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Preface

This volume of LNCS contains the proceedings of the 6th European Performance
Engineering Workshop, held at Imperial College London during July 9–10, 2009.
This was the first in the EPEW series to be held in the UK, following on from the
highly successful workshops that were held in Toledo (2004), Versailles (2005),
Budapest (2006), Berlin (2007) and Palma de Mallorca (2008).

As with previous EPEW workshops, the event was supported by submissions
from all over the world, including Asia, the Middle East, North America, as well
as Europe. There were 33 submissions in total of which 13 were selected for full
papers and four as short papers. I would like to commend the diligent efforts
of the Programme Committee, who returned a complete set of reviews – four
per paper – which is most unusual. This enabled and enhanced the week-long
programme discussion which selected the papers presented here.

The papers themselves maintained the tradition of diversity and quality that
the European Performance Engineering Workshop has supported throughout.
Papers representing the different fields of performance engineering and analy-
sis, were broadly classified by applications, techniques and formalisms. In the
applications domain, we had a significant contribution, I believe for the first
time, in the modelling of auctions and markets. There were also contributions
on hardware modelling of RAID systems, as well as five papers on performance
aspects of cellular and fixed-line networks. New techniques presented included a
novel approach to mean value analysis, an application of stochastic ordering to
queueing networks and an interesting extension of passage-time analysis. Finally,
EPEW has always been supported by researchers using or enhancing stochas-
tic formalisms and this year we had: three papers based around the stochastic
process algebra, PEPA; a significant extension to tagged customers in general-
ized stochastic Petri nets; and a paper looking at representation and analysis of
generally distributed stochastic systems.

As Programme Chair, I would like to thank everyone involved in making
EPEW 2009 a success: Springer for their continued support of the workshop
series, the invited speakers, the Programme Committee and reviewers, and of
course the authors of the papers submitted, without whom there could not be
a workshop. I would particularly like to thank Uli Harder and Maria Vigliotti
who worked extremely hard to bring together the LNCS volume and make all
the local arrangements a success. We hope that you, the reader, find the papers
in this volume interesting, useful and inspiring, and we hope to see you at future
European Performance Engineering Workshops.

July 2009 Jeremy Bradley
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Markus Siegle Universität der Bundeswehr München (Germany)
Mark Squillante IBM T.J. Watson Research Center, NY (USA)
Miklós Telek Budapest University of Technology

and Economics (Hungary)
Nigel Thomas Newcastle University (UK)
Maria G. Vigliotti Imperial College London (UK)
Sabine Wittevrongel Universiteit Gent (Belgium)
Katinka Wolter Humboldt Universität zu Berlin (Germany)
Soraya Zertal Université de Versailles (France)
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Tagged Generalized Stochastic Petri Nets

Gianfranco Balbo1, Massimiliano De Pierro1, and Giuliana Franceschinis2

1 Dipartimento di Informatica – Università degli Studi di Torino, Italy
2 Dipartimento di Informatica – Univ. del Piemonte Orientale, Alessandria, Italy

Abstract. This paper introduces an extension of the Generalized Sto-
chastic Petri Net (GSPN) formalism in order to enable the computation
of first passage time distributions of tokens. A “tagged token” technique
is used which relies on net’s structural properties to guide the correct
specification of this extension. The extended model is suited for an au-
tomatic translation into an ordinary GSPN that can be used for the first
passage time analysis. Scheduling policies of tokens in places, that are
neglected in ordinary GSPNs, become relevant in the Tagged General-
ized Stochastic Petri Net (TGSPN) formalism and specific submodels are
proposed which are then used during the translation from TGSPNs to
ordinary GSPNs. A running example inspired by a Flexible Manufactur-
ing application is used throughout the paper to introduce the different
concepts and to provide evidence of the relevance of the results.

1 Introduction

Generalized Stochastic Petri Nets (GSPNs) [1] are a modelling formalism very
effective in the representation and evaluation of many real systems. Among the
advantages of modelling with GSPNs are the precision and the expressive power
of their constructs together with the automatic derivation of the Markov chains
that represent their underlying stochastic processes and that are used to com-
pute many classical performance indices. The standard analysis of GSPN models
amounts to the computation of their transient and stationary state probability
distributions that are used to assess their dynamics.

In this paper we report on an initial effort to augment the modelling power
of GSPNs providing definitions, constructs and methodologies useful for an easy
and straightforward computation of passage times among states of the model.
Our work is both an extension and a refinement of that of Dingle and Knottenbelt
[7] which use the tagged customer approach to assess the behaviour of GSPN
models with “customer-centric” performance measures.

As observed in [7], prior work on this type of approach in the context of GSPN
analysis is very limited. Most of the papers presenting the use of the tagged cus-
tomer method, that is typical of queueing theory [11], in models developed with
Petri net [10] or Process Algebra [5] based formalisms require a manual interven-
tion on the original model that is often difficult to perform. Computing passage
times between sets of states in Markov chains is a well known problem with
limited theoretical difficulties. Disregarding for the moment the computational

J.T. Bradley (Ed.): EPEW 2009, LNCS 5652, pp. 1–15, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 G. Balbo, M. De Pierro, and G. Franceschinis

complexity of the solution in the case of very large models, for which specific and
powerful tools exist [5,6], the actual difficulty consists in mapping the situations
that arise when the tagged customer enters and leaves a specific portion of the
model onto the corresponding sets of Markov chain states that represent the
borders for the passage time computations. Driven by application purposes, in
[7,12] the notion of “customer” is informally brought within the GSPN’s domain
making it useful for the analysis of specific cases, but leaving uncertain what
to do in other situations when models generate peculiar behaviours that require
more precise definitions.

In this paper we will recall the concept of “tagged token” introduced in [7]
and provide proper and precise methods for defining the beginning and the end
of passage times at the GSPN level. Tokens in GSPNs cannot be interpreted,
in general, as entities that travel throughout the models, but are instead in-
distinguishable quantities consumed and generated at transition firing instants.
The idea of selecting one of these tokens to make it “tagged” and of following
it throughout the net is not a trivial task, unless certain structural properties
of the net are exploited. Our proposal envisions that invariant properties, corre-
sponding to conservation conditions within the net (p-semiflows), are computed
first in order to identify “circuits” where tokens with indistinguishable behaviour
are preserved. Tokens of this type can be treated similarly to the customers of
QN models and can thus be tagged by the modeller in order to compute the
distribution of the time they take to travel between points of these circuits.

The TGSPN (Tagged Generalized Stochastic Petri Nets) formalism proposed
in this paper extends classical GSPNs with primitives that allow to identify the
input/output interfaces of a submodel as well as the p-invariant that corresponds
to a certain class of tokens. This p-invariant identifies the places where the
tagged customer can be found and thus the portion of GSPN that needs to be
manipulated in order to allow the first-passage-time analysis.

The tagged token approach allows a richer analysis of the model, but has an
obvious computational cost due to the larger state space that it induces. More-
over, the introduction of the tagged customer makes the policies used to manage
the tokens in the input places of the transitions relevant for the performance
measures obtained with this analysis and it must be explicitly addressed. The
way in which we account for this problem builds on the experience of embedding
queueing policies in the input place of a timed transition of a GSPN that led to
the proposal of Queueing Petri Nets (QPNs) [4,3,8]. We provide compact and
parametric representations of the different input queueing policies, specifically
tailored to the goal of tracking the tagged token position in the queue. The dif-
ference is that in QPNs the special queueing places embed the queue, the server
and a sort of output buffer for the tokens that have already received service that
we instead exclude from our representations.

The main contributions of this paper are thus (1) a precise extension of the
GSPN formalism to guide the identification of the tagged tokens and to support
the first-passage-time analysis; (2) the introduction of a number of queueing
policies that can be properly analyzed.
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The paper is so organized: Sec. 2 is a brief introduction to the GSPN formal-
ism; Sec. 3 introduces the method to identify the “taggable” classes of tokens
and provides the TGSPN formal definition; Sec. 4 introduces the method used to
specify at the net level the measure of interest; Sec. 5 provides automatic rules
which translate the TGSPN into a GSPN model in order to apply the analysis
and Sec. 6 extends the specification with queue policies; Sec. 7 illustrates in steps
how the analysis is done starting from the new GSPN generated in the previous
step; finally, Section 8 compares the proposed approach with works published in
the literature.

2 The GSPN Formalism

Generalized Stochastic Petri Nets (GSPNs) extend classical Place/Transition
(Petri) nets with timing specifications. GSPNs are used in many application
fields for the validation and evaluation of distributed systems characterized by
concurrency, synchronization and congestion. A detailed introduction to the for-
malism and to its applications can be found in [1]. Here we recall the notation
and the basic definitions that are useful for the rest of the paper.

Definition 1. A GSPN system is a tuple (P, T, I−, I+, H, Π,w,m0) where:

– P = {pi} is a finite and non empty set of places.
– T = {ti} is a finite and non empty set of transitions.

• E ⊆ T (often denoted as E = {Ti}) is the set of timed transitions
which fire with a random delay characterized by a negative exponential
probability distribution; each of these transitions can be either of single-
server, n-server, or ∞-server type;

• Z ⊆ T (often denoted as Z = {tj}) is the set of immediate transitions
which fire in zero time;

• P ∩ T = ∅; Z ∩E = ∅ and T = E ∪ Z.

– I−, I+ : T × P → IN are the input and output functions that correspond to
the arcs of the net, and their multiplicity;

– H : T × P → IN+ ∪ {∞} is the inhibition function that corresponds to the
inhibition arcs of the net; H(t, p) = ∞ means that no inhibition arc exists
from p to t;

– Π : T → IN is the (absolute) priority function.
– w : T → IR is a function (possibly marking dependent) that assigns to each

transition of the net:
• the rate of a negative exponential distribution of the firing delay when

transition Ti ∈ E;
• the weight (used in case of probabilistic choices) when transition ti ∈ Z.

– m0 : P → IN is a multiset on P representing the initial marking of the net.

A marking m (or state) of a GSPN is a multiset on P .
The set of input places to transition t (also referred to as the preset of t), denoted
•t, the set of output places (or postset) of t, denoted t•, and the set of inhibitor
places of t, denoted ◦t, are defined as follows:
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•t := {p ∈ P | I−(t, p) > 0}, t• := {p ∈ P | I+(t, p) > 0}
◦t := {p ∈ P | H(t, p) <∞}

A similar dot notation and similar definitions hold for the places of the net.
A transition ti has concession at marking m iff I−(ti, pj) ≤m(pj) < H(ti, pj),

∀pj ∈ P , where m(pj) represents the number of tokens in place pj in marking m.
If no higher priority transitions have concession in m, it is said that t is enabled
and it can occur, or fire.

The occurrence of transition ti yields marking m[ti〉 = m + I+(ti) − I−(ti).
The occurrence of a sequence σ of transitions enabled at m and yielding m′ is
denoted similarly: m[σ〉m′.

The enabling degree of ti in m (denoted ed(ti,m) = k) is the greatest natural
k such that kI−(ti, pj) ≤ m(pj) < H(ti, pj) ∀pj. In a given marking m, a
n-server timed transition Ti represents as many activities in parallel, as the
min(n, ed(Ti,m)).

A marking where no immediate transitions are enabled is called tangible, oth-
erwise vanishing. In GSPN models, the tangible markings which are reachable
from a given initial tangible marking m0 form the Tangible Reachability Graph
(TRG) and are the states of an underlying Markov Chain (MC) describing the
time behaviour of the system. Tangible and vanishing markings which are reach-
able from a given initial marking m0 form the Reachability Graph (RG). The
transition rates among TRG states are defined in terms of the rates associated
with timed transitions and of the weights of the immediate ones.

A p-flow f is a |P |-component vector solution of the system of linear equations
f ·C = 0, where C is the GSPN incidence matrix (C[i, j] = I+(ti, pj)−I−(ti, pj))
and · is the scalar product. A solution f whose coefficients are natural and non-
negative numbers is called a p-semiflow. The support of a p-semiflow is the set
of places corresponding to the positive components of the semiflow itself. In
our work we are interested in minimal p-semiflows: a minimal p-semiflow is such
that it can not be obtained as a positive linear combination of other p-semiflows,
which also means that there are no other semiflows whose supports are properly
included in the support of the minimal one. When the positive components of a
p-semiflow are equal to one it is easy to understand the meaning of the p-semiflow
which says that the number of tokens distributed on its support is unaffected
(remains unchanged) by the firing of any transition of the net. Formally, this
property is captured by the observation that for each p-semiflow of the GSPN
f · m = f ·m0 = N for any marking m reachable from m0. N that depends
on the initial marking of the GSPN is called a p-invariant. The sum notation∑

i f(i).pi is often used to denote the p-semiflow f .
Fig. 1 shows a GSPN model of a Flexible Manufacturing System (FMS). The

FMS comprises four manufacturing stations, from M1 through M4, where two
of them, M2 and M3, can fail. Raw parts are loaded on suitable pallets in the
Load/Unload station represented by the pair (place p0 / transition T0) and are
then manufactured being sequentially brought to the four machines. When the
manufacturing is completed, the finished part is replaced on the pallet by a
raw one and the cycle starts again. A set of repairmen (p19) operate on failed
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t1 t2
t3 t4

t5

t6

t7

T1 T2 T3 T4

T5 T6

T7

T8

T9T10

p1 p2 p3 p4 p5 p6 p7 p8

p9 p10 p11 p12

p13 p14

p15

p16

p17

p18

p19

p20

p21

M1 M2 M3 M4

Repair-men subnet

π(t5)=2 π(t7)=3

p0

T0

N pallets

Fig. 1. A FMS with faulting machines and repair-men

machines as illustrated in the lower part of the picture. They cycle between
vacation and repair periods. Upon return from a vacation (T8) a repairman
checks if a machine has failed (t5,t7) and in such case starts a repair activity
(T7, T9), otherwise goes back to vacation (t6). After the repairman ends working
on a failed machine, he takes a rest (T10) before starting a new cycle. Priority is
given to machine M3 when a repairman sees that have both failed. An example
of minimal p-semiflow of such system is 1.p2 + 1.p9 Which states that, given its
initial marking, the system will always show m(p2) + m(p9) = 1.

3 Tagged Token Specification

We already pointed out that in GSPN tokens are “volatile” elements created
and destroyed on transition firing and with no semantic relationship between
destroyed and created tokens. First passage times are defined at the level of
the CTMC that underlies a GSPN, as measures of the time taken by the chain
to move from a set of start states into a set of target states for the first time
(target states are absorbing). Since start and target states correspond to specific
distributions of tokens on the net places, it is natural to associate passage times
to movements of certain tokens through the net that thus assume a distinctive
identity meaningful for the modeller. Consider, for instance, the FMS model of
Fig. 1. Tokens in places p0, p1 up to p8 can be interpreted as the N pallets that
carry the parts from machine to machine in order to have them manufactured.
Similarly, tokens in places p16, p18, p19, p20, and p21 represent the repairmen in
different states of their activity.

When the model is not trivial, identifying the groups of tokens that represent
classes of trackable and atomic objects, as well as the parts of the model where
they can flow through, is not a simple task: hence it is useful to give some support
to the modeller in this situation.
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A rigorous notion of trackable objects can be provided looking for conservative
flows of tokens in the net. This approach not only supports the identification
of the classes of objects suited for a first passage time analysis, but it also
guarantees the correctness of the results, since it defines both a class of customers
that behave similarly and the subnet in which these customers flow.

The formal method that we use for this purpose is the computation of the
minimal p-semiflows of the GSPN; to illustrate it let us refer again to the GSPN
of Fig. 1. Default (automatically generated) names have been used to identify the
places of this net to stress the conceptual separation between the mathematical
properties derived from an automatic tool and their interpretation given by the
modeller.

The net has eleven minimal p-semiflows related to the different classes of
objects. Some of them regard the machines, for instance p-semiflow p2 + p9
concerns M1 and means that M1 can be either busy (places p2 marked), or idle
(place p9 marked). Analogously p10 + p13 + p15 + p16 states that machine M2
can be in one of the following states: idle, busy, waiting for a repairman, being
repaired. Instead p16+p18+p19+p20+p21 p-semiflow is related to the repairmen,
has invariant sum 2, and means that a repairman can be either in vacation (place
p19 marked), in service (place p20 marked), working (places p16 or p18 marked),
or resting after a repair (place p21 marked). For what concerns the raw pieces
being manufactured, p-semiflow p0 +p1+p2 +p3+p4 +p5+p6 +p7+p8 identifies
the pallets serving the different machines; its invariant sum is 3.

With these interpretations, we can choose one of these p-semiflows to compute
the first passage times of interest. For instance, we could assess the efficiency of
the model from the point of view of the average length of the intervals between
repairman vacations, or of the probability that the processing-time taken by the
pallets to go through the part of the system that may fail (machines M2 and
M3) remains below a certain threshold.

The distribution of the first passage time is computed for the submodel of
interest by means of a tagging procedure which refines the subnet in order to
single out the interaction of one of the tokens of a certain class with respect to the
others. Starting from a GSPN extended with the indication of the p-semiflow
of interest a modified and equivalent version can be built which accounts for
the identity of one of these tokens and which explicitly encodes it into the net
structure. The identified customer is denoted as the tagged-customer, while the
related token, that carries its identity in the whole net, the tagged-token. The
extended net captures the dynamics of the tagged customer with respect to the
others and can thus answer the performance questions of interest.

The whole tagging procedure can be schematized with the following steps:

1. the minimal p-semiflows of the model are computed and shown to the mod-
eller as eligible classes of customers;

2. the modeller, on the basis of his/her knowledge of the application, selects
one of the semiflows, thus identifying the class of customers of interest;

3. the subnet corresponding to the chosen semiflow is modified in order to track
one token out of the group for first passage time analysis (see Sec. 5).
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The subnet modification foreseen in the last step of the procedure, might
require additional information on the characteristics of the model such as the
scheduling discipline used to manage the tokens of a queue place. By default
a Random Order (RO) policy is adopted, however several other policies may
be specified, as will be discussed in Sec. 6, that are irrelevant for the standard
analysis, but that become important for the correct computation of the first
passage time distribution.

The formal definition of Tagged GSPN (TGSPN) follows:

Definition 2. Tagged GSPN: A Tagged GSPN, TGSPN, is a tuple
(
N, f , p◦, Q

)
such that:

– N =
(
P, T, I−, I+, H, Π,w,m0

)
is a GSPN;

– f is a minimal p-semiflow of N. It identifies the sets P ⊆ P and T ⊆ T such
that P = {pi ∈ f}, T =

⋃
pi∈P

•pi ∪ p•i ;
– f is such that if pi, pj ∈ P (i �= j) then •pi ∩ •pj = ∅;
– p◦ ∈ P : m0(p◦) > 0 is the place where the tagged-token is located in the

initial marking m0;
– The places in P that have at least one output transition which is timed are

called queue places. Q maps each queue place to one of the following schedul-
ing policies: Random Order (RO), First Come First Served (FCFS), Last
Come First Served with No Preemption (LCFS), Last Come First Served
with Preemption-Resume (LCFS-PR);

– The default scheduling policy for queueing places is RO;
– Several transitions that share an input place which is a queue place with

policy different from RO must satisfy the following conditions: (i) the queue
place must be the only input place in their input set; (ii) they must all have
the same number of servers; (iii) their rate can’t be marking dependent.

The third condition of Def. 2 is introduced mostly to minimize the amount
of additional information that must be specified for the equivalent extended
net to be constructed. Relaxing a few of this constraints is presently under
investigation, but additional work is needed in order to enlarge the class of
treatable models without hampering the robustness of the definition.

4 Net Definition of First Passage Time

One of the most challenging points of this work is to provide a clear and easy to
use net level specification of passage times that enables the modeller to define
the measures of interest on the net rather than on its underlying CTMC. The
passage of customers throughout the net corresponds to traversal paths that they
follow and along which timing intervals are measured. Focussing the attention
on the class of customers identified by a p-semiflow f , we can identify the subnet
Nf that is a restriction of N on the sets of places and transitions respectively
identified by P and T, given in Def. 2 of TGSPN. Passage time information is
provided identifying, within Nf , an open (not cyclic) path. In the simplest form



8 G. Balbo, M. De Pierro, and G. Franceschinis

a path is identified by start and end points, however forbidden ways along the
route could also be specified. The formulation of start and end points is based
on a notion of events that cause the tagged–customer to enter, and subsequently
leave, the path of interest. This is obtained by identifying specific transitions of
Nf that we call entry and exit points, denoted respectively with sets Sin and Sout

The connected component S of Nf that is defined following the oriented arcs
from the entry–points to the exit–points, constitutes the traversal–path along
which to compute the passage time: actually the traversal–path S is a subnet of
Nf . For instance, in the FMS model of Fig. 1, considering the activities of the
repairmen, the modeller can specify to start the passage-time computation from
the beginning of a working cycle (transition T8) up to the end of a repairing
cycle (transitions T7 and T9) without taking a vacation again (transition t6).
Possibly, he can specify also one exit–point only, T7, if he is interested in the
traversal time on machine M2 only.

Forbidden paths are specified through forbidden exit–point transitions (de-
noted by Sforb set). These transitions reduce the size of subnet S preventing the
algorithm that computes this connected component to include undesired paths
in the result. Forbidden paths translate into forbidden states of the CTMC used
for first passage time computation ([9]). In this work, places of S cannot be mem-
bers of the preset •t (respectively postset t•) of an entry–(exit–)point t to keep
the derivations simpler and to provide an easier interpretation of the results.

Further refinements on the initial and final states can be provided by means of
Boolean expressions on the local markings of places. Given a subnet traversal–
path S consistent with the above definition, start states are characterized by
a set of 3-tuples START = {〈t, Cpre

t , Cpost
t 〉} where t ∈ Sin and Cpre

t , Cpost
t

are Boolean conditions on the marking. The conditions Cpost
t , Cpre

t that must
be satisfied by start states and by their predecessors in the (tangible) RG are
used to restrict the measure of the first passage time to some specific condition,
e.g. one may be interested in the time spent in a given subnet by the tagged
customer, conditioned on the fact that no other customer was in the subnet upon
its arrival.

One possible specification of a traversal–path is:

– START = {〈t2,m(p6) = 1 ∧m(p19) = 2, true〉}, Sout = {T3}: it specifies a
traversal path S denoting the time of a raw piece (the customer of interest)
takes to pass through machines M2 and M3, given that upon its arrival the
machine M3 was busy working on another piece and all the repairmen were
in vacation.

5 Unfolding the TGSPN into a GSPN

In this section we discuss the method for constructing a GSPN equivalent to a
TGSPN characterized by a (specific) p-semiflow f . As we already pointed out,
this p-semiflow identifies a class of customers (or tokens) that are the subjects of
the tagging procedure. The expansion amounts to isolate one of these customers
and to explicitly represent the ways in which it interacts with the others. For this
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purpose, let us define a new subnet N+
f , that includes Nf and that is a restriction

of N on the set of transitions T and on the new set of places P+ =
⋃

t∈T(•t∪ t•).
In this section we assume that a random order policy is implicitly adopted for
all the queue places of the net. In Sec. 6 we will discuss how to deal with some
other scheduling policy.

We denote the process of refining the subnet N+
f in order to tag a token as

the unfolding of the TGSPN. It considers, one at the time, all the transitions
of the subnet N+

f (also called tagged transitions in the sequel) and is formally
defined in the following.

To better illustrate the unfolding procedure, Fig. 2 is provided as a reference:
it depicts the process for a single tagged transition. Part (a) depicts a TGSPN
fragment, where transition ti and places pj, and pl are tagged, i.e., ti ∈ T and
pj , pl ∈ P. Part (b) presents the unfolded GSPN: transition tti and places pt

j, and
pt

l constitute part of the unfolding of ti, pj , and pl, and specifically that related
to the subnet involved in the movement of the tagged-token. Transition tui and
places pu

j , and pu
l represent instead is the part of the unfolding of ti, pj , and pl

related to the subnet involved in the movement of tokens that in the TGSPN
are the ”other” customers. Here, we illustrate the unfolding rules for tagged
transitions having a single input tagged-place, however the procedure has been
generalized to the case of multiple input tagged places, as explained in [2].

Let (N, f , p◦, Q) be a TGSPN, with N = (T, P, I−, I+, H, Π,w,m0), then it is
possible to construct an equivalent GSPN N′ = (T ′, P ′, I ′−, I ′+, H ′, Π ′,w′,m′

0)
as follows. Let T = {ti} and P = {pi}, and assume pk ∈ P′ where P′ = P+\P.
To avoid useless repetitions, let I∗ represent both I− and I+, then:

– T ′ = T \T ∪ T + where T + = {tti, tui : ti ∈ T}
– P ′ = P\P ∪ P+ where P+ = {pt

i, p
u
i : pi ∈ P} ∪ {pr ∈ P : p◦r �= ∅}

– I ′∗(tui , pu
j ) = I∗(ti, pj) ∀tui , pu

j , I ′∗(tui , pk) = I∗(ti, pk) ∀tui , pk

I ′∗(tui , pt
j) = 0 ∀tui , pt

j

– I ′∗(tti, p
t
j) = 1, ∀tti, pt

j , I ′∗(tti, pk) = I∗(ti, pk) ∀tti, pk

I ′∗(tti, p
u
j ) = I∗(ti, pj)−1, ∀tti, pu

j

– I ′∗(ti, pj) = I∗(ti, pj)
– H ′(ti, pj) = H(ti, pj) ∀pj ∈ P\P, ∀ti ∈ T \T
– H ′(tti, pj) = H ′(tui , pj) = H(ti, pj), ∀pj ∈ P\P ∀ti ∈ T

– ∀pj ∈ P, ∀tk ∈ T such that H(tk, pj) �=∞, place pj is added to P ′ of N′ in
order to record the marking of the tagged place pj ∈ P. pj ∈ P ′ is such that
•pj = •pu

j ∪ •pt
j and pj

• = pu
j
• ∪ pt

j
•. If tk ∈ T \T then H ′(tk, pj) = H(tk, pj)

(Figure 2.d); if tk ∈ T then H ′(ttk, pj) = H ′(tuk , pj) = H(tk, pj).

The initial marking m′
0 of N′ is:

– ∀pi ∈ P : pi �= p◦ m′
0(p

u
i ) = m0(pi) ∧ m′

0(p
t
i) = 0

– m′
0(pu◦) = m0(p◦)− 1 ∧ m′

0(pt◦) = 1
– ∀pi ∈ P\P m′

0(pi) = m0(pi)

Always to avoid repetitions, let * denote either u or t. The firing weights and
rates w′ of N′ are modified according to the rules that are discussed in the
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Fig. 2. Unfolding procedure for I∗: (a) TGSPN, (b) unfolded GSPN; and H : (c)
TGSPN, (d) unfolded GSPN

following. Observe that the formulae below are valid for timed transitions whose
input arc from a tagged place has multiplicity one. A general formula has been
derived for the case of arc multiplicity greater than one, as illustrated in Fig. 2
(see [2]).
Immediate transitions: if transition ti ∈ T is an immediate transition with
weight w(ti), then its unfolded copies tti ∈ T ′ and tui ∈ T ′ in the new GSPN
remain immediate with rates dependent from the marking:

w′(t∗i ,m) = w(ti)
m(p∗j )

m(pu
j ) + m(pt

j)

Timed transitions of type Infinite Server: if transition ti ∈ T is a timed
transition of type “Infinite Server” and rate r(ti), then its unfolded copies tti ∈ T ′

and tui ∈ T ′ in the GSPN remain timed of type “Infinite Server” with rates
r′(tui ) = r′(tti) = r(ti);
Timed transitions of type n-Server: if transition ti ∈ T is a timed transition
of type “n-Server” and rate r(ti), then its unfolded copies tti ∈ T ′ and tui ∈ T ′ in
the new GSPN remain timed but of type “Marking Dependent” with rates:

r′(t∗i ,m) = min{m(pu
j ) + m(pt

j), n}r(ti)
m(p∗j)

m(pu
j ) + m(pt

j)

The above expressions are valid only if, in the TGSPN, pj is the only place in
the input set of ti; more generally the ed(ti,m) must be considered in place of
min{m(pu

j ) + m(pt
j), n}.

Timed transitions of type Marking Dependent: if transition ti ∈ T is a
timed transition of type “Marking Dependent”, assume that the marking depen-
dent rate of transition ti is expressed as a function g(m). Let pj ∈ P the tagged
place input of ti. Then the unfolded copies of ti, tti ∈ T ′ and tui ∈ T ′, in the new
GSPN remain timed of type “Marking Dependent” with rates that are modified
in the following manner: g∗, the marking dependent function of transition t∗i , is
obtained by g after an appropriate variables substitution for any value of k such
that pk ∈ P:
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Fig. 3. (a) Untagged GSPN implicit queue; (b) general unfolding scheme. A queueing
place with more servers: (c) original net; (d) intermediate translation

g∗(m) =
m(p∗j )

m(pu
j ) + m(pt

j)
g
(
m(p1), . . . ,m(pu

k) + m(pt
k), . . . ,m(pn)

)

6 Queueing Policies

In passage time analysis the scheduling of tokens at transition firing is relevant.
Up to now we assumed that queue places were managed with a RO policy. Sev-
eral other scheduling policies can be specified in a TGSPN allowing to increase
the modelling power of the formalism. The scheduling discipline is specified an-
notating a place of the TGSPN with the corresponding policy; not annotated
places will be served in RO. We assume that scheduling policies are associated
with places meaning that when several transitions withdraw tokens from the
same place, they all use the same policy to choose the token upon firing.

Currently TGSPNs (see Def. 2) allow for the specification of the following
scheduling disciplines at queue places in case of n-server transitions: FCFS, RO,
LCFS, LCFS-PR. In this section we discuss the net unfolding for LCFS only.
Similar translations have also been devised for the other cases and can be found
in [2]. Fig. 3.a-b show the general pattern used for the translation: in part (a) is
the TGSPN where the tagged transitions denoting the arrival and the departure
of a customer are respectively named tarrive and tdeparture, whereas the tagged
place subject to scheduling and annotated with the policy is named pqueue; part
(b) shows the unfolded nodes and the unfolded block modelling the queue at
place pqueue. The subnet in the block could explicitly model every position in the
queue as well as the modifications occurring in the queue upon each arrival and
departure, but then we would need to include a structure with size depending
on the maximum number of tokens in the queue place. A different approach
is possible and is discussed in the sequel where the queue is represented in a
compact manner tracking only the position of the tagged token in the queue.

When a queue place is shared among several servers, the problem can be
normalized as shown in Fig. 3.c-d where the sojourn of the tokens in the queue
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Fig. 4. GSPN model of the (a) n-server with LCFS without PR; (b) 1-server with
LCFS with PR

is split from the identification of the server which actually triggers the change of
state. An embedded MC argument can be used to show that the representations
of Fig. 3.c and 3.d are equivalent from the point of view of the CTMC that
underlies the model.

LCFS scheduling policy. Figure 4.a shows the GSPN for the LCFS schedul-
ing policy (without preemption) when tagged with regard to a given customer.
The server is assumed to be a n-server station. At any instant, the customers at
the queue are classified into those arrived ahead of the tagged-customer (tokens
in place p3) and those arrived after the tagged-customer (tokens in place p1).
The tokens in place p2 model the customers being served and a token in place p6
models the tagged-customer that is being served. The logical queue is represented
by the set of places p1, p3, p5 and p7. As soon as the tagged-customer enters the
queue (p7) all the customers, except those currently served, are preempted from
place p1 and put in place p3 (higher priority immediate transition overtake im-
plements this) since they become temporarily “older” than the tagged-customer:
these customers stay in p3 till the tagged-customer gets the server (p6), in fact
inhibitors arcs (p5, t1) and (p7, t1) prevent tokens in p3 from leaving this place as
long as the tagged-token is in the queue. Tokens arriving in place p1, while p5 is
marked, represent the customers that joined the queue after the tagged-customer
arrival: These tokens will overtake the tagged-customer at the server when one
instance will be available, in the depicted net this is obtained by assigning pri-
ority to transition gets-serv over transition gets-serv′. Figure 4.b shows another
example: the translation for a LCFS-PR with a single-server station.

7 Computing the Passage Time of the Unfolded TGSPN

Let N and N′ be the TGSPN and the unfolded TGSPN respectively. The compu-
tation of the first passage time requires first the precise definition of the markings
that represent the start and target sets.
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Starting from the net level definition of a traversal–path S, coupled with
marking refinements, the derivation of the start and target states of the CTMC
is straightforward.

A (tangible) marking ms is a start state iff it is reachable from a tangible
marking m′ through the firing of a sequence σ made up of one timed transition
followed by zero or more immediate transitions (m′[σ〉ms) containing exactly
one transition tti that is the tagged expansion of transition ti such that:

– ti ∈ Sin (and thus 〈ti, Cpre
i , Cpost

i 〉 ∈ START ),
–
∑

pt
j∈S′ m′(pt

j) = 0 ∧∑pt
j∈S′ ms(pt

j) = 1 (which ensures that the firing of tti
corresponds to moving the tagged token from a place outside S′ to a place inside
S′, being S′ the unfolded version of S),
– Cpre

i = true ∧ Cpost
i = true.

Similarly, a target state is any (tangible) marking me obtained by selecting all
arcs m′′[σ〉me in the TRG annotated with a firing sequence σ including the firing
of ttj , such that tj ∈ Sout, m′′ is reachable from a start state ms through a path
that doesn’t contain any end state, and

∑
pt

j∈S′ m′′(pt
j)=1∧∑pt

j∈S′ me(pt
j)=0.

Analogous reasoning can be made for the forbidden states. Attention should be
paid to those start states that besides being reachable through arcs involving a
subnet entry–point can also be reached through some “internal” arc of the path
going from a start to an end state (details are in [2]).

The main steps of the computation procedure are:

1. Generation of the MCN′ from the unfolded GSPN N′ (see Sec. 5);
2. Selection of the start and target states: it consists in recognizing the states of

N′ that are start and target using the information provided by sets START ,
Sout and Sforb;

3. Transformation of the MC: all the target states in the CTMC must be made
absorbing (i.e., all transition rates out of these states must be set to 0);

4. Classical first passage time computation techniques [9] are applied to the
MC generated in the previous step. When a set of starting states is defined
an initial distribution over these states (to provide some relative weights)
is needed. Several choices for this distribution are possible ranging from
the portion of the steady state distribution computed for the whole GSPN
(when there is one) up to an initial distribution specified by the modeller
given the objectives of the study. It is also possible to optimize this step
by computing the steady state probability of the MCN before applying the
unfolding, and then properly distributing to the start “unfolded” states of
MCN′ .

Presently we only have a prototype implementation of this solution technique,
but several tools are available to perform such computation (e.g. [5,6]) and we
are planning to investigate whether they can be easily interfaced to work with
the method proposed in this paper.
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8 Conclusions and Related Work

In this paper a new definition of Tagged GSPN has been introduced, in which
tagged places and transitions are chosen with the support of methods that exploit
the structural properties of the model and where queueing places implementing
various scheduling policies may be specified.

Our work is an improvement of that reported in [7] which represents, in our
opinion, the only paper addressing this topic within the GSPN context in a
systematic manner.

The choice of the places and transitions to be tagged is in our proposal related
with the possibility of computing the p-semiflows of the net that identify the
locations where tokens are preserved and thus ”circuits” where the movement of
tokens can be interpreted as a flow of customers.

Ensuring that the tagged places and transitions are those identified on the
basis of a p-semiflow overcomes a potential source of problems contained in the
original definition proposed in [7]. Indeed, that definition does not seem to re-
quire that either none or all the arcs departing from a place must be tagged: this
could be a potential source of problems, because without this restriction it is not
possible to guarantee that the behaviour of the untagged GSPN is “equivalent”
to (i.e. is an exact lumping of) that of the unfolding of the tagged GSPN (as long
as only average performance indices need to be computed). For instance, consid-
ering the behaviour of the repairmen of the FMS of Fig. 1, our technique requires
to tag all the nodes of the subnet comprising the places p16, p18, p19, p20, andp21
(as already pointed out in Sec. 3). However, tagging only part of this subnet
(specifically p19, T8, p20, t5, p16, T7, p21, T10, andt6) would satisfy the restrictions
provided in [7], but would also yield a sub-model that traps the tagged customer
(one of the two repairmen) which is thus prevented from working at the repair
of machine M2. Obviously the state spaces of the two models would differ in this
case making this tagged model not equivalent to the un-tagged one.

Moreover, compared to the way of specifying start and end states proposed in
[12] and [7], the definition given in this paper was devised to be both more precise
and more intuitive for the modeller. More precise because the characterization
of start states should be related not only to some condition to be satisfied by
the corresponding marking, but also to the event of the tagged customer arrival
in the subnet under observation (this may have some subtle implications, in
particular when computing the steady state distribution of the start states, as
it is illustrated in [2]). More intuitive for the modeller because the “first passage
time” notion at the level of an abstract model (such as a GSPN) where the system
structure is represented rather than the detailed state-transition diagram, it can
quite naturally be associated with the notion of “traversal time” of a given
subnet.

Finally, this paper provides an original and efficient way to consider schedul-
ing policies different from the random order one. An interesting feature of our
proposal is the compact and parametric representation of the queue, specifi-
cally tailored to the goal of tracking the tagged token position in the queue.
The semantics of TGSPNs with queue places is formally defined by means of an
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unfolding and queue place substitution procedure, that allows to automatically
generate a GSPN model, ready for generation of a CTMC on which existing
passage time density computation techniques can be applied.

There are several possible developments of the work presented in this paper,
mostly related with the use of High Level Petri Net formalisms. A first possibility
could be that of exploiting the characteristics of these modelling languages to
identify symmetries and to automatically generate reduced state spaces. The
second obvious advantage could derive from the possibility of modelling in a
natural manner several classes of customers flowing through common parts of
the net and of isolating a customer of one class as tagged customer in order to
obtain a detailed comparison of their behaviours.
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Abstract. RAID systems are ubiquitously deployed in storage environ-
ments, both as standalone storage solutions and as fundamental
components of virtualised storage platforms. Accurate models of their
performance are crucial to delivering storage infrastructures that meet
given quality of service requirements. To this end, this paper presents a
flexible fork-join queueing simulation model of RAID systems that are
comprised of zoned disk drives and which operate under RAID levels 01
or 5. The simulator takes as input I/O workloads that are heterogeneous
in terms of request size and that exhibit burstiness, and its primary out-
put metric is I/O request response time distribution. We also study the
effects of heavy workload, taking into account the request-reordering op-
timisations employed by modern disk drives. All simulation results are
validated against device measurements.

1 Introduction

RAID1 has revolutionised data storage because of its ability to synthesise a set of
low-cost commodity storage devices into a single logical unit that can deliver high
reliability with high performance. However, RAID system performance varies
heavily in practice, depending on chosen configuration and operating context.
Given a budget and an expected workload, it is therefore a major challenge for
system designers and engineers to select RAID components and corresponding
configurations capable of delivering a required level of quality of service. Perfor-
mance models provide a low-cost means to evaluate the suitability of candidate
system designs ahead of implementation.

In the above context, this paper introduces a queueing-based simulator for the
analysis of RAID systems comprised of zoned disks. Our goal is to provide an el-
egant high-level framework that avoids very detailed low-level device simulation

� Corresponding author.
1 Redundant Array of Inexpensive Disks [1]; RAID levels describe various ways of

spreading data across multiple storage devices using striping, mirroring, and/or
parity.

J.T. Bradley (Ed.): EPEW 2009, LNCS 5652, pp. 16–29, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(e.g. as performed by the DiskSim [2] and RaidSim [3] simulators) and which can
be simply parameterised from disk drive technical specifications. The simulation
generates as its primary output metric the cumulative distribution function of
I/O request response time. From this, it is straightforward to calculate met-
rics typically encountered in Service Level Agreements, including response time
quantiles and the mean, variance and higher moments of I/O request response
time.

Simulation is often used to study RAID system performance, since there exist
no exact analytical models of RAID of any level [4]. However, there are numer-
ous analytical queueing network approximations (e.g. [5,6,7,8,9]). In [4,10,11]
we have developed approximate analytical queueing models of RAID 01 and 5.
Simulations are often used to validate the results of analytical models. Addition-
ally, they provide the ability to replicate the details of the scheduling algorithms
and mechanical behaviour of real systems, while analytical models must abstract
these details. Thus, simulations can aid the development of more realistic ana-
lytical models.

In [12] we introduced a zoned RAID simulator for RAID level 0 (striping,
no redundancy). This simulation is based on modelling each disk drive as an
M/G/1 queue and approximates RAID 0 as a split-merge queueing system (see
Figure 1(a)). In this system, a job (I/O request) splits into N subtasks which
are serviced in parallel. Only when all the subtasks finish servicing and rejoin
can the next job split into subtasks and start servicing. However, it is generally
accepted that the queueing model which most accurately reflects the behaviour
of RAID systems is the fork-join queueing network [5]. In a fork-join queue with
N queues, (see Figure 1(b)), each incoming job is split into N subtasks at the
fork point. Each of these subtasks queues for service at a parallel service node
before joining a queue for the join point. When all N subtasks in the job are
at the head of their respective join queues, they rejoin (synchronise) at the join
point.

(a) Split-merge queueing model (b) Fork-join queueing model

Fig. 1. Split-merge vs. fork-join queueing models

This paper presents a fork-join simulation capable of modelling RAID levels
01 (mirror of stripes) and 5 (distributed parity). In order to simulate a RAID
system, we must first implement an effective single disk simulation. We can then
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use several instances of this single disk simulator as components in our disk array
simulator. Section 2 summarises our single disk simulation, which utilises the
JINQS Java-based queueing simulation library [13]. Section 3 details the fork-
join extensions to the single disk simulator required to create an effective model
for RAID. This involves firstly simulating a fork-join queueing network and then
tailoring it to model the specific demands of RAID 01 and 5. Furthermore we
enhance the model to accept various types of workload. We then validate the
accuracy of this new simulator by comparing results from several different types
of workload to device measurements taken on a real RAID system.

2 Single Disk Simulation

We model single disk drives as M/G/1 queues and use the JINQS Java-based
simulation library [13] for M/G/1 queue simulation. The service time density of
an access to a random location on a single disk drive is the convolution of the seek
time, rotational latency and data transfer time probability density functions. In
our model we use the seek time and rotational latency probability distributions
defined in [14] and the data transfer time distribution from [4]. The seek, rotation
and transfer times are sampled using the cumulative distribution function inver-
sion method described in [12]. An important subtlety that needs to be taken into
account is that modern disks are zoned, with more sectors on the outer tracks
than inner tracks. Therefore, a random request is more likely to be directed to a
sector on an outer track. Similarly, zoning means that it is faster to transfer data
on a track close to the circumference than the centre of the disk. The seek time
and data transfer models must take these factors into account. We assume that
all requests are random accesses and therefore it is always necessary to position
the disk head before transferring data.

3 RAID Simulation

Disk arrays organise multiple independent disks into a single logical disk unit. By
striping data across multiple disks and accessing the disks in parallel, higher data
transfer rates are achieved, especially with larger I/O requests. Data striping also
ensures that data is balanced across the disks, avoiding data hot spots. Disk
striping involves writing data blocks of a constant pre-defined size to successive
disks in a cyclical pattern.

However, the larger the disk array, the more likely it is that a member disk
will fail. In order to avoid data loss as a result of failures, redundancy can be
employed using mirroring (see Figure 2(a)) or parity blocks (see Figure 2(b)).
Parity is block-interleaved and distributed across all disks.

All these schemes involve striping of I/O accesses across disks in the disk
array. A fork-join queue in which customers represent I/O requests provides a
good foundation for an abstraction of this behaviour.
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(a) RAID 01 (b) RAID 5

Fig. 2. RAID Configurations [15]

3.1 Fork-Join Simulation

As shown in the UML class diagram of Figure 3, our queueing simulation is spec-
ified in terms of QueueingNode, Link and Customer classes. QueueingNodes are
connected by Links to create a network of queues. Response times measurements
are obtained by recording the time each Customer spends in the network. To ex-
tend this for fork-join queueing, we introduce ForkLink and JoinLink classes to
extend the Link class and a ForkedCustomer class to extend the Customer class.
ForkedCustomers are created at a ForkLink when a customer forks into subtasks
and removed at the JoinLink. A ForkLink creates a new ForkedCustomer for each
subtask, each with a reference to the original Customer. These ForkedCustomers
are sent to one of the n single M/G/1 queues. When a ForkedCustomer leaves an
M/G/1 queue, it is sent to JoinLink, which collects all ForkedCustomers. When
all the ForkedCustomers for a particular Customer have arrived, the original
Customer is sent on its way and all of its ForkedCustomers are destroyed.

3.2 RAID 01 Simulation

There are certain extensions to the fork-join simulation described above that
must be made to model a RAID 01 system accurately.

In particular, both the fork-join simulation described above and the RAID 0
simulation of [12] are limited to supporting requests consisting of a number of
subtasks that is a multiple of the number of disks. We therefore extend the
ForkLink class with RAID01ReadForkLink and RAID01WriteForkLink classes,
both of which support striping of variable size subtasks across disks starting
from a randomly selected disk. Additionally, we extend the JoinLink class with
the RAIDJoinLink class to support joining of variable-sized requests.

In terms of subtask scheduling for RAID 01 read operations, we assume an
efficient RAID controller which reads half the data from the primary disks and
half the data from the mirror disks [7]. RAID 01 write operations send each
subtask to both the primary and mirror disks and create double the number of
ForkedCustomers as for a read request of the same size.
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Fig. 3. RAID simulator class diagram

3.3 RAID 5 Simulation

Manufacturers of RAID controllers seldom reveal the mechanisms and scheduling
strategies involved in their products. In the cases of RAID 0 and 01, the likely
disk accesses are relatively straightforward to predict. However in RAID 5, par-
ticularly with operations involving pre-reads and parity updates, there are many
possibilities for scheduling strategies and disk head positioning times within a
request. Here we base the design of our RAID 5 simulation upon the operational
assumptions of RAID 5 disk behaviour presented in [4,7,11].

In a manner analogous to the RAID 01 case, we extend the ForkLink class
with RAID5ReadForkLink and RAID5WriteForkLink classes.

A RAID 5 read request will read only from the disks containing data blocks in
a stripe and not the disk with the single parity block in each stripe. To simulate
this, when forking each request, the position of the parity disk is randomly chosen
as well as the starting disk. If a request accesses more than one stripe, then the
position of the parity disk within the array is incremented (modulo the number
of disks) at the end of each stripe.
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The behaviour of a RAID 5 write is complex, with different parity-update
schemes that depend on the size of the request. For simplicity, we assume requests
are aligned to start striping from the first disk in the array.

Given a b-block write request on an n-disk RAID 5 system, the possibilities
are:

If a request consists of a number of complete stripes (i.e. b mod (n− 1) = 0),
all the disks are utilised, with either the new data block or the new parity block
written to each disk. Full stripe writes can be simulated by sending ForkedCus-
tomers to each disk and joining them at the RAID5WriteJoinLink when all
subtasks have completed.

If a request consists of b mod (n− 1) < n−1
2 blocks (i.e. it consists of zero or

more full stripe writes followed by a small partial stripe write), then parity is
calculated using [1]:

new parity = new data ⊕ old data ⊕ old parity

where ⊕ is the exclusive-or (XOR) operator. This is a read-modify-write oper-
ation. After transferring the full stripes, each of the b mod (n − 1) blocks and
parity must be transferred twice, first to read the old data and parity, then to
write the new data and parity. When the old data and parity have been read
from all disks, a new request will be issued to write the new data and parity
to the same disks. This request is given non-preemptive priority in the queue,
so at least one disk (the last to complete the pre-read) will just have completed
reading a data or parity block that now needs to be re-written.

If n−1
2 ≤ b mod (n − 1) < n − 1 (i.e. the request consists of zero or more

full stripe writes followed by a large partial stripe write), then to minimise disk
accesses the parity is calculated by pre-reading from the disks that are not being
written to. The new parity is calculated by XOR-ing the data that will be written
with the data from the disks that will remain unchanged. This is a reconstruct-
write operation. After the full stripe transfers, n−1−b mod (n−1) blocks of data
are pre-read for the calculation of the new parity. When all n−1−b mod (n−1)
disks complete their pre-read, a new request is sent to the other b mod (n−1)+1
disks to write the new data and parity.

Simulation of the above operations is supported in the RAID5WriteForkLink
and RAID5WriteJoinLink classes. The RAID5WriteForkLink subdivides any
arriving request into full stripe subtasks followed by pre-read subtasks. These
subtasks are then routed to the relevant M/G/1 queues. When the pre-read
subtasks have completed and are accounted for at the RAID5WriteJoinLink
then, instead of completing the request, the RAID5WriteJoinLink creates a new
high priority request to send back to the RAID5WriteForkLink, where it splits
into b mod (n−1)+1 subtasks (the number of blocks to write plus the parity). In
order for the simulation to differentiate between full stripe writes and pre-reads
and the following partial stripe write, the ForkedCustomers are assigned classes
representing the type of request.

The subtasks of the partial stripe write will have different service times de-
pending on the nature of the previous request serviced by the disk. In the case
that b mod (n− 1) < n−1

2 , there are four possible scenarios to be considered.
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The first scenario is when the disk is busy at the arrival instant of any of
the partial stripe write subtasks. Since the partial stripe write is accessing all
the disks used for the pre-read, and all the pre-reads must complete before the
partial stripe write is issued, it is not possible that the job currently servicing is
a ForkedCustomer from the same Customer. Hence to simulate a return to the
required disk position to transfer data, a random sample of seek and rotation
time is taken.

If the disk is idle on arrival of a subtask, then there are a further three mutually
exclusive scenarios with different positioning times:

– If another request has been in service between the pre-read and partial stripe
write subtasks then the simulator needs to sample a new seek and rotation
time.

– If the disk was the last to complete the pre-read, then it will be positioned
on the correct track, but just past the rotational position. In this case, the
simulator returns a positioning time of one full disk rotation.

– Otherwise, the disk is still positioned at the correct track and the simulator
needs to sample from the rotational latency for positioning time.

If b mod (n − 1) ≥ n−1
2 , there are again a number of scenarios to consider.

Since the pre-read involves different disks than the partial stripe write, it is
possible that previous full stripe subtasks from the same request could still be
servicing on the disks required for the partial stripe write after the pre-read has
completed.

In this context, if a subtask arrives to a busy disk, we consider whether the job
currently in service is part of the same request. If it is, the subtask will follow on
with no positioning time. If it arrives to an idle disk, the simulator checks if the
previous job was part of the same request. If it was then the disk head is pointing
to the correct track and the simulator needs to sample rotational latency only.
In all other cases the positioning time is obtained by sampling both seek and
rotation time.

Since we are simulating zoned disks, we must take into account that the
transfer time must be same both for the full-stripe and pre-read and for the
partial stripe write requests, since they are both accessing the same position on
the disk. Therefore, the transfer time for each subtask to each disk is recorded
in a hash table and referred to when the partial stripe write is serviced.

When all the partial stripe write subtasks complete, the RAID5WriteJoinLink
sends the single request on its way and removes all ForkedCustomers attached
to that request.

3.4 Bulk Arrivals

Most queueing simulations assume that arriving requests are Markovian. How-
ever, over the last decade, there have been many studies of storage system I/O
traces (e.g. [16,17,18,19,20,21]) which consistently show that real-life arrivals
to storage systems exhibit burstiness and a variety of request size distributions.
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Consequently, we have extended the simulator to support bulk arrivals of I/O
requests at the RAID controller, making use of JINQS ’s in-built support for
arrivals that consist of a number of requests defined by a chosen probability
distribution.

3.5 Rotational Positioning Optimisation

Bursty workloads [20] result in highly variable queue lengths. As queue length
increases, response time suffers. To lessen this effect, many disk drives employ
scheduling algorithms to reorder jobs in the queue to minimise head positioning
time [22,23]. This reduces the time needed to service each job, which in turn
reduces the waiting time for all jobs [24].

We incorporate this factor into our simulation by parameterising the service
time distribution sampler according to the current queue length. The sampler
then takes as many combined samples of seek and rotation time as there are
jobs in the queue and chooses the minimum of these to be the positioning time
of the request starting service. This can be used for either single disk simulation
or RAID simulation.

