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Abstract. Classical Description Logics (DLs) are not suitable to rep-
resent vague pieces of information. The attempts to achieve a solution
have lead to the birth of fuzzy DLs and rough DLs. In this work, we
provide a simple solution to join these two formalisms and define a fuzzy
rough DL. We also show how to extend two reasoning algorithms for
fuzzy DLs, which are implemented in the fuzzy DL reasoners fuzzyDL
and DeLorean.

1 Introduction

In the last years the interest in ontologies has significantly grown. An ontology is
defined as an explicit and formal specification of a shared conceptualization [13],
which means that ontologies represent the vocabulary of some domain. They
have gained widespread popularity due to their success in several applications
such as expert and multiagent systems or the Semantic Web. Description Logics
(DLs) are a family of logics for representing structured knowledge [1]. They
are the basis of most of the ontology languages, such as the current standard
language OWL [16]. For instance, the logic behind the recent language OWL 2
is SROIQ(D) [8].

However, it is widely agreed that “classical” ontology languages are not ap-
propriate to deal with fuzzy/vague/imprecise knowledge, which is inherent to
several real world domains. With the aim of managing vagueness in ontologies,
several extension of DLs have been proposed, being possible to group them in
two categories. On the one hand, the combination with fuzzy logic [30] pro-
duced fuzzy DLs. Some notable works are [15,25,26,28], for a survey we refer
to [21]. Under this approach, vagueness is quantified and expressed using a de-
gree of membership to a vague concept. On the other hand, the combination with
rough set theory [22] produced rough DLs [10,12,18,19,20,24]. These logics offer
a qualitative approach to model vagueness. Instead of providing a degree of a
membership, vague concepts are approximated by means of a couple of classical
sets: an upper and a lower approximation. This approach is very useful when it
is not possible to quantify the membership function of a vague concept.

Fuzzy logic and rough logic are complementary formalism to manage vague-
ness and hence it is natural to combine them by means of fuzzy rough sets [11,23].
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This is useful in several domains of application. For instance, in e-commerce, it
is possible to combine rough concepts such as “potential buyer” (an individual
which is possibly interested in some product) with fuzzy concepts such as “cheap
price” (which can be modeled with a trapezoidal membership function). Another
example is medicine, which combines rough concepts such as “possible patient”
(an individual affected by some of the symptoms of some disease, and hence
suspected of being patient) with fuzzy concepts such as “high blood pressure”.

In this paper we follow this approach and extend a fuzzy DL with fuzzy rough
sets. As we will see, the integration is seamless, as already pointed out by [24]
for the classical semantics case, as the rough set component can mapped into
the fuzzy DL component, with the non-negligible advantage that current fuzzy
DLs reasoners can be used with minimal adaption.

Related works are [9], which presents a rough fuzzy ontology but without
entering into the formal details of the subjacent logic, and [17], which considers
a less expressive logic than ours and not dealing with implementation issues.

We proceed as follows. The next section provides some background on mathe-
matical fuzzy logics and (fuzzy) rough set theory. Section 3 presents the definition
of a extension of the DL SROIQ(D), the logic behind OWL 2, with fuzzy and
fuzzy rough semantics. Section 4 describes two reasoning algorithms under two
fragments of our logic. Finally, Section 5 sets out some conclusions.

2 Preliminaries

Mathematical Fuzzy Logic. In fuzzy logics, the convention prescribing that
a statement is either true or false is changed. Changing the usual true/false
convention leads to a new concept of statement, whose compatibility with a
given state of facts is a matter of degree and can be measured on an ordered
scale S that is no longer {0, 1}, but, e.g., the unit interval [0, 1]. This degree of
fit is called degree of truth of the statement φ in the interpretation I.

Fuzzy logics logics provide compositional calculi of degrees of truth, including
degrees between “true” and “false”. A statement is now not true or false only, but
may have a truth degree taken from a truth space S, usually [0, 1] (in that case
we speak about Mathematical Fuzzy Logic [14]). In this paper, fuzzy statements
will have the form φ� l or φ� u, where l, u∈ [0, 1] and φ is a statement, which
encode that the degree of truth of φ is at least l resp. at most u.

