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Preface

These are the proceedings of the 10th European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2009, held
in Verona (Italy), July 1–3, 2009.

The biennial ECSQARU conferences are a major forum for advances in the
theory and practice of reasoning under uncertainty. The first ECSQARU confer-
ence was held in Marseille (1991), and since then it has been held in Granada
(1993), Fribourg (1995), Bonn (1997), London (1999), Toulouse (2001), Aalborg
(2003), Barcelona (2005) and Hammamet (2007).

The 76 papers gathered in this volume were selected out of 118 submissions
from 34 countries, after a rigorous review process. In addition, the conference
included invited lectures by three outstanding researchers in the area: Isabelle
Bloch (“Fuzzy and bipolar mathematical morphology, applications in spatial
reasoning”), Petr Cintula (“From (deductive) fuzzy logic to (logic-based) fuzzy
mathematics”), and Daniele Mundici (“Conditionals and independence in many-
valued logics”).

Two special sessions were presented during the conference: “Conditioning, in-
dependence, inference” (organized by Giulianella Coletti and Barbara Vantaggi)
and “Mathematical fuzzy logic” (organized by Stefano Aguzzoli, Brunella Gerla,
Llúıs Godo, Vincenzo Marra, Franco Montagna)

On the whole, the program of the conference provided a broad, rich and
up-to-date perspective of the current high-level research in the area which is
reflected in the contents of this volume.

We would like to thank the members of the Program Committee, the ad-
ditional reviewers, the invited speakers, the organizers of the special sessions
and the members of the Organizing Committee for their support in making this
conference successful. We also thank the creators and maintainers of the free
conference management system EasyChair (http://www.easychair.org).

Finally, we gratefully acknowledge the sponsoring institutions for their sup-
port.

April 2009 Claudio Sossai
Gaetano Chemello
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Mauro J. Gómez Lucero, Carlos I. Chesñevar, and
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Default Reasoning

A Default Logic Patch for Default Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
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Probabilistic Reasoning by SAT Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663
Emad Saad

Fuzzy Sets and Fuzzy Logic

Supporting Fuzzy Rough Sets in Fuzzy Description Logics . . . . . . . . . . . . . 676
Fernando Bobillo and Umberto Straccia

Possibilistic Measures Taking Their Values in Spaces Given by
Inclusion-Closed Fragments of Power-Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 688

Ivan Kramosil



XVI Table of Contents

Different Representations of Fuzzy Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 700
Jiuzhen Liang, Mirko Navara, and Thomas Vetterlein

Elicitating Sugeno Integrals: Methodology and a Case Study . . . . . . . . . . 712
Henri Prade, Agnès Rico, Mathieu Serrurier, and Eric Raufaste

Implementation and Applications of Uncertain
Systems

Robust Gene Selection from Microarray Data with a Novel Markov
Boundary Learning Method: Application to Diabetes Analysis . . . . . . . . . 724

Alex Aussem, Sergio Rodrigues de Morais, Florence Perraud, and
Sophie Rome

Brain Tumor Segmentation Using Support Vector Machines . . . . . . . . . . . 736
Raouia Ayachi and Nahla Ben Amor

Ensemble Learning for Multi-source Information Fusion . . . . . . . . . . . . . . . 748
Jörg Beyer, Kai Heesche, Werner Hauptmann, Clemens Otte, and
Rudolf Kruse

Bayesian Belief Network for Tsunami Warning Decision Support . . . . . . . 757
Lilian Blaser, Matthias Ohrnberger, Carsten Riggelsen, and
Frank Scherbaum

Anti-division Queries with Ordinal Layered Preferences . . . . . . . . . . . . . . . 769
Patrick Bosc, Olivier Pivert, and Olivier Soufflet

Predicting Stock and Portfolio Returns Using Mixtures of Truncated
Exponentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781

Barry R. Cobb, Rafael Rumı́, and Antonio Salmerón

Logics for Reasoning under Uncertainty

Non-deterministic Distance Semantics for Handling Incomplete and
Inconsistent Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793

Ofer Arieli and Anna Zamansky

A Simple Modal Logic for Reasoning about Revealed Beliefs . . . . . . . . . . . 805
Mohua Banerjee and Didier Dubois

Complexity and Cautiousness Results for Reasoning from Partially
Preordered Belief Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817

Salem Benferhat and Safa Yahi

A Logic for Complete Information Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 829
Md. Aquil Khan and Mohua Banerjee



Table of Contents XVII

Markov Decision Processes

An Uncertainty-Based Belief Selection Method for POMDP Value
Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841

Qi Feng, Xuezhong Zhou, Houkuan Huang, and Xiaoping Zhang

Optimal Threshold Policies for Multivariate Stopping-Time
POMDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850

Vikram Krishnamurthy

An Evidential Measure of Risk in Evidential Markov Chains . . . . . . . . . . . 863
Hélène Soubaras

Mathematical Fuzzy Logic

Algebras of Fuzzy Sets in Logics Based on Continuous Triangular
Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875

Stefano Aguzzoli, Brunella Gerla, and Vincenzo Marra

Soft Constraints Processing over Divisible Residuated Lattices . . . . . . . . . 887
Simone Bova

On the Convergence with Fixed Regulator in Residuated Structures . . . . 899
Lavinia Corina Ciungu

Open Partitions and Probability Assignments in Gödel Logic . . . . . . . . . . 911
Pietro Codara, Ottavio M. D’Antona, and Vincenzo Marra

Exploring Extensions of Possibilistic Logic over Gödel Logic . . . . . . . . . . . 923
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Fuzzy and Bipolar Mathematical Morphology,
Applications in Spatial Reasoning

Isabelle Bloch

Télécom ParisTech (ENST), CNRS UMR 5141 LTCI, Paris, France
isabelle.bloch@enst.fr

Abstract. Mathematical morphology is based on the algebraic frame-
work of complete lattices and adjunctions, which endows it with strong
properties and allows for multiple extensions. In particular, extensions
to fuzzy sets of the main morphological operators, such as dilation and
erosion, can be done while preserving all properties of these operators.
Another, more recent, extension, concerns bipolar fuzzy sets. These ex-
tensions have numerous applications, two of each being presented here.
The first one concerns the definition of spatial relations, for applications
in spatial reasoning and model-based recognition of structures in images.
The second one concerns the handling of the bipolarity feature of spatial
information.

Keywords: Fuzzy mathematical morphology, bipolar mathematical mor-
phology, spatial relations, bipolar spatial information, spatial reasoning.

1 Algebraic Framework of Mathematical Morphology

Mathematical morphology [1] requires the algebraic framework of complete lat-
tices [2]. Let (T ,≤) be a complete lattice, ∨ the supremum and ∧ the infi-
mum. A dilation is an operator δ on T which commutes with the supremum:
∀(xi) ∈ T , δ(∨ixi) = ∨iδ(xi). An erosion is an operator ε on T which commutes
with the infimum: ∀(xi) ∈ T , ε(∧ixi) = ∧iε(xi) [3]. Such operators are called
algebraic dilation and erosion. An important property is that they are increasing
with respect to ≤.

An adjunction on (T ,≤) is a pair of operators (ε, δ) such that ∀(x, y) ∈
T 2, δ(x) ≤ y ⇔ x ≤ ε(y). If (ε, δ) is an adjunction, then ε is an algebraic
erosion and δ an algebraic dilation. Additionally, the following properties hold:
εδ ≥ Id, where Id denotes the identity mapping on T , δε ≤ Id, εδε = ε, δεδ = δ,
εδεδ = εδ et δεδε = δε (the compositions δε and εδ are known as morphological
opening and closing, respectively, and can also be formalized in the framework
of Moore families [4]).

In the particular case of the lattice of subparts of Rn or Zn, denoted by S
in the following, endowed with inclusion as partial inclusion, adding a property
of invariance under translation leads to the particular following forms (called
morphological dilation and erosion):

∀X ⊆ S, δB(X) = {x ∈ S | B̌x ∩X 
= ∅}, εB(X) = {x ∈ S | Bx ⊆ X},

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 1–13, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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where B is a subset of S called structuring element, Bx denotes its translation
at point x and B̌ its symmetrical with respect to the origin of space. Opening
and closing are defined by composition (using the same structuring element).

These definitions are general and apply to any complete lattice. In the fol-
lowing, we focus on the lattice of fuzzy sets defined on S and on the lattice of
bipolar fuzzy sets. Other works have been done on the lattice of logical formulas
in propositional logics [5,6,7,8], with applications to fusion, revision, abduction,
mediation, or in modal logics [9], with applications including qualitative spatial
reasoning.

Mathematical morphology can therefore be considered as a unifying frame-
work for spatial reasoning, leading to knowledge representation models and rea-
soning tools in quantitative, semi-quantitative (or fuzzy) and qualitative set-
tings [10].

2 Fuzzy Mathematical Morphology
Extending mathematical morphology to fuzzy sets was proposed in the early 90’s,
by several teams independently [11,12,13,14,15], and was then largely developed
(see e.g. [16,17,18,19,20,21]). An earlier extension of Minkowski’s addition (which
is directly linked to dilation) was defined in [22].

Let F be the set of fuzzy subsets of S. For the usual partial ordering ≤
(μ ≤ ν ⇔ ∀x ∈ S, μ(x) ≤ ν(x)), (F ,≤) is a complete lattice, on which algebraic
operations can be defined, as described in Section 1. Adding a property of in-
variance under translation leads to the following general forms of fuzzy dilation
and erosion [12,16]:

∀x ∈ S, δν(μ)(x) = sup
y∈S

T [ν(x− y), μ(y)], εν(μ)(x) = inf
y∈S

S[c(ν(y − x)), μ(y)],

where ν denotes a fuzzy structuring element in F , μ a fuzzy set, c an involutive
negation (or complementation), T a t-norm and S a t-conorm. The adjunction
property imposes that S be the t-conorm derived from the residual implica-
tion I of T : ∀(α, β) ∈ [0, 1]2, S(α, β) = I(c(α), β), with I(α, β) = sup{γ ∈
[0, 1], T (α, γ) ≤ β}. The erosion represents the degree to which the translation
of the structuring element at point x intersects μ, while the dilation represents
the degree to which it is included in μ.

For applications dealing with spatial objects for instance, it is often important
to also have a duality property between dilation and erosion, with respect to the
complementation. Then T and S have to be dual operators with respect to c.
This property, along with the adjunction property, limits the choice of T and
S to generalized Lukasiewicz operators [23,24]: T (α, β) = max(0, ϕ−1(ϕ(α) +
ϕ(β) − 1)) and S(α, β) = min(1, ϕ−1(ϕ(α) + ϕ(β))) where ϕ is a continuous
strictly increasing function on [0, 1] with ϕ(0) = 0 and ϕ(1) = 1.

The links between definitions obtained for various forms of conjunctions and
disjunctions have been presented from different perspectives in [16,20,23,24,25].

Opening and closing are defined by composition, as in the general case. The
adjunction property guarantees that these operators are idempotent, and that
opening (resp. closing) is anti-extensive (resp. extensive) [16,17,24].
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3 Bipolar Fuzzy Mathematical Morphology

Bipolarity is important to distinguish between (i) positive information, which
represents what is guaranteed to be possible, for instance because it has already
been observed or experienced, and (ii) negative information, which represents
what is impossible or forbidden, or surely false [26].

A bipolar fuzzy set on S is defined by a pair of functions (μ, ν) such that
∀x ∈ S, μ(x) + ν(x) ≤ 1. For each point x, μ(x) defines the membership de-
gree of x (positive information) and ν(x) the non-membership degree (negative
information). This formalism allows representing both bipolarity and fuzziness.

Let us consider the set L of pairs of numbers (a, b) in [0, 1] such that a + b ≤
1. It is a complete lattice, for the partial order defined as [27]: (a1, b1) �
(a2, b2) iff a1 ≤ a2 and b1 ≥ b2. The greatest element is (1, 0) and the smallest el-
ement is (0, 1). The supremum and infimum are respectively defined as: (a1, b1)∨
(a2, b2)=(max(a1, a2),min(b1, b2)), (a1, b1)∧(a2, b2)=(min(a1, a2),max(b1, b2)).
The partial order � induces a partial order on the set of bipolar fuzzy sets:
(μ1, ν1) � (μ2, ν2) iff ∀x ∈ S, μ1(x) ≤ μ2(x) and ν1(x) ≥ ν2(x), and infimum
and supremum are defined accordingly. It follows that, if B denotes the set of
bipolar fuzzy sets on S, (B,�) is a complete lattice.

Mathematical morphology on bipolar fuzzy sets has been first introduced
in [28]. Once we have a complete lattice, it is easy to define algebraic dilations
and erosions on this lattice, as described in Section 1, as operators that commute
with the supremum and the infimum, respectively. Their properties are derived
from general properties of lattice operators.

Let us now consider morphological operations based on a structuring element.
A degree of inclusion of a bipolar fuzzy set (μ′, ν′) in another bipolar fuzzy set
(μ, ν) is defined as: infx∈S I((μ′(x), ν′(x)), (μ(x), ν(x))), where I is an implica-
tion operator. Two types of implication can be defined [29], one derived from a
bipolar t-conorm ⊥1: IN ((a1, b1), (a2, b2)) = ⊥((b1, a1), (a2, b2)), and one derived
from a residuation principle from a bipolar t-norm �2: IR((a1, b1), (a2, b2)) =
sup{(a3, b3) ∈ L | �((a1, b1), (a3, b3)) � (a2, b2)}, where (ai, bi) ∈ L and (bi, ai)
is the standard negation of (ai, bi). Two types of t-norms and t-conorms are con-
sidered in [29]: operators called t-representable t-norms and t-conorms, which
can be expressed using usual t-norms t and t-conorms T , and Lukasiewicz op-
erators, which are not t-representable. A similar approach has been used for
intuitionistic fuzzy sets in [30], but with weaker properties (in particular an im-
portant property such as the commutativity of erosion with the conjunction may
be lost).
1 A bipolar disjunction is an operator D from L×L into L such that D((1, 0), (1, 0)) =

D((0, 1), (1, 0)) = D((1, 0), (0, 1)) = (1, 0), D((0, 1), (0, 1)) = (0, 1) and that is in-
creasing in both arguments. A bipolar t-conorm is a commutative and associative
bipolar disjunction such that the smallest element of L is the unit element.

2 A bipolar conjunction is an operator C from L×L into L such that C((0, 1), (0, 1)) =
C((0, 1), (1, 0)) = C((1, 0), (0, 1)) = (0, 1), C((1, 0), (1, 0)) = (1, 0) and that is in-
creasing in both arguments. A bipolar t-norm is a commutative and associative
bipolar conjunction such that the largest element of L is the unit element.



4 I. Bloch

Based on these concepts, the morphological erosion of (μ, ν) ∈ B by a bipolar
fuzzy structuring element (μB , νB) ∈ B is defined as:

∀x ∈ S, ε(μB ,νB)((μ, ν))(x) = inf
y∈S

I((μB(y − x), νB(y − x)), (μ(y), ν(y))).

Dilation can be defined based on a duality principle or based on the adjunction
property. Applying the duality principle to bipolar fuzzy sets using a complemen-
tation c (typically the standard negation c((a, b)) = (b, a)) leads to the following
definition of morphological bipolar dilation:

δ(μB ,νB)((μ, ν)) = c[ε(μB ,νB)(c((μ, ν)))].

Let us now consider the adjunction principle, as in the general algebraic case.
The bipolar fuzzy dilation, adjoint of the erosion, is defined as:

δ(μB ,νB)((μ, ν))(x) = inf{(μ′, ν′)(x) | (μ, ν)(x) � ε(μB ,νB)((μ′, ν′))(x)}
= sup

y∈S
�((μB(x − y), νB(x− y)), (μ(y), ν(y))).

It has been shown that the adjoint operators are all derived from the
Lukasiewicz operator, using a continuous bijective permutation on [0, 1] [29].
Hence equivalence between both approaches can be achieved only for this class
of operators.

Properties of these operations are consistent with the the ones holding for
sets and for fuzzy sets, and are detailed in [28,31,32,33,34]. Interpretations of
these definitions as well as some illustrative examples can also be found in these
references.

4 Spatial Relations and Spatial Reasoning

Mathematical morphology provides tools for spatial reasoning at several lev-
els [10]. The notion of structuring element captures the local spatial context, in
a fuzzy and bipolar way here, which endows dilation and erosion with a low level
spatial reasoning feature. At a more global level, several spatial relations between
spatial entities can be expressed as morphological operations, in particular using
dilations [35,10], leading to large scale spatial reasoning.

The interest of relationships between objects has been highlighted in very dif-
ferent types of works: in vision, for identifying shapes and objects, in database
system management, for supporting spatial data and queries, in artificial in-
telligence, for planning and reasoning about spatial properties of objects, in
cognitive and perceptual psychology, in geography, for geographic information
systems. In all these domains, objects, relations, knowledge and questions to be
answered may suffer from imprecision, and benefit from a fuzzy modeling, as
stated in the 75’s [36]. Spatial relations can be intrinsically fuzzy (for instance
close to, between...) or have to be fuzzified in order to cope with imprecisely
defined objects.
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Fuzzy mathematical morphology has then naturally led to the definition of
fuzzy spatial relations (see [35] for a review on fuzzy spatial relations, including
morphological approaches). In our previous work, we proposed original defini-
tions for both topological and metric relations (according to the classification
of [37]): adjacency, distances, directional relations, and more complex relations
such as between and along. Here we just discuss a few important features (the
reader can refer to [35] and the references cited therein for the mathematical
developments).

In spatial reasoning, two important questions arise: (i) to which degree is a
relation between two objects satisfied? (ii) which is the spatial region in which a
relation to a reference object is satisfied (to some degree)? Fuzzy models allow
answering these two types of questions. Let us consider the directional relation
to the right of [38]. Two objects are displayed in Figure 1. Object B is, to some
degree, to the right of R. The region of space to the right of R (c) is defined
as the dilation of R with a fuzzy structuring element providing the semantics
of the relation (b). The membership degree of each point provides the degree to
which the relation is satisfied at that point. The definition of the relation as a
dilation is a generic model, but the structuring element can be adapted to the
context. This type of representation deals with the first type of question. As for
the second type, the adequation between B and the fuzzy dilated region can be
evaluated. Other fuzzy approaches to this type of relation are reviewed in [39].

Object B

Reference object (R)

(a) (b) (c)

Fig. 1. (a) Two example objects. (b) Fuzzy structuring element defining, in the spa-
tial domain, the semantics of to the right of. (c) Fuzzy Dilation of R (black square).
Membership values range from 0 (black) to 1 (white).

This example also highlights another important issue, which concerns the rep-
resentation, for which several forms can be interesting, depending on the raised
question. While in the crisp case, a relation between two objects is usually rep-
resented by a number (either 0/1 for an all-or-nothing relation, or a numeri-
cal value for a distance for instance), in the fuzzy case, several representations
are possible. They can typically be intervals, for instance representing necessity
and possibility degrees, fuzzy numbers, distributions [40,41], representing actual
measurements or the semantics of some linguistic variables. Details can be found
in [42,43] in the case of distances. These representations are adequate to answer
questions of type 1, since they rely on some computation procedure between two
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known objects. As for the second type of question, spatial representations are
more appropriate, as fuzzy sets in the spatial domain.

Fuzzy representations are also interesting in terms of robustness. For instance
set relationships and adjacency are highly sensitive, since in the binary case,
the result can depend on one point only [44]. The satisfaction of a relation can
be drastically modified depending on the digitization of the space, on the way
objects are defined, on errors due to some segmentation process, etc. This is
clearly a limitation of binary (all or nothing) definitions. In the fuzzy case, the
problem is much less crucial. Indeed, there is no more strict membership, the
fuzziness allows dealing with some gradual transition between objects or between
object and background, and relations become then a matter of degree. In this
respect, the fuzziness, even on digital images, could be interpreted as a partial
recovering of the continuity lost during the digitization process.

Finally, some relations depend not only on the applicative context, but also
on the shape of the considered objects. This is the case for the between relation,
where the semantics changes depending on whether the objects have similar
spatial extensions or very different ones [45]. Here again, fuzzy mathematical
morphology leads to models adapted to each situation [46].

Let us now illustrate how these relations can be used in spatial reasoning, in
particular for guiding structure recognition and segmentation in medical images.
For instance in brain imaging, anatomical knowledge is often expressed as linguis-
tic descriptions of the structures and their spatial arrangement. Spatial relations
play a major role in such descriptions. Moreover, they are more stable than shape
or size information and are less prone to inter-individual variations, even in the
presence of pathologies. Recently, this knowledge was formalized, in particular
using ontologies such as the Foundational Model of Anatomy (FMA) [47], just
to mention one. However these models do not yet incorporate much structural
descriptions. In [48], we proposed an ontology of spatial relations, which has been
integrated in the part of the FMA dedicated to brain structures. This ontology
has been further enriched by fuzzy models of the spatial relations (defining their
semantics). This formalism partially solves the semantic gap issue, by establish-
ing links between symbolic concepts of the ontology and their representation in
the image domain (and hence with percepts that can be extracted from images).
These links allow using concretely the ontology to help in image interpretation
and object recognition. Mathematical morphology is directly involved in these
fuzzy representations, but also at the reasoning level, since tools from morpho-
logics can be integrated in the description logics [49].

In our group, we developed two different types of approaches for recognition,
working either sequentially or globally. In the sequential approach [50,51], struc-
tures are recognized successively according to some order, and the recognition of
each structure relies on its relations to previously detected structures. This al-
lows reducing the search space, as in a process of focus of attention. For instance,
anatomical knowledge includes statements such as the right caudate nucleus is
to the right of and close to the right lateral ventricle. The search space for the
right caudate nucleus is then defined as the fuzzy region resulting from the
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conjunctive fusion of the dilations of the right lateral ventricle using fuzzy struc-
turing elements expressing the semantics of each of these relations. The applica-
tion domain is here very important, since this semantics highly depends on it.
It is clear for instance that the semantics of close to is not the same for brain
structures or for stars. This is actually encoded in the parameters of the mem-
bership functions that define the relations, which can be learned from a data
base of images [52]. Within the obtained restricted search region, a precise seg-
mentation can be performed, for instance using deformable models integrating
spatial relations in the energy functional [51]. The order according to which the
structures are processed can also be learned, as proposed in [53,54].

In global approaches [55], several objects are extracted from the image using
any segmentation method, generally providing an over-segmentation, and recog-
nition is then based on the relations existing between these segmented regions, in
comparison to those expressed in the knowledge base or ontology. Graph-based
approaches [55], or constraint satisfaction problems approaches [56] have been
developed, implementing these ideas. The ontological modeling allows, using
classification tools for instance, filtering the knowledge base so as to keep only
the objects that share some given relations. This leads to a reduced combinatorics
in the search for possible associations between image regions and structures of
the model.

Segmentation results for a few internal brain structures obtained with the
sequential approach are illustrated in Figure 2 for a normal case and in Figure 3
for two pathological cases. The original images are 3D magnetic resonance im-
ages (MRI). In the pathological cases, the tumors strongly deform the normal
structures. In such situations, methods based on shape and size fail, while using
spatial relations (with only slight adaptations) leads to correct results.

(a) (b) (c)

Fig. 2. Segmentation results for a few internal structures in a normal case [51]. (a)
Results are superimposed to a part of an axial slice of the original 3D MRI image. (b)
Segmentation of the caudate nucleus (shown on one slice) without using the spatial
relations: the contour does not match the anatomical constraints and leak outside the
structure. (c) Result using the spatial relations: anatomical knowledge is respected and
the final segmentation is now correct.
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putamen (3)

tumor (1)

thalamus (2)

caudate nucleus (3)

tumor (1)

lateral ventricles (2)

Fig. 3. Segmentation and recognition results in two pathological cases [52]. The order
in which structures are segmented is indicated into parentheses.

5 Application of Bipolar Morphology to Spatial
Reasoning

Let us provide a few examples where bipolarity occurs when dealing with spa-
tial information, in image processing or for spatial reasoning applications: when
assessing the position of an object in space, we may have positive information
expressed as a set of possible places, and negative information expressed as a
set of impossible or forbidden places (for instance because they are occupied
by other objects). As another example, let us consider spatial relations. Human
beings consider “left” and “right” as opposite relations. But this does not mean
that one of them is the negation of the other one. The semantics of “oppo-
site” captures a notion of symmetry (with respect to some axis or plane) rather
than a strict complementation. In particular, there may be positions which are
considered neither to the right nor to the left of some reference object, thus
leaving room for some indifference or neutrality. This corresponds to the idea
that the union of positive and negative information does not cover all the space.
Concerning semantics, it should be noted that a bipolar fuzzy set does not nec-
essarily represent one physical object or spatial entity, but rather more complex
information, potentially issued from different sources.

In this section, we illustrate a typical scenario showing the interest of bipolar
representations of spatial relations and of morphological operations on these
representations for spatial reasoning. An example of a brain image is shown in
Figure 4, with a few labeled structures of interest.

Let us first consider the right hemisphere (i.e. the non-pathological one). We
consider the problem of defining a region of interest for the RPU, based on a
known segmentation of RLV and RTH. An anatomical knowledge base or ontol-
ogy provides some information about the relative position of these structures: (i)
directional information: the RPU is exterior (left on the image) of the union of
RLV and RTH (positive information) and cannot be interior (negative informa-
tion); (ii) distance information: the RPU is quite close of the union of RLV and
RTH (positive information) and cannot be very far (negative information). These
pieces of information are represented in the image space based on morphological
dilations using appropriate structuring elements (representing the semantics of



Fuzzy and Bipolar Mathematical Morphology 9

RCN LCN

RPU

RTH LTH

RLV LLV

LPU

tumor

Fig. 4. A slice of a 3D MRI brain image, with a few structures: left and right lateral
ventricles (LLV and RLV), caudate nuclei (LCN and RCN), putamen (LPU and RPU)
and thalamus (LTH and RTH). A ring-shaped tumor is present in the left hemisphere
(the usual “left is right” convention is adopted for the visualization).

Fig. 5. Bipolar fuzzy representations of spatial relations with respect to RLV and RTH.
Top: positive information, bottom: negative information. From left to right: directional
relation, distance relation, conjunctive fusion. The contours of the RPU are displayed
to show the position of this structure with respect to the region of interest.

the relations) and are illustrated in Figure 5. The neutral area between positive
and negative information allows accounting for potential anatomical variability.
The conjunctive fusion of the two types of relations is computed as a conjunction
of the positive parts and a disjunction of the negative parts. As shown in the
illustrated example, the RPU is well included in the bipolar fuzzy region of in-
terest which is obtained using this procedure. This region can then be efficiently
used to drive a segmentation and recognition technique of the RPU.

Let us now consider the left hemisphere, where a ring-shaped tumor is present.
The tumor induces a deformation effect which strongly changes the shape of the
normal structures, but also their spatial relations, to a less extent. In particular
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Fig. 6. Bipolar fuzzy representations of spatial relations with respect to LLV and LTH.
From left to right: directional relation, distance relation, conjunctive fusion, Bipolar
fuzzy dilation. First line: positive parts, second line: negative parts. The contours of
the LPU are displayed to show the position of this structure.

the LPU is pushed away from the inter-hemispheric plane, and the LTH is pushed
towards the posterior part of the brain and compressed. Applying the same
procedure as for the right hemisphere does not lead to very satisfactory results
in this case (see Figure 6). The default relations are here too strict and the
resulting region of interest is not adequate: the LPU only satisfies with low
degrees the positive part of the information, while it also slightly overlaps the
negative part. In such cases, some relations (in particular metric ones) should
be considered with care. This means that they should be more permissive, so as
to include a larger area in the possible region, accounting for the deformation
induced by the tumor. This can be easily modeled by a bipolar fuzzy dilation of
the region of interest, as shown in the last column of Figure 6. Now the obtained
region is larger but includes the right area. This bipolar dilation amounts to
dilate the positive part and to erode the negative part.

Other examples are provided in [34]. Exploring further these ideas is planned
for future work.
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44. Bloch, I., Mâıtre, H., Anvari, M.: Fuzzy Adjacency between Image Objects. In-
ternational Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 5(6),
615–653 (1997)

45. Mathet, Y.: Etude de l’expression en langue de l’espace et du déplacement : analyse
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It is indisputable that mathematical structures arising around vague/ fuzzy/
non-bivalent concepts have a broad range of applications; therefore they have
been intensively investigated during the last five decades. The discipline studying
these structures is, maybe unfortunately, called Fuzzy Mathematics.

This discipline started by Zadeh’s Fuzzy Set Theory [7] (although there are
several almost forgotten predecessors) and already from its early days the role
of logic have been noticed, stressed, and studied. However, fuzzy logic as a for-
mal symbolic system (I will use the term ‘deductive fuzzy logic’ in this text) in
the spirit of other non-classical logics has been thoroughly developed only re-
cently. The paper [1] describes the deference between traditional and deductive
fuzzy logic (refining Zadeh’s original distinction between broad and narrow fuzzy
logic). Very roughly speaking: deductive fuzzy logic deals with degrees of truth
only, whereas traditional fuzzy logic speaks about also about degrees of belief,
preference, entropy, necessity, etc. The consequences of this restriction narrow
down the agenda of deductive fuzzy logic but give methodological clarity, deter-
mine the applicability scope and provide a research focus which leads to rapid
development of the theory (and hopefully of some applications soon).

There is an ongoing project of the Prague research group in fuzzy logic, di-
rected towards developing the logic-based fuzzy mathematics, i.e., an ‘alternative’
mathematics built in a formal analogy with classical mathematics, but using
deductive fuzzy logic instead of the classical logic. The core of the project is
a formulation of certain formalistic methodology (see [4]), a proposed founda-
tional theory (see [3,5]), and development of the particular disciplines of fuzzy
mathematics within the foundational theory using the formalistic methodology.
The proposed foundational theory is called Fuzzy Class Theory (FCT) and it is a
first-order theory over multi-sorted predicate fuzzy logic, with a very natural ax-
iomatic system which approximates nicely Zadeh’s original notion of fuzzy set. In
paper [4] the authors claim that the whole enterprize of Fuzzy Mathematics can
be formalized in FCT. This is still true as classical logic is formally interpretable
inside deductive fuzzy logic, however in the parts of fuzzy mathematics ‘incom-
patible’ with the requirements of deductive fuzzy logic our approach provides
(very) little added value.

An important feature of the theory is the gradedness of all defined concepts,
which makes it more genuinely fuzzy than traditional approaches. Indeed, e.g. in
the theory of fuzzy relations the majority of traditional characterizing properties,
such as reflexivity, symmetry, transitivity, and so forth, are defined in a strictly

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 14–15, 2009.
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crisp way, i.e., as properties that either hold fully or do not hold at all (the notion
of fuzzy inclusion is a notable exception; graded properties of fuzzy relations were
originally studied by Siegfried Gottwald in [6]). One may be tempted to argue
that it is somewhat peculiar to fuzzify relations by allowing intermediate degrees
of relationships, but, at the same time, to still enforce strictly crisp properties
on fuzzy relations. This particularly implies that all results are effective only if
some assumptions are fully satisfied, but say nothing at all if the assumptions
are only fulfilled to a certain degree (even if they are almost fulfilled).

In this talk I start by formulating and explaining the restrictions of the de-
ductive fuzzy logic and presenting advantages (and disadvantages) of such re-
strictions. Then I sketch the methodology and formalism of FCT and illustrate
it using simple examples from the theory of fuzzy relation (from the paper [2]).
Finally I put this approach in the context of other nonclassical-logic-based math-
ematics (intuitionistic, relevant, substructural, etc.); compare logic-based, cate-
gorial, and traditional fuzzy mathematics; and address the possible outlooks of
FCT and its role in future fuzzy mathematics.
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Formulas and valuations in boolean logic are a traditional source of examples of
“events” and “possible worlds”. However, many events of interest in everyday life
are more general than yes-no events, as described in boolean logic. Their possible out-
comes typically range over a continuous spectrum, which after a suitable normalization
can be restricted within the unit real interval [0,1].

Events and Possible Worlds from Physical Systems. States and observables of phys-
ical systems provide a very general source of continuously valued events and possi-
ble worlds. Let SYST be a “physical system”. Following [6, pp.362–369], a rigorous
account of SYST is given by its associated C∗-algebra A, with the set Asa ⊆ A of self-
adjoint elements, and the set S∗ ⊆ RAsa of real-valued normalized positive linear func-
tionals on Asa.1 For any W ∈ S∗ and X ∈ Asa the real number W (X) is the expectation
value of the observable X when SYST is prepared in mode W.

Given a set E = {X1, . . . ,Xm} of nonzero positive elements of Asa, W determines,
by normalization, the map w : E → [0,1] given by w(Xi) = w(Xi)/||Xi||, where ||Xi|| is
the norm of Xi. Intuitively, the event Xi says “the observable Xi has a high value,”
and w evaluates how true Xi is. The set W ⊆ [0,1]E of possible worlds is defined by
W = {w |W ∈ S∗}. W is a closed nonempty set in the cube [0,1]E = [0,1]n.

Coherent Bets on E and W. Having thus presented a sufficiently general framework
for the notions of “event” and “possible world”, we will now consider two abstract sets
E = {X1, . . . ,Xm} and W⊆ [0,1]{X1,...,Xm}= [0,1]n, without any reference to observables
and states of physical systems.

Suppose two players Ada (the bookmaker) and Blaise (the bettor) wager money on
the outcome of events X1, . . . ,Xm within a prescribed set W of possible worlds. By
definition, Ada’s book is a map β : E → [0,1], containing a “betting odd” β(Xi) for
each event. Blaise, who knows β, chooses a “stake” σi ∈ R for each i = 1, . . . ,m: by
definition, σi is the amount of money (measured in euro for definiteness) to be paid to
the bettor if event Xi occurs. Money transfers are oriented in such a way that “positive”
means Blaise-to-Ada. For each i = 1, . . . ,m, σi ·β(Xi) euro are paid, with the proviso
that −σi · v(Xi) euro will be paid back, in the possible world v ∈W. Any stake σi < 0
results in a sort of “reverse bet”, where the bookmaker-bettor roles are interchanged:
Ada first pays Blaise |σi| ·β(Xi) euro, and Blaise will pay back |σi| ·v(Xi) in the possible
world v.

Ada’s book β would lead her to financial disaster if Blaise could choose stakes
σ1, . . . ,σm ensuring him to win at least one million euro in every possible world. Re-
placing the word “disaster” by “incoherence”, we have the following definition:

1 SYST is said to be classical if its associated C∗-algebra is commutative.
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A map β : E → [0,1] is W-incoherent if for some σ1, . . . ,σm ∈ R we have
∑m

i=1σi · (β(Xi)− v(Xi)) < 0 for all v ∈W. Otherwise, β is W-coherent.

In the particular case when W ⊆ {0,1}E , we obtain De Finetti’s no-Dutch-Book
criterion for coherent probability assessments of yes-no events (see [3, §7, p. 308], [4,
pp. 6-7], [5, p. 87]).

The Role of Łukasiewicz Logic and MV-Algebras in [0,1]-valued probability. We
refer to [2] for background on Łukasiewicz (always propositional and infinite-valued)
logic Ł∞, and MV-algebras. We will denote by �,⊕,¬ the connectives of conjunction,
disjunction and negation. Fm is the set of all formulas whose variables are in the set
{X1, . . . ,Xm}. A (Łukasiewicz) valuation of Fm is a function v : Fm → [0,1] such that

v(¬φ) = 1−v(φ), v(φ⊕ψ) = min(1,v(φ)+v(ψ)), v(φ�ψ) = max(0,v(φ)+v(ψ)−1)

for all φ,ψ ∈ Fm. A formula is a tautology if it is satisfied by every valuation2. We say
that v satisfies a set of formulasΨ⊆ Fm if v(θ) = 1 for all θ ∈Ψ.Ψ is consistent if it is
satisfied by at least one valuation. A formula θ is consistent if so is {θ}. Two formulas
φ,ψ ∈ Fm are Ψ-equivalent if from Ψ one obtains φ↔ ψ (i.e., (¬φ⊕ψ)� (¬ψ⊕ φ))
using all tautologies and modus ponens. We denote by ψ

≡Ψ the Ψ-equivalence class of
formula ψ.

As is well known, MV-algebras stand to Ł∞ as boolean algebras stand to classical
two-valued propositional logic. Thus for instance, the set of Ψ-equivalence classes of
formulas forms the MV-algebra

L(Ψ) =
Fm

≡Ψ
=

{
φ
≡Ψ

| φ ∈ Fm

}
.

Part of the proof of the following theorem is in [11]. The rest will appear elsewhere.

Theorem 1. For any set E = {X1, . . . ,Xm} and closed nonempty set W ⊆ [0,1]E =
[0,1]{1,...,m} = [0,1]m, there is a set Θ of formulas in the variables X1, . . . ,Xm such
that W coincides with the set of restrictions to E of all valuations satisfying Θ. Fur-
ther, a map β : E → [0,1] is W-coherent iff it can be extended to a convex combi-
nation of valuations satisfying Θ iff there is a state s of L(Θ) such that β(Xi) =
s(Xi/≡Θ), for all i = 1, . . . ,m.

As the reader will recall, a state of an MV-algebra B is a map s : B → [0,1] such that
s(1) = 1 and s(x⊕y) = s(x)+s(y) whenever x�y = 0. We say that s is faithful if s(x) =
0 implies x = 0. We say that s is invariant if s(α(x)) = s(x) for every automorphism α
of B and element x ∈ B.

Under the restrictive hypothesis W ⊆ {0,1}E the above theorem boils down to De
Finetti’s well known characterization of coherent assessments of yes-no events (see [3,
pp.311-312], [4, Chapter 1], [5, pp.85-90]).

De Finetti’s theorem was extended by Paris [15] to several modal logics, by Kühr
et al., [9] to all [0,1]-valued logics whose connectives are continuous, including all

2 It is tacitly understood that all valuations and formulas are of Fm.
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finite-valued logics. In their paper [1], Aguzzoli, Gerla and Marra further extend De
Finetti’s criterion to Gödel logic [7], a logic with a discontinuous implication connec-
tive. By Theorem 1, the various kinds of “events”, “possible worlds” and “coherent
probability assessments” arising in all these logic contexts can be re-interpreted in Łu-
kasiewicz logic.

Conditionals and their Invariance. Given the universal role of Łukasiewicz logic
and MV-algebraic states for the treatment of coherent probability assessments, one is
naturally led to develop a theory of conditionals in this logic. In [12, 3.1-3.2], the present
author gave the following definition:

A conditional is a map P : θ �→ Pθ such that, for every m = 1,2, . . . and every
consistent formula θ ∈ Fm, Pθ is a state of the MV-algebra L({θ}). We say
that P is invariant if for any two consistent formulas φ ∈ Fm , ψ ∈ Fn, and
isomorphism η of L({φ}) onto L({ψ}), we have Pφ = Pψ ◦η, where ◦ denotes
composition. P is said to be faithful if so is every state Pθ.

The main result of [12] is

Theorem 2. Łukasiewicz logic Ł∞ has a faithful invariant conditional P∗.

It follows that P∗ is invariant under equivalent reformulations of the same event. In
more detail:

Corollary (a). For every formula ψ ∈ Fm let us write P∗θ(ψ) instead of P∗θ(
ψ
≡{θ}

), and

say that P∗θ(ψ) is the probability of ψ given θ. We then have

P∗ψ↔ψ(ψ) = P∗ψ↔Xm+1
(Xm+1). (1)

Proof. We assume familiarity with [12] and [2]. A rational polyhedron in [0,1]n is a
finite union of simplexes in [0,1]n, such that the coordinates of the vertices of each
simplex are rational.

Given rational polyhedra P⊆Rn and Q⊆Rm by a Z-homeomorphism we understand
a piecewise linear homeomorphism η of P onto Q such that each linear piece of both η
and η−1 has integer coefficients.

We denote by fψ the McNaughton function of ψ, (see e.g., [2, p.221]). Let the ratio-
nal polyhedron D⊆ [0,1]m+1 be defined by

D = {(x1, . . . ,xm+1) ∈ [0,1]m+1 | xm+1 = fψ(x1, . . . ,xm)}.

Up to isomorphism, the MV-algebra L({ψ↔ ψ}) of the tautology ψ↔ ψ is the
free m-generator MV-algebra Freem, i.e., (by McNaughton theorem [2, 9.1.5]) the MV-
algebra M([0,1]m) of all McNaughton functions f : [0,1]m → [0,1].

By a routine variant of [12, 2.3], the MV-algebra L({ψ↔ Xm+1}) is the MV-algebra

M(D) = {l � D | l ∈M([0,1]m+1)}

obtained by restricting to D the McNaughton functions of Freem+1 = M([0,1]m+1).
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We can safely use the identifications

ψ
≡{ψ↔ψ}

= fψ and
Xm+1

≡{Xm+1↔ψ}
= πm+1 � D, (2)

where πm+1 : [0,1]m+1 → [0,1] is the (m+ 1)th coordinate function

πm+1(x1, . . . ,xm+1) = xm+1.

In view of Theorem 2, to conclude the proof, we must only construct an isomorphism
of M([0,1]m) onto M(D) sending fψ to the coordinate function πm+1. The map

η : (x1, . . . ,xm) �→ (x1, . . . ,xm, fψ(x1, . . . ,xm))

is promptly seen to be a Z-homeomorphism of [0,1]m onto D. The inverse map projects
D onto the face of [0,1]m+1 given by xm+1 = 0. In symbols,

η−1 = (π1, . . . ,πm) � D.

The map
Ω : g ∈M(D) �→ g ◦η ∈M([0,1]m)

is a one-one homomorphism of M(D) into M([0,1]m). The map

� : h ∈M([0,1]m) �→ h ◦η−1 ∈M(D)

is a one-one homomorphism of M([0,1]m) into M(D). Trivially, these two maps are
inverse of each other, and in view of (2) we can write

� : L({ψ↔ ψ}) = M([0,1]m)∼= M(D) = L({ψ↔ Xm+1}).

The two elements ψ
≡{ψ↔ψ}

and Xm+1
≡{Xm+1↔ψ}

correspond under the isomorphism �. This

completes the proof. �
A supplementary analysis of the proof of the main theorem of [12] shows that

P∗ψ↔Xm+1
(Xm+1) = P∗ψ↔ψ(ψ) =

∫
[0,1]m

fψ. (3)

More generally, a similar argument proves:

Corollary (b). For any formula ψ and consistent formula θ we have

P∗θ(ψ) = P∗θ�(ψ↔X)(X), (4)

provided the variable X does not occur in θ and ψ.

We are now in a position to introduce a reasonable notion of independence, by saying
that a formula α is P∗-independent of (a consistent formula) θ if the probability of α
given θ coincides with the unconditional probability of α. In view of Corollary (a) we
can equivalently write

P∗θ(α) = P∗θ↔θ(α) = P∗α↔α(α) = P∗X↔α(X), (5)

where X is a fresh variable. As a consequence of Corollary (b) we have

Corollary (c). If α and θ are two formulas in disjoint sets of variables {Y1, . . . ,Ym} and
{Z1, . . . ,Zn}, and θ is consistent, then α is P∗-independent of θ.
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Concluding Remarks. For any finite set E = {X1, . . . ,Xn} whose elements are called
“events”, and closed set W ⊆ [0,1]E whose elements are called “possible worlds”, fol-
lowing De Finetti we have defined a bookmaker’s map b : E → [0,1] to be W-incoherent
if a bettor can fix (positive or negative) stakes s1, . . . ,sn ensuring him a profit of least
one million euro (equivalently, a profit > 0) in any possible world of W.

No matter the physical or logical nature of E and W, Theorem 1 shows that there is a
theory Θ in Łukasiewicz logic such that W-coherent maps coincide with restrictions to
E of states of the MV-algebra L(Θ). In particular, when W is a set of valuations in any
[0,1]-valued logic L, and E is a set of formulas in L, W-coherent maps on E can always
be interpreted in Łukasiewicz logic.

It is often claimed that De Finetti’s coherence criterion yields an axiomatic approach
to finitely additive probability measures, missing the full strength of Kolomgorov ax-
ioms. We beg to dissent: by the Kroupa-Panti theorem [8,13], in every MV-algebra
A—whence in particular in every boolean algebra— the set of (finitely additive) states
of A is in canonical one-one correspondence with the set of (countably additive) regular
Borel probability measures on the maximal spectrum of A. Thus the theory of finitely
additive measures (i.e., states) on boolean algebras has the same degree of generality as
the theory of regular Borel measures on their Stone spaces. Passing to the much larger
class of MV-algebras, Theorem 1 in combination with the Kroupa-Panti theorem shows
that De Finetti’s coherence criterion has the same degree of generality as the theory of
regular probability Borel measures on any compact space.

Theorem 2 shows that Łukasiewicz logic has a faithful invariant conditional P∗. In
Corollary (a)-(b) a new result is proved, to the effect that P∗ does not make any dis-
tinction between (i) the probability of ψ given θ, and (ii) the probability of (the event
described by) a fresh variable X given θ together with the information that X is equiv-
alent to ψ. A novel notion of independence is built on P∗, having various desirable
properties, some of which are summarized in (5) and in Corollary (c).

For further information on MV-algebraic probability theory, including other ap-
proaches to conditional probability and independence, see [14, Chapters 20-22].
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Abstract. We consider the problem of inference from multinomial data
with chances θ, subject to the a-priori information that the true parameter
vector θ belongs to a known convex polytope Θ. The proposed estimator
has the parametrized structure of the conditional-mean estimator with a
prior Dirichlet distribution, whose parameters (s, t) are suitably designed
via a dominance criterion so as to guarantee, for any θ ∈ Θ, an improve-
ment of the Mean Squared Error over the Maximum Likelihood Estimator
(MLE). The solution of this MLE-dominance problem allows us to give a
different interpretation of: (1) the several Bayesian estimators proposed in
the literature for the problem of inference from multinomial data; (2) the
Imprecise Dirichlet Model (IDM) developed by Walley [13].

1 Introduction

An important estimation problem that has been treated extensively in the lit-
erature is the problem of inference from multinomial data, as the number of
potential applications is huge. Accuracy of results relies on the quality of model
parameters. Ideally, with enough data, it is possible to learn by standard sta-
tistical analysis like maximum likelihood estimation. However, the amount of
training data may be small, for example, because of the cost of acquisition or
natural conditions. In spite of that, domain knowledge through constraints is
available in many real applications and can improve estimations.

The problem is as follows. Consider an infinite population which can be cate-
gorized in k categories or types from the set C = {c1, . . . , ck}. The proportion of
units of type cj is denoted θj and called the chance of cj . The population is thus
characterized by the vector of chances θ = [θ1, . . . , θk]′ ∈ Sθ, where Sθ = {θj :
0 ≤ θj ≤ 1 for all j and θ′1 = 1}. The observed data consist in a sample of size
N from the population, summarized by the counts n = [n1, n2, . . . , nk]′, where
nj is the number of units of type cj and n′1 = N . The chances θ are unknown
parameters and the goal is to construct an estimator θ̂ of the true chances θ, from
the observations n, that is close to θ in some sense.

A popular measure of estimator’s performance is the expected value of the
quadratic loss function which is also called Mean-Squared Error (MSE) and is
defined as

En[(θ̂ − θ)(θ̂ − θ)′] = (En[θ̂]− θ)(En[θ̂]− θ)′ + (θ̂ − En[θ̂])(θ̂ − En[θ̂])′ (1)
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where the first term of the summation is the squared-bias of the estimator
and the second term is its variance matrix. The unknown parameter vector
θ is assumed to be deterministic and, thus, the expectation is only over the
data.

With respect to the problem of inference from multinomial data, the MLE es-
timate θ̂MLE has two properties: (1) it is unbiased, which means that En[θ̂] = θ;
(2) it achieves the Cramer-Rao Lower Bound (CRLB) for unbiased estimators,
i.e. En[(θ̂MLE − θ)(θ̂MLE − θ)′] = ΣMLE , where ΣMLE is the inverse of the
Fisher information matrix. Minimum variance and unbiasedness are suitable
properties, but this does not imply that MLE always provides a small MSE, espe-
cially for small data samples. In fact, exploiting the relationship “MSE=variance
+ squared bias” and trading-off bias for variance, estimators may exist which
provide a MSE lower than the CRLB for unbiased estimators.

Ranking the estimators in terms of MSE is not obvious (the MSE depends
on the unknown θ) and an important practical question is how to decide which
estimator to use. Although in general this question is hard to answer, some
estimators may be uniformly better than others in terms of MSE. An estimator
θ̂ is said to dominate a given estimator θ̂0 on a set Θ if its MSE is never
greater than that of θ̂0 for all values of θ in Θ, and is strictly smaller for some
θ in Θ. An estimator that is not dominated by any other estimator is said to
be admissible on Θ [5]. Hence, a desirable property of an estimator is to be
admissible: otherwise it is dominated by some other estimator that have smaller
MSE for all choices of θ. It can be proved that the MLE is admissible w.r.t.
the MSE criterion [10]. However, estimators that dominate MLE may exist if a
subregion Θ ⊆ Sθ of the parameters space is considered.

In this paper, we derive a procedure for determining estimators of a particular
structure which dominates MLE on a polytopic membership set Θ. We consider
an estimator θ̂ = (n+ st)/(N + s), which has the shape of the conditional-mean
estimator obtained by assuming a prior Dirichlet distribution with parameters s
and t for θ and we design parameters s and t, based on the knowledge Θ, so as
to guarantee the MLE-dominance for the MSE. This proposal may be somehow
interpreted as an intermediate approach between Bayesian and frequentist views.
We assume that the unknown parameter θ is deterministic, which is in fact a
frequentist approach. However our estimator would yield the optimal MMSE
estimate under a Bayesian approach in the case the unknown vector θ is actually
Dirichlet distributed. This and the fact that the MLE is admissible w.r.t. the
MSE are our motivations for choosing the MSE as risk function.

The idea of estimators that dominate MLE is not new (e.g. [1,7,9,12]). A sim-
ilar approach has also been followed in [1] for the problem of estimating an un-
known parameter vector in an additive Gaussian-noise linear model by designing
an estimator which dominates the least-square estimator. To our knowledge, the
idea of designing the parameters s and t, so as to guarantee the MLE-dominance
inside Θ and analysing other approaches under this perspective have not been
explored in the literature.
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2 Inference from Multinomial Data

Consider the problem of inference from multinomial data discussed at the
beginning of Section 1. The objective is to compute an estimate of the param-
eter vector θ based on the vector of observations n. The probability of observ-
ing n, conditionally on θ, is given by the multinomial distribution: P (θ,n) =(
N
n

) k∏
j=1

θ
nj

j . The MLE can be obtained by maximizing the likelihood L(θ,n) ∝

k∏
j=1

θ
nj

j w.r.t. θ subject to the constraint θ′1 = 1, which gives: θ̂MLE = n/N .

Another approach is to assume a Dirichlet model over θ, it generates a Dirichlet
posterior density function:

p(θ|n) ∝ L(θ,n)D(s, t,θ) ∝
k∏

j=1

θ
nj+stj−1
j (2)

where D(s, t,θ) ∝
k∏

j=1
θ

stj−1
j is the prior, with s > 0, t = [t1, t2, . . . , tk]′, 0 <

t < 1 and t′1 = 1. Using the posterior expectation of θ given n as estimator,
one gets:

θ̂ := E[θ|n] =
n + st
N + s

(3)

The parameters s and t represent the a-priori information. In case no prior
information is available, the common approach is to select these parameters to
represent a non-informative prior. The most used non-informative priors select
tj = 1/k for j = 1, 2, . . . , k but differ in the choice of the value for s. Bayes and
Laplace suggest to use a uniform prior s = k, Perks [11] suggests s = 1, Jeffreys
s = k/2, and Haldane s = 0 [8].

3 MLE-Dominance

We derive a procedure for choosing the values of the parameters s and t by using
the MLE-dominance criterion. The idea is to design an estimator of structure
as Equation (3) which dominates MLE on a polytopic membership set Θ. We
choose the free parameters s and t so as to guarantee that:

En[(θ − θ̂)(θ − θ̂)′] ≤ En[(θ − θ̂MLE)(θ − θ̂MLE)′] := ΣMLE (4)

for each vector θ in the convex polytope Θ of vertices θv1 ,θv2 , . . . ,θvm , i.e.
Θ = Co{θv1 ,θv2 , . . . ,θvm} where Co{· · · } stands for convex hull. ΣMLE =
(σij) represents the covariance matrix of the MLE whose elements are σii =
θi(1 − θi)/N and σij = −θiθj/N for i, j = 1, 2, . . . , k and i 
= j. In order to
compute the expectaction on the left-side of (4), it is convenient to rewrite the
observation vector as n = Nθ + v, where v is a random vector such that

En[v] = 0, En[vv′] = N2E[(n/N − θ)(n/N − θ)′] = N2ΣMLE (5)
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where the vector of observations n is assumed to be unbiased, i.e. En[n/N−θ] =
0. The inequality (4) can be rewritten in the following way:

En[(θ − θ̂)(θ − θ̂)′] = Ev

[(
θ − Nθ + v + st

N + s

)(
θ − Nθ + v + st

N + s

)′
]

=
s2

(N + s)2
(θ − t)(θ − t)′ +

N2

(N + s)2
ΣMLE ≤ ΣMLE

⇐⇒ (θ − t)(θ − t)′ ≤ (2
s + 1

N )NΣMLE

(6)
The estimator θ̂ has a MSE lower than that of MLE for each θ ∈ Θ if s and t
are chosen to guarantee that (6) is satisfied.

If the vertices of the polytope Θ satisfy 0 < θvi < 1 for i = 1, 2, . . . ,m, then
we can derive an alternative expression for (6)1. Since NΣMLE = Λθ − θθ′,
where Λθ = diag[θ1, θ2, . . . , θk], by the matrix inversion lemma one gets

(Λθ − θθ′)−1 = Λ−1
θ + Λ−1

θ θ(1 + θ′Λ−1
θ θ)θ′Λ−1

θ = Λ−1
θ +

1
2

11′

By a property of the Schur-complement, the inequality (6) becomes

(θ − t)′(NΣMLE)−1(θ − t) ≤ (2
s + 1

N ) (7)

Manipulating the left-side, it follows

(θ − t)′(NΣMLE)−1(θ − t) = (θ − t)′(Λ−1
θ + 1

2 11′)(θ − t)

= (θ − t)′Λ−1
θ (θ − t)

=
k∑

i=1

(θi − ti)2

θi
≤ (2

s + 1
N )

(8)

Notice that to derive the previous expression it has been exploited the fact that
θ′1 = 1 and t′1 = 1. By calculating the Hessian of the left-side of (8) and

exploiting the fact that θk = 1 −
k−1∑
i=1

θi, it can be verified that such function

is convex on θ (and also on t). Therefore, (8) is satisfied for each θ ∈ Θ if the
inequality (8) holds on the vertices of the polytope Θ. Thus, the MLE-dominance
is guaranteed if s and t are chosen to satisfy the following m-inequalities

k∑
i=1

(θi
vj
− ti)2

θi
vj

≤ (2
s + 1

N ), for j = 1, 2, . . . ,m (9)

where θi
vj

denotes the i-th component of the j-th vertices.
The previous inequalities define all the values of s and t which guarantee the

MLE-dominance. However, since the MSE of the admissible estimators depends
1 The problem of having vertices on the border of the probability simplex can be

managed using (6) to define the constraints directly.
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on the true value of θ, there is no way to decide which admissible estimator is
preferable in terms of MSE and, thus, to select one value for s and t. Nevertheless,
we can define an ad-hoc criterion to choose a single value for s and t [1]:

max
s,t

s

subject to:⎧⎪⎨⎪⎩
k∑

i=1

(θi
vj
− ti)2

θi
vj

≤ (2
s + 1

N ), for j = 1, 2, . . . ,m

t ∈ Θ, t′1 = 1, s > 0

(10)

Maximizing s means minimizing the prior uncertainty on θ. Notice that, since
we know that θ ∈ Θ it is also natural to constrain t to be inside Θ. By denoting
the solution of (10) with (s0, t0), it can be noticed that any pair (s, t0) with
0 < s < s0 is also a feasible solution of (10). Furthermore, notice that the
optimal solution (s0, t0) of (10) depends on N . Given two values N1 and N2, such
that N1 ≤ N2, from the previous remarks we have s0(N2) ≤ s0(N1). Therefore,
s0(N2) is a feasible value for s for any N ≤ N2.

The dependence of s on N violates the coherence principle, as it makes the
prior information depending on the size of the data. However, taking the limit
N → ∞, the dependency on N can be removed from (10) and the resulting value
for s will still be a feasible solution for any finite value of N . Another approach is
to fix s and consider all the prior distributions defined in (9) by the inequalities
in t and deal with a set of distributions like in the IDM [13]. Coherence and set
of distributions will be discussed in Section 5.

4 Binomial Data

Consider the case where only two categories (k = 2) are distinguished. Since in
this case θ = [θ1, θ2] and θ2 = 1 − θ1, there is only one degree of freedom, i.e.
only one parameter to be estimated. It can easily be verified that the matrix-
inequality (6) is satisfied if and only if:

θ2
1(1 + 2

s + 1
N ) + θ1(−2t1 − 2

s −
1
N ) + t21 ≤ 0 (11)

Given t1 and s, this inequality must be satisfied for each θ1 ∈ Θ = [θa, θb] with
0 ≤ θa < θb ≤ 1, i.e. in the binomial case the polytope is just an interval. Because
of the convexity of the left side of (11), we can guarantee that the inequality is
satisfied for all θ1 ∈ [θa, θb] if it is satisfied in the extremes of the interval:{

θ2
a(1 + 2

s + 1
N ) + θa(−2t1 − 2

s −
1
N ) + t21 ≤ 0

θ2
b (1 + 2

s + 1
N ) + θb(−2t1 − 2

s −
1
N ) + t21 ≤ 0

(12)

The values of the parameters θa ≤ t1 ≤ θb and s > 0 which satisfy both in-
equalities in (12) define all the admissible estimators (3) which dominate MLE
in [θa, θb]. Solving the previous inequalities w.r.t t1, one gets:
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θa ≤ t1 ≤ θa +

√
αsθa(1 − θa)

θb −
√

αsθb(1− θb) ≤ t1 ≤ θb
(13)

where αs = 2
s + 1

N . If θa = 0 and θb = 1 then (13) yields that it does not exist
any value of t1 which satisfies all the inequalities and no estimator exists which
dominates MLE (apart from the obvious case s = 0 in which (3) reduces to
MLE). In general there is a feasible solution if

θb −
√

αsθb(1− θb) ≤ θa +
√

αsθa(1 − θa) (14)

By solving (14) w.r.t to s one gets:

s ≤
2N

(√
θa(1− θa) +

√
θb(1 − θb)

)2

N(θb − θa)2 −
(√

θa(1 − θa) +
√

θb(1− θb)
)2 (15)

Notice that when the denominator is not greater than zero, any value of s > 0
satisfies (14). It can be seen that both s and the inequalities on t1 depend on N .
However, since in (15) the upper bound of s is a monotone decreasing function
of N , the dependence on N can be dropped by taking the limit N → ∞ and,
thus, considering the most conservative bound

s ≤
2
(√

θa(1− θa) +
√

θb(1− θb)
)2

(θb − θa)2
(16)

For instance in the case θa = 0.1 and θb = 0.9, the previous bound states that
s ≤ 1.125. In this case, for large values of N , the right-side member of (16) and
t1 = 1/2 is the optimal solution of the problem (10).

An interesting result can be found by interpreting the dominance conditions
(12) under the point of view of the Bayesian approach in the case of the non
informative priors discussed in Section 2. Consider for the example the case
θa = ε, θb = 1 − ε with ε < 0.5. In this case, by selecting t1 = 1/2, the
inequalities in (12) are satisfied if

0.5

⎛⎜⎝1−
√√√√1− 1

1 +
2
s

+
1
N

⎞⎟⎠ ≤ ε < 0.5 (17)

The values of the true θ1 for which the MLE-dominance condition is satisfied
when N → ∞ are: Haldane (s = 0) needs 0 ≤ θ1 ≤ 1; Jeffreys (s = 0.5) needs
0.05 ≤ θ1 ≤ 0.95; Perks (s = 1) needs 0.1 ≤ θ1 ≤ 0.9; Bayes/Laplace (s = 2)
needs 0.15 ≤ θ1 ≤ 0.85.

A remark is that the length of the interval where the Bayesian estimators dom-
inate MLE decreases at the increasing of s. Thus, under the MLE-dominance
point of view, only the Haldane’s prior is really non-informative. The other
Bayesian estimators express preferences among subregions of the parameter
space and these preferences are as stronger as higher is the value of s.
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5 Imprecise Dirichlet Model

An important argument against the Bayesian approach is that, at least without
a large amount of samples, inferences depend on the value of t to be fixed in
advance, typically without having sufficient information to guide the choice. This
problem is addressed by the imprecise Dirichlet model proposed by Walley [13,14]
as a model for prior ignorance about the chances θ. It avoids unjustifiable prior
assumption by relying on the set of all Dirichlet distributions D(s, t,θ) that can
be obtained by varying the values of the vector of parameters t. In the IDM,
prior information is defined as the setM0 of all Dirichlet distributions on θ with
a fixed parameter s > 0,

M0 = {D(s, t,θ) ∀ t = [t1, t2, . . . , tk]′ s.t. 0 < tj < 1, j = 1, . . . , k, t′1 = 1}

After observing the data n, each Dirichlet distribution in the set M0 is updated
by Bayes’ theorem as in (2). Under the IDM, the posterior lower and upper
expectations are obtained by the minimization or maximization of E[θ|n] w.r.t.
t, which gives:

E[θ|n] = inf
0<t<1

n + st
N + s

=
n

N + s
, E[θ|n] = sup

0<t<1

n + st
N + s

=
n + s1
N + s

(18)

Notice that when no data are available, the lower and upper expectations reduce
to E[θ] = 0 and E[θ] = 1 which is the vacuous probability model used to encode
the initial lack of information on θ.

In the IDM, the parameter s determines how quickly upper and lower expec-
tations converge as statistical data accumulate. The value of s must not depend
on k to guarantee the representation invariance principle or the number of obser-
vations to guarantee the coherence [13,14]. An important criterion for the choice
of s is the requirement that the IDM should be cautious enough to encompass
frequentist or Bayesian alternatives, but not too cautious to avoid too weak infer-
ences. Several convincing arguments [3,4,14] lead to choosing 1 ≤ s ≤ 2. Notice
in fact that in the binomial case, Haldane (s = 0), Perks (s = 1) and uniform
(s = 2) models are encompassed by the IDM with s = 2. Similar relationships
have also been proved for other statistical tools such as frequentist p-values and
Bayesian significance levels [3,4,14].

The degree of imprecision in the IDM is defined as E[θ|n]−E[θ|n] = s/(N+s).
This is precisely the weight of (θ−t)(θ−t)′ in the MSE see Equation (6). Hence,
the degree of imprecision in the IDM specifies the trade-off between bias and
variance in the MSE.

The IDM, like the mentioned Bayesian approaches, expresses some preference
among subregions of the parameter space. Since 0 < t < 1, this preference is
due to the choice of s. In the binomial case, for the IDM MLE-dominance is
guaranteed for each value of t1 if it holds for the extreme values t1 = 0 and
t1 = 1 (because of the convexity of (11) w.r.t t1):{

θ2
1(1 + 2

s + 1
N ) + θ1(− 2

s −
1
N ) ≤ 0

θ2
1(1 + 2

s + 1
N ) + θ1(−2− 2

s −
1
N ) + 1 ≤ 0

(19)
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A value of θ1 which satisfies both the inequalities exists if:

1
1 + 2

s + 1
N

≤
2
s + 1

N

1 + 2
s + 1

N
(20)

or, equivalently, if 1 ≤ 2
s + 1

N . Dropping the dependence of N by assuming that
N → ∞, it follows that s ≤ 2. Therefore, in the IDM, s ≤ 2 is a necessary and
sufficient condition to the existence of one value of θ1 for which all the IDM
estimators dominate MLE. Still, when s = 2 only if the true value θ1 is 1/2 the
IDM dominates MLE, while for s = 1 the true value θ1 must be in [1/3, 2/3] to
have the dominance. It can be proved that, in the multinomial case, s ≤ 2 is
a necessary condition. When s is fixed, the MLE-dominance criterion proposed
on Section 3 can also be interpreted in the imprecise probability formalism.
However, IDM and the proposed approach are different. The set of distributions
considered in this paper includes all the estimators that dominate MLE. Con-
versely, the IDM considers all the estimators consistent with the near-ignorance
set of priors used to model the prior uncertainty on θ.

6 Numerical Examples

Consider a multinomial experiment with three categories. We assume that the
available information is in the form of the convex polytope Θ, shown in Figure 1
and defined by the following vertices: θv1= [0.15, 0.15, 0.7]′, θv2= [0.5, 0.15, 0.35]′,
θv3 = [0.5, 0.4, 0.1]′, θv4 = [0.4, 0.5, 0.1]′, and θv5 = [0.15, 0.5, 0.35]′. The follow-

ing estimators are compared: θ̂MLE =
n
N

, θ̂MMSEs =
n + st
N + s

,

θ̂MLEh
= arg max

θ∈Θ
θ′1=1

k∑
i=1

ni log(θi), θ̂MMSEh
=

∫
θ θ p(θ|n) U(Θ) dθ∫

θ
p(θ|n) U(Θ) dθ

Fig. 1. Graphical representation of the a-priori information on θ. The polytope Θ
(square-marked line) is plotted inside the probability simplex Sθ . The star-marked and
plus-marked lines delimitate the set of values of t which guarantee the MLE-dominance
over Θ for s = 2 and, respectively, s = 1.
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where p(θ|n) is defined by Eq. (2), and U(Θ) denotes the uniform distribution
over Θ. These estimators are respectively the MLE, the MLE-dominance esti-
mator (MMSEs), the constrainted MLE (MLEh), and the constrained Bayesian
MMSE with s = 1 (MMSEh), where the last two explicitly impose the hard
constraint θ ∈ Θ. The parameters of the MLE-dominance estimator are t =
[0.332, 0.332, 0.336]′ and s = 6.77 for N = 3, and s = 3.78 for N = 10, obtained
using the available a-priori information, as specified in (10). The estimators are
compared by evaluating the MSE via Monte Carlo simulations. More specifically,
300 vectors of parameters θ are randomly generated, uniformly over Θ, and for
each vector 1000 independent trials are run by varying the realizations of n.

The simulation results are reported in Table 1. More precisely, Table 1 reports
the MSE of each component of the parameter vector of the MLE estimator as
well as the % MSE reductions, w.r.t. the MLE estimator. Furthermore, the best-
case (θ = t) and the worst-case (average over the vertices θvi of the polytope)
are also reported; these results are labelled as best and, respectively, worst in
the table while the label rand refers to averages w.r.t randomly generated θ.

From Table 1, as expected, the MMSEh estimator provides the best results
for rand and best cases, because it exploits the constraints in a hard way [2]
(the same as the MLEh does, but it does not force the solution to be in the
border as the latter). The drawbacks are: (i) it overweights distributions that
are central to the polytope and its performance quickly degradates towards the
border; (ii) it is computationally expensive, since it requires the solution of an
integration that has no closed form, which is therefore tackled by numerical
methods. Conversely, the estimator we propose, which is the second best overall,
is much less time consuming since we have a convex quadratic programming
problem that can be solved in polynomial time. Furthermore, the solution of
this programming problem does not depend on the measurements but only on θ
and, therefore, can be calculated just once. Actually, MMSEs depends on the size
of the data N , but it could be evaluated off-line for all desired N . Moreover, this
dependency can be completely removed by taking the value of s corresponding
to N → ∞ (i.e. s = 3.18 in the example), which we call MMSEs∞ . Despite
of that, its performance is still good as it can be seen in Table 1. Finally, the
performance gain of MMSEs is specially relevant when size of the constrained
region is small compared to the variance of the MLE (this is usually the case
when the data set is small, i.e. N = 3 in the example). Figure 1 shows the set
of all values of t that satisfy the MLE-dominance criterion for N = 10 in the
s = 1 and s = 2 cases, i.e. the convex sets on t defined by (9) and 0 < t < 1. As
discussed in Section 5, given s, this convex set defines the set of all estimators
which dominate MLE on Θ. The upper and lower expectations of (3) w.r.t. the
values of the MLE-dominating t are

E[θ|n] =
n + st0
N + s

E[θ|n] =
n + st1
N + s

(21)

where t1 ≈ [0.6625, 0.6625, 0.5325]′ and t0 ≈ [0, 0, 0.0375]′ for the s = 1 case and
t1 ≈ [0.5125, 0.5125, 0.4125]′ and t0 ≈ [0.1225, 0.1225, 0.22]′ for the s = 2 case.
These estimators can be compared with those defined for the IDM in (18). In
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Table 1. Simulation results

MLE MLEh MMSEs MMSEs∞ MMSEh

ra
n
d

MSE N=3 N=10 N=3 N=10 N=3 N=10 N=3 N=10 N=3 N=10
θ̂1 0.0746 0.0221 -77% -43% -89% -47% -76% -42% -95% -89%
θ̂2 0.0743 0.0224 -77% -43% -89% -47% -76% -42% -95% -89%
θ̂3 0.0702 0.0213 -55% -23% -87% -47% -75% -42% -93% -83%

b
es

t

θ̂1 0.0740 0.0226 -77% -41% -91% -48% -77% -43% -99% -95%
θ̂2 0.0735 0.0219 -77% -41% -91% -48% -77% -43% -99% -95%
θ̂3 0.0721 0.0222 -55% -23% -91% -49% -77% -43% -96% -93%

w
o
rs

t θ̂1 0.0660 0.0199 -72% -56% -70% -38% -67% -35% -26% +5%
θ̂2 0.0654 0.0200 -72% -56% -70% -38% -67% -35% -26% +5%
θ̂3 0.0563 0.0169 -50% -35% -47% -27% -54% -26% -24% +90%

the case t is constrained to be inside the polytope, the set of MLE-dominating t
is given by the intersection of the previous set with the polytope. For instance,
when s = 1 the resulting set will be the polytope excluding the shadowed area
(which is exactly where IDM does not dominate MLE).

6.1 Learning Bayesian Networks

Bayesian networks encode joint probability distributions using a compact rep-
resentation based on a graph with nodes associated to random variables and
conditional distributions specified for variables given parents in the graph. It
can be defined by a triple (G,X ,P), where G is a directed acyclic graph with
nodes associated to variables X = {X1, . . . , Xn} (which we assume to be dis-
crete), and P is a collection of parameters p(xik|πij), with

∑
k p(xik|πij) = 1,

where xik ∈ ΩXi is a category or state of Xi and πij ∈ ×Y ∈πiΩY a complete
instantiation for the parents πi of Xi in G (j is viewed as an index for each parent
configuration). In a Bayesian network every variable is conditionally independent
of its non-descendants given its parents. Hence, the joint probability distribu-
tion is obtained by p(X ) =

∏
i p(Xi|πi). We perform parameter learning in a

Bayesian network where G is known in advance. Because of the decomposition
properties of Bayesian networks, the local distributions p(Xi|πij) ∈ P , for each
Xi and configuration πij can be learned separately using the ideas previously
discussed. Using three well known Bayesian network graphs (Asia, Insurance
and Alarm networks), we generate true parameters for the distributions in P .
Using these parameters, datasets are randomly created with distinct sizes (10,
50 and 100 observations). Furthermore, constraints are generated such that true
values certainly lie inside the constrained set (one interval constraint for each pa-
rameter). To compare the results, we work with five estimators: (unconstrained)
MLE, hard constrained MLE, constrained maximum entropy (as described in
[6]), Bayesian Dirichlet model with s = 1 and uniform t (named MMSE), and
the MLE-dominant MMSEs estimator. Note that MMSEh is not included in the
experiment because it is computationally too expensive, since there are hun-
dreds of distributions to be learned. The bars in Fig. 2 represent the average
Kullback–Leibler (KL) divergence for 30 runs of these methods. Size of data and
nodes in the networks are presented in the labels. The number of local distri-
butions is much higher, as it depends on the number of categories and states of
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Fig. 2. Comparison between Bayesian network learning ideas

the parents of each node: Asia, Insurance and Alarm have 21, 411 and 243 local
distributions, respectively. The same set of constraints and data are applied to
each method in each run. The results of MLE are not displayed because they
are more than 5 times worse than the best estimator. MMSEs achieves the best
results. It is clearly superior to MMSE and constrained MLE, and in general
better than constrained maximum entropy.

7 Conclusion

This paper addresses the problem of inference from multinomial data under
polytopic constraints on the parameter vector to be estimated, following a MLE-
dominance approach. This approach consists of designing free parameters of the
estimator so as to guarantee, for any admissible value of the unknown parameter
vector to be estimated, an improvement of the MSE w.r.t. the standard MLE
estimator. This allows us to define an objective method to choose the values
of parameters s and t of the Dirichlet in contrast to ad-hoc practices. Using
such method, we derive an estimator that is compared with existing estimators
for constrained parameters, obtaining good performance. In fact, if we consider
a trade-off between accuracy and computational time, our proposal surpasses
the other analyzed methods. It is indeed inferior to constrained minimum mean
squared error estimator (MMSEh), but the latter cannot be run in many prac-
tical situations because of its computational cost. Besides that, the proposed
estimator uses the constraints in a soft way, which makes it more robust than
hard constrained estimators (like the MMSEh) in case constraints are incorrect.

The relationship between the proposed method and the Imprecise Dirichlet
Model (IDM) are briefly discussed, but some interesting conclusions already ap-
pear. For instance, according to the MLE-dominance criterion, s shall be less
than 2 in the IDM. As future work, we intend to explore deeper connections of
our approach with the IDM, for example, the design of a minimum value of s
that guarantees MLE-dominance. As results look promising, we also intend to
apply the method to large domains where data scarceness is one of the challenges.
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Abstract. Many computational problems linked to uncertainty and
preference management can be expressed in terms of computing the
marginal(s) of a combination of a collection of valuation functions.
Shenoy and Shafer showed how such a computation can be performed
using a local computation scheme. A major strength of this work is that
it is based on an algebraic description: what is proved is the correctness
of the local computation algorithm under a few axioms on the algebraic
structure. The instantiations of the framework in practice make use of
totally ordered scales. The present paper focuses on the use of partially
ordered scales and examines how such scales can be cast in the Shafer-
Shenoy framework and thus benefit from local computation algorithms.
It also provides many examples of such scales, thus showing that each of
the algebraic structures explored here is of interest.

Keywords: Soft CSP, Dynamical programming, Valuation networks/
algebra.

1 Introduction

Many computational problems linked to reasoning under uncertainty can be ex-
pressed in terms of computing the marginal(s) of the combination of a collection
of (local) valuation functions. Shenoy and Shafer [16,15] showed how such a com-
putation can be performed using only local computation (see also, in particular,
[9]). A major strength of this work, is that it is based on an algebraic description:
what is proved is the correctness of the local computation algorithm under a few
axioms on the algebraic structure. Hence, the same algorithm may be used for
computing the projection on a given variable of a joint probability distribution
described by a Bayesian net, for making the fusion of several basic probability
assignments with Dempster’s rule of combination, for computing the degree of
consistency of a possibilistic knowledge base. The scope of Shenoy and Shafer’s
framework also encompasses several optimization problems, like the MAX CSP
problem [5] or the VCSP problem [14].

But in practice, the all the actual applications of the Shenoy-Shafer framework
rely on totally ordered scales of scoring. On the other hand, AI has witnessed the
emergence of frameworks based on partial orders. Let us for instance cite semiring
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constraint satisfaction problems [1], order of magnitude reasoning [18], or belief re-
vision [2,6]; other examples are obviously provided by multicriteria decision mak-
ing. The purpose of this paper is to show whether and how such partially ordered
problems can be cast in Shenoy and Shafer’s framework, so as to provide them
with local computation algorithms. We also give examples of preference relations
in order to show that the algebraic structures explored here are of interest.

2 Axioms for Local Computation

We recall here some basics of the Shenoy-Shafer framework [16,15,9]. Consider
a finite set X = {x1, . . . , xn} of variables, each xi ranging over a finite state
space (or “domain”) Di. DS will denote the cartesian product of the domains
of variables in S. For the sake of simplicity, considering a function f over DS

we shall extend the notation f(d) to tuples d assigning a superset of S, i.e.,
f(d) = f(d′) where d′ = proj(d, S), the projection/restriction of d to S. We also
adopt the convention that the state space for the empty set ∅ consists of a single
object ♦: D∅ = {♦}.

Given a set S ⊆ X of variables there is a set VS . The elements of VS are called
valuations and S is the scope of each σ ∈ VS—let us denote it scope(σ) = S.
V =

⋃
S⊆X VS the set of valuations. Valuations are primitives in the Shenoy-

Shafer framework and as such require no definition. They are simply entities
that can be combined and marginalized:

– The combination of two valuations σ and τ , denoted σ � τ is a valuation
whose scope is scope(σ) ∪ scope(τ).

– The marginalisation of one valuation σ over a set of variables T ⊆ scope(σ)
is a valuation whose scope is T . Let us denote it σ↓T .

Call (V ,�, ↓) a valuation algebra. A valuation network (VN) is a finite set Σ =
{τ1, . . . , τm} ⊆ V . The marginal of Σ over a subset T of X is:

(�Σ)↓T = (τ1 � . . . � τm)↓T

Bayesian nets are instances of VNs, where valuations are conditional probabil-
ity distributions, combined by the product and marginalized using summation.
These instances, among many others, satisfy the Shenoy-Shafer axioms for local
computation:

Axiom A1: If S ⊆ T ⊆ scope(σ), then ((σ)↓T )↓S = σ↓S

Axiom A2: � is associative and commutative

Axiom A3 (distributivity of ↓ over �):
If scope(σ) ⊆ T ⊆ scope(σ) ∪ scope(τ), then (σ � τ)↓T = σ � (τ)↓T∩scope(τ)

It is then shown in [16,15,9] that if the valuation algebra satisfies Axioms A1,
A2, A3, then for any valuation network over X and for any Y ⊆ X , the marginal
of the network over Y can be computed by successive variable eliminations. More
technically, given a VN network Σ, the basic procedure can be defined as:
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Elim(Σ, T ) = Σ¬T ∪ {(�ΣT )↓X\T }

where Σ¬T = {σ ∈ Σ, scope(σ) ∩ T = ∅} is the subset of valuations in Σ that
do not bear on any variable in T and ΣT = Σ \Σ¬T is the subset of valuations
that do. If Axioms A1, A2, A3, hold, then it can be proved that:

(�Σ)↓X\T = �ElimT (Σ)

So, we can go from Σ to a new set of valuations, not bearing on T , by com-
bining all the valuation that bear on T , computing its marginal over X \ T and
adding it to the set of valuations that do not bear on T . Applying principle itera-
tively w.r.t. a sequence of variables Y = (xp1xp2 . . .xpk), the algorithm computes
the marginal of the VN over X \ Y :

(�Σ)↓X\{xp1...xpk} = �Elim{xpk}(Elim{xpk−1}(. . .Elim{xp1}(Σ) . . .))

Axioms for local computation are sufficient conditions for the correctness of
the sequential elimination procedure. They also ensure the correctness of al-
gorithms of message passing in a join tree decomposition of the VN. What is
important for the purpose of the present paper, is that it is granted that when
axioms A1, A2 and A3 hold such algorithms are available.

Applications of local computation focus on the case when optimization is
made w.r.t. a total order (though see [12,10]). We will show that it applies to
many other situations, which involve only partially ordered scales.

3 Optimization in Utility Structures

3.1 Utility Structures

Let L be a scale on which alternatives, state of the world, possible choices (the
interpretation depends on the application) are scored1 and let � denote the pref-
erence relation over scores. We use notation ≺ for the associated strict preference
(a ≺ b iff a � b and not(b � a)) and ∼ for the corresponding indifference relation.
We adopt the convention that a � b means that the score a is at least as good as
the score b, i.e., we are oriented toward minimization. Each alternative d receives
a collection 〈c1(d), ..., cm(d)〉 of scores; the ci can be criteria, soft constraints,
etc. The global score of d is the aggregation of all the ci(d) according to ⊗.

Definition 1. A utility structure is a triplet 〈L,�,⊗〉 which forms an ordered
commutative monoid. Its neutral element will be denoted denoted 1.

That is to say, � is a partial order: a reflexive, anti-symmetric and transitive
relation over L (hence a ∼ b iff a = b), and L is equipped with an internal
operation ⊗ which is associative, commutative and monotonic w.r.t. � ( a �
b =⇒ a⊗ c � b ⊗ c) and such that a⊗ 1 = a for all a.

Before going in more details about the possible property of utility structures,
let us present a large class of examples that can be captured by the framework:
1 We cautiously avoid the term“(e)valuation” because of the potential confusion with

the notion of valuation used in VNs; in VNs, a valuation is not an element of a scale
L, but (often) a function taking its values in L.
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• MAX CSP and VCSP. In the MAX CSP [5] and (resp. VCSPs [14]) framework,
the aim is to find a d that minimizes the number of violated constraints (resp.
a combination, generally the sum, of the weight of the violated constraints). We
shall use L = N ∪ {+∞}. ⊗ is the addition of numbers and � = ≤. In these
examples, L is totally ordered, ⊗ admits a neutral element (0) which is the best
score is L.

