
Mean Value Analysis for a Class of PEPA

Models

Nigel Thomas and Yishi Zhao

School of Computing Science, Newcastle University, UK
{Nigel.Thomas,Yishi.Zhao}@ncl.ac.uk

Abstract. In this paper a class of closed queueing network is modelled
in the Markovian process algebra PEPA and solved using the classical
Mean Value Analysis (MVA). This approach is attractive as it negates
the need to derive the entire state space, and so certain metrics from
large models can be obtained with little computational effort. The class
of model considered includes models which are not obviously classical
closed queueing models. The approach is illustrated with three examples.

1 Introduction

There have been many attempts to find efficient solutions to large stochastic
process algebra (SPA) models. SPA models suffer from the well known problem
of state space explosion, where each additional component cause a multiplicative
increase in the size of the global state space. This problem is particularly signif-
icant when there are many instances of the same type of component (so-called
massively parallel systems). Such models may be extremely concise to specify,
but even when the state space is folded or lumped, it may still far exceed the
capacity available for solution.

Many of the approaches to efficiently solving SPA models have been based
on concepts of decomposition originally derived for queueing networks [4]. Ap-
plying such approaches to stochastic process algebra allows the concepts to be
understood in a more general modelling framework and applied to non-queueing
models. Hillston [5] took an alternative, inspired by systems biology, approach
by deriving a fluid approximation based on ordinary differential equations. Re-
cently, Thomas [12] showed that such a fluid approximation is equivalent to a
well known asymptotic solution for a class of closed queueing network (similar
to the class of model considered in this paper). Traditionally this asymptotic
solution was used as a computationally cheap alternative to mean value analysis
[8] for very large populations. As such, it is clear that the class of model consid-
ered in [12] is also amenable to solution by mean value analysis. In this paper
we make such an application and in doing so consider an extension to the class
of model studied earlier [11,12].

Mean value analysis (MVA) is a method for deriving performance metrics
based on steady state averages directly from the queueing network specification,

J.T. Bradley (Ed.): EPEW 2009, LNCS 5652, pp. 59–72, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

60 N. Thomas and Y. Zhao

without the need to derive any of the underlying Markov chain. As such it is rel-
atively computationally efficient as long as the population size is not excessively
large.

This paper is organised as follows. In the next section a brief overview of
PEPA is given. The subsequent section then defines the class of model under
consideration and gives the MVA solution of this class. Three examples are then
used to illustrate the approach and to explore some numerical results. Finally
some conclusions are drawn and some further work discussed.

2 PEPA

A formal presentation of PEPA is given in [3], in this section a brief informal
summary is presented. PEPA, being a Markovian Process Algebra, only sup-
ports actions that occur with rates that are negative exponentially distributed.
Specifications written in PEPA represent Markov processes and can be mapped
to a continuous time Markov chain (CTMC). Systems are specified in PEPA in
terms of activities and components. An activity (α, r) is described by the type of
the activity, α, and the rate of the associated negative exponential distribution,
r. This rate may be any positive real number, or given as unspecified using the
symbol �. It is important to note that in this paper the unspecified rate is not
used.

The syntax for describing components is given as:

A | (α, r).P | P + Q | P/L | P ��
L Q

A
def= P gives the constant A the behaviour of the component P . The compo-

nent (α, r).P performs the activity of type α at rate r and then behaves like P .
The component P + Q behaves either like P or like Q, the resultant behaviour
being given by the first activity to complete.

Concurrent components can be synchronised, P ��
L Q, such that activities in

the cooperation set L involve the participation of both components. In PEPA
the shared activity occurs at the slowest of the rates of the participants and if
a rate is unspecified in a component, the component is passive with respect to
activities of that type. The shorthand notation P ||Q is used to mean P ��

∅ Q and
∏N

i=1 Pi is used to mean the parallel composition of the components Pi where
i takes the values 1 through to N , i.e. P1|| . . . ||PN . In addition, we employ
a further shorthand for synchronisation over many identical components, first
introduced in [5], whereby P [N] is taken to mean N copies of the component
P , synchronised on the empty set, i.e. P || . . . ||P where there are N instances of
component P .