Semantically, a fuzzy interpretation I maps each basic statement pi into [0, 1]
and is then extended inductively to all statements as follows:

I(φ ∧ ψ) = I(φ) ⊗ I(ψ), I(φ ∨ ψ) = I(φ) ⊕ I(ψ),
I(φ→ ψ) = I(φ) ⇒ I(ψ), I(¬φ) = �I(φ) ,

where ⊗, ⊕, ⇒, and � are so-called combination functions, namely, triangular
norms (or t-norms), triangular conorms (or t-conorms), implication functions,
and negation functions, respectively, which extend the classical Boolean conjunc-
tion, disjunction, implication, and negation, respectively, to the fuzzy case (see [14]
for a formal definition of these functions and their properties). An important type
of implication functions are R-implications, defined as a ⇒ b = sup {c | a⊗c ≤ b}.
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Table 1. Combination functions of various fuzzy logics

�Lukasiewicz Logic Gödel Logic Product Logic Zadeh Logic
a ⊗ b max(a + b − 1, 0) min(a, b) a · b min(a, b)
a ⊕ b min(a + b, 1) max(a, b) a + b − a · b max(a, b)

a ⇒ b min(1 − a + b, 1)

{
1 if a ≤ b

b otherwise
min(1, b/a) max(1 − a, b)

� a 1 − a

{
1 if a = 0

0 otherwise

{
1 if a = 0

0 otherwise
1 − a

Several t-norms, t-conorms, implication functions, and negation functions
have been proposed, giving raise to different fuzzy logics with different logi-
cal properties. In fuzzy logic, one usually distinguishes three different logics,
namely �Lukasiewicz, Gödel, and Product logic [14]. Zadeh logic (the fuzzy op-
erators originally considered by Zadeh [30]) is a sublogic of �Lukasiewicz logic.
�Lukasiewicz, Gödel, and Product logics have an R-implication, while Zadeh logic
does not.

A fuzzy set R over a countable crisp set X is a function R : X → [0, 1]. A fuzzy
set A is included in B (denoted A ⊆ B) iff ∀x ∈ X, A(x) ≤ B(x). The degree of
subsumption between two fuzzy sets A and B is defined as infx∈X A(x) ⇒ B(x).

A (binary) fuzzy relation R over two countable crisp sets X and Y is a function
R : X × Y → [0, 1]. The inverse of R is the function R−1 : Y × X → [0, 1] with
membership function R−1(y, x) = R(x, y), for every x ∈ X and y ∈ Y . The
composition of two fuzzy relations R1 : X × Y → [0, 1] and R2 : Y × Z → [0, 1]
is defined as (R1 ◦ R2)(x, z) = supy∈Y R1(x, y) ⊗ R2(y, z). A fuzzy relation R is
reflexive iff ∀x ∈ X, R(x, x) = 1. R is symmetric iff ∀x ∈ X, y ∈ Y, R(x, y) =
R(y, x). R is transitive iff R(x, z) � (R ◦ R)(x, z). A fuzzy similarity relation is
a reflexive, symmetric and transitive relation.

A fuzzy interpretation I satisfies a fuzzy statement φ� l (resp., φ� u) or I is
a model of φ� l (resp., φ� u), denoted I |= φ� l (resp., I |= φ� u), iff I(φ) � l
(resp., I(φ) � u). The notions of satisfiability and logical consequence are de-
fined in the standard way. φ� l is a tight logical consequence of a set of fuzzy
statements K iff l is the infimum of I(φ) subject to all models I of K. Notice
that the latter is equivalent to l = sup {r | K |= φ� r}.

Rough Set and Fuzzy Rough Set Theories. The key idea in rough set the-
ory [22] is the approximation of a vague concept by means of a pair a concepts:
a sub-concept or lower approximation and a super-concept or upper approxi-
mation, describing the sets of elements which definitely and possibly belong to
the vague set, respectively, as Figure 1 illustrates. The approximation is based
on an indiscernibility equivalence relation (reflexive, symmetric and transitive)
between elements of the domain. Given an indiscernibility relation R, the upper
approximation of a set S is defined as: S = {x | ∃y : (x, y) ∈ R ∧ y ∈ S}. Simi-
larly, the lower approximation is defined as: S = {x | ∀y : (x, y) ∈ R → y ∈ S}.