• Cumulative prospect theory (CPT) is an old attempt to take into account the
positive and negative aspects of decision making [17]. In CPT, each ci evaluates
each possible decision d with a score may be either a positive real (i is in favor of
d) or a negative real (i is against decision d). The global score of d is the sum of
the positive and negative scores and should be maximized. Here, L = R∪{−∞},
⊗ is the addition of numbers and � is follows the classical comparison of reals
(a � b iff a ≥ b), since our convention minimizes while CPT maximizes. Notice
that L is totally ordered, that ⊗ admits an annihilator (−∞) and a neutral
element (0). The main difference with MAX CSP is that the neutral element
does not need to be the optimal element in L.

• Bi-attribute Pareto decision making. In many multicriteria problems one has to
simultaneously optimize several non commensurable quantities, like cost, time,
security, etc. In the problem of bi-scaled shortest path for instance [7], each edge
in a graph is labeled by a cost and a duration. The cost (resp. the duration) of
a path is the sum of the costs (resp. durations) of its edges. For these problems,
we can use L = (N ∪ {+∞}) × (N ∪ {+∞}), � being the pointwise addition
(a, b)⊗ (a′, b′) = (a + a′, b + b′). Pairs are compared according to Pareto’s rule:
(a, b) � (a, b) iff a ≤ a′ and b ≤ b′. � is a partial order, e.g., (3, 2) and (2, 3) are
incomparable.

• Order Of Magnitude (OOM) Reasoning. In the system of order of magnitude
reasoning described in [18], the elements of L are pairs 〈s, r〉 where s ∈ {+,−,±},
and r ∈ Z ∪ {∞}. The system is interpreted in terms of “order of magnitude”
values of utility, so, for example, 〈−, r〉 represents something which is negative
and has order of magnitude Kr (for a large number K). Element 〈±, r〉 arises
from the sum of 〈+, r〉 and 〈−, r〉. 〈±, r〉 can be thought of as the interval between
〈−, r〉 and 〈+, r〉, since the sum of a positive quantity of order Kr and a negative
quantity of order Kr can be either positive or negative and of any order less than
or equal to r. Let Aoom = {〈±,−∞〉} ∪ {〈s, r〉{s ∈ {+,−,±}, r ∈ Z ∪ {+∞}}.

The interpretation leads to define ⊗ by: 〈s, r〉 ⊗ 〈s′, r′〉 = 〈s, r〉 if r > r′; it is
equal to 〈s′, r′〉 if r < r′; and is equal to 〈s ∨ s′, r〉 if r = r′, where ∨ is given
by: + ∨ + = + and − ∨ − = −, and otherwise, s ∨ s′ = ±. Operation ⊗ is
commutative and associative with neutral element 〈±,∞〉. � is defined by the
following instances:2 (i) for all r and s, 〈+, r〉 � 〈−, s〉; (ii) for all s ∈ {+,−,±},
and all r, r′ with r ≥ r′: 〈+, r〉 � 〈s, r′〉 � 〈−, r〉. � is a partial order. However,
there are incomparable elements, e.g. 〈±, r〉 and 〈±, s〉 when r 
= s.
2 This definition is slightly stronger than the original one, which doesn’t allow 〈+, r〉 �
〈±, r〉 � 〈−, r〉; either order can be justified, but our choice is more discriminating.
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• Discrimax comparison. In the application described by [11] one has to satisfy
n agents, each of them expressing her preferences by weighted formulas of propo-
sitional logic. The “disutilty” of an agent is then the combination, normally the
sum (resp. the max), of those of her formulae that are not satisfied: in other
terms, L = (N ∪ {+∞})n and ⊗ is the pointwise addition (resp. maximum) of
the vectors. In this application, decision making must be fair and egalitarist. So,
the disutility of the most unsatisfied agent is minimized: for two vectors a and b,
a � b iff maxj=1,n,aj 	=bjaj < maxj=1,n,aj 	=bj bj or a = b. The restriction aj 
= bj

allows one not to consider the agents that are equally satisfied by a and b (the
comparison is made Ceteris Paribus). Hence the name “Discrimax”. Other uses
of discrimax comparison include belief revision [2] and multi criteria optimisa-
tion [8]. The preference relation is only a partial order. For instance, with two
agents, 〈0, 5〉 and 〈5, 0〉 are incomparable vectors. Both ⊗ = + and ⊗ = max are
associative, commutative, with a neutral element 〈0, . . . , 0〉, but ⊗ = + is not
monotonic. With ⊗ = max, monotonicity holds.
• Tolerant Pareto. The problem with a Pareto-based comparison is that the
preference provided is often not decisive enough. For instance the two pairs
a = (acost, atime) and b = (bcost, btime) are incomparable as soon as acost < bcost

and btime < atime, and this even if the difference between acost and bcost is much
greater than difference between btime and atime.

Consider our time/cost pair. The idea is to use indifference thresholds, say
αcost for the first dimension, and αtime for the second one. If acost+αcost < bcost,
we shall say that the cost dimension has a strong preference for a over b, and
opposes a veto to the opposite preference. Then we decide that an alternative is
better than the other iff it Pareto dominates, but with respect to the thresholds
of tolerance. Formally decide:

a ≺ b iff either

⎧⎪⎪⎨⎪⎪⎩
bcost − acost > αcost and
btime − atime ≥ −αtime; or
btime − atime > αtime and
bcost − acost ≥ −αcost

So, when one dimension strongly prefers alternative a while the other does not
oppose a veto we do not get an incomparability, like in the classical Pareto case,
but a strict preference a ≺ b. This decision rule is related to the Electre method
(see e.g. [13]). It yields a preference relation that is not complete nor transitive:
it may happen that a ≺ b and b ≺ c while a and c are not comparable (e.g.
because the time dimension that does not oppose a veto to a ≺ b nor to b ≺ c is
a vetoer for a ≺ c). Nevertheless, ≺ is acyclic.

This example cannot be cast as a utility network stricto sensus, but its closure
by transitivity can be, using pointwise addition as the combination. Let ≺∗ be
the transitive closure of ≺. It can be shown that a ≺∗ b holds if and only if
either (i) bcost−acost > 0 and btime−atime > 0, or (ii) there exists k ∈ {1, 2, . . .}
such that either (a) bcost − acost > kαcost and btime − atime ≥ −kαtime or (b)
btime − atime > kαtime and bcost − acostc ≥ −kαcost.

In this rule, the thresholds are considered as elementary units of strong pref-
erence. So, a is better than b when, going from b to a, the enhancement on
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one dimension (e.g. the cost dimension) is greater than the degradation in the
other dimension, this enhancement (resp. degradation) being evaluated on a scale
whose unit is αcost (resp. αtime).

Let us return to the algebraic framework, 〈L,� ⊗〉. Remark that in all the
problems, the worst score annihilates ⊗. Indeed, for any ordered monoid, we can
suppose without loss of generality that L contains a unique maximal (worst)
element � and a unique minimal (best) element ⊥, and that � annihilates ⊗.

– If ⊥ is the neutral element, then it holds that a � a ⊗ b. 〈L,�,⊗〉 is then
said to be negative.

– If there exists an associative and commutative operator ⊕ such that a �
b ⇐⇒ a ⊕ b = a, then we say that ⊕ represents �. It is well known that
such a ⊕ exists iff 〈L,�〉 forms a meet semilattice.

– If � is a total order this operator necessarily exists (⊕ = min).
– If ∀a, b, ∀c 
= ⊥,�, a ≺ b ⇒ a⊗ c ≺ b⊗ c then 〈L,�,⊗〉 is said to be strictly

monotonic.

Negative structures are well known in flexible constraint satisfaction. In semir-
ing CSP [1], the first two properties are assumed (semiring CSP are utility
structures where 〈L,⊗,⊕〉 is a negative commutative semiring). If the complete-
ness of � is moreover assumed, the network is a soft CSP in the sense of [3].
Max CSPs and VCSPs are instances of soft CSPs (and thus of semiring CSPs).
Pure Pareto Cost/Time problems are semiring CSPs (just set (a, b) ⊕ (c, d) =
(min(a, c),min(b, d))). Both are based on a negative structure. But there are
utility structures that cannot be captured by soft CSPs nor semiring CSPs: in
the CPT and OOM examples, ⊥ is not the neutral element; in the Tolerant
Pareto example, there exist no operator ⊕ encoding �. The reason of the last
assertion is that in these two cases, � is not a meet semilattice. Intuitively, in
these cases, there may be several candidates for a⊕ b.

3.2 Optimisation in Utility Networks

Let us now use utility structure in combinatorial optimisation problems, thus
defining utility networks:

Definition 2. Given a utility structure 〈L,�,⊗〉 and a set X of variables:
– A local function is a function from the domain DS of some S ⊆ X into L.
– A utility network C is a set of local functions.

Definition 3. Given a utility network C on 〈L,�,⊗〉, the global score of d is
scoreC(d) =

⊗
ci∈C ci(d).

We shall also write Scores(C) = {scoreC(d) : d ∈ DX}.

When the scale is totally ordered, as for CPT or VCSP, the usual optimization
request is to compute the minimal value for scoreC(d) (generally, together with
the d leading to this score). When � is partial, there may be several optimal
scores that are pairwise incomparable.
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Definition 4. d ∈ DX is an optimal solution for (C) if there is no d′ in DX

such that scoreC(d′) ≺ scoreC(d).
a is an optimal score for C if a = scoreC(d) for some optimal solution d.

For partial order � and any A ⊆ L, let us denote Kernel�(A) (the kernel of A)
as the set of �-minimal elements of A, i.e., the set of elements a ∈ A such that
there exists no b ∈ A with b ≺ a. It is easy to see that the set of optimal scores
is the Kernel of Scores(C) w.r.t. �:

Proposition 1. a ∈ Kernel�(Scores(C)) iff a is an optimal score for C.
So, if � is a total order, Kernel�(Scores(C)) is the singleton set containing the
optimal score for C.

When compared to soft CSPs (resp. semiring CSPs), our utility networks re-
lax the assumption of � being a total order (resp. a semilattice) as well as the
requirement about the neutral element. However, this does not increase the com-
plexity of the problem. Let L = 〈L,�,⊗〉 be a utility structure. We consider the
following two problems:

[OPTL]: Given a network C built on utility structure L and a ∈ L, does there
exist an assignment d such that scoreC(d) ≺ a.

[FULLOPTL]: Given a network C built on utility structure L, and given H ⊆ L,
does there exist an assignment d such that ∃a ∈ H, scoreC(d) ≺ a.

There problems are easily seen to be in NP. Furthermore they are NP-hard
under very weak assumptions, as shown by the following result which is similar
to Proposition 5 of [4].

Proposition 2. Let L = 〈L,�,⊗〉 be a utility structure. Suppose that testing
a � b is polynomial, that computing the combination of a multiset of elements
of L is polynomial, and that L contains some element a such that a � 1. Then
OPTL and FULLOPTL are NP-complete.

So, the optimization problem in its simple version (find an element of the
Kernel) or its full version (find the Kernel) is not harder in the case of a par-
tially ordered scale than in the case of a totally ordered one. Branch and Bound
algorithms can always be used for computing a single optimal solution or even
for computing the Kernel. But this analysis is somewhat biased, since the size
of the Kernel is theoretically large. In the worst case, it is equal to the width of
�. The width of the Pareto comparison, for instance, is exponential, hence the
weakness of the rule; the width of the OOM rule, on the contrary, is limited by
the number of levels in the scale.

4 Casting Utility Networks in the Local Computation
Scheme

In the following, we focus on the ways of embedding utility networks into Shenoy
and Shafer’s framework in order to benefit from the local computation machinery.
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First, we show that a direct encoding of the utility structure is inadequate. Two
alternative ways are then investigated: the use of a a refinement of the original
preference order (this provides one of the optimal scores, provided that such a
refinement exists) and the use of a set encoding of the utility structure (this is
always possible and provides all the the optimal scores).

4.1 Direct Encoding

Utility networks can be simply cast as a problem of combination of valuations,
letting V =

⋃
S⊆X{f : DS �→ L} and defining � in a pointwise fashion:

Definition 5. Let 〈L,�,⊗〉 be a utility structure and σ, τ two functions for a
subset of X to L. For any d ∈ Dscope(σ)∪scope(τ), define (τ �σ)(d) = τ(d)⊗σ(d)

Then the global score function is simply the combination of the ci in C.

Proposition 3. For any utility network C over 〈L,�,⊗〉, Score = �ci∈Cci.

Also, � satisfies axiom A2 iff ⊗ is associative and commutative, which gives a
fundamental justification for having⊗ associative and commutative in preference
structures. Now, the difficulties arise with the marginalisation operator. The only
trivial case is when � is totally ordered. Then the min operator is well defined
and we can set

σ↓T (d) = mind′∈DS ,d=proj(d′,T )σ(d′)

This definition ensures the satisfaction of A1 and A3, and that for any C built
on 〈L,�,⊗〉, (�c∈Cc)↓∅ is the optimal score for C. We can consider using the
same technique there exists an operator ⊕ such that a � b ⇐⇒ a ⊕ b = a
and 〈L,⊗,⊕〉 is a semiring. It is always possible to define the marginalisation
operator:

Definition 6. If there exists an operator ⊕ such as a � b ⇐⇒ a⊕ b = a and
〈L,⊗,⊕〉 is a semiring, let us define ↓ as:

∀σ, d : σ↓T (d) =
⊕

d′∈DS ,d=proj(d′,T ) σ(d′).

Proposition 4. Axioms A1, A2 and A3 are satisfied by � and ⊕ as defined in
Definitions 5 and 6.

See [10], Theorem 2. The problem is that ⊕ and ↓ are not faithful to the notion
of optimality in L. First of all because there may be more than one score in
the kernel. Secondly, and maybe more importantly, because it may happen the
score computed by this marginalisation is not achievable: (�c∈Cc)↓∅ does not
necessarily belong to the kernel at all. More precisely, it holds that:

Proposition 5. Given a utility structure 〈L,�,⊗〉, and if � and ↓ are defined
according to Definitions 5, the following assertions are equivalent:

– ∀C, (�c∈Cc)↓∅ ∈ Kernel�(Scores(C))
– � is a total order.
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What local computation computes with this direct encoding is actually a
(greatest) lower bound of the Kernel:

Proposition 6. If � and ↓ are defined according to Definitions 5 and 6, then
∀a ∈ Kernel�(Scores(C)), (�ci∈Cci)↓∅ � a.

But once again, it may happen that this score does not belong to the kernel.
Proposition 5 is a rather negative result. A variable elimination approach is
indeed potentially exponential in time and space. It may be worthwhile using it
if it were providing the optimal score. But the computational cost is too high
for just an approximation of the result. We shall circumvent the difficulty, by
working with another comparator. The first solution is to simply refine �.

4.2 Refining �

A classical approach in Pareto-based multicriteria optimisation problems is to
optimize a linear combination of the criteria. The important idea here is that
one optimizes according to a new comparator, say �, such that a � b implies
a � b: if a is preferred to b according to the original relation, then it is still the
case with the new one. But � can rank scores that are incomparable w.r.t. �.
Such a relation is called a refinement of the original relation.

Definition 7. � refines � if and only if a � b implies a � b.

In the Cost/Time Pareto case, we shall decide a � b iff acost + β . atime ≤
bcost + β . btime. � is complete and if β is high enough, there are no ties, i.e. �

is a total order.
Optimizing with respect to a refinement leads to solutions that are optimal

with respect to the original relation. More precisely:

Proposition 7. If � refines �, then whatever A, Kernel�(A) ⊆ Kernel�(A).

Now, if there exists a totally ordered refinement � of � such that < L,�,⊗ >
is a monotonic utility structure, it is then possible to define ⊕ as the min of two
scores according to �. Then Definitions 5 and 6 can be applied from < L,�,⊗ >
and Axioms A1, A2 and A3 are satisfied, thanks to Proposition 4.

Like the approach described in Section 4.1, the present one provides the user
with a unique score among the optimal ones, but this one has the advantage of
being reached by one of the optimal solutions.

Unfortunately, such a totally ordered refinement does not necessarily exist.
Consider for instance the case where L is the set of integers, ⊗ = × and any
� making 〈L,�,⊗〉 a utility structure (e.g., a � b ⇐⇒ a = b). Since �
is total, we have either 1 � −1 or −1 � 1. 1 � −1 implies by monotonicity
1⊗−1 � −1⊗−1, and so −1 � 1. Similarly, −1 � 1 implies 1 � −1, so in either
case we have 1 � −1 � 1, contradicting antisymmetry. The following result gives
sufficient conditions for an appropriate refinement to exist. (a1 is defined to be
a, and, for k ≥ 1, ak+1 = ak ⊗ a.)
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Theorem 1. Let 〈L,�,⊗〉 be a utility structure with unit element 1, which also
satisfies the following two properties:

(i) for all a, b ∈ L with a 
= b and all k > 0 we have ak 
= bk;
(ii) a⊗ c � b⊗ c ⇒ a � b for all a, b, c ∈ L.

Then there exists a total order � on L extending � and such that for all a, b, c ∈
L, a⊗ c� b⊗ c ⇐⇒ a� b, and so, in particular, 〈L,�,⊗〉 is a utility structure.

4.3 Set Encoding

There is a definitive way of using Shafer and Shenoy’s framework to optimize
over a utility structure. The idea is to move from L to 2L, the set of subsets of L.
A score can then be a set of scores. Each ci provides a singleton, nothing is really
changed from this point of view. What changes, is the ability of computing a
“min”: when a and b are not comparable, we keep both when marginalizing. This
transformation has been used by Rollon and Larrosa [12] in problems of multiob-
jective optimization problems based on a Pareto comparison. We show here that
algebraic utility networks are rich enough to use this kind of transformation.

More formally, let L = {A ⊆ L,A 
= ∅, s.t. A = Kernel�(A)}. Notice that
a singleton is its own kernel, thus belongs to L and that L is stable w.r.t. the
kernel based union : for any A,B ∈ L,Kernel�(A ∪B) ∈ L.

For any constraint c, let c be the constraint taking it scores in L defined by:
c(d) = {c(d)} and denote C = {c : c ∈ C} the transformation of C by this
“singletonization”. Let us now define an operator ⊕s between sets of scores:

Definition 8. For all non-empty subsets A and B of L, define: A ⊕s B =
Kernel�(A ∪B).

The operation of aggregation now has to be able to handle sets of scores.

Definition 9. ∀A,B ⊆ L,A⊗s B = Kernel({a⊗ b, a ∈ A, b ∈ B}).

Proposition 8. 〈L,⊗s,⊕s〉 is a (commutative) semiring.

Proposition 4 then implies:

Proposition 9. Axioms A1, A2 and A3 are satisfied by � and ↓ as defined in
Definitions 5 and 6 from the set operations ⊗s and ⊕s provided by Definitions
8 and 9.

The following is the key result that shows that the set of optimal elements
Kernel�(Scores(C)) can be expressed as the projection of a combination, which
can be computed using local computation because of Proposition 9.

Proposition 10. (�c∈Cc)↓∅ = Kernel�(Scores(C)).
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A direct consequence of these propositions is that local computation can be
used to compute the set of optimal values of any utility network, i.e., variable
elimination is possible for any utility network.

Now, the theoretical application of local computation must not overshadow its
practical range of application. It is known that variable elimination is in the worst
case exponential w.r.t. the treewidth of the constraint graph. This is the case if
we consider that size of the score sets is 1. Depending on how discriminating � is,
we may get a larger score set at some point in the computation. The worst case
complexity of variable elimination, in time and space, must thus be multiplied
by the size of the largest subset of L that contains elements that are pointwisely
incomparable with respect to �. Mathematically, this number is known as the
width of �. It is relatively small for some of our examples:

– Its value is 1, obviously, for the total orders (Max CSP and CPT);
– For Pareto comparison on n criteria, the width is exponentially large in the

number of criteria. This is an additional reason to prefer refinements when
meaningful.

– For the OOM case, the largest kernel is {α±
1 , . . . , α±

k }, {α1, . . . , αk} being
the set of possible values for the order of magnitude — typically, reduced to
a small selection of qualitative values: “null”, negligible”, “weak”, “signifi-
cant”, “high”, “very high”.

In practice the width of the order can be a minor issue in comparison to the
original complexity of the variable elimination procedure, which is exponential
in the treewidth of the elimination sequence. If variable elimination is affordable,
it may work well over partially ordered scales.

5 Conclusion and Perspectives

This paper mainly focused on the ways of embedding utility networks into Shenoy
and Shafer’s framework. More precisely, we have shown that (i) a direct encoding
is not always sound w.r.t. optimality, (ii) the definition of a refinement, widely
used in multi criteria optimization, can be applied in certain cases (though not
always); (iii) it always possible to benefit from the local computation machinery
by using a set encoding.

But as it is the case for the tolerant Pareto example, there are meaningful
structures of preferences that are not captured by utility networks. Other ex-
amples include preorders and semiorders, that allow richer indifference relations.
Further research will be developed around the algebraic study of such structures.
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Abstract. The main goal of this paper is to describe an architecture for solving 
large general hybrid Bayesian networks (BNs) with deterministic variables. In 
the presence of deterministic variables, we have to deal with non-existence of 
joint densities. We represent deterministic conditional distributions using Dirac 
delta functions. Using the properties of Dirac delta functions, we can deal with 
a large class of deterministic functions. The architecture we develop is an ex-
tension of the Shenoy-Shafer architecture for discrete BNs. We illustrate the ar-
chitecture with some small illustrative examples. 

Keywords: Hybrid Bayesian networks, deterministic variables, Dirac delta 
functions, Shenoy-Shafer architecture. 

1   Introduction 

Bayesian networks (BNs) and influence diagrams (IDs) were invented in the  
mid 1980s (see e.g., [19, 9]) to represent and reason with large multivariate discrete 
probability models and decision problems, respectively. Several efficient algorithms 
exist to compute exact marginals of posterior distributions for discrete BNs (see e.g., 
[13, 27]), and to solve discrete influence diagrams exactly (see e.g., [18, 22, 24]). 

The state of the art exact algorithm for mixtures of Gaussians hybrid BNs is the 
Lauritzen-Jensen [14] algorithm. This requires the conditional distributions of con-
tinuous variables to be conditional linear Gaussians (CLG), and that discrete variables 
do not have continuous parents. 

If a BN has discrete variables with continuous parents, Murphy [17] uses a varia-
tional approach to approximate the product of the potentials associated with a discrete 
variable and its parents with a CLG. Lerner [15] uses a numerical integration tech-
nique called Gaussian quadrature to approximate non-CLG distributions with CLG, 
and this same technique can be used to approximate the product of potentials associ-
ated with a discrete variable and its continuous parents. Murphy’s and Lerner’s ap-
proach is then embedded in the Lauritzen-Jensen [14] algorithm to solve the resulting 
mixtures of Gaussians BN. Shenoy [26] proposes approximating non-CLG distribu-
tions by mixtures of Gaussians using a nonlinear optimization technique, and using 
arc reversals to ensure discrete variables do not have continuous parents. The result-
ing mixture of Gaussians BN is then solved using Lauritzen-Jensen [14] algorithm. 
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Moral et al. [16] proposes approximating probability density functions (PDFs) by 
mixtures of truncated exponentials (MTE), which are easy to integrate in closed form. 
Since the family of MTE is closed under combination and marginalization, the 
Shenoy-Shafer [27] architecture can be used to solve the MTE BN. Cobb et al. [5] 
proposes using a non-linear optimization technique for finding MTE approximation 
for the many commonly used PDFs. Cobb and Shenoy [2, 3] extend this approach to 
BNs with linear and non-linear deterministic variables. In the latter case, they ap-
proximate non-linear deterministic functions by piecewise linear ones. 

Shenoy and West [29] propose mixtures of polynomials (MOP) to approximate 
PDFs. Like MTE, MOP are easy to integrate, and are closed under combination and 
marginalization. Unlike MTE, they can be easily found using the Taylor series expan-
sion of differentiable functions, and they are closed under a larger family of determi-
nistic functions than MTE, which are closed only for linear functions. 

For Bayesian decision problems, Kenley [11] (see also [23]) describes the repre-
sentation and solution of Gaussian IDs that include continuous chance variables with 
CLG distributions. Poland [20] extends Gaussian IDs to mixtures of Gaussians IDs. 
Thus, continuous chance variables can have any distributions, and these are approxi-
mated by mixtures of Gaussians. Cobb and Shenoy [4] extend MTE BNs to MTE IDs 
for the special case where all decision variables are discrete. 

In this paper, we describe a generalization of the Shenoy-Shafer architecture for 
discrete BNs so that it applies to hybrid BNs with deterministic variables. The func-
tions associated with deterministic variables do not have to be linear (as in the CLG 
case) or even invertible. We use Dirac delta functions to represent such functions and 
also for observations of continuous variables. We use mixed potentials to keep track 
of the nature of potentials (discrete and continuous). We define combination and mar-
ginalization of mixed potentials. Finally, we illustrate our architecture by solving 
some small examples that include non-linear, non-invertible deterministic variables. 

An outline of the remainder of the paper is as follows. In Section 2, we describe 
our architecture for making inferences in hybrid BNs with deterministic variables. 
This is the main contribution of this paper. In Section 3, we solve three small exam-
ples to illustrate the architecture. In Section 4, we end with a summary and discussion. 

2   The Extended Shenoy-Shafer Architecture 

In this section, we describe the extended Shenoy-Shafer architecture for representing 
and solving hybrid BNs with deterministic variables. The architecture and notation is 
adapted from Cinicioglu and Shenoy [1], and Cobb and Shenoy [2]. 
 
Variables and States. We are concerned with a finite set V of variables. Each vari-
able X ∈ V is associated with a set ΩX of its possible states. If ΩX is a finite set or 
countably infinite, we say X is discrete, otherwise X is continuous. We will assume 
that the state space of continuous variables is the set of real numbers (or some subset 
of it), and that the state space of discrete variables is a set of symbols (not necessarily 
real numbers). If r ⊆ V, r ≠ ∅, then Ωr = ×{ΩX | X ∈ r}. If r = ∅, we will adopt the 

convention that Ω∅ = {♦}. If r ∈ Ωr, s ∈ Ωs, and r∩s = ∅, then (r, s) ∈ Ωr∪s. There-
fore, (r, ♦) = r. 
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Projection of States. Suppose r ∈ Ωr, and suppose s ⊆ r. Then the projection of r to 

s, denoted by r↓s, is the state of s obtained from r by dropping states of r \ s. Thus, 
(w, x, y, z)↓{W, X} = (w, x), where w ∈ ΩW, and x ∈ ΩX. If s = r, then r↓s = r. If s = ∅, 

then r↓s = ♦. 
In a BN, each variable has a conditional distribution function for each state of its 

parents. A conditional distribution function associated with a continuous variable is 
said to be deterministic if the variances (for each state of its parents) are zeros. For 
simplicity, henceforth, we will refer to continuous variables with non-deterministic 
conditionals as continuous, and continuous variables with deterministic conditionals 
as deterministic. In a BN, discrete variables are denoted by rectangular shaped nodes, 
continuous variables by oval shaped nodes, and deterministic variables by oval nodes 
with a double border. 

 

Discrete Potentials. In a BN, the conditional probability functions associated with the 
variable are represented by functions called potentials. If A is discrete, it is associated 
with conditional probability mass functions, one for each state of its parents. The 
conditional probability mass functions are represented by functions called discrete 
potentials. Suppose r ⊆ V is such that it contains a discrete variable. A discrete poten-
tial α for r is a function α: Ωr → [0, 1]. The values of discrete potentials are prob-

abilities. We will sometimes write the range of α as [0, 1](m) to denote that the values 
in [0, 1] are probability masses. 

Although the domain of the function α is Ωr, for simplicity, we will refer to r as 

the domain of α. Thus, the domain of a potential representing the conditional prob-
ability function associated with some variable X in a BN is always the set {X}∪pa(X), 
where pa(X) denotes the set of parents of X in the BN graph. 
 

Density Potentials. If Z is continuous, then it is associated with a density potential. 
Suppose r ⊆ V is such that it contains a continuous variable. A density potential ζ for 

r is a function ζ: Ωr → R+, where R+ is the set of non-negative real numbers. The 

values of density potentials are probability densities. We will sometimes write the 

range of ζ as R+(d) to denote that the values in R+ are densities. 

Dirac Delta Functions. δ: R → R+(d) is called a Dirac delta function if δ(x) = 0 if 

x ≠ 0, and ∫ δ(x) dx = 1. Whenever the limits of integration of an integral are not speci-
fied, the entire range (−∞, ∞) is to be understood. δ is not a proper function since the 
value of the function at 0 doesn’t exist, i.e., δ(0) is not finite. It can be regarded as a 
limit of a certain sequence of functions (such as, e.g., the Gaussian density function 
with mean 0 and variance σ2 in the limit as σ → 0). However, it can be used as if it 
were a proper function for practically all our purposes without getting incorrect re-
sults. It was first defined by Dirac [6]. 

As defined above, the value δ(0) is undefined, i.e., δ(0) = ∞, when considered as den-
sity. We argue that we can interpret the value δ(0) as probability 1. Consider the normal 
PDF with mean 0 and variance σ2. Its moment generating function (MGF) is M(t) = 
eσ2t. In the limit as σ → 0, M(t) = 1. Now, M(t) = 1 is the MGF of the distribution X = 0 
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with probability 1. Therefore, we can interpret the value δ(0) as probability 1. This is 
strictly for interpretation only. 

Some basic properties of the Dirac delta function are as follows [6, 7, 8, 10, 21, 12]. 

(i) If f(x) is any function that is continuous in the neighborhood of a, then 
f(x) δ(x − a) = f(a) δ(x − a), and ∫ f(x) δ(x − a) dx = f(a). 

(ii) ∫ δ(x − h(u, v)) δ(y − g(v, w, x))  dx = δ(y − g(v,  w,  h(u,  v))). This follows from (i). 
(iii) If g(x) has real (non-complex) zeros at a1, …, an, and is differentiable at these 

points, and g′(ai) ≠ 0 for i = 1, …, n, then δ(g(x)) = Σi δ(x − ai)/|g′(ai)|. For ex-

ample, δ(ax) = δ(x)/|a|, if a ≠ 0. Therefore, δ(−x) = δ(x). 
(iv) Suppose continuous variable X has PDF fX(x) and Y = g(X). Then Y has PDF 

fY(y) = ∫ fX(x) δ(y − g(x)) dx. The function g does not have to be invertible. 

A more extensive list of properties of the Dirac delta function that is relevant for 
uncertain reasoning is stated in [1]. 

 

Dirac Potentials. Deterministic variables have conditional distributions containing 
functions. We will represent such functions by Dirac potentials. Suppose x = r∪s is a 
set of variables containing some discrete variables r and some continuous variables s. 

We assume s ≠ ∅. A Dirac potential ξ for x is a function ξ: Ωx → R+(d) such that ξ(r, s) 

is of the form Σ{pr,i δ(z − gr,i(s↓(s\{Z}))) | i = 1, …, n, and r ∈ Ωr}, where s ∈ Ωs, Z ∈ s 

is a continuous or deterministic variable, z ∈ ΩZ, δ(z − gr,i(s↓(s\{Z}))) are Dirac delta 
functions and pr,i are probabilities for all i = 1, …, n, and r ∈ Ωr, and n is a positive 

integer. Here, we are assuming that Z is a weighted sum of functions gr,i(s↓(s\{Z})) of the 
other continuous variables in s, weighted by pr,i, and that the nature of the functions and 
weights may depend on r ∈ Ωr, and/or on some latent index i. 

Suppose X is a deterministic variable with continuous parent Z, and suppose that 
the deterministic relationship is X = Z2. This conditional distribution is represented by 
the Dirac potential ξ(z, x) = δ(x − z2) for {Z, X}. In this case, n = 1, and r = ∅. 

A more general example of a Dirac potential for {Z, X} is ξ(z, x) = 
(½) δ(x − z) + (½) δ(x − 1). Here, X is a continuous variable with continuous parent Z. 
As argued before, we can interpret the value ξ(x, x) as ½(m), and the value ξ(1, x) as 
½(m). All other values are equal to zero. The conditional distribution of X is as fol-
lows: X = Z with probability ½, and X = 1 with probability ½. Notice that X is not 
deterministic since the variances of its conditional distributions are not zeros. 
 

Continuous Potentials. Both density and Dirac potentials are special instances of a 
broader class of potentials called continuous potentials. Suppose x ⊆ V is such that it 
contains a continuous or deterministic variable. Then a continuous potential ξ for x is a 
function ξ: Ωx → R+(d). For example, consider a continuous variable X with a mixed 
distribution: a probability of 0.5 at X = 1, and a probability density of 0.5 f, where f is a 
PDF. This mixed distribution can be represented by a continuous potential ξ for {X} as 
follows: ξ(x) = 0.5 δ(x − 1) + 0.5 f(x). Notice that ∫ ξ(x) dx = 0.5 ∫ δ(x − 1) dx + 
0.5∫ f(x) dx = 0.5 + 0.5 = 1. 
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Consider the BN in Fig. 1. A is discrete (with two states, a1 and a2), Z is continu-
ous, and X is deterministic. Let α denote the discrete potential for {A}. Then α(a1) = 
0.5, α(a2) = 0.5. Let ζ denote the density potential for {Z}. Then ζ(z) = f(z). Let ξ 
denote the Dirac potential for {A, Z, X}. Then ξ(a1, z, x) = δ(x − z), and ξ(a2, z, x) = 

δ(x − 1). 

Z

X = Z if A = a1
X = 1 if A = a2

Z ~ f (z)
P(a1) = 0.5
P(a2) = 0.5

X

A

 

Fig. 1. A hybrid BN with a discrete, a continuous, and a deterministic variable 

 

Mixed Potentials. In reasoning with hybrid models, we need to define mixed poten-
tials. A mixed potential has two parts, the first part is a discrete potential and the sec-
ond part is a continuous potential. Formally, suppose α is a discrete potential for r. 
Then a mixed potential representation of α is μ1 = (α, ι) for r, where ι denotes the 

identity potential for the empty set, ι(♦) = 1. Suppose ζ is a continuous potential for s. 
Then, a mixed potential representation of ζ is μ2 = (ι, ζ) for s. Mixed potentials can 
have non-vacuous discrete and continuous parts. Thus μ3 = (α, ζ) is a mixed potential 
for r∪s. Such a mixed potential would be the result of combining μ1 and μ2, which 
we will define next. The main idea behind mixed potentials is to represent the nature 
(discrete or continuous) of potentials. 
 

Combination of Potentials. Suppose α is a discrete or continuous potential for some 
subset a of variables and β is a discrete or continuous potential for b. Then the combi-
nation of α and β, denoted by α⊗β, is the potential for a∪b obtained from α and β by 
pointwise multiplication, i.e.,  

(α⊗β)(x) = α(x↓a) β(x↓b) for all x ∈ Ωa∪b.                             (2.1) 

If α and β are both discrete potentials, then α⊗β is a discrete potential, and if α and 
β are both continuous potentials, then α⊗β is a continuous potential. The definition of 
combination in (2.1) is valid also if α is discrete and β is continuous and vice-versa, and 
will be used when we define marginalization of mixed potentials. However, the nature 
of the potential α⊗β when α is discrete and β is continuous (or vice-versa) will not arise 
in the combination operation since we will used mixed potentials to represent the poten-
tials, and as we will see, combination of mixed potentials avoids such combinations. 

The identity potential ιr for r has the property that given any potential ξ for s ⊇ r, 

ξ⊗ιr = ξ. If r = ∅, then we will let ι denote ι∅. 
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Combination of Mixed Potentials. Suppose μ1 = (α1, ζ1), and μ2 = (α2, ζ2) are two 
mixed potentials with discrete parts α1 for r1 and α2 for r2, respectively, and continu-
ous parts ζ1 for s1 and ζ2 for s2, respectively. Then, the combination μ1⊗μ2 is a 
mixed potential for r1∪s1∪r2∪s2 given by 

μ1⊗μ2  = (α1⊗α2, ζ1⊗ζ2).                                             (2.2) 

Since α1⊗α2 is a discrete potential and ζ1⊗ζ2 is a continuous potential, the defini-
tion of combination of mixed potentials in (2.2) is consistent with the definition of 
mixed potentials. 

If μ1 = (α, ι) represents the discrete potential α for r, and μ2 = (ι, ζ) represents the 
continuous potential for s, then μ1⊗μ2 = (α, ζ) is a mixed potential for r∪s. 

Since combination is pointwise multiplication, and multiplication is commutative, 
combination of potentials (discrete or continuous) is commutative (α⊗β = β⊗α) and 
associative ((α⊗β)⊗γ = α⊗(β⊗γ)). Since the combination of mixed potentials is 
defined in terms of combination of discrete and continuous potentials, each of which 
is commutative and associative, combination of mixed potentials is also commutative 
and associative. 
 

Marginalization of Potentials. The definition of marginalization depends on whether 
the variable being marginalized is discrete or continuous. We marginalize discrete 
variables by addition, and continuous variables by integration. Integration of poten-
tials containing Dirac delta functions is done using the properties of Dirac delta func-
tions. Also, after marginalization, the nature of a potential could change, e.g., from 
continuous to discrete (if the domain of the marginalized potential contains only dis-
crete variables) and from discrete to continuous (if the domain of the marginalized 
potential contains only continuous variables). We will make this more precise when 
we define marginalization of mixed potentials. 

Suppose α is a discrete or continuous potential for a, and suppose X is a discrete 
variable in a. Then the marginal of α by deleting X, denoted by α−X, is the potential 
for a\{X} obtained from α by addition over the states of X, i.e.,  

α−X(y) = Σ{α(x, y) | x ∈ ΩX} for all y ∈ Ωa\{X}.                       (2.3) 

If X is a continuous variable in a, then the marginal of α by deleting X is obtained 
by integration over the state space of X, i.e., 

α−X(y) = ∫ α(x, y) dx for all y ∈ Ωa\{X}.                              (2.4) 

If α contains Dirac delta functions, then we have to use the properties of Dirac 
delta functions in doing the integration. 

If ξ is a discrete or continuous potential for {X}∪pa(X) representing the condi-
tional distribution for X in a BN, then ξ−X is an identity potential for pa(A). 

If we marginalize a discrete or continuous potential by deleting two (or more) vari-
ables from its domain, then the order in which the variables are deleted does not mat-
ter, i.e., (α−A)−B = (α−B)−A = α−{A, B}. 



52 P.P. Shenoy and J.C. West 

If α is a discrete or continuous potential for a, β is a discrete or continuous poten-
tial for b, A ∈ a, and A ∉ b, then (α⊗β)−A = (α−A)⊗β. This is a key property of com-
bination and marginalization that allows local computation [Shenoy and Shafer 1990]. 
We call this property local computation. 
 

Marginalization of Mixed Potentials. Mixed potentials allow us to represent the 
nature of potentials, and marginalization of mixed potentials allows us to represent the 
nature of the marginal. Suppose μ = (α, ζ) is a mixed potential for r∪s with discrete 
part α for r, and continuous part ζ for s. Let C denote the set of continuous variables, 
and let D denote the set of discrete variables. The marginal of μ by deleting X ∈ r∪s, 
denoted by μ−X, is defined as follows. 

 ⎧(α−X, ζ), if X ∈ r, X ∉ s, and r\{X} ⊄ C, (2.5) 

 ⎪(ι, α−X⊗ζ), if X ∈ r, X ∉ s, and r\{X} ⊆ C, (2.6) 

 ⎪(α, ζ−X), if X ∉ r, X ∈ s, and s\{X} ⊄ D, (2.7) 

μ−X = ⎨(α⊗ζ−X, ι), if X ∉ r, X ∈ s, and s\{X} ⊆ D, (2.8) 

 ⎪((α⊗ζ)−X, ι), if X ∈ r, X ∈ s, and (r∪s)\{X} ⊆ D, and (2.9) 

 ⎩ (ι, (α⊗ζ)−X), if X ∈ r, X ∈ s, and (r∪s)\{X} ⊄ D. (2.10) 

Some comments about the definition of marginalization of mixed potentials are as 
follows. First, if the variable being deleted belongs only to one part (discrete or con-
tinuous, as in cases (2.5)−(2.8)), then the local computation property allow us to de-
lete the variable from that part only leaving the other part unchanged. If the variable 
being deleted belongs to both parts (as in cases (2.9)–(2.10)), then we first need to 
combine the two parts before deleting the variable. Second, when we have only con-
tinuous variables left in a discrete potential after marginalization, we move the poten-
tial to the continuous part (2.6), and when we only have discrete variables left, we 
move the potential to the discrete part (2.8), otherwise we don’t change the nature of 
the marginalized potentials ((2.5) and (2.7)). In cases (2.9)–(2.10), when we have to 
combine the discrete and continuous potentials before marginalizing X, if only dis-
crete variables are left, then we have to classify it as a discrete potential (2.9), and if 
we have only continuous variables left, then we have to classify it as a continuous 
potential (2.10). However, if it has discrete and continuous variables, it could be clas-
sified as either discrete or continuous, and the definition above has chosen to classify 
it as continuous (2.10). It makes no difference one way or the other. 
 

Division of Potentials. The Shenoy-Shafer [27] architecture requires only the combi-
nation and marginalization operations. However, at the end of the propagation, we 
need to normalize the potentials, and this involves division. Divisions are also in-
volved in doing arc reversals [1]. 

Suppose ρ is a discrete or continuous potential for r, and suppose X ∈ r. Then the 
division of ρ by ρ−X, denoted by ρ (ρ−X), is the potential for r obtained by pointwise 

division of ρ by ρ−X, i.e., 
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(ρ (ρ−X))(x, y) = ρ(x, y)/ρ−X(y)                                   (2.11) 

for all y ∈ Ωr\{X} and x ∈ ΩX. Notice that if ρ−X(y) = 0, then ρ(x, y) = 0. In this case, 

we will simply define 0/0 as 0. Also, notice that (ρ (ρ−X))⊗ρ−X = ρ. 

Suppose ξ is a discrete or continuous potential for {X} representing the unnormal-
ized posterior marginal for X. To normalize ξ, we divide ξ by ξ−X. Thus the normal-
ized posterior marginal for X is ξ (ξ−X). The value ξ−X(♦) represents the probability 

of the evidence, and is the same regardless of variable X for which we are computing 
the marginal. 

3   Some Illustrative Examples 

In this section, we illustrate the extended Shenoy-Shafer architecture using several 
small examples. More examples can be found in [28]. 

Example 1 (Transformation of variables). Consider a BN with continuous variable Y 
and deterministic variable Z as shown in Fig. 2. Notice that the function defining the 
deterministic variable is not invertible. 

Y ~ fY(y)

Z = Y2

Y

Z
 

Fig. 2. A BN with a deterministic variable with a non-invertible, non-linear function 

Let ψ and ζ1 denote the mixed potentials for {Y} and {Y, Z}, respectively. Then, 

ψ(y) = (1, fY(y))                                                 (4.1) 

ζ1(y, z) = (1, δ(z − y2))                                          (4.2) 

To find the prior marginal distribution of Z, first we combine ψ and ζ1, and then 
we marginalize Y from the combination. 

(ψ⊗ζ1)(y, z) = (1, fY(y) δ(z − y2))                                 (4.3) 

((ψ⊗ζ1)−Y )(z) = (1, ∫ fY(y) δ(z − y2) dy) = (1, (1/(2 z ))(fY( z ) + fY(− z )))    

= (1, fZ(z)) for z > 0, where fZ(z) = (1/(2 z ))(fY( z ) + fY(− z ))         (4.4) 

The result in (4.4) follows from (2.7) and properties (iii) and (iv) of Dirac delta 
functions. Now suppose we observe Z = c, where c is a constant such that fZ(c) > 0, 
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i.e., c > 0 and fY( c ) > 0 or fY(− c ) > 0 or both. This observation is represented by 
the mixed potential for Z, ζ2(z) = (1, δ(z − c)). Then, the un-normalized posterior 
marginal distribution of Y is computed as follows: 

((ζ1⊗ζ2)−Z)(y) = (1, ∫ δ(z − y2) δ(z − c)) dz) = (1, δ(c − y2)) = (1, δ(y2 − c))    (4.5) 

(ψ⊗(ζ1⊗ζ2)−Z)(y) = (1, fY(y) δ(y2 − c)) 

 = (1, fY(y) (δ(y − c ) + δ(y + c ))/(2 c )) 

= (1, (fY( c ) δ(y − c ) + fY(− c ) δ(y + c ))/(2 c ))     (4.6) 

The normalization constant is (fY( c ) + fY(− c ))/(2 c ). Therefore the normal-

ized posterior distribution of Y is (fY( c )δ(y − c ) + fY(− c ) δ(y +  c )) / 

(fY( c ) + fY(− c )), i.e., Y =  c  with probability fY( c )/(fY( c ) + fY(− c )), and 

Y = − c  with probability fY(− c )/(fY( c ) + fY(− c )). 

Example 2 (Mixed distributions). Consider the hybrid BN shown in Fig. 1 with three 
variables. A is discrete with state space ΩY = {a1, a2}, Z is continuous, and X is de-
terministic. What is the prior marginal distribution of X? Suppose we observe X = 1. 
What is the posterior marginal distribution of A? 

Let α, ζ, and ξ1 denote the mixed potentials for {A}, {Z}, and {A, Z, X}, respec-
tively. Then: 

α(a1) = (0.5, 1), α(a2) = (0.5, 1);                                 (4.7) 

ζ(z) = (1, fZ(z));                                                         (4.8) 

ξ1(a1, z, x) = (1, δ(x − z)), ξ1(a2, z, x) = (1, δ(x − 1)).                         (4.9) 

The prior marginal distribution of X is given by (α⊗ζ⊗ξ1)−{A, Z} = 

((α⊗ξ1)−A⊗ζ)−Z. 

(α⊗ξ1)(a1, z, x)  = (0.5, δ(x − z)), (α⊗ξ1)(a2, z, x)  = (0.5, δ(x − 1));       (4.10) 

((α⊗ξ1)−A)(z, x) = (1, 0.5 δ(x − z) + 0.5 δ(x − 1));                   (4.11) 

((α⊗ξ1)−A⊗ζ)(z, x) = (1, 0.5 δ(x − z) fZ(z) + 0.5 δ(x − 1) fZ(z));               (4.12) 

(((α⊗ξ1)−A⊗ζ)−Z)(x)     = (1, ∫ 0.5 δ(x − z) fZ(z) dz + 0.5 δ(x − 1) ∫ f(z) dz)   
 = (1, 0.5 fZ(x) + 0.5 δ(x − 1)). (4.13) 

Thus the prior marginal distribution of X is mixed with PDF 0.5 fZ(x) and a mass of 
0.5 at X = 1. (4.11) results from use of (2.9) since Y is in the domain of discrete and 
continuous parts. (4.13) follows from (2.7). 

Let ξ2 denote the observation X = 1. Thus, ξ2(x) = (1, δ(x − 1)). The (unnormal-

ized) posterior marginal of A is given by (α⊗ζ⊗ξ1⊗ξ2)−{Z, X} = α⊗(ζ⊗(ξ1⊗ξ2)−X)−Z. 
 



 Inference in Hybrid Bayesian Networks with Deterministic Variables 55 

(ξ1⊗ξ2)(a1, z, x) = (1, δ(x − z) δ(x − 1)), 

(ξ1⊗ξ2)(a2, z, x) = (1, δ(x − 1) δ(x − 1)) = (1, δ(x − 1));                    (4.14) 

(ξ1⊗ξ2)−X(a1, z) = (1, ∫ δ(x − z) δ(x − 1) dx) = (1, δ(1 − z)) = (1, δ(z − 1)), 

(ξ1⊗ξ2)−X(a2, z) = (1, ∫ δ(x − 1) dx) = (1, 1);                          (4.15) 

(ζ⊗(ξ1⊗ξ2)−X)(a1, z) = (1, δ(z − 1) fZ(z)), 

((ζ⊗(ξ1⊗ξ2)−X)(a2, z) = (1, fZ(z));                                  (4.16) 

(ζ⊗(ξ1⊗ξ2)−X)−Z(a1) = (∫ δ(z − 1) fZ(z) dz, 1) = (fZ(1), 1), 

((ζ⊗(ξ1⊗ξ2)−X)−Z(a2) = (∫ f(z) dz, 1) = (1, 1);                       (4.17) 

(α⊗(ζ⊗(ξ1⊗ξ2)−X)−Z)(a1) = (0.5 fZ(1), 1), 

(α⊗(ζ⊗(ξ1⊗ξ2)−X)−Z)(a2) = (0.5, 1).                             (4.18) 

Notice that the un-normalized posterior marginal for A is in units of density for 
A = a1, and in units of probability for A = a2. Thus, after normalization, the posterior 
probability of a1 is 0, and the posterior probability of a2 is 1. 

Example 3 (Discrete variable with a continuous parent). Consider the hybrid BN 
consisting of a continuous variable Y, a discrete variable A, and a deterministic vari-
able X as shown in Fig. 3. A is an indicator variable with states {a1, a2} such that A = 
a1 if 0 < Y ≤ 0.5, and A = a2 if 0.5 < Y < 1. What is the prior marginal distribution of 
X? If we observe X = 0.25, what is the posterior marginal distribution of Y? 

Let ψ, α, and ξ1 denote the mixed potentials for {Y}, {Y, A}, and {Y, A, X}, respec-
tively. The Heaviside function H(⋅) is: H(y) = 0 if y < 0, and = 1 if y > 0. 

 

Fig. 3. A hybrid BN with a discrete variable that has a continuous parent 

ψ(y) = (1, fY(y)), where fY(y) = 1 if 0 < y < 1, = 0 otherwise;                (4.19) 
α(a1, y) = (H(y) − H(y − 0.5), 1), 

α(a2, y) = (H(y − 0.5) − H(y − 1), 1);                                     (4.20) 
ξ1(a1, y, x) = (1, δ(x − y)), 
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ξ1(a2, y, x) = (1, δ(x + y)).                                      (4.21) 

To find the marginal distribution of X, first we combine α and ξ1 and marginalize 

A from the combination, next we combine the result with ψ and marginalize Y from 
the combination. 

(α⊗ξ1)(a1, y, x) = (H(y) − H(y − 0.5), δ(x − y)), 

(α⊗ξ1)(a2, y, x) = (H(y − 0.5) − H(y − 1), δ(x + y));                       (4.22) 

(α⊗ξ1)−A(y, x) = (1, (H(y) − H(y − 0.5)) δ(x − y) +   
(H(y − 0.5) − H(y − 1)) δ(x + y));                                                (4.23) 

(((α⊗ξ1)−A)⊗ψ)(y, x) = (1, fY(y)[((H(y) − H(y − 0.5)) δ(x − y) + 

 (H(y − 0.5) − H(y − 1)) δ(x + y))]);                               (4.24) 

 (((α⊗ξ1)−A)⊗ψ)−Y(x) = (1, fY(x)((H(x) − H(x − 0.5))  
+ fY(−x)(H(−x − 0.5) − H(−x − 1)) 
= (1, H(x) − H(x − 0.5) + H(−x − 0.5) − H(−x − 1)).   (4.25) 

Thus, the prior marginal distribution of X is uniform in the interval 
(−1, −0.5)∪(0, 0.5). Let ξ2 be the mixed potential denoting the observation that 
X = 0.25. Thus, ξ2(x) = (1, δ(x − 0.25)). The (unnormalized) posterior marginal of Y is 

given by (ξ1⊗(ξ2⊗α))−{A, X})⊗ψ. 

(ξ2⊗α)(a1, y, x) = (H(y) − H(y − 0.5), δ(x − 0.25)), 

(ξ2⊗α)(a2, y, x) = (H(y − 0.5) − H(y − 1), δ(x − 0.25));                    (4.26) 

(ξ1⊗(ξ2⊗α))(a1, y, x) = (H(y) − H(y − 0.5), δ(x − 0.25) δ(x − y)), 

(ξ1⊗(ξ2⊗α))(a2, y, x) = (H(y − 0.5) − H(y − 1), δ(x − 0.25) δ(x + y));        (4.27) 

((ξ1⊗(ξ2⊗α))−{A, X})(y) = (1, [(H(y) − H(y − 0.5)) ∫ δ(x − 0.25) δ(x − y) dx]  

+ [(H(y − 0.5) − H(y − 1)) ∫ δ(x − 0.25) δ(x + y) dx]  
                         = (1, (H(y) − H(y − 0.5)) δ(y − 0.25));                              (4.28) 

(((ξ1⊗(ξ2⊗α))−{A, X})⊗ψ)(y) = (1, fY(y)([(H(y) − H(y − 0.5)) δ(y − 0.25)]))   
= (1, δ(y − 0.25)).                                          (4.29) 

The posterior marginal for Y is Y = 0.25 with probability 1.  

4   Summary and Discussion 

We have described a generalization of the Shenoy-Shafer architecture for discrete 
BNs so it applies to hybrid BNs with deterministic variables. We use Dirac delta func-
tions to represent conditionals of deterministic variables, and observations of continu-
ous variables. We use mixed potentials to keep track of the discrete and continuous 
nature of potentials. Marginalization of discrete variables is using addition and mar-
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ginalization of continuous variables is by integration. We define marginalization of 
mixed potentials to keep track of the nature of marginalized potentials. 

We have ignored the computational problem of integration of density potentials. In 
some cases, e.g., Gaussian density functions, there does not exist a closed form solu-
tion of the integral of the Gaussian density. We assume that we can somehow work 
around such problems by approximating such density functions by mixtures of trun-
cated exponentials [16] or mixtures of polynomials [29]. In any case, this needs fur-
ther investigation. 

Acknowledgments. We are grateful to Barry Cobb for many discussions. 
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Abstract. In persuasion dialogs, agents exchange arguments on a subject on
which they disagree. Thus, each agent tries to persuade the others to change their
minds. Several systems, grounded on argumentation theory, have been proposed
in the literature for modeling persuasion dialogs. It is important to be able to an-
alyze the quality of these dialogs. Hence, quality criteria have to be defined in
order to perform this analysis.

This paper tackles this important problem and proposes one criterion that con-
cerns the conciseness of a dialog. A dialog is concise if all its moves are relevant
and useful in order to reach the same outcome as the original dialog. From a
given persuasion dialog, in this paper we compute its corresponding “ideal” di-
alog. This ideal dialog is concise. A persuasion dialog is thus interesting if it is
close to its ideal dialog.

1 Introduction

Persuasion is one of the main types of dialogs encountered in everyday life. A persua-
sion dialog concerns two (or more) agents who disagree on a state of affairs, and each
of them tries to persuade the others to change their minds. For that purpose, agents
exchange arguments of different strengths. Several systems have been proposed in the
literature for allowing agents to engage in persuasion dialogs (e.g. [1,2,3,4,5,6,7]). A
dialog system is built around three main components: i) a communication language
specifying the locutions that will be used by agents during a dialog for exchanging in-
formation, arguments, etc., ii) a protocol specifying the set of rules governing the well-
definition of dialogs such as who is allowed to say what and when? and iii) agents’
strategies which are the different tactics used by agents for selecting their moves at
each step in a dialog. All the existing systems allow agents to engage in dialogs that
obey to the rules of the protocol. Thus, the only properties that are guaranteed for a
generated dialog are those related to the protocol. For instance, one can show that a
dialog terminates, the turn shifts equally between agents in that dialog (if such rule is
specified by the protocol), agents can refer only to the previous move or are allowed
to answer to an early move in the dialog, etc. The properties inherited from a protocol
are related to the way the dialog is generated. However, the protocol is not concerned
by the quality of that dialog. Moreover, it is well-known that under the same protocol,
different dialogs on the same subject may be generated. It is important to be able to
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compare them w.r.t. their quality. Such a comparison may help to refine the protocols
and to have more efficient ones.

While there are a lot of works on dialog protocols (eg. [8]), no work is done on
defining criteria for evaluating the persuasion dialogs generated under those protocols,
except a very preliminary proposal in [9]. The basic idea of that paper is, given a finite
persuasion dialog, it can be analyzed w.r.t. three families of criteria. The first family
concerns the quality of arguments exchanged in this dialog. The second family checks
the behavior of the agents involved in this dialog. The third family concerns the dialog
as a whole. In this paper, we are more interested by investigating this third family of
quality criteria. We propose a criterion based on the conciseness of the generated dialog.
A dialog is concise if all its moves (i.e. the exchanged arguments) are both relevant
to the subject (i.e. they don’t deviate from the subject of the dialog) and useful (i.e.
they are important to determine the outcome of the dialog). Inspired from works on
proof procedures that have been proposed in argumentation theory in order to check
whether an argument is accepted or not [10], we compute and characterize a sub-dialog
of the original one that is concise. This sub-dialog is considered as ideal. The closer the
original dialog to its ideal sub-dialog, the better is its quality. All the proofs are in [11].

The paper is organized as follows: Section 2 recalls the basics of argumentation
theory. Section 3 presents the basic concepts of a persuasion dialog. Section 4 defines
the notions of relevance and usefulness in a dialog. Section 5 presents the concept of
ideal dialog founded on an ideal argumentation tree built from the initial dialog.

2 Basics of Argumentation Systems

Argumentation is a reasoning model based on the construction and the comparison
of arguments. Arguments are reasons for believing in statements, or for performing
actions. In this paper, the origins of arguments are supposed to be unknown. They are
denoted by lowercase Greek letters. In [12], an argumentation system is defined by:

Definition 1 (Argumentation system). An argumentation system is a pairAS= 〈A,R〉,
where A is a set of arguments and R ⊆ A × A is an attack relation. We say that an
argument α attacks an argument β iff (α, β) ∈R.

Note that to each argumentation system is associated a directed graph whose nodes are
the different arguments, and the arcs represent the attack relation between them.

Since arguments are conflicting, it is important to know which arguments are accept-
able. For that purpose, in [12], different acceptability semantics have been proposed. In
this paper, we consider the case of grounded semantics. Remaining semantics are left
for future research.

Definition 2 (Defense–Grounded extension). Let AS = 〈A,R〉 and B ⊆ A.

– B defends an argument α ∈ A iff ∀ β ∈ A, if (β, α) ∈ R, then ∃δ ∈ B s.t.
(δ, β) ∈ R.

– The grounded extension of AS, denoted by E , is the least fixed point of a function
F where F(B) = {α ∈ A | B defends α}.
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When the argumentation system is finite in the sense that each argument is attacked by
a finite number of arguments, E =

⋃
i>0 F i(∅).

Now that the acceptability semantics is defined, we can define the status of any argu-
ment. As we will see, an argument may have two possible statuses: accepted or rejected.

Definition 3 (Argument status). Let AS = 〈A,R〉 be an argumentation system, and
E its grounded extension. An argument α ∈ A is accepted iff α ∈ E , it is rejected
otherwise. We denote by Status(α,AS) the status of α in AS.

Property 1 ([10]). Let AS = 〈A,R〉, E its grounded extension, and α ∈ A. If α ∈ E ,
then α is indirectly defended1 by non-attacked arguments against all its attackers.

3 Persuasion Dialogs

This section defines persuasion dialogs in the same spirit as in [1]. A persuasion dialog
consists mainly of an exchange of arguments between different agents of the set Ag =
{a1, . . . , am}. The subject of such a dialog is an argument, and its aim is to provide the
status of that argument. At the end of the dialog, the argument may be either “accepted”
or “rejected”, this status is the output of the dialog. In what follows, we assume that
agents are only allowed to exchange arguments.

Each participating agent is supposed to be able to recognize all elements of arg(L)
and RL, where arg(L) is the set of all arguments that may be built from a logical
language L and RL is a binary relation that captures all the conflicts that may exist
among arguments of arg(L). Thus,RL ⊆ arg(L) × arg(L). For two arguments α, β ∈
arg(L), the pair (α, β) ∈ RL means that the argument α attacks the argument β. Note
that this assumption does not mean at all that an agent is aware of all the arguments.
But, it means that agents use the same logical language and the same definitions of
arguments and conflict relation.

Definition 4 (Moves). A move m is a triple 〈S,H, α〉 such that:

– S ∈ Ag is the agent that utters the move, Speaker(m) = S
– H ⊆ Ag is the set of agents to which the move is addressed, Hearer(m) = H
– α ∈ arg(L) is the content of the move, Content(m) = α.

During a dialog several moves may be uttered. Those moves constitute a sequence de-
noted by 〈m1, . . . ,mn〉, where m1 is the initial move whereas mn is the final one. The
empty sequence is denoted by 〈〉. These sequences are built under a given protocol. A
protocol amounts to define a function that associates to each sequence of moves, a set
of valid moves. Several protocols have been proposed in the literature, like for instance
[1,6]. In what follows, we don’t focus on particular protocols.

Definition 5 (Persuasion dialog). A persuasion dialog D is a non-empty and finite
sequence of moves 〈m1, . . ., mn〉 s.t. the subject of D is Subject(D) = Content(m1),
and the length of D, denoted |D|, is the number of moves: n. Each sub-sequence 〈m1,
. . ., mi〉 is a sub-dialog Di of D. We will write also Di � D.

1 An argument α is indirectly defended by β iff there exists a finite sequence a1, . . . , a2n+1

such that α = a1, β = a2n+1, and ∀i ∈ �1, 2n�, (ai+1, ai) ∈ R, n ∈ IN∗.
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To each persuasion dialog, one may associate an argumentation system that will be used
to evaluate the status of each argument uttered during it and to compute its output.

Definition 6 (AS of a pers. dialog). Let D = 〈m1, . . ., mn〉 be a persuasion dialog.
The argumentation system of D is the pair ASD = 〈Args(D), Confs(D)〉 such that:

– Args(D) = {Content(mi) | i ∈ �1, n�}
– Confs(D) = {(α, β) | α, β ∈ Args(D) and (α, β) ∈ RL}

In other words, Args(D) and Confs(D) return respectively, the set of arguments ex-
changed during the dialog and the different conflicts among those arguments.

Example 1. Let D1 be the following persuasion dialog between two agents a1 and a2.
D1 = 〈〈a1, {a2}, α1〉, 〈a2, {a1}, α2〉, 〈a1, {a2}, α3〉, 〈a1, {a2}, α4〉, 〈a2, {a1}, α1〉〉.

Let us assume that there exist conflicts inRL among some of these arguments. Those
conflicts are summarized in the figure below.

α3 α2 α1

α4

Here, Args(D1)={α1, α2, α3, α4} and Confs(D1)={(α2, α1), (α3, α2), (α4, α2)}.

Property 2. Let D = 〈m1, . . ., mn〉 be a persuasion dialog. ∀Dj � D, it holds that
Args(Dj) ⊆ Args(D), and Confs(Dj) ⊆ Confs(D).

The output of a dialog is the status of the argument under discussion (i.e., the subject):

Definition 7 (Output of a persuasion dialog). Let D be a persuasion dialog. The out-
put of D, denoted by Output(D), is Status(Subject(D),ASD).

4 Criteria for Dialog Quality

In this paper, we are interested in evaluating the conciseness of a dialog D which is al-
ready generated under a given protocol. This dialog is assumed to be finite. Note that this
assumption is not too strong since a main property of any protocol is the termination of
the dialogs it generates [13]. A consequence of this assumption is that the argumentation
system ASD associated to D is finite as well. In what follows, we propose two criteria
that evaluate the importance of the moves that are exchanged in D, then we propose a
way to compute the “ideal” dialog that reaches the same outcome as D.

In everyday life, it is very common that agents deviate from the subject of the dialog.
The first criterion evaluates to what extent the moves uttered are in relation with the
subject of the dialog. This amounts to check whether there exists a path from a move to
the subject in the graph of the argumentation system associated to the dialog.

Definition 8 (Relevant and useful move)
Let D = 〈m1, . . ., mn〉 be a persuasion dialog. A move mi, i ∈ �1, n�, is relevant to
D iff there exists a path (not necessarily directed) from Content(mi) to Subject(D)
in the directed graph associated with ASD. mi is useful iff there exists a directed path
from Content(mi) to Subject(D) in this graph.
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Example 2. Let D2 be a persuasion dialog. Let Args(D2) = {α1, α3, β1, β2}. The
conflicts among the four arguments are depicted in the figure below.

α1 α3

β1 β2

Suppose that Subject(D2) = α1. It is clear that the arguments α3, β1 are relevant,
while β2 is irrelevant. Here β1 is useful, but α3 is not.

Property 3. If a move m is useful in a dialog D, then m is relevant to D.

On the basis of the notion of relevance, one can define a measure that computes the
percentage of moves that are relevant in a dialog D. In Example 2, Relevance(D2) =
3/4. It is clear that the greater this degree is, the better the dialog. When the relevance
degree of a dialog is equal to 1, this means that agents did not deviate from the subject
of the dialog. The useful moves are moves that have a more direct influence on the
status of the subject. However, this does not mean that their presence has an impact on
the result of the dialog, i.e., on the status of the subject. The moves that have a real
impact on the status of the subject are said “decisive”.

Definition 9 (Decisive move). Let D = 〈m1, . . ., mn〉 be a persuasion dialog and ASD

its argumentation system. A move mi (i = 1, . . . , n) is decisive in D iff

Status(Subject(D),ASD) 
= Status(Subject(D),ASD � Content(mi))

where ASD�Content(mi) = 〈A′, R′〉 s.t. A′ = Args(D)\ {Content(mi)} and R′ =
Confs(D)\ {(x, Content(mi)), (Content(mi), x) | x ∈ Args(D)}.

Property 4. If a move m is decisive in a persuasion dialog D then m is useful in D.

From the above property, it follows that each decisive move is also relevant. Note that
the converse is not true as shown in the following example.

Example 3. Let D3 be a dialog whose subject is α1 and whose graph is the following:

α1

α3 α2 α4 α5

The set {α1, α3, α5} is the only grounded extension of ASD3 . It is clear that the argu-
ment α4 is relevant to α1, but it is not decisive for D3. Indeed, the removal of α4 will
not change the status of α1 which is accepted.

Example 4. Let D4 be a dialog whose subject is α1, and whose graph is the following:

α2 α3

α1
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In this example, neither α2 nor α3 is decisive in D4. However, this does not mean that
the two arguments should be removed since the status of α1 depends on at least one of
them (they are both useful).

On the basis of the above notion of decisiveness of moves, we can define the degree of
decisiveness of the entire dialog as the percentage of moves that are decisive.

5 Computing the Ideal Dialog

As already said, it is very common that dialogs contain redundancies in the sense that
some moves are uttered but these are useless for the subject, or have no impact on the
output of the dialog. Only a subset of the arguments is necessary to determine the status
of the subject. Our aim is to compute the subset that returns exactly the same status
for the subject of the dialogue as the whole set of arguments, and that is sufficient to
convince that this result holds against any attack available in the initial dialog. That
subset will form the "ideal" dialog. In what follows, we will provide a procedure for
finding this subset and thus the ideal dialog.

A subset of arguments that will be convenient for our purpose contains those argu-
ments that belong to a proof tree leading to the status of the subject. This is due to the
fact that a proof tree contains every necessary argument for obtaining the status of the
subject. When the subject is accepted, the proof tree contains defenders of the subject
against any attack. When the subject is rejected, the proof tree contains at least every
non attacked attacker. Hence, proof trees seem adequate to summarize perfectly the dia-
log. However, it is important to say that not any proof theory that exists in the literature
will lead to the ideal dialog. This is due to the fact that some of them are not concise.
In [10], a comparison of proof theories for grounded semantics shows that the one used
here is the most concise.

5.1 Canonical Dialogs

Let us define a sub-dialog of a given persuasion dialog D that reaches the same out-
put as D. In [10], a proof procedure that tests the membership of an argument to a
grounded extension has been proposed. The basic notions of this procedure are revis-
ited and adapted for the purpose of characterizing canonical dialogs.

Definition 10 (Dialog branch). Let D be a persuasion dialog and ASD = 〈Args(D),
Confs(D)〉 its argumentation system. A dialog branch for D is a sequence 〈α0, . . . , αp〉
of arguments s. t. ∀i, j ∈ �0, p�

1. αi ∈ Args(D)
2. α0 = Subject(D)
3. if i 
= 0 then (αi, αi−1) ∈ Confs(D)
4. if i and j are even and i 
= j then αi 
= αj

5. if i is even and i 
= 0 then (αi−1, αi) 
∈ Confs(D)
6. ∀β ∈ Args(D), 〈α0, . . . , αp, β〉 is not a dialog branch.
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Intuitively, a dialog branch is a kind of partial sub-graph of ASD in which the nodes
contains arguments and the arcs represents inverted conflicts. Note that arguments that
appear at even levels are not allowed to be repeated. Moreover, these arguments should
strictly attack2 the preceding argument. The last point requires that a branch is maximal.
Let us illustrate this notion on examples.

Example 5. The only dialog branch that can be built from dialog D2 is depicted below:

α1 β1

Example 6. Let D5 be a persuasion dialog with subject α whose graph is the follow-
ing:

α

The only possible dialog branch associated to this dialog is the following:

α α

Property 5. A dialog branch is non-empty and finite.

This result comes from the definitions of a dialog branch and of a persuasion dialog.
Moreover, it is easy to check the following result:

Property 6. For each dialog branch 〈α0, ..., αk〉 of a persuasion dialog D there exists
a unique directed path 〈αk, αk−1, ..., α0〉 of same length3 (k) in the directed graph
associated to ASD.

In what follows, we will show that when a dialog branch is of even-length, then its leaf
is not attacked in the original dialog.

Theorem 1. Let D be a persuasion dialog and 〈α0, . . .αp〉 be a given dialog branch
of D. If p is even, then �β ∈ Args(D) such that (β, αp) ∈ Confs(D).

Let us now introduce the notion of a dialog tree.

Definition 11 (Dialog tree). Let D be a persuasion dialog and ASD = 〈Args(D),
Confs(D)〉 its argumentation system. A dialog tree of D, denoted by Dt, is a finite tree
whose branches are all the possible dialog branches that can be built from D.

We denote by ASDt the argumentation system associated to Dt, ASDt = 〈At, Ct〉
s.t. At = {α ∈ Args(D) s.t. α appears in a node of Dt} and Ct = {(α, β) ∈
Confs(D) s.t. (β, α) is an arc of Dt}.

Hence, a dialog tree is a tree whose root is the subject of the persuasion dialog.

Example 7. Let us consider D6 whose subject is α1 and whose graph is the following:

2 An argument α strictly attacks an argument β in a argumentation system 〈A,R〉 iff (α, β) ∈
R and (β, α) �∈ R.

3 The length of a path is defined by its number of arcs.
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α11 α10 α8 α4

α9 α7 α6 α2

α5 α3 α1 α0

The dialog tree associated to this dialog is depicted below:

α1 α2 α4

α3 α5

α6 α7 α9

α8 α10 α11

Note that the argument α0 does not belong to the dialog tree.

Property 7. Each persuasion dialog has exactly one corresponding dialog tree.

An important result states that the status of the subject of the original persuasion dialog
D is exactly the same in both argumentation systems ASD and ASDt (where ASDt

is the argumentation system whose arguments are all the arguments that appear in the
dialog tree Dt and whose attacks are obtained by inverting the arcs between those ar-
guments in Dt).

Theorem 2. Let D be a persuasion dialog and ASD its argumentation system. It holds
that Status(Subject(D),ASD) = Status(Subject(D),ASDt).

In order to compute the status of the subject of a dialog, we can consider the dialog
tree as an And/Or tree. A node of an even level is an And node, whereas a node of odd
level is an Or one. This distinction between nodes is due to the fact that an argument is
accepted if it can be defended against all its attackers. A dialog tree can be decomposed
into one or several trees called canonical trees.

Definition 12 (Canonical tree). Let D be a persuasion dialog, and let Dt its dialog
tree. A canonical tree is a subtree of Dt whose root is Subject(D) and which contains
all the arcs starting from an even node and exactly one arc starting from an odd node.

It is worth noticing that from a dialog tree one may extract at least one canonical tree.
Let Dc

1, . . . , D
c
m denote those canonical trees. We will denote by ASc

1, . . . ,ASc
m their

corresponding argumentation systems. It can be checked that the status of Subject(D)
is not necessarily the same in these different systems.

Example 8. From the dialog tree of D6, two canonical trees can be extracted:
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α1 α2 α4 α1 α2 α4

α3 α5 α3 α6 α7 α9

α8 α10 α11

It can be checked that the argument α1 is accepted in the argumentation system of the
canonical tree on the left while it is rejected in the one of the right.

The following result characterizes the status of Subject(D) in the argumentation sys-
tem ASc

i associated to a canonical tree Dc
i .

Theorem 3. Let D be a persuasion dialog, Dc
i a canonical tree and ASc

i its corre-
sponding argumentation system.

– Subject(D) is accepted in ASc
i iff all the branches of Dc

i are of even-length.
– Subject(D) is rejected in ASc

i iff there exists a branch of Dc
i of odd-length.

The following result follows immediately from this Theorem and Theorem 1.

Corollary 1. Let D be a persuasion dialog, Dc
i a canonical tree and ASc

i its corre-
sponding argumentation system.
If Subject(D) is accepted in ASc

i , then all the leaves of Dc
i are not attacked in D.

An important result shows the link between the outcome of a dialog D and the outcomes
of the different canonical trees.

Theorem 4. Let D be a persuasion dialog, Dc
1, . . ., Dc

m its different canonical trees
and ASc

1, . . . ,ASc
m their corresponding argumentation systems.

– Output(D)4 is accepted iff ∃ i ∈ �1,m� s.t. Status(Subject(D), ASc
i ) is ac-

cepted.
– Output(D) is rejected iff ∀j ∈ �1,m�, Status(Subject(D), ASc

j) is rejected.

This result is of great importance since it shows that a canonical tree whose branches are
all of even-length is sufficient to reach the same outcome as the original dialog in case
the subject is accepted. When the subject is rejected, the whole dialog tree is necessary
to ensure the outcome.

Example 9. In Example 7, the subject α1 of dialog D6 is accepted since there is a
canonical tree whose branches are of even length (it is the canonical tree on the left in
Example 8). It can also be checked that α1 is in the grounded extension {α1, α4, α5,
α8, α9, α11} of ASD.

So far, we have shown how to extract from a graph associated with a dialog its canonical
trees. These canonical trees contain only useful (hence relevant) moves:

Theorem 5. Let Dc
i be a canonical tree of a persuasion dialog D. Any move built on

an argument of Dc
i is useful in the dialog D.

4 Recall that Output(D) = Status(Subject(D), ASD).
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The previous theorem gives an upper bound of the set of moves that can be used to build
a canonical dialog, a lower bound is the set of decisive moves.

Theorem 6. Every argument of a decisive move belongs to the dialog tree and to each
canonical dialog.

The converse is false since many arguments are not decisive, as shown in Example 4.
Indeed, there are two attackers that are not decisive but the dialog tree contains both of
them (as does the only canonical dialog for this example).

5.2 The Ideal Dialog

In the previous section, we have shown that from each dialog, a dialog tree can be built.
This dialog tree contains direct and indirect attackers and defenders of the subject. From
this dialog tree, interesting subtrees can be extracted and are called canonical trees. A
canonical tree is a subtree containing only particular entire branches of the dialog tree
(only one argument in favor of the subject is chosen for attacking an attacker while each
argument against a defender is selected). In case the subject of the dialog is accepted
it has been proved that there exists at least one canonical tree such that the subject is
accepted in its argumentation system. This canonical tree is a candidate for being an
ideal tree since it is sufficient to justify the acceptance of the subject against any attack
available in the initial dialog. Among all these candidate we define the ideal tree as the
smallest one. In the case the subject is rejected in the initial dialog, then the dialog tree
contains all the reasons to reject it, hence we propose to consider the dialog tree itself
as the only ideal tree.

Definition 13 (ideal trees and dialogs). If a dialog D has an accepted output

– then an ideal tree associated to D is a canonical tree of D in which Subject(D)
is accepted and having a minimal number of nodes among all the canonical graphs
that also accept Subject(D)

– else the ideal tree is the dialog tree of D.

A dialog using once each argument of an ideal graph is called an ideal dialog.

Example 10. An ideal Dialog for Dialog D6 (on the left) has the following graph (on the right):

α11 α10 α8 α4 α1 α2 α4

α9 α7 α6 α2 α3 α5

α5 α3 α1 α0

Given the above definition, an ideal dialog contains exactly the same number of moves
that the number of nodes of the ideal graph.

Property 8. Given a dialog D whose subject is accepted. An ideal dialog ID for D is
the shortest dialog with the same output, and s.t. every argument in favor of the subject
in ID (including Subject(D) itself) is defended against any attack (existing in D).
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This property ensures that, when the subject is accepted in the initial dialog D, an ideal
dialog ID is the more concise dialog that entails an acceptation. In other words, we
require that the ideal dialog should contain a set of arguments that sumarize D.

Note that the ideal dialog exists but is not always unique. Here is an example of an
argumentation system of a dialog which leads to two ideal trees (hence it will lead to at
least two ideal dialogs).

α3 α2 α1 α1 α2 α3

α4 α1 α2 α4

So far, we have formally defined the notion of ideal dialog, and have shown how it is
extracted from a persuasion dialog. It is clear that the closer (it terms of set-inclusion of
the exchanged arguments) to its ideal version the dialog is, the better the dialog.

6 Conclusion

In this paper, we have proposed three criteria for evaluating the moves of a persuasion
dialog with respect to its subject: relevance, usefulness and decisiveness. Relevance
only expresses that the argument of the move has a link with the subject (this link is
based on the attack relation of the argumentation system). Usefulness is a more stronger
relevance since it requires a directed link from the argument of the move to the subject.
Decisive moves have a heavier impact on the dialog, since their omission changes the
output of the dialog.

Inspired from works on proof theories for grounded semantics in argumentation, we
have defined a notion of “ideal dialog”. More precisely, we have first defined a dialog
tree associated to a given dialog as the graph that contains every possible direct and
indirect attackers and defenders of the subject. From this dialog tree, it is then possible
to extract sub-trees called “ideal trees” that are sufficient to prove that the subject is
accepted or rejected in the original dialog and this, against any possible argument taken
from the initial dialog. A dialog is good if it is close to that ideal tree. Ideal dialogs
have nice properties with respect to conciseness, namely they contain only useful and
relevant arguments for the subject of the dialog. Moreover for every decisive move its
argument belongs to all ideal trees.

From the results of this paper, it seems natural that a protocol generates dialogs of
good quality if (1) irrelevant and not useful moves are penalized until there is a set of
arguments that relate them to the subject (2) adding arguments in favor of the subject
that are attacked by already present arguments has no interest (since they do not belong
to any ideal tree). By doing so, the generated dialogs are more concise (i.e. all the
uttered arguments have an impact on the result of the dialog), and more efficient (i.e.
they are the minimal dialogs that can be built from the information exchanged and that
reach the goal of the persuasion).

Note that in our proposal, the order of the arguments has not to be constrained since
the generated graph does not take it into account. The only thing that matters in order
to obtain a conclusion is the final set of interactions between the exchanged arguments.
But the criteria of being relevant to the previous move or at least to a move not too far in
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the dialog sequence could be taken into account for analyzing dialog quality. Moreover,
all the measures already defined in the literature and cited in the introduction could also
be used to refine the proposed preference relation on dialogs and finally could help to
formalize general properties of protocols in order to generate good dialogs.

Furthermore, it may be the case that from the set of formulas involved in a set of
arguments, new arguments may be built. This give birth to a new set of arguments
and to a new set of attack relations called complete argumentation system associated
to a dialog. Hence, it could be interesting to define dialog trees on the basis of the
complete argumentation system then more efficient dialogs could be obtained (but this
is not guaranteed). However, some arguments of the complete argumentation system
may require the cooperation of the agents. It would mean that in an ideal but practicable
dialog, the order of the utterance of the arguments would be constrained by the fact that
each agent should be able to build each argument at each step.
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Abstract. Decision making amounts to define a preorder (usually a
complete one) on a set of options. Argumentation has been introduced
in decision making analysis. In particular, an argument-based decision
system has been proposed recently by Amgoud et al. The system is a
variant of Dung’s abstract framework. It takes as input a set of options,
different arguments and a defeat relation among them, and returns as
outputs a status for each option, and a total preorder on the set of
options. The status is defined on the basis of the acceptability of their
supporting arguments.

The aim of this paper is to study the revision of this decision system in
light of a new argument. We will study under which conditions an option
may change its status when a new argument is received and under which
conditions this new argument is useless. This amounts to study how the
acceptability of arguments evolves when the decision system is extended
by new arguments.

1 Introduction

Decision making, often viewed as a form of reasoning toward action, has raised
the interest of many scholars including economists, psychologists, and computer
scientists for a long time. A decision problem amounts to selecting the “best” or
sufficiently “good” action(s) that are feasible among different options, given some
available information about the current state of the world and the consequences
of potential actions. Available information may be incomplete or pervaded with
uncertainty. Besides, the goodness of an action is judged by estimating how much
its possible consequences fit the preferences of the decision maker.