4 Validation

Our experimental platform consists of an Infortrend A16F-G2430 RAID system
containing four Seagate ST3500630NS disks. Each disk has 60 801 cylinders. A
sector is 512 bytes and we have approximated, based on measurements from
the disk drive, that the time to write a single physical sector on the innermost
and outermost tracks are 0.012064ms (tmax ) and 0.005976ms (tmin) respectively.
The stripe width on the array is configured as 128KB, which we define as the
block size. Therefore there are 256 sectors per block. The time for a full disk
revolution is 8.33ms. A track to track seek takes 0.8ms and a full-stroke seek
requires 17ms for a read; the same measurements are 1ms and 18ms respectively
for a write [25].
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(a) 2-block read request
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(b) 4-block read request
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(c) 3-block write request

Fig. 4. Cumulative distribution functions of RAID 01 I/O request time on a 4 disk
RAID system (λ = 0.01 requests/ms)
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(a) 4-block mean read request
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(b) 2-block mean write request

Fig. 5. Cumulative distribution functions of RAID 01 I/O request time on a 4 disk
RAID system with request sizes chosen from a geometric distribution (λ = 0.01
requests/ms)
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Fig. 6. Cumulative distribution functions of RAID 01 I/O read request time on a 4
disk RAID system with 4-block requests and geometrically distributed bulk arrivals
with mean size 3 (λ = 0.01 requests/ms)
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Fig. 7. Cumulative distribution functions of RAID 01 I/O read request time on a 4
disk RAID system with 4-block requests (λ = 0.06 requests/ms)
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(a) 5-block read request λ = 0.02
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(b) 1-block write request λ = 0.01
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(c) 2-block write request λ = 0.01
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(d) 3-block write request λ = 0.01
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(e) 4-block write request λ = 0.01
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(f) 5-block write request λ = 0.01

Fig. 8. Cumulative distribution functions of RAID 5 I/O request time on a 4 disk
RAID system (λ requests/ms)
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(a) 5-block mean read request,
λ = 0.01
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(b) 4-block mean write request,
λ = 0.02

Fig. 9. Cumulative distribution functions of RAID 5 I/O request time on a 4 disk
RAID system with request sizes chosen from a geometric distribution (λ requests/ms)
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(a) mean read request, λ = 0.01
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(b) mean write request, λ = 0.02

Fig. 10. Plot of mean response time against request size on a 4 disk RAID 5 system
(λ requests/ms)
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To obtain response time measurements from this system, we implemented a
benchmarking program that issues read and write requests using a master pro-
cess and multiple child processes. These child processes are responsible for issuing
and timing I/O requests, leaving the master free to spawn further child processes
without the need for it to wait for previously-issued operations to complete.

In order to validate the simulation model effectively, it was necessary to min-
imise the effects of buffering and caching as these are not currently represented
in the model. We therefore disabled the RAID system’s write-back cache, set the
read-ahead buffer to 0 and opened the device with the O_DIRECT flag set. For
each of the experiments presented below (both measurement and simulation),
100 000 requests were issued. We present a selection of comparisons of cumula-
tive distribution functions (cdf). The single disk simulation is validated in [12],
so here we only present RAID validations.

4.1 RAID 01

In Figure 4 we compare measurement and simulation cdfs for RAID 01 with
Markovian arrivals at a rate of 0.01 requests/ms for different request type and
size. We generally observe good agreement between model and measurement,
particularly in Figure 4(b), in which a full stripe read is taking place. Figure 5
considers the same conditions, except in this case the request size is variable and
sampled from a geometric distribution with a specified mean request size. We
observe excellent agreement between model and measurement in these cases.

Figures 6 and 7 validate RAID 01 with more interesting workloads. In
Figure 6 simulation and measurement cdfs are compared for a RAID 01 system
with constant-size full stripe requests, which arrive in bursts. Each request arrives
as part of a batch. The number of requests in each batch is decided by a geomet-
ric distribution. We continue to see excellent agreement between model and mea-
surement. Figure 7 involves a high arrival rate at the array (0.06 requests/ms),
such that rotational positioning optimisation (RPO) should be expected. We plot
two simulation cdfs, one with RPO enabled on the simulator and the second with
RPO disabled. It is clear from the graph that for large arrival rates (and hence
long queue lengths) incorporating RPO into any model is crucial.

4.2 RAID 5

In Figure 8 we compare measurement and simulation cdfs for RAID 5 systems
with Markovian arrivals with arrival rate λ requests/ms and constant size re-
quests. We can use these validations to help judge the accuracy of our RAID 5
models. We observe in Figure 8(a) that the read simulation appears to agree
well with the measurements. Figures 8(b) and 8(e) are small partial stripe
writes. While mean values appear to agree well, the shapes of the cdf curves
for the simulation differ somewhat from the measurement curves, particularly in
the case of a small partial stripe write that does not follow a full stripe write
(Figure 8(b)). Figures 8(c) and 8(f) are large partial stripe writes. These show
better agreement than the small partial stripe equivalents. However, they appear
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to consistently underestimate the measurements, as does the full stripe write re-
quest in Figure 8(d). It is possible that this underestimation can be attributed
to not factoring into the simulation RAID controller overheads including parity
computation time.

Similarly, Figure 9 compares simulation and measurements for RAID 5 re-
quests with size decided by a geometric distribution. We again observe excellent
agreement for read requests in Figure 9(a). Write requests in Figure 9(b) tend to
underestimate the measurements since both full stripe requests and large partial
stripe write requests of constant size underestimate the measurement. Figure 10
compares mean response times for simulation and measurement for up to 10-
block jobs. The model predicts effectively the qualitative characteristics of mean
RAID 5 response times as block size varies.

5 Conclusion

This paper has presented a RAID simulation based on fork-join queueing net-
works. We have presented extensive validations of this simulation against device
measurements, generally observing excellent agreement for RAID 01 and 5 with
request streams of both constant and variable size and bursty arrivals. We have
also incorporated rotational positioning optimisations into our simulation and
have shown in our validations that this is fundamental to any accurate repre-
sentation of disk drives or RAID systems operating under heavy load.

In future work, we hope to further relax the constraints on the simulation.
In particular, it is straightforward to modify the simulator to represent other
RAID levels and to accept arrival streams that consist of both read and write
requests, and both random and sequential accesses. Furthermore, we intend to
discover more about RAID controller overheads and incorporate these into our
models. We also intend to apply our simulator in validating and improving cur-
rent and future analytical queueing models of RAID systems. Finally, caching
is an interesting and practically useful aspect that merits further investigation
and integration into our model.
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trading patterns. We feel that it would be presumptuous to try to model such
systems in general and we propose to begin from modest premises and simple
models, trying to build up to large systemic representations from solid building
blocks based on first principles. This paper pursues the study of such systems
using methods which has been successfully used in the performance analysis of
computer systems and networks, and in operations research.

Among the techniques used in commerce and E-commerce, auctions have been
the subject of some investigation [3]. They have also been used as tools for de-
cision making in resource allocation problems [13] and for the coordination of
software agents. The advantage of auctions is that the mechanisms that they use
for negotiation between economic agents, and for decision, are clearly defined so
that precise models of the resulting behaviour can be constructed. Models of
auctions and sealed bids are amenable to rigorous analysis, as shown in early
work on Martin Gardner’s “Secretary, or Sultan’s Dowry, Problem” where a re-
cruiter selects the best candidate from a sequence of applicants, the quality of
successive candidates are random variables, and the recruiter must make the ir-
revocable choice of a candidate from an initial sequence, without the possibility
of further candidates being considered [1, 11] after the decision is made. Other
analysis of auctions can be found in [8–10, 14, 15]. Of course there also direct
links between auctions and networks due to the sale of wireless spectrum; how-
ever virtual auctions have also been suggested as a means of allocating network
bandwidth [18] and the wireless spectrum, in real time, to competing users [19].

In this paper we pursue the work begun in [17, 20] by studying price formation
in auctions. In simple terms, the analysis aims at obtaining the economic per-
formance of an auction in terms of the price that is attained, which is of interest
to the buyers, and the income per unit time, which is of interest to sellers. This
paper first recalls some of the earlier work in [17], and then shows how it can be
extended in several directions, and in particular to:

– (i) Include the effect of network QoS on the economic performance criteria,
and in particular the impact of packet or message loss and delay.

– (ii) Discuss the effect of items which may not be available for sale, or whose
arrival to the auction may be delayed.

– (iii) Economic mechanisms which differ from auctions, such as sealed bidding
schemes, where (contrary to auctions) the value of the offers are not known
to everyone until all the offers have been made, and a given deadline or
time-out has expired.

In the following sections we first discuss the probabilistic structure that we
use has inter-arrival times for bids, random variables for the increments or values
of successive bids, and a probabilistic representation of the time that the seller
takes to make his decision after a bid is received. We then compute measures of
interest such as the income per unit time resulting from repeated auctions, and
the price attained by the good being sold. Since we focus on systems that are
built in software on top of computer networks, we analyse the impact that the
network quality of service (QoS), such as packet losses and delays, will have on
the economic outcome of the auction. Finally, we study similar models for sealed
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bids, where the successive bidders may not be aware of the price attained by
the preceding bids. Thus our work also provides a handle to examining the links
between economic performance and the performance of the underlying computer
networks that support this economic activity, and we hope that this paper can
provide a novel link between trading systems that reside on the Internet and
computer system and network performance evaluation, combining traditional
performance analysis together with the economic performance at the application
level.

2 Analysis of Auctions with Competitive Bids

As mentioned in the introduction, auctions are very common and many will
have a direct personal experience of such mechanisms. In this section we focus
on English auctions with a known fixed reserve price s so that the bidding
process only really begins when a bid arrives that exceeds this price. The notion
of reserve price is that the seller will only sell the good if the bid is higher than
s which is known in advance both to the bidders and to the seller.

As with all English auctions, successive bidders have to make a bid which is
higher than the previous bid, and the bidder cannot renege: i.e. after a bid is
made, if the seller accepts it then the price is that of the highest bid. We also
consider an auction centre which is running many successive auctions, which we
model as unlimited sequence of statistically identical auctions, with a rest period
between successive auctions. This approach will also allow us to compute the rel-
evant quantities for a single auction, i.e. the first and last one, if auctions do not
repeat themselves. We assume that the first auction starts at time t = 0, and that
bids arrive at random times 0 < T1 < T2 < . . .. Denote by Bi the bid generated
at Ti. The (i+1)th bid is of value Bi+1 = Bi + Ii+1 where the increment Ii+1 is a
positive random variable representing the increment over the previous bid, while
the first bid needs to be equal to the reserve price B1 = s.

Decisions on the part of the seller during the first auction are represented
by the decision delays Di ≥ 0 which are random variables. If Ti+1 < Ti + Di

then the ith bid is superseded by the (i + 1)th bid, while when Ti+1 ≥ Ti + Di,
then the seller accepts the ith bid at instant Ti +Di and the first auction ends at
that instant. Thus the 1st auction ends at the N th bid where N is the positive
random variable:

N = min{i : Ti + Di ≤ Ti+1} (1)

and hence the seller’s income brought by this sale is:

S = BN (2)

After this first sale is completed, the administrative details required by the sale
will take another time duration R ≥ 0, so the duration of the auction is

τ = R + TN + DN . (3)

We have to calculate the expected income E{BN}, and the expected duration of
the auction E{R + TN + DN}. Once the first auction period is over, the whole
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auction repeats itself indefinitely and independently of the previous auction. Let
(Si, τi) denote the pair of the income and duration of the ith auction, so that
after the nth auction we have the total income per unit time resulting from this
sequence of auctions is:

φn =
∑n

i=1 Si∑n
i=1 τi

.

By the strong law of large numbers, we have that

φn =
1
n

∑n
i=1 Si

1
n

∑n
i=1 τi

→ φ =
E{S}
E{τ} =

E{BN}
E{R + TN + DN} . (4)

In order to characterize the process that we have just described, some assump-
tions will be needed about these random variables. We characterize the assump-
tions as follows: assume that {(Ti, Bi, Di)}∞i=1 is a Markov process such that the
transition probabilities have a special form:

P{Ti+1 − Ti ≤ t, Ii+1 ≤ u, Di+1 ≤ d | Bi = b}
= P{Ti+1 − Ti ≤ t | Bi = b} ·P{Ii+1 ≤ u | Bi = b} ·P{Di+1 ≤ d | Bi = b}
= A(t | b) · I(u | b) ·D(d | b),

so that we recognise the fact that the increments Ii+1 will depend on the price
that has been attained in the most recent bid Bi = b, the inter-arrival time
of the bids Ti+1 − Ti and the decision delay Di+1 also depend on the value of
the most recent bid Bi = b; indeed as the price of the bid increases, we may
expect that new bids arrive more slowly while the seller may also become more
anxious to sell. Finally we assume that R is a random variable with some general
distribution function

R(t) = P{R ≤ t}
and that it is independent of all the preceding random variables. It is the model
of the situation, where there is an infinite buyers’ population, and each buyer
makes bids sequentially such that they have feedback information from the seller
on the bids, moreover each buyer knows the initial and end time points of the
auction period.

2.1 The Case with Markovian Bid Arrivals, Exponential Decision
Times, and Unit Increments

A special case of the model we have described was analyzed in [17] under the
assumption of unit increments for successive bids Ii+1 = Bi+1−Bi = +1 (i ≥ 1),
while B1 = s. That analysis also assumed that the bids’ successive interarrival
times Ti+1 − Ti are independent and exponentially distributed with parameter
λb (i ≥ 1), dependent on b the value of the most recent bid, and that T1 has
exponential distribution with parameter λ0. The decision times Di+1 are also
mutually independent and exponentially distributed with parameter δb depen-
dent on the value b of the most recent bid. Assume also that the rest periods R
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are exponentially distributed with average value 1, so that all times and rates
have been normalized to the unit value of the rest period.

Under these assumption the price St is a birth process, therefore we construct
a state-space, where state 0 is the state in which the auction has started or
restarted and the seller is waiting for the 1st bid, state l is the state in which
the current bid is at level l ≥ s, where s is as before, the “reserve price” or the
minimum acceptable level for a bid. Finally a(l) is state in which the bid of level
l has been accepted, and the auction ‘rests” for a time whose average value is 1
before entering the 0 state where the auction starts again. In the steady-state the
corresponding probabilities p(0), p(l), p(a(l)) will satisfy the following balance
equations:

[λl + δl]p(l) = λl−1p(l − 1), l > s > 0,

and
[λs + δs]p(s) = λ0p(0),

and
p(a(l)) = δlp(l), l ≥ s > 0,

and

λ0p(0) =
∞∑
l=s

p(a(l)),

so that

p(0) =
∞∑
l=s

δl

λ0
p(l).

These equations together with the condition that the sum of the probabilities is
one, give us:

p(l) = p(s)
l∏

k=s+1

λk−1

λk + δk
, l > s,

1 = p(0) +
∞∑
l=s

[p(l) + p(a(l))] = p(0) +
∞∑
l=s

p(l)[1 + δl],

1 =
δs

λ0
p(s) + p(s)(1 + δs) + p(s)

∞∑
l=s+1

[
1 + δl +

δl

λ0

] l∏
k=s+1

λk−1

λk + δk

so that:

p(s) =

[
1 +

δs

λ0
+ δs +

∞∑
l=s+1

[1 + δl +
δl

λ0
]

l∏
k=s+1

λk−1

λk + δk

]−1

p(0) =
δs

λ0
+

∞∑
l=s+1

δl

λ0

l∏
k=s+1

λk−1

λk + δk
1 +

δs

λ0
+ δs

+
∞∑

l=s+1

[
1 + δl +

δl

λ0

] l∏
k=s+1

λk−1

λk + δk
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From these expressions, many of the measures of interest can be derived. For
instance, if the total duration of an auction from when it starts to when it ends,
excluding the rest time, is denoted by T = τ −R, then

p(0) =
1 + 1

λ0

1 + 1
λ0

+ E{T } (5)

so that the expected duration of the auction until a sale occurs is:

E{T } =
[
1 +

1
λ0

] [
1

p(0)
− 1
]

(6)

Similarly, we are interested in knowing what the average sale price is, and it is
given by

E{S} =
∞∑
l=s

lp(a(l)) = sδsp(s) + p(s)
∞∑

l=s+1

lδl

l∏
k=s+1

λk−1

λk + δk
, (7)

so that the average income per unit time for the seller becomes:

φ =
E{S}

1 + 1
λ0

+ E{T } (8)

2.2 The Effect of Network QoS

We imagine that an “auction centre”, i.e. a computer system located somewhere
in the Internet which is used by various buyers and sellers to run their economic
transactions, is currently used by our seller to run his auction. Bidders then
have to access this auction centre via the network when they wish to make
a bid. Similarly the seller may be located elsewhere in the Internet and also
receives information about bids from the auction centre and then communicates
its decision to seal or to wait via the Internet to the auction centre.

As indicated in the introduction, when both bidders and the seller access the
auction centre and the software that is running the auction, the network quality
of service (QoS), which typically includes packet losses, delay and jitter, will also
affect the economic performance of the auction. Thus the network introduces
additional effects on the auctions, including:

– Delaying the arrival of the bids due to normal packet travel delays and also
potentially because of congestion,

– Reversing the order of some of the bids and thus introducing unfairness
with later bidders being taken into account before earlier bidders due to the
fact that some bidders’ paths through the network may be shorter or less
congested than other bidders’ paths, which can be exacerbated by “jitter”
or significant variance in the packet delays,

– Losing some of the bids due to packet losses so that the price increases are
smaller and hence further delayed, and
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– Delaying the arrival of information concerning the seller’s acceptance of a
bid due to normal delays or congestion, including a “round-trip” delay due
to the information needing to reach the seller from the auction centre about
the most recent bid, and the seller having to convey its decision back to the
auction centre.

Such adverse effects can occur when the network is congested and when a given
auction centre is very “popular” and hence highly utilised or sought after. Here
we will consider the latter two effects. Let us first consider φ in the right-hand-
side of (4).

Let pi be the probability that the ith bid is lost by the network before it arrives
at the auction centre, and let D̂i = Di + ri be the net decision delay which
includes the round-trip delay from auction centre to seller and back. Let the
bid inter-arrival times be independent and identically distributed with density
without packet losses f(x)dx = P[x ≤ Ti+1−Ti < x+dx] with Laplace–Stieltjes
Transform (LST) f∗(s). Now if {T ′

i}∞i=1 is the sequence of effective bid arrival
instants excluding those bids which have been lost, if the losses occur in an
independent and identically distributed manner with probability and p, then
the LST of the density function of the random variable (T ′

i+1−T ′
i ) representing

the effective inter-arrival times of bids is obviously:

g∗(s) ≡
∫ ∞

0
P[x ≤ T ′

i+1 − T ′
i < x + dx]e−sx (9)

=
∞∑

j=0

(f∗(s))j+1pj(1 − p) =
(1 − p)f∗(s)
1− pf∗(s)

, (10)

and the expected value is:

E[T ′
i+1 − T ′

i ] =
E[Ti+1 − Ti]

1− p
(11)

In the case of Poisson arrivals, f(x) = λe−λx for λ > 0, giving g(x) = (1 −
p)λe−λ(1−p). Just for the sake of evaluating the effect of both packet losses and
of delayed decision, suppose that decisions are taken after a constant time D
and that the network will delay a decision from reaching the auction centre by a
further round-trip constant value r which includes the time it takes the bidder
to be informed of the current price of the good, and the time it takes the bid
to reach the auction centre. Then a decision not to sell is taken with probability
q = P{D + r > T ′

i+1 − T ′
i} = 1− e−(D+r)(1−p)λ which is the probability that a

new bid arrives before the decision to sell is taken, and it includes the effect of
loss. If all bids have an average increment of E[I] over the previous bid, and if
the expected value of the first bid is E[Is], then

φ =
E[Is] +

qE[I]
1−q

R + D + r + q
1−qE{(T ′

i+1 − T ′
i )I{r+D>T ′

i+1−T ′
i}}

, (12)

where I is the indicator function. Note that before a bid is accepted, a total
average number of 1/(1−q) bids occur, including the last one. The total auction
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time includes the time for the acceptance of the final bid which is (D+r), and the
time for an average number q/(1−q) bids to arrive and these are all turned down
because a new bid arrives before the previous bid can be accepted. The bids that
are turned down wait on average for a time E{(T ′

i+1−T ′
i )I{r+D>T ′

i+1−T ′
i}} before

they are superseded by a higher bid. On the other hand, the average income per
auction is obviously:

Υ = E[Is] +
q

1− q
E[I] (13)

Clearly, Since

E{(T ′
i+1 − T ′

i )I{r+D>T ′
i+1−T ′

i}} =
q

λ(1− p)
− (1− q)(r + D) (14)

we obtain an expression that relates the economic “success” of the auction and
the network QoS parameters q and r:

φ =
E[Is] + q

1−qE[I]

R + D + r + q2

λ(1−p)(1−q) − q(r + D)
(15)

=
(1− q)E[Is] + qE[I]

R(1− q) + (D + r)(1 − q)2 + q2

λ(1−p)

2.3 The Case When Goods Are Not Always Available for Sale

Up to now, we have implicitly assumed that there is an unlimited backlog of
goods to be sold, waiting in the “seller’s store room” for a sale to occur. This
was equivalent to assuming that during a rest period, a new good is brought to
the seller so that the next auction can start after the previous sale is completed
and the rest period ends. Here we will modify the assumption, so that goods
also arrive to the auction according to an arrival process, and an auction cannot
start until there is at least one item for sale available. Thus we will suppose
that goods for sale arrive singly to the seller at instants 0 < a1 < a2 < . . ., so
that bids can only start after the good is actually available for sale. We will also
define the instants 0 < d1 < d2 < . . . when the successive items are sold.

In this case, if we look at things from the point of view of whoever owns
the goods and is anxious to sell them, a significant measure of interest is Wj =
(dj − aj) the total time that a good has to wait before it actually ends up being
sold. As before, let τj =

∑n(i)
i=1 Aji + Dj,n(j) + Rj . We then have:

– d1 = a1 + τ1 −R1,
– dj+1 = dj + Rj + τj+1 −Rj+1 if aj+1 ≤ dj + Rj ,
– dj+1 = aj+1 + τj+1 −Rj+1 if aj+1 > dj + Rj .

or equivalently:

– W1 = τ1 −R1,
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– Wj+1 = Wj + aj +Rj + τj+1−Rj+1− aj+1 if aj+1 ≤ dj +Rj or aj+1− aj ≤
Wj + Rj ,

– Wj+1 = τj+1 −Rj+1 if aj+1 > dj + Rj or aj+1 − aj > Wj + Rj .

which gives us an equational form similar to Lindley’s equation [7]:

Wj+1 = τj+1 −Rj+1 + [Wj + Rj − (aj+1 − aj)]+ (16)

where [X ]+ = X if X > 0 and [X ]+ = 0 if X ≤ 0.

3 The Analysis of Sealed Memoryless Bids

Sealed bids differ from auctions in the essential point that the seller does not
know the amount of each of the bids it receives until it stops the bidding process
and it opens the “sealed envelopes” that contain the details of each bid. In some
cases, the seller may also not know how many bids have been submitted, so
that it must make its decision to close a bid and accept the highest bid without
knowing either its amount nor the number of bids. This section will be devoted
to deriving analytical results for this economic mechanism.

Let 0 < T1 < T2 < . . . be the random points of a Poisson process with
intensity λ, representing the arrival instants of the bids. Denote by Bi the bid
generated at Ti, and assume that the B1, B2, . . . are independent, identically
distributed random variables with distribution function

F (z) = P{B1 < z}.
Here, the marked Poisson process {Ti, Bi}∞i=1 (cf. Karr [5]) models a situation
where where there is an infinite buyers’ population, and each buyer bids once in
his/her life and the buyers ”don’t see” each other, i.e., they have no feedback
information on the successful bid, contrary to the model in the previous section,
and they therefore generate bids independently of each other.

As previously, the seller has a decision delay time D which is fixed in advance
once and for all, which is assumed to be an exponentially distributed random
variable with parameter δ > 0:

G(z) = P{D ≤ z} = 1− e−δz,

and we assume that {Bi}, {Ti} and D are independent. The seller has a minimum
sale price s:

P{B1 ≥ s} = 1− F (s) = 1.

No sale occurs if there are no bids that arrive before time D. On the other hand,
we assume that the seller can observe the bids and accepts a bid that arrives
before D; so in this latter case, finding the best strategy is a version of the
secretary problem.

As a lower bound on the performance of the best strategy, consider the case
when the seller accepts the first bid within the decision delay D, and let Ŝ be
the price that is then obtained. We then have
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Ŝ = B1I{T1≤D},

where I is the indicator function. We can obtain E{Ŝ} from:

E{Ŝ} = E{B1I{T1≤D}} = E{B1}E{P{T1 ≤ D | T1}}
= E{B1}E{e−δT1} = E{B1} λ

λ + δ
.

An upper bound of the best strategy when the seller chooses the successful buyer
by selecting the maximum valued bid within the decision delay D can also be
obtained as follows. If ND is the number of bid arrival instants in [0, D]:

ND = #{n, Tn ≤ D}
then the price obtained S̃ is:

S̃ = max
1≤i≤ND

Bi.

Since {Bi}, {Ti} and D are independent:

P{ND = n} =
∫ ∞

0
P{ND = n | D = t}dG(t) =

∫ ∞

0

(λt)n

n!
e−λtdG(t),

to obtain E{S̃}, we calculate the tail distribution of S̃ as follows. For any z ≥ s:

P{S̃ ≥ z} =
∞∑

n=0

P{S̃ ≥ z | ND = n}P{ND = n}

=
∞∑

n=0

P
{

max
1≤i≤ND

Bi ≥ z | ND = n

}
P{ND = n}

=
∞∑

n=1

P
{

max
1≤i≤n

Bi ≥ z

}
P{ND = n}

therefore

P{S̃ ≥ z} =
∞∑

n=1

(
1−P

{
max

1≤i≤n
Bi < z

})
P{ND = n}

=
∞∑

n=1

(1− F (z)n)
∫ ∞

0

(λt)n

n!
e−λtdG(t)

=
∞∑

n=0

(1− F (z)n)
∫ ∞

0

(λt)n

n!
e−λtdG(t)

= 1−
∫ ∞

0
e−λ(1−F (z))tδe−δtdt

= 1− δ

λ(1− F (z)) + δ

=
λ(1 − F (z))

λ(1− F (z)) + δ
.
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On the other hand for 0 < z < s,

P{S̃ ≥ z} = P{S̃ ≥ s} = 1−P{ND = 0}
= 1−

∫ ∞

0
e−λtdG(t) = 1−

∫ ∞

0
e−λtδe−δtdt =

λ

λ + δ
,

implying that

E{S̃} =
∫ ∞

0
P{S̃ ≥ z}dz

=
∫ s

0
P{S̃ ≥ z}dz +

∫ ∞

s

P{S̃ ≥ z}dz

= s
λ

λ + δ
+
∫ ∞

s

λ(1 − F (z))
λ(1− F (z)) + δ

dz.

A simple stopping rule can now be introduced by a sequence of thresholds v1 ≥
v2 ≥ . . . such that the bid Bi is accepted if it exceeds the threshold vi and there
was no prior bid with this property. Let S be the price attained in this manner.
Then:

S =
∞∑

i=1

I{B1<v1,...,Bi−1<vi−1,Bi≥vi}I{Ti≤D}Bi.

Since the duration of the auction is:

τ = R +
∞∑

i=1

I{B1<v1,...,Bi−1<vi−1,Bi≥vi} min{Ti, D}.

Then

E{S | {Ti}, D} =
∞∑

i=1

i−1∏
j=1

F (vj)
∫ ∞

vi

bdF (b)I{Ti≤D},

and

E{S} =
∞∑

i=1

i−1∏
j=1

F (vj)
∫ ∞

vi

bdF (b)P{Ti ≤ D},

If Yi = Ti − Ti−1 denotes the ith inter-arrival time of bids then we have:

P{Ti ≤ D} = E{P{Ti ≤ D | Ti}}
= E{e−δTi}
= E{e−δ

∑ i
j=1 Yj}

= (E{e−δY1})i

=
(

λ

λ + δ

)i

,

implying that

E{S} =
∞∑

i=1

i−1∏
j=1

F (vj)
∫ ∞

vi

bdF (b)
(

λ

λ + δ

)i

.
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Similarly,

E{τ | {Ti}, D} = 1 +
∞∑

i=1

i−1∏
j=1

F (vj)(1 − F (vi))min{Ti, D},

therefore

E{τ} = 1 +
∞∑

i=1

i−1∏
j=1

F (vj)(1 − F (vi))E{min{Ti, D}}.

Because:
min{Ti, D} = D − (D − Ti)+,

one can verify that

E{min{Ti, D} | Ti} = E{D} −E{(D − Ti)+ | Ti}
= E{D} − e−δTi

∫ ∞

Ti

δe−δ(t−Ti)dt =
1
δ

(
1− e−δTi

)
,

therefore

E{min{Ti, D}} =
1
δ
E
{
1− e−δTi

}
=

1
δ

(
1−

(
λ

λ + δ

)i
)

,

and so

E{τ} = 1 +
1
δ

⎛⎝1−
∞∑

i=1

i−1∏
j=1

F (vj)(1 − F (vi))
(

λ

λ + δ

)i
⎞⎠ .

Introducing the notation

pi =
i−1∏
j=1

F (vj)(1− F (vi))

then

E{S} =
∞∑

i=1

piE{B | B ≥ vi}
(

λ

λ + δ

)i

and

E{τ} = 1 +
1
δ

(
1−

∞∑
i=1

pi

(
λ

λ + δ

)i
)

.

This leads to the numerical problem of choosing the thresholds {vi}, which
maximize the income per unit time:

E{S}
E{τ} =

∑∞
i=1 piE{B | B ≥ vi}

(
λ

λ+δ

)i

1 + 1
δ

(
1−∑∞

i=1 pi

(
λ

λ+δ

)i
) .
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4 Conclusions

In this paper, we have considered models of economic activities which can be
represented as auctions and as sealed bids. Our purpose has to show how such
economic activities can be studied using techniques which are commonly used in
computer and network performance analysis and in areas of operations research,
such as queueing and inventory theory. We have shown how such models can be
constructed from first principles, and how they can lead to analytical solutions
which provide insight into price formation and how they can be used for the
optimisation of economic performance.

In particular, this paper has extended the previous work of one of the authors
to include the impact of network QoS parameters such as message loss and
delay, and to show how sealed bids, which differ significantly from auctions in
the information that is available both to the parties making the offers and to
the decider, can also be analysed with a similar approach. It is hoped that our
results can motivate further work by attracting the attention of the computer
system performance evaluation community to the study of some of the important
“applications” which run on the Internet, namely those which involve automated
economic transactions such as networked auctions.
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Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263, pp. 1–12. Springer,
Heidelberg (2006)

18. Dramitinos, M., Stamoulis, G., Courcoubetis, C.: An auction mechanism for al-
locating the bandwidth of networks to their users. Computer Networks 51(18),
4979–4996 (2007)

19. Kovacs, L., Vidacs, A., Heder, B.: Spectrum auction and pricing in dynamic spec-
trum allocation networks. The Mediterranean Journal of Computers and Net-
works 4(3), 125–138 (2008)

20. Gelenbe, E.: Analyis of single and networked auctions. ACM Trans. Internet
Technology 9(2), Article 8 (May 2009)



Applying Symbolic Techniques to the
Representation of Non-Markovian Models with

Continuous PH Distributions

Francesco Longo and Marco Scarpa

Dipartimento di Matematica, Università di Messina, 98166 Messina, Italy
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Abstract. Among the proposed techniques for the analysis of non-
Markovian models the state space expansion approach showed great
flexibility in terms of modelling capacities. The principal drawback is
the explosion of the state space. An attempt to alleviate such problem
has been made in [1] but the storing of the reachability graph of the
untimed system, augmented with information about active but not en-
abled events, still remains a bottleneck. This paper suggests a method
for storing such an augmented reachability graph by the use of a Multi-
terminal Multi-valued Decision Diagram and few Kronecker matrices. All
the needed information is collected by applying a Saturation based algo-
rithm that represents the main contribution of the work. An estimation
of the memory occupation is also reported.

1 Introduction

Markovian models have been widely used to represent any kind of systems with
the purpose of studying their performance and reliability. Their success is due to
the simplicity and effectiveness of the analysis methods to evaluate continuous
time Markov chain (CTMC) underlying the models. However there are practical
situations in which the Markovian hypothesis is not applicable. In fact, many ac-
tivities in computer, communication and manufacturing systems are more likely
represented by non-exponentially distributed random variables that have a real
impact on the derived measures, especially when transient analysis is performed.

The introduction of non-exponentially distributed events within stochastic
models presents two major drawbacks: 1) events can be characterized by dif-
ferent memory policies [18] [3], 2) the numerical techniques used to solve the
derived non-Markovian models are very complex. An extensive work has been
carried out to solve such problems [8][11][10][2] and an effective solution has been
to represent non-exponentially distributed events via Phase Type (PH) distribu-
tions [15]. Such technique approximates the original non-Markovian process by
mean of a Markov chain defined over an expanded state space. Each state in
the non-Markovian process is expanded into a set of states within the Markov
chain, called macrostate, with the purpose to capture the evolution of the non-
exponentially distributed events [2].

J.T. Bradley (Ed.): EPEW 2009, LNCS 5652, pp. 44–58, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The main advantage of state space expansion approach is represented by the
capacity of modelling any possible combination of memory policies and any num-
ber of concurrently enabled events. The drawback is the explosion of state space.
The state space explosion problem is well known in the field of asynchronous sys-
tems and it limits the dimension of the manageable reachability sets even in the
case of Markovian models. It is straightforward that it becomes a bottleneck
especially in the contest of the state space expansion approach given that such
approach is based on the multiplication of the system states.

An attempt to alleviate the memory consumption of the expansion technique
has been done in [1], where Stochastic Petri net (SPN) models with PH dis-
tributed firing time transitions has been considered. In such work, the expanded
reachability graph is symbolically described through macrostates, built by com-
bining the reachability graph of the original untimed Petri net (PN), augmented
with additional information about the active but not enabled transitions, and the
matrices representing the discrete PH distributions. The expanded macrostates
are not explicitly stored in memory but they are algorithmically evaluated on-
the-fly through the use of Kronecker operators. In such a way only the augmented
reachability graph of the untimed PN and the matrices associated to the PH dis-
tributions are explicitly stored. Even if the obtained results were encouraging,
the storing of the augmented reachability graph remains a bottleneck.

The problem of managing huge state spaces is not new and it has been faced
in [5] and [6] by Ciardo et al. Their method, called Saturation, exploits symbolic
techniques for the generation and the representation of the reachability graph
of asynchronous systems by using Multi-Valued Decision Diagrams (MDDs) and
Kronecker matrices in order to improve memory consumption. However, Satu-
ration is not directly applicable to the generation of the augmented reachability
graph because it is not able to find and store the information about the active but
not enabled events, necessary when the macrostates want to be algorithmically
evaluated on-the-fly.

In this paper, we get inspired by the results obtained in [1], about the sym-
bolical description of the macrostates, and in [5] and [6] about the symbolical
representation of state spaces, and propose a new method for computing and
storing in an efficient way the reachability graph of a system, augmented with
the information about active but not enabled events, for all the system states.
The goal of our work is achieved by using Multi-terminal Multi-valued Decision
Diagrams (MTMDDs) [13] as data structure, and by collecting all the necessary
information by applying a Saturation based algorithm. The main advantage of
our approach is that both the expanded reachability graph and the augmented
reachability graph of the untimed system are symbolically stored through the
combination of an MTMDD and a certain number of Kronecker matrices.

The paper is organized as follows: in section 2, we introduce the reference
model and recall some useful basic concepts. In section 3, we introduce the
MTMDDs and present the algorithm to represent in a symbolic fashion the
augmented reachability graph. Section 4 describes some numerical results, and,
finally, Section 5 gives conclusions remarks and possible future work.
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2 Model Definition and Basic Concepts

In this paper, we will refer to the discrete-state discrete-event model with gen-
erally distributed firing times, and individual memory policies defined in [12] for
PNs. In such a model, timing is assigned to the events. Here, we assume that
the random firing time of each event is described by a Continuous PH (CPH)
distribution [15] accordingly to the state space expansion approach. We will refer
to such kind of model as CPH model.

Definition 1. A CPH-model is a tuple CPHM = (Ŝ, Sinit, E ,N , C,P), where:

– Ŝ (of cardinality
∥∥∥Ŝ∥∥∥) is the potential state space;

– Sinit ∈ Ŝ (of cardinality
∥∥Sinit

∥∥) is the set of initial states;
– E (of cardinality ‖E‖) is the set of possible asynchronous events;
– N : Ŝ → 2Ŝ is the next-state function specifying the states that can be reached

from a given state in a single step;
– C (of cardinality ‖E‖) is the set of CPH random variables associated to each

event;
– P : E → {enabling, age} is a function that assigns a preemption memory

policy to each event.

An age variable ae is assigned to each event e to keep track of the time during
which it has been enabled. In a CPH-model, ae represents the current stage in
the CPH representation associated to e. The way in which ae is related to the
past history determines the different preemptive memory policies. In this work,
we adopt the same names and semantic defined in [18][3] to characterize the
generally distributed firing time transitions of a non-Markovian SPN.

The preemption memory policies affect the age variable ae in the following
way: in the case of enabling memory policy ae is reset to zero each time the event
e either fires or is disabled in a new state; in the case of age memory policy ae

is reset to zero only when the event e fires otherwise it maintains its value.
If an event e presents an age variable ae > 0 in a given state, it is said to

be active in that state. We define T
(s)
e and T

(s)
a as the set of enabled events

and active but not enabled events in state s respectively. At the entrance in a
new state s, the residual firing time is computed for each event belonging to
T

(s)
e , given its age variable. The next firing event is determined by the minimal

residual firing time among the enabled events (race policy [12]).

2.1 Expanded Reachability Graph and Its Kronecker
Representation

Let S ⊆ Ŝ be the system state space, i.e. the set of all the system states reached
from the initial states Sinit, and let RG(Sinit) be the system reachability graph
whose nodes are represented by system states and whose edges are labelled with
system events. The system reachability graph can be explicitly represented in a
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matrix form R of dimension ‖S‖ × ‖S‖ in which each entry Rij contains the
labels of the events whose firing changes state si into state sj .

According to the state space expansion approach [16], the evolution of the
stochastic process underlying the CPH-model can be represented by an expanded
CTMC {Z(t) : t ≥ 0} whose states are defined over the pairs (s,A), where s ∈ S
is a reachable system state and A is the vector containing the values of the age
variables ae assigned to system events. All the states (s,A), characterized by the
same value of s, form a macrostate in which the original state s is expanded
within Z(t).

The main features of the expansion algorithm are:

– let Q be the infinitesimal generator matrix of the expanded CTMC Z(t),
then Q can be represented as an ‖S‖ × ‖S‖ block matrix;

– non-null blocks of Q correspond to non-null elements in R;
– The generic diagonal block Qii (i = 1, . . . , ‖S‖) is a square matrix that

describe the evolution of Z(t) inside the macrostate related to the state si.
– The generic off-diagonal block Qij (i, j = 1, . . . , ‖S‖, i �= j) describes the

transition from the macrostate related to si to the macrostate related to sj .

Accordingly to the work presented in [1], the infinitesimal generator matrix Q
of the expanded process doesn’t need to be generated and stored as a whole but
can be algorithmically evaluated on-the-fly when needed. This means that we
do not encode the whole expanded state space (in other words the macrostates)
generated by taking into account the different phases of all the CPHs modelling
the system events, and, as a consequence, we encode each CPH distribution
through the generator matrix of the CTMC associated to it. The generic non-
null block Qij (i, j = 1, . . . , ‖S‖) of Q can be symbolically represented through
Kronecker expressions that take into consideration the matrix representations of
the CPHs associated to the enabled and active but not enabled events either in
si or in sj . For a complete description of such expressions, in the case of discrete-
time models, see [1]. Here we are interested in the knowledge of the reachability
graph of the untimed system and of the sets T

(s)
e and T

(s)
a , for all s ∈ S, since

they need to be known when the method has to be implemented into a software
tool. The sets T

(s)
e are known from the model description, whereas T

(s)
a have to

be computed and stored in the most effective way along with the reachability
graph of the untimed system.

2.2 Encoding S through MDDs

Great deal of work has been spent in recent years into developing space and
time efficient techniques for the generation and the storage of huge state spaces.
Symbolic approaches are the most successful to this purpose [4]. In contrast to
explicit or enumerative techniques, where the entire set is explicitly stored and
manipulated, symbolic techniques focus on generating compact representations
of the set by exploiting model’s structure and regularity.

A model has a structure when it is composed of K submodels, for some K ∈ N.
In this case a global system state can be represented as a K-tuple (s1, . . . , sK),
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where sk is the local state of submodel k, and the potential state space Ŝ can be
considered as the cross product of each local state space Sk (having some finite
size nk): Ŝ = S1 × · · · × SK . In PNs, as an example, the set of places can be
partitioned into K subnets and the marking can be written as the composition of
the K corresponding submarkings. When identifying Sk with the initial integer
interval 0, . . . , nk − 1 it is possible to represent the state space S ⊆ Ŝ encoding
its characteristic function, i.e. the function χ : Ŝ → {0, 1} where χ(s) = 1 if
s ∈ S and 0 otherwise, for all s ∈ Ŝ.

Numerous data structures have been employed to this purpose and the use of
MDDs [17] have been introduced by Miner and Ciardo in [14]. MDDs are rooted,
directed, acyclic graphs associated with a finite ordered set of integer variables.
When K variables are used, the MDDs are able to represent Boolean functions
in the form fM : Z

K → B. When used to encode a state space, an MDD has the
following structure:

– nodes are organized into K + 1 levels, where K is the number of submodels;
– level K contains only a single non-terminal node, the root, whereas levels

K − 1 through 1 contain one or more non-terminal nodes;
– a non-terminal node at level k has nk arcs pointing to nodes at level k − 1;
– level 0 consists of two terminal nodes 0 and 1; they represent the return

value of the characteristic function.

The value of the Boolean function fM , represented by MDD M , for a given
valuation of its integer variables, can be determined by tracing a path from
its root node to one of the two terminal nodes. At each non-terminal node,
the choice of the arc to be followed is determined by the value of the variable
corresponding to that node. When the MDD encodes the characteristic function
of a state space S then a state s = (s1, . . . , sK) belongs to S if and only if a
path exists from the root node to the terminal node 1, such that at each node
the arc corresponding to the local state sk is followed.

Fig. 1(a) shows the Petri net we will use as running example with a partition-
ing of its places into three subnets. Fig. 1(b) shows the associated MDD, the
local state space of each subnet and the encoded global state space in the case
of N = 2. In the MDD, the paths to terminal node 0 are not shown and they
even don’t need to be explicitly stored in memory.

2.3 Using Saturation to Compute RG(Sinit)

In [5], and then in [6], Ciardo et al. proposed an efficient algorithm for the
generation of reachability graphs using MDDs. They started from the observation
that in many cases, such as PNs and process algebras, a model expresses its
next-state function as a union N =

⋃
e∈E Ne, where Ne is the next-state function

associated with event e. Moreover asynchronous systems often exhibit a product-
form behaviour such that, for each event e, the next-state function Ne can be
written as a cross-product of K local functions, i.e. Ne = N 1

e × · · · ×NK
e where

N k
e : Ŝk → 2Ŝk

, for all 1 ≤ k ≤ K.
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(a) (b)

Fig. 1. An example of PN with a partition of its place (a) and the MDD associated to
it in the case of N = 2 (b)

Under the above mentioned hypothesis each component of the state vector
can be updated somewhat independently of the others. The system’s state space
may then be built by iterating the Ne functions in any order. Saturation, the
iteration strategy proposed by Ciardo et al, exhaustively fires all events affecting
a given MDD node bringing it to its final saturated shape. Moreover, nodes
are considered in a bottom-up fashion, i.e., when a node is processed, all its
descendants are already saturated. Such an iteration strategy improves both
memory and execution-time efficiency.

The main drawback of the first version of Saturation proposed in [5] is the
necessity to know a priory the local state spaces of the submodels in which the
input model has been partitioned. In [6], Ciardo et al. proposed a new version
of Saturation called Unbound that produces an MDD representation of the fi-
nal state-space and a separately stored representation of the minimal local state
spaces. The algorithm interleaves symbolic exploration of the global state space
with explicit local explorations of each submodel. It incrementally discovers a
set Ŝk of locally-reachable local states, of which only a subset Sk is also globally
reachable. When a globally reachable state is identified, it is labelled as con-
firmed and an explicit local reachability analysis starts. During this phases the
description of the model is consulted and an efficient encoding of the next-state
function is build in the form of a set of Kronecker matrices. By defining matrices
We,k ∈ {0, 1}nk×nk

, where We,k[ik, jk] = 1 ⇐⇒ jk ∈ Ne,k(ik), in fact, the
next-state function is encoded as the incidence matrix given by the Boolean sum
of Kronecker products

∑
e∈E

⊗
K≥k≥1 We,k.

3 Computation of the Augmented RG(Sinit)

The Kronecker representation of a CPH-model introduced in section 2.1 can be
considered as a possible method to face the state space explosion problem in the
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case of non-Markovian models. However such an approach is still incomplete since
it is yet necessary to explicitly store the system reachability graph RG(Sinit),
in the form of matrix R, augmented with the information about the sets T

(s)
e

and T
(s)
a for all the system states. Such an explicit representation can become

unmanageably large to fit in a computer’s memory especially in the case of
asynchronous systems.

Answering the above mentioned problem represents the principal contribution
of the present work. The possibility of encoding in a implicit way both the
matrix R and the sets T

(s)
a , combined with the solution presented in [1], can

be considered the final step toward a complete symbolic representation of the
process underlying a CPH-model.

3.1 Encoding Sets T (s)
a through MTMDDs

MTMDDs [13] are an extension of MDDs. The main differences with respect to
MDDs are that: 1) more than two terminal nodes are present in an MTMDD,
and 2) such nodes can be labelled with arbitrary values, rather than just 0 and
1. In typical usage, these values are real. However, in our work, we consider
a particular family of MTMDDs in which the terminal nodes are labelled with
integer values so that an MTMDD represents functions in the form fM : Z

K → Z.
In such a way, we can use an MTMDD to efficiently store both the system state

space S and the sets T
(s)
a of active but not enabled events for all s ∈ S that

are necessary in our approach for the evaluation of non-null blocks of matrix
Q. In fact, while an MDD is only able to encode the characteristic function
of a state space, an MTMDD is also able to associate an integer to each state.
Consequently by mean of an MTMDD it is not only possible to implicitly encode
the characteristic function, considering that a state, whose path from the root
to a terminal node different than 0 exists, belongs to the state space, but it
is also possible to store the information about the set T

(s)
a for that particular

state. This can be done associating to each possible set T
(s)
a an integer code that

unequivocally represents it.
In this work, we exploit a very simple code. Let us suppose that the set E is

ordered and let us call E0 the ordered set. Moreover let us associate to each event
an unique index n such that 1 ≤ n ≤ ‖E0‖. Then the integer value associated to
one of the possible sets T

(s)
a can be computed starting from the indexes associated

to the system events that belong to it in the following way:

b‖E0‖ · 2‖E0‖ + · · ·+ bn · 2n + . . . b1 · 21 + 1 =
∑‖E0‖

i=1 bi2i + 1

where:

bi =
{

1, if event ei ∈ T
(s)
a

0, otherwise

Fig. 2 shows as an example the MTMDD associated to PN of Fig. 1(a) and
the sets T

(s)
a for each marking in the net in the case that all the transitions in

the net present an age memory policy associated and that E0 = {a, b′, b′′, c, d}.
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Fig. 2. The MTMDD associated to PN of Fig. 1(a) in the case of N = 2

3.2 Computation of Sets T (s)
a

The combination of the MDD and the K · |E| Kronecker matrices produced by
Saturation Unbound is a very effective way to represent the reachability graph
of the analyzed model. Since RG(Sinit) is the data input to algorithmically gen-
erate the infinitesimal generator matrix Q of the expanded CTMC, we will use
Saturation Unbound to generate it. Combined to the Kronecker representation
of the expanded state space exposed in Section 2.1 the use of Saturation al-
lows to further improve memory consumption when compared to the approach
presented in [1].

However, as we already said, the knowledge of the reachability graph of the
untimed system is not enough for the generation of the matrix Q. Considering
that the information about the enabled events for all the system states is con-
tained in the high level description of the model and can be evaluated on the
fly when needed with a negligible overhead, the only further needed informa-
tion is the knowledge about the sets T

(s)
a . Using Saturation for the evaluation of

the reachability graph bring in this case to the necessity of applying a further
analysis step for the computation of such an information.

According to the definition given in Sec. 2, an event e ∈ E belongs to the set
T

(s)
a if it is not enabled in state s and if, for some path within the reachability

graph, it is possible for its age memory variable to be greater than 0 in s. As a
consequence of such behaviour, we can introduce the following property for an
event to be active but not enabled in a system state:

Property 1. - Given a state s ∈ S and an event e ∈ E with an age memory policy
associated, then e ∈ T

(s)
a iff one of the following statements holds:

1. ∃ s1 �= s ∈ S, ∃ e1 �= e ∈ E | s ∈ Ne1(s1) ∧ e ∈ T
(s1)
e ∧ e /∈ T

(s)
e ,

2. ∃ s1 �= s ∈ S | s ∈ N (s1) ∧ e ∈ T
(s1)
a ∧ e /∈ T

(s)
e .

In fact, if event e is enabled in state s1 and it is disabled by the firing of
another conflicting event e1, then it will retain its memory level in the reached
state s (statement 1 of Property 1); moreover, if event e has memory in s1 but
it is not enabled, then it will retain its memory level in each state s reached
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by the process, till it becomes enabled again and has the possibility of firing
(statement 2 of Property 1).

Using Property 1, it is possible to compute the sets T
(s)
a for all the system

states by visiting the reachability graph along all the possible paths, and by
storing the information as it is discovered in an explicit data structure. Such a
computation can be performed even on-the-fly, during state space generation, if
classical approaches are used because they add states visiting the reachability
graph in a breadth-first-search (BFS) or in a depth-first-search (DFS) order.
Since Saturation algorithm works in a highly localized manner, adding states
out of the BFS or DPS order, the computation of all the sets T

(s)
a by directly

applying the Property 1 becomes inefficient or, in most of the cases, impossible.
In [7], Ciardo et al. applied Saturation to efficiently evaluate computation tree

logic (CTL) formulae. In this subsection, we will first enunciate a theorem that
shows how a CTL formula can be used to compute the sets T

(s)
a through Property

1 and then we will define an algorithm that allows to take advantage of the
efficiency of the Saturation algorithm to store such information in a MTMDD.

A CTL formula allows to evaluate whether a given condition holds on the
states over a path within the reachability graph of a discrete state process. As
extensively presented in [9], a CTL formula is written as a couple of operators:
a path quantifier followed by a tense operator. The path quantifier is chosen
between A (all path) and E (there exist a path), while the tense operator is one
of the following: X (next), F (future, or finally), G (globally or generally), U
(until). Here we are interested to the EU operator whose definition is as follows:

Definition 2. Let s0 ∈ S be a state of a discrete state process with state
space S, and let p and q be two logical conditions on the states. Then s0 sat-
isfies the formula E[pUq], and we will write s0 � E[pUq], iff ∃ n ≥ 0, ∃ s1 ∈
N (s0), . . . ,∃ sn ∈ N (sn−1) | (sn � q) ∧ (∀m < n, sm � p).

Let us suppose that, during the evaluation of a CTL formula, we also need to
take into account constraints or special properties over the visited paths. Such
a generalization can be obtained by using a generic next-state function F(s)
different from N (s) to visit the states in the reachability graph and by ensuring
that ∀s ∈ S|F(s) ⊆ N (s) ∪ N−1(s). For example if we are interested to paths
that are generated by the firing of event e we can consider as next-state function
Ne(s). The Definition 2 can be extended to use a generic next-state function
F(s) as follows.