A very natural extension is to consider a fuzzy similarity relation instead of
an indiscernibility relation, which gives raise to fuzzy rough sets [11,23]. Given a
fuzzy similarity relation R, a t-norm ⊗ and an implication function ⇒, the upper
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Fig. 1. Vague concept (bold line), upper approximation (striped line) and lower ap-
proximation (dotted line)

approximation of a fuzzy set S is given by the following membership function:
∀x ∈ X, S(x) = supy∈ΔI{R(x, y) ⊗ S(y)}. Similarly, the lower approximation is
defined as: ∀x ∈ X, S(x) = infy∈ΔI{R(x, y) ⇒ S(y)}.

3 The Fuzzy Rough DL SROIQ(D)

In this section we describe a fuzzy rough extension of the fuzzy DL SROIQ(D),
which is based on the fuzzy DLs presented in [5,7,28], and extended with upper and
lower approximations of concepts. In the following, we assume ��∈ {≥, >,≤, <},
� ∈ {≥, >}, � ∈ {≤, <}, α ∈ (0, 1], β ∈ [0, 1), γ ∈ [0, 1].

Syntax. A fuzzy concrete domain [27] D is a pair 〈ΔD, ΦD〉, where ΔD is a
concrete interpretation domain, and ΦD is a set of fuzzy concrete predicates d
with an arity n and an interpretation dD : Δn

D → [0, 1], which is an n-ary fuzzy
relation over ΔD. Usual functions for specifying fuzzy set membership degrees
are the trapezoidal, the triangular, the L-function (left-shoulder function), and
the R-function (right-shoulder function). For backwards compatibility, we also
allow crisp intervals. These functions are defined over the set of non-negative
rationals Q+ ∪ {0} For instance, we may define Young : N → [0, 1] to be a fuzzy
concrete predicate over the natural numbers denoting the degree of a person
being young, as Young(x) = L(10, 30).

We further allow fuzzy modifiers, such as very, moreOrLess and slightly, which
apply to fuzzy sets to change their membership function. Formally, a modifier is
a function fm : [0, 1] → [0, 1]. We will allow modifiers defined in terms of linear
hedges and triangular functions. For instance, very(x) = linear(0.8).

Similarly as for its crisp counterpart, fuzzy SROIQ(D) assumes three alpha-
bets of symbols, for concepts, roles and individuals.

The abstract roles (denoted R) of the language can be built inductively as:

R → RA | (atomic role)
R− | (inverse role)
U | (universal role)

Concrete roles are denoted T and cannot be complex.
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Now, let n, m be natural numbers (n � 0, m > 0). The concepts (denoted
C or D) of the language can be built inductively from atomic concepts (A),
top concept �, bottom concept ⊥, named individuals (oi), abstract roles (R),
concrete roles (T ), simple roles (S) 1 and fuzzy concrete predicates (d) as:

C,D → A | (atomic concept)
	 | (top concept)
⊥ | (bottom concept)

C �D | (concept conjunction)
C �D | (concept disjunction)

¬C | (concept negation)
∀R.C | (universal quantification)
∃R.C | (existential quantification)
∀T.d | (concrete universal quantification)
∃T.d | (concrete existential quantification)

{o1, . . . , om} | (nominals)
(≥ m S.C) | (at-least qualified number restriction)
(≤ n S.C) | (at-most qualified number restriction)
(≥ m T.d) | (concrete at-least qualified number restriction)
(≤ n T.d) | (concrete at-most qualified number restriction)

∃S.Self (local reflexivity)

Assume m fuzzy similarity relations si (i = 1, . . . , m). The above syntax is
extended to include salient features of fuzzy DLs [3,7] as follows:

C,D → {α1/o1, . . . , αm/om} | (fuzzy nominals)
C → D | (fuzzy implication concept)

α1C1 + · · · + αkCk | (fuzzy weighted sum)
mod(C) | (modified concept)
[C ≥ α] | (cut concept)
[C ≤ β] | (cut concept)

C
i | (upper approximation)

Ci (lower approximation )

d → crisp(a, b) | (fuzzy crisp set)
L(a, b) | (fuzzy left-shoulder function)
R(a, b) | (fuzzy right-shoulder function)

triangular(a, b, c) | (fuzzy triangular function)
trapezoidal(a, b, c, d) (fuzzy trapezoidal function)

mod→ linear(c) | (fuzzy linear modifier)
triangular(a, b, c) (fuzzy triangular modifier)

R → mod(R) | (modified role)
[R ≥ α] (cut role)

In the case of linear modifiers, we assume that a = c/(c + 1), b = 1/(c + 1).
Furthermore, for each of the connectives �,�,→, we have indexed connectives

1 Simple roles are needed to guarantee the decidability of the logic. Intuitively, simple
roles cannot take part in cyclic role inclusion axioms (see [6] for a formal definition).
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�X ,�X ,→X , where X ∈ {Gödel, �Lukasiewicz, Product}, which are interpreted
according to the semantics of the subscript.

