R) be the number of Hamiltonian paths from s in G[R ∪ s]. Recall the
dynamic programming algorithm of Held and Karp [14]:

h(s, R) =

⎧⎪⎨⎪⎩
1 if R = ∅∑
t∈N(s)∩R

h(t, R \ t) otherwise

We start by adding a parameter k, which is the length of the Hamiltonian paths
we are counting. Although this seems superfluous because we know that each
Hamiltonian path in G[R ∪ s] has length |R|, it gives us some needed flexibility.

hk(s, R) =

⎧⎪⎨⎪⎩
[R = ∅] if k = 0∑
t∈N(s)∩R

hk−1(t, R \ t) otherwise

Now hn−1(s, V \ s) is the number of Hamiltonian paths from s. Consider the
following slightly different function

h′
k(s, R) =

⎧⎨⎩
[R = ∅] if k=0 (4a)∑
t∈N(s)∩R

h′
k−1(t, R \ t) + h′

k−1(t, R) otherwise (4b)

Notice that h′
|R|(s, R) = h|R|(s, |R|), since the term h′

k−1(t, R) added in Case
4b is 0 if k ≤ |R|. As a next step, we take the zeta transform on both sides of
Equation 4. For Case 4a, we have ζh′

0(s, R) = 1, and for Case 4b:

ζh′
k(s, R) =

∑
X⊆R

∑
t∈N(s)∩X

h′
k−1(t, X \ t) + h′

k−1(t, X)

=
∑

t∈N(s)∩R

∑
t∈X⊆R

h′
k−1(t, X \ t) + h′

k−1(t, X)

=
∑

t∈N(s)∩R

ζh′
k−1(t, R)

It is immediate that ζh′
k(t, R) = wk(s, R), and we obtained the IE-formulation

of Subsection 2.1.

3.1 Subset Products

An application for which Möbius inversion is particularly suited is the computa-
tion of subset products, introduced by Björklund et al. We will use the following:
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Definition 10 ([3]). Given two functions f, g : 2V → Z+, the cover product
(f ∗c g)(Y ), for Y ⊆ V is defined as:

(f ∗c g)(Y ) =
∑

A∪B=Y

f(A)g(B)

Assuming f and g can be evaluated in polynomial time, the naive way to compute
(f ∗c g)(Y ) would take O∗(3n) time. In [3], Björklund et al. implicitly use the
following theorem in order to obtain an O∗(2n) algorithm:

Theorem 11 ([3]). Given two functions f, g : 2V → Z+, the following holds
for Y ⊆ V :

ζ(f ∗c g)(Y ) = (ζf(Y )) (ζg(Y ))

Proof. Consider the following rewriting:

ζ(f ∗c g)(Y ) =
∑

X⊆Y

∑
A∪B=X

f(A)g(B) =
( ∑

A⊆Y

f(A)
)( ∑

B⊆Y

g(B)
)

The first equality follows by definition. For the second equality notice that for
each A, B ⊆ Y , there exists exactly one X ⊆ Y such that A ∪ B = X , hence
we can sum over each combination of two subsets A and B. Now the theorem
follows from the definition of zeta transform. �

Steiner Tree revisited. Let us again consider Steiner Tree. Recall we de-
note R′ for (V \K)∪R. Our starting point is an adjusted version of the famous
Dreyfus-Wagner recurrence [3,9]: for R ⊆ K, integer c and t ∈ V we are going to
define sc(t, R) such that it will be larger than 0 if and only if there exists a sub-
tree T = (V ′, E′) of the graph G[R′∪t] such that R∪t ⊆ V ′ and

∑
e∈E′ w(e) ≤ c.

For c ≤ 0, we have sc(t, R) = [c = 0 ∧ R = ∅], and for c > 0 define:

sc(t, R) =
∑

u∈N(t)∩R′
gc−w(t,u)(t, u, R \ u)

gc(t, u, R) =
∑

c1+c2=c

∑
A∪B=R

sc1(u, A) sc2(t, B)

We use a slightly different variant s′c of sc. Define s′0(t, R) to be s0(t, R), and for
c > 0:

s′c(t, R) =
∑

u∈N(t)\K

g(R) +
∑

u∈N(t)∩R

g(R) + g(R \ u)

where we shorthand g′c−w(t,u)(t, u, R) with g(R), and the definition of g′ is ob-
tained by replacing s with s′ in the definition of g (hence s′ does not depend on
s). Note that s′c(t, R) > 0 if and only if sc(t, R) > 0, since 0 ≤ g(R) ≤ g(R \ u).
Now we take the zeta transform of both s′c and g′c:
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ζs′c(t, R) =
∑

X⊆R

( ∑
u∈N(t)\K

g(X) +
∑

u∈N(t)∩X

g(X) + g(X \ u)
)

=
∑

u∈N(t)\K

ζg(R) +
∑

u∈N(t)∩R

∑
u∈X⊆R

g(X) + g(X \ u)

=
∑

u∈N(t)\K

ζg(R) +
∑

u∈N(t)∩R

ζg(R)

=
∑

u∈N(t)∩R′
ζg(R)

ζg′c(t, u, R) =
∑

X⊆R

∑
c1+c2=c

∑
A∪B=X

s′c1
(u, A) s′c2

(t, B)

=
∑

c1+c2=c

ζ(s′c1
(u) ∗c s′c2

(t))(R)

=
∑

c1+c2=c

ζs′c1
(u, R) ζs′c2

(t, R)

Combining both derivations gives us

ζs′c(t, R) =
∑

u∈N(t)∩R′

∑
c1+c2=c−w(t,u)

ζs′c1
(u, R) ζs′c2

(t, R)

comparing this with Equation 3, we see that ζs′c(t, R) = bR
c (t) in the special case

of unit weights. And the following result also follows:

Theorem 12. The Steiner Tree problem with bounded integer weights can
be solved in O∗(2k) and polynomial space.

3.2 Further Applications

In this subsection we give some other applications of the methods considered in
the previous subsection, continuing the work of Björklund et al. [3,4].

Cover Polynomial. We use xi for the falling factorial x!
(x−i)! . A Hamiltonian

cycle of a graph is a cyclic walk that contains all nodes exactly once. The cover
polynomial of a directed graph D = (V, A) can be defined as (see also [4,8]):∑

i,j

CV (i, j)xiyj

where CV (i, j) can be interpreted as the number of ways to partition V into i
directed paths and j directed cycles of D. Since paths and cycles with l edges
contain l + 1 and l nodes respectively, the sum of the lengths of the paths and
cycles in such a partition will be n − i. Moreover, if V is covered, the path and
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cycles are disjoint because of this size restriction. This allows us to define CY

using the cover product, such that CV matches the above interpretation:

CY (i, j) =
1

i!j!

∑
l1+...li+j=n−i

(hl1 ∗c . . . ∗c hli ∗c cli+1 ∗c . . . ∗c cli+j )(Y )

where hl(Y ) and cl(Y ) are the number of Hamiltonian paths and Hamiltonian
cycles of length l in D[Y ], respectively (note that like before we use the redu-
dant parameter l, for obtaining the efficient computable zeta transform). Recall
Equation 4 and note we can replace hl(Y ) with h′

l(Y ) =
∑

s∈V h′
l(s, Y ), and

ζh′
l(Y ) is the number of walks of length l in D[Y ]. We mention that one can in a

analogue way replace ct(Y ) with c′t(Y ) such that ζc′l(Y ) is the number of cyclic
walks of length l in D[Y ]. Now we apply Theorem 11 on the cover products and
obtain:

ζCY (i, j) =
1

i!j!

∑
l1+...li+j=n−i

( i∏
t=1

ζh′
lt(Y )

) ( i+j∏
t=i+1

ζc′lt(Y )
)

which can be computed in polynomial using standard dynamic programming,
since ζh′

l(Y ) =
∑

s∈Y wk(s, Y ) and ζc′l(Y ) also can.

#c-Spanning forests. A c-spanning forest of G = (V, E) is an acyclic subgraph
of G with exactly c connected components. Denote τ(c) for the number of c-
spanning forests of G. Assume an ordering ≺ on the nodeset V is given. For Y ⊆
V , define b̂l(Y ) as the number of unordered branching walks (TB = (VB, EB), φ)
in G such that Y ⊆ φ(VB) and φ(r) is minimum among φ(VB), where r is the
root of TB (recall from Subsection 2.2 that φ(VB) = {φ(u)|u ∈ VB}). Now we
can write τ(c) as follows:

Lemma 13
τ(c) =

1
c!

∑
l1+...+lc=n−c

(b̂l1 ∗c . . . ∗c b̂lc)(V ) (5)

Proof. A set of c branching walks of total length n − c can only cover V if it
induces a c-spanning forest. Every tree in this spanning forest corresponds to one
unordered branching walk from the minimum node it contains. Hence obtain the
equality. �

Now we can use Möbius inversion and Theorem 11 on Equation 5 to obtain

τ(c) = μ
( 1

c!

∑
l1+...+lc=n−c

c∏
i=1

(ζb̂l1)(V )
)

and it remains to show how to compute ζb̂l1(R) for R ⊆ V . For s ∈ R, define
b̂R
j,q(s) as the number of unordered branching walks (TB, φ) from s of length j
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in G[R] such that no child of the root of TB is mapped to one of the first q − 1
neighbors of s in G[R] with respect to the ordering ≺. Notice that:

b̂R
j,q(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if q > |N(s) ∩ R|
1 else if j = 0
bR
j,q+1(s) +

∑
j1+j2=j−1

b̂R
j1,1(N

s
q ) b̂R

j2,q+1(s) otherwise

where Ns
q is the qth-first element of the set N(s)∩R with respect to the ordering

≺. Now b̂l(R) =
∑

s∈R bRs

l,1 (s), where Rs stands for the set of all elements e in R
such that s ≺ e.

Theorem 14. Cover Polynomial and #c-Spanning forests can be solved
in O∗(2n) time and polynomial space.

4 Conclusion

We studied applications where the zeta transform is computable in polynomial
time. As mentioned in the introduction, our algorithms considerably improve on
dynamic programming in practice: in addition to improving the space require-
ment, our algorithms can potentially be made faster in practice when combined
with techniques from [1,19]. We want to mention that applying Möbius inversion
to a problem is not straightforward: first one has to come up with a function
with the wanted properties, in order to succesfully apply Möbius inversion.

To support finding more applications, it is interesting whether more subset
products with similar nice properties can be found, for some examples, we also
refer to [3].

Acknowledgements. The author wants to thank his advisor Pinar Heggernes,
Daniel Lokshtanov and the anonymous referees for their valuable support and
insightful remarks on this paper.
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6. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion–exclusion.
SIAM Journal on Computing, special issue dedicated to selected papers from FOCS
2006, 575–582 (2006)

7. Bodlaender, H.L., Kratsch, D.: An exact algorithm for graph coloring with polyno-
mial memory. Technical Report UU-CS-2006-015, Department of Information and
Computing Sciences, Utrecht University (2006)

8. Chung, F.R.K., Graham, R.L.: On the cover polynomial of a digraph. J. Comb.
Theory, Ser. B 65(2), 273–290 (1995)

9. Dreyfus, S., Wagner, R.: The Steiner problem in graphs. Networks 1, 195–207
(1972)

10. Fernau, H., Raible, D., Gaspers, S., Stepanov, A.A.: Exact exponential time algo-
rithms for max internal spanning tree. CoRR, abs/0811.1875 (2008)

11. Fomin, F.V., Grandoni, F., Kratsch, D.: Faster steiner tree computation in
polynomial-space. In: Halperin, D., Mehlhorn, K. (eds.) Esa 2008. LNCS, vol. 5193,
pp. 430–441. Springer, Heidelberg (2008)

12. Fuchs, B., Kern, W., Molle, D., Richter, S., Rossmanith, P., Wang, X.: Dynamic
programming for minimum Steiner trees. Theory of Computing Systems 41(3),
493–500 (2007)

13. Gaspers, S., Saurabh, S., Stepanov, A.A.: A moderately exponential time algorithm
for full degree spanning tree. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.)
TAMC 2008. LNCS, vol. 4978, pp. 479–489. Springer, Heidelberg (2008)

14. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
Journal of the Society for Industrial and Applied Mathematics 10(1), 196–210
(1962)

15. Jaeger, F., Vertigan, D.L., Welsh, D.J.A.: On the computational complexity of the
jones and tutte polynomials. Mathematical Proceedings of the Cambridge Philo-
sophical Society 108(01), 35–53 (1990)

16. Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion.
Oper. Res. Lett. 1, 49–51 (1982)

17. Kohn, S., Gottlieb, A., Kohn, M.: A generating function approach to the traveling
salesman problem. In: ACM 1977: Proceedings of the 1977 annual conference, pp.
294–300. ACM, New York (1977)

18. Nederlof, J.: Inclusion exclusion for hard problems. Master’s thesis, Utrecht Uni-
versity (August 2008)

19. van Rooij, J.M.M., Nederlof, J., van Dijk, T.C.: Inclusion/exclusion meets measure
and conquer: Exact algorithms for counting dominating sets. Technical Report UU-
CS-2008-043, Utrecht, The Netherlands (2008)

20. Woeginger, G.J.: Space and time complexity of exact algorithms: Some open prob-
lems. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004, vol. 3162,
pp. 281–290. Springer, Heidelberg (2004)



Superhighness and Strong Jump Traceability

André Nies�

University of Auckland

Abstract. Let A be a c.e. set. Then A is strongly jump traceable if and
only if A is Turing below each superhigh Martin-Löf random set. The
proof combines priority with measure theoretic arguments.

1 Introduction

A lowness property of a set A ⊆ N specifies a sense in which A is computationally
weak.

(I) Usually this means that A has limited strength when used as an oracle. An
example is superlowness, A′ ≤tt ∅′. Further examples are given by traceability
properties of A. Such a property specifies how to effectively approximate the
values of certain functions (partial) computable in A. For instance, A is jump
traceable [1] if JA(n) ↓ implies JA(n) ∈ Tn, for some uniformly c.e. sequence
(Tn)n∈N of computably bounded size. Here J is the jump functional: If X ⊆ N,
we write JX(n) for ΦX

n (n).

(II) A further way to be computationally weak is to be easy to compute. A
lowness property of this kind specifies a sense in which many oracles compute A.
For instance, consider the property to be a base for ML-randomness, introduced
in [2]. Here the class of oracles computing A is large enough to admit a set that
is ML-random relative to A. By [3] this property coincides with the type (I)
lowness property of being low for ML-randomness.

As our main result, we show a surprising further coincidence of a type (I) and
a type (II) lowness property for c.e. sets. The type (I) property is strong jump
traceability, introduced in [4], and studied in more depth in [5]. We say that a
computable function h : N → N \ {0} is an order function if h is nondecreasing
and unbounded.

Definition 1. A ⊆ N is strongly jump traceable (s.j.t.) if for each order func-
tion h, there is a uniformly c.e. sequence (Tn)n∈N such that ∀n |Tn| ≤ h(n) and
∀n [JA(n) ↓ → JA(n) ∈ Tn].

Figueira, Nies and Stephan [4] built a promptly simple set that is strongly jump
traceable. Cholak, Downey and Greenberg [5] showed that the strongly jump
traceable c.e. sets form a proper subideal of the K-trivial c.e. sets under Turing
reducibility.

We say that a set Y ⊆ N is superhigh if ∅′′ ≤tt Y ′. This notion was first studied
by Mohrherr [6] for c.e. sets. For background and results on superhighness see
� The author was partially supported by the Marsden Fund of New Zealand, grant no.

03-UOA-130.

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 726–737, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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[7,8]. The type (II) property is to be Turing below each superhigh ML-random
set. Thus our main result is that a c.e. set A is strongly jump traceable if and
only if A is Turing below each superhigh Martin-Löf random set.

The property to be Turing below each superhigh ML-random set can be put
into a more general context. For a class H ⊆ 2ω, we define the corresponding
diamond class

H� = {A : A is c.e. & ∀Y ∈ H ∩ MLR [A ≤T Y ]}.

Here MLR is the class of ML-random sets. Note that H� determines an ideal in
the c.e. Turing degrees. By a result of Hirschfeldt and Miller (see [7, 5.3.15]), for
each null Σ0

3 class, the corresponding diamond class contains a promptly simple
set A. Their construction of A is via a non-adaptive cost-function construction
(see [7, Section 5.3] for details on cost functions). That is, the cost function can
be given in advance. This means that the construction can be viewed as injury-
free. In contrast, the direct construction of a promptly simple strongly jump
traceable set in [4] varies Post’s construction of a low simple set, and therefore
has injury.

In [9] a result similar to our main result was obtained when H is the class of
superlow sets Y (namely, Y ′ ≤tt ∅′). Earlier, Hirschfeldt and Nies had obtained
such a coincidence for the class H of ω-c.e. sets Y (namely, Y ′ ≤tt ∅′).

In all cases, to show that a c.e. strongly jump traceable set A is in the required
diamond class, one finds an appropriate collection of benign cost functions; this
key concept was introduced by Greenberg and Nies [10]. The set A obeys each
benign cost function by the main result of [10]. This implies that A is in the
diamond class.

It is harder to prove the converse inclusion: each c.e. set in H� is s.j.t. Suppose
an order function h is given. For one thing, similar to the proof of the analogous
inclusion in [9], we use a variant of the golden run method introduced in [12].
One wants to restrict the changes of A to the extent that A is strongly jump
traceable. To this end, one attempts to define a “naughty set” Y ∈ H∩MLR. It
exploits the changes of A in order to avoid being Turing above A. The number of
levels in the golden run construction is infinite, with the e-th level based on the
Turing functional Φe. If the golden run fails to exist at level e then A �= ΦY

e . If
this is so for all e then A �≤T Y , contrary to the hypothesis that A ∈ H�. Hence
a golden run must exist. Since it is golden it successfully builds the required
trace for JA with bound h.

A further ingredient of our proof stems from ideas that started in Kurtz
[13] and were elaborated further, for instance, in Nies [12,14]: mixing priority
arguments and measure theoretic arguments. In contrast, the proof in [9] is
not measure theoretic. (Indeed, they prove, more generally, that for each non-
empty Π0

1 class P , each c.e. set Turing below every superlow member of P
must be strongly jump traceable. This stronger statement has no analog for
superhighness, for instance because all members of P could be computable.)
Here we need to make the naughty set Y superhigh. This is done by coding ∅′′
(see [7, 3.3.2]) in the style of Kučera, but not quite into Y : the coding strings
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change due to the activity of the tracing procedures. The number of times they
change is computably bounded. So the coding yields ∅′′ ≤tt Y ′.

Notation. Suppose f is a unary function and f̃ is binary. We write

∀n f(n) = limcomp
s f̃(n, s)

if there is a computable function g : N → N such that for all n, the set

{s > 0: f̃(n, s) �= f̃(n, s − 1)}

has cardinality less than g(n), and lims f̃(n, s) = f(n).
We let X ′ = {n : JX(n) ↓}, and X ′

t = {n : JX
t (n) ↓}. We use Knuth’s bracket

notation in sums. For instance,
∑

n n−2 [[n is odd]] denotes 1+1/9+1/25+ . . . =
π2/8.