Definition 3. Let s0 ∈ S be a state of a discrete state process with state space
S, and let p and q be two logical conditions on the states. Let also F(s) ⊆
N (s)∪N−1(s) be a reachability relationship between two states in S that defines
a desired condition over the paths. Then s0 satisfies the formula EF [pUq], and
we will write s0 � EF [pUq], iff ∃ n ≥ 0, ∃ s1 ∈ F(s0), . . . ,∃ sn ∈ F(sn−1) | (sn �
q) ∧ (∀m < n, sm � p).

Fig. 3(a) shows an example of a path of states satisfying the formula EF [pUq]:
state s0 satisfies the formula EF [pUq] because there exists a path starting from
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(a) (b)

Fig. 3. A graphical example of (a) s0 � EF [pUq] and (b) the algorithm of Tab.1

state s0 to state s3 where logical condition p holds on s0, s1, s2, q holds on s3,
and each state in the path is reached according to the next-state function F(s).

Upon Definition 3, we build the following theorem which our algorithm is
built on:

Theorem 1. An event e ∈ E, with an age memory policy associated, belongs
to T

(s0)
a , with s0 ∈ S, iff s0 � EF [pUq] over a path at least long one, where p

and q are the statements “e is not enabled” and “e is enabled” respectively, and
F(s) = N−1(s) \ N−1

e (s).

Theorem 1 states that it is possible to compute the states in which event e is
active but not enabled simply evaluating CTL formula EF [pUq] over the system
state space considering condition p as “e is not enabled” and condition q as
“e is enabled”. Moreover the considered next-state function F(s) is the inverse
of the system next-state function N (s) but dropping the paths due to the event
e. Due to lack of space the proof of the theorem is not given.

The traditional computation of the set of states satisfying E[pUq] uses a least
fixed point algorithm that starting with the setQ of states satisfying q, iteratively
adds all the states that reach them on paths where property p holds. The set
of states in which property p holds is called P . In [7] Ciardo et al. proposed a
new approach to compute the EU operator based on Saturation called EUsat.
Such approach starts with the classification of the system events between two
classes: safe and unsafe. Events are safe if their firing is guarantee to preserve
the validity of the condition p. They are unsafe otherwise. In the case of unsafe
events Saturation can’t be used due to the great overhead produced for dropping
the states outside P . For this reason, after the events classification, a global fixed
point iteration starts that interleaves two backward steps: BFS with filtration on
unsafe events followed by Saturation on safe events. Both steps make use of the
backward next-state function N−1(s) to compute states in P that reach states
in Q with one or more event firings.
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Let us apply the EUsat algorithm to the specific case described in Theorem 1.
The following considerations can be done:
– it is straightforward that in our case p ∨ q = true and therefore P ⋃Q = S;

as a consequence all our events are safe and the EUsat algorithm would
perform just one Saturation step and stop (Note 6 in [7]);

– given that the next-state function we are considering is F(s) = N−1(s) \
N−1

e (s) in our case the backward next-state function used by EUsat would
became F−1(s) = N (s) \ Ne(s). So the Saturation step necessary for EUsat
evaluation would became a standard forward Saturation with the exception
that event e would have to be dropped.

We can assert that the set of all the system state in which event e is active
but not enabled can be obtained applying a forward Saturation step to the set of
states in which event e is enabled neglecting e itself. Fig. 3(b) shows an example
applied to the PN shown in Fig. 1(a). States in double non-dashed line have
transition a enabled and are used as starting point for the computation. States
in double dashed line are obtained through a forward Saturation step performed
without considering the firing of a as a possible event. Transition a is active
but not enabled in them. States in normal dashed line belong to the state space
but transition a is neither enabled nor active in them. They can’t be obtained
through Saturation because we ignore event a.

3.3 The Algorithm

From Theorem 1 and from the above consideration it is possible to derive the al-
gorithm presented in Tab. 1 in the form of pseudo-code. The exploited data types
are: model (model description by mean of an high-level formalism), partitioning
(model partitioning), state (model state), event (model event), mdd (complete
data structure implementing an MDD), mtmdd (complete data structure imple-
menting an MTMDD).

GenerateMTMDD is the main function. It takes as input parameters the
considered model m, its partitioning p, the set of initial system states Si (we
consider the general case in which there can be more than one initial state) and
the set of events that present an age memory policy Em. We suppose that the
information about all the system events is contained in the high-level description
of the model and that it is sufficient to inform the function about the events that
present an age memory policy. The function builds the MTMDD encoding the
state space S and the sets T

(s)
a for the considered model taking into consideration

the particular partitioning provided.
First of all an MDD is build that encode the set of initial system states (func-

tion InitializeMDD). Then a forward step of Saturation Unbound is performed
to build the entire system state space. The procedure ExplorerSaturationUn-
bound recursively explores the MDD encoding the set of initial system states
saturating its node. The MDD is modified to encode the entire state space.
Saturation Unbound is used because we suppose that no information about lo-
cal state spaces is initially provided. The additional information gathered by
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Table 1. Pseudocode for the algorithm

GenerateMTMDD(in m : model, p : partitioning, Si : set of state, Em : set of event) : mtmdd

Build the MTMDD encoding the state space S and the sets T (s)
a for model m considering parti-

tioning p and the set Em of events with age memory policy associated.

1. declare a, t : mdd;

2. declare u : mtmdd;

3. a ←− InitializeMDD(m, p, Si);

4. ExplorerSaturationUnbound(p, a, m);

5. u ←− a;

6. foreach e ∈ Em do

7. t ←− ExtractMDD(m, p, e, a);

8. ExplorerSaturationClassical(m, p, e, t);

9. Sum(t, e, u);

10. return u;

InitializeMDD(in m : model, p : partitioning, Si : set of state) : mdd

Build the MDD encoding the set of initial states Si for model m considering partitioning p.

ExplorerSaturationUnbound(in p : partitioning, inout a : mdd, m : model)

Recursively explore the MDD a saturating its node and generating the state space S for model

m considering the partitioning p. Saturation Unbound is used. Information about the local state

spaces and the next-state function are store in m.

ExtractMDD(in m : model, p : partitioning, e : event, a : mdd) : mdd

Extract from MDD a a new MDD encoding the set of states enabling event e for model m consid-

ering partitioning p.

ExplorerSaturationClassical(in m : model, p : partitioning, e : event, inout a : mdd)

Recursively explore the MDD a saturating its node and generating the set of states reachable from

states initially encoded by a considering all the event in Em except event e. The first version of

Saturation is used.

Sum(in t : mdd, e : event, inout u : mtmdd)

For every state s encoded by MDD t if s doesn’t enable event e then add 2n to the value associated

to s in MTMDD u where n is the integer associated to event e. If s enables event e then skip to

the following state.

Saturation Unbound are stored in the model data structure ready to be used
later during the algorithm. In particular sets of local states Sk and matrices
We,k are generated and stored.

An MTMDD is then build to initially contain the same information stored in
the MDD. Such an MTMDD will be returned at the end of the function. Subse-
quently for each event in Em a sequence of operation is performed to obtain the
information about the sets T

(s)
a . From the MDD encoding the entire state space

S is extracted a temporary MDD encoding the set of states in which the con-
sidered event is enabled (function ExtractMDD). A forward step of Saturation
is then performed to obtain the states in which the event is active (procedure
ExplorerSaturationClassical). Such procedure can take advantage from the in-
formation about local state spaces and next-state function gathered during the
procedure ExplorerSaturationUnbound so the first version of Saturation can
be exploited. The procedure Sum finally accumulates the new information in
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the final MTMDD filtering states where the considered event is enabled. It adds
sn to the value associated to s whether the nth event e is not enabled in s, 0
otherwise. Finally the MTMDD is returned.

4 Numerical Results

The algorithm presented in section 3.2 has been implemented and experimen-
tal results have been gathered applying it to the PN of Fig. 1(a) and varying
the initial number of tokens N in place p from 1 to 280. We consider the num-
ber of nodes in the data structures created by the algorithm as an index of
the memory occupation. Obtained results are reported in Fig. 4 and Tab. 2.
Fig. 4 shows the number of nodes within the MTMDD u, returned by function
GenerateMTMDD, and the number of nodes within the MDD a, created by
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Table 2. Experimental results for the PN of Fig. 1(a)

N MDD nodes MTMDD nodes Markings N MDD nodes MTMDD nodes Markings
1 5 6 4 140 283 423 477191
2 7 9 10 150 303 453 585276

10 23 33 286 160 323 483 708561
20 43 63 1771 170 343 513 848046
30 63 93 5456 180 363 543 1004731
40 83 123 12341 190 383 573 1179616
50 103 153 23426 200 403 603 1373701
60 123 183 39711 210 423 633 1587986
70 143 213 62196 220 443 663 1823471
80 163 243 91881 230 463 693 2081156
90 183 273 129766 240 483 723 2362041

100 203 303 176851 250 503 753 2667126
110 223 333 234136 260 523 783 2997411
120 243 363 302621 270 543 813 3353896
130 263 393 383306 280 563 843 3737581
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function ExplorerSaturationUnbound, versus N . Tab. 2 compares the number
of nodes in the MDD and MTMDD with the number of markings in the net.

Observing Tab. 2 it is possible to state that the memory overhead determined
by the additional information about sets T

(s)
a is irrelevant. Such a consideration

is particularly evident if we compare the difference between the number of nodes
within the two data structures with the dimension of the system state space
represented by the number of markings in the net. In the worst case the increment
in terms of number of nodes is about 0.1 per millisecond. Moreover, as observed
in [6] the number of MDD nodes linearly grows with N , and this important
property is preserved from the MTMDD, even if a greater amount of information
is stored into it (Fig. 4).

We don’t take into consideration the intermediate memory occupation of the
algorithm because the goal of the present work is to shows the validity of this
new approach without taking into consideration any possible optimization, that
can be performed in future works.

5 Conclusions and Future Work

The paper has presented a new symbolic technique for the generation and the
storage of the reachability graph of asynchronous systems augmented with the
information about active but not enabled events. Such an information is neces-
sary for the symbolical description of the non-Markovian process underlying a
system in which events are described by CPH distributed random variable.

The goal is achieved by the use of a Multi-terminal Multi-valued Decision
Diagram and a set of Kronecker matrices as data structures and by applying a
Saturation based algorithm for the collection of the needed information. Such
an algorithm has been derived from a theorem inspired by works in symbolic
model checking. The reported numerical results have shown the effectiveness of
the proposed algorithm.

Much work remains to be done, however. We are studying the possibility to
optimize our algorithm for what concerns both execution time and run-time
memory occupation. In particular locality could be exploited in a much deeper
way trying to perform an in-place update of the MDD nodes to build the MT-
MDD. Our goal is to avoid the necessity of the intermediate MDD for the sub-
sequential application of the Saturation algorithm. An implementation of all
the steps, from an high level model description to the measure computation, is
under construction. A possible extension of this work is the application to the
expansion method with the use of Discrete PH distributions. In such a contest
the simultaneous firings of enabled events has to be explicitly addressed in the
application of the algorithm.
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Abstract. In this paper a class of closed queueing network is modelled
in the Markovian process algebra PEPA and solved using the classical
Mean Value Analysis (MVA). This approach is attractive as it negates
the need to derive the entire state space, and so certain metrics from
large models can be obtained with little computational effort. The class
of model considered includes models which are not obviously classical
closed queueing models. The approach is illustrated with three examples.

1 Introduction

There have been many attempts to find efficient solutions to large stochastic
process algebra (SPA) models. SPA models suffer from the well known problem
of state space explosion, where each additional component cause a multiplicative
increase in the size of the global state space. This problem is particularly signif-
icant when there are many instances of the same type of component (so-called
massively parallel systems). Such models may be extremely concise to specify,
but even when the state space is folded or lumped, it may still far exceed the
capacity available for solution.

Many of the approaches to efficiently solving SPA models have been based
on concepts of decomposition originally derived for queueing networks [4]. Ap-
plying such approaches to stochastic process algebra allows the concepts to be
understood in a more general modelling framework and applied to non-queueing
models. Hillston [5] took an alternative, inspired by systems biology, approach
by deriving a fluid approximation based on ordinary differential equations. Re-
cently, Thomas [12] showed that such a fluid approximation is equivalent to a
well known asymptotic solution for a class of closed queueing network (similar
to the class of model considered in this paper). Traditionally this asymptotic
solution was used as a computationally cheap alternative to mean value analysis
[8] for very large populations. As such, it is clear that the class of model consid-
ered in [12] is also amenable to solution by mean value analysis. In this paper
we make such an application and in doing so consider an extension to the class
of model studied earlier [11,12].

Mean value analysis (MVA) is a method for deriving performance metrics
based on steady state averages directly from the queueing network specification,
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without the need to derive any of the underlying Markov chain. As such it is rel-
atively computationally efficient as long as the population size is not excessively
large.

This paper is organised as follows. In the next section a brief overview of
PEPA is given. The subsequent section then defines the class of model under
consideration and gives the MVA solution of this class. Three examples are then
used to illustrate the approach and to explore some numerical results. Finally
some conclusions are drawn and some further work discussed.

2 PEPA

A formal presentation of PEPA is given in [3], in this section a brief informal
summary is presented. PEPA, being a Markovian Process Algebra, only sup-
ports actions that occur with rates that are negative exponentially distributed.
Specifications written in PEPA represent Markov processes and can be mapped
to a continuous time Markov chain (CTMC). Systems are specified in PEPA in
terms of activities and components. An activity (α, r) is described by the type of
the activity, α, and the rate of the associated negative exponential distribution,
r. This rate may be any positive real number, or given as unspecified using the
symbol �. It is important to note that in this paper the unspecified rate is not
used.

The syntax for describing components is given as:

A | (α, r).P | P + Q | P/L | P ��
L Q

A
def= P gives the constant A the behaviour of the component P . The compo-

nent (α, r).P performs the activity of type α at rate r and then behaves like P .
The component P + Q behaves either like P or like Q, the resultant behaviour
being given by the first activity to complete.

Concurrent components can be synchronised, P ��
L Q, such that activities in

the cooperation set L involve the participation of both components. In PEPA
the shared activity occurs at the slowest of the rates of the participants and if
a rate is unspecified in a component, the component is passive with respect to
activities of that type. The shorthand notation P ||Q is used to mean P ��

∅ Q and∏N
i=1 Pi is used to mean the parallel composition of the components Pi where

i takes the values 1 through to N , i.e. P1|| . . . ||PN . In addition, we employ
a further shorthand for synchronisation over many identical components, first
introduced in [5], whereby P [N ] is taken to mean N copies of the component
P , synchronised on the empty set, i.e. P || . . . ||P where there are N instances of
component P .

The component P/L behaves exactly like P except that the activities in the
set L are concealed, their type is not visible and instead appears as the unknown
type τ . In this paper we do not make use of hiding, although non-shared actions
could be hidden in a model if that was desirable. The action set A(P ) is defined
as the set of sections which are currently enabled in the derivative P .
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In this paper we consider only models which are cyclic, that is, every deriva-
tive of components P and Q are reachable in the model description P ��

L Q.
Necessary conditions for a cyclic model may be defined on the component and
model definitions without recourse to the entire state space of the model.

3 A Class of Closed Queueing Networks in PEPA

Now consider a model of a closed queueing network of N jobs circulating around a
network of M service stations, denoted 1, . . . , M ; each station is either a queueing
station or an infinite server station. There are Mq queueing stations. Let M be
the set of all queueing stations. At each queueing station, i, there is an associated
queue (bounded at N) operating a FCFS policy and Ki servers. The servers are
able to serve jobs of only one type; each job type, j, is served at rate rj . At each
infinite server station, i, jobs of type i experience a random delay with mean
1/ri. All services are negative exponentially distributed.

There are J job types. Each job type can be served at most one station. When
a job of type j completes a service of at a given station, it will proceed to service
at a station (possibly the same station) as a job of type k according to some
routing probability pjk.

In PEPA a queue station can be modelled as

QStationi
def= (servicei, ri).QStationi , ∀i ∈M

Note that ri is always specified as finite, and not �. This is because passive
actions are subject to the apparent rate in PEPA. The infinite server stations
are not represented explicitly.

Each job will receive service from a sequence of stations determined by a set
of routing probabilities,

Jobi
def=

J∑
k=1

(servicej , pjkrj).Jobk , 1 ≤ i, j ≤ J

Where, 0 ≤ pjk ≤ 1 and

J∑
k=1

pjk = 1 , 1 ≤ j ≤ J

Denote Si to be the set of all job types which perform servicei actions, i.e.
Si = j if servicei ∈ A(Jobj).

The entire system can then be represented as follows:( ∏
∀i∈M

(QStationi[Ki])

)
��
L Job1[N ] (1)

Where
L =

⋃
∀i∈M

{servicei}
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3.1 Mean Value Analysis

We now consider the arrival theorem, first derived independently by Sevcik and
Mitrani [9] and Lavenberg and Reiser [7], applied to this class of PEPA model.

Theorem 1 Arrival Theorem. Consider a component Jobi evolving into its
successor derivative, Jobj in a system given by (1). The steady state distribution
of the number of components behaving as any component Jobk at that moment
is equal to the steady state distribution of the number of components behaving as
Jobk in a system without the evolving job.

The arrival theorem is as profound as it is simple and seemingly intuitive. It
consequently gives rise to the well known mean value analysis, whereby the av-
erage behaviour of a system of N components may be derived from the average
behaviour of a system of N − 1 components. Therefore it is never necessary
to derive a solution to the full CTMC if we are only concerned with the av-
erage behaviour of systems of this kind. This follows from the following set of
relationships, derived following the pattern of Haverkort [2] pp. 241-245.

Theorem 1 implies that the average time a component spends in behaviour
Jobj , denoted Wj(N), where A(Jobj) = servicei and i ∈ M, is given by the
average number of Jobk (∀k ∈ Si) components in a system with one fewer
Jobl, ∀i, components in total. Denote Lj(N) to be the steady state average
number of components behaving as Jobj in a system with N jobs in total. If∑

∀i∈Sj
Li(N − 1) ≤ Kj − 1 and j ∈M then

Wi =
1
rj

, ∀i ∈ Sj (2)

Otherwise, if
∑

∀i∈Sj
Li(N − 1) > Kj − 1 and j ∈M then

Wi =
1 +

∑
∀i∈Sj

Li(N − 1)

Kjri
(3)

Clearly, if j /∈ ⋃∀i∈M S〉, then Wj(N) is a constant, given as Wj(N) = 1/rj .
We now need to compute a quantity generally referred to as the visit count,

and denoted Vi. The visit count is the number of times derivative Jobi is visited,
relative to the number of times some reference derivative JobI is visited, where
1 ≤ I ≤ J . The actual value of Vi is not crucial, rather its value relative to the
value of VI . As such the choice of I is strictly arbitrary.

We can compute the visit count from the routing probabilities pij . Define the
probability that a component will evolve from Jobi to Jobj, without revisiting
Jobi, as follows:

Pij(σ) = pij +
∑
∀k/∈σ

pikPkj(σ)

The set σ here contains only the starting and ending behaviours of interest, in
this case i and j, i.e. it is used to tell us if we reach Jobj or first return to Jobi.
For convenience define the shorthand,

Pij = Pij({i, j})
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By definition, Pii = 1. Clearly the system is irreducible if

Pij > 0 ∀i, j , i �= j

Now we choose some reference point I, such that,

Vi =
PIi

PiI
, ∀i �= I

and VI = 1. Thus, Vi gives the number of times a component assumes the
behaviour Jobi, relative to the number times it assumes the behaviour JobI .

Given the quantity Vj , we can now compute the average response time per
passage for a component behaving as Jobj .

Ŵj(N) = VjWj(N) (4)

From Little’s theorem we know that

Lj(N) = Xj(N)Wj(N) = X(N)VjWj(N) = X(N)Ŵj(N) (5)

Where Xj(N) is the observed rate of activity servicej when the population size
is N , and X(N) is the sum of all possible Xj(N)′s.

Summing (5) over all behaviours Jobi, i = 1, 2, . . . , J gives,

J∑
j=1

Lj(N) = X(N)
J∑

j=1

Ŵj(N) = X(N)Ŵ (N) = N

where Ŵ (N) =
∑J

j=1 Ŵj(N). Thus,

X(N) =
N

Ŵ (N)

Hence, with Little’s law applied for a given behaviour Jobj ,

Lj(N) = Xj(N)Wj(N) = X(N)VjWj(N) =
N

Ŵ (N)
Ŵj(N) (6)

We are now in a position to calculate Lj(N) for any value of N if we can
calculate Lj(1). A solitary Jobi component will never compete for cooperation
over the actions in L, and so will experience a delay of 1/ri in each derivative
Jobi. Hence, the average number of components behaving as Jobj when N = 1,
Lj(1) is given by the proportion of time a component spends in that behaviour.

Lj(1) =
Vj

rj

∑J
i=1

Vi

ri

(7)

We now apply the following iterative solution.
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1. Calculate Lj(1) for j = 1, 2, . . . J , using (7).
2. n = 2
3. Compute Ŵj(n) for j = 1, 2, . . . J , using (2), (3) and (4) and Lj(n− 1) from

1 above.
4. Compute Ŵ (n) =

∑J
j=1 Ŵj(n).

5. Compute Lj(n) for j = 1, 2, . . . J , using (6) and Ŵ (n) from 4 above.
6. Increment n.
7. If n ≤ N return to step 3 else end.

Clearly this solution is not complicated to implement. For a system of J job
types and N jobs it is necessary to compute (2J+1)N distinct quantities. Hence,
this will generally only be costly when N is extremely large.

4 Examples

In this section we explore the class of models introduced above, through three
example PEPA models. Each example depicts a different aspect of this class.
The first model is an abstract queueing model, with probabilistic branching on
completion of service at one of the stations. The other two examples are practical
models drawn from an ongoing area of study into performance modelling of secu-
rity protocols. The first of these is a model of the classic Needham–Schroeder key
distribution protocol. This model has no branching and so mean value analysis
is applied easily. The second practical model is of a non-repudiation protocol.
This model involves a single queueing station processing separate requests from
two participants in an exchange.

4.1 Example 1: A Three Node Closed Queueing Network

Consider the following PEPA specification of a simple closed queueing network

Node1 def= (service1, ξ).Node1

Node2
def= (service2, μ).Node2

Node3
def= (service3, η).Node3

Request1
def= (service1, ξ).Request2

Request2
def= (service2, (1 − p)μ).Request1 + (service2, pμ).Request3

Request3
def= (service3, η).Request1

The entire system is then specified as

(Node1[K1]||Node2[K2]||Node3[K3])
��{

service1,service2
service3

} Request1[N ]

This system depicts a three node closed queueing network where all three
nodes are queueing stations. After completing service at node 1, all requests
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proceed to node 2. Following service at node 2, a proportion of requests, p, will
return to node 1, whilst the remainder will be directed to node 3. All requests
completing service at node 3 will return to node 1.

In this example it is a simple matter to compute the visit count for each node.

V1 = 1
V2 = 1
V3 = p

There are clearly many possible approaches to implementing the iterative
solution given above. For convenience this model has been solved in an Excel
spreadsheet. Solutions with population sizes of over 10000 have been derived
without any problems, although clearly a more efficient implementation is desir-
able for larger N when a range of parameter values are being considered.

Figure 1 shows the average queue size at node 3 varied with population size
N for various values of p.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

N

L3(N)

p=0.4

p=0.5

p=0.6

Fig. 1. Average queue length at node 3 varied with population size (ξ = μ = 10, η = 5)

When p = 0.5 all three nodes have the same load, hence their queue sizes will be
equal, i.e. Li = N/3. Obviously, if p is less than 0.5 then node 3 will have a lower
load than the other two nodes, hence it will have a smaller average queue length.
In fact, the average queue length at node 3 will tend to a fixed value (L3(N)→ 4
as N →∞ when p = 0.4). Conversely, if p > 0.5 then the third node will become
the bottleneck of the system, and the majority of jobs will be queueing there. In
the case p = 0.6, the average queue length at node 3 will tend to N − 10.
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4.2 Example 2: A Secure Key Distribution Centre

Consider a model of the classic Needham-Schroeder key distribution protocol
(taken from [14]) specified as follows:

KDC
def= (response, rp).KDC

Alice0
def= (request, rq).Alice1

Alice1
def= (response, rp).Alice2

Alice2
def= (sendBob, rB).Alice3

Alice3
def= (sendAlice, rA).Alice4

Alice4
def= (confirm, rc).Alice5

Alice5
def= (usekey, ru).Alice0

The system is then defined as:

KDC[K] ��
{response} Alice0[N ]

Where, K is the number of KDC’s and N is the number of client pairs (Alices’s).
In this model the component Alicei represents the actions of a pair of clients

(normally referred to as Alice and Bob). The sequence of actions includes Alice
requesting a session key from a secure server, known as the key distribution
centre (KDC). This results in competition for the resources of the KDC amongst
the various client pairs. Once the key has been issued to Alice, Alice and Bob
exchange messages to confirm their mutual trust (established by shared trust of
the KDC), before using the provided session key.

Clearly there is no branching, and so Vi = 1, ∀i. Furthermore there is only
one queueing station, so this is always the bottleneck of the system unless K is
large relative to N .

Figure 2 shows the average response time at the KDC, WKDC for this system
when there is one server for various service rates. Clearly, when the service rate
is smaller, the response time is larger and its rate of increase is larger.

Figure 3 shows the average queue length at the KDC, LKDC for this system
when there is either one fast server or K slower servers. When the population
size is large (N > 30 in this case) the KDC becomes saturated and there is
consequently no difference in the service rate offered between the two cases
shown. However, when N is smaller, there will be periods where one or more
of the K servers will be idle, thus reducing the overall service capacity offered.
Hence, for smaller N , a single fast server will outperform multiple slower servers
with the same overall capacity, as is well known from queueing theory.

4.3 Example 3: A Non-repudiation Protocol

Non-repudiation protocols are used to prevent participants in a communication
from later falsely denying that they took part in that communication. There
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Fig. 2. Average response time at the KDC varied with population size (rq = rB =
rA = rc = 1, ru = 1.1, K = 1)

are many such protocols, with different properties. The one depicted here, first
proposed by Zhou and Gollmann [15], utilizes a secure server, known as a Trusted
Third Party, or TTP. Consider the following PEPA specification.

TTP
def= (publish, rp).TTP

AB0
def= (request, rq).AB1

AB1
def= (publish, rp).AB2

AB2
def= (getByA1, rga1).AB3

AB3
def= (sendB, rb).AB4

AB4
def= (sendTTP, rttp).AB5

AB5
def= (publish, rp).AB6

AB6
def= (get, rgb).AB7 + (get, rga2).AB8

AB7
def= (getByA2, rga2).AB9

AB8
def= (getByB, rgb).AB9

AB9
def= (work, rw).AB0

System = TTP ��
{publish} AB0[N ]

The model depicts a single TTP with N client pairs (Alice and Bob,
denoted AB). The protocol utilises publishing in a public space (e.g. a bulletin
board) by the TTP, from where the clients each download. In the specification
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Fig. 3. Average queue length at KDC varied with population size (rq = rB = rA =
rc = 1, ru = 1.1)

above we are only concerned with contention on the publication by the TTP,
although it would also be possible to specify an additional component to act as
a web server.

In this model there is branching through a race on the get action in AB6,
and on service at the TTP (depending on which job type is served). Thus, the
average number of components behaving as AB1 when there are N client pairs,
L1(N), depends the number of AB1 and AB5 when there are N − 1 client pairs,
L1(N−1) and L5(N−1). Likewise, the average number of components behaving
as AB6. The branching in AB6 is specified over two get actions with different
rates. These actions depict a race condition on Alice and Bob independently
downloading from the bulletin board. In theory these could be given different
names (they should ideally be called getByB and getByA2 respectively) but
that is not possible in the current characterisation of the class of model given in
Section 3.

The visit count is identical for each behaviour ABi, Vi = 1, except V7 and V8,
given by,

V7 =
rgb

rgb + rga2

V8 =
rga2

rgb + rga2

Note that the visit count for behaviours AB1 and AB5, V1 and V5, are 1.
Since publish actions from both AB1 and AB5 are served by the TTP, the
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‘apparent visit count’ of the TTP is effectively double that of the other stations,
although we are not concerned with this quantity in our derivation of mean value
analysis.

Figure 4 shows the average number of AB1 components awaiting service at the
TTP , for different values of service (publishing) rate, rp, varied with population
size. Two parameter sets are used, identical except for the values of rp, although
in each case the average service time is the same. Clearly, the values of L1(N)
and L5(N) are the same, and so only L1(N) is shown. Clearly, the more jobs
that are waiting in the queue, the longer an arriving job will have to wait. Thus,
we find that the queue becomes longer at the TTP and that proportionally less
time is spent performing the other actions, and so the throughput decreases.
The figure shows a comparison between a single server and multiple servers with
the same total service capacity. When the queue size is small then not all servers
will be utilised; the more servers there are the more likely they are to be idle.
Hence, there is linear growth of the queue when K = 3 and N < 10. In contrast,
initially queue grows less quickly when there is only one (faster) server. However,
once the population grows sufficiently for all servers to be highly utilised, then
the three cases will show identical performance.

This situation is more clearly illustrated when looking at the response time
for AB1 components in Figure 5. When K > 1 the response time is static
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with N when the population is small, but once the population is large enough,
the performance is once again shown to be the same in all cases.

5 Conclusions and Further Work

This paper demonstrates the solution of a class of PEPA models using classical
Mean Value Analysis [8]. This gives a relatively computationally cheap method
for solving large models without need to derive the state space of the underlying
Markov chain. The CTMC for this class of model, even when lumped using
standard techniques, is still large and generally grows at an exponential rate.
Thus, when the number of instances of the Jobi components is extremely large,
a CTMC solution is not going to be a feasible proposition. In contrast we have
derived solutions to the example models here with over 10000 Jobi components,
using a very simple (and not very efficient) spreadsheet based implementation
on a relatively old laptop PC, in a fraction of a second. In the case of example 1
(Section 4.1) the lumped CTMC would have in excess of 50 million states when
there are 10000 Requesti components.

Clearly, the approach is limited in both the metrics that can be derived and
also the class of model that is considered. The former limitation is a feature of
mean value analysis (hence the name). However, the class of model could be
extended in a number of ways. Mean value analysis applies to multiple classes
of jobs in closed queueing network. Therefore it should be straightforward to
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define a class of model with different groups of components, each with poten-
tially different action rates and routing probabilities. This would be a relatively
simple extension of the current class, but would involve careful use of notation
to distinguish classes in a meaningful way.

The final example considered in this paper, a non-repudiation protocol, high-
lights a situation where we may wish an action type to appear in more than one
job component, and potentially different action types in the same job component.
Such a limitation is largely cosmetic, as an equivalent model can be specified in
the existing class, as is done here. However, it should be possible to incorporate
this option with a further adjustment to the notation used in this paper.

Finally, it should be noted that there can only be one service action type at a
station and that must be given the same rate in any job type where it is enabled.
Although intuitively it is possible to model the case where there are more job
types enabled at a queueing station, doing so potential introduces race conditions
and therefore distorts the effective service rate. We are still considering how
such a situation might be best specified and it may be more feasible to consider
approximate solutions in this scenario.
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Informàtica. Ctra de Valldemossa, Km. 7.6, 07071 Palma de Mallorca, Spain

cllado@uib.es, putxi@uib.es

Abstract. This paper presents a performance model interoperability
framework that brings together performance model interchange formats
and experiment specifications with the automatic generation of perfor-
mance analysis results for presentation and publication. We define the
Use Cases and requirements and survey output and results used in prac-
tice. We present the output specification, the issues in the output-to-
results transformation, the results specification schema extension, and
a prototype implementation. A proof of concept example demonstrates
the framework.

Keywords: Performance modelling, Tool interoperability, Queueing
networks, Results.

1 Introduction

The concept of performance model interoperability was first introduced in 1995
[6]. Methods and tools supporting model interchange formats have evolved rapidly
since 2004 with the introduction of XML as a viable mechanism for supporting
model interchange [4].

Performance model interchange formats (PMIF) provide a mechanism for au-
tomatically moving performance models among modelling tools. Use of the PMIF
does not require tools to know about the capabilities of other tools, internal data
formats, or even existence. It requires only that the importing and exporting
tools either support the PMIF or provide an interface that reads/writes model
specifications from/to a file. Interchange formats have also been defined for lay-
ered queueing networks (LQN), UML, Petri Nets and other types of models.

Another interchange format, the Experiment Schema Extension (Ex-SE), al-
lows the user to define a set of model runs that vary parameters. The Ex-SE
provides a means of specifying performance studies and the output desired from
them that is independent of a given tool paradigm. Each tool generates the per-
formance metric output, such as response time, utilization, etc., specified for
each experiment. A performance analyst typically studies this output to form
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conclusions about the results of the experiments, then prepares a presentation
and/or report to explain the results.

Other work (see [5] for its description) has recognized the need for this last
step. Our work develops the concept and provides a concrete realization of it.
This paper streamlines the last step by defining a Results Schema Extension
(Results-SE) that enables a user-customized transformation from the output of
an experiment into the desired results.

The contributions of this work are:

– A definition of the most frequent Use Cases for this model interoperability
framework

– A review of the typical types of output and results produced for queueing
network based performance models for these Use Cases

– Definition of a modelling-paradigm independent schema for specifying the
output of experiments and the transformation to results

– Implementation of a prototype demonstrating the feasibility of the approach
– Demonstration that the approach works.

2 Requirements for Producing Results

First we discuss the typical situations, or Use Cases, for conducting modelling
experiments and analyzing results. Next we identify typical output and results
that are needed for those Use Cases. Then we present our approach to providing
the output and results.

QNM may be used in a variety of fields from computer performance evaluation
to any other field that is interested in the behaviour of queues and servers. This
paper addresses computer performance evaluation; other applications of QNM
may require extensions to the analysis and results.

The most common reasons that performance analysts build and analyze QNM
models are to:

1. Monitor and report on operational system performance
2. Analyze capacity requirements for future workload volumes
3. Evaluate problematic systems, identify causes and study options
4. Compare model results to measurements
5. Conduct technical investigations to compare results from: multiple tools,

different solution algorithms, or even different types of solutions.

The next step is to determine the output metrics and results that are most
often desired for these Use Cases.

We examined a sample of papers from the Computer Measurement Group
25th anniversary edition of the proceedings (1974 through 1999) [2] - the main
source of practitioner modelling papers. Research results in other publications
are similar.
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We found three types of results: tables, graphs or charts in spreadsheet tools,
and metric values embedded in the text of the paper. Some combinations of
performance metrics occur frequently; examples are: service times and response
times for several workloads; and throughput, response time and CPU utilization
for several workloads.

Our conclusion is that the primary results are tables and charts. Charts are
derived from tables, so they can be combined into one “result.” Since there are
many common combinations of both tables and charts, the specifications for
those should be streamlined.

The most common format for tables and charts is xls [1] as in spreadsheet
tools such as Excel and OpenOffice, and imported by most presentation and
word processing packages. However, the most common document preparation
system for research publications is LATEX. Our approach transforms the output
metrics to tables and charts in xls and LATEX.

Additionally, we support two transformation modes: create a new table/chart
and update an existing one. The update mode is convenient because it is unlikely
that final results will be produced with one pass. It is also convenient when tables
involve output from multiple tools. More importantly, it is easier to define table
and chart formats by typing column and row headings or chart specifications
directly into the spreadsheet rather than specifying transformation commands
to create them.

This work does not address the metric values that are embedded in text. They
have no tedious formatting requirements, and they might be best suited to the
performance tree question/answer approach [7].

3 Model Transformation Approach

The Output Schema Extension is in Fig. 1. The “ValueUsed” applies to Ranges
or other variables used in the experiment specification and reports the value
used for that particular solution.

The metrics that may be produced are in the OutputWorkload (overall
results by workload), OutputNode (overall results by Node), and Output
NodeWorkload (results by Workload for Nodes). For more information see
www.spe-ed.com/pmif/

Fig. 1. Output Schema Extension
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The output desired is specified in the Experiment specification. For each so-
lution, the user may specify: WriteVariable, WriteOutput, or a ToolCommand
that is passed to the tool unchanged. This allows users to print custom reports,
visualization output, etc. particular to the tool, see [5].

The next step is to provide for an automatic conversion of the output into
the table and chart results. We considered 2 options related to how those tables
and charts would be expressed:

1. To use a “standard” xsd schema for spreadsheets for the results specification
and transform the output into the xml format that follows such a schema.

2. To develop a transformation specification from output into the standard
elements of a spreadsheet: rows, columns, and charts and transform the
output into xls or LATEX format.

Some spreadsheet tools, such as OpenOffice, do not yet support xml import and
export, and the “standard” schema does not include chart specifications. Option
1 would require an additional schema to specify the transformation. Thus we
chose the second option because it provides a specification of tables and charts
using familiar notation, e.g., numeric rows and alphabetic columns. Java tools
support the creation of a spreadsheet in xls format.

Fig. 2 shows the Results-SE schema. The Output-SE has a collection of out-
puts for each OutputSolutionSpec (or Solve) in the Experiment-SE. So the
Results-SE specifies how to process each of those, and specifies the file/s contain-
ing the output. It can specify one or more tables (in xls tables go into different
worksheets). WriteResult specifies the type of output metric to use (Node, Work-
load, etc.), the metric (such as response time), and where to place the values in
the table (row, column, etc). There is a placeholder for Chart specifications to
be added in future work.

The Transform prototype has been implemented in Java, using the Docu-
ment Object Model (DOM) to read and validate the xml files (Output and
ResultsSpec). We have also used the Apache POI APIs for manipulating MS
Excel and OpenOffice file formats using pure Java.

Fig. 2. Results-SE schema
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4 Proof of Concept

The proof of concept uses a case study previously published and replicates it
with the model interoperabilty experimental framework. It is a technical paper
(Use Case) that compares a published solution to solutions derived automatically
from experiment specifications.

The example was published in Jain’s book [3] and subsequently used as an
example of the experimental framework in [5]. It shows how to manually create
a table, specify formats, enter the results from another source, then update the
remaining values with the output from the experiment. The demonstration seeks
to replicate the table in [5].

We run Qnap to produce the Output file of performance metrics specified in
the experiment in [5]. We manually create an xls file with the formatting and
Jain results taken from [3]. We then update the file using the results specification
(an excerpt is in Fig. 3) to produce the table in Fig. 4.

<OutputProcessingSpec RowIncrement="3"FileToProcess="Jain574.xml">
<WriteSolutionID Format="5" Row="3" Col="1" />
<WriteLabel Value="Qnap" Row="5" Col="1" />
<WriteResult Type="OutputWorkload" Metric="ResponseTime" Row="5" Col="2"/>
<WriteResult Type="OutputNodeWorkload" Metric="ResidenceTime" Row="5" Col="3"

ColIncrement="1"/>
<WriteResult Type="OutputNode" Metric="Utilization" Row="5" Col="6" ColIncrement="1"/>

<OutputProcessingSpec>

Fig. 3. Excerpt of Results Specifications

Fig. 4. Xls file automatically produced for Jain’s case study

5 Conclusions

This paper has tied together previous work on performance model interchange
formats and experiment specifications. It adds an output-to-results transforma-
tion to produce performance analysis results for presentation and publication.

Our general purpose approach was demonstrated with PMIF, however it also
applies to other modelling paradigms, tools, and even measurement tools. It
supports the automation of model studies from the creation of the performance
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model specification, the experiments to be conducted with the model, the execu-
tion of models and transformation of output to tables and charts for presentation
and publication. It supports the Use Cases in Section 2 (i.e., analyzing capac-
ity requirements, evaluating problematic systems, etc.) and streamlines typical
tasks such as exploring output and identifying results for presentation. It is a
standard format that can be used by multiple tools.

Future work will develop additional templates for the most frequent results
and implement additional prototypes for updating tables and creating charts.
We will apply the framework to other tools, and extend it to apply to real time
systems. An interesting extension might include creating rules for specifying
threshold values and highlighting results in tables that exceed the threshold. We
also envision the integration of Performance Trees by relating the queries to the
output in order to produce results.
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Abstract. The paper presents a new simple analytical method for a
determination of the blocking probability in a full-availability group car-
rying a mixture of different multi-rate traffic classes with the compression
property. The proposed model can be directly used for modelling of the
Iub interface in the UMTS network servicing the Release 99 and HSDPA
traffic classes. The described model can be applied for the validation of
the efficiency of the Iub interface measured by the blocking probability
and the average carried traffic for particular traffic classes.

Keywords: analytical model, traffic compression, UMTS, HSDPA.

1 Introduction

The increase in popularity of data transfer services in mobile networks of the
second and the third generations has been followed by an increase in the interest
in methods for dimensioning and optimization of networks servicing multi-rate
traffic. In traffic theory, the issues concerning the problem are in full swing. This
situation is primarily caused by the special conditions in the construction of
these networks, and by the construction of the infrastructure of the access radio
network in particular – as its development, or extension, needs a precise defini-
tion and assessment of clients’ needs and is relatively time-consuming. Cellular
network operators define, on the basis of SLA (Service Level Agreement), a set
of the KPI (Key Performance Indicator) parameters that serve as determinants
in the process of network dimensioning and optimization. Dimensioning can be
presented as an unending and on-going process of analyzing and designing of the
network. To make this work effective it is thus necessary to work out algorithms
that would, in a reliable way, model the parameters of a designed network.

The dimensioning process for the 3rd generation UMTS (Universal Mobile
Telecommunications System) system should make it possible to determine such
a capacity of individual elements of the system that will secure, with the as-
sumed load of the system, a pre-defined level of Grade of Service (GoS). With
dimensioning of the UMTS system, the most characteristic constraints are: the
radio interface and the Iub interface. When the radio interface is a constraint,
then, in order to increase the capacity, access technology should be changed or

J.T. Bradley (Ed.): EPEW 2009, LNCS 5652, pp. 79–93, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



80 M. Stasiak et al.

subsequent branches of the system should be added (another NodeB). If, how-
ever, a constraint on the capacity of the system results from the capacity of the
Iub interface, then a decision to add other stations (nodes) can be financially
unfounded, following an incomplete or incorrect analysis of the system. This
means that in any analysis of the system, a model that corresponds to the Iub
interface should be routinely included.

The Iub interface can carry two types of traffic: the so-called Realse 99(R99) [1]
and HSDPA (High-Speed Downlink Packet Access) [2, 3] traffic. Release 99 de-
fines several services offered in UMTS networks such as speech, videocall and
data transmission (up to 384 kb/s). HSDPA is an extension of the UMTS net-
work which allows to transmit high-speed data in the downlink direction (up
to 7,2 Mb/s). Several papers have been devoted to traffic modelling in cellular
systems with the WCDMA radio interface [4,5,6,7,8,9,10,11,12,13,14,15]. How-
ever, to the best knowledge of the authors, the relevant literature, proposes only
one analytical model of the Iub interface [16]. In this paper the authors discuss
the influence of the organization scheme of Iub on the efficiency of the interface.
The paper describes two analytical models corresponding to the static and the
dynamic organization scheme of the Iub interface. In the static scheme it was
assumed that Iub was divided into two separated links and one of them carried
a mixture of R99 whereas the other HSDPA traffic stream. In this scheme each
of the links was modelled by the full-availability group with multi-rate traffic.
The second organization scheme assumed dynamic constraint of the Iub inter-
face resources for R99 traffic accompanied by unlimited access to the resources
for HSDPA traffic. The dynamic organization scheme of Iub is analytically mod-
elled by the new model of the full-availability group with limitation proposed
by the authors. In both models the influence of the compression mechanism for
HSDPA traffic classes was not taken into consideration and the average through-
put per a HSDPA user was not discussed. The relevant literature discusses some
analytical models for multi-rate traffic with compression (i.e. [17,18]) which can
be applied for modelling HSDPA traffic. These models are quite simple under
the assumption that all classes of the carried traffic are characterized by the
compression property. In any other way, when the system services simultane-
ously classes which undergo and do not undergo compression, the methods are
characterized by a high complexity, which limits their practical application.

The paper presents a new effective analytical model that can be used for the
blocking probability determination in cellular systems with the Iub interface
carrying a mixture the Release 99 and HSDPA traffic classes with adopted com-
pression functionality. The paper has been divided into five sections. Section 2
briefly recalls the basic model of a full-availability group with multi-rate traffic
which serves as the model presented in Section 3. Section 3 describes the analyt-
ical model of full-availability group with traffic compression. Section 4 shows an
application of the model in the UMTS network for modelling of the Iub interface
carrying R99 and HSDPA traffic classes. This section also includes the results
obtained in the study of the system. The final section sums up the discussion.
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2 Model of Full-Availability Group with Multi-rate
Traffic

Let us assume that the total capacity of a full-availability group (FAG) with
multi-rate traffic is equal to V Basic Bandwidth Units (BBUs). The group is
offered M independent classes of Poisson traffic streams having the intensities:
λ1, λ2, ..., λM . The class i call requires ti BBUs to set up a connection. The
holding time for calls of particular classes has an exponential distribution with
the parameters: μ1, μ2, ..., μM . Thus, the mean traffic offered to the system by
the class i traffic stream is equal to:

Ai = λi/μi. (1)

The demanded resources for servicing particular classes in the group can be
treated as a call demanding an integer number of (BBUs) [19]. The value of
BBU, i.e. tBBU , is calculated as the greatest common divisor of all resources
demanded by the traffic classes offered to the system:

tBBU = GCD(R1, ..., RM ), (2)

where Ri is the amount of the resources demanded by class i call in kbps.
The multi-dimensional Markov process in FAG can be approximated by a

one-dimensional Markov chain which can be described by the Kaufman-Roberts
recursion [20, 21]:

n [Pn]V =
M∑
i=1

Aiti [Pn−ti ]V , (3)

where [Pn]V is the probability of state n BBUs being busy, and ti is the number
of BBUs required by a class i call:

ti = �Ri/tBBU�. (4)

On the basis of formula (3), the blocking probability Ei for class i stream can
be expressed as follows:

Ei =
V∑

n=V −ti+1

[Pn]V , (5)

where V is the total capacity of the group and is expressed in BBUs
(V = �Vphy/tBBU�, where Vphy is the physical capacity of group in kbps).

The diagram in Fig. 1 corresponds to formula (3) for the system with two
call streams (M=2, t1=1, t2=2). The yi(n) symbol denotes the so-called reverse
transition rate of a class i service stream outgoing from state n. This parameter
can be calculated on the basis of the local equations of equilibrium in the Markov
chain [20, 22]:

yi(n) =
{

Ai [Pn−ti ]V / [Pn]V for n ≤ V,
0 for n > V.

(6)

The reverse transition rate determines the average number of class i calls serviced
in the state n.
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Fig. 1. Section of a diagram of the one-dimensional Markov chain in a multi-rate system
(M=2, t1=1, t2=2)

3 Model of Full-Availability Group with Compression

Let as assume now that a full-availability group services a mixture of different
multi-rate traffic streams with the compression property. This means that in the
traffic mixture there are such calls in which a change in demands (requirements)
is followed uniformly by the overload of the system.

In this group it is assumed that the system services simultaneously a mixture
of different multi-rate traffic classes, while these classes are divided into two sets:
classes whose calls can change requirements (demands) while being serviced and
classes that do not change their demands in their service time.
In the considered model the following notation is used:

– Mk denotes a set of classes capable of compression, while Mk = |Mk| is the
number of compressed traffic classes,

– Mnk is a set of classes without compression, and Mnk = |Mnk| denotes the
number of classes without compression.

It was assumed in the model that all classes undergoing compression were com-
pressed to the same degree. The measure of a possible change in requirements is
the maximum compression coefficient that determines the ratio of the maximum
demands to minimum demands for a given traffic classes. The coefficient Kmax
can be determined on the basis of the dependence:

∀j∈Mk
Kmax =

tj,max

tj,min
, (7)

where tj,max and tj,min denote respectively the maximum and the minimum
number of basic bandwidth units (BBUs) demanded by a call of class j.

We assume that the system will be treated as a full-availability group with
multi-rate traffic. The occupancy distribution in such a system can be expressed
by the recursive Kaufman-Roberts formula (3), under the assumption that the
amount of required resources by calls of the classes with the compression prop-
erty is minimum. In the case of a system carrying a mixture of traffic streams that
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undergo and do not undergo compression, the occupancy distribution (3) will be
more conveniently expressed after dividing the two types of traffic1:

n [Pn]V =
Mnk∑
i=1

Aiti [Pn−ti ]V +
Mk∑
j=1

Ajtj,min
[
Pn−tj,min

]
V

, (8)

where tj,min is the minimum number of demanded BBUs in a given occupation
state of the system by a call of class j that belongs to the set Mk.
The blocking (loss) coefficient in the full-availability group will be determined
by the dependence (6) that, in the considered case, will take on the following
form:

Ei = Bi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
V∑

n=V −ti+1
[Pn]V for i ∈ Mnk,

V∑
n=V −ti,min+1

[Pn]V for i ∈ Mk.
(9)

In Equations (8) and (9), the model is characterized by the parameter ti,min
which is the minimum number of BBUs demanded by a call of class i under
the conditions of maximum compression. Such an approach is indispensable in
determining the blocking probabilities in the system with compression since the
blocking states will occur in the conditions of maximum compression. The max-
imum compression determines such occupancy states of the system in which
further decrease in the demands of calls of class i is not possible.

In order to determine a possibility of the compression of the system it is neces-
sary to evaluate the number and the kind of calls serviced in a given occupancy
state of the system. For this purpose we can use Formula (5) that makes it
possible to determine the average number of calls of class i serviced in the occu-
pancy state n BBUs. This dependence, under the assumption of the maximum
compression, can be written in the following way:

yi(n) =

⎧⎨⎩
Ai[Pn−ti ]V

[Pn]V
for i ∈ Mnk,

Ai[Pn−ti,min ]V
[Pn]V

for i ∈ Mk.
(10)

On the basis of Formula (10), knowing the demands of individual calls, we can
thus determine the total average carried traffic in state n, under the assumption
of the maximum compression:

Ymax(n) = Y nk(n) + Y k
max(n) =

Mnk∑
i=1

yi(n)ti +
Mk∑
j=1

yj(n)tj,min, (11)

where Y k
max(n) is the average number of busy BBUs in state n occupied by calls

that undergo compression, whereas Y nk(n) is the average number of busy BBUs
in state n occupied by calls without compression.
1 Further on in the paper, the terms “a set of classes with the possibility of compres-

sion" and “class with the possibility of compression", will be simplified to “a set of
classes with compression" and, respectively, a “class with compression", respectively.
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Let us assume that the value of the parameter Y nk(n) refers to non-compressed
traffic and is independent of the compression of the remaining calls. The real val-
ues of carried traffic, corresponding to state n (determined in the condition of
maximum compression), will depend on the number of free BBUs in the system.
We assume that the real system operates in such a way as to guarantee the
maximum use of the resources, i.e. a call of a compressed class always tends to
occupy free resources and decreases its maximum demands in the least possible
way. Thus, the real traffic value Y (n), carried in the system in a given state cor-
responding to state n (determined in maximum compression) can be expressed
in the following way2:

Y (n) = Y nk(n) + Y k(n) =
Mnk∑
i=1

yi(n)ti +
Mk∑
j=1

yj(n)tj(n). (12)

The parameter tj(n) in Formula (12) determines the real value of a demand of
class j in state n:

∀j∈Mk
tj,min < tj(n) ≤ tj,max. (13)

The measure of the degree of compression in state n is the compression coefficient
ξk(n), which can be expressed in the following way:

tj(n) = tj,minξk(n). (14)
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Fig. 2. Exemplary system with compression

2 Further on in the description, to simplify the description, we will use the term “in
state n" instead of “a given state n in maximum compression".
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Taking into consideration (14), the average number of busy BBUs occupied
by calls with compression can be written thus:

Y k(n) =
Mk∑
j=1

yj(n)tj(n) = ξk(n)
Mk∑
j=1

yj(n)tj,min. (15)

We assume in the considered model that the system operates in such a way
that it guarantees the maximum use of available resources and this means that
calls that undergo compression will always tend to occupy free resources, de-
creasing their demands in the least possible way. The other parameter of the
considered system, beside the blocking (loss) probability, is the average number
of busy BBUs in the system occupied by calls with compression (Formula (15)).
In order to determine this parameter, the knowledge of the compression coeffi-
cient ξk(n) is indispensable. This coefficient can also be defined as the ratio of
potentially available resources for the service of calls with compression to the
resources occupied by these calls in the state of maximum compression. Thus,
we can write (Figure 2):

ξk(n) =
V − Y nk(n)

Y k
max(n)

=
V − Y nk(n)
n− Y nk(n)

. (16)

The numerator in the Formula (16) expresses the total amount of resources of
the system which can be occupied by calls of the class with compression, whereas
the denominator can be interpreted as the the amount of resources which can be
occupied by calls of the class with compression, under the assumption that the
system (FAG) is in the state n of busy BBUs. A constraint to the value of the
coefficient (16) is the maximum compression coefficient determined on the basis
of the dependence (7). This constraint can be taken into account by defining
formally the compression coefficient in the following way:

ξk(n) =
{

Kmax for ξk(n) ≥ Kmax,
ξk(n) for 1 ≤ ξk(n) < Kmax.