The component P/L behaves exactly like P except that the activities in the
set L are concealed, their type is not visible and instead appears as the unknown
type τ . In this paper we do not make use of hiding, although non-shared actions
could be hidden in a model if that was desirable. The action set A(P) is defined
as the set of sections which are currently enabled in the derivative P .

Mean Value Analysis for a Class of PEPA Models 61

In this paper we consider only models which are cyclic, that is, every deriva-
tive of components P and Q are reachable in the model description P ��

L Q.
Necessary conditions for a cyclic model may be defined on the component and
model definitions without recourse to the entire state space of the model.

3 A Class of Closed Queueing Networks in PEPA

Now consider a model of a closed queueing network of N jobs circulating around a
network of M service stations, denoted 1, . . . , M ; each station is either a queueing
station or an infinite server station. There are Mq queueing stations. Let M be
the set of all queueing stations. At each queueing station, i, there is an associated
queue (bounded at N) operating a FCFS policy and Ki servers. The servers are
able to serve jobs of only one type; each job type, j, is served at rate rj . At each
infinite server station, i, jobs of type i experience a random delay with mean
1/ri. All services are negative exponentially distributed.

There are J job types. Each job type can be served at most one station. When
a job of type j completes a service of at a given station, it will proceed to service
at a station (possibly the same station) as a job of type k according to some
routing probability pjk.

In PEPA a queue station can be modelled as

QStationi
def= (servicei, ri).QStationi , ∀i ∈ M

Note that ri is always specified as finite, and not �. This is because passive
actions are subject to the apparent rate in PEPA. The infinite server stations
are not represented explicitly.

Each job will receive service from a sequence of stations determined by a set
of routing probabilities,

Jobi
def=

J∑

k=1

(servicej , pjkrj).Jobk , 1 ≤ i, j ≤ J

Where, 0 ≤ pjk ≤ 1 and

J∑

k=1

pjk = 1 , 1 ≤ j ≤ J

Denote Si to be the set of all job types which perform servicei actions, i.e.
Si = j if servicei ∈ A(Jobj).

The entire system can then be represented as follows:
(

∏

∀i∈M
(QStationi[Ki])

)

��
L Job1[N] (1)

Where
L =

⋃

∀i∈M
{servicei}

62 N. Thomas and Y. Zhao

3.1 Mean Value Analysis

We now consider the arrival theorem, first derived independently by Sevcik and
Mitrani [9] and Lavenberg and Reiser [7], applied to this class of PEPA model.

Theorem 1 Arrival Theorem. Consider a component Jobi evolving into its
successor derivative, Jobj in a system given by (1). The steady state distribution
of the number of components behaving as any component Jobk at that moment
is equal to the steady state distribution of the number of components behaving as
Jobk in a system without the evolving job.

The arrival theorem is as profound as it is simple and seemingly intuitive. It
consequently gives rise to the well known mean value analysis, whereby the av-
erage behaviour of a system of N components may be derived from the average
behaviour of a system of N − 1 components. Therefore it is never necessary
to derive a solution to the full CTMC if we are only concerned with the av-
erage behaviour of systems of this kind. This follows from the following set of
relationships, derived following the pattern of Haverkort [2] pp. 241-245.

Theorem 1 implies that the average time a component spends in behaviour
Jobj , denoted Wj(N), where A(Jobj) = servicei and i ∈ M, is given by the
average number of Jobk (∀k ∈ Si) components in a system with one fewer
Jobl, ∀i, components in total. Denote Lj(N) to be the steady state average
number of components behaving as Jobj in a system with N jobs in total. If∑

∀i∈Sj
Li(N − 1) ≤ Kj − 1 and j ∈ M then

Wi =
1
rj

, ∀i ∈ Sj (2)

Otherwise, if
∑

∀i∈Sj
Li(N − 1) > Kj − 1 and j ∈ M then

Wi =
1 +

∑
∀i∈Sj

Li(N − 1)

Kjri
(3)

Clearly, if j /∈ ⋃
∀i∈M S〉, then Wj(N) is a constant, given as Wj(N) = 1/rj .

We now need to compute a quantity generally referred to as the visit count,
and denoted Vi. The visit count is the number of times derivative Jobi is visited,
relative to the number of times some reference derivative JobI is visited, where
1 ≤ I ≤ J . The actual value of Vi is not crucial, rather its value relative to the
value of VI . As such the choice of I is strictly arbitrary.