Argumentation has been introduced in decision making analysis by several
researchers only in the last few years (e.g. [2,4,7]). Indeed, in everyday life, de-
cision is often based on arguments and counter-arguments. Argumentation can
also be useful for explaining a choice already made. Recently, in [1], a deci-
sion model in which the pessimistic decision criterion was articulated in terms
of an argumentation process has been proposed. The model is an instantiation
of Dung’s abstract framework ([6]). It takes as input a set of options, a set of
arguments and a defeat relation among arguments. It assigns a status for each

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 71–82, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



72 L. Amgoud and S. Vesic

option on the basis of the acceptability of its supporting arguments. This paper
studies deeply the revision of option status in light of a new argument. This
amounts to study how the acceptability of arguments evolves when the decision
system is extended by new arguments without computing the whole extensions.
All the proofs are in [3].

This paper is organized as follows: Section 2 recalls briefly the decision model
proposed in [1]. Section 3 studies the revision of option status when a new
argument is received. In section 4 we study the revision of option status under
some assumptions on the decision model. The last section concludes.

2 An Argumentation Framework for Decision Making

This section recalls briefly the argument-based framework for decision making
that has been proposed in [1].

Let L denote a logical language. From L, a finite set O of n distinct options
is identified. Two kinds of arguments are distinguished: arguments supporting
options, called practical arguments and arguments supporting beliefs, called epis-
temic arguments. Arguments supporting options are collected in a set Ao and
arguments supporting beliefs are collected in a set Ab such that Ao ∩ Ab = ∅
and A = Ab ∪Ao. Note that the structure of arguments is assumed not known.
Moreover, arguments in Ao highlight positive features of their conclusions, i.e.,
they are in favor of their conclusions. Practical arguments are linked to the
options they support by a function H defined as follows:

H: O → 2Ao s.t. ∀i, j if i 
= j then H(oi) ∩ H(oj) = ∅ and Ao =
⋃n

i=1H(oi)

Each practical argument a supports only one option o. We say also that o is the
conclusion of the practical argument a, and we write Conc(a) = o. Note that
there may exist options that are not supported by arguments (i.e., H(o) = ∅).

Example 1. Let us assume a set O = {o1, o2, o3} of three options, a set Ab =
{b1, b2, b3} of three epistemic arguments, and finally a set Ao = {a1, a2, a3} of
three practical arguments. The arguments supporting the different options are
summarized in table below.

H(o1) = {a1}
H(o2) = {a2, a3}
H(o3) = ∅

Three binary relations between arguments have been defined. They express the
fact that arguments may not have the same strength. The first preference rela-
tion, denoted by ≥b, is a partial preorder1 on the set Ab. The second relation,
denoted by ≥o, is a partial preorder on the set Ao. Finally, a third preorder,
denoted by ≥m (m for mixed relation), captures the idea that any epistemic ar-
gument is stronger then any practical argument. The role of epistemic arguments
in a decision problem is to validate or to undermine the beliefs on which practical
1 Recall that a relation is a preorder iff it is reflexive and transitive.
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arguments are built. Indeed, decisions should be made under certain information.
Thus, (∀a ∈ Ab)(∀a′ ∈ Ao) (a, a′) ∈≥m ∧ (a′, a) /∈≥m . Note that (a, a′) ∈≥x

with x ∈ {b, o,m} means that a is at least as good as a′. In what follows, >x de-
notes the strict relation associated with ≥x. It is defined as follows: (a, a′) ∈>x

iff (a, a′) ∈≥x and (a′, a) /∈≥x. We will sometimes write (a, a′) ∈ � to refer
to one of the four possible situations: (a, a′) ∈≥x ∧(a′, a) ∈≥x, meaning that
the two arguments a and a′ are indifferent for the decision maker, (a, a′) ∈>x,
meaning that a is strictly preferred to a′, (a′, a) ∈>x, meaning that a′ is strictly
preferred to a, (a, a′) /∈≥x ∧(a′, a) /∈≥x, meaning that the two arguments are
incomparable.

Generally arguments may be conflicting. These conflicts are captured by a bi-
nary relation on the set of arguments. Three such relations are distinguished. The
first one, denoted by Rb captures the different conflicts between epistemic argu-
ments. The second relation, denoted Ro captures the conflicts among practical
arguments. Two practical arguments are conflicting if they support different op-
tions. Formally, (∀a, b ∈ Ao) (a, b) ∈ Ro iff Conc(a) 
= Conc(b). Finally, practical
arguments may be attacked by epistemic ones. The idea is that an epistemic argu-
ment may undermine the belief part of a practical argument. However, practical
arguments are not allowed to attack epistemic ones. This avoids wishful think-
ing, i.e., avoids making decisions according to what might be pleasing to imagine
instead of by appealing to evidence or rationality. This relation, denoted by Rm,
contains pairs (a, a′) where a ∈ Ab and a′ ∈ Ao. Before introducing the frame-
work, we need first to combine each preference relation ≥x (with x ∈ {b, o,m})
with the conflict relation Rx into a unique relation between arguments, denoted
Defx, and called defeat relation.

Definition 1. (Defeat relation) Let a, b ∈ A. (a, b) ∈ Defx iff (a, b) ∈ Rx and
(b, a) /∈ ≥x.

Let Defb, Defo and Defm denote the three defeat relations corresponding to three
attack relations. Since arguments in favor of beliefs are always preferred (in the
sense of ≥m) to arguments in favor of options, it holds that Rm = Defm.

Example 2. (Example 1 cont.) The graph on the left depicts different attacks
among arguments. Let us assume the following preferences: (b2, b3) ∈ ≥b, (a2, a1)
∈ ≥o and (a1, a3) ∈ ≥o. The defeats are depicted on the right of figure below.

b3 b2 b1 b3 b2 b1

a1 a2 a1 a2

a3 a3

The different arguments of Ab∪Ao are evaluated within the system AF = 〈A =
Ab ∪ Ao, Def = Defb ∪ Defo ∪ Defm〉 using any Dung’s acceptability semantics.
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Definition 2. (Conflict-free, Defense) Let 〈A, Def〉 be an argumentation sys-
tem2, B ⊆ A, and a ∈ A.

– B is conflict-free iff � a, b ∈ B s.t. (a, b) ∈ Def.
– B defends a iff ∀ b ∈ A, if (b, a) ∈ Def, then ∃ c ∈ B s.t. (c, b) ∈ Def.

The main semantics introduced by Dung are recalled in the following definition.

Definition 3. (Acceptability semantics) Let AF = 〈A, Def〉 be an argumenta-
tion system, and E be a conflict-free set of arguments.

– E is a preferred extension iff E is a maximal (w.r.t set ⊆) set that defends
any element in E.

– E is a grounded extension, denoted GE, iff E is the least fixpoint of function
F where F(S) = {a ∈ A | S defends a}, for S ⊆ A.

Using these acceptability semantics, the status of each argument can be defined.

Definition 4. (Argument status) Let AF = 〈A, Def〉 be an argumentation sys-
tem, E1, . . . , Ex its extensions under a given semantics and let a ∈ A.

– a is skeptically accepted iff exists at least one extension and (∀Ei) a ∈ Ei.
– a is credulously accepted iff (∃Ei) s.t. a ∈ Ei and (∃Ej) s.t. a /∈ Ej.
– a is rejected iff (�Ei) s.t. a ∈ Ei.

Example 3. (Example 1 cont.) There is one preferred extension, which is also the
grounded one, {a1, b1, b2}. It is clear that a1, b1 and b2 are skeptically accepted
while other arguments are rejected.

Let AF = 〈A, Def〉 be an argumentation system. Sc(AF), Cr(AF) and Rej(AF)
denote respectively the sets of skeptically accepted arguments, credulously ac-
cepted arguments and rejected arguments of the system AF . It can be shown
that these three sets are disjoint. Moreover, their union is the setA of arguments.

Proposition 1. Let AF = 〈A,R〉 be an argumentation system and Sc(AF),
Cr(AF), Rej(AF), its sets of arguments.

1. Sc(AF) ∩ Cr(AF) = ∅, Sc(AF) ∩ Rej(AF) = ∅, Cr(AF) ∩ Rej(AF) = ∅
2. Sc(AF) ∪ Cr(AF) ∪ Rej(AF) = A.

The status of an option is defined from the status of its arguments.

Definition 5. (Option status) Let o ∈ O.

– o is acceptable iff ∃a ∈ H(o) s.t. a ∈ Sc(AF).
– o is rejected iff H(o) 
= ∅ and ∀a ∈ H(o), a ∈ Rej(AF).
– o is negotiable iff (�a ∈ H(o)) (a ∈ Sc(AF)) ∧ (∃a′ ∈ H(o)) (a′ ∈ Cr(AF)).
– o is non-supported iff it is neither acceptable, nor rejected nor negotiable.

2 At some places, it will be referred to as a decision system.
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Let Oa (resp. On, Ons, Or) be the set of acceptable (resp. negotiable, non-
supported, rejected) options.

Example 4. (Example 1 cont.) Option o1 is acceptable, o2 is rejected and o3 is
non-supported.

It can be checked that an option has only one status. This status may change in
light of new arguments as we will show in next sections.

Proposition 2. Let o ∈ O. o has exactly one status.

The choice of a semantics has an impact on the acceptability of arguments and,
consequently, on the status of options. We have studied the impact of several
semantics on the status of options. However, due to lack of space, we present
only the results related to preferred and grounded semantics. Let Ox

y denote the
set of options having status y under semantics x.

Proposition 3. It holds that: Og
a ⊆ Op

a, Op
r ⊆ Og

r , Op
ns = Og

ns and Og
n = ∅.

In [1], the status of options makes it possible to compare them, thus to define a
preference relation � on O. The basic idea is the following: acceptable options
are preferred to negotiable ones. Negotiable options are themselves preferred to
non-supported options, which in turn are better than rejected options.

3 Revising Option Status

Given a decision system AF = 〈A = Ab ∪ Ao, Def = Defb ∪ Defo ∪ Defm〉 that
defines a preorder on a set O of options, we study how the status of each option
in O may change when a new argument is added to the set A of arguments. In
this paper, we investigate the case where the new argument, say e, is practical.
Let AF ⊕ e = 〈A′, Def′〉 denote the new decision system. When e ∈ A, A′ = A
and Def′ = Def, all the arguments and all the options keep their original status
(i.e., the one computed with AF). Things are different when e /∈ A. In this
case, A′ = A ∪ {e} and Def′ = Def ∪ {(x, e) | x ∈ Ab and (x, e) ∈ RL

m}3 ∪
{(e, y) | y ∈ Ao and Conc(y) 
= Conc(e) and (y, e) /∈≥o} ∪ {(y, e) | y ∈ Ao

and Conc(y) 
= Conc(e) and (e, y) /∈≥o}. Throughout the paper, we assume that
e /∈ Ao.

In this section we will use grounded semantics to compute acceptability of
arguments. We will denote by Ox(AF), with x ∈ {a, r, ns}, the set of accept-
able (resp. rejected and non-supported) options of the original system AF and
Ox(AF⊕e) the corresponding sets of the new system. For example, Or(AF⊕e)
is the set of rejected options when argument e is added to the system AF .

In this section, we will study the properties of an argument that can change
the status of an option. For that purpose, we start by studying when an accepted
argument in the system AF remains accepted (resp. becomes rejected) in AF ⊕
3 RL

m contains all the attacks from epistemic arguments to practical arguments of a
logical language L.
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e. Then, we show under which conditions an option in Ox(AF) will move to
Oy(AF ⊕ e) with x 
= y.

The first results states that a new practical arguments e will have no impact
on existing epistemic arguments. This is due to the fact that a practical argument
is not allowed to attack an epistemic one. Formally:

Proposition 4. Let e be a new practical argument. It holds that Sc(AF ⊕ e) ∩
Ab = Sc(AF) ∩Ab.

This result in not necessarily true for the practical arguments of the set Ao.
However, this can be the case when the new argument is defeated by a skeptically
accepted epistemic argument. In this case, the argument e is clearly useless.

Proposition 5. Let e be a new practical argument. If (∃a ∈ Ab ∩Sc(AF)) such
that (a, e) ∈ Def then Sc(A⊕ e) ∩ Ao = Sc(AF) ∩ Ao.

From the two above propositions, the following trivial result holds:

Proposition 6. Let e be a new practical argument. If (∃a ∈ Ab ∩Sc(AF)) such
that (a, e) ∈ Def then Sc(A⊕ e) = Sc(AF).

It can be shown that each skeptically accepted practical argument can be de-
fended either by an epistemic argument or by another practical argument that
supports the same option. Before presenting formally this result, let us first in-
troduce a notation. Recall that Sc(AF) =

⋃∞
i=1 F (i)(∅). Let Sc1(AF) = F(∅)

and let (∀i ∈ {2, 3, . . .}) Sci(AF) denote F (i)(∅) \ F (i−1)(∅), i.e., the arguments
reinstated at step i.

Proposition 7. Let o ∈ O, ai ∈ H(o), ai ∈ Sci(AF) and x ∈ A such that
(x, ai) ∈ Def.

1. If x ∈ Ab then (∃j ≥ 1) (j < i) ∧ (∃aj ∈ Ab ∩ Scj(AF)) (aj , x) ∈ Def,
2. If x ∈ Ao then (∃j ≥ 1) (j < i) ∧ (∃aj ∈ (Ab ∪H(o)) ∩ Scj(AF)) (aj , x) ∈

Def.

The following result states that a new practical argument will never influence
the accepted arguments supporting the same option as the new argument e.

Theorem 1. Let e be a new argument such that Conc(e) = o. Then, (∀a ∈ H(o))
a ∈ Sc(AF) ⇒ a ∈ Sc(AF ⊕ e).

We can also show that if the new practical argument e induces a change in
the status of a given practical argument from rejection to acceptance, then this
argument supports the same option as e. This means that a new practical argu-
ment can improve the status of arguments supporting its own conclusion, thus
it can improve the status of option it supports. However, it can never improve
the status of other options.

Theorem 2. Let o ∈ O, and a ∈ H(o). If a ∈ Rej(AF) and a ∈ Sc(AF ⊕ e),
then e ∈ H(o).
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Before continuing with the results on the revision of the status of options, let us
define the set of arguments defended by epistemic arguments in AF .

Definition 6. (Defense by epistemic arguments) Let AF = 〈A, Def〉 be an ar-
gumentation system and a ∈ A. We say that a is defended by epistemic ar-
guments in AF and we write a ∈ Dbe(AF) iff (∀x ∈ AF) (x, a) ∈ Def ⇒
(∃α ∈ Sc(AF) ∩Ab) (α, x) ∈ Def.

Note that, since elements of Sc1(AF) are not attacked at all, they are also
defended by epistemic arguments, i.e., Sc1(AF) ⊆ Dbe(AF). We can prove that
the set of arguments defended by epistemic arguments is skeptically accepted.

Proposition 8. It holds that Dbe(AF) ⊆ Sc(AF).

Given an option which is accepted in the system AF , it becomes rejected in
AF ⊕ e if three conditions are satisfied: e is not in favor of the option o, there is
no skeptically accepted epistemic argument that defeats e, and e defeats all the
arguments in favor of option o that are defended by epistemic arguments.

Theorem 3. Let o ∈ Oa(AF) and let agent receive new practical argument e.
Then: o ∈ Or(AF ⊕ e) iff e /∈ H(o) ∧ (�x ∈ Ab ∩ Sc(AF)) (x, e) ∈ Def ∧
(∀a ∈ Dbe(AF) ∩H(o)) (e, a) ∈ Def.

This result is important in a negotiation. It shows the properties of a good
argument that may kill an option that is not desirable for an agent.

Similarly, we can show that it is possible for an option to move from a rejection
to an acceptance. The idea is to send a practical argument that supports this
option and that is accepted in the new system. Formally:

Theorem 4. Let o ∈ Or(AF) and let agent receive new practical argument e.
Then: o ∈ Oa(AF ⊕ e) iff e ∈ H(o) ∧ e ∈ Sc(AF ⊕ e).

4 Revising Complete Decision Systems

So far, we have analyzed how an argument may change its status when a new
practical argument is received, and similarly how an option may change its sta-
tus without computing the new grounded extension. The decision system that
is used assumes that an option may be supported by several arguments, each
of them pointing out to a particular goal satisfied by the option. In some works
on argument-based decision making, an argument in favor of an option refers
to all the goals satisfied by that option. Thus, there is one argument per op-
tion. A consequence of having one argument per option is that all the practical
arguments are conflicting. In this section, we will use this particular system,
but we will allow multiple arguments in favor of an option under the condi-
tion that they all attack each other in the sense of R. We assume also that the
set of epistemic arguments is empty. The argumentation system that is used is
then AFo = 〈Ao, Defo〉, and we will use preferred semantics for computing the
acceptability of arguments.

In this system, the status of each argument can be characterized as follows:
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Proposition 9. Let AFo = 〈Ao, Defo〉 be a complete argumentation framework
for decision making, and a be an arbitrary argument. Then:

1. a is skeptically accepted iff (∀x ∈ Ao) (a, x) ∈≥o.
2. a is rejected iff (∃x ∈ A) (x, a) ∈>o.
3. a is credulously accepted iff

((∃x′ ∈ A) (a, x′) /∈≥o) ∧ ((∀x ∈ A) ((a, x) /∈≥o) ⇒ (x, a) /∈≥o)).

It can be checked that all skeptically accepted arguments in this system are
equally preferred.

Proposition 13. Let a, b ∈ Sc(AFo). Then (a, b) ∈≥o and (b, a) ∈≥o.

We will now prove that in this particular system, there are two possible cases: the
case where there exists at least one skeptically accepted argument but there are
no credulously accepted arguments, and the case where there are no skeptically
accepted arguments but there is “at least” one credulously accepted argument.
This means that one cannot have a state with both skeptically accepted and
credulously accepted arguments. Moreover, it cannot be the case that all the
arguments are rejected. Formally:

Theorem 5. Let AFo = 〈Ao, Defo〉 be an argumentation system. The following
implications hold:

1. If Sc(AFo) 
= ∅ then Cr(AFo) = ∅.
2. If Cr(AFo) = ∅ then Sc(AFo) 
= ∅.

We will now show that an arbitrary argument e is in the same relation with all
accepted arguments. Recall that we use the notation (e, a) ∈ � to refer to one
particular relation between the arguments e and a.

Proposition 14. Let e be an arbitrary argument.
If (∃a ∈ Sc(AFo)) such that (a, e) ∈ � then (∀a′ ∈ Sc(AFo)) (a′, e) ∈ �.

Let us now have a look at credulously accepted arguments. While all the skep-
tically accepted arguments are in the same class with respect to the preference
relation ≥o, this is not always the case with credulously accepted arguments.
The next proposition shows that credulously accepted arguments are either in-
comparable or indifferent with respect to ≥o.

Proposition 15. AFo = 〈Ao, Defo〉 be an argumentation system and Cr(AFo)
its set of credulously accepted arguments. Then (∀a, b ∈ Cr(AFo) it holds that

((a, b) ∈≥o ∧(b, a) ∈≥o) ∨ ((a, b) /∈≥o ∧(b, a) /∈≥o).

The next proposition shows that if a′ is credulously accepted then there exists
another credulously accepted argument a′′ such that they are incomparable in
the sense of preference relation.

Proposition 16. Let AFo = 〈Ao, Defo〉 be an argumentation system for deci-
sion making, and Cr(AFo) 
= ∅. Then it holds that: (∀a′ ∈ Cr(AFo)) (∃a′′ ∈
Cr(AFo)) (a′, a′′) /∈≥o ∧ (a′′, a′) /∈≥o.
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The next proposition will make some reasoning easier, because it shows that, in
this particular framework, the definition of negotiable options can be simplified.

Proposition 17. Let o ∈ O. The option o is negotiable iff there is at least one
credulously accepted argument in its favor.

As a consequence of the above propositions, the following result shows that
negotiable options and acceptable ones cannot exist at the same time.

Theorem 6. Let AFo = 〈Ao, Defo〉 be a complete argumentation framework for
decision making. The following holds: Oa 
= ∅⇔ On = ∅.

4.1 Revising the Status of an Argument

Like in the previous section, we assume that an agent receives a new practical
argument e. The question is, how the status of an argument given by the system
AFo may change in the system AF⊕e without having to compute the preferred
extensions of AFo ⊕ e.

The first result states that rejected arguments in AFo remain rejected in the
new system AFo ⊕ e. This means that rejected arguments cannot be ”saved”.

Proposition 18. Let AFo = 〈Ao, Defo〉 be an argumentation system. If a ∈
Rej(AFo), then a ∈ Rej(AFo ⊕ e).

We can also show that an argument that was credulously accepted in AFo can
never become skeptically accepted in AFo ⊕ e. It can either remain credulously
accepted, either become rejected.

Proposition 19. Let AFo = 〈Ao, Defo〉 be an argumentation system. If a ∈
Cr(AFo), then a /∈ Sc(AFo ⊕ e).

The next proposition is simple but will be very useful later in this section.

Proposition 20. Let AFo = 〈Ao, Defo〉 be a decision system.

1. If a ∈ Sc(AFo) then a ∈ Sc(AFo ⊕ e) iff (a, e) ∈≥o.
2. If a /∈ Rej(AFo) then a ∈ Rej(AFo ⊕ e) iff (e, a) ∈>o.

The next proposition shows that all the skeptically accepted arguments will have
the “same destiny” when a new argument is recieved.

Proposition 21. Let AFo = 〈Ao, Defo〉 be an argumentation system and a, b ∈
Sc(AFo). Let e /∈ Ao.

1. If a ∈ Sc(AFo ⊕ e) then b ∈ Sc(AFo ⊕ e).
2. If a ∈ Cr(AFo ⊕ e) then b ∈ Cr(AFo ⊕ e).
3. If a ∈ Rej(AFo ⊕ e) then b ∈ Rej(AFo ⊕ e).

The next theorem analyzes the status of all skeptically accepted arguments after
a new argument has arrived.
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Theorem 7. Let AFo = 〈Ao, Defo〉 be a complete argumentation framework for
decision making, a ∈ Sc(AFo) and e /∈ Ao. The following holds:

1. a ∈ Sc(AFo ⊕ e) ∧ e ∈ Sc(AFo ⊕ e) iff ((a, e) ∈≥o) ∧ ((e, a) ∈≥o)
2. a ∈ Rej(AFo ⊕ e) ∧ e ∈ Sc(AFo ⊕ e) iff (e, a) ∈>o

3. a ∈ Sc(AFo ⊕ e) ∧ e ∈ Rej(AFo ⊕ e) iff (a, e) ∈>o

4. a ∈ Cr(AFo ⊕ e) ∧ e ∈ Cr(AFo ⊕ e) iff ((a, e) /∈≥o) ∧ ((a, e) /∈≥o)

Note that, according to Proposition 14, all skeptically accepted arguments are
in the same relation with e as a is. Formally, if a and e are in a particular
relation i.e., (a, e) ∈ �, then (∀b ∈ Ao) ((b ∈ Sc(AFo)) ⇒ (b, e) ∈ �). Hence,
the condition “let a ∈ Sc(AFo) and (a, e) ∈ �” in the previous theorem is
equivalent to the condition (∀a ∈ Ao) ((a ∈ Sc(AFo)) ⇒ (a, e) ∈ �).

Theorem 7 stands as a basic tool for reasoning about the status of new argu-
ments as well as about the changes in the status of other arguments. Once the
argument status is known, it is much easier to determine the status of options.

We will now analyze the relation between credulously accepted arguments and
new arguments.

The next result shows that if there are credulously accepted arguments inAFo

and the new argument e is preferred to all of them, then it is strictly preferred
to all of them.

Proposition 22. Let AFo = 〈Ao, Defo〉 s.t. Cr(AFo) 
= ∅. The following result
holds: ((∀a ∈ Cr(AFo)) (e, a) ∈>o) iff ((∀a ∈ Cr(AFo)) (e, a) ∈≥o).

Proposition 23. Let AFo = 〈Ao, Defo〉 s.t. Cr(AFo) 
= ∅. The following holds:
((∀a ∈ Cr(Ao)) a ∈ Rej(Ao ⊕ e)) iff ((∀a ∈ Cr(Ao)) (e, a) ∈>o).

The next theorem analyzes the case when there are no skeptically accepted
arguments in AFo.

Theorem 8. Let AFo = 〈Ao, Defo〉 be an argumentation framework such that
Cr(AFo) 
= ∅. Then, the following holds:

1. (∀a ∈ Cr(AFo)) (e, a) ∈>o iff e ∈ Sc(AFo ⊕ e) ∧ Ao = Rej(AFo ⊕ e).
2. (∃a ∈ Cr(AFo)) (e, a) /∈>o ∧ (�a′ ∈ Cr(AFo))

(a′, e) ∈>o iff e ∈ Cr(AFo ⊕ e)
3. (∃a ∈ Cr(AFo)) (a, e) ∈>o iff e ∈ Rej(AFo ⊕ e) ∧ Ao = Cr(AFo ⊕ e) .

Recall that, according to Proposition 22, the condition (∀a ∈ Cr(AFo)) (e, a) ∈>o

in the previous theorem is equivalent to the condition (∀a ∈ Cr(AFo)) (e, a) ∈≥o.
While all the skeptically accepted arguments have the “same destiny” after a

new argument arrives, this is not the case with credulously accepted arguments.
Some of them may remain credulously accepted while the others may become
rejected.

4.2 Revising the Status of an Option

We will now show under which conditions an option can change its status. We
start by studying acceptable options.
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Theorem 9. Let AFo = 〈Ao, Defo〉 be an argumentation system and o ∈
Oa(AFo). Suppose that a ∈ Sc(AFo) is an arbitrary skeptically accepted ar-
gument. Then:

1. o ∈ Oa(AFo ⊕ e) iff ((a, e) ∈≥o) ∨ (e ∈ H(o)) ∧ ((e, a) ∈>o)
2. o ∈ On(AFo ⊕ e) iff ((a, e) /∈≥o) ∧ ((e, a) /∈≥o))
3. o ∈ Or(AFo ⊕ e) iff (e /∈ H(o)) ∧ (e, a) ∈>o)

Recall that, according to Proposition 14, all skeptically accepted arguments are
in the same relation with an arbitrary argument. Hence, the condition (∃a ∈
Sc(AFo)) (a, e) ∈ �) in the previous theorem is equivalent to the condition
(∀a ∈ Sc(AFo)) (a, e) ∈ �).

A similar characterization is given bellow for negotiable options.

Theorem 10. Let AFo = 〈Ao, Defo〉 be an argumentation system and o ∈
OnAF . Then:

1. o ∈ Oa(AFo ⊕ e) iff (e ∈ H(o)) ∧ ((∀a ∈ Cr(Ao)) (e, a) ∈>)
2. o ∈ On(AFo ⊕ e) iff ((e ∈ H(o)) ∧ (∃a′ ∈ Cr(AFo)) (e, a′) /∈>o ∧ (�a′′ ∈

Cr(AFo)) (a′′, e) ∈>o) ∨ ((∃a′ ∈ Cr(AFo)) (a′ ∈ H(o) ∧ (e, a′) /∈>o))
3. o ∈ Or(AFo ⊕ e) iff ((e /∈ H(o)) ∧ ((∀a ∈ Cr(AFo)) (a ∈ H(o)) ⇒ (e, a)
∈>o)).

Note that, according to Proposition 22, the condition (∀a ∈ Cr(Ao)) (e, a) ∈>
in the previous theorem is equivalent to condition (∀a ∈ Cr(AFo)) (e, a) ∈≥o.

Let us now analyze when a rejected option in AFo may change its status in
AF ⊕ e.

Theorem 11. Let AFo = 〈Ao, Defo〉 be an argumentation system and o ∈
Or(AF). Then:

1. o ∈ Oa(AFo ⊕ e) iff (e ∈ H(o)) ∧ ((∀a ∈ Ao) (e, a) ∈≥o)
2. o ∈ On(AFo ⊕ e) iff (e ∈ H(o)) ∧ ((∀a ∈ Ao) (a, e) /∈>o) ∧ ((∃a ∈ Ao)

(e, a) /∈>o)
3. o ∈ Or(AFo ⊕ e) iff (e /∈ H(o)) ∨ ((e ∈ H(o)) ∧ (∃a ∈ Ao)(a, e) ∈>)

5 Conclusion

This paper has tackled the problem of revising argument-based decision models.
To the best of our knowledge, in this paper we have proposed the first investiga-
tion on the impact of a new argument on the outcome of a decision system. The
basic idea is to check when the status of an option may shift when a new argu-
ment is received without having to compute the whole new ordering on options.
For that purpose, we have considered a decision model that has recently been
proposed in the literature. This model computes a status for each option on the
basis of the status of their supporting arguments. We have studied two cases:
the case where an option may be supported by several arguments and the case
where an option is supported by only one argument. In both cases, we assumed
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that the new argument is practical, i.e., it supports an option. We have provided
a full characterization of acceptable options that become rejected, negotiable or
remain accepted. Similarly, we have characterized any shift from one status to
another. These results are based on a characterization of a shift of the status of
arguments themselves.

These results may be used to determine strategies for negotiation, since at a
given step of a dialog an agent has to choose an argument to send to another
agent in order to change the status of an option. Moreover, they may help to
understand which arguments are useful and which arguments are useless in a
given situation, which allows us to understand the role of argumentation in a
negotiation.

Note that a recent work has been done on revision in argumentation systems
in [5]. That paper addresses the problem of revising the set of extensions of an
abstract argumentation system. It studies how the extensions of an argumenta-
tion system may evolve when a new argument is received. Nothing is said on the
revision of a particular argument. In our paper, we are more interested by the
evolution of the status of a given argument without having to compute the ex-
tensions of the new argumentation system. We have also studied how the status
of an option changes when a new argument is received. Another main difference
with this work is that in [5] only the case of adding an argument having only
one interaction with an argument of the initial argumentation system is stud-
ied. In our paper we have studied the more general case, i.e., the new argument
may attack and be attacked by an arbitrary number of arguments of the initial
argumentation system.
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Abstract. In the traditional definition of Dung’s abstract argumenta-
tion framework (AF ), the notion of attack is understood as a relation be-
tween arguments, thus bounding attacks to start from and be directed to
arguments. This paper introduces a generalized definition of abstract ar-
gumentation framework called AFRA (Argumentation Framework with
Recursive Attacks), where an attack is allowed to be directed towards an-
other attack. From a conceptual point of view, we claim that this general-
ization supports a straightforward representation of reasoning situations
which are not easily accommodated within the traditional framework.
From the technical side, we first investigate the extension to the gen-
eralized framework of the basic notions of conflict-free set, acceptable
argument, admissible set and of Dung’s fundamental lemma. Then we
propose a correspondence from the AFRA to the AF formalism, showing
that it satisfies some basic desirable properties. Finally we analyze the
relationships between AFRA and a similar extension of Dung’s abstract
argumentation framework, called EAF+ and derived from the recently
proposed formalism EAF .

1 Introduction

An argumentation framework (AF in the following), as introduced in a seminal
paper by Dung [1], is an abstract entity consisting of a set of elements, called
arguments, whose origin, nature and possible internal structure is not specified
and by a binary relation of attack on the set of arguments, whose meaning is not
specified either. This abstract formalism has been shown to be able to encompass
a large variety of more specific formalisms in areas ranging from nonmonotonic
reasoning to logic programming and game theory, and, as such, is widely regarded
as a powerful tool for theoretical analysis. Several variations of the original AF
formalism have been proposed in the literature. On one hand, some approaches
introduce new elements in the basic scheme in order to encompass explicitly
some additional conceptual notions, useful for a “natural” representation of some
reasoning situations. This is the case for instance of value-based argumentation
frameworks [2], where a notion of value is associated to arguments, and of bipolar
argumentation frameworks [3], where a relation of support between arguments
is considered besides the one of attack. On the other hand, one may investigate
generalized versions of the original AF definition (in particular, of the notion

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 83–94, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



84 P. Baroni et al.

of attack) while not introducing additional concepts within the basic scheme,
as in [4,5,6]. This paper lies in the latter line of investigation and pursues the
goal of generalizing the AF notion of attack by allowing an attack, starting from
an argument, to be directed not just towards an argument but also towards any
other attack. This will be achieved by a recursive definition of the attack relation
leading to the introduction and preliminary investigation of a formalism called
AFRA (Argumentation Framework with Recursive Attacks).

The paper is organised as follows. In Section 2 motivations for a recursive
notion of attack will be discussed, leading in Section 3 to the formal definition of
AFRA and of the necessary companion notions. Section 4 proposes a translation
procedure from AFRA to AF , able to ensure a full correspondence between the
notions of conflict-free set, acceptable argument and admissible set. In section
5 we compare AFRA with an alternative way to encompass attacks to attacks,
called EAF+ (in turn based on the EAF formalism, proposed in [4,5,6]). Section
6 concludes the paper.

2 Background and Motivations

In Dung’s theory an argumentation framework AF = 〈A,R〉 is a pair where A is
a set of arguments (whatever this may mean) andR ⊆ A×A a binary relation on
it. The terse intuition behind this formalism is that arguments may attack each
other and useful formal definitions and theoretical investigations may be built on
this simple basis. In particular, the related fundamental notions of conflict-free
set, acceptable argument and admissible set are recalled in Definition 1.

Definition 1. Given an argumentation framework AF = 〈A,R〉:

– a set S ⊆ A is conflict-free if �A,B ∈ S s.t. (A,B) ∈ R;
– an argument A ∈ A is acceptable with respect to a set S ⊆ A if ∀B ∈ A s.t.

(B,A) ∈ R, ∃C ∈ S s.t. (C,B) ∈ R;
– a set S ⊆ A is admissible if S is conflict-free and every element of S is

acceptable with respect to S.

The notions recalled in Definition 1 lie at the heart of the definitions of Dung’s
argumentation semantics, a topic which is only marginally covered by this pa-
per. For our purposes it is sufficient to recall that an argumentation semantics
identifies for an argumentation framework, a set of extensions, namely sets of
arguments which are “collectively acceptable”, or, in other words, are able to
survive together the conflict represented by the attack relation.

Even from this quick review it emerges that the main role of the notion of at-
tack in Dung’s theory is supporting the identification of “surviving” arguments,
on which the definition of extensions is exclusively focused. On this basis, one
might say that attacks are necessary but accessory in this theory.

At a merely abstract level, one might then envisage an alternative approach
where attacks are ascribed an extended (in a sense, empowered) role. A simple
way to achieve this is allowing an attack to be directed also towards another
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attack. From a general point of view, this amounts to conceive an attack as an
entity able to affect any other entity (be it an argument or an attack) rather than
just a by-product of how arguments relate each other. As a further consequence,
this opens the way to include attacks as first-class elements in the definitions of
all the basic notions we have seen before, from conflict-free sets to extensions.

However, before proceeding with what could be regarded as a sort of technical
exercise, one might wonder whether there are practical motivations and concrete
intuitions backing this kind of investigation. We provide an affirmative answer
by means of an example in the area of modeling decision processes. Suppose
Bob is deciding about his Christmas holidays and, as a general rule of thumb, he
always buys cheap last minute offers. Suppose two such offers are available, one
for a week in Gstaad, another for a week in Cuba. Then, using his behavioral
rule, Bob can build two arguments, one, let say G, whose premise is “There is a
last minute offer for Gstaad” and whose conclusion is “I should go to Gstaad”,
the other, let say C, whose premise is “There is a last minute offer for Cuba” and
whose conclusion is “I should go to Cuba” (note that if more last minute offers
were available, more arguments of the same kind would be constructed). As the
two choices are incompatible, G and C attack each other, a situation giving rise
to an undetermined choice. Suppose however that Bob has a preference P for
skiing and knows that Gstaad is a ski resort, how can we represent this fact?

P might be represented implicitly by suppressing the attack from C to G, but
this is unsatisfactory, since it would prevent, in particular, further reasoning on
P , as described below. So let us consider P as an argument whose premise is
“Bob likes skiing” and whose conclusion is “When it is possible, Bob prefers to
go to a ski resort”. P might attack C, but this does not seem sound since P is not
actually in contrast with the existence of a good last minute offer for Cuba and
the fact that, according to Bob’s general behavioral rule, this gives him a reason
for going to Cuba. Thus, it seems more reasonable to represent P as attacking
the attack from C to G, causing G to prevail. Note that the attack from C to
G is not suppressed, but only made ineffective, in the specific situation at hand,
due to the attack of P .

Assume now that Bob learns that there have been no snowfalls in Gstaad since
one month and from this fact he derives that it might not be possible to ski in
Gstaad. This argument (N), whose premise is “The weather report informs that
in Gstaad there were no snowfalls since one month” and whose conclusion is
“It is not possible to ski in Gstaad”, does not affect neither the existence of last
minute offers for Gstaad nor Bob’s general preference for ski, rather it affects the
ability of this preference to affect the choice between Gstaad and Cuba. Thus
argument N attacks the attack originated from P .

Suppose finally that Bob is informed that in Gstaad it is anyway possible to
ski, thanks to a good amount of artificial snow. This allows to build an argument,
let say A, which attacks N , thus in turn reinstating the attack originated from
P and intuitively supporting the choice of Gstaad. A graphical illustration of
this example is provided in Figure 1.
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Fig. 1. Bob’s last minute dilemma

While the quick formalization adopted for this largely informal example is
clearly not the only possible one and might even be questionable, we believe
that the example anyway provides the kind of intuitive backing we sought for the
notion of attacks towards attacks in abstract argumentation and the necessity of
extending concepts like acceptability, admissibility and reinstatement to attacks
too. A formal counterpart to this intuition will be provided in the next section.

3 AFRA: Argumentation Framework with Recursive
Attacks

An Argumentation Framework with Recursive Attacks (AFRA) is defined, sim-
ilarly to Dung’s argumentation framework, as a pair consisting of a set of argu-
ments and a set of attacks. Unlike the original definition, every attack is defined
recursively as a pair where the first member is an argument and the second is
another attack or an argument (base case).

Definition 2 (AFRA). An Argumentation Framework with Recursive Attacks
(AFRA) is a pair 〈A,R〉 where:

– A is a set of arguments;
– R is a set of attacks, namely pairs (A,X ) s.t. A ∈ A and (X ∈ R or

X ∈ A).

Given an attack α = (A,X ) ∈ R, we will say that A is the source of α, denoted
as src(α) = A and X is the target of α, denoted as trg(α) = X .

We start substantiating the role played by attacks by introducing a notion of
defeat which regards attacks, rather than their source arguments, as the subjects
able to defeat arguments or other attacks, as encompassed by Definition 3.

Definition 3 (Direct Defeat). Let 〈A,R〉 be an AFRA, V ∈ R, W ∈ A∪R,
then V directly defeats W iff W = trg(V ).

Moreover, as we are interested also in how attacks are affected by other attacks,
we introduce a notion of indirect defeat for an attack, corresponding to the
situation where its source receives a direct defeat.
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Definition 4 (Indirect Defeat). Let 〈A,R〉 be an AFRA, V ∈ R, W ∈ A,
if V directly defeats W then ∀α ∈ R s.t. src(α) = W , V indirectly defeats α.

Therefore an element V of a AFRA defeats another element W if there is a
direct or an indirect defeat from V to W .

Definition 5 (Defeat). Let 〈A,R〉 be an AFRA, V ∈ R, W ∈ A∪R, then V
defeats W , denoted as V →R W , iff V directly or indirectly defeats W .

To exemplify, the case of Fig. 1 can be represented by an AFRA Γ = 〈A,R〉
where A = {C,G, P,N,A} and R = {α, β, γ, δ, ε} with α = (G,C), β = (C,G),
γ = (P, β), δ = (N, γ), ε = (A,N). There are five direct defeats, namely ε →R N ,
δ →R γ, γ →R β, β →R G, α →R C, and three indirect defeats: ε →R δ, β →R α,
α →R β.

The definition of conflict-free set follows directly.

Definition 6 (Conflict–free). Let 〈A,R〉 be an AFRA, S ⊆ A∪R is conflict–
free iff �V ,W ∈ S s.t. V →R W .

Note that, while the definition of conflict-free set for AFRA is formally almost
identical to the corresponding one in AF , actually they feature substantial dif-
ferences, related to the underlying notion of defeat. In fact in AFRA every
set of arguments S ⊆ A is conflict-free, since only the explicit consideration
of attacks gives rise to conflict in this approach. For instance if A,B ∈ A and
α = (A,B) ∈ R, the set {A,B} is conflict-free, while the set {A,B, α} is not.

Continuing the above example, the maximal, w.r.t. inclusion, conflict free sets
of Γ are {C,P,A, ε, β}, {C,G, P,N,A, δ}, {C,G, P,N,A, γ}, {C,G,A, P, ε, γ},
{C,P,N,A, δ, β}, {G,P,N,A, δ, α}, {G,P,N,A, α, γ}, {G,A, P, ε, γ, α}.

Also the definition of acceptability is formally very similar to the traditional
one, but now it is applied to both arguments and attacks.

Definition 7 (Acceptability). Let 〈A,R〉 be an AFRA, S ⊆ A ∪ R, W ∈
A ∪ R, W is acceptable w.r.t. S iff ∀Z ∈ R s.t. Z →R W ∃V ∈ S s.t.
V →R Z .

On this basis, the definition of admissibility is formally identical to the one
proposed by Dung. As a consequence, it is also possible to directly introduce the
notion of preferred extension (which is simply a maximal admissible set) lying
at the basis of Dung’s well-known preferred semantics [1].

Definition 8 (Admissibility). Let 〈A,R〉 be an AFRA, S ⊆ A∪R is admis-
sible iff it is conflict–free and each element of S is acceptable w.r.t. S.

Definition 9 (Preferred extension). A preferred extension of an AFRA is
a maximal (w.r.t. set inclusion) admissible set.

Referring again to the example of Fig. 1, the only preferred extension of Γ is
{A,P,G, ε, γ, α}.

It is also possible to prove that a straigthforward transposition of Dung’s
fundamental lemma holds in the context of AFRA.
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Lemma 1 (Fundamental lemma). Let 〈A,R〉 be an AFRA, S ⊆ A ∪R an
admissible set and A ,A ′ ∈ A ∪R elements acceptable w.r.t. S. Then:

1. S′ = S ∪ {A } is admissible; and
2. A′ is acceptable w.r.t. S′.

Proof.

1. A is acceptable w.r.t. S so each element of S′ is acceptable w.r.t. S′. Sup-
pose S′ is not conflict–free; therefore there exists an element B ∈ S such
that either A →R B or B →R A . From the admissibility of S and the
acceptability of A there exists an element B̄ ∈ S such that B̄ →R B or
B̄ →R A . Since S is conflict–free it follows that B̄ →R A . But then there
must exist an element B̂ ∈ S such that B̂ →R B̄. Contradiction.

2. Obvious.

4 A Correspondence between AFRA and AF

We consider now the issue of expressing an AFRA in terms of a traditional AF
and drawing the relevant correspondences between the basic notions introduced
in Section 3. This kind of correspondence provides a very useful basis for further
investigations as it allows one to reuse or adapt, in the context of AFRA, the
many theoretical results available in Dung’s framework.

Definition 10. Let Γ = 〈A,R〉 be an AFRA, the corresponding AF Γ̃ =
〈Ã, R̃〉 is defined as follows:

– Ã = A ∪R;
– R̃ = {(V ,W )|V ,W ∈ A ∪R and V →R W }.

In words both arguments and attacks of the original AFRA Γ become arguments
of its corresponding AF version Γ̃ while the defeat relations in AF correspond
to all direct and indirect defeats in the original AFRA. We can now examine
the relationships between the relevant basic notions in Γ and Γ̃ .

Lemma 2. Let Γ = 〈A,R〉 an AFRA and Γ̃ = 〈Ã, R̃〉 its corresponding AF :

1. S is a conflict–free set for Γ iff S is a conflict–free set for Γ̃ ;
2. A is acceptable w.r.t. S ⊆ A ∪R in Γ iff A is acceptable w.r.t. S in Γ̃ ;
3. S is an admissible set for Γ iff S is an admissible set for Γ̃ .

Proof

1. The conclusion follows directly from Def. 10.
2. Right to left half: Let A ∈ A ∪R be acceptable w.r.t. S ⊆ A ∪R in Γ and

suppose A is not acceptable w.r.t. S of Γ̃ . So, there exists B ∈ Ã = A ∪R
s.t. (B,A ) ∈ R̃ and �C ∈ S s.t. (C ,B) ∈ R̃. From Def. 10, (B,A ) ∈ R̃
iff B →R A and (C ,B) ∈ R̃ iff C →R B. Then ∃A ∈ S, ∃B ∈ A ∪ R s.t.
B →R A and �C ∈ S s.t. C →R B. Therefore A is not acceptable w.r.t. S
in Γ . Contradiction.
Left to right half: Follows the same reasoning line with obvious modifications.

3. Follows directly from 1 and 2.
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5 Comparing AFRA with EAF+

AFRA provides a formally quite simple way to generalize the notion of attack
of Dung’s framework, such simplicity partially hiding some substantial underly-
ing differences, concerning in particular the notion of conflict-free set. A more
restricted, but similar in spirit, generalization of Dung’s framework has recently
been proposed in [4,5,6], with the name of Extended Argumentation Framework
(EAF ). This approach is motivated by the need to express preferences between
arguments and supports a very interesting form of meta–level argumentation
about the values that arguments promote [2]. In EAF a limited notion of at-
tacks to attacks is encompassed: only attacks whose target is an argument (i.e.
the “traditional” ones) can be attacked, while attacks whose target is another
attack can not be in turn attacked. Referring to Figure 1, only the attack origi-
nated from P could be represented, while the one originated from N could not.
On the other hand, the notion of conflict–free set introduced in [5] for EAF is
somehow closer to Dung’s original one. To compare this kind of approach with
AFRA we investigate in this section an extension of EAF (called EAF+) which
allows for recursive attacks, while attempting to follow as close as possible the
original EAF definitions provided in [5].

The definition of EAF+ keeps the original elements of Dung’s definition,
adding, as a separate entity, a relation of attack between attacks.

Definition 11 (EAF+). An EAF Plus (EAF+) is a tuple 〈A,R,D+〉 s.t.:

1. A is a set of arguments;
2. R ⊆ A×A;
3. D+ is a set of pairs (A, δ) s.t. A ∈ A and (δ ∈ R or δ ∈ D+).

We extend in the obvious way the notions of source and target of an attack to
the pairs both in R and in D+. The notion of defeat for EAF+ turns out to be
articulated into four cases as it has to encompass the roles of both arguments
and attacks.

Definition 12 (Defeat). Let 〈A,R,D+〉 be an EAF+, E = R∪D+, V ,W ∈
A∪E, V defeats W (denoted V →E W ) if any of the following conditions holds:

1. V ,W ∈ A, (V ,W ) ∈ R;
2. V ∈ A,W ∈ E and (V ,W ) ∈ E;
3. V ,W ∈ E and W = trg(V );
4. V ∈ E ,W ∈ A and W = trg(V ).

Keeping again distinct the treatment of arguments and attacks, the property of
being conflict-free has to be introduced for pairs consisting of a set of arguments
and a set of attacks. Moreover we need to constrain the sets of arguments and
attacks in the pair, by restricting our attention on self-contained pairs, where
the presence of an attack implies also the presence of its source.

Definition 13 (Self–contained pair). Let 〈A,R,D+〉 be an EAF+, E =
R ∪ D+, S ⊆ A, T ⊆ E, a pair W = (S, T ) is self–contained iff ∀α ∈ T ,
src(α) ∈ S. We will denote a self–contained pair as Ŵ = (̂S, T ).
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Definition 14 (Conflict–free). Let 〈A,R,D+〉 be an EAF+, a self–contai-
ned pair Ŵ = (̂S, T ) is conflict–free iff ∀A,B ∈ S s.t. A →E B (so there exists
α = (A,B) ∈ R), ∃β ∈ T s.t. β →E α and �γ ∈ T , �D ∈ S ∪T s.t. D = trg(γ).

In words, any attack between the arguments in S has to be attacked in turn
by T (and thus made ineffective), while attacks in T directed against any other
element in the pair are simply not allowed. Note that, differently from the defi-
nition provided for AF , there may be a conflict even in absence of attacks in T ,
so a pair Ŵ = (̂S, ∅) may not be conflict-free.

In EAF+, like in Dung’s AF , an element (argument or attack) is acceptable
with respect to a self–contained pair when it is defended against any attack it
receives. Defense may consist of a defeat against the attack or against its source.

Definition 15 (Acceptability). Let 〈A,R,D+〉 be an EAF+, E = R ∪ D+,
and Ŵ = (̂S, T ) a self–contained pair:

– A ∈ A is acceptable w.r.t. Ŵ = (̂S, T ) iff ∀β ∈ R s.t. A = trg(β), ∃α ∈ T
s.t. α →E src(β) or α →E β;

– α ∈ E is acceptable w.r.t. Ŵ = (̂S, T ) iff src(α) is acceptable w.r.t. Ŵ and
∀β ∈ D+ s.t. β →E α, ∃γ ∈ T s.t. γ →E src(β) or γ →E β.

Following [1,5], we consider a self–contained pair admissible if and only if it is
conflict–free and any of its elements is acceptable with respect to it.

Definition 16 (Admissibility). Let 〈A,R,D+〉 be an EAF+, E = R ∪ D+,
a self–contained pair Ŵ = (̂S, T ) is admissible iff it is conflict–free, ∀A ∈ S, A

is acceptable w.r.t. Ŵ = (̂S, T ) and ∀α ∈ T , α is acceptable w.r.t. Ŵ = (̂S, T ).

In order to introduce the notion of preferred extension for EAF+ we have to
define an inclusion relation between self–contained pairs.

Definition 17 (Inclusion of self–contained pair). Let 〈A,R,D+〉 be an
EAF+, E = R∪ D+, S ⊆ A, T ⊆ E, Ŵ ′ = ̂(S′, T ′) is included in Ŵ = (̂S, T )
iff S′ ⊆ S and T ′ ⊆ T .

Definition 18 (Preferred extension). A preferred extension of an EAF+
is a maximal (according to the inclusion relation introduced in Definition 17)
admissible self–contained pair of EAF+.

It is also possible to prove Dung’s fundamental Lemma for the case of EAF+.

Lemma 3 (Fundamental lemma). Let 〈A,R,D+〉 be an EAF+, E = R ∪
D+, Ŵ = (̂S, T ) an admissible self–contained pair and A ,A ′ ∈ A∪E acceptable
w.r.t. Ŵ. Then:

1. Ŵ ′ =

{
(̂S′, T ),S′ = S ∪ {A } if A ∈ A
(̂S, T ′), T ′ = T ∪ {A } if A ∈ E

is admissible; and

2. A ′ is acceptable w.r.t. Ŵ ′.
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Proof. To prove this lemma, we have to consider four different cases:

A. A ,A ′ ∈ A;
B. A ∈ A, A ′ ∈ E ;
C. A ∈ E , A ′ ∈ A;
D. A ,A ′ ∈ E .

Case A.
1. A is acceptable w.r.t. Ŵ = (̂S, T ) therefore in Ŵ ′ = (̂S′, T ), with S′ =
S ∪ {A }, ∀A ∈ S′, A is acceptable w.r.t. Ŵ ′ and ∀α ∈ T , α is acceptable
w.r.t. Ŵ ′. Suppose Ŵ ′ is not conflict-free. There are two possible cases: (a)
∃A,B ∈ S′ s.t. α = (A,B) ∈ R and �β ∈ T s.t. β →E α; (b) ∃α ∈ T , ∃D ∈
S′ ∪ T s.t. D = trg(α).

Considering case (b), from the admissibility of Ŵ we have D = A =
trg(α); from the acceptability of A w.r.t. Ŵ and Def. 15 two cases are
possible but α ∈ T , so both cases imply that Ŵ is not conflict–free: contra-
diction.

Considering case (a), from the admissibility of Ŵ , A = A or B = A .
Suppose A = A , i.e. α = A →E B. Since B is acceptable w.r.t. Ŵ

from Def. 15 two cases are in turn possible: (i) ∃β ∈ T s.t. β →E A and
src(β) ∈ S; (ii) ∃β ∈ T s.t. β →E α.

In case (i) from the acceptability of A with respect to Ŵ we would
have that β or its source (both belonging to Ŵ) should be defeated by an
element of Ŵ thus contradicting the fact that Ŵ is conflict free. In case (ii)
we contradict the assumption (a).

Suppose now B = A ; so trg(α) = A . From the acceptability of A w.r.t.
Ŵ there exists β ∈ T s.t. β →E α or β →E src(α), but again in both cases
we contradict the fact that Ŵ is conflict free.

2. Obvious.

Case B.
1. Same as Case A, item 1.
2. Suppose A ′ is acceptable w.r.t. Ŵ = (̂S, T ) but not w.r.t. Ŵ ′ = (̂S′, T );

then (i) src(A ′) is not acceptable w.r.t. Ŵ ′ or (ii) ∃β ∈ D+ s.t. β →E A ′

and �γ ∈ T s.t. γ →E src(β) or γ →E β. In case (i), noting that src(A ′) is
acceptable w.r.t. Ŵ , we contradict what we have proved in Case A, item 1.
Case (ii) contradicts the fact that A ′ is acceptable w.r.t. Ŵ .

Case C.
1. A is acceptable w.r.t. Ŵ = (̂S, T ) so in Ŵ ′ = (̂S, T ′), with T ′ = T ∪ {A },
∀A ∈ S, A is acceptable w.r.t. Ŵ ′ and ∀α ∈ T ′, α is acceptable w.r.t. Ŵ ′.
Suppose Ŵ ′ is not conflict–free. There are two possible cases: (a) ∃A,B ∈ S
s.t. α = (A,B) ∈ R and �β ∈ T ′ s.t. β →E α; (b) ∃α ∈ T ′, ∃D ∈ S ∪ T ′ s.t.
D = trg(α).

Case (a) is impossible because T ′ ⊇ T and Ŵ is admissible.
Let us consider case (b): from the admissibility of Ŵ , α = A or D = A .
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Suppose α = A ; so A →E D and src(A ) is acceptable w.r.t. Ŵ (because
A is acceptable w.r.t. Ŵ). From the acceptability of D w.r.t. Ŵ , there exists
γ ∈ T , src(γ) ∈ S s.t. (i) γ →E src(A ) or (ii) γ →E A . In both cases, from
the acceptability of src(A ) w.r.t. Ŵ , there exists δ ∈ T s.t. δ →E src(γ) or
δ →E γ. Either case implies that Ŵ is not conflict–free: contradiction.

Suppose D = A ; so α →E A . Using the acceptability of A w.r.t. Ŵ , we
can then apply the same reasoning as above leading to contradict the fact
that Ŵ is conflict–free.

2. Obvious.

Case D.
1. Same of Case C, item 1.
2. Same of Case B, item 2.

Let us now analyse the relation between EAF+ and AFRA: first it is possible
to draw a direct correspondence between the two formalisms.

Definition 19 (AFRA–EAF+ correspondence). For any EAF+ Δ =
〈A,R,D+〉 we define the corresponding AFRA as ΔR = 〈A,R ∪ D+〉. For
any AFRA Γ = 〈A,R′〉 we define the corresponding EAF+ as ΓE = 〈A,R′ ∩
(A×A),R′ \ (A×A)〉.

The correspondence between the notions of defeat is drawn in Lemma 4.

Lemma 4. Let Δ = 〈A,R,D+〉 be an EAF+ and ΔR its corresponding AFRA.
For any V ,W ∈ (A∪R∪D+), V →E W in Δ iff the disjunction of the following
conditions holds:

(a) W is directly defeated by V in ΔR;
(b) ∃Z ∈ (R∪D+) s.t. V = src(Z ) and Z directly defeats W in ΔR.

Proof. Consider the four cases of defeat for EAF+ of Def. 12. The disjunction of
cases 1 and 2 is equivalent to condition (b). In fact, in these cases ∃Z ∈ (R∪D+)
s.t. V = src(Z ) and W = trg(Z ). It follows that Z directly defeats W in ΔR.
Conversely, if ∃Z ∈ (R ∪ D+) s.t. V = src(Z ) and Z directly defeats W in
ΔR it follows that W = trg(Z ) which implies that case 1 or 2 holds in Δ. The
disjunction of cases 3 and 4 is equivalent to condition (a): the fact that either
3 or 4 implies (a) follows directly from Definition 3, the converse implication is
immediate too.

From the proof of Lemma 4 we can observe that the four-cases definition of defeat
in EAF+ is somewhat redundant and might be summarized referring to the
more synthetic formulation used in AFRA. We can now analyse the relationship
involving the notions of conflict-free set, acceptability and admissibility: those
defined for EAF+ turn out to be a specialization of the ones in AFRA.
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Lemma 5. Let Δ = 〈A,R,D+〉 an EAF+ and Γ = 〈A,R′〉 = ΔR:

1. if Ŵ = (̂S, T ) is conflict–free in Δ then S ∪ T is a conflict–free set for Γ ;
2. if V is acceptable w.r.t. Ŵ = (̂S, T ) in Δ then V is acceptable w.r.t. S ∪ T

in Γ ;
3. if Ŵ = (̂S, T ) is admissible for Δ then S ∪ T is an admissible set for Γ .

Proof

1. Let Ŵ = (̂S, T ) a conflict–free pair for Δ. From Def. 14 we have: (a) ∀A,B ∈
S, α = (A,B) ∈ R, ∃β ∈ T s.t. β →E α; and (b) �γ ∈ T , �D ∈ S ∪ T s.t.
D = trg(γ).

Let U = S ∪ T ⊆ A ∪ R′. According to Def. 6 we have to show that
�V ,W ∈ U s.t. V →R W which in turn amounts to require: (i) �V ∈ U∩R′,
�W ∈ U s.t. W = trg(V ); (ii) �V ,Z ∈ U ∩R′, s.t. src(Z ) = trg(V ). From
(b) it follows that �V ∈ U ∩R′, �W ∈ U s.t. W = trg(V ), i.e. condition (i).
To prove (ii), assume that ∃V ,Z ∈ U ∩R′, s.t. src(Z ) = trg(V ). To avoid
contradiction with (b) we have to assume src(Z ) /∈ S, but this contradicts
in turn the fact that Ŵ is self-contained.

2. Let V be acceptable w.r.t. Ŵ = (̂S, T ). By Def. 7, we have to show that
∀Z ∈ R′ s.t. Z →R V (i.e. (i) V = trg(Z ) or, if V ∈ R′, (ii) src(V ) =
trg(Z )), ∃W ∈ U = S ∪ T s.t. W →R Z (i.e. (iii) Z = trg(W ) or (iv)
src(Z ) = trg(W )). Assume first (i) and V ∈ A: then (iii) or (iv) follows
directly from the first part of Def. 15. Assuming (i) and V ∈ R′, according to
the second part of Def. 15 we obtain again that (iii) or (iv) holds. Assuming
(ii), we have V ∈ R′ and, by Def. 15, src(V ) must be acceptable w.r.t.
Ŵ = (̂S, T ) and (iii) or (iv) follows again from the first part of Def. 15.

3. Follows directly from 1 and 2.

6 Discussion and Conclusions

We have proposed a preliminary investigation about AFRA, a generalization of
Dung’s argumentation framework where attacks to attacks are recursively en-
compassed without restriction. An intuitive justification for this kind of formal-
ism has been provided in relation with the representation of decision processes.

The idea of encompassing attacks to attacks in abstract argumentation frame-
work has been first considered in [7], in the context of an extended framework
encompassing argument strengths and their propagation. In this quite different
context, deserving further development, Dung style semantics issues have not
been considered.

Focusing on approaches closer to “traditional” Dung’s framework, attacks
to attacks have been considered in the context of reasoning about preferences
[4,5,6] and reasoning about coalitions [8]. In both cases only attacks to attacks
between arguments are covered, i.e. only one level of recursion is allowed. A de-
tailed conceptual analysis motivating EAF with respect to a variety of reference



94 P. Baroni et al.

domains is provided in particular in [6]. While developing this kind of analysis
for AFRA and the relevant comparison with EAF is beyond the scope of this
paper, one can note that EAF adopts some specific assumptions, for instance
a limited level of recursion and a constraint on some attacks to be symmetric,
when the involved arguments represent conflicting preferences. These assump-
tions are fully justified in the context of reasoning about preferences but may
not be necessary in general. The AFRA formalism, though originally conceived
to support some intuitive forms of reasoning in the context of decision making,
addresses the general need to reason about conflicts which may be themselves
defeasible. In order to satisfy this need, it seems reasonable to provide attacks
with an ontological status encompassing defeasibility, differently than in AF .

To complete the comparison from a more technical point of view, we have con-
sidered in Section 5 the EAF+ formalism, namely a possible extension of EAF
aimed at overcoming these restrictive assumptions, and we have drawn corre-
spondences between EAF+ and AFRA. It turns out that the AFRA formalism
supports more compact (and in some cases also more general) definitions of the
fundamental notions of defeat, conflict–free set, acceptability and admissibility.
The “translation” from AFRA to Dung’s AF proposed in Section 4 opens the
way to one of the main future work directions, namely enlarging the theoreti-
cal bases of AFRA and investigating the definition of argumentation semantics
in this context, possibly exploiting the rich corpus of results available for the
traditional framework.
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Abstract. In this paper we analyze the problem of aggregating different individ-
ual argumentation frameworks over a common set of arguments in order to ob-
tain a unique socially justified set of arguments. This can be done in two different
ways: a social attack relation is built up from the individual ones, and then is used
to produce a set of justified arguments, or this set is directly obtained from the
sets of individually justified arguments. Our main concern here is whether these
two procedures can coincide or under what conditions this could happen. To deal
with this, we consider different voting by quota mechanisms, and the aggregation
mechanisms by decisive sets.

1 Introduction

The work by P.M. Dung ([6]) has paved the way for the study of argument justification
in a highly abstract level, offering different ways of selecting arguments according to
a given attack relation among them. An attack relation represents a criterion by which
arguments pose threats of defeat on other arguments, and justified arguments are those
sanctioned by some “extension” semantics, based on a notion of acceptability. Roughly
speaking, an agent can accept an argument a if she has some arguments to reply any
possible attack on a. A structure composed of a set of arguments and an attack relation
among them constitutes an argumentation framework.

Bench-Capon [3] and Bench-Capon and Modgil [4] have studied meta-level argu-
mentation where some arguments express preferences about the social values that other
arguments promote, so that different audiences having different preferences can yield
different defeat relations among arguments. In the same way, we consider that different
individuals can yield different defeat relations on the basis of their own preferences. In
this paper we think of a society of agents, each one supporting a particular criterion of
attack, yielding her own individual argumentation framework and, as a consequence,
her own justified arguments. Given a pair of arguments a and b, each agent can indi-
vidually express her criterion by choosing one of four alternatives: both arguments are
perfectly compatible, a attacks b, b attacks a, or they attack each other (expressing that
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they are in conflict but indifferent). The main issue we address is how the society can
yield argument justifications on the basis of the individual criteria of its members.

A social justification of arguments can be thought through two different kinds of
procedures:

P1: by aggregating all the individual attack relations into one social relation, and then
obtaining the socially justified arguments w.r.t. this relation through some specific ex-
tension semantics;

P2: by aggregating all the sets of individually justified arguments into one set of socially
justified arguments.

Social Choice theory (SCT) has studied several mechanisms to characterize “fair”
aggregations, in accordance with general democratic principles ([1]). Taking into ac-
count that argumentation is at the very heart of deliberative democracy, we are interested
in applying aggregation mechanisms for characterizing socially justified arguments in
both of the above mentioned ways. In particular, we will explore the instantiation of
P1 and P2 through the majority voting mechanism and mechanisms requiring arbitrary
quotas of votes; on the other hand, we will also consider mechanisms that can be rep-
resented by the sets of individuals which are decisive to impose their will. Tohmé et al.
([13]) have studied procedure P1 (aggregation of attack relations), showing how some
well-known arrovian principles of SCT are accomplished when the algebraic structure
of the class of decisive sets is that of a proper prefilter. Coste-Marquis et al. ([5]) in-
stantiate the P1 procedure by merging individual argumentation frameworks that are
expanded into a partial system over the set of all arguments considered by the group of
agents. Procedure P2 is rejected by these last authors arguing that it only would make
sense if all agents consider the same set of arguments (e.g. Rahwan and Larson do this in
[12]). We agree at this point, but then the authors point out another drawback: the attack
relations (from which extensions are characterized) are not taken into consideration any
more once extensions have been computed (see [5], p. 615). On the contrary, we think
that analogously to SCT, where choice sets often say something about the preference
involved, extensions —in certain circumstances— can say something about the attack
relation involved. We will show, in fact, that there are sensible conditions under which
P1 and P2 mechanisms lead to logically related outcomes.

A concrete question we ask is whether procedures P1 and P2 will coincide in gen-
eral or not. This problem replicates in some way the discursive dilemma or doctrinal
paradox, where a collective judgment reached by voting on the set of premises of an
argument can yield a different outcome to that reached by voting on the conclusion
([8], [11], [7], etc.). Though our approach is concerned with the justification of argu-
ments instead of judgments (i.e. sentences), the problem seems to be the same at the
underlying level in which a deliberation on some input information (premises of an
argument/attacks criteria) can yield a collective result that is different to that of the de-
liberation on the possible outputs (conclusion of the argument/justified arguments). The
following example illustrates the problem.
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Example 1. Assume that a medical team of three M.D.’s, say 1, 2 and 3, deliberate
about which therapy should be applied to some patient. After a few rounds of discus-
sion the deliberation focuses on three arguments, a, b and c, each one concluding that
a given therapy must be applied on basis of some observed symptoms. But each doctor
has a particular opinion about the importance of the observed symptoms and about the
compatibility or incompatibility of the therapies, which leads to three different criteria
of attack among the arguments. Say that each individual i proposes an attack criterion
⇀i over {a, b, c} as follows:

a ⇀1 b ⇀1 c,
c ⇀2 b ⇀2 a,
b ⇀3 a, b ⇀3 c.

(For example, individual 1 thinks that the therapy suggested by argument b is incom-
patible with those suggested by a and c, while these ones are compatible between them;
moreover, she prefers a to b and b to c.) Assume now that this little society formed by
the team has two alternative ways to reach a decision on which are the justified argu-
ments, consisting in respective implementations of P1 and P2 through majority voting,
say P1m and P2m. Then we have:

– (P1m) The team obtains the social attack relation ⇀ as follows:
- b ⇀ c, since b attacks c under ⇀1 and ⇀3;
- b ⇀ a, since b attacks a under ⇀2 and ⇀3.
Thus ⇀ (which coincides with ⇀3) yields the only socially justified argument b (b
is the only non attacked argument and it attacks the other two arguments).

– (P2m) The society chooses the justified arguments by aggregating all the sets of
individually justified arguments. Assuming that each individual follows any of the
Dung’s extension semantics as the justification criterion, then:
- individual 1 can justify the choice set {a, c} according to ⇀1;
- individual 2 can justify the choice set {a, c} according to ⇀2;
- individual 3 can justify the choice set {b} according to ⇀3.

Thus, according to majority voting on these individual choice sets, the socially justified
arguments should be a and c. Hence, clearly P1m and P2m yield different outcomes,
resembling the doctrinal paradox.

As this example shows, procedures P1 and P2 will not coincide in general. On the other
hand, most of the paper is devoted to propose different kinds of restrictions which suffice
for the coincidence. The restrictions will mainly concern limitations on the number of
arguments, the number of individuals, or impositions on the individual attack relations.

The paper is organized as follows: Section 2 offers preliminary definitions, introduc-
ing social argumentation frameworks formally. Section 3 refers to voting mechanisms
by quotas showing how P1 and P2 mechanisms can match under special but sensible
conditions. Section 4 shows how decisive groups of individuals voting on the argu-
ments they choose will sanction a preferred extension of the framework obtained by an
aggregate attack relation. Conclusions are offered in section 5.
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2 Preliminaries

Dung defines an argumentation framework as a pair AF = 〈AR, ⇀〉, where AR is
a set of abstract entities called ‘arguments’ and ⇀ ⊆ AR × AR denotes an attack
relation among arguments. This relation determines which sets of arguments become
“defended” from attacks. Different characterizations of the notion of defense yield al-
ternative sets called extensions of AF . These extensions are seen as the semantics of
the argumentation framework, i.e. the classes of arguments that can be deemed as the
outcomes of the whole process of argumentation. Dung introduces the notions of pre-
ferred, stable, complete, and grounded extensions, each corresponding to different re-
quirements on the attack relation.

Definition 1. (Dung ([6])). In any argumentation framework AF , an argument a is
said acceptable w.r.t. a subset S of arguments of AR, in case that for every argument
b such that b ⇀ a, there exists some argument c ∈ S such that c ⇀ b. A set of
arguments S is said admissible if each a ∈ S is acceptable w.r.t. S, and is conflict-
free, i.e., the attack relation does not hold for any pair of arguments belonging to S. A
preferred extension is any maximally admissible set of arguments of AF . A complete
extension of AF is any conflict-free subset of arguments which is a fixed point of Φ(·),
where Φ(S) = {a : a is acceptable w.r.t. S}, while the grounded extension is the least
(w.r.t. ⊆) complete extension. Moreover, a stable extension is a conflict-free set S of
arguments which attacks every argument not belonging to S.

Dung defines well-founded argumentation frameworks as those in which there exists
no infinite sequence a0, a1, . . . , an, . . . such that for each i, ai+1 ⇀ ai. An important
result is that well-founded argumentation frameworks have only one extension that is
grounded, preferred, stable and complete (cf. [6], theorem 30, p. 331).

We propose social argumentation frameworks to model situations of social debate
(e.g. arguments pro and con sanctioning a law, deliberative group decisions, etc.). Given
the set AR of all the arguments involved in the debate, each individual establishes her
own attack criterion on them, which can be based on particular values of preference,
intention, desire, etc. (these values will be abstracted in the model).

Definition 2. A social argumentation framework is a structure SAFM = 〈N, AR,
{AFi}i∈N , ⇀M 〉, where: N = {1, . . . , n} is a set of individuals; AR is a finite set
of arguments; AFi = 〈AR,⇀i〉 is the argumentation framework of individual i, built
up from her own attack criterion ⇀i ⊆ AR×AR; and ⇀M ⊆ AR×AR is the social
attack relation of SAFM , obtained through the aggregation of ⇀1, . . . ,⇀n according
to some specified mechanism M .

3 Aggregation Mechanisms by Quotas

For the sake of simplicity, we will assume that each individual chooses her set of justi-
fied arguments according to the Dung’s grounded semantics. In this way we will have
to compute only one set per individual. Furthermore, since it is well known that in all
argumentation frameworks the grounded extension is contained in the intersection of
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all the complete extensions, we will always have a minimum of justified arguments
per individual. The set of socially justified arguments obtained through a P2 procedure
should arise as an aggregation of all the sets of individually justified arguments. The
aggregation can be done according to various criteria. A quota criterion establishes a
minimum support among the individuals, measured in terms of a given number of them.

3.1 Conditions for the Coincidence between Quota Mechanisms

A natural way of defining a quota-based mechanism for the election of an attack crite-
rion, for any given quota q, is as follows:

⇀≥
q =def {(a, b) : |{i ∈ N : a ⇀i b}| ≥ q}. (1)

That is, a ⇀≥
q b if at least q individuals support the attack of a on b. On the other

hand, the aggregation of sets of arguments can be done in the same fashion. Let Gi be
the grounded extension of AFi (i.e.,the set of justified arguments for the individual i).
The set of socially justified arguments can be defined as follows:

G≥
q =def {a : |{i ∈ N : a ∈ Gi}| ≥ q}. (2)

Our first question is: will G≥
q coincide with the grounded extension of 〈AR,⇀≥

q 〉 in
general? The answer is no; example 1 shows a counterexample where q = 2. Moreover,
it is not granted that G≥

q will be conflict-free in any setting, so this mechanism can
get out of rationality. A more general question now is: which conditions suffice for the
coincidence of some P1 and P2 mechanisms? (Note that if the coincidence is granted,
the conflict-freeness condition is granted too.) While it is difficult to find sensible con-
ditions for such coincidence in presence of four or more arguments, we will show next
some arguably reasonable restrictions under which the goal is accomplished in presence
of two or three arguments. Restrictions will vary the quota, the number of individuals
or the properties of the attack relations.

Variations on two arguments. The most simple setting that deserves analysis consists
of two individuals (N = {1, 2}) deliberating about only two arguments (AR = {a, b}).
In fact, such a setting is the most basic test for any aggregation procedure. In addition,
it is well known from SCT that paradoxes arise when three (or more) people and three
(or more) options are at stake (see [2], chapter 3). A total agreement about the attack
criterion should obviously be reflected in the resulting social choice1, but to impose that
the outcome must be established only under unanimous decision is too strong. Instead,
a quota q = 1 seems to be not so restrictive and reasonable at the same time. Note that,
using this quota, a ⇀≥

q b if for at least one individual i, a ⇀i b (in case that a ⇀1 b

and b ⇀2 a, we will have a ⇀≥
q b and b ⇀≥

q a, a well known situation in the argument
systems literature).

For the aggregation of sets of individually justified arguments we have to consider
the conflict-freeness problem. If SAF≥

q is such that a ⇀≥
q b or b ⇀≥

q a and we obtain
a, b ∈ G≥

q , then the mechanism to obtain G≥
q via q = 1 would be sanctioning a not

1 This is known as the Weak Pareto Condition in SCT.
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conflict-free set of socially justified arguments. To avoid this situation (in this setting
with only two arguments), the requirement of an unanimous choice of arguments seems
to be right. For q = 1, this amounts to ask that:

G>
q =def {a : |{i ∈ N : a ∈ Gi}| > q}. (3)

Now we are in conditions to offer a first result of coincidence.

Notation. ‘G(⇀M )’ will denote the grounded extension of SAFM .

Proposition 1. If |AR| = 2, |N | = 2 and q = 1, then G>
q = G(⇀≥

q ).

Proof.
a ∈ G>

q ,
iff a ∈ G1 ∧ a ∈ G2,
iff (a 
⇀1 a ∧ b 
⇀1 a) ∧ (a 
⇀2 a ∧ b 
⇀2 a),
iff a 
⇀≥

q a ∧ b 
⇀≥
q a,

iff a ∈ G(⇀≥
q ). �

This result cannot be generalized for any |N | or any q, even imposing sensible restric-
tions on the domain of individual attack relations. Though we will not offer a proof
stricto sensu, an example will be enough to show the problem.

Example 2. Assume the individual attack relations are irreflexive, asymmetric and com-
plete according to the following definitions:

Irreflexive: ∀x ∈ AR : ¬(x ⇀ x)
Complete: ∀x, y ∈ AR, x 
= y : (x ⇀ y) ∨ (y ⇀ x)
Asymmetric: ∀x, y ∈ AR, x 
= y : (x ⇀ y) ⇒ ¬(y ⇀ x)

Let N = {1, 2, 3, 4, 5} and the individual attack relations be as follows:

→1 = →2 = →3 = {(a, b)};
→4 = →5 = {(b, a)}.
The individual grounded extensions are G1 = G2 = G3 = {a}, and G4 = G5 = {b}.
Then we have:

– for q = 1: G>
q = {a, b}; ⇀≥

q = {(a, b), (b, a)}; G(⇀≥
q ) = ∅;

– for q = 2: G>
q = {a}; ⇀≥

q = {(a, b), (b, a)}; G(⇀≥
q ) = ∅;

– for q = 3: G>
q = ∅; ⇀≥

q = {(a, b)}; G(⇀≥
q ) = {a};

– for q = 4: G>
q = ∅; ⇀≥

q = ∅; G(⇀≥
q ) = {a, b}.

In the next step, a slight variation in the use of the quota for aggregating the individual
attack relations will lead us to new conditions for the coincidence. Here the attack of an
argument on another will be socially sanctioned if there exist at most q individuals that
do not support that attack:

⇀≤
q =def {(a, b) : |{i ∈ N : a 
⇀i b}| ≤ q}. (4)
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The coincidence can be found for any number n of individuals and for any quota q,
1 ≤ q < n. The only condition in the domain of individual attacks is irreflexivity, i.e.
no individual is allowed to support self-attacks (clearly, this condition can be justified
as a rationality requirement).

Proposition 2. If |AR| = 2, 1 ≤ q < n for an arbitrary number n of individuals, and
for every individual i, ⇀i is irreflexive, then G>

q = G(⇀≤
q ).

Proof.
a ∈ G>

q ,
iff |{i ∈ N : a ∈ Gi| > q,
iff |{i ∈ N : b 
⇀i a}| > q,
iff b 
⇀≤

q a,
iff a ∈ G(⇀≤

q ). �

A similar result can be obtained by maintaining the original aggregation of the individ-
ual attacks given in (1), and varying the use of the quota in the aggregation of the sets
of individually justified arguments as follows:

G<
q =def {a : |{i ∈ N : a 
∈ Gi}| < q}. (5)

Proposition 3. If |AR| = 2, 1 < q < n for an arbitrary number n of individuals, and
for every individual i, ⇀i is irreflexive, then G<

q = G(⇀≥
q ).

Proof.
a ∈ G<

q ,
iff |{i ∈ N : a 
∈ Gi| < q,
iff |{i ∈ N : b ⇀i a}| < q,
iff b 
⇀≥

q a,
iff a ∈ G(⇀≥

q ). �

The results given in propositions 2 and 3 can be extended in an obvious way to settings
with more than two arguments, assuming that the individuals unanimously agree in
the justification of at least |AR| − 2 arguments, i.e. ∃S ⊆ AR : (|S| ≥ |AR| − 2 ∧
∀i∀a, b ∈ S : a 
⇀i b).

Three arguments: coincidence of absolute majority mechanisms. In social argu-
mentation frameworks with at most three arguments, a coincidence of absolute majority
mechanisms can be found by imposing some reasonable restrictions on the profile of
individual attack relations.

We require the profile being such that all individuals avoid supporting cycles of at-
tack (i.e., 〈AFi,⇀i〉 must be well-founded for every i); all individuals agree about the
attack on at least one pair of arguments; and all individuals agree about all the conflicts
within AR, in the sense of the following definition of ‘conflictually definite’:

Definition 3. Let N be the set of individuals of a social argumentation framework
SAFM . We say that two arguments a, b ∈ AR are socially conflicting (in SAFM ),
in symbols, ‘a⊗ b’, iff for each individual i ∈ N , a ⇀i b or b ⇀i a; and that they are
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socially coherent (in SAFM ), in symbols, ‘a� b’, iff for each individual i ∈ N , a 
⇀i b
and b 
⇀i a. We say that SAFM is conflictually definite iff for every pair of arguments
a, b ∈ AR, a⊗ b or a� b.

With respect to the implementation of the absolute majority mechanisms, we will re-
quire an odd number of individuals (in order to avoid ties) and a quota q = (|N |−1)/2.
So the desired mechanism for the aggregation of sets of individually justified arguments
is obtained with G>

q , while absolute majority for the aggregation of individual attack
relations is obtained with the operator:

⇀>
q =def {(a, b) : |{i ∈ N : a ⇀i b}| > q}. (6)

Proposition 4. If

1. |AR| = 3,
2. |N | is odd,
3. q = (|N | − 1)/2 (quota for absolute majority),
4. ⇀i is acyclic for every i ∈ N (i.e. individual argumentation frameworks are well-

founded),
5. SAF>

q is conflictually definite, and
6. there exists a pair of arguments a and b such that either ∀i: a ⇀i b or ∀i: b ⇀i a,

then G>
q = G(⇀>

q ).

Proof. Let us assume condition 6 supposing, without lost of generality, that ∀i : a ⇀i b.
We have to consider three cases with respect to the third argument c: (i) all the individ-
uals agree in that a and c are in conflict, or (ii) all the individuals agree in that b and c
are in conflict or (iii) all the individuals agree in that neither a and c nor b and c are in
conflict.

Case (i): By hypothesis, ∀i : (a ⇀i c ∨ c ⇀i a). By conditions 2 and 3, either (a)
|{i ∈ N : a ⇀i c}| > q or (b) |{i ∈ N : c ⇀i a}| > q (but not both cases). If
(a) is the case, then there exist at least q + 1 individuals whose attack relations con-
tain the pairs (a, b) and (a, c) and, hence, by condition 3, these pairs are also in the
aggregate social attack relation. Therefore, G>

q = {a} = G(⇀>
q ), since there are at

least q + 1 individuals i such that Gi = {a}. If (b) is the case we have either b � c or
|{i ∈ N : c ⇀i b}| > q (b ⇀i c cannot be majoritarily supported given condition 4),
therefore we will have either G>

q = {b, c} = G(⇀>
q ) or G>

q = {c} = G(⇀>
q ).