(17)

The compression coefficient determined by Formula (17) is not dependent on
the traffic class. This results from the adopted assumption in the model of the
same degree of compression for all traffic classes that undergo the mechanism of
compression.

Knowing the value of the compression coefficient in every state n, we can
determine the average resources occupied by calls of class j with compression:

Y k
j =

V∑
n=0

yj(n) [ξk(n)tj,min] [Pn]V . (18)

On the basis of the average resources occupied by calls of class j, we can deter-
mine the average resources occupied by calls of all traffic classes with compres-
sion:

Y k =
Mk∑
j=0

Y k
j . (19)
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Let us note that the value Y k in Formula (19) is the average carried traffic in
the system by calls which undergo compression.

4 Application of the Model in the UMTS Network

4.1 Architecture of the UMTS Network

Let us consider the structure of the UMTS network presented in Fig. 3. The
presented network consists of three functional blocks designated respectively:
UE (User Equipment), UTRAN (UMTS Terrestrial Radio Access Network) and
CN (Core Network). The following notation has been adopted in Fig. 3: RNC
is the Radio Network Controller, WCDMA is the radio interface and Iub is
the interface connecting Node B and RNC. In the dimensioning process for the

Fig. 3. Elements of the UMTS network structure

UMTS network, an appropriate dimensioning of the connections in the access
part (UTRAN), i.e. the radio interface between the user and NodeB, and the
Iub connections between NodeB and the RNC (Radio Network Controller), has
a particular significance.

Having in mind the duration time of the expansion of a network and huge
relevant costs involved as well as the following possible savings in expenditures,
operators of cellular networks are more than eager to implement technological
solutions that optimize investments but, nevertheless, make it possible to retain
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the complex quality of service. One of such solutions, frequently used in real net-
works, is a separation of links on the Iub interface. The operator is in position to
configure two virtual paths (VP - virtual path) of ATM (Asynchronous Transfer
Mode) on the Iub interface and assign them to, respectively, real-time traffic and
best effort traffic. Assuming that best effort VC (Virtual Channel) will not allo-
cate the maximum demanded bandwidth in the same time, the total bandwidth
can be co-shared between the VCs, which results in its better utilization. The
application of the method should be thus even recommended for distinguishing
parameters needed for designing/dimensioning of networks with different QoS
requirements for different clients. Obviously, in the case of bandwidth overload,
part of ATM cells will be lost. An example of a physical realization of this type of
a solution on the Iub interface with the application of IMA (Inverse Multiplexing
for ATM) [23] is shown in Fig. 4. The application of IMA makes it possible to
create two logical ATM paths on the basis of separate physical links3. Table 1

Iub interface

RNC

PS Interactive 

Background

(HSDPA User Data)

CS: Conversational

CS: Streaming

PS: Interactive/

Background

PS: Conversational

PS: Streaming

Real Time VP

Best Effort VP

2 Mbps

2 Mbps

2 Mbps

2 Mbps

2 Mbps

2 Mbps

2 Mbps

IMA

IMA

Node B

Fig. 4. One of the most common ways of carrying out a connection between the UMTS
base station (NodeB) and RNC (Radio Network Controller) with the application of
IMA technology

shows an example of UMTS Packet Switched (PS) and Circuit Switched (CS)
services carried out by logical ATM paths dedicated to servicing “best effort"
traffic and “real-time"traffic, respectively, and corresponding to Figure 4.

Additionally, it should be mentioned that the application of this solution
paves the way for further optimization of capacity since with the application
of traffic concentration devices between NodeB and RNC, the paths of the type
“Real Time" will be carried by the concentrating device in the capacity ratio 1:1,
while the paths of the “best effort" type can be carried, for example, in the ratio
2:1 (a twofold higher capacity on the input of the concentration device than on
3 Figure 4 assumes that the links constituting IMA have throughput of 2Mbps.



88 M. Stasiak et al.

Table 1. An example of service class mapping into ATM classes

ATM class of service UMTS class of service Exemplary service

Best Effort VP
Interactive Background
(HSDPA User Data) Web Browsing

Real Time VP CS: Conversational Voice
Real Time VP CS: Streaming Modem Connection
Real Time VP PS: Interactive/Background FTP, Realtime Gaming
Real Time VP PS: Conversational Speech (VoIP)
Real Time VP PS: Streaming Mobile TV

the output). Using the properties of offered traffic (e.g. different Busy Hours) we
can reach further savings, at least with the development or expansion of RNC
that has a limited number of input ports. A very good technology that ensures
successful realization of the task, simultaneously facilitating the construction of
the Iub interface, is LMDS (Local Multipoint Distribution Service) [24].

Regrettably, this rapid pace in the development of relevant technologies is
not appropriately matched by mathematical models that would enable us to
plan and dimension networks in accordance with required service predictions.
Though there are many published studies on the optimization and dimensioning
of the radio interface - for example the earlier works of the present authors
e.g. [7, 8, 12, 15], still, a successive interface developed on such a large scale
has not been exhaustively described mathematically. The method presented in
this article fits well then in the process of optimization of the development and
dimensioning of networks.

4.2 Calculation Algorithm

The Iub interface in the UMTS network can be treated as a full-availability group
with multi-rate traffic (Sect.2). It is adopted in the paper that Iub is offered a
mixture of different multi-rate traffic including HSDPA traffic. The proposed
model with traffic compression (Sect.3), can therefore be used for modelling
the Iub interface carrying HSDPA traffic in which a change in demands follows
uniformly for all compressed classes.

On the basis of the considerations presented in Sects. 2 and 3, the algorithm
of blocking probability Ei and average occupied traffic Y k

i calculations for the
Iub interface may be written as follows:

1. Calculation of offered traffic load Ai of class i (Eq. (1)).
2. Designation of the value of tBBU as the greatest common divisor (Eq. (2)).
3. Determination of the value of ti as the integer number of demanded resources

by class i calls (Eq. (4)).
4. Calculation of state probabilities [Pn]V in FAG (Eq. (8)).
5. Designation of the blocking probability of class i (Eq. (9)).
6. Determination of the reverse transition rate for class i (Eq. (10)).
7. Calculation of the average compression coefficient (Eq. (17)).
8. Determination of the average traffic of class i carried by Iub (Eq. (18)).
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Fig. 5. Blocking probabilities for all traffic classes carried by the Iub Interface

4.3 Numerical Study

The proposed analytical model of the Iub interface is an approximate one. Thus,
the results of the analytical calculations of the Iub interface were compared with
the results of the simulation experiments. The study was carried out for users
demanding a set of following traffic classes (services) in the downlink direction:

– class 1: Speech (VoIP,non-compressed) - t1 = 16 kbps (16 BBUs),
– class 2: Realtime Gaming - t2,min = 10 kbps (10 BBUs),
– class 3: FTP - t3,min = 20 kbps (20 BBUs),
– class 4: Mobile TV - t3,min = 64 kbps (64 BBUs),
– class 5: Web Browsing - t4,min = 500 kbps (500 BBUs).

In the presented study, it was assumed that:

– tBBU was equal to 1 kbps,
– the maximum compression coefficient was equal to 10 (Kmax=10),
– the considered Iub interface carried traffic from three radio sectors, and a

physical capacity of Iub in the downlink direction was equal to: VIub= 3 ×
7,2 Mbps = 21,6 Mbps (∼= 21 000 BBUs),

– the traffic classes were offered in the following proportions:

A1t1 : A2t2 : A3t3 : A4t4 : A5t5 = 1 : 3 : 10 : 5 : 10.

It was assumed that the main part of traffic was generated by FTP and Web
Browsing services followed by Mobile TV and Realtime Gaming services,
while the smallest part of traffic comes from VoIP service.
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Fig. 6. Average carried traffic for particular classes serviced by the Iub interface

Figure 5 shows the dependence of the blocking probability in relation to traf-
fic offered per BBU in the Iub interface. The presented results were obtained
for a minimum value of required (demanded) resources for traffic classes with
compression property.

Figures 7 and 6 present the influence of traffic offered per BBU in the Iub
interface on the average carried traffic by Iub (Fig. 6), and on the value of the
compression coefficient (Fig. 7). The results presented in Fig. 6 for Speech, Re-
altime Gaming, FTP and Mobile TV are very similar and, therefore, analytical
results for the average carried traffic, for selected values of offered traffic per
BBU in the Iub interface, were also presented in Tab. 2. It can be noticed that
the plots corresponding to the traffic classes with compression in both figures
have exponential character. The linear relation between compression coefficient
and the average carried traffic (see Eq. (18)) explains the similar character of
the curves in both figures. The results confirm a strong dependence between
the average carried traffic (throughput) and the load of the system – the more
overloaded system, the lower value of throughput. The character of results from
a decrease in the amount of the resources required by a call of classes with
compression: the more overloaded system, the smaller demands for calls with

Table 2. Average carried traffic for particular classes carried by Iub

Class of service a = 0.1 a = 0.3 a = 0.5 a = 0.7 a = 0.9 a = 1.2
Speech (VoIP) 16.0 16.0 16.0 16.0 16.0 16.0

Realtime Gaming 91.4 34.4 20.4 14.5 11.5 10.3
FTP 182.9 68.7 40.7 29.0 23.0 20.7

Mobile TV 585.2 219.9 130.4 92.6 73.6 66.2
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Fig. 7. Compression coefficient in relation to traffic offered to the Iub interface

compression. It is noticeable that the value of throughput for particular traffic
classes from the value 0.9 of traffic offered per BBU decreases very slowly and,
therefore, these values are not presented in the figures. This phenomenon corre-
sponds to obtaining a minimum value of demanded resources by the calls with
compression .

The results of the simulations are shown in the charts in the form of marks
with 95% confidence intervals calculated after the t-Student distribution. 95%
confidence intervals of the simulation are almost included within the marks plot-
ted in the figures.

5 Conclusions

This paper proposes a new analytical model with compression that finds its
application in modelling the Iub interface in the UMTS network carrying a
mixture of different multi-rate Release 99 and HSDPA traffic classes, such as
background (i.e. Web Browsing, FTP) and interactive (i.e. Mobile TV, Realtime
Gaming) traffic classes.

The presented analytical method allows to determine the blocking probability
for all traffic classes serviced by the Iub interface. It should be noted that in the
model we assume the “worst case" approach in the Iub modelling and dimen-
sioning that makes our calculations independent of the way of operation of the
HSDPA scheduler [2], which underlines the universal character of the method.

It is worth emphasizing that the described analytical model could be used for
a determination of the average carried traffic for particular traffic classes serviced
by the Iub interface.

KPI, being an indispensable element of SLA, can be defined differently de-
pending on the kind of the receiver of information. Thus, KPI will be defined
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differently for engineering staff and differently for non-technical staff often in-
volved in decision making concerning expenditures that are to ensure appropriate
quality of services. While such parameter as the blocking probability is well un-
derstood by engineers, clients and non-technical staff may have some problems
with the interpretation of the indicator and this group of users will rather prefer
the average value as being more intuitive. The average value of carried traffic is
also very characteristic for some services such as FTP or Web Browsing. With
regards to the above factors, a necessity appeared of a skillful use of the average
value of carried traffic as the initial value in the process of designing and dimen-
sioning of the UMTS-HSDPA networks without violating the basic merits of the
adopted model that are necessary for a system to operate successfully. Thus,
this parameter is an important factor in 3G network capacity calculations, i.e.
in dimensioning and optimization of WCDMA and Iub interfaces.
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Abstract. One of the main attractions of the stochastic process algebra
PEPA is its clear compositional structure which allows building a model
from elements which reflect the composition of the system to model. Dy-
namic Fault Trees (DFTs) constitute a simple combinatorial formalism
which allows capturing the dynamic behaviour of system failure mecha-
nisms. The resulting model is a combination of component failure events
which determines the failure of the complete system. In this paper, we
propose to exploit the compositional feature of both PEPA and DFTs
in order to develop an automatic translation of a DFT into a PEPA
model.

1 Introduction

Standard or static fault trees [11,13] are widespread stochastic models for system
reliability analysis. A Fault Tree (FT) model is a combination of component fail-
ure events which determines the failure of the complete system. The popularity
of this formalism is due to its simplicity and the efficiency of techniques such as
BDDs to solve the models. However FTs become inefficient whenever the system
to model has strongly-dependent components.

Dynamic fault trees are an extension of standard fault trees to which new
primitive gates have been added in order to model functional or temporal de-
pendencies among failure events or component states. Because of the nature of
these dependencies, FTs solving techniques are ineffective for solving DFTs.

DFTs are generally solved using automatic conversion to Markov models
which may lead to the generation of huge state spaces. Most of the solutions
developed in the literature have shortcomings including a lack of formality, a
lack of compositional modelling and thus a limitation in modular analysis, and
often a lack of generality because the set of possible inputs to some dynamic
gates is restricted (see Section 6).

In order to model formally the elements of a DFT, we consider the stochastic
process algebra PEPA. Performance Evaluation Process Algebra (PEPA) [9] is
a compositional approach which extends classical process algebra by associat-
ing a random variable, representing duration, with every action. These random
variables are assumed to be exponentially distributed and this leads to a clear
mapping from the process algebra model to the continuous time Markov process.

J.T. Bradley (Ed.): EPEW 2009, LNCS 5652, pp. 94–109, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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One of the main attractions of PEPA is its clear compositional structure
which allows us to build a model from elements or components which reflect
the composition of the system to model. This provides, on one hand, a better
understanding of the complexity of the models to build, and on the other hand, a
better exploitation of the structural properties when solving the model. PEPA is
supported by a wide-range of tools and techniques such as the aggregation [9] and
the compact representation of the generator of the Markov chain [10]. The former
can result in a significant reduction in the size of the matrix, for example in
models which exhibit symmetry due to repeated components, which is generally
the case in a DFT. With the latter the matrix representation may be decomposed
so that the state space of the model, and its dynamics, are not represented by
a single matrix but by a number of smaller matrices. Nevertheless the model is
solved as a single entity.

We consider the extended version of PEPA [10] which includes the functional
rates. These rates allow functional dependencies to be expressed between the
components of the model, which means that the timing behaviour of one com-
ponent (or indeed the activities it is able to undertake) may depend on the
current state of another component.

As a DFT is a combination of system components failure events, we develop an
approach which takes advantage of the compositional feature of PEPA in order
to obtain a direct mapping from a DFT configuration into a PEPA model. The
dynamic dependencies between the components failure events are captured using
the functional dependencies between the PEPA components. This approach is
a powerful potential solution to modelling and analysing various kind of system
components behaviours and interactions. Moreover, unlike previous works, we
take into consideration the repair process of both static and dynamic gates, and
previous enforced restrictions on some dynamic gates are lifted.

The paper is organised as follows: in Section 2, we present DFTs. A brief
overview of the formalism PEPA is presented in Section 3. In Section 4, we
develop the formal specifications of both static and dynamic gates. The example
of a cardiac system is investigated in Section 5. Section 6 is dedicated to the
related work. Finally the conclusions of our work are presented in Section 7.

2 Dynamic Fault Trees

Three types of events define the behaviour of a fault tree: basic events, internal
events and the top event. Basic events correspond to the failure events of the
physical components of the modelled system. They are the leaves of the tree.
Internal events are the output (failure) events of the intermediary gates in the
tree. Finally, the top event corresponds to the failure event of the complete
system. It is the failure event of the top-gate (top-node) in the tree.

A fault tree becomes a dynamic fault tree as soon as a dynamic gate is in-
troduced in the tree. Therefore a dynamic fault tree may consist of both static
and dynamic gates. Static gates include AND Gate, OR Gate and K/N Gate.
Dynamic gates include PAND Gate, FDEP Gate, Spare Gate and SEQ Gate.
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2.1 Static Gates

Static gates were introduced in standard fault trees in order to model Boolean
conditions applied on basic events. These gates are the following:

AND Gate: The output event (failure of the gate) occurs if all input events
have occurred.

OR Gate: The output event occurs if any of the input events occurs.

K/N Gate: The output event occurs if at least K of the N input events have
occurred. It is also known as the voting gate.

2.2 Dynamic Gates

Dynamic gates (Fig. 1) model functional or temporal dependencies among failure
events or component states. They take into consideration the order in which the
input events occur. This order is important to determine the output event of the
gate.

Spare gate

Output

SparesMainDependent events

FDEP gate

Output

Trigger eventPAND

Inputs

Output

Fig. 1. Dynamic gates

PAND Gate: A Priority-AND gate has been introduced to model failure se-
quence dependency. The output event of a PAND gate occurs when the input
events occur in a specified order (from left to right).

FDEP Gate: A Functional DEPendency gate consists of a trigger event and
a set of dependent basic events. The occurrence of the trigger event causes the
inaccessibility (failure) of the basic events. The FDEP gate outcome is not taken
into account when computing the system’s failure probability because the gate
has no real output (dummy).

Spare Gate: It models heterogeneous spare component management and allo-
cation. A spare gate comprises a main input event and one or more alternate
input events (the spares). Initially the main input is powered on whereas the
alternate inputs are in the dormant state. When the main input fails, a spare is
passed from the dormant state to the active state, replacing the main input in its
function. A spare gate fails when the main input fails and all spare components
fail or are unavailable. A spare component may fail in both the dormant and
the active states. However, during the dormant state, the failure rate is reduced
by a factor called the dormancy factor α. According to the value of α, a spare
component may be a cold spare (α = 0), a hot spare (α = 1) or a warm spare
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(0 < α < 1). As a spare component can be shared among several spare gates, it
can become unavailable because used by one of these gates. Note that the only
input events allowed to a spare gate are basic events.

SEQ Gate: The SEQuence enforcing gate forces its inputs to fail in a specific
order (from left to right); it never happens that the failure takes place in a
different order. It appears that this gate can be emulated using a cold spare
gate [12], so it is not considered in the rest of the paper.

3 PEPA

In PEPA a system is described as an interaction of components which engage,
either singly or multiply, in activities. These basic elements of PEPA, components
and activities, correspond to states and transitions in the underlying Markov
process. Each activity has an action type and its duration is represented by
the parameter of the associated exponential distribution: the activity rate. This
parameter may be any positive real number, or the distinguished symbol � (read
as unspecified). Thus each activity, a, is a pair (α, r) consisting of the action type
and the activity rate respectively. Activities which are private to a component in
which they occur are represented by the distinguished action type, τ . We assume
a countable set, A, of all possible action types. We denote by Act ⊆ A×R

∗, the
set of activities, where R

∗ is the set of non-negative real numbers together with
symbol� [10]. PEPA provides a small set of combinators which allow expressions
to be constructed defining the behaviour of components, via the activities they
undertake and the interactions between them.

Prefix. (α, r).P : This is the basic mechanism for constructing component be-
haviours. The component carries out activity (α, r), then behaves as compo-
nent P .

Choice. P +Q: This component may behave either as P or as Q: all the current
activities of both components are enabled. The first activity to complete, deter-
mined by a race condition, distinguishes one component, the other is discarded.

Cooperation. P ��
L

Q: Components proceed independently with any activities
whose types do not occur in the cooperation set L (individual activities). How-
ever, activities with action types in set L require the simultaneous involvement
of both components (shared activities). When the set L is empty, we use the
more concise notation P ‖ Q to represent P ��

∅ Q. In PEPA the shared activity
occurs at the rate of the slowest participant. If an activity has an unspecified
rate, denoted �, the component is passive with respect to that action type.

Hiding. P/L: This behaves as P except that any activities of types within the
set L are hidden, i.e. they exhibit the unknown type τ and can be regarded as
an internal delay by the component. These activities cannot be carried out in
cooperation with another component.
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Constant. A
def= P : Constants are components whose meaning is given by a

defining equation. A
def= P gives the constant A the behaviour of the component

P . This is how we assign names to components (behaviours).
The evolution of a model is governed by the structured operational semantics

rules of the language. These define the admissible transitions or state changes as-
sociated with each combinator. A race condition governs the dynamic behaviour
of a model whenever more than one activity is enabled. The underlying process
of a PEPA model is a CTMC.

4 Formal Specification of the Gates

We assume that failure event occurrence is an exponentially distributed random
variable, the component failure rate being the parameter of the distribution. In
the following we show how to model formally both static and dynamic gates
using PEPA. Each gate type is modelled in isolation. The individual PEPA
models can then be used as basic macro-components to build the model of any
DFT configuration. Our modelling approach allows us to lift the restrictions on
spare and FDEP gate’s input events to be basic events.

4.1 Static Gates

Assuming that the number of input events or entries to a static gate is N , an
input event i, i = 1, . . . , N , is modelled using a two states component as follows:

inputi
def= (failure, ai).input′i input′i

def= (repair, ri).inputi

Assuming that xi, i = 1, . . . , N , is the current state of input i, the static gates
can be modelled as in the following.

AND Gate: as the output event occurs only if all input events of the gate occur,
the rate of action type failure depends on the state of these inputs. Moreover,
once the gate is in the failure state, it will be repaired if one of its inputs is
repaired. This is modelled using action type repair as follows:

output
def= (failure, f1 × a).output′ output′ def= (repair, g1 × r).output

where f1(x1, . . . , xN ) =
{

1 if xi = input′i, ∀i = 1, .., N
0 otherwise

and g1(x1, . . . , xN ) =
{

1 if ∃i, i = 1 . . . , N / xi = inputi
0 otherwise

The whole gate is modelled as: G and
def= output||(input1||input2||...||inputN)

OR Gate: as the output of this gate fails if any of its input events fails, it is
modelled as follows:

output
def= (failure, f2 × a).output′ output′ def= (repair, g2 × r).output
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where f2(x1, . . . , xN ) =
{

1 if ∃i, i = 1 . . . , N / xi = input′i
0 otherwise

and g2(x1, . . . , xN ) =
{

1 if xi = inputi, ∀i = 1, . . . , N
0 otherwise

The whole gate equation is: G or
def= output||(input1||input2||...||inputN)

Remark: One may assume that the gate fails immediately after the failure of
one of its inputs, with no time elapsing. In this case, we need to replace the
functional rate in activity (failure, f2× a) with the unspecified rate (�) and to
make each component inputi and output synchronise on action type failure.

K/N Gate: as the failure and the repair of this gate depend both on the number
of entries down, both corresponding activities have a functional rate as follows:

output
def= (failure, f3 × a).output′ output′ def= (repair, g3 × r).output

where f3(x1, . . . , xN ) =
{

1 if ∃i1, . . . , iK / xi1 = input′i1 , . . . , xiK = input′iK

0 otherwise

and g3(x1, . . . , xN ) =
{

1 if ∃i1, . . . , iN−K+1/xi = inputi ∀i = i1, . . . , iN−K+1
0 otherwise

The whole gate equation is: G kn
def= output||(input1||input2|| . . . ||inputN)

4.2 Dynamic Gates

Modelling formally (or informally) dynamic gates, either in isolation or in the
context of a DFT configuration is not always obvious because the semantics
of these gates is not always clearly defined. Therefore, each time the intended
behaviour of a gate is not clear, we discuss the different options we have and the
one we adopt when modelling the gate.

PAND Gate: The semantics of PAND gate is not clear about the exact meaning
of the term “in order”; whether it is a strict ordering or not. We have chosen
to implement the strict version. Moreover, we do not consider the case of basic
event replicates because the semantics related to the order of their failure remains
unclear. It is even not clear if the failure of a replicate should be considered to
be in order or out of order. The semantics chosen in [7], one of the rare works
discussing this problem, is that the input events fail in order if all the replicates
in a position, say i, fail in order with respect to all the replicates in position i.
In the literature basic event replicates are in general just ignored. In our model,
we distinguish between two cases: the one in which the inputs fail in the right
order (from left to right) and the one in which the order is not respected. These
are modelled using action types failurei, i = 1, . . . , N , and failure respectively.

inputi
def= (failurei, hi × ai).input′i + (failure, hi × bi).input′i

input′i
def= (repair, ri).inputi
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where hi(x1, . . . , xN ) =
{

1 if ∀j < i, 1 ≤ i, j ≤ N, xj = input′j
0 otherwise

and hi(x1, . . . , xN ) =
{

1 if ∃j < i, 1 ≤ i, j ≤ N, xj = inputj
0 otherwise

whereas h1 = 1 and h1 = 0, for all states of the other basic items of the gate.
Assuming that the increasing numbering of the inputs matches their order from
left to right, the component modelling the gate’s output event is the following:

output
def= (failure1,�).output1

output1
def= (failure2,�).output2
...

outputN−1
def= (failureN ,�).outputN

outputN
def= (repair, g4 × r).output

The failure state of the gate is outputN . We assume that the gate is repaired
only when all its inputs are repaired. This is modelled using function g4 such as:

g4(x1, . . . , xN ) =
{

1 if xi = inputi ∀i = 1, . . . , N
0 otherwise

Given that L = {failure1, . . . , failureN}, the whole gate equation is:

G pand
def= output ��

L
(input1||input2|| . . . ||inputN)

FDEP Gate: Going through the literature, one can notice that the semantics
to apply in some DFT configurations remains unclear when FDEP gate is used.
For example, consider the first configuration in Fig. 2 where the FDEP gate
triggers two basic input events to gate PAND. Two semantics may be used in
this case. In the first one the trigger event does not have a simultaneous effect
on the dependent events which thus fail individually. And according to the order
of their failure, the PAND gate will fail or not. With the second semantics, the
trigger event has a simultaneous effect and the dependent events fail immediately
(with no time elapsing) and at the same time. In this case, the PAND gate may
be considered as still functional.

In the second configuration of Fig. 2, the FDEP gate triggers two basic pri-
mary input events to two spare gates sharing the same spare item. Like in the
previous configuration, two interpretations can be used. If we allow the primary
inputs to fail individually, following the arrival of the trigger event, then the
spare gate whose primary input fails first will have the possibility to use the
spare item. However if the primary inputs fail simultaneously, it is not clear
which spare gate will use the spare item.

To solve the problem, either the non-determinism is systematically replaced
by a probabilistic choice like in [7] or it is allowed and each time detected all
combinations of ordering is considered [2]. In our case, we consider that the
trigger event has an immediate and simultaneous effect on all dependent inputs,
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FDEP gate

Trigger

Spare gate Spare gate

PAND
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FDEP gate

Trigger

(a) Simultaneity (b) Non−determinism

Fig. 2. Simultaneity and non-determinism

and this for all DFT configurations. The non-determinism that may result in
configurations like the one in Fig. 2(b) is solved by the race condition governing
the dynamic behaviour of a PEPA model whenever more than one activity is
enabled.

In our model, the trigger event is represented using component Trigger and
its arrival, action type arrivaltrigger . The synchronisation of this component
with components inputi, i = 1, . . . , N , on arrivaltrigger puts simultaneously all
inputs in the failure state. This is modelled using failureall. As previously, the
action modelling the case where the inputs fail individually is failurei.

Trigger
def= (arrivaltrigger, μ).T rigger

inputi
def= (arrivaltrigger,�).input′i + (failurei, ai).input′′i

input′i
def= (failureall, bi).input′′i

input′′i
def= (repair, ri).inputi + (arrivaltrigger,�).input′′i + (failureall, bi).input′′i

The two last activities of derivative input′′i are required only in the case of
the arrival of the trigger event while the input item has already failed. As the
output of FDEP is dummy and thus is not taken into consideration during the
computation, we do not need to model it. Given that L = {arrivaltrigger} and
L1 = {arrivaltrigger , failureall}, the complete gate equation is:

G fdep
def= Trigger ��

L
(input1 ��

L1
. . . ��

L1
inputN)

Spare Gate: in such a gate, there is always a primary input and one or several
spare items. Components input p and input si, i = 1, . . . , N , model these entries
respectively. As a spare input is initially in a dormant state, component input si

needs to be activated by the gate. This is modelled using action type activei.
Moreover as the same spare input may fail while it is in the dormant state, we
need to distinguish between failing when being active and failing when being
dormant. In the latter case the dormancy factor α must be considered in the
rate of the corresponding activity.
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input p
def= (failurep, ap).input p′ input si

def= (activei,�).input s′′i
input p′ def= (repairp, rp).input p + (failurei, α× ai).input s′i

input s′i
def= (repairi, ri).input si

input s′′i
def= (failurei, ai).input s′i

After the failure of the primary input, the gate activates the spare entries one
at once and if the one activated fails or is already in the failure state, the gate
considers the next spare. Assuming that the increasing numbering of the spare
items matches the order in which they are activated, the component modelling
the output event of the gate is the following:

output
def= (failurep,�).output1

output1
def= (active1, c1).output1 + (failure, β1 × a).output2

output2
def= (active2, c2).output2 + (failure, β2 × a).output3
...

outputN
def= (activeN , cN ).outputN + (failure, βN × a).outputN+1

outputN+1
def= (repair, g5 × r).output

where 0 ≤ α ≤ 1 and ∀i = 1, 2, . . . , N ,

βi(xi) =
{

1 if xi = input s′i or xi = input s′′i
0 otherwise

and

g5(xp, x1, . . . , xN ) =
{

1 if xp = input p and xi = input si, ∀i = 1, .., N
0 otherwise

With function βi(xi), we specify the case where the spare item fails during
its dormancy state (xi = input s′i) and the case where it is unavailable (xi =
input s′′i ). If L = {active1, . . . , activeN , failurep}, the system equation is:

G spare
def= output ��

L
(input p||input s1||input s2|| . . . ||input sN)

4.3 The Repair Process

To the best of our knowledge, the repair process of dynamic gates has not been
taken into consideration in the models developed in the literature. There are two
good reasons for that. Firstly, so far, the objective of modelling DFTs, formally
or not, is to assess the chances the underlying systems have to fail. The second
reason is related to the lack of clearness in the semantics to apply in each case.

Obviously, the repair of a dynamic gate is related to the repair of its individual
inputs. Thus, in our models, we allow a gate’s inputs to be repaired at any stage
of the failure process of that gate. However, the only stage at which a repaired
input is taken into account is when the component modelling the gate’s output
event (output) reaches its defined failure state.
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5 Example

We consider a cardiac system which consists of three separate modules: the
CPU unit, the motor unit and the pump unit. The CPU unit is composed of a
primary CPU (P CPU) and a warm spare CPU (S CPU). Both CPUs depend
on a cross switch and a system supervisor. The motor unit has two motors, a
primary motor (P Motor) and a shared cold spare one (S Motor). The switching
component (M Switch) turns on the spare motor when the primary fails. The
pump unit consists of three pumps: two primary pumps (Prima A and Prima B)
and a cold spare pump (S Pump).

This system can be modelled using the DFT given in Fig. 3. In order to
translate automatically the DFT configuration into a PEPA model, and to avoid
any ambiguity in the derivation of the model, in particular the synchronisation
sets, the following actions are undertaken:

– All action types are indexed with the name of the device or the gate in which
the actions occur.

– If L is the number of levels in the tree and Kj is the number of devices at
j, we define xj,k as the current state of device k at level j, 0 ≤ j ≤ L and
1 ≤ k ≤ Kj. Thus x0,k is the current state of device k at level 0 (tree leaves).

CPU_fdep CPU_unit

P_CPU

Switch Supervisor

Trigger

Motors Pump_A

Pump_unit

Pump_B

Motor_unit

System

M_Switch P_Motor S_Motor Prima_A Prima_BS_Pump

M_pand
S_CPU

Fig. 3. DFT modelling the cardiac system

The PEPA model of the DFT in Fig. 3 consists of the interaction of three
main sub-systems: the CPU unit, the motor unit and the pump unit.

1. The CPU unit: Both the cross switch and the system supervisor are the
basic inputs to OR gate and as such have the following basic behaviour

Switch
def= (failureSwitch, a1).Switch′

Switch′ def= (repairSwitch, r1).Switch

Supervisor
def= (failureSupervisor, a2).Supervisor′

Supervisor′ def= (repairSupervisor , r2).Supervisor
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The output of OR gate is the trigger event for the FDEP gate. This output
event is conditioned by the input events as follows:

Trigger
def= (arrivaltrigger , f1 × a3).T rigger

where f1(x0,1, x0,2) =
{

1 if x0,1 = Switch′ or x0,2 = Supervisor′

0 otherwise

The primary CPU is an input item to both the spare gate (CPU unit) and the
FDEP gate. Thus, the component modelling P CPU takes into consideration
both behaviours.

P CPU
def= (arrivaltrigger ,�).P CPU ′ + (failureP CPU , a4).P CPU ′′

P CPU ′ def= (failureall, b1).P CPU ′′

P CPU ′′ def= (repairP CPU , r4).P CPU + (arrivaltrigger ,�).P CPU ′′

+ (failureall, b1).P CPU ′′

Similarly the component modelling the spare CPU takes into consideration
the behaviour of this item both as an input to the spare and the FDEP gates.

S CPU
def= (arrivaltrigger ,�).S CPU ′ + (activeS CPU ,�).S CPU ′′′

+ (failureS CPU , α× a5).S CPU ′′

S CPU ′ def= (failureall, b2).S CPU ′′

S CPU ′′ def= (repairS CPU , r5).S CPU + (arrivaltrigger ,�).S CPU ′′

+ (failureall, b3).S CPU ′′

S CPU ′′′ def= (failureS CPU , a6).S CPU ′′ + (arrivaltrigger ,�).S CPU ′

Because S CPU is a warm spare unit, 0 < α < 1. Finally the PEPA compo-
nent modelling the output of the CPU unit, that is the spare gate is as follows:

CPU unit
def= (failureP CPU ,�).CPU unit1 + (failureall,�).CPU unit2

CPU unit1
def= (activeS CPU , c1).CPU unit1 + (failure, β1 × a7).CPU unit2
+ (failureall,�).CPU unit2

CPU unit2
def= (repair, g2 × r6).CPU unit + (failureall,�).CPU unit2

where functions g2 and β1 are defined as follows:

g2(x0,3, x0,4) =

⎧⎨⎩1 if x0,3 = P CPU
and x0,4 = S CPU

0 otherwise
β1(x0,4) =

⎧⎨⎩1 if x0,4 = S CPU ′′

or x0,4 = S CPU ′′′

0 otherwise

If L1 = {arrivaltrigger , failureall}, L2 = {failureP CPU , activeS CPU ,
failureall}, and L3 = {arrivaltrigger}, the CPU unit sub-system equation is
given by:

S system1
def=

“
(P CPU ��

L1
S CPU) ��

L2
CPU unit

” ��
L3

(Trigger||Switch||Supervisor)
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The motor unit: It consists of a PAND gate and a spare gate. Using the basic
PEPA model for a PAND gate, we have:

M Switch
def= (failureM Switch1, h1 × a7).M Switch′

+ (failureM Switch2, h1 × b4).M Switch′

M Switch′ def= (repairM Switch, r7).M Switch

P Motor
def= (failureP Motor1, h2 × a8).P Motor′

+ (failureP Motor2, h2 × b5).P Motor′

P Motor′ def= (repairP Motor, r8).P Motor

M pand1
def= (failureM Switch1 ,�).M pand2

M pand2
def= (failureP Motor1 ,�).M pand3

M pand3
def= (repair, g3 × r9).M pand1

where h1 = 1, by definition, and thus h1 = 0. Moreover we have

h2(x0,5) =
{

1 if x0,5 = M Switch′

0 otherwise
and h2(x0,5) =

{
1 if x0,5 = M Switch
0 otherwise

and g3(x0,5, x0,6) =
{

1 if x0,5 = M Switch and x0,6 = P Motor
0 otherwise

Now we need to model the remaining component of the spare gate, that is the
spare item S Motor.

S Motor
def= (activeS Motor,�).S Motor′′ + (failureS Motor, α× a9).S Motor′

S Motor′ def= (repairS Motor, r10).S Motor

S Motor′′ def= (failureS Motor, a10).S Motor′

As the second motor is a cold spare one, that is it cannot fail while it is dormant
(α = 0), action type failureS Motor can be omitted. Finally the output of the
spare gate Motors is modelled as follows:

Motors
def= (failureP Motor1 ,�).Motors1 + (failureP Motor2 ,�).Motors1

Motors1
def= (activeS Motor, c2).Motors1 + (failure, β2 × a11).Motors2

Motors2
def= (repair, g4 × r11).Motors

where

β2(x0,7) =

⎧⎨⎩
1 if x0,7 = S Motor′

or x0,7 = S Motor′′

0 otherwise
and g4(x0,6, x0,7) =

⎧⎨⎩
1 if x0,6 = P Motor

and x0,7 = S Motor
0 otherwise

Finally the output of the whole motor unit is modelled as follows:

Motor unit
def= (failure, f2 × a12).Motor unit1

Motor unit1
def= (repair, g5 × r12).Motor unit
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where f2(x1,2, x1,3) =
{

1 if x1,2 = M pand3 or x1,3 = Motors2
0 otherwise

and g5(x1,2, x1,3) =
{

1 if x1,2 �= M pand3 and x1,3 �= Motors2
0 otherwise

If M1 = {activeS Motor, failureP Motor1 , failureP Motor2},
M2 = {failureP Motor1} and M3 = {failureM Switch1}, the equation of the
motor unit sub-system is:

S system2
def= Motor unit || ((Motors ��

M1
(P Motor||S Motor)

)
��
M2

(M pand1 ��
M3

M Switch)
)

The Pump Unit: It consists of two primary pumps (Prima A, Prima B) and
a cold spare one (S pump). S pump is available to replace both primary pumps.

Prima A
def= (failurePrima A, a11).P rima A′

Prima A′ def= (repairPrima A, r11).P rima A

Prima B
def= (failurePrima B, a12).P rima B′

Prima B′ def= (repairPrima B, r12).P rima B

S pump
def= (activeS pump,�).S pump′′ + (failureS pump, α× a13).S pump′

S pump′ def= (repairS pump, r13).S pump

S pump′′ def= (failureS pump, a14).S pump′

Since the spare pump is a cold one (α = 0), activity (failureS pump, α× a13)
can be omitted. Both spare gates Pump A and Pump B are modelled as:

Pump A
def= (failurePrima A,�).Pump A1

Pump A1
def= (activeS pump, c3).Pump A1 + (failure, β3 × b6).Pump A2

Pump A2
def= (repair, g6 × r14).Pump A

Pump B
def= (failurePrima B,�).Pump B1

Pump B1
def= (activeS pump, c4).Pump B1 + (failure, β4 × b7).Pump B2

Pump B2
def= (repair, g7 × r15).Pump B

where β3(x0,9) = β4(x0,9) =
{

1 if x0,9 = S pump′ x0,9 = S pump′′

0 otherwise

g6(x0,8, x0,9) =
{

1 if x0,8 = Prima A and x0,9 = S pump
0 otherwise

and

g7(x0,9, x0,10) =
{

1 if x0,9 = S pump and x0,10 = Prima B
0 otherwise



From DFTs to PEPA: A Model-to-Model Transformation 107

The whole pump unit fails if both Pump A and Pump B are in the failure state.
This is represented using gate AND in the tree and is modelled as follows:

Pump unit
def= (failure, f3 × a15).Pump unit1

Pump unit1
def= (repair, g8 × r16).Pump unit

where f3(x1,4, x1,5) =
{

1 if x1,4 = Pump A2 and x1,5 = Pump B2
0 otherwise

and g8(x1,4, x1,5) =
{

1 if x1,4 �= Pump A2 or x1,5 �= Pump B2
0 otherwise

The whole pump unit sub-system equation is given by:

S system3
def= (Pump unit||S pump) ��

N1

((
Pump A ��

N2
Prima A

)
|| (Pump B ��

N3
Prima B

))
where N1 = {activeS pump}, N2 = {failurePrima A}, N3 = {failurePrima B}.

The whole cardiac systems behaviour depends on the output of OR gate over
the defined sub-systems.

System
def= (failure, f4 × λ).System1 System1

def= (repair, g9 × μ).System

where f4(x2,2, x2,3, x2,4) =

⎧⎨⎩
1 if x2,2 = CPU unit2, or x2,3 = Motor unit2

or x2,4 = Pump unit1
0 otherwise

and g9(x2,2, x2,3, x2,4) =

⎧⎨⎩
1 if x2,2 �= CPU unit2, and x2,3 = Motor unit

and x2,4 = Pump unit
0 otherwise

The cardiac system equation is:

Cardiac sys
def= System||S system1||S system2||S system3

6 Related Work

Several works are dedicated to the mapping of DFTs into Bayesian networks,
among which [3,4,5]. In [4], DFTs are mapped into discrete-time Bayesian net-
works. Such an approach has high memory needs as multi-dimensional tables
have to be used for (conditional) probabilities. Moreover, the derived solution
is approximate. A continuous-time Bayesian network framework for dynamic
systems reliability analysis is presented in [5]. A closed-form solution is derived.

Only few works investigate the mapping of DFTs into high-level modelling
formalisms. In [6] a DFT is mapped into a GSPN by means of graph transfor-
mation rules. No proof on the correctness of the transformation is derived. In [2],
I/O interactive Markov chain formalism is used to analyse DFT. The restriction
on spare and FDEP gates’ dependent events to be basic events is lifted. Unlike
prior works, the repair process is discussed. However the discussion is restricted
to the case of basic events and AND gate.
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DIFTree, a fault tree methodology for the analysis of DFTs is presented in
[8,12]. It combines solution techniques based on BDD and Markov chains. In
both papers, the authors do not present the type of gates considered, nor the
semantics applied in each case.

In [7], the authors use an approach based on formal specification (Z notation)
and denotational semantics techniques from software engineering and program-
ming language design. Several constraints on the input events are considered.

7 Summary and Conclusion

In this paper, we propose to exploit the compositional feature of both PEPA
and DFTs in order to develop an automatic translation of a dynamic fault tree
into a PEPA model. The purpose of such model-to-model transformation is to
take advantage of a wide-range of tools and techniques, such as the aggrega-
tion and the compact representation of the generator of the underlying Markov
chain, that support PEPA. Clearly DFTs may exhibit symmetries because of
the use of several copies of the same gates. As each gate is modelled using a
PEPA component, the aggregation technique can be used to reduce the size of
the underlying Markov chain. In the future we seek to investigate the relation
between a DFT and the tensorial representation of the underlying Markov chain.
We believe that such investigations may lead to interesting results.
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Passage-End Analysis

Allan Clark, Adam Duguid, and Stephen Gilmore
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Abstract. Passage-end calculations are a new style of passage measure-
ment for eXtended Stochastic Probes (XSP) [1] which add the ability to
split the analysis into several cases depending on conditions which hold
at the end of a passage. This makes it possible to separate successful re-
sponses to a request from negative responses, timeouts or other failures.
This allows the expression of service level agreements such as: “At least
90 percent of all requests receive a response within 10 seconds and at
least 60 percent of all such requests are successful.”

1 Introduction

Many systems which are analysed for response-time profiles have more than
one way in which the passage in question may terminate. Commonly a request
from a client may end in a successful completion such that the client received
the desired service but may also end in failure due to a timeout or rejection.
There may also be two or more ways in which the request can be satisfied, for
example a data retrieval request may be serviced by accessing the cache or the
disk. In these situations we wish to analyse the passage-time profiles for the
separate cases of success or failure, and cache or disk retrieval. It may be that
the general response-time analysis indicates acceptable performance but that
successful requests are serviced too slowly.

A stochastic probe [2,3] is a component added to a model in order to make rea-
soning about the model more convenient. In the context of PEPA [4] a stochastic
probe is a single sequential component which observes the activities of a PEPA
model.

For example we may analyse the response-time of a service as observed by a
single client. Once this is known, in order to provide more information on how
this may be improved, we then analyse the response-time of all requests which
are made when the service is definitely not broken. We would expect this to be
better than the more general case of all requests. Conversely we may also analyse
the response-time for all requests made when the service certainly is broken and
expect this to be worse than for the general case. From this we may determine
whether, in order to improve response-time, it is better to repair the server more
quickly or make the server more reliable such that it breaks less often.

Although with eXtended Stochastic Probes splitting the measurement of a
passage with respect to the starting conditions is convenient it is not clear how
one may split a passage based on how the passage completes — or based on
some event during the passage. The novelty in this paper is the use of several
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absorbing states, one for each target event. For a passage-end calculation the
user must specify a list of target actions. These may be actions performed by
the model itself or communication signals sent by user defined probes. During
transient analysis each target state is modified by adding a transition to a distinct
absorbing state based on the causal event.

As an example, consider analysing the response-time of a service which be-
gins with a request but may be concluded with either a cached response or a
networked response. It is not possible to simply measure these two passages with
separate runs using a probe such as: request :start,cached :stop. The reason is that
this will compute the probability of completing the passage at (or within) time
t via a cached response plus the probability of completing the passage via a net-
worked response and then restarting and completing the passage via the cached
response all at (or within) time t. Indeed you may complete the passage twice,
three times or any number of times via the networked response before finally
completing via the cached response.

Using the same algorithm we can calculate the raw pdf and cdf of the passage
from the request to the cached response. In this case the cdf will not tend to
one but to the fraction of requests which are ultimately serviced by the cache.
Similarly for the area under the pdf and for both functions of the request to
networked passage. We can normalise these graphs based on the probability of
completing at or within the given time t via any target event.

We can instead normalise the raw pdf and cdf by dividing through the prob-
ability of completing at (or within) time t by the percentage of all requests
which are ultimately serviced by the target event in question. We can know this
percentage by calculating enough hops such that sufficiently close to all of the
probability mass at πN is in one of the absorbing states. We may then take the
probability of being in the appropriate absorbing state at πN .

Hence using a passage-end calculation it is possible to calculate:

– The probability of completing a passage by a cached response at or within
a given time.

– The probability that, assuming the passage completes at or within a given
time in some way, that it does so via the cached response. This answers such
questions as: “What percentage of responses received within 5 seconds are
received via the cache/network?”

– The cdf and pdf profiles for all requests which are serviced by the cache.

In the above “cached” may be replaced by “networked” or any other target
event of the given passage, including probe communication signals. The second
kind of question is helpful in evaluating some SLAs (Service-Level Agreements),
particularly for services which may end in success, failure or cancellation. For
example the SLA may say that ninety percent of requests receive a response
within 10 seconds. We may analyse the model and find that this is indeed the
case but a passage-end analysis reveals that eighty-nine percent of such requests
are rejection/failure responses. Hence we may wish to modify our SLA to state
that ninety percent of all successful requests receive a response within 10 seconds.
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2 Example of Passage-End Analysis

We consider an example of passage-end analysis applied to emergency response
service quality [5]. The scenario centres on the function of an automatic crash
response subscription service such as OnStar [6] from General Motors. These
utilise multiple built-in sensors which capture critical details in the event of
a car crash. The built-in communications module automatically contacts the
OnStar service and relays the information obtained from the sensors, including
location information from the on-board GPS. The service attempts to contact
the driver to ask if they need help. If the service cannot contact the driver then
they send medical assistance to the car’s location.

The PEPA model in Figure 1 represents the scenario where the protocol for
attempting to call the driver is to try three times. After three unsuccessful
attempts to contact the driver the system assumes that the driver is unavailable
and at this point must decide on the basis of the car telemetry whether to
dispatch an ambulance. We are interested then in the time between the airbag
deploying and either a successful or failed attempt to contact the driver. The
start event of our passage is then the airbag activity and the two ways in which
a passage may terminate is with an answer or a timeout3 activity. Note that the
timeout activities are distinguished such that only the third timeout will end
the passage.

Car1
def= (airbag , r1).Car2

Car2
def= (reportToService , r2).Car3

Car3
def= (processReport , r3).Car4

Car4
def= (callDriver , r4).Car5

Car5
def= (timeout1, p ∗ r5).Car6

+ (answer , (1 − p) ∗ r5).OK

Car6
def= (timeout2, p ∗ r5).Car7

+ (answer , (1 − p) ∗ r5).OK

Car7
def= (timeout3, p ∗ r5).Rescue
+ (answer , (1 − p) ∗ r5).OK

OK
def= (finish, r1).Car1

Rescue
def= (rescue , r6).Car1
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Fig. 1. The model of the driver contact protocol within the airbag crash assistance
case scenario. The initial state of this process is Car1. The graph shows results of
passage-end analysis of driver contact retries.

The results from our passage-end analysis of the model are shown in the
graph in Figure 1. The first two lines to consider are the ‘answer’ and ‘timeout’
lines, these plot the unmodified cumulative distribution functions of completing
the passage via the driver answering the phone or a third timeout occurring
respectively. Note that neither of these two lines tend to one as is usual for a
cdf of a passage. This is because the passage may never end in the prescribed
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ways. By looking at the long-term probabilities, or the limits of these two lines
(which sum together to one) we can say what percentage of airbag initiations end
in the driver answering the phone (and conversely a third timeout occurring).
From these two lines we can also answer the question: “What is the probability
that the driver answers the phone a given time after the airbag was deployed,
regardless of whether the driver is capable of answering at any time”.

The next two lines to consider are the above cdf functions normalised by
dividing the probability (in each case) at each time by the probability of com-
pleting the passage within the given time in any way. These lines tend to the
same value in the limit as before because eventually there is a probability of very
close to one that we will have completed the passage in some way within that
time. These lines allow us to answer the question: “If the passage is completed
within a given time t, what is the probability that the passage was completed via
the driver answering the phone” (or conversely by a third timeout occurring).

The final two lines to consider are the ‘answer-cdf’ and ‘timeout-cdf’. Here
we have normalised the original two lines by dividing the value at each time by
the percentage of all requests which are eventually serviced in the given way.
By doing this we achieve the cumulative distribution function of all requests
initiated by an airbag deployment which then result in the driver answering the
phone or the call timing out for the third time respectively. This can then answer
our question: “What percentage of airbag deployments whose driver cannot be
contacted are serviced within a given amount of time”. This figure is often more
interesting than just the question “What percentage of airbag deployments are
resolved within a given time in some way” since if the driver is unhurt the
response-time is of less importance.

3 Implementation

Passage-end analysis for XSP is fully implemented in the International PEPA
Compiler (IPC), a formal analysis tool for steady-state and transient evaluation
of PEPA models. The IPC compiler is part of the ipclib [7] suite, a collection of
tools for the specification and evaluation of complex performance measures over
Markovian process algebra models. The ipclib suite is an extension of the IPC
tool previously used for computing response-time quantiles from PEPA mod-
els [8,9]. The IPC tool has been applied to a number of modelling problems such
as performance of personal-area networks [10] and compiler optimisations [11].
Although we have concentrated here mostly on passage-time computation, IPC
also supports the computation of steady-state, transient and counting measures
as described in [12].

4 Conclusions

We have modified passage-time analysis to allow for distinct passage results. We
have done so within the framework of eXtended Stochastic Probes to ensure
that our passage-end queries remain robust over model modifications and do not
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require that the modeller modify their original model. The set of queries which
can be specified with XSP is therefore extended.