A forthcoming paper by Greenberg, Hirschfeldt and Nies (Characterizing the
s.j.t. sets via randomness) contains a new proof of Theorem 2 using the language
of “golden pairs”. This makes it possible to cut some parameters.

2 Benign Cost Functions and Shigh�

Note that a function f is d.n.c. relative to ∅′ if ∀x¬f(x) = J∅′
(x). Let P be

the Π0
1 (∅′) class of {0, 1}-valued functions that are d.n.c. relative to ∅′. The

PA sets form a null class (see, for instance, [7, 8.5.12]). Relativizing this to
∅′, we obtain that the class {Z : ∃f ≤T Z ⊕ ∅′ [f ∈ P ]} is null. Then, since
GL1 = {Z : Z ′ ≡T Z ⊕ ∅′} is conull, the following class, suggested by Simpson,
is also null:

H = {Z : ∃f ≤tt Z ′ [f ∈ P ]}. (1)

This class clearly contains Shigh because ∅′′ truth-table computes a function that
is d.n.c. relative to ∅′. Since H is Σ0

3 , by a result of Hirschfeldt and Miller (see
[7, 5.3.15]) the class H� contains a promptly simple set. We strengthen this:

Theorem 1. Let A be a c.e. set that is strongly jump traceable.
Then A ∈ H�.

Proof. In [10] a cost function c is defined to be benign if there is a computable
function g with the following property: if x0 < . . . < xn and c(xi, xi+1) ≥ 2−e

for each i, then n ≤ g(e). For each truth table reduction Γ we define a benign
cost function c such that for each Δ0

2 set A, and each ML-random set Y ,

A obeys c and Γ Y ′
is {0, 1}-valued d.n.c. relative to ∅′ ⇒ A ≤T Y .

Let (Ie) be the sequence of consecutive intervals of N of length e. Thus min Ie =
e(e + 1)/2. We define a function α ≤T ∅′. We are given a partial computable
function p and (via the Recursion Theorem) think of p as a reduction function
for α, namely, p is total, increasing, and ∀x α(x) + J∅′

(p(x)).
At stage s of the construction we define the approximation αs(x). Suppose

x ∈ Ie. If p(y) is undefined at stage s for some y ∈ Ie let αs(x) = 0. Otherwise,
let

Ce,s = {Y : ∃t v≤t≤s∀x ∈ Ie [1 − αt(x) = Γ (Y ′
t , p(x))]}, (2)
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where v ≤ s is greatest such that v = 0 or αv � Ie �= αv−1 � Ie. (Thus, Ce,s is
the set of oracles Y such that Y ′ computes α correctly at some stage t after the
last change of α�Ie . )

Construction of α.
Stage s > 0. For each e < s, if λCe,s−1 ≤ 2−e+1 let αs � Ie = αs−1 � Ie. Otherwise
change α � Ie: define αs � Ie in such a way that λCe,s ≤ 2−e.

Claim. α(x) = lims αs(x) exists for each x.

We use a measure theoretic fact suggested by Hirschfeldt in a related context (see
[7, 1.9.15]). Suppose N, e ∈ N, and for 1 ≤ i ≤ N , the class Bi is measurable and
λBi ≥ 2−e. If N > k2e then there is a set F ⊆ {1, . . . , N} such that |F | = k + 1
and

⋂
i∈F Bi �= ∅.

Suppose now that 0 = v0 < v1 < . . . < vN are consecutive stages at which
α � Ie changes. Thus p � Ie is defined. Then λBi ≥ 2−e for each i ≤ N , where

Bi = {Y : Y ′
vi+1

�k �= Y ′
vi

�k},
and k = use Γ (max p(Ie)), because λCe increased by at least 2−e from vi to vi+1.
Note that the intersection of any k + 1 of the Bi is empty. Thus N ≤ 2ek by the
measure theoretic fact. �

Since α is Δ0
2, by the Recursion Theorem, we can now assume that p is a reduc-

tion function for α. Then in fact we have a computable bound g on the number
of changes of α � Ie given by g(e) = 2euse Γ (max p(Ie)).

To complete the proof, let A be a c.e. set that is strongly jump traceable. We
define a cost function c by c(x, s) = 2−x for each x ≥ s; if x < s, and e ≤ x is
least such that e = x or αs � Ie �= αs−1 � Ie, let

c(x, s) = max(c(x, s − 1), 2−e).

Note that the cost function c is benign as defined in [10]: if x0 < . . . < xn and
c(xi, xi+1) ≥ 2−e for each i, then αs � Ie �= αs−1 � Ie for some s such that
xi < s ≤ xi+1. Hence n ≤ g(e) where g is defined after the claim.

By [10] fix a computable enumeration (As)s∈N of A that obeys c. (The rest of
the argument actually works for a computable approximation (As)s∈N of a Δ0

2

set A.)
We build a Solovay test G as follows: when At−1(x) �= At(x), we put Ce,t

defined in (2) into G where e is largest such that α � Ie has been stable from x
to t. Then 2−e ≤ c(x, t). Since λCe,t ≤ 2−e+1 ≤ 2c(x, t) and the computable
approximation of A obeys c, G is indeed a Solovay test.

Choose s0 such that σ �, Y for each [σ] enumerated into G after stage s0. To
show A ≤T Y , given an input y ≥ s0, using Y as an oracle, compute s > y such
that αs(x) = Γ (Y ′

s ; x) for each x < y. Then As(y) = A(y): if Au(y) �= Au−1(y)
for u > s, let e ≤ y be largest such that α � Ie has been stable from y to u.
Then by stage s > y the set Y is in Ce,s ⊆ Ce,t, so we put Y into G at stage u,
contradiction.

In the following we give a direct construction of a null Σ0
3 class containing the

superhigh sets. Note that the class H defined in (1) is such a class. However, the
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proof below uses techniques of independent interest. For instance, they might be
of use to resolve the open question whether superhighness itself is a Σ0

3 property.

Proposition 1. There is a null Σ0
3 class containing the superhigh sets.

Proof. For each truth-table reduction Φ, we uniformly define a null Π0
2 class SΦ

such that ∅′′ = Φ(Y ′) → Y ∈ SΦ.
We build a Δ0

2 set DΦ. Then, by the Recursion Theorem we have a truth-table
reduction ΓΦ such that ∅′′ = Φ(Y ′) → DΦ = Γ (Y ′). We define DΦ in such a
way that SΦ = {Y : DΦ = Γ (Y ′)} is null. Also, SΦ is Π0

2 because

Y ∈ SΦ ↔ ∀w ∀i > w∃s > i DΦ(w, s) = Γ (Y ′
s ; w).

Claim. For each string σ, the real number rσ = λ{Z : σ ≺ Z ′} is the difference
of left-c.e. reals uniformly in σ (see [7, 1.8.15]).

To see this, note that for each finite set F the class CF = {Z : F ⊆ Z ′} is
uniformly Σ0

1 . Let F (σ) = {j < |σ| : σ(j) = 1}, then

rσ = λ(CF (σ) −
⋃

r<|σ|&σ(r)=0 C{r}∪F (σ)).

This proves the claim. Now, for each τ let bτ = λ{Z : τ ≺ Γ (Z ′)}. Then bτ =∑
σ rσ [[τ = Γ σ]] is uniformly difference left-c.e.
One can define the Δ0

2 set D = DΦ in such a way that 2bD�n+1 ≤ bD�n for
each n. Then 2−n ≥ λ{Y : DΦ �n= Γ (Y ′)�n} for each n, so SΦ is null.

3 Each Set in Shigh� Is Strongly Jump Traceable

Theorem 2. Let A be a c.e. set that is Turing below all ML-random superhigh
sets. Then A is strongly jump traceable.

Proof. Let h be an order function. We will define a ML-random superhigh set Z
such that A ≤T Z implies that A is jump traceable via bound h. In fact for
an arbitrary given set G we can define Z such that G ≤tt Z ′. If also G ≥tt ∅′′,
then Z is superhigh.

Preliminaries. Let λ denote the uniform measure on Cantor space. We will need
a lower bound on the measure of a non-empty Π0

1 class of ML-random sets. This
bound is given uniformly in an index for the class (Kučera; see [7, 3.3.3]). Let
Q0 ⊆ MLR be the complement 2ω −R1 of the second component of the standard
universal ML-test.

Lemma 1. Given an effective listing (P v)v∈N of Π0
1 classes, P v ⊆ Q0, there is

a constant c0 such that λP v ≤ 2−K(v)−c0 → P v = ∅.

We assume an indexing of all the Π0
1 classes. Given an index for a Π0

1 class P we
have an effective approximation P =

⋂
t Pt where Pt is a clopen set ([7, Section

1.8]).

The basic set-up. For each e, a procedure Re (with further parameters to be
discussed later) builds a c.e. trace (Tx)x∈N with bound h. Either for almost all x,
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JA(x) ↓ implies JA(x) ∈ Tx, or Re shows that A �= ΦZ
e . Since Z is superhigh,

the first alternative must hold for some e.
When a new computation w = JA(x) ↓ with use u appears, Re activates a

sub-procedure Se
x. This sub-procedure waits for evidence that A �u is stable be-

fore putting w into the trace set Tx. By first waiting long enough, it makes sure
that an A�u change after this tracing can happen for at most h(x) times, so that
|Tx| ≤ h(x). Se

x also calls an instance of the next procedure Re+1. Thus, during
the construction we can have many runs of each of the procedures Re and Se

x.

The environment of a procedure. Each Re has as further parameters a Π0
1 class P

and a number r ∈ N. It assumes that Z ∈ P and 2−r < λP . Each Se
x activated

by Re(P, r) will specify an appropriate subclass Q ⊆ P and a number q ∈ N,
and call Re+1(Q, q).

Initially we call R0(Q0, 2).

The two phases of Se
x. A procedure Se

x alternates between Phases I, and II. When
changing phases it returns control to Re. In our first approximation to describing
the construction, once a computation w = JA(x) ↓ with use u appears, Se

x enters
Phase I. It considers the Σ0

1 class C = {Z : ΦZ
e �u= A �u}. It calls Re+1(Q, q)

where Q = P − C and q is obtained by Lemma 1. If it stays here then, because
Z ∈ Q, its outcome is that ΦZ

e �= A.
For a threshold δ depending only on r and x, once λ(Ps ∩ Cs) > δ at stage s

it lets D = Cs and puts w into Tx. Now the outcome is that JA(x) has been
traced. So Se

x can return and stay inactive unless A�u changes.
Once A �u has changed, Se

x enters Phase II by calling Re+1(Q, q) where now
Q = P ∩ D and q is obtained by Lemma 1. Its outcome is again that ΦZ

e �= A,
this time because ΦZ

e �u is the previous value of A�u (here we use that A is c.e.).
If, later on, P ∩ D becomes empty, then Se

x returns. It is now turned back to
the beginning and may start again in Phase I when a new computation JA(x)
appears. Note that P has now lost a measure of δ. So Se

x can go back to Phase I
for at most 1/δ times.

The golden run. For some e we want a run of Re such that each sub-procedure
Se

x it calls returns. For then, the c.e. trace (Tx)x∈N this run of Re builds is a
trace for JA. If no such run Re exists then each run of Re eventually calls some
Se

x which does not return, and therefore permanently runs a procedure Re+1. If
Z ∈

⋂
Pe where Pe is the parameter of the final run of a procedure Re, then

A �≤T Z. So we have a contradiction if we can define a set Z ∈
⋂

e Pe such that
G ≤tt Z ′.

Ensuring that G ≤tt Z ′. For this we have to introduce new parameters into the
procedures Se

x.
Note that G ≤tt Z ′ iff there is a binary function f ≤T Z such that ∀xG �x=

limcomp
s f(x, s) (namely, the number of changes is computably bounded). We

will define Z such that Z ′ encodes G. We use a variant of Kučera’s method
to code into ML-random sets. We define strings zγ = limcomp

s zγ,s and let Z =⋃
γ≺G zγ . The strings zγ,s are given effectively, and for each s they are pairwise
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Wait for 
λ(Ps∩Cs)≥δ

Put w into Tx; let D=Cs;

 goto Phase II; return

Call Re+1(P-C)

Requires attn. when
 JA(x)  converges

Wait for 
Ps ∩D =∅

goto Phase I; return

Call Re+1(P ∩ D)

Requires attn. when
 A|u has  changed

Phase I Phase II

Fig. 1. Diagram for the procedure Se
x

incomparable. Then we let f(x, s) = γ if |γ| = x and zγ,s ≺ Z, and f(x, s) = ∅
if there is no such γ.

Firstly, we review Kučera’s coding into a member of a Π0
1 -class P of positive

measure. For a string x let λ(P |x) = 2|x|λ(P ∩ [x]).

Lemma 2 (Kučera; see [7], 3.3.1). Suppose that P is a Π0
1 class, x is a

string, and λ(P |x) ≥ 2−l where l ∈ N. Then there are at least two strings w . x
of length |x|+ l +1 such that λ(P |w) > 2−l−1. We let w0 be the leftmost and w1

be the rightmost such string.

In the following we code a string β into a string yβ on a Π0
1 class P .

Definition 2. Given a Π0
1 class P , a string z such that P ⊆ [z], and r ∈ N such

that 2−r < λP , we define a string

yβ = kuc(P, r, z, β)

as follows: y∅ = z; if x = yβ has been defined, let l = r + |β|, and let yβ̂b = wb

for b ∈ {0, 1}, where the strings wb are defined as in Lemma 2.
Note that for each β we have λ(P | yβ) ≥ 2−r−|β| and

|yβ | ≤ |z|+ |β|(r + |β| + 1). (3)

At stage s we have the approximation yβ,s = kuc(Ps ∩ [z], r, z, β). While yβ,s is
stable, the string wb in the recursive definition above changes at most 2l times.
Thus, inductively, yβ,s changes at most 2|β|(r+|β|+1) times.

For each e, η we may have a version of Re denoted Re,η(P, r, zη). It assumes that
η has already been coded into the initial segment zη of Z, and works within
P ⊆ [zη]. It calls procedures Se,ηα

x (P, r, zη) for certain x, α. In this case we let
zηα = yα = kuc(P, r, zη, α).

For each x, once JA(x) ↓, Re,η wishes to run Se,ηα
x for all α of a certain

length m defined in (5) below, which increases with h(x). Thus, as x increases,
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more and more bits beyond η are coded into Z. The trace set Tx will contain all
the numbers enumerated by procedures Se,ηα

x where |α| = m. We ensure that m
is small enough so that |Tx| ≤ h(x). To summarize, a typical sequences of calls
of procedures is

Re,η → Se,ηα
x → Re+1,ηα.

Formal details. Some ML-random set Y �≥T ∅′ is superhigh by pseudo jump
inversion as in [7, 6.3.14]. Since A ≤T Y and A is c.e., A is a base for ML-
randomness; see [7, 5.1.18]. Thus A is superlow. Hence there is an order function g
and a computable enumeration of A such that JA(x)[s] becomes undefined for
at most g(x) times.

We build a sequence of Π0
1 classes (Pn)n∈N as in Lemma 1. If n = 〈e, γ, x, i〉,

then since K(n) ≤+ 2 log〈e, γ〉 + 2 logx + 2 log i, we have

P 〈e,γ,x,i〉 �= ∅ ⇒ λP 〈e,γ,x,i〉 ≥ 2−q (4)

where q = 2 log〈e, γ〉+2 logx+2 log i+ c for some fixed c ∈ N. By the Recursion
Theorem we may assume that we know c in advance.

The construction starts off by calling R0,∅(Q0, 3, ∅).

Procedure Re,η(P, r, z), where z ∈ 2<ω, P ⊆ MLR ∩ [z] is a Π0
1 class and r ∈ N.

This procedure enumerates a c.e. trace (Tx)x∈N. (It assumes that 2−r < λP .)

For each string α of length at most the stage number s, see whether some proce-
dure Se,ηα

x (P ) requires attention, or is at (b) or (e), and no procedure Se,ηβ
y (P )

for β ≺ α satisfies the same condition. If so, choose x least for α and activate
Se,ηα

x (P ). (This suspends any runs Se,ρ
z for ηα , ρ. Such a run may be resumed

later.)

Procedure Se,ηα
x (P, r, z), where |α| is the greatest m > 0 such that, if n = m(r +

m + 1), we have
2|ηα|22n+r+2 ≤ h(x). (5)

There only is such a procedure if x is so large that m exists.
Let yα,s = kuc(Ps, α, r, z). Let

δ = 2−|yα,s|−m−r−1.

(Comment: Se,ηα
x (P, r, z) cannot change yα,s. It only changes “by itself” as Ps

gets smaller. This makes the procedure go back to the beginning. So in the
following we can assume yα is stable.)

Phase I.

(a) Se,ηα
x requires attention if w = JA(x) ↓ with use u. Let

C = [yα] ∩ {Z : ΦZ
e �u= A�u},

a Σ0
1 class. Let Cs = [yα,s] ∩ {Z : ΦZ

e �u= A �u [s]} be its approximation at
stage s, which is clopen.
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(b) While λ(Ps ∩ Cs) < δ run in case e < s the procedure

Re+1,ηα(Q, q, yα,s);

here Q is the Π0
1 class P ∩ [yα,s] − C, and

q = 2 log〈e, ηα〉 + 2 log x + 2 log i + c,

where i is the number of times Se,ηα
x has called Re+1,ηα (the constant c

was defined after (4) at the beginning of the formal construction). Then
2−q < λQ unless Q = ∅. Meanwhile, if yα,s �= yα,s−1 put w into Tx, cancel
all sub-runs, goto (a), and return. Otherwise, if As �u �= As−1 �u cancel all
sub-runs, goto (a) and return.
(Comment: if the run Se,ηα

x stays at (b) and Z ∈ Q, then A�u= ΦZ
e �u fails,

so we have defeated Φe.)
(c) Put w into Tx, let D = Cs, goto (d), and return. (Thus, the next time

we call Se,ηα
x (P ) it will be in Phase II.)

Phase II.

(d) Se,ηα
x requires attention again if A�u has changed.

(e) While Ps ∩ D �= ∅ run in case e < s

Re+1(P ∩ D, q, yα,s)

where q ∈ N is defined as in (b). Meanwhile, if yα,s �= yα,s−1 cancel all
sub-runs, goto (a), and return.
(Comment: if the run Se,ηα

x stays at (e) and Z ∈ Q then again A�u= ΦZ
e �u

fails, this time because Z ∈ D and ΦZ
e �u is an old version of A�u.)

(f) Goto (a) and Return.

Verification. The function g was defined at the beginning of the formal proof.
First we compute bounds on how often a particular run Se,ηα

x does certain things.