Case (ii): By hypothesis, ∀i : (b ⇀i c ∨ c ⇀i b). By conditions 2 and 3, we have
two possible cases: (a) |{i ∈ N : b ⇀i c}| > q; and (b) |{i ∈ N : c ⇀i b}| > q; If
(a) is the case, then either a � c or there exists at least q + 1 individuals whose attack
relations contain the pair (a, c) (the pair (c, a) is inhibited by condition 4), therefore we
will have either G>

q = {a, c}= G(⇀>
q ) or G>

q = {a}= G(⇀>
q ). If (b) is the case, then

either (b.1) there exists at least q + 1 individuals which attack relations contain the pair
(a, c), in which case clearly G>

q = {a} = G(⇀>
q ); or (b.2) there exists at least q + 1

individuals whose attack relations contain the pair (c, a), in which case clearly G>
q =

{c} = G(⇀>
q ); or (b.3) a� c, in which case clearly G>

q = {a, c} = G(⇀>
q ).

Case (iii): Given Condition 6 all the individuals have the same preferences, that is, ∀i :
⇀i = {(a, b)}, so the aggregation problem is trivial. �
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The requirements established in this result (especially condition 6) are aimed to avoid
undesirable cycles in the aggregate attack relation and the well-known problem in SCT
called The Condorcet’s Paradox ([10]).

The next example shows that the above result cannot be extended to four arguments.

Example 3. Assume:

⇀1= {(a, b), (b, c), (c, d)},
⇀2= {(b, a), (b, c), (c, d)},
⇀3= {(b, a), (c, b), (c, d)}.
So G1 = G3 = {a, c} and G2 = {b, d}, then G>

q = {a, c}. On the other hand, ⇀>
q =

{(b, a), (b, c), (c, d)}, then G(⇀>
q ) = {b, d}. Therefore, G(⇀>

q ) 
= G>
q .

4 Aggregation Mechanisms by Decisive Sets

A set Ω ⊆ N of individuals is said to be decisive to impose an alternative x if whenever
that alternative is voted by all i ∈ Ω then x is socially chosen. For example, in absolute
majority voting, any set containing more than fifty percent of the voters is decisive.
We are interested in characterizing the aggregation of both individual attack relations
and sets of individually justified arguments via decisive groups, and in finding some
correspondence between them. To do this we will make use of the notion of ‘resolution’
of an argumentation framework, introduced by Modgil ([9]).

An argumentation framework 〈AR,R′〉 is a resolution of 〈AR,R〉 iff every pair
of arguments belonging to R′ also belongs to R, if (a, b) ∈ R and (b, a) 
∈ R, then
(a, b) ∈ R′ and if (a, b) ∈ R and (b, a) ∈ R, then only one of these pairs is in R′.
Modgil shows that a set of arguments E is admissible in AF iff there exists a resolution
AF ′ of AF such that E is admissible in AF ′ ([9], Lemma 1). If we interpret AF
as (a partial structure of) a social argumentation framework SAF and the set of all
the resolutions AF ′ as the set of individual argumentation frameworks of SAF , then
we would say that E is admissible for that society iff there exist some individuals for
which E is admissible. Now, in conflictually definite social argumentation frameworks,
if those individual argumentation frameworks are well founded (and consequently their
attack relations are acyclic), then their respective extensions —which are grounded,
preferred, complete and stable— will be preferred extensions of AF .

Lemma 1. Let SAF = 〈N, AR, {AFi}i∈N ⇀〉 be conflictually definite. For every
i ∈ N , if AFi is a well-founded resolution of 〈AR,⇀〉, then the only extension Gi of
AFi is a preferred extension of AF .

Proof

1. Assuming AFi is well-founded, the only extension Gi of AFi is obviously conflict-
free in AFi.

2. To prove that Gi is conflict-free in AF , let us assume the contrary; then there exist
at least two arguments a, b ∈ Gi such that (a ⇀ b) or (b ⇀ a). Since SAF is
conflictually definite, we have a ⇀i b or b ⇀i a. Therefore, Gi is not conflict-free
in AFi. Contradiction.
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3. To see that every argument belonging to Gi is acceptable w.r.t. Gi in AF , assume
that there exists b ∈ AR such that b ⇀ a and there not exist c ∈ Gi such that c ⇀ b.
a ⇀i b cannot be the case since ⇀i⊂⇀ and, since the system is conflictually
definite, we have that b ⇀i a. Moreover, there not exist c ∈ Gi such that c ⇀i b.
Therefore, a is not acceptable w.r.t. Gi in AFi, which is absurd.

4. Finally, let us prove the maximal admissibility showing by contraposition that if a
is acceptable w.r.t. Gi in AF then a ∈ Gi. Assume a 
∈ Gi. Now, since AFi is
well-founded Gi is stable, hence, for any a 
∈ Gi there exists b ∈ Gi such that
b ⇀i a. Since ⇀i⊆⇀, b ⇀ a. Therefore, a is not acceptable w.r.t. Gi in AF . �

This lemma shows that if an individual proposes a “normal” attack criterion (i.e. without
cycles of attack) for every socially recognized conflicting pair of arguments, then the
arguments she supports will not be rejected in the social choice2.

Note that asking for every individual of a society to be “normal” seems too demand-
ing. Moreover, the lemma does not tell us how an aggregation mechanism can be such
that each individual argumentation framework is a resolution of the social argumenta-
tion framework. The notion of decisive sets will help us to solve these problems: on
the one hand, asking for all the members of a decisive set to be “normal” is not too
demanding and, on the other hand, the class of all decisive sets of individuals can easily
be put in correspondence with a specific aggregation mechanism. So let us define, first,
how a social attack relation can be obtained according to a decisive set.

Assume that Ω is a decisive set according to some given mechanism and that a ⇀i b
for every i ∈ Ω; then the attack of a on b should be socially accepted (even though the
attack of b on a could also be accepted, for instance, if it is imposed by another decisive
set). Formally,

⇀d =def {(a, b) : ∃Ω∀i ∈ Ω : a ⇀i b}. (7)

Now, the aggregation of individually justified arguments can also be characterized
by the decisive sets of a mechanism. Intuitively, the society should elect the arguments
that are individually justified by all the members of a decisive group.

Definition 4. A set of arguments E ⊆ AR is socially eligible iff E =
⋂

i∈Ω Gi for
some decisive set Ω.

Of course, different decisive groups can lead to different socially eligible sets of argu-
ments that could not be combined into one set without the chance of yielding conflicts.
Indeed, conflicts could occur even inside socially eligible sets, so the mechanism at
stake should define some requirements to avoid that. Another way of preventing con-
flicts not depending on the mechanism is to establish some general, sufficient conditions
for that. For example, if all the members of a decisive set Ω agree with respect to the
attack relation, then all of them will justify the same arguments, and so

⋂
i∈Ω Gi will

be conflict-free. This kind of agreement will suffice for finding the result we are looking
for:

2 The term ‘rejected’ is also taken from Modgil ([9]) and means that an argument does not
belong to any extension sanctioned by the semantics at stake.
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Proposition 5. Let SAF = 〈N, AR, {AFi}i∈N , ⇀d〉 be conflictually definite. For any
decisive set Ω ⊆ N , if every AFi, i ∈ Ω, is well founded and ∀i, j ∈ Ω,⇀i=⇀j then
every socially eligible set of arguments is a preferred extension of 〈AR,⇀d〉.

Proof

1. For every socially eligible set E there exists a decisive set Ω such that E =⋂
i∈Ω Gi.

2. Given ∀i, j ∈ Ω, ⇀i=⇀j , it follows that E = Gi for all i ∈ Ω.
3. Since Ω is decisive, by (7) we have ⇀i⊆⇀d.
4. Since AFi is well-founded, ⇀i is acyclic;
5. SAF is conflictually definite, hence a ⇀d b implies a ⇀i b or b ⇀i a, for all

i ∈ Ω. This fact together with 3 and 4 implies that AFi is a resolution of 〈AR,⇀d〉.
6. By 5 and lemma 1 we have that Gi is a preferred extension of 〈AR,⇀d〉. �

In sum, this result says that in social argumentation frameworks which are conflictually
definite, an agreement reached in a decisive set of individuals will suffice for leading to
a set of arguments that is socially preferred according to the aggregate attack criterion.

On the other hand, the following example shows that not every preferred extension
yielded by ⇀d is an eligible set.

Example 4. Assume AR = {a, b, c}; N = {1, 2}; the individual attack relations and
the corresponding extensions are, respectively:

a ⇀1 b ⇀1 c; {a, c};
c ⇀2 b ⇀2 a; {a, c}.
Let the decisive sets be {1} and {2}; then the social attack relation is:

a ⇀d b, b ⇀d a, b ⇀d c, c ⇀d b,

which yields the preferred extensions {a, c} and {b}. Clearly, {b} is not socially eligi-
ble. (Note that we could have naturally assumed that {1, 2} were also decisive, but the
outcome would also have been one of no coincidence.)

5 Conclusions

In this paper, we have addressed the problem of how a society can yield argument
justifications on the basis of the individual criteria of its members. A social justified set
of arguments can be obtained through two different procedures: we can first aggregate
the individual attack relations into a social one, and then generate the set of arguments
from such relation, or we can get such set by directly aggregating the sets of individually
justified arguments. Using very common voting mechanisms (as majority rule and quota
rules) we have shown that these two procedures do not coincide in general, but they do
under sensible conditions when there are at most two arguments. In addition, we have
also proven a possibility result for three arguments, but stronger conditions are required.
Finally, we have established a more general result showing the conditions under which
aggregation procedures based on decisive sets can coincide.
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Aside from its intrinsic theoretical interest, the problem of the coincidence or not of
both aggregation procedures has a deep practical relevance: when the procedures do not
generate the same set of social justified arguments, the society should then also decide
which mechanism to rely on. In order to address this, more work on the relationship
between both ways of aggregating argumentation frameworks is needed.

Acknowledgments

We thank three anonymous reviewers for constructive criticisms that improved the
paper.

References

1. Arrow, K.J., Sen, A.K., Suzumura, K.: Handbook of Social Choice and Welfare. Elsevier,
Amsterdam (2002)

2. Austen-Smith, D., Banks, J.S.: Positive Political Theory I: Collective Preference. Michigan
Studies in Political Analysis. University of Michigan Press, Ann Arbor (2000)

3. Bench-Capon, T.: Persuasion in practical argument using value-based argumentation frame-
works. Journal of Logic and Computation 13(3), 429–448 (2003)

4. Modgil, S., Bench-Capon, T.: Integrating object and meta-level value based argumentation.
In: Besnard, P., Doutre, S., Hunter, A. (eds.) Proc. of Computational Models of Argument,
COMMA 2008, Toulouse, France, May 28-30, 2008. Frontiers in Artificial Intelligence and
Applications, vol. 172, pp. 240–251. IOS Press, Amsterdam (2008)

5. Coste-Marquis, S., Devred, C., Konieczny, S., Lagasquie-Schiex, M.C., Marquis, P.: On the
merging of Dung’s argumentation systems. Artificial Intelligence 171, 740–753 (2007)

6. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artificial Intelligence 77, 321–358 (1995)
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Abstract. In this paper we consider the dynamics of abstract argumentation in
Baroni and Giacomin’s framework for the evaluation of extension based argu-
mentation semantics. Following Baroni and Giacomin, we do not consider indi-
vidual approaches, but we define general principles or postulates that individual
approaches may satisfy. In particular, we define abstraction principles for the at-
tack relation, and for the arguments in the framework. We illustrate the principles
on the grounded extension. In this paper we consider only principles for the single
extension case, and leave the multiple extension case to further research.

1 Introduction

Argumentation is a suitable framework for modeling interaction among agents. Dung
introduced a framework for abstract argumentation with various kinds of so-called se-
mantics. Baroni and Giacomin introduced a more general framework to study general
principles of sets of semantics [1]. This is a very promising approach, since due to the
increase of different semantics we need abstract principles to study the proposals, com-
pare them, and select them for applications. So far Dung’s argumentation framework
has been mainly considered as static, in the sense that the argumentation framework is
fixed. The dynamics of argumentation framework has attracted a recent interest where
the problem of revising an argumentation framework has been addressed [5,7]. In this
paper, we address complementary problems and study how the semantics of an argu-
mentation framework remains unchanged when we change the set of arguments or the
attack relations between them. In particular, we consider the case in which arguments or
attack relations are removed, for example when agents retract arguments in a dialogue.
More precisely, we address the following questions:

1. Which principles can be defined for abstracting (i.e., removing) an attack relation?
2. Which principles can be defined for abstracting (i.e., removing) an argument?
3. Which of these principles are satisfied by the grounded semantics?

We use the general framework of Baroni and Giacomin for arbitrary argumentation
semantics, but we consider only semantics that give precisely one extension, like the
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grounded extension or the skeptical preferred semantics. Baroni and Giacomin [1] de-
fine the so-called directionality and resolution principles, which may be considered as
argument and attack abstraction principles respectively. However, whereas directional-
ity only considers abstraction from disconnected arguments, we also consider abstrac-
tion from arguments which are connected. To define the principles, we use Caminada’s
distinction between accepted, rejected and undecided arguments [4]. We find some
results for the most popular semantics used in argumentation, namely the grounded
extension.

In this paper we consider only principles for the single extension case, and leave the
multiple extension case to further research. Moreover, we consider only abstractions
which differ only one attack or one argument.

The layout of this paper is as follows. In Section 2 we give a recall of Dung’s ar-
gumentation framework, the framework of Baroni and Giacomin, Caminada labeling,
and we introduce the notion of abstraction. In Section 3 we consider the abstraction of
attack relations and in Section 4 we consider the abstraction of arguments.

2 Formal Framework for Abstraction Principles

2.1 Dung’s Argumentation Framework

Argumentation is a reasoning model based on constructing arguments, determining
potential conflicts between arguments and determining acceptable arguments. Dung’s
framework [6] is based on a binary attack relation. In Dung’s framework, an argument
is an abstract entity whose role is determined only by its relation to other arguments.
Its structure and its origin are not known. We restrict ourselves to finite argumentation
frameworks, i.e., those frameworks in which the set of arguments is finite.

Definition 1 (Argumentation framework). An argumentation framework is a tuple
〈B,→〉 where B is a finite set (of arguments) and → is a binary (attack) relation defined
on B × B.

The output of 〈B,→〉 is derived from the set of selected acceptable arguments, called
extensions, with respect to some acceptability semantics. We need the following defini-
tions before we recall the most widely used acceptability semantics of arguments given
in the literature.

Definition 2. Let 〈B,→〉 be an argumentation framework. Let S ⊆ B.

– S defends a if ∀b ∈ B such that b → a, ∃c ∈ S such that c → b.
– S ⊆ B is conflict-free if and only if there are no a, b ∈ S such that a → b.

The following definition summarizes the well-known acceptability semantics.

Definition 3 (Acceptability semantics). Let AF = 〈B,→〉 be an argumentation
framework. Let S ⊆ B.

– S is an admissible extension if and only if it is conflict-free and defends all its
elements.

– S is a complete extension if and only if it is conflict-free and S={a | S defends a}.
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– S is a grounded extension of AF if and only if S is the smallest (for set inclusion)
complete extension of AF .

– S is a preferred extension of AF if and only if S is maximal (for set inclusion)
among admissible extensions of AF .

– S is the skeptical preferred extension of AF if and only if S is the intersection of
all preferred extensions of AF .

– S is a stable extension of AF if and only if S is conflict-free and attacks all argu-
ments of B\S.

Which semantics is most appropriate in which circumstances depends on the applica-
tion domain of the argumentation theory. The grounded extension is the most basic one,
in the sense that its conclusions are not controversial, each argumentation framework
has a grounded extension (it may be the empty set), and this extension is unique. The
grounded extension therefore plays an important role in the remainder of this paper.
The preferred semantics is more credulous than the grounded extension. There always
exists at least one preferred extension but it does not have to be unique. Stable exten-
sions have an intuitive appeal, but their drawbacks are that extensions do not have to be
unique and do not have to exist. Stable extensions are used, for example, in answer set
programming, where it makes sense that some programs do not have a solution.

2.2 Baroni and Giacomin’s Framework

In this paper we use the recently introduced formal framework for argumentation of
Baroni and Giacomin [1]. They assume that the set B represents the set of arguments
produced by a reasoner at a given instant of time, and they therefore assume that B
is finite, independently of the fact that the underlying mechanism of argument genera-
tion admits the existence of infinite sets of arguments. Like in Dung’s original frame-
work, they consider an argumentation framework as a pair 〈B,→〉 where B is a set and
→⊆ (B×B) is a binary relation on B, called the attack relation. In the following it will
be useful to explicitly refer to the set of all arguments which can be generated, which
we call N for the universe of arguments.

The generalization of Baroni and Giacomin is based on a function E that maps an ar-
gumentation framework 〈B,→〉 to its set of extensions, i.e., to a set of sets of arguments.
However, this function is not formally defined. To be precise, they say: “An extension-
based argumentation semantics is defined by specifying the criteria for deriving, for a
generic argumentation framework, a set of extensions, where each extension represents
a set of arguments considered to be acceptable together. Given a generic argumentation
semantics S, the set of extensions prescribed by S for a given argumentation frame-
work AF is denoted as ES(AF ).” The following definition captures the above informal
meaning of the function E . Since Baroni and Giacomin do not give a name to the func-
tion E , and it maps argumentation frameworks to the set of accepted arguments, we call
E the acceptance function.

Definition 4. Let N be the universe of arguments. A multiple extensions acceptance
function E : N × 2N×N → 22N

is

1. a partial function which is defined for each argumentation framework 〈B,→〉 with
finite B ⊆ N and →⊆ B × B, and
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2. which maps an argumentation framework 〈B,→〉 to sets of subsets of B:
E(〈B,→〉) ⊆ 2B.

The generality of the framework of Baroni and Giacomin follows from the fact that
they have to define various principles which are built-in in Dung’s framework. For ex-
ample, Baroni and Giacomin identify the following two fundamental principles under-
lying the definition of extension-based semantics in Dung’s framework, the language
independent principle and the conflict free principle (see [1] for a discussion on these
principles). In the following, we assume that these two principles are satisfied.

Definition 5 (Language independence). Two argumentation frameworks AF1 =
〈B1,→1 〉 and AF2 = 〈B2,→2〉 are isomorphic if and only if there is a bijective
mapping m : B1 → B2, such that (α, β) ∈→1 if and only if (m(α),m(β)) ∈→2. This
is denoted asAF1

.=m AF2.
A semantics S satisfies the language independence principle if and only if

∀AF1 = 〈B1,→1〉, ∀AF2 = 〈B2,→2〉 such that AF1
.=m AF2 we have ES(AF2) =

{M(E) | E ∈ ES(AF1))}, where M(E) = {β ∈ B2 | ∃α ∈ E, β = m(α)}.

Definition 6 (Conflict free). Given an argumentation framework AF = 〈B,→〉, a set
S ⊆ B is conflict free, denoted as cf(S), iff �a, b ∈ S such that a → b. A semantics S
satisfies the conflict free principle if and only if ∀AF, ∀E ∈ ES(AF ), E is conflict free.

2.3 The Single Extension Case

In this paper we consider only the case in which the semantics of an argumentation
framework contains precisely one extension. Examples are the grounded and the skep-
tical preferred extension.

Definition 7. LetN be the universe of arguments. A single extension acceptance func-
tion A : N × 2N×N → 2N is

1. a total function which is defined for each argumentation framework 〈B,→〉 with
finite B ⊆ N and →⊆ B × B, and

2. which maps an argumentation framework 〈B,→〉 to a subset ofB:A(〈B,→〉) ⊆ B.

Principles of Baroni and Giacomin defined for multiple acceptance functions such as
directionality and conflict free are defined also for the single extension case, because
the set of all single extension acceptance functions is a subset of the set of all multiple
extensions acceptance functions. For example, a semantics S satisfies the conflict free
principle when the unique extension is conflict free: ∀AF,AS(AF ) is conflict free.

2.4 Abstraction

We now define abstraction relations between argumentation frameworks.

Definition 8 (Abstraction). Let 〈B,R〉 and 〈B′,S〉 be two argumentation frameworks.

– 〈B,R〉 is an argument abstraction from 〈B′,S〉 iff B ⊆ B′ and ∀a, b ∈ B, aRb if
and only if aSb.
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– 〈B,R〉 is an attack abstraction from 〈B′,S〉 iff B = B′ andR ⊆ S.
– 〈B,R〉 is an argument-attack abstraction from 〈B′,S〉 iff B ⊆ B′ andR ⊆ S.

Baroni and Giacomin also introduce two principles which may be interpreted as argu-
ment abstraction or attack abstraction principles, the so-called directionality and resolu-
tion principles. Directionality says that unattacked sets are unaffected by the remaining
part of the argumentation framework as far as extensions are concerned (a principle
which, as they show, does not hold for stable semantics, but it does hold for most other
semantics). This may be seen as an argument abstraction principle, in the sense that
when we abstract away all arguments not affecting a part of the argumentation frame-
work, then the extensions of this part of the framework are not affected either (see their
paper for the details).

2.5 Caminada Labeling

In the definition of principles in the following section, it is useful to distinguish between
rejected and undecided arguments. The following definition gives Caminada’s [4] trans-
lation from extensions to three valued labelling functions. Caminada uses this translation
only for complete extensions, such as the grounded extension, such that an argument is
accepted if and only if all its attackers are rejected, and an argument is rejected if and
only if it has at least one attacker that is accepted. We use it also for extensions which are
not complete, such as the skeptical preferred extension, such that Caminada’s labelling
principles may not hold in general. We assume only that extensions are conflict free,
i.e., an accepted argument cannot attack another accepted argument.

Definition 9 (Rejected and undecided arguments). Let A(AF ) be a conflict free
extension of an argumentation framework AF = 〈B,→〉, then B is partitioned into
A(AF ), R(AF ) and U(AF ), where:

– A(AF ) is the set of accepted arguments,
– R(AF ) = {a ∈ B | ∃x ∈ A(AF ) : x → a} is the set of rejected arguments, and
– U(AF ) = B \ (A(AF ) ∪R(AF )) is the set of undecided arguments.

3 Attack Abstraction Principles

In this section, we consider the situation where the set of arguments remains the same,
but the attack relation may shrink (abstraction). Our framework considers principles
where we remove a single attack relation a → b from an argumentation framework. We
distinguish whether arguments a and b are accepted, rejected or undecided.

Principle 1 (Attack abstraction). An acceptance function A satisfies the XY attack
abstraction principle, where X ,Y ∈ {A,R,U}, if for all argumentation frameworks
AF = 〈B,→〉, ∀a ∈ X (AF )∀b ∈ Y(AF ) : A(〈B,→ \{a → b}〉) = A(AF ).

We start with two useful lemmas. The first says that there cannot be an attack relation
from an accepted argument to another accepted or an undecided argument, denotedAA
and AU respectively.
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Lemma 1. Each semantics that satisfies the consistency principle (and thus each se-
mantics defined by Dung) satisfies the following principle.

AA;AU: There is no attack from an accepted argument to an accepted or undecided
argument.

Proof (sketch).AA is a reformulation of the consistency principle.AU follows directly
from the notion of undecided in Definition 9.

The second lemma gives a new characterization of the distinction between grounded
and skeptical preferred semantics. It says that there cannot be an attack relation from
an undecided argument to an accepted argument, denoted UA. In other words, if an ac-
cepted argument is attacked, then its attacker is itself attacked by an accepted argument
and thus rejected.

Lemma 2. The grounded semantics satisfies the following principle, whereas the skep-
tical preferred semantics does not.

UA: There is no attack from an undecided argument to an accepted argument.

Proof (sketch). A counterexample for the skeptical preferred semantics is a well known
example distinguishing the two semantics, that contains four arguments {a, b, c, d}
where a and b attack each other, both a and b attack c, and c attacks d. The grounded
extension is empty, whereas the skeptical preferred extension contains only d. All the
other arguments are undecided, there are no rejected arguments. Thus, in the skeptical
preferred semantics there is an undecided argument that attacks an accepted argument,
whereas in the grounded semantics, there is no such argument. The fact that in the
grounded semantics there are no undecided arguments attacking accepted arguments
follows by structural induction on the construction of the grounded extension.

The following proposition shows that the grounded extension satisfies seven of the nine
abstraction principles.

Proposition 1. The grounded semantics satisfies the AA, AU , UA, UR, RA, RU
and RR attack abstraction principles, and it does not satisfy the AR and UU attack
abstraction principles. Intuitively the satisfied principles reflect the following ideas:

AA;AU ;UA: hold vacuously, since there is nothing to remove (Lemma 1 and 2).
RA;RR;RU: the attacks from a rejected argument do not influence the extension.

This principle holds for any attacked argument b.
UR: the attacks on a rejected argument b by an undecided argument a do not influence

the extension. Intuitively, this means that an argument is rejected only when it is
attacked by an accepted argument.

Proof (sketch). The satisfied principles can be proven by induction. Take the argumen-
tation framework and the abstracted one, and show that in each step of the construction
of the grounded extension, the two remain the same. Counterexamples for UU andAR
attack abstraction are given below.
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UU: Consider an argumentation framework composed of two arguments a and b at-
tacking each other so both will be undecided. If we remove the attack from a to b,
then b attacks a, so b will be accepted and a is rejected by the grounded extension,
and all other reasonable acceptability semantics.

AR: For the latter, consider again an argumentation framework composed of two ar-
guments a and b, where a attacks b. a is accepted while b is rejected. If we remove
this attack relation, then both are accepted.

Proposition 1 leaves two interesting cases for further principles: the removal of an attack
relation from an undecided argument to another undecided argument, i.e., UU , and the
removal of an attack relation from an argument that is accepted to an argument that is
rejected, i.e.,AR. In both cases, the extension can stay the same only under conditions:
the challenge is therefore to define suitable conditions. We first define conditional attack
abstraction. The idea is that if we remove an attack from a to b, then in those two cases
there must be another reason why b does not become accepted.

Principle 2 (Conditional attack abstraction). An acceptance functionA satisfies the
XY(Z) attack abstraction principle, where X ,Y,Z ∈ {A,R,U}, if for all argumen-
tation frameworks AF = 〈B,→〉,

∀a ∈ X (AF )∀bY(AF ): if ∃c ∈ Z(AF ) such that c 
= a, c → b then
A(〈B,→ \{a → b}〉) = A(AF ),

Proposition 2. The grounded semantics satisfies the UU(A) and UU(U) attack ab-
straction principles. It does not satisfy the AR(A), AR(U), AR(R), UU(R) attack
abstraction principles.

UU(A): holds vacuously since this situation never occurs.
UU(U): represents that for attacks among undecided arguments, it is only important

that there is at least one of such attacks, additional attacks to the same undecided
argument do not change the extension.

Proof (sketch). UU(U) can be proven by induction. Take the argumentation framework
and the abstracted one, and show that in each step of the construction of the grounded
extension, the two remain the same.

AR(A): Consider three arguments {a, b, c} with a attacks b, b attacks c and c attacks
b. The grounded extension is {a, c}, and b is rejected. If we remove the attack from
a to b, then the grounded extension is {a}.

AR(U): Consider five arguments {a, b, c, d, e} with a attacks b, b attacks c, c attacks
b, c attacks d and d attacks c, b attacks e. The grounded extension is {a, e}, b
is rejected, c and d are undecided. If we remove the attack from a to b, then the
grounded extension is {a}, all others are undecided.

AR(R): Follows from Proposition 1. Due toRR abstraction principle, we can remove
the attack among the rejected arguments without changing the extension. Do this for
all attacks among rejected arguments. Then due to the fact that grounded extension
does not satisfy AR, it also does not satisfy AR(R).
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UU(R): Follows from Proposition 1. Due toRU abstraction principle, we can remove
the attack from the rejected arguments to the undecided arguments without chang-
ing the extension. Do this for all attacks among rejected arguments. Then due to the
fact that grounded extension does not satisfy UU , it also does not satisfy UU(R).

Note that the skeptical extension does not satisfy UU(U). Consider again the example
given in the proof of Lemma 2. The preferred extensions are {a, d} and {b, d}. So the
skeptical extension is {d}. All other arguments are undecided. Let us now remove the
attack from a to c. Then the preferred extensions are {a, c} and {b, d}. Thus the skep-
tical extension is empty. In other words, the UU(U) abstraction principle characterizes
another distinction between the grounded and skeptical preferred semantics.

Summarizing, for argument b to remain undecided when we remove the attack from
a to b, there must be another reason besides a why b is undecided. The other reason
cannot be an accepted argument attacking b, since in that case b would be rejected.
Consequently the extension may change. And the other reason cannot be a rejected
argument attacking b since an attack from a rejected argument doesn’t necessarily make
an argument undecided. Therefore, we ask that there is another undecided argument c
attacking b. This motivates the UU(U) principle.

Proposition 2 leaves two interesting cases for further development, AR(A) and
AR(U) abstraction. We start with AR(A). Due to the removal of the attack, the status
of argument b may remain rejected or change from rejected to accepted or undecided.
When the argument becomes accepted then it should belong to the extension follow-
ing all reasonable acceptability semantics. Therefore we consider the cases where b
remains rejected or becomes undecided. When b is still rejected, this means that there
is another accepted argument c unequal to a, which attacks b. This motivates AR(A)
principle. However, the counterexample shows that the reason that c is accepted, may
be b itself! The counterexample indicates ways in which conditional abstraction can be
further developed: the rejection of b should not be the reason for the acceptance of c.

One simple way to prevent the possibility that the rejection of b is the cause of the
acceptance of c, is to prevent any paths from b to c. In fact, we can do a little better,
because only odd paths can lead to acceptance. This motivates the following principle.

Principle 3 (Acyclic conditional attack abstraction). An acceptance functionA sat-
isfies the acyclic XY(Z) attack abstraction principle, where X ,Y,Z ∈ {A,R,U}, if
for all argumentation frameworks AF = 〈B,→〉,

∀a ∈ X (AF )∀bY(AF ): if ∃c ∈ Z(AF ) such that c 
= a, c → b, and there is no odd
length sequence of attacks from b to c, then A(〈B,→ \{a → b}〉) = A(AF ),

Proposition 3. The grounded semantics satisfies the acyclic AR(A) abstraction
principle.

We now consider AR(U). Thus there is an accepted argument a attacking rejected
argument b, which is also attacked by undecided argument c. In this case, the argument
b may change into undecided. In that case, argument b is still not in the extension,
but there may be implications in other parts of the argumentation framework. As the
counterexample in Proposition 2 shows, b should not be the cause of acceptance of
another argument.
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Principle 4 (Stronger conditional attack abstraction). An acceptance function A
satisfies the XY(Z,W) attack abstraction principle, if for all argumentation frame-
works
AF = 〈B,→〉,
∀a ∈ X (AF )∀bY(AF ): if ∃c ∈ Z(AF ) such that c 
= a, c → b and ∀d ∈ W(AF ) ,

we do not have b → d, thenA(〈B,→ \{a → b}〉) = A(AF ),

where X ,Y,Z,W ∈ {A,R,U}.

Proposition 4. The grounded semantics satisfies the AR(U ,A) abstraction principle.

4 Argument Abstraction Principles

In this section we consider the abstraction of an argument, including the attack relations
involving this argument. It builds on the abstraction principles for attack relations in the
previous section. As before, we distinguish between removal of an argument which is
accepted, which is rejected and which is undecided. In the first case the extension should
be the extension without the accepted argument, in the other two cases the extension
should stay the same. So we have to consider three cases. Let →a denote the set of
attack relations related to an argument a. Formally, we have the following principles:

Principle 5 (Argument abstraction). An acceptance function A satisfies the
X ∈ {R,U , A} argument abstraction principle if for all argumentation frameworks
AF = 〈B,→〉, if a ∈ X (AF ), thenA(〈B \ {a},→ \→a〉) = A(AF ) \ {a}.
The following proposition shows that only R abstraction is satisfied. For example, if
we remove an accepted argument, then arguments attacked by the removed accepted
argument may become accepted.

Proposition 5. The grounded extension satisfies R argument abstraction, and it does
not satisfy A and U argument abstraction. This represents the following idea.

R Rejected arguments do not play a role in the argumentation and can be removed.

Proof (sketch). Follows from the abstraction principles of the attack relation or their
counterexamples in Proposition 1. For U abstraction take two arguments a and b at-
tacking each other, and forA abstraction take two arguments a and b where a attacks b.

This leave two interesting cases, U abstraction and A abstraction. We start with U ab-
straction. Unlike rejected arguments whose attacks are inoffensive, an attack from an
undecided argment may “block” an argument, i.e., prevents the argument to be accepted.
Therefore the removal of an undecided argument may change the extension. One way
to keep the extension unchanged is that the removed undecided argument only attacks
arguments which are in the extension (so the attacks have not been successful) or out of
the extension but due to other arguments. Formally, we have the following principles:

Principle 6 (U argument abstraction 1). A satisfies the undecided argument abstrac-
tion 1 principle if for all argumentation frameworks AF = 〈B,→〉, if a ∈ U(AF )
is an undecided argument and a attacks only accepted arguments in A(AF ), then
A(〈B \ {a},→ \→a〉) = A(AF ).
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Principle 7 (U argument abstraction 2). A satisfies the undecided argument abstrac-
tion 2 principle if for all argumentation frameworks AF = 〈B,→〉, if a ∈ U(AF ) is an
undecided argument and a attacks only rejected arguments in R(AF ), then
A(〈B \ {a},→ \→a〉) = A(AF ).

Moreover, inspired by UU(U) attack abstraction principle, we define the following U
argument abstraction principle.

Principle 8 (U argument abstraction 3). A satisfies the undecided argument abstrac-
tion 3 principle if for all argumentation frameworks AF = 〈B,→〉, if a ∈ U(AF ) is an
undecided argument and for each undecided argument b attacked by a, there is another
undecided argument c 
= b that attacks b, then A(〈B \ {a},→ \→a〉) = A(AF ).

Proposition 6. The grounded extension satisfies U argument abstraction principle 1, 2
and 3.

Proof (sketch). U argument abstraction 1 principle holds vacuously (Lemma 2). The
others follow from Proposition 1 and 2.

Finally, we consider weakenedA abstraction principles. The first principle of accepted
argument abstraction is Baroni and Giacomin’s principle of directionality restricted to
single arguments. If we remove an argument that does not attack another argument
besides possibly itself, then the extensions will remain the same.

Principle 9 (A abstraction 1). A satisfies the accepted argument abstraction 1 princi-
ple if for all argumentation frameworks AF = 〈B,→〉, if a ∈ A(AF ) is an accepted
argument, and there is no argument b ∈ B unequal to a such that a attacks b, then
A(〈B \ {a},→ \→a〉) = A(AF ) \ {a}.

The second principle of accepted argument abstraction is inspired by Proposition 3. It
says that if we remove an argument b ∈ B which attacks only arguments which are also
attacked by other arguments, then the extensions remain the same.

Principle 10 (A abstraction 2). A satisfies the accepted argument abstraction 2 prin-
ciple if for all argumentation frameworks AF = 〈B,→〉, if a ∈ A(AF ) is an accepted
argument, and for each rejected argument b ∈ R(AF ) such that a → b, there is an-
other argument c ∈ A(AF ) such that c → b, and there is no odd attack sequence from
b to c, then A(〈B \ {a},→ \→a〉) = A(AF ) \ {a}

Proposition 7. The grounded extension satisfiesA abstraction 1 and 2 principles.

5 Related Research

Besides the work of Baroni and Giacomin on principles for the evaluation of argumen-
tation semantics, there is various work on dialogue and a few very recent approaches
on the dynamics of argumentation. Researchers in the multi-agent systems area have
been looking at this problem under various names. Cayrol et al. [5] define a typology
of refinement (the dual of abstraction) (called revision in their paper), i.e. adding an
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argument. Then they define principles and condition so that each type of refinement
becomes a revision (called classical revision in their paper), i.e., the new argument is
accepted. Refinement and revision is different from abstraction considered in this paper,
and they do not define general principles as we do. Rotstein et al. [7] introduce the no-
tion of dynamics into the concept of abstract argumentation frameworks, by considering
arguments built from evidence and claims. They do not consider abstract arguments and
general principles as we do in this paper. Barringer et al. [2] consider internal dynamics
by extending Dung’s theory in various ways, but without considering general principles.

6 Summary and Further Research

Motivated by situations where the argumentation framework may change, for exam-
ple by dialogues in which arguments can be retracted or added, we study principles
where the extension does not change when we consider the dynamics of the argumenta-
tion framework. The most interesting attack abstraction principles are listed in Table 1.
This table should be read as follows. Each line represents a principle. For example,
the first line says that A satisfies the RA;UA principle if for all argumentation frame-
works AF = 〈B,→〉, if b ∈ A(AF ) is an accepted argument, then for all arguments
a ∈ R(AF ) ∪ U(AF ), A(〈B,→ \{a → b}〉) = A(AF ). For each principle, we
state whether it is satisfied by the grounded extension or not. Vacuously means that the
situation does not occur for the grounded extension.

Table 1. Attack abstraction: if ∀AF = 〈B,→〉 condition, then A(〈B,→ \{a → b}〉) = A(AF )

Principle Condition Grounded extension
AA, AU , UA a ∈ A(AF ) ∪ U(AF ), b ∈ A(AF ) or yes (vacuously)

a ∈ A(AF ), b ∈ A(AF ) ∪ U(AF )
RA, RR, RU a ∈ R(AF ) yes

UR a ∈ U(AF ), b ∈ R(AF ) yes
UU(A) a ∈ U(AF ), b ∈ U(AF ),∃c ∈ A(AF ), c → b yes (vacuously)
UU(U) a ∈ U(AF ), b ∈ U(AF ), ∃c ∈ U(AF ), c �= a, c → b yes

AR(U), AR(R),
UU(R) no
AR(A) a ∈ A(AF ), b ∈ R(AF ), ∃c ∈ A(AF ), c �= a, c → b yes

no odd length sequence of attacks from b to c

AR(U ,A) a ∈ A(AF ), b ∈ R(AF ), ∃c ∈ U(AF ), c → b, yes
∀d ∈ A(AF ), we do not have b → d

Moreover, the most interesting argument abstraction principles are listed in Table 2.
There are several directions of future research. We would like to extend our dynamic

analysis to a wider range of principles. For example, we are interested in refinement
of argumentation frameworks [3], and their relation to argument abstraction. Moreover,
besides considering situations in which the extension stays the same, we are interested
in questions about the change needed to change an argument from being accepted to
rejected, or vice versa. Also, we would like to study principles for the multiple extension
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Table 2. Argument abstraction: if ∀AF = 〈B,→〉 condition, then A(〈B\{a},→ \ →a〉) =
A(AF )\{a}

Principle Condition Grounded extension
R a ∈ R(AF ) yes
U a ∈ U(AF ) no
U 1 a ∈ U(AF ), if a → c then c ∈ A(AF ) yes (vacuously)
U 2 a ∈ U(AF ), if a → c then c ∈ R(AF ) yes
U 3 a ∈ U(AF ), if a → c and c ∈ U(AF ) then . . . yes
A a ∈ A(AF ) no
A 1 a ∈ A(AF ), �b �= a, a → b yes
A 2 a ∈ A(AF ), ∀b ∈ R(AF ), a → b, ∃c ∈ A(AF ), c → b yes

case. Also, we would like to apply our theory to practical problems such as evaluation
of argumentation semantics, or sensitivity analysis of a dispute.
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Abstract. There are a number of frameworks for modelling argumen-
tation in logic. They incorporate a formal representation of individual
arguments and techniques for comparing conflicting arguments. A com-
mon assumption for logic-based argumentation is that an argument is a
pair 〈Φ, α〉 where Φ is a minimal subset of the knowledgebase such that Φ
is consistent and Φ entails the claim α. Different logics provide different
definitions for consistency and entailment and hence give us different op-
tions for argumentation. An appealing option is classical first-order logic
which can express much more complex knowledge than possible with
defeasible or classical propositional logics. However the computational
viability of using classical first-order logic is an issue. Here we address
this issue by using the notion of a connection graph and resolution with
unification. We provide a theoretical framework and algorithm for this,
together with some theoretical results.

1 Introduction

Argumentation is a vital aspect of intelligent behaviour by humans used to
deal with conflicting information. There are a number of proposals for logic-
based formalisations of argumentation (for reviews see [6,14,5]). These proposals
allow for the representation of arguments and for counterargument relationships
between arguments. In a number of key examples of argumentation systems,
an argument is a pair where the first item in the pair is a minimal consistent
set of formulae that proves the second item which is a formula (see for example
[2,9,3,1,10,4,7,13]). Algorithms have been developed for finding arguments from a
knowledgebase using defeasible logic. However, there is a lack of viable algorithms
for finding arguments for first-order classical logic.

We propose an approach to this problem by extending an existing proposal
for propositional logic [8] based on the connection graph proof procedure [11,12].
This extension is based on the idea of resolution with unification [15]. We use
a connection graph structure where nodes are clauses from the knowledgebase
and arcs link contradictory literals and then apply heuristic search strategies to
follow the arcs of the graph and create partial instances of the visited clauses
based on the unification of atoms that appear at either end of an arc. The
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aim of the search is to retrieve an unsatisfiable grounded version of a subset of
the knowledgebase and use the refutation completeness of the resolution rule
and Herbrand’s theorem to obtain a proof for the claim. The minimality and
consistency of this proof is achieved according to some restrictions applied during
the search.

2 Argumentation for a Language of Quantified Clauses

In this section we review an existing proposal for argumentation based on clas-
sical logic [3] and in particular an extension of this [4] dealing with first-order
logic. For a first-order language F , the set of formulae that can be formed is
given by the usual inductive definitions of classical logic.

In this paper we use a restricted function-free first-order language of quantified
clauses F consisting of n-ary predicates (n ≥ 1) where we allow both existential
and universal quantifiers and we consider arguments whose claims consist of
one disjunct (i.e. unit clauses). This language is composed of the set of n-ary
(n ≥ 1) predicates P , a set of constant symbols C, a set of variables V , the
quantifiers ∀ and ∃, the connectives ¬ and ∨ and the bracket symbols ( ). The
clauses of F are in prenex normal form, consisting of a quantification string
followed by a disjunction of literals. Literals are trivially defined as positive or
negative atoms where an atom is an n-ary predicate. The quantification part
consists of a sequence of quantified variables that appear as parameters of the
predicates of the clause. These need not follow some ordering, that is any type of
quantifier (existential or universal) can preceed any type of quantifier. Deduction
in classical logic is denoted by the symbol ".

Example 1. If {a, b, c, d, e} ⊂ C and {x, y, z, w} ⊂ V , then each of the ele-
ments of Φ is a clause in F where Φ = {∀x∃z(P (x) ∨ ¬Q(z, a)), ∃x∃z(P (x) ∨
¬Q(z, a), ∀w∃x∃z(P (x)∨¬Q(z, a)∨P (b, w, x, z)), ∀w(¬Q(w, b, a)),¬Q(e, b, a)∨
R(d),¬P (a, d)}. In addition ∀w(¬Q(w, b, a)) is a unit clause, ¬Q(e, b, a) ∨R(d)
is a ground clause and ¬P (a, d) is a ground unit clause.

Given a set Δ of first-order clauses, we can define an argument as follows.

Definition 1. An argument is a pair 〈Φ,ψ〉 such that (1) Φ ⊆ Δ, (2) Φ " ψ,
(3) Φ 
" ⊥ and (4) there is no Φ′ ⊂ Φ such that Φ′ " ψ.

Example 2. Let Δ = {∀x(¬P (x) ∨ Q(x)), P (a), ∀x∀y(P (x, y) ∨ ¬P (x)), R(a, b),
∃x(R(x, b)), ∃x(¬S(x, b))}. Some arguments are:

〈{∀x(¬P (x) ∨Q(x)), P (a)}, Q(a)〉 〈{R(a, b)}, ∃x(R(x, b))〉
〈{∀x∀y(P (x, y) ∨ ¬P (x)), P (a)}, ∀y(P (a, y))〉 〈{P (a)}, ∃y(P (y))〉

3 Relations on Clauses

In this section we define some relations on F that we use throughout this paper.
We use the terms ‘term’, ‘variable’ and ‘constant’ in the usual way. We define
functions Variables(X) and Constants(X) to return the set of all the variables
and constants respectively that appear in a literal or a clause or a set X .
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Definition 2. For a language L, with variables V and constant symbols C, the
set of bindings B is {x/t | x ∈ V and t ∈ V ∪ C}.

Definition 3. For a clause φ and a set of bindings B ⊆ B, Assign(φ,B) returns
clause φ with the values of B assigned to the terms of φ. So, for each x/t, if x
is a variable in φ, then x is replaced by t and the quantifier of x is removed.

Example 3. Let φ = ∃x∀y∃z∀w(P (c, x) ∨ Q(x, y, z) ∨ R(y, c, w)). Some assign-
ments for φ with the corresponding values assigned to φ are:

B1 = {x/a, z/b}, Assign(φ,B1) = ∀y∀w(P (c, a) ∨Q(a, y, b) ∨R(y, c, w))
B2 = {x/a, y/b, z/b}, Assign(φ,B2) = ∀w(P (c, a) ∨Q(a, b, b) ∨R(b, c, w))
B3 = {x/a, z/b, w/b}, Assign(φ,B3) = ∀y(P (c, a) ∨Q(a, y, b) ∨R(y, c, b))
B4 = {x/a, y/a, z/b, w/b}, Assign(φ,B4) = P (c, a) ∨Q(a, a, b) ∨R(a, c, b)
B5 = {w/z}, Assign(φ,B5) = ∃x∀y∃z(P (c, x) ∨Q(x, y, z) ∨R(y, c, z))

Function Assign(φ,B) gives a specific instance of φ, indicated by the bindings in
B. We define next the function that returns all the possible instances for a clause
φ and the function that returns all the possible instances for all the elements of
a set of clauses Ψ .

Definition 4. For a clause φ, Assignments(φ) returns the set of all the possible
instances of φ: Assignments(φ) = {Assign(φ,Bi) | Bi ∈ ℘(B)}. For a set of
clauses Ψ , SetAssignments(Ψ) =

⋃
φ∈Ψ{Assignments(φ)}.

We use the assignment functions to create partial instances of the clauses from
the knowledgebase during the search for arguments. As no restrictions apply to
the order of the quantifiers in the quantification of a clause from F , the order
of interchanging universal and existential quantifiers in a clause φ is taken into
account when a partial instance of φ is created. For this, we define function
Prohibited(φ) to return the sets of bindings that are not allowed for φ.

Definition 5. Let φ be a clause. Then, Prohibited(φ) ⊆ ℘(B) returns the set
of sets of bindings such that for each B ∈ Prohibited(φ) there is at least one
yi/ti ∈ B such that yi is a universally quantified variable which is in the scope
of an existentially quantified variable xi for which either xi = ti or xi/ti ∈ B.

Example 4. For the sets of bindings of example 3, B3, B4, B5 ∈ Prohibited(φ)
and B1, B2 /∈ Prohibited(φ).

We now define a function that gives a partial instance of a clause φ where each of
the existentially quantified variables is replaced by a distinct arbitrary constant
from C \ Constants(φ). This is a form of Skolemization.

Definition 6. For a clause φ, ExistentialGrounding(φ,B) = Assign(φ,B) where
B ∈ ℘(B) is such that: (1) xi/ti ∈ B iff xi ∈ Variables(φ) and xi is existen-
tially quantified (2) ti ∈ C \ Constants(φ) and (3) for all xj/tj ∈ B, if xj 
=
xi then tj 
= ti. If φ′ = ExistentialGrounding(φ,B) for some φ ∈ F and B ∈ ℘(B),
we say that φ′ is an existential instance of φ.
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Example 5. For φ = ∃x∀y∃z∀w(P (c, x)∨Q(x, y, z)∨R(y, c, w)), Constants(φ) =
{c} and so each of the elements of the set of constants I = {a, b} ⊂ C \
Constants(φ) can be used for the substitution of each of the existentially bound
variables x, z. For B = {x/a, z/b}, ExistentialGrounding(φ,B) = ∀y∀w(P (c, a) ∨
Q(a, y, b) ∨R(y, c, w)).

Definition 7. For a clause φ = Q1x1, . . . ,Qmxm(p1 ∨ . . . ∨ pk), Disjuncts(φ)
returns the set of disjuncts of φ. Disjuncts(φ) = {p1 ∨ . . . ∨ pk}. For each pi ∈
Disjuncts(φ), Unit(φ, pi) returns the unit clause that consists of pi as its unique
disjunct and the part of the quantification Q1x1, . . . ,Qmxm of φ that involves
the variables that occur in pi as its quantification: Unit(φ, pi) = Qjxj . . .Qlxl(pi)
where {Qjxj , . . . ,Qlxl} ⊆ {Q1x1, . . . ,Qmxm} and {xj , . . . , xl} = Variables(pi).

Example 6. Let φ = ∀x∀y∃z(P (x) ∨ Q(a) ∨ ¬R(x, y, z, b) ∨ S(a, b, c)) and let
p = P (x), q = Q(a), r = ¬R(x, y, z, b) and s = S(a, b, c). Then, Disjuncts(φ) =
{p, q, r, s} and

Unit(φ, p) = ∀x(P (x)) Unit(φ, r) = ∀x∀y∃z(¬R(x, y, z, b))
Unit(φ, q) = Q(a) Unit(φ, s) = S(a, b, c)

Definition 8. For a clause φ, Units(φ) = {Unit(φ, pi) | pi ∈ Disjuncts(φ)}.

Example 7. Continuing example 6, for φ = ∀x∀y∃z(P (x)∨Q(a)∨¬R(x, y, z, b)∨
S(a, b, c)), Units(φ) = {∀x(P (x)), Q(a), ∀x∀y∃z(¬R(x, y, z, b)), S(a, b, c)}

We now define some binary relations that express contradiction between clauses.
For this we define contradiction between unit clauses φ and ψ as follows: φ and
ψ contradict each other iff φ " ¬ψ. Then we say that ψ is a complement of φ
and we write φ = ψ. Using the contradiction relation between the units of a pair
of clauses, we define the following relations of attack.

Definition 9. Let φ, ψ be clauses. Then, Preattacks(φ, ψ) = {ai ∈ Units(φ) |
∃aj ∈ Units(ψ) s.t. ai = aj}.

Example 8. According to definition 9, the following relations hold.
8.1) Preattacks(∀x(¬N(x) ∨R(x)), N(a) ∨ ¬R(b)) = {∀x(¬N(x)), ∀x(R(x))}
8.2) Preattacks(∀x(¬N(x) ∨R(x)), N(a) ∨ ¬R(a)) = {∀x(¬N(x)), ∀x(R(x))}
8.3) Preattacks(P (a) ∨ ¬Q(b),¬P (a) ∨Q(b)) = {P (a),¬Q(b)}
8.4) Preattacks(∀x(P (x) ∨ ¬Q(a, x)), ∃x(¬P (a) ∨Q(x, b))) = {∀x(P (x))}
8.5) Preattacks(∃x(¬P (a) ∨Q(x, b)), ∀x(P (x) ∨ ¬Q(a, x)) = {¬P (a)}

We now define a special case of the preattacks relation which we use to define
arcs for trees in the next section.

Definition 10. For clauses φ, ψ, if |Preattacks(φ, ψ)| = 1 = |Preattacks(ψ, φ)|
then Attacks(φ, ψ) = α, where α ∈ Preattacks(φ, ψ), otherwise Attacks(φ, ψ) =
Attacks(ψ, φ) = null.

Example 9. For examples 8.1, 8.2 and 8.3, Attacks(φ, ψ) = null. For examples
8.4-8.5, Attacks(φ, ψ) = Preattacks(φ, ψ).
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Although the Attacks relation might be null for a pair of clauses φ, ψ, it can
sometimes hold for instances of φ and ψ.

Example 10. In example 8.1, let φ = ∀x(¬N(x) ∨R(x)) and ψ = N(a)∨¬R(b).
Then |Preattacks(φ, ψ)| > 1 and so, Attacks(φ, ψ) = null. There are instances φ′

of φ though for which Attacks(φ′, ψ) 
= null. Let B1 = {x/a}, and B2 = {x/b}.
Then for φ1 = Assign(φ,B1) = ¬N(a)∨R(a) and φ2 = Assign(φ,B2) = ¬N(b)∨
R(b), Attacks(φ1, ψ) = ¬N(a) and Attacks(φ2, ψ) = R(b). For all other instances
φ′ of φ Attacks(φ′, φ) = null.

Example 11. In example 8.2, let γ = ∀x(¬N(x) ∨R(x)) and δ = N(a) ∨ ¬R(a).
Then, for all the instances γ′ of γ, |Preattacks(γ′, δ)| 
= 1 and so there is no
instance γ′ of γ for which Attacks(γ′, δ) 
= null.

4 Assignment Trees

Using the attack relations defined in section 3, we define in this section the
notion of an assignment tree which represents a tentative proof of an argument.
The definition is designed for use with the algorithm we introduce in section 5
for searching for arguments.

Definition 11. Let Δ be a clause knowledgebase and α be a unit clause and
let Δ′ = Δ ∪ {¬α}. An assignment tree for Δ and α is tuple (N,A, e, f, g, h)
where N is a set of nodes and A is a set of arcs such that (N,A) is a tree and
e, f, g, h are functions such that: e : N �→ Δ′, f : N �→ SetAssignments(Δ′),
g : N �→ ℘(B), h : N �→ SetAssignments(Δ′) and

(1) if p is the root of the tree, then e(p) = ¬α
(2) f(p) is an existential instance of e(p) s.t. Constants(f(p)) ⊆ Constants(g(p))
(3) for any nodes p, q in the same branch, if e(p) = e(q) then g(p) 
= g(q)
(4) for all p ∈ N, g(p) ∩ Prohibited(e(p)) = ∅
(5) for all p ∈ N, h(p) = Assign(f(p), g(p))
(6) for all p, q ∈ N , if p is the parent of q, then Attacks(h(q), h(p)) 
= null
(7) for all p, q ∈ N , (Constants(f(p)) \ Constants(e(p)))

⋂
Constants(Δ′) = ∅, &

(Constants(f(p)) \ Constants(e(p)))
⋂

(Constants(f(q)) \ Constants(e(q))) = ∅

Each of the functions e, f, g, h for a node p gives the state of the tentative proof
for an argument for α. Function e(p) identifies for p the clause φ from Δ∪{¬α}
and f(p) is an existential instance of e(p). g(p) is a set of bindings that when
assigned to e(p) creates the instance h(p) of e(p). Hence, g(p) contains the set
of bindings that create the existential instance f(p) of e(p) together with the
bindings that unify atoms of contradictory literals connected with arcs on the
tree as condition 6 indicates. Condition 7 ensures that the existential instances
used in the proof are created by assigning to the existentially quantified variables
of a clause e(p) constants that do not appear anywhere else in Δ ∪ {¬α} or the
other instances of the clauses of the tentative proof. Finally, condition 3 ensures
that an infinite sequence of identical nodes on a branch will be avoided.
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In all the examples that follow, assignment trees are represented by the value
h(p) for each node p. Hence, all the variables that appear in a tree representation
are universally quantified and so universal quantifiers are omitted for simplicity.

Example 12. Let Δ = {∀y(¬P (y)∨Q(b, y)), ∀y∃x(P (d)∨P (a)∨M(x, y)), R(c),
∀x∀y(¬M(x, y)), ∃x∀y(Q(x, y) ∨ R(x, y)), Q(a, b) ∨ ¬N(a, b), ∀x∀y(L(x, y, a)),
∀x(¬R(x, x)∨S(x, y)), ¬Q(a, b)∨N(a, b), ∀x∀y(¬S(x, y)), ¬L(c, d, a), ∀x(P (x)),
¬R(c, a)}. The following is an assignment tree for Δ and α = ∃x∃y(Q(x, y))

¬Q(b, d) p0 e(p0) = f(p0) = ∀x∀y(¬Q(x,y)), g(p0) = {x/b, y/d}
| e(p1) = f(p1) = ∀y(¬P (y) ∨ Q(b, y)), g(p1) = {y/d}

¬P (d) ∨Q(b, d) p1 e(p2) = ∀y∃x(P (d) ∨ P (a) ∨ M(x, y)), g(p2) = {x/f}
| f(p2) = ∀y(P (d) ∨ P (a) ∨ M(f, y))

P (d) ∨ P (a) ∨M(f, y) p2 e(p3) = f(p3) = ∀y(¬P (y) ∨ Q(b, y)), g(p3) = {y/a}
� � e(p4) = f(p4) = ∀x∀y(¬M(x,y)), g(p4) = {x/f}

¬P (a) ∨Q(b, a) p3 ¬M(f, y) p4

Definition 12. A complete assignment tree (N,A, e, f, g, h) is an assign-
ment tree such that for any x ∈ N if y a child of x then there is a bi ∈ Units(h(x))
such that Attacks(h(y), h(x)) = bi and for each bj ∈ Units(h(y)) \ {bi}
(1) either there is exactly one child z of y s.t. Attacks(h(z), h(y)) = bj

(2) or there is a node w in the branch containing y s.t. bj = Attacks(h(y), h(w))

Definition 13. A grounded assignment tree (N,A, e, f, g, h) is an assign-
ment tree such that for any x ∈ N , h(x) is a ground clause.

Example 13. The assignment tree of example 12 is neither complete nor grounded.
It is not a complete assignment tree because for Q(b, a) ∈ Units(h(p3)) the
conditions of definition 12 do not hold. Adding a node p5 as a child of p3 with
e(p5) = f(p5) = ∀x∀y(¬Q(x, y)), g(p5) = {x/b, y/a} for which h(p5) = ¬Q(b, a)
gives a complete assignment tree. It is not a grounded assignment tree because
for nodes p2 and p4 h(p2) = P (d) ∨ P (a) ∨M(f, y) and h(p4) = ¬M(f, y) are
non-ground clauses. If we substitute the non-ground term y in h(p2) and h(p4)
with the same arbitrary constant value (e ∈ C for instance), the resulting tree
still satisfies the conditions for an assignment tree and it is also a grounded
assignment tree.

¬Q(b, d) ¬Q(b, d) ¬Q(b, d)
| | |

¬P (d) ∨ Q(b, d) ¬P (d) ∨ Q(b, d) ¬P (d) ∨ Q(b, d)
| | |

P (d) ∨ P (a) ∨ M(f, e) P (d) ∨ P (a) ∨ M(f, y) P (d) ∨ P (a) ∨ M(f, e)
� � � � � �

¬P (a) ∨ Q(b, a) ¬M(f, e) ¬P (a) ∨ Q(b, a) ¬M(f, y) ¬P (a) ∨ Q(b, a) ¬M(f, e)
| |

¬Q(b, a) ¬Q(b, a)
assignment tree 1 assignment tree 2 assignment tree 3

(grounded) (complete) (grounded & complete)
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For a complete grounded assignment tree we have the following result on the
entailment of a claim α for an argument.

Proposition 1. If (N,A, e, f, g, h) is a complete grounded assignment tree for
Δ and α, then {e(p) | p ∈ N} \ {¬α} " α.

Example 14. For the complete and grounded assignment tree of example 13,
{e(p) | p ∈ N} \ {¬α} = {∀y(¬P (y) ∨ Q(b, y)), ∀y∃x(P (d) ∨ P (a) ∨M(x, y)),
∀x∀y(¬Q(x, y)), ∀x∀y(¬M(x, y))} " ∃x∃y(Q(x, y)).

Although all the assignment trees in example 13 correspond to the same subset
of clauses e(p) from Δ, it is not always the case that a non-grounded or non-
complete assignment tree is sufficient to indicate a proof for α.

The following definitions introduce additional constraints on the definition
of a complete assignment tree for Δ and α that give properties related to the
minimality and the consistency of the proof for α indicated by the set of nodes
in the assignment tree.

Definition 14. (N,A, e, f, g, h) is a minimal assignment tree for Δ and
α if for any arcs (p, q), (p′, q′) such that Attacks(h(q), h(p)) = Assign(β, g(q))
for some β ∈ Units(e(q)), and Attacks(h(q′), h(p′)) = Assign(β′, g(q′)) for some
β′ ∈ Units(e(q′)), β " β′ holds iff e(q) = e(q′).

Example 15. The following (N,A, e, f, g, h) is a complete assignment tree for a
knowledgebase Δ and α = ∃x(¬M(x)), with {e(p) | p ∈ N} = {∀x(M(x)),
∀x(¬S(a) ∨ ¬M(x) ∨ ¬T (x)), ∀x(S(a) ∨ N(x)), ∀x(T (x) ∨ N(x)), ∀x(¬N(x)),
∀x(¬N(x) ∨ R(x)), ∀x(¬R(x))}. (N,A, e, f, g, h) is not minimal because of β =
∀x(¬N(x)) ∈ Units(e(q)) and β′ = ∀x(¬N(x)) ∈ Units(e(q′)). If a copy of the
subtree rooted at p in (N,A, e, f, g, h) is substituted by the subtree rooted at
p′, a minimal assignment tree (N ′, A′, e′, f ′, g′, h′) with {e(p) | p ∈ N ′} =
{∀x(M(x)), ∀x(¬R(x)), ∀x(¬S(a)∨¬M(x)∨¬T (x)), ∀x(S(a)∨N(x)), ∀x(T (x)∨
N(x)), ∀x(¬N(x) ∨R(x))} is obtained. Similarly, if a copy of the subtree rooted
at p′ is substituted by the subtree rooted at p, another minimal assignment
tree (N ′′, A′′, e′′, f ′′, g′′, h′′) is obtained, with {e(p) | p ∈ N ′′} = {∀x(M(x)),
∀x(¬S(a) ∨ ¬M(x) ∨ ¬T (x)), ∀x(S(a) ∨N(x)), ∀x(T (x) ∨N(x)), ∀x(¬N(x))}.

M(x)
|

¬S(a) ∨ ¬M(x) ∨ ¬T (x)
� �

S(a) ∨N(x)p T (x) ∨N(x)p′

| |
¬N(x)q ¬N(x) ∨R(x)q′

|
¬R(x)

Definition 15. Let (N,A, e, f, g, h) be a minimal assignment tree for Δ and α.
Then, (N,A, e, f, g, h) is a consistent assignment tree if for any arcs (p, q),
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(p′, q′) where Attacks(h(q), h(p)) = Assign(β, g(q)) for some β ∈ Units(e(q)) and
Attacks(h(q′), h(p′)) = Assign(β′, g(q′)) for some β′ ∈ Units(e(q′)), β " β

′
holds

iff e(q) = e(p′).

Example 16. The following minimal assignment tree (N,A, e, f, g, h) with {e(p) |
p ∈ N} = {∀x∀y(¬Q(x, y)), ∀x∀y(P (a)∨¬P (b)∨Q(x, y)), ∀x(¬P (x)), ∀x(P (x))}
is not consistent because for q, q′, β = ∀x(¬P (x)) ∈ Units(e(q)), β′ = ∀x(P (x)) ∈
Units(e(q′)), β " β

′
but e(q) 
= e(p′).

¬Q(x, y)
|

P (a) ∨ ¬P (b) ∨Q(x, y)p = p′

� �
¬P (a)q P (b)q′

An assignment tree (N ′, A′, e′, f ′, g′, h′) with the same tree structure as above
can be formed from the set of clauses {e(p) | p ∈ N ′} = {∀x∀y(¬Q(x, y)),
∀x∀y(P (a) ∨ ¬P (b) ∨ Q(x, y)), ¬P (a), P (b)}. In this case, (N ′, A′, e′, f ′, g′, h′)
satisfies the conditions of definition 15.

Using the definitions for minimality and consistency for an assignment tree we
have the following result.

Proposition 2. Let (N,A, e, f, g, h) be a complete, consistent grounded assign-
ment tree. Then 〈Φ, α〉 with Φ = {e(p) | p ∈ N} \ {¬α} is an argument.

5 Algorithms

In this section we present an algorithm to search for all the minimal and consis-
tent complete assignment trees for a unit clause α from a given knowledgebase
Δ. If a grounded version of a complete assignment trees exists, then according
to proposition 2 this gives an argument for α.

Algorithm 1 builds a depth-first search tree T that represents the steps of
the search for arguments for a claim α from a knowledgebase Δ. Every node in
T is an assignment tree, every node is an extension of the assignment tree in
its parent node. The leaf node of every complete accepted branch is a complete
consistent assignment tree.

Reject(T ), and Accept(T ) are boolean functions which, given the current state
T of the search tree, test whether the leaf node of the currently built branch can
be expanded further. Reject(T ) rejects the current branch of the search tree if the
assignment tree in its leaf node does not satisfy the conditions for an assignment
tree. Accept(T ) checks whether a solution has been found. Hence, Accept(T )
tests whether the assignment tree in the leaf node of the currently built branch
is a complete assignment tree. When either of these functions returns true, the
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algorithm rejects or outputs the current branch accordingly and the algorithm
backtracks and continues to the next node of tree T to be expanded. NextChild(T )
adds to T one of the next possible nodes for its current leaf. A next possible node
for the current branch can be any extension of the assignment tree contained in
its current leaf which satisfies the conditions of definition 11.

Algorithm 1. Build(T )
if Reject(T ) then

return T = null
end if
if Accept(T ) then

return T
S = NextChild(T )

end if
while S �= null do

Build(S)
S = NextChild(T )

end while

The search is based on a graph structure whose vertices are represented by
clauses from Δ∪{¬α} and arcs link clauses φ, ψ for which Preattacks(φ, ψ) 
= ∅.
In fact, the algorithm works by visiting a subgraph of this graph which we call
the query graph of α in Δ. The query graph is the component (N,A) of the
graph where for each node φ ∈ N : (1) φ is linked to ¬α through a path in A and
(2) ∀ai ∈ Units(φ) there is a ψ ∈ N with ai ∈ Preattacks(φ, ψ). Hence, each unit
in each clause of the search space has a link in the query graph associated to it.
Figure 1 illustrates the structure of the query graph of α = ∃x∃y(Q(x, y)) in Δ
from example 12. The idea in building an assignment tree by using the structure
of the query graph, is to start from the negation of the claim and walk over the
graph by following the links and unifying the atoms of pairs of contradictory

∀x∀y(¬Q(x, y)) ∃x∀y(Q(x, y) ∨ R(x, y))

∀y(¬P (y)∨ Q(b, y)) Q(a, b) ∨ ¬N(a, b) ∀x(¬R(x,x) ∨ S(x, y))

¬Q(a, b) ∨ N(a, b)∀xP (x)∀y∃x(P (d)∨ P (a) ∨ M(x, y))

∀x∀y(¬M(x, y)) ∀x∀y(¬S(x, y))

Fig. 1. The query graph of α = ∃x∃y(Q(x, y)) in Δ. The negation of the claim ¬α =
∀x∀y(¬Q(x,y)) on the top left of the graph is the starting point for the search for
arguments for α.
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¬Q(x, y)

¬Q(b, y)

|
¬P (y) ∨ Q(b, y)

¬Q(a, b)

|
Q(a, b) ∨ ¬N(a, b)

¬Q(e, y)

|
Q(e, y) ∨ R(e, y)

¬Q(b, d)

|
¬P (d) ∨ Q(b, d)

|
P (d) ∨ P (a) ∨ M(f, y)

¬Q(b, d)

|
¬P (d) ∨ Q(b, d)

|
P (d)

¬Q(e, e)

|
Q(e, e) ∨ R(e, e)

|
¬R(e, e) ∨ S(e, y)

¬Q(b, d)

|
¬P (d) ∨ Q(b, d)

|
P (d) ∨ P (a) ∨ M(f, y)

� �
¬P (a) ∨ Q(b, a) ¬M(f, y)

¬Q(b, d)

|
¬P (d) ∨ Q(b, d)

|
P (d) ∨ P (a) ∨ M(f, y)

� �
¬P (a) ∨ Q(b, a) ¬M(f, y)

|
¬Q(b, a)

Fig. 2. A search tree generated using algorithm 1 by exploring the graph in figure 1.
Each node of this search tree represents an assignment tree which extends the assign-
ment tree contained in its parent node by one level. For this the algorithm adds clauses
each of which preattacks their parent clause on a different unit. The atoms of the con-
tradictory units between a parent and a child clause are unified and the assignments of
the unification are passed on to any other clauses that can be affected in the assignment
tree of this node.
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literals connected with arcs. Hence, the algorithm at the same time follows the
arcs of the graph and also produces partial instances of the clauses it visits as the
unification of atoms indicates. The partial instances produced while walking over
the graph are generated with respect to the conditions of definitions 11, 12, 14
and 15. Every time a clause φ on the graph is visited, a node q for an assignment
tree is created with e(q) = φ. For this node, an existential-free instance of e(q)
is generated by substituting each of its existentially quantified variables with an
arbitrary constant that does not appear anywhere in Δ∪{¬α} or in the instances
already created during the search. This instantiation initializes the value g(q)
and sets the value f(q) for q: f(q) = Assign(e(q), g(q)). The value of h(q) is also
initialized at this stage to be equal to f(q). After node q has been initialized as
an assignment tree node, another instantiation process follows, which is based on
unifying the atoms of the contradictory units in h(q) and its parent with their
most general unifier. This updates values g(q) and h(q). Let p be the parent
of q in an assignment tree. If θ ⊂ ℘(B) is the the most general unifier of the
atoms of a pair of contradictory units from h(q) and h(p), then g(q) = g(q) ∪ θ
and h(q) = Assign(h(q), g(q)). Apart from node q, the values for g and h for
any other node in the assignment tree are also updated. Every time such a
unification binding is retrieved, its values are forwarded to the rest of the nodes
in the assignment tree. These values are assigned to any of the corresponding
clauses that can be associated through a sequence of arcs in the assignment tree
to the variables of e(q) and can therefore be affected by the bindings in θ.

Figure 2 represents the result of searching for arguments for α=∃x∃y(Q(x, y))
using the query graph of figure 1. The result of the first branch of the search
tree (at the leaf) is a complete consistent assignment tree which by substituting
variable y in disjuncts M(f, y) and ¬M(f, y) by the same arbitrary constant
gives a complete grounded assignment tree. The leaf of the second branch corre-
sponds to a complete grounded assignment tree while the third branch is rejected
because for node p with e(p) = f(p) = h(p) = Q(a, b) ∨ ¬N(a, b) there is only
one arc in the graph that connects e(p) with a clause that contains a com-
plement of ¬N(a, b). This is clause ¬Q(a, b) ∨ N(a, b) but a child q of p with
e(q) = ¬Q(a, b)∨N(a, b) cannot be created because there is no assignment g(q)
for which Attacks(h(q), h(p)) 
= null. The last branch of the search tree is re-
jected because adding node s with e(s) = ∀x(¬R(x, x) ∨ S(x, y)) as a child of
r with h(r) = Q(e, y) ∨R(e, y) requires unifying R(x, x) with R(e, y) which up-
dates the value of g(r) to g(r) = {x/e, y/e} ∈ Prohibited(e(r)) and so condition
4 of the definition for an assignment tree is violated.

6 Discussion

Classical first-order logic has many advantages for representing and reasoning
with knowledge. However, in general it is computationally challenging to generate
arguments from a knowledgebase using classical logic. In this paper we propose a
method for retrieving arguments in a rich first-order language. We have provided
a theoretical framework, algorithms and theoretical results for this proposal.
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Abstract. Argumentation frameworks have proven to be a successful
approach to formalizing commonsense reasoning. Recently, some argu-
mentation frameworks have been extended to deal with possibilistic un-
certainty, notably Possibilistic Defeasible Logic Programming (P-DeLP).
At the same time, modelling argument accrual has gained attention from
the argumentation community. Even though some preliminary formal-
izations have been advanced, they do not take into account possibilistic
uncertainty when accruing arguments. In this paper we present a novel
approach to model argument accrual in the context of P-DeLP in a con-
structive way.

1 Introduction

Argumentation frameworks have proven to be a succesful approach to formal-
izing qualitative, commonsense reasoning. Recently, some argumentation frame-
works have emerged which incorporate the treatment of possibilistic uncertainty
(e.g. those proposed by Amgoud et al. with application in decision making
[1] and merging conflicting databases [2]). Possibilistic Defeasible Logic Pro-
gramming (P-DeLP) [3,4] is an argumentation framework based on logic pro-
gramming which incorporates the treatment of possibilistic uncertainty at the
object-language level.

At the same time, the notion of argument accrual has received some attention
from the argumentation community [5,6,7]. This notion is based on the intuitive
idea that having more reasons or arguments for a given conclusion makes such
a conclusion more credible. However, none of the existing approaches to model
argument accrual deals explicitly with possibilistic uncertainty.

In this paper we propose an approach based on P-DeLP to model argument
accrual in a possibilistic setting. Our proposal is partly based on previous work in
a workshop paper [7] where possibilistic uncertainty was not taken into account.
We show that accrued arguments can be conceptualized as weighted structures
which, as is the case with P-DeLP arguments, can be subject to a dialectical
analysis in order to determine if their conclusions are warranted. As we will
see, this is not a simple task. On the one hand, in our formalization we want
to combine the propagation of necessity degrees when performing rule-based

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 131–143, 2009.
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inference with a way of accumulating necessity values coming from different rules
with the same conclusion. On the other hand, we do not want to commit ourselves
to a specific way of aggregating necessity degrees; this will be abstracted away
in terms of a user-defined function.

The rest of this paper is structured as follows. The next section briefly de-
scribes P-DeLP. Next we present the notion of accrued structure, which plays a
central role in our proposal. Based on this notion, we then formalize the notions
of attack and defeat among accrued structures. We show then how to perform
a dialectical analysis on accrued structures, formalizing the notion of warranted
literal. Finally, we present the main conclusions that have been obtained.

2 Argumentation in P-DeLP: An Overview

In order to make this paper self-contained, we will present next some of the
main definitions that characterize the P-DeLP framework (for details the reader
is referred to [3]). The language of P-DeLP is inherited from the language of
logic programming, including the usual notions of atom, literal, rule and fact,
but defined over an extended set of atoms where a new atom ∼a is added for
each original atom a. Therefore, a literal in P-DeLP is either an atom a or a
(negated) atom of the form ∼a.

A weighted clause is a pair (ϕ, α), where ϕ is a rule q ← p1 ∧ . . . ∧ pk or a
fact q (i.e., a rule with empty antecedent), where q, p1, . . . , pk are literals, and
α ∈ [0, 1] expresses a lower bound for the necessity degree of ϕ. We distinguish
between certain and uncertain clauses. A clause (ϕ, α) is referred as certain if
α = 1 and uncertain, otherwise. A set of P-DeLP clauses Γ will be deemed as
contradictory, denoted Γ " ⊥, if , for some atom a, Γ " (a, α) and Γ " (∼a, β),
with α > 0 and β > 0, where " stands for deduction by means of the following
particular instance of the generalized modus ponens rule:

(q ← p1 ∧ · · · ∧ pk, α)
(p1, β1), . . . , (pk, βk)
(q, min(α, β1, . . . , βk))

[GMP]

A P-DeLP program P (or just program P) is a pair (Π,Δ), where Π is a
non-contradictory finite set of certain clauses, and Δ is a finite set of uncertain
clauses. Formally, given a program P = (Π,Δ), we say that a set A ⊆ Π ∪ Δ
(of clauses) is an argument for a literal h with necessity degree α > 0, denoted
〈A, h, α〉, iff:

1. A " (h, α),
2. Π ∪A is non-contradictory,
3. A is minimal w.r.t. set inclusion, i.e. there is no A1 ⊂ A s.t. A1 " (h, α). 1

1 The definition of argument adopted here differs slightly from the one used in [3] in
order to make simpler the formalization of the notion of accrued structure.
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Moreover, if 〈A, h, α〉 and 〈S, k, β〉 are arguments w.r.t. a program P = (Π,Δ),
we say that 〈S, k, β〉 is a subargument of 〈A, h, α〉 whenever S ⊆ A.

Let P be a P-DeLP program, and let 〈A1, h1, α1〉 and 〈A2, h2, α2〉 be two argu-
ments w.r.t. P. We say that 〈A1, h1, α1〉 counterargues (or attacks) 〈A2, h2, α2〉
2 iff there exists a subargument (called disagreement subargument) 〈S, k, β〉 of
〈A2, h2, α2〉 such that h1 = k. In such a case, we say that 〈A1, h1, α1〉 is a defeater
for 〈A2, h2, α2〉 when α1 ≥ β.

3 Modelling Argument Accrual with Possibilistic
Uncertainty

As stated in the introduction, our goal is to model argument accrual in a possi-
bilistic setting taking into account several issues. In P-DeLP, the GMP inference
rule allows us to propagate necessity degrees; however, given different arguments
supporting the same conclusion, we want to be able to accumulate their strength
in terms of possibilistic values. To do this we will define the notion of accrued
structure, which will account for several arguments supporting the same conclu-
sion, and whose necessity degree is defined in terms of two mutually recursive
functions: f+

Φ (·) (the accruing function) and fMP
Φ (·) (which propagates necessity

degrees as GMP). As we do not want to commit ourselves to a specific way of
aggregating necessity degrees, we will assume that f+

Φ (·) is parameterized w.r.t.
a user-specified function ACC. Additionally, we identify two properties that
we believe reasonable to hold for any candidate instantiation of ACC: [Non-
depreciation] ACC(α1, . . . , αn) ≥ max(α1, . . . , αn) (i.e., accruing arguments
results in a necessity degree not lower than any single argument involved in
the accrual). [Maximality] ACC(α1, . . . , αn) = 1 only if αi = 1 for some i,
1 ≤ i ≤ n (i.e., accrual means total certainty only if there is an argument with
necessity degree 1).

Definition 1 (Accrued Structure). Let P be a P-DeLP program, and let Ω
be a set of arguments in P supporting the same conclusion h, i.e.,
Ω = {〈A1, h, α1〉, ..., 〈An, h, αn〉}. We define the accrued structure for h (or just
a-structure) from the set Ω (denoted Accrual(Ω)) as a 3-uple [Φ, h, α], where
Φ = A1 ∪ ... ∪ An and α is obtained using two mutually recursive functions,
f+

Φ (·) and fMP
Φ (·), defined as follows. Let q be a literal appearing in Φ and let

(ϕ1, β1), ..., (ϕn, βn) be all the weighted clauses in Φ with head q. Then

f+
Φ (q) =def ACC(fMP

Φ (ϕ1), ..., fMP
Φ (ϕn))

Let (ϕ, β) be a weighted clause in Φ. Then

fMP
Φ (ϕ) =def

⎧⎨⎩
β if ϕ is a fact q;

min(f+
Φ (p1), ..., f

+
Φ (pn), β) if ϕ = q ← p1, ..., pn

2 In what follows, for a given literal h, we will write h to denote “∼a” if h ≡ a, and
“a” if h ≡ ∼a.
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Finally, α = f+
Φ (h). When Ω = ∅ we get the special accrued structure [∅, ε, 0],

representing the accrual of no argument.

Next we will present the function ACC1′ (one-complement accrual) as a possible
instantiation for ACC, which will be used in the examples that follow. Formally:

ACC1′(α1, . . . , αn) = 1−
n∏

i=1

(1 − αi)

It can be shown that ACC1′ satisfies non-depreciation and maximality.3

Example 1. Consider a P-DeLP program P where:

P =

⎧⎨⎩
(x ← z, 0.7) (z ← v, 0.5) (y ← u, 0.3) (s ← p, 0.7) (t, 1) (w, 1)
(x ← y, 1) (∼z ← w, 0.4) (∼y ← p, 0.4) (∼s ← t, 0.9) (u, 1) (p, 1)
(z ← t, 0.6) (∼z ← s, 0.8) (∼x ← q, 0.45) (q, 1) (v, 1)

⎫⎬⎭
Let 〈A1, x, 0.6〉 = 〈{(x ← z, 0.7), (z ← t, 0.6), (t, 1)}, x, 0.6〉,

〈A2, x, 0.5〉 = 〈{(x ← z, 0.7), (z ← v, 0.5), (v, 1)}, x, 0.5〉 and
〈A3, x, 0.3〉 = 〈{(x ← y, 1), (y ← u, 0.3), (u, 1)}, x, 0.3〉 be arguments in P. Then
Accrual({〈A1, x, 0.6〉, 〈A3, x, 0.3〉}) = [Φ1, z, 0.72] where

Φ1 = {(x ← z, 0.7), (z ← t, 0.6), (t, 1), (x ← y, 1), (y ← u, 0.3), (u, 1)} (Fig. 1a)
Accrual({〈A1, x, 0.6〉, 〈A2, x, 0.5〉}) = [Φ2, x, 0.7] where

Φ2 = {(x ← z, 0.7), (z ← t, 0.6), (t, 1), (z ← v, 0.5), (v, 1)} (Fig. 1b)
Accrual({〈A1, x, 0.6〉, 〈A2, x, 0.5〉, 〈A3, x, 0.3〉}) = [Φ3, x, 0.79] where

Φ3 = {(x ← z, 0.7), (z ← t, 0.6), (t, 1), (z ← v, 0.5), (v, 1), (x ← y, 1), (y ← u, 0.3),
(u, 1)} (Fig. 1c).

An a-structure for a conclusion h can be seen as a special kind of argument
which subsumes different chains of reasoning which provide support for h. For
instance, the a-structure [Φ1, x, 0.72] (see Fig. 1a) provides two alternative chains
of reasoning supporting x, both coming from each of the arguments accrued.
The case of [Φ2, x, 0.7] in Ex. 1 (see Fig. 1b) illustrates a situation similar to
the previous one, but in this case the arguments involved share their topmost
parts (more precisely the weighted clause (x ← z, 0.7)), differing in the reasons
supporting the (shared) intermediate conclusion z. Figure 1 also shows how the
possibilistic values associated with the depicted a-structures are obtained from
the weighted clauses conforming them, using the functions f+

Φ (·) and fMP
Φ (·).