Another bonus which we obtain almost for free is the ability to analyse pas-
sages which may never complete at all. This only works for passages in which
there is only one source state, because if the model deadlocks we cannot anal-
yse the embedded Markov chain to obtain the distribution of probability to the
source states at the beginning of the passage. This allows the modeller to provide
a concrete answer to the question: “How long should I wait for my response?”
because we can now say that a given percentage of all requests which ultimately
are successfully serviced are serviced within 10 seconds, hence if you have waited
longer than 10 seconds it is likely you will never receive a response and hence
can cancel the request yourself.
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Abstract. Stochastic monotonicity is one of the sufficient conditions for
stochastic comparisons of Markov chains. On a partially ordered state
space, several stochastic orderings can be defined by means of increasing
sets. The most known is the strong stochastic (sample-path) ordering,
but weaker orderings (weak and weak*) could be defined by restricting
the considered increasing sets. When the strong ordering could not be
defined, weaker orderings represent an alternative as they generate less
constraints. Also, they may provide more accurate bounds.

The main goal of this paper is to provide an intuitive event formalism
added to stochastic comparisons methods in order to prove the stochas-
tic monotonicity for multidimensional Continuous Time Markov Chains
(CTMC). We use the coupling by events for the strong monotonicity. For
weaker monotonicity, we give a theorem based on generator inequalities
using increasing sets. We prove this theorem, and we present the event
formalism for the definition of the increasing sets. We apply our formal-
ism on queueing networks, in order to establish monotonicity properties.

1 Introduction

Stochastic comparison is an efficient method for the performance evaluation of
computer and telecommunication systems. We study systems represented by mul-
tidimensional Markov chains. In this case, the quantitative analysis could be very
hard if there is not a specific form for the probability distribution. Stochastic
comparison provides the comparison of the considered system with other systems
easier to analyze, in order to derive performance measure bounds. Stochastic com-
parison methods are based on the stochastic ordering theory which is complex on
multidimensional states spaces. Several stochastic orderings can be defined, cor-
responding to different comparison relations of probability distributions.
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Different stochastic comparison methods can be used: increasing sets, and the
coupling. Increasing sets method [10], [11] is a general formalism, allowing the
definition of the strong stochastic ordering (�st) and weaker orderings (�wk,
and �wk∗).

The coupling method consists in the comparison of process realizations
under the same event occurrences. Both increasing set and coupling methods lead
to the comparison of transition rates but the approach used is different: one with
the coupling of sample paths, and the other from the definition of increasing set
families. However, the coupling method could be applied only for the strong order-
ing, while the method with increasing sets is more general, allowing the definition
of the strong and weaker orderings.

Weaker orderings could be interesting for the stochastic comparisons, as strong
ordering generates hard conditions. For weaker stochastic comparisons we need
to use the increasing set formalism, and in this case, the stochastic monotonicity
is one of the sufficient conditions additional to the comparison of generators.

Related works

The stochastic monotonicity can be defined as the increasing (decreasing) in time
of the considered process. Stochastic comparison methods as the coupling [8] can
be applied in order to prove this property on a Markov process. The coupling
[7] used for the stochastic comparison of different processes is equivalent to the
definition of a coupled version of the processes with realizations staying in a set K
[3], [9]. This means that the coupling is equivalent to both a sample path ordering
and inequalities between transition rates. In [7] the coupling method has been
presented first for birth and death processes representing the M/M/1 queues, and
after for general birth and death processes on multidimensional state spaces. The
strong monotonicity can be proved by the coupling of the process with itself. In
[8], the coupling is applied on Jackson networks in order to prove the strong
monotonicity. The approach proposed is based on the computation of transition
rates of the coupled process in order to verify an increasing in time. Strong
monotonicity is a very interesting property because it simplifies the comparison
of the processes in the case of strong ordering [10]. For weaker orderings, there
is not many studies. In [12], an operator theory approach is presented for weak
stochastic comparisons of multidimensional CTMC. The comparison of a Jackson
network with independent M/M/1 queues is presented in order to bound the
transient behaviour. In [13], the weak comparison of multidimensional marginal
distributions of discrete-time Markov chains is provided from monotonicity and
transition probability inequalities. However, in our best knowledge there is no
study about proving the weak monotonicity of a Markov process. The goal of
the present paper is to develop a formalism based on events for the stochastic
monotonicity. For the strong monotonicity, we present the coupling of the process
with itself after the happening of the same event. For weaker monotonicity,
we provide a theorem based on generator inequalities and increasing sets. We
provide the proof of this theorem using associated Markov chains. As the number
of increasing sets could be important, then we use the event formalism in order to
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reduce it. This paper is organized as follows: first we present basic concepts about
stochastic comparisons on multidimensional and partially ordered state space.
Section 3 is devoted to the stochastic monotonicity and the methods applied
to prove it. At the end, we focus on the stochastic monotonicity in queueing
networks, in order to prove the monotonicity using the proposed formalism.

2 Stochastic Comparison Method

Quantitative analysis of multidimensional Markov processes is a hard problem
due to the state space explosion since the state space size is generally the prod-
uct of state space sizes of components. As a solution, one can bound the original
Markov process by another Markov process which is easier (taking values on
smaller state spaces or having special structures) to analyze, in order to com-
pute bounds on performance measures [2], [14], [1]. The stochastic comparisons
are established by means of two methods on partially ordered state spaces: in-
creasing sets, and the coupling. The goal of stochastic comparisons is to generate
stochastic orderings, which can be defined as a relation order between random
variables, probabilities distributions, or stochastic processes. First, we define
what is a stochastic ordering between random variables.

2.1 Stochastic Ordering Theory

Let E be a discrete, and countable state space, and � be at least a preorder (re-
flexive, transitive but not necessarily an anti-symmetric binary relation) on E.
We suppose that E is a multidimensional state space, where each component is
discrete, as it is the case in the queueing models. Several stochastic orderings can
be defined, the most known is the strong stochastic ordering�st, but also weaker
orderings can be defined: �wk, and �wk∗ [10]. The strong stochastic ordering is
equivalent to a sample path ordering, the �wk ordering to a tail distributions
comparison, and �wk∗ serve the same role for cumulative distribution functions.
Different formalisms can be used to define a stochastic ordering: increasing func-
tions, and increasing sets [15]. We focus on the increasing set formalism in this
paper, as we will use it for the comparison of the processes in this paper. Let
Γ ⊆ E, we denote by

Γ ↑= {y ∈ E | y � x, x ∈ Γ} (1)

Definition 1. Γ is called an increasing set if and only if Γ = Γ ↑
From the general definition of an increasing set, three stochastic orderings have
been defined from families of increasing sets [10]. The first one is Φst(E) which
is defined from all the increasing sets of E:

Φst(E) = {all increasing sets on E} (2)
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Other families Φwk(E) and Φwk∗(E) are defined from particular kinds of increas-
ing sets.

Φwk(E) = {{x} ↑, x ∈ E} , {x} ↑= {y ∈ E, y � x} (3)

and
Φwk∗(E) = {E − {x} ↓, x ∈ E} , {x} ↓= {y ∈ E, y � x} (4)

Φst(E) induces the �st ordering, and Φwk(E) and Φwk∗(E) generate respectively
�wk and �wk∗ orderings [10].

Let X and Y be two random variables defined on E, and their probability
measures given respectively by the probability vectors p and q where p[i] =
Prob(X = i), ∀i ∈ E (resp. q[i] = Prob(Y = i), ∀i ∈ E). If Φ(E) represents one
of these families (Φst(E), Φwk(E), or Φwk∗(E)), then a stochastic ordering �Φ

representing (�st, �wk, or �wk∗) can be defined as follows [10]:

Definition 2

X �Φ Y ⇔
∑
x∈Γ

p[x] ≤
∑
x∈Γ

q[x], ∀Γ ∈ Φ(E) (5)

Let 1Γ the indicator function of Γ ⊂ E, if we apply 1Γ to p, then p 1Γ =∑
x∈Γ p[x], and so the precedent definition can be also written:

X �Φ Y ⇔ p 1Γ ≤ q 1Γ , ∀Γ ∈ Φ(E) (6)

Next, we present the stochastic comparison of Continuous Time Markov
Chains (CTMC). Let {X(t), t ≥ 0} (resp. {Y (t), t ≥ 0}) be a CTMC defined
on E. We give the definition [10] of the �Φ-stochastic comparison .

Definition 3. We say that {X(t), t ≥ 0} �Φ {Y (t), t ≥ 0}
if :

X(0) �Φ Y (0) =⇒ X(t) �Φ Y (t), ∀t > 0 (7)

In the case of the �st ordering, the coupling method can be used for the stochas-
tic comparison of CTMC. As presented in [7], [8], it remains to define two CTMC:
{X̂(t), t ≥ 0} and {Ŷ (t), t ≥ 0} governed by the same infinitesimal generator
matrix as respectively {X(t), t ≥ 0}, and {Y (t), t ≥ 0}, representing different
realizations of these processes with different initial conditions. The theorem of
the �st-comparison using the coupling states as follows [7]:

Theorem 1. We say that: {X(t), t ≥ 0} �st {Y (t), t ≥ 0} if and only if there
exists the coupling {(X̂(t), Ŷ (t)), t ≥ 0} such that:

X̂(0) � Ŷ (0)⇒ X̂(t) � Ŷ (t), ∀t > 0 (8)

If we suppose that {X(t), t ≥ 0} (resp. {Y (t), t ≥ 0} ) is a CTMC with
infinitesimal generator matrix A (resp. B), then we present the theorem of the
�Φ-stochastic comparison of CTMC using increasing set formalism [10], [15].
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Theorem 2. We say that: {X(t), t ≥ 0} �Φ {Y (t), t ≥ 0}
if and only if the following conditions are verified:

1. X(0) �Φ Y (0)
2. {X(t), t ≥ 0} or {Y (t), t ≥ 0} is �Φ-monotone
3.

∀x ∈ E,
∑
z∈Γ

A(x, z) ≤
∑
z∈Γ

B(x, z), ∀Γ ∈ Φ(E) (9)

Where A(x, z) (resp. B(x, z) ) denotes the transition rate from the state x to z for
the process {X(t), t ≥ 0} (resp. {Y (t), t ≥ 0}). The monotonicity is a property
used in this theorem, corresponding to an increasing (decreasing) in time of a
process. Next we give the definition of the �Φ-monotonicity.

Definition 4. We say that {X(t), t ≥ 0} is �Φ −monotone increasing (resp.
decreasing) if

X(t) �Φ (�Φ)X(t+τ), ∀t ≥ 0, ∀τ ≥ 0 (10)

Next, we focus on how to use stochastic comparisons methods in order to define
a formalism for the stochastic monotonicity. We study only the case of monotone
increasing processes, called in this paper monotone processes. First, we present
the coupling for the strong monotonicity. Secondly, for the general �Φ mono-
tonicity, we propose a transition rates inequalities using increasing sets method.

3 Stochastic Monotonicity

We propose to apply two methods to prove the monotonicity: the coupling for
the �st-monotonicity, and increasing sets for the �Φ-monotonicity.

3.1 The Coupling

We present in this section the coupling method in order to prove the strong mono-
tonicity of a process. The strong monotonicity can be proved by the coupling of
the process with itself [7]. The �st-monotonicity of a CTMC {X(t), t ≥ 0}, can
be defined using the coupling of the processes [7], [8]. As presented in [7], [8], it
remains to define two processes: {X̂(t), t ≥ 0} and {X̂ ′(t), t ≥ 0} governed by
the same infinitesimal generator matrix as {X(t), t ≥ 0}, representing different
realizations of {X(t), t ≥ 0} with different initial conditions. The theorem of the
�st-monotonicity using the coupling states as follows [7]:

Theorem 3. We say that {X(t), t ≥ 0} is �st -monotone if and only if there
exists the coupling {(X̂(t), X̂ ′(t)), t ≥ 0} such that:

X̂(0) � X̂ ′(0)⇒ X̂(t) � X̂ ′(t), ∀t > 0 (11)

In section 4 we will present an example on queueing networks using the coupling
for the strong monotonicity. Next, we generalize to the �Φ-monotonicity, we use
the increasing set theory, and we provide generator inequalities.



Stochastic Monotonicity in Queueing Networks 121

3.2 Increasing Sets

In the case of discrete time Markov chains (DTMC), the monotonicity can be
expressed using the probability transition matrix. For the time-homogeneous
DTMC {X(n), n ≥ 0} with probability transition matrix P , the �Φ-monotoni-
city is defined as follows [15]:

Theorem 4. {X(n), n ≥ 0} is �Φ-monotone if and only if:

p �Φ q ⇒ pP �Φ qP (12)

For a CTMC {X(t), t ≥ 0} we have the following theorem [15]:

Theorem 5. {X(t), n ≥ 0} is �Φ-monotone if and only if:

p �Φ q ⇒ p exp(tA) �Φ q exp(tA) (13)

Since these inequalities are difficult to use we need to define easier inequali-
ties on the transition rates. The �st-monotonicity is equivalent to the following
inequality [10]:

Theorem 6. {X(t), t ≥ 0} is �st-monotone if and only if the following condi-
tion is verified:

∀Γ ∈ Φst(E),
∑
z∈Γ

A(x, z) ≤
∑
z∈Γ

A(y, z), x � y ∈ E, x, y ∈ Γ or x, y �∈ Γ (14)

There is no similar inequality for the �Φ-monotonicity. We propose the following
theorem:

Theorem 7. {X(t), t ≥ 0} is �Φ-monotone if the following condition is verified:

∀Γ ∈ Φ(E),
∑
z∈Γ

A(x, z) ≤
∑
z∈Γ

A(y, z), x � y ∈ E, x, y ∈ Γ or x, y �∈ Γ (15)

Proof. In order to prove that: {X(t), t ≥ 0} is �Φ-monotone, we will prove
that the associated Markov chain {Xλ(n), n ≥ 0} is �Φ monotone [15], [10].
{Xλ(n), n ≥ 0} is defined by the probability transition matrix Pλ given by:

Pλ = I +
1
λ

A

where λ ≥ supi∈E ||Ai,i||. We have two main steps for the proof of this theorem:

1. First, we have to prove that if:

∀Γ ∈ Φ(E),
∑
z∈Γ

A(x, z) ≤
∑
z∈Γ

A(y, z), ∀x � y ∈ E, x, y ∈ Γ or x, y �∈ Γ

(16)
Then:

∀Γ ∈ Φ(E),
∑
z∈Γ

Pλ(x, z) ≤
∑
z∈Γ

Pλ(y, z), ∀ x � y ∈ E (17)
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2. Secondly, we have to prove that if:

∀Γ ∈ Φ(E),
∑
z∈Γ

Pλ(x, z) ≤
∑
z∈Γ

Pλ(y, z), ∀ x � y ∈ E (18)

Then {Xλ(n), n ≥ 0} is �Φ-monotone. We begin with the first step.

First step. Let δx(Γ ) be the one point distribution with mass in x (so it is such
that: δx(Γ ) = 1 if x ∈ Γ , otherwise 0). So we deduce that: ∀Γ ∈ Φ(E)∑

z∈Γ

Pλ(x, z) = δx(Γ ) +
1
λ

∑
z∈Γ

A(x, z)

In the case of x � y , we have: δx(Γ ) ≤ δy(Γ ). Moreover, for both cases i.
x, y ∈ Γ and ii. x, y �∈ Γ , δx(Γ ) = δy(Γ ). So if:

∀Γ ∈ Φ(E),
∑
z∈Γ

A(x, z) ≤
∑
z∈Γ

A(y, z), ∀x � y ∈ E, x, y ∈ Γ or x, y �∈ Γ (19)

then we have:

∀Γ ∈ Φ(E),
∑
z∈Γ

Pλ(x, z) ≤
∑
z∈Γ

Pλ(y, z), ∀x � y ∈ E, x, y ∈ Γ or x, y �∈ Γ

(20)
For the case where x �∈ Γ , and y ∈ Γ , then we have δx(Γ ) = 0, and δy(Γ ) = 1.
So we have:∑

z∈Γ

Pλ(x, z)−
∑
z∈Γ

Pλ(y, z) =
1
λ

∑
z∈Γ

A(x, z)− 1
λ

∑
z∈Γ

A(y, z)− 1 (21)

as ∑
z∈Γ

A(x, z)−
∑
z∈Γ

A(y, z) ≤ |
∑
z∈Γ

A(x, z)|+ |
∑
z∈Γ

A(y, z)| (22)

then: ∑
z∈Γ

Pλ(x, z)−
∑
z∈Γ

Pλ(y, z) ≤ 1
λ

(||A||+ ||A||)− 1 (23)

where
||A|| = Supx∈E|A(x, x)|

We suppose that: λ ≥ 2||A||, then we obtain:

∀Γ ∈ Φ(E),
∑
z∈Γ

Pλ(x, z) ≤
∑
z∈Γ

Pλ(y, z), ∀x � y ∈ E, x �∈ Γ, y ∈ Γ (24)

so we deduce that:

∀Γ ∈ Φ(E),
∑
z∈Γ

Pλ(x, z) ≤
∑
z∈Γ

Pλ(y, z), x � y (25)
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Second step. We focus now on the second point, which means that if:

∀Γ ∈ Φ(E),
∑
z∈Γ

Pλ(x, z) ≤
∑
z∈Γ

Pλ(y, z), ∀x � y ∈ E (26)

then {Xλ(n), n ≥ 0} is �Φ monotone, which remains to verify that from
theorem 4:

p �Φ q ⇒ pPλ �Φ qPλ (27)

We suppose that: p �Φ q, which is equivalent to: ∀Γ ∈ Φ(E),
∑

x∈Γ p[x] ≤∑
x∈Γ q[x] and we have to prove that:

p Pλ �Φ q Pλ (28)

or equivalently:

Γ ∈ Φ(E), p Pλ1Γ ≤ q Pλ1Γ , (29)

where 1Γ is the indicator function of Γ ⊂ E. We denote by uΓ a vector of E,
defined by: Pλ 1Γ = uΓ , which means that: uΓ (x) =

∑
z∈Γ P (x, z) As we have

supposed that:

∀Γ ∈ Φ(E),
∑
z∈Γ

Pλ(x, z) ≤
∑
z∈Γ

Pλ(y, z) (30)

Then we can deduce that:

∀Γ ∈ Φ(E), uΓ [x] ≤ uΓ [y], ∀x � y ∈ E (31)

Which means that uΓ increases with any state x ∈ E (or is an increasing func-
tion E → R), ∀Γ ∈ Φ(E). As we have supposed that : ∀Γ ∈ Φ(E),

∑
x∈Γ uΓ [x] ≤∑

x∈Γ uΓ [x], which means that uΓ increases with x, then:∑
x∈E

p[x]uΓ [x] ≤
∑
x∈E

q[x]uΓ [x] (32)

so equation (29) is verified, and the associated Markov chain is monotone,
and also the Markov process.

4 The Monotonicity in Queueing Systems

We apply the coupling and the increasing set formalism in order to prove the
monotonicity property in queueing systems. First, we present the event formal-
ism on the coupling for the strong monotonicity in order to provide an intuitive
approach.
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4.1 The Monotonicity by Coupling

The strong monotonicity of Jackson networks has been proved in [8], [7], by
computing the transition rates of the coupled process. Next, we present an intu-
itive approach based on the coupling using events happening on the system. We
propose to study a queueing system similar to a Jackson network except that
queues have finite capacity (see an example in Fig1 for n=6).

The arrival rate in each queue i is Poisson with rate λi, the service time is
exponential with parameter μi. Each queue i has a finite capacity Bi. After a
service from a queue i, a customer can go outside with a probability di or transit
to a queue j with a probability pij if queue j is not full. An arrival in a full
queue is lost.

1

2

3

4

5
6

Fig. 1. An example of the system under study for n=6

We denote by {X(t), t ≥ 0} the Continuous Time Markov Chain (CTMC)
representing the evolution of this system. This process is defined on E = N

n.
We propose to use the known partial ordering component by component denoted
� on this state space:

∀x, y ∈ N
n, x � y ⇔ xi ≤ yi, ∀i = 1, . . . , n (33)

This order is widely used for multidimensional state spaces as it allows to
compare queues by queues the behaviour of queueing networks. We have the
following proposition:

Proposition 1. {X(t), t ≥ 0} is �st-monotone.

Proof. We use Theorem 3, so we prove that there exists two processes {X̂(t), t ≥
0} and {X̂ ′(t), t ≥ 0} with the same infinitesimal generator matrix than {X(t),
t ≥ 0} representing two different realizations with different initial conditions,
and we prove that:

X̂(0) � X̂ ′(0)⇒ X̂(t) � X̂ ′(t), t > 0 (34)

Remember that {X(t), t ≥ 0} is a multidimensional process on E, it is repre-
sented by the vector: X(t) = (X1(t), . . . , Xi(t), . . . , Xn(t)) also for {X̂(t), t ≥ 0}
and {X̂ ′(t), t ≥ 0} which are represented by n components.
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Let suppose that: X̂(t) � X̂ ′(t), we show that: X̂(t + Δt) � X̂ ′(t + Δt),
by considering the evolution in all states even boundary states. We consider all
events occurring during the time interval Δt:

1. an arrival in queue i: we can see easily that the arrival rate in queue i
is λi from states X̂(t) and X̂ ′(t). So if X̂(t) increases with an arrival in
queue i, than X̂ ′(t) will increase also. From the component X̂i(t), we obtain
X̂i(t + Δt) = min{Bi, X̂i(t) + 1}, and from X̂ ′

i(t), we obtain X̂ ′
i(t + Δt) =

min{Bi, X̂ ′
i(t) + 1}. Since others components do not change, and X̂(t) �

X̂ ′(t) then X̂(t + Δt) � X̂ ′(t + Δt).
2. a transit from queue i to queue j: as the transition rate is μipij for X̂(t) and

X̂ ′(t) then the evolutions are the same, and a transit with this event of one of
the process can be compensated by the other. The transit occurs if X̂i(t) > 0
and the customer is accepted in queue j if X̂j(t) < Bj , otherwise it is lost.
From X̂(t), we obtain X̂i(t + Δt) = max{0, X̂i(t) − 1}, and X̂j(t + Δt) =
min{Bj, X̂j(t) + 1}. From X̂ ′(t), similarly, X̂ ′

i(t + Δt) = max{0, X̂ ′
i(t)− 1},

and X̂ ′
j(t + Δt) = min{Bj, X̂ ′

j(t) + 1}. Since others components do not
change, and X̂(t) � X̂ ′(t) then X̂(t + Δt) � X̂ ′(t + Δt).

3. a service from queue i to the outside: as the service rate is μidi for the
two processes, then if we have a service in queue i for X̂ ′(t), we have also
a service for X̂(t). So X̂ ′

i(t + Δt) = max{0, X̂ ′
i(t) − 1}, and X̂i(t + Δt) =

max{0, X̂i(t)− 1}, then X̂(t + Δt) � X̂ ′(t + Δt).

So we deduce that {X(t), t ≥ 0} is ”�st”-monotone.

Using the coupling based on events, we can easily study others networks as
G-Networks [5]. In such networks, negative customers which delete a (positive)
customer are introduced. The strong monotonicity is not verified on G-Networks
due to the transit event of a negative customer:

2− a transit of negative customer from queue i to queue j with transition rate
μip

−
ij both for X̂(t) and X̂ ′(t). The transit occurs if X̂i(t) > 0 and the

negative customer deletes a customer if queue j is not empty and it dis-
appears anyway. From X̂(t), we obtain X̂i(t + Δt) = max{0, X̂i(t) − 1},
and X̂j(t + Δt) = max{0, X̂j(t) − 1}. From X̂ ′(t), similarly, X̂ ′

i(t + Δt) =
max{0, X̂ ′

i(t)− 1}, and X̂ ′
j(t + Δt) = max{0, X̂ ′

j(t)− 1}. In the case where

for queue i: X̂i(t) = 0 and X̂ ′
i(t) �= 0 and for queue j: X̂j(t) = X̂ ′

j(t) �= 0,
then X̂(t + Δt) �� X̂ ′(t + Δt) although X̂(t) � X̂ ′(t).

The strong monotonicity is a very interesting property for the strong compari-
son of processes. In [1], bounding aggregations are used to reduce the state space
size of multidimensional Markov processes. Bounding aggregations are based on
the stochastic comparison by mapping functions into a smaller state space. An
algorithm has been presented which can be applied only on strong monotone
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Markov processes. Next, we focus on the weak monotonicity. The strong mono-
tonicity does not imply the weak monotonicity. From theorem 5 we can see that
if the implication is true for �st ordering, then for two vectors p and q such that
p �wk q, but p ��st q, we cannot conclude. So we need to develop a formalism
for the weak monotonicity. We apply theorem 7 which we have proved above.
This theorem is not easy to apply as we have many increasing sets to define.
We propose to use the event formalism in order to solve this problem. Next,
we apply the increasing set formalism with events in order to prove the weak
monotonicity of independent M/M/1 queues.

4.2 The Monotonicity by Increasing Sets

The weak monotonicity of independent M/M/1 queues is an interesting result
since this process could represent an interesting bounding system as the tran-
sient behaviour is known [11]. Independent queues are defined by deleting links
between queues, and by adding transit flows to the arrivals in the queues. As it
has been explained in [10], the strong ordering could not exist. Authors prove
using an operator approach that the weak ordering could be defined.

In the present paper, we study similar systems but with finite queue capac-
ities. We use the increasing set formalism based on events for the stochastic
comparison. As the weak monotonicity is a sufficient condition, then we need to
prove this property. Let {Y (t), t ≥ 0} be a Markov process defined by n indepen-
dent M/M/1 queues with finite capacity. Each queue i is defined by: arrival rates
λi +

∑
j �=i μjpji, a service rate μi, and a capacity Bi. We denote by B the in-

finitesimal generator. We use the same assumptions than previously: state space
E = N

n, and the preorder � component by component. We have the following
proposition.

Proposition 2. {Y (t), t ≥ 0} is �wk-monotone

Proof. As E is multidimensional, then Φwk(E) could be very large. So we need
to define the increasing sets which are used for the �wk-monotonicity. It follows
from inequality (14) that we have to prove that transitions rates from states
x and y to states of the increasing sets are verified. Since these transitions are
triggered by events, we define the increasing sets from states x and y and these
events. From a state x, in a queue i, we can have an arrival, or a service or
nothing. Let ei be a binary vector on {1, . . . , n}, where all the components are
null except the component i which equals 1. This vector will be used to represent
the evolution of the process from a state x after an event. For example, with
an arrival in queue i, we have a transition from state x to state x + ei. So the
increasing sets used for the monotonicity are:

{x} ↑, {x + ei} ↑, {x− ei} ↑, {y} ↑, {y + ei} ↑, {y − ei} ↑ (35)

As we must also take the condition:

x, y ∈ Γ or x, y �∈ Γ (36)
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then we do not have to consider the increasing set: {y} ↑ as x is not in
this increasing set. We denote by Swk(E) the set of increasing states which are
sufficient for the comparison. It is defined by:

Swk(E) = {{x} ↑, {x + ei} ↑, {y + ei} ↑, {x− ei} ↑, {y − ei} ↑} (37)

Next, we define each increasing set.

Increasing sets definition. We have three constraints to use: the condition
x � y, the events, and the condition x, y ∈ Γ or x, y �∈ Γ .

We give for each increasing set the list of states to which the transitions are
not null. The ”. . .” in the sets means that there are other states, but we do not
need to give them as transitions are null.

– For {x + ei} ↑, we need to define states which are upper than x + ei. In this
case, if xi < yi we have the following states: x + ei, y, y + ei (as y � x + ei,
and y+ei � x+ei). As the condition in the equation (36) will not be verified,
then we don’t take this case. If xi = yi, then we have the states: x+ei, y+ei,
and so the condition (36) will be verified. So if xi < Bi and yi < Bi:

{x + ei} ↑= {x + ei, . . . , y + ei, . . .} (38)

– For {y + ei} ↑, we need to define states which are upper than y + ei, so we
have only y + ei. If yi < Bi, then:

{y + ei} ↑= {y + ei, ....} (39)

– For {x} ↑, we need to define states which are upper than x. So we have x, we
have also y as x � y, and we can have also some states y − ek, k = 1, . . . , n
such that y−ek � x, we have also x+ek(k = 1 . . . n, and y+ek(k = 1, . . . n).
So we have:

{x} ↑= {x, . . . y − ek (k = 1, . . . , n if yk > 0 and y − ek � x) . . . , y, . . . ,

x + ek(k = 1 . . . n, if xk < Bk), . . . , y + ek(k = 1, . . . n if yk < Bk)} (40)

– For {x− ei} ↑, we obtain if xi > 0

{x− ei} ↑= {x− ei, . . . , y − ek(k = 1 . . . n, y − ek ≥ x− ei), . . . ,

x, . . . y, . . . , x + ek(k = 1 . . . n, xk < Bk), . . . y + ek(k = 1 . . . n, yk < Bk)}
(41)

– For {y− ei} ↑, we have y in the set, but we are not sure to have x. In order
to have the condition 36 verified, then we take the case where x is also in
the increasing set which could be true if y − ei = x (so in the set we write
only one of them : y − ei) . If yi > 0, then

{y − ei} ↑= {y − ei, . . . , y, . . . x + ek(k = 1 . . . n, x + ek < Bk), . . . ,

y + ek(k = 1 . . . n, yk < Bk)} if yi > 0 (42)
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We compute now the transition rates in these increasing sets. In order to
simplify the notation, we denote as follows the increasing sets: Γx+ei = {x+ei} ↑,
Γx = {x} ↑, Γx−ei = {x− ei} ↑, Γy+ei = {y + ei} ↑, Γy−ei = {x− ei} ↑.

Now, as we have defined the increasing sets, we can compute the transition
rates of the processes in order to compare them.

Transition rates comparison. For each increasing set, we compute the tran-
sition rates

∑
z∈Γ B(x, z) and

∑
z∈Γ B(y, z), ∀Γ ∈ Swk(E), in order to compare

them.

Γ
∑

z∈Γ B(x, z)
∑

z∈Γ B(y, z)
Γx+ei λi +

∑
j �=i μjpji λi +

∑
j �=i μjpji

Γy+ei 0 λi +
∑

j �=i μjpji

Γx −∑n
k=1 μk1xk>0 −

∑n
k=1 μk1yk>01yk=xk

Γx−ei −
∑

k �=i μk1xk>0 −
∑

k �=i μk1yk>01yk=xk

Γy−ei −
∑

k μk1xk>0 −∑k �=i μk1yk>0

The comparison of the transition rates is easy for increasing sets Γx+ei and
Γy+ei . For other increasing sets, we need to explain how to compare transition
rates. We need to compare the term:

μk1xk>0 with μk1yk>01yk=xk

As : 1yk>01yk=xk
= 1xk>01yk=xk

and : 1xk>01yk=xk
≤ 1xk>0, then we have

the following inequality:

−
n∑

k=1

μk1xk>0 ≤ −
n∑

k=1

μk1yk>01yk=xk
(43)

For increasing sets Γx−ei and Γy−ei the comparison is similar.
It is easy to see that:

∀Γ ∈ Swk(E), ∀x � y | x, y ∈ Γ, or x, y �∈ Γ

the following inequality is verified:∑
z∈Γ

B(x, z) ≤
∑
z∈Γ

B(y, z)

So from theorem 7 we deduce that Y (t) is �wk-monotone.

This result will be very useful for the comparison of {X(t), t ≥ 0} and {Y (t),
t ≥ 0}. {Y (t), t ≥ 0} is an interesting process as both stationary and tran-
sient probability distribution can be computed as the product of M/M/1 queues
probabilities distributions. The �wk-comparison of these processes could be in-
teresting as the �st ordering could not exist between the processes. Using the
coupling of the processes, if we have a service in queue i in the process Y (t)
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with a transition rate μi, then this event could be compensated only by a ser-
vice in queue i in the process X(t). But it is not possible as the service rate in
X(t) is equal to μidi, so lower than μi. We give briefly the proof of the �wk-
comparison of X(t) and Y (t). We apply theorem 2: so we compare

∑
z∈Γ A(x, z)

and
∑

z∈Γ B(x, z) for increasing sets Γx+ei , Γx−ej+ei , Γx, Γx−ei .

Γ
∑

z∈Γ A(x, z)
∑

z∈Γ B(x, z)
Γx+ei λi λi +

∑
j �=i μjpji

Γx−ej+ei μjpji + λi λi +
∑

j �=i μjpji

Γx −∑n
k=1 μk1xk>0 −

∑n
k=1 μk1xk>0

Γx−ei −∑k �=i μk1xk>0 −
∑

k �=i μk1xk>0

So we can deduce from the theorem 2 that: {X(t), t ≥ 0} �wk {Y (t), t ≥ 0},
which means that:

P (X(t) ∈ Γ ) ≤ P (Y (t) ∈ Γ ), ∀Γ ∈ Φwk(E) (44)

The relevance of this comparison is that stationary and transient probabil-
ity distribution of Y (t) can be computed easily as the product of probability
distributions of each M/M/1 queue. We deduce that ∀x = (x1, . . . , xn):

P (X(t) � x) ≤ Πn
i=1P (Yi(t) � xi) (45)

Note that we can also define a lower bound represented by n independent
M/M/1 queues with arrival rate λi, and service rate μi.

5 Conclusion

We present a formalism based on events to establish stochastic monotonicity of
Markov processes. We propose the coupling by event in order to provide an intu-
itive approach for the strong stochastic monotonicity. For weaker monotonicity,
we provide a new theorem based on generator inequalities and increasing sets.
The considered increasing sets are constituted by considering events in order to
limit the number of increasing sets. Furthermore, as a future work, it will be in-
teresting to develop an algorithm based on events for the stochastic monotonicity
of Markov processes.
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Abstract. To evaluate peer-to-peer systems through discrete-event sim-
ulation, one needs to be able to generate sufficiently large networks of
nodes that exhibit the desired properties, such as the scale-free nature of
the connectivity graph. In applications such as the web of trust or anal-
ysis of hyperlink structures, the direction of the arcs between two nodes
is relevant and one therefore generates directed graphs. In this paper we
introduce a model to generate directed scale free graphs without multi-
ple arcs between the same pair of nodes and loops. This model is based
on existing models that allows multiple arcs and loops, but considerably
more challenging to implement in an efficient manner. We therefore de-
sign and implement a set of algorithms and compare them with respect
to CPU and memory use, in terms of both theoretical complexity anal-
ysis and experimental results. We will show through experiments that
with the fastest algorithms networks with a million or more nodes can
be generated in mere seconds.

1 Introduction

To evaluate novel peer-to-peer algorithms through discrete-event simulation one
first needs to generate networks of nodes and relationships between nodes [1,2,3].
To obtain reliable results with small enough confidence intervals, one needs to
generate many of these networks and it is therefore of importance that one is
able to generate networks with the desired characteristics in reasonable time.

Very often one is interested in generating networks that are scale-free. In scale-
free networks, the distribution over the node degrees confirms to a power law
distribution, and it turns out that the scale-free phenomenon occurs frequently
in real-life networks [4]. The power law node degree distributions also indicate
that the resulting network exhibits the small-world phenomenon [5], that is, each
pair of nodes are likely to have short paths connecting them.

There exist a large number of models to generate scale-free networks with
undirected links (see [6] and references in [7]). For networks with directed arcs,
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however, we are aware of only two models, which are almost identical [7] and
[8]. Both models generate networks with both indegree and outdegree distri-
butions satisfying a power law distribution. They both belong to the class of
preferential attachment models, which are attractive since they provide an intu-
itively natural constructive approach to network generation. Moreover, the mod-
els can be implemented straightforwardly using ‘Reversed Look-up’ detailed in
Section 3.5, as we will comment on later. A disadvantage is that the models
allow multiple arcs with the same origin and destination (‘multiple arcs’) and
with the destination to be equal to the origin (‘loops’).

For several applications or experiments, among which our work in trust path
discovery [2,3], one can argue that it would be more natural or desirable to run
simulations using networks that do not contain multiple arcs and loops. In this
paper we therefore modify the models in [7,8] to create a network with directed
arcs, but without multiple arcs or loops. Our model generates a network for a
given N , the number of nodes, and a given probability p such that the resulting
expected number of arcs equals N

p .
The model we propose poses theoretical as well as computational challenges.

From a theoretical perspective, a proof that the degree distribution is power law
is not available (and, if possible, far from straightforward). We therefore argue
through experimental results that there is sufficient remaining structure in our
model to claim that the generated network’s degree distributions are (close to)
power law, and the remaining networks can therefore be reasonably assumed to
be scale-free.

In addition, the algorithmic implementation of our model poses implemen-
tation challenges. Firstly, in the formal representation of our model, all poten-
tial arcs get assigned a weight that may change with every added arc. As a
consequence, a straightforward implementation (termed the Base algorithm in
Section 3.1) requires considerable effort in updating and storing weights. Sec-
ondly, once the weights are determined, selecting the next arc corresponds to
weighted random sampling (a specific case of [9]), which in general requires
computational effort similar to a linear search.

In this paper, we derive an algorithm that resolves both the problem of updat-
ing weights and of the linear search. In fact, the method does not update weights,
but instead allows ‘pseudo arcs’, which are ignored. As a consequence, multiple
samples may be required until an arc is successfully added, and we therefore call
our method the Multi-sampling algorithm. It will turn out that in none of the
situations we encountered the need for resampling negates the gain achieved by
not updating. Moreover, because we do not update, we are able to do Reversed
Look-up to establish a constant time algorithm for weighted random sampling.
Together, these two aspects dramatically speed up the generation of scale-free
directed graphs: networks with one million nodes can be generated in seconds.

In what follows we first present our model in Section 2 and demonstrate
experimentally its scale free nature in Section 2.1. In Section 3 we then introduce
algorithms to generate networks according to our model. Section 4 analyses the
complexity of the algorithms, theoretically as well as experimentally.
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2 Generation of Scale-Free Networks with Directed Arcs

Preferential attachment refers to a class of network models in which a network is
modelled through a process of growth [6,7,8,10]. Starting from a single node, in
each iteration a node is added and some links are added according to a specific al-
gorithm. Depending on the precise model, it may then be possible to show that the
resulting network has certain properties, such as a power law degree distribution.
Bollobás et al. [7], for instance, provide a clear articulation of the benefits of us-
ing such models to explain properties of networks. By construction, the networks
represent an intuitive mapping on ‘real-life’ processes and networks, explaining
why the real-life network may have become scale free. That is, it is not only the
fact that mathematically the network can be shown to exhibit scale-free and other
properties, it is also the construction that lends credit to its use as a representa-
tion of a real system. It is therefore natural, and has been common practice [11]
to also use models based on preferential attachment in simulation studies.

For scale-free networks with directed arcs, the literature provides essentially
one model based on preferential attachment, developed in [7] and [8]. Both [7]
and [8] show that the resulting indegree as well as outdegree node distribution
follows a power law distribution. In this model multiple arcs may share identical
origin and destination pairs, and arcs may ‘loop’, that is, arcs may have the
same destination as the origin. We will put more restrictions on this model in
this paper, but first explain the main idea behind the model of [7] and [8]–we
will take the specific model from [8], which is a natural and generally applicable
case of the model presented in [7].

We introduce the following notation to represent the growing network gener-
ated using these models. In the nth iteration, n ≥ 1, there are n nodes and a
set of arcs. We number the nodes 1 through n, and write i → j to denote an arc
from node i to node j, i, j ≤ n and i �→ j if no arc i → j exists. The algorithm
terminates when there are N nodes, with N > 0 some predefined target size of
the generated network.

The main idea behind the model in [8] is as follows. Starting from a single
node, the algorithm adds in each iteration one node and one or more arcs. Each
iteration starts with adding a node and one arc from the new node to an existing
node. Then, with probability 1−p an additional arc is added between two existing
nodes, while with probability p we start the next iteration with a new node. For
every node, the model thus adds on the average 1

p arcs to the network.
If a new arc is added, it will be from node i to node j depending on the

existing indegree and outdegree of each node. The reasoning behind this follows
from characteristics of scale-free and small-world properties: nodes with many
arcs are more likely to get additional arcs. At this point we modify the model in
[7] and [8], by not allowing multiple arcs and loops. In particular, for any node
i, let Ii be the in-degree of node i and Oi the out-degree of node i, then weights
wi,j are defined as follows:

wi,j =

{
(μ + Oi)(λ + Ij) if i �→ j and i �= j
0 if i → j or i = j

(1)
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The probability pi,j that, given an arc is added to the network, it is between
i and j is then given by

pi,j =
wi,j∑n

i=1
∑n

j=1 wi,j
. (2)

The above implies that arcs between nodes with a high number of incoming or
outgoing arcs are more likely than between nodes with low number of arcs. Note
that if an arc is added from a new node i to an existing node, that the outdegree
Oi of the new node is zero, thus simplifying the weights to wi,j = λ + Ij (the
constant μ can be omitted).

The main difference between the model based on Equation (1) and [8] is that
wi,j is set to 0 in Equation (1) if an arc already exists or if it is a loop. An
alternative approach would be to generate a network using the model in [8] and
then remove multiple arcs and loops. However, that generates networks with an
unpredictable number of arcs, since it is unknown how many arcs are multiple
arcs or loops. In our model, we input parameters N and p to generate networks
with any given number of nodes N and number of arcs N

p .

2.1 Power Law Node Degree Distribution

The first issue to address is whether our model results in power law distributions
for indegrees as well as outdegrees. From [7,8] it is known that if multiple arcs
and loops are allowed, that then the outdegree and indegree node distributions
are power law with parameter 2 + p(μ+1)

1−p and 2 + pλ, respectively. To illustrate
this, Figure 1(a) provides the outdegree node distribution for the algorithm in [8],
where we use parameters N = 100, 000, λ = 0.75 and μ = 3.55, as representative
for web hyperlinks [12]. We vary p, where p = 0.1333 is the value representative
for the network of web hyperlinks. For the log-log scale of Figure 1(a) a power law
distribution results in a straight line. The theoretical results in [7,8] require both
the total number of nodes and the indegree and outdegree (the outdegree is given
on the x-axis of Figure 1(a)) to go to infinity for the Power law distribution to be
guaranteed. That is, small values of the indegree and outdegree do not follow the
power law distribution, as one can see from Figure 1(a). Note that in particular
for p = 0.5, which is a very lightly connected network, the convergence to a
power law distribution is slow.

Unfortunately, the elegant and straightforward mathematical proof for power
law node degree distributions in [7,8] does not extend to our case because we
have to account for the cases in which weights are set to 0. This makes that we
have not been able to prove the scale free properties of our model. Heuristically,
one can argue that the weights that are set to 0 are distributed over the nodes
proportional to the number of incoming and outgoing arcs. As a consequence,
one may hope that these proportions are such that the remaining likelihood
for nodes to be selected as origin or destination is modified in regular manner,
thus preserving the power law nature of the node distribution. However, we
note that the dependence between indegree and outdegrees of nodes that was
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Fig. 1. Outdegree distributions for the model in [8] and using Equation (1)
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demonstrated in [8] makes proving this difficult, or may prove the heuristic
incorrect. Nevertheless, our experimental results seem to indicate the scale-free
nature of the node indegree as well as outdegree distribution is preserved (or at
least close to preserved).

We illustrate the resulting node distributions in Figure 1(b) and Figure 2. Of
particular importance is the parameter p, since if p gets smaller, the number
of arcs increases and hence more weights are set to 0 in Equation (1). As a
consequence, one may expect larger difference between Figure 1(b) and Figure
1(a). Indeed, when comparing the two models, we see almost identical results for
p = 0.5, and more substantial differences for smaller values of p. However, for
smaller values of p, the power law characteristic of the node degree distribution
is more pronounced, leading us to believe that our model creates node degree
distributions that are (not far from) power law distributions.

We will now turn our attention to the algorithmic implementation of our
model. To realistically represent modern-day systems, it is not unreasonable to
run simulations or do analysis of systems with a million nodes. We will see that
the fact that we disallow multiple arcs and loops introduces several aspects that
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make it difficult to scale algorithms to such large networks. In this paper we
derive several algorithms, using various ideas to reduce computation time as
well as memory consumption compared to a ‘Base’ algorithm–we term these
ideas ‘Node Weights’, ‘Node Weights with Subtraction’, ‘Multi-sampling’ and
‘Reversed Look-up’, respectively, and introduce these in the next section.

3 Generator Algorithms

We will see that a main challenge in making network generation algorithms based
on our model scalable lies in the need to update weights wi,j in Equation (1) after
every added arc. This issue we address first. A second challenge is the selection
of the arc once the weight are updated (weighted random sampling)–this we can
only resolve in one specific algorithm, namely Multi-sampling, as we discuss in
Section 3.5 when we introduce Reversed Look-up.

For all algorithms we will compute the time and memory complexity. In the
complexity analysis we ignore updating of the indegree and outdegree of a node
with every added arc–this has to be done in all algorithms. Similarly, we do not
consider the storage in memory of the actual networks with all its nodes and
arcs. This also has to be done in all cases, and it should be noted that storage
of the N nodes and N

p arcs is of dominant order in all but the Base algorithm.

3.1 Base Algorithm

The Base algorithm is straightforward: store all elements wi,j in a matrix of size
N ×N and update these weights after every addition of an arc. In particular, if
arc x → y is added, then wx,j needs to be updated for j = 1, . . . , n, and wi,y

needs to be updated for i = 1, . . . , n. That is, a complete row and a complete
column in the matrix needs to be updated. In addition, wx,y needs to be set to 0.

To make this precise, we introduce the superscript + to denote the updated
weights when an arc is added. Similarly, we represent the increase of the outde-
gree of a node i as O+

i and the increase of the indegree of node j as I+
j . Assume

that x → y is the last arc added, then O+
i = Oi + 1 if and only if i = x and

O+
i = Oi otherwise. Similarly, I+

j = Ij + 1 if and only if j = y and I+
j = Ij

otherwise. Hence, when x → y is the added arc, the weights in Equation (1)
need to be updated as follows:

w+
i,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
wi,j + λ + Ij if i = x and i �→ j
wi,j + μ + Oi if j = y and i �→ j
0 if i = x and j = y
wi,j otherwise

(3)

This process of updating weights has the following time complexity. If an arc
is added at iteration n, there are up to 2n − 1 (a row and a column) weights
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updated. Since at each iteration 1
p arcs are added, the total time complexity is

1
p

∑N
n=1(2n− 1) = O(N2

p ) updates. A matrix is used to store the weights, thus
requiring O(N2) storage.

The second aspect to be considered is the time it takes to draw a weighted
random number according to the probabilities in Equation (2). The base algo-
rithm for weighted random sampling is to draw a random number r between
0 and 1 and add up probabilities pi,j in Equation (2) in order until the sum
exceeds r. (‘In order’ may for instance be implemented through a double for
loop: for (i=1) to n do { for (j=1) to n do{...}})

This way of weighted random number generation has complexity similar to a
linear search through a list of size n× n: it requires on average 1

p
n2

2 operations
at iteration n, and summing this leads to the results for pyramid numbers,
which implies that the resulting time complexity is O(N3

p ) operations in total.
There is no additional required memory for this way of drawing weighted random
numbers.

We note that some algorithmic tricks can be thought off to speed up the draw-
ing of weighted random numbers, such as traversing the matrix backward when
the random number is larger than 0.5 (for instance). This, however, does not
change the order of the algorithm. Similarly, as we already remarked, if a new
node is added, the outdegree of the new node is 0, and hence the weights in Equa-
tion (1) simplify. We exploit this in our implementations to make the algorithms
more efficient when adding a node, but the order of the algorithm does not change
because of it. We therefore will not discuss such issues in more detail.

3.2 Node Weights

Since the Base algorithm stores the complete matrix of weights its memory
requirement of O(N2) makes it less attractive for a large network size. Roughly
speaking, modern day personal computers may be expected to hold up to 109

doubles in memory, thus limiting N to about 30,000.
The Node Weights method resolves this issue, by storing and updating weights

per node, instead of per arc. This immediately implies that storage requirements
will go down to O(N). In particular, at iteration n, for each node i we store

wi =
n∑

j=1

wi,j . (4)

The probability pi that, given an arc is added to the network, it has i as the
origin is then given by:

pi =
wi∑n
i=1 wi

. (5)

Furthermore, once the origin is determined, the destination is determined by
computing wi,j on the fly for given origin node i.

Important is that the node weights wi can be updated without knowing the
individual values wi,j , because otherwise there would be no gain from maintain-
ing node weights. This works in a similar manner as for the Base algorithm: if
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arc x → y is added we have again that O+
x = Ox + 1 and I+

y = Iy + 1, and we
derive that the updated node weights w+

i obey:

w+
i =

⎧⎪⎨⎪⎩
wx +

∑
j|x �→j(λ + Ij)− wx,y if i = x

wi + μ + Oi if i �→ y and i �= x, y
wi otherwise

(6)

Updating the weights by above equations takes order n operations for each
arc in the nth iteration, thus giving O(N2

p ) overall complexity for updating, as in
the base case. However, selection of an arc through weighted random sampling
is an order less expensive than in the base case. A sequential search is used to
find the origin node, and for this origin node all possible destination nodes are
considered. (Again, we sum up probabilities pi and then probabilities pi,j until
they sum to r. To make this more precise would lead to cumbersome explanation
not necessary for the thrust of this paper.) As we remarked, for the chosen node
i, we generate the weights wi,j on the fly from Equation (1) since we do not store
the individual weights. The time complexity for the weighted random sampling
in the Node Weights algorithm is thus O(N2

p ).

3.3 Node Weights with Subtraction

Node Weights with Subtraction is a variation of Node Weights in which we
decrease the number of updates. From Equation (6) one sees that weights wi are
updated for every node i that is not connected to y (i �→ y). In Node Weights
with Subtraction we do the opposite, and update wi if and only if i → y. The
main observation behind the method is that the node weights in Equation (4)
can be rewritten as:

wi =
n∑

j=1

wi,j =
n∑

j=1|i�→j,i�=j

(μ + Oi)(λ + Ij)

=
n∑

j=1

(μ + Oi)(λ + Ij)−
n∑

j=1|i→j∨i=j

(μ + Oi)(λ + Ij)

= (μ + Oi)(nλ + An)−
n∑

j=1|i→j∨i=j

(μ + Oi)(λ + Ij),

where An is the total number of arcs at iteration n. For each node, we then keep
track of the term (μ + Oi)(nλ + An) (which we can easily track and update) as
well as of

∑n
j=1|i→j∨i=j(μ+Oi)(λ+Ij). Since the latter term has fewer elements

in the sum it is less effort to update that term than it is to update the actual
values wi (as in the Node Weights method).

We will not write down the equivalent of Equation (6) to update the elements

n∑
j=1|i→j∨i=j

(μ + Oi)(λ + Ij)
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Note that although it can be expected that the Node Weights with Subtraction
method is more efficient than Node Weights, the time and memory complexity
orders do not change.

3.4 Multi-sampling

The idea behind Multi-sampling is radically different from the previous ap-
proaches in that updates are no longer carried out. Instead of enforcing that no
multiple arcs or loops will be generated by setting weights to 0, Multi-sampling
allows an arc to be selected that leads to multiple arcs or a loop, but then ignores
it and retries the sampling for an arc. We will see that this implies a constant
computational complexity for updates in each iteration, but that it increases the
number of samples, thus resulting in O( N

fp ) computational complexity, where 1
f

is the average number of samples per iteration.
The algorithm works as follows. Introduce, for i = 1, . . . , n the following

weights:

vi = μ + Oi,

wj = λ + Ij . (7)

Then generate an arc x → y by conducting weighted random sampling using the
weights vi to determine x and by conducting weighted random sampling using
the weights wi to determine y. If x → y already exists or if x = y, then repeat
the procedure until a new arc is added.

We now have to show that this procedure correctly implements our model, i.e.,
that it generates probabilistically equivalent networks as when the probability
of adding an arc x → y is given by Equation (2). This follows directly from
considering, for the Multi-sampling method, the conditional probability pMS

x,y :

pMS
x,y = Prob{arc x→ y is added |an arc is added}

=
Prob{arc x→ y is added ∧ an arc is added}

Prob{an arc is added}
If x→ y already exist, then an arc is not added, and so the numerator evaluates
to false, resulting in pMS

x,y = 0 if x → y already exists. Similar, if x = y, an arc is

not added and pMS
x,y = 0. If x → y does not yet exist, then an arc is added and

the numerator becomes

Prob{arc x → y is added} =
viwj∑n

i=1
∑n

j=1 viwj
.