Claim 1. Consider a run Se,ηα
x (P, r, z) called by Re,η(P, r, z). As in the con-

struction, let m = |α| and n = m(r + m + 1).

(i) While yα,s does not change, the run passes (f) for at most 2m+r+1 times.
(ii) The run enumerates at most 22n+r+2 elements into Tx.
(iii) It calls a run Re+1,ηα at (b) or (e) for at most 2n+1g(x) times.

To prove (i), as before let δ = 2−|yα|−m−r−1. Note that each time the run
passes (f), the class P ∩ [yα] loses λD ≥ δ in measure. This can repeat itself at
most 2m+r+1 times. (This argument allows for the case that the run of Se,ηα

x is
suspended due to the run of some Se,ηβ

z for β ≺ α. If Se,ηβ
z finishes then Se,ηα

x ,
with the same parameters, continues from the same point on where it was when
it was suspended.)
(ii) There are at most 2n values for yα during a run of Se,ηα

x by the remarks
after Definition 2. Therefore this run enumerates at most 2n2n+r+1+2n elements
into Tx where at most 2n elements are enumerated when yα changes.
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(iii): for each value yα there are at most 2g(x) calls, namely, at most two for each
computation JA(x) (g is defined at the beginning of the formal proof). �

Note that |Tx| ≤ h(x) by (ii) of Claim 1 and (5).
Strings zγ,s, γ ∈ 2<ω are used to code the given set G into Z ′. Let z∅,s = ∅.

– If zη,s has been defined and Re,η(P, r, zη,s) is running at stage s, then for
all β such that no procedure Se,ηα is running for any α ≺ β, let zηβ,s =
kuc(P, r, zη,s, β).

– If α is maximal under the prefix relation such that zηα,s is now defined,
it must be the case that Re+1,ηα(Q, q, zηα) runs. So we may continue the
recursive definition. Note that |α| > 0 by the condition that m > 0 in (5).

Claim 2. For each γ, zγ = lims zγ,s exists, with the number of changes com-
putably bounded in γ.

We say that a run of Se,ρ
x is a k-run if |ρ| ≤ k. For each number parameter p

we will let p(k, v) denote a computable upper bound for p computed from k, v.
Such a function is always chosen nondecreasing in each argument.

To prove Claim 2, we think of k as fixed and define by simultaneous recursion
on v ≤ k computable functions r(k, v), x(k, v), b(k, v), c(k, v) with the following
properties:

(i) r(k, v) bounds r in any call Re,η(Q, r) where |η| ≤ k and e ≤ v.
(ii) x(k, v) bounds the largest x such that some k-run Se,ηα

x is started where
e ≤ v.

(iii) For each x, b(k, v) bounds the number of times a k-run Se,ηα
x for e ≤ v

requires attention.
(iv) For each x, c(k, v) bounds the number of times a run Re+1,ηα is started by

some k-run Se,ηα
x for e ≤ v.

Fix γ such that |γ| = k. In the following we may assume that ηα , γ, because
then the actual bounds can be obtained by multiplying with 2k.

Suppose now k ≥ v ≥ 0 and we have defined the bounds in (i)–(iv) for v−1 in
case v > 0. We define the bounds for v and verify (i)–(iv). We may assume e = v,
because then the required bounds are obtained by adding the bounds for k, v−1
to the bounds now obtained for e = v.

(i) First suppose that v = 0. Then η = ∅, so let r(k, 0) = 3. If v > 0, we
define a sequence of Π0

1 classes as in Lemma 1: if for the i-th time a run Se−1,ρ
x

calls a run Re,ρ(Q, q) we let P 〈e,ρ,x,i〉 = Q. By the inductive hypothesis (iii)
and (iv) for v − 1 we have a bound i(v, x) on the largest i such that a class
P 〈v,ηα,x,i〉 is defined (when Sv−1,η

x in (b) or (e) starts a run Rv,η). Thus let
r(k, v) = 2 log〈v, γ〉 + 2 log x(k, v − 1) + 2 log i(v, x(k, v − 1)) + c.

To prove (ii) and (iii), suppose Re,η(Q, r) calls Se,ηα
x . Let m = |α| and n =

m(r + m + 1). Then n ≤ k(r(k, v) + k + 1).
(ii) We have h(x) < 2k+2k(r(k,v)+k+1)+3 because m is chosen maximal in (5).
Since h is an order function, this gives the desired computable bound x(k, v)
on x.
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(iii) By Claim 1(i), for each value of yα, the run can pass (f) for at most
2k+r(k,v)+1 times. Further, it can require attention 2n + g(x(k, v)) more times
because yα changes or because JA(x) changes. This allows us to define b(k, v).
(iv) By Claim 1(iv) a run Rv+1,ηα is started for at most b(k, v)2k+1g(x(k, v))
times.

This completes the recursive definition of the four functions. Now, to obtain
Claim 2, fix γ. One reason that zγ changes is that (A) some run Se,ρ

y for ρ ,
γ, calls Re+1,ρ in (e). This run is a k-run for k = |γ|. By (ii) and (iii), the
number of times this happens is computably bounded by b(k, k)x(k, k). While
it does not happen, zγ can also change because (B) for some ηα , γ as in the
construction, yα changes because some Ps, which defines yα, decreases. Since
there is a computable bound l(k) on the length of zγ by (i) of this claim and (3),
while the first reason does not apply, this can happen for at most 2l(k) times.
Thus in total zγ changes for at most b(k, k)x(k, k)2l(k) times. �

Now let Z =
⋃

γ≺G zγ . By Claim 2 we have G ≤tt Z ′.

Claim 3. (Golden Run Lemma) For some η ≺ G and some e, there is a run
Re,η(P, r) (called a golden run) that is not cancelled such that, each time it calls
a run Se,ηα

x where ηα ≺ G, that run returns.

Assume the claim fails. We verify the following for each e.

(i) There is a run Re,η that is not cancelled; further, Se,ηα
x (P ) is running for

some x, where ηα ≺ G, and eventually does not return.
(ii) A �= ΦZ

e .

(i) We use induction. For e = 0 clearly the single run of R0,∅ is not cancelled.
Suppose now that a run of Re,η is not cancelled. Since we assume the claim
fails, some run Se,ηα

x , ηα ≺ G, eventually does not return. From then on the
computation JA(x) it is based on and yα are stable. So the run calls Re+1,ηα

and that run is not cancelled.
(ii) Suppose the run Se,ηα

x (P, r, z) that does not return has been called at stage s.
Suppose further it now stays at (b) or (e), after having called Re,ηα(Q, q, yα).
Since yηα is stable by stage s, we have Z ∈ Q. Hence A �= ΦZ

e by the comments
in (b) or (e). �

Let (Tx)x∈N be the c.e. trace enumerated by this golden run.

Claim 4. (Tx)x∈N is a trace for JA with bound h.

As remarked after Claim 1, we have |Tx| ≤ h(x). Suppose x is so large that m in
(5) exists. Suppose further that the final value of w = JA(x) appears at stage t.
Let ηα ≺ G such that |α| = m.

As the run is golden and by Claim 1(i), eventually no procedure Se,ηβ
y (P )

for β ≺ α is at (b) or (e). Thus, from some stage s > t on, the run Se,ηα
x

is not suspended. If yα has not settled by stage s then w goes into Tx. Else
λ(P | yα,s) > 2−r−|α|. Since Se,ηα

x returns each time it is called, the run is at
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(a) at some stage after t. Also, Ps ∩ Cs must reach the size δ = 2−|yα|−|α|−r−1

required for putting w into Tx.

As a consequence, we can separate highness properties within the ML-random
sets. See [7, Def. 8.4.13] for the weak reducibility ≤JT , and [10] for the highness
property “∅′ is c.e. traceable by Y ”. Note that JT-hardness implies both this
highness property and superhighness.

Corollary 1. There is a ML-random superhigh Δ0
3 set Z such that ∅′ is not c.e.

traceable by Z. In particular, Z is not JT -hard.

Proof. By [7, Lemma 8.5.19] there is a benign cost function c such that each c.e.
set A that obeys c is Turing below each ML-random set Y such that ∅′ is c.e.
traceable by Y . By [7, Exercise 8.5.8] there is an order function h such that some
c.e. set A obeys c but is not jump traceable with bound h. Then by the proof
of Theorem 2 there is a ML-random superhigh set Z ≤T ∅′′ such that A �≤T Z.
Hence Z is not JT -hard.
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Abstract. Consider the following general communication problem: Alice and
Bob have to simulate a probabilistic function p, that with every (x, y) ∈ X × Y
associates a probability distribution on A × B. The two parties, upon receiving
inputs x and y, need to output a ∈ A, b ∈ B in such a manner that the (a, b) pair
is distributed according to p(x, y). They share randomness, and have access to a
channel that allows two-way communication. Our main focus is an instance of the
above problem coming from the well known EPR experiment in quantum physics.
In this paper, we are concerned with the amount of communication required to
simulate the EPR experiment when it is repeated in parallel a large number of
times, giving rise to a notion of amortized communication complexity.

In the 3-dimensional case, Toner and Bacon showed that this problem could be
solved using on average 0.85 bits of communication per repetition [1]. We show
that their approach cannot go below 0.414 bits, and we give a fundamentally
different technique, relying on the reverse Shannon theorem, which allows us
to reduce the amortized communication to 0.28 bits for dimension 3, and 0.410
bits for arbitrary dimension. We also give a lower bound of 0.13 bits for this
problem (valid for one-way protocols), and conjecture that this could be improved
to match the upper bounds. In our investigation we find interesting connections
to a number of different problems in communication complexity, in particular to
[2]. The results contained herein are entirely classical and no knowledge of the
quantum phenomenon is assumed.

1 Communication Complexity of Distributions

Communication complexity has been an amazingly potent tool for studying lower
bounds for circuits, branching programs, VLSI and streaming data. Lately it is also
used to quantify non-local nature of quantum systems.

Recall that in the original version of the model [3] Alice and Bob jointly evaluate a
Boolean predicate f(x, y) (x ∈ X , y ∈ Y) through exchanging messages. Throughout,
we will be concerned with the following generalization of the model:

Let X and A be the sets of inputs and possible outputs for Alice, and Y and B be the
sets of inputs and possible outputs for Bob.

Task: A task p is specified by a function p : X × Y → Distrib(A × B), where
Distrib(A× B) is the set of all probability distributions on A× B.

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 738–749, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Alice and Bob meet the specification p if upon receiving x ∈ X and y ∈ Y their
output pair (a, b) is distributed according to p(x, y). Task p is completely described by
the probabilities

p(a, b||x, y)
def
= the probability of (a, b) under distribution p(x, y).

Alice and Bob share randomness from a common source Λ, i.e. in addition to their input
they both receive λ, where λ ∈ Λ is picked randomly.

Even with unlimited computational power Alice and Bob usually need to commu-
nicate to produce the desired output. The exact rules concerning the communication
are critical for our analysis of very low communication problems. Under the wrong
definition, Alice may signal to Bob simply by her choice of sending or not sending
a bit. To exclude this, we postulate that Alice and Bob are either in send-mode or in
receive-mode or in output mode. The communication runs in rounds. After each round
the players get into a new mode, which is a function of the player’s input, the shared
random string λ, and the messages received so far by the player. A protocol must satisfy
that in each round either of two cases happens: 1. one player is in send-mode and the
other is in receive mode; 2. both players are in output mode. No other combination is
permitted. Note that if the parties needed to make random choices, we could add them
to the shared randomness, Λ. Thus we assume that the protocol is deterministic for any
fixed λ.

Protocol: A protocol P for a given simulation task p is a probability distribution p(λ)
over deterministic protocols Pλ, each solving a task pλ, such that p =

∑
λ p(λ)pλ.

Note that since any λ ∈ Λ corresponds to a deterministic protocol, we may extend Λ to
the set of all possible deterministic communication protocols with inputs in X ×Y and
outputs in A× B (we would just set p(λ) = 0 for all deterministic protocols that never
occur when executing the shared randomness protocol P ).

LHV: Let Λ0 be the set of all deterministic protocols that do not use any communica-
tion. A task p is in LHV if it may be simulated using a distribution over protocols
in Λ0 only, that is, if there is a zero (classical) communication protocol for it.

LHV stands for Local Hidden Variable referring to λ ∈ Λ, which is the only source
of correlation between Alice and Bob. Note that these correlations do not violate lo-
cality because we assume that the parties receive the “hidden” λ when they are not yet
spatially separated.

Fix the input and output sets X ,Y,A,B for the rest of this paragraph.

Bell inequality: A Bell inequality is an inequality of the form∑
x,y,a,b

Bxyab p(a, b||x, y) ≤ B0, (1)

which holds for all p ∈ LHV.

Notice that the left hand side of Eq. (1) is a linear functional, which we will shortly
denote as B(p). A task p is in LHV if and only if it satisfies all Bell inequalities.
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In other words, LHV is a convex set. We are now interested in tasks outside LHV,
which may be identified by the fact that they violate some Bell inequality. This means
that such a task p may not be simulated using shared randomness only, and that some
additional communication is required. Let P be a communication protocol simulating
p(a, b||x, y) using shared randomness Λ, M(x, y, λ) be the transcript of the messages
on input x and y when the shared randomness is fixed to λ, and |M | be the length in
bits of this transcript. We define the worst-case cost Cw(P ) as the maximal number of
bits communicated between Alice and Bob in any particular execution of the protocol,
that is, Cw(P ) = maxx,y,λ |M(x, y, λ)|, where the maximum is over inputs (x, y) ∈
X × Y and shared randomness λ ∈ Λ such that p(λ) �= 0. We then define the worst-
case communication complexity as Cw(p) = minP Cw(P ). In this paper, we are more
interested in the average cost:

Average cost: Given a distribution D on X × Y , the average cost CD(P ) is the ex-
pected number of bits communicated between Alice and Bob, where the expecta-
tion is taken over the shared randomness λ ∈ Λ and the inputs (x, y) ∈ D,

CD(P ) =
∑
λ∈Λ

p(λ)
∑

(x,y)∈X×Y
D(x, y) |M(x, y, λ)|. (2)

Average communication complexity: C(p) = maxD CD(p), where CD(p) =
minP CD(P ) is the distributional average communication complexity for fixed
input distribution D, the minimum being taken over all protocols P implementing
p, and the maximum over all distributions D on X × Y .

We emphasize that even when we are concerned with the average case complexity,
P needs to meet the specification for every input pair (x, y) ∈ X × Y .

Example. The CHSH correlations (pμ): Let us define the task pμ for 0 ≤ μ ≤ 1 as
follows: X = Y = {0, 1}, A = B = {1,−1} and

pμ(a, b||x, y) =
1 + μ ab (−1)x·y

4
.

The task is defined in such a way that for all (x, y) ∈ X ×Y , the relation ab = (−1)x·y

between the inputs and the outputs has to be satisfied with probability 1+μ
2 . It is not

hard to show that pμ can be implemented classically with zero communication only
for 0 ≤ μ ≤ 1/2. In particular, for μ > 1/2, pμ violates the so-called CHSH Bell
inequality [4]: ∑

x,y,a,b

ab (−1)x·yp(a, b||x, y) ≤ 2,

so that in a classical world, this task requires communication to be implemented. How-
ever, if Alice and Bob are separated in space, but they share a pair of entangled qubits,
in the quantum world they can solve p1/

√
2 with no communication whatsoever. This is
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because quantum correlations may violate Bell inequalities, and therefore have a non-
local character, as was first shown by Bell [5].

The EPR-Bohm experiment (pdim=d): The inputs to Alice and Bob are unit vectors x
and y from the d-dimensional sphere Sd−1. The output is again an element of {1,−1},
a for Alice, and b for Bob, with the specification

pdim=d(a, b||x, y) =
1 − ab x · y

4
. (3)

pdim=d arises from the EPR-Bohm experiment [6,7], and can be solved in the quantum
world with zero communication.

The communication complexity of pdim=d, and quantum distributions in general,
has been studied in a series of paper [8,9,10,11]. pdim=3 is particularly interesting
because it corresponds to Bohm’s original version of the experiment, involving a max-
imally entangled qubit pair, the most simple quantum system that captures the essen-
tial properties of entanglement. The best known protocol for pdim=3 was presented
by Toner and Bacon, and uses one bit of communication [1]. This was shown to be
optimal, even for the average complexity, by Barrett, Kent and Pironio [12], hence,
Cw(pdim=3) = C(pdim=3) = 1 bit.

The higher dimensional case p = pdim=d has been studied by Degorre, Laplante and
Roland [13], who proved that the average communication complexity scaled at most as
C(pdim=d) = O(log d). This was significantly improved by Regev and Toner [14], who
showed that bounded worst-case communication was sufficient, by providing an explicit
2-bit protocol, so that Cw(pdim=d) ≤ 2. When considering average communication,
they could improve their protocol to 1.82 bits.

The amortized communication cost of simulating pdim=d (and its powers) will be
the focus of this paper, and will be described in more details in the next section.

Finiteness: In this example X , Y , and probability space Λ are infinite, equipped with
some measure. The communication still needs to be bounded. Note that as in the finite
case, each bit communicated in the protocol by a given party can be described by a mea-
surable function that goes from this party’s input, the shared randomness and the bits
communicated so far into {0, 1}. Even though the domain of these functions is infinite,
the parties can compute them for free because they are computationally unbounded. We
also need to modify formula (2) by replacing the sum with an integral.

2 Amortization

We now consider the task p⊗n, given by the n-fold parallelization of p,

p⊗n(a, b||x, y) =
n∏

i=1

p(ai, bi||xi, yi).

We then define the following communication complexity.

Amortized communication complexity: C∞(p) = maxD CD
∞(p), where CD

∞(p) =
limn→∞ CD⊗n

(p⊗n)/n is the distributional amortized communication complex-
ity, and D⊗n(x, y) =

∏n
i=1 D(xi, yi).
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2.1 Entropic Complexity

Let P be a communication protocol simulating p(a, b||x, y) using shared randomness
Λ, and let D be the input distribution.

Entropic cost CD
H (P ): Conditional entropy H(M |Λ) of the transcript M of the mes-

sages communicated between Alice and Bob, given the shared randomness λ ∈ Λ.

We also define the corresponding (distributional and non-distributional) entropic com-
munication complexities for a task p as CD

H (p) = minP CD
H (P ) and CH(p) =

maxD CD
H (p), where the minimum is taken over all protocols P implementing p, and

the maximum is taken over all distributions D on X × Y .

2.2 The Input Distribution

As first observed by Yao [15], von Neumann’s minmax principle [16] implies the fol-
lowing statement.

Theorem 1. Let C∗ be any of C, C∞, CH . We have C∗(p) = minP maxD CD∗ (P ).

Note that for a fixed protocol P , the maximum over distributions D is achieved for a
given input couple (x, y) ∈ X × Y .

For specific tasks, symmetries allow to make assumptions on the hardest distribution,
which attains C∗(p) = maxD minP CD

∗ (P ). In particular, for the CHSH problem pμ,
we can show that the uniform distribution is the hardest distribution.