Notice that weighted clauses were represented as black arrows labeled with their
associated necessity measures. The values in gray ovals are computed using the
mutually recursive functions.

An important question that naturally emerges when considering the way we
accrue arguments is what happens if we accrue two arguments that are in conflict
(for instance because they have contradictory intermediate conclusions.) We will
come back to this issue later.

Definition 2. Let [Φ, h, α] be an a-structure. Then the set of arguments in
[Φ, h, α], denoted as Args([Φ, h, α]), is the set of all arguments 〈Ai, h, αi〉 s.t.
Ai ⊆ Φ. Note that Args([∅, ε, 0]) = ∅.
3 Proofs are not included for space reasons.
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[Φ1, x, 0.72] [Φ2, x, 0.7] [Φ3, x, 0.79]
(a) (b) (c)

Fig. 1. Accrued Structures

Example 2. Consider the arguments and a-structures presented in Ex. 1.
Then Args([Φ1, x, 0.72]) = {〈A1, x, 0.6〉, 〈A3, x, 0.3〉} and Args([Φ3, x, 0.79]) =
{〈A1, x, 0.6〉, 〈A2, x, 0.5〉, 〈A3, x, 0.3〉}.

Definition 3 (Maximal a-structure). Let P be a P-DeLP program. We say
that an a-structure [Φ, h, α] is maximal iff Args([Φ, h, α]) contains all arguments
in P with conclusion h.

Example 3. Consider the P-DeLP program P and the a-structures in Ex. 1. Then
[Φ3, x, 0.79] is a maximal a-structure in P, whereas [Φ1, z, 0.72] and [Φ2, x, 0.7]
are not.

Property 1 (uniqueness of maximal a-structures). Let P be a P-DeLP program
and let h be a literal. If [Φ, h, α]and [Φ1, h, α1] are two maximal a-structures
w.r.t. P, then [Φ, h, α] = [Φ1, h, α1].

Next we will introduce the notion of narrowing of an a-structure, which is anal-
ogous to the notion of narrowing in [5]. Intuitively, a narrowing of an a-structure
[Φ, h, α] is an a-structure [Θ, h, β] accounting for a subset of Args([Φ, h, α]).

Definition 4 (Narrowing of an a-structure). Let [Φ, h, α] and [Θ, h, β] be
two a-structures. We say that [Θ, h, β] is a narrowing of [Φ, h, α] iff
Args([Θ, h, β]) ⊆ Args([Φ, h, α]).

Example 4. Consider the a-structures in Ex. 1. Then [Φ1, x, 0.72], [Φ2, x, 0.7] and
[Φ3, x, 0.79] itself are narrowings of [Φ3, x, 0.79].

Next we will introduce the notion of accrued sub-structure, that is analogous
to the notion of subargument but for a-structures. Intuitively, an accrued sub-
structure of an a-structure [Φ, h, α] is an a-structure supporting an intermediate
conclusion k of [Φ, h, α] and accounting for a subset of the reasons that support
k in [Φ, h, α]. The one that accounts for all the reasons supporting k in [Φ, h, α]
is called complete.
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Definition 5 (a-substructure and complete a-substructure). Let [Φ, h, α]
and [Θ, k, γ] be two a-structures. Then we say that [Θ, k, γ] is an accrued sub-
structure (o just a-substructure) of [Φ, h, α] iff Θ ⊆ Φ. We also say that [Θ, k, γ]
is a complete a-substructure of [Φ, h, α] iff for any other a-substructure [Θ′, k, γ′]
of [Φ, h, α] it holds that Θ′ ⊂ Θ.

Example 5. Consider the a-structure [Φ2, x, 0.7] in Ex. 1. Then the a-structures
[{(z ← t, 0.6), (t, 1)}, z, 0.6], [{(z ← t, 0.6), (t, 1), (z ← v, 0.5), (v, 1)}, z, 0.8]
and [Φ2, x, 0.7] itself are a-substructures of [Φ2, x, 0.7]. Moreover, the two lat-
ter are complete.

4 Modelling Conflict and Defeat in Accrued Structures

Next we will formalize the notion of attack between a-structures, which dif-
fers from the notion of attack in argumentation frameworks in several respects.
First, an a-structure [Φ, h, α] stands for (possibly) several chains of reasoning
(arguments) supporting the conclusion h. Besides, some intermediate conclu-
sions in [Φ, h, α] could be shared by some, but not necessarily all the arguments
in [Φ, h, α]. Thus, given two a-structures [Φ, h, α] and [Ψ, k, β], if the conclusion
k of [Ψ, k, β] contradicts some intermediate conclusion h′ in [Φ, h, α], then only
those arguments in Args([Φ, h, α]) involving h′ will be affected by the conflict.

Next we will define the notion of partial attack, where the attacking a-struc-
ture generally affects only a narrowing of the attacked one (that one containing
exactly the arguments in the attacked a-structure affected by the conflict), and
we will refer to this narrowing as the attacked narrowing.

Definition 6 (Partial Attack and Attacked Narrowing). Let [Φ, h, α] and
[Ψ, k, β] be two a-structures. We say that [Ψ, k, β] partially attacks [Φ, h, α] at
literal h′, iff there exists a complete a-substructure [Φ′, h′, α′] of [Φ, h, α] such
that k = h′. The a-substructure [Φ′, h′, α′] will be called the disagreement a-
substructure. We will also say that [Λ, h, γ] is the attacked narrowing of [Φ, h, α]
associated with the attack iff [Λ, h, γ] is the minimal narrowing of [Φ, h, α] that
has [Φ′, h′, α′] as an a-substructure.

Example 6. Consider the a-structures [Φ3, x, 0.79] and [Ψ1,∼z, 0.82] in Fig. 2.
Then [Ψ1,∼z, 0.82]partially attacks [Φ3, x, 0.79]with disagreement a-substructure
[Φ′, z, 0.8] = [{(z ← t, 0.6), (t, 1), (z ← v, 0.5), (v, 1)}, z, 0.8]. The attacked nar-
rowing of [Φ3, x, 0.79] is [{(x ← z, 0.7), (z ← t, 0.6), (t, 1), (z ← v, 0.5), (v, 1)},
x, 0.7]. Graphically, this attack relation will be depicted with a dotted arrow
(see Fig. 2).

4.1 Accrued Structures: Evaluation and Defeat

As in P-DeLP, we will use the necessity measures associated with a-structures
in order to decide if a partial attack really succeeds and constitutes a defeat.
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Fig. 2. Partial Attack

Definition 7 (Partial Defeater). Let [Φ, h, α] and [Ψ, k, β] be two a-structures.
Then we say that [Ψ, k, β] is a partial defeater of [Φ, h, α] (or equivalently that
[Ψ, k, β] is a successful attack on [Φ, h, α]) iff 1) [Ψ, k, β] attacks [Φ, h, α] at literal
h′, where [Φ′, h′, α′] is the disagreement a-substructure, and 2) β ≥ α′.

Example 7. Consider the attack from [Ψ1,∼z, 0.82] against [Φ3, x, 0.79] with dis-
agreement a-substructure [Φ′, z, 0.8] in Ex. 6 (Fig. 2). As the necessity measure
associated with the attacking a-structure (0.82) is greater than the one associated
with the disagreement a-substructure (0.8), then the attack succeeds, constitut-
ing a defeat. Graphically, this defeat relation will be depicted with a continuous
arrow (see Fig. 3).

Fig. 3. Defeated and Undefeated Narrowings

Given an attack relation, we will identify two complementary narrowings asso-
ciated with the attacked a-structure: the narrowing that becomes defeated as a
consequence of the attack, and the narrowing that remains undefeated.

Definition 8 (Undefeated and Defeated Narrowings). Let [Φ, h, α] and
[Ψ, k, β] be two a-structures such that [Ψ, k, β] attacks [Φ, h, α]. Let [Λ, h, γ] be the
attacked narrowing of [Φ, h, α]. Then the defeated narrowing of [Φ, h, α] associated
with the attack, denoted as ND

w([Φ, h, α], [Ψ, k, β]), is defined by cases as follows:
1) ND

w([Φ, h, α], [Ψ, k, β]) =def [Λ, h, γ], if [Ψ, k, β] is a partial defeater of [Φ, h, α],
or 2) ND

w([Φ, h, α], [Ψ, k, β]) =def [∅, ε, 0], otherwise. The undefeated narrowing of
[Φ, h, α] associated with the attack, denoted as NU

w([Φ, h, α], [Ψ, k, β]), is the a-struc-
ture Accrual(Args([Φ, h, α]) \Args(ND

w([Φ, h, α], [Ψ, k, β]))).

Example 8. Fig. 3 illustrates a successful attack from [Ψ1,∼z, 0.82] against
[Φ3, x, 0.79], as well as the associated defeated and undefeated narrowings of
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[Φ3, x, 0.79]. As another example, consider the attack from [Ψ2,∼x, 0.45] =
[{(∼x ← q, 0.45), (q, 1)},∼x, 0.45] against [Φ3, x, 0.79], with [Φ3, x, 0.79] itself as
disagreement a-substructure. In this case the attack does not succeed, and then
[∅, ε, 0] is the defeated narrowing and [Φ3, x, 0.79] is the undefeated narrowing.

4.2 Combined Attack

Until now we have considered only single attacks. When a single attack succeeds,
a nonempty narrowing of the attacked a-structure becomes defeated. But two or
more a-structures could simultaneously attack another, possibly affecting differ-
ent narrowings of the target a-structure, and thus causing a bigger narrowing to
become defeated (compared with the defeated narrowings associated with the
individual attacks). Fig. 4a illustrates a combined attack from the a-structures
[Ψ1,∼z, 0.82] and [Ψ3,∼y, 0.4] against [Φ3, x, 0.79]. Even though each attacking
a-structure defeats only a proper narrowing of [Φ3, x, 0.79], the whole [Φ3, x, 0.79]
becomes defeated after applying both attacks.

(a)

(b)

(c)

Fig. 4. Combined Defeat

Consider now the combined attack against [Φ3, x, 0.79] shown in Fig. 4b. One
of the attacking a-structures ([Ψ1,∼z, 0.82]) defeats a narrowing of [Φ3, x, 0.79]
on its own, whereas the other ([Ψ2,∼x, 0.45]) only attacks [Φ3, x, 0.79]. Note
also that, although [Φ3, x, 0.79] is stronger than [Ψ2,∼x, 0.45], [Ψ2,∼x, 0.45] is
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stronger than [Φ′, x, 0.3] = [{(x ← y, 1), (y ← u, 0.3), (u, 1)}, x, 0.3], a proper
narrowing of [Φ3, x, 0.79]. Then, as shown in Fig. 4b, when the a-structures
[Ψ1,∼z, 0.82] and [Ψ2,∼x, 0.45] combine their attacks, they cause the whole
[Φ3, x, 0.79] to become defeated. The reason is that the successful attack of
[Ψ1,∼z, 0.82] weakens the target a-structure, allowing the attack of [Ψ2,∼x, 0.45]
to succeed. Figure 4c illustrates a combined attack from [Ψ2,∼x, 0.45] and
[Ψ3,∼y, 0.4] against [Φ3, x, 0.79]. In this case, a nonempty narrowing of the at-
tacked a-structure remains undefeated.

The purpose of the following definitions is to formally capture the notions of
defeated and undefeated narrowings associated with a given combined attack
from a set Σ of attacking a-structures against an a-structure [Φ, h, α]. In partic-
ular the first definition is a formalization of the procedure suggested by Figs. 4a,
4b and 4c, and described as follows. (1) Pick a defeater in Σ of [Φ, h, α] (if any)
and apply it, obtaining an undefeated narrowing [Θ, h, β] of [Φ, h, α]. (2) Repeat
step 1 taking the resulting a-structure [Θ, h, β] as the new target for defeaters,
until there is no more defeaters for [Θ, h, β] in Σ.

Definition 9 (Sequential Degradation). Let [Φ, h, α] be an a-structure and
let Σ be a set of a-structures attacking [Φ, h, α]. A sequential degradation of
[Φ, h, α] associated with the combined attack of the a-structures in Σ, consists of
a finite sequence of narrowings of [Φ, h, α]:

[Φ1, h, α1], [Φ2, h, α2], . . . , [Φm+1, h, αm+1]

provided there exists a finite sequence of a-structures in Σ:

[Ψ1, k1, β1], [Ψ2, k2, β2], . . . , [Ψm, km, βm]

where [Φ1, h, α1] = [Φ, h, α], for each i, 1 ≤ i ≤ m, [Ψi, ki, βi] par-
tially defeats [Φi, h, αi] with associated undefeated narrowing [Φi+1, h, αi+1] and
[Φm+1, h, αm+1] has no defeaters in Σ.

Given a combined attack against an a-structure [Φ, h, α], there could exist sev-
eral possible orders of defeater applications, and hence, more than one sequen-
tial degradation associated with the combined attack. Interestingly, it can be
shown that all sequential degradations associated with a given combined at-
tack converge to the same a-structure, provided that the function ACC satisfies
non-depreciation.

Property 2 (Convergence). Let [Φ, h, α] be an a-structure and let Σ be a
set of a-structures attacking [Φ, h, α]. Let [Φ1, h, α1], . . . , [Φm, h, αm] and
[Φ′

1, h, α
′
1], . . . , [Φ

′
n, h, α

′
n] be two sequential degradations of [Φ, h, α] associ-

ated with the combined attack of the a-structures in Σ. Then [Φm, h, αm] =
[Φ′

n, h, α
′
n], provided that the ACC function satisfies non-depreciation.

Convergence can also be achieved without requiring non-depreciation for ACC
function by slightly refining the notion of sequential degradation in the same
way it was done in [7]. We do not present such a refinement here due to space
limitations.
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Definition 10 (Narrowings associated with a Combined Attack). Let
[Φ, h, α] be an a-structure and let Σ be a set of a-structures attacking [Φ, h, α].
Let [Φ1, h, α1], ..., [Φm+1, h, αm+1] be a sequential degradation of [Φ, h, α] associ-
ated with the combined attack of the a-structures in Σ. Then [Φm+1, h, αm+1] is
the undefeated narrowing of [Φ, h, α] associated with the combined attack, and
Accrual(Args([Φ, h, α]) \Args([Φm+1, h, αm+1])) is its defeated narrowing.

Example 9. Consider the combined attack of [Ψ1,∼z, 0.82] and [Ψ2,∼x, 0.45]
against [Φ3, x, 0.79] (Fig. 4b). The associated undefeated narrowing of [Φ3, x, 0.79]
is [∅, ε, 0], i.e., the whole [Φ3, x, 0.79] results defeated. On the other hand, when
[Ψ2,∼x, 0.45] and [Ψ3,∼y, 0.4] attack [Φ3, x, 0.79] (Fig. 4c), its associated un-
defeated narrowing is [{(x ← z, 0.7), (z ← t, 0.6), (t, 1), (z ← v, 0.5), (v, 1)},
x, 0.7].

5 Dialectical Analysis for Accrued Structures

Given a P-DeLP program P and a literal h, we are interested in determining if
h is ultimately accepted (or warranted), and if so, with which necessity degree.
In order to determine this, we will consider the maximal a-structure [Φ, h, α]
supporting h, and we will analyze which is the final undefeated narrowing of
[Φ, h, α] after considering all possible a-structures attacking it. As those attack-
ing a-structures may also have other a-structures attacking them, this strategy
prompts a recursive dialectical analysis formalized as discussed below.

It must be remarked that this dialectical analysis can be seen as a general-
ization of the notion of dialectical tree used in P-DeLP [3], DeLP [8] and other
argumentation frameworks (e.g. Besnard & Hunter’s argument tree [9]). In such
frameworks, nodes in dialectical trees stand for individual arguments, whereas
in our case nodes correspond to accrued structures, each of them standing for
many arguments supporting a given conclusion.

Definition 11 (Accrued Dialectical Tree). Let P be a P-DeLP program and
let h be a literal. Let [Φ, h, α] be the maximal a-structure for h in P. The accrued
dialectical tree for h, denoted Th, is defined as follows:

1. The root of the tree is labeled with [Φ, h, α].
2. Let N be an internal node labelled with [Θ, k, β]. Let Σ be the set of all

disagreement a-substructures associated with the attacks in the path from
the root to N . Let [Θi, ki, βi] be a maximal a-structure attacking [Θ, k, β]
s.t. [Θi, ki, βi] has no a-substructures in Σ. Then the node N has a child
node Ni labelled with [Θi, ki, βi]. If there is no a-structure attacking [Θ, k, β]
satisfying the above condition, then N is a leaf.

The condition involving the set Σ avoids the introduction of a new a-structure
as a child of a node N if it is already present in the path from the root to N
(resulting in a circularity). This requirement is needed in order to avoid fallacious
reasoning, as discussed in [10].
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Once the dialectical tree has been constructed, each combined attack is ana-
lyzed, from the deepest ones to the one against the root, in order to determine
the undefeated narrowing of each node in the tree.

Definition 12 (Undefeated narrowing of a Node). Let Th be the accrued
dialectical tree for a given literal h. Let N be a node of Th labelled with [Θ, k, β].
Then the undefeated narrowing of N is defined as follows:

1. If N is a leaf, then the undefeated narrowing of N is its own label [Θ, k, β].
2. Otherwise, let M1, ..., Mn be the childs of N and let [Λi, k, γi] be the unde-

feated narrowing of the a-structure labelling the child node Mi, 1 ≤ i ≤ n.
Then the undefeated narrowing of N is the undefeated narrowing of [Θ, k, β]
associated with the combined attack involving all the [Λi, k, γi], 1 ≤ i ≤ n.

Example 10. Fig. 5a shows the accrued dialectical tree for x w.r.t. program P

(Ex. 1). Fig. 5b shows the accrued dialectical tree for x, where the undefeated
narrowings of each node are highlighted.

(a) (b)

Fig. 5. Accrued Dialectical Tree and Warrant analysis

Definition 13 (Warrant). Let P be a P-DeLP program and let h be a literal.
Let [Φ, h, α] be the maximal a-structure for h such that its undefeated narrowing
in Th is a nonempty a-structure [Φ′, h, α′]. Then we say that h is warranted
w.r.t. P with necessity α′ and that [Φ′, h, α′] is a warranted a-structure.

According to the dialectical tree in Fig. 5b, the literal x is warranted w.r.t. P with
necessity 0.7 and [{(x ← z, 0.7), (z ← t, 0.6), (t, 1), (z ← v, 0.5), (v, 1)}, x, 0.7]
is a warranted a-structure.

The following property establishes that the a-structure emerging as a result
of the above dialectical process cannot involve contradictory literals.

Property 3. Let P be a P-DeLP program, and let [Φ, h, α] be a warranted a-struc-
ture w.r.t. P. Then there exist no intermediate conclusions k and r in [Φ, h, α]
s.t. k = r.
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6 Conclusions

In this paper we have proposed a novel approach based on P-DeLP to model ar-
gument accrual in a possibilistic setting. This approach is based on the notion of
accrued structure, which accounts for different P-DeLP arguments supporting a
given conclusion and associates a necessity measure to its conclusion obtained as
an aggregation of the necessity measures of the individual arguments it accounts
for. We have shown how accrued structures can be in conflict in terms of the
notion of partial attack, and how possibilistic information is used to determine if
a given attack succeeds, becoming a defeat. The notions of combined attack and
sequential degradation were also defined, allowing us to characterize a dialectical
process in which all accrued structures in favor and against a given conclusion
h are taken into account in order to determine if h is warranted, and if so, with
which necessity. Finally, an interesting property (Prop. 3) of our approach was
stated, which ensures that accrued structures which are ultimately accepted as
warranted will never involve conflicting arguments.

There exist other argument-based approaches modeling the notion of accrual,
mainly the ones of Prakken [6] and Verheij [5]. However, none of them deals
explicitly with possibilistic uncertainty. Associated with his approach, Prakken
has proposed a set of desirable principles for a sound modeling of accrual, and it
can be shown that our formalization verifies them all. 4 A complete analysis of
Prakken’s principles in the context of our approach, together with a comparison
with other existing formalizations of accrual can be found in [7] (we do not
include it here for space reasons).

In order to test the applicability of our proposal we are developing an im-
plementation of our formalization using the DeLP system 5 as a basis. We are
studying different theoretical results emerging from our proposal which could
help to speed up the computation of accrued dialectical trees. Research in this
direction is currently being pursued.
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Abstract. Generalized argumentation frameworks relate formulae in classical
logic to arguments based on the Dung’s classic framework. The main purpose of
the generalization is to provide a theory capable of reasoning (following argu-
mentation technics) about inconsistent knowledge bases (KB) expressed in FOL
fragments. Consequently, the notion of argument is related to a single formula in
the KB. This allows to share the same primitive elements from both, the frame-
work (arguments) and, the KB (formulae). A framework with such features would
not only allow to manage a wide range of knowledge representation languages,
but also to cope with the dynamics of knowledge in a straightforward manner.

1 Introduction

The formalism studied in this work is based on the widely accepted Dung’s argumenta-
tion framework (AF) [1]. An AF is deemed as abstract since the language used to define
arguments remains unspecified, thus, arguments in an AF are treated as “black boxes” of
knowledge. In this work we go one step further into a not-so-abstract form of argumen-
tation by proposing an argument language Args in order to provide some structure to
the notion of arguments while keeping them abstract. Intuitively, an argument may be
seen as an indivisible piece of knowledge inferring a claim from a set of premises. Since
claims and premises are distinguishable entities of any argument, we will allow both to
be expressed through different sublanguages. The proposed argument language Args
is thus characterized through the interrelation between its inner components. Assum-
ing arguments specified through Args would bring about a highly versatile framework
given that different knowledge representation languages could be handled through it.
But consequently, some basic elements of the argumentation machinery should be ac-
commodated, giving rise to a new kind of abstract argumentation frameworks identified
as generalized (GenAF). The first approach to a GenAF in [2] was inspired by [3,4].

The GenAF here proposed aims at reasoning about inconsistent knowledge bases
(KB) expressed through some fragment of first order logic (FOL). Consequently, Args
will be reified to the restriction imposed to the FOL KB. Thus, the maximum expres-
sive power of a GenAF is imposed by restricting the inner components of Args to be

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 144–155, 2009.
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bounded to some logic Lκ, with κ ∈ N0
1. Formulae in Lκ are those of FOL that can be

built with the help of predicate symbols with arity ≤ κ, including equality and constant
symbols, but without function symbols. An example of an L2-compliant logic is the
ALC DL used to describe basic ontologies. The interested reader is referred to [5,6].

A normal form for a Lκ KB is presented to reorganize the knowledge in the KB
through sentences conforming some minimal pattern, which will be interpreted as single
arguments in the GenAF. Therefore, a GenAF may be straightforwardly adapted to deal
with dynamics of knowledge as done in [4]: deleting an argument from the framework
would mean deleting a statement from the KB. Argumentation frameworks were also
related to FOL in [7], however, since there was no intention to cope with dynamics of
arguments, no particular structure was provided to manage statements in the KB through
single arguments. In this sense, our proposal is more similar to that in [8], although we
relate the notions of deduction and conflict to FOL interpretations.

Specifying Args could bring about some problems: the language for claims may
consider conjunctive and/or disjunctive formulae. For the former case, the easiest op-
tion is to trigger a different claim for each conjunctive term. For the case of disjunctive
formulae for claims, the problem seems to be more complicated. To that matter we
introduce the notion of coalition, which is a structure capable of grouping several argu-
ments with the intention to support an argument’s premise, identify conflictive sources
of knowledge, or even to infer new knowledge beyond the one specified through the ar-
guments considered in it. In argumentation theory, an argument’s premises are satisfied
in order for that argument to reach its claim. This is usually referred as support relation
[3], handled in this work through coalitions.

Usually, an abstract argument is treated as an indivisible entity that suffices to sup-
port a claim; here arguments are also indivisible but they play a smaller role: they are
aggregated in structures which can be thought as if they were arguments in the usual
sense [7]. However, we will see that they do not always guarantee the achievement of
the claim. The idea behind the aggregation of arguments within a structure is similar to
that of sub-arguments [9]. Besides, classic argumentation frameworks consider ground
arguments, that is, a claim is directly inferred if the set of premises are conformed. In
our framework, we consider two different kinds of arguments: ground and schematic.
In this sense, a set of premises might consider free variables, meaning that the claim,
and therefore the inference, will depend on them. Thus, when an argument B counts
with free variables in its claim or premises, it will be called schematic; whereas B is
referred as ground, when its variables are instantiated. Instantiation of variables within
a schematic argument may occur as a consequence of its premises being supported.

Finally, a basic acceptability semantics is proposed, inspired in the grounded seman-
tics [10]. These semantics ensure the obtention of a consistent set of arguments, from
which the accepted knowledge (warranted formulae) can be identified.

2 Foundations for a Generalized AF

For Lκ, we use p, p1, p2, . . . and q, q1, q2, . . . to denote monadic predicate letters,
r, r1, r2, . . . for dyadic predicate letters, x, y for free variable objects, and a, b, c, d for

1 Natural numbers are enclosed in the sets N0 = {0, 1, . . . } and N1 = {1, 2, . . . }.
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constants (individual names). Besides, the logic LA ⊂ Lκ identifies the fragment of Lκ

describing assertional formulae (ground atoms and their negations). Recall that ground
atoms are atomic formulae which do not consider variable objects. The logic Lκ is in-
terpreted as usual through interpretations I = 〈ΔI , pI, pI

1 , . . . , q
I, qI

1 , . . . , r
I , rI

1 , . . .〉,
where ΔI is the interpretation domain, and pI, pI

1 , . . . , q
I , qI

1 , . . . , r
I , rI

1 , . . . interpret
p, p1, . . . , q, q1, . . . , r, r1, . . ., respectively. For an interpretation I , some a ∈ ΔI , and
a formula ϕ(x), we write I |= ϕ(a) if I, v |= ϕ(x), for the assignment v mapping x to
a. For simplicity we omit universal quantifiers writing ϕ(x) to refer to (∀x)(ϕ(x)).

As mentioned before, we will rely on a (abstract) language Args (for arguments)
composed by two (unspecified) inner sub-languages: Lpr (for premises) and Lcl

(claims).

Definition 1 (Argument Language). Given the logic Lκ, an argument language
Args is defined as 2Lpr × Lcl, where Lcl ⊆ Lκ and Lpr ⊆ Lκ are recognized as
the respective languages for claims and premises in Args.

Since a premise is supported through the claim of other argument/s, the expressivity
of both languages Lpr and Lcl should be controlled in order to allow every describable
premise to be supported by formulae from the language for claims. Therefore, to handle
the language Args at an abstract level, we will characterize it by relating Lpr and Lcl.

Definition 2 (Legal Argument Language). An argument language 2Lpr ×Lcl is legal
iff for every ρ ∈ Lpr there is a set Φ ⊆ Lcl such that Φ |= ρ (support).

In the sequel any argument language used will be assumed to be legal. Argumentation
frameworks are a tool to reason about potentially inconsistent knowledge bases. Due
to complexity matters, it would be interesting to interpret any Lκ KB directly as an
argumentation framework with no need to transform the KB to a GenAF. Intuitively,
an argument poses a reason to believe in a claim if it is the case that its premises are
supported. This intuition is similar to the notion of material conditionals (implications
“→”) in classical logic. Hence, statements from a KB could give rise to a single argu-
ment. To this end, we propose a normal form for Lκ KBs.

Definition 3 (pANF). Given a knowledge base Σ ⊆ Lκ, and an argument language
Args, Σ conforms to the pre-argumental normal form (pANF) iff every formula ϕ ∈
Σ is an assertion in LA, or it corresponds to the form ρ1∧ . . .∧ρn → α, where α ∈ Lcl

and ρi ∈ Lpr (1 ≤ i ≤ n). Hence, each formula ϕ ∈ Σ is said to be in pANF.

Example 1. 2 Suppose Lcl and Lpr are concretized as follows: Lcl allows disjunctions
but prohibits conjunctions; whereasLpr avoids both conjunctions and disjunctions. This
would require for a formula like (p1(x)∧p2(x))∨ (p3(x)∧p4(x)) → q1(x)∧ (q2(x)∨
q3(x)) to be reformatted into the pANF formulae p1(x) ∧ p2(x) → q1(x), p1(x) ∧
p2(x) → q2(x) ∨ q3(x), p3(x) ∧ p4(x) → q1(x) and p3(x) ∧ p4(x) → q2(x) ∨ q3(x).

Next we formalize the generalized notion of argument independently from a KB. The
relation between premises and claims wrt. a KB could be referred to Remark 1.

2 For simplicity, examples are enclosed within L2 to consider only predicates of arity ≤ 2.
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Definition 4 (Argument). An argument B ∈ Args is a pair 〈Γ , α〉, where Γ ⊆ Lpr is
a finite set of finite premises, α ∈ Lcl, its finite claim, and Γ ∪{α} 
|= ⊥ (consistency).

Usually, evidence is considered a basic irrefutable piece of knowledge. This means that
evidence does not need to be supported given that it is self-justified by definition. Thus,
two options appear to specify evidence: as a separate entity in the framework, or as
arguments with no premises to be satisfied. In this article we assume the latter posture,
referring to them as evidential arguments.

Definition 5 (Evidence). Given an argument B ∈ Args, B is referred as evidential
argument (or just evidence) iff B = 〈{}, α〉 with α ∈ LA (assertional formulae).

Given B ∈ Args, its claim and set of premises are identified by the functions cl :
Args−→Lcl, and pr : Args−→2Lpr , respectively. For instance, given B =
〈{ρ1, ρ2}, α〉, its premises are pr(B) = {ρ1, ρ2}, and its claim, cl(B) = α. Argu-
ments will be obtained from pANF formulae through an argument translation function
arg : Lκ−→Args such that arg(ϕ) = 〈{ρ1, . . . , ρn}, α〉 iff ϕ ∈ Lκ is a pANF for-
mula ρ1 ∧ . . . ∧ ρn → α and arg(ϕ) verifies the conditions in Def. 4. Otherwise,
arg(ϕ) = 〈∅,⊥〉. An evidential argument arg(ϕ) = 〈∅, α〉 appears if ϕ is → α.

Example 2 (Continued from Ex. 1). For the formulae given in Ex. 1, the arguments
〈{p1(x), p2(x)}, q1(x)〉, 〈{p1(x), p2(x)}, q2(x) ∨ q3(x)〉, 〈{p3(x), p4(x)}, q1(x)〉 and
〈{p3(x), p4(x)}, q2(x) ∨ q3(x)〉, are triggered by effect of the function “arg”.

As mentioned before, it is important to recall that the notion of argument adopted in
this work differs from its usual usage. This is made clear in the following remark.

Remark 1. Given a pANF KB Σ ⊆ Lκ, a formula ϕ ∈ Σ, and its associated argument
arg(ϕ) = 〈Γ , α〉; it follows Σ |= (

∧
Γ ) → α, but Γ |= α does not necessarily hold.

A more restrictive definition of argument could consider conditions like Γ 
|= α, and/or
Γ \ {ρ} 
|= ρ, with ρ ∈ Γ . However, its appropriate discussion exceeds the scope of this
article. For the usual notion of argument see argumental structures in Def. 15.

The formalization of the GenAF will rely on normality conditions: user defined con-
straints in behalf of the appropriate construction of the argumentation framework.

Definition 6 (GenAF). A generalized abstract argumentation framework (GenAF) is
a pair 〈A,N〉, where A ⊆ Args is a finite set of arguments, and N ⊆ Norm, a finite set
of normality condition functions nc : 2Args−→{true, false}. The domain of functions
nc is identified through Norm, and G identifies the class of every GenAF. The set E ⊆ A
encloses every evidential argument from A.

A normality condition required through N, could be to require evidence to be consis-
tent, that is no pair of contradictory evidential arguments should be available in the
framework. Other conditions could be to restrict arguments from being non-minimal
justifications for the claim, or from including the claim itself as a premise.

(evidence coherency) there is no pair 〈{}, α〉 ∈ A and 〈{},¬α〉 ∈ A.
(minimality) there is no pair 〈Γ, α〉 ∈ A and 〈Γ ′, α〉 ∈ A such that Γ ′ ⊂ Γ .
(relevance) there is no 〈Γ , α〉 ∈ A such that α ∈ Γ .
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Other normality conditions may appear depending on the concretization of the logic
for arguments and the environment the framework is set to model. The complete study
of these features falls out of the scope of this article. Given a GenAF T = 〈A,N〉,
we will say that T is a theory iff for every normality condition nc ∈ N it follows
nc(A) = true. From now on we will work only with theories, thus unless the contrary is
stated, every framework will be assumed to conform a theory. Moreover, the framework
specification is done in such a way that its correctness does not rely on the normality
conditions required. Thus, a GenAF 〈A,N〉, with N = ∅, will be trivially a theory.

In order to univocally determine a single GenAF from a given KB and a set of nor-
mality conditions, it is necessary to assume a comparison criterion among formulae in
the KB. Such criterion could be defined for instance, upon entrenchment of knowledge,
i.e., levels of importance are related to formulae in the KB. As will be seen later, this
criterion will determine the argument comparison criterion from which the attack rela-
tion is usually specified in the classic argumentation literature. Next, we define a theory
function to identify the GenAF associated to a KB.

Definition 7 (Theory Function). Given a pANF knowledge base Σ ⊆ Lκ, and a set
N ⊆ Norm of normality condition functions nc, a theory function genaf : 2L

κ ×
2Norm−→G identifies the GenAF genaf(Σ,N) = 〈A,N〉, where A ⊆ {arg(ϕ)|ϕ ∈ Σ
and arg(ϕ) is an argument}∪{arg(ϕ → ϕ′)|(¬ϕ′ → ¬ϕ) ∈ Σ and arg(ϕ → ϕ′) is an
argument} and A is the maximal set (wrt. set inclusion and the comparison criterion in
Σ) such that for every nc ∈ N it holds nc(A) = true.

The GenAF obtained by the function “genaf” will consider a maximal subset of the KB
Σ such that the resulting set of arguments (triggered by “arg”) is compliant with the
normality conditions. Note that also the counterpositive formula of each one considered
is assumed to conform an argument in the resulting GenAF. This is natural since coun-
terpositive formulae from the statements in a KB are implicitly considered to reason in
classical logic. In a GenAF, this issue is done by considering both explicitly.

3 The GenAF Argumentation Machinery

The purpose of generalizing an abstract argumentation framework comes from the
need of managing different argument languages specified through some FOL frag-
ment. Given the specification of Args, different possibilities may arise, for instance,
the language for claims may accept disjunction of formulae. Thus, it is possible to
infer a formula in Lcl from several arguments in the GenAF through their claims. Con-
sider for example, two arguments 〈{p1(x)}, q1(x)∨ q2(x)〉 and 〈{p2(x)},¬q2(x)〉, the
claim q1(x) may be inferred. This kind of constructions are similar to arguments them-
selves, but are implicitly obtained from the GenAF at issue. To such matter, the notion
of claiming-coalition is introduced as a coalition required to infer a new claim.

In general, a coalition might be interpreted as a minimal and consistent set of argu-
ments guaranteeing certain requirement. We say that a coalition Ĉ ⊆ Args is consistent
iff prset(Ĉ)∪ clset(Ĉ) 
|= ⊥, while minimality ensures that Ĉ guarantees a requirement
θ iff there is no proper subset of Ĉ guaranteeing θ. The functions clset : 2Args−→2Lcl

and prset : 2Args−→2Lpr are defined as clset(Ĉ) = {cl(B)|B ∈ Ĉ}, and prset(Ĉ) =
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B∈Ĉ pr(B), to respectively identify the set of claims and premises from Ĉ. In this

article, three types of coalitions will be considered. Regarding claiming-coalitions, the
requirement θ is a new inference in Lcl from the arguments considered by the coalition.

Definition 8 (Claiming-Coalition). Given a GenAF 〈A,N〉 ∈ G, and a formula α ∈
Lcl, a set of arguments Ĉ ⊆ A is a claiming-coalition, or just a claimer, of α iff Ĉ is
the minimal coalition guaranteeing clset(Ĉ) |= α and Ĉ is consistent.

Note that a claiming-coalition containing a single argument B is a primitive coalition
for the claim of B. As said before, an argument needs to find its premises supported as a
functional part of the reasoning process to reach its claim. In this framework, due to the
characterization of Args, sometimes a formula fromLpr could be satisfied only through
several formulae from Lcl. This means that a single argument is not always enough to
support a premise of another argument. Thus, we will extend the usual definition of
supporter [3] by introducing the notion of supporting-coalition.

Definition 9 (Supporting-Coalition). Given a GenAF 〈A,N〉 ∈ G, an argument B ∈
A, and a premise ρ ∈ pr(B). A set of arguments Ĉ ⊆ A is a supporting-coalition, or just
a supporter, of B through ρ iff Ĉ is the minimal coalition guaranteeing clset(Ĉ) |= ρ

and Ĉ ∪ {B} is consistent.

Example 3. Assume A = {B1,B2,B3,B4}, where B1 = 〈{p1(x)}, q1(x)〉, B2 =
〈{p1(x)}, q2(x)〉, B3 = 〈{p2(x)}, p1(x) ∨ q1(x)〉, and B4 = 〈{p3(x)},¬q1(x)〉. The
set Ĉ = {B3,B4} is a supporter of B2. Note that Ĉ cannot be a supporting-coalition of
B1 since it violates (supporter) consistency.

When not every necessary argument to conform the supporting-coalition is present in
A, the (unsupported) premise is referred as free.

Definition 10 (Free Premise). Given a GenAF 〈A,N〉 ∈ G and an argument B ∈ A,
a premise ρ ∈ pr(B) is free wrt. A iff there is no supporter Ĉ ⊆ A of B through ρ.

From Ex. 3, premises p2(x) ∈ pr(B3), p3(x) ∈ pr(B4), and p1(x) ∈ pr(B1) are free
wrt. A; whereas p1(x) ∈ pr(B2) is not.

When a schematic argument is fully supported from evidence (Ĉ ⊆ E), its claim is
ultimately instantiated ending up as a ground formula. Therefore, an argument B may
be included in a supporting coalition Ĉ of B itself due to the substitution of variables.
This situation is made clearer later and may be referred to Ex. 5. The quest for a sup-
porter Ĉ of some argumentB through a premise ρ in it, describes a recursive supporting
process given that each premise in Ĉ needs to be also supported. When this process does
ultimately end in a supporter containing only evidential arguments, we will distinguish
ρ ∈ pr(B) not only as non-free but also as closed.

Definition 11 (Closed Premise). Given a GenAF 〈A,N〉 ∈ G, and an argument B ∈
A, a premise ρ ∈ pr(B) is closed wrt. A iff there exists a supporter Ĉ ⊆ A of B
through ρ such that either prset(Ĉ) = ∅, or every premise in prset(Ĉ) is closed.

The idea behind closing premises is to identify those arguments that effectively state
a reason from the GenAF to believe in their claims. Such arguments will be those for
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which the support of each of its premises does ultimately end in a set of evidential
arguments –and therefore no more premises are required to be supported. Thus, ev-
ery premise in an argument is closed iff the claim is inferrable. This is natural since
inferrable claims can be effectively reached from evidence. Finally, when the claiming-
coalition of an inferrable claim passes the acceptability analysis, the claim ends up war-
ranted. Acceptability analysis and warranted claims will be detailed later, in Sect. 5.

Definition 12 (Inferrable Formula). Given a GenAF 〈A,N〉 ∈ G, a formula α ∈ Lcl

is inferrable from A iff there exists a claiming-coalition Ĉ ⊆ A for α such that either
prset(Ĉ) = ∅, or every premise in prset(Ĉ) is closed.

The supporting process closing every premise in a claiming-coalition Ĉ to verify
whether the claim is inferrable, clearly conforms a tree rooted in Ĉ. We will refer to
such tree as supporting-tree, and to each branch in it as supporting-chain.

Definition 13 (Supporting-Chain). Given a GenAF 〈A,N〉 ∈ G, a formula α ∈ Lcl,
and a sequence λ ∈ (2A)n such that λ = Ĉ1 . . . Ĉn, where n ∈ N1, Ĉ1 is a claiming-
coalition for α, and for every i ∈ N1 it follows Ĉi ⊆ A, and Ĉi+1 is a supporting-
coalition through some ρi ∈ prset(Ĉi). The notations |λ| = n and λ[i] are used to
respectively identify the length of λ and the node Ĉi in it. The last supporting-coalition
in λ (referred as leaf) is identified through the function leaf(λ) = λ[|λ|]. The function
←−
λ : (2A)n × N0−→Lcl ∪ Lpr ∪ {⊥} identifies the link ←−

λ [0] = α; or ←−
λ [i] = ρi

(0 < i < |λ|), where ρi ∈ prset(λ[i]) is supported by λ[i + 1]; or ←−
λ [i] = ⊥ (i ≥ |λ|).

The set λ∗ =
⋃

i λ[i] (with 0 < i ≤ |λ|) identifies the set of arguments included in λ.
Finally, λ is a supporting-chain for α wrt. A iff it guarantees:

(minimality) Ĉ ⊆ λ∗ is a supporter (claimer if i = 0) of ←−
λ [i] iff Ĉ = λ[i + 1]

(0 ≤ i < |λ|).
(exhaustivity) every ρ ∈ prset(leaf(λ)) is free wrt. λ∗.
(acyclicity) ←−

λ [i] = ←−
λ [j] iff i = j, with {i, j} ⊆ {0, . . . , |λ| − 1}.

(consistency) prset(λ∗) ∪ clset(λ∗) 
|= ⊥.

From the definition above, a supporting-chain is a finite sequence of interrelated
supporting-coalitions Ĉi through a link ρi ∈ prset(Ĉi) supported by Ĉi+1. It is finite
indeed, given that the set A is also finite, and that no link could be repeated in the chain
(acyclicity). The minimality condition (wrt. set inclusion over λ∗) stands to consider as
less arguments from A as it is possible in order to obtain the same chain, whereas the
exhaustivity condition (wrt. the length |λ|) ensures that the chain is as long as it is possi-
ble wrt. λ∗ (without cycles), that is, λ has all the possible links that can appear from the
arguments considered to build it. Note that from minimality no pair of arguments for a
same claim could be simultaneously considered in any supporting-chain. Finally, con-
sistency is required given that the intention of the supporting-chain is to provide a tool
to close a premise from the claiming-coalition. Next, supporting-trees are formalized
upon the definition of supporting-chains.

Definition 14 (Supporting-Tree). Given a GenAF 〈A,N〉 ∈ G, a formula α ∈ Lcl,
and a tree T of coalitions Ĉ ⊆ A such that each node Ĉ is either:
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– the root iff Ĉ is a claiming-coalition for α; or
– an inner node iff Ĉ is a supporting-coalition through ρ ∈ prset(Ĉ′), where Ĉ′ ⊆

A is either an inner node or the root.

The membership relation will be overloaded by writing λ ∈ T and Ĉ ∈ T to respec-
tively identify the branch λ and the node Ĉ from T . The set T ∗ =

⋃
Ĉ∈T Ĉ identifies the

set of arguments included in T . Hence, T is a supporting-tree iff it guarantees:

(completeness) every λ ∈ T is a supporting-chain of α wrt. A.
(minimality) for every λ ∈ T , Ĉ ⊆ T ∗ is a supporting-coalition (claimer if i = 0)

through ←−
λ [i] iff Ĉ = λ[i + 1] (0 ≤ i < |λ|).

(exhaustivity) for every ρ ∈ prset(T ∗), if there is no λ ∈ T such that ←−
λ [i] = ρ

(0 < i < |λ|) then ρ is free wrt. T ∗.
(consistency) prset(T ∗) ∪ clset(T ∗) 
|= ⊥.

Finally, the notation TreesA(α) identifies the set of all supporting-trees for α from A.

The completeness condition is required in order to restrict the supporting-tree to
consider only supporting-chains as their branches. Similar to supporting-chain, min-
imality is required to avoid considering extra arguments to build the tree, while ex-
haustivity stands to ensure that every possible supporting-coalition Ĉ ⊆ T ∗ through
a premise in prset(T ∗) is an inner node in the tree. Finally, consistency ensures that
the whole supporting process of the premises in the claiming-coalition will end being
non-contradictory, even among branches. It is important to note that a supporting-tree
for α ∈ Lcl determines the set of arguments used in the (possibly inconclusive)3 sup-
porting process of some claiming-coalition of α. Such set will be referred as structure.

Definition 15 (Structure). Given a GenAF 〈A,N〉 ∈ G, and a formula α ∈ Lcl, a
set S ⊆ A identifies a structure for α iff there is a supporting-tree T ∈ TreesA(α)
for α such that S = T ∗. The claim and premises of S can be respectively determined
through the functions cl : 2Args−→Lcl and pr : 2Args−→2Lpr , such that cl(S) = α
and pr(S) = {ρ ∈ prset(S) | ρ is a free premise wrt. S}. Finally, the structure S is
argumental iff pr(S) = ∅, otherwise S is schematic.

Note that functions “pr” and “cl” are overloaded and can be applied both to arguments
and structures. This is not going to be problematic since either usage will be rather
explicit. Besides, a structure S formed by a single argument is referred as primitive
iff |S| = 1. Thus, if S = {B} then pr(B) = pr(S) and cl(B) = cl(S). However, not ev-

ery single argument has an associated primitive structure. For instance, unless relevance
would be required as a framework’s normality condition, no structure could contain an
argument 〈{p(x)}, p(x)〉 given that it would violate (supporting-chain) acyclicity. Fi-
nally, when no distinction is needed, we refer to primitive, schematic, or argumental
structures, simply as structures.

Example 4. Given two arguments B1 = 〈{p(x)}, q(x)〉 and B2 = 〈{q(x)}, p(x)〉. The
set {B1,B2} cannot be a structure for q(x) since {B1}{B2}{B1} . . . is a supporting-
chain violating acyclicity. Similarly, {B1,B2} could neither be a structure for p(x).

3 Inconclusive supporting processes lead to schematic structures with non-free premises wrt. A.
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Given two structures S ⊆ Args for α ∈ Lcl, and S′ ⊆ Args for α′ ∈ Lcl, S′ is a
sub-structure of S (noted as S′#S) iff S′ ⊆ S. Besides, S′�S iff S′ ⊂ S.

Proposition 1. 4 Given a GenAF 〈A,N〉 ∈ G, a formula α ∈ Lcl, and two structures
S ⊆ A for α and S′ ⊆ A for α,

– if S′�S then pr(S) 
= pr(S′).
– if S is argumental then leaf(λ) ⊆ E, for every λ ∈ T where T ∈ TreesS(α).

Lemma 1. Given a GenAF 〈A,N〉 ∈ G, and a formula α ∈ Lcl, a structure S ⊆ A
for α is argumental iff α is inferrable.

If a formula ϕ(x) ∈ Lcl (where x is a free variable) is inferrable then there exists an
argumental structure S for ϕ(x). Note now that since every argumental structure con-
tains an empty set of premises, its supporting-tree T has only evidential arguments in
their leaves. Thus, since the claim of evidential arguments are expressed in the lan-
guage LA–it considers no free variables– the inner supporting process of S performed
through T ends up applying a variable substitution, for instance mapping x to a, such
that cl(S) = ϕ(a). Finally, if a structure states a property about some element of the
world through a claim considering only free variables then it is schematic.

Lemma 2. Given a GenAF 〈A,N〉 ∈ G, and a formula ϕ(x) ∈ Lcl, a structure S ⊆ A
for ϕ(x) is argumental iff cl(S) = ϕ(a) and ϕ(a), v |= ϕ(x), where v maps x to a.

Example 5. Assume the GenAF 〈A,N〉 such that {B1, B2, B3} ⊆ A where B1 =
〈{p(x)}, (∃y)(¬r(x, y) ∨ p(y))〉, B2 = 〈{}, r(a, b)〉, and B3 = 〈{}, p(a)〉.

The argumental structure S1 = {B1,B3} for (∃y)(¬r(a, y)∨
p(y)) appears. Moreover, Ĉ1 = {B1,B2} is a supporter of B1

through p(x), where the free variables x and y are mapped
to a and b, respectively. Note that as a result of such vari-
ables substitutions, we have pr(Ĉ1) = {p(a)}, which in turn
will be supported through the primitive coalition {B3}.
Hence, the schematic structure S2 = {B1,B2,B3} for p(b)

B3 S1 S2

B1

B1 B2

appears, where S1�S2. Note that, T ∈TreesS2(p(b)) has a unique supporting-chain
{B1}{B1,B2}{B3}.

4 Conflict Identification

As will be formalized in Def. 16, two argumental structures are in conflict whenever
their claims cannot be assumed together. Schematic structures may also be conflictive
if it is the case that a claim of one of them could support a premise of the other, but
a supporting-coalition does not exist given consistency would be violated. A second
option of conflict between schematic structures appears when the premises of one of
them infer the premises of the other, and either claim is in conflict with some premise
from the other, or both claims cannot be assumed together. The intuition for this may

4 In this work, proofs were omitted due to space reasons.
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be seen as a framework lacking of evidence to close every premise in each structure,
but a hypothetical addition of the lacking evidence of one of them would be enough
to include in the new framework two different argumental structures containing each
original schematic structure. In such a case, the conflict conforms to the first case given.

This discussion may be made extensive to coalitional sets of structures. Analogous to
coalitions of arguments, a coalition of structures might be interpreted as a minimal and
consistent set of structures guaranteeing certain requirement. To go one step further
into the formalization of a coalition Ĉ ⊆ 2Args of structures S ⊆ A, we will rely on
the set C∗ =

⋃
S∈Ĉ S of arguments from Ĉ. Therefore, we say that a coalition Ĉ of

structures S, is consistent iff prset(C∗) ∪ clset(C∗) 
|= ⊥, while minimality ensures Ĉ
guarantees a requirement θ iff there is no proper subset of Ĉ guaranteeing θ, and there
is no Ĉ′ ⊆ 2Args guaranteeing θ such that C′∗ ⊂ C∗. Note that minimality not only
looks for the smallest set of structures, but also for the smallest structures.

Coalition of structures are sets grouping structures to guarantee certain requirement
θ: conflict. For the formalization of the notion of conflict, we will rely on the func-

tions clset : 22A−→2Lcl and prset : 22A−→2Lpr , which are respectively defined as
clset(Ĉ) = {cl(S)|S ∈ Ĉ}, and prset(Ĉ) =

⋃
S∈Ĉ pr(S). Note that functions “clset”

and “prset” are overloaded and can be applied both to sets of arguments (for instance
coalitions Ĉ) and to coalitions Ĉ of structures. For this latter case, the functions’ out-
comes are the claims and premises of the structures included by the coalition Ĉ. Next,
we specify the notion of conflict between pairs of coalition of structures.

Definition 16 (Conflicting Coalitions). Given a GenAF 〈A,N〉 ∈ G, two coalitions
Ĉ ⊆ 2A and Ĉ′ ⊆ 2A of structures are in conflict iff it follows:

– Both coalitions are related either through dependency or support:

(dependency) prset(Ĉ) |= prset(Ĉ′).
(support) clset(Ĉ) |= prset(Ĉ′).

– The conflict appears either from claim-clash or premise-clash:

(claim-clash) clset(Ĉ) ∪ clset(Ĉ′) |= ⊥.

(premise-clash) clset(Ĉ) ∪ prset(Ĉ′) |= ⊥, or clset(Ĉ′) ∪ prset(Ĉ) |= ⊥.

It is important to note that for any conflicting pair, each involved coalition of structures
guarantees minimality and consistency. Later on we will see how acceptability of argu-
ments benefits from these requirements. Next we exemplify the four different types of
conflict that may be recognized from a GenAF following Def. 16.

Example 6. Let {B1, B2, B3, B4, B5, B6, B7} ⊆ A where B1 = 〈{p1(x)}, p2(x)〉,
B2 = 〈{p2(x)}, p3(x)〉, B3 = 〈{p1(x)},¬p3(x)〉, B4 = 〈{¬p3(x)}, p1(x)〉, B5 =
〈{p1(x),¬p2(x)}, p3(x)〉,B6 = 〈{p4(x)},¬p3(x) ∨ ¬p1(x)〉,B7 = 〈{p5(x)}, p1(x)〉.

(dependency & claim-clash) Ĉ1 = {{B1,B2}} and Ĉ2 = {{B3}}.
(dependency & premise-clash) Ĉ3 = {{B1}} and Ĉ4 = {{B5}}.
(support & claim-clash) Ĉ1 = {{B1,B2}} and Ĉ5 = {{B6}, {B7}}.
(support & premise-clash) Ĉ1 = {{B1,B2}} and Ĉ6 = {{B4}}.
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In order to decide which coalition of structures succeeds from a conflicting pair, an
argument comparison criterion “�” is assumed to be determined from the comparison
criterion among formulae in the KB (see Sect. 2). Afterwards, two conflicting coalitions
of structures Ĉ1 and Ĉ2 are assumed to be ordered by a function “pref” relying on
“�”, where pref(Ĉ1, Ĉ2) = (Ĉ1, Ĉ2) implies the attack relation Ĉ1RAĈ2, i.e., Ĉ1 is
a defeater of (or it defeats) Ĉ2. In such a case, Ĉ2 is said to be defeated. Moreover, if
there is no defeater of Ĉ1 then it is said to be undefeated. Note that when no pair of
arguments is related by “�”, both Ĉ1RAĈ2 and Ĉ2RAĈ1 appear from any conflicting
pair Ĉ1 and Ĉ2. Finally, the set RA = {(Ĉ1, Ĉ2) | Ĉ1 and Ĉ2 are in conflict and
pref(Ĉ1, Ĉ2) = (Ĉ1, Ĉ2)} identifies the attack relations from a GenAF 〈A,N〉 ∈ G.

Theorem 1. Given a GenAF 〈A,N〉 ∈ G, Lcl = Lpr = LA iff 〈A, ↪→〉 is a Dung’s
AF, where A = {S ⊆ A| S is an argumental structure } and ↪→= {(S1, S2) ⊆ A ×
A|({S1}, {S2}) ∈ RA}.

5 Acceptability Analysis

Assuming a set of normality conditions N, an inconsistent KB Σ leads to conflicting
arguments within the associated genaf(Σ,N) = 〈A,N〉. Thus, each minimal source
of inconsistency within Σ is reflected as an attack in the resulting GenAF. Since the
objective of a GenAF is to reason about a KB under uncertainty, there is a need for
a mechanism that allows us to obtain those arguments that prevail over the rest. That
is, those arguments that can be consistently assumed together, following some policy.
For instance, structures with no defeaters should always prevail, since there is nothing
strong enough to be posed against them. The tool we need to resolve inconsistency
is the notion of acceptability of arguments, which is defined on top of an argumenta-
tion semantics [10]. There are several well-known argumentation semantics, such as the
grounded, the stable, and the preferred semantics [1]. These semantics ensure the ob-
tention of consistent sets of arguments, namely extensions. That is, the set of accepted
arguments calculated following any of these semantics is such that no pair of conflicting
arguments appears in that same extension. Finally, an extension determines a maximal
consistent subset of the KB Σ.

It is important to notice that some problems like multiple extensions may arise from
semantics like both the stable and the preferred. This would require to make a choice
among them. On the other hand, the outcome of the grounded semantics is always a
single extension, which could be empty. Finally, since dealing with multiple extensions
is a problem that falls outside the scope of this article, we will choose the grounded
semantics, which can be implemented with a simple algorithm. Consequently, we define
a mapping sem : G−→2Args, that intuitively behaves as follows. The set X ⊆ A is the
minimal set verifying X ⊆

⋃
(Ĉ′,Ĉ)∈RA

C∗ for every undefeated Ĉ′ defeating Ĉ, and

for each Ĉ it follows C∗ ∩ X 
= ∅. As a result, other coalition of structures defeated
by Ĉ could appear undefeated. Thus, this process is iteratively applied over the set of
arguments A \ X until no conflicting pair is identified. Finally, the extension of the
GenAF is determined.

As stated before, the outcome of a grounded semantics could be an empty extension.
Such an issue arises when there is a loop in the structures attack graph, that is (Ĉ′, Ĉ) ∈
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RA and (Ĉ, Ĉ′) ∈ RA. To overcome this, some argument from either Ĉ or Ĉ′ could be
included in X , and therefore the loop would be broken, and the process determined by
applying “sem” can be reconsidered.

Given a (potentially inconsistent) pANF knowledge base Σ ⊆ Lκ, and a set of nor-
mality conditions N ⊆ Norm, it is possible to redefine the notion of entailment “|=”
from Σ by reasoning about it over its associated GenAF genaf(Σ,N), such that Σ |=G

α iff there exists an argumental structure S for α such that S ⊆ sem(genaf(Σ,N)).
In such a case, the inferrable claim α is said to be warranted and therefore, Σ |=G α.
Note that if Σ is consistent and α ∈ Lcl, “|=G” equals the classical entailment “|=”.

Theorem 2. Given a consistent pANF knowledge base Σ ⊆ Lκ, a set of normality
conditions N ⊆ Norm, and a formula α ∈ Lcl, Σ |= α iff Σ |=G α.

6 Concluding Remarks

A novel argumentation framework was presented as a generalization of the classical
Dung’s AF named GenAF. A GenAF aims at providing a straightforward reification tool
to reason about inconsistent knowledge bases specified through FOL fragments.

In the last few years, a great effort has been put to the area of ontology change. For
instance, ontology evolution intends to restore consistency to inconsistent ontologies.
Description logics are probably the most important ontological representation language.
Part of our current investigations is done on the research of possible reifications of the
here presented GenAF into highly expressible DLs. Consequently, not only ontology
evolution could be resolved but also, reasoning about inconsistent ontologies. Some
previous work may be referred to [2], where a preliminary investigation on these matters
have been done. There, a dynamic version of the GenAF is presented to apply change in
a consistent manner to (potentially inconsistent) ontologies.

Finally, since the grounded semantics [1] could return empty extensions, the usage
of different semantics [10] is part of the ongoing work to overcome this issue.

References

1. Dung, P.: On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic
Reasoning and Logic Programming and n-person Games. Artif. Intell. 77, 321–357 (1995)

2. Moguillansky, M., Rotstein, N., Falappa, M.: A Theoretical Model to Handle Ontology De-
bugging & Change Through Argumentation. In: IWOD (2008)

3. Rotstein, N., Moguillansky, M., Garcı́a, A., Simari, G.: An Abstract Argumentation Frame-
work for Handling Dynamics. In: NMR, pp. 131–139 (2008)

4. Rotstein, N., Moguillansky, M., Falappa, M., Garcı́a, A., Simari, G.: Argument Theory
Change: Revision Upon Warrant. In: COMMA, pp. 336–347 (2008)

5. Borgida, A.: On the Relative Expressiveness of Description Logics and Predicate Logics.
Artif. Intell. 82(1-2), 353–367 (1996)

6. Baader, F.: Logic-Based Knowledge Representation. Artif. Intell., Today 13–41 (1999)
7. Besnard, P., Hunter, A.: Practical First-Order Argumentation. In: AAAI, pp. 590–595 (2005)
8. Vreeswijk, G.: Abstract Argumentation Systems. Artif. Intell. 90(1-2), 225–279 (1997)
9. Martı́nez, D.C., Garcı́a, A.J., Simari, G.R.: Modelling Well-Structured Argumentation Lines.

In: IJCAI, pp. 465–470 (2007)
10. Baroni, P., Giacomin, M.: On Principle-Based Evaluation of Extension-Based Argumentation

Semantics. Artificial Intelligence 171(10-15), 675–700 (2007)



Probability Density Estimation by Perturbing
and Combining Tree Structured Markov

Networks

Sourour Ammar1, Philippe Leray1, Boris Defourny2, and Louis Wehenkel2

1 Knowledge and Decision Team,
Laboratoire d’Informatique de Nantes Atlantique (LINA) UMR 6241,

Ecole Polytechnique de l’Université de Nantes, France
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Abstract. To explore the Perturb and Combine idea for estimating
probability densities, we study mixtures of tree structured Markov net-
works derived by bagging combined with the Chow and Liu maximum
weight spanning tree algorithm, or by pure random sampling. We em-
pirically assess the performances of these methods in terms of accuracy,
with respect to mixture models derived by EM-based learning of Naive
Bayes models, and EM-based learning of mixtures of trees. We find that
the bagged ensembles outperform all other methods while the random
ones perform also very well. Since the computational complexity of the
former is quadratic and that of the latter is linear in the number of
variables of interest, this paves the way towards the design of efficient
density estimation methods that may be applied to problems with very
large numbers of variables and comparatively very small sample sizes.

1 Introduction

Learning of graphical probabilistic models essentially aims at discovering a max-
imal factorization of the joint density of a set of random variables according to
a graph structure, based on a random sample of joint observations of these
variables [1]. Such a graphical probabilistic model may be used for elucidat-
ing the conditional independencies holding in the data-generating distribution,
for automatic reasoning under uncertainties, and for Monte-Carlo simulations.
Unfortunately, currently available optimization algorithms for graphical model
structure learning are either restrictive in the kind of distributions they search
for, or of too high computational complexity to be applicable in very high di-
mensional spaces [2]. Moreover, not much is known about the behavior of these
methods in small sample conditions and, as a matter of fact, one may suspect
that they will suffer from overfitting when the number of variables is very large
and the sample size is comparatively very small.

In the context of supervised learning, a generic framework which has led to
many fruitful innovations is called “Perturb and Combine”. Its main idea is to
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on the one hand perturb in different ways the optimization algorithm used to
derive a predictor from a dataset and on the other hand to combine in some
appropriate fashion a set of predictors obtained by multiple iterations of the
perturbed algorithm over the dataset. In this framework, ensembles of weakly
fitted randomized models have been studied intensively and used successfully
during the last two decades. Among the advantages of these methods, let us
quote the improved predictive accuracy of their models, and the potentially im-
proved scalability of their learning algorithms. For example, ensembles of bagged
(derived from bootstrap copies of the dataset) or extremely randomized decision
or regression trees, as well as random forests, have been applied successfully in
complex high-dimensional tasks, as image and sequence classification [3].

In the context of density estimation, bagging (and boosting) of normal dis-
tributions has been proposed by Ridgeway [4]. In [5] the Perturb and Combine
idea for probability density estimation with probabilistic graphical models was
first explored by comparing large ensembles of randomly generated (directed)
poly-trees and randomly generated undirected trees. One of the main findings
of that work is that poly-trees, although more expressive, do not yield more
accurate ensemble models in this context than undirected trees.

Thus, in the present paper we focus on ensembles of tree structured undirected
probabilistic graphical networks (we call them Markov tree mixtures) and we
study various randomization and averaging schemes for generating such models.
We consider two simple and in some sense extreme instances of this class of
methods, namely ensembles of optimal trees derived from bootstrap copies of
the dataset by the Chow and Liu algorithm [6], which is of quadratic complexity
with respect to the number of variables (we call this bagging of Markov trees),
and mixtures of tree structures generated in a totally randomized fashion with
linear complexity in the number of variables (we call them totally randomized
Markov tree mixtures). We assess the accuracy of these two methods empirically
on a set of synthetic test problems in comparison to EM-based state of the art
methods building respectively Naive Bayes models and mixtures of trees, as well
as a golden standard which uses the structure of the target distribution.

The rest of this paper is organized as follows. Section 2 recalls the classical
Bayesian framework for learning mixtures of models and Section 3 describes
the proposed algorithms. Section 4 collects our simulation results, Section 5
discusses the main findings of our work, and Section 6 briefly concludes and
highlights some directions for further research.

2 Bayesian Modeling Framework

Let X = {X1, . . . , Xn} be a finite set of discrete random variables, and D =
(x1, · · · , xd) be a dataset (sample) of joint observations xi = (xi

1, · · · , xi
n) inde-

pendently drawn from some data-generating density �G(X).
In the full Bayesian approach, one assumes that �G(X) belongs to some space

of densities D described by a model-structure M ∈ M and model-parameters
θM ∈ ΘM , and one infers from the dataset a mixture of models described by the
following equation:
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�D(X |D) =
∑

M∈M
�(M |D) �(X |M,D), (1)

where �(M |D) is the posterior probability over the model-spaceM conditionally
to the data D, and where �(X |M,D) is the integral:

�(X |M,D) =
∫

ΘM

�(X |θM ,M) d�(θM |M,D). (2)

So �D(X |D) is computed by:

�D(X |D) =
∑

M∈M
�(M |D)

∫
ΘM

�(X |θM ,M) d�(θM |M,D), (3)

where d�(θM |M,D) is the posterior model-parameter density and �(X |θM ,M)
is the likelihood of observation X for the structure M with parameters θM .

When the space of model-structures M and corresponding model-parameter
ΘM is the space of Bayesian networks or the space of Markov networks over
X , approximations have to be done in order to make tractable the computa-
tion of equation (3). For Bayesian networks for example, it is shown in [7] that
equation (2) can be simplified by the likelihood estimated with the parameters
of maximum a posteriori probability θ̃M = argmaxθM �(θM |M,D), under the
assumption of a Dirichlet distribution (parametrized by its coefficients αi) for
the prior distribution of the parameters �(θM |M).

Another approximation to consider is simplifying the summation over all the
possible model-structures M . As the size of the set of possible graphical model
structures is super-exponential in the number of variables [8], the summation of
equation (1) must in practice be performed over a strongly constrained subspace
M̂ obtained for instance by sampling methods [9,10,11], yielding the approxi-
mation

�M̂(X |D) =
∑

M∈M̂

�(M |D)�(X |θ̃M ,M). (4)

Let’s note here that this equation is simplified once more when using classical
structure learning methods, by keeping only the model M = M̃ maximizing
�(M |D) over M:

�M̃ (X |D) = �(X |θ̃M̃ , M̃). (5)

3 Randomized Markov Tree Mixtures

In this work, we propose to choose as set M̂ in equation (4) a randomly generated
subset of pre-specified cardinality of Markov tree models.

3.1 Poly-Tree Models

A poly-tree model for the density over X is defined by a Directed Acyclic Graph
(DAG) structure P which skeleton is acyclic and connected, and the set of ver-
tices of which is in bijection with X = {X1, . . . , Xn}, together with a set of
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conditional densities �P (Xi|paP (Xi)), where paP (Xi) denotes the set of vari-
ables in bijection with the parents of Xi in P . Like more general DAGs, this
structure P represents graphically the density factorization

�P (X) =
n∏

i=1

�P (Xi|paP (Xi)). (6)

The model parameters are thus here specified by the conditional distributions:

θP = (�P (Xi|paP (Xi)))
n
i=1 . (7)

The structure P can be exploited for probabilistic inference over �P (X) with
a computational complexity linear in the number of variables n [12].

One can define nested subclasses Pp of poly-tree structures by imposing con-
straints on the maximum number p of parents of any node. In these subclasses,
not only inference but also parameter learning is of linear complexity in the
number of variables.

3.2 Markov Tree Models

The smallest subclass of poly-tree structures is called the Markov tree subspace,
in which nodes have exactly one parent (p = 1). Markov tree models have the
essential property of having no v-structures [1], in addition to the fact that
their skeleton is a tree, and their dependency model may be read-off without
taking into account the direction of their arcs. In other words, a poly-tree model
without v-structures is a Markov tree and is essentially defined by its skeleton.
These are the kind of models that we will consider subsequently in this paper.
Importantly, Markov tree models may be learned efficiently by the Chow and Liu
algorithm which is only quadratic in the number of vertices (variables) [6]. Given
the skeleton of the Markov tree, one can derive an equivalent directed acyclic
(poly-tree) graph from it by arbitrarily choosing a root node and by orienting
the arcs outwards from this node in a depth-first fashion.

3.3 Mixtures of Markov Trees

A mixture distribution �T̂ (X1, . . . , Xn) over a set T̂ = {T1, . . . , Tm} of m
Markov trees is defined as a convex combination of elementary Markov tree
densities, ie.

�T̂ (X) =
m∑

i=1

μi�Ti(X), (8)

where μi ∈ [0, 1] and
∑m

i=1 μi = 1, and where we leave for the sake of simplic-
ity implicit the values of the parameter sets θ̃i of the individual Markov tree
densities.

While single Markov tree models impose strong restrictions on the kind of den-
sities they can faithfully represent, mixtures of Markov trees, as well as mixtures
of empty graphs (i.e. Naive Bayes with hidden class), are universal approxima-
tors (see, e.g., [13]).
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3.4 Generic Randomized Markov Tree Mixture Learning Algorithm

Our generic procedure for learning a random Markov tree mixture distribution
from a dataset D is described by Algorithm 1; it receives as inputs X , D, m,
and three procedures DrawMarkovtree, LearnPars, CompWeights.

Algorithm 1 (Learning a Markov tree mixture)

1. Repeat for i = 1, · · · ,m:
(a) Draw random number ρi,
(b) Ti = DrawMarkovtree(D, ρi),
(c) θ̃Ti = LearnPars(Ti, D, ρi)

2. (μ)m
i=1 = CompWeights((Ti, θ̃Ti , ρi)m

i=1, D)
3. Return

(
μi, Ti, θ̃Ti

)m

i=1
.

Line (a) of this algorithm draws a random number in ρi ∈ [0; 1) according to
a uniform disribution, which may be used as a random seed for DrawMarkovtree
which builds a tree structure Ti possibly depending on the dataset D and ρi and
LearnPars which estimates the parameters of Ti. Versions of these two procedures
used in our experiments are further discussed in the next section. The algorithm
returns the m tree-models, along with their parameters θTi and the weights of
the trees μi.

3.5 Specific Variants

In our investigations reported below, we have decided to compare various versions
of the above generic algorithm.

In particular, we consider two variants of the DrawMarkovtree function: one
that randomly generates unconstrained Markov trees (by sampling from a uni-
form density over the set P1 of all Markov tree models), and one that builds
optimal tree structures by applying the MWST (Maximum Weight Spanning
Tree) structure learning algorithm published in the late sixties by Chow and Liu
[6] on a random bootstrap [14] replica of the initial learning set D. The random
sampling procedure of the first variant is described in [5]. The second variant
reminds the Bagging idea of [15].

Concerning the parameter estimation by LearnPars, we use the BDeu score
maximization for each tree structure individually, which is tantamount to se-
lecting the estimates using Dirichlet priors. More specifically, in our experiments
which are limited to binary random variables, we used non-informative priors,
which then amounts to using α = 1/2, i.e. p(θ, 1 − θ) ∝ θ−1/2(1 − θ)−1/2 for
the prior density of the parameters characterizing the conditional densities at-
tached the Markov tree nodes, once this tree is oriented in an arbitrary fashion.
Notice that in the case of tree-bagging, these parameters are estimated from the
bootstrap sample used to generate the corresponding tree structure.

Finally, we consider two variants for the CompWeights function, namely uni-
form weighting (where coefficients are defined by μi = 1

m , ∀i = 1, . . . ,m) and
Bayesian averaging (where coefficients μi are proportional to the posterior prob-
ability of the Markov tree structure Ti, derived from its BDeu score [1] computed
from the full dataset D).



Density Estimation with Mixtures of Markov Tree Models 161

4 Empirical Simulations

4.1 Protocol

In order to evaluate the four different variants of our algorithm, we carried
out repetitive experiments for different data-generating (or target) densities, by
proceeding in the following way.

Choice of target density. All our experiments were carried out with models
for a set of 8 and 16 binary random variables. We chose to start our investigations
in such a simple setting in order to be able to compute accuracies exactly (see
Section 4.1), and so that we can easily analyze the graphical structures of the
target densities and of the inferred set of trees.

To choose a target density �G(X), we first decide whether it will factorize
according to a poly-tree or to a more general directed acyclic graph structure.
Then we use the appropriate random structure generation algorithm described
in [5] to draw a structure and, we choose the parameters of the target density
by selecting for each conditional density of the structure (they are all related to
binary variables) two random numbers in the interval [0, 1] and by normalizing.

Generation of datasets. For each target density and dataset size, we gener-
ated 10 different datasets by sampling values of the random variables using the
Monte-Carlo method with the target structure and parameter values.

We carried out simulations with dataset sizes of N = 250 elements for models
with 8 or 16 variables and for N= 2000 for the models with 16 variables. Given
the total number of 2n possible configurations of our n random variables, we
thus look at rather small datasets.

Learning of mixtures. For a given dataset and for a given variant of the
mixture learning algorithm we generate ensemble models of growing sizes, re-
spectively m = 1, m = 10, and then up to m = 500 by increments of 10. This
allows us to appraise the effect of the ensemble size on the quality of the resulting
model.

Accuracy evaluation. The quality of any density inferred from a dataset is
evaluated by the (asymmetric) Kullback-Leibler divergence [16] between this
density and the data-generating density �G(X) used to generate the dataset.
This is exactly computed by

KL(�G,�M )=
∑

X∈X
�G(X) ln

�G(X)
�M (X)

, (9)

where �M (X) denotes the density that is evaluated, and X denotes the set of
all possible configurations of the random variables in X .
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Reference methods. We also provide comparative accuracy values obtained
in the same fashion with five different reference methods, namely (i) a golden
standard denoted by GO which is obtained by using the data-generating struc-
ture and reestimating its parameters from the dataset D, (ii) a series of Naive
Bayes models with growing number of hidden classes denoted by NBE∗ and
built according to the Expectation-Maximization (EM) algorithm [17] as pro-
posed in [18] but without pruning, (iii) a series of Optimal Tree Mixtures with
growing number of terms denoted by MixTree and built according to the algo-
rithm proposed by Meila-Predoviciu which combines the Chow and Liu MWST
algorithm with the EM algorithm for parameter estimation [13], (iv) a baseline
method denoted by BL which uses a complete (fully connected) DAG structure
whose parameters are estimated from the dataset D, and (v) a single Markov
tree built using the Chow and Liu algorithm on the whole dataset (denoted by
CL, below).

Software implementation. Our various algorithms were implemented in C++
with the Boost library (http://www.boost.org/) and APIs provided by the
ProBT c© platform (http://bayesian-programming.org).

4.2 Results

Fig. 1 (resp. Fig. 2, Fig. 3 and Fig. 4) provides a representative set of learn-
ing curves for a target density corresponding to a poly-tree distribution (resp.
DAG distribution). The horizontal axis corresponds to the number m of mixture
terms, whereas the vertical axis corresponds to the KL measures with respect
to the target density. All the curves represent average results obtained over ten
different datasets of 250 learning samples (2000 in Fig. 4) and five target dis-
tributions (only four target distributions in Fig. 3 and Fig. 4). Before analyzing
these curves, let us first remind that in our first experiments reported in [5],
which compared mixtures of fully randomly generated poly-trees with mixtures
of fully randomly generated Markov trees, we found that general poly-tree mix-
tures were not significantly different from Markov tree mixtures in terms of their
accuracies. Thus we have decided to report in the present paper only results ob-
tained with our Markov tree mixtures (MTU , MTBDeu, MBTU , MBTBDeu)
and a broader set of reference methods (BL, GO, MixTree, CL, NBE∗).

MTU corresponds to uniform mixtures of totally randomly generated trees,
while MTBDeu corresponds to the same mixtures when the terms are weighted
according to their posterior probabilities given the dataset. MBTU and
MBTBDeu correspond to mixtures of bagged trees with respectively uniform
and posterior probability weighting.

We thus observe in Fig. 1 that our four random Markov tree mixture methods
are clearly outperforming the baseline BL in terms of accuracy, and some of
them are already quite close to the golden standard GO. For this reason, BL
results are not reported in all other figures. All four variants also nicely behave
in a monotonic fashion: the more terms in the mixture the more accurate the
resulting model.
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Fig. 1. Mixtures of trees for density estimation with a poly-tree target distribution. 10
experiments with a sample size of 250 for 5 random target distributions of 8 variables.
(lower is better).
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Fig. 2. Mixtures of trees for density estimation with a DAG target distribution. 10
experiments with a sample size of 250 for 5 random target distributions of 8 variables.
(lower is better).

Concerning the totally randomly generated tree mixtures, we also observe
that when they are weighted proportionally to their posterior probability given
the dataset they provide much better performances as compared to a uniform
weighting procedure. Concerning the mixtures of bagged trees we observe from
all figures that they both outperform the mixtures of randomly generated trees
in terms of asymptotic (with respect to the number of mixture terms) accuracy
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Fig. 3. Mixtures of trees for density estimation with a DAG target distribution. 10
experiments with a sample size of 250 for 4 random target distributions of 16 variables.
(lower is better).
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Fig. 4. Mixtures of trees for density estimation with a DAG target distribution. 10
experiments with a sample size of 2000 for 4 random target distributions of 16 variables.
(lower is better).

and even more in terms of speed of convergence. With this bagging approach, we
also notice that the uniform weighting procedure is actually slightly better than
the one using weights based on the posterior probabilities given the dataset. We
believe that non-uniform weighting is counterproductive in the case of bagged
ensembles because it increases the variance of the ensemble model without de-
creasing its bias. Finally, we note that both bagging methods provide slightly
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better results than single CL trees built on the whole dataset, as soon as the
number mixture terms is larger than about ten.

The NBE∗ algorithm obtains results very close but slightly less good than
those of bagged tree mixtures for a very small number of components (hidden
classes). However, contrary to random trees or bagged trees, in the Naive Bayes
method one clearly observes the fact that adding new components in the mixture
eventually, and rather quickly, leads to overfitting which is stronger when the
sample size is smaller (Fig. 1, Fig. 2, Fig. 3 and Fig. 4).

All in all, the consistently best method in these trials is the method which
uses bagging of tree structures combined with a uniform weighting scheme.

To further illustrate our results, we plot in Fig. 1 and Fig. 2 curves corre-
sponding to the MixTree algorithm. We observe that the MixTree algorithm
provides similar results (although better) than those of Naive Bayes, namely for
a small number of terms it yields accuracies close but slightly less good to those
of the bagged tree mixtures, but then when the number mixture terms increases
it also leads to overfitting.

5 Discussion

Our simulation results showed that in small sample conditions the mixtures
of Markov trees turned out to be in general largely superior to the complete
structure baseline BL.

Bagged ensembles of Markov trees significantly outperform totally randomized
ensembles of Markov trees, both in terms of accuracy and in terms of speed of
convergencewhen the number ofmixture components is increased.Contrary to the
more sophisticated EM-based Naive Bayes andMixtreemethods, our methods do
not lead to overfitting when the number of mixture terms is increased.

From a computational point of view, bagging which uses the Chow Liu MWST
algorithm as baselearner is quadratic in the number of variables while the gen-
eration of random tree structures may be done in linear time (see [5]). Bagged
ensembles of Markov trees slightly outperform the CL method, which is also
quadratic in the number of variables, in terms of accuracy.

In case a linear complexity is needed, random mixtures of Markov trees,
namely MTBDeu, give acceptable results. When a quadratic complexity can
be accepted, CL remains slightly preferable to our methods with bagging.

In between these two extreme randomization schemes, one can imagine a
whole range of methods based on the combination of bootstrap resampling and
more or less strong randomizations of the generation of the Markov trees leading
to different computational trade-offs. Our methods with bagging can be improved
to supply algorithms with same accuracy and complexity better than quadratic.
Also, out-of-bag estimates may be exploited to compute unbiased accuracies of
the ensemble models [4].
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6 Summary and Future Works

We have investigated in this paper the transposition of the “Perturb and Com-
bine” idea celebrated in supervised learning to the context of unsupervised
density estimation with graphical probabilistic models. We have presented a
generic framework for doing this, based on randomized mixtures of tree struc-
tured Markov networks, where the perturbation was done by generating in a
totally random fashion the structure component, or by bootstrapping data be-
fore optimizing this structure component.

The first results obtained in the context of a simple test protocol are already
very promising, while they also highlight a certain number of immediate future
research directions.

Thus, a first line of research will be to apply our experimental protocol to
a larger set of problems including high-dimensional ones and a larger range of
sample sizes. We believe also that a more in depth analysis of the accuracy
results with respect to the basic properties of the target distributions as well
as sample sizes would be of interest, in particular with the aim of characteriz-
ing more precisely under which conditions our methods are more effective than
state-of-the-art ones. Of course, these investigations should also aim at system-
atically comparing all these algorithm variants from the point of view of their
computational complexity.

Another more generic direction of research, is to adapt importance sampling
approaches (e.g. the cross-entropy method [19]) in order to generate randomized
ensembles of simple structures (chains, trees, poly-trees, etc.) that fit well the
given dataset.

A more simple direction is to improve our methods of bagged ensembles of
Markov trees by forcing the complexity of the optimization level in the Chow
Liu MWST algorithm to come down below the quadratic.