We can compute the visit count from the routing probabilities pij . Define the
probability that a component will evolve from Jobi to Jobj, without revisiting
Jobi, as follows:

Pij(σ) = pij +
∑

∀k/∈σ

pikPkj(σ)

The set σ here contains only the starting and ending behaviours of interest, in
this case i and j, i.e. it is used to tell us if we reach Jobj or first return to Jobi.
For convenience define the shorthand,

Pij = Pij({i, j})

Mean Value Analysis for a Class of PEPA Models 63

By definition, Pii = 1. Clearly the system is irreducible if

Pij > 0 ∀i, j , i �= j

Now we choose some reference point I, such that,

Vi =
PIi

PiI
, ∀i �= I

and VI = 1. Thus, Vi gives the number of times a component assumes the
behaviour Jobi, relative to the number times it assumes the behaviour JobI .

Given the quantity Vj , we can now compute the average response time per
passage for a component behaving as Jobj .

Ŵj(N) = VjWj(N) (4)

From Little’s theorem we know that

Lj(N) = Xj(N)Wj(N) = X(N)VjWj(N) = X(N)Ŵj(N) (5)

Where Xj(N) is the observed rate of activity servicej when the population size
is N , and X(N) is the sum of all possible Xj(N)′s.

Summing (5) over all behaviours Jobi, i = 1, 2, . . . , J gives,

J∑

j=1

Lj(N) = X(N)
J∑

j=1

Ŵj(N) = X(N)Ŵ (N) = N

where Ŵ (N) =
∑J

j=1 Ŵj(N). Thus,

X(N) =
N

Ŵ (N)

Hence, with Little’s law applied for a given behaviour Jobj ,

Lj(N) = Xj(N)Wj(N) = X(N)VjWj(N) =
N

Ŵ (N)
Ŵj(N) (6)

We are now in a position to calculate Lj(N) for any value of N if we can
calculate Lj(1). A solitary Jobi component will never compete for cooperation
over the actions in L, and so will experience a delay of 1/ri in each derivative
Jobi. Hence, the average number of components behaving as Jobj when N = 1,
Lj(1) is given by the proportion of time a component spends in that behaviour.

Lj(1) =
Vj

rj

∑J
i=1

Vi

ri

(7)

We now apply the following iterative solution.

64 N. Thomas and Y. Zhao

1. Calculate Lj(1) for j = 1, 2, . . . J , using (7).
2. n = 2
3. Compute Ŵj(n) for j = 1, 2, . . . J , using (2), (3) and (4) and Lj(n− 1) from

1 above.
4. Compute Ŵ (n) =

∑J
j=1 Ŵj(n).

5. Compute Lj(n) for j = 1, 2, . . . J , using (6) and Ŵ (n) from 4 above.
6. Increment n.
7. If n ≤ N return to step 3 else end.

Clearly this solution is not complicated to implement. For a system of J job
types and N jobs it is necessary to compute (2J+1)N distinct quantities. Hence,
this will generally only be costly when N is extremely large.

4 Examples

In this section we explore the class of models introduced above, through three
example PEPA models. Each example depicts a different aspect of this class.
The first model is an abstract queueing model, with probabilistic branching on
completion of service at one of the stations. The other two examples are practical
models drawn from an ongoing area of study into performance modelling of secu-
rity protocols. The first of these is a model of the classic Needham–Schroeder key
distribution protocol. This model has no branching and so mean value analysis
is applied easily. The second practical model is of a non-repudiation protocol.
This model involves a single queueing station processing separate requests from
two participants in an exchange.

4.1 Example 1: A Three Node Closed Queueing Network

Consider the following PEPA specification of a simple closed queueing network

Node1 def= (service1, ξ).Node1

Node2
def= (service2, μ).Node2

Node3
def= (service3, η).Node3

Request1
def= (service1, ξ).Request2

Request2
def= (service2, (1 − p)μ).Request1 + (service2, pμ).Request3

Request3
def= (service3, η).Request1

The entire system is then specified as

(Node1[K1]||Node2[K2]||Node3[K3])
��

{
service1,service2

service3

} Request1[N]

This system depicts a three node closed queueing network where all three
nodes are queueing stations. After completing service at node 1, all requests

Mean Value Analysis for a Class of PEPA Models 65

proceed to node 2. Following service at node 2, a proportion of requests, p, will
return to node 1, whilst the remainder will be directed to node 3. All requests
completing service at node 3 will return to node 1.