Claim 1. Let C∗ be any of C, C∞, CH . Then, C∗(pμ) = CU
∗ (pμ), where U is the

uniform distribution on {0, 1}2.

Similarly, for the EPR-Bohm problem pdim=d, we may assume that the hardest distri-
bution has uniform marginals (this observation is due to Toner and Bacon [1]). For an
input distribution D, we will denote DA and DB the marginal distributions of x and y,
respectively.

Claim 2. Let C∗ be any of C, C∞, CH . Then, there exists a distribution U on
Sd−1 × Sd−1 with uniform marginals UA and UB such that CU

∗ (pdim=d) =
maxD CD∗ (pdim=d).

Note that for pdim=d, we can only show that the marginals of the hardest distribution
are uniform, not that the hardest distribution itself is uniform. However, let us note that
when restricting to one-way communication protocols, the communication complexity
only depends on the marginal distribution for the player sending the messages. For any
notion of communication complexity, we add a superscript → when we only consider
protocols restricted to one-way communication.

Claim 3. Let C∗ be any of C, C∞, CH , CI , and let D, D′ be two distributions on X×Y
having the same marginal distributions for x, that is, DA = D′

A. Then, C→,D
∗ (p) =

C→,D′
∗ (p).
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2.3 Relation between the Communication Complexities

We will use as an intermediate step the following cost for communication protocols
using private randomness only, first introduced by Chakrabarti et al. [17]:

Information cost CD
I (P ): Mutual information I(XY : M) between the inputs X, Y

and the transcript M of the messages communicated between Alice and Bob.

As for the other complexities, we also define the information complexities CD
I (p) =

minP CD
I (P ) and CI(p) = minP maxD CD

I (P ), where the minimum is taken over all
private randomness protocols P implementing p (note that in the presence of shared
randomness, there always exists a protocol P such that CD

I (P ) = 0, so this quantity
would not be relevant). Chakrabarti et al. have shown that this complexity satisfies the
following direct sum property.

Theorem 2 ([17,2]). If D = DA ⊗ DB is a product distribution, then CD⊗n

I (p⊗n) =
n CD

I (p).

In the case of one-way communication, the complexity only depends on the marginal
distribution, so we have the following corollary.

Corollary 3. For one-way communication, C→,D⊗n

I (p⊗n) = n C→,D
I (p).

Finally, we will also use the reverse Shannon theorem [18], which in our notations may
be stated as follows:

Theorem 4 ([18]). Let p : X → Distrib(B) be a simulation task with no output on
Alice’s side, and no input on Bob’s side. Then, C→,D

∞ (p) ≤ I(X : B).

Our statement is slightly different from [18] but may be proved using the same construc-
tion. Informally, it says that a communication channel X → B may be simulated, in
the limit of a large number of repetitions, using (free) shared randomness and one-way
communication at most I(X : B) per repetition.

Proposition 5. The communication complexities satisfy the following relations:
CD

∞(p) ≤ CD
I (p) ≤ CD

H (p) ≤ CD(p) ≤ Cw(p). For a product input distribution
D = DA ⊗ DB , we also have CDA⊗DB∞ (p) = CDA⊗DB

I (p). Similarly, for any in-
put distribution D but restricting to one-way communication protocols, C→,D∞ (p) =
C→,D

I (p).

Proof (Sketch). These relations are based on fundamental propositions of information
theory, such as Shannon’s source coding theorem. Let us focus on the less obvious
relations, involving CI(p).

[CD
I (p) ≤ CD

H (p)]. Let CD
H (p) = H(M |Λ) be achieved by a protocol P with shared

randomness Λ, where M is the transcript of the messages communicated during the
protocol. Let us build a protocol P ′ using private randomness only. In this protocol, only
Alice knows the random string Λ, and her first action is to send Λ to Bob. From there,
the players proceed as in protocol P . Since the transcript of P ′ is the concatenation of
Λ and M , we have CD

I (P ′) = I(XY : MΛ). From the facts that I(XY : Λ) = 0
(since the shared randomness is independent from the inputs), and H(M |XY Λ) = 0
(since the messages depend deterministically on the inputs and the randomness), it is
straightforward to check that I(XY : MΛ) = H(M |Λ).
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[CD
∞(p) ≤ CD

I (p)]. Let CD
I (p) = I(XY : M) be achieved by a protocol P without

shared randomness, where M is the transcript of the messages communicated during
the protocol P . These messages are alternatingly sent by Alice to Bob and vice-versa.
Let us denote by Mk the kth message and M[k] the restriction of the transcript to the
first k messages. We may express the information complexity of p as:

CD
I (p) =

t∑
k=1

I(XY : Mk|M[k−1]),

where t is the maximal number of rounds of the protocol (possibly infinite). Let us focus
on the kth message Mk, and suppose it is sent by Alice to Bob. In a particular execution
of the protocol, the partial transcript M[k−1] will be fixed to some string m, which is at
this point known to both Alice and Bob, so that

I(XY : Mk|M[k−1]) =
∑
m

p(m) I(X : Mk|M[k−1] = m),

where p(m) = Pr[M[k−1] = m], and we have used the fact that Mk only depends on X
and M[k−1], and not on Y . Alice now needs to send Mk to Bob, which only depends on
X when we condition on M[k−1], so she actually needs to simulate a communication
channel X −→ Mk. Since the partial transcript M[k−1] = m happens with probability
p(m), this particular channel will have to be simulated on average n · p(m) times when
repeating the protocol n times, and the reverse Shannon theorem (Theorem 4) ensures
that as n goes to infinity, this simulation may be achieved using shared randomness and
communication I(X : Mk|M[k−1] = m) per repetition. By compressing similarly each
successive message, and averaging over all possible transcripts, we get that CD

∞(p) ≤
I(XY : M) = CD

I (p).

[CDA⊗DB

I (p) ≤ CDA⊗DB∞ (p)]. For a product input distribution D = DA ⊗ DB ,
Theorem 2 implies that CD

I (p) = CD⊗n

I (p⊗n)/n. Moreover, since CD⊗n

I (p⊗n) ≤
CD⊗n

(p⊗n), we obtain CD
I (p) ≤ CD⊗n

(p⊗n)/n and, in the limit n → ∞, CD
I (p) ≤

CD∞(p). Similarly, Corollary 3 implies that for any input distribution but one-way com-
munication, C→,D

I (p) ≤ C→,D∞ (p).

3 Lower Bound on the Entropic Complexity

The previous best upper bound on the amortized communication complexity of pdim=3

is due to Toner and Bacon, who proved that C∞(pdim=3) ≤ Si(π)/(π ln 2) ≈ 0.85
bits [1], where Si(x) is the sine integral function. Indeed, they showed that in their one-
bit protocol, the conditional entropy of the messages given the shared randomness (what
we defined as the entropic cost) is only 0.85 bits, so that one can use Shannon’s source
coding theorem to compress the communication from 1 bit to 0.85 bits. In this section
we prove that the entropic complexity of pdim=d is at least 0.414 bits for any d ≥ 2,
which shows that to reduce the communication further, a new technique is required.
Such a technique will be presented in the next section.
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We prove the lower bound on the entropic complexity by adapting a method proposed
by Pironio for lower bounds on the average communication complexity [19]. The idea
behind the following theorem is that a task p outside LHV may violate a Bell inequality,
so that it will require to use deterministic protocols Pλ for λ /∈ Λ0, simulating tasks pλ

outside LHV, with some probability. More precisely, we consider for each deterministic
protocol a “violation per entropy” ratio. To achieve the same violation as the task p
using as little communication as possible (where the communication is counted as the
entropy of the messages), one should use a distribution over deterministic protocols that
have a large violation per entropy ratio. In particular, the deterministic protocol having
the largest ratio gives a lower bound on the entropic communication complexity of p.

Theorem 6. Let B be a linear functional over the set of tasks, which defines a Bell
inequality B(pλ) ≤ B0 satisfied for all λ ∈ Λ0, but violated by a simulation task
p, that is, B(p) > B0. Then, the entropic communication complexity of p is lower
bounded as follows:

CD
H (p) ≥ B(p) − B0

B(pλ∗) − B0
CD

H (Pλ∗),

where Pλ∗ is a deterministic protocol for a task pλ∗ such that

B(pλ∗) − B0

CD
H (Pλ∗)

= max
λ/∈Λ0

B(pλ) − B0

CD
H (Pλ)

.

This may be proved along the lines of the proof of Proposition 1 in [19], which gives a
similar statement for the average communication complexity. We may now completely
determine the entropic communication complexity of pμ:

Theorem 7. For any 1/2 ≤ μ ≤ 1 we have, CH(pμ) = 2μ − 1.

Note that for 0 ≤ μ ≤ 1/2, we trivially have CH(pμ) = 0.

Proof. The lower bound comes from the previous theorem. This is then shown to be
tight by giving an explicit protocol. Since we have shown in Claim 1 that CH(pμ) =
CU

H(pμ), it suffices to consider the uniform input distribution.

[CU
H(pμ) ≥ 2μ − 1]. We use the CHSH inequality [4], which is defined by a linear

functional B acting on a task p as:

B(p) =
∑

x,y,a,b

ab (−1)x·yp(a, b||x, y).

It is straightforward to check that B(p) ≤ 2 for all p in LHV, so we set B0 = 2. For
the simulation task pμ, we have B(pμ) = 4μ, so that the inequality is violated as soon
as μ > 1/2. Moreover, maxPλ

(B(pλ) − B0)/CU
H(Pλ) is attained by a protocol Pλ∗

where one player sends his input to the other, such that CU
H(Pλ∗) = 1 and B(pλ∗) = 4.

We then obtain

CU
H(pμ) ≥ 4μ − 2

4 − 2
1 = 2μ − 1.
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[CU
H(pμ) ≤ 2μ − 1]. Let us consider the extreme cases μ = 1/2 and μ = 1. For

μ = 1/2, there exists a shared randomness protocol P1/2 without any communication
(p1/2 is in LHV), therefore satisfying CU

H(P1/2) = 0. On the other hand, for μ =
1, there exists a protocol P1 with one bit of communication (one of the player sends
his input to the other), that is, CU

H(P1) = 1. It is also straightforward to show that
pμ = (2 − 2μ)p1/2 + (2μ − 1)p1, so that for implementing pμ, it suffices to use the
protocol P1/2 with probability (2 − 2μ) and the protocol P1 with probability (2μ− 1).
By linearity, the obtained protocol has entropic cost 2μ − 1.

Using a reduction from p1/
√

2 to pdim=d, Theorem 7 implies as a corollary a lower
bound on the entropic complexity of pdim=d.

Claim 4. Let C∗ be any of C, C∞, CH . Then, C∗(pdim=d) ≥ C∗(p1/
√

2) for any
d ≥ 2.

Proof. The key observation is that the task p1/
√

2 for uniformly distributed inputs is

equivalent to the task pdim=d for a special distribution D̃, where the inputs are uniform
over two vectors {x0, x1} for Alice and two vectors {y0, y1} for Bob, laid out such
that xi · yj = (−1)i·j/

√
2. We then have C∗(pdim=d) ≥ CD̃

∗ (pdim=d) = CU
∗ (p1/

√
2),

which concludes the proof since we have shown that CU
∗ (pμ) = C∗(pμ).

Corollary 8. CH(pdim=d) ≥
√

2 − 1 ≈ 0.414 bits.

This lower bound means that for parallel repetitions of the problem, if we simply com-
press the messages using Shannon’s source coding theorem, we may not reduce the
communication further than 0.414 bits. We show in the next section that we can beat
this lower bound by using another technique, based on the reverse Shannon theorem.

4 A New Protocol

In this section, we show how to reduce the communication for parallel repetitions of the
problem of simulating pdim=d, beating the lower bound on the entropic communication
complexity derived in the previous section. We use a result due to Degorre et al., which
shows that the problem reduces to a distributed sampling task:

Theorem 9 ([20,13]). Let x and y be Alice’s and Bob’s inputs. If Alice and Bob share
a random variable v ∈ Sd−1 distributed according to a probability measure

ρ(v||x) =
|x · v|
Rd

,

where Rd =
∫

Sd−1
|x ·v| dv, then they are able to simulate pdim=d without any further

resource.

This observation leads to an apparently very bad communication protocol for pdim=d

with private randomness only: using her input and private randomness, Alice locally
samples v according to the distribution ρ(v||x), and then communicates v to Bob. This
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would require infinite communication, but the point is that the information cost of this
protocol would actually be not only finite, but also rather low, so that for parallel rep-
etitions of the problem, and with the help of shared randomness, we may significantly
reduce the communication using the reverse Shannon theorem. In particular, we prove
the following upper bound:

Theorem 10. The amortized communication complexity of pdim=d satisfies

C∞(pdim=d) ≤

⎧⎨⎩
1

ln 2

[
ln (d−1)Ad

Ad−1
−

∑ d
2−1

k=0
1

2k+1

]
for d even,

1
ln 2

[
ln (d−1)Ad

2Ad−1
−

∑ d−1
2

k=1
1
2k

]
for d odd,

(4)

where Ad =
∫

Sd−1
dv is the surface area of the d-dimensional sphere.

In particular, we have

1. C∞(pdim=2) ≤ 1
ln 2 (ln π − 1) ≈ 0.21 bits,

2. C∞(pdim=3) ≤ 1 − 1
2 ln 2 ≈ 0.28 bits,

3. C∞(pdim=d) ≤ 1
2 ln 2 (ln π − γ) ≈ 0.410 bits for arbitrary d, where γ is the Euler-

Mascheroni constant.

Proof. Let P be the following private randomness protocol for pdim=d: using her input
together with private randomness, Alice samples a random variable V according to the
distribution ρ(v||x) defined above and communicates the obtained sample v to Bob.
By Theorem 9, they are then able to solve task pdim=d. More precisely, it suffices for
the players to set their respective outputs as a = sgn(x · v) and b = sgn(y · v), where
sgn(x) = 1 if x ≥ 0, and −1 otherwise [20,13].

We have shown in the previous section that the reverse Shannon theorem implies that
CD

∞(pdim=d) ≤ CD
I (pdim=d) (Proposition 5) and also that the hardest distribution for

pdim=d has uniform marginals (Claim 2), so it suffices to compute the information cost
CD

I (P ) = I(X : V ) for a distribution D with uniformly distributed x. The computation
of I(X : V ) will be given in the full version of the paper, and yields Eq. (4).

For completeness, let us note that using the same technique, we can prove the following
upper bound on the amortized communication complexity of pμ:

Theorem 11. For any 1/2 ≤ μ ≤ 1, we have C∞(pμ) ≤ 1 − H [μ], where H [μ] =
μ log 1

μ + (1 − μ) log 1
1−μ .

Proof. Let v be a random bit correlated with x, such that p(x = v) = μ. The channel
defined by the Markov process X → V is then a binary symmetric channel, with chan-
nel capacity 1−H [μ]. It is straightforward to show that if Alice may use such a channel
to communicate information about her input x to Bob, it is sufficient to simulate pμ.
Indeed, it suffices for Alice and Bob to output

a = (−1)(x⊕v⊕1)·λ0 (−1)(x⊕v)·λ1 ,

b = (−1)λ0 (−1)y·v,

where λ0, λ1 are shared unbiased random bits. The reverse Shannon theorem then en-
sures that asymptotically, the channel X → V may be simulated using on average
1 − H [μ] bits per repetition.
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In the next section, we will show that this protocol is optimal, at least when the players
are restricted to one-way communication.

5 The Difference Method

Amortized lower bounds are notoriously hard to prove. Examples include the Shannon
capacity of graphs [21] and the parallel repetition theorem of Raz [22]. In some lucky
cases the situation is better. Quantum values of XOR games [23] and the communication
complexity of correlation [2] are examples, where mathematics seems to be in our favor.
Incidentally, both topics have relevance to lower bounding amortized communication
complexity. We develop a new method we call the difference method, which so far
we could apply only in the one-way communication context. Note, however, that all
efficient protocols we know for this problem are one-way.

Theorem 12. For any 1/2 ≤ μ ≤ 1, we have C→∞ (pμ) ≥ 1 − H [μ].

This matches the upper bound of Theorem 11, showing that the above protocol is opti-
mal, at least for one-way communication.

Proof. Since the hardest distribution is the uniform distribution U (Claim 1), we
have C→∞ (pμ) = C→,U∞ (pμ). Moreover, Proposition 5 implies that C→,U∞ (pμ) =
C→,U

I (pμ), so it suffices to show that for any protocol for pμ, I(X : M) ≥ 1 − H [μ],
where x is an unbiased random bit. The idea of the proof is to reduce the problem to
the communication complexity problem of a correlation à la Harsha et al. [2] and then,
following their approach, use the mutual information between Alice’s input and Bob’s
output to bound the communication. To reduce to [2], 1. We have to get rid of Bob’s
input; 2. We have to get rid of Alice’s output. If we fix Bob’s input and omit Alice’s
output, we get nothing. Nevertheless, since the communication is one-way, when Bob
receives Alice’s message, he can just compute the output on any input he wants to. We
show that if we run the protocol with a random input x on Alice’s side, take both y = 0
and y′ = 1 as inputs on Bob’s side, and receive outputs b and b′, respectively from Bob,
then the product b · b′ will contain a lot of information about Alice’s input, x.

Observe that (a · b) · (a · b′) = b · b′. The specification of pμ tells us that a · b should
take 1 with probability (1+μ)/2 and −1 with probability (1−μ)/2. Also, a · b′ should
take (−1)x with probability (1 + μ)/2 and (−1)x+1 with probability (1 − μ)/2. The
union bound gives that the probability that b · b′ = (−1)x is at least μ. This shows
that the mutual information I(X : E) between x and e = b · b′ is at least 1 − H [μ],
where we have used the fact that H(X) = 1 (since X is an unbiased random bit).
The data processing inequality on the Markov chain X → M → E then implies that
I(X : M) ≥ I(X : E).

For μ = 1/
√

2, we have C→∞ (p1/
√

2) ≥ 1 − H [1/
√

2], and in turn, using the reduction
from Claim 4, we obtain the following lower bound on C→∞ (pdim=d) as a corollary:

Corollary 13. C→∞ (pdim=d) ≥ 1 − H [1/
√

2] ≈ 0.13 bits for any d ≥ 2.
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Abstract. We revisit the classical QuickSort and QuickSelect algo-
rithms, under a complexity model that fully takes into account the
elementary comparisons between symbols composing the records to be
processed. Our probabilistic models belong to a broad category of infor-
mation sources that encompasses memoryless (i.e., independent-symbols)
and Markov sources, as well as many unbounded-correlation sources.
We establish that, under our conditions, the average-case complexity of
QuickSort is O(n log2 n) [rather than O(n log n), classically], whereas
that of QuickSelect remains O(n). Explicit expressions for the implied
constants are provided by our combinatorial–analytic methods.