While the class of methods investigated in this paper is based on generating
an ensemble by drawing its terms from a same distribution (which could be done
in parallel), we believe that the combination of these methods with sequential
methods such as Boosting or Markov-Chain Monte-Carlo which have already
been applied in the context of graphical probabilistic models (see e.g. [20]),
might provide a very rich avenue for the design of novel density estimation
algorithms.
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41, Avenue de la liberté, 2000 Le Bardo, Tunisie

benmessaoud.montassar@hotmail.fr, nahla.benamor@gmx.fr
2 Knowledge and Decision Team,

Laboratoire d’Informatique de Nantes Atlantique (LINA) UMR 6241,
Ecole Polytechnique de l’Université de Nantes, France
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Abstract. Bayesian networks (BN) have been used for prediction or
classification tasks in various domains. In the first applications, the BN
structure was causally defined by expert knowledge. Then, algorithms
were proposed in order to learn the BN structure from observational data.
Generally, these algorithms can only find a structure encoding the right
conditional independencies but not all the causal relationships. Some new
domains appear where the model will only be learnt in order to discover
these causal relationships. To this end, we will focus on discovering causal
relations in order to get Causal Bayesian Networks (CBN). To learn such
models, interventional data (i.e. samples conditioned on the particular
values of one or more variables that have been experimentally manip-
ulated) are required. These interventions are usually very expensive to
perform, therefore the choice of variables to experiment on can be vi-
tal when the number of experimentations is restricted. In many cases,
available ontologies provide high level knowledge for the same domain
under study. Consequently, using this semantical knowledge can turn out
of a big utility to improve causal discovery. This article proposes a new
method for learning CBNs from observational data and interventions.
We first extend the greedy approach for perfect observational and ex-
perimental data proposed in [13], by adding a new step based on the
integration of ontological knowledge, which will allow us to choose effi-
ciently the interventions to perform in order to obtain the complete CBN.
Then, we propose an enriched visualization for better understanding of
the causal graphs.

1 Introduction

Over the last few years, the use of ontologies is becoming increasingly widespread
by the computer science community. The main advantage of ontologies is essen-
tially that they try to capture the semantics of domain expertise by deploying
knowledge representation primitives enabling a machine to understand the rela-
tionships between concepts in a domain [3]. A lot of solutions based on ontologies
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have been implemented in several real applications in different areas as natural
language translation, medicine, electronic commerce and bioinformatics.

In the other hand, causal discovery remains a challenging and important
task [12]. One of the most common techniques for causal modeling are Causal
Bayesian Networks (CBNs), which are probabilistic graphical models, where
causal relationships are expressed by directed edges [18]. Like classical Bayesian
Networks, CBNs need observational data to learn a partially directed model but
also they require interventional data, i.e. samples conditioned on the particular
values of one or more variables that have been experimentally manipulated, in
order to fully orient the model.

Several researches have proposed algorithms to learn the structure of a CBN
from observational and experimental data.

This paper goes farther by integrating ontological knowledge for more efficient
causal discovery and proposes, henceforth, an enriched visualization of causal
graphs based on semantical knowledge.

Less works has been done on this aspect of combining the power of Bayesian
networks and ontologies. And most of them focus on developing probabilistic
frameworks for combining different ontology mapping methods [16,22].

The remainder of this paper is organized as follows: Section 2 provides some
notations and basic definitions on Bayesian networks, Causal Bayesian Networks
as well as ontologies. Section 3 describes the new approach for causal discovery
based on ontological knowledge. Finally, section 5 proposes different tools to
obtain an enriched visualization of CBN.

2 Background and Notations

This section gives basic definitions on Bayesian networks, causal Bayesian net-
works and ontologies. The following notations and syntactical conventions are
used: Let X = {X1, X2, ..., XN} be a set of variables. By x we denote any in-
stance of X . For any node Xi ∈ X we denote by Pa(Xi) (resp. Ne(Xi)) the
parents (resp. neighbors) of the variable Xi. P(Xi) is used to denote the proba-
bility distribution over all possible values of variable Xi, while P(Xi=xk) is used
to denote the probability that the variable Xi is equal to xk.

2.1 Bayesian Networks

A Bayesian Network (BN) [17] consists of a Directed Acyclic Graph (DAG) and
a set of conditional probability tables (CPTs) such that each node in the DAG
corresponds to a variable, and the associated CPT contains the probability of
each state of the variable given every possible combination of its parents states
i.e. P(Xi|Pa(Xi)). Bayesian networks are very suited for probabilistic inference,
since they satisfy an important property known as Markov property, which states
that each node is independent of its non-descendants given its parents and leads
to a direct factorization of the joint distribution into the product of the condi-
tional distribution of each variable Xi given its parents Pa(Xi). Therefore, the
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probability distribution relative to X=(X1, X2,..., Xn) can be computed by the
following chain rule:

P (X1, X2, ..., Xn) =
∏

i=1..n

P (xi | Pa(Xi)). (1)

Note that several BNs can model the same probability distribution. Such
networks are called equivalent or Markov equivalent [24].

Definition 1. A Complete Partially Directed Acyclic Graph (CPDAG) is
a representation of all equivalent BNs. The CPDAG contains the same skeleton
as the original DAG, but possesses both directed and undirected edges. Every
directed edge Xi → Xj of a CPDAG denotes that all DAGs of this class contain
this edge, while every undirected edge Xi—Xj in this CPDAG-representation
denotes that some DAGs contain the directed edge Xi → Xj, while others contain
the oppositely orientated edge Xi ← Xj.

Under Causal sufficiency assumption (i.e. there are no latent variables that influ-
ence the system under study), many structure learning techniques using perfect
observational data are available and can be used to learn CPDAG and then
choose a possible complete instantiation in the space of equivalent graphs de-
fined by this CPDAG. These techniques can be classified into two groups, namely
score-based and constraint-based algorithms.

Score-based algorithms [4,5] attempt to identify the network that maximizes
a scoring function evaluating how well the network fits the data while constraint-
based algorithms [12,21] look for (in)dependencies in the data and try to model
that information directly into the graphical structure.

2.2 Causal Bayesian Networks

A Causal Bayesian Network (CBN) [18] is a Bayesian network with the added
property that all edges connecting variables represent autonomous causal re-
lations. Given a CBN, we can go further than probabilistic inference to per-
form causal inference. Pearl has introduced the do operator as standard notifi-
cation for external intervention on causal models. In fact, the effect of an action
”do(Xj=xk)” in a causal model corresponds to a minimal perturbation of the
existing system that forces the variable Xj to the value xk. In other terms, causal
inference is the process of calculating the effect of manipulating some set of vari-
ables Xi on the probability distribution of some other set of variables Xj , this
is denoted as P(Xi|do(Xj=xk)).

Several researches in the literature have proposed algorithms to learn CBN’s
structure. We can, in particular, mention Tong and Koller [23] and Cooper and
Yoo [6], which developed a score-based techniques to learn a CBN from a mixture
of experimental and observational data. Eberhardt et al. [9] performed a theo-
retical study on the lower bound of the worst case for the number of experiments
to perform to recover the causal structure.

Recently, Meganck et al. [13] proposed a greedy contraint-based learning al-
gorithm for CBNs using experiments. The MyCaDo (My Causal DiscOvery)
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algorithm, which represents the main application of their approach, is a struc-
ture learning algorithm able to select appropriate interventions or experiments
(i.e. randomly assigning values to a single variable and measuring some other
possible response variables) needed to built a CBN. As input, the MyCaDo al-
gorithm needs a CPDAG. Meganck et al. proposed to use the PC algorithm
proposed by Spirtes et al. [21] with modified orientation rules to learn the initial
CPDAG, but other structure learning algorithms can be taken into considera-
tion.

When applying PC algorithm, we start with a complete undirected network.
Then, we remove edges when independencies are found; we call such step Skele-
ton discovery. The edge orientation, in such algorithm, is based on v-structure
discovery and edge propagation. Based on the already oriented edges, an inferred
edges step will apply some orientation rules until no more edges can be oriented.

In this step, we need also experimental data to perform interventions on the
system. To learn a CBN from interventional data, three major parts can be
distinguished in the MyCaDo algorithm:

– First of all, it tries to maximize an utility function based on three variables:
gain(exp), cost(exp), cost(meas), respectively, the gained information, the
cost of performing an experiment and the cost of measuring other variables,
to decide which experiment should be performed and hence also which vari-
ables will be measured.

If we denote performing an experiment on Xi by AXi , and measuring the
neighboring variables by MXi , then the utility function will be as follows:

U(AXi) =
αgain(AXi)

βcost(AXi ) + γcost(MXi)
(2)

where α, β and γ are measures of importance for every term.
In this formula, gain(AXi) takes into consideration the number of undi-

rected neighbors NeU (Xi) (e.g. nodes that are connected to Xi by an undi-
rected edge) and the amount of possible inferred edges, after performing an
experiment on Xi.

Three decision criteria were proposed Maximax, Maximin and Expected
Utility depending on the type of situation in which to perform the experi-
ments it might be advantageous to choose a specific criterion.

– Secondly, the selected experiment will be performed.
– Finally, the results of this experiment, will be analyzed in order to direct a

number of edges in the CPDAG.

Note that the amount of edges of which the direction can be inferred after
performing an experiment is entirely based on the instantiation (i.e. assignation
of a direction) of the undirected edges connected to the one being experimented
on.

This process will be iterated until we obtain the correct structure of the CBN.
Note that we can have a non-complete causal graph (i.e. not all edges are ori-
ented) as final output of MyCaDo algorithm.
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Borchani et al. [2] have also described another approach for learning CBNs
from incomplete observational data and interventions.

Furthermore, other approaches were proposed to learn graphical models that
can handle latent variables. For this kind of hidden variable modeling, Meganck
et al. [14,15] and Maes et al [11] studied which experiments were needed to
learn CBN with latent variables under the assumption of faithful distribution
(i.e. the observed samples come from a distribution which independence prop-
erties are exactly matched by those present in the causal structure of a CBN).
Their solution offers a new representation based on two paradigms that model
the latent variables implicitely, namely Maximal Ancestral Graphs and Semi-
Markovian Causal Models, in order to perform probabilistic as well as causal
inference.

2.3 Ontology

An ontology [10] is defined as a formal explicit specification of a shared con-
ceptualization. In other terms, it is a formal representation of a set of concepts
within a domain and the relations between these concepts. The relations in an
ontology are either taxonomic (e.g. is-a, part-of) or non-taxonomic (i.e. user-
defined). The taxonomic ones are the commonly used relations. In the simple
case, the ontology takes the form of a tree or hierarchy representing concept
taxonomy. Formally:

Definition 2. A Concept Taxonomy H = (C,E,Rt) is a directed acyclic
graph where, C = {c1, c2, ..., cn} is the set of all concepts in the hierarchy, E is
the set of all subsumption links (is-a) and Rt is the unique root of this DAG.
The primary structuring element of concept taxonomy is the subsumption rela-
tionship, which supposed that if the concept ci is a child of concept cj then all
properties of cj are also properties of ci and we say that cj subsumes ci .

Regarding any concept taxonomy hierarchy, we can give the following notations:

– pths(ci, cj): the set of paths between the concepts ci and cj , where i 
= j,
– lene(e): the length in number of edges of the path e,
– mscs(ci, cj): the most specific common subsumer of ci and cj , where i 
= j.

The major contribution of using concept taxonomies is, essentially, to present
the domain knowledge in a declarative formalism.

For instance, the Gene Ontology (GO) [25] is one of the principal knowledge
resource repository in the bioinformatic field and represents an important tool
for the representation and processing of information about genes and functions.
It provides controlled vocabularies for the designations of cellular components,
molecular functions and biological processes.

Example 1. Figure 1 shows an ontology toy example or more precisely, an is-
a tree, where the leaf nodes (X1, X2...,X5) are genes. Their direct subsumers
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(F1, F2, F3) represent the biological functions i.e. every set of genes in a GO
share a very specified function. Also, the biological functions are subsumed by
their biological super-functions (SF1, SF2). Note that we can use the term of
generalization as shown in figure 1 to refer the subsuming process. For this
case of is-a tree, only one path can be find between two different concepts. To
more illustrate this purpose, let us consider the two concepts X1 and SF2. Here,
pths(X1, SF2) represents the set of the edges X1-F1, F1-SF1, SF1-RT and RT-
SF2. Consequently the length in number of edges of the corresponding path will
be equal to four.

Fig. 1. Example of hierarchy representing a taxonomy of concepts

Recently, several works highlighted the importance of evaluating the strength
of the semantic links inside domain ontologies. We can distinguish three major
classes of semantic measures, namely semantic relatedness, semantic similarity
and semantic distance, evaluating, respectively, the closeness, the resemblance
and the disaffection between two concepts.

The semantic similarity represents a special case of semantic relatedness. For
instance, if we consider the two concepts wind turbine and wind, they would be
more closely related than, for example the pair wind turbine and solar panel.
However the latter concepts are more similar. Therefore, all pairs of concepts
with a high semantic similarity value (i.e. high resemblance) have a high semantic
relatedness value whereas the inverse is not necessarily true. In the other hand,
the semantic distance is an inverse notion to the semantic relatedness.

The major approaches of measuring semantic distance are Rada et al.’s dis-
tance, Sussna’s distance and Jiang and Conrath’s distance. For the semantic
similarity, we find Leacock and Chodorow’s similarity, Wu and Palmer’s similar-
ity and Lin similarity, while for semantic relatedness, the most used one is Hirst
and St Onge’s relatedness. See [1] for a comparative study of these measures.

In what follows, we will focus on semantic distances and in particular on the
classical Rada et al.’s distance [19], which can be replaced by any other semantic
distance.

This distance is based on the shortest path between the nodes corresponding
to the items being compared such that the shorter the path from one node to
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another, the more similar they are. Thus, given multiple paths between two
concepts, we should take the length of the shortest one. Formally, given two
concepts ci and cj the Rada et al.’s distance is defined by:

distrmbb(ci, cj) = min
p∈pths(ci,cj)

lene(p) (3)

Consequently, we will compute a distance matrix, giving us all distances be-
tween all pairs of concepts.

Table 1. Rada et al.’s distance matrix between the nodes given in Fig.1

Rt SF1 SF2 F1 F2 F3 X1 X2 X3 X4 X5
Rt 0 1 1 2 2 2 3 3 3 3 3
SF1 1 0 2 1 1 3 2 2 2 4 2
SF2 1 2 0 3 3 1 4 4 4 2 4
F1 2 1 3 0 2 4 1 1 3 5 3
F2 2 1 3 2 0 4 3 3 1 5 1
F3 2 3 1 4 4 0 5 5 5 1 5
X1 3 2 4 1 3 5 0 2 4 6 4
X2 3 2 4 1 3 5 2 0 4 6 4
X3 3 2 4 3 1 5 4 4 0 6 2
X4 3 4 2 5 5 1 6 6 6 0 6
X5 3 2 4 3 1 5 4 4 2 6 0

Example 2. In figure 1, every term has at least one generalization’s path back
to the top node. The full Rada et al.’s distance matrix concerning the concept
taxonomy is presented in Table 1. For instance, distrmbb(SF1, X2) = 2 since
the shortest path between the two concepts SF1 and X2 is composed of the two
edges SF1-F1 and F1-X2.

3 Our Approach for Causal Discovery and Visualization
Based on Ontological Knowledge

Causal Bayesian networks are used to model domains under uncertainty [17]. In
many cases, available ontologies provide consensual representation of the same
domain and a full description of the knowledge model. Basically, ontologies at-
tempt to find the complete set of concepts covering any domain as well as the
relationships between them. Such domain knowledge can be efficiently used to
enrich the learning process of Causal Bayesian networks and optimize the causal
discovery.

In order, to illustrate this idea we propose to extend the MyCaDo (My Causal
DiscOvery) algorithm [13] used to learn causal structures with experiments by
integrating the ontological knowledge, extracted using Rada et al. semantic dis-
tance calculation, for causal discovery and visualization.
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We make the assumption that we consider a concept taxonomy hierarchy,
in which the leaves are also the nodes of the Bayesian network. However, the
causal relations we want to discover and model with our CBN did not exist in
the corresponding ontology, therefore, each model representation complete the
other.

3.1 Integrating Ontological Knowledge for Causal Discovery

In what follows let us assume that after performing an experiment on a variable
Xi, we can measure all neighboring variables NeU (Xi).
Our utility function U(.) is an extension of the one proposed in [13] (see sub-
section 2.2) by generalizing the first term NeU (Xi) and replacing it by the
semantical inertia, denoted by SemIn(NeU(Xi)).

This notion will enable us to integrate our ontological knowledge extracted
by calculating semantic distances from ontologies and guide the choice of the
best experiment. In many situations, we can have a node Xi with a high number
of neighbors but all those neighbors are very close semantically. This implies
that we will have, exactly, two alternatives (i.e. Xi is the direct cause of all his
neighbors or the inverse).

For instance, in bio-informatics, biologists would discover more causal rela-
tions between biological functions. Considering a neighborhood which is very
close semantically will reduce the number of functions under study and con-
sequently the informative contribution of the experiment would be very low.
However, in the case of distant neighbors, there will be more cause-to-effect
relations between biological functions to find. Such causal discoveries have an
important scientific contribution in the bio-informatic field.

The semantical inertia will be as follows:

SemIn(M) =

∑
Xi∈M

min
p∈pths(Xi, mscs(M))

(lene(p))

card(M)
(4)

Let us consider the CPDAG in figure 2 in order to illustrate our approach
and compare it to the original MyCaDo. We will also use the concept taxonomy
hierarchy presented in figure 1. Suppose that we will perform an action on X2.
Figure 3 summarizes all possible instantiations of the edges Xi-Ne(Xi).

Fig. 2. An example of CPDAG
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Fig. 3. All possible instantiations for X2 − NeU (X2)

It is clear that the following edges X2 −X3 and X2 −X5 have the same di-
rection because the two neighbors X3 and X5 share the same function in the
corresponding ontology. In this case, we will have three instantiations whereas,
by applying MyCaDo we will find exactly six. Consequently, we reduced consid-
erably the set of possible instantiations in the particular PDAG (i.e. CPDAG
with some oriented edges).

Here the most specific commun subsumer of NeU (X2)={X1, X3, X5} is the
concept SF1. According to the ontology in figure 1 and table 1, the semantical
inertia of the nodes X1, X3 and X5 is as follows:

SemIn(X1, X3, X5) =

∑
Xj∈NeU (X2)

min
p∈pths(Xj , mscs(NeU (X2))

(lene(p))

#NeU

=
2 + 2 + 2

3
= 2

The semantical inertia presents three major characteristics. At the first glance,
where all undirected neighboring nodes belong to the same biological function,
the semantical inertia of the neighborhood will be equal to one. Secondly, the
semantical inertia depends on the number of undirected neighbors. For exam-
ple, if we eliminate X1 from the neighborhood of X2, SemIn will automatically
decrease.

SemIn(X3, X5) =
1 + 1

2
= 1

And, finally, the more the neighboring variables are distant according to the
ontology, the more the semantical inertia will be important and the utility max-
imized. Here, if we replace the node X3 by X4, which is more distant from the
rest of neighbors of X2, SemIn will increase considerably.

SemIn(X1, X4, X5) =
3 + 3 + 3

3
= 3

It is clear now that the semantical inertia represent a generalization of #NeU (Xi)
and introducing it in the utility function will allow a better choice of experiments,
based on ontological knowledge. With such method, we can focus the causal dis-
covery on relations between distant concepts.
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3.2 Integrating Ontological Knowledge for Causal Graph
Visualization

Visualizing large networks of hundreds or thousands nodes is a real challenging
task. It is essentially due to the limitation of the screen, the huge number of
nodes and edges and the limitations of human visual abilities. In this context,
our approach can turn out of big utility to improve actual visual tools. The main
purpose was to propose an enriched visualization of causal models by integrat-
ing the power of semantical knowledge. The Rada et al.’s distance matrix can
implement different graph drawing algorithms among which MultiDimentional
Scalling (MDS) and Force Directed Placement [7,8]. More precisely, we will ad-
just the node’s position in the screen, referring to the matrix distance calculated
above. Similarly, in [20], Ranwez et al. used the ontological distance measures to
propose an alternative information visualization on conceptual maps.

Fig. 4. Enriched visualization corresponding to the CPDAG in Figure 2

In figure 4, we show an enriched visualization of the CPDAG used in the
previous subsection. The biological functions are more distinguished and the
causal relations between those functions are, visually, more revealed.

In the other hand, we propose to adapt the size of the nodes to the utility
function. This method allows to biologists to determine the ideal node to make
interventions.

While judicious use of semantical distances and node’s size can help consider-
ably the understanding of the causal bayesian network, we can go farther in the
visualization by adding a zoom-in/zoom-out function that allows one to visualize
either the global structure of the graph or just, smaller components reduced to
more general concepts in the ontology. For example, we can pass from visualizing
the genes, in our example, to an abstraction reduced to only biological functions
or even to the biological super-functions.

All those visualization attributes can lead to different valuable informations
about the causal bayesian network. Moreover, we will be able to investigate fur-
ther into the adapted structure of the network. Since the enriched visualization
can offer assistance to the domain experts, we can change the MyCaDo algo-
rithm into semi-automatic method, combining the use of optimal solution of
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utility and visualization of causal graph. Consequently, we can ease considerably
the depiction of causality.

4 Conclusion

In this article, we discussed how ontological knowledge can be useful for iterative
causal discovery. More precisely, we extend the MyCaDo algorithm via introduc-
ing the notion of the semantical inertia. By supporting the assignment of costs
to experiments and measurements, our approach permit us to guide the choice
of the best experiment in order to obtain the complete causal bayesian network.
We then proposed an enriched visualization of causal models, using the power
of semantical knowledge extracted from ontologies.

To this end, we considered a toy example ontology as a starting point to de-
velop our approach but this choice does not exclude the application of our works
to more realistic ontology’s domains. We emphasize that the work described
here represents a major step in a longer-term project focusing on the knowledge
integration for causal bayesian networks learning.

Directions for future work include studying how ontological knowledge can be
integrated to learn causal graphical models with latent variables, or other links
between causal bayesian network learning and ontologies construction.
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Abstract. The present paper introduces a new kind of representation
for the potentials in a Bayesian network: Binary Probability Trees. They
allow to represent finer grain context-specific independences than those
which can be encoded with probability trees. This enhanced capability
leads to more efficient inference algorithms in some types of Bayesian
networks. The paper explains how to build a binary tree from a given
potential with a similar procedure to the one employed for probability
trees. It also offers a way of pruning a binary tree if exact inference cannot
be performed with exact trees, and provides detailed algorithms for per-
forming directly with binary trees the basic operations on potentials (re-
striction, combination and marginalization). Finally, some experiments
are shown that use binary trees with the variable elimination algorithm
to compare the performance with standard probability trees.

Keywords: Bayesian networks inference, approximate computation,
variable elimination algorithm, deterministic algorithms, probability
trees.

1 Introduction

Bayesian networks are graphical models which can be used to handle uncer-
tainty in probabilistic expert systems. They enable efficient representation of
joint probability distributions. It is known that exact computation [1] of the
posterior probabilities, given certain evidence, may become unfeasible in large
networks. This has led to the proposal of different approximate algorithms. They
provide results in shorter time (albeit inexact). Some of the methods are based
on Monte Carlo simulation, and others rely on deterministic procedures. Among
the deterministic methods, one can find those that use alternative representa-
tions for potentials, such as probability trees [2,3,4]. This representation offers
the chance to take advantage of context-specific independences. Probability trees
can be pruned and converted into smaller ones when potentials are too large,
thus providing approximate algorithms. In the present paper, we introduce a new
kind of probability trees in which the internal nodes always have two children.
They will be called binary probability trees. These trees are capable of speci-
fying context-specific independences with finer grain than those which can be
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represented with standard trees, and should work better than standard proba-
bility trees when the Bayesian networks contain variables with a large number
of states.

The remainder of the paper is organized as follows: In Section 2 we describe
the problem of probabilities propagation in Bayesian networks. Section 3 studies
the use of probability trees to represent potentials compactly and presents the
related notation. In Section 4, we introduce binary probability trees and describe
how they can be built from a potential, and how to approximate them by pruning
terminal trees; we also show the algorithms for direct application of the basic
operations with potentials to binary probability trees. Section 5 provides details
of the experimental work. And finally, Section 6 gives the conclusions and future
work.

2 Probability Propagation in Bayesian Networks

Let X = {X1, . . . , Xn} be a set of variables. Let us assume that each variable
Xi takes values on a finite set of states ΩXi (the domain of Xi). We shall use xi

to denote one of the values of Xi, xi ∈ ΩXi . If I is a set of indices, we shall write
XI for the set {Xi|i ∈ I}. N = {1, . . . , n} will denote the set of indices of all the
variables in the network; thus X = XN . The Cartesian product ×i∈IΩXi will be
denoted by ΩXI . The elements of ΩXI are called configurations of XI and will
be written with x or xI . We denote x↓XJ

I to the projection of the configuration
xI to the set of variables XJ , XJ ⊆ XI .

A mapping from a set ΩXI into R+
0 will be called a potential p for XI . Given

a potential p, we denote with s(p) to the set of variables for which p is defined.
The process of inference in probabilistic graphical models requires the defini-
tion of two operations on potentials: combination p1 ⊗ p2 (multiplication) and
marginalization p↓J (by summing out all the variables not in XJ).

A Bayesian network is a directed acyclic graph, where each node represents
a random event Xi, and the topology of the graph shows the independence
relations between variables according to the d-separation criterion [5]. Each node
Xi also has a conditional probability distribution pi(Xi|Π(Xi)) for that variable,
given its parents Π(Xi). A Bayesian network determines a joint probability
distribution:

p(X = x) =
∏
i∈N

pi(xi|Π(xi)) ∀x ∈ ΩX (1)

Let E ⊂ XN be the set of observed variables and e ∈ ΩE the instantiated
value. An algorithm that computes the posterior distributions p(xi|e) for each
xi ∈ ΩXi , Xi ∈ XN \E is called propagation algorithm or inference algorithm.

3 Probability Trees

Probability trees [6] have been used as a flexible data structure that enables the
specification of context-specific independences (see [4]) as well as using exact or
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approximate representations of probability potentials. A probability tree T is a
directed labelled tree, in which each internal node represents a variable and each
leaf represents a non-negative real number. Each internal node has one outgoing
arc for each state of the variable that labels that node; each state labels one arc.

A probability tree T on variables XI = {Xi|i ∈ I} represents a potential
p : ΩXI → R+

0 if for each xI ∈ ΩXI the value p(xI) is the number stored in the
leaf node that is reached by starting from the root node and selecting the child
corresponding to coordinate xi for each internal node labelled Xi. We use Lt to
denote the label of node t (a variable for an internal node, and a real number
for a leaf). We say that a subtree of T is a terminal tree if it contains only one
node labelled with a variable, and all the children are numbers (leaf nodes).
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Fig. 1. Potential p, its representation as a probability tree and its approximation after
pruning various branches

A probability tree is usually a more compact representation of a potential
than a table. This is illustrated in Fig. 1, which displays a potential p and its
representation, using a probability tree. The tree contains the same information
as the table, but only requires five values rather than eight. Furthermore, trees
enable even more compact representations in exchange for loss of accuracy. This
is achieved by pruning certain leaves and replacing them with the average value,
as shown in the right tree in Fig. 1.

If T is a probability tree on XI and XJ ⊆ XI , we use T R(xJ ) (probability
tree restricted to the configuration xJ ) to denote the restriction operation which
consists of returning the part of the tree which is consistent with the values of
the configuration xJ ∈ ΩXJ . For example, in the left probability tree in Figure 1,
T R(X2=x1

2,X3=x1
3) represents the terminal tree enclosed by the dashed line square.

This operation is used to define combination and marginalization operations as
well as for conditioning.

We use LPt to denote the labelling of the branches from root to another node
t (not necessarily to a leaf). A labelling LPt defines a configuration xt for the
variables in Xt

I ,X
t
I ⊆ XI , where XI is the set of variables of the potential

represented by the probability tree, and Xt
I is the set of variables that labels the

internal nodes contained in the path from the root node to descendant node t
(excluding node t). We say that xt is the associated configuration for node t.
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The basic operations (combination, marginalization) in potentials can be per-
formed directly in probability trees ([6]).

4 Binary Probability Trees

A binary probability tree BT is similar to a probability tree. It is also a directed
labelled tree, where each internal node is labelled with a variable, and each leaf
is labelled with a non-negative real number. It also allows a potential for a set
of variables XI to be represented. But now, each internal node has always two
outgoing arcs, and a variable can appear more than once labelling the nodes in
the path from the root to a leaf node. Another difference is that, for an internal
node labelled with Xi, the outgoing arcs can generally be labelled with more
than one state of the domain of Xi, ΩXi .

At a given node t of BT , labelled with variable Xi, we denote with Ωt
Xi

,
Ωt

Xi
⊆ ΩXi , the set of available states of Xi at node t. In general, this set is a

subset of ΩXi . The available states of Xi at node t will be distributed between
two subsets, in order to label its two outgoing arcs. We denote with Llb(t) and
Lrb(t) the labels (two subsets of Ωt

Xi
) of the left and right branches of t. We

denote with tl and tr the two children of t.
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Fig. 2. Potential P (A|B) as a table, as binary probability tree and as probability tree

For example, Fig. 2 (ii) shows a binary probability tree for the table in (i).
In the figure we use a superscript number at each node of the tree, in order to
easily identify them. The domain of A, ΩA, is the set of states {a1, a2, a3}. At
root node (node 1, labelled with A), we have Ω1

A = {a1, a2, a3}. That is, the
available states of A at the root node coincides with its domain. The left branch
of node 1 is labelled with {a1} and the right branch with {a2, a3}. At node 3
(also labelled with A) Ω3

A = {a2, a3}. This potential can also be represented with
the probability tree in Fig. 2 (iii). It can be seen that the binary probability tree
contains only five leaves, whereas the probability tree contains seven.

Another difference with probability trees is that the labelling LPt of a path
from the root to a descendant node t now determines an extended configuration
AXt

I
for the variables in Xt

I ,X
t
I ⊆ XI , rather than a standard configuration xt.

This new concept is required in binary probability trees in order to express that
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a variable Xi in XI belongs to a subset of ΩXi , instead of stating that Xi = xi.
Extended configurations will be denoted with A or AXI . Thus, an extended
configuration AXI defines a set of configurations SAXI

for XI , which is obtained
with the Cartesian product of the subsets of states in AXI . For example, an
extended configuration for the set of variables {A,B} could be {{a3}, {b1, b2}}.
This means that A is a3 and B can be b1 or b2. Therefore, it determines the set
of configurations {{a3, b1}, {a3, b2}}. This extended configuration corresponds
with the labelling of the path from the root to node 8 in Fig. 2 (ii). At denotes
the associated extended configuration for node t.

4.1 Constructing a Binary Probability Tree

Cano, Moral and Salmerón [7,6] proposed a methodology for constructing a
probability tree T from a potential p. It was inspired by the methods for inducing
classification trees, such as Quinlan’s ID3 algorithm [8], which builds a decision
tree from a set of examples. A decision tree represents a sequential procedure
for deciding the class membership of a given instance of the attributes of the
problem. That is, the leaves of decision trees provide the class for given instances
of the attributes. However a leaf in a probability tree contains a probability value.
This means that the measure used as the splitting criterion in probability trees
was particularly adapted to probabilities. For binary probability trees, we follow
a similar methodology, although the splitting criterion will be adapted to them.

Let p be a potential for a set of variables XI . In general, it is possible to
obtain several binary probability trees representing potential p, depending on
the order we place the variables of XI in the internal nodes of the tree, and how
we distribute at each internal node, the available states of the variable between
its outgoing arcs.

There is a need to extend the definition of restriction operation in probability
trees to an arbitrary potential p: If p is a potential for XI and xJ is a confi-
guration for XJ , XJ ⊆ XI , we denote with pR(xJ ) the potential p restricted to
configuration xJ , which consists of returning the part of the potential consistent
with xJ . Furthermore, we denote with pR(AXJ

) the potential p restricted to the
extended configuration AXJ , which consists of returning the part of the potential
consistent with one of the configurations in SAXJ

. For example, restricting the
potential in Fig. 2 (i) to A = a1 produces a potential with only the first row in
that table; restricting to the extended configuration {{a2}, {b1, b2}} produces a
potential with the first two numbers in the second row. We denote with |pR(xJ )|
or |pR(AXJ

)| the number of values in the restricted potential.
The proposed methodology for constructing a binary probability tree BT from

a given potential p for the set of variables XI is very similar to the one used to
build a probability tree (see [7,6]). The process begins with a binary probability
tree BT 0 with only one node (a leaf node) labelled with the average of values in
the potential: Lt =

∑
xI∈ΩXI

p(xI)/|ΩXI |.
A greedy step is then applied successively until we obtain an exact binary

probability tree, or until a given stop criterion is satisfied. At each step, a new
binary tree BT j+1 is obtained from the previous one BT j . The greedy step
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requires the definition of a splitting criterion. It consists of expanding one of
the leaf nodes t in BT j with a terminal tree (with t rooting the terminal tree,
and tl and tr as children of t). Node t will be labelled with one of the candidate
variables. The set of available states Ωt

Xi
of the chosen candidate variable Xi

at node t, will be partitioned into two subsets Ωtl

Xi
and Ωtr

Xi
, to label the two

outgoing arcs (left and right) of t. The two leaf nodes tl and tr in the new
terminal tree will be labelled with the average of values of p consistent with
the extended configurations Atl and Atr respectively (the associated extended
configurations for nodes tl and tr).

After applying the previous process, we say that the leaf node t has been
expanded with variable Xi and the sets of states Ωtl

Xi
and Ωtr

Xi
. The result of

applying previous splitting to BT will be denoted with BT (t,Xi, Ω
tl

Xi
, Ωtr

Xi
). For

example, the binary probability tree in Fig. 2 (i) was built by selecting A in the
first splitting (at root node), and the sets of states Ωtl

A = {a1} and Ωtr

A = {a2, a3}
to label the left and right outgoing arcs. A variable Xi ∈ XI can be a candidate
variable to expand a leaf node t, if it contains more than one state in its set Ωt

Xi

of available states at node t.
The definition of the splitting criterion, requires a distance to measure the

goodness of the approximation of a binary probability tree BT to a given poten-
tial p. If we denote by dBT and dp the probability distributions proportional to
BT and p, respectively, then the distance from a binary tree BT to a potential
p is measured with the Kullback-Leibler’s divergence [9]:

D(p,BT ) =
∑

xI∈ΩXI

dp(xI) log
dp(xI)
dBT (xI)

. (2)

Kullback-Leibler’s divergence is always positive or zero. It is equal to zero if
BT represents exactly potential p. In the definition of the splitting criterion, we
propose following the same methodology to construct probability trees (see [6]),
but adapting it to binary probability trees.

Definition 1 (Splitting criterion). Let p be the potential we are constructing
and BT j the binary tree in step j of the greedy algorithm and t a leaf node,
then node t can be expanded with the candidate variable Xi and a partition of
its available states Ωt

Xi
into sets Ωtl

Xi
and Ωtr

Xi
if Xi and the partition of Ωt

Xi

maximizes the following expression:

I(t,Xi, Ω
tl

Xi
, Ωtr

Xi
) = D(p,BT j)−D(p,BT j(t,Xi, Ω

tl

Xi
, Ωtr

Xi
)) (3)

This expression represents the information gain obtained in the current binary
tree BT j after performing the mentioned expansion on leaf node t. It is clear to
see that I(t,Xi, Ω

tl

Xi
, Ωtr

Xi
) ≥ 0. By maximizing I(t,Xi, Ω

tl

Xi
, Ωtr

Xi
), we manage

to minimize Kullback-Leibler’s distance to potential p.
In our experiments (Section 5) we will not check every possible partition of

Ωt
Xi

into Ωtl

Xi
and Ωtr

Xi
, because this would be a very time-consuming task. As-

suming that the set of available states for Xi at node t are ordered,
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Ωt
Xi

= {x1, . . . , xn} we will only check partitions of Ωt
Xi

into subsets with consec-
utive states, Ωtl

Xi
= {x1, . . . , xj} and Ωtr

Xi
= {xj+1, . . . , xn}, for each j ∈ [1, n−1].

Proposition 1. The information gain (expression (3)) obtained by expanding
node t with variable Xi and partition of its set of available states into Ωtl

Xi
and

Ωtr

Xi
can be calculated in the following way:

I(t,Xi, Ω
tl

Xi
, Ωtr

Xi
) = sum(pR(At)) · log(|Ωt

Xi
|/sum(pR(At)))

+sum(pR(Atl )) · log(sum(pR(Atl ))/|Ωtl

Xi
|))

+sum(pR(Atr )) · log(sum(pR(Atr ))/|Ωtr

Xi
|)) (4)

where sum(q) is the addition of all the values of potential q.

Due to space restrictions we do not include the proof of this proposition. It
should be noted that the information only depends on the values of the po-
tential consistent with node t, and it can therefore be locally computed. The
methodology explained in this section for building a binary probability tree can
also be used to reorder the variables or the split sets of a binary tree resulting
from an operation of combination or marginalization.

4.2 Pruning Binary Probability Trees

If we need to reduce the size of a binary probability tree, we can apply the same
process pruning as in the case of probability trees. Again, a pruning in a binary
probability tree consists of replacing a terminal tree by the average of values
that the terminal tree represents. For example, if we wish to prune the terminal
tree rooted by node 4 in the binary tree of Fig. 2 (ii), we must replace it by
(0.45 + 0.45 + 0.2)/3. The following definition shows when a terminal tree can
be pruned.

Definition 2 (Pruning of a terminal tree). Let BT be a binary probability
tree, t the root of a terminal tree labelled with variable Xi, tl and tr its child
nodes, Ωtl

Xi
and Ωtr

Xi
the sets of states that label left and right branches, respec-

tively, and Δ a given threshold, Δ ≥ 0, then that terminal tree can be pruned
if:

I(t,Xi, Ω
tl

Xi
, Ωtr

Xi
) ≤ Δ (5)

In previous definition, I is calculated using expression (4). In this case, potential
p in expression (4) is the binary tree BT to be pruned. Again, the information
can be locally computed at node t in the current binary tree. The goal of the
pruning involves detecting leaves that can be replaced by one value without a big
increment in Kullback-Leibler’s divergence of the potential that BT represents
before and after pruning. Here, I is considered as the information loss produced
in the current binary tree if the terminal tree rooted by node t is pruned. The
pruning process would finish when there are no more terminal trees in BT veri-
fying condition (5). If Δ = 0, an exact binary probability tree will be obtained:
a terminal tree t will be pruned only if Ltl

= Ltr .
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4.3 Operations with Binary Probability Trees

Inference algorithms require three operations with potentials: restriction, combi-
nation and marginalization. Herein we describe these for binary probability trees.

The restriction operation is trivial. If BT is a binary probability tree and xJ a
configuration for the set of variables XJ , BT R(xJ ) (BT restricted to configuration
xJ ) is obtained with the same algorithm as the one for probability trees: Replace
in BT every node t labelled with Xk, Xk ∈ XJ , by subtree BT k, children of t,
corresponding to the value of Xk in xJ . For binary trees, we need to extend
the definition of restiction operation, to an extended configurations AXJ , which
means returning the part of the tree consistent with one of the configurations
in set SAXJ

. This operation is easy to specify if we first define the restriction of
BT to a set of states SXj (SXj ⊆ ΩXj ) of variable Xj , denoted by BT R(SXj

). It
can be obtained with Algorithm 1. As an example, Fig. 3 shows the tree of Fig.
2 (ii) restricted to A ∈ {a1, a2}.

b1, b2

a1 a2

b3

A

B0.3

0.45 0.2

Fig. 3. Restriction of tree of Fig. 2 (ii) to A ∈ {a1, a2}

Input : t (root node of BT ); Xj (variable to restrict); SXj (set of states of Xj

to restrict)
Output: The root of BT R(SXj

)

if t is not a leaf node then
if Lt == Xj then

Set Sl
Xj

= Llb(t) ∩ SXj and Sr
Xj

= Lrb(t) ∩ SXj

if Sl
Xj

== ∅ then
return Restrict(tr ,Xj ,S

r
Xj

)

else if Sr
Xj

== ∅ then

return Restrict(tl,Xj,S
l
Xj

)

else

Set Llb(t) = Sl
Xj

, Lrb(t) = Sr
Xj

the new labels of the branches of t

Set Restrict(tl,Xj ,Sl
Xj

) as the new left child of t
Set Restrict(tr,Xj ,Sr

Xj
) as the new right child of t

else
Set Restrict(tl,Xj ,SXj ) as the new left child of t
Set Restrict(tr,Xj ,SXj ) as the new right child of t

return t

Algorithm 1. Restrict
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The restriction of a binary tree to an extended configuration AXJ , BT R(AXJ
),

can be performed by repeating Algorithm 1 for each one of the variables in XJ .
The combination of two probability trees BT 1 and BT 2, BT 1 ⊗ BT 2, can be
achieved with Algorithm 2. The combination process is illustrated in Fig. 4.

x x
b1, b2

b2, b3 b2, b3b2, b3 a1, a2

a1, a2a1, a2a1, a2a1, a2

a3

a3a3a3 a3

b1 b1b1

b2 b2

b3

b3b3

⊗ A

A A AAB

B

B

B

BB

0.3

0.3 0.30.4 0.4

0.4

0.2

0.2

0.80.8 0.10.1

0.8 · 0.3 0.8 · 0.4 0.1 · 0.3

0.1 · 0.4 0.1 · 0.2

Fig. 4. Combination of two binary trees

Input : t1 and t2 (root nodes of BT 1 and BT 2)
Output: The root of BT = BT 1 ⊗ BT 2

Build a new node t
if t1 is a leaf node then

if t2 is a leaf node then
Lt = Lt1 · Lt2

else
Set Lt = Lt2 the label of t
Set Llb(t) = Llb(t2) and Lrb(t) = Lrb(t2) labels of the two branches of t
Set Combine(t1,t2l) the left child of t
Set Combine(t1,t2r) the right child of t

else
Xi = Lt1

Set Lt = Lt1 the label of t
Set Llb(t) = Llb(t1) and Lrb(t) = Lrb(t1) labels of the two branches of t

Set Combine(t1l,BT 2R(Xi,Llb(t1))) the left child of t
Set Combine(t1r,BT 2R(Xi,Lrb(t1))) the right child of t

return t

Algorithm 2. Combine

Given a binary tree BT representing a potential p defined for a set of variables
XI , Algorithm 3 obtains a binary tree BT ↓XI\{Xj} for potential p↓XI\{Xj}. This
algorithm must be called using |ΩXj | as the input parameter f . In recursive calls
to the algorithm, f will be set to the number of available states of Xj at current
node of the tree. This algorithm uses the Sum(BT 1,BT 2) algorithm, which is
not included here, but which contains the same steps as the Combine algorithm,
replacing product by addition. The process of marginalization is illustrated in
Fig. 5.
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0.5 0.5 0.5

↓ {B}
↓ {B}

b1, b2 b1, b2 b1, b2
b1, b2b1, b2 b1, b2b1, b2

a2, a3a1

a2a2 a3a3

b3b3 b3b3b3b3b3

⊕

⊕

⊕

A

A

A

BB BB BB B

0.3

0.3

0.3

0.450.450.45 0.20.20.2 0.250.250.25 11

Fig. 5. Marginalizing out variable A

Input : t(root node of BT ); Xj (variable to remove); f (a factor for
multiplying the labels of leaf nodes)

Output: The root of BT ↓XI\Xj

if t is a leaf node then
Build a new node tn
Set Ltn = Lt · f the label of tn

else
if Lt == Xj then

t1=Marginalize(tl,Xj ,|Llb(t)|)
t2=Marginalize(tr ,Xj ,|Lrb(t)|)
tn=Sum(t1,t2)

else
Build a new node tn
Set Ltn = Lt the label of tn
Set Llb(tn) = Llb(t); Lrb(tn) = Lrb(t) the labels of the branches of tn
Set Marginalize(tl ,Xj ,f) the left child of tn
Set Marginalize(tr ,Xj ,f) the right child of tn

return tn

Algorithm 3. Marginalize

5 Experiments

In order to compare standard probability trees with binary trees, we conducted
some experiments using the Alarm network. In the case of binary trees, we
obtained the posterior distribution for each variable in the network using the
adapted version of Variable Elimination displayed in Algorithm 4. For standard
probability trees, an equivalent algorithm was used, but this was based upon a
different way of computing the information gain (expression (5)) when reordering
and pruning a tree (see [6]). Each run of Algorithm 4 obtains an approximate
posterior distribution for one variable. The accuracy of the approximation is
controlled by parameter Δ (see expression (5)). We repeated it for each variable
in the network and for each value of Δ ∈ [0.0, 0.1] with increments of 0.002, using
the two versions (standard probability trees and binary trees). In each trial, we
calculated computing time, error and largest tree size. The error for one variable
Xi was computed with Kullback-Leibler’s divergence (expression 2) of the exact
posterior distribution respect to the approximate one. The global error for all
the variables in the network is measured with the average of Kullback-Leibler’s
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Input : P = {pi : i = 1, . . . , n} the set of potentials of a Bayesian network; e
the set of observed values, e ∈ ΩE; a variable of interest Z,
Z ∈ XN \E; and Δ the threshold for pruning

Output: p(zi|e) for each zi ∈ ΩZ , Z ∈ XN \ E

Get the set SBT of binary trees transforming each pi into BT i (Section 4.1)1

Transform each BT i into BT R(e)
i (restrict to evidence): Algorithm 12

Prune each BT i with Δ threshold (Section 4.2)3

foreach Y ∈ XN \ (E ∪ Z) do4

Let be SY = {BT i|Y ∈ s(BT i)}5

Calculate BT prod =
∏

BT i∈SY
BT i: Algorithm 26

Calculate BT sum = BT ↓s(BT prod)\Y

prod : Algorithm 37

Reorder variables and split sets in BT sum: (Section 4.1)8

Prune BT sum (Section 4.2)9

SBT = {(SBT \ SY }) ∪ BT sum10

Calculate BT =
∏

BT i∈SBT
BT i11

Normalize BT12

return BT13

Algorithm 4. Variable Elimination
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Fig. 6. Average KL errors versus pruning threshold and maximum tree size

divergences. Fig. 6 reports the comparison of the error of the approximations,
using standard probability trees and binary trees for each value of Δ, as well
as the comparison of error versus largest tree size. Computing times are not
shown due to space requirements, but they are very similar in both cases. From
such figures, we can conclude that we need to use smaller trees to obtain better
approximations if we propagate with binary trees. This makes that propagation
algorithms that use binary trees are more efficient than those that use standard
trees.
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6 Conclusions and Future Work

In the present paper, we have introduced a new type of probability trees for
representing the potentials in a Bayesian network: binary probability trees. Ex-
periments show that binary trees are a promising tool, because they can achieve
better approximations of posterior probabilities than probability trees, in some
Bayesian networks with a similar computing time. The accuracy of the approx-
imation can be controlled with a Δ parameter, which is used in the process of
pruning the trees. Propagation with binary trees (instead of standard probabil-
ity trees) requires smaller trees and offers smaller errors (KL divergence). This
confirm that binary trees are able to capture finer grain context-specific indepen-
dences than probability trees, making possible to use them during propagation.

As regards future directions of research, we intend to study the behaviour of
binary trees in other Bayesian networks with more variables, and more complex
structures. Moreover, we will adapt other propagation algorithms for Bayesian
networks to use binary trees. We also believe that binary trees can be applied
to other problems, such as influence diagrams evaluation, propagation in credal
networks and supervised classification.

Acknowledgments. This research was jointly supported by the Spanish Min-
istry of Education and Science under the project TIN2007-67418-C03-03, by the
European Regional Development Fund (FEDER), and by the Spanish research
programme Consolider Ingenio 2010: MIPRCV (CSD2007-00018).

References

1. Cooper, G.F.: The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence 42, 393–405 (1990)

2. Cano, A., Moral, S., Salmerón, A.: Penniless propagation in join trees. International
Journal of Intelligent Systems 15(11), 1027–1059 (2000)

3. Kozlov, D., Koller, D.: Nonuniform dynamic discretization in hybrid networks. In:
Geiger, D., Shenoy, P. (eds.) Proceedings of the 13th Conference on Uncertainty in
Artificial Intelligence, pp. 302–313. Morgan & Kaufmann, San Francisco (1997)

4. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific indepen-
dence in Bayesian networks. In: Proceedings of the Twelfth Annual Conference on
Uncertainty in Artificial Intelligence (UAI 1996), Portland, Oregon, pp. 115–123
(1996)

5. Pearl, J.: Probabilistic Reasoning with Intelligent Systems. Morgan & Kaufman,
San Mateo (1988)

6. Salmerón, A., Cano, A., Moral, S.: Importance sampling in Bayesian networks using
probability trees. Computational Statistics and Data Analysis 34, 387–413 (2000)

7. Cano, A., Moral, S.: Propagación exacta y aproximada mediante árboles de proba-
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Abstract. Probabilistic and graphical independence models both sat-
isfy the semi-graphoid axioms, but their respective modelling powers are
not equal. For every graphical independence model that is represented by
d-separation in a directed acyclic graph, there exists an isomorphic prob-
abilistic independence model, i.e. it has exactly the same independence
statements. The reverse does not hold, as there exist probability distri-
butions for which there are no perfect maps. We investigate if a given
probabilistic independence model can be augmented with latent variables
to a new independence model that is isomorphic with a graphical inde-
pendence model of a directed acyclic graph. The original independence
model can then be viewed as the marginal of the model with latent vari-
ables. We show that for some independence models we need infinitely
many latent variables to accomplish this.

1 Introduction

Probabilistic models in artificial intelligence are typically built on the semi-
graphoids axioms of independence. These axioms are exploited explicitly in
graphical models, where independence is captured by topological properties,
such as separation of vertices in an undirected graph or d-separation in a di-
rected graph. A graphical representation with directed graphs for use in a deci-
sion support system has the advantage that it allows an intuitive interpretation
by domain experts in terms of influences between the variables.

Ideally a probabilistic model is represented as a graphical model in a one-to-
one way, that is, independence in the one representation implies independence in
the other representation. The probabilistic model then is said to be isomorphic
with the graphical model, and vice versa. Pearl and Paz [5] established a set of
sufficient and necessary conditions under which a probabilistic model is isomor-
phic with an undirected graph. In this paper we shall not consider representations
of independence with undirected graphs, but focus on directed representations.
Contrary to undirected graphs directed graphs allow the representation of in-
duced dependencies: if a specific independence has been established given some
evidence, it is possible that this independence becomes invalid if more evidence
is obtained. Pearl gave a set of necessary conditions for directed graph isomor-
phism in [6]. To the best of our knowledge there is no known set of sufficient
conditions.

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 192–203, 2009.
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Pearl [6] also provides an example of an independence model not isomorphic
with a directed graphical model, that can be made isomorphic by the intro-
duction of an auxiliary variable. In [6] the isomorphism is then established by
conditioning on the auxiliary variable. In this paper we choose a different ap-
proach. We extend a model with auxiliary variables to a directed graph isomorph
and we then take the marginal over the original variables of this extended model.
For this we introduce the concept of the marginal of an independence model.
The model with auxiliary variables can then be considered as a latent perfect
map. We show that it is possible to establish isomorphism in this manner, but
that we may need an infinite number of auxiliary variables to accomplish this.
We also show that there exists a probabilistic independence model that needs
infinitely many latent variables.

This paper is organised as follows. In Sect. 2 we briefly review probabilistic
and graphical independence models, and the semi-graphoid properties of these
models. In Sect. 3 we introduce the concept of marginals of an independence
model and latent perfect maps. In Sect. 4 we discuss the existence of latent
perfect maps, and in Sect. 5 we wrap up with conclusions and recommendations.

2 Preliminaries

In this section, we provide some preliminaries on probabilistic independence
models as defined by conditional independence for probability distributions,
graphical independence models as defined by d-separation in directed acyclic
graphs, and algebraic independence models that capture the properties that
probabilistic and graphical models have in common.

2.1 Conditional Independence Models

We consider a finite set of distinct symbols V = {V1, . . . , VN}, called the at-
tributes or variable names. With each variable Vi we associate a finite domain
set Vi, which is the set of possible values the variable can take. We define the
domain of V as V = V1× · · · × VN , the Cartesian product of the domains of the
individual variables.

A probability measure over V is defined by the domains Vi, i = 1, . . . , N , and
a probability mapping P : V → [0, 1] that satisfies the three basic axioms of
probability theory [4].

For any subset X = {Vi1 , . . . , Vik} ⊂ V , for some k ≥ 1, we define the domain
X of X as X = Vi1 × · · · Vik . For a probability mapping P on V we define its
marginal mapping over X , denoted by PX , as the probability measure PX over
X , defined by

PX(x) =
∑{

P (x, y)
∣∣∣ y ∈ ×

{i |Vi �∈X}
Vi

}
for x ∈ X . By definition PV ≡ P , P∅ ≡ 1, and (PX)Y = (PY )X = PX∩Y , for
X,Y ⊂ V .

We denote the set of ordered triplets (X,Y |Z) for disjoint subsets X , Y and
Z of V as T (V ). For any ternary relation I on V we shall use the notation
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I(X,Y |Z) to indicate (X,Y |Z) ∈ I. For simplicity of notation we will often
write XY to denote the union X ∪ Y , for X,Y ⊂ V . To avoid complicated
notation we also allow Xy to denote X ∪ {y}, for X ⊂ V and y ∈ V .

Definition 1 (Conditional independence). Let X, Y and Z be disjoint sub-
sets of V , with domains X , Y, and Z, respectively. The sets X and Y are defined
to be conditionally independent under P given Z, if for every x ∈ X , y ∈ Y and
z ∈ Z, we have

PXY Z(x, y, z) · PZ(z) = PXZ(x, z) · PY Z(y, z)

Definition 2. Let V be a set of variables and P a probability measure over
V . The probabilistic independence model IP of P is defined as the ternary
relation IP on V for which IP (X,Y |Z) if and only if X and Y are conditionally
independent under P given Z.

If no ambiguity can arise we may omit the reference to the probability measure
and just refer to the probabilistic independence model.

2.2 Graphical Independence Models in Directed Acyclic Graphs

We first introduce the standard concepts of blocking and d-separation in directed
graphs. We consider a directed acyclic graph (DAG) G = (V,A), with V the set
of vertices and A the set of arcs. A path s in G of length k − 1 from a vertex
Vi1 to Vi2 is a k-tuple s = (W1,W2, . . . ,Wk) with Wi ∈ V for i = 1, . . . , k,
W1 = Vi1 , Wk = Vi2 and for each i = 1, . . . , k − 1 either (Wi,Wi+1) ∈ A
or (Wi+1,Wi) ∈ A. Without loss of generality we assume that a path has no
loops, so there are no duplicates in {W1, . . . ,Wk}. We define a path s to be
unidirectional if all the arcs in s point in the same direction. More specifically,
we define the unidirectional s = (W1,W2, . . . ,Wk) to be a descending path if
(Wi,Wi+1) ∈ A, for all i = 1, . . . , k − 1. A vertex Y is called a descendant of a
vertex X if there is a descending path from X to Y .

Definition 3. Let Z be a subset of V . We say that a path s is blocked in G by
Z, if s contains three consecutive vertices Wi−1, Wi, and Wi+1 for which one of
the following conditions hold:

– Wi−1 ← Wi → Wi+1, and Wi∈Z,
– Wi−1 → Wi → Wi+1, and Wi∈Z,
– Wi−1 ← Wi ← Wi+1, and Wi∈Z,
– Wi−1 → Wi ← Wi+1, and σ(Wi) ∩ Z = ∅, where σ(Wi) consists of Wi and

all its descendants.

We refer to the first three conditions as blocking by presence, and the last con-
dition as blocking by absence. We refer to node Wi in the last condition as a
converging or colliding node on the path.

While the concept of blocking is defined for a single path, the d-separation
criterion applies to the set of all paths in G.
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Definition 4. Let G = (V,A) be a DAG, and let X, Y and Z be disjoint subsets
of V . The set Z is said to d-separate X and Y in G, if every path s from any
variable x ∈ X to any variable y ∈ Y is blocked in G by Z.

Based on the d-separation criterion we can define the notion of a graphical
independence model.

Definition 5. Let G = (V,A) be a DAG. The graphical independence model
IG defined by G is a ternary relation on V such that IG(X,Y |Z) if and only if
Z d-separates X and Y in G.

2.3 Algebraic Independence Models

Both a probabilistic independence model on a set of variables V and a graphical
independence model on a DAG G = (V,A) define a ternary relation on V . In
fact we can capture this in an algebraic construct of an independence model.

Definition 6. An algebraic independence model on a set V is a ternary relation
on V .

Probabilistic and graphical independence models satisfy a set of axioms of inde-
pendence. We use these axioms to define a special class within the set of algebraic
independence models.

Definition 7. A ternary relation I on V is a semi-graphoid independence
model, or semi-graphoid for short, if it satisfies the following four axioms:

A1: I(X,Y |Z) ⇒ I(Y,X |Z), (symmetry),
A2: I(X,Y W |Z) ⇒ I(X,Y |Z) ∧ I(X,W |Z), (decomposition),
A3: I(X,Y W |Z) ⇒ I(X,Y |ZW ), (weak union),
A4: I(X,Y |Z) ∧ I(X,W |ZY ) ⇒ I(X,Y W |Z), (contraction).

for all disjoint sets of variables W,X, Y, Z ⊂ V .

The axioms convey the idea that learning irrelevant information does not alter
the relevance relationships among the other variables discerned. They were first
introduced in [1] for probabilistic conditional independence. The properties were
later recognised in artificial intelligence as properties of separation in graphs
[5,6], and are since known as the semi-graphoid axioms.

In the formulation that we have used so far we can allow X and Y to be
empty, which leads to the so-called trivial independence axiom:

A0: IP (X,∅|Z),

This axiom trivially holds for both probabilistic independence and graphical
independence.

An axiomatic representation allows us to derive qualitative statements about
conditional independence that may not be immediate from a numerical rep-
resentation of probabilities. It also enables a parsimonious specification of an
independence model, since it is sufficient to enumerate the so-called dominating
independence statements, from which all other statements can be derived by
application of the axioms [9].
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2.4 Graph-Isomorph

Probabilistic independence models and graphical independence models both sat-
isfy the semi-graphoid axioms, so it is interesting to investigate whether they
have equal modelling power. Can any probabilistic independence model be rep-
resented by a graphical model, and vice versa? For this we introduce the notions
of I-maps and P-maps.

Definition 8. Let I be an algebraic independence model on V, and G = (V,A)
a DAG that defines a graphical independence model IG through d-separation.

1. The graph G is called an independence map, or I-map for short, for I, if
for all disjoint X, Y , Z ⊂ V we have: IG(X,Y |Z) ⇒ I(X,Y |Z). If G is an
I-map for I, and deleting any arc makes G cease to be an I-map for I, then
G is called a minimal I-map for I.

2. The graph G is called a perfect map, or P-map for short, for I, if for all
disjoint X, Y , Z ⊂ V we have: IG(X,Y |Z) ⇔ I(X,Y |Z),

Definition 9 (DAG-isomorph). An independence model I on V is said to be
a DAG-isomorph, if there exists a graph G = (V,A) that is a perfect map for I.

Since a graphical independence model satisfies the semi-graphoid axioms, a
DAG-isomorph has to be a semi-graphoid itself. Being a semi-graphoid is not a
sufficient condition for DAG-isomorphism, however. To the best of our knowl-
edge there does not exists a sufficient set of conditions, although Pearl presents
a set of necessary conditions in [6].

Some results from literature describe the modelling powers of the types in-
dependence model that we presented in the previous sections. Geiger and Pearl
show that for every DAG graphical model there exists a probability model for
which that particular DAG is a perfect map [3]. The reverse does not hold, there
exist probability models for which there is no DAG perfect map [6].

Studený shows in [7] that the semi-graphoid axioms are not complete for
probabilistic independence models. He derives a new axiom for probabilistic
independence models that is not implied by the semi-graphoid axioms. He also
shows in [8] that probabilistic independence models cannot be characterised by
a finite set of inference rules.

3 Marginal of an Independence Model

A set of necessary conditions for an algebraic independence model to be a DAG-
isomorph is known from [6]. These conditions are derived from properties of
d-separation in DAG’s. One of the conditions that is not already implied by the
semi-graphoid axioms is the so-called chordality condition:

I(x, y|zw) ∧ I(z, w|xy) ⇒ I(x, y|z) ∨ I(x, y|w)

for all x, y, z, w ∈ V . Pearl shows in [6, Sect. 3.3.3] by example how conditioning
on an auxiliary variable can be used to dispose of this chordality condition. In
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his example the independence model is not DAG-isomorph, but there exists a
DAG with one extra variable, that, when conditioned on the auxiliary variable,
is isomorphic with the independence model.

In this paper we take a different approach as we introduce an auxiliary variable
without conditioning to create a DAG that is a P-map for an independence
model. We formulate this in the following definition.

Definition 10. Let I be an independence model on a set of variables V , and
let A be a subset of V . We define the marginal of I on A, denoted by IA, as
IA = I ∩ T (A).

The following lemma follows immediately from this definition. It implies that
taking the marginal of a probabilistic model is equivalent to taking the proba-
bilistic model of the marginal of a probability measure. As such it justifies our
use of the phrase “marginal of an independence model”.

Lemma 1. Let V be a set of variables, P a probability measure on V with
probabilistic independence model IP . For every subset A ⊆ V we have IAP = IPA .

Proof. Let X , Y and Z be disjoint subsets of A, then the following holds:

IPA(X,Y |Z)

⇔ (PA)XY Z(x, y, z)(PA)Z(z) = (PA)XZ(x, z)(PA)Y Z(y, z)

⇔ PXY Z(x, y, z)PZ(z) = PXZ(x, z)PY Z(y, z)

⇔ IP (X,Y |Z)

⇔ IAP (X,Y, Z)

The first and third steps follow from Definition 2, the second step from the
observation that (PA)W = PW for any W ⊆ A, and the final step follows from
(X,Y |Z) ∈ T (A) and Definition 10. %&

We can now extend the definition of DAG-isomorphism.

Definition 11 (DAG-isomorph marginal). Let V be a set of variables, and
I an independence model on V . We say that I is a DAG-isomorph marginal, if
there exists a finite set of variables V ⊇ V , an independence model I on V and
a DAG G = (V ,A), such that G is a P-map for I and IV = I. We then say
that G is a latent P-map of I.

A latent P-map would be used primarily for modelling purposes and specifically
for representing all the independencies in a compact graphical form. For this
reason we require V to be a finite set.

Note that if I is a DAG-isomorph, then it is by Definition 11 also a DAG-
isomorph marginal.
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Example 1. As an example we present the variable set V = {V1, V2, V3, V4} and
the algebraic independence model I on V defined by the following non-trivial
independence statements (and their symmetric equivalents):

(S1) : I(V1, V2|∅) (S2) : I(V1, V2|V3)
(S3) : I(V2, V3|∅) (S4) : I(V1, V4|∅)
(S5) : I(V1, V2|V4) (S6) : I(V2, V3|V1)
(S7) : I(V1, V4|V2)

The DAG G1 = (V,A) defined on the variables V as depicted on the left-hand
side in Fig. 1, is a minimal I-map for I, since the non-trivial graphical indepen-
dence statement that can be derived from the DAG correspond to the statements
(S1), (S2), (S3), and (S6). It is not a P-map for I, since the statements (S4),
(S5), and (S7) are not reflected as graphical independence statements in G1. An
alternative minimal I-map is G2, as depicted on the right-hand side in Fig. 1.
According to [2, Lemma 5.1] there does not exist a P-map for I on V , although
I satisfies the necessary conditions for DAG-isomorphism of [6].

We can, however, construct a DAG G on a superset V of V for which the
corresponding graphical independence model IG satisfies all the independence
statements (S1)–(S7). This DAG is depicted in Fig. 2. It has an extra, latent,
variable V0. The graphical independence model IG satisfies more independence
statements than (S1)–(S7), like for instance IG(V1, V2|V0). There are, however,
no new independence statements IG(X,Y |Z) in IG for subsets X , Y , Z ⊂ V ,
other than (S1)–(S7). All new independence statements involve the latent vari-
able V0 in one of the arguments. By Definition 10 I in Example 1 is the marginal
of IG on V , and G is a latent P-map of I.

For Example 1 we have from [3] that there exists a probability distribution P
on V that has G of Fig. 2 as a perfect map. The structure of G implies that P
factorises as:

��

�� ��

�� ��

�� ��

��

Fig. 1. G1 (left) and G2 (right), minimal I-maps for Example 1

��

�� ��

����

Fig. 2. G, a latent P-map for Example 1



Marginals of DAG-Isomorphic Independence Models 199

P (v0, v1, v2, v3, v4) =
p0(v0) p1(v1) p2(v2) p3(v3|v0v1)p4(v4|v0v2)

for some functions p1, . . . , p4. It can be shown that the DAG’s G1 and G2 are
minimal I-maps for the marginal distribution of P on V . G1 corresponds to a
factorisation of P as:

P (v1, v2, v3, v4) =
p1(v1) p2(v2) p′3(v3|v1) p′4(v4|v1v2v3)

(1)

and G2 corresponds to a factorisation of P as:

P (v1, v2, v3, v4) =
p1(v1) p2(v2) p′′3(v3|v1v2v4) p′′4(v4|v2)

(2)

In the example we thus have a probability distribution P and the corresponding
independence model IP on V that is not DAG-isomorphic, but it is the mar-
ginal of a distribution P that corresponds to a DAG-isomorphic probabilistic
independence model.

For a probability measure we can now present a refined definition of DAG-
isomorph marginal based on the probabilistic notion of a marginal.

Definition 12 (P-DAG-isomorph marginal). Let V be a set of variables and
P a probability measure on V . We say that P is a P-DAG-isomorph marginal,
if there exists a finite set of variables V = {V 1, . . . , V N} ⊇ V with domains V i,
i = 1, . . . , N , a DAG G = (V ,A), and a probability measure P on V , such that

– The domains of the variables Vi in V for P are the same as for P ,
– The marginal distribution P

V
of P over V is equal to P ,

– G is a perfect map for P .

4 Existence of a Latent Perfect Map

Weak transitivity and chordality are necessary conditions for DAG-isomorphism.
Assume that we have an independence model I on the set of variables V that
does not satisfy either of these two conditions. For any independence model I
on a superset V ⊇ V the conflicting conditions remain unsatisfied, since the
independence statements in I that violated the conditions will also be in I.
This implies that any independence model that does not satisfy any of these two
properties, is not a DAG-isomorph marginal.

For Example 1, which satisfies weak transitivity and chordality, there does
not exist a P-map, but we were able to construct a latent perfect map. In this
section we show that a latent perfect map does not always exists, even if the
independence model satisfies all the necessary conditions for a DAG-isomorph.
The main result is captured in the following theorem.

Theorem 1. There exists an independence model satisfying the necessary con-
ditions for DAG-isomorphism that neither has a P-map nor a latent P-map.
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We shall prove Theorem 1 by showing that there is no latent perfect map for
the following independence model.

Example 2. Let V = {B,C,D,E} and let I∗ be the independence model on
V , that consists of the following three non-trivial independent statements (and
their symmetric equivalents):

(T 1) : I∗(B,E|CD)
(T 2) : I∗(C,E|∅)
(T 3) : I∗(C,D|B)

It is a straightforward exercise to verify that I∗ is indeed a semi-graphoid. Ap-
plication of the semi-graphoid axioms on (T1)–(T3) does not yield any new
non-trivial independence statements. Moreover, I∗ satisfies Pearl’s necessary
conditions for DAG-isomorphism.

We prove by contradiction that I∗ is not a DAG-isomorph marginal. The
steps in the proof are summarised in the following four lemmas.

Lemma 2. Assume that I∗, as defined in Example 2, is a DAG-isomorph mar-
ginal and G is a latent P-map for I∗, then there exists at least one path in G
from C to E that is neither blocked by B nor by D.

Proof. By contradiction: assume that there are no paths in G between C and
E. C and E are then d-separated by any subset of V , which contradicts, for
instance, ¬I∗(C,E|BD).

Assume that all paths in G between C and E are blocked by B or D. Since
there is at least one path in G from C to E, this contradicts ¬I∗(C,E|BD). %&

Lemma 3. Assume that I∗, as defined in Example 2, is a DAG-isomorph mar-
ginal, G is a latent P-map for I∗, and s is a path in G from C to E, then s has
at least one converging node.

Proof. Let s be a path from C to E. Due to I∗(C,E|∅) s must be blocked by
∅, which implies that s has a converging node. %&

Lemma 4. Assume that I∗, as defined in Example 2, is a DAG-isomorph mar-
ginal, G is a latent P-map of I∗, s a path in G from C to E that is neither
blocked by B nor by D, and let F be a converging node on s, then D ∈ σ(F ) and
B ∈ σ(F ). Moreover every descending path from F to D is blocked by B.

Proof. If there exists a converging node F on s for which B 
∈ σ(F ) or D 
∈ σ(F ),
then the path s would be blocked by B or D , which is in contradiction with the
definition of s.

Let F be a converging node on s. Since D ∈ σ(F ), there exists a descend-
ing path s1 from F to D. We now construct a new path s2 from C to D by
concatenating the subpath of s between C and F with s1 (see Fig. 4). Due to
I∗(C,D|B) this path must be blocked by B. It cannot be blocked by B on the
segment between C and F , since then also the original path s would be blocked
by B. Therefore s2 must be blocked by B on the subpath s1. Since s1 is descend-
ing, it is unidirectional. Hence B must lie on s1 and s1 is blocked by B. %&
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Lemma 5. Assume that I∗, as defined in Example 2, is a DAG-isomorph mar-
ginal, G is a latent P-map of I∗, s is a path in G from C to E that is neither
blocked by B nor by D. For any converging node F on s there is also a second
converging node on the subpath of s between F and E.

Proof. Let F be a converging node on s, which exists due to Lemma 3. From
Lemma 4 we have that any descending path from F to D has B on it. At least one
such path, say s1, must exist, since B 
= D, and thus D cannot be equal to the
converging node F . We now construct a path s3 from B to E by concatenating
the reverse of the part of subpath s1 between B and F with the subpath of s
between F and E (see also Fig. 4).

Now s3 is a path from B to E via F . Due to I∗(B,E|CD), this path s3
must be blocked by CD. Since s1 is descending and thus unidirectional, the first
part of s3 between B and F is unidirectional. D is not on this subpath, so this
subpath cannot be blocked by D. The second part of s3 between F and E cannot
be blocked by D, since it is part of the original path s and s is not blocked by D.
In path s3 the node F , where the two subpaths join, is not a converging node,
so we conclude that s3 cannot be blocked by D. This implies that s3 must be
blocked by C.

There are two possibilities for C to block s3. The first possibility is that
C blocks s3 by presence on the (unidirectional) subpath of s3 between B and
F . If this is the case, then we can construct a new path s4 from C to E, by
dropping from s3 the first part between B and C. This new path s4 consists of
a unidirectional path between C and F , that has neither B nor D on it. The
second part of the path, between F and E, is the segment of the original path
s. Since F is not a converging node on s4 and s is not blocked by B nor D, we
conclude that s4 is also not blocked by B nor by D. From Lemma 3 we conclude
that s4 must have a converging node, which can lie only between F and E.
Therefore this converging node must also lie on the original path s.

The second possibility for C to block s3 is through absence, if there is a
converging node on s3 that does not have C as a descendant. Since the first part
of s3 between B and F is unidirectional, and F is not a converging node on s3,
this converging node must lie on the segment of s3 strictly between F and E
and therefore also on s. %&

Proof (Of Theorem 1). Let I∗ be as defined in Example 2. Due to Lemma 2 we
know that there is at least one path s between C and E that is not blocked by B
nor by D. According to Lemma 3 this path s must have at least one converging
node and due to Lemma 5 we can conclude that s must have an infinite number
of converging nodes. Therefore V cannot be finite, and I∗ is not a DAG-isomorph
marginal. %&

The next theorem shows that there is also a probabilistic independence model
without a latent perfect map.

Theorem 2. There exists a set of variables V and a probability distribution on
V that is not a P-DAG-isomorph marginal.
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C

B

D

EF
s

s1

s3

s2

Fig. 3. The paths used in the proofs of Lemmas 4 and 5

Proof. Consider the set of binary variables V = {B,C,D,E}. Define the prob-
ability measure P ∗ on V as follows:

B C D E P ∗(B,C,D,E) B C D E P ∗(B,C,D,E)
0 0 0 0 48/1357 1 0 0 0 96/1357
0 0 0 1 48/1357 1 0 0 1 96/1357
0 0 1 0 144/1357 1 0 1 0 192/1357
0 0 1 1 48/1357 1 0 1 1 64/1357
0 1 0 0 48/1357 1 1 0 0 27/1357
0 1 0 1 96/1357 1 1 0 1 54/1357
0 1 1 0 240/1357 1 1 1 0 90/1357
0 1 1 1 48/1357 1 1 1 1 18/1357

It can be verified that the probabilistic independence model IP∗ of P ∗ has exactly
the same independence statements as I∗ as defined in Example 2. �

5 Conclusions

In this paper we have introduced the concept of the marginal of an algebraic inde-
pendence model. We have shown that some independence models are in fact the
marginals of models that are DAG-isomorphs, while the marginals themselves
are not DAG-isomorphs. We have also proved that there exist some independence
models for which we need to introduce an infinite number of auxiliary variables
to obtain a latent perfect map. In examples for both cases the marginal inde-
pendence models satisfy the sufficient conditions of [6] for DAG-isomorphism. It
is an interesting topic for future research to investigate if necessary and suffi-
cient conditions can be established to guarantee the existence of a latent perfect
map.

It is also worthwhile to investigate if existence results for latent P-maps can
be established for other types of graphical model. We can show that this is not
true for undirected graphs, and we plan to investigate if it is possible for chain
graphs.
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Abstract. Model-based diagnosis is the field of research concerned with
the problem of finding faults in systems by reasoning with abstract mod-
els of the systems. Typically, such models offer a description of the struc-
ture of the system in terms of a collection of interacting components.
For each of these components it is described how they are expected to
behave when functioning normally or abnormally. The model can then
be used to determine which combination of components is possibly faulty
in the face of observations derived from the actual system. There have
been various proposals in literature to incorporate uncertainty into the
diagnostic reasoning process about the structure and behaviour of sys-
tems, since much of what goes on in a system cannot be observed. This
paper proposes a method for decomposing the probability distribution
underlying probabilistic model-based diagnosis in two parts: (i) a part
that offers a description of uncertain abnormal behaviour in terms of the
Poisson-binomial probability distribution, and (ii) a part describing the
deterministic, normal behaviour of system components.

1 Introduction

Almost from the inception of the field of probabilistic graphical models, Bayesian
networks have been popular as formalisms to built model-based, diagnostic sys-
tems [1]. An alternative theory of model-based diagnosis was developed at
approximately the same time, founded on techniques from logical reasoning [2,3].
The General Diagnostic Engine, GDE for short, is a well-known implementation
of the logical theory; however, it also includes a restricted form of uncertainty
reasoning to focus the diagnostic reasoning process [4]. Previous research by
Geffner and Pearl showed that the GDE approach to model-based diagnosis can
be equally well dealt with by Bayesian networks [5,1]. Geffner and Pearl’s result
is basically a mapping from the logical representation as traditionally used within
the model-based diagnosis community to a specific Bayesian-network represen-
tation. The theory of model-based diagnosis supports multiple-fault diagnoses,
which are similar to maximum a posteriori hypotheses, MAP hypotheses for
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short, in Bayesian networks [6]. Thus, although the logical and the probabilistic
theory of model-based diagnosis have different origins, they are closely related. In
fact, in his research Darwich has extensively explored this relationship, although
ignoring uncertainty [7]. However, whereas the traditional theory of model-based
diagnosis is strong in providing models that are easily understood in relationship
to the actual, real-world systems, it is weak on dealing with uncertain informa-
tion. With Bayesian networks taken as representations of models of systems, it
is the other way around. Thus, developing ways to combine both approaches can
be advantageous.

In logical model-based diagnosis, it is clear that a diagnosis should be inter-
preted as behaviour assumptions of particular components that are compatible
with, and possibly explain, the observations; however, probabilistic diagnosis
defies giving similar straightforward interpretations. This is because the logical
reasoning, implemented by deterministic probability distributions, and uncer-
tainty reasoning (nondeterministic probability distributions) are mingled. To
tackle this problem, this paper proposes a new way to look at model-based
diagnosis, taking the Bayesian-network representation by Geffner and Pearl as
the point of departure [5,1]. It is shown that after adding probabilistic informa-
tion to a model of a system, the predictions that can be made by the model
can be naturally decomposed into a logical and a probabilistic part. The logi-
cal specifications are determined by the system components that are assumed
to behave normally, constituting part of the system behaviour. This is com-
plemented by uncertainty about behaviour for components that are assumed
to behave abnormally. It is shown that the Poisson-binomial distribution plays
a central role in governing this uncertain behaviour. The results of this paper
establish new links between traditional logic-based diagnosis, Bayesian networks
and probability theory.

2 Poisson-Binomial Distribution

First, we begin by summarising some of the relevant theory of discrete probability
distributions (cf. [8,9]).

Let s = (s1, . . . , sn) be a Boolean vector with elements sk ∈ {0, 1}, k =
1, . . . , n, where sk is a Bernoulli discrete random variable that expresses that
the outcome of trial k is either success (1) or failure (0). Let the probability of
success of trial k be indicated by pk ∈ [0, 1] and, thus, the probability of failure
is set to 1− pk. Then, the probability of obtaining vector s as outcome is equal
to

P (s) =
n∏

k=1

psk

k (1− pk)1−sk . (1)

This probability distribution acts as the basis for the Poisson-binomial distribu-
tion. The Poisson binomial distribution is employed to describe the outcomes of
n independent Bernoulli distributed random variables, where only the number
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of success and failure are counted. The probability that there are m, m ≤ n,
successful outcomes amongst the n trials performed is then defined as:

f(m;n) =
∑

s1+···+sn=m

n∏
k=1

psk

k (1− pk)1−sk , (2)

where f is a probability function. Here, the summation means that we sum over
all the possible values of elements of the vector s, where the sum of the values
of the elements must be equal to m.

It is easy to check that when all probabilities pk are equal, i.e. p1 = · · · =
pn = p, where p denotes this identical probability, then the probability function
f(m;n) becomes that of the well-known binomial distribution:

g(m;n) =
(

n

m

)
pm(1− p)n−m. (3)

Finally, suppose that we model interactions between the outcomes of the trials
by means of a Boolean function b. This means that we have an oracle that is able
to observe the outcomes, and then gives a verdict whether the overall outcome
is successful. The expectation or mean of this Boolean function is then equal to:

EP (b(S)) =
∑
s

b(s)P (s). (4)

with P defined according to Equation (1). This expectation also acts as the
basis for the theory of causal independence, where a causal process is modelled
in terms of interacting independent processes (cf. [10]). Note that for b(s) =
bm(s) ≡ s1 + · · · + sn = m (i.e., the Boolean function that checks whether the
number of successful trials is equal to m), we have that EP (bm(S)) = f(m;n).
Thus, Equation (4) can be looked on as a generic way to combine the outcome
of independent trials.

In the theory of model-based diagnosis, it is common to represent models of
systems by means of logical specifications, which are equivalent to Boolean func-
tions. Below, it will become clear that if we interpret the success probabilities
pk as the probability of observing the expected output of a system’s compo-
nent under the assumption that the component is faulty, then the theory of
Poisson-binomial distributions can be used to describe part of the probabilis-
tic model-based diagnostic process. However, first the necessary background to
model-based diagnosis research is reviewed.

3 Uncertainty in Model-Based Diagnosis

3.1 Model-Based Diagnosis

In the theory of model-based diagnosis [2], the structure and behaviour of a
system is represented by a logical diagnostic system SL = (SD,COMPS), where
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– SD denotes the system description, which is a finite set of logical formulae,
specifying structure and behaviour;

– COMPS is a finite set of constants, corresponding to the components of the
system; these components can be faulty.

The system description consists of behaviour descriptions and connections.
A behavioural description is a formula specifying normal and abnormal (faulty)
functionalities of the components. A connection is a formula of the form ic = oc′ ,
where ic and oc′ denote the input and output of components c and c′, respectively.
This way an equivalence relation on the inputs and outputs is defined, denoted
by IO\≡. The class representatives from this set are denoted by [r].

A logical diagnostic problem is defined as a pair PL = (SL,OBS), where SL is a
logical diagnostic system and OBS is a finite set of logical formulae, representing
observations.

Adopting the definition from [3], a diagnosis in the theory of consistency-based
diagnosis is defined as follows. Let Δ be the assignment of either a normal or an
abnormal behavioural assumption to each component. Then, Δ is a consistency-
based diagnosis of the logical diagnostic problem PL iff the observations are
consistent with both the system description and the diagnosis:

SD ∪Δ ∪OBS � ⊥. (5)

Here, � stands for the negation of the logical entailment relation, and ⊥ repre-
sents a contradiction.

Example 1. Consider the logical circuit depicted in Figure 1, which represents a
full adder, i.e. a circuit that can be used for the addition of two bits with carry-in
and carry-out bits. It is an example frequently used to illustrate concepts from
model-based diagnosis. This circuit consists of two AND gates (A1 and A2), one
OR gate (R1) and two exclusive-or (XOR) gates (X1 and X2). These are the
components that can be either faulty (abnormal) or normal.