In this example it is a simple matter to compute the visit count for each node.

V1 = 1
V2 = 1
V3 = p

There are clearly many possible approaches to implementing the iterative
solution given above. For convenience this model has been solved in an Excel
spreadsheet. Solutions with population sizes of over 10000 have been derived
without any problems, although clearly a more efficient implementation is desir-
able for larger N when a range of parameter values are being considered.

Figure 1 shows the average queue size at node 3 varied with population size
N for various values of p.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

N

L3(N)

p=0.4

p=0.5

p=0.6

Fig. 1. Average queue length at node 3 varied with population size (ξ = μ = 10, η = 5)

When p = 0.5 all three nodes have the same load, hence their queue sizes will be
equal, i.e. Li = N/3. Obviously, if p is less than 0.5 then node 3 will have a lower
load than the other two nodes, hence it will have a smaller average queue length.
In fact, the average queue length at node 3 will tend to a fixed value (L3(N) → 4
as N → ∞ when p = 0.4). Conversely, if p > 0.5 then the third node will become
the bottleneck of the system, and the majority of jobs will be queueing there. In
the case p = 0.6, the average queue length at node 3 will tend to N − 10.

66 N. Thomas and Y. Zhao

4.2 Example 2: A Secure Key Distribution Centre

Consider a model of the classic Needham-Schroeder key distribution protocol
(taken from [14]) specified as follows:

KDC
def= (response, rp).KDC

Alice0
def= (request, rq).Alice1

Alice1
def= (response, rp).Alice2

Alice2
def= (sendBob, rB).Alice3

Alice3
def= (sendAlice, rA).Alice4

Alice4
def= (confirm, rc).Alice5

Alice5
def= (usekey, ru).Alice0

The system is then defined as:

KDC[K] ��
{response} Alice0[N]

Where, K is the number of KDC’s and N is the number of client pairs (Alices’s).
In this model the component Alicei represents the actions of a pair of clients

(normally referred to as Alice and Bob). The sequence of actions includes Alice
requesting a session key from a secure server, known as the key distribution
centre (KDC). This results in competition for the resources of the KDC amongst
the various client pairs. Once the key has been issued to Alice, Alice and Bob
exchange messages to confirm their mutual trust (established by shared trust of
the KDC), before using the provided session key.

Clearly there is no branching, and so Vi = 1, ∀i. Furthermore there is only
one queueing station, so this is always the bottleneck of the system unless K is
large relative to N .

Figure 2 shows the average response time at the KDC, WKDC for this system
when there is one server for various service rates. Clearly, when the service rate
is smaller, the response time is larger and its rate of increase is larger.

Figure 3 shows the average queue length at the KDC, LKDC for this system
when there is either one fast server or K slower servers. When the population
size is large (N > 30 in this case) the KDC becomes saturated and there is
consequently no difference in the service rate offered between the two cases
shown. However, when N is smaller, there will be periods where one or more
of the K servers will be idle, thus reducing the overall service capacity offered.
Hence, for smaller N , a single fast server will outperform multiple slower servers
with the same overall capacity, as is well known from queueing theory.

4.3 Example 3: A Non-repudiation Protocol

Non-repudiation protocols are used to prevent participants in a communication
from later falsely denying that they took part in that communication. There

Mean Value Analysis for a Class of PEPA Models 67

0

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N

WKDC

rp=1

rp=2

rp=4

Fig. 2. Average response time at the KDC varied with population size (rq = rB =
rA = rc = 1, ru = 1.1, K = 1)

are many such protocols, with different properties. The one depicted here, first
proposed by Zhou and Gollmann [15], utilizes a secure server, known as a Trusted
Third Party, or TTP. Consider the following PEPA specification.