Introduction

Every student of a basic algorithms course is taught that, on average, the complex-
ity of Quicksort is O(n log n), that of binary search is O(log n), and that of radix-
exchange sort is O(n log n); see for instance [13,16]. Such statements are based on
specific assumptions—that the comparison of data items (for the first two) and the
comparison of symbols (for the third one) have unit cost—and they have the obvi-
ous merit of offering an easy-to-grasp picture of the complexity landscape. How-
ever, as noted by Sedgewick, these simplifying assumptions suffer from limitations:
they do not make possible a precise assessment of the relative merits of algorithms
and data structures that resort to different methods (e.g., comparison-based ver-
sus radix-based sorting) in a way that would satisfy the requirements of either in-
formation theory or algorithms engineering. Indeed, computation is not reduced to
its simplest terms, namely, the manipulation of totally elementary symbols, such
as bits, bytes, characters. Furthermore, such simplified analyses say little about a
great many application contexts, in databases or natural language processing, for
instance, where information is highly “non-atomic”, in the sense that it does not
plainly reduce to a single machine word.

First, we observe that, for commonly used data models, the mean costs Sn

and Kn of any algorithm under the symbol-comparison and the key-comparison
model, respectively, are connected by the universal relation Sn = Kn · O(log n).
(This results from the fact that at most O(log n) symbols suffice, with high
probability, to distinguish n keys; cf. the analysis of the height of digital trees,
also known as “tries”, in [3].) The surprise is that there are cases where this

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 750–763, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



The Number of Symbol Comparisons in QuickSort and QuickSelect 751

upper bound is tight, as in QuickSort; others where both costs are of the
same order, as in QuickSelect. In this work, we show that the expected cost
of QuickSort is O(n log2 n), not O(n log n), when all elementary operations—
symbol comparisons—are taken into account. By contrast, the cost of QuickSe-
lect turns out to be O(n), in both the old and the new world, albeit, of
course, with different implied constants. Our results constitute broad exten-
sions of earlier ones by Fill and Janson (Quicksort, [7]) and Fill and Nakama
(QuickSelect, [8]).

The sources that we deal with include memoryless (“Bernoulli”) sources with
possibly non-uniform independent symbols and Markov sources, as well as many
non-Markovian sources with unbounded memory from the past. A central idea
is the modelling of the source via its fundamental probabilities, namely the prob-
abilities that a word of the source begins with a given prefix. Our approach
otherwise relies on methods from analytic combinatorics [10], as well as on infor-
mation theory and the theory of dynamical systems. It relates to earlier analyses
of digital trees (“tries”) by Clément, Flajolet, and Vallée [3,19].

Results. We consider a totally ordered alphabet Σ. What we call a probabilistic
source produces infinite words on the alphabet Σ (see Definition 1). The set
of keys (words, data items) is then Σ∞, endowed with the strict lexicographic
order denoted ‘≺’. Our main objects of study are two algorithms, applied to n
keys assumed to be independently drawn from the same source S, namely, the
standard sorting algorithm QuickSort(n) and the algorithm QuickSelect(m, n),
which selects the mth smallest element. In the latter case, we shall mostly focus
our attention on situations where the rank m is proportional to n, being of
the form m = αn, so that the algorithm determines the αth quantile; it will
then be denoted by QuickQuantα(n). We also consider the cases where rank m
equals 1 (which we call QuickMin), equals n (QuickMax), or is randomly chosen
in {1, . . . , n} (QuickRand).

Our main results involve constants that depend on the source S (and possibly
on the real α); these are displayed in Figures 1–3 and described in Section 1.
They specialize nicely for a binary source B (under which keys are compared
via their binary expansions, with uniform independent bits), in which case they
admit pleasant expressions that simplify and extend those of Fill and Nakama [8]
and Grabner and Prodinger [11] and lend themselves to precise numerical evalu-
ations (Figure 2). The conditions Λ–tamed, Π–tamed, and “periodic” are made
explicit in Subsection 2.1. Conditions of applicability to classical source models
are discussed in Section 3.

Theorem 1. (i) For a Λ–tamed source S, the mean number Tn of symbol com-
parisons of QuickSort(n) involves the entropy h(S) of the source:

Tn =
1

h(S)
n log2 n+a(S)n log n+b(S)n+o(n), for some a(S), b(S) ∈ R. (1)

(ii) For a periodic source, a term nP (log n) is to be added to the estimate (1),
where P (u) is a (computable) continuous periodic function.



752 B. Vallée et al.

Theorem 2. For a Π–tamed source S, one has the following, with δ = δ(S) > 0.
(i) The mean number of symbol comparisons Q

(α)
n for QuickQuantα satisfies

Q(α)
n = ρS(α)n + O(n1−δ). (2)

(ii) The mean number of symbol comparisons, M
(−)
n for QuickMin (n) and M

(+)
n

for QuickMax(n), satisfies with ε = ±,

M (ε)
n = ρ

(ε)
S n + O(n1−δ), with ρ

(+)
S = ρS(1), ρ

(−)
S = ρS(0). (3)

(iii) The mean number Mn of symbol comparisons performed by QuickRand(n)
satisfies

Mn = γS n + O(n1−δ), with γS =
∫ 1

0

ρ(α)dα. (4)

These estimates are to be compared to the classical ones (see, e.g., [13, p.634]
and [12], for extensions), relative to the number of comparisons in QuickQuantα:

K(α)
n = κ(α)n + O(log n), κ(α) := 2(1− α log(α)− (1− α) log(1− α)). (5)

General strategy. We operate under a general model of source, parametrized
by the unit interval I. Our strategy comprises three main steps. The first two
are essentially algebraic, while the last one relies on complex analysis.

Step (a). We first show (Proposition 1) that the mean number Sn of symbol
comparisons performed by a (general) algorithm A(n) applied to n words from
a source S can be expressed in terms of two objects: (i) the density φn of the
algorithm, which uniquely depends on the algorithm and provides a measure of
the mean number of key-comparisons performed near a specific point; (ii) the
family of fundamental triangles, which solely depends on the source and describes
the location of pairs of words which share a common prefix.
Step (b). This step is devoted to computing the density of the algorithm. We
first deal with the Poisson model, where the number of keys, instead of being
fixed, follows a Poisson law of parameter Z. We provide an expression of the
Poissonized density relative to each algorithm, from which we deduce the mean
number of comparisons under this model. Then, simple algebra yield expressions
relative to the model where the number n of keys is fixed.
Step (c). The exact representations of the mean costs is an alternating sum
which involves two kinds of quantities, the size n of the set of data to be sorted
(which tends to infinity), and the fundamental probabilities (which tend to 0).
We approach the corresponding asymptotic analysis by means of complex integral
representations of the Nörlund–Rice type. For each algorithm–source pair, a
series of Dirichlet type encapsulates both the properties of the source and the
characteristics of the algorithm—this is the mixed Dirichlet series, denoted by
�(s), whose singularity structure in the complex plane is proved to condition
our final asymptotic estimates.
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1 Algebraic Analysis

The developments of this section are essentially formal (algebraic) and exact ;
that is, no approximation is involved at this stage.

1.1 A General Source Model

Throughout this paper, a totally ordered (finite or denumerable) alphabet Σ of
“symbols” or “letters” is fixed.

Entropy constant [Quicksort, Theorem 1]: h(S) := lim
k→∞

[− 1
k

∑
w∈Σk

pw log pw

]
.

Quantile constant ρS(α) [QuickQuant, Theorem 2, Part (i)]

ρS(α) :=
∑

w∈Σ�

pw L

( |α − μw|
pw

)
.

Here, μw := (1/2) (p(+)
w + p

(−)
w ) involves the probabilities p

(+)
w and p

(−)
w defined in

Subsection 1.1; the function L is given by L(y) := 2[1+H(y)], where H(y) is expressed
by y+ := (1/2) + y, y− := (1/2) − y, and

H(y) :=

⎧⎨⎩
−(y+ log y+ + y− log y−), if 0 ≤ y < 1/2

0, if y = 1/2
y−(log y+ − log |y−|), if y > 1/2.

(6)

— Min/max constants [QuickMin, QuickMax, Theorem 2, Part (ii)]:

ρ
(ε)
S =

∑
w∈Σ�

pw

[
1 − p

(ε)
w

pw
log

(
1 +

pw

p
(ε)
w

)]
.

— Random selection constant [QuickRand, Theorem 2, Part (iii)]:

γS =
∑

w∈Σ�

p2
w

[
2 +

1
pw

+
∑
ε=±

[
log

(
1 +

p
(ε)
w

pw

) − (p
(ε)
w

pw

)2 log
(
1 +

pw

p
(ε)
w

)]]
.

Fig. 1. The main constants of Theorems 1 and 2, relatively to a general source (S)

h(B) = log 2 [entropy]

ρ
(ε)
B = 4 + 2

∑
�≥0

1
2�

2�−1∑
k=1

[
1 − k log

(
1 +

1
k

)] .= 5.27937 82410 80958.

γB =
14
3

+ 2
∞∑

�=0

1
22�

2�−1∑
k=1

[
k + 1 + log(k + 1) − k2 log

(
1 +

1
k

)] .= 8.20730 88638.

Fig. 2. The constants relative to a binary source
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Fig. 3. Plot of the function ρS(α) for α ∈ [0, 1] and the three sources: Bern( 1
2
, 1

2
),

Bern( 1
3
, 2

3
), and Bern( 1

3
, 1

3
, 1

3
). The curves illustrate the fractal character of the con-

stants involved in QuickSelect. (Compare with κ(α) in Eq. (5), which appears as limit
of ρS(α), for an unbiased r–ary source S , when r → ∞.)

Definition 1. A probabilistic source, which produces infinite words of Σ∞, is
specified by the set {pw, w ∈ Σ�} of fundamental probabilities pw, where pw is
the probability that an infinite word begins with the finite prefix w. It is further-
more assumed that πk := sup{pw : w ∈ Σk} tends to 0, as k → ∞.

For any prefix w ∈ Σ�, we denote by p
(−)
w , p

(+)
w , pw the probabilities that a word

produced by the source begins with a prefix w′ of the same length as w, which
satisfies w′ ≺ w, w′ # w, or w′ = w, respectively. Since the sum of these three
probabilities equals 1, this defines two real numbers aw, bw ∈ [0, 1] for which

aw = p
(−)
w , 1 − bw = p

(+)
w , bw − aw = pw.

Given an infinite word X ∈ Σ∞, denote by wk its prefix of length k. The sequence
(awk

) is increasing, the sequence (bwk
) is decreasing, and bwk

− awk
tends to 0.

Thus a unique real π(X) ∈ [0, 1] is defined as common limit of (awk
) and (bwk

).
Conversely, a mapping M : [0, 1] → Σ∞ associates, to a number u of the interval
I := [0, 1], a word M(u) := (m1(u), m2(u), m3(u), . . .) ∈ Σ∞. In this way, the
lexicographic order on words (‘≺’) is compatible with the natural order on the
interval I; namely, M(t) ≺ M(u) if and only if t < u. Then, the fundamental
interval Iw := [aw, bw] is the set of reals u for which M(u) begins with the prefix
w. Its length equals pw.

Our analyses involve the two Dirichlet series of fundamental probabilities,

Λ(s) :=
∑

w∈Σ�

p−s
w , Π(s) :=

∑
k≥0

π−s
k ; (6)

these are central to our treatment. They satisfy, for s < 0, the relations Π(s) ≤
Λ(s) ≤ Π(s + 1). The series Λ(s) always has a singularity at s = −1, and Π(s)
always has a singularity at s = 0, The regularity properties of the source can be
expressed in terms of Λ near s = −1, and Π near 0, as already shown in [19].

An important subclass is formed by dynamical sources, which are closely re-
lated to dynamical systems on the interval; see Figure 4 and [19]. One starts
with a partition {Iσ} indexed by symbols σ ∈ Σ, a coding map τ : I → Σ
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Fig. 4. Left : the shift transformation T of a ternary Bernoulli source with P(0) = 1/2,
P(1) = 1/6, P(2) = 1/3. Middle: fundamental intervals Iw materialized by semi-circles.
Right : the corresponding fundamental triangles Tw.

which equals σ on Iσ, and a shift map T : I → I whose restriction to each
Iσ is increasing, invertible, and of class C2. Then the word M(u) is the word
that encodes the trajectory (u, Tu, T 2u, . . .) via the coding map τ , namely,
M(u) := (τ(u), τ(Tu), τ(T 2u), . . .). All memoryless (Bernoulli) sources and all
Markov chain sources belong to the general framework of Definition 1: they cor-
respond to a piecewise linear shift, under this angle. For instance, the standard
binary system is obtained by T (x) = {2x} ({·} is the fractional part). Dynamical
sources with a non-linear shift allow for correlations that depend on the entire
past (e.g., sources related to continued fractions obtained by T (x) = {1/x}).

1.2 The Algorithm QuickValα

We consider an algorithm that is dual of QuickSelect: it takes as input a set
of words X and a value V , and returns the rank of V inside the set X ∪ {V }.
This algorithm is of independent interest and is easily implemented as a vari-
ant of QuickSelect by resorting to the usual partitioning phase, then doing a
comparison between the value of the pivot and the input value V (rather than a
comparison between their ranks). We call this modified QuickSelect algorithm
QuickValα when it is used to seek the rank of the data item with value M(α).
The main idea here is that the behaviors of QuickValα(n) and QuickQuantα(n)
should be asymptotically similar. Indeed, the α–quantile of a random set of
words of large enough cardinality must be, with high probability, close to the
word M(α).

1.3 An Expression for the Mean Number of Symbol Comparisons

The first object of our analysis is the density of the algorithm A(n), which mea-
sures the number of key–comparisons performed by the algorithm. The second
object is the collection of fundamental triangles (see Figure 4).

Definition 2. The density of an algorithm A(n) which compares n words from
the same probabilistic source S is defined as follows:
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φn(u, t) du dt := “the mean number of key–comparisons performed by
A(n) between words M(u′), M(t′), with u′ ∈ [u, u+du] and t′ ∈ [t, t+dt].”

For each w ∈ Σ�, the fundamental triangle of prefix w, denoted by Tw, is the
triangle built on the fundamental interval Iw := [aw, bw] corresponding to w; i.e.,
Tw := {(u, t) : aw ≤ u ≤ t ≤ bw}. We set T ≡ Tε := {(u, t) : 0 ≤ u ≤ t ≤ 1}.

Our first result establishes a relation between the mean number Sn of symbol-
comparisons, the density φn, and the fundamental triangles Tw:

Proposition 1. Fix a source on alphabet Σ, with fundamental triangles Tw. For
any integrable function g on the unit triangle T , define the integral transform

J [g] :=
∑

w∈Σ�

∫
Tw

g(u, t) du dt.

Then the mean number Sn of symbol comparisons performed by A(n) is equal to

Sn = J [φn] =
∑

w∈Σ�

∫
Tw

φn(u, t) du dt,

where φn is the density of algorithm A(n).

Proof. The coincidence function γ(u, t) is the length of the largest common prefix
of M(u) and M(t), namely, γ(u, t) := max{� : mj(u) = mj(t), ∀j ≤ �}. Then,
the number of symbol comparisons needed to compare two words M(u) and
M(t), is γ(u, t) + 1 and the mean number Sn of symbol comparisons performed
by A(n) satisfies

Sn =
∫
T

[γ(u, t) + 1] φn(u, t) du dt,

where φn(u, t) is the density of the algorithm. Two useful identities are∑
�≥0

(� + 1)1[γ=�] =
∑
�≥0

1[γ≥�] [γ ≥ �] =
⋃

w∈Σ�

(Iw × Iw) .

The first one holds for any integer-valued random variable γ (1A is the indicator
of A). The second one follows from the definitions of the coincidence γ and of
the fundamental intervals Iw. Finally, the domain T ∩ [γ ≥ �] is a union of
fundamental triangles. �

1.4 Computation of Poissonized Densities

Under the Poisson model PoiZ of parameter Z, the number N of keys is no
longer fixed but rather follows a Poisson law of parameter Z:

P[N = n] = e−Z Zn

n!
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Then, the expected value S̃Z in this model, namely,

S̃Z := e−Z
∑
n≥0

Zn

n!
Sn = e−Z

∑
n≥0

Zn

n!
J [φn] = J

[
e−Z

∑
n≥0

Zn

n!
φn

]
= J [φ̃Z ],

involves the Poissonized density φ̃Z , defined as

φ̃Z(u, t) := e−Z
∑
n≥0

Zn

n!
φn(u, t).

The following statement shows that the Poissonized densities relative to Quick-
Sort and QuickVal admit simple expressions, which in turn entail nice expres-
sions for the mean value S̃Z in this Poisson model, via the equality S̃Z = J [φ̃Z ].

Proposition 2. Set f1(θ) :=e−θ−1+θ. The Poissonized densities of QuickSort
and QuickValα satisfy

g̃Z(u, t) = 2(t − u)−2 f1(Z(t − u)),
g̃
(α)
Z (u, t) = 2 (max(α, t) − min(α, u))−2

f1 (Z(max(α, t) − min(α, u)) .

The mean number of comparisons of QuickSort and QuickValα in the Poisson
model satisfy

S̃Z = 2J [(t − u)−2 · f1(Z(t − u))]
S̃

(α)
Z = 2J

[
(max(α, t) − min(α, u))−2 · f1(Z(max(α, t) − min(α, u))

]
.

Proof. The probability that M(u′) and M(t′) are both keys for some u′ ∈ [u, u+
du] and t′ ∈ [t, t + dt] is Z2du dt. Denote by [x, y] := [x(u, t), y(u, t)] the small-
est closed interval that contains {u, t, α} (QuickValα) or {u, t} (QuickSort).
Conditionally, given that M(u) and M(t) are both keys, M(u) and M(t) are
compared if and only if M(u) or M(t) is chosen as the pivot amongst the set
M := {M(z); z ∈ [x, y]}. The cardinality of the “good” set {M(u), M(t)} is
2, while the cardinality of M equals 2 + N [x, y], where N [x, y] is the number
of keys strictly between M(x) and M(y). Then, for any fixed set of words, the
probability that M(u) and M(t) are compared is 2/(2 + N [x(u, t), y(u, t)]). To
evaluate the mean value of this ratio in the Poisson model, we remark that, if we
draw Poi (Z) i.i.d. random variables uniformly distributed over [0, 1], the num-
ber N(λ) of those that fall in an interval of (Lebesgue) measure λ is Poi (λZ)
distributed, so that

E

[
2

N(λ) + 2

]
=

∑
k≥0

2
k + 2

e−λZ (λZ)k

k!
=

2
λ2Z2

f1(λZ). �

1.5 Exact Formulae for Sn

We now return to the model of prime interest, where the number of keys is a
fixed number n.
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Proposition 3. Assume that Λ(s) of (6) converges at s = −2. Then the mean
values Sn, associated with QuickSort and QuickValα can be expressed as

Sn =
n∑

k=2

(
n

k

)
(−1)k�(−k), for n ≥ 2,

where �(s) is a series of Dirichlet type given, respectively, by

�(s) = 2J [(t − u)−(2+s)], �(s) = 2J [(max(α, t) − min(α, u))−(2+s)].