X1

A1
A2

X2

R1

1
0

1

0 predicted
[1] observed

1 predicted
[0] observed

Fig. 1. Full adder with inputs {i1, ı̄2, i3}, and observed ({oX2,¬oR1}) and predicted
outputs ({¬oX2, oR1})
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3.2 Probabilistic Model-Based Diagnosis

In this section, we will map logical diagnostic problems onto probabilistic rep-
resentations, called Bayesian diagnostic problems, using the Bayesian-network
representation proposed by Flesch et al. [11], which was inspired by previous
work by Geffner and Pearl [5,1]. As will become clear below, a Bayesian diag-
nostic problem is defined as (i) a Bayesian diagnostic system representing the
components, including their behaviour and interaction, based on information
from the logical diagnostic system of concern, and (ii) a set of observations.

Graphical Representation. First the graphical structure used to represent
the structural information from a logical diagnostic system is defined. It has the
form of an acyclic directed graph G = (V,E), where V is the set of vertices and
E ⊆ (V × V ) is the set of arcs.

Definition 1 (diagnostic mapping). Let SL = (SD,COMPS) be a logical
diagnostic system. The diagnostic mapping md maps SL onto an acyclic directed
graph G = md(SL), as follows (see Figure 2):

– The vertices V of graph G are created according to the following rules:
• Each component c ∈ COMPS yields a vertex Ac used to represent its

normal and abnormal behaviour;
• Each class representative of an input or output [r] ∈ IO\≡ yields an

associated vertex [r].
The set of all abnormality vertices Ac is denoted by Δ, i.e. Δ = {Ac | c ∈
COMPS}. The vertices of graph G are, thus, obtained as follows:

V = Δ ∪ IO\≡,

where IO\≡ = I ∪ O, with disjoint sets of input vertices I and output
vertices O.

– The arcs E of G are constructed as follows:
• There is an arc from each each input of a component c to each output of

the component;
• There is an arc for each component c from Ac ∈ V to the corresponding

output of the component.

An example of using the diagnostic mapping is given below.

Example 2. Figure 3 shows the graphical representation of the full-adder circuit
from Figure 1. The set V of vertices is:

V = Δ ∪O ∪ I

= {AX1, AX2, AA1, AA2, AR1} ∪ {OX1, OX2, OA1, OA2, OR1}
∪ {I1, I2, I3}.

The arcs from E connect (i) outputs of two components such as OX1 → OX2,
(ii) an abnormality vertex with an output vertex such as AA2 → OA2 and (iii)
an input vertex with an output vertex such as I3 → OX2.
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Fig. 2. The diagnostic mapping

Bayesian Diagnostic Problems. Recall that Bayesian networks that act as
the basis for diagnostic Bayesian networks consist of two parts: a joint probability
distribution and a graphical representation of the relations among the random
variables defined by the joint probability distribution. Based on the definition
of Bayesian networks, particular parts of a logical diagnostic system will be
related to the graphical structure of a diagnostic Bayesian network, whereas
other parts will have a bearing on the content of the probability table of the
Bayesian network.

Having introduced the mapping of a logical diagnostic system to its associated
graph structure, we next introduce the full concept of a Bayesian diagnostic
system.

Definition 2 (Bayesian diagnostic system). Let SL = (SD,COMPS) be a
logical diagnostic system, and G = md(SL) be obtained by applying the diagnostic
mapping. Let P be a joint probability distribution of the vertices of G, interpreted
as random variables. Then, SB = (G,P ) is the associated Bayesian diagnostic
system.

Recall that by the definition of a Bayesian network, the joint probability distri-
bution P of a Bayesian diagnostic system can be factorised as follows:

P (I,O,Δ) =
∏
c

P (Oc | π(Oc))P (I)P (Δ), (6)

where Oc is an output variable associated to component c ∈ COMPS, and π(Oc)
are the random variables corresponding to the parents of Oc. The parents will
normally consist of inputs Ic and an abnormality variable Ac.

To simplify notation, in the following, (sets of) random variables of a Bayesian
diagnostic problem have the same names as the corresponding vertices. By ac is
indicated that abnormality variable Ac takes the value ‘true’, whereas by āc it is
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Fig. 3. A Bayesian diagnostic system corresponding to the circuit in Figure 1

indicated that Ac takes the value ‘false’. A similar notation will be used for the
other random variables. Finally, a specific abnormality assumption concerning
all abnormality variables is denoted by δC , which is defined as follows:

δC = {ac | c ∈ C} ∪ {āc | c ∈ COMPS− C},
with C ⊆ COMPS. There are some sensible constraints on the joint probability
distribution P of a Bayesian diagnosis system that can be derived from the
specification of the logical diagnostic system. These will be discussed later.

As with logical diagnostic problems, we need to add observations to Bayesian
diagnostic systems in order to be able to solve diagnostic problems. In logical
diagnostic systems, observations are the inputs and outputs of a system. It is
generally not the case that the entire set of inputs and outputs of a system
is observed. The set of input and output variables that have been observed,
are referred to by Iω and Oω , respectively. The unobserved input and output
variables will be referred to as Iu and Ou, respectively. We will use the notation
iω to denote the values of the observed inputs, and oω for the observed output
values. The set of observations is then denoted as ω = iω ∪ oω .

Now, we are ready to define the notion of Bayesian diagnostic problem, which
is a Bayesian diagnostic system augmented by a set of observations.

Definition 3 (Bayesian diagnostic problem). A Bayesian diagnostic prob-
lem, denoted by PB, is defined as the pair PB = (SB , ω), where SB is a Bayesian
diagnostic system and ω the set of observations of this system.

Determining the diagnoses of a Bayesian diagnostic problem amounts to com-
puting P (δC | ω), and then finding the δC which maximises P (δC | ω), i.e.

δ∗C = argmax
δC

P (δC | ω).
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This problem is NP-hard; however, many special methods to make probabilis-
tic inference feasible are known [6]. The probability P (δC | ω) can be com-
puted by Bayes’ rule, using the probabilities from the specification of a Bayesian
diagnostic system:

P (δC | ω) =
P (ω | δC)P (δC)

P (ω)
. (7)

As a consequence of the independences that hold for a Bayesian diagnostic sys-
tem, it is possible to simplify the computation of the conditional probability
distribution P (ω | δC). According to the definition of a Bayesian diagnostic
system it holds that

P (i | δC) = P (i),

for each i ⊆ (iω ∪ iu), as the input variables and abnormality variables are
independent. In addition, it is assumed that the input variables are independent.

Using these results, basic probability theory and the definition of a Bayesian
diagnostic problem yields the following derivation:

P (ω | δC) = P (iω, oω | δC)

=
∑
iu

P (iu)P (iω, oω | iu, δC)

= P (iω)
∑
iu

P (iu)
∑
ou

∏
c

P (Oc | π(Oc)), (8)

since it holds by the axioms of probability theory that

P (iω, oω | iu, δC) =
∑
ou

P (iω)
∏
c

P (Oc | π(Oc)) .

To emphasise that the set of parents π(Oc) includes an abnormality variable
that is assumed to be true, i.e. the component is assumed to behave abnormally,
the following notation is used P (Oc | π(Oc) : ac); similar, for the situation where
the component c is assumed to behave normally the notation P (Oc | π(Oc) : āc)
is employed. Finally, the following assumptions are made and will be used in the
remainder of this paper:

– P (Oc | π(Oc) : ac) = P (Oc | ac), i.e. the probabilistic behaviour of a compo-
nent that is faulty is independent of its inputs;

– P (Oc | π(Oc) : āc) ∈ {0, 1}, i.e. normal components behave deterministically.

The probability P (oc | ac) will be abbreviated in the following section as pc; thus
P (ōc | ac) = 1−pc These are realistic assumptions, as it is unlikely that detailed
functional behaviour will be known for a component that is faulty, whereas when
the component is not faulty, it is certain it will behave as intended. Note that
the latter assumption is identical to that used in traditional, logical model-based
diagnosis.
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4 Decomposition of Probability Distribution

To establish that probabilistic model-based diagnosis can be partly interpreted
in terms of a Poisson-binomial distribution, it is necessary to decompose Equa-
tion (8) into various parts. The first part will represent the probabilities that
components c produce the right, oc, or wrong, ōc, output, which correspond to
the success and failure probabilities, respectively, of a Poisson-binomial distribu-
tion. The second part represents a normally functioning system fragment, which
will be represented by a Boolean function. There is also a third part, which con-
cerns the observed and unobserved inputs. We start by distinguishing between
various types of components, inputs and outputs, in order to make the necessary
distinction:

– The sets of components assumed to function normally and abnormally will
be denoted by C ā and Ca, respectively, with C ā, Ca ⊆ COMPS;

– The sets C ā and Ca are partitioned into sets of components, for observed and
unobserved outputs, indicated by the sets C ā

ω , C ā
u, Ca

ω and Ca
u, respectively.

Thus, C ā = C ā
ω ∪C ā

u and Ca = Ca
ω ∪Ca

u . In addition, we will sometimes make a
distinction between components c for which oc has been observed, and compo-
nents c for which ōc has been observed. These sets will be denoted by Co

ω and C ō
ω ,

respectively. It holds that Co
ω and C ō

ω constitute a partition of Cω . The notations
can also be combined, e.g., as Ca,o

ω and Ca,ō
ω . Furthermore, we will sometimes

use a similar notation for sets of output variables, e.g., Oā
u = {Oc | c ∈ C ā

u}
and Oā

ω = {Oc | c ∈ C ā
ω}, and input variables, e.g., I āu =

⋃
c∈Cā

u
Ic indicates

unobserved inputs of components that are assumed to behave normally and
I āω =

⋃
c∈Cā

ω
Ic are observed inputs of components that are assumed to behave

normally, with Ic the set of input variables of component c ∈ COMPS and
I ā = I āω ∪ I āu .

The following lemma shows that it is possible to decompose part of the joint
probability distribution of Equation (6) using the component sets defined above.

Lemma 1. The following statements hold:

– The joint probability distribution of the outputs of the set of assumed nor-
mally functioning components C ā, can be decomposed into two products as
follows:∏

c∈Cā

P (Oc | π(Oc) : āc)

=
∏
c∈Cā

u

P (Oc | π(Oc) : āc)
∏
c∈Cā

ω

P (Oc | π(Oc) : āc).

– Similarly, the joint probability distribution of the outputs of the set of
assumed abnormally functioning components Ca, can be decomposed into
two products as follows:∏

c∈Ca

P (Oc | π(Oc) : ac) =
∏
c∈Ca

u

P (Oc | ac)
∏
c∈Ca

ω

P (Oc | ac).



The Probabilistic Interpretation of Model-Based Diagnosis 213

Proof: The decompositions follows from the definitions of the sets Ca, Ca
ω, Ca

u ,
C ā
u and C ā

ω, and the independence assumptions underlying the distribution P . �

Now, based on Lemma 1, we can also decompose the product of the entire set
of components, as follows:∏

c

P (Oc | π(Oc))

=
∏
c∈Cā

u

P (Oc | π(Oc) : āc)
∏
c∈Cā

ω

P (Oc | π(Oc) : āc)

×
∏
c∈Ca

u

P (Oc | ac)
∏
c∈Ca

ω

P (Oc | ac).

Next, we show that the outputs of the set of observed abnormal components Ca
ω

only depend on probabilities pc = P (oc | ac), c ∈ Ca
ω .

Lemma 2. The joint probability of observed outputs of the abnormally assumed
components can be written as:∏

c∈Ca
ω

P (Oc | π(Oc) : ac)=
∏

c∈Ca,o
ω

pc
∏

c∈Ca,ō
ω

(1− pc).

Proof: This follows straight from the definitions of Ca
ω, Ca,o

ω and Ca,ō
ω . �

Recall that the probability of an output of a normally functioning component
was assumed to be either 0 or 1, i.e. P (Oc | π(Oc) : āc) ∈ {0, 1}. Clearly, these
probabilities yield, when multiplied, Boolean functions. One of these Boolean
functions, denoted by ϕ, is defined as follows: ϕ(oāu, o

a
u, i

ā) =
∏

c∈Cā
u
P (Oc |

π(Oc) : āc), where the set of parents π(Oc) may, but need not, contain variables
from the sets of variables Oa

u and I ā. However, π(Oc) does not contain variables
from the set Ia, as these only condition variables that are assumed to behave
abnormally and are then ignored, as mentioned at the end of the previous section.
Similarly, we define Boolean functions ψ(ou, oāω , iā) =

∏
c∈Cā

ω
P (Oc | π(Oc) : āc).

Lemma 3. For each value oau and iā, there exists exactly one value oāu of the
set of variables Oā

u = {Oc | c ∈ C ā
u} for which it holds that ϕ(oau, oāu, iā) = 1;

similarly, for each value ou and iā there exists one value oāω of the set of variables
Oā
ω = {Oc | c ∈ C ā

ω} for which it holds that ψ(ou, oāω , iā) = 1.

Proof: As both the functions ϕ and ψ are defined as products of conditional prob-
ability distributions P (Oc | π(Oc) : āc), for which we have that P (oc | π(Oc) :
āc) ∈ {0, 1}, there is, due to the axioms of probability theory, for any value of the
variables corresponding to the parents of the variables Oc at most one value for
each Oc for which the joint probability

∏
c P (Oc | π(Oc) : āc) = 1. �

The following lemma, which is used later, is a consequence of the definition of
these Boolean functions.
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Lemma 4. Let the Boolean functions ϕ and ψ be as defined above, then:∑
ou

ϕ(oau, o
ā
u, i

ā)ψ(ou, oāω, i
ā)

∏
c∈Ca

P (Oc | ac) =∑
oa

u

b(oau, i
ā)

∏
c∈Ca,o

pc
∏

c∈Ca,ō

(1− pc),

with Boolean function b and pc = P (oc | ac).

Proof: First, the Boolean function b is defined for a given set of observed outputs
oω: b(ou, iā) = ϕ(oau, oāu, iā)ψ(ou, oāω, iā), then,∑

ou

ϕ(oau, o
ā
u, i

ā)ψ(ou, oāω, i
ā)

∏
c∈Ca

P (Oc | ac) =
∑
ou

b(ou, iā)
∏
c∈Ca

P (Oc | ac).

Furthermore, due to Lemma 3, it suffices to only consider the restriction of the
function b to the variables Oa

u and I ā, as for given values oau and iā, b(oau, oāu, iā) =
0 for all but one value of Oā

u. This function is denoted by b(oau, i
ā). The product

term results from application of a slight generalisation of Lemma 2. �

We are now ready to establish that P (ω | δC) can be written as the sum of
weighted products of the form

∏
c pc

∏
c′(1− pc′), i.e. Equation (1).

Theorem 1. Let PB = (SB, ω) be a Bayesian diagnostic problem. Then, P (ω |
δC) can be expressed as follows:

P (ω | δC) = P (iω)
∑
iāu

P (iāu)
∑
oa

u

b(oau, i
ā)

∏
c∈Ca,o

pc
∏

c∈Ca,ō

(1− pc),

where b(oau, iā) ∈ {0, 1} and pc = P (oc | ac).

Proof: The result follows from the above lemmas and the fact that we sum
over (part of) the input variables I. Note that only the variables I ā are used as
conditioning variables, which follows from the assumption that P (Oc | π(Oc) :
ac) = P (Oc | ac). As only the input variables iāu are assumed to be dependent
of output variables, we obtain:

∑
iu,oa

u
P (iu) · · · =

∑
iāu,o

a
u
P (iāu) · · ·. The Boolean

function b(oau, i
ā) is as above. �

An alternative version of the theorem can be obtained in terms of expectations
using Equation (4) for the Poisson-binomial distribution:

P (iω)
∑
iāu

P (iāu)
∑
oa

u

b(oau, i
ā)

∏
c∈Ca,o

pc
∏

c∈Ca,ō

(1− pc)

= P (iω)
∏
c∈Ca

ω

P (Oc | ac)
∑
iāu

P (iāu)EP (biā(Oa
u)),

i.e. the sum of the mean of the Boolean functions biā , which are functions of
the unobserved inputs iāu, in terms of the probability function P (Equation (4)),
weighed by the prior probability of unobserved inputs iāu. Combining this with
Equation (7) yields P (δC | ω). Thus, to probabilistically rank diagnoses δC it is
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necessary to compute: (i) EP (biā(Oa
u)), the Poisson-binomial distribution mean

of the behaviour of the normally assumed, unknown components, (ii) P (iāu), (iii)∏
c∈Ca

ω
P (Oc | ac), the observed abnormal components, and (iv) the prior P (δc).

Note that P (iω) can be cancelled by P (ω) in Equation (7) and both probabilities
are irrelevant for ranking.

5 Conclusions

We have shown that probabilistic model-based diagnosis, which is an extension
of traditional GDE-like model-based diagnosis, can be decomposed into compu-
tation of various probabilities, in which a central role is played by the Poisson-
binomial distribution. When all probabilities pc = P (oc | ac) are assumed to be
equal, a common simplifying assumption in model-based diagnosis, the analysis
reduces to the use of the standard binomial distribution.

So far, most other research on integrating probabilistic reasoning with logic-
based model-based diagnosis took probabilistic reasoning as adding some sort of
uncertain, abductive reasoning to logical reasoning. No attempts were made in re-
lated research to look inside what happens in the diagnostic process, as was done
in this paper. We expect that it becomes thus possible to investigate further vari-
ations in probabilistic model-based diagnosis, for example, by adopting assump-
tions different from those in this paper with regard to fault behaviour in systems.
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Abstract. Dynamic Bayesian networks (DBNs) are increasingly adopted
as tools for the modeling of dynamic domains involving uncertainty.Due to
their ease of modeling, repetitive DBNs have become the standard. How-
ever, repetition does not allow the independence relations to vary over
time. Non-repetitive DBNs do allow for modeling time-varying relations,
but are hard to apply to dynamic domains.

This paper presents a novel method that facilitates the use of non-
repetitive DBNs and simplifies learning DBNs in general. This is achieved
by learning disjoint sets of independence relations of separate parts of a
DBN, and, subsequently, joining these relations together to obtain the
complete set of independence relations of the DBN. Our simplified learn-
ing method improves previous methods by removing redundant opera-
tions which yields computational savings in the learning process of the
network. Experimental results show that the simplified learning method
facilitates the use of non-repetitive DNBs and enables us to build them
in a seamless fashion.

1 Introduction

In recent years, Dynamic Bayesian networks (DBNs) became a popular tool for
representing time-related uncertain processes. They are explored in various fields
of applications, such as speech recognition (e.g. [2]) and gene-expression analysis
[6]. The reason for their succes is their ease of representation of independence
relations of random variables in dynamic processes. DBNs are distinguished into
two main classes: repetitive and non-repetitive networks [4]. In repetitive DBNs
the (in)dependence relations do not vary beyond the repetition cycle. In contrast,
non-repetitive DBNs may change their structure over time.

Repetitive DBNs have become a standard due to their simple structure for
modeling and analysis [6]. Since the appropriate modeling of many real-life dy-
namic processes requires taking the changing indepence relations into account,
non-repetitive DBNs should be the method of choice for real-life applications.
As a case in point, Tucker and Liu [8] established that non-repetitive DBNs
are practically useful. More recently, experimental results have shown that for a
real-life problem domain with finite time interval, non-repetitive DBNs perform
better than repetitive DBNs [3]. In this earlier work, atemporal and temporal
independence relations were distinguished, and subsequently joined together to
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obtain all the independences of a DBN. This way of modeling simplifies the
learning procedure of non-repetitive DBNs.

This paper builds on the earlier work by identifying and removing redundan-
cies in the joining of atemporal and temporal relations. We propose a simplified
learning method to further facilitate the analysis and application of non-repetitive
DBNs. To avoid redundancy, our approach makes use of a more detailed distinc-
tion of atemporal relations in the graphical representation of DBNs, in which the
separate parts of the atemporal relations include only disjoint sets of dependence
information. These disjoint sets, which are the inputs for the simplified learning
method, can then be joined to determine all relations of a DBN. Since our simpli-
fied learning method considers disjoint independence relations only, our approach
provides computational savings as compared to the original method. The perfor-
mance of the proposed method is shown by experiments on a real-life problem do-
main with infinite discrete time represented by a non-repetitive DBN. As far as
the authors know this is the first time that a non-repetitive DBN is succesfully
applied to a real-life problem with an infinite time interval.

The separation of repetitive and non-repetitive parts of a DBN has been
proposed in work on multi-network models [1]. The simplified learning method
differs from the earlier work that it enables to deal with time-related processes.

2 Motivating Example

A real-world data set of vessel traffic at the Dutch coast is used as an example
throughout this paper. In this data set, we will focus on two vessels: the Sirius
and the Anton (the vessels have been renamed for privacy and security reasons).
Fig. 1 shows the movements of the two vessels, whose routes intersect at some
point. In our data, each vessel has dynamic features, such as speed, longitude,
and latitude; the values of these features may vary in time.

Initially, we learned a DBN, which represents the movements of the Sirius and
the Anton, without considering any interaction between the two vessels. Fig. 2
shows the graphical representation of the learned model in three consecutive
time intervals. In this figure, Sirius and Anton are denoted by S and A, and
the longitude and latitude are abbreviated to ‘long’ and ‘lat’, respectively. The
three rectangular boxes, labelled 1, 2, and 3, represent consecutive time steps. In
this network, at each time step, for both vessels it holds that the longitude and
latitude are dependent on the vessel-speed and the longitude and the latitude are
dependent on each other (solid arrows), moreover, each variable also influences
its own value at the consecutive time step (dotted arrows). This is in accordance
with our expectations. Note that as the structure of this network does not change
over time it is repetitive.

In general, not considering intersections between vessels is unrealistic. There-
fore, the question arises if the structure remains repetitive if we take into account
that the routes of vessels Sirius and Anton intersect each other at a certain time
step. In our data, at time step 1, Sirius and Anton are approaching the same
water area. Subsequently, at time step 2 they are passing each others route,
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Fig. 1. Two inter-
secting vessel routes
(solid thick lines)

speedS1

latS1

longS1

speedA1

latA1

longA1
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latS2

longS2

speedA2

latA2

longA2

speedS3

latS3

longS3

speedA3

latA3

longA3

1 2 3

Fig. 2. A repetitive DBN representing the movements of
two non-intersecting vessels. Solid arcs represent atem-
poral dependences, whereas dashed arrows temporal de-
pendences.

and at time step 3 they are not at the same sea area again. In this case, at
time steps 1 and 3 the speed and position of these two vessels are independent
of each other, while at time step 2 their variables might depend on each other
preventing a possible collision (cf. Fig. 1). This means that we have different
dependences at different time steps, and, therefore, non-repetitive DBNs are
preferred to represent our vessel traffic domain. This is our motivation for the
study of non-repetitive DBNs. Our example is further examined in Section 7.

3 Preliminaries

3.1 Dynamic Bayesian Networks

Let XV be a set of discrete random variables with index set V , let Xv with
v ∈ V denote a random variable, and let XW with W ⊆ V denote a set of
random variables. Furthermore, let P denote a joint probability distribution
(JPD) on XV . The set XU is said to be conditionally independent of XW given
XZ , with U,W,Z ⊆ V , if

P (XU | XW , XZ) = P (XU | XZ) , (1)

denoted by XU⊥⊥PXW | XZ . If the set XZ is empty, then it is abbreviated to
XU⊥⊥PXW . These independence statements in the joint probability distribution
can also be graphically represented by an acyclic directed graph G = (V,A) with
the set of vertices V (representing random variables) and the set of arcs A, having
no directed path V1 → V2 → . . . → Vn s.t. V1 = Vn. In an acyclic directed graph
G, the independence relation (i.e. the entire set of independence statements in G)
is denoted by ⊥⊥G and the dependence relation (i.e. the entire set of dependence
statements in G) by 
⊥⊥G. In this paper, the derived (in)dependence statements
from an example graph are derived from the d-separation criterion [5].

A Bayesian network is defined as a pair B = (G,P ), where G is an acyclic
directed graph representing relations of random variables XV , P is the joint
probability distribution on XV , and each independence statement represented
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in G is also a valid independence statement in P . Bayesian networks that include
the dimension of time are called Dynamic Bayesian networks (DBNs); time is
denoted by T . The graphical representation of a DBN consists of two parts: an
atemporal (time-independent) part, and a temporal (time-dependent) part.

An atemporal relation of time step t ∈ T is represented by a timeslice acyclic
directed graph Gt = (Vt, Aa

t ) with set of vertices Vt and set of atemporal arcs
Aa
t ⊆ Vt × Vt. All the timeslices together form the atemporal network G:

G = {Gt | t ∈ T } = {(Vt, Aa
t ) | t ∈ T } . (2)

Related to the time-dependent relations, a temporal arc connects two vertices in
different timeslices; it directs always from the past to the future. In this paper
it is drawn as a dotted arrow. The set of temporal arcs is denoted by At. A
temporal network N = (VT , A) consists of the set of vertices of the timeslices,
i.e. VT , and the union of the atemporal and temporal arcs, i.e. A = Aa ∪At.

A Dynamic Bayesian network (DBN) is formally defined as a pair DBN =
(N,P ), where P is the JPD on the entire set of random variables. Clearly, a
temporal network N is an acyclic directed graph and it is the graphical repre-
sentation of a DBN.

For example, Fig. 2 represents three timeslices. In this network, speedA1
−>

latA1 is an atemporal arc, since it connects vertices from the same timeslice G1,
with t = 1, whereas speedA1

· · ·> latA2 is a temporal arc.

3.2 Atemporal and Temporal Relations and Their Join

The atemporal and temporal independence relations can be separated in DBNs
based on the concept of trails [3]. A trail in a graph is a sequence of unique
vertices v1, v2, . . . , vm, where consecutive vertices are connected by an arc point-
ing either forward or backward; each arc occurs only once. The set of trails is
denoted by Θ.

In a temporal network, an atemporal independence can be represented by
means of an atemporal trail θa containing no temporal arcs, whereas a temporal
relation is defined by a temporal trail θt consisting of at least one temporal arc.
The sets of all atemporal and temporal trails are denoted by Θa and Θt, re-
spectively. With regards to the temporal relationships we only need to consider
temporal trails resulting in a reduced temporal network N|Θt = (VT , AΘt), with
its set of arcs AΘt ⊆ A consisting of all the arcs included on the temporal trails
in Θt. Since temporal trails may consist of both atemporal and temporal trails a
further partitioning is defined. The atemporal part of the reduced temporal net-
work is denoted by Na

|Θt = (VT , Aa
Θt), where Aa

Θt ⊆ Aa consists of all atemporal
arcs in the reduced temporal network. The temporal part of the reduced temporal
network is denoted by N t

|Θt = (VT , At
Θt), where At

Θt ⊆ At consists of all temporal
arcs in the reduced temporal network. Fig. 3(a) summarises the independence
relations of these above-defined networks and Fig. 4 shows an example.

It has been shown that for the sound and complete composition of the above-
defined temporal and atemporal independence relations of DBNs, the dependence
preservation and independence concatenation properties has to be satisfied [3].
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Fig. 3. (a) Various parts of a DBN, (b) an earlier presented join method, where initially
the atemporal and temporal parts of the reduced temporal network are joined, and
subsequently the atemporal network is joined with the reduced temporal network

The dependence preservation property establishes that a dependence statement
dominates an independence statement, therefore, joining either two dependence
or one dependence and one independence statements will result in a dependence
statement. For example, suppose we want to join independence relations ⊥⊥ and
⊥⊥′ of two graphs defined on the same set of vertices. Then, when we join depen-
dence statement U 
⊥⊥W | Z with either dependence statement U 
⊥⊥′W | Z or
with independence statement U⊥⊥′W | Z, then in the joined relation ⊥⊥′′ depen-
dence statement U 
⊥⊥′′W | Z will hold. On the other hand, when joining two in-
dependence statements, we either apply the d-separation criterion to the compos-
ite graph, or apply the independence concatenation procedure, which is a special
version of d-separation exploiting some special properties regarding the temporal
composition. For example, depending on the graphical representation of indepen-
dence relation ⊥⊥′′, the join of U⊥⊥W | Z with U⊥⊥′W | Z can remain indepen-
dence U⊥⊥′′W | Z or can turn into dependence U 
⊥⊥′′W | Z.

Then, satisfying both the dependence preservation and the independence con-
catenation properties, the join operator, denoted by ◦, joins two independence
relations ⊥⊥ and ⊥⊥′ (both defined on the same vertex set V ) resulting in inde-
pendence relation ⊥⊥′′. An overview of the various join operations defined for
the different parts of a temporal network N is given in Fig. 3(b).

4 Demonstration of Redundancy of Join Operations

As was mentioned in the introduction, the theoretical separation of the indepen-
dence relations of a DBN is not complete yet, since there are some join operations
which are redundant. In this section, we discuss this redundancy and we also
demonstrate it by example.

Consider the atemporal network G and the reduced temporal network N|Θt

of the graphical representation of a DBN. By definition, the relations in the
reduced temporal network are constructed by temporal trails consisting of both
atemporal and temporal arcs. However, these atemporal arcs are also included
in the atemporal network G, since they also define time-independent relations.
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Fig. 4. Separation of a temporal network (a): (b) atemporal network, (c) reduced tem-
poral network, (d) atemporal part of the reduced temporal network, and (e) temporal
part of the reduced temporal network

Therefore, when a dependence statement in the atemporal network G is joined by
a dependence statement in the reduced temporal network N|Θt , these dependence
statements might be defined by the same set of atemporal arcs. This implies that
joining independence relations ⊥⊥G and ⊥⊥N|Θt (see Fig. 3(b)) includes some
unnecessary join operations. This issue is illustrated by the following example.

Example 1. Consider the temporal network in Fig. 4(a). Suppose that we want
to join its atemporal network G in Fig. 4(b) with its reduced temporal network
N|Θt in Fig. 4(c). Then, we need to join the two dependence statements v2 
⊥⊥Gz2
and v2 
⊥⊥N|Θt

z2 with each other, which results into dependence v2 
⊥⊥Nz2 (here,
dependence preservation is applied). Now observe that the two dependence state-
ments in the atemporal network G and the reduced temporal network N|Θt are
defined by the same atemporal arc, namely v2 → z2. This can happen, since the
reduced temporal network includes atemporal arcs.

The above-mentioned redundant join operations impose a further partitioning
of some independence relations, which will be shown in the next section.

5 The Atemporal Partitioning of DBNs

In the previous section it was discussed that the original join operation includes
redundant work suggesting that for a theoretically complete separation of the
independence relations, a more detailed partitioning of these relations is still
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Fig. 5. The atemporal parts of the atemporal networks: (a) temporal network, (b)
atemporal network, (c) atemporal part of the atemporal network, and (d) temporal
part of the atemporal network

needed. In this section, to start, this separation is defined, and, subsequently, it
is shown by a theorem, why this separation leads to the solution for preventing
unnecessary join operations.

Recall that an atemporal network is defined as the set of vertices and the set
of atemporal arcs of a temporal network. Since atemporal arcs might still have
relations with temporal parts by being included in a temporal trail, as we have
seen in the previous section, it imposes that this set has to be further partitioned
into two disjoint subsets implying the following definitions.

Definition 1. (atemporal part of the atemporal network). Let N = (V,A)
be a temporal network with associated atemporal network G = (V,Aa). Then,
Ga = (V,Aaa

) is called the atemporal part of the atemporal network with set of
vertices V , and with set of arcs Aaa ⊆ Aa equal to the set of atemporal arcs in
the atemporal network that are not included on any temporal trail of N .

Definition 2. (temporal part of the atemporal network). Let N = (V,A)
be a temporal network with associated atemporal network G = (V,Aa). Then,
Gt = (V,Aat

) is called the temporal part of the atemporal network, with set of
vertices V , and with set of arcs Aat ⊆ Aa equal to the set of atemporal arcs in
the atemporal network that are included on at least one temporal trail of N .

Note that definitions 1 and 2 establish that the sets of atemporal arcs Aaa

and
Aat

are disjoint sets and their union is equal to the set of atemporal arcs, i.e.
Aaa ∩ Aat

= ∅ and Aa = Aaa ∪ Aat

. The definitions above are illustrated by
means of the following example.

Example 2. Fig. 5(a) shows a temporal network and Fig. 5(b) shows its atempo-
ral network, whereas the figures 5(c), and 5(d) give the various parts of the atem-
poral network defined in the definitions above. As the arc q2 → s2 is not included
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Fig. 6. (a) The various parts of the temporal network of a DBN, (b) the simplified
learning method

on any temporal trail of the temporal network 5(a) it belongs to the atemporal
part of the atemporal network, i.e. Aaa

= {(q2, s2)}. However, the atemporal arc
v2 → z2 is a member of several temporal trails, such as w1 → v2 → z2, and thus
it is a member of the temporal part of the atemporal network. Clearly, it holds
that Aat

= {(v2, z2)}.

Fig. 6(a) offers a summary of the various graphical parts of the temporal network
including the new separation of the atemporal network.

The reason that these definitions form the basis to leave out needless join op-
erations is established in the following theorem. Here, special properties related
to independence relations in atemporal networks are derived.

Theorem 1. Let N = (V,A) be a temporal network with associated atemporal
network G = (V,Aa) and reduced temporal network N|Θt = (V,A|Θt). Then,

– the dependence relation of the atemporal part Ga of the atemporal network
and the dependence relation of the reduced temporal network N|Θt are dis-
joint, i.e. 
⊥⊥Ga ∩ 
⊥⊥N|Θt

= ∅;
– the dependence relation of the temporal part Gt of the atemporal network is

a subset of the dependence relation of the reduced temporal network N|Θt,
i.e. 
⊥⊥Gt ⊆ 
⊥⊥N|Θt

.

Proof. To start, the first item is proved. The independence relation ⊥⊥Ga is
defined on the set of atemporal arcs Aaa

that are not included in any temporal
trail of the temporal network. In addition, the reduced temporal network N|Θt

consists of a set of dependence statements that are only related to the set of
atemporal arcs that are included in at least one temporal trail; this set was
defined by Aat

. Since the sets Aaa

and Aat

are disjoint, the set of dependence
statements of the relations 
⊥⊥Ga and 
⊥⊥N|Θt

are also disjoint.

For the proof of the second item note that the set of atemporal arcs Aat

in Gt

is included in the set of arcs of the temporal trails and, therefore, in the set
of arcs of the reduced temporal network. Therefore, the dependence statements
that are represented in the graph Gt are a subset of the dependence statements
of the reduced temporal network, which completes the proof. �
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The previous theorem shows that when independence relations ⊥⊥G and ⊥⊥N|Θt

are joined, it is redundant to join the subset ⊥⊥Gt ⊆ ⊥⊥G with relation ⊥⊥N|Θt .
This issue will be exploited in our simplified learning method as one of the main
contribution of this paper.

6 The Simplified Learning Method

In this section, the simplified learning method to join independence relations
is presented, which is based on the further separation of atemporal networks
introduced in the previous section. More specifically, in Section 6.1, the join
of the atemporal and temporal parts of the atemporal network G is studied.
Subsequently, in Section 6.2 the simplified learning method for joining all the
separate parts of the entire graphical representation of a DBN is presented.

6.1 Joining Atemporal Relations

In this section, we show that in the context of the atemporal network the join
operator ◦ can be interpreted as the intersection of the independence relations.
This is established in Proposition 1 followed by an example.

Proposition 1. Let N = (V,A) be a temporal network of a DBN with atemporal
network G = (V,Aa). Then, it holds that

– 
⊥⊥G = 
⊥⊥Ga ∪ 
⊥⊥Gt, and
– ⊥⊥G = ⊥⊥Ga ∩ ⊥⊥Gt.

Proof. The first equality holds due to the following reasons. Recall that the set
of atemporal arcs Aa in the atemporal network G is split up into two disjoint sets,
namely into sets Aaa

and Aat

(see Section 5). Since these sets are disjoint, they
do not share any vertex, their associated sets of dependences are also disjoint,
and, therefore, the union of dependence relations 
⊥⊥Ga and 
⊥⊥Gt can be taken.
The second equality is proved by applying logical rule a → b ≡ ¬b → ¬a on the
first equality. �

Example 3. We reconsiderour exampleof anatemporal networkshown inFig. 5(b).
In graph 5(c), the independence relation consists of the dependence q2 
⊥⊥Gas2 | ∅,
and the temporal part in graph 5(d) includes the dependence statement v2 
⊥⊥Gtz2 |
∅. Thus, the dependence relation 
⊥⊥G of the atemporal network G consists of the
unionof these twodependence statements.The independence relation⊥⊥G is simply
the complement of this dependence relation.

It is worth to mention that the intersection derived in Proposition 1 will not
be included in the simplified learning method, however, it is necessary for the
sketch of the entire connections of the independence relations of the network.

Based on Proposition 1, the following theorem defines the necessary machinery
to be able to avoid unnecessary join operations.
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Theorem 2. Let G = (V,Aa) be the atemporal network of temporal network
N = (V,A), and let Ga = (V,Aaa

) and Gt = (V,Aat

) be the atemporal and
temporal parts of the atemporal network G. Furthermore, let N|Θt be the reduced
temporal network. Then, the following two conditions hold:

– 
⊥⊥Ga ∪ 
⊥⊥N|Θt
= 
⊥⊥N , and

– ⊥⊥Ga ◦ ⊥⊥N|Θt = ⊥⊥Ga ∩ ⊥⊥N|Θt = ⊥⊥N .

Proof. First the proof for the first statement is provided. Recall that the sets
of arcs that define the dependence relations in Ga and N|Θt are disjoint sets
and the associate vertices of these two sets of arcs are disjoint. Therefore, since
dependence is represented by arcs, the dependence statements 
⊥⊥Ga and 
⊥⊥N|Θt

are also disjoint explaining the opportunity to take the union over these sets to
obtain the dependence relation 
⊥⊥N of temporal network N .

The second item shows that the join operator can be replaced by the inter-
section, which is a consequence of the two items in Theorem 1 and the fact that
⊥⊥Ga ∩ ⊥⊥Gt = ⊥⊥G, shown in Proposition 1. The second equality of this item
can be proven according to the logical rule a → b ≡ ¬b → ¬a which replaces the
independence into dependence and the intersection into a union. �

6.2 The Simplified Learning Method

In this section, the simplified learning method discussed, which is based on the-
orems 1 and 2. The method is summarised in Fig. 6(b).

The method comprises two steps. First, the atemporal and temporal parts of
the reduced temporal network are joined to obtain the independence relation of
the reduced temporal network. It should be noted that this join process does not
involve any redundancy in joining two statements, because their associates sets
of arcs are disjoint. In the second step, the intersection of the previously obtained
independence relation of the reduced temporal network and of the independence
relation ⊥⊥Ga are used to determine the independence relation of the temporal
network.

The difference between the previous and this simplified join procedure is il-
lustrated by figures 3(b) and 6(b), and can be summarised as follows:

– the simplified learning method does not include redundant join operations
to obtain the relation ⊥⊥N due to the fact that the set of arcs of Ga and
N|Θt are disjoint;

– in the simplified approach, the independence relation ⊥⊥G does not have to
be computed; only the intersection of the independence relations ⊥⊥Ga and
⊥⊥N|Θt has to be taken.

The main advantage of the simplified learning method is that the join operation
has to be applied only once, instead of twice. The following example illustrates
the simplified learning method.

Example 4. Applying the join procedure introduced in this section, first, the in-
dependence relation of the reduced temporal network is computed, as it was done
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Fig. 7. A non-repetitive DBN representing the movements of two intersecting vessels

Table 1. The experimental results for the repetitive and non-repetitive DBNs

repetitive DBN non-repetitive DBN
AIC −1038.16 −1063.91
BIC −1325.96 −1404.94

Log-likelihood −692.16 −653.908

in the original method. However, the independence relation ⊥⊥G does not have
to be computed. Given the independence relation ⊥⊥Ga represented in Fig. 5(d),
the union of the two independence relations ⊥⊥Ga and ⊥⊥N|Θt can be taken to
obtain the independence relation ⊥⊥N of the reduced temporal network. In doing
so, the redundant join of the statements v2 
⊥⊥Gz2 and v2 
⊥⊥N|Θt

z2 does not have
to be considered, since the dependence statement v2 
⊥⊥Gz2 is not included in
relation ⊥⊥Ga , which is the case for the original join method.

7 Experimental Results

In this section, the effectiveness of the simplified learning method is discussed,
followed by a comparison of the repetitive and non-repetitive models.

Fig. 7 shows the learned non-repetitive DBN for the vessel traffic domain in-
troduced in Section 2. In this model, the simplified learning method considers
the atemporal and temporal parts Ga and Gt of the atemporal network G sep-
arately. According to definitions 1 and 2, at each time step, all three atemporal
arcs speed → long, speed → lat, and long → lat belong to the temporal part Gt.
In contrast to the temporal part, the atemporal part Ga consists of no arcs. Ac-
cording to theorems 1 and 2, the relations in Gt are already included in another
independence relation. Thus, to avoid redundancy they are not considered in the
simplified learning method when we build our DBN from the separate parts.

As a measure of the quality of the learned repetitive (Fig. 2) and non-repetitive
networks (Fig. 7) we used the AIC score, BIC score, and log-likelihood function
[1], [4]. For both the AIC and BIC scores it holds that given two models, the
model with the lower score is preferred. For the log-likelihood function a higher
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value indicates a better fit of the distribution to the data. Table 1 summarises our
experimental results, from which we can conclude that for all three performance
measures the non-repetitive network performs better.

8 Conclusion

In this paper, we proposed a new simplified learning method for DBNs and we
showed that non-repetitive DBNs provide a more profound graphical represen-
tation for certain dynamic processes. This simplified learning method makes use
of a detailed partitioning of atemporal independence relations. The main contri-
bution of the simplified learning method is that it avoids redundancy providing
computational savings in the learning process. Using a real-life example, we also
showed that non-repetitive DBNs yield better results than repetitive DBNs.
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Abstract. This paper discusses a modification of the kappa measure
of surprise and uses it to build semi-qualitative probabilistic networks.
The new measure is designed to enable the definition of partial-order
relations on its conditional values and is hence used to define qualitative
influences over the edges of the network, similarly to Qualitative Prob-
abilistic Networks. The resulting networks combine the advantages of
kappa calculus of robustness and ease of assessment and the efficiency of
Qualitative Probabilistic Networks. The measure also enables a built-in
tradeoff resolution mechanism for the proposed network.

1 Introduction

Qualitative probabilistic networks (QPNs) [6,13] abstract Bayesian Networks
(BNs) by replacing the numerical relations defined on the arcs of a BN (i.e.
the conditional probability tables) by relations that describe how evidence given
for one node influences other nodes in the network [13]. These influences are
qualitative in nature, in the sense that the only information they capture is
the direction of the influence (i.e. whether the evidence makes a node more or
less likely) and is hence represented by its sign, being positive, negative, zero
(constant) or unknown.

Despite the efficiency in reasoning with QPNs [3] (propagating influences
along the arcs is efficient compared to the NP-hard reasoning in BNs), QPNs
may suffer from over-abstraction because its reasoning mechanism is only con-
cerned with finding the effect of new evidence on each node in terms of the sign
of the change in belief (increase or decrease) [3] which may lead to problems
when a node receives two influences of conflicting signs and a tradeoff must be
resolved in order to continue reasoning. This issue has been addressed by sev-
eral and solutions have been found using various tradeoff resolution strategies
[9,10,14].

Apart from QPNs, there exist other formalisms for qualitatively reasoning
about uncertain beliefs. One such formalism is the κ calculus, which uses the
order of magnitude of probability to establish a measure, called the κ measure,
where integers capture the relative degree of surprise associated with the event
occurring.
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The κ calculus has been used to create what is known as κ networks [4] to
perform reasoning similarly to BNs [2]. κ networks have the advantage of being
more robust and easier create than regular BNs as κ values are less easily af-
fected by change and are easier to estimate compared to numerical probabilities
[2]. However, κ networks still suffer from the inefficiency resulting from the poly-
nomial size of the conditional tables associated with the nodes of the network,
and as a result remain NP-hard in terms of reasoning.

To combine the efficiency of QPNs and the robustness and ease of estimation
of the κ calculus, [9] proposes the use of κ values as measures of strength of the
influences of a QPN. The approach retains the efficiency of arc-based reasoning
of QPNs while reducing the unwanted coarseness in the representation by using
κ values as measures of strength of QPN influences and resorting to them for
tradeoff resolution. Despite the advantages of this work, it is only capable of
capturing situations where it is possible to categorize the influences on the edges
(i.e. as being positive, negative or constant). When it is not possible to do so
(i.e. the influence is unknown), one must resort to quantitative probabilities to
complete the reasonings task, which is contrary to the advantages of using QPNs
in the first place.

Inspired by the ideas presented in [9] and the problem of unknown influences,
we aim at creating a qualitative network in which the nodes represent an order
of magnitude abstraction of probabilities and (i.e. as in κ networks) for which
reasoning is possible on the arc-level (via qualitative influences) when the types of
influences are known and in which it is possible to resort to node-based reasoning
on a qualitative level when it is not possible to decide the type of the influences,
only losing out on efficiency and retaining the robustness of qualitative calculi.

For this purpose, we define a new abstraction of probability, namely κ++,
which is based on the same concepts of κ but has additional semantics that
enable its use to establish qualitative influences. For example, in the κ calculus,
the rules governing the relation between κ(g) and κ(¬g) are not rich enough to
numerically deal with compliments in a manner that enables the propagation of
their values through conditioning [5], in contrast to κ++ as the paper will show.

This paper is structured as follows. After providing preliminary concepts relat-
ing to qualitative probabilistic networks in section 2 and the κ calculus in section
3, we introduce the new qualitative measure, κ++, in section 4. We present the
details of constructing κ++-based networks and using them to perform influence-
based reasoning in section 5 and illustrate how reasoning can be performed if
there is no information available about qualitative influences in section 6. We
conclude in section 7 and outline some of our future research.

2 Qualitative Probabilistic Networks

Qualitative Probabilistic Networks (QPNs) are directed acyclic graphs that rep-
resent a qualitative abstraction of Bayesian Networks. The structure of a QPN
captures the conditional independence among the variables the network repre-
sents and the arcs encode the relationships that exist between the nodes. Unlike
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in BNs however, the arcs of a QPN capture qualitative relations instead of con-
ditional probabilities [6,13].

Formally, a QPN is given by a pair G = (V,Q), where V is the set of variables
it represents and Q is the set of qualitative relations among the variables. There
are two types of qualitative relations in Q, qualitative influences and synergies.

Influences describe how the change of the value of one variable effects that of
another. There are essentially four types of influences, positive, negative, con-
stant and unknown.

A positive influence exists between two variable X and Y (X is said to pos-
itively influence Y ) if observing higher values for X makes higher values of Y
more probable regardless of the value of any other variable which may directly
influence Y . The inequality given below describes the notion of a positive in-
fluence more formally. The inequality assumes that the variables X and Y are
binary and places a partial order on their values such that for a variable X with
two values x and ¬x, x > ¬x.

I+(X,Y ) iff Pr(y|x,W ) ≥ Pr(y|¬x,W )

I+(X,Y ) reads: X positively influences Y , and W denotes all the other variables
other than X that may directly influence Y . Negative, constant and unknown
influences are defined analogously.

An example of a QPN is given in figure 1. In the figure, V = {A,B,C,D} and Q
= {(B,C),(A,C),(C,D)}. The only information encoded in the arcs are the signs
of the influences from one node to another. For instance, the figure shows that
node A positively influences node C, while B on the other hand has a negative
influence on C.

Fig. 1. A Qualitative Probabilistic Network

Observed evidence is propagated through the network via qualitative opera-
tors that combine influences and produce their net effect. Essentially, there are
two such operators, each is used for a specific topology of arcs. When evaluating
the net effect of two influences in a chain (for example, in order to obtain the
effect of A on D, we have to examine a chain of two influences, that of A on
C and of C on D), the sign multiplication operator, given in the left portion
of table 1, is used. On the other hand, parallel connections (for example, two
influences in parallel are required to establish the net effect of nodes A and B



Surprise-Based Qualitative Probabilistic Networks 231

on node C, that of B on C and of A on C) are evaluated using the sign addition
operator given in the right portion of the table. The signs propagate through the
network until the net effect of the evidence is observed on the required node or
all the nodes are known to be visited twice by the sign-propagation algorithm
given in [3].

Table 1. Sign multiplication (
⊗

) and sign addition (
⊕

) Operators [13]⊗
+ − 0 ?

⊕
+ − 0 ?

+ + − 0 ? + + ? + ?
− − + 0 ? − ? − − ?
0 0 0 0 0 0 + − 0 ?
? ? ? 0 ? ? ? ? ? ?

3 Overview of the Kappa Calculus

The kappa calculus [4,11] is a system that abstracts probability theory by using
order of magnitude of probabilities as an approximation of probability values.
It does so by capturing the degree of disbelief in a proposition g, or the degree
of incremental surprise or abnormality associated with finding g to be true [4],
labeled κ(g). The value of κ(g) is assigned so that probabilities having the same
order of magnitude belong to the same κ class, and that κ(g) grows inversely to
the order of magnitude of the probability value p(g).

The abstraction is achieved via a procedure which begins by representing the
probability of a proposition g, p(g), by a polynomial function of one unknown, ε,
an infinitesimally small positive number (0 < ε < 1). The rank κ of a proposition
g is represented by the power of the most significant ε-term in the polynomial
representing p(g) (the lowest power of ε in the polynomial). Accordingly, the
relation between probability and κ values is that p(g) is of the same order as εk ,
where k = κ(g) [11], that is:

ε <
p(g)
εk

≤ 1 or equivalently: εk+1 < p(g) ≤ εk

Where εk is the most significant ε-term of the polynomial representing p(g).
The κ-calculus is useful because it provides an abstraction that only requires

specifying the κ values of propositions, which is an easier task than specifying the
exact probabilities associated with the specific value of the proposition. The κ
values are in turn representative of the interval in which the probability falls [2].

κ(g) =

{
min{k such that lim

ε→∞

p(g)
εk


= 0} iff p(g) > 0

∞ iff p(g) = 0

The above defines κ(g) as the power of the most significant term (the term
with the least power of ε, since ε < 1) in the polynomial representing p(g). In
other words, κ(g) = k if p(g) has the same order of magnitude as εk [4].
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A direct consequence of how κ(g) is obtained is that since the most significant
term is that with the smallest k it corresponds to the inverse of the likelihood
of g, and is therefore representative of the degree of surprise associated with
believing g. This can be seen in a more intuitive manner in the table below
(obtained from [4]), which shows an example of how kappas can be mapped to
linguistic quantifiers of beliefs.

p(g) = ε0 g and ¬g are possible κ(g) = 0
p(g) = ε1 ¬g is believed κ(g) = 1
p(g) = ε2 ¬g is strongly believed κ(g) = 2

. . .

The above abstraction yields an integer-based calculus which enables combin-
ing κ’s via rules that are derived from those of probability theory by replacing
multiplication by addition and addition by minimum [11]. The resulting proper-
ties are given below, along with their probability-theory equivalents.

κ(g1) = min
ω|=g1

p(g1) =
∑

ω|=g1

p(ω)

κ(g1) ∨ κ(¬g1) = 0 p(g1) + p(¬g1) = 1
κ(g2|g1) = κ(g2 ∧ g1) − κ(g1) p(g2|g1) = p(g2 ∧ g1)/p(g1)

4 A New Ranking Function, κ++(.)

We propose a ranking function that is based on taking the order of magnitude
of the surprise associated with observing a certain event. The function is based
on the surprise measure proposed by Weaver [12] which calculates the surprise
associated with an event G having specific value gr (where G has a total of
I possible values) by dividing the expected value of probability of G by the
probability p(G = gr) as given by equation 1 below.

W(gr) =
∑I

i=1 p(gi)2

p(gr)
(1)

Given a distribution ζ, the abstraction we form here is similar to that of the
κ(.) function in that it depends on the idea of writing the probability of every
event g ∈ ζ as a polynomial χ of infinitesimally small numbers, ε (for example,
p(g) = 1 - c1ε2 + c2ε4) and obtaining the most significant term whose power
is representative of the order of magnitude of p(g). Moreover, since we are only
interested in the most significant term of the polynomial, we adapt the notation
χng to denote the polynomial representing p(g), where n is the lowest exponent
of ε in the polynomial.
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Given the above, a ranking function is formulated to reflect the order of mag-
nitude to whichW(gr), the surprise associated with the event gr, belongs. Hence,
we redefine the κ-measure [4] by associating it with the surprise measure of an
event instead of the probability. The result is a qualitative measure of the sur-
prise associated with an event gr. The new measure, we call it κ++ to distinguish
it from the original κ measure of [4], is derived below.

Let χngr
be the polynomial representing p(gr), and for every other value gi of

g, let χβi
gi

denote the polynomial corresponding to p(gi), with βi representing the
minimum power of ε in the polynomial. According to equation 1, the surprise
associated with p(gr), namely W(gr), is:

W(gr) =
∑I

i=1 p(gi)2

p(gr)
=

∑I
i=1(χ

βi
gi

)2

χngr

Where I, as given previously, is the number of possible values of G. Since all the
polynomials χ are to the base ε, it is possible to add the terms that have equal
exponents. This makes the summation:∑I

i=1(χ
βi
gi

)2

χgrn
=

α1ε
2β1 + ... + αIε

2βI + αI+1ε
2α1 + ... + αlε

2φk

χngr

∀βi, 1 ≤ i ≤ I, αiε2βi is a term whose power is a candidate to be the minimum
power of the polynomial representing

∑I
i=1(χ

βi
gi

)2 as each 2βi is the minimum
power of (χβi

gi
)2. The α terms in the equation above are non-minimum terms and

therefore, their number (k = l-(I +1)) and values are irrelevant for our purpose.
Let m be such term, i.e. m = βi is the minimum of the minimum powers of

the polynomials χβi
gi

. The surprise measure W(gr) can now be represented only
in terms of polynomials as:

W(gr) =
χ2m

gi

χgn
r

(2)

Having representedW(gr) as a fraction of two polynomials, we now construct
an abstraction ofW(gr) which maybe regarded as the order of magnitude class to
whichW(gr) belongs. The integer value resulting from the abstraction is denoted
by κ++(gr) and can be used to rank the belief gr. κ++(g) is given below.

Definition 1. For an event gr whose probability is given by the polynomial χngr
,

the qualitative degree of surprise associated with gr, namely κ++(gr) is the power
of the most significant ε-term in the polynomial representing the numerical sur-
prise associated with gr, W(gr). In other words:

κ(g) =

{
min{k such that lim

ε→∞

W(g)
εk


= 0} iff W(g) > 0

∞ iff W(g) = 0.

According to the above, κ++(gr) = logW(gr) = 2m−n, where m is the minimum
of all minimum powers in the polynomials p(gi), 1 ≤ i ≤ I , and n is the minimum
power in p(gr).
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4.1 Semantics of κ++

The κ++(.) function can now be understood as a function which ranks events
according to the surprise associated with finding that the event has occurred.
κ++(gr ) = 2m−n returns a signed integer whose value and sign are representa-
tive of the degree of surprise. Accordingly, the larger the value of κ++(gr ), the
greater the difference between its constituent quantities (2m and n), and as a
result the more surprising the event in question, gr , is. Therefore, the signed in-
teger produced by κ++(.) carries the semantics defined by three possible classes
for its value.

Positive: (κ++(gr ) = 2m − n) > 0 implies that the event gr is a lot less likely
than the other events gi (1 ≤ i ≤ I) of the distribution, i.e. 2m > n. Hence, the
occurrence of gr indicates a surprise.Moreover, the larger the value ofκ++(gr ) (the
greater the difference is between 2m and n), the more surprising the event gr is.

Zero: κ++(gr ) = 0 represents the normal world where both gr and ¬gr are
likely to occur as the order of magnitude of the probability of the variable gr is
comparable to that of the distribution, i.e. 2m = n.

Negative: κ++(gr ) < 0 refers to the case in which having the event gr to be
false is surprising as gr becomes more likely than unlikely compared to other
events in the distribution (because n > 2m), which implies that ¬gr is unlikely
and its κ++(.) should indicate a surprise. In this case, the smaller the value of
κ++(.), the more surprising ¬gr is.

Because κ++(.) is obtained through order-of-magnitude abstraction, its rules
can be derived from those of probability theory by replacing multiplication by
addition and addition by minimum, and can be summarized below.

1. κ++(G1|G2) = κ++(G1 ∧G2)− (G2)
2. κ++(G1 ∧G2) = κ++(G1) + κ++(G2)

Given that G1 and G2 are two independent variables.
3. κ++(G1) + κ++(G2) = 0
4. κ++(G1 ∨G2) = min(κ++(G1), κ++(G2))

It is worth noting that the κ++ semantics introduced earlier permit the cre-
ation of a correspondence between κ++ and linguistic quantifiers such as the one
given below.

. .
g is strongly believed κ++(g) = −2
g is believed κ++(g) = −1
g and ¬g are possible κ++(g) = 0
¬g is believed κ++(g) = 1
¬g is strongly believed κ++(g) = 2
. .
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5 Efficient Reasoning in κ++ Networks

Similarly to the κ calculus, κ++ can be used to abstract probabilistic networks to
construct a semi-qualitative equivalent whose nodes have κ++s as values instead
of probabilities. Despite the added robustness of the resulting network, inference
will remain NP-hard, i.e. of the same complexity as its quantitative equivalent [2].

Alternatively, we use κ++ to perform Qualitative Probabilistic Network-like
inference by utilizing the sign and magnitude of κ++ to define partial order
relations governing the conditional κ++ values of pairs of nodes in the κ++

network. In other words, we define notions of influences [13] on the arcs of the
network by, when possible, ordering the conditional probabilities of the nodes
connecting the arc.

The influences defined using κ++ values will not only be identified by their
signs, which designates the type of influence, but also by a signed integer that
can be used to evaluate their relative strength and to propagate them across the
network. Tradeoff resolution comes natural in this case because conflicting signs
can be resolved by assessing the magnitude of the influences in conflict. The result
is a κ++ network capturing the semantics of conditional independence that can
be used to propagate beliefs qualitatively and has a built-in conflict-resolution
mechanism. In what follows, we define the notion of κ++-based influences.

5.1 κ++-Based Influences

We define four types of influences analogous to those defined over QPNs, positive,
negative, zero and unknown. In this section, we restrict our discussion to the
first three types of influences and delay the discussion of unknown influences to
section 6.

Positive Influences: A binary variable X is said to positively influence another
binary variable Y if the degree of conditional surprise associated with Y being
true given X is observed, κ++(y|x), is lower than that of Y being true given
that X is not observed κ++(y|¬x) regardless of the value of any other variable
which may directly influence Y . Definition 2 formally states this notion.

Definition 2. I+
κ++(X,Y )iff κ++(y|¬x,W ) − κ++(y|x,W ) > 0.

W represents any other variable other than X that directly influences Y , which
maybe written as π(Y )\X (where there is more than one such variable, W is
thought of as the conjunction of the possible values of such variables [7]). We
denote the influence by a subscript κ++ to enforce the idea that they are defined
over κ++ values and not probability values as in QPNs, and will follow the
nomenclature for negative, zero and unknown influences.

It is important to see that the semantics of κ++ guarantee that the constraint
given by the definition holds, which is what we show in proposition 1.
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Proposition 1. For two binary variables X and Y :

κ++(y|x,W ) < κ++(y|¬x,W ) → κ++(y|¬x,W )− κ++(y|x,W ) ∈ Z+.

Proof
There are essentially two cases that result from the inequality κ++(y|x,W ) <
κ++(y|¬x,W ):
– Case 1: κ++(y|x,W ) ∈ Z−andκ++(y|¬x,W ) ∈ Z+

In this case, the fact that κ++(y|¬x,W )− κ++(y|x,W ) ∈ Z+ is intuitive.
– Case 2: Both κ++(y|x,W ) and κ++(y|¬x,W ) ∈ Z+

In this case, the semantics of κ++ enforces that for κ++(y|x,W ) to be less
surprising than κ++(y|¬x,W ), it must possess a higher magnitude, which
will guarantee the result.

Negative Influences. Similarly to positive influences, a binary variable X neg-
atively influences another binary variable Y if the degree of conditional surprise
associated with Y being true given X is observed, κ++(y|x), is higher than that
of Y being true given that X is not observed κ++(y|¬x) regardless of the value of
any other variable which may directly influence Y as given in definition 3 below.

Definition 3. I−κ++(X,Y ) iff κ++(y|¬x,W ) − κ++(y|x;W ) < 0.

Zero Influences are defined in the same manner and is given in definition 4.
Definition 4. I0

κ++(X,Y ) iff κ++(y|x,W )− κ++(y|¬x,W ) = 0.
Although the influences given in this work are defined over binary variables,
the definitions can be naturally extended to multi-valued variables as we have
adopted the order of x > ¬x to denote that a true value has a higher value than
a false one.

5.2 Influence Propagation

To combine influences, we redefine the
⊕

and
⊗

operators to accommodate the
sign and magnitude properties of the κ++-based influences.

Chained Influences. As done in [3,9,13], we propagate influences along chains
using the order of magnitude multiplication operator. Since our influences in-
clude sign and magnitude components, these components are handled separately
to obtain the net effect on the variables.

The sign portion of the influence is dealt with using sign multiplication as
in [13] while the magnitude portion is handled in accordance with the rules of
order of magnitude multiplication by adding the corresponding values (since the
magnitude represent the difference between two κ++ values, which are in essence
order of magnitude abstractions of the numerical surprise associated with the
variable). The result is presented in the table below.⊗

+ve −ve 0 ?
+u +(u + v) −(u + v) 0 ?
−u −(u + v) +(u + v) 0 ?
0 0 0 0 0
? ? ? ? ?
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Parallel Influences. For influences in parallel chains, the net effect is decided
by that of the strongest influence incident on the node. Accordingly, the effect
is achieved via the

⊕
operator, presented in the table given below.⊕

+ve −ve 0 ?
+u + min{u, v} a) +u ? a) = +u, if u < v
−u b) −min{u, v} −u ? = −v, otherwise
0 +v −ve 0 ? b) = −u, if u < v
? ? ? ? ? = +ve, otherwise

Combining influences in chains and in parallel can be illustrated via an exam-
ple such as the one given in the network of figure 2. In the figure, when nodes
A and C are received as evidence, the discovery of the influences in the network
propagates as follows. The net influence of node A on node E through B is given
by -1

⊗
+2 = -3 because this influence consists of two influences in a chain

whose effect is obtained via the
⊗

operator. Similarly, Node D receives evidence
from both A and C with the net influence being evaluated as +4

⊕
-5 = +4

because node D has two arcs incident on it, which implies that the net effect
on D is obtained through the discovery of the combined influences in parallel,
which is achieved through the

⊕
operator. Similarly, the net influence of A and

C on E through D is given by +4
⊗

+5 = +9. Finally, node E receives as a net
influence -3

⊕
+9 = -3. As a result, the net influence of observing A and C on

E is a negative one.

Fig. 2. Reasoning with a κ++-based Qualitative Probabilistic Network

6 The Case of Unknown Influences

Because influences only exist when one is able to establish a partial order on
the conditional κ++ of two variables [7], it is a weak concept that may not be
defined when such order does not exist. In this case, it is imperative to resolve
to methods at a finer level of resolution. In our approach, since our network are
based on κ++ values, it is not necessary to go to probabilities and is sufficient
to go back to node-based inference on the κ++-level. Although this reduces
the efficiency of the inference, it is a necessary last resort when orders are not
definable. Moreover, the network retains its qualitative nature as we are still
dealing with κ++’s, which are easier to assess than numerical probabilities.
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7 Conclusions and Future Work

We presented κ++, a qualitative measure that uses sign and magnitude to des-
ignate the degree of surprise associated with an event and used it to construct
a qualitative system with two levels of resolution. The resulting system enables
the definition of qualitative influences and when not possible, can be used to rea-
son on the node level. The system has its built-in conflict resolution mechanism
and is as efficient as previous QPN systems when used with known influences.
When the influences are unknown, the system we presented has the advantage
of providing the option of reasoning (although on the node, and not arc level)
qualitatively without having to resort back to numerical probabilities. Our cur-
rent work involves an empirical analysis of the κ++ calculus and its possible
application to study qualitative patterns in gene regulatory networks [8].
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Abstract. We describe a procedure for inducing conditional densities
within the mixtures of truncated exponentials (MTE) framework. We
analyse possible conditional MTE specifications and propose a model
selection scheme, based on the BIC score, for partitioning the domain of
the conditioning variables. Finally, experimental results demonstrate the
applicability of the learning procedure as well as the expressive power of
the conditional MTE distribution.

1 Introduction

The main difficulty when modelling hybrid domains (i.e., domains containing
both discrete and continuous variables) using Bayesian networks, is to find a
representation of the joint distribution that is compatible with the operations
used by existing inference algorithms: Algorithms for exact inference based on
local computations, like the Shenoy-Shafer scheme [1], require that the joint
distribution over the variables in the network are closed under marginalization
and multiplication.

This can be achieved by discretizing the domain of the continuous variables
[2,3], which is a simple (but sometimes inaccurate) solution. A more elaborate
approach is based on the use of mixtures of truncated exponentials (MTE) [4].
One of the advantages of this representation is that MTE distributions allow
discrete and continuous variables to be treated in a uniform fashion, and since
the family of MTEs is closed under marginalization and multiplication, infer-
ence in an MTE network can be performed efficiently using the Shenoy-Shafer
architecture [1]. Also, the expressive power of MTEs was demonstrated in [5],
where the most commonly used distributions were accurately approximated by
MTEs.

The task of learning MTEs from data was initially approached using least
squares estimation [6,7]. However, this technique does not combine well with
more general model selection problems, as many standard score functions for
model selection, including the Bayesian information criterion (BIC) [8], assume
Maximum likelihood (ML) parameter estimates to be available.

Two kinds of distributions can be found in a Bayesian network: univariate
distributions (for nodes with no parents), and conditional distributions (for nodes
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with parents). ML learning of univariate distributions was introduced in [9].
However, the problem of learning conditional densities has so far only been
described using least squares estimation [10]. In this paper, we study ML-based
learning of conditional densities from data.

2 Preliminaries

Consider the problem of estimating a conditional density f(x|y) from data. In
this paper we will concentrate on the case in which X and Y = {Y1, . . .Yr} are
continuous, and use ΩX,Y ⊆ Rr+1 to represent the support of the distribution
function f(x,y). Furthermore, we let {I1, . . . , IK} be a partition of ΩX,Y . An
MTE potential [4] for the random vector {X,Y1, . . . , Yr} is a function that, for
each k ∈ {1, . . . ,K}, can be written as

f(x,y) = a0 +
m∑
j=1

aj exp
(
bjx + cT

j y
)
, (x,y) ∈ Ik. (1)

The main problems to solve when inducing MTE potentials from data are
i) determining the partition {I1, . . . , IK}, ii) determining m (the number of
exponential terms) for each Ik, and iii) estimating the parameters. Throughout
the paper we will consider a training data set D with n records, and each record
containing observations of all r + 1 variables without missing values. We will
write D(R) to denote the subset of D where the restriction R is fulfilled. For
example D(y1 ≤ α) selects all records for which the variable y1 ≤ α.

3 Conditional Distributions and MTEs

Before we investigate methods for learning conditional distributions from data,
we will consider how to define conditional MTE distributions. Unfortunately,
since the class of MTE potentials is not closed under division, we do not know
the most general form of the conditional distribution function. However, for a
function g(x,y) to be a conditional MTE distribution, there are three assump-
tions we will require to be fulfilled:

1. Generating joint: g(x,y) · f(y) should be an MTE potential over (x,y),
and the result should be equal to the joint density f(x,y), where f(y) is the
marginal distribution for Y .

2. Conditioning: g(x,y0) should be an MTE density over X for any fixed y0.
3. Closed under marginalization: For any BN structure and specification of

conditionals, the product
∏n

i=1 g(xi, pa (xi)) must support marginalization
of any variable in closed form, and the result should be an MTE potential.

The first two conditions are local in nature, whilst the third is global. Attend-
ing only to the local conditions, the natural way to define a conditional density
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would be as f(x|y) = f(x,y)/f(y), where f(x,y) and f(y) are MTEs. Formally,
a conditional MTE density under these assumptions would be of the form

f(x|y) =
f(x,y)
f(y)

=
a0

f(y)
+

m∑
i=1

ai exp(cT
i y)

f(y)
· exp(bix), (x,y) ∈ Ik, (2)

where we have assumed that f(x,y) = a0 +
∑m

i=1 ai exp (bix + cT
i y), and f(y) =∫

x
f(x,y)dx. Note that for any y0, f(x|y0) specifies an MTE potential for x.

X2

X1 X4

X3

Fig. 1. A example of Bayesian network

However, the problems come when the defined conditional densities are con-
sidered globally in a Bayesian network, in which the marginalization operation is
necessary to perform inference. To illustrate the problem, consider the network
structure in Fig. 1. Observe that the joint distribution is

f(x1, x2, x3, x4) = f(x1)f(x2|x1)f(x3|x1)f(x4|x2, x3)

= f(x1)
f(x2, x1)
f(x1)

f(x3, x1)
f(x1)

f(x4, x2, x3)
f(x2, x3)

= f(x1, x2)
f(x3, x1)
f(x1)

f(x4, x2, x3)
f(x2, x3)

, (3)

but if the original conditional distributions are as in Equation (2), we find that
the joint distribution in the network, shown in Equation (3), is not an MTE.
Furthermore, standard inference algorithms, such as variable elimination [11],
cannot be directly applied. For instance, if the first variable to eliminate is X2,
the operation to carry out would be∫

x2

f(x1, x2)
f(x4, x2, x3)
f(x2, x3)

dx2,

which cannot be calculated in closed form if the potentials are as in Equation (2);
thevariable to integrateoutappears inboth thenumerator and in thedenominator.

When MTEs were first introduced [4], Moral et al. avoided these problems by
defining the conditional MTE distribution as follows:

Definition 1. Let X1 = (Y 1,Z1) and X2 = (Y 2,Z2) be two mixed random
variables. We say that an MTE potential φ defined over ΩX1∪X2

is a condi-
tional MTE density if for each x2 ∈ ΩX2

, it holds that the restriction of φ to

x2, φR(X2=x2), is an MTE density for X1.
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In this paper we focus on conditional distributions of continuous variables with
continuous parents. In our notation, Definition 1 is therefore equivalent to re-
quiring that the conditional distribution must have the functional form

f(x|y) = α0 +
m∑
j=1

αj exp
(
βjx + γT

j y
)
, (x,y) ∈ Ik, (4)

where we will assume that m < ∞ in the following.
Moral et al. [4] noted that if one adopts the structural form of Equation (4),

then specific requirements are in play to ensure that f(x|y) is a conditional dis-
tribution. We will investigate one of these requirements in the following, namely
that

∑
k

∫
x:(x,y)∈Ik

f(x|y) dx = 1, for all y. As an example, consider Fig. 2,
where the support for f(x|y) is divided into 4 hypercubes I1, . . . , I4, such that
a specific MTE potential MTEk is defined for each Ik. In this example, the
requirement above implies that, e.g., f(x|y = 0) ties the two MTE potentials
MTE1 and MTE2 together, with the consequence that we cannot learn the MTE
potentials separately.

x

y

I1, MTE1 I2, MTE2

I3, MTE3 I4, MTE4

Fig. 2. The support for f(x|y) is depicted, and divided into 4 hypercubes I1, I2, I3,
and I4. An MTE potential MTEk is connected to each Ik.

The effect of tying the parameters of different MTE potentials is a dramatic
increase in the computational burden of learning conditional MTE distributions.
In this paper we will therefore assume parameter independence for simplicity. One
consequence of this assumption is that

∫
x
f(x|y) dx must be a constant w.r.t. y,

which corresponds to:
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∂

∂y


∫
x

f(x|y) dx =
∂

∂y


∫
x

m∑
j=1

αj exp
(
βjx + γT

j y
)
dx

=
m∑
j=1

αjγj
 exp
(
γT
j y

) ∫
x

exp (βjx) dx

= 0.

Thus, for all (x0,y0) ∈ Ik where f(y0) > 0, we should have

m∑
j=1

αjγj
 exp
(
γT
j y0

) ∫
x

exp (βjx) dx = 0. (5)

Now, fixate an ε-ball around (x0,y0) s.t. the ball is in Ik and in the support of
f(x,y). We are interested in varying y inside this ball. Then, Equation (5) gives
rise to uncountably many constraints (one for each y in the ball), but where
we only have O(m) parameters that can be used to adhere to the constraints.
This over-specified system of equations can only be solved if γj = 0 for all j
(remember that αj = 0 is not a viable solution, since we need the density to
have some mass allocated). Thus, if the conditional distribution functions are to
follow Definition 1, and at the same time adhere to parameter independence, we
must constrain the functional form of the conditional distribution to

f(x|y) =
m∑
j=1

αj exp (βjx) , (x,y) ∈ Ik. (6)

Thus, the conditional MTE potential f(x|y) is constant in y inside each hy-
percube I1, . . . , IK , and the only effect of the conditioning variables y on x is
through the definition of the hypercubes. This may at first glance seem like a se-
rious limitation on the expressiveness of conditional MTE distributions, however,
as we show in Section 5 this restricted form can still capture complex conditional
distributions.

In summary, there are some conditions that apply to the specification of condi-
tional MTE potentials in order to use MTEs with standard inference algorithms.
Moral et al. [4] therefore defined that the conditional MTE distributions must be
of the functional form given in Equation (4). However, this general form implies
parameter dependence, making automatic learning intractable. One approach to
solve this problem is to assume parameter independence, which restricts condi-
tional MTE distributions to the form given in Equation (6). In this case, learning
conditional distributions reduces to the following two tasks:

1. Finding the split points/hybercubes for the conditioning variables.
2. Learning the parameters of Equation (6) for each hybercube.

The latter item can be solved by algorithms for learning univariate MTE
potentials [9]. We will turn to this issue shortly, and thereafter look at a method
for learning the definition of the hypercubes from data.
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4 Learning Maximum Likelihood Distributions

4.1 The Univariate MTE Potentials

As already mentioned, MTE learning can be seen as a model selection problem
where the number of exponential terms and the split points must be determined.
In the following we briefly describe a learning procedure for the univariate case,
the interested reader is referred to [9] for details.

When determining the number of exponential terms for a fixed interval Ik, we
iteratively add exponential terms (starting with the MTE potential having only
a constant term) as long as the BIC score improves or until some other termi-
nation criterion is met. The learning algorithm regards the parameter learning
(with fixed structure) as a constrained optimisation problem, and uses Lagrange
multipliers to find the maximum likelihood parameters.

To determine the split points of the domain of the variable, a set of candidate
split points is chosen. Since the BIC score will be the same for any split points
defining the same partitioning of the data, it is not required to look at a set
of possible splits that is larger than the set of midpoints between every two
consecutive observations of Y . However, to reduce the computational complexity
of the learning algorithm we consider a smaller set of potential split points in
the current implementation: Each lth consecutive midpoint is selected, where l
is chosen so that we get a total of 10 candidate split points. We use a myopic
approach to select among the candidate split points, so that the one offering the
highest gain in BIC score is selected at each iteration. This is repeated until no
candidate split point increases the BIC score.

4.2 Learning Conditional Distributions

After having defined how to learn the parameters of the marginal distribution of
a variable X from data, we will now consider learning the hybercubes (i.e., the
split points) that define the conditioning part of the distribution (cf. Section 3).
We will again use the BIC-score for model selection, and for simplicity we will
start the discussion assuming that X has only one continuous parent Y . Recall
that learning the conditional distribution f(x|y) consists of two parts: i) Find
the split points for Y , and ii) learn the parameters of the marginal distribution
for X inside each interval.

The previous subsection reviewed how we can learn the marginal distribution
for X , and we will now turn to finding split points for Y . As was the case
when we learned the split points of the marginal distributions, we will also
now learn the split points of the conditioning variable using a myopic strategy:
When evaluating a candidate split point for a given interval Ik, we compare the
BIC score when partitioning Ik into two (convex) sub-intervals with the score
obtained with no partitioning, i.e., we employ a one step look-a-head that does
not consider possible further refinements of the two sub-intervals.

Recall that we use D = [y,x] to describe the data, and the notation D(R) to
denote the subset of data for which a restriction R is true. The skeleton of the
learning algorithm can then be described as in Algorithm 1.



246 H. Langseth et al.

Function LearnConditionalsplit points1

Data. D, ωs, ωe
Result. splits
currentScore = Score(D, ωs, ωe);2

newScore = −∞;3

for each potential split point si do4

tmpScore = Score(D(y ≤ si), ωs, si) + Score(D(y > si), si, ωe) ;5

if tmpScore > newScore then6

newScore = tmpScore;7

bestSplit = si;8

end9

end10

if newScore > currentScore then11

splits = [12

LearnConditionalsplit points(D(y ≤ bestSplit), ωs, bestSplit),13

bestSplit,14

LearnConditionalsplit points(D(y > bestSplit), bestSplit, ωe)];15

else16

splits =∅;17

end18

return splits;19

Algorithm 1. Skeleton for the algorithm that learns the split points for the
conditioning variable y

Algorithm 1 calls the external function Score to evaluate the different config-
urations of split points, both the current setting (in Line 2), and the one after
adding a potential split point (in Line 5); note that the score function takes
three or four parameters depending on whether we split the interval. One way
of defining this score could be to fit a marginal MTE potential for each interval
(looking only at data defined for the corresponding intervals), and afterwards
calculate the BIC score for each of the intervals.

In Line 4, all potential split points for the conditioning variable are considered.
Obviously, it suffices to only consider the observed values of the conditioning
variable as potential split points. Note, however, that if t different split points
are considered in Line 4, we will have to calculate the score 2t times in Line
5, and if we let t be equal to the number of observations in our database, the
computational complexity of the algorithm will be intractable. We solve this in
the same way as we did when learning marginal distributions, and select a fixed
number of candidate split points. In the current implementation, we select the
candidate splits by performing equal frequency-binning (with 10 bins) for each
of the conditioning variables, and using the boundaries as candidate split points
during learning.

The computational cost of calling the score-function in Line 5 may still be sub-
stantial though, and we have therefore considered alternatives ways of evaluating
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a split point. First of all, recall that the intuition behind defining a split point
s for the conditioning variable y is that f(x|y ≤ s) and f(x|y > s) are different
(otherwise, we would reduce the BIC-score by introducing additional parameters
for the new hypercube). By following this line of argument, we drop the calcula-
tions of the BIC-score in Line 5, and rather try to find good split points based on
the Kolmogorov-Smirnov test [12] for determining whether two sets of data come
from the same distribution. This modification is immediately accommodated in
Algorithm 1 by simply replacing lines 2 and 5 with CurrentScore= −∞ and
tmpScore= 1− kstest(Dj(y ≤ si),Dj(y > si)), respectively; kstest(D1, D2)
returns the p-value of the test that D1 and D2 come from the same distribution.

When working with more than one conditioning variable (i.e., r > 1) we need
to select both a split variable and a split point. As before we do the selection
greedily: iterate over all the conditioning variables, and for each variable find
the best split point. After that select the conditioning variable having the best
scoring split point. The recursive nature of the algorithm defines a binary tree in
which each internal node is a conditioning variable and the arcs emanating from
a node defines a partitioning of the associated interval (a so-called probability
tree, [4]). Each leaf is associated with a univariate MTE distribution over x
conditioned on the hybercube defined by the path from the root to the leaf.
The final algorithm is similar to Algorithm 1 except that for each conditioning
variable we also need to iterate over lines 4–10 and pick the best scoring variable
to split on; the full specification has been left out due to space restrictions.

5 Examples

Our first example shows how our Algorithms learn a conditional Gaussian dis-
tribution, and in particular we examine the effect of the size of the dataset we
learn from. We generated datasets of size 30, 50, 100, 250, and 1000 from the
distribution [

x
y

]
∼ N

([
0
0

]
,

[
5 2
2 1

])
, (7)

and focused our attention on learning the conditional distribution f(x|y). The
potential split points for the conditioning variable y were defined by using the
split points in an 11-bin equal-frequency histogram, meaning that 10 candidate
split points were considered in each learning situation. As previously described,
we used the results of the Kolmogorov-Smirnov tests to prioritise these candidate
split points, and the BIC-score to determine whether or not a given candidate
split point is to be accepted. The distribution over x for each y-interval was
selected in order to maximise the BIC score.