Example 1. Concept Human � ∃hasAge.L(10, 30) denotes the set of young hu-
mans, with an age given by L(10, 30). If linear(4) represents the modifier very,
Human � linear(4)(∃hasAge.L(10, 30)) denotes the set of very young humans.

Furthermore, abstract individuals are denoted a, b ∈ ΔI , while concrete individ-
uals are denoted v ∈ ΔD.

A Fuzzy Knowledge Base (KB) contains axioms organized in a fuzzy ABox
A, a fuzzy TBox T and a fuzzy RBox R.

A fuzzy ABox consists of a finite set of fuzzy assertions of one of these types:

– a fuzzy concept assertion of the form 〈a :C �� α〉;
– a fuzzy role assertion, or constraint on the truth value of a role assertion,

〈Ψ �� α〉, where Ψ is of the form (a, b) :R, (a, b) :¬R, (a, v) :T or (a, v) :¬T ;
– an inequality assertion 〈a �= b〉;
– an equality assertion 〈a = b〉.

A fuzzy TBox consists of a finite set of fuzzy General Concept Inclusions or fuzzy
GCIs, which are expressions of the form 〈C � D ≥ α〉 or 〈C � D > β〉.

A fuzzy RBox consists of a finite set of role axioms of one these types:

– Fuzzy Role Inclusion Axioms or fuzzy RIAs 〈w � R ≥ α〉, 〈w � R > β〉,
where w = R1R2 . . . Rm is a role chain, 〈T1 � T2 ≥ α〉, or 〈T1 � T2 > β〉;

– transitive role axioms trans(R);
– disjoint role axioms dis(S1, S2), dis(T1, T2);
– reflexive role axioms ref(R);
– irreflexive role axioms irr(S);
– symmetric role axiom sym(R);
– asymmetric role axioms asy(S).

Example 2. 〈paul : Tall ≥ 0.5〉 states that Paul is tall with at least degree 0.5.
The fuzzy RIA 〈isFriendOf isFriendOf � isFriendOf ≥ 0.75〉 states that the friends
of my friends can also be considered my friends with degree 0.75. ��

A fuzzy axiom has a truth degree in [0,1]. A fuzzy axiom is positive (denoted
〈τ �α〉) if it is of the form 〈τ ≥ α〉 or 〈τ > β〉. A fuzzy axiom is negative (denoted
〈τ � α〉) if it is of the form 〈τ ≤ β〉 or 〈τ < α〉.

Semantics. A fuzzy interpretation I with respect to a fuzzy concrete domain D
is a pair (ΔI , ·I) consisting of a non empty set ΔI (the interpretation domain)
disjoint with ΔD and a fuzzy interpretation function ·I mapping:

– an abstract individual a onto an element aI of ΔI ;
– a concrete individual v onto an element vD of ΔD;
– a concept C onto a function CI : ΔI → [0, 1];
– an abstract role R onto a function RI : ΔI × ΔI → [0, 1];
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– a concrete role T onto a function T I : ΔI × ΔD → [0, 1];
– an n-ary concrete fuzzy predicate d onto the fuzzy relation dD : Δn

D → [0, 1];
– a modifier mod onto a function fmod : [0, 1] → [0, 1].

Given arbitraries t-norm ⊗, t-conorm ⊕, negation function � and implication
function ⇒, the fuzzy interpretation function is extended to complex concepts
and roles as shown in Table 2, and to fuzzy axioms as shown in Table 3.