The two functions �(s) are defined for /s ≤ −2; they depend on the algorithm
and the source and are called the mixed Dirichlet series.

For QuickSort, the series �(s) admits a simple form in terms of Λ(s):

�(s) =
Λ(s)

s(s + 1)
, Sn = 2

n∑
k=2

(−1)k

k(k − 1)

(
n

k

) ∑
w∈Σ∗

pk
w. (7)

For QuickVal, similar but more complicated forms can be obtained.

Proof (Prop. 3). Consider any sequence Sn whose Poissonized version is of the
form

S̃Z ≡ e−Z
∑
n≥0

Sn
Zn

n!
=

∫
D

λ(x) f1(Zμ(x)) dx, (8)

for some domain D ⊂ Rd and some weights λ(x), μ(x) ≥ 0, with, addition-
ally, μ(x) ≤ 1. By expanding f1, then exchanging the order of summation and
integration, one obtains

S̃Z =
∞∑

k=2

(−1)k�(−k)
Zk

k!
, where �(−k) :=

∫
D

λ(x)μ(x)k dx. (9)

Analytically, the form (9) is justified as soon as the integral defining �(−2) is
convergent. Then, since Sn is related to S̃Z via the relation Sn = n![Zn](eZ S̃Z),
it can be recovered by a binomial convolution. �

2 Asymptotic Analysis

For asymptotic purposes, the singular structure of the involved functions, most
notably the mixed Dirichlet series �(s), is essential. With tameness assumptions
described in Subsection 2.1, it becomes possible to develop complex integral repre-
sentations (Subsection 2.2), themselves strongly tied to Mellin transforms [9,18].
We can finally conclude with the proofs of Theorems 1 and 2 in Subsection 2.3.
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2.1 Tamed Sources

We now introduce important regularity properties of a source, via its Dirichlet
series Λ(s), Π(s), as defined in (6). Recall that Λ(s) always has a singularity at
s = −1, and Π(s) always has a singularity at s = 0.

Definition 3. Consider a source S, with Λ(s), Π(s) its Dirichlet series.
(a) The source S is Π–tamed if the sequence πk satisfies πk ≤ Ak−γ for some

A > 0, γ > 1. In this case, Π(s) is analytic for /(s) < −1/γ.
(b) The source S is Λ–tamed if Λ(s) is meromorphic in a “hyperbolic domain”

F =
{
s

∣∣ /s ≤ −1 +
c

(1 + |0s|)d

}
(c, d > 0), (10)

is of polynomial growth as |s| → ∞ in F , and has only a pole at s = −1, of
order 1, with a residue equal to the inverse of the entropy h(S).

(c) The source S is Λ–strongly tamed if Λ(s) is meromorphic in a half-plane

F = {/(s) ≤ σ1}, (11)

for some σ1 > −1, is of polynomial growth as |s| → ∞ in F , and has only a pole
at s = −1, of order 1, with a residue equal to the inverse of the entropy h(S).

(d) The source S is periodic if Λ(s) is analytic in /(s) < −1, has a pole of
order 1 at s = −1, with a residue equal to the inverse of the entropy h(S), and
admits an imaginary period iΩ, that is, ω(s) = ω(s + iΩ).

Essentially all “reasonable” sources are Π– tamed and “most” classical sources
are Λ–tamed; see Section 3 for a discussion. The properties of �(s) turn out to
be related to properties of the source via the Dirichlet series Λ(s), Π(s).

Proposition 4. The mixed series �(s) of QuickValα relative to a Π–tamed
source with exponent γ is analytic and bounded in /(s) ≤ −1+δ with δ < 1−1/γ.
The mixed series �(s) of QuickSort is meromorphic and of polynomial growth in
a hyperbolic domain (10) when the source is Λ–tamed, and in a vertical strip (11)
when the source is Λ–strongly tamed.

2.2 General Asymptotic Estimates

The sequence of numerical values �(−k) lifts into an analytic function �(s),
whose singularities essentially determine the asymptotic behaviour of QuickSort
and QuickSelect.

Proposition 5. Let (Sn) be a numerical sequence which can be written as

Sn =
n∑

k=2

(
n

k

)
(−1)k�(−k), for n ≥ 2.
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(i) If the function �(s) is analytic in /(s) < C, with −2 < C < −1, and
is of polynomial growth with order at most r, then the sequence Sn admits a
Nörlund–Rice representation, for n > r + 1 and any −2 < d < C:

Sn =
1

2iπ

∫ d+i∞

d−i∞
�(s)

n!
s(s + 1) · · · (s + n)

ds. (12)

(ii) If, in addition, �(s) is meromorphic in /(s) < D for some D > −1, has
only a pole (of order k0 ≥ 0) at s = −1 and is of polynomial growth in /(s) < D
as |s| → +∞, then Sn satisfies Sn = An + O(n1−δ), for some δ > 0, with

An = −Res
(

n! �(s)
s(s + 1) · · · (s + n)

; s = −1
)

= n

(
k0∑

k=0

ak logk n

)
.

2.3 Application to the Analysis of the Three Algorithms

We conclude our discussion of algorithms QuickSort and QuickVal, then that
of QuickQuant.

— Analysis of QuickSort. In this case, the Dirichlet series of interest is

�(s)
s + 1

=
2

s + 1
J [(t − u)−(2+s)] = 2

Λ(s)
s(s + 1)2

. (13)

For a Λ–tamed source, there is a triple pole at s = −1: a pole of order 1 arising
from Λ(s) and a pole of order 2 brought by the factor 1/(s + 1)2. For a periodic
source, the other poles located on /s = −1 provide the periodic term nP (log n),
in the form of a Fourier series. This concludes the proof of Theorem 1.
— Analysis of QuickValα. In this case, the Dirichlet series of interest is

�(s)
s + 1

=
2

s + 1
J [(max(α, t) − min(α, u))−(2+s)] .

Proposition 4 entails that �(s) is analytic at s = −1. Then, the integrand in (12)
has a simple pole at s = −1, brought by the factor 1/(s + 1) and Proposition 5
applies as soon as the source S is Π–tamed. Thus, for δ < 1 − (1/γ) :

V (α)
n = ρS(α)n + O(n1−δ). (14)

The three possible expressions of the function (u, t)  → max(α, t) − min(α, u)
on the unit triangle give rise to three intervals of definition for the function H
defined in Figure 1 (respectively, ]−∞,−1/2], [−1/2, +1/2], [1/2,∞[).

— Analysis of QuickQuantα. The main chain of arguments connecting the
asymptotic behaviors of QuickValα(n) and QuickQuantα(n) is the following.
(a) The algorithms are asymptotically “similar enough”: If X1, . . . , Xn are n
i.i.d. random variables uniform over [0, 1], then the α–quantile of set X is with
high probability close to α. For instance, it is at distance at most (log2 n)/

√
n

from α with an exponentially small probability (about exp(− log2 n)).
(b) The function α  → ρS(α) is Hölder with exponent c = min(1/2, 1 − (1/γ)).
(c) The error term in the expansion (14) is uniform with respect to α.
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3 Sources, QuickSort, and QuickSelect

We can now recapitulate and examine the situation of classical sources with
respect to the tameness and periodicity conditions of Definition 3. All the sources
listed below are Π–tamed, so that Theorem 2 (for QuickQuant) is systematically
applicable to them. The finer properties of being Λ–tamed, Λ–strongly tamed,
or periodic only intervene in Theorem 1, for Quicksort.

Memoryless sources and Markov chains. The memoryless (or Bernoulli) sources
correspond to an alphabet of some cardinality r ≥ 2, where symbols are taken
independently, with pj the probability of the jth symbol. The Dirichlet series is

Λ(s) = (1 − p−s
1 − · · · − p−s

r )−1

Despite their simplicity, memoryless sources are never Λ–strongly tamed. They
can be classified into three subcategories (Markov chain sources obey a similar
trichotomy).

(i) A memoryless source is said to be Diophantine if at least one ratio of the
form (log pi)/(log pj) is irrational and poorly approximable by rationals. All Dio-
phantine sources are Λ-tamed in the sense of Definition 3(b); i.e., the existence
of a hyperbolic region (10) can be established. Note that, in a measure-theoretic
sense, almost all memoryless sources are Diophantine.
(ii) A memoryless source is periodic when all ratios (log pi)/(log p1) are rational
(this includes cases where p1 = · · · = pr, in particular, the model of uniform
random bits). The function Λ(s) then admits an imaginary period, and its poles
are regularly spaced on /(s) = −1. This entails the presence of an additional
periodic term in the asymptotic expansion of the cost of QuickSort, which cor-
responds to complex poles of Λ(s); this is Case (ii) of Theorem 1.
(iii) Finally, Liouvillean sources are determined by the fact that the ratios are
not all rational, but all the irrational ratios are very well approximated by ratio-
nals (i.e., have infinite irrationality measure); for their treatment, we can appeal
to the Tauberian theorems of Delange [6]

Dynamical sources were described in Section 1. They are principally determined
by a shift transformation T . As shown by Vallée [19] (see also [3]), the Dirichlet
series of fundamental intervals can be analysed by means of transfer operators,
specifically the ones of secant type. We discuss here the much researched case
where T is a non-linear expanding map of the interval. (Such a source may be
periodic only if the shift T is conjugated to a piecewise affine map of the type
previously discussed.) One can then adapt deep results of Dolgopyat [4], to the
secant operators. In this way, it appears that a dynamical source is strongly
tamed as soon as the branches of the shift (i.e., the restrictions of T to the
intervals Iσ) are not “too often” of the “same form”—we say that such sources
are of type D1. Such is the case for continued fraction sources, which satisfy a
“Riemann hypothesis” [1,2]. The adaptation of other results of Dolgopyat [5]
provides natural instances of tamed sources with a hyperbolic strip: this occurs
as soon as the branches all have the same geometric form, but not the same
arithmetic features—we say that such sources are of type D2.
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Theorem 3. The memoryless and Markov chain sources that are Diophantine
are Λ–tamed. Dynamical sources of type D2 are Λ–tamed and dynamical sources
of type D1 are Λ–strongly tamed. The estimates of Theorem 1 and 2 are then
applicable to all these sources, and, in the case of Λ–strongly tamed sources, the
error term of QuickSort in (1) can be improved to O(n1−δ), for some δ > 0.

It is also possible to study “intermittent sources” in the style of what is done
for the subtractive Euclidean algorithm [20, §2,6]: a higher order pole of Λ(s)
then arises, leading to complexities of the form n log3 n for QuickSort, whereas
QuickQuant remains of order n.
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Abstract. We give an O(n log n) algorithm for computing the girth
(shortest cycle) of an undirected n-vertex planar graph. Our solution
extends to any graph of bounded genus. This improves upon the best
previously known algorithms for this problem.

1 Introduction

The girth of a graph is the length of its shortest cycle, or infinity if the graph does
not contain any cycles. In addition to being a basic combinatorial characteristic
of graphs, the girth has tight connections to many other graph properties. The
connection between the girth of a graph and its chromatic number was studied
by Erdős [13], Lovasz [19], Bollobás [4], and Cook [6]. Other important graph
properties related to the girth include the minimum or average degree of the
vertices, the diameter, the connectivity, the maximum genus, and the existence
of certain type of minors (see Diestel’s book [8] for a review of results).

The problem of computing the girth of a graph is among the most natural
and easily stated algorithmic graph problems. Itai and Rodeh [17] were the
first to suggest an efficient algorithm to compute the girth. They presented an
O(nm)-time algorithm for a graph of n vertices and m edges, and an O(n2)-time
algorithm if an additive error of one is allowed. Monien [20] showed that finding
the shortest cycle of even length is easier and can be done in O(n2α(n)) time,
where α(n) is the inverse Ackermann function. Yuster and Zwick improved this
to a pure O(n2) time algorithm [25]. Vazirani and Yannakakis [24] and Robertson
et al. [23] studied the connection between such even-length cycles and Pfaffian
orientations. Finding a cycle of a given size has also been extensively studied
(see Alon et al. [1,2] for references).

For the case of planar graphs, Eppstein [11] proved that the girth can be found
in O(n) time provided it is bounded by some constant. His result extended that
of Itai and Rodeh [17] and of Papadimitriou and Yannakakis [21] who proved
this for girth bounded by 3. For the general case, when the girth is not bounded
by a constant, Djidjev [9] presented and algorithm that computes the girth in
O(n5/4 log n) time. Djidjev’s solution uses dynamic data structure for shortest
paths [10], as well as a clever use of hammock decompositions [14]. Djidjev’s

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 764–773, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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algorithm is the fastest algorithm that solves this problem directly. However,
there is another, indirect approach to solve the girth problem in planar graphs.
It is a known fact that cuts in an embedded planar graph correspond to cycles
in the dual plane graph. Furthermore, minimum cuts correspond to shortest
cycles in the dual plane graph. Chalermsook et al. [5] gave an O(n log2 n) time
algorithm for the minimum-cut problem in planar graphs. This algorithm can
be used to solve the girth problem in planar graphs with positive edge weights
in the same time, by reducing it (in linear time) to the min-cut problem in
planar graphs. We note that this reduction introduces (not necessarily constant)
weights in the dual graph even if the original graph was unweighted.

In this paper, we give an O(n log n)-time algorithm for finding the girth of
a planar graph. Apart from being faster than Djidjev’s O(n5/4 log n) algorithm
and from the O(n log2 n) minimum-cut based algorithm, the structure of our
algorithm is different – it is a simple divide-and-conquer, and we require no dy-
namic data structures. In addition, just like in Djidjev’s case, our result extends
from planar graphs to graphs of bounded genus. Unlike the minimum-cut based
algorithm, or Djidjev’s algorithms, we do not need to find an embedding of the
graph in the plane (notice that any minimum-cut based algorithm must first
embed the graph since it needs to construct the dual graph).

The rest of the paper is organized as follows. In Section 2 we recall some
definitions and facts about planar graphs and bounded genus graphs. Sections
3 contains the description and proof of the algorithm for planar graphs, and
Section 4 describes the generalization to bounded genus graphs. The final section
contains some concluding remarks.

2 Preliminaries

A planar embedding of a graph assigns each vertex to a distinct point on the
sphere, and assigns each edge to a simple curve between the points correspond-
ing to its endpoints, with the property that the curves intersect only at their
endpoints. A graph G is planar if it has a planar embedding. Consider the set of
points on the sphere that are not assigned to any vertex or edge; each connected
component of this set is a face of the embedding. A planar embedding on the
sphere translates to a planar embedding in the plane where a chosen face be-
comes the outer face. If all the vertices of G lie on a single face, G is said to be
outerplanar (or 1-outerplanar). G is k-outerplanar if the deletion of the vertices
on the outer face results in a (k − 1)-outerplanar graph.

The genus of a graph is the minimum number of handles that must be added
to a sphere so that the graph can be embedded in the resulting surface with no
crossing edges. A planar graph therefore has genus 0. Euler’s formula states that
a graph embedded on a surface of genus g with n vertices, m edges, and f faces,
satisfies

n − m + f = 2 − 2g . (1)

A separator is a set of vertices whose removal leaves no connected component
of more than 2n/3 vertices. If G is a planar graph, then it has a separator of
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O(
√

n) vertices [18], and if G has genus g > 0, then it has a separator of O(
√

gn)
vertices [15]. The corresponding separators can be found in O(n+g) time. Every
k-outerplanar graph has a separator of size O(k) [3,22] that can be found in O(n)
time.

3 The Algorithm for Planar Graphs

In this section we prove the following main theorem of our paper.

Theorem 1. The girth of an undirected n-vertex planar graph can be computed
in O(n log n) time.

Given an embedded planar graph G, the size of each face of G is clearly an upper
bound on G’s girth. Notice however that the shortest cycle is not necessarily a
face. Djidjev’s algorithm [9], begins by computing, in O(n) time, the size h of
the minimal face of G. It then uses h to decide which of two procedures to apply
in order to compute the girth. One procedure is used if h is below some specific
threshold, and another if it is above. Our algorithm begins by computing, in O(n)
time, an upper bound, h, for the minimal face size of any embedding. We therefore
avoid the need to compute an embedding explicitly. Unlike Djidjev’s algorithm,
our algorithm is a single divide-and-conquer procedure whose running-time is
independent of h.

Our general idea is to cover G with O(n/k) overlapping k-outerplanar graphs
where k = 2h. The cover is constructed so that the smallest cycle in G is entirely
contained within one of these k-outerplanar graph. This means that we can
compute G’s girth by independently computing the girth of each k-outerplanar
graph. We use a simple algorithm on each k-outerplanar graph that exploits the
fact that it has an O(k) separator. We next describe this algorithm. In order to
use it later we need the algorithm to work even if G’s edges have positive edge
lengths (and we seek the shortest, rather than smallest, cycle).

k-Outerplanar Graphs with Nonnegative Edge-Lengths
Given a k-outerplanar graph G with n vertices and nonnegative edge-lengths
we describe an algorithm that computes G’s shortest cycle in O(kn log n) time.
The algorithm first constructs the O(k)-sized separator, and is then applied
recursively on each of the connected components resulting from the removal
of the separator. The recursive calls find G’s shortest cycle in the case that it
does not pass through any of the separator vertices. We are therefore left with
finding G’s shortest cycle in the case that it includes one or more of the separator
vertices.

To do this, we first run a single-source shortest path algorithm from every
separator vertex. Henzingeret al. [16] gave an O(n)-time algorithm for planar
graphs with nonnegative edge-lengths that computes the distances from a given
source v to all vertices of G. Therefore, in O(kn) time, we can construct the
shortest-path tree from every separator vertex. Suppose that the shortest cycle
of G passes through some separator vertex v. The following lemma states an
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important connection between this cycle and the shortest-path tree from v to all
vertices of G.

Lemma 1. Let G be a connected graph with positive edge-lengths. If a vertex v
lies on a shortest cycle, and if T is a shortest paths tree from v then there is a
shortest cycle that passes through v and has exactly one edge not in T .

Proof. Suppose that the shortest cycle of G is of length s. Among all cycles of
length s that pass through v, let C be the one with the least number of edges
not in T . Assume for contradiction that this number is k ≥ 2. A vertex u �= v on
C partitions C into two parts C1 and C2 that are the two v-to-u simple paths in
C. Since k ≥ 2, there exists a vertex u so that both C1 and C2 contain an edge
that is not in T . This is illustrated in Fig. 1

v

u

x1

x2

Fig. 1. A cycle passing through a vertex v. The solid edges belong to the shortest-paths
tree T and the dashed edges do not. The path P in bold (red) is the shortest path
from v to u. The shaded area is a shorter cycle formed by a prefix of P and a part of
the original cycle.