TTP
def= (publish, rp).TTP

AB0
def= (request, rq).AB1

AB1
def= (publish, rp).AB2

AB2
def= (getByA1, rga1).AB3

AB3
def= (sendB, rb).AB4

AB4
def= (sendTTP, rttp).AB5

AB5
def= (publish, rp).AB6

AB6
def= (get, rgb).AB7 + (get, rga2).AB8

AB7
def= (getByA2, rga2).AB9

AB8
def= (getByB, rgb).AB9

AB9
def= (work, rw).AB0

System = TTP ��
{publish} AB0[N]

The model depicts a single TTP with N client pairs (Alice and Bob,
denoted AB). The protocol utilises publishing in a public space (e.g. a bulletin
board) by the TTP, from where the clients each download. In the specification

68 N. Thomas and Y. Zhao

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

N

LKDC

K=1, rp=4

K=4, rp=1

Fig. 3. Average queue length at KDC varied with population size (rq = rB = rA =
rc = 1, ru = 1.1)

above we are only concerned with contention on the publication by the TTP,
although it would also be possible to specify an additional component to act as
a web server.

In this model there is branching through a race on the get action in AB6,
and on service at the TTP (depending on which job type is served). Thus, the
average number of components behaving as AB1 when there are N client pairs,
L1(N), depends the number of AB1 and AB5 when there are N − 1 client pairs,
L1(N −1) and L5(N −1). Likewise, the average number of components behaving
as AB6. The branching in AB6 is specified over two get actions with different
rates. These actions depict a race condition on Alice and Bob independently
downloading from the bulletin board. In theory these could be given different
names (they should ideally be called getByB and getByA2 respectively) but
that is not possible in the current characterisation of the class of model given in
Section 3.

The visit count is identical for each behaviour ABi, Vi = 1, except V7 and V8,
given by,

V7 =
rgb

rgb + rga2

V8 =
rga2

rgb + rga2

Note that the visit count for behaviours AB1 and AB5, V1 and V5, are 1.
Since publish actions from both AB1 and AB5 are served by the TTP, the

Mean Value Analysis for a Class of PEPA Models 69

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N

L1(N)

rp=0.6, K=1

rp=0.3, K=2

rp=0.2, K=3

Fig. 4. Average number of AB1 components varied with population size (rq = rga1 =
rb = rttp = rga2 = rgb = 1, rw = 0.01)

‘apparent visit count’ of the TTP is effectively double that of the other stations,
although we are not concerned with this quantity in our derivation of mean value
analysis.

Figure 4 shows the average number of AB1 components awaiting service at the
TTP , for different values of service (publishing) rate, rp, varied with population
size. Two parameter sets are used, identical except for the values of rp, although
in each case the average service time is the same. Clearly, the values of L1(N)
and L5(N) are the same, and so only L1(N) is shown. Clearly, the more jobs
that are waiting in the queue, the longer an arriving job will have to wait. Thus,
we find that the queue becomes longer at the TTP and that proportionally less
time is spent performing the other actions, and so the throughput decreases.
The figure shows a comparison between a single server and multiple servers with
the same total service capacity. When the queue size is small then not all servers
will be utilised; the more servers there are the more likely they are to be idle.
Hence, there is linear growth of the queue when K = 3 and N < 10. In contrast,
initially queue grows less quickly when there is only one (faster) server. However,
once the population grows sufficiently for all servers to be highly utilised, then
the three cases will show identical performance.

This situation is more clearly illustrated when looking at the response time
for AB1 components in Figure 5. When K > 1 the response time is static

70 N. Thomas and Y. Zhao

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N

W1(N)

rp=0.6, K=1

rp=0.3, K=2

rp=0.2, K=3

Fig. 5. Average response time for AB1 components varied with population size (rq =
rga1 = rb = rttp = rga2 = rgb = 1, rw = 0.01)

with N when the population is small, but once the population is large enough,
the performance is once again shown to be the same in all cases.

5 Conclusions and Further Work

This paper demonstrates the solution of a class of PEPA models using classical
Mean Value Analysis [8]. This gives a relatively computationally cheap method
for solving large models without need to derive the state space of the underlying
Markov chain. The CTMC for this class of model, even when lumped using
standard techniques, is still large and generally grows at an exponential rate.
Thus, when the number of instances of the Jobi components is extremely large,
a CTMC solution is not going to be a feasible proposition. In contrast we have
derived solutions to the example models here with over 10000 Jobi components,
using a very simple (and not very efficient) spreadsheet based implementation
on a relatively old laptop PC, in a fraction of a second. In the case of example 1
(Section 4.1) the lumped CTMC would have in excess of 50 million states when
there are 10000 Requesti components.