Table 2. Semantics of the fuzzy concepts and roles in fuzzy SROIQ(D)

Constructor Semantics

(	)I(x) = 1

(⊥)I(x) = 0

(A)I(x) = AI(x)

(C � D)I(x) = CI(x) ⊗ DI(x)

(C � D)I(x) = CI(x) ⊕ DI(x)

(¬C)I(x) = �CI(x)

(∀R.C)I(x) = inf
y∈ΔI {RI(x, y) ⇒ CI(y)}

(∃R.C)I(x) = sup
y∈ΔI {RI(x, y) ⊗ CI(y)}

(∀T.d)I(x) = infv∈ΔD
{TI(x, v) ⇒ dD(v)}

(∃T.d)I(x) = supv∈ΔD
{TI(x, v) ⊗ dD(v)}

({α1/o1, . . . , αm/om})I(x) = sup
i | x=oI

i
αi

(≥ m S.C)I(x) = supy1,...,ym∈ΔI [(minm
i=1{SI(x, yi) ⊗ CI(yi)})

⊗
(⊗j<k{yj �= yk})]

(≤ n S.C)I(x) = infy1,...,yn+1∈ΔI [(minn+1
i=1 {SI(x, yi) ⊗ CI(yi)}) ⇒ (⊕j<k{yj = yk})]

(≥ m T.d)I(x) = supv1,...,vm∈ΔD
[(minm

i=1{TI(x, vi) ⊗ dD(vi)})
⊗

(⊗j<k{vj �= vk})]

(≤ n T.d)I(x) = infv1,...,vn+1∈ΔD
[(minn+1

i=1 {TI(x, vi) ⊗ dD(vi)}) ⇒ (⊕j<k{vj = vk})]

(∃S.Self)I(x) = SI(x, x)

(mod(C))I(x) = fmod(CI(x))

([C ≥ α])I(x) = 1 if CI(x) ≥ α, 0 otherwise

([C ≤ β])I(x) = 1 if CI(x) ≤ β, 0 otherwise

(α1C1 + · · · + αkCk)I(x) = α1C1
I(x) + · · · + αkCk

I(x)

(C → D)I(x) = CI(x) ⇒ DI(x)

(C
i
)
I

(x) = supy∈ΔI si
I(x, y) ⊗ CI(y)

(Ci)
I(x) = infy∈ΔI si

I(x, y) ⇒ CI(y)

(RA)I(x, y) = RI
A(x, y)

(R−)I(x, y) = RI(y, x)

(U)I(x, y) = 1

(mod(R))I(x, y) = fmod(RI(x, y))

([R ≥ α])I(x, y) = 1 if RI(x, y) ≥ α, 0 otherwise

(T )I(x, v) = TI(x, v)

CI denotes the membership function of the fuzzy concept C with respect to
the fuzzy interpretation I. CI(x) gives us the degree of being the individual x
an element of the fuzzy concept C under I.

Similarly, RI denotes the membership function of the fuzzy role R with respect
to I. RI(x, y) gives us the degree of being (x, y) an element of the fuzzy role R
under I.

A fuzzy interpretation I satisfies (is a model of):

– 〈a :C �� γ〉 iff (a :C)I �� γ,
– 〈(a, b) :R �� γ〉 iff ((a, b) :R)I �� γ,
– 〈(a, b) :¬R �� γ〉 iff ((a, b) :¬R)I �� γ,
– 〈(a, v) :T �� γ〉 iff ((a, v) :T )I �� γ,
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Table 3. Semantics of the fuzzy axioms in fuzzy SROIQ(D)

Axiom Semantics

(a :C)I = CI(aI)

((a, b) :R)I = RI(aI , bI)

((a, b) :¬R)I = �RI(aI , bI)

((a, v) :T )I = TI(aI , vD)

((a, v) :¬T )I = �TI(aI , vD)

(C � D)I = infx∈ΔI CI(x) ⇒ DI(x)

(R1 . . . Rm � R)I = inf
x1,xn+1∈ΔI sup

x2...xn∈ΔI (RI
1 (x1, x2) ⊗ · · · ⊗ RI

n(xn, xn+1)) ⇒ RI(x1, xn+1)

(T1 � T2)I = inf
x∈ΔI ,v∈ΔD

TI
1 (x, v) ⇒ TI

2 (x, v)