The denominator equals:

Prob{an arc is added} =

∑n
i=1
∑n

j=1|i�→j,i�=j viwj∑n
i=1
∑n

j=1 viwj
.
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As a result we obtain for the conditional probability that given an arc is added,
it is arc x→ y:

pMS
x,y =

viwj∑n
i=1
∑n

j=1|i�→j,i�=j viwj
. (8)

Hence, filling in wi,j in Equation (2) and vi and wj in Equation (8) we find that
probabilistically Multi-sampling generates networks consistent with our model.

For the performance of the Multi-sampling method it will be important to
determine the amount of resampling that is required. Every time an arc x → y
is selected that already exists or x = y, a new attempt must be made (which
involves drawing a new random number, and selecting an arc according to the
procedure under Equation (7)). To determine the average number of resamples,
let f be the probability the sample is successful:

f =

∑n
i=1
∑n

j=1|i�→j,i�=j viwj∑n
i=1
∑n

j=1 viwj
. (9)

Then the average number of tries until a sample is successful equals
∑∞

k=1 k(1−
f)k−1f = 1

f . Obviously, the required number of samples gets high if the success
probability f is small. Since f is a potential bottleneck for the Multi-sampling
methods Section 4.3 shows experimental results for f .

Finally, we note that the storage requirements for Multi-sampling only involve
maintaining weights vi and wj in Equation (7). These weights can easily be
computed from the already stored in- and out-degrees, and therefore there is no
specific storage needed for the weights.

3.5 Reversed Look-Up

Thus far the algorithms have dealt with the issue of updating weights, either
decreasing the storage needed for the weights or the time required for updates.
However, considerable computational effort is also required to sample weighted
random numbers once the weights are established. For the Multi-sampling ap-
proach, however, the weights are such that one can store the weights in such
a way that, given a random number, the appropriate weighted random number
can directly be read from the data structure.

We call this idea ‘Reversed Look-up’, and it has its origin in a commonly pro-
posed algorithm for weighted random sampling if all weights have integer values
(see for instance [13] and also the BA algorithm implementation in Peersim [11]
for examples of this and related ideas). In our case, following Equation (7), in
iteration n weighted random sampling selects node i with probability pi defined
as:

pi =
vi∑n
i=1 vi

=
μ + Oi∑n

i=1(μ + Oi)
=

μ + Oi

nμ + An
, (10)

where An is the total number of arcs at iteration n. We will now first deal
with the constants μ, before applying Reversed Look-up to the integer-valued
outdegrees Oi.
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Let r be a random number between 0 and 1. To deal with the constant μ, we
select node x = 1, . . . , n, if μ(x−1)

nμ+An
≤ r < μx

nμ+An
. This means that if r < nμ

nμ+An

the origin node for the new arc is selected uniformly from all n nodes, since μ
contributes the same constant value to any probability pi. If, on the other hand,
r ≥ nμ

nμ+An
, the outgoing arc is not yet decided and the Reversed Look-up comes

into effect, as follows.
We maintain an array of size An with integer values, such that in each array

element a node number is stored. More precisely, the array has Oi elements with
value i. We then select any of the array elements with equal probability–since
there are Oi array elements for node i the likelihood that a node is chosen is
proportional to Oi (we make the correctness argument precise below).

To select an array element according to a uniform distribution, we first scale
up the random number r ≥ nμ

nμ+An
so it is a uniformly distributed number

between 0 and An: rnew = r ∗ (nμ + An) − nμ. Then we select array index k
as k = �rnew� (the floor operator �� indicating rounding to the nearest lower
integer). The origin node is then the value of the array element at index k.

Once the origin node is determined, the destination node is determined sim-
ilarly by maintaining an array of AN = N

p elements with nodes based on
indegrees Ij .

To demonstrate the correctness of the approach, node x is selected according
to a uniform distribution (that is, with probability 1

n ) if r < nμ
nμ+An

and with
probability Ox

An
if r ≥ nμ

nμ+An
. Together, this means that node x is the origin with

probability 1
n

nμ
nμ+An

+ Ox

An
(1− nμ

nμ+An
) = μ+Ox

nμ+An
, which confirms to Equation (10).

This idea of Reversed Look-up works because of the integer value of the
weights and because updates can be implemented very simply. For instance,
it is not easy (if at all possible) to efficiently implement Reversed Look-up when
weights may decrease, such as in the Node Weights method. When using Multi-
sampling updating the array is straightforward. Assume arc x → y is last added,
then we add to the array for indegrees one element with value y and to the array
with outdegrees one element with value x.

The time complexity of the Reversed Look-up method is minimal. To update
the array and read the right element from the array there are some operations
each time an arc is added, resulting in time complexity O(N

p ). Importantly,
memory use is increased through the use of two arrays of O(N

p ) elements.
We will see in the results section that the ability to use Reversed Look-up in

the Multi-sampling approach dramatically reduces the computational effort to
generate scale-free directed networks. We will see that networks with a million
or more nodes are feasible.

4 Evaluation of Generator Algorithms

Before discussing our experimental results, let us recap the theoretical complex-
ity results we derived in Section 3, by comparing the order of all algorithms
in Table 1, for CPU time and memory consumption, respectively. In Table 1
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Table 1. Orders of CPU and memory use for various algorithms
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Base N2

p
N3

p
N2 0 N

p

Node Weights N2

p
N2

p
N 0 N

p

Node Weights with Subtraction N2

p
N2

p
N 0 N

p

Multi-sampling 0 N
fp

0 0 N
p

Multi-sampling with Reversed Look-up 0 N
fp

0 N
p

N
p

the time complexity is divided in two: the time an algorithm takes in updating
weights, and the time an algorithm takes in determining the correct arc to add
based on weighted random sampling. Note that the CPU time complexity does
not include aspects that are required in all algorithms, such as updates of inde-
grees and outdegrees. The memory use is given for the same two aspects: storing
weights and memory used for selecting the arc through weighted random sam-
pling. The table also shows the memory requirement for the generated network
itself, since this is a dominant factor in the memory use of all algorithms.

We see from Table 1 in the first two columns on CPU time that we may
expect that Multi-sampling will outperform the Base and Node Weight methods,
unless the probability f becomes too small (f is the probability resampling is
not needed, and thus 1

f is the expected number of samples for each added arc).
We will show in our experiments that Multi-sampling is indeed the preferred
method, and we will also experimentally show that the number of retries 1

f
decreases with the number of iterations to a small, almost constant, value. The
latter is important, since otherwise the method would break down because of
excessive resampling.

We also see from the table that a potential bottleneck exists for Multi-
sampling with Reversed Look-up in the use of memory to select the arc using
weighted random sampling. After all, the point of the Reversed Look-up method
was to trade memory for CPU. However, we will see that this use of memory
is of the same order as that for storing the generated network itself, something
all algorithms need to do. This implies that the base and Node Weight methods
never really are competitive compared to Multi-sampling with Reversed Look-
up: even if memory use increases in Multi-sampling with Reversed Look-up, the
time the other algorithms take leaves them unattractive.
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In what follows we analyse the results of our experiments. All the methods
are implemented and executed within the Java Peersim simulation environment
for peer-to-peer networks [11]. As a general-purpose p2p simulation environment
Peersim is concerned with more than efficiency alone and one may expect some
performance or memory usage overhead compared to bespoke implementations.
Nevertheless, we are convinced that our implementation and experiments are
indicative for typical use of the algorithms we developed.

To achieve fair results, all the experiments were conducted on the same ma-
chine. It has a Pentium(R) processor, with CPU 3GHz and 2GB of RAM. Effec-
tively, we were able to use up to about 1.4GB of memory in our experiments. All
experiments were repeated up to fifty times to create tight confidence intervals. In
general, results did not show much variance. Even in cases that computation time
for each data point was too high (up to one day) to do many experiments, we still
achieved relatively stable results. We added time stamps to the code to measure
the time the algorithm needs to generate the networks. To measure the memory
usage, we use common Java methods–because memory allocation is managed by
the Java Virtual Machine, the results may be influenced by the working of the
JVM. However, we will see that the results can be satisfactory explained from
our understanding of the working of the algorithms and implementation.

4.1 Baseline Performance Comparison

We first compare the performance of the various algorithms for typical settings.
Since discrete-event simulation studies of peer-to-peer algorithms often concern
networks of some ten thousands of nodes (e.g., [1,3]), we vary the network size N
from 10, 000 to 50, 000 nodes. In addition, we use the parameter values derived
in [8] for the world-wide web (in turn attributed to data from [12]): p = 0.1333,
λ = 0.75 and μ = 3.55. Note that the values of λ and μ do only influence
the CPU or memory use through the probability f in (9), but that p is a very
important factor for all metrics and methods.

Figure 3 shows CPU time for the various methods. To simplify the under-
standing of the figures, we note that we always label the curves in the order they
appear in the graph (from top to bottom). In this case, the Base method only
generated a single point for N = 10, 000. The Base method does not complete for
larger values of N because it runs out of memory. The Base method thus clearly
performs worst. The two increasing curves in Figure 3 are for Node Weights with-
out and with Subtraction, respectively. In fact, the increase is roughly quadratic
in the number of nodes, as we expect from the complexity results in Table 1.
Finally, the two Multi-sampling approaches easily outperform the others, both
demonstrating an almost flat line.

The memory consumption for the different methods is displayed in Figure 4(a)
(notice the logarithmic scale) and Figure 4(b) (in linear scale). One sees that
the Base method indeed runs out of memory. As we remarked, we can effectively
use up to 1.4GB of memory, and for N = 10, 000 the Base method uses close to
1.0GB already. The other approaches all exhibit similar memory consumption–
this can explained from the fact that memory use in all cases is of order N

p ,
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Fig. 4. Memory use for average networks(p = 0.1333, logarithmic scale and linear scale)

dominated by the storage of the network itself. Note that Multi-sampling with
Reversed Look-up consumes slightly more memory than either Multi-sampling
or Node Weights, but in essence all four methods are comparable.

In conclusion, we see that for a common range of parameter values, Multi-
sampling with or without Reversed Look-up clearly outperform the other meth-
ods with respect to the required computation time. Although the Node Weights
method is competitive when considering memory use, it does not dramatically
improve over either Multi-sampling method. Therefore, the results suggest that
the choice is be between the two variations of Multi-sampling. When generating
networks with a million or more nodes in Section 4.4, we will discuss in more
detail the CPU and memory implications of using Reversed Look-up or not (see
Figure 8(a) and 8(b)).

4.2 Highly Connected Networks (p Small)

Since the complexity numbers in Table 1 all tend to infinity when the probability
p ↓ 0 we now research the performance of the various approaches when p gets
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Fig. 5. CPU time and memory use for highly connected networks (N = 10, 000)

small. For N = 10, 000 Figures 5(a) and 5(b) show the CPU and memory results,
respectively, for small values of p (note the logarithmic scales of the figures). For
a network with N nodes, the average number of arcs is N

p and the maximum
number of arcs is N(N − 1). We thus see that realistically one should have p
considerable larger than 1

N−1 . In our network of size N = 10, 000 we let p get as
small as 0.001.

Figure 5(a) shows that only Multi-sampling (with or without Reversed Look-
up) can generate networks with p = 0.001. For instance, the Node Weight meth-
ods require more than 10 hours to generate networks for p = 0.01, and networks
for smaller p can therefore not be generated in practice.

Even though Figure 5(b) demonstrates that the Node Weights method uses as
little memory as Multi-sampling, we see that the conclusions from Section 4.1 do
not change significantly compared to the results for small p values in this section.
Multi-sampling is so fast that the Node Weight methods cannot compete, even
though Node Weight is memory efficient. Note that based on Table 1 this was
not a foregone conclusion because of the unknown implications of the probability
f (which relates to the required amount of resampling) in the Multi-sampling
methods. We study this further in the next section.

4.3 Amount of Resampling in Multi-sampling Methods

Table 1 shows the dependence of the CPU time needed for Multi-sampling meth-
ods on the probability f , which is the probability an arc is successfully added,
as given in Equation (9). Unfortunately, we do not have expressions or conver-
gence results for f . We therefore experimentally investigate f as a function of
the iteration number.

We generate networks of up to 180, 000 nodes, count the number of resamples
over intervals of 20, 000 nodes and divide it by the number of arcs added in these
intervals. In so doing, we obtain 1

f −1, the number of ‘wasted’ resamples for each
successfully added arc. (We note that using the Node Weight methods we can
numerically compute f precisely for any network, but the Node Weight method
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is prohibitively slow for the small values of p and large N considered. Hence,
we used Multi-sampling with Reversed Look-up and sampled 1

f , repeating the
experiment sufficiently often to gain tight enough confidence intervals.)

Figure 6 presents the average number of resamples as a function of the it-
eration count. We show a curve for p = 0.01, p = 0.1 and p = 0.1333 (as in
Subsection 4.1). Clearly, f depends very much on p, but in all cases the number
of wasted samples is small. For instance, for p = 0.01 the number of resamples
is less than 1 per successfully added arc, while for more regular values such as
p = 0.1333 the number of resamples is even less.

Importantly, however, all curves decrease as a function of the iteration count.
This implies that for larger network the danger decreases that f becomes a
bottleneck. This probably can be explained from the fact that with increasing
iteration count n the number of existing arcs n

p becomes less and less significant
compared to the number n(n − 1) − n

p of not yet existing arcs. However, this
depends on the actual values of the weights corresponding to existing arcs, so
we only suggest it as a possible explanation that remains to be proven. Clearly,
it would be of great interest to derive theoretical results for f or its convergence,
but this is beyond the scope of our current presentation.

4.4 Networks with a Million Nodes

Finally, we want to push the algorithms and generate as large a network as we can
using our current implementation in Peersim. We have already seen that only the
Multi-sampling methods should be considered for average sized networks, and
have identified that Multi-sampling with Reversed Look-up is superior in time,
while plain Multi-sampling is more memory efficient. Figure 7(a) and Figure 7(b)
confirm this for N = 100, 000, and different values of p. More precisely, Reversed
Look-up takes about 20% more memory for the whole range of p values (200MB
for p = 0.01). On the other hand, computation time for Multi-sampling gets
considerably worse, and can differ more than a factor 10. So, an early conclusion
would be to exclusively use Multi-sampling with Reversed Look-up.
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We see in Figure 8(a) and 8(b) how far we can push the two Multi-sampling
methods. As far as CPU use is concerned Reversed Look-up is clearly beneficial,
since Multi-sampling without Reversed Look-up takes close to 10 hours (Figure
8(a)). Considering memory usage, Figure 8(b) shows that the two methods do not
differ too much. Moreover, with 1 million nodes we are exactly at the limit of the
available memory of about 1.4GB. In other words, Multi-sampling with Reversed
Look-up in the preferred approach, allowing us to generate networks with up to
one million nodes in seconds (to be precise, 32 seconds for 1 million nodes).

5 Conclusion

This paper proposes a network model for scale-free directed networks without
multiple arcs and loops, for any given number of nodes and average number of
arcs. If generated efficiently, such networks are useful for analysis of peer-to-peer
algorithms using discrete-event simulation. We experimentally demonstrated
that the networks resulting from our model have node degree distributions that
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are (close to) power law, and thus that the resulting networks are scale-free.
Further formal analysis would be of interest to analyse the extent to which cer-
tain properties hold for the proposed model and to determine aspects such as
distribution parameters. The paper is particularly focused on the development
of fast algorithms that allow the model to be effectively used in discrete-event
simulation studies. We have derived an approach termed Multi-sampling with
Reversed Look-up that under almost all circumstances outperforms other meth-
ods. Experimentally, we have shown that the amount of resampling required in
the method is bounded and does not significantly reduce the applicability of
the method across a broad parameter range. In addition, although the method
requires additional memory to speed up the process of weighted random sam-
pling, memory use does not much exceed that for maintaining the network itself
(necessary for all algorithms). As a consequence, using Multi-sampling with Re-
versed Look-up one can generate networks with a million or more nodes within
seconds on current-day desktops.
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Abstract. In this paper we investigate the behaviour of a peer to peer
driven Grid computing network. We present mean field approximation
of the simulation model and show that it captures the essence of the
model. In contrast to earlier work we limit the budget of the nodes and
observe the consequences for the price development. We also show that
the proposed peer to peer network scales much better than a central
server approach. By allowing the agents in the simulation to hibernate
and change the price individually only using local information the price
development of the model becomes stable. Lastly we investigate the dis-
tribution of the times the agents wait to sell or buy resources.

1 Introduction

Using economic ideas for the management of computer systems has a long his-
tory. Some of the earliest work usually cited is that by Greenberger [1], Suther-
land [2] and Nielsen [3]. In recent years distributed computing has embraced
the idea of Grid computing [4]. Micro and macro-economic ideas have been pro-
posed for the Grid as management and scheduling framework by for example
POPCORN [5], TYCOON [6], Wolski et al. [7] and Buyya’s Grid Economy [8].
In this paper we focus on MaGoG which has been proposed by Richardson et al.
[9]. MaGoG is a peer to peer based Grid Computing scheme where real money
is exchanged between parties. Peer to peer technology is used in Grid technolo-
gies like P-Grid [10] but without use of economic incentives. We explore under
which conditions a stable market develops for Computing Power using the Ma-
GoG scheme using a multi-agent simulation. In the past multi agent simulations
have been used to model for instance privatised electricity markets [11]. We also
show that the MaGoG system scales better than a centralised system and we
investigate the waiting time distribution for its agents.

2 The Simulation Model

We try to keep our model as close as possible to the actual MaGoG system [9].
As in our publication [12] we use igraph [13] to create an overlay network. These
� This work is partially supported by an EPSRC grant (EP/D061717/1).
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networks are either of Erdős-Rényi [14] or Barabási-Albert [15] type. The latter
is meant to be a good representation of social networks [16]. For a chosen net-
work we allocate each node to be either a buyer or seller of a resource. Nodes
use the network links bi-directionally to receive and transmit messages. In our
previous work [12] we found that price increase was in some cases exponential
which is unrealistic in a closed system. Here, we limit the amount of money buy-
ers can bid for. Buyers have a budget that gets replenished after B time epochs,
if they have used all their funds before then they cannot bid anymore until their
funds are filled up again. This way we limit the amount of money available to
buyers in the system. In addition we use integer money which has a smallest
unit, so that buyers cannot make infinitesimally small bids. To match up deal
partners we use the algorithm applied by the Australian Securities Exchange to
decide the opening price at the beginning of a trading session1. Aspects like the
time to live for messages (TTL), bidirectional message flooding, the concept of
epochs, pubs and price changes after deals have expired have not been changed
from [12].

Motivated by the results of the mean field approximation we introduce two
new features to the agents in the simulation: hibernation and the size of the
price change Δ. The nodes estimate the current proportion of active buyers and
sellers in the network, by monitoring the messages they forward. A node goes
into hibernation if there is a surplus of nodes of its own kind. In hibernation
the node is in a virtual satisfied state to change the buyer/seller ratio dynam-
ically. The node also changes the size of Δ of the bid/ask price p′ = (1 ± Δ)p
using local information from the prices of the deals that are closed in its pub.
Following the results of the analytic model, the node increases its Δ when prices
increase (the buyer/seller ratio increases) and reduces its Δ when price decreases
(the buyer/seller ratio decreases), trying to reach a condition for stable prices.

3 A Mean Field Approximation

Assuming the network is fully connected, one can make arguments to find that
the price of a deal after n steps is given by

P (n) = P0(δb
+δ1−b

− )n (1)

where P0 is the initial price and δ± = 1±Δ. The price change Δ ranges between
0 and 1. The buyer to seller ratio b ranges from 0 to 1 inclusively.

1 The algorithm is based on the application of four principles: 1) determine the max-
imum executable volume and establish the price at which maximum volume will be
executed. 2) If there are multiple prices that accomplish 1) establish the minimum
surplus, which determines, from the pre-selected prices by 1), which one will leave
the minimum quantity of unmatched orders. 3) If there are still several possible
prices, ascertain where market pressure exists. 4) If this is not enough to clear the
orders use a past reference price.
http://www.asx.com.au/resources/education/basics/open_Close.htm

http://www.asx.com.au/resources/education/basics/open_Close.htm
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This expression is found by considering the following. Time is synchronous for
all the network. At the beginning (n = 0), all sellers in the network start asking
an initial price of P0, and all buyers start bidding P0. In every time step, nodes
try to find a deal. A node finds a deal when, at the requested price, there is
enough demand (or supply) provided by the other nodes. If a node is successful
in a time step, it will change its ask/bid price in its own interest for the next
time step, i.e., the new ask price of a seller will be its former ask price multiplied
by δ+ and the new bid price of a buyer will be its former one multiplied by δ−. If
a node does not manage to find a deal in a time step, it will change its ask/bid
price against its own interest for the next time step, i.e., the new ask price of
a seller will be its former ask price multiplied by δ− and the new bid price of
a buyer will be its former bid price multiplied by δ+. Following this pattern in
every time step, one can deduce that the price of the deals that are made in the
network is given by expression 1.

So, obviously the system’s development with respect to the price depends on
the expression in the bracket of 1, which from now on we define as F = F (Δ, b) =
δb
+δ1−b

− . The price P (n) tends to the initial price P0 for F = 1 and to either zero
or infinity otherwise. We can calculate the critical value of b(Δ) for which F is
one.

b(Δ) = log(1 −Δ)/(log(1−Δ)− log(1 + Δ)) (2)

This is shown in figure 1. The buyer/seller ratio has to be bigger than 0.5 to
achieve stable prices. This insight will be used in the next section to change
the ratio dynamically with hibernation and individual price changes. We have
run simulations to validate the mean field approximation for different ratios of
buyers and sellers, as well as for a wide range of Δ values. One typical example
is a situation with 60% buyers and 40% sellers, in this case the analytic price
is given by P (n) = P0[F (Δ, 0.6)]n. In figure 1 we plot F 10(Δ, 0.6) and one can
see that for 0 < Δ < 0.3894 the price will tend to zero and for 0.3894 < Δ < 1
the price will tend to infinity. For Δ = 0.3894, the price will remain at the initial
price. In a simulation, for a Barabási Albert network with 16,384 nodes the final
price of the simulations for Δ > 0.5 tends to one, which is lowest possible in
the simulation. And for Δ ≤ 0.4 the price tends to maximum possible, due to
budget restraints. So, the simulation has its critical point for the final price at a
similar value of Δ as the mean field approximation.

4 Simulations with Adaptive Agents and a Comparison
with a Centralised Model

As described in section 2 we change the model presented in [12] to include
agent features that allow hibernation and a change of the price change for each
agent. With these two new features, each node in the network tries to push the
system towards a stable price by using only its local information.With this new
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Fig. 1. Left: Hibernation time that makes the dynamic simulation go to a final stable
deal price, for several initial conditions and a BA network of 512 nodes. Above the
dotted line F > 1 and below F < 1. Right: Plot of F 10(Δ, 0.6).

simulation model we find that price oscillates around a stable value2. Comparing
several simulation runs with different initial ratio b, we find that the final value
for b is around 80% and the average Δ of all nodes has always a value around 0.8.
It appears that the system is pushed towards the curve predicted by the mean
field approximation. In our experiments we found that any simulation starting
with values close to the analytic curve in Fig. 1 (left) is attracted to it. If the
simulations are started further away form the curve, the hibernation times need
to be larger below and smaller above the curve to achieve a non-zero finite price.

The explanation for these values of the hibernation time is as follows. When
the simulation reaches stability, the ratio of buyers/sellers in the network is
around b = 0.8. This means that the hibernation mainly affects the sellers.
Therefore a higher hibernation time causes sellers to be out of the market for
longer, which makes buyers continue increasing prices. In other words, a higher
hibernation time causes a higher increase of prices. Consequently, for initial
points that would cause a deeper drop of price according to the analytic model
(those in the lower right part of Fig. 1(left)), the hibernation time must be higher
in order to compensate it and produce a deeper increase of price, achieving in
this way an equilibrium. The introduction of hibernation and local Δs is more
important for price stability than the a budget limit and a minimum price.

We also compare the performance of the distributed version of the grid com-
puting market on a Barabási-Albert graph that we propose with the one of an
hypothetical central version of the system. Since the load of the system will
be given by the amount of requests the central server will have to handle, we
measure the average amount of messages that are present in the buffers of the

2 We verified this for a simulation with a TTL of seven, a pub size of 100 messages,
initial price of 1200, a budget of 10,000 refilled after 10 Epochs, nodes re-enter the
market after being “picked” four times, and the network is a Barabási-Albert graph
with 512 nodes. The initial buyer/seller ration is b = 0.5, the initial Δ = 0.7, nodes
hibernate for 150 Epochs if the measured b �= 0.5, the Δ is changed based on the
last 10 Epochs.
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Fig. 2. Left: Comparison of the average number of messages in buffers for a centralised
grid computing market and MaGoG (completely distributed grid computing market).
Right: Cumulative Distribution Function for the time it takes buyers to find a match.

system. In the case of the central system, the only buffer is the one of the central
server; whereas in the case of MaGoG, all nodes contribute with their respective
buffers to handle the requests. For the comparison we increase the capacity of
the buffers in the system until there are no losses, i.e., no messages are dropped
from the buffers due to a lack of space. For the central system, Fig. 2 shows
the average number of messages (in the central buffer) per epoch. For the dis-
tributed system, Fig. 2 shows the average number of messages per buffer (the
buffers of all agents in the network) per epoch. The centralised system has 47%
more messages than MaGoG in a network of 32 nodes; 206% more messages in
a network of 512 nodes; 260% more messages in a network of 1024 nodes, and
1748% more messages in a network of 16384 nodes. The data shows that MaGoG
scales better than a central system.

In previous work [12] we have shown that the system reaches an equilibrium
state for the overall utilisation. Whilst this is still true with the modifications
made in we now want to investigate how long nodes wait for to sell or buy
resources, the “response time”. Using long-running simulations we determine
the response time distribution for various different nodes in the system. We
look at loosely connected and highly connected nodes. We find that the waiting
time for a node depends on its type (buyer or seller), and not on the degree of
connectivity of the node. The cumulative distribution function for the waiting
time of buyers is shown in Fig. 2 (right). As Fig. 2 (right) shows, 90% of the time
a buyer gets service in less than 50 epochs, whereas a buyer gets service always
in less than 100 epochs. The waiting distribution for sellers is similar but the
average waiting time is shorter due to more buyers than sellers in the system.

5 Conclusions

In this paper, we have given numerical reasons of why a distributed Grid Com-
puting market like MaGoG outperforms a centralised system. The increase of
computers interconnection and the eventual deployment of a global Grid
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Computing market will only be possible by using a decentralised system, since
numerical results show that a centralised one will not scale.

We have also derived an analytic approximation to gain a better understand-
ing of our simulation program that models the MaGoG system. By using the
results of this analytic approximation, we have improved our simulation program
in order to make the system more stable in relation to the price evolution. This
global stability in the system is obtained by locally implementing mechanisms in
the nodes following the analytic results. We have found that the contributions
of individual nodes in the network make the whole system achieve equilibrium.
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Abstract. The paper studies a technique to improve the utility and
performance of an automated auction application where the auctioneer
and bidders communicate through the Internet. The lack of quality-of-
service guarantees from site to site can severely influence the results of an
auction by affecting the seller’s income rate, auction fairness, and overall
protocol efficiency. By properly identifying and migrating auctioneers to
suitable hosts on the network, it is shown that the expected seller’s util-
ity can be improved along with other metrics of interest. The paper pro-
poses a scalable approach to conduct the host search on a large network
by applying the Simulated Annealing metaheuristic in conjunction with
network probing. A detailed simulation study assess the performance of
the system and quantifies the benefits of the proposal.

1 Introduction

Electronic trading with automated auctions is an activity that is being adopted
quickly because of the low costs involved while providing good speed and sim-
plicity to users. Automated auctions are increasingly being employed in security
markets to trade various financial instruments, such as equities, bonds, foreign
exchange and derivatives. On the other hand, web-based auctions have become
very popular as they offer a convenient way for users to buy and sell a plethora
of goods and services, in some cases with partial or full automated support.

In general, commercial auction systems are being supported by distributed
infrastructures for load balancing and availability reasons (e.g., grids or clouds),
but mainly operate on a centralized scheme with a predefined (central) site
that serves as the communication bridge between seller and bidders (e.g., E-bay
and Amazon.com auctions). This central site assumes a partial or full role of
an auctioneer for the auction and is responsible for handling bid reception and
processing.

The paper considers a slightly different electronic trading scenario, where bid-
ders can initially submit their bids directly to the seller’s computer and without
an intermediary site (i.e., both auctioneer and seller reside on the same com-
puter) and explore the possibility of migrating the auctioneer to a different

J.T. Bradley (Ed.): EPEW 2009, LNCS 5652, pp. 155–169, 2009.
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host for utility and performance reasons. A central site or auction centre (AC) is
present in this scenario as an information board to help sellers and bidders to find
each other and according to their interests. The AC may also serve to support
other tasks, such as user authentication, authorization, access, and supervision
that would ensure consistency, fairness, and security to all auction participants.

The distributed structure of the auctions brings a number of advantages over
centralized structures:

– It easily allows the system to scale to a very large number of participants
as bids are not addressed to a single node (or set of nodes) in the network.
Therefore, the auction traffic load is expected to be reasonably distributed
across the network.

– It simplifies the deployment of the system by reducing the equipment and
network requirements to system administrators.

– It can be highly available at low cost.
– It prevents participants to expose their trading strategy to a third party,

which could deter their profit if misused.
– It makes the system easier to defend to security attacks as there is no single

target that can be compromised.
– It can offer utility and performance advantages as elaborated in this paper.

Recent papers have addressed the applicability and design of distributed auc-
tions in the context of computer and communication networks. Esteva [1] sug-
gested a distributed architecture for electronic auctions and specified protocols
for a first-price, second-price, Dutch and English auctions by means of π-calculus.
Ezhilchelvan and Morgan [2] developed an alternative distributed system for
Internet-based auctions. Hausheer and Stiller have introduced “PeerMart” [3],
a system that uses a double auction on a structured P2P overlay network to
distribute brokering load for pricing various goods and services (e.g. bandwidth
pricing [4]). Franklin and Reiter [5] developed a distributed system for sealed-bid
auctions. Auctions in mobile networks have been studied by Frey et al. [6], Wu
et. al in the form of a continuous double auction part of a routing algorithm
[7] and Fourati and Al Agha [8]. The application of auctions for bandwidth
allocation have been considered by Dramitinos et al. [9] for 3G networks with
generalized automated Vickrey auctions. Li and Mahanti [10] have suggested the
use of auctions to coordinate streaming sessions. The auction model used in this
paper follows the English auction model that was analyzed by Gelenbe [11]. Bid-
ding rates could be very high in automated auctions, so that both network and
computing responsiveness (trading software) could be critical to achieve high
profits. Lent [12] studied the impact of various network parameters on Gelenbe’s
auction model.

The Internet offers a best-effort service with no quality-of-service guarantees.
Given the heterogeneity of computing and network resources that compose the
network, and the continuous development of new technologies that are asymmet-
rically deployed, the Internet remains highly unbalanced. The unbalance can be
experienced not only in terms of the variety of these resources that change from
site to site, but also in terms of network usage. As a result, bidders operating
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from different parts of the network could experience very different communica-
tion conditions to the seller (different message latencies, variable message losses,
etc.) A strong difference in network delays would produce unfair advantage to
some participants, whose bids could get consideration from the auctioneer even
before earlier generated (but delayed) ones. On the other hand, excessive delays
could also produce a high waste of resources not only because participants must
be idle until messages arrive, but also because a number of incorrect messages
(e.g., short bids, unnecessary retransmissions, etc.) could be produced as a result
of the lack of timely auction status information.

This paper offers the following contributions:

– It proposes a migration technique for network auctions to allow sellers to
improve their utility (income rate) by opportunistically migrating them into
better hosts on a network. In addition to achieving improved utility, other
relevant performance metrics, such as auction fairness and efficiency, are also
improved.

– It applies a local search metaheuristic (Simulated Annealing) to conduct
a scalable search that is suitable for large networks as it produces a low
overhead, to dynamically discover better hosts. To discern good from bad
hosts, the paper defines a cost metric that captures the suitability of a node
for communications with a group (the set of bidders) from a quality-of-service
point of view.

– It evaluates the approach in a detailed simulation environment that approx-
imates the operation of network protocols (including the auction protocol)
with an accurate modelling of packet delays (transmission, propagation and
queueing) and considering the structure of the underlying network.

The rest of the paper is organized as follows. Section 2 describes the search
mechanism that is used to discover good hosts along with practical considerations
for probing the network. Section 3 describes the auction protocol considered in
the study. Section 4 explains the simulation environment and the results of a
Monte Carlo evaluation of the approach. Finally, Section 5 provides concluding
comments on this work.

2 Host Search

The objective is to identify a suitable node to host the auctioneer of a network
auction. On large networks, there exist prohibitive costs and temporal issues on
collecting global network information. Therefore, we approach the problem with
a local search rather than with a centralized computation for the best host.

Consider an auction operating on a network that is represented by the graph
G = (V, E), where V is a set of vertices (nodes) and E is the set of edges (links).
An auctioneer s (s ∈ V ) communicates with a set of bidders b (b ∈ B ⊆ V ).
Consider a function φ : {s, B} → " (a cost function). The problem is to identify
a node m∗ ∈ V such that φ(m∗, B) ≤ φ(n, B) for all n ∈ V (i.e., the group
communication cost is minimized). Graph G depends on network characteristics
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and is in general directed. However, by limiting the problem to work with certain
metrics, such as round-trip delays, G can be approximated as undirected, which
greatly simplifies the evaluation of costs. A possible formulation for φ is:

φ(s, N) =
√

c0P 2
s,m +

∑
n∈N

cnP 2
m,n (1)

which calculates the Euclidean metric (length or distance) of the individual
path costs Pm,n. Pm,n is the measured metric of interest (i.e., average round-trip
delay) between nodes m and n. The positive or zero constants ci are introduced to
weight the contribution of each participant in the group communication. Equa-
tion 1 is a general expression for the cost of a group communication and includes
the cost from the origin s to the new host m (term Ps,m). The paper assumes
that a migration implies a transfer of all auction tasks, so that the communica-
tion between s and m is of small relevance (c0 = 0). The other constants would
be equal in most cases (e.g., ci = 1, i ∈ N), so that the search will tend to find
the centroid node for the group (node with the same or similar path cost to all
members of the group). However, the expression is flexible enough to direct the
search if needed, to find hosts closer to certain participants (by increasing their
weights).

To implement the auctioneer migration, the following three basic functions
(modules) are required: probe, search, and migrate. The search is conducted by
a Search Agent. An execution environment (daemon) runs at each participating
node to let search agents operate and execute the auctioneer migration when
needed.

2.1 Network Probing Module

The purpose of the network probing module is to measure the metrics of interest
from a given node to a set of destinations. These measurements can be later
used to calculate the cost function from the given node to determine the next
steps of the search process.

The basic element of the probing module is an end-to-end tester that has
the ability of measuring message latency, jitter, loss, hop count, or effective
bandwidth (throughput) between any two nodes. For a network auction, the
main interest is in reducing network latency. However, this module can be general
enough to accommodate other metrics (for other applications for example). To
test a connection, the search module sends one or more messages to a pre-defined
port(s) of the remote host, which is controlled by the execution environment.
Standard tests can only be conducted (e.g., ICMP).

Message latency can be measured from its sending and receiving times. The
sending time can be inserted by the origin into the message so that the desti-
nation can calculate message latency. However, both the origin and destination
systems require to have a clock synchronization, which can be achieved for ex-
ample by requiring both systems to run the Network Time Protocol (NTP).
Similarly, round-trip latencies can be calculated with a timestamp at the origin,
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but not time synchronization is required. In most cases, it is possible to reuse the
Ping servers that are available in standard TCP/IP implementations to measure
round-trip message latencies (therefore, the module only needs to implement an
ICMP echo client.

Similarly, hop count can be measured by implementing an ICMP echo client
by increasing the time-to-live field in the packet to obtain ICMP time exceeded
replies from the intermediate routes along the path (exactly in the same way
the program traceroute works). When the underlying network is provided by a
CPN, each origin node may obtain the hop-count information directly from the
CPN [13].

End-to-end throughput and message loss can be measured by making the
probing module to generate a pre-determine packet flow between the probing
nodes and comparing it with the arriving packet flow.

Most network probes return average values (either absolute or exponential
averages), so that more than one test message will be sent to check the network
status. The exception is hop count for TCP/IP networks given that it rarely
changes.

2.2 Search Module

The purpose of the Search Module is to determine a suitable host for the auction-
eer. To search for this host, we apply a Simulated Annealing (SA) metaheuristic
[14]. The basic idea is to iteratively compare the cost function as evaluated at
the current hosting node to the cost evaluated at a neighbour host. If a better
cost is found, the Search Agent moves to that neighbour and repeats the process
iteratively until no further improvement can be found (which gives the solution
to the search). An stochastic behaviour is introduced to avoid local minima.
With probability p, the Search Agent may move to a neighbour with a worse
than the current cost (see Algorithm 1). Probability p is a function of the two
cost difference (δ) and the elapsed search time (ts): exp{−δ/Te}. Te is the tem-
perature parameter that gradually decreases in inverse proportion to ts (we have
used Te = 100/ts in the simulation study that is described later).

In addition, the module keeps track of the nodes most recently probed in a
memento list (similar to the tabu list in Tabu Search), which is used to avoid
repeating probes from previously tested nodes. The memento helps to keep a low
search overhead by avoiding unnecessary repetitions. Also, caching test results
with a time-to-live mark allows to reuse information by the same or later search
process.

The use of the memento is useful in those networks whose structure allows to
gradually decrease Φ with each Search Agent move. However, it is less useful in
networks with a more stochastic structure, such as those in generic peer-to-peer
overlays. In those cases, a more stochastic search is adequate (SA with values
of p close to 1) and without memento to allow the exploration of options from
previously visited nodes. Caching test results can improve the performance of
the process as well in this case.
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Algorithm 1. SA Agent
1: currentnode = sourcenode
2: finished = false
3: while not finished do
4: Create moveset with random neighbour
5: Probe moveset
6: (cost, node) ⇐ mincost(moveset)
7: if currentnode != node OR with probability P then
8: currentnode ⇐ migrate(node)
9: else

10: finished=true
11: end if
12: end while
13: Report results to sourcenode

2.3 Migration Module

Each agent operates within the execution environment, which provides access to
the communication ports of the hosting node. As a result of a search decision,
a Search Agent may migrate to a different host to continue the probe-and-move
process. At the end of the process, the Search Agent returns to the origin and
informs the application of the best location that was found by the agent and the
cost. The application (i.e., auctioneer) then may decide to migrate depending on
the cost advantage. The auctioneer migration is described in the next section.

3 Auction System

The basic software elements are the auctioneer, a number of bidders and an auc-
tion centre, all of which run on the execution infrastructure of a host machine.
The auctioneer is a software agent that is responsible for selling a good or service
for the highest possible price on behalf of its owner. Similarly, a bidder is a soft-
ware agent that works on behalf of its owner to buy a good or service by offering
bids to the auctioneer. The auction centre serves to match buyers and sellers.
Sellers can use the auction centre to advertise auctions and bidders can find the
sellers offering the goods or services that they are interested in. The auction
centre plays an active role in the progress of an auction by allowing bidders to
discover suitable sellers, not only at the beginning of an auction, but also during
its execution to allow extra bidders to join on-going auctions. The implemen-
tation of the auction centre could be done in a centralized or distributed way.
The latter being preferred because it is more resilient to network attacks. The
auction centre can fulfil other functions as well, such as registration, supervision
and trade settlement (e.g. transfer of goods, payments, etc.) However, this paper
does not focus on the design of the auction centre and leaves the issue open for
a future research.

The paper assumes that the auctioneer and bidders engage in an English
auction. In this type of auction, the auctioneer announces the initial price of
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the good or service and bidders make incremental offers until one of them is
accepted. At this point, the auction is terminated and the selling price is the
value of the accepted bid. In agent-based auctions, whether to accept an offer or
to submit a bid would depend on the particular agent design and goals (i.e., the
strategy that they use to maximize their utility), which could involve verifying
the price or similar items in the market at decision time.

3.1 Operation

Consider the following protocol, which supports the main aspects of a network
auction. Specialized functions, such as authentication, authorization and access
control have been excluded as they indirectly relate to this study.

Sellers advertise items with an ADV message, which contains the seller’s de-
tails, item description, auction model and initial price (equal to the current
value). As mentioned previously, the study is limited to English auctions (incre-
mental bids, no time limit), so that the auction model field in the ADV message
will be more meaningful in the future when other models are introduced. After
receiving an ADV, the auction centre adds the item to its database along with
the seller details. The AC allows bidders to search for items (who will send a
QRY message for this). The AC will answer to queries with a RPY message that
will list the matching items (zero or more) to the request. From the list, a bidder
may select the most appropriate offer based on its trading criteria, which could
include the price, the reputation of the seller, the location of the item, etc. If a
seller is selected, the bidder will send a bid (BID message) to the corresponding
auctioneer with an offer greater than the current price. Bidders may join an
auction at any time before its termination.

On reception of a bid, the auctioneer may decide to conclude the auction based
on its particular trading criteria only if the offer is greater than the current value.
If the offer is equal or less than the current value, then the offer is disregarded.
The auctioneer will announce the value of the newest offer to all registered
bidders (the ones from whom the auctioneer have received an offer from the
beginning of the auction) by using an HBID message. English auctions require
each bidder to “hear” all other bids. The AC is also informed of the new current
value, so that its database can be kept up-to-date with the progress of the auction
(with an ADVUPD message). As with bidders, the auctioneer trading criteria
could include a number of factors, such as the offer value, trust and reputation
issues, etc. While deciding whether to accept the highest offer, the auctioneer
may receive offers from other bidders. If an arriving offer is greater than the
current offer, then the auctioneer will disregard the previous to start considering
the new one.

A bidder that is not the highest bidder may send a new bid some time after
receiving a HBID message and according to its trading strategy. The trading
strategy may dictate that new bids can be generated only if the current value
of the auction is below a pre-calculated threshold for example. Bidders may
withdraw from the auction as long as they are not the highest bidder (by stop
bidding and sending a WDRW message to the auctioneer) at any time.
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The process continues iteratively until the auctioneer decides to terminate the
auction. To end the auction, the auctioneer sends a WBID message to all bidders
(including the highest bidder) and an ADVUPD message to the auction centre
to close the auction in its database.

To ensure consistency, the protocol, as a finite state machine, includes a num-
ber of timeout mechanisms that can return to the auction state to its initial
state. Such mechanisms are needed to deal with unexpected situations, such as
the loss of messages or computer or network malfunction. They also deal with
the lack of demand (to return an auctioneer to its init state when it has never
received a bid).

Because of the time-critical constraints, the protocol is assumed to operate
over a connectionless transport protocol (i.e. UDP) Therefore, network dynamics
may cause reception of unexpected messages. Auctioneers may receive delayed
bids with a lower or equal price to the current offer or they may receive offers
after termination of the auction. Similarly, bidders may receive out-of-sequence
price updates (HBID). The reception of these unexpected messages are discarded
by the auction agents.

3.2 Auctioneer Migration

The auctioneer migration involves two-phases. During the first phase, the auc-
tioneer identifies a suitable host (surrogate) to handle its execution according to
the specific goal defined in the auctioneer agent and implemented as described
in Section 2. Surrogates may receive in exchange certain benefits for allowing
others to use their network and computing resources, which would involve some
form of currency. The design of the system of incentives is beyond the scope
of this paper. During the second phase of the process, the auctioneer contacts
the selected host with a MREQ message, which contains the basic details of
the auction. The MREQ is received by the control software of the execution
infrastructure running at the destination machine. The selected host may then
accept to serve as migration host depending on observations of its own state and
evaluation of other criteria, such as the incentive offered by the auctioneer.

If the host accepts the migration, it will send a MACK message to the auction-
eer. Otherwise, it will reject the task with a MREJ message. If the host rejects
the request, the auctioneer will try again with another selection. If there is an
agreement, the control software on the host will instantiate a surrogate after re-
ception of a MADV message from the auctioneer. The MADV message confirms
the migration and transfers the current state of the auction: AC address, bid-
ders, auction model, current value, etc. Any bid arriving at the auctioneer after
the migration has occurred will be forwarded to the surrogate. The surrogate
also keeps the seller informed of the current value with MUPD messages. Note
that additional migrations are also possible. AC list surrogates when a migration
has occurred in an auction, so that new bidders can join the auction by directly
sending their messages to the surrogate.

The surrogate acts as on behalf of the auctioneer, so it will be responsible
for accepting offers . Once the surrogate accepts an offer (MWBID message), it
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will transfer the state back to the original auctioneer, which will take care of
post-auction operations (handle payments, arrange delivery of goods, etc.)

4 Evaluation

The simulation setup consists of a network connecting the auction elements (bid-
ders, sellers and auction centre). A simulation module of the auction protocol
described in Section 3.1 was developed and integrated into the packet-level sim-
ulator INES [15] to evaluate relevant performance metrics of the system. The
Search Agent was also implemented. The network consists of 1000 nodes or-
ganized in a topology of hierarchical structure. The nodes are connected with
full-duplex links with a random link bandwidth from a discrete exponential dis-
tribution (with possible values: 32, 64, 128, 512, 768 and 1000 Kbps) and a
propagation latency of 1 ms (Figure 1).

Fig. 1. Auction running on a network of 1000 nodes and 1165 links of random trans-
mission rates. Random location for seller (at the centre) and bidders.

The simulated auction considers the case of a single AC with bidders and
auctioneer with prior knowledge of the AC address. The location of the auction
elements is randomly selected at be beginning of each simulation run from the
set of leaf nodes of the network. The seller announces the selected good to sell
to the AC with an initial price of zero (asking price of one). Immediately after
starting, bidders send a QRY packet to the AC enquiring for the good. Bidders
start with a random estimation of the value of the good, which lies uniformly
between 80 and 100. If the price surpasses their estimation during the auction,
the bidder withdraws from the auction. A bid is placed at the expiration of
a timer with an exponentially generated interval (parameter b) that is started
upon arrival of a reply from the AC for a good or an HBID message (out-
bid message) from the auctioneer. A bid always increments in one the current
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(known) value of the good. Parameter b was kept equal to all bidders in the
simulation. Similarly, the auctioneer may decide to accept a bid and terminate
the auction upon expiration of a timer started after the reception of a bid (again,
with an exponentially distributed time with parameter d).

Both b and d can model the strategy and responsiveness of bidders and auc-
tioneer. For instance, they could account among other things, for time needed to
valuate and to verify the price of the item in the market. Two values for b were
used in the simulations (10 and 100 bids/sec) and various values for d from 0.1
to 1. The auction model follows closely the one developed by Gelenbe [11].

4.1 Search

At the beginning of the simulation, all auction elements are randomly located. To
optimize the host selection for the seller, a search process as described in section
2 is conducted prior to the start of the auction from the (random) location of the
seller. If a better cost is found, the auctioneer migrates to the optimal host to
take advantage of the network structure. In the proposed system, a new search
may be started if there are variations in the set of bidders as some may leave
the auction, while new ones may join. The simulation study focuses on the static
case where bidders do not change, so that the search is only conducted at the
beginning of the auction. After it migrates, the auctioneer may conduct one or
more auctions. The case of dynamic migration (while an auction is taking place)
is a subject of on-going research by the author. The average search time is shown
in Figure 2 as a function of the number of participating bidders. The probability
of finding a better host for the seller was observed to be high (Figure 3). The
points on the curves represent the average of approximately 3000 simulation
runs. The 95% confidence interval of the samples is also indicated.

Is is interesting to notice that as more bidders participate in the auction, the
search path decrease given that a randomly located seller on a finite network
tends to be optimal for a large number of bidders (Figure 4). This effect is also
illustrated by the cost ratio (new cost to original cost ratio), which tends to
decrease with large number of bidders (Figure 5).
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4.2 Income Rate

A main interest is in determining the expected seller’s utility, which is defined
by its income rate (Φ). Φ is calculated by dividing the accepted offer over the
auction duration. We compare the results for Φ obtained with the two types of
systems (original and optimized). The results are depicted in Figure 6. It can be
observed that the optimal migration of a seller with respect to its bidders can
produce a superior income rate.

The reason for the improved Φ is that from the optimal host, messages can
be delivered faster from seller to bidders and vice versa as depicted in Figure 7.
By optimally moving the seller on the given network topology it was possible to
observe reductions on bid transmission times of about 40% on average.

The better host also allowed for improvements in the message loss ratio. Be-
cause of the near real-time requirements of the application, UDP was used as the
transport protocol to transmit messages. UDP does not implement a retransmis-
sion mechanism. The observed bid loss ratio during the simulations is depicted in
Figure 8 and shows improvements of around 20%–25% in the optimized system.

4.3 Fairness

In addition to reducing average transmission times and bid loss ratios, the use
of an Euclidean metric for determining a suitable host for the auctioneer also
brought the additional benefit of reducing message jitter (variation from the
average delay), which helps in improving auction fairness. Because delays can
be different to each seller-bidder pair as a result of the network structure and
location of auction participants, a bidder may be out-bid by another (with an
equal offer) even if the latter sends the bid at a later time but arrives before
the former bid. Figure 9 measures auction fairness by the probability of ending
an auction with an offer that was the first and highest one submitted. It can be
observed that fairness decreases with smaller selling rates (i.e., larger number
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of auction rounds, as the auction takes longer to finish). The optimized system
offers again a clear advantage over the original one by improving auction fairness
by a wide factor.

4.4 Efficiency

In addition to decreasing the expected seller’s income, longer network delays
produce larger numbers of “short” bids, that is, bids not sufficiently high. These
short bids are generated because network delays cause an inevitable interval
between the arrival of a valid bid at the seller and the arrival of the HBID at
bidders which inform them of the current price. Therefore, during that interval,
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bids will be generated with an incorrect assumption of the current price and
creating the consequent short bid (given that we assume unit increments). We
differentiate short bids from “late bids”. The latter referring to bids received
after termination of the auction. Both short and late bids waste bandwidth and
other resources and should be avoided by the network and protocol design as
possible. We define as “bid efficiency” as the ratio of valid bids (bids arriving at
the seller with a correct price) over the total number of bids received. Figure 10
shows the observed bid efficiency vs. seller’s decision rate.

To study the efficiency of the protocol described in Section 3.1, we have looked
at the total traffic generated by an auction and compared it to the income
generated to the seller. The results are reported in Figure 11 in the form of the
income rate to byte sent. In both cases, it can be observed a clear advantage to
the seller when operating on the optimized system.
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5 Conclusion

The paper has studied a technique to improve the utility and performance of
automated auctions that operate on the Internet. The Internet as a best effort
network offers no guarantees on the quality of communications between seller
and bidders and as a result, bids can be affected by variable latency and loss.
Those factors can greatly influence the expected results of an auction. In brief,
the proposed idea is to implement auctioneer migration to a host that can offer
an improved group communication from a quality-of-service point of view. To
select the best hosts for auctioneers, the paper proposed a search mechanism
that can scale to large networks and that applies Simulated Annealing and low-
overhead network probing. A detailed simulation study of the system allowed to
quantify the improvements that can be achieved by the proposal in terms of the
seller’s income rate, auction fairness, protocol effectiveness and other relevant
metrics.
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Abstract. The paper proposes an analytical approach to blocking prob-
ability calculation in the UMTS network. In the proposed method, hand-
off connections are modelled on the basis of the fixed point methodology.
The results of analytical calculation of the blocking probability in the
group of cells carrying a mixture of different multi-rate traffic streams
are compared with the results of simulation experiments, which confirms
a good accuracy of the method. The described calculation scheme is ap-
plicable for cost-effective resource management in 3G mobile networks
and can be easily applied to network capacity calculations.

Keywords: analytical model, soft handoff, UMTS.

1 Introduction

The third-generation (3G) system, known as the Universal Mobile Telecom-
munications System (UMTS) using Wideband Code Division Multiple Access
(WCDMA), introduces very variable data rates on the air interface, as well as
the independence of the radio access infrastructure and the service platform. For
users, UMTS makes available a wide spectrum of circuit-switched or packet data
services.