Denote by P the path in T from the root v to the vertex u. Suppose that
the only vertices that P and C1 (resp. C2) share are u and v. Then the cycle C′

formed by P together with C1 (resp. C2) is of length at most s. This is because
P is a shortest v-to-u path and thus not longer than C2 (resp. C1). However, C′

has less than k edges that are not in T since all the edges of P are in T . This
contradicts the fact that C is the shortest cycle with the least number of edges
not in T .

Therefore, P must share some vertex x1 �∈ {u, v} with C1 and some vertex
x2 �∈ {u, v} with C2. Without loss of generality we assume that x1 appears before
x2 in P and that x2 is the first vertex of P in C2 − {u, v}. The prefix of P that
ends in x2, together with the part of C2 between v and x2, form a cycle C′.
However, again, C′ has less than k edges that are not in T , and this contradicts
the fact that C is the shortest cycle with the least number of edges not in T . �



768 O. Weimann and R. Yuster

The above lemma suggests the following O(n)-time procedure to find the shortest
cycle in case it passes through v. Let T be the shortest-path tree rooted at v,
and let dv(x) denote the length of the shortest path from v to x. For each edge
(x, y) not in T whose length is �(x, y) we look at dv(x)+dv(y)+ �(x, y) and take
the minimum of this sum over all edges (x, y) /∈ T .

Suppose the shortest cycle is of length s. Notice that if v is indeed part of a
shortest cycle then by Lemma 1 we are guaranteed to find it using the above
process. If on the other hand no shortest cycle passes through v then the value
we get from this process is not smaller than s. This is because every value
dv(x) + dv(y) + �(x, y) that we consider corresponds to either an actual cycle
or a cycle attached to a path (in the case where the shortest paths to x and to
y share a common prefix). The O(n) time complexity follows from the shortest
paths algorithm of Henzingeret al. [16] and from the fact that the number of
edges in G is O(n) and each edge is checked in O(1).

We have thus established that in O(kn) time we can find the shortest cycle in
the case that it passes through a separator vertex. If the removal of the separator
results in t ≥ 2 connected components, then the total time-complexity of all the
recursive calls is therefore

T (n) = T (n1) + T (n2) + · · · + T (nt) + O(kn),

where
t∑

i=1

ni ≤ n and every ni ≤ 2n/3 .

The solution to this recurrence is T (n) = O(kn log n) (for the standard analysis
of such recurrences see, e.g. [7]).

This concludes our description of the k-outerplanar O(kn log n)-time algo-
rithm. Notice that this algorithm works even if the graph is directed. Indeed,
suppose we want to compute the shortest directed cycle containing the separator
vertex v. We start by deleting all the edges incoming to v. We then apply the
Henzingeret al. algorithm (that works also for directed graphs) from source v.
Let dv(x) denote the length of the shortest v-to-x path. We scan all edges (x, v)
that we deleted before and take the minimum of dv(x) + �(x, v).

Since any planar graph G has a separator of size
√
|G|, our algorithm for

directed planar graphs runs in time

T (G) = T (G1) + T (G2) + · · · + T (Gt) + O(|G|3/2),

where
t∑

i=1

|Gi| ≤ |G| and every |Gi| ≤ 2|G|/3 .

This gives a total of O(n3/2) time. We next show that in the undirected case
this can be improved to O(n log n) by dividing the planar graph into many k-
outerplanar graphs.

Covering the Graph by k-Outerplanar Graphs
Before we can cover G by k-outerplanar graphs, we will need to modify G in
order to make sure that each edge of G is incident with a vertex whose degree is
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at least 3. We note that this is opposite of Djidjev’s algorithm [9] which makes
sure that the maximum degree is 3. We may assume, of course, that G is 2-
connected as otherwise we can run the algorithm on each 2-connected component
separately. In particular, this implies that G has no vertices of degree 0 or degree
1. We may also assume that G is not a simple cycle as this case is trivial. We
apply the following contraction to G repeatedly. We remove every vertex u of
degree 2 whose two neighbors v1, v2 are not connected and add an edge (v1, v2)
whose length is the sum of lengths of the edges (u, v1) and (u, v2). Once this
contraction process ends we obtain a graph G′ with the property that the girth
of G is equal to the length of the shortest cycle in G′. Therefore, it suffices to
compute the shortest cycle of G′. Notice that if h is the minimum face length of
any embedding of G, then the number of edges on a shortest cycle of G′ is also
bounded by h. This is because the girth of G is bounded by h and we have only
contracted edges to get from G to G′. The following lemma states two important
properties of G′.

Lemma 2. In order to compute the girth of an n-vertex planar graph G, for
which some embedding has minimum face length h, it suffices to compute the
shortest cycle of the planar graph G′, which has nonnegative edge-lengths and
O(n/h) vertices.

Proof. Fix an embedding of G with minimal face length h. We will prove that
the graph G′ obtained by the above process has O(n/h) vertices. We denote m
as the number of edges in G, F denotes the set of all faces of G, |x| denotes the
size of a face x ∈ F and f denotes the number of faces of G. Notice that the
transformation from G to G′ does not change the total number of faces. We will
show first that f = O(n/h). Since any edge of G belongs to two faces, then

2m =
∑
x∈F

|x| ≥
∑
x∈F

h = fh .

In any planar graph m ≤ 3n − 6 so we get that f ≤ 2m/h ≤ 6n/h = O(n/h).
Let m′ and n′ denote the number of edges and vertices of G′. We need to

show that n′ = O(n/h), or, equivalently, that m′ = O(n/h). We denote T as the
set of vertices of G with degree at least 3 and set t = |T |. As the set of vertices
with degree 2 in G′ is an independent set, we have that∑

v∈T

deg(v) ≥ m′ .

On the other hand, ∑
v∈T

deg(v) + 2(n′ − t) = 2m′ .

By Euler’s formula we know that

m′ = n′ + f − 2 ≤ n′ + 6n/h .
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r

2h    G
0
’

   G
1

2h’

2h    G
2
’

Fig. 2. A decomposition of a graph G′ into overlapping 2h-outerplanar graphs accord-
ing to a breadth-first search of G′ that starts in an arbitrary vertex r. The shortest cycle
is guaranteed to be completely contained within one of these 2h-outerplanar graphs,
in this case in G′

1.

It follows that ∑
v∈T

(deg(v) − 2) = 2(m′ − n′) = 2f − 4 ≤ 12n/h .

Since deg(v) ≥ 3 for each v ∈ T we have that

1
3

∑
v∈T

deg(v) ≤ 12n/h .

Consequently,
m′ ≤ 36n/h

as required. �

Lemma 2 actually provides a way to compute an upper bound h for the minimum
face length of any embedding of G. We simply construct G′ resulting in n′

vertices, and set h = min{n, �36n/n′�}.
Now that we can work with a graph G′ that has only O(n/h) vertices we can

finally describe how to cover G′ by k-outerplanar graphs. Consider a breadth-first
search of G′ that starts in an arbitrary vertex r (and can be done in linear-time).
Define G′

i as the graph induced by the vertices whose distance from r is between
ki/2 and k + ki/2 for k = 2h and i = 0, 1, . . . , 2(n−k)

k . In this way, every G′
i

overlaps with at most two other graphs, G′
i−1 and G′

i+1. This is depicted in
Fig. 2. It is easy to verify that every G′

i is indeed a (k + 1)-outerplanar graph.
Furthermore, recall that the shortest cycle in G′ has at most h edges. Therefore,
it must be entirely contained within a single G′

i. This is because we chose k to
be 2h and the overlap between two adjacent G′

i’s to be k/2.
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Finally, we run our k-outerplanar graph algorithm on every G′
i separately to

find its shortest cycle. We then return the shortest cycle among these cycles.
The time complexity is thus∑

i

O(k|G′
i| log |G′

i|) ≤ O(2h log n) ·
∑

i

|G′
i| .

The O(n log n) total time complexity is achieved by noticing that every vertex
in G′ appears in at most three G′

i’s therefore
∑

i |G′
i| = O(|G′|), which is equal

to O(n/h) by Lemma 2. This completes the proof of Theorem 1. �

4 Extension for Bounded Genus Graphs

In this section we show how to adjust the proof of Theorem 1 so that it extends
to graphs with bounded genus. We therefore obtain the following theorem.

Theorem 2. For every fixed positive integer g, the girth of an undirected n-
vertex graph whose genus is at most g can be computed in O(n log n) time.

We outline the adjustments to the proof of Theorem 1 that are required in
order to obtain Theorem 2. Regarding the shortest paths algorithm of Henzinger
et al. [16] that we use, as pointed out in [16], separators of size O(n1−ε) suffice
for the application of their algorithm, provided that the separator can be found
in linear time. Thus their algorithm remains O(n) when applied to graphs with
bounded genus.

In the proof of Theorem 1 the (k + 1)-outerplanar graphs are just obtained
by taking k + 1 consecutive layers of a breadth-first search from a given vertex.
We then use the fact that such graphs have O(k)-sized separators, and such
separators are guaranteed to exist in subgraphs of these (k + 1)-outerplanar
graphs, as subgraphs of (k + 1)-outerplanar graphs are also (k + 1)-outerplanar.
In other words, we simply use the fact that k-outerplanar graphs have tree-width
O(k). Now, suppose we perform breadth-first search in a genus g graph, and let
G′

i be obtained by taking the k + 1 consecutive layers s through s + k of that
search. We would like to claim that G′

i is analogous to a (k+1)-outerplanar graph
in a “genus g” setting. Consider any embedding of the graph on a genus g surface.
We can contract all vertices in layers above s to a single vertex z. The resulting
graph is a minor of the original graph, thus the genus does not increase. Notice
that now the diameter of G′

i becomes O(k) and the genus remains at most g. A
result of Eppstein [12] shows that graphs with bounded genus g have separators,
as well as tree-width, of the same order as the diameter. It follows that G′

i has
tree-width O(k) as well, so the same analysis as in the case of k-outerplanar
graphs holds in the bounded genus setting.

Another point of minor difference is in Euler’s formula when applied in the
proof of Lemma 2. Instead of using the fact that in planar graphs we have
m ≤ 3n−6 we use the fact that in genus g graphs we have m ≤ 3n−6+6g. As g
is bounded we still have f = O(n/h) as in the planar case. Similarly, instead of
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using m′ = n′ + f −2 which holds in the planar case we use m′ = n′ + f −2+2g
and since g is bounded this still gives us that m′ = O(n/h) as in the planar case.

We have therefore shown that Theorem 1 can be adjusted to apply to the
bounded genus setting, thereby proving Theorem 2. �

5 Concluding Remarks and Open Problems

We have presented the fastest algorithm for computing the girth of an undirected
planar graph and bounded genus graph. Our algorithm runs in O(n log n) time,
improving the previous best algorithms. It would be interesting to extend this
algorithm to undirected graphs with arbitrary positive real edge weights. It would
also be interesting to find an o(n3/2) algorithm for directed planar graphs.
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13. Erdős, P.: Graph theory and probability. Canadian Journal of Math 11, 34–38
(1959)

14. Frederickson, G.N.: Planar graph decomposition and all pairs shortest paths. Jour-
nal of the ACM 38(1), 162–204 (1991)

15. Gilbert, J.R., Hutchinson, J.P., Tarjan, R.E.: A separator theorem for graphs of
bounded genus. Journal of Algorithms 5(3) (1984)

16. Henzinger, M.R., Klein, P.N., Rao, S., Subramanian, S.: Faster shortest-path algo-
rithms for planar graphs. Journal Comp. Sys. Sci. 55(1), 3–23 (1997)



Computing the Girth of a Planar Graph in O(n log n) Time 773

17. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Comput. 7(4),
413–423 (1978)

18. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl.
Math. 36, 177–189 (1979)

19. Lovasz, L.: On chromatic number of finite set systems. Acta Math. Acad. Sci.
Hun. 19, 59–67 (1968)

20. Monien, B.: The complexity of determining a shortest cycle of even length. Com-
puting 31, 355–369 (1983)

21. Papadimitriou, C.H., Yannakakis, M.: The clique problem for planar graphs. In-
formation Processing Letters 13, 131–133 (1981)

22. Robertson, N., Seymour, P.D.: Graph minors. iii. planar tree-width. J. Comb. The-
ory, Ser. B 36(1), 49–64 (1984)

23. Robertson, N., Seymour, P.D., Thomas, R.: Permanents, pfaffian orientations, and
even directed circuits. Ann. of Math. 150(3), 929–975 (1999)

24. Vazirani, V.V., Yannakakis, M.: Pfaffian orientations, 0/1 permanents, and even
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Abstract. A graph is chordal if it does not contain any induced cycle of
size greater than three. An alternative characterization of chordal graphs
is via a perfect elimination ordering, which is an ordering of the vertices
such that, for each vertex v, the neighbors of v that occur later than v
in the ordering form a clique. Akcoglu et al [1] define an extension of
chordal graphs whereby the neighbors of v that occur later than v in the
elimination order have at most k independent vertices. We refer to such
graphs as sequentially k-independent graphs. We study properties of such
families of graphs, and we show that several natural classes of graphs are
sequentially k-independent for small k. In particular, any intersection
graph of translates of a convex object in a two dimensional plane is a
sequentially 3-independent graph; furthermore, any planar graph is a
sequentially 3-independent graph. For any fixed constant k, we develop
simple, polynomial time approximation algorithms for sequentially k-
independent graphs with respect to several well-studied NP-complete
problems.

1 Introduction

We assume familiarity with standard graph theory terminology; all graphs in
this paper will be finite, simple, connected and undirected. Let G = (V, E) be
a graph of n vertices and m edges. If X ⊆ V , the subgraph of G induced by X
is denoted by G[X ]. For a particular vertex vi ∈ V , let d(vi) denote its degree
and N(vi) denote the set of neighbors of vi. We use α(G) to denote the size of a
maximum independent set of G. Given an ordering of vertices v1, v2, . . . , vn, we
let Vi = {vi, . . . , vn}. A graph is chordal if it does not contain any induced cycle
of size greater than three. An alternative characterization of chordal graphs is
via a perfect elimination ordering.

Definition 1. A perfect elimination ordering is an ordering of vertices v1,
v2, . . ., vn such that for any vi, 1 ≤ i ≤ n, α(G[N(vi) ∩ Vi]) = 1.

A natural extension to this perfect elimination ordering is to relax the size of the
maximum independent set. Surprisingly, this extension seems to have only been
relatively recently proposed in Akcoglu et al [1] and not studied subsequently.

Definition 2. A k-independence ordering is an ordering of vertices v1, v2,
. . ., vn such that for any vi, 1 ≤ i ≤ n, α(G[N(vi) ∩ Vi]) ≤ k. The minimum

S. Albers et al. (Eds.): ICALP 2009, Part I, LNCS 5555, pp. 774–785, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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of such k over all orderings is called the sequential independence number1,
which we denote as λ(G).

This extension of a perfect elimination ordering leads to a natural generalization
of chordal graphs.

Definition 3. A graph G is sequentially k-independent if λ(G) ≤ k.

For several natural classes of graphs, the sequential independence number is
bounded by a small constant.

– Chordal graphs: since a chordal graph admits a perfect elimination order-
ing, chordal graphs are sequentially 1-independent graphs. All sub-classes
of chordal graphs are then clearly sequentially 1-independent graphs; for
example, interval graphs and trees.

– Graphs with a bounded average degree on every induced subgraph:
it is not hard to see that λ(G) is bounded above by the maximum average
degree over all induced subgraphs of G, though this bound is usually not
tight.

– Claw-free graphs: if a graph is k-claw-free, then it is a sequentially (k−1)-
independent graph. For example, line graphs are sequentially 2-independent
graphs. Note that the converse is not always true since for example, a k-ary
tree is not k-claw-free, but it is a sequentially 1-independent graph.

– Graphs with a constant tree-width: since the tree-width of G can be
viewed as the smallest k such that G is a partial k-tree, it is not hard to see
graphs with a tree-width k are sequentially k-independent graphs.

– Intersection graphs of geometric objects: disk graphs and unit disk
graphs are sequentially 5 and 3-independent graphs, respectively. Marathe
et al [26] show that simple heuristics achieve good approximations for various
problems for unit disk graphs. We extend most of their results in this paper,
and explain a connection between the unit disk graphs and planar graphs as
observed in their paper.

Akcoglu et al [1] show that the (weighted) maximum indepedent set (MIS) prob-
lem has a simple k-approximation algorithm for any sequentially k-independent
graph. We call attention to two interesting examples.

– The interval scheduling problem (ISP) and the job interval schedul-
ing problem (JISP): For a given set of (weighted) intervals on the real line,
the goal is trying to schedule a set of intervals of maximum size (or total weight
in the weighted case) without any overlapping. There are simple algorithms
that solve ISP optimally in both the unweighted and weighted cases. This is
not a surprise since if we order intervals according to non-decreasing finishing
times, then it is a perfect elimination ordering and the underlying intersection
graph of ISP is a chordal graph. The job interval scheduling problem is an ex-
tension of ISP and has been extensively studied in the literature, for example,
see [4][15][31]. In JISP, each interval belongs to a job. A job can be scheduled

1 Akcoglu et al [1] refer to this as the directed local independence number.
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onto one and only one of its intervals. The objective is to find the maximum
number (or total weight in the weighted case) of jobs that can be scheduled
without conflicts. Using the same ordering by finishing time, the intersection
graph for the JISP problem is a sequentially 2-independent graph.

– The axis parallel rectangles problem: This problem is studied by
Berman and DasGupta in [9] and is motivated by applications to non-
overlapping local alignment problems in computational molecular biology.
The input is a set of axis parallel rectangles such that, for each axis, the
projection of a rectangle on this axis does not enclose that of another. The
goal is to select a subset of independent (non-overlapping projection on both
axes) rectangles with maximum cardinality (or total weight in the weighted
case). It is not hard to see that sorting the rectangles by (say) their rightmost
x-coordinate yields a 3-independence ordering; hence the underlying graph
is a sequentially 3-independent graph. This also extends to D dimension,
where the underlying graph is a sequentially (2D − 1)-independent graph.

Both of the JISP and local alignment problems are MAX SNP-hard although
the current NP-hardness inapproximations are very weak. The existence of local
ratio approximation algorithms in Bar-Noy et al [3] and Berman and DasGupta
in [9] for the above two problems was our initial motivation for investigating
how the intersection graph structure underlies the success of those algorithms.
In fact, such “elimination structure” occurs in many natural graph classes and
extends in greater generality as we shall see.

2 Chordal Graphs and Their Generalizations

The study of chordal graphs can be traced back to Hajnal and Surányi [21] in the
late 1950s. Fulkerson and Gross [18] characterized chordal graphs in terms of per-
fect elimination orderings; this was also observed by Rose [29] in 1970. Following
this, Rose, Tarjan and Lueker [30] introduced the first linear-time algorithm for
producing a perfect elimination ordering, known as the lexicographic breadth-
first search (LBFS); and later, Tarjan [32] gave an even simpler algorithm known
as the maximum cardinality search (MCS).