– 〈(a, v) :¬T �� γ〉 iff ((a, v) :¬T )I �� γ,
– 〈a �= b〉 iff aI �= bI ,
– 〈a = b〉 iff aI = bI ,
– 〈C � D � γ〉 iff (C � D)I � γ,
– 〈R1 . . . Rm � R � γ〉 iff (R1 . . . Rm � R)I � γ,
– 〈T1 � T2 � γ〉 iff (T1 � T2)I � γ,
– trans(R) iff ∀x, y ∈ ΔI , RI(x, y) ≥ supz∈ΔI RI(x, z) ⊗RI(z, y),
– dis(S1, S2) iff ∀x, y ∈ ΔI , SI

1 (x, y) = 0 or SI
2 (x, y) = 0,

– dis(T1, T2) iff ∀x ∈ ΔI , v ∈ ΔD, T
I
1 (x, v) = 0 or T I

2 (x, v) = 0,
– ref(R) iff ∀x ∈ ΔI , RI(x, x) = 1,
– irr(S) iff ∀x ∈ ΔI , SI(x, x) = 0,
– sym(R) iff ∀x, y ∈ ΔI , RI(x, y) = RI(y, x),
– asy(S) iff ∀x, y ∈ ΔI , if SI(x, y) > 0 then SI(y, x) = 0,
– a fuzzy KB iff it satisfies each element in A, T and R.

Reasoning. The notions of logical consequence and tight logical consequence
are defined as in Sect. 2. Additionally, the maximal satisfiability degree [7] of a
concept C w.r.t. a fuzzy KB K is defined as glb(K, C) = supI supx∈ΔI CI(x).

Some logical properties. Due to the properties of fuzzy rough sets [23], in Zadeh,
Gödel, �Lukasiewicz and Product logics we have that:

– ⊥ ≡ ⊥ ≡ ⊥, 	 ≡ 	 ≡ 	, C ≡ C, C ≡ C.

– ¬C ≡ ¬C, in Zadeh and �Lukasiewicz logics.

– ¬C ≡ ¬C, in Zadeh and �Lukasiewicz logics.

– C �D ⊆ C �D, C �D ≡ C �D,

– C �D ≡ C �D, in Zadeh and Gödel logics.

– C �D ⊇ C �D.

Note that fuzzy rough intersection and union are not truth-functional in general.

4 Reasoning and Implementation

In this section we will show how to extend two existing reasoning algorithms for
fuzzy DLs so they can support fuzzy rough DLs, and how we have implemented
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them in the fuzzyDL system [7] and in the DeLorean system [4]. To this end,
we recall that indeed we can map lower and upper approximation concepts into
fuzzy DL concepts. This is not surprising as already pointed out by [24] for the
crisp case. In fact, it is not difficult to see from the semantics of upper (C

i
) and

lower (Ci) approximation concepts, that these can be represented as fuzzy DL
concepts ∃si.C and ∀si.C, respectively. That is, we consider the transformation:

C
i �→ ∃si.C (1)

Ci �→ ∀si.C (2)

and, thus, we may replace upper and lover approximation concepts with ordinary
fuzzy DL concepts. This is exactly the same transformation as provided in [24].
In the following, we show how two currently highly expressive fuzzy DL reasoners
have been adapted to support our logic.

4.1 Tableau Rules and an Optimization Problem in fuzzyDL

fuzzyDL is a reasoner for fuzzy SHIF(D) extended with a lot of salient features
of fuzzy DLs, under Zadeh, �Lukasiewicz and Gödel logics [7]. It is available from
http://www.straccia.info, and supports the logic defined in Sect. 3 without
the additional elements of SROIQ, i.e., fuzzy nominals, qualified cardinality
restrictions, role assertions with a negated role, disjoint role axioms, complex
fuzzy RIAs (with w �= R), irreflexive role axioms and asymmetric role axioms.

Its reasoning algorithm combines a tableaux algorithm and a mixed integer
linear optimization problem. The basic idea is to build a tableaux using a set of
satisfiability preserving rules which generate new simpler fuzzy assertion axioms
together with some inequations over [0, 1]-valued variables. Finally, an optimiza-
tion problem through the set of inequations is solved. A detailed description of
the reasoning algorithm cannot fit into this paper, but it can be found in [29].

To support upper and lower approximation concepts in fuzzyDL, essentially
we need to support reflexive roles (symmetric and transitive roles are already
supported). In particular, we firstly extend fuzzyDL with a couple of fuzzy role
axioms. Reflexive and symmetric role axioms are of the form (reflexive R)
and (symmetric R), respectively, where R is a fuzzy role. Symmetric role axioms
can already be simulated with fuzzyDL, and this axioms is just syntactic sugar.
Indeed, axiom R � R− implies that R is symmetric.