The variable bit rate and the variety of traffic on the air interface have pre-
sented completely new possibilities for operators and users alike, but also new
challenges to network planning and optimization. In contrast to second-
generations (2G) systems, the 3G system performance depends heavily on the
traffic conditions, making many performance measures soft (e.g. soft handoff, soft
capacity). Consequently, the network planning engineer cannot plan in advance
the network in order to find a most favourable general solution, because any solu-
tion is valid only for a given traffic condition; when traffic changes, the optimum
plan also changes [1]. Consequently, this makes the network modelling and capac-
ity calculations for systems with the WCDMA radio interface so crucial.
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In WCDMA, all users in the same cell share the same frequency channel
simultaneously. Moreover, the same frequency can be used in other cells of the
same network and users can be distinguished by means of codes. This solution
allows a mobile station to decode a signal from more than one base station
simultaneously by despreading the single received radio signal using a number
of different scrambling and channelization codes. This technique is exploited in
WCDMA to support a feature known as the soft handoff, whereby a mobile
station can communicate with more than one base station simultaneously as it
moves between cells in the network.

The soft handoff has a number of advantages as compared to the hard handoff
used in Frequency-Division Multiple Access (FDMA) and Time Division Multiple
Access (TDMA) systems such as the Global System for Mobile Communications
(GSM), in which simultaneous communication with more than one base station
is not allowed [3, 1]. Soft handoff is a form of diversity, increasing the signal-
to-noise ratio. By combining the information received on each individual link,
we can reduce the required signal-to-noise ratio per link, when compared with
the situation with one radio link only. Compared with the conventional hard
handoff, soft handoff has the advantages of smoother transmission and less ping-
pong effects. Soft handoff has also the disadvantages of complexity and extra
resource consumption.

Soft handoff can appear in different forms. We can distinguish soft handoff,
when a mobile station is connected with two or more base stations; softer handoff,
when a mobile station is connected with two or more cells of the same base
station; and soft - softer handoff, which is a combination of soft and softer
handoff.

In the literature, there are papers which concern the soft handoff mechanism in
analytical models of UMTS systems [4,5,6,7]. In [5,6], the authors discussed the
soft handoff mechanism by the application of limited-availability group models
with and without reservation. In [4], the Kaufman-Roberts recursion was applied
to model an isolated cell with prioritized handoff traffic. The authors in [7] took
into account the soft handoff mechanism by a simple increase in traffic offered
to the system.

The proposed analytical method is an extension of the methodology proposed
by the authors in several earlier works [8,9]. In the presented analytical model we
assume that the WCDMA radio interface can be modelled by the full-availability
group servicing a mixture of multi-rate traffic streams. In the model we apply the
handoff mechanism using the fixed-point methodology (FPM) [10]. This method
allows us to take into consideration the dependence between service processes in
cells participating in the handoff connection.

The article is divided into five sections. Section 2 discusses basic dependen-
cies describing the radio interface load for the uplink and the downlink direction.
Section 3 presents an analytical model employed in blocking probability calcula-
tions. The following section includes a comparison of the results obtained in the
calculation with the simulation data for a system comprising seven cells. The
final section sums up the discussion.
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2 Radio Interface in the UMTS Network

The following section summarizes the fundamentals of the UMTS standard
which have been adopted by the authors in the modelling of the WCDMA radio
interface. The section briefly discusses the assumptions concerning the radio in-
terface in the UMTS networks which were elaborated in earlier works of the
present authors [8].

Accurate signal reception in the WCDMA radio interface is possible only when
the relation of energy per bit Eb to noise spectral density N0 is appropriate [2].
A too low value of Eb/N0 will cause the receiver to be unable to decode the
received signal, while a too high value of the energy per bit in relation to noise
will be perceived as interference for other users of the same radio channel. The
relation Eb/N0 for a user of the class i service can be calculated as follows [2]:(

Eb

N0

)
i

=
W

νiRi

Pi

Itotal − Pi
, (1)

where: W – chip rate of spreading signal, vi – activity factor of a user of the
class i service, Ri – bit rate of a user of the class i service, Itotal – total received
wideband power, including thermal noise power and Pi – signal power received
from a user of the class i connection. After simple transformations, we can express
the Pi parameter depending on Itotal:

Pi = LiItotal, (2)

where Li is the load factor for a user of the class i connection:

Li =

(
1 +

W

( Eb

N0
)iRiνi

)−1

. (3)

Table 1 shows sample values of the load factor Li for different traffic classes [9].

Table 1. Examples of Eb/N0, νi and Li for different service classes [9]

Class of service (i) Speech Video call Data Data
W [Mchipps] 3.84

Ri [kbps] 12.2 64 144 384
νi 0.67 1 1 1

(Eb/N0)i [dB] 4 2 1.5 1
Li 0.0053 0.0257 0.0503 0.1118

On the basis of the load factor obtained for particular users, it is possible to
determine the total load for the uplink or the downlink connection [2]:

η =

⎧⎪⎪⎨⎪⎪⎩
(1 + δ)

M∑
i=1

Lini for uplink direction,

(1− ξi + δ)
M∑
i=1

Lini for downlink direction.

(4)
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In the Formula (4) the following notation is used, e.g. [8]:

– M is the number of services (traffic classes),
– ni is the number of users of the class i service,
– δ̄ is the mean value of the other cell interference upon proper cell interference,
– ξi is the orthogonality factor,
– η is the assumed capacity of the radio interface in the uplink or downlink

direction.

Therefore, it is assumed that the actual maximum use of the resources of a radio
interface without lowering the level of the quality of service will amount to about
50 – 80% [11].

The determination of the capacity of the WCDMA interface depends then
on the parameters related to the properties of the propagation channel and
the nature and the degree of interference that are taken into account in the
parameters δ̄ and ξi. Simulation studies make it possible to determine, with
the application of advanced propagation models and digital maps of area, the
values of the parameters δ̄ and ξ corresponding, with high accuracy, to the
conditions of real cellular networks [3]. Therefore, in the considerations presented
in the present paper, we have assumed, based also on the assumptions presented
in [12, 13, 14, 15, 16], that the influence of interference on the flow capacity of
the WCDMA radio interface can be determined by the pair of the parameters δ̄
and ξ.

3 Model of the System

Let us consider a group of a seven-cell system with omnidirectional antennas
(Fig. 1). Each of the cells in the uplink and in the downlink directions can service
a mixture of multi-rate traffic. In the description of the model let us designate
the access cell z and let us assume that it is surrounded by six neighbouring
cells. Additionally, in the model, we consider a soft handoff mechanism which
occurs only in the uplink direction. Therefore, the scope of the analysis of the
system is limited to the uplink direction.

Dimensioning of the capacity of the WCDMA radio interface is possible at
the call level only and can be treated as dimensioning of the traffic capacity
of the physical channel (expressed in Radio Access Bearer). At the call level, a
packet stream generated by a user of a given service is treated as a connection.
This means that each packet stream of a given traffic class corresponds to the
matching service bit rate resulting from the applied standard, e.g. Relese99 [2,1]
or determined on the basis of equivalent bandwidth, e.g. [17]. Such an approach
is widely used in modelling the traffic capacity of the WCDMA radio interface,
e.g. [18, 19, 20, 21, 7, 22]

3.1 Basic Assumptions

A model of the full-availability group servicing a mixture of different multi-
rate traffic streams can be used to model the WCDMA radio interface. The
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occupancy distribution in such a group can be described on the basis of the
so-called Kaufman-Roberts distribution [23, 24]:

nP (n) =
M∑
i=1

aitiP (n− ti), (5)

where

– M is the number of classes of Poisson traffic streams,
– P (n) jest the occupancy probability of n BBUs,
– ai is the mean traffic offered to the system by the class i traffic stream:

ai = λi

μi
, where λi is the intensity of class i of Poisson traffic stream and μi

is the parameter in the exponential distribution of the holding time for calls
of class i,

– ti is the number of BBUs required for servicing class i call.

Therefore, we can determine the value of the parameter ti. In analytical mod-
els of the WCDMA interface [8], the value of LBBU is defined as the greatest
common divisor (GCD) of load factors for all traffic classes carried by the inter-
face.

LBBU = GCD(L1, ..., LM ), (6)

where Li is defined by the Eq. (3) (typical values of Li for services offered in the
UMTS network are presented in Tab.1). Knowing the value of LBBU , we can
calculate the number of BBUs required by the calls of each traffic class:

ti =
⌊

Li

LBBU

⌋
. (7)

The capacity of the WCDMA interface expressed in BBUs based on (4), can
be determined by the following equation [8]:

V =

{
η

1+δ−ξ
for downlink direction,

η

1+δ
for uplink direction,

(8)

where η is the physical capacity of the WCDMA interface in the downlink or in
the uplink direction, respectively.

After determining the occupancy distribution P (n) in the radio interface car-
rying a mixture of different traffic classes, we can define the blocking probability
for class i:

Bi =
V∑

n=V −ti+1

P (n). (9)

3.2 Soft Handoff Traffic Model

It is assumed in Figure 1 that a new call of class i is offered to the radio interface
of the cell ”1”. Additionally, Fig. 1 presents two soft handoff connections: between
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cells ’1’ and ’4’, and between cells ’1’,’5’ and ’6’. In the model, we also assume
that the amount of required resources by the call being in soft handoff is lower
than the initial value, i.e. the value required by a call which is not serviced
in soft handoff connections. It is worth emphasizing that the greater number
of simultaneous connections in the soft handoff decreases the value of required
resources in each cell participating in this connection. According to Eqs. (6)
and (7), a call requires ti BBUs in the access cell and t

′
i BBUs in the neighbouring

cells for calls being in soft handoff connections, and t
′
i < ti.

Figure 1 shows a traffic distribution scheme for the system under consider-
ation. The following notation is used: Vx – the cell x capacity; ai – the mean
traffic offered to the system by users of class i ; aSH

z,h,i – the mean traffic of the
users of class i (being in the soft handoff connection) to the system composed
of 2 cells z and h; az

z,h,i – the mean traffic of the users of class i (being in the
soft handoff connection) to the system composed only of one cell z, and az,i–
the mean traffic offered in cells z by a user of class i.

Fig. 1. A seven-cell cellular network with soft handoff connections

In the proposed model it is assumed that a new call in the soft handoff is
rejected when the assumed increase in the load, in one of the cells participating
in the connection, exceeds the allowed threshold.

Let us discuss the soft handoff connection of class i in which only cells z and
h are involved. The blocking probability Bz

z,h,i for class i calls in this handoff
connection in the cell z and the blocking probability Bh

h,z,i for class i calls in the
cell h depends on the traffic streams offered to the cell z and to the neighbouring
cell h. Thus, taking into consideration this assumption, we can express the above
with the following functions:

Bz
z,h,i = f

{
(az,1, tz,1), . . . , (az,M , tz,M ),
(az

z,h,1, t
′
z,h,1), . . . , (a

z
z,h,M , t

′
z,h,M )

}
, (10)
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and

Bh
h,z,i = f

{
(ah,1, th,1), . . . , (ah,M , th,M ),
(ah

h,z,1, t
′
h,z,1), . . . , (a

h
h,z,M , t

′
h,z,M )

}
. (11)

The parameters t
′
z,h,1, . . . , t

′
z,h,M and t

′
h,z,1, . . . , t

′
h,z,M express the amount of

resources required by the class i connection being in soft handoff, and can be
determined in the following way:

t
′
z,h,i =

⌊
L

′
z,h,i/Lz,BBU

⌋
and t

′
h,z,i =

⌊
L

′
h,z,i/Lh,BBU

⌋
, (12)

where Lz,BBU for the cell z can be obtained on the basis of (6):

Lz,BBU = GCD(Lz,1, . . . , Lz,M , L
′
z,h,1, . . . , L

′
z,h,M), (13)

and Lh,BBU for the cell h:

Lh,BBU = GCD(Lh,1, . . . , Lh,M , L
′
h,z,1, . . . , L

′
h,z,M ). (14)

The functions Bz
z,h,i and Bh

h,z,i can be determined on the basis of FAG (Eqs. (5)
and (9)).

A fixed-point methodology (FPM) was used to determine traffic az
z,h,i offered

to the cell z by a class i call being in soft handoff connection with the cell
h. In keeping with this method, only such traffic which is not blocked in the
neighbouring cell can be offered to a given cell. This phenomenon leads to a
decrease in the traffic offered to a given cell and is called the thinning effect [10].
The class i traffic stream, which is offered to cell z by a call occurring in the
access cell z, decreased by the thinning effect, is called effective traffic. This
traffic - in accordance with FPM - can be determined on the basis of the following
dependence:

az
z,h,i = aSH

z,h,i

(
1−Bh

h,z,i

)
, (15)

and the class i traffic stream, which is offered to cell h by a call being in soft
handoff with cell z, can be calculated as follows:

ah
h,z,i = aSH

z,h,i

(
1−Bz

z,h,i

)
, (16)

where aSH
z,h,i is class i traffic offered to the system by users being in soft handoff

with cells z and h in the uplink direction.
It should be noted that to determine the effective class i traffic az

z,h,i, the
information on the blocking probability Bh

h,z,i of the traffic of this class in the
neighbouring cells is indispensable. Therefore, to determine the value az

z,h,i the
iterative method is used.

If we know the blocking probability Bh
h,z,i of class i call in the cell h offered

simultaneously in the soft handoff connection in the cell z, we can determine the
blocking probability BSH

z,h,i of class i calls in the soft handoff connection:

BSH
z,h,i = 1− (1−Bz

z,h,i)(1 −Bh
h,z,i). (18)
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Algorithm 1. Iterative algorithm for blocking probabilities calculation in the
uplink direction for calls in the soft handoff connections with the cell z and h.
1. Determination of the values of t

′
z,h,i and t

′
h,z,i on the basis of Eqs. (12), (13)

and (14).
2. Setting the iteration number l = 0.
3. Determination of initial values of: B

SH(0)
z,h,i = 0.

4. Determination of the values of the effective traffic a
z(l)
z,h,i, a

h(l)
h,z,i on the basis of

Eq. (16) and Eq. (15).
5. Increase in the iteration number: l = l + 1.
6. Determination of the values of blocking probabilities B

z(l+1)
z,h,i and B

h(l+1)
h,z,i on the

basis of Eqs.(10) and (11).
7. Determination of the values of blocking probabilities B

SH(l+1)
z,h,i on the basis of

Eq. (18).
8. Repetition of Steps No. 4–7 until the assumed accuracy of the iterative process is

obtained:

∀1≤i≤M

(∣∣∣∣∣B
SH(l)
z,h,i − B

SH(l+1)
z,h,i

B
SH(l+1)
z,h,i

∣∣∣∣∣ ≤ ξ

)
, (17)

where B
SH(l)
z,h,i and B

SH(l+1)
z,h,i are the appropriate values of blocking probabilities,

obtained in iteration l and l + 1, respectively.

To sum up, the iterative algorithm for a determination of blocking probability
BSH

z,h,i can be written in the form of Algorithm 1.
Figure 1 also shows an example in which there are three cells involved in

the soft handoff connection. Following the presented algorithm, we can easily
determine the blocking probability in that case as well.

4 Numerical Examples

The proposed analytical model of the WCDMA interface carrying soft handoff
traffic is an approximate one. Thus, the results of the analytical calculations of
the WCDMA interface were compared with the results of the simulation exper-
iments. The study was carried out for users serviced by 7-cell UMTS system
(Fig. 1) which demanded a set of services (Tab. 1) in the uplink direction and
it was assumed that:

– a call of the particular services demanded t1 = 53, t2 = 257, t3 = 503 and
t4 = 1118 BBUs,

– the traffic classes were offered in the following proportions:
a1 t1 : a2 t2 : a3 t3 : a4 t4 = 15 : 5 : 40 : 40,

– the LBBU was equal to 0.0001,
– the accuracy of the iterative process was equal to 0.0001 (ξ in Algorithm 1),
– traffic of each class was divided into soft handoff and non-soft handoff traffic,

and this division depended on the traffic classes as follows:
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• voice: 40% for soft handoff traffic (2 cells - 30%, 3 cells - 10%) and 60%
for non-soft handoff traffic,

• otherwise: 20% for soft handoff traffic (2 cells - 15%, 3 cells - 5%) and
80% for non-soft handoff traffic.

– the amount of required resources by calls of class i (ti) carried the soft
handoff connection also depended on the number of cells participating in
this connection:

• t
′
i was equal to 80% of ti for the soft handoff connection with 2 cells,

• t
′′
i was equal to 60% of ti for the soft handoff connection with 3 cells.

– the maximum uplink direction load of one cell were set to 80% of the theo-
retical capacity (Eq. (8)):

VUL =
⌊

V

LBBU

⌋
=
⌊

80%
0.0001

⌋
= 8000BBUs.

Table 2 shows the influence of the accuracy, expressed as the relative er-
ror (17), on the number of iterations for three exemplary values of traffic offered
per BBU. It can be observed that the higher accuracy and the higher traffic
offered per BBU, the higher the number of iterations.

Table 2. Number of iterations in the functions of the assumed accuracy

offered traffic
per BBU ξ = 10−3 ξ = 10−4 ξ = 10−5 ξ = 10−6 ξ = 10−7

0.3 2 3 3 3 4
0.7 4 5 5 6 7
1.1 5 6 7 8 9

Table 3. Exemplary values of blocking probability obtained for particular traffic classes
in relation to the successive iterations of the calculation algorithm (a = 0.7, ξ = 10−5)

Step Speech Accuracy Video Accuracy Data 144 Accuracy Data 384 Accuracy
1 0.005897 0.0058976 0.027853 0.0278536 0.058272 0.0582726 0.151271 0.1512713
2 0.005555 0.0003422 0.026291 0.0015622 0.055146 0.0031266 0.144140 0.0071303
3 0.005572 0.0000172 0.026370 0.0000790 0.055304 0.0001585 0.144504 0.0003633
4 0.005571 0.0000008 0.026366 0.0000040 0.055296 0.0000080 0.144485 0.0000184
5 0.005571 0.0000000 0.026366 0.0000002 0.055296 0.0000004 0.144486 0.0000009

Tables 3 and 4 present a relation between the obtained values of the block-
ing probability for particular traffic classes shown in Tab. 1 to the number of
iterations of the calculation Algorithm 1 for two exemplary values of traffic of-
fered to the system per BBU and for the assumed accuracy (expressed as the
absolute error). The number of iterations of the calculation process shown in
Tab. 3 is lower in comparison with the corresponding values in Tab. 4. Thus,
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Table 4. Exemplary values of blocking probability obtained for particular traffic classes
in relation to the successive iterations of the calculation algorithm (a = 1.1, ξ = 10−5)

Step Speech Accuracy Video Accuracy Data 144 Accuracy Data 384 Accuracy
1 0.026769 0.0267698 0.117664 0.1176649 0.2252515 0.2252515 0.466586 0.4665867
2 0.023523 0.0032465 0.104281 0.0133830 0.201721 0.0235303 0.428465 0.0381214
3 0.023836 0.0003136 0.105583 0.0013018 0.204029 0.0023084 0.432288 0.0038233
4 0.023805 0.0000309 0.105455 0.0001285 0.203801 0.0002277 0.431912 0.0003764
5 0.023809 0.0000030 0.105467 0.0000126 0.203824 0.0000224 0.431949 0.0000371
6 0.023808 0.0000003 0.105466 0.0000012 0.203822 0.0000022 0.431945 0.0000036
7 0.023808 0.0000000 0.105466 0.0000001 0.203822 0.0000002 0.431946 0.0000003
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Fig. 2. Blocking probabilities for the part of calls of all traffic classes serviced in the
system by the soft handoff mechanism (connection with 2 cells)

the number of iterations increases when offered traffic increases. Notice that the
required number of iterations also depends on the traffic class - the higher number
of BBUs demanded by calls of a given class the higher number of iteration
steps (required to obtain the assumed accuracy). We can conclude that the total
number of iterations for each value of traffic offered per BBU, with the assumed
accuracy, depends on the number of BBUs require by this traffic class which
demanded the highest number of BBUs for set up connection.

Figures 2 and 3 present the values of the blocking probability obtained for
all the traffic classes in relation to traffic offered per BBU in the group of cells
presented in Fig. 1, in the UMTS network, in which soft handoff mechanism was
applied.

The results presented in Figure 2 were obtained for this part of all traffic
classes which was serviced by the soft handoff mechanism in which simultaneous
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Fig. 3. Blocking probabilities for the part of calls of all traffic classes serviced in the
system by the soft handoff mechanism (connection with 3 cells)

connections with two cells were established. Figure 3 shows the results obtained
for the art of all traffic classes which was serviced by the soft handoff mechanism
in which parallel connections with three cells were established.

Comparing the results presented in Figs. 2 and 3 it is noticeable that the
increase in the number of cells participating in the soft handoff connection leads
to the increase in blocking in these parts of traffic streams which are involved
in handoff connections. This phenomenon results from the increase of resources
required to set up a handoff connection in the group of cells (e.g. 3t

′′
i > 2t

′
i).

The analytical results were validated by simulation experiments which were
carried out on the basis of our own simulation program. The simulator was im-
plemented in the Python language and it used the event scheduling simulation
method [25]. The simulation model, however, does not take into consideration
many technological properties of the UMTS system such as the propagation
model of the radio channel or the mobility of users. The devised simulator is
intended for modelling the traffic capacity of the system, thus for modelling of
a system at the so-called call level [26], and at this level, technological param-
eters have no significant influence upon the mapping accuracy of a modelled
system [27]. In the conducted simulation research shown in Figs. 2 and 3, each
point of the plot is the average value of the blocking probabilities obtained in 5
series. It was assumed that in particular simulation series 107 of the incoming
calls of the “oldest"1 class were offered. The results of the simulations are shown
in the charts in the form of marks with 95% confidence intervals calculated after
the t-Student distribution. 95% confidence intervals of the simulation are almost
included within the marks plotted in the figures.

1 The class which demands the highest number of BBUs.
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5 Conclusions

The paper proposes a new simple calculation method for blocking probability
determination in the WCDMA radio interface carrying a mixture of multi-rate
traffic in the network, in which soft handoff mechanism is applied.

In the presented model, the influence of soft handoff traffic on the service
processes for calls of all traffic classes in each cell is taken into consideration by
the application of the fixed-point methodology. The obtained results show that
taking into account three cells instead of two cells in the soft handoff connections
leads to the increase in the value of blocking probability for each traffic classes.

The results of the analytical calculations were compared with the results of
the simulation experiments, which confirmed the good accuracy of the proposed
method. The proposed scheme can be applicable for a cost-effective radio re-
source management in 3G mobile networks and can be easily applied to network
capacity calculations.

References

1. Nawrocki, M., Aghvami, H., Dohler, M.: Understanding UMTS Radio Network
Modelling, Planning and Automated Optimisation: Theory and Practice. John
Wiley and Sons, Ltd., Chichester (2006)

2. Holma, H., Toskala, A.: WCDMA for UMTS. Radio Access For Third Generation
Mobile Communications. John Wiley and Sons, Ltd., Chichester (2000)

3. Laiho, J., Wacker, A., Novosad, T.: Radio Network Planning and Optimization for
UMTS. John Wiley and Sons, Ltd., Chichester (2006)

4. Subramaniam, K., Nilsson, A.A.: Tier-based analytical model for adaptive call ad-
mission control scheme in a UMTS-WCDMA system. In: Proceedings of Vehicular
Technology Conference, vol. 4, pp. 2181–2185 (2005)

5. Głąbowski, M., Sobieraj, M., Stasiak, M.: Evaluation of traffic characteristics of
UMTS with bandwidth reservation and handoff mechanism. In: Proceedings of The
14th IEEE International Conference On Telecommunications, Penang, Malaysia
(2007)

6. Głąbowski, M., Sobieraj, M., Stasiak, M.: Blocking probability calculation in
UMTS networks with bandwidth reservation, handoff mechanism and finite source
population. In: Proceedings of the 7th International Symposium on Communica-
tions and Information Technologies, Sydney, Australia, pp. 433–438 (2007)

7. Vassilakis, V.G., Logothetis, M.D.: The wireless Engset multi-rate loss model for
the handoff traffic analysis in W-CDMA networks. In: Proccedings of 19th In-
ternational Symposium on Personal, Indoor and Mobile Radio Communications,
Cannes, France, pp. 1–6 (2008)

8. Stasiak, M., Zwierzykowski, P., Wiewióra, J., Parniewicz, D.: An Approximate
Model of the WCDMA Interface Servicing a Mixture of Multi-rate Traffic Streams
with Priorities. In: Thomas, N., Juiz, C. (eds.) EPEW 2008. LNCS, vol. 5261,
pp. 168–180. Springer, Heidelberg (2008)

9. Stasiak, M., Wiśniewski, A., Zwierzykowski, P., Głąbowski, M.: Blocking probabil-
ity calculation for cellular systems with WCDMA radio interface servicing PCT1
and PCT2 multirate traffic. IEICE Transactions on Communications E92-B(4)
(2009)



182 M. Stasiak, P. Zwierzykowski, and D. Parniewicz

10. Kelly, F.: Loss networks. The Annals of Applied Probability 1(3), 319–378 (1991)
11. Laiho, J., Wacker, A., Novosad, T.: Radio Network Planning and Optimization for

UMTS, 2nd edn. John Wiley and Sons, Ltd., Chichester (2006)
12. Hiltunen, K., De Bernardi, R.: WCDMA downlink capacity estimation. In: The

IEEE Semiannual Vehicular Technology Conference. IEEE, Los Alamitos (2000)
13. Pedersen, K.I., Mogensen, P.E.: The downlink code orthogonality factors influence

on WCDMA system performance. In: Proceedings of the 56th IEEE Vehicular
Technology Conference, Vancouver, Canada, pp. 2061–2065 (2002)

14. Mehta, N., Willis, L.G.T., Kostic, Z.: Analysis and results for the orthogonality fac-
tor in WCDMA downlinks. IEEE Transactions on Wireless Communications 2(6),
1138–1149 (2003)

15. El-Sallabi, H.M., Salo, J., Vainikainen, P.: Investigations on impact of bandwidth
on orthogonality factor for WCDMA systems. In: Proceedings of the IEEE Wireless
Communications and Networking Conference, Atlanta, pp. 1138–1142 (2004)

16. Kennerstedt, F.: Estimation of non-orthogonality and other-to-own cell interference
in a WCDMA radio network. Internal Technical Report EAB/PD-06:0082 Uen,
Ericsson (2006)

17. Kelly, F.P.: Notes on effective bandwidths. In: Stochastic Networks: Theory and
Applications, pp. 141–168. Oxford University Press, Oxford (1996)

18. Iversen, V., Epifania, E.: Teletraffic engineering of multi-band W-CDMA systems.
In: Network control and engineering for QoS, security and mobility II, pp. 90–103.
Kluwer Academic Publishers, Dordrecht (2003)

19. Staehle, D., Mäder, A.: An analytic approximation of the uplink capacity in
a UMTS network with heterogeneous traffic. In: 18th International Teletraffic
Congress (ITC18), Berlin, pp. 81–91 (2003)

20. Iversen, V., Benetis, V., Trung, H.: Evaluation of multi-service CDMA networks
with soft blocking. In: ITC 16th Specialist Seminar on Performance Evaluation of
Mobile and Wireless Systems, Antwerp, Belgium, pp. 212–216 (2004)

21. Staehle, D.: Analytic Methods for UMTS Radio Network Planning. PhD thesis,
Bayerische Julius-Maximilians-Universität Würzburg (2004)

22. Kallos, G.A., Vassilakis, V.G., Logothetis, M.D.: Call blocking probabilities in a
W-CDMA cell with fixed number of channels and finite number of traffic sources.
In: Proceedings of 6th International Conference on Communication Systems, Net-
works and Digital Signal Processing, Graz, Austria, pp. 200–203 (2008)

23. Kaufman, J.: Blocking in a shared resource environment. IEEE Transactions on
Communications 29(10), 1474–1481 (1981)

24. Roberts, J.: A service system with heterogeneous user requirements – applica-
tion to multi-service telecommunications systems. In: Pujolle, G. (ed.) Proceed-
ings of Performance of Data Communications Systems and their Applications,
pp. 423–431. North Holland, Amsterdam (1981)

25. Tyszer, J.: Object-Oriented Computer Simulation Of Discrete-Event Systems.
Kluwer Academic Publishers, Dordrecht (1999)

26. Roberts, J. (ed.): Performance Evaluation and Design of Multiservice Networks, Fi-
nal Report COST 224. Commission of the European Communities, Brussels (1992)

27. Wiśniewski, A.: Modelling of the mobile systems with WCDMA radio interface.
PhD thesis, Poznan University of Technology, Faculty of Electronics and Telecom-
munications, Poznan, Poland (2009)



Analytical Model of TCP NewReno
through a CTMC

Nimbe L. Ewald and Andrew H. Kemp

School of Electronic and Electrical Engineering
University of Leeds, UK

Abstract. An analytical model of the Transmission Control Protocol
(TCP) New Reno [7] performance through a Continuous-Time Markov
Chain (CTMC) is presented and its theoretical predictions are corrobo-
rated by the well known network simulator ns-2 [15]. An existing TCP
Reno model [6] is modified in order to characterise the NewReno
algorithm. The NewReno version is modelled given its proven better
performance over channels presenting high loss rates and its extensive
deployment in current web servers [14].

Keywords: Continuous-time Markov Chains, TCP NewReno, TCP
Reno, ns-2.

1 Introduction

TCP is the transport protocol most widely used over the Internet therefore an
analytical model which accurately characterises its performance will result in a
more efficient use of network resources which will provide a better quality of ser-
vice for the user and higher revenue to service providers. Furthermore, a better
understanding of TCP dynamics will be gained, which will lead to the devel-
opment of TCP optimisations, extensions and new TCP-friendly protocols. For
instance, the Reno model of [16] results in the well known PFTK00 throughput
equation which has been widely used as a reference to predict the performance
of other characterisations and modifications of TCP. This is the approach taken
by [3] & [19] where TCP performance over a wireless link implementing a hybrid
Automatic Repeat reQuest (ARQ) scheme in the link-layer (LL) is measured
by the PFTK00 equation. It is also used in the design of the TCP-Friendly
Rate Control protocol [9] for time-sensitive applications where its sending rate
is calculated by it.

Multiple mathematical characterisations of TCP have been developed in order
to predict, evaluate and optimise TCP performance. The most relevant analyti-
cal models are shown in table 1. As it can be seen, model features differ among
them: all of the models represent the TCP Reno version but only [11,6,22,18]
characterise all its phases1: Slow Start (SS), Congestion Avoidance (CA), Fast
Recovery (FR) and Timeout (TO). However, only [22] specifies the type of simu-
lator used to corroborate its theoretical predictions which makes easier the result
1 It is assumed that the reader is familiar with TCP congestion control algorithms.

J.T. Bradley (Ed.): EPEW 2009, LNCS 5652, pp. 183–196, 2009.
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Table 1. TCP analytical models

Model Version(s) Phases Validation
Modelled Method(s)

LM97 [12] Reno SS, CA Custom-made
& TO simulator

AK98 [11] OldTahoe, SS, CA, Custom-made
Tahoe, Reno FR & TO simulator
& NewReno

CLM99 [5] Tahoe CA, FR Custom-made
& Reno & TO simulator

PFTK00 [16] Reno CA, FR Internet
& TO traces

CM02 [6] Reno SS, CA, Not
FR & TO specified

ASM03 [1] Reno CA, FR ns-2
& TO

WOO03 [22] Reno, SACK SS, CA ns-2 &
& Vegas FR & TO

SKV03 [20] Tahoe, Reno CA, FR ns-2 &
& SACK & TO Internet

traces
RVZ04 [18] Tahoe, Reno SS, CA, Not

& NewReno FR & TO specified
VVB06 [21] Reno CA, FR ns-2

& TO

comparisons and the consequent selection of an analytical characterisation. Pa-
pers [11,18] additionally model the NewReno version and all its algorithms. The
model presented here differs from those of [11,18] in the analytical approach:
these papers model TCP algorithms as discrete-time processes whilst our char-
acterisation consider them as continuous-time. In addition, as a known network
simulator such as ns-2 is used here, it is easier to reproduce the reported results.

Some of these TCP characterisations such as [12,16,20,22] are designed specif-
ically for wired topologies whilst others such as [1,6,5,11,18,21] represent TCP
performance over wired-wireless networks. Performance is mainly modelled by
two approaches: i) [1,11,18] analyse TCP efficiency directly over the wireless link.
ii) [5,6,21] study TCP interactions with LL mechanisms. The main common char-
acteristic of the models in table 1 is the analytical tool used to represent either
the radio link, the LL mechanisms or the TCP algorithms: a Markovian analysis.
In addition, the loss distribution assumptions are usually the same. Independent
losses are considered to take place in wireless channels undergoing fast-fading or
using error control techniques in the LL such as ARQ mechanisms and Forward
Error Correction (FEC) codes or in wired links with router buffers implement-
ing Active Queue Management schemes such as Random Early Detection. On
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the other hand, correlated losses are assumed to occur in slow-fading wireless
channels or wired links with DropTail router buffers. The model presented here
considers independent losses therefore it can be used to represent TCP NewReno
performance in the mentioned network scenarios.

This work is divided as follows: a brief description of the TCP versions which
have been implemented in web servers is presented in section 2. TCP NewReno
analytical model is developed in section 3. Assessment of the accuracy of the
theoretical model is reported in section 4. Finally, section 5 concludes the work.

2 TCP Versions

TCP has evolved, in the form of different versions, to present a better response
to lost segments. In order to understand the differences among the various TCP
versions, a brief description of its loss indication signals is needed. TCP has
two mechanisms to detect segment loss: triple-duplicate acknowledgements (TD
ACKs) and TOs. The receiver acknowledges a segment reception by indicating
the next expected byte in the TCP header Acknowledgement field. If segments
other than those expected arrive, the receiver keeps generating ACKs with the
same expected byte which are duplicate ACKs. The reception of TD ACKs
triggers TCP congestion control algorithms. On the other hand, the TCP sender
maintains a retransmission timer, the duration of which indicates the expected
arrival of ACKs. If the expected ACKs are not received during this period, the
timer expires causing TCP to enter the SS phase.

The outdated OldTahoe version [17] only recovers a lost segment by a TO.
Meanwhile, the Tahoe version [10] implements the Fast Retransmit algorithm
but it does not have the FR2 algorithm. Therefore, if a lost segment was detected
by TD ACKs, the TCP sender would re-initiate in SS after its retransmission.
TCP Reno [2] introduces FR. In the case of loss detection by TD ACKs, the
Fast Retransmit algorithm is invoked: the lost segment is retransmitted as soon
as they are received. If the lost packet is acknowledged, the FR algorithm halves
the cwnd in which the loss occurred and TCP enters the CA phase. Reno keeps
halving its cwnd each time a segment belonging to the same cwnd is detected,
by TD ACKs, and only one segment is retransmitted each time these additional
Fast Retransmissions are triggered. This leads to small cwnds causing fewer seg-
ments to be sent during FR and eventually may cause unnecessary TOs. It also
causes CA to initiate with very small cwnds. In order to overcome this prob-
lem, TCP NewReno was proposed. NewReno also implements Fast Retransmit
when TD ACKs arrive and immediately enters FR where the arrival of the first
partial ACK3 triggers the retransmission of the next expected segment (instead
of waiting for other set of TD ACKs as in the Reno case) and the reset of the
retransmission timer. Furthermore, the cwnd is halved just once whilst an extra
segment is retransmitted each time a new partial ACK is received. Therefore, the
2 The abbreviation FR refers only to the Fast Recovery algorithm.
3 An ACK elicited from a segment retransmission which does not acknowledge all data

in flight.
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recovery of multiple lost packets is faster than with Reno and bandwidth is bet-
ter used. As a result of this modification, the NewReno Fast Recovery algorithm
becomes more aggressive than that of Reno. Finally, TCP Selective Acknowl-
edgement (SACK) Options [13] implements Reno algorithms with the added
feature of reporting in the TCP header Options field the segments which have
been received thus the sender only retransmits those which were not advertised.

TCP deployment has been dominated by the NewReno and SACK imple-
mentations in recent years [14]. However, the Reno version still exists in nu-
merous web servers and it has been the most represented version in analytical
models as shown in table 1. As NewReno performs better than the extensively
modelled Reno version, the aim of this paper is to present a TCP NewReno
analytical model which represents its main characteristics: the retransmission of
segments when partial ACKs are received and the single halving of its cwnd dur-
ing FR mode. In addition, its theoretical predictions are validated through ns-2
simulations.

3 TCP NewReno Analytical Model

The mathematical procedure of [6] is extended in order to analytically represent
the NewReno Fast Recovery algorithm. TCP segment generation rate λ and its
subsequent TCP throughput are the performance targets to be obtained through
this analysis where the following assumptions are made:

1. The higher-layer application passes data to the transport layer such that
TCP is the protocol which carries out the data transfer.

2. The higher-layer application source presents a bursty nature. That is, it sends
and stops sending data to the TCP transmitter intermittently. The time
durations spent in each of these ON and OFF states are random variables,
α and β, with negative exponential distribution.

3. TCP cwnd, is measured in Maximum Segment Sizes (MSS) instead of bytes.
The cwnd values are integers and particularly powers of 2 during the SS
phase.

4. The same average rtt is considered for the whole length of the transfer.
5. TCP connection establishment is not included in the characterisation.
6. Mainly TCP transmitter operation is modelled given that it is assumed that

TCP ACKs are never lost.

3.1 TCP NewReno CTMC

The CTMC representing the TCP NewReno transmitter dynamics conveying
data from a bursty application is shown in figure 1 where a maximum cwnd
equal to 10 MSS is considered. It can be observed that all TCP algorithms such
as SS, CA, FR and TO are represented. It is important to note that in order to
clarify the figure, transitions from all states to OFF are not totally represented
as well as some transitions from CA to FR. The chain state space is given by:
SOFF

⋃
SSS

⋃
SCA

⋃
SFR

⋃
STO.
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1,1

OFF
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Fig. 1. CTMC representing TCP algorithms

OFF. The state (OFF) is the only element of set SOFF .
SS. The set of the SS mechanism, SSS , collects the states corresponding to this
exponential growth phase behaviour:

SSS = {s = (cwnd, Th)}
where cwnd ∈ (1,

⌊
cwndmax

2

⌋
). cwndmax corresponds to the maximum allowed

receiver window size. If
⌊

cwndmax

2

⌋
value is not equal to a power of 2, the lower

nearest power of 2 is chosen. Th is the threshold value and is initially set to⌊
cwndmax

2

⌋
or to the lower nearest power of 2. The initial settings of TCP in SS

mode are (1,
⌊

cwndmax

2

⌋
). As the threshold is halved every time a segment loss

occurs, Th ∈ (1,
⌊

cwndmax

2

⌋
). If cwnd=Th and if no segment losses are detected,

the system enters the CA phase.
CA. The states representing the CA algorithm belong to the set SCA:

SCA = {s = (cwnd, 1)}
In this case, cwnd ∈ (2, cwndmax), whilst the second term, 1, symbolises the
dynamics of the congestion window growth in this phase: an extra segment per
rtt if no losses are detected. Therefore, cwnd sizes do not necessarily correspond
to powers of 2 as in SSS . Once the system reaches state s(cwndmax,1), it remains
there unless a segment loss occurs and the FR mechanisms take place.
FR. The set SFR comprises the states representing the cwnd of the NewReno
Fast Recovery algorithm once Fast Retransmit has been implemented:

SFR = {s = (cwnd)}
where cwnd ∈ (2,

⌊
cwndmax

2

⌋
). If a loss event occurs and if the cwnd is equal to

or higher than 4, states from both SSS and SCA go to a state in SFR which is



188 N.L. Ewald and A.H. Kemp

equal to the nearest lower integer of half their current cwnds. When loss(es) are
not recovered in this phase, the system enters the TO mode.
TO. Finally, the states of the TO mechanism are collected in the set STO:

STO = {s = (Th)}
where Th ∈ (1,

⌊
cwndmax

2

⌋
). The elements of this set are all powers of 2. If the

states in SSS

⋃
SCA

⋃
SFR cannot recover from lost segments, they will move

to a corresponding state in STO. These states represent the threshold to be set
in the next SS phase after the timeout expiration period.

All states, but those belonging to STO, have transitions to sOFF given that
the application source can stop sending data at any time.

TCP NewReno transition rate matrix. In order to clearly present the
construction of TCP transition rate matrix, QTCP , the order of its states is
displayed in equation 1 whilst its transition rates are shown in table 2 for a
generic cwnd value. ν is defined as �log2(cwndmax)� and is assumed equal to 3
in the construction of QTCP of equation 1.

QTCP =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1,
⌊

cwndmax

2

⌋
) ∈ SSS

...
(
⌊

cwndmax

2

⌋
,
⌊

cwndmax

2

⌋
) ∈ SSS

(1,
⌊

cwndmax

2ν−1

⌋
) ∈ SSS

...
(
⌊

cwndmax

2ν−1

⌋
,
⌊

cwndmax

2ν−1

⌋
) ∈ SSS

(1,
⌊

cwndmax

2ν

⌋
) ∈ SSS

(2, 1) ∈ SCA

...
(cwndmax, 1) ∈ SCA

(2) ∈ SFR

...
(
⌊

cwndmax

2

⌋
) ∈ SFR

(1) ∈ STO

...
(2ν−1) ∈ STO

(OFF ) ∈ SOFF

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

The number of elements in SSS , SCA, SFR and STO is ν(ν+1)
2 , cwndmax − 1,⌊

cwndmax

2

⌋
and ν, respectively. Therefore, the dimension of QTCP is given by:

q = ν(ν+1)
2 +

⌊3cwndmax

2

⌋
+ ν − 1.

The relations between QTCP transition rates and the actual TCP algorithms
are explained as follows. As soon as the higher-layer application starts passing
data to the transport layer, TCP divides the data in MSS and begins the con-
nection by setting its threshold to the nearest lower power of 2 of

⌊
cwndmax

2

⌋
.
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Table 2. QTCP transition rates

From state To state Transition rate Conditions

(OFF ) ∈ SOF F (1, Th′) ∈ SSS α Th′ = cwndmax
2

(cwnd, Th) ∈ SSS (cwnd′, Th) ∈ SSS δpNL(cwnd) cwnd′ = 2cwnd
cwnd′ ≤ ⌊ cwndmax

2

⌋
(cwnd, Th) ∈ SSS (cwnd′, 1) ∈ SCA δpNL(cwnd) cwnd′ = 2cwnd

cwnd = Th

s ∈ SSS

⋃
SCA (Th′) ∈ STO δ[1 − pNL(cwnd)] Th′ = max(1, � cwnd

2
	)

if cwnd ≤ 4
s ∈ SSS

⋃
SCA (cwnd′) ∈ SF R δpL(cwnd) cwnd′ = � cwnd

2
	 if

cwnd ≥ 4 and if
losses ≤ TO

rtt
+ 1

(cwnd, 1) ∈ SCA (cwnd′, 1) ∈ SCA δpNL(cwnd) cwnd′ = (cwnd + 1)
if cwnd < cwndmax

s ∈ SSS

⋃
SCA (Th′) ∈ STO δ[1 − pNL(cwnd) Th′ = � cwnd

2
	 if

−pL(cwnd)] cwnd ≥ 4 and if
losses ≤ TO

rtt
+ 1

(cwnd) ∈ SF R (cwnd′, 1) ∈ SCA δ(pNL(cwnd) cwnd′ = cwnd if
+pL(cwnd) losses ≤ TO

rtt

(cwnd) ∈ SF R (Th′) ∈ STO
1

( T O
rtt

+1)rtt
[1− Th′ = � cwnd

2
	 if

pNL(cwnd)− losses > TO
rtt

pL(cwnd)]
(Th) ∈ STO (1, Th′) ∈ SSS ζ Th′ = Th

s ∈ SSS

⋃
SCA

⋃
SF R (OFF ) ∈ SOF F β −

The chain transition from sOFF to s(1,Th) ∈ SSS represents the beginning of the
TCP transfer. The transition rate α is the result of multiplying the occupancy
time in sOFF by the probability that the source passes data to TCP, which is 1.

Once the system is in Slow Start mode, if there is not a segment loss, state
(cwnd, Th) goes to (cwnd′, Th) with rate δpNL(cwnd). cwnd′ is equal to the
double of the previous cwnd value whilst δ is the parameter of the exponential
distribution governing the occupancy time of the states and is equal to 1

rtt .
pNL(cwnd) is the embedded Markov chain probability of not having losses during
the transmission of a certain cwnd and is calculated as:

pNL(cwnd) = (1− ptotal)cwnd (2)

where ptotal is the TCP segment loss probability.
If a cwnd of a state in SSS reaches the threshold value, it will enter (cwnd′, 1) ∈

SCA with the transition rate of δpNL(cwnd). cwnd′ is twice its previous value
in SS.

As previously explained, TCP detects losses through the reception of TD
ACKs. Therefore, cwnd ≥ 4 is the condition to recover losses by the Fast Re-
transmit and FR algorithms. If at least one loss occurs and if cwnd < 4, states in
SSS

⋃
SCA will inevitably enter a corresponding state in STO. In the TO phase,
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states will take a value of (Th′) where Th’ represents the nearest lower power of
2 of half the cwnd. The transition rate to TO states is equal to δ[1−pNL(cwnd)].

In contrast, as soon as TCP detects a lost segment through TD ACKs, it
implements Fast Retransmit and enters FR, i.e. FR algorithm can only take
place if cwnd ≥ 4. Any state of the set SSS

⋃
SCA experiencing 1 to (TO

rtt + 1)
lost segments, will enter the FR algorithm. The state suffering from losses will
move to (cwnd′) ∈ SFR with cwnd′ = � cwnd

2 � and transition rate δpL.
The maximum number of allowed lost segments per cwnd is conditional to

its size. That is, at least 3 segments have to be successfully received in order to
trigger the TD ACKs indication, i.e. if cwnd=6, the maximum number of lost
segments is 3 to enter SFR, otherwise it will move to STO.

Since every segment sent in the cwnd represents an independent event and
can be equally affected by the segment loss probability ptotal, it is assumed that
the segment loss pattern follows a binomial distribution. Hence, pL is defined as:

pL(cwnd) =

T O
rtt +1∑

losses=1

Ccwnd
losses plosses

total (1 − ptotal)(cwnd−losses) (3)

The number of segments, (TO
rtt + 1), which can be lost in CA and recovered

in FR depends on the NewReno algorithm timer which is explained below. This
assumption of making the number of losses proportional to the retransmission
timer to model NewReno Fast Recovery algorithm is one of the main differences
from the analytical model of [6].

If no losses take place in the Congestion Avoidance mode, any state (cwnd, 1),
will move to (cwnd + 1, 1) with a rate of δpNL(cwnd).

In the FR phase it is only possible to recover (TO
rtt + 1) losses occurred in

CA. If more losses occur, a state from s ∈ SSS

⋃
SCA will move to STO with

transition rate δ(1− pNL − pL) as long as cwnd ≥ 4.
Unlike Reno, NewReno version avoids multiple reductions of cwnd every time

a loss is detected. The reception of TD ACKs caused by the first loss occurring
in SS or CA, triggers NewReno FR algorithm and its inherent rate halving.
In contrast, the reception of partial ACKs caused by the subsequent TO

rtt losses
do not trigger any further sending rate reduction. The assumption of allowing
up to (TO

rtt + 1) losses in CA and (TO
rtt ) losses in FR is based on the following

explanation. During the NewReno FR mode, the retransmission timer is reset
after the first partial ACK is received, as stated in RFC 3782 [7]. Therefore, it
will ultimately timeout after TO

rtt rtts in which TO
rtt segments are retransmitted

given that it is only possible one retransmission per rtt.
TCP retransmits a segment as soon as it receives the TD ACKs indication

and it has to wait one rtt once in FR, in order to detect a subsequent loss. If
a cumulative ACK of the data in flight is received after the first rtt, no further
losses occurred in CA and the TCP system can move back to CA. In other words,
no losses were detected in the FR mode. Otherwise, if a partial ACK is received,
more than 1 loss has occurred and the lost segment is retransmitted immediately.
As, the timer is reset in reception of the first partial ACK, up to TO

rtt segments
can be retransmitted before the timer expires, i.e. the system remains in FR
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mode (TO
rtt +1) rtts before it timeouts. Thus, the system will move from s ∈ SFR

back to a corresponding s ∈ SCA with a rate of δ[pNL(cwnd)+pL(cwnd)], where
the second term pL(cwnd) can be calculated through equation 3 considering the
maximum number of losses equal to TO

rtt .
As it has been explained, it is considered that losses occurred during the CA

mode are recovered during the FR phase. However, the loss probabilities of the
embedded DTMC are calculated considering the cwnd in FR, i.e. it is considered
that losses occur during the FR mode. This consideration does not significantly
affect the NewReno model performance as shown in its validation in the next
section.

If the number of losses during the FR is higher than rtt
TO , s ∈ SFR will enter

a corresponding state (Th) ∈ STO with a transition rate
(

1
( T O

rtt +1)rtt

)
(1−pNL−

pL). 1
( T O

rtt +1)rtt
represents the state occupancy in FR during the retransmission

of lost segments.
Any state s ∈ SSS

⋃
SCA

⋃
SFR going to the TO phase will halve its cwnd.

This value will be the threshold of s ∈ STO. It will also be the threshold value
in the SS phase when the chain moves back to (cwnd, Th) ∈ SSS in order to
continue the data transfer. The transition rate from the TO states to the SS
mode is, as expected, ζ = 1

TO , the inverse of the timeout duration.
If the bursty application stops sending data to TCP, the chain will enter sOFF

with a rate β regardless of its current state s ∈ SSS

⋃
SCA

⋃
SFR. However, there

are no transitions among s ∈ STO and sOFF because once the retransmission
timer timeouts, it still needs to retransmit the whole cwnd which contains the
lost segment(s).

3.2 TCP Performance Parameters

In order to calculate the segment generation rate of the TCP model, it is neces-
sary to obtain the steady-state probabilities of the CTMC, πTCP (s). It can be
observed in figure 1 that all states from the different sets eventually communi-
cate hence the embedded DTMC is an irreducible chain and consequently so is
the TCP CTMC. The TCP chain is also positive recurrent given that the prob-
ability of going back to any state exists. A system under these conditions will
reach equilibrium therefore it will be possible to calculate its steady-state prob-
abilities. In this work, these are calculated by the iterative algorithm developed
in [8].

The average MSS generation rate per second, whilst the higher-layer applica-
tion is active, is calculated as follows:

λ =
1

tON

tON +tOF F

[ ∑
s/∈STO

δ · cwnd · πTCP (s) +
∑

s∈ST O

ζ · πTCP (s)
]

(4)

where πTCP (s) are the steady-state probabilities of the TCP chain and tON

and tOFF are the average time durations in states sON
4 and sOFF , respectively,

4 sON = SSS

⋃
SCA

⋃
SF R

⋃
STO
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given by equation 5.

tON =
1
α

tOFF =
1
β

(5)

The receiving TCP throughput in bps is given by:

ThroughputTCP = λ(1− ptotal)MSS (6)

4 Simulations

The main aim of this section is to validate the correctness and accuracy of the
TCP NewReno analytical model through ns-2 simulations.

4.1 Reference Scenario

The network topology set up is showed in figure 2. The following methodology
was used:

0 1 4 7 9

3 6

2 5 8

1Mbps
15ms

1Mbps
10ms

10Mbps
15ms

1Mbps
30ms

10Mbps
Variable delay

1Mbps
10ms

1Mbps
50ms

1Mbps
20ms

1Mbps
20ms

Error Module

Fig. 2. Network topology set up in ns-2 validation

1. The TCP transfer under analysis is that from TCP server in host 0 to TCP
host in host 9.

2. File sizes of 5, 10 and 20MB were transferred by the FTP/TCP flow under
consideration in separate simulations with different traffic conditions.

3. The 1Mbps last-hop link, from node 7 to 9, is used solely by the TCP flow
under analysis.

4. Traffic conditions include no-traffic and a mixture of Reno and NewReno as
well as UDP flows which were started by a random generator in all hosts.
Up to 20 flows, including the monitored TCP flow, were at once interacting
in the network. From these, 15 were TCP and 5 were UDP flows in order to
represent the greater percentage of TCP traffic in the Internet. All but the
TCP receiver in host 8 were sending and receiving different flows. The file
sizes being sent vary from 0.5 to 20 MB.