Many generalizations of chordal graphs have been proposed and studied, for
example as in [14][22][25]. One very close extension of chordal graphs related
to sequentially k-independent graphs is defined by Jamison and Mulder [25], in
which they use the minimum vertex clique cover number instead of the maximum
independent set number for the neighborhood property. Since for k ≥ 3, it is NP-
hard to determine whether or not a graph has a k vertex clique cover, it seems
unlikely that we can recognize such graphs in polynomial time for k ≥ 3.

Another relevant (but not comparable) class of graphs are the k-interval
graphs as defined by Trotter and Harary [33], and independently by Griggs and
West [20]. Butman, Hermelin, Lewenstein and Rawitz [12] studied minimum ver-
tex cover, minimum dominating set and maximum clique on k-interval graphs
and were able to obtain approximation algorithms for each of problems. One dis-
advantage of such a graph class is that recognizing a k-interval graph for k ≥ 2
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is NP-hard [35] and some of the algorithms on k-interval graphs G require a k-
interval representation of G. We note that a complete bipartite graph Kn,n has
interval number n2+1

2n [20] and sequential independence number n. Furthermore,
the interval number of chordal graphs can be arbitrarily large [34], so it follows
that the class of k-interval graphs and the class of sequentially k-independent
graphs are incomparable.

3 Properties of Sequentially Independent Graphs

In this section, we study general properties of sequentially independent graphs.
We first give the following basic lemma.

Lemma 1. Any induced subgraph of a sequentially k-independent graph is a
sequentially k-independent graph.

Lemma 1 ensures that we can test if a graph is sequentially k-independent by
repeatedly removing a vertex whose neighbors in the remaining graph have in-
dependent set size at most k, until there is no vertex remaining or for every
vertex v in the remaining graph G, α(G[N(v)]) > k. This k-elimination process,
if successful (i.e., no vertices remain at the end of the process), also constructs
a k-independence ordering. Note that at each step, we can check for each vertex
v to see if α(G[N(v)]) > k in O(k2nk+1) time by enumerating all subsets of size
k+1. Therefore this k-elimination process terminates in O(k2nk+3) time. By the
observation of Itai and Rodeh [24], and results in [17], we can improve the time
complexities of a 2-elimination process to O(n4.376), a 3-elimination process to
O(n5.334) and a 4-elimination process to O(n6.220). We can further improve the
time complexity of the k-elimination process by the following theorem.

Theorem 1. A sequentially k-independent graph can be recognized in O(k2nk+2)
time, and a k-independence ordering of a sequentially k-independent graph can be
constructed in O(k2nk+2) time.

Note that by a reduction to the independent set problem, finding the sequen-
tial independence number is complete for W [1], hence it is unlikely to have a
fixed parameter tractable solution. But this does not exclude the possibility to
improve the current complexity bound for a small k. It is interesting to note
that recognizing a chordal graph, i.e., a sequentially 1-independent graph, can
be done in linear time using LBFS or MCS, while our generic algorithm runs in
time O(n3). It might be possible to improve on the bounds above by using differ-
ent techniques. Note that we are mostly interested in sequentially k-independent
graphs with small k’s, because in practice, we either know a-priori that a graph
is a sequentially k-independent graph with some small constant k, or we want
to test whether or not it is the case. In many specific cases like JISP and non-
overlapping local alignment, the complexity of computing a k-independence or-
dering can be reduced to O(n log n). It is not hard to show that the sequential
independence number is bounded by some graph parameters.
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Theorem 2. A graph G with n vertices and m edges has sequential indepen-

dence number no more than min{�n
2 �, �

√
m�, �

√
1+4[(n

2)−m]+1

2 �}.

4 Natural Classes of Sequentially Independent Graphs

In Section 1, we saw several known examples of sequential independent graphs.
In this section, we show two more natural classes of graphs that fit our definition.

4.1 Translates of a Convex Object

We consider the intersection graph of a set of translates of a convex object in
the two dimensional plane, i.e., each translate is represented by a vertex; two
vertices are adjacent if two associated translates are overlapping.

Theorem 3. The intersection graph of translates of a convex object in a two
dimensional plane is a sequentially 3-independent graph.

The bound in Theorem 3 is in fact tight. If we allow different sizes, but still
the same shape and orientation, the resulting intersection graph is sequentially
5-independent by always looking at the translate with the smallest size. It fol-
lows immediately that disk graphs and unit disk graphs are sequentially 5 and
3-independent graphs respectively. We conjecture that Theorem 3 extends to
higher dimensions as follows: the intersection graph of translates of a convex
object in D dimensional space is a sequentially (2D − 1)-independent graph.

4.2 Planar Graphs

We first show relatively trivial result for arbitrary genus. Since the average vertex
degree of a graph G with genus g is less than 6+ 12(g−1)

n , where n is the number
of vertices in G and any induced subgraph of G has genus no more than g, the
following theorem is immediate.

Theorem 4. A graph G with n vertices and genus g has sequential independence
number no more than �6 + 12(g−1)

n �.

Theorem 4 implies that any planar graph is a sequentially 5-independent graph,
but this is not tight.

Theorem 5. Any planar graph is a sequentially 3-independent graph.

Proof. We prove the contrapositive. Suppose G is a planar graph but it is not
a sequentially 3-independent graph, then at a certain step of the 3-elimination
process, we will end up with an induced subgraph G∗ of G such that for any
vertex v in G∗, we have α(G∗[N(v)]) > 3. We look at a planar embedding of G∗.
It is not hard to show, using a counting argument, that the Euler characteristic
of G∗ is non-positive, hence a contradiction. Therefore any planar graph is se-
quentially 3-independent. �
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5 Algorithmic Aspects of Sequentially Independent
Graphs

In this section, we show several algorithmic results for sequentially k-independent
graphs. We do not explicitly state the time complexity for those algorithms since
(with the exception of the vertex cover problem) they depend on the complexity
for constructing a k-independence ordering. But by Theorem 1, all algorithms
discussed here run in polynomial time when k is a fixed constant.

It is well known that many NP-complete problems can be solved optimally
when restricted to chordal graphs [19][36]. We show that if we restrict the graph
to be a sequentially k-independent graph, we get simple approximation algo-
rithms for several NP-complete problems. In fact, the structure of sequentially
k-independent graphs gives a unified treatment for many previous results. Note
that for both minimization problem and maximization problems, we always con-
sider approximation ratios to be greater or equal to one.

5.1 Weighted Maximum m-Colorable Subgraph

The weighted maximum independent set problem is NP-complete for general
graphs and NP-hard to approximate within n1−ε, but polynomial time solvable
for chordal graphs. Akcoglu et al [1] show that the local ratio technique ([5][8])
achieves a k-approximation for the weighted maximum independent set on se-
quentially k-independent graphs. The local ratio technique is usually described
as a recursive algorithm. As in Berman and DasGupta [8], we view it as an itera-
tive algorithm, modeled as stack algorithms in [10]. For some graph classes such
as those defined by the JISP and axis paralell rectangles problems mentioned in
section 1, the orderings in the stack algorithm satisfy the locally defined order-
ings in priority algorithms [11] and hence we obtain greedy (in the unweighted
case) or greedy-like stack algorithms.

The interval scheduling problem is often extended to scheduling on m ma-
chines. For identical machines, the graph-theoretic formulation of this problem
leads to the following natural generalization of the MIS problem. Given a graph
G = (V, E) with a positive weight w(v) for each vertex v, an m-colorable sub-
graph of G is an induced subgraph G[V ′] on a subset V ′ of V such that G[V ′]
is m-colorable. A maximum m-colorable subgraph is an m-colorable subgraph
with maximum number (or total weight in the weighted case) of the vertices. For
chordal graphs, the unweighted case of the problem is polynomial time solvable
for any fixed m, but NP-complete otherwise. Chakaravarthy and Roy [13] re-
cently showed that for chordal graphs, the problem is NP-hard and has a simple
2-approximation algorithm for the weighted case. Here we strengthen this result.

Theorem 6. For all fixed constant k ≥ 1, there is a polynomial time algorithm
that achieves a (k + 1 − 1

m )-approximation for weighted maximum m-colorable
subgraph if G is a sequentially k-independent graph.

We first describe the algorithm. We use almost the same idea for the weighted
maximum independent set except that we now use a stack Sc for each color class
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c. At each step i, the algorithm considers the vertex vi in the k-independence
ordering, and computes the updated weight

w̄(vi) = w(vi) −
∑

vj∈Sc∩N(vi)

w̄(vj)

for each color class c. If w̄(vi) is non-positive for every color class, then reject
vi without coloring it. Otherwise, find a color class with the largest w̄(vi) value
and assign vi with that color. We next give the following permutation lemma.

Let M be an m by m square matrix, and σ ∈ Σ be a permutation on
{1, 2, . . . , n}. and σi be the ith element in the permutation.

Lemma 2. There exists a permutation σ such that∑
i

Miσi ≤
1
m

∑
i,j

Mij .

Let c1, c2, . . . , cm be the color classes and S1, S2, . . . , Sm be the sets of vertices
that have been put onto the stacks at the end of the push phase. Let S be the
union of all the stacks. Now we prove the theorem.

Proof. It is not hard to see that the algorithm achieves at least the total weight
W =

∑
vt∈S w̄(vt) of all stacks. The goal is to show that the weight of the

optimal solution will be at most (k + 1 − 1
m ) · W . Let A be the output of the

algorithm and O be the optimal solution. For each given vertex vi in O, let coi be
its color class in O, and csi be its color class in S if it is accepted into one of the
stacks. Let Si

oi be the content of the stack in color class coi when the algorithm
considers vi, then we have three cases:

1. If vi is rejected during the push phase of the algorithm then we have

w(vi) ≤
∑

vj∈Si
oi∩N(vi)

w̄(vj).

In this case, we can view that w(vi) is charged to all w̄(vj) with vj ∈ Si
oi ∩

N(vi), each of which appears in the same color class coi and is charged at
most k times coming from the same color class.

2. If vi is accepted into the same color class during the push phase of the
algorithm then we have

w(vi) = w̄(vi) +
∑

vj∈Si
oi∩N(vi)

w̄(vj).

In this case, we can view that w(vi) is charged to w̄(vi) and all w̄(vj) with
vj ∈ Si

oi ∩N(vi). Note that they all appear in the same color class coi; w̄(vi)
is charged at most once and each w̄(vj) is charged at most k times coming
from the same color class.

3. If vi is accepted into a different color class during the push phase of the
algorithm then we have
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w(vi) ≤ w̄(vi) +
∑

vj∈Si
oi∩N(vi)

w̄(vj).

In this case, we can view that w(vi) is charged to w̄(vi) and all w̄(vj) with
vj ∈ Si

oi ∩ N(vi). Note that each w̄(vj) appears in the same color class coi

and is charged at most k times coming from the same color class. However
w̄(vi) in this case is in a different color class csi and is charged at most once
coming from a different color class.

If we sum up for all vi ∈ O, we have

∑
vi∈O

w(vi) ≤
∑

vi∈S∩O∧coi �=csi

w̄(vi) + k

m∑
i=1

∑
vt∈Si

w̄(vt).

The inequality holds when we sum up for all vi ∈ O, since the number of charges
coming from the same color class can be at most k; the number of charges com-
ing from a different color class can be at most one, which only appears when
vi is accepted into a stack of a different color class (comparing to the opti-
mal) during the push phase of the algorithm. Therefore we have the extra term∑

vi∈S∩O∧coi �=csi
w̄(vi). Now if we can permute the color classes of the optimal so-

lution so that for any vi ∈ S∩O, coi = csi, then the term
∑

vi∈S∩O∧coi �=csi
w̄(vi)

disappears and we achieve a k-approximation. But it might be the case that
no matter how we permute the color classes of the optimal solution, we always
have some vi ∈ S ∩ O with coi �= csi. We construct the weight matrix M in the
following way. An assignment ci → cj is to assign the color class ci of O to the
color class cj of S. A vertex is misplaced with respect to this assignment ci → cj

if it is in S ∩O and its color class is ci in O, but is not cj in S. We then set Mij

be total updated weight of misplaced vertices with respect to the assignment
ci → cj. Note that the total weight of the matrix is (m− 1)

∑
vi∈S∩O w̄(vi), and

applying Lemma 2, there exists a permutation of the color class in O such that∑
vi∈S∩O∧coi �=csi

w̄(vi) ≤
m − 1

m

∑
vi∈S∩O

w̄(vi) ≤
m − 1

m

∑
vi∈A

w(vi).

Therefore, we have

∑
vi∈O

w(vi) ≤
m − 1

m

∑
vi∈A

w(vi) + k

m∑
i=1

∑
vt∈Si

w̄(vt) ≤ (k + 1 − 1
m

)
∑
vi∈A

w(vi).

�
5.2 Minimum Vertex Cover

Minimum vertex cover is one of the most celebrated problems for approximation
algorithms, because there exist simple 2-approximation algorithms, yet for gen-
eral graphs no known algorithm can achieve approximation ratio 2 − ε for any
fixed ε > 0. In this section, we show a (2 − 1

k )-approximation algorithm for min-
imum vertex cover on sequentially k-independent graphs. The algorithm shares
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the same spirit of the result of Bar-Yehuda and Even [6] for the 5
3 -approximation

of vertex cover for planar graphs, and can be viewed as a generalization of that
algorithm. The algorithm first removes all triangles in the graph, and then finds
a maximum matching in local neighborhood of a minimum degree vertex. Baker’s
PTAS algorithm [2] for minimum vertex cover on planar graphs depends on a pla-
nar embedding and would not be considered as a simple combinatorial algorithm.

Theorem 7. There is a polynomial time algorithm that achieves a (2 − 1
k )-

approximation for minimum vertex cover if G is a sequentially k-independent
graph. Furthermore, for triangle free graphs sequentially k-independent graphs
with k > 1, the algorithm is a greedy algorithm (in the sense of [11]).

The running time of this algorithm is dominated by the time to remove all trian-
gles which can be done in n × n matrix multiplication time O(nω) ≈ O(n2.376).
We can further improve the ratio to 2 − 2

k+1 using a result of Hochbaum [23].
This yields a 3

2 -approximation for planar graphs.

Theorem 8. There is a polynomial time algorithm that achieves a (2 − 2
k+1 )-

approximation for minimum vertex cover if G is a sequentially k-independent
graph.

5.3 Minimum Vertex Coloring

For chordal graphs, a greedy algorithm on the reverse ordering of any perfect
elimination ordering gives an optimal coloring. For sequentially k-independent
graphs, the same greedy algorithm achieves a k-approximation.

Theorem 9. For all fixed constant k ≥ 1, there is a polynomial time algorithm
that achieves a k-approximation for the minimal vertex coloring if G is a se-
quentially k-independent graph.

6 Sequential Neighborhood Properties

We view properties such as “chromatic number at most k” as global properties,
and properties like “k-claw-freeness” as (universal) neighborhood properties. In
contrast, we refer to “bounded sequential independence number” as a sequential
neighborhood property. Such properties give rise to a general development of
“elimination graphs”.

Definition 4. A graph G has a (universal) neighborhood property with
respect to graph property P if for all vertices v1, v2, . . . , vn, P holds on G[N(vi)].
The set of all graphs satisfying such a neighborhood property is denoted as Ĝ(P ).
A graph G has a sequential neighborhood property with respect to graph
property P if there exists an ordering of vertices v1, v2, . . . , vn such that for any
vi, 1 ≤ i ≤ n, P holds on G[N(vi) ∩ Vi]. The set of all graphs satisfying such a
sequential neighborhood property is denoted as G̃(P ).

If the property P is closed on induced subgraphs, then Ĝ(P ) is a sub-family of
G̃(P ), and both Ĝ(P ) and G̃(P ) can be recognized in polynomial time provided
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P can be tested in polynomial time. Using this notation, we can express many
known graph classes as well as defining many new interesting graph classes. For
illustration, we consider the following five graph properties:

1. |V |k: the size of the vertex set is no more than k.
2. V CCk: the minimum vertex clique cover size is no more than k.
3. ISk: the maximum independent set size is no more than k.
4. IDSk: the minimum independent dominating set size is no more than k.
5. DSk: the minimum dominating set size is no more than k.

Using these defined properties, the set of sequentially k-independent graphs dis-
cussed in this paper is G̃(ISk), the set of k-claw-free graphs is Ĝ(ISk−1), and the
set of trees is G̃(|V |1). The JISP graphs are in G̃(V CC2) as well as in G̃(IS2),
and graphs with tree-width no more than k are in G̃(|V |k). Jamison and Mulder’s
generalization of chordal graphs is G̃(V CCk). Since |V |k ⇒ V CCk ⇒ ISk ⇒
IDSk ⇒ DSk, , we have Ĝ(|V |k) ⊂ Ĝ(V CCk) ⊂ Ĝ(ISk) ⊂ Ĝ(IDSk) ⊂ Ĝ(DSk).
Similarly, we have G̃(|V |k) ⊂ G̃(V CCk) ⊂ G̃(ISk) ⊂ G̃(IDSk) ⊂ G̃(DSk). We
can construct examples to show that all the above inclusions are proper.

7 Conclusion and Open Questions

We considered a generalization of chordal graphs due to Akcoglu et al [1] based on
a specific type of elimination ordering. We showed that several natural classes
of graphs have a small sequential independence number, and gave a unified
approach for several optimization problems when such structure is present. Since
independence naturally extends to hypergraphs, we think our results also extend
to hypergraphs.

There are many open questions. The first and perhaps the most important
issue is to improve the time complexity to recognize a sequentially k-independent
graph for small constants k.

Our second question is on the algorithmic aspects of sequentially k-
independent graphs. We have studied the weighted maximum m-colorable sub-
graph, minimum vertex cover, and minimum vertex coloring problems. What
can be said about other basic graph problems such as weighted minimum ver-
tex cover and minimum edge coloring? Several other problems can be solved
optimally in polynomial time for chordal graphs such as maximum clique and
minimum clique cover. Can we O(k)-approximate such problems for sequentially
k-independent graphs? A particularly interesting problem is minimum indepen-
dent dominating set. The unweighted case can be solved optimally in polynomial
time for chordal graphs, but the weighted case is NP-complete even for chordal
graphs. Can we O(k)-approximate the independent dominating set problem for
sequentially k-independent graphs?

Finally, we think there is a correspondence between algorithm paradigms and
problem structures. We have seen multiple evidences for simple algorithms based
on local decisions. The most notable one is the matroid and greedoid structures
in correspondence to greedy algorithms, which have been studied extensively in
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the literature. One less studied class is claw-free graphs. In [7], Berman gives a
d
2 -approximation for maximum weight independent set in d-claw free graphs. We
also note that Edmond’s weighted matching algorithm [16] can also be extended
to claw free graphs [27][28]. Both of these algorithms are local search based
algorithms. Finally, as illustrated in this paper, various problems solved (or
approximated) by the local ratio technique seem to be connected with the graphs
with small sequential independence number. We believe there is a unified view
of all these algorithms.
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