Then, we allow three additional concept constructors: upper approximations,
lower approximations and local reflexivity concepts, which are of the form (ua si
C), (la si C) and (self S), respectively, where si is a fuzzy similarity relation,
S is a simple fuzzy role and C is a fuzzy concept. Local reflexivity concepts are
not necessary for the rough extension, but adding them is easy (reasoning is
similar to the case of reflexive roles).

Similarity relations must be previously defined using the following syntax:
(define-fuzzy-similarity si).

http://www.straccia.info
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The reasoning algorithm is extended as follows:

– For every fuzzy similarity relation (define-fuzzy-similarity si) we assert
si to be reflexive, symmetric and transitive by adding the following axioms:
(reflexive R), (symmetric R), (transitive R).

– Every symmetric role axiom (symmetric R) is replaced with an inverse
role axiom (inverse R invR) and a role inclusion axiom (implies-role R
invR). Under an R-implication, it is well known that sym(R) is equivalent to
R � R−.

– Every upper approximation concept (ua si C) is replaced with an existential
restriction concept (some si C).

– Every lower approximation concept (la si C) is replaced with a universal
restriction concept (all si C).

– The rule for a local reflexivity concept (self S) asserts that an individual
is related to itself. Formally, in the calculus if 〈∃S.Self, l〉 ∈ L(v) (that is, if
v is an instance of ∃S.Self to degree not smaller than l) then append 〈S, l〉
to L(〈v, v〉) (that is, the pair 〈v, v〉 is an instance of S at least to degree l).

– The rule for reflexive roles (reflexive R) asserts that every individual is
related to itself. Formally, if 〈ref(R)〉 ∈ R and v is a node to which this rule
has not yet been applied then append 〈R, l〉 to L(〈v, v〉) (that is, the pair
〈v, v〉 is an instance of R to degree not smaller than l).

4.2 Reduction to Classical Description Logic in DeLorean

DeLorean is a reasoner for basic fuzzy SROIQ(D) [4] (not supporting the
additional features of fuzzy DLs defined in Sect. 3) under Zadeh and Gödel
(with an involutive negation) logics. The syntax of the supported language is
in [2].

Its reasoning algorithm is based on a reduction to a classical DL, so current
DL reasoners can be reused. A full description may be found in [3,5,6].

DeLorean already supported local reflexivity concepts, as well as reflexive
and symmetric roles. Hence, it only remained to extend it with upper and lower
approximations of the form (upper si C) and (lower si C), where si is a fuzzy
similarity relation and C is a fuzzy concept.

Now, the reasoning algorithm is extended as follows:

– Every concept (upper si C) is replaced with an existential restriction con-
cept (some si C). Furthermore, we add the following axioms if they do not
exist in the fuzzy RBox: (reflexive R), (symmetric R), (transitive R).

– Every concept (lower si C) is replaced with a universal restriction concept
(all si C). Once again, we add the following axioms in case they do not exist
in the fuzzy RBox: (reflexive R), (symmetric R), (transitive R).

5 Conclusions

In this paper we have studied a DL managing vagueness in two different but com-
plementary ways, combining a fuzzy DL with fuzzy rough sets. In particular, we
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have presented a very expressive fuzzy rough extension of the DL SROIQ(D),
the logic behind the language OWL 2. The rough extension is general (inde-
pendent of the family of fuzzy operators) and uses m possible fuzzy similarity
relations.

Reasoning under our general fuzzy rough DL is not currently possible, but we
have extended and implemented two well-known reasoning algorithms for fuzzy
DLs in order to deal with two important fragments of the logic. On the one hand,
fuzzyDL implements a combination of a tableaux algorithm and a mixed integer
linear optimization problem, and already supports fuzzy rough SHIF(D) (ex-
tended with salient features of fuzzy DLs) under Zadeh, �Lukasiewicz and Gödel
logics. On the other hand, DeLorean implements a translation to a crisp DL
and supports fuzzy rough SROIQ(D) under Zadeh and Gödel (with an involu-
tive negation) logics. Extending the of reasoning algorithms and the expressivity
reasoners remains an open research problem.
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