Clearly, the approach is limited in both the metrics that can be derived and
also the class of model that is considered. The former limitation is a feature of
mean value analysis (hence the name). However, the class of model could be
extended in a number of ways. Mean value analysis applies to multiple classes
of jobs in closed queueing network. Therefore it should be straightforward to

Mean Value Analysis for a Class of PEPA Models 71

define a class of model with different groups of components, each with poten-
tially different action rates and routing probabilities. This would be a relatively
simple extension of the current class, but would involve careful use of notation
to distinguish classes in a meaningful way.

The final example considered in this paper, a non-repudiation protocol, high-
lights a situation where we may wish an action type to appear in more than one
job component, and potentially different action types in the same job component.
Such a limitation is largely cosmetic, as an equivalent model can be specified in
the existing class, as is done here. However, it should be possible to incorporate
this option with a further adjustment to the notation used in this paper.

Finally, it should be noted that there can only be one service action type at a
station and that must be given the same rate in any job type where it is enabled.
Although intuitively it is possible to model the case where there are more job
types enabled at a queueing station, doing so potential introduces race conditions
and therefore distorts the effective service rate. We are still considering how
such a situation might be best specified and it may be more feasible to consider
approximate solutions in this scenario.

References

1. Clark, G., Gilmore, S., Hillston, J., Thomas, N.: Experiences with the PEPA Per-
formance Modelling Tools. IEE Proceedings–Software 146(1), 11–19 (1999)

2. Haverkort, B.: Performance of Computer Communication Systems: A Model-based
Approach. Wiley, Chichester (1998)

3. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

4. Hillston, J.: Exploiting Structure in Solution: Decomposing Compositional Models.
In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA
2000. LNCS, vol. 2090, p. 278. Springer, Heidelberg (2001)

5. Hillston, J.: Fluid-flow approximation of PEPA models. In: Proceedings of QEST
2005, pp. 33–43. IEEE Computer Society Press, Los Alamitos (2005)

6. Mitrani, I.: Probabilistic Modelling. Cambridge University Press, Cambridge
(1998)

7. Lavenberg, S., Reiser, M.: Stationary state space probabilities at arrival instants
for closed queueing networks with multiple types of customers. Journal of Applied
Probability 17(4), 1048–1061 (1980)

8. Reiser, M., Lavenberg, S.: Mean value analysis of closed multichain queueing net-
works. JACM 22(4), 313–322 (1980)

9. Sevcik, K., Mitrani, I.: The distribution of queueing network states at input and
output instants. JACM 28(2), 358–371 (1981)

10. Stallings, W.: Cryptography and Network Security: Principles and Practice.
Prentice-Hall, Englewood Cliffs (1999)

11. Thomas, N.: Mean value analysis for a class of PEPA models, Technical Report
CS-TR-1128, School of Computing Science, Newcastle University (2008)

12. Thomas, N.: Using ODEs from PEPA models to derive asymptotic solutions for a
class of closed queueing networks, Technical Report CS-TR-1129, School of Com-
puting Science, Newcastle University (2008)

72 N. Thomas and Y. Zhao

13. Thomas, N., Zhao, Y.: Fluid flow analysis of a model of a secure key distribu-
tion centre. In: Proceedings 24th Annual UK Performance Engineering Workshop,
Imperial College London (2008)

14. Zhao, Y., Thomas, N.: Approximate solution of a PEPA model of a key distribution
centre. In: Kounev, S., Gorton, I., Sachs, K. (eds.) SIPEW 2008. LNCS, vol. 5119,
pp. 44–57. Springer, Heidelberg (2008)

15. Zhou, J., Gollmann, D.: An efficient non-repudiation protocol. In: Proceedings of
the l0th Computer Security Foundations Workshop (CSFW 1997). IEEE Computer
Society Press, Los Alamitos (1997)

	Mean Value Analysis for a Class of PEPA Models
	Introduction
	PEPA
	A Class of Closed Queueing Networks in PEPA
	Mean Value Analysis

	Examples
	Example 1: A Three Node Closed Queueing Network
	Example 2: A Secure Key Distribution Centre
	Example 3: A Non-repudiation Protocol

	Conclusions and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