5. Attention was given to obtain an average rtt equal to 200ms for the TCP
flow under consideration. This was achieved by varying the delay of the link
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between nodes 4 and 7 to obtain the required rtt. This was corroborated by
tracing every single rtt during the connection and calculating the transfer
average rtt.

6. Segment losses are caused by an error module with a uniform distributed
random variable which is inserted in the last-hop link. This error module
simulates the MSS loss probability detected at the transport layer.

7. TCP segments of 1500B (including IP/TCP headers) are considered.
8. A cwnd of 42 segments is used in most of the simulations to approximately

represent a cwnd of 64KB.
9. Every TCP transfer, with a given cwnd, rtt, file size and loss probability,

was simulated 20 times under different traffic conditions and starting times.
The average throughput was then obtained.

10. The average state durations, tON and tOFF , are set equal to 1 in the ana-
lytical model.

11. Timeout duration is set to δ
5 , five times the average rtt, as generally suggested

in the literature [21,4].

4.2 Simulation Results

TCP NewReno performance and its improvement over Reno is shown in figure 3
where analytical and ns-2 simulation throughputs are depicted for different seg-
ment loss probabilities ptotal. Reno analytical characterisation is that proposed
in [6]. As mentioned before, the main difference with this model is the assump-
tion of considering the number of losses proportional to the TCP retransmission
timer. The agreement between the analytical model and the simulations is more
than satisfactory.
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In figure 3 it can be observed that both versions behave similarly for high
loss probabilities, particularly when ptotal ≥ 0.2. Since there is a high number
of lost segments per cwnd, neither NewReno nor Reno can recover them during
FR. Both have to retransmit the whole cwnds through TOs which causes them
to present the same performance. In contrast, for probabilities in the range of
0.002 to 0.2 the impact of the NewReno Fast Recovery algorithm can be noticed.
NewReno lost segments are mostly recovered during the FR mode unlike Reno
which presents a higher number of retransmissions through TOs. Thus, NewReno
keeps transmitting new data during FR, causing a higher throughput. Any TCP
throughput improvement impacts positively on the Internet performance given
the high number of TCP transfers taking place on it.

For low segment loss probabilities, ptotal < 0.002, NewReno throughput im-
provement is negligible given that the low number of lost segments makes it
behave like a traditional Reno, i.e. NewReno and Reno FR’s phases present
approximately equal durations.

Figure 4 shows the throughput for the same flow with different segment sizes
in order to emphasise its importance on TCP performance. It is important to
remember that the cwnd size is being given in segments. In such a manner
that segment sizes of 1000 and 576B would correspond to maximum cwnds of
approximately 42KB and 24KB, respectively. Thus, the impact of the maximum
cwnd on the throughput is actually shown: smaller cwnds lead to lower receiving
bit rates which vary according to the maximum cwnd size.

To corroborate the accuracy of the model with different parameters, the cwnd
sizes were varied in other set of simulations. As expected, the TCP throughput
decreases according to the cwnd size, i.e. the lower the cwnd size, the lower the
throughput, and the analytical results show good agreement with those of the
ns-2 simulations. This last set of simulations is shown in figure 5.

10
−3

10
−2

10
−1

10
0

0

1

2

3

4

5

6

7

8

9

10
x 10

5

p
total

T
hr

ou
gh

pu
t T

C
P
 (

bp
s)

 

 

xxx
x

xx
x

x

x

x

x
x

x
xxx

x

x

xx

x MSS=1500B simulations

oo

ooo
o

o

o
o

o
o

o

o

o MSS=1000B simulations

**
****

*

**
**

*

*

* MSS=576B simulations

Analytical MSS=1500B
Analytical MSS=1000B
Analytical MSS=576B

Fig. 4. TCP NewReno with different MSS with cwnd=42MSS and rtt=200ms



Analytical Model of TCP NewReno through a CTMC 195

10
−3

10
−2

10
−1

10
0

0

1

2

3

4

5

6

7

8

9

10
x 10

5

p
total

T
hr

ou
gh

pu
t T

C
P
 (

bp
s)

xxx
x

xx
x

x

x

x

x

x
x

xxx
x

x

x
x

ooo
o

oo
o

o

o

o
ooo

o

**
*

**
*

*
*

**
**

*

Analytical cwnd=42MSS
Analytical cwnd=21MSS
Analytical cwnd=10MSS
x cwnd=42MSS simulations
o cwnd=21MSS simulations
* cwnd=10MSS simulations
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As observed in table 1, just two more analytical models characterise NewReno,
[11] and [18]. The results produced by the analytical model presented in this
work show close agreement with those of [11]. However, it is not possible to
compare them with those of [18] given that their mathematical characterisation
was developed specifically for wireless channels and uses parameters which are
not possible to map to those used here.

5 Conclusions

In this paper, a CTMC was used to develop the NewReno Fast Recovery algo-
rithm over an existing Reno analytical model. The main assumption to charac-
terise it was to consider the number of losses proportional to its retransmission
timer. As shown, the agreement between NewReno analytical predictions and
the simulations is more than satisfactory and its throughput exceeds that of
Reno under certain range of high loss rates. Therefore, this model can be safely
used to represent TCP NewReno performance over different network scenarios
where losses at the transport layer appear as independent losses such as wire-
less channels undergoing fast-fading or using error control techniques in the LL
(e.g. ARQ mechanisms, FEC codes) or in wired links with router buffers imple-
menting Active Queue Management schemes such as Random Early Detection.
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Abstract. Lately, the number of Internet users and, correspondingly,
the amount of traversing traffic is growing extremely fast. In spite of the
fact that transmission links – mostly optical fibres – have high capac-
ity, the internet routers still remain a point of traffic bottleneck. The
construction of highly scalable switches for high-speed transmission still
remains a real challenge for designers. In this paper we focus our efforts
on the analysis of Load-Balancing Birkhof-von Neumann switch which is
lately considered to be a highly efficient distributed switch with simple
control and high scalability. Due to the fact that Internet traffic repre-
sents an asynchronous traffic which supports a variety of applications,
we have introduced the analysis of possible loss inside the load-balanced
switch under consideration of variable size packets and finite central stage
buffers previously in [1]. Although the analysis has showed some inter-
esting features of the switch, it has exponential complexity of O

(
NN

)
which makes that model inapplicable for the switches with large number
of ports, N. The main goal of this paper is to approximate the switch
analysis with lower complexity, i.e., O

(
2N
)

which can be useful for eval-
uation of packet loss in the larger load-balanced switches.

1 Introduction

The traditional ways of packet switching are designed to connect multiple area
networks (LANs, WANs, etc.) and forward asynchronous traffic between the
communication links. Usually packet switches are implementing centralized con-
trol, in order to find the best possible link to forward data traffic from the source
to the specific destination. Although in most of the cases these architectures are
capable to provide high throughput, they have poor scalability for switches of
large size. In this context, the switches with distributed control are more attrac-
tive with the advantage of their scalability due to the fact that each stage is
making its own calculations for packet forwarding.

In this paper we examine the Load-Balanced switch (LB switch) [2,3], which
is considered to be a particular case of two-stage switch. The first stage of the
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switch is balancing the arriving traffic to the intermediate inputs of the sec-
ond switch, which is in fact an input buffer switch with deterministic control
(see Figure 1). Since all the interconnections inside are deterministic and pe-
riodic, the switch has a simple distributed control and can be highly scalable.
Among the first significant results shown in [2] and [3] was the fact that under
certain assumptions the switch can achieve high throughput (up to 100%) and
low packet traversing delay. However these results were obtained under consid-
eration that all the packets have equal length, traffic is admissible and central
stage buffers are infinite. Even under these strong assumptions some impor-
tant issues of packets mis-sequencing were investigated in detail in [4, 5, 6, 7, 8].
It is important to mention that some of the architectures to resolve packets
mis-sequencing require extra control, introducing different overheads (commu-
nication and computational), that basically increases the control complexity of
the LB switch. However, keeping correct sequence of packets through the system
avoids unnecessary retransmissions of packets in the network protocol layer.

L o a d - b a l a n c i n g S w i t c h i n g

V O Q s

V O Q s

0

N - 1

0

N - 1

F I F O s
R R U

0

N - 1

Fig. 1. The load-balanced switch considered for the analysis

Taking into account the fact that some of the assumptions mentioned in [2,3,8]
are not practical, in [9] and [1] we examined the behaviour of the LB switch with
finite size central stage buffers. Under these considerations, the LB switch can
experience a packet loss due to congestion. The first simulation results on this
issue were presented in [10] and detailed mathematical analysis in [9]. However,
the analysis in [9] was done only for fixed size packets (cells), and there were
not taken into account variable size packets (multiple number of cells going to
the same destination). It is considered that most of the internet switches are
operating on the cell-based level (to increase buffer utilization), that means that
arriving variable size packets are segmented at the inputs and reassembled at
the outputs. The issue of possible cell and correspondingly a packet loss inside
the switch, can introduce some significant posterior problems to the LB switch
reassembly part [11]. That is why in [1] we presented the analysis of a packet loss
experienced by the switch operating with variable size packets and finite central
stage buffers.

We assumed Markovian behaviour to be able to use numerically efficient algo-
rithms to solve the model. This means geometrically distributed packet lengths
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and interarrival times, which allows us to capture the mean of these distributions.
Real internet traffic shows different packet size distributions [12] and one can
fit more parameters using other, more complex Markovian structures like dis-
crete Phase Type (DPH) distributions or discrete Markovian arrival processes
(DMAPs). The number of fitted parameters can be increased at an arbitrary
level, but it would greatly increase the complexity of the model as well and that
would also hide the main contribution of our approach.

In spite of the same assumption in [1] the complexity of that model resulted
unresolvable high Markov chains even in case of very small switches (N ≥ 4).
The main goal of this paper is to introduce the approximate model of the initial
analysis – with complexity O

(
2N
)

– in order to make the evaluation of packet
loss probabilities feasible for larger number of ports – at least in terms of the
exact analysis provided in [1].

As the present model is still exponentially complex with regard to the number
of ports – O

(
2N
)

– we have kept on with the research and introduced the
model of complexity O (N) in [13]. However, in the least complex model [13],
we assumed stochastically identical input processes. As a consequence the reader
should take into mind that the present model is less complex than that of [1] and
more complex than that of [13], but it takes into consideration inhomogeneous
input processes. These features of the three models are summarized in Table 1

Table 1. The authors’ recent work on the LB switch topic

citation [1] this paper [13]

submission order 1st 2nd 3rd
complexity O

(
NN

)
O
(
2N
)

O (N)
homogeneous inputs � � �

The rest of the paper is organized as follows. We summarize the LB switch’s
operation principles and main assumptions in Section 2. Next, in Section 3 we
introduce the “ON/OFF” model of the system. In Section 4 we verify the result
by comparing it with initial analytical model as well as with simulation results.
Finally, Section 5 concludes the paper.

2 The Main Assumptions and Operating Principles

Let denote N×N the LB switch with both N input and output ports. The single-
stage buffering LB switch is equipped with First-In-First-Out (FIFO) buffers in
the inputs, N sets of N Virtual Output Queues (VOQs) in the central stage and
re-sequencing and reassembly units (RRU) in the output (see the illustration
in Figure 1). In the kth set of VOQs there is one VOQ (VOQkj) dedicated to
store cells directed to output j. Hereinafter the term VOQk with a single index
denotes the kth set of VOQs and the term VOQkj with the pair of indices
denotes the specific VOQ stores cells directed to output j j, k ∈ [0, N − 1] . As
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it is out of the scope of this paper and it does not affect the modelled parts of
the switch, the implementation of the RRU is not discussed in this paper, but
it can be taken from the ones proposed in research, e.g., in [11]. In this analysis
there is no feedback link between the switch stages and each stage is operating
independently. After segmentation of an incoming packet, the cells are load-
balanced between the central stage VOQs according to the final destination [2].
The interconnections between stages are made by means of crossbar switches
without buffers inside (contrary to [14]). The crossbar switches are indicated
as “Load-balancing” and “Switching” in Figure 1. In the tth time slot – the
transmission time of one cell – the interconnection pattern is the periodic round-
robin sequence according to the rules

k = (i + t) mod N

j = (k + t) mod N,
(1)

where i denotes the ordinal number of the input port, j the output port and k
the set of VOQs, i, j, k ∈ [0, N − 1] which implies the periodic behaviour of the
system. This N cell transmission time long period – hereinafter referred to as
time period – will be the time unit of the discrete time Markov chain (DTMC)
modelling the VOQ. As all the stages are synchronized, the transmission of cells
is possible from all inputs simultaneously during a time slot [8].

If a single cell is lost in the central stage, there is no possibility to drop all
the remaining cells of this “broken” packet from VOQs without sophisticated
centralized controller (which is not the case in this paper). Such packets will
waste the capacity of the central stage buffers, will increase the possibility of
further packet loss and definitely will make impossible packets reassembling op-
eration [11].

In a time slot, first, the VOQs are connected to the outputs and then the
inputs to the VOQs. This order of interconnections inhibits a cell from traverse
the switch in a single time slot. The transmission rate inside the switch is fixed
and it is the service time of a cell. The mean service rate of the switch assumed
to be greater than the mean arrival rate of the variable size packets – the switch
is not overloaded.

The arrival pattern consists of packets with random distributed number of
cells idle periods in between in time slots. The details of these distributions are

packet length geometric distributed with probability mass function (PMF)
Pr (X = i) = p (1− p)i−1 ∀i = 1, 2, . . . and

idle period length geometric distributed with PMF Pr (Y = i) =
q (1− q)i ∀i = 0, 1, . . .

The geometric distribution of the packets arrive from input i to output j have
the parameter pij and the idle periods between packet arrivals at input i have
the parameter qi.

The destinations of the packets can be set via matrix T whose ijth element
(tij) gives the probability that if a packet arrives to input i is directed to output j.
The row-sum of T thus equals to h an appropriate size column vector of ones.
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Moreover, as shown in our analytical results, the packet loss probability of the
specific VOQ strongly depends on the specific traversing path of the traffic inside
the switch (i.e., input, VOQ and output), which is an interesting phenomenon
described in Section 2.1 for the interconnection pattern applied.

2.1 Properties of the Different Paths

An important finding of our analysis of the LB switch is that there are differences
between the loss probabilities of paths traversing the switch. Here path means
the triple, {i, j, k}, containing the ordinal number of the input, the output and
the VOQ respectively.

Using the interconnection pattern policy given in (1) the time difference be-
tween the service of the VOQ and the arrival to it can be expressed as

d = (2k − i− j) mod N. (2)

d also expresses the number of inputs that have the right to send a packet to
VOQkj before input i in the same time period.

A particular VOQ is served once a time period. It is also true that in a time
period all the inputs have the right – in a particular order determined by (2) –
to send cells to the VOQ. In case of “almost full” buffer the higher the d value
is the higher the probability that there are enough inputs that can fill up the
buffer, i.e., make the cell of the observed input to be lost. According to this
observation we introduce the notation type-d for paths with value d.

For example, using the above introduced notation, we can say that the type-0
paths cannot have cell loss. Its short explanation is that even if the buffer is full
the cell in the head of the queue is served and thus there is always a free position
in the tail accordingly which is used by the type-0 path to push its cell into it.
This makes impossible the cell loss at a type-0 path.

3 The ON/OFF Model of the 3 × 3 Switch

In this section we give the approximate model of a VOQ of the 3× 3 LB switch.
Compared to the exact analysis in [1] the approximation is that we model the
input process, i.e., the arrival process of the VOQ, with a two state – ON/OFF
– model. By this the state space of the model of the same VOQ can be reduced
compared to the exact model of [1] where a size (N) dependent full character-
ization of the input process is given. Once we have the model of an input the
complete model of the chosen VOQ is given in the same way as in case of the
full characterization in [1]. Indeed the ON/OFF based model of the LB switch
differs from the complete characterization in the DTMCs describing the input
processes.

As we described in Section 2.1 it is relevant which type of path is considered.
Here we describe a type-2 path lead through the 3 × 3 switch – as also done
in [1] in case of the full characterization. For example it is path {1, 0, 0} but we
will also investigate all types of path later in Section 4.



202 Y. Audzevich et al.

3.1 Model of an Input

In this section we will introduce the approximate – ON/OFF – input model of
path {1, 0, 0} of the 3× 3 switch.

The ON/OFF model of the first input is derived from its complete characteri-
zation depicted in Figure 2 using the notations introduced for the input processes
in Section 2. According to the geometric assumptions for the packet length and
idle period length this is a DTMC having four states, 1 id corresponds to the
idle period, and the other three states corresponds to packet arrival from input 1
to either output 0 (state 10) or output 1 (state 11) or output 2 (state 12). The
exact state transition probability matrix describing the behaviour of input 1 is

PC
1 =⎛⎜⎜⎝

(1− p10) + p10q1t10 p10q1t11 p10q1t12 p10 (1− q1)
p11q1t10 (1− p11) + p11q1t11 p11q1t12 p11 (1− q1)
p12q1t10 p12q1t11 (1− p12) + p12q1t12 p12 (1− q1)

q1t10 q1t11 q1t12 1− q1

⎞⎟⎟⎠ .

(3)

on

off

p10(1 − q1)

q1t10

p11q1t12

p12q1t11

p11q1t10

p11(1 − q1)

p10q1t11

p10q1t12

p12q1t10

q1t11

p12(1 − q1)

q1t12 (1 − p12) + p12q1t12

(1 − p11) + p11q1t11

1 − q1

(1 − p10) + p10q1t10

1 id 12

1110

Fig. 2. The graph of the DTMC fully characterizing the first input of the 3× 3 switch

In terms of path {1, 0, 0} the states of the DTMC modelling input 1 can be
divided into two subsets

on this is a one-element subset containing state 10 in which there are cell arrivals
from input 1 to output 0 and

off the other states in which there is no arrival from input 1 to output 0

which is also indicated in Figure 2. Using this division we create the two state
ON/OFF model of the input processes. Hereinafter lowercase bold on and off
denotes these two subsets and uppercase ON and OFF the two states of the
newly derived DTMC model of the inputs.
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In the following sections the detailed description of the ON and OFF states
are given based on the aforementioned division.

OFF properties. The OFF state is used to approximate the set of off states.
Its properties are determined based on the absorbing time of a discrete phase
type (DPH) distribution given in Figure 3 with transient states identical to the
off states and absorbing state given as the on state. Its initial distribution then
given as the renormalization of the zeroth row of PC

1 in (3) without its zeroth
element

β1 =
(

q1t11
q1t11+q1t12+(1−q1)

q1t12
q1t11+q1t12+(1−q1)

1−q1
q1t11+q1t12+(1−q1)

)
. (4)

B1, the transition probability matrix of the transient states, is the N×N matrix
given as PC

1 without its zeroth row and zeroth column

B1 =

⎛⎝(1− p11) + p11q1t11 p11q1t12 p11 (1− q1)
p12q1t11 (1− p12) + p12q1t12 p12 (1− q1)

q1t11 q1t12 1− q1

⎞⎠ . (5)

q1t10

p11q1t12

p12q1t11

p11q1t10

p11(1 − q1)

p12q1t10

q1t11

q1t12

p12(1 − q1)

(1 − p12) + p12q1t12

(1 − p11) + p11q1t11

1 − q1

q1t11
q1t11+q1t12+(1−q1)

1−q1
q1t11+q1t12+(1−q1)

q1t12
q1t11+q1t12+(1−q1)

i id i2

i1

Fig. 3. The graph of the DPH substitution of the off states in terms of the pair
input 1 - output 0

The mean absorbing time of this DPH is

μ1 = β1 (I−B1)
−1 h, (6)

where I is the identity matrix and h is the column vector of ones of appropriate
size.

We set the sojourn probability of the state OFF to 1− 1
μ1

which sets the mean
sojourn time to μ1. Then the state transition probability from OFF to ON is
1

μ1
.

ON properties In case of ON the sojourn probability remain the same as in
the complete characterization, i.e. in case of output 0 the upper left element
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of PC
1 in (3). The state transition probability from ON to OFF is the summation

of the remaining elements of the zeroth row of PC
1 which is 1 minus the sojourn

probability.

Summation of the ON/OFF DTMC. Here we summarize all the properties
of the ON/OFF DTMC by giving its graph for the general path {i, j, k} in
Figure 4 together with its state transition probability matrix

Pi =

((
PC

i

)
jj

1− (PC
i

)
jj

1
μi

1− 1
μi

)
=
(

(1− pij) + pijqitij pij − pijqitij
1
μi

1− 1
μi

)
, (7)

where (∗)ij denotes the ijth element of a matrix.

pij − pijqitij

1
μi

1 − 1
μi

(1 − pij) + pijqitij

OFFON

Fig. 4. The graph of the ON/OFF DTMC describing the pair input i - output j

3.2 The Cell Level Model

Up to now we have introduced the differences between the full model of [1] and
the ON/OFF model of the input processes. From now on we recall the remaining
part of building the model of the VOQ using the ON/OFF model of each input.
Here we keep on with building the model of the VOQ of path {1, 0, 0}.

First of all we give the cell level model of VOQ00 which is a quasi birth-
deathlike (QBD-like) DTMC where the level represents the queue length and
the phase is the combined state

(
0, 1, . . . , 2N − 1

)
of the inputs.

According to the periodic operation of the switch mentioned in Section 2
the time unit of the QBD-like model is N time slots – the time period of the
operation of the switch.

Since the DTMC given in Figure 4 and in (7) gives the behaviour of the input
process in a single time slot we raise all of them to the Nth = 3rd power to have
the model of the input processes in a time period.

Then the joint behaviour of the input processes – for all inputs (i = 0, 1, 2) –
gives the phase process of the QBD-like model which is the Kronecker product
of their 3rd power as

P = P3
0 ⊗P3

1 ⊗P3
2. (8)

The number of arrivals to the observed VOQ is determined as the sum of the
arrivals from each input, but we cannot forget that each input can transmit a
cell into the VOQ in its dedicated time slot. This is determined by the intercon-
nection pattern given in (1), i.e. input 0 sends cell to VOQ00 in the 1st time slot
of a time period, input 1 sends in the 3rd time slot of a period and input 2 sends
in the 2nd time slot of a time period. Here we note that the ordinal number of
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the dedicated time slot equals to d + 1 for each input i in any path. According
to this we replace the 1st, the 3rd and the 2nd factor of the powers of P3

0, P3
1

and P3
2 respectively in (8) to

Pi = Ai + Ki ∀i ∈ [0, N − 1] , (9)

in which the first term corresponds to arrival from input i and the second term
corresponds to the case when there is no arrival from input i. The substitution
is then

P = P3
0 ⊗P3

1 ⊗P3
2 = (A0 + K0)P2

0 ⊗P2
1 (A1 + K1)⊗P2 (A2 + K2)P2 (10)

based on the d values of the inputs calculated as given in (2). Expanding this
expression and collecting the terms according to 0, 1, 2 and 3 arrivals we get

P = K0P2
0 ⊗P2

1K1 ⊗P2K2P2︸ ︷︷ ︸
no arrivals – B

+A0P2
0 ⊗P2

1K1 ⊗P2K2P2︸ ︷︷ ︸
1 arrival – L

+

+ K0P2
0 ⊗P2

1A1 ⊗P2K2P2 + K0P2
0 ⊗P2

1K1 ⊗P2A2P2︸ ︷︷ ︸
1 arrival – L

+

+ K0P2
0 ⊗P2

1A1 ⊗P2A2P2 + A0P2
0 ⊗P2

1K1 ⊗P2A2P2︸ ︷︷ ︸
2 arrivals – F1

+

+ A0P2
0 ⊗P2

1A1 ⊗P2K2P2︸ ︷︷ ︸
2 arrivals – F1

+A0P2
0 ⊗P2

1A1 ⊗P2A2P2︸ ︷︷ ︸
3 arrivals – F2

=

= B + L + F1 + F2,

(11)

where we have also indicated the level transition based decomposition, P =
B + L + F1 + F2, of such a QBD-like model.

Using these level transition matrices the state transition probability matrix
has the QBD-like structure

P =

⎛⎜⎜⎜⎜⎜⎜⎝
B L F1 F2 0 . . .
B L F1 F2 0 . . .
. . . . . . . . . . . . .
. . . 0 B L F1 F2
. . . 0 0 B L F′

1
. . . 0 0 0 B L′

⎞⎟⎟⎟⎟⎟⎟⎠ , (12)

where F′
1 = F1 + F2 and L′ = L + F1 + F2.

The building of this kind of QBD-like DTMC for N = 3 is given in Algo-
rithm 1.

The steady state solution of this QBD-like model is the solution of the linear
equation system

πP = π, πh = 1. (13)
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Algorithm 1. Building the QBD-like model of a VOQ
INPUT: P0,P1,P2 from (7)
OUTPUT: P the QBD-like model similar to (12)
1: for i = 0 to 2 do
2: compute Ai,Ki as given in (9)
3: calculate d for the ith input as given in (2)
4: replace the (d + 1)st factor of P3

i in (8) with Ai + Ki as given in (10)
5: end for
6: expand the resulting expression for P and
7: identify the level transition matrices B,L, F1,F2 as given in (11)
8: build P as in (12)
9: return P

3.3 The Packet Level Model

With the geometric assumption for the packet length, given in Section 2, the life
cycle of a packet in the observed path can be modelled by a transient DTMC
in which the two absorbing states corresponds to the two possible ending of a
packet transmission – the successful transmission (ST) of the packet or its lost
(PL), as given in Figure 5. In this section we present this transient DTMC with
its state transition probability matrix and initial distribution.

s

�

LR′

F
R(A)
1 + FR

2

BR
LR

FR
1

FR
2

BR
LRBR

LR

FR
1

FR
2

BR
LR

FR
1

FR
2

ST

PL. . .

QBD-like part

Fig. 5. The transient DTMC modelling the VOQ during the life cycle of a packet

The state transition probability matrix of the transient part. The tran-
sient DTMC is mainly built in the same way as the QBD-like model of the VOQ
on the cell level in Section 3.2. The exceptions are

– the state transitions responsible for packet completion in the observed path
are removed (its DTMC is given in Figure 6(a)) and

– the cell losses in case of “nearly” full buffer are considered.
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The removal of the state transitions is explained by the introduction of absorbing
state ST. Indeed this transient DTMC move to state ST when the transmission of
a packet is completed. Then according to these modifications the state transition
probability matrix of the modified DTMC of input 1, with such state transitions
removed (see Figure 6(a)), is

PR
1 =

(
1− p10 0
1− 1

μi

1
μi

)
, (14)

where superscript R refers to the DTMC with absorbing states PL and ST, in
Figure 5. The DTMC of the other two inputs remain as in (7).

The state transition probability matrix of the QBD-like part of the DTMC
in Figure 5 is PR. It is determined by Algorithm 1 with input parameters
P0,PR

1 ,P2 with one exception in line 8.
Having the level transition matrices

(
BR,LR,FR

1 ,FR
2
)

the construction of
the QBD-like structure and the state transition vector to state PL are

PR =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

BR LR FR
1 FR

2 0 . . .
BR LR FR

1 FR
2 0 . . .

. . . . . . . . . . . . . . . . . .
. . . 0 BR LR FR

1 FR
2

. . . 0 0 BR LR FR
1

. . . 0 0 0 BR LR′

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, � =

⎛⎜⎜⎜⎜⎜⎜⎝
0
...
0

FR
2 h(

FR(A)
1 + FR

2

)
h

⎞⎟⎟⎟⎟⎟⎟⎠ , (15)

where LR′ = LR + FR(K)
1 . Here the forward level transition matrix

(
FR

1
)

is
decomposed into two parts both of them corresponds to two cell arrivals. In the
first case one of the cells arrives from input 1

FR(A)
1 = K0P2

0 ⊗PR
1

2
AR

1 ⊗P2A2P2 + A0P2
0 ⊗PR

1
2
AR

1 ⊗P2K2P2

and in the second case none of them arrive from input 1

FR(K)
1 = A0P2

0 ⊗PR
1

2
KR

1 ⊗P2A2P2.

Due to this there is cell loss and accordingly packet loss in the observed path
{1, 0, 0} if at the beginning of the time period either

– there is one free position in VOQ00 and there are cell arrivals from all three
inputs

(
FR

2
)

or
– the buffer is full and there are cell arrivals either

• from all the three inputs
(
FR

2
)

or

• there is two arrivals from which one arrives from input 1
(
FR(A)

1

)
.

Accordingly, if the buffer is full at the beginning of the time period and there
is two arrival, but none of them from input 1 the DTMC stays in the last level(
FR(K)

1

)
.
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1
μ1

1 − 1
μ1

1 − p10

OFFON

(a) Packet completion

1
μ1

p10q1t10

OFFON

(b) New packet arrival

Fig. 6. The modified graphs of the ON/OFF DTMC describing input 1

Finally according to Figure 6(a) and (14) and using the notations of Figure 5
and (15) the state transition probability vector to the absorbing state ST is

s = h− (PRh− �
)
. (16)

The initial distribution of the transient DTMC. The initial distribution
of PR in (15) is determined as the state of the system right after the arrival of
an incoming customer. In this section we determine the probability distribution
of the system at this time instance, right after a new packet arrival.

A new packet arrives at input 1 according to the state transitions depicted in
Figure 6(b). Its state transition probability matrix is

PN
1 =

(
p10q1t10 0

1
μ1

0

)
, (17)

where superscript N refers to the DTMC according to new packet arrival.
Here we build a QBD-like model also using Algorithm 1 with input parameters

P0,PN
1 ,P2 with an exception in line 4 which also affects lines 6 and 7.

Instead of replacing the third factor of PN
1

3 (remind that d = 2 for i = 1) we
give the state transition probability matrix of input 1 in a time period as

P3
1 −

(
P1 −PN

1

)3
. (18)

It expresses the behaviour of input 1 at new packet arrivals in a three time slots
long time period. According to Algorithm 1 we expand (18), replace the third
factors of its terms and simplify it we get

P3
1 −

(
P1 −PN

1

)3
= P2

1A
N
1 +

(
P1PN

1 + PN
1

(
P1 −PN

1

))(
A1 −AN

1

)
︸ ︷︷ ︸

AN
1

+

+ P2
1K

N
1 +

(
P1PN

1 + PN
1

(
P1 −PN

1

))(
K1 −KN

1

)
︸ ︷︷ ︸

KN
1

= AN
1 + KN

1 , (19)

where we have also indicated the two terms according to cell arrival
(
AN

1

)
into

VOQ00 and no cell arrival
(
KN

1

)
in the time period. These two matrices are
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used to replace the whole middle operand of (8) in line 6 of Algorithm 1 as

PN = (A0 + K0)P2
0 ⊗

(
AN

1 + KN
1

)
⊗P2 (A2 + K2)P2 =

= K0P2
0 ⊗KN

1 ⊗P2K2P2︸ ︷︷ ︸
no arrivals – BN

+A0P2
0 ⊗KN

1 ⊗P2K2P2︸ ︷︷ ︸
1 arrival – LN

+

+ K0P2
0 ⊗AN

1 ⊗P2K2P2 + K0P2
0 ⊗KN

1 ⊗P2A2P2︸ ︷︷ ︸
1 arrival – LN

+

+ K0P2
0 ⊗AN

1 ⊗P2A2P2 + A0P2
0 ⊗KN

1 ⊗P2A2P2︸ ︷︷ ︸
2 arrivals – FN

1

+

+ A0P2
0 ⊗AN

1 ⊗P2K2P2︸ ︷︷ ︸
2 arrivals – FN

1

+A0P2
0 ⊗AN

1 ⊗P2A2P2︸ ︷︷ ︸
3 arrivals – FN

2

=

= BN + LN + FN
1 + FN

2 .

(20)

Here we also indicated the level transition matrices used in line 8 of Algorithm 1
to build the state transition probability matrix

(
PN ) in the same way as in (12).

Using (13) and PN the initial distribution of the DTMC in Figure 5 is

πN =
πPN

πPNh
. (21)

The packet loss of the system. Using (15), (16) and (21) the packet loss
probability (p�) is given as the probability of absorbing in state PL and the
probability of successful packet transmission (ps) as absorbing in state ST

p� = πN (I−PR)−1
� ps = πN (I−PR)−1

s = 1− p�. (22)

4 Computation Study

In this section we present the comparative study of the analysis with ON/OFF
model and the simulation results using the memoryless (geometric) assumptions
and the notations introduced in Section 2. We executed two studies with different
sets of parameters given in Table 2 representing a set of considered parameters
in detail, instead of just the ON and the OFF parameters (the model is derived
from the detailed parameters). Although the independent variables are discrete
we used continuous plots to improve visibility of Figure 7.

Study 1. Figure 7(a) plots the packet loss probability of different types of paths
through VOQ00 versus the buffer size. The loss of a single queue is decreasing
with increase of the buffer size, which is obvious with increase of system capacity.
Here the dependence of packet loss on the chosen paths is also shown. The set of
parameters of study 1 is given in the left hand side of Table 2. The experimental
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Table 2. The main parameters of the computation

study 1 study 2
variable value variable value

N 4 N 3,. . . ,8
pij

1
20

(av. 20 cells) pij
1
50

(av. 50 cells)
qi

1
3

(av. 2 cells) qi
1
6

(av. 5 cells)
tij

1
N

tij
1
N

b 8, . . . , 40 b 20

0

0.1

0.2

0.3

8 16 24 32 40

p
�

b

{0, 0, 0}, d = 0
{1, 0, 0}, d = 3
{2, 0, 0}, d = 2
{3, 0, 0}, d = 1

(a) The packet loss probability versus the
buffer size (study 1)

0.2

0.35

3 4 5 6 7 8

p
�

N

sim{1, 0, 0}
an{1, 0, 0}

sim{2, 0, 0}
an{2, 0, 0}

(b) The packet loss probability versus the
switch size (study 2)

Fig. 7. Numerical results for the packet loss analysis of LB switches

results proof the validity of our assumptions. In particular, in Figure 7(a) we
show, that the queue does not experience any loss for the type-0 path {0, 0, 0},
and, as expected, the higher the d value is the higher the loss probability of the
path is. It is also shown in Figure 7(a) that the higher the buffer size (b) is the
less the difference between the loss values for types.

Study 2. Due to lower analysis complexity in comparison with [1], the packet loss
of a single queue can be evaluated for larger switches – than those ones in [1].
Figure 7(b) plots the packet loss of the queue if the switch size is increasing – up
to the solvable highest size of this model. The detailed set of parameters used in
Study 2 is shown in the right hand side of Table 2. We present packet loss only
for those two traffic path ({1, 0, 0} and {2, 0, 0}) which exist for all considered
switch sizes. As it is shown on the plot, with the increase of the switch size, the
packet loss decreases. As the average packet size and idle period size keeps to
be the same, the increase in number of ports increases the number of queues
at the central stage and consequently the buffering capacity for the same set of
parameters. Correspondingly, the higher is the LB switch buffering capacity the
lower packet loss is experienced.
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5 Conclusions
In this paper we have presented an approximate analytical model for evaluation
of loss probabilities inside the load-balanced switch with finite buffers and vari-
able length packets. In comparison to the analysis presented in [1], we reduced the
complexity of the model from O

(
NN

)
to O

(
2N
)
. Although the complexity has

remained exponential, the new approach has extended the range of packet/cell
loss probability evaluation for switches with N ≥ 4 and large VOQ sizes. Since
the load-balanced switch is the architecture of choice when N is large, our next
step is the presentation of approximated analysis with linear complexity in [13].
This will enable us to remove restrictions on the port/buffer size of the switch
in order to calculate the systems important characteristics (like different kinds
of loss, delays, average buffers occupancy).
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Abstract. Network coding (NC) has been proposed as a way to com-
press flows of packets by combining different packets, provided that there
is sufficient redundancy through multiple transmission paths so that the
receiving nodes can then decode the flows to reconstruct all of the in-
dividual packets. However NC does introduce additional computational
overhead, and also creates different additional delays which are the sub-
ject of this paper. In particular, we evaluate the queueing and delay
performance of NC at intermediate nodes of a store and forward packet
network when the cross-encoding of packets is restricted within disjoint
subsets of the traffic streams so that packets from different subsets can-
not be encoded together. We propose a round robin scheduling scheme
for serving these disjoint subsets, and present a queueing model for a
single encoding node that captures the effect of NC. The model is an-
alyzed approximately using a decoupling approach, and can be used to
predict the additional delays incurred by packets in nodes that use NC.
The accuracy of the analytical solution is validated via simulations.

Keywords: Network coding, performance evaluation, vacation models.

1 Introduction

Network coding (NC) [1] allows the cross encoding of packets at intermediate
nodes before forwarding them towards their destination, and can offer greater
communications efficiency and better usage of overall network bandwidth, at the
cost of more processing and additional delays.

In [2], we analyzed the delay performance of NC at intermediate nodes of a
store and forward network when the nodes encode together all traffic streams
that pass through them. Our analysis showed that NC can improve overall
performance significantly provided that it is used opportunistically. In this pa-
per, we extend the previous analysis to a more general setting where encoding
nodes perform NC within disjoint subsets of the packet streams so that packets
from different subsets are not allowed to be mixed. This constraint arises when
some source-destination pairs cannot use a sufficient number of redundant paths
� Research supported by the EU FP6 CASCADAS and FP7 DIESIS Projects of the

EU Future and Emerging Technologies Program.
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for decoding purposes. To see this, consider the directed network depicted in
Fig. 1(a), which has three independent unicast information flows a, b and c be-
tween the source destination pairs (si, ti). Without NC, the three flows must
share the link u1 → u2 which becomes a bottleneck, while some of the links in
the network will not be utilized. However, combining the three flows together at
node u1 will leave non of the receivers able to recover its desired information.
We propose a scheduling scheme which can alleviate this problem. In particular,
node u1 can alternate between transmitting the coded flow a ⊕ b and the un-
coded flow c along the bottleneck link to node u2, which then forwards the coded
flow to both ta and tb and the uncoded flow to tc. Receivers ta and tb can then
reconstruct the original flows from {b, a⊕ b} and {a, a⊕ b}, respectively. Thus,
combining NC and scheduling in this scenario can reduce traffic rate on the
bottleneck link while distributing traffic on a larger number of paths. The equiv-
alent queueing model representation of the encoding node u1 with the proposed
coding scheme is presented in Fig. 1(b).

The rest of this paper is organized as follows. In section 2, the queueing model
for a single encoding node is presented along with the approximation technique.
In section 3, the accuracy of the proposed analysis is validated by comparison
with simulation results, and the proposed scheme’s performance is compared to
the performance of a peer non-coding technique. Conclusions are summarized in
section 4.

Fig. 1. (a) A directed network with three unicast sessions (si, ti). (b) equivalent queue-
ing model representation of the encoding node u1 with the proposed coding scheme.

2 System Model

Consider a node receiving F distinct independent flows of packets, each assumed
to be Poisson of arrival rate λi for the ith flow, which queue up in distinct buffers
of infinite capacity. Assume that packet lengths in each stream are independent
random variables, and that they are mutually independent between flows, with
general distribution S(x) = Prob[S ≤ x], where S is the random variable repre-
senting packet length. Assume also that the node transmission time is directly
proportional to packet length with a constant of proportionality of 1. When the
server encodes n packets of different lengths, it packs the shorter packets with
zero-bits to reach the length of the longest packet, and encodes the resulting
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packet bit by bit so that its length will be equal to the largest of the n packet
lengths. The transmission time of a packet is then assumed to be proportional
to the length of the largest packet.

We divide the input flows {1, . . . , F} into J disjoint subsets which we denote
as coding classes, and let Cj be the flows in class-j. We set the restriction that
only those packets within the same class will be encoded together while packets
of different classes will not be mixed. We assume that the server cycles the coding
classes in a round robin manner and that it switches from one class to another
instantaneously, i.e. we assume zero switchover time. When the server visits a
coding class, it removes the head-of-the-line packets from non-empty queues in
the class, forms a single coded packet and transmits the resulting packet on
the output link. When the server arrives at a coding class and finds that all its
queues are empty, it immediately switches to the next class.

We will analyze the performance of the system approximately by assuming
that the complex model can be decomposed into F separate queues where each
queue is treated as a server of the walking type [3,4]. In this single-server model,
each time the queue is non-empty the server serves one customer (packet) for a
service time S then becomes idle for a period T after which it examines the queue
again. If it finds that the queue is empty then it takes off for a vacation time V
after which it returns once again to examine the queue. Let U be the waiting
time in a simple queueing system without vacations and with the same arrival
process as the system considered, but with a modified service time Y = S + T .
Then the following equality holds in distribution [3]:

W = U + V̂ (1)

where V̂ denotes the forward recurrence time of the vacation period V which
has a distribution:

V̂ (x) =
1

E[V ]

∫ x

0
[1− V (y)] dy (2)

Thus the result summarized in (1) allows us to map all properties of interest
of a queue with vacations in steady state to those of a system without vacations
using the probability distribution of the vacation time V . Note also that (1) holds
as long as the arrivals of customers to the queue constitute a renewal process,
i.e. inter-arrival times are independent and identically distributed (iid) random
variables [3].

We will study a queue, say the ith, in isolation from the others and con-
sider that the queues interact with each other via the steady-state probabilities.
Denote by Cni the coding class to which the ith queue belongs, and define
Cni(i) = {x ∈ Cni |x �= i}. If the ith queue is not empty when Cni is scheduled,
then the subsequent service time Si will be obtained from the maximum of the
service times for the set of non-empty queues in the class including the ith queue.
The server then moves to the next coding class and offers service in a similar
manner. The vacation period Ti thus corresponds to the time interval from the
server’s departure from Cni until its next visit, which consists of the sum of
service times at the other coding classes. Note that these service times can also
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be of zero duration if all other coding classes are empty. If, however, the server
finds queue i empty upon scheduling Cni , then a sequence of service times Vi in-
volving the other queues in the same class Ŝi and the other coding classes Ti will
take place, some of these services possibly being of zero duration if all the other
queues are empty. We will assume that the vacation periods Vi and Ti are iid
random variables. The decoupling approximation we propose is as follows. Let
qi be the probability that in steady state the ith server does not participate in
encoding a packet when the corresponding coding class is scheduled for service.
Let Zj be the set of all subsets of Cj , including Cj and the empty set. We will
assume that the steady-state probability that any subset Z ∈ Zj is busy when
visited by the server is given by

∏
k∈Z [1− qk]

∏
k/∈Z qk. With these assumptions,

the solution of the system can be summarized in the following steps:

Step 1. Assuming that the quantities qi are known, find the distribution of the
service and vacation times for each queue i as a function of qk, ∀k �= i:

Yi = Si + Ti (3a)

Si(x) = S(x)
∑

Z∈Zni
(i)

S(x)|Z| ∏
k∈Z

[1− qk]
∏
k/∈Z

qk (3b)

Ti =
J∑

j=1,j �=ni

TCj (3c)

TCj(x) =
∑

Z∈Zj

S(x)|Z| ∏
k∈Z

[1− qk]
∏
k/∈Z

qk (3d)

Vi = Ŝi + Ti (3e)

Ŝi(x) =
∑

Z∈Zni
(i)

S(x)|Z| ∏
k∈Z

[1− qk]
∏
k/∈Z

qk (3f)

where |Z| denotes the number of elements in set Z.

Step 2. For each subsystem i, determine the steady state probability qi approx-
imately using one of the following expressions:

– The probability of the equivalent ith server being empty when it returns
from a vacation period [4]:

q̂i =
1− λiE[Yi]

1 + λi(E[Vi]− E[Yi])
(4a)

– The probability of the ith queue being empty or that it is busy but the
equivalent server is idle due to a vacation time:

q̂i = max{0, 1− λiE[Yi]} (4b)

Step 3. Solve the system of non-linear equations q̂i = qi, for i = 1, . . . , F .
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Now applying standard results for an M/G/1 queueing system and utilizing
the decomposition property (1), we can write the mean waiting time in the ith
queue as:

E[Wi] =
λiE[Y 2

i ]
2(1− λiE[Yi])

+ E[V̂i] (5)

The mean response time is then E[Ri] = E[Wi] + E[Si].
The output rate from the encoding node (throughput) can also be obtained

approximately as:

γ =
J∑

j=1

|Cj|∑
n=1

∑
Z⊆Cj

|Z|=n

∏
k∈Z

[1−qk]
∏
k/∈Z

qk

(
E[Ti]1i∈Cj +

∫ ∞

0
x nS(x)n−1dS(x)

)−1

(6)

where 1x is the characteristic function which takes the value 1 if x is true and 0
otherwise.

3 Numerical Results

In this section we present numerical results which validate the accuracy of the
mathematical model, and we compare the performance of the proposed scheme
against a peer non-coding approach. The latter uses a technique known as store
and forward in which packets received from different incoming links are stored in
a single queue and served in a FIFO order. This can be modelled as the classical
M/G/1 queueing system. For fair comparison of the two schemes, we provide
the same total incoming traffic rate and packet length distribution.

In Fig. 2 we present results for the mean response time and bandwidth effi-
ciency for the encoding node in Fig. 1(a). We assume that packet lengths are

Fig. 2. (a) Mean response time and (b) bandwidth savings, for the encoding node u1

in Fig. 1. The parameters are: F = 3, J = 2, C1 = {a, b}, C2 = {c}, arrival rates vector
λ = λ[1.5 1.5 1] and exponential packet lengths with mean 1.
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exponentially distributed and we vary the load on each queue from very light
until a value that saturates the system. The figure indicates that the analyti-
cal results are in excellent agreement with those obtained from simulation. The
model, however, tends to produce less accurate results when the queues are heav-
ily loaded. This is because the queues are highly coupled in this instance, while
the approximation is based on independence assumptions.

The mean response time results clearly demonstrate that the coding scheme
outperforms the store and forward method, particularly when the node is heavily
loaded. Moreover, since no packet loss is incurred, it follows that the scheme can
deliver more packets per time unit, which translates to higher network through-
put provided that destinations can reconstruct the original flows in a timely man-
ner. Fig. 2(b) shows the percentage of saved bandwidth resulting from NC when
the traffic rates do not saturate the store and forward node, i.e.

∑
i λiE[S] < 1.

The figure indicates that coding can reduce bandwidth utilization by up to 25%
when the node is heavily loaded. Note that bandwidth reductions of 37.5% could
have been achieved if the flows were fully synchronized. In general, the band-
width savings are more pronounced when the traffic rates within each coding
class are balanced, since more coding opportunities arise in such instances.

4 Conclusions

In this paper, a round robin scheduling scheme based on NC has been proposed
and analyzed approximately. The analysis was carried out using a decoupling
approach, which was validated by simulation. The obtained results showed that
the scheme outperforms the traditional store and forward technique, particularly
when the system is heavily loaded. In future work, we will consider scheduling
policies which aim at maximizing the throughput of the system, by employing
priority levels, while maintaining acceptable QoS for the different flows. The
analytical model, which seems to provide adequate delay approximation, will
also be used to design efficient network algorithms such as routing and flow
control under NC.
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Abstract. The necessity of studying sensor networks, rich internet ap-
plications, social networks and molecular biology have raised the need of
being able to consider systems composed by very large population of sim-
ilar objects. This lead to the development of new modelling paradigms,
such as Fluid Process Algebra, Mean Field analysis and Markovian
Agents. These methodologies produces exact results if the number of
considered objects goes to the infinity, but provide reasonable approxi-
mations even for finite quantities. In this work Mean Field analysis and
Markovian Agents models will be presented.

Keywords: Mean field, Fluid Models, Markovian Agents, Large systems.

1 Introduction

In recent years the study of systems composed by a large number of similar
interacting objects has become an important issue in performance evaluation.
The necessity of studying sensor networks, rich internet applications, social net-
works and molecular biology, just to name a few examples, have raised the need
of being able to consider very large systems. However, the well known state
space explosion problem has prevented most of the previously developed compo-
sitional techniques from being applied. For this reason new approximate analyti-
cal techniques have been introduced. For example Fluid Process Algebra [4] is an
extension of the PEPA stochastic Process Algebra, that considers the number
of components as continuous variables, and studies their evolution using o.d.e.
Mean Field Analysis provides approximation of the counting process of objects
described by both Discrete [2] and Continuous [1] Markov chains. Markovian
Agents [3] instead considers a continuous population of entities (the agents)
spread over a space, that communicates by sending and receiving messages.

All the aforementioned techniques are based more or less on the same assump-
tions: a continuous approximation of the counting process of the number objects
in a given state. This allows to compute performance indices of both the com-
plete system and of its component without having to consider the combinatorial
state space. Although all these techniques are approximate, they provide very
accurate solution as the population increases. In this work we present a short
summary of the Mean Field Analysis and of the Markovian Agents models.
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1.1 Mean Field Analysis

Mean Field Analysis is a technique that approximates the counting process of set
of partially dependent similar objects. All the entities have the same behaviour,
which might depend either on their local state, and on the number of objects in
each state. In particular, if there are N objects, each one described by m states,
the evolution of the entire system can be approximated by N(τ) = Ni(τ). Here
Ni(τ) counts the number of entities in state i, and is such that

∑m
i=1 Ni(τ) = N

∀τ ≤ 0. If we call X(τ) the state of a given (tagged) object and following [1] we
define Kij(N (τ)) = limΔ→0

Pr{X(τ+Δ)=j|X(τ)=i,N(τ)}
Δ when i �= j and Ni(τ) >

0, and we set Kij(N (τ)) = −∑l �=i Kil(N (τ)) for i = j, we can the compute the
(approximate) transient evolution of the counting process by defining a matrix
K(N (τ)) = |Kij(N (τ))|, and by solving the following o.d.e.:

dN (τ)
dτ

= N(τ)K(N (τ)) (1)

Note that Kij(N (τ)) corresponds to the transition rate of from state i to state
j of one object in insulation when there is at least one entity in state i.

1.2 Markovian Agents

Markovian Agents Models (MAMs) [3] represent systems as a collection of agents
spread over a geographical space. Each agent is described by a finite state ma-
chine where two types of transitions can happen: local transitions and induced
transitions. A local transition occurs whenever an agent changes its state due to
information perceived on its environment. During a local transition, an agent can
produce a message. Induced transitions occur when an agent receives a message.
The Markovian Agents(MAs) are spread over a finite geographical area V that
can be either continuous or discrete. We denote by ρ(v) : V → IR+ the spatial
density function of the agents. For every volume A in V the number of agents in
A is distributed according to a Poisson distribution with mean

∫∫
A ρ(v)dv. Mes-

sage exchanging is governed by a function, called the perception function, that
takes into account the agent distribution over the space, the message routing
policy and the transmittance properties of the medium.

References

1. Bobbio, A., Gribaudo, M., Telek, M.: Analysis of large scale interacting systems by
mean field method. In: 5th International Conference on Quantitative Evaluation of
Systems, QEST 2008, St. Malo (2008)

2. Le Boudec, J.Y., McDonald, D., Mundinger, J.: A generic mean field convergence
result for systems of interacting objects. In: 4th International Conference on Quan-
titative Evaluation of Systems, QEST 2007, Edinburgh (2007)

3. Gribaudo, M., Cerotti, D., Bobbio, A.: Analysis of on-off policies in sensor networks
using interacting markovian agents. In: 4th International Workshop on Sensor Net-
works and Systems for Pervasive Computing, PerSens 2008, Hong Kong (2008)

4. Hillston, J.: Fluid flow approximation of PEPA models. In: 2nd International Con-
ference on Quantitative Evaluation of Systems, QEST 2005, Turin (2005)



Author Index

Abdelrahman, Omer H. 212
Audzevich, Yury 197

Balbo, Gianfranco 1
Bodrog, Levente 197

Castel-Taleb, H. 116
Clark, Allan 110

De Pierro, Massimiliano 1
Dingle, Nicholas J. 16
Duguid, Adam 110

Ewald, Nimbe L. 183

Franceschinis, Giuliana 1

Gelenbe, Erol 30, 212
Gilmore, Stephen 110
Gribaudo, Marco 218
Györfi, László 30
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