The obtained results for all datasets are given in Fig. 3 part (a) to (e) respec-
tively, and should be compared to the exact conditional density given in Fig. 3
(f); for further comparison, a scatter plot of the dataset with 250 cases in shown
in Fig. 5. The results are promising: We see a strong resemblance between the
target distribution and the gold standard distribution for all data sizes. We can
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Fig. 3. The plots show the results of learning from 30, 50, 100 and 250 cases re-
spectively. The gold-standard distribution, shown in part (f), is the conditional Gaus-
sian distribution f(x|y) derived from the joint distribution in Equation (7). The
Kolmogorov-Smirnov tests were used to find the split points of the conditioning vari-
able (axis on the left-hand side), whereas the marginal distributions were obtained by
maximisation of the BIC score.

also see the effect of using the BIC-score to determine whether or not a candi-
date split point for y should be accepted: When only a few splits are employed
for the smaller datasets, all candidate split points for y were used when learning
from the largest dataset. Finally, it is also worth noticing that the support of x is
never divided into subintervals in these runs. This is to be expected, considering
that these MTE potentials are typically learned from only about 25 observations
each.
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Fig. 4. A scatter of the data set with 250 cases sampled from the joint distribution in
Equation (7). Note, in particular, the few cases sampled from the tails of the distribution.
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Fig. 5. A binary tree structure representing the conditional distribution learned from
250 cases sampled from the distribution in Equation (8)
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For illustration, we also ran the algorithm using a data set containing 250
configurations sampled from the distribution⎡⎣ x

y1
y2

⎤⎦ ∼ N
⎛⎝⎡⎣0

0
3

⎤⎦ ,

⎡⎣5 2 2
2 1 1
2 1 2

⎤⎦⎞⎠ . (8)

The result of the learning can be seen in Fig. 5, where we have skipped the spec-
ification of the marginal MTE distributions in the leaves. Observe that the tree is
more fine-grained around the mean of Y1 compared to the parts of the interval
with smaller support in the distribution (i.e., more data is available to capture the
refinement). In particular, note also that the algorithm conditions on Y2 is this
interval.

6 Conclusions

In this paper we have investigated two alternatives for the definition of con-
ditional MTE densities. We have shown that only the most restrictive one is
compatible with standard efficient algorithms for inference in Bayesian networks.

We have also shown how the induction of this kind of conditional densities
can be approached from the point of view of maximum likelihood estimation,
including model selection for determining the partitioning of the domain of the
conditioning variables based on the BIC score.

Our future work on this subject will include the definition of a structural
learning algorithm based on the tools proposed on this paper and in [9].
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Abstract. The Transferable Belief Model is a powerful interpretation
of belief function theory where decision making is based on the pignistic
transform. Smets has proposed a generalization of the pignistic trans-
form which appears to be equivalent to the Shapley value in the trans-
ferable utility model. It corresponds to the situation where the decision
maker bets on several hypotheses by associating a subjective probability
to non-singleton subsets of hypotheses. Naturally, the larger the set of
hypotheses is, the higher the Shapley value is. As a consequence, it is
impossible to make a decision based on the comparison of two sets of
hypotheses of different size, because the larger set would be promoted.
This behaviour is natural in a game theory approach of decision making,
but, in the TBM framework, it could be useful to model other kinds of
decision processes. Hence, in this article, we propose another generaliza-
tion of the pignistic transform where the belief in too large focal elements
is normalized in a different manner prior to its redistribution.

1 Introduction

The Transferable Belief Model [1] (TBM) is based on the decomposition of the
problem into two stages: the credal level, in which the pieces of knowledge
are aggregated under the formalism of belief functions, and the pignistic level,
where the decision is made by applying the Pignistic Transform (PT): It converts
the final belief function (resulting from the fusions of the credal level) into a
probability function. Then, a classical probabilistic decision is made.

The manner in which belief functions allow to deal with compound hypothe-
ses (i.e. set of several singleton hypotheses) is one of the main interests of the
TBM. On the other hand, the decision making in the TBM only allows betting
on singletons. Hence, at the decision making level, part of the belief function
flexibility is lost. Of course, it is made on purpose, as, betting on a compound
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hypothesis is equivalent to remain hesitant among several singletons. It would
mean no real decision is made, or equivalently, that no bet is booked, which
seems curious, as the PT is based on betting (“pignistic” is derived from the
Latin word for “bet”).

Nevertheless, there are situations in which it could be interesting to bet on
compound hypotheses. From the TBM point of view, it means generalising the
PT so that it can handles compound bets. Smets has already presented such
a generalisation [2], and it appears [3] to corresponds to the situation of a “n-
person games” [4] presented by Shapley in the Transferable Utility Model in
1953. This work on game theory considers the case of a coalition of gamblers
who wants to share fairly the gain with respect to the involvement of each. Once
the formula is transposed to the TBM, the purpose is to share a global belief
between several compound hypotheses. Obviously, one expects the transform
to promote the hypotheses the cardinality of which is the greatest... Roughly, it
means that, if for the same book, it is possible to bet on the singleton hypothesis
{h1} or on the compound hypothesis {h1, h2}, then, this latter must be preferred
(even if the chances for h1 are far more interesting than for h2). Practically, this
intuitive behaviour looks perfectly accurate, and of course, the generalization
proposed by Smets behaves so.

On the other hand, there are yet other situations, where it should be encour-
aged to bet on singleton hypotheses when possible, whereas it should remain
allowed to bet on compound hypotheses when it is impossible to be more ac-
curate. Hence, we depict a “progressive” decision process, where it is possible
to remain slightly hesitant, and to manually tune the level between hesitation
and bet. Let us imagine such a situation: the position of a robot is modelled by
a state-machine, and its trajectory along a discrete time scale is modelled by a
lattice. At each iteration of the discrete time, the sensors provide information to
the robot, and these pieces of information are processed in the TBM framework:
they are fused together (the credal level) and the state of the robot is inferred by
a decision process (the pignistic level). At this point several stances are possible:

– the classical PT is used. Unfortunately, as the sensors are error-prone, the
inferred state is not always the right one. Finally, the inferred trajectory is
made of right and wrong states with respect to the ground-truth (Fig. 1).
Of course, the TBM provides several tools to filter such trajectories [5,6,7],
and, in spite of a relative computational cost, they are really efficient.

– Instead of betting on a single state at each iteration of the time, it is safer
to bet on a compound hypothesis (i.e. on a group of several states, knowing
that, the more numerous, the less chance to make a mistake). Unfortunately,
the risk is now to face a situation where no real decision is made and the
inferred trajectory is too imprecise (Fig. 2).

– The balance between these two extreme stances would be to automatically
tune the level of hesitation in the bet: When the decision is difficult to
make, a compound hypothesis is assessed to avoid a mistake, and otherwise,
a singleton hypothesis is assessed, to remain accurate (Fig. 3).
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Fig. 1. The space-time lattice: the horizontal axis represents the time iterations, and the
vertical axis, the states. The real trajectory (ground truth) is represented by the black
line, and the inferred states are presented by black dots linked by the grey line. The real
and inferred trajectories differ, as few mistakes are made in the decision process.

Fig. 2. In a similar manner to figure 1, the real trajectory (ground truth) is compared
to the inferred one. As a matter of fact, no mistake is made on the inferred trajectory,
but, as a drawback, it is really imprecise.

The first stance corresponds to classical decision making. The second and third
stances both correspond to situations where it is possible to bet on compound
hypotheses, but in a different manner. The second stance is rather classical from
belief functions point of view, and several types of decision based on non-additive
measures [8] achieve efficient results (such as [4,9]). Nevertheless, in spite of an
adapted mathematical structure, they do not model the problem in a manner
that corresponds to the kind of decision we expect in the third stance (as shown
in 3.1). By now, the only way to perform a decision according to the third stance
is to set an ad-hoc method. For instance, it is possible to consider compound
hypotheses, and practise hypothesis testing, such as in classical statistical theory.
With such a method, the size of the selected compound hypothesis is related to
the p-value desired. In a similar way, but in a more subjective state of mind,
it is also possible to associate a cost to each decision and to minimise the cost
function. Finally, it is possible to simply assess a threshold T to the probability
of each decision, to sort them in descending order, and to select the first n
hypotheses so that their probabilities add up to a value superior to T . For all
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these methods, we do not provide bibliographical links, as they are based on
very basic scholar knowledge.

This paper aims at defining a decision process according to the third stance in
the context of the TBM. In section 2, we briefly present the TBM. In section 3
we analyse related works and we focus on the Shapley value and the correspond-
ing PT generalization. We show that minor modifications lead to the expected
results. In section 4, we present our new method to generalize the PT, and give
some interesting properties. Finally, section 5 illustrates it with real examples.

Fig. 3. In a similar manner to figure 1, the real trajectory (ground truth) is compared
to the inferred one. A trade-off between risky bets (a singleton state is assessed) and
imprecise decisions (circled by a dot line) allows limiting the number of mistake while
remaining quite precise

2 Transferable Belief Model

In this section we rapidly cover the basis of the TBM [1] and of the belief function
theory [10], in order to set the notations. We assume the reader to be familiar
with belief functions.

Let Ω be the set of N exclusive hypotheses Ω = {h1, . . .hN} for a variable X .
Ω is called the frame of discernment. Let 2Ω, called the powerset of Ω, be
the set of all the subsets A of Ω, including the empty set (it is the sigma-algebra
of Ω): 2Ω = {A/A ⊆ Ω}.

A belief function, or a basic belief assignment(BBA) m(.) is a set of
scores defined on 2Ω that adds up to 1:

m : 2Ω → [0, 1]

A �→ m(A) with
∑
A⊆Ω

m(A) = 1

A focal element is an element of the powerset to which a non-zero belief is
assigned. We call as the cardinality of a focal element, noted |.|, the number
of elements of Ω it contains. For sake of simplicity, we say that a hypothesis or
a focal element is larger (or wider) than another when its cardinality is greater.
Hence, a BBA represents a subjective belief in the propositions that correspond
to the elements of 2Ω and nothing wider or smaller.
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The conjunctive combination is a N -ary symmetrical and associative op-
erator that models the fusion of the pieces of information coming from N inde-
pendent sources (it is the core of the credal level):

∩© : BΩ ×BΩ × . . .×BΩ → BΩ

m1 ∩© m2 ∩© . . . ∩© mN �→ m∩©

with, BΩ corresponding to the set of the BBA defined on Ω, and

m∩©(A) =
∑

⋂N
i=1 Ai=A

(
N∏
n=1

mn(An)

)
∀A ⊆ 2Ω

The pignistic probability measure (BetP) is defined by the use of the pignistic
transform (in the pignistic level):

BetP(X = h) =
1

1−m(∅)
∑

h∈A, A⊂Ω

m(A)
|A| ∀h ∈ Ω

Then, the pignistic probability distribution is computed: p(h) = BetP(X =
h) ∀h ∈ Ω, or, in other words: p = PT(m). Finally, the hypothesis of maximum
pignistic probability h̃ is selected: h̃ = argmaxhi∈Ω(p(.))

3 The Shapley Value and the Pignistic Transform

3.1 Related Work

Several generalizations/alternatives to the PT exist in the literature. When
proposing such a work, authors do not have the same objective, which explains
this manifold. In [11,12], the point is to find a conversion method between proba-
bilistic models and evidential ones. Then, the PT is compared to the plausibility
transform, and this later is assessed to be more adapted. In [13], the point is to
face the computational complexity of BF by finding an adequate probabilistic
approximation. In [16] the Generalized Pignistic Transformation is defined. In
spite of its name, is not related to the TBM framework: it is the counterpart
of the PT in a framework which is an attempt of generalization of the TBM.
This framework, its potential applications and the way it generalizes the PT
or propose alternative transforms have nothing in common with this work. In
[14,15], several transforms are proposed as alternatives to derive a bet-like de-
cision from a BF. Finally, in each of these works, the alternatives to the BFs
(i.e. the alternative mathematical structures that support the information prior
to the decision) are either out of our interests [16], either probabilistic. Con-
sequently, as interesting these works remain, they are not in the scope of this
paper, in the meaning that they do not propose any generalizations to partial
bets, such as targeted here.

Nevertheless, there are several works in which alternative structures (i.e. nei-
ther BF, neither probabilities) are proposed and may fit our need here. These
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structures belong to the general class of fuzzy measures [8] (also called capaci-
ties, or non-additive measures [19]). Unfortunately, these works aim at defining
alternative structures which are computationally more efficient than BF; and the
definition of a non-additive measure adapted to partial bet is not investigated.
For instance, the works of Cuzzolin [17] prove that the space of the BFs de-
fined on a dedicated frame is a simplex, and it provides a framework to analyse
the various transforms of the DST from a geometrical point of view. For us, it
brings new insights with respect to decision making as this geometrical work
stresses the link between structures on which decision is classically made (e.g. a
bayesian BF, a plausibility function), and the geometrical transforms that make
the conversion amongst these structures (e.g. the PT, the Mbius transforms). In
[18,19], Gravisch introduces k-order additive fuzzy measures, which can be seen
as an intermediate type of structure between probabilities (1-order measures)
and BF: it corresponds to BF for which the cardinality of the largest focal el-
ement is k. Once again, the main objective is to define more efficient structure
for computational aspects.

These papers do not investigate the consequences of the use of these structures
in decision making. To our knowledge, the only work in which decision making
scenarios with compound hypotheses are considered was carried out by Shapley
[4], and then re-investigated by Smets [2,3], in the context of the TBM. Hence,
we mainly base our work on this latter.

3.2 The Shapley Value

In [3], Smets summarizes his work of [2] and explains how to derive the PT in
case of non-singleton bets. As it is explained altogether with the assessment of
the result, it concurs with the work of Shapley [4]:

BetP′(X = B) =
1

1−m(∅)
∑
A⊆Ω

m(A) · |A ∩B|
|A| ∀B ⊆ Ω

In this equation, the value associated to B is the sum of (1) all the hypotheses
of strictly smaller cardinality which are nested in B, (2) m(B) itself (3) an
”inherited” mass from wider hypotheses in which B is nested, and (4) all other
hypotheses for which there is no inclusion relation with B, but the intersection
of which with B is non-empty:

BetP′(X = B) =
1

1−m(∅) ·
[∑
A⊂B

m(A) + m(B)

+
∑

B⊂A⊆Ω

m(A) · |B|
|A|

+
∑

other A⊆Ω

m(A) · |A ∩B|
|A|

⎤⎦ ∀B ⊆ Ω
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Of course, in case of B being a singleton hypothesis, it corresponds to the classical
PT: The first and the fourth terms are zero-valued, and |B| = 1, so that:

BetP′(X = B)=
1

1−m(∅) ·

⎡⎣m(B)+
∑

B �=A,B∈A⊆Ω

m(A)
|A|

⎤⎦=BetP(X = B) ∀B ∈ Ω

3.3 Application of Shapley Work to Partial Bets

Now, let us forget the original interest of this formula, and let us consider it
through our own aim: Is it sensible to consider the Shapley value as a general-
ization of the PT which allows comparing hypotheses of different cardinality?
Basically, the first term in the previous equation means, that the value asso-
ciated to a compound hypothesis {h1, h2} is increased by the belief of all the
hypotheses which are nested in it : {h1} and {h2}. Moreover, as all the consid-
ered hypotheses inherit belief of wider hypotheses in a manner proportional to
their cardinality, it is impossible to assign a pignistic probability to {h1} or {h2}
which is greater to the one assigned to {h1, h2}. As a consequence, larger hy-
potheses are always promoted in the decision making, which leads to situations
such as the one illustrated in figure 2.

In addition, the fourth term is also problematic with respect to partial bets.
Because of it, an important belief in a compound hypothesis {h1, h2} increases
the Shapley value for another compound hypothesis {h1, h3} as their intersection
is none empty. In our situation, {h1, h2} and {h1, h3} are different and exclusive
choices for the decision. The value assess to a compound hypothesis must keep
an evidential interpretation, as we deal with hypothesis of different cardinality
simultaneously (as in the credal level). Then, it must not yet be understood as a
probabilistic sigma-algebra, and we should stick to an interpretation similar to
Shafer’s concerning the belief assignment [10], reading that, the BBA in a focal
element models the belief that can be placed in it, and nothing smaller or larger.

The transform leading to the Shapley value is really interesting as a natural
generalization of the PT. Unfortunately, it does not lead to an acceptable solution
when a partial bet is expected. On the other hand, as we root in the TBM, the
decision process we aim at must also remain related to the PT. As a consequence,
we propose to start from the Shapley value, and to modify it, so that it fulfils our
requirements. The first natural step is to remove terms 1 and 4, as they appear to
be problematic. On the contrary, the terms 2 (which represents the belief in the
considered hypothesis) and 3 (which represents inherited beliefs) are perfectly
natural, except for normalization considerations: As some of the redistributions
of the belief have been discarded, it is natural to consider to renormalize their
values so that the total mass is conservative.

3.4 Axiomatic Justification of the PT

By now, let us recall the axiomatic of the PT, in order to make sure that we
respect it. In contradiction to what is often read, the PT is not justified by
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the principle of insufficient reason [20], nor it is justified by the proof that it is
impossible to built a Dutch book against the PT. As a matter of fact, Smets is
rather explicit on these two points:

– An intuitive generalization of the principle of insufficient reason is a cue of
the interest of the PT, but it does not justify it [21].

– In spite of a particular Dutch Book discarded in [3], the proof that it resists
to all Diachronic Dutch Books in general is not given.

Then, the only justifications of the PT rely in five axioms (linearity, projectivity,
efficiency, anonymity, false event). These axioms are not always accepted beyond
the TBM interpretation of the Belief function theory, and consequently, the PT
is also discussed by supporters of other interpretations [11,12]. Within the TBM,
it is nonetheless the only decision process accepted. As this work roots in the
TBM, our single concern is to remain coherent with this framework and
with these five axioms, to which we add a sixth, the conservation principle.

4 Generalization to Partial Bets

As explained in our introductive example, the point is to allow hesitation, but to
control it, so that, when it is not necessary, no hesitation occurs. A very simple
way to control the hesitation is that the decision maker defined a maximum
amount of authorized hesitation. Thus, let γ ∈ N ∩ [1, |Ω|] a threshold that
models this amount. Let Li the set of hypotheses of cardinality i (L stands for
“level”). The decision is made within Δγ = {L1, . . . , Lγ}.

Then, our purpose is to define a probability measure B on Δγ , so that a de-
cision can be made by selecting the element of Δγ the value of which is the
greatest. The corresponding probability space (Δγ ,F ,B), where F is the canon-
ical sigma-algebra of Δγ , must be derived from the measured space (Ω, 2Ω) in
a manner similar to the probability space (Ω, 2Ω,BetP), i.e. by the definition of
an appropriate transform. Intuitively, B looks like a γ-additive BF [18], but as
a matter of fact, its interpretation as such is problematic.

Δγ must be understood as a decision space in itself, in which a variable D
(which stands for “Decision”) takes its value, and which is not related to 2Ω,
in which the variable X takes its value. This may appear as strange, as the
elements of Δγ corresponds to elements of 2Ω, but from the decision point of
view, {h1, h2} and {h1} are two different elements of Δγ , and they are deci-
sions which are exclusive one another. On the contrary, for X , {h1, h2} and {h1}
are nested. That is why B is not a BF. As a consequence, in spite of a similar
mathematical structure, it can not be interpreted as a γ-additive BF. In [18],
Gravisch stresses that the interpretation of a non-additive measure is rather dif-
ficult, and the interpretation of B perfectly illustrates this fact. Equivalently,
BetP, the result of the PT, which has a structure equivalent to a bayseian
BF, can not be interpreted as such [11,12]; otherwise its combination with a
BF thanks to Dempster’s rule would be significant. As we consider the TBM as
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the frame of this work, it is obvious that the interpretation of B as a BF is as
problematic as the interpretation of BetP as a BF.

Let A /∈ Δγ . As explained, the point is to “take” the belief m(A), to “replace”
it by a zero value, and to “redistribute” it to hypotheses within Δγ . Let B
such a hypothesis within Δγ . In a way similar to the PT, the redistribution
must be linear, that is, proportional to the size of the hypothesis that inherits
it. Moreover, the redistribution must remain conservative, so that, making a
decision on Ω by selecting an element of Δγ1 , then, making a more precise
decision by selecting an element of Δγ2 with γ2 < γ1 is equivalent to directly
make a decision on Ω by selecting an element of Δγ2 .

As a consequence, all the hypotheses within a level Li must inherit the same
amount of belief, and each level Li must globally inherit a belief proportional to
|Li|× i. Hence, we propose to share m(A) into N parts, so that, all the elements
of Li, ∀i ≤ γ inherits i parts of m(A). N depends on the number of hypotheses
of Dγ which are nested in B. This number depends in turn of γ, and the size of
A. An elementary enumeration leads to the following formula:

Definition 1

N(|A|, γ) =
γ∑

k=1

C|A|k · k

where Cn
p = n!

p!(n−p)! is the number of combinations of p elements among n.

Now that the redistribution pattern is defined, let us derive the transform itself:

Definition 2. The probability measure Bγ is derived from the BBA m(.) by the
following transform:

Bγ(D = B) =
1

1−m(∅) ·

⎡⎣m(B) +
∑

B⊂A⊆Ω,A/∈Δγ

m(A) · |B|
N(|A|, γ)

⎤⎦ ∀B ∈ Δγ

Proposition 1. The pignistic transform is a particular case of definition 2, as
we have B1(.) = BetP(.).

Proof. If γ = 1, several simplifications occur: Δγ ≡ Ω, X ≡ D, N(|A|, γ) = |A|
and |B| = 1. As B is a singleton, let us note it h. One has ∀h ∈ Ω:

B1(D = h) =
1

1−m(∅) ·

⎡⎣m(h) +
∑

h∈A⊆Ω,|A|�=1

m(A)
|A|

⎤⎦
=

1
1−m(∅) ·

∑
h∈A⊆Ω

m(A)
|A| = BetP(D = h) = BetP(X = h) %&

Another interesting property is derived from the conservation principle:

Proposition 2. Making a decision by selecting δ1 ∈ Δγ1 with the use of Bγ1 ,
and then, making a decision on δ1 by the use of Bγ2 , γ2 < γ1, is equivalent to
directly make a decision by the use of the probability measure Bγ2 .
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From a applicative point of view, this last result is really interesting, as it means,
it is possible to make a decision on Δ|Ω|−1, by redistributing the belief from L|Ω|,
in order to discard a single element of Ω, then to make a decision on Δ|Ω|−2
by redistributing only the belief from L|Ω|−1, and so on, until Δ1. This set of
operations has a computational cost similar to the one necessary to make a
decision over Δ1: the belief at each level Li is redistributed one time to compute
B1 or Bγ , ∀γ ∈ [1, |Ω|]. Then, it is possible for the decision maker to rapidly
analyse the capability of the decision process to focus on a compound hypothesis
of restricted cardinality, prior to the definition of γ.

Now the transform is explicit, the removal of two of the four terms in the
original Shapley value may appear as arbitrary: We mainly explain it from a
“functional” point of view. On the other hand, here are strong evidences that a
more mathematical construction is also achievable : (1) the γ-additive structure,
with γ = 1 being equivalent to the PT and with γ = |Ω| being equivalent to
the original BF, and (2) our formula has strong similarities with the orthogo-
nal projection of a BF on the probability simplex [17]. Hence, identifying the
geometrical transform that justify it is an interesting future works to focus on.

5 Applications to American Sign Language Recognition

In this section, we briefly summarize a previous work of ours [22], in which the
transform has been used for gesture recognition: We proposed to recognize an
American Sign Language gesture performed in front of a video camera, among
a set 19 possible gestures. For any gesture Gi, a dedicate Hidden Markov Model
HMMi is trained. For any new occurrence G? to recognize, the system com-
putes the probability of the observed gesture to be the observation sequence
produced by each HMMi. A classical method is to recognize the new gesture as
an occurrence of the gesture G∗ which HMM∗ produces the highest likelihood.

Amongst the 19 gestures, few pairs of them are so closed to each others than
the system does not discriminate. Consequently, the overall accuracy for the
recognition task is reasonably good (75.88% on 228 items), but several mistakes
occur between the similar pairs or triplets. This is why, in this article, we have
first proposed to set a decision method which allows to produce a single decision
when it is possible and to produce an incomplete decision otherwise, in order
to complete it in a second step. The use of the B2 and B3 provides far better
result than B1 or equivalently BetP. On the 228 items in the test set, there are
189 examples for which a complete decision is made. For this singleton decision,
the accuracy is 79.37%: the fewer remaining singletons are less error-prone. For
the other examples the decision is imprecise. If we consider the decision as a
right one when one of the elements of the compound hypothesis is the good one,
then, the overall accuracy is 82.02%. From the applicative point of view, it shows
that the concept of such a decision process is accurate as it allows focusing the
imprecision of a decision only when it is necessary.

In a second step, we fuse the information of the manual gestures with ad-
ditional non-manual gestures (face/shoulders motions, facial expression, which
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are very important in ASL) in order to help do discriminate among a cluster of
similar gestures. These non-manual gestures are completely inefficient to discrim-
inate if they are used in the first step altogether with the manual ones, as their
variability is hidden by variability of the manual feature. Hence, the progressive
nature of the decision process is helpful for a hierarchical data fusion.

Finally, when compared to classical Bayesian methods, it appears that our
complete system is both more accurate and more robust: For instance, 31.1%
of the mistakes are avoided with respect to a situation where the second step is
systematically used: In such a use, the second step put back into question some
good decisions of the first step (see [22] for a comprehensive evaluation).

6 Conclusion

In this article, we have presented a generalisation of the pignistic transform
that differs from Smets’ one, as it does not corresponds to the Shapley value.
It provides an alternative when it is necessary to control the trade-of between
hesitation and bet in decision making. Moreover, the classical pignistic trans-
form from Smets appears to be a particular case of this generalisation. From a
theoretical point of view, the main change with respect to Shapley’s work relies
in (1) the manner the belief in too large focal elements is normalized prior to
its redistribution, and (2) the restriction to focal elements of cardinality ≤ γ, as
with k-additive belief functions. From a practical point of view, its application
to Sign Language recognition stresses its interest on real problems. Tree direc-
tions are considered for future works: (1) application to other real problems in
pattern recognition, (2) its application to credal time-state models [5], and (3)
the geometrical explanation of the transform in the probability simplex [17].

References

1. Smets, P., Kennes, R.: The transferable belief model. Art. Int. 66(2), 191–234
(1994)

2. Smets, P.: Constructing the pignistic probability function in a context of uncer-
tainty. Uncertainty in Artificial Intelligence 5, 29–39 (1990)

3. Smets, P.: No Dutch book can be built against the TBM even though update is
not obtained by bayes rule of conditioning. In: Workshop on probabilistic expert
systems, Societa Italiana di Statistica, Roma, pp. 181–204 (1993)

4. Shapley, L.: A Value for n-person Games. Contributions to the Theory of Games.
In: Kuhn, H.W., Tucker, A.W. (eds.) Annals of Mathematical Studies, vol. 2(28),
pp. 307–317. Princeton University Press, Princeton (1953)

5. Ramasso, E., Rombaut, M., Pellerin, D.: Forward-Backward-Viterbi procedures in
the Transferable Belief Model for state sequence analysis using belief functions,
ECSQARU, Hammamet, Tunisia (2007)

6. Xu, H., Smets, P.: Reasoning in Evidential Networks with Conditional Belief Func-
tions. International Journal of Approximate Reasoning 14, 155–185 (1996)

7. Ristic, B., Smets, P.: Kalman filters for tracking and classification and the trans-
ferable belief model. In: FUSION 2004, pp. 4–46 (2004)



A Generalization of the Pignistic Transform for Partial Bet 263

8. Dennenberg, D.: Non-Additive Measure and Integral. Kluwer Academic Publishers,
Dordrecht (1994)

9. Dubois, D., Prade, H.: Possibility theory: an approach to computerized processing
of uncertainty. Plenum Press (1988)

10. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

11. Cobb, B., Shenoy, P.: On the plausibility transformation method for translating
belief function models to probability models. Int. J. of Approximate Reasoning
(2005)

12. Cobb, B., Shenoy, P.: A Comparison of Methods for Transforming Belief Functions
Models to Probability Models. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU
2003. LNCS (LNAI), vol. 2711, pp. 255–266. Springer, Heidelberg (2003)

13. Voorbraak, F.: A computationally efficient approximation of Dempster-Shafer the-
ory. International Journal on Man-Machine Studies 30, 525–536 (1989)

14. Daniel, M.: Probabilistic Transformations of Belief Functions. In: Godo, L. (ed.)
ECSQARU 2005. LNCS, vol. 3571, pp. 539–551. Springer, Heidelberg (2005)

15. Sudano, J.: Pignistic Probability Transforms for Mixes of Low- and High- Proba-
bility Events. In: Int. Conf. on Information Fusion, Montreal, Canada (2001)

16. Dezert, J., Smarandache, F., Daniel, M.: The Generalized Pignistic Transformation.
In: 7th International Conference on Information Fusion Stockholm, Sweden (2004)

17. Cuzzolin, F.: Two new Bayesian approximations of belief functions based on convex
geometry. IEEE Trans. on Systems, Man, and Cybernetics - B 37(4), 993–1008
(2007)

18. Grabisch, M.: K-order additive discrete fuzzy measures and their representation.
Fuzzy sets and systems 92, 167–189 (1997)

19. Miranda, P., Grabisch, M., Gil, P.: Dominance of capacities by k-additive belief
functions: EJOR 175, 912–930 (2006)

20. Keynes, J.: Fundamental Ideas. A Treatise on Probability. Macmillan, Basingstoke
(1921)

21. Smets, P.: Decision Making in the TBM: the Necessity of the Pignistic Transfor-
mation. Int. J. Approximate Reasoning 38, 133–147 (2005)

22. Aran, O., Burger, T., Caplier, A., Akarun, L.: A Belief-Based Sequential Fusion
Approach for Fusing Manual and Non-Manual Signs. Pattern Recognition (2009)



Using Logic to Understand Relations between
DSmT and Dempster-Shafer Theory

Laurence Cholvy

ONERA Centre de Toulouse,
2 avenue Edouard Belin,
31055 Toulouse, France

cholvy@cert.fr

Abstract. In this paper1,2, we study the relations that exist between
Dempster-Shafer Theory and one of its extensions named DSmT. In par-
ticular we show, by using propositional logic, that DSmT can be refor-
mulated in the classical framework of Dempster-Shafer theory and that
any combination rule defined in the DSmT framework corresponds to a
rule in the classical framework. The interest of DSmT rather concerns
the compacity of expression it manipulates.
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1 Introduction

Demspter-Shafer Theory [14] is one of the main theories which deal with uncer-
tainty representation. Because of the combinaison rule it provides, it has widely
been used in information fusion context. This theory has motivated and still
motivates many studies: applicative studies whose aim is to apply this theory on
concrete cases [1], [6], [12], [10] or more fundamental works whose aim is to ex-
tend this theory or to propose new combination rules, or to give interpretations
to this theory [11], [15], [16],[17], [2], [3].

Among the different extensions of Dempster-Shafer Theory, one can cite the
so-called DSmT, whoses basis are described in [7] then extended in [13]. The
authors of DSmT, aware of the fact that their new theory is an extension of
Dempster-Shafer Theory, affirm that it allows one to solve problems that the
original Dempster-Shafer Theory fails to solve: The Dezert-Smarandache The-
ory (DSmT) of plausible and paradoxical reasoning is a natural extension of the
classical Dempster-Shafer Theory (DST) but includes fundamental differences
with the DST. (...) DSmT is able to solve complex, static or dynamic fusion
problems beyond the limits of the DST framework, specially when conflicts be-
tween sources become large and when the refinement of the frame of the problem
under consideration becomes inaccessible because of vague, relative and imprecise
nature of elements of it. ([13]).
1 The french version of this paper has been presented at LFA’08 (Rencontres franco-

phones sur la Logique Floue et ses Applications) in Lens, october 16th 2008.
2 This work has been supported by ONERA, grant number 13631.01.

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 264–274, 2009.
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In this present paper, we aim at formally comparing the DSmT and Dempster-
Shafer Theory. More precisely, we show that DSmT can be reformulated in
Dempster-Shafer Theory and thus, from expressivity point of view, DSmT is
equivalent to Dempster-Shafer Theory.

For establishing this correspondance, we apply one of the major properties
of propositional logic. Given a propositional language, this property ensures the
existence of a bijection between the quotient set defined by the equivalence
relation on the the set of formulas and the power set of interpretations. More
precisely, any formula of the language is associated with the unique set of its
models (called its truth-set). Moreover, all the formulas which are equivalent are
associated with the same truth-set.

DSmT considers that hypothesis of a discernment frame can be non-exclusive.
We show that such a frame can be considered as a propositional language and
that expressions which are assigned a mass are formulas of this language. By the
previous bijection, this comes to assign masses to sets of interpretations which
are, by definition, exclusive. Thus, we are projected in the classical Dempster-
Shafer framework in which hypothesis are exclusive.

This paper is organized as follows. Section 2 reminds the notions of logic
needed for the comprehension of the paper. Section 3 analyses DSmT in the
light of logic. We first study the case of free models then we study the more
general case of hybrid models. Finally, section 4 concludes the paper.

2 Propositional Logic

A propositional language Θ is defined by an alphabet whose vocabulary is com-
posed of a set of propositional letters, connectors ¬,∧,∨,→,↔ and parenthesis.

The set of propositional formulas, denoted FORM , is the smallest set of words
built on this alphabet such that: if A is a letter, then A is a formula; ¬A is a
formula if A is a formula; A ∧ B is a formula if A and B are formulas. Other
formulas are defined by abbreviation. More precisely, A∨B denotes ¬(¬A∧¬B);
A → B denotes ¬A ∨B; A ↔ B denotes (A → B) ∧ (B → A).

In this paper, it is sufficient to consider a finite language i.e a language whose
finite set of letters. We will note σ0 the formula which is the disjonction of all
these letters.

A clause is a particular formula which is a disjuntion of literals, a literal being
a letter or the negation of a letter. One says that a clause subsumes another
clause if the literals of the first one are literals of the second one too.

An interpretation i is an application from the set of letters to the set of truth
value {0, 1}. An interpretation i can be extended to the set of formulas by:
i(¬A) = 1 iff i(A) = 0; i(A ∧ B) = 1 iff i(A) = 1 and i(B) = 1. Consequently,
i(A∨B) = 1 iff i(A) = 1 or i(B) = 1, and i(A → B) = 1 iff i(A) = 0 or i(B) = 1;
i(A ↔ B) = 1 iff i(A) = i(B).

The set of interpretations of Θ will be denoted IΘ.
Frequently, an interpretation i is represented by a set made of the proposi-

tional letters a such that i(a) = 1 and negation of propositional letters b such
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that i(b) = 0. For instance, if a, b, c are the three letters of the languae, then the
interpretation i defined by: i(a) = 1 and i(b) = i(c) = 0 is denoted by the set
{a,¬b,¬c}. This notation will be used in the following.

The interpretation i is a model of formula A iff i(A) = 1. We say that i
satisfies A.

The “truth set” (or set of models) of formula A is the set of interpretations
which are models of A. It is denoted mod(A). We have: mod(A) ∈ 2IΘ .

A is satisfiable iff there exists an interpretation i such that i(A) = 1.
Let A and B two formulas. We have: A |= B iff mod(A) ⊆ mod(B) and

|= A ↔ B iff mod(A) = mod(B). Thus, two equivalent formulas have the same
truth-set.

Definition 1. Let σ be a satisfiable formula. We define an equivalence relation
denoted rσ↔ on FORM as follows: let A and B two formulas, we have A rσ↔ B
iff σ |= A ↔ B.

Definition 2. Let σ be a satisfiable formula. Let S be a set of formulas. We
note S/rσ↔ the quotient set of S given the equivalence relation r↔.

Definition 3. Let σ be a satisfiable formula. We define a function Modσ from
FORM/rσ↔ to 2mod(σ) by: if c belongs to FORM/rσ↔, then Modσ(c) = mod(A∧
σ) where A ∈ c.

Proposition 1. Modσ is a bijection from FORM/rσ↔ to 2mod(σ)

This proposition states that equivalent formulas given relation rσ↔ do have the
same truth set and that any subset of mod(σ) is the truth-set of an unique set
of formulas which are equivalent given rσ↔.

Example 1. Consider a language whose letters are a, b, c. IΘ has got 8 elements
which are the following interpretations:

i1 = {a, b, c}, i2 = {a, b,¬c}, i3 = {a,¬b, c}, i4 = {a,¬b,¬c},
i5 = {¬a, b, c}, i6 = {¬a, b,¬c}, i7 = {¬a,¬b, c}, i8 = {¬a,¬b,¬c}.

σ0 is the formula a ∨ b ∨ c, et mod(σ0) = {i1, ...i7}.
Let c1 be the equivalence class of a ∧ (b ∨ c). Modσ0(c1) = {i1, i2, i3}.
Let I1 = {i2, i4}. Modσ

−1
0 (I1) is the equivalence class of the formula a ∧ ¬c.

Definition 4. A formula is under minimal positive conjunctive normal form
(denoted +mcnf) if it is a conjunction of clauses whose all literals are positive
and such that no clause subsumes another one. The set of +mcnf-formulas is
denoted +mcnfFORM .

For instance a is a +mcnf-formula; a ∧ (a ∨ b) and a ∧ ¬c are not.

Proposition 2. Modσ is not a bijection from +mcnfFORM/rσ↔ to 2mod(σ)

As a counter example, I1 in the previous example, is the truth set of no +mcnf-
formulas.
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3 Studying DSmT with Logic

3.1 Preliminaries: Dempster-Shafer Theory

Dempster-Shafer Theory considers a finite discernment frame Θ = {θ1, ...θn}
whose elements, called hypothesis, are exhaustive et exclusive.

An basic belief assignment (or mass function) is a function m : 2Θ → [0, 1]
such that: m(∅) = 0 et

∑
A⊆Θ m(A) = 1.

Given a basic belief assignment m, one defines a belief function Bel : 2Θ →
[0, 1] by: Bel(A) =

∑
B⊆A m(B). One also defines a plausibility function Pl :

2Θ → [0, 1] such that Pl(A) = 1−Bel(A).
Let m1 and m2 two basic assigments on the frame Θ. Dempster’s combination

rule defines a basic belief assignment denoted m1 ⊕ m2, from 2Θ to [0, 1] by:

m1 ⊕m2(∅) = 0

m1 ⊕m2(C) =
∑

A∩B=C m1(A).m2(B)
N

with

N =
∑

A∩B �=∅
m1(A).m2(B)

3.2 DSmT: Case of Free Models

Presentation of the Case of Free Models. Contrary to Demspter-Shafer
Theory, DSmT supposes that frames of discernement are finite sets of hypothesis
which are exhaustive but not exclusive.

Let Θ = {θ1, ...θn} be a discernment frame.
According to [7], the hyper-power-set DΘ is the set made of ∅, θ1,..., θn and

all the expressions composed from the hypothesis and operators ∪ and ∩ such
that: ∀A ∈ DΘ ∀B ∈ DΘ (A ∪B) ∈ DΘ and (A ∩B) ∈ DΘ.

Example 2. Si Θ = {θ1, θ2} alors DΘ = {∅, θ1, θ2, θ1 ∩ θ2, θ1 ∪ θ1}.
However, it seems that the authors implicitely suppose that elements of DΘ are
under some form. Indeed, one can notice that some expressions are reduced by
implicitly using properties of ∩ and ∪. For instance, the expression θ1∩ (θ1 ∪θ2)
is in fact reduced to θ1. In the same way, for n=3, (θ2 ∪ θ3) ∩ θ1 belongs to DΘ

but (θ2 ∩ θ1)∪ (θ3 ∩ θ1) does not. However it characterizes the same element. In
the same way, (θ1 ∩ θ2)∪ θ3 appears but (θ1 ∪ θ3)∩ (θ2 ∪ θ3) does not. However,
theses two expressions which do not appear are well formed.

Definition 5. Given a frame Θ, we call reduced conjonctive normal form (rcnf),
any conjunction of disjunction of hypothesis of Θ such that no disjunction con-
tains another one.

For instance, θ1 ∩ (θ1 ∪ θ2) is not rcnf; θ1 is.
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It has been confirmed, [8], that DΘ is the set of all the reduced conjunctive
normal forms that can be buit.

In DSmT, the basic assignements are defined not on elements of 2Θ but on
elements of DΘ. Definitions of belief functions and plausibility functions are
unchanged.

A combination rule has been defined in [7] Given two basic belief assigments
m1 and m2, this rule builds the following assigment: m1 [⊕] m2 : DΘ → [0, 1]:

m1[⊕]m2(C) =
∑

A∩B=C

m1(A).m2(B)

Furthermore, it is also mentionned in [7], that a normalization can be applied
on the assigment which is obtained. This would lead to consider the rule:

m1[⊕]m2(C) =
∑

A∩B=C m1(A).m2(B)
N

N being the sum of all the masses m1[⊕]m2(C).

Reformulation of the Case of Free Models. In the following, we use propo-
sitional logic to show that DSmT can be reformulated in the Dempter-Shafer’s
classical framework.

Let us first recall that the notions of discernment frame and hypothesis can
be given a logical interpretation [2].

Proposition 3. Any discernment frame Θ = {θ1, ...θn} can be associated with
a logical propositional language we will denote Θ whose propositional letters will
still be denoted θ1, ...θn.

Any expression E of DΘ can be associated by a bijection with a +mcnf-formula
of language Θ which will be still denoted E.

Furthermore, assuming exhaustivity of hypothesis comes to consider the for-
mula σ0 = θ1 ∨ ... ∨ θn as true.

Example 3. For instance, the frame Θ = {θ1, θ2, θ3} corresponds to the propo-
sitional language Θ whose letters are θ1, θ2 and θ3.

The expression θ1 ∩ (θ2 ∪ θ3) corresponds to the formula θ1 ∧ (θ2 ∨ θ3) And
here, σ0 = θ1 ∨ θ2 ∨ θ3.

Proposition 4. Any discernment frame Θ of DSmT can be associated with a
new discernment frame, denoted mod(σ0), whose hypothesis are exhaustive and
exclusive.

Any expression E of DΘ can be associated with an expression of 2mod(σ0)

which will be denoted T (E).

The function T is defined by composition of the three following functions:

1. By proposition 3, any expression E of DΘ is associated with a +mcnf-formula
E of language Θ.

Let us denote cE , the equivalence class (given relation rσ0
↔ ) of this

formula.
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2. Let mod(σ0) the truth set of σ0.
By proposition 1, we know that cE can be associated by function Mod

with an element of 2mod(σ0), Mod(cE).
3. Finally, 2mod(σ0) canbe associatedwith a discernment frame,denoted 2mod(σ0),

whose hypothesis correspond to models of σ0 and thus, are mutually exclusive.
Thus, any element of 2mod(σ0) can be associated with a union of hypothesis of
the discernment frame 2mod(σ0).

In particular, if Mod(cE) = {w1, ..., wn} then we can associate it with
the expression w1 ∪ ... ∪wn of frame 2mod(σ0).

T (E) is this very expression.

Figure 1 sums up this definition.

E ∈ DΘ

under rcnf form

cE Mod(cE)

T (E) ∈ 2mod(σ0)

under union form

1

2

3

Fig. 1. Case of free models

Example 4. Consider Θ = {θ1, θ2, θ3}. We can associate this frame with the
propositional language Θ whose letters are θ1, θ2, θ3 (proposition 3).

We have: σ0 = θ1 ∨ θ2 ∨ θ3. And mod(σ0) = {w1, w2, ...., w7} with:

w1 = {θ1, θ2, θ3}, w2 = {θ1, θ2,¬θ3}, w3 = {θ1,¬θ2, θ3},
w4 = {θ1,¬θ2,¬θ3}, w5 = {¬θ1, θ2, θ3}, w6 = {¬θ1, θ2,¬θ3},
w7 = {¬θ1,¬θ2, θ3},

– Consider the expression E1 = θ1 ∩ θ2 of DΘ. E1 is associated with the
equivalence class of the formula θ1 ∧ θ2 (point 1). By function Mod this
class is associated with {w1, w2} (point 2). Finally (point 3), this set is
associated with an expression of frame mod(σ0), which is w1 ∪ w2. Thus,
T (E1) = w1 ∪ w2.

– Consider the expression E2 = θ1 ∪ θ2. In the same way, we can show that
T (E2) = w1 ∪ w2 ∪ w3 ∪ w4 ∪ w5 ∪w6.

– As for the expression E3 = θ1 ∪ (θ2 ∩ θ3), we have: T (E3) = w1 ∪w2 ∪w3 ∪
w4 ∪ w5.

Proposition 5. Function T is not a bijection.

Indeed, some elements of 2mod(σ0) are the image by function Mod of some equiv-
alence class of formulas which are not +mcnf-formulas. This is shown by the
following example.
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Example 4 (continued). Consider the expression w2∪w4. There is no expres-
sion of DΘ whom it is the image by T . Indeed, the equivalence class which is its
antecedent by Mod is the class of formula θ1 ∧ ¬θ3. This formula is not +mcnf.
Thus, it is associated with no expression of DΘ.

T is not a bijection because expressions of DΘ are only built with ∩ and ∪
operators. They are not built with complementation operator (which would cor-
respond to logical negation).

Definition 6. Let Θ be a discernment frame. Any basic belief assignment m de-
fined on DΘ can be associated with a basic belief assignment denoted m′, defined
on mod(σ0) by: m′(T (E)) = m(E) for any E ∈ DΘ.

Example 4 (continued). Let m defined on DΘ by:

m(θ1) = 0.80 m(θ2) = 0.15
m(θ1 ∪ θ2) = 0 m(θ1 ∩ θ2) = 0.05

Basic belief assignment m′ is defined on 2mod(σ0) by:

m′(w1 ∪ w2 ∪ w3 ∪ w4) = 0.80
m′(w1 ∪ w2 ∪ w5 ∪ w6) = 0.15
m′(w1 ∪ w2 ∪ w3 ∪ w4 ∪ w5 ∪w6) = 0
m′(w1 ∪ w2) = 0.05

Proposition 6. Let Θ be a discernment frame and let m1 and m2 be two basic
belief assigments defined on DΘ. If [⊕] denotes the normalized version of DSmT
combination rule, then for any expression E of DΘ:

m1[⊕]m2(E) = m′1 ⊕m′2(T (E))

This proposition shows that the normalized combination rule defined in the
framework of the free models of DSmT is equivalent to Dempster’s combination
rule (when they are respectively applied on expressions E of DΘ and T (E) of
2mod(σ0).

Example 5. (see example 11 of [7]). Let m1 and m2 be two basic belief assig-
ments on DΘ:

m1(θ1) = 0.80 m1(θ2) = 0.15
m1(θ1 ∪ θ2) = 0 m1(θ1 ∩ θ2) = 0.05
m2(θ1) = 0.90 m2(θ2) = 0.05
m2(θ1 ∪ θ2) = 0 m2(θ1 ∩ θ2) = 0.05

m1[⊕]m2(θ1) = 0.72 m1[⊕]m2(θ2) = 0.0075
m1[⊕]m2(θ1 ∪ θ2) = 0 m1[⊕]m2(θ1 ∩ θ2) = 0.2725

Consider now the new discernment frame: mod(σ0) = {w1, w2, ...., w7} (see ex-
ample 4).
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Then m′1 and m′2 are the assigments:

m′1(w1 ∪ w2 ∪ w3 ∪ w4) = 0.80
m′1(w1 ∪ w2 ∪ w5 ∪ w6) = 0.15
m′1(w1 ∪ w2 ∪ w3 ∪ w4 ∪ w5 ∪ w6) = 0
m′1(w1 ∪ w2) = 0.05

m′2(w1 ∪ w2 ∪ w3 ∪ w4) = 0.90
m′2(w1 ∪ w2 ∪ w5 ∪ w6) = 0.05
m′2(w1 ∪ w2 ∪ w3 ∪ w4 ∪ w5 ∪ w6) = 0
m′2(w1 ∪ w2) = 0.05

If we apply Dempster’s combination rule on these new assigments we get:
m′1 ⊕m′2(w1 ∪ w2 ∪ w3 ∪ w4) = 0.72
m′1 ⊕m′2(w1 ∪ w2 ∪ w5 ∪ w6) = 0.0075
m′1 ⊕m′2(w1 ∪ w2 ∪ w3 ∪ w4 ∪ w5 ∪ w6) = 0
m′1 ⊕m′2(w1 ∪ w2) = 0.2725

Obviously, we have m1[⊕]m2 = m′1 ⊕m′2

3.3 DSmT: Case of Hybrid Models

Presentation of Hybrid Models. Hybrid models, [13], correspond to the
case when contraints are expressed among hypothesis. These constraints, called
integrity constraints, make some intersections empty.

In the following, IC denotes an expression of the form E = ∅, where E ∈ DΘ.
Let us notice that even if there are several integrity constraints, E1 = ∅ ...
En = ∅, we can always get to the case of a unique integrity constraint by taking
E = E1 ∩ ... ∩ En.

For the authors of DSmT, taking integrity constraints into account comes to
consider a restriction of the hyper power set DΘ. This restricted set contains
less elements than in the general case and we will denote it DΘ

IC to signify that
this new set depends on IC.

To the limit, if the constraints express that all the hypothesis are mutually
exclusive we get DΘ

IC = 2Θ.
Thus, by considering constraints IC, any expression E of DΘ (the hyper power

set without contraints) can be reduced into an expression of DΘ
IC .

Example 6. Let Θ = {θ1, θ2, θ3}. Consider the constraint IC = θ1 ∩ θ2 = ∅.
Then the expression θ1 ∩ (θ2 ∪ θ3) of DΘ is reduced to θ1 ∩ θ3.

In the case of hybrid models, the authors of DSmT have defined different com-
bination rules. In what follows, we show that these rules can be associated with
combination rules on assigments defined on a discernment frame whose hypoth-
esis are exhaustive and exclusive.

Reformulation of Hybrid Models. As we did in the previous section, we
build a function which associates any expression of DΘ to an expression of a
new discernment frame whose hypothesis are exhaustive and exclusive.

As previously, the frame Θ = {θ1, ...θn} is associated with a propositional
language Θ whose letters are θ1, ..., θn.
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As previously, we can associate the expression IC to a logical formula we still
denote IC.

Example 6 (continued). The constraint θ1 ∩ θ2 = ∅ is associated with the
formula ¬(θ1 ∧ θ2).

Proposition 7. The results of proposition 4 can be adapted in the context of
hybrid models by considering the formula σ1 = σ0∧IC instead of the formula σ0.

Figure 2 sums up this result.

E ∈ DΘ

under rcnf form

cE Mod(cE)

T (E) ∈ 2mod(σ1)

under union form

1

2

3

Fig. 2. Case of hybrid models

Example 7. Take example 4 and consider the constraint IC : θ1 ∩ θ2 = ∅. It
corresponds to the formula ¬(θ1 ∧θ2). Then σ1 = (θ1∨θ2∨θ3)∧¬(θ1 ∧θ2). And
we get mod(σ1) = {w3, w4, w5, w6, w7}

Consider the expression E4 = θ1 ∩ (θ2 ∪ θ3). The formula which is associated
with it is E4 = θ1 ∧ (θ2 ∨ θ3) and we have E4 ∧ σ1 equivalent to θ1 ∧ ¬θ2 ∧ θ3.
Thus mod(E4 ∧ σ1) = {w3}. Finally T (E4) = w3.

The existence of this function implies the following corollary:

Proposition 8. Any combination rule defined in the case of hybrid models of
DSmT corresponds to a combinaison rule applied on assignments defined on the
discernment frame mod(σ1).

4 Discussion

The previous proposition shows the strong relation that exists between discern-
ment frames with exhaustive but not exclusive hypothesis (DSmT) and the case
of discernment frames with hypothesis which are exhaustive and exclusive (case
of Dempster-Shafer theory). It ensures that any combination rule defined in the
framework of DSmT can be reformulated in the framework of Dempster-Shafer
Theory if we change the discernment frames.

This proposition is not constructive and it does not define what is the combi-
nation rule in Dempster-Shafer Theory which correponds to a given combination
rule in DSmT. However, the correspondance has been established for some rules.
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For instance, it has been proved [4], that the hybrid combination rule (Hybrid
DSm rule) corresponds to Dubois and Prade rule.

From this correspondance, we can conclude that everything which is done in
the DSmT framework with non exclusive hypothesis can be done in the frame-
work of exclusive hypothesis3. This is consistant with Daniel’s work [5], who gets
to the same result by a different way.

It must noticed that the equivalence result we prove here was already known
by DSmT authors themselves. Indeed, they have shown that any discernment
frame Θ (for instance {θ1, θ2}) can be transformed in a discernment frame they
call refined-Θ and denoted 2Θ, with exclusive hypothesis (here {θ1 − θ2, θ1 ∧
θ2, θ2 − θ1}). But for the DSmT authors this new discernment frame is only a
mathematical abstraction with no physical reality [8].

The main contributions of our work is to use logic mathematic not only to
show that a correspondance between DSmT and Demspter-Shafer Theory can
be done, but to show that the new discernment frame that must be considered
makes sense. More precisely, we have shown that DSmT work with formulas
in the syntax and that we can equivalently work in the semantics, by using
Dempster-Shafer theory with the models of these formulas.

Thus we have shown that DSmT belongs to the proof theory side and we have
shown its reformulation in Dempster-Shafer’s framework belongs to the model
theory side. Proving a strong relation between the two is not surprising. It is
well known that knowledge or beliefs can be modelled by formulas (proof theory
approach) or equivalently by their models (model theory approach).

Notice that a side effect of our contribution is to enlight the fact that expres-
sions considered by DSmT are missing complementation. Taking complementa-
tion into account would lead to have all the richness of the logical language. In
this case, function T would be a bijection.

However, let us add that, even not more powerful that Dempster-Shafer frame-
work, the main advantage we see to DSmT is the compacity of the expressions
on which basic assignments are. For instance (see example 4), it is more com-
pact to consider expressions that can be buit with 3 non-exclusive hypothesis
θ1, θ2, θ3 than to consider expressions that can be build with 7 exclusive hypoth-
esis w1, ..., w7.

It must be noticed that this argument of compactness is exactly the same
which is used in classical logic to argue that formulas can be used to model
knowledge in a more compact form than sets of models. It is also the same
argument that is used in preference representation [9] to argue that expressing
preferences on formulas is more compact that expressing preferences on models
(also called alternatives).

However, as for the complexity aspects (complexity of combination rules) com-
paring what is done in DSmT and what is done in the classical Dempster-Shafer
framework remains to be done.

3 Our work should be easily apply to to recent extensions of DSmT to qualitative
beliefs.
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Complexes of Outer Consonant Approximations
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Abstract. In this paper we discuss the problem of approximating a be-
lief function (b.f.) with a necessity measure or “consonant belief function”
(co.b.f.) from a geometric point of view. We focus in particular on outer
consonant approximations, i.e. co.b.f.s less committed than the original
b.f. in terms of degrees of belief. We show that for each maximal chain
of focal elements the set of outer consonant approximation is a polytope.
We describe the vertices of such polytope, and characterize the geometry
of maximal outer approximations.

1 Introduction

The theory of evidence (ToE) [1] is a popular approach to uncertainty descrip-
tion. Probabilities are there replaced by belief functions (b.f.s), which assign
values between 0 and 1 to subsets of the sample space Θ instead of single ele-
ments. Possibility theory [2], on its side, is based on possibility measures, i.e.,
functions Pos : 2Θ → [0, 1] on Θ such that Pos(

⋃
i Ai) = supi Pos(Ai) for any

family {Ai|Ai ∈ 2Θ, i ∈ I} where I is an arbitrary set index. Given a possibility
measure Pos, the dual necessity measure is defined as Nec(A) = 1− Pos(A).

Necessity measures have as counterparts in the theory of evidence consonant
b.f.s, i.e. belief functions whose focal elements are nested [1]. The problem of
approximating a belief function with a necessity measure is then equivalent to
approximating a belief function with a consonant b.f. [3,4,5,6]. As possibilities
are completely determined by their values on the singletons Pos(x), x ∈ Θ, they
are less computationally expensive than b.f.s, making the approximation process
interesting for many applications. The points of contact between evidence (in the
transferable belief model implementation) and possibility theory have been for
instance investigated by Ph. Smets [7].

A geometric interpretation of uncertainty theory has been recently proposed
[8] in which several classes of uncertainty measures (among which belief functions
and possibilities) are represented as points of a Cartesian space.

In this paper we consider the problem of approximating a belief function
with a possibility/necessity [3] from such geometric point of view. We focus in
particular on the class of outer consonant approximations of belief functions.

More precisely, after reviewing the basic notions of evidence and possibility
theory we formally introduce the consonant approximation problem, and in par-
ticular the notion of outer consonant approximation. We then recall how the set

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 275–286, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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of all consonant belief functions forms a simplicial complex, a structured collec-
tion of higher-dimensional triangles or “simplices”. Each such maximal simplex
is associated with a maximal chain of subsets of Θ. Starting from the simple
binary case we prove that the set of outer consonant approximations of a b.f.
forms, on each such maximal simplex, a polytope. We investigate the form of its
vertices and prove that one of them corresponds to the minimal outer approxi-
mation, the one [3] generated by a permutation of the element of Θ. To improve
the readability of the paper all major proofs are collected in an Appendix. Illus-
trative examples accompany all the presented results.

2 Outer Consonant Approximations of Belief Functions

Belief and possibility measures. A basic probability assignment (b.p.a.) over
a finite set (frame of discernment [1]) Θ is a function m : 2Θ → [0, 1] on its
power set 2Θ = {A ⊆ Θ} such that m(∅) = 0,

∑
A⊆Θ m(A) = 1, and m(A) ≥ 0

∀A ⊆ Θ. Subsets of Θ associated with non-zero values of m, {E ⊂ Θ : m(E) 
= 0}
are called focal elements. The belief function b : 2Θ → [0, 1] associated with a
basic probability assignment m on Θ is defined as: b(A) =

∑
B⊆A m(B). The

plausibility function (pl.f.) plb : 2Θ → [0, 1], A �→ plb(A) such that plb(A) .=
1− b(Ac) =

∑
B∩A �=∅mb(B) expresses the amount of evidence not against A.

A probability function is simply a peculiar belief function assigning non-zero
masses to singletons only (Bayesian b.f.): mb(A) = 0 |A| > 1. A b.f. is said to be
consonant if its focal elements {Ei, i = 1, ...,m} are nested: E1 ⊂ E2 ⊂ ... ⊂ Em.
It can be proven that [2,9] the plausibility function plb associated with a belief
function b on a domain Θ is a possibility measure iff b is consonant. Equivalently,
a b.f. b is a necessity iff b is consonant.

Outer consonant approximations. Finding the “best” consonant approxi-
mation of a belief function is equivalent to approximating a belief measure with
a necessity measure. B.f.s admit (among others) the following order relation

b ≤ b′ ≡ b(A) ≤ b′(A) ∀A ⊆ Θ (1)

called weak inclusion. We can then define the outer consonant approximations
[3] of a belief function b as those co.b.f.s such that co(A) ≤ b(A) ∀A ⊆ Θ (or
equivalently plco(A) ≥ plb(A) ∀A). With the purpose of finding outer approx-
imations which are minimal with respect to the weak inclusion relation (1))
Dubois and Prade [3] introduced a family of outer consonant approximations
obtained by considering all permutations ρ of the elements {x1, ..., xn} of the
frame of discernment Θ: {xρ(1), ..., xρ(n)}. A family of nested sets can be then
built {Sρ

1 = {xρ(1)}, Sρ
2 = {xρ(1), xρ(2)}, ..., Sρ

n = {xρ(1), ..., xρ(n)}} so that a new
consonant belief function coρ can be defined with b.p.a.

mcoρ(Sρ
j ) =

∑
i:min{l:Ei⊆Sρ

l }=j

mb(Ei). (2)

Sρ
j is assigned the mass of the focal elements of b included in Sρ

j but not in Sρ
j−1.
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3 The Complex of Consonant Belief Functions

A useful tool to represent uncertainty measures and discuss issues like the ap-
proximation problem is provided by convex geometry. Given a frame of discern-
ment Θ, a b.f. b : 2Θ → [0, 1] is completely specified by its N − 2 belief values
{b(A), A ⊆ Θ,A 
= ∅, Θ}, N

.= 2|Θ|, and can then be represented as a point of
RN−2. The belief space associated with Θ is the set of points B of RN−1 which
correspond to b.f.s. Let us call

bA
.= b ∈ B s.t. mb(A) = 1, mb(B) = 0 ∀B 
= A (3)

the unique b.f. assigning all the mass to a single subset A of Θ (A-th categorical
belief function). It can be proven that [8] the belief space B is the convex closure
of all the categorical belief functions (3), B = Cl(bA, ∅ 	 A ⊆ Θ) where Cl
denotes the convex closure operator: Cl(b1, ..., bk) = {b ∈ B : b = α1b1 + · · · +
αkbk,

∑
i αi = 1, αi ≥ 0 ∀i}.

More precisely B is an N − 2-dimensional simplex, i.e. the convex closure of
N − 1 (affinely independent1) points of the Euclidean space RN−1. The faces
of a simplex are all the simplices generated by a subset of its vertices. Each
belief function b ∈ B can be written as a convex sum as b =

∑
∅�A⊆Θ mb(A)bA.

Similarly the set of all Bayesian b.f.s is P = Cl(bx, x ∈ Θ).

Binary example. As an example consider a frame of discernment containing
only two elements, Θ2 = {x, y}. Each b.f. b : 2Θ2 → [0, 1] is determined by its
belief values b(x), b(y), as b(Θ) = 1 and b(∅) = 0 ∀b. We can then collect them
in a vector of RN−2 = R2:

[b(x) = mb(x), b(y) = mb(y)]′ ∈ R2. (4)

Since mb(x) ≥ 0, mb(y) ≥ 0, and mb(x) + mb(y) ≤ 1 the set B2 of all the
possible b.f.s on Θ2 is the triangle of Figure 1, whose vertices are the points
bΘ = [0, 0]′, bx = [1, 0]′, and by = [0, 1]′. The region P2 of all Bayesian b.f.s on
Θ2 is in this case the line segment Cl(bx, by). On the other side, consonant belief
functions can have as chain of focal elements either {{x}, Θ2} or {{y}, Θ2}.
As a consequence the region CO2 of all co.b.f.s is the union of two segments:
CO2 = COx ∪ COy = Cl(bΘ, bx) ∪ Cl(bΘ, by).

The consonant simplicial complex. The geometry of CO can be described
in terms of a concept of convex geometry derived from that of simplex [10].

Definition 1. A simplicial complex is a collection Σ of simplices such that

1. if a simplex belongs to Σ, then all its faces are in Σ;
2. the intersection of two simplices is a face of both.
1 An affine combination of k points v1, ..., vk ∈ Rm is a sum α1v1 + · · · + αkvk whose

coefficients sum to one:
∑

i αi = 1. The affine subspace generated by the points
v1, ..., vk ∈ Rm is the set {v ∈ Rm : v = α1v1 + · · · + αkvk,

∑
i αi = 1}. If v1, ..., vk

generate an affine space of dimension k they are said to be affinely independent.
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b =[0,0]'Θ

b =[0,1]'y

b =[1,0]'
x

b

B

P

m (x)

m (y)
b

b

CO

CO

2

2

x

y

Fig. 1. The belief space B for a binary frame is a triangle in R2 whose vertices are
the categorical belief functions bx, by , bΘ focused on {x}, {y} and Θ, respectively. The
probability region is the segment Cl(bx, by). Consonant belief functions are constrained
to belong to the union of the two segments COx = Cl(bΘ, bx) and COy = Cl(bΘ, by).

Fig. 2. Constraints on the intersection of simplices in a complex. Only the right-hand
pair of triangles meets condition (2) of the definition of simplicial complex.

Let us consider for instance two triangles on the plane (2-dimensional simplices).
Roughly speaking, the second condition says that the intersection of those tri-
angles cannot contain points of their interiors (Figure 2 left). It cannot also be
any subset of their boundaries (middle), but has to be a face (right, in this case
a single vertex). It can be shown that [8]

Proposition 1. CO is a simplicial complex included in the belief space B.

CO is the union of a collection of
∏n

k=1

(
k
1

)
= n! simplices, each associated with

a maximal chain C = {A1 ⊂ · · · ⊂ An = Θ} of 2Θ:

CO =
⋃

C={A1⊂···⊂An}
Cl(bA1 , · · · , bAn).

4 Outer Approximations in the Binary Case

We can then study the geometry of the set O[b] of all outer consonant approxi-
mations of a belief function b. In the binary case the latter is depicted in Figure 3
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(dashed lines), as the intersection of the region of the points b′ with b′(A) ≤ b(A)
∀A ⊂ Θ, and the complex CO = COx ∪ COy of consonant b.f.s. Among them,
the co.b.f.s generated by the 2 possible permutations ρ1 = (x, y), ρ2 = (y, x) of
elements of Θ2 as in (2) correspond to the points coρ1 , coρ2 in Figure 3.

Fig. 3. Geometry of outer consonant approximations of a belief function b ∈ B2

Let us denote by OC [b] the intersection of the set O[b] of all outer consonant
approximations with the component COC of the consonant complex, with C a
maximal chain of 2Θ. We can notice a number of interesting facts.
For each maximal chain C:

1. OC [b] is convex (in the binary case C = {x,Θ} or {y,Θ});
2. OC [b] is in fact a polytope, i.e. the convex closure of a number of vertices: in

particular a segment in the binary case (Ox,Θ[b] or Oy,Θ[b]);
3. the maximal (with respect to (1)) outer approximation of b is one of the

vertices of this polytope OC [b], the one (coρ, Equation (2)) associated with
the permutation ρ of singletons which generates the chain.

In the binary case there are just two such permutations, ρ1 = {x, y} and ρ2 =
{y, x}, which generate respectively the chains {x,Θ} and {y,Θ}.
We will prove that all those properties indeed hold in the general case.

5 Polytopes of Outer Consonant Approximations

We first need a preliminary result on the basic probability assignment of conso-
nant belief functions weakly included in b [11,12].
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Weak inclusion and mass re-assignment

Lemma 1. Consider a belief function b with basic probability assignment mb. A
consonant belief function co is weakly included in b, for all A ⊆ Θ co(A) ≤ b(A),
if and only if there is a choice of coefficients {αBA , B ⊆ Θ,A ⊇ B} with

0 ≤ αBA ≤ 1 ∀B ⊆ Θ, ∀A ⊇ B;
∑
A⊇B

αBA = 1 ∀B ⊆ Θ (5)

such that co has basic probability assignment

mco(A) =
∑
B⊆A

αBAmb(B). (6)

Lemma 1 states that the b.p.a. of any outer consonant approximation of b is
obtained by re-assigning the mass of each f.e. A of b to some B ⊇ A. We will
extensively use this result in the following.

Vertices of the polytopes. Given a consonant belief function co weakly in-
cluded in b, its focal elements will form a chain C = {B1, ..., Bn} (|Bi| = i)
associated with a specific maximal simplex of CO. According to Lemma 1 the
mass of each focal element A of b can be re-assigned to some of the events of the
chain B1, ..., Bn which contain A in order to obtain co.
It is therefore natural to conjecture that, for each maximal simplex COC of CO
associated with a maximal chain C, OC [b] is the convex closure of the co.b.f.s
oB[b] with b.p.a.

moB [b](Bi) =
∑

A⊆Θ:B(A)=Bi

mb(A) (7)

each of them associated with an “assignment function”

B : 2Θ → C
A �→ B(A) ⊇ A

(8)

which maps each event A to one of the events of the chain C = {B1 ⊂ ... ⊂ Bn}
which contains A. As a matter of fact:

Theorem 1. For each simplicial component COC of the consonant space associ-
ated with any maximal chain of focal elements C = {B1, ..., Bn} the set of outer
consonant approximation of any b.f. b is the convex closure

OC [b] = Cl(oB[b], ∀B)

of the co.b.f.s (7) indexed by all admissible assignment functions (8).

In other words, OC [b] is a polytope, the convex closure of a number of b.f.s
whose number is equal to the number of assignment functions (8). Each B is
characterized by assigning each event A to an element Bi ⊇ A of the chain C.

As we will see in the following ternary example the points (7) are not guar-
anteed to be all proper vertices of the polytope OC [b]. Some of them can be
obtained as a convex combination of the others, i.e. they may lie on a side of the
polytope.
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Maximal outer consonant approximations. We can prove instead that the
outer approximation (2) obtained by permuting the singletons of Θ as in Section
2 is not only a pseudo-vertex of OC [b], but it is an actual vertex, i.e. it cannot
be obtained as a convex combination of the others. More precisely, all possible
permutations of elements of Θ generate exactly n! different outer approximations
of b, each of which lies on a single simplicial component of the consonant complex.
Each such permutation ρ generates a maximal chain Cρ = {Sρ

1 , ..., S
ρ
n} of focal

elements so that the corresponding b.f. will lie on COCρ .

Theorem 2. The outer consonant approximation coρ (2) generated by a per-
mutation ρ of the singletons is a vertex of OCρ [b].

We can prove that the maximal outer approximation is indeed the vertex coρ

associated with the corresponding permutation ρ of the singletons which gener-
ates the maximal chain C = Cρ (as in the binary case of Section 4).
By definition (2) coρ assigns the mass mb(A) of each focal element A to the
smallest element of the chain containing A. By Lemma 1 each outer consonant
approximation of b with chain C, co ∈ OCρ [b], is the result of re-distributing the
mass of each focal element A to all its supersets in the chain {Bi ⊇ A,Bi ∈ C}.
But then each such co is weakly included in coρ for its b.p.a. can be obtained by
re-distributing the mass of the minimal superset Bj , where j = min{i : Bi ⊆ A},
to all supersets of A.

Corollary 1. The maximal outer consonant approximation with maximal chain
C of a belief function b is the vertex (2) of OCρ [b] associated with the permutation
ρ of the singletons which generates C = Cρ.

Example. For a better understanding of the above results, let us consider as an
example a belief function b on a ternary frame Θ = {x, y, z} and study the poly-
tope of outer consonant approximations with focal elements C = {{x}, {x, y},
{x, y, z}}. According to Theorem 1, such polytope is the convex closure of all
assignment functions B : 2Θ → C: there are

∏3
k=1 k23−k

= 14 · 22 · 31 = 12 such
functions. We list them here according to the notation

B = B({x}),B({y}),B({z}),B({x, y}),B({x, z}),B({y, z}),B({x, y, z}),

i.e.,

B1 = {x}, {x, y}, Θ, {x, y}, Θ, Θ, Θ;
B2 = {x}, {x, y}, Θ, Θ, Θ, Θ, Θ;
B3 = {x}, Θ, Θ, {x, y}, Θ, Θ, Θ;
B4 = {x}, Θ, Θ, Θ, Θ, Θ, Θ;
B5 = {x, y}, {x, y}, Θ, {x, y}, Θ, Θ, Θ;
B6 = {x, y}, {x, y}, Θ, Θ, Θ, Θ, Θ;

B7 = {x, y}, Θ, Θ, {x, y}, Θ, Θ, Θ;
B8 = {x, y}, Θ, Θ, Θ, Θ, Θ, Θ;
B9 = Θ, {x, y}, Θ, {x, y}, Θ, Θ, Θ;
B10 = Θ, {x, y}, Θ, Θ, Θ, Θ, Θ;
B11 = Θ, Θ, Θ, {x, y}, Θ, Θ, Θ;
B12 = Θ, Θ, Θ, Θ, Θ, Θ, Θ.
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They correspond to the following co.b.f.s with b.p.a. [m({x}),m({x, y}),m(Θ)]′:

oB1 = [mb(x), mb(y) + mb(x, y), 1− b(x, y) ]′;
oB2 = [mb(x), mb(y), 1−mb(x)−mb(y) ]′;
oB3 = [mb(x), mb(x, y), 1−mb(x)−mb(x, y) ]′;
oB4 = [mb(x), 0, 1−mb(x) ]′;
oB5 = [0, b(x, y), 1− b(x, y) ]′;
oB6 = [0, mb(x) + mb(y), 1−mb(x)−mb(y) ]′;
oB7 = [0, mb(x) + mb(x, y), 1−mb(x)−mb(x, y) ]′;
oB8 = [0, mb(x), 1−mb(x) ]′;
oB9 = [0, mb(y) + mb(x, y), 1−mb(y)−mb(x, y) ]′;
oB10 = [0, mb(y), 1−mb(y) ]′;
oB11 = [0, mb(x, y), 1−mb(x, y) ]′;
oB12 = [0, 0, 1 ]′.

(9)

Figure 4-left shows the resulting polytope OC [b] for a belief function mb(x) =
0.3, mb(y) = 0.5, mb({x, y}) = 0.1, mb(Θ) = 0.1, in the component COC =
Cl(bx, b{x,y}, bΘ) of the consonant complex (black triangle in the figure). The
polytope OC [b] is plotted in red, together with all the 12 points (9) (red squares).
Many of them lie on some side of the polytope. However, the point obtained by

Fig. 4. Not all the points (7) associated with assignment functions are actual vertices of
OC[b]. Here the polytope OC [b] of outer consonant approximations for the belief function
mb(x) = 0.3, mb(y) = 0.5, mb({x, y}) = 0.1, mb(Θ) = 0.1 defined on Θ = {x, y, z},
with C = {{x}, {x, y}, Θ} is plotted in red, together with all the 12 points (9) (red
squares). Many of them lie on a side of the polytope. However, the point obtained by
permutation of singletons (2) is an actual vertex (red star). The minimal and maximal
outer approximations with respect to weak inclusion are oB12 and oB1 , respectively.
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permutation of singletons (2) is an actual vertex (red star): it is the first oB1 of
the list (9).

It is interesting to point out how the points (9) are ordered with respect to the
weak inclusion relation (we just need to apply its definition, or the re-distribution
property of Lemma 1). The result is summarized in the graph of Figure 5. We
can appreciate that the vertex oB1 generated by singleton permutation is indeed
the maximal outer approximation of b, as stated by Corollary 1.

Fig. 5. Partial order of the points (9) with respect to the weak inclusion relation.
For sake of simplicity we denote by Bi the co.b.f. oB i associated with the assignment
function Bi. An arrow from Bi to Bj stands for oBj ≤ oBi .

6 Conclusions

In this paper we studied the convex geometry of the consonant approximation
problem, focusing in particular on the properties of outer consonant approxima-
tions. We showed that such approximations form a polytope in each maximal
simplex of the complex CO of all consonant belief functions. We proved that for
a given chain the maximal outer approximation is a vertex of the corresponding
polytope and is generated by a permutation of the elements of the frame.

As they also live on simplicial complexes, natural extensions of this study to
guaranteed possibility measures and consistent belief functions are in sight.
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Appendix

Proof of Theorem 1. We need to prove that:

1. each co.b.f. co ∈ COC such that co(A) ≤ b(A) for all A ⊆ Θ can be written
as a convex combination of the points (7): co =

∑
B αBoB[b],

∑
B αB = 1,

αB ≥ 0 ∀B;
2. vice-versa, each convex combination of the oB[b] satisfies

∑
B αBoB [b](A) ≤

b(A) for all A ⊆ Θ.

Let us consider (2) first. By definition of b.f. oB [b](A) =
∑

B⊆A,B∈CmoB [b](B)
where moB [b](B) =

∑
X⊆B:B(X)=B mb(X) so that

oB[b](A) =
∑

B⊆A,B∈C

∑
X⊆B:B(X)=B

mb(X) =
∑

X⊆Bi:B(X)=Bj ,j≤i
mb(X) (10)

where Bi is the largest element of the chain C included in A. As Bi ⊆ A (10) is
obviously not larger than

∑
B⊆A mb(B) = b(A), so that oB [b](A) ≤ b(A) for all

A. Hence ∀A ⊆ Θ∑
B

αBoB[b](A) ≤
∑
B

αBb(A) = b(A)
∑
B

αB = b(A).

Let us prove point (1). According to Lemma 1, if ∀A ⊆ Θ co(A) ≤ b(A) then
the mass mco(Bi) of each event Bi of the chain is

mco(Bi) =
∑
A⊆Bi

mb(A)αABi
. (11)
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To prove (1) we then need to write (11) as a convex combination of the moB [b](Bi),
i.e.∑

B

αBoB[b](Bi) =
∑
B

αB

∑
X⊆Bi:B(X)=Bi

mb(X) =
∑
X⊆Bi

mb(X)
∑

B(X)=Bi

αB.

In other words we need to show that the system of equations{
αABi

=
∑

B(A)=Bi

αB ∀i = 1, ..., n; ∀A ⊆ Bi (12)

has at least one solution {αB} such that
∑

B αB = 1 and ∀B αB ≥ 0. The
normalization constraint is in fact trivially satisfied as from (12) it follows that∑

Bi⊇A
αABi

= 1 =
∑
Bi⊇A

∑
B(A)=Bi

αB =
∑
B

αB

i.e.
∑

B αB = 1. Using the normalization constraint the system of equations (12)
reduces to {

αABi
=

∑
B(A)=Bi

αB ∀i = 1, ..., n− 1; ∀A ⊆ Bi. (13)

We can show that each equation in the reduced system (13) involves at least
one variable αB which is not present in any other equation. Formally, the set
of assignment functions which meet the constraint of equation A,Bi but not all
others is not empty:{

B : (B(A) = Bi)
∧

∀j=1,...,n−1;j �=i

(B(A) �= Bj)
∧

∀A′ �=A;∀j=1,...,n−1

(B(A′) �= Bj)
}

�= ∅.

(14)
But the assignment functions B such that B(A) = Bi and ∀A′ 
= A B(A′) = Θ
all meet condition (14). Indeed they obviously meet B(A) 
= Bj for all j 
= i
while clearly for all A′ ⊆ Θ B(A′) = Θ 
= Bj , as j < n so that Bj 
= Θ.

A non-negative solution of (13) (and hence of (12)) can be obtained by setting
for each equation one of such variables equal to the first member αABi

, and all
the others to zero.

Proof of Theorem 2. The proof is divided in two parts.

1. We first need to find an assignment B : 2Θ → Cρ which generates coρ.
Each singleton xi is mapped by ρ to the position j: i = ρ(j). Then, given
any event A = {xi1 , ..., xim} its elements are mapped to the new positions
xji1

, ..., xjim
, where i1 = ρ(ji1), ..., im = ρ(jim). But then the map

Bρ(A) = Bρ({xi1 , ..., xim}) = Sρ
j

.= {xρ(1), ..., xρ(j)}

where
j

.= max{ji1 , ..., jim}
maps each event A to the smallest Sρ

i in the chain which contains A: j =
min{i : A ⊆ Sρ

i }. Therefore it generates a co.b.f. with b.p.a. (2), i.e. coρ.
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2. In order for coρ to be an actual vertex, we need to ensure that it cannot be
written as a convex combination of the other (pseudo) vertices oB[b]:

coρ =
∑

B �=Bρ

αBoB[b],
∑

B �=Bρ

αB = 1, ∀B 
= Bρ αB ≥ 0.

As moB (Bi) =
∑

A:B(A)=Bi
mb(A) the above condition reads as{ ∑

A⊆Bi

mb(A)
( ∑

B:B(A)=Bi

αB

)
=

∑
A⊆Bi:Bρ(A)=Bi

mb(A) ∀Bi ∈ C.

Remembering that Bρ(A) = Bi iff A ⊆ Bi, 
⊂ Bi−1 we get{ ∑
A⊆Bi

mb(A)
( ∑

B:B(A)=Bi

αB

)
=

∑
A⊆Bi, �⊂Bi−1

mb(A) ∀Bi ∈ C.

For i = 1 the condition is mb(B1)
(∑

B:B(B1)=B1
αB

)
= mb(B1) i.e.∑

B:B(B1)=B1

αB = 1,
∑

B:B(B1) �=B1

αB = 0.

Replacing this condition in the second constraint i = 2 yields

mb(B2 \ B1)
( ∑

B : B(B1) = B1,
B(B2 \ B1) = B2

αB

)
+ mb(B2)

( ∑
B : B(B1) = B1,

B(B2) = B2

αB

)
=

= mb(B2 \ B1) + mb(B2)

i.e.

mb(B2\B1)
( ∑

B : B(B1) = B1,
B(B2 \B1) 
= B2

αB

)
+mb(B2)

( ∑
B : B(B1) = B1,

B(B2) 
= B2

αB

)
= 0

which implies αB = 0 for all the assignment functions B such that B(B2 \
B1) 
= B2 or B(B2) 
= B2. The only non-zero coefficients can then be the
αB s.t. B(B1) = B1, B(B2 \B1) = B2, B(B2) = B2.

By induction you get that ∀B 
= Bρ we have αB = 0 .
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Abstract. In this paper we discuss the properties of the intersection
probability, a recent Bayesian approximation of belief functions intro-
duced by geometric means. We propose a rationale for this approxima-
tion valid for interval probabilities, study its geometry in the probability
simplex with respect to the polytope of consistent probabilities, and dis-
cuss the way it relates to important operators acting on belief functions.

1 Introduction

In the theory of evidence [1,2] the best representation of chance is a belief func-
tion (b.f.) rather than a Bayesian probability distribution, assigning probability
values to sets of possibilities rather than single events. The relationship between
belief functions and probabilities is of course of great interest in the theory of
evidence: the issue is often known as “probability transformation” [3,4,5,6]. The
connection between belief functions and probabilities is as well the foundation of
a popular approach to the theory of evidence, Smets’ Transferable Belief Model
[7]. Beliefs are there represented as convex sets of probabilities or “credal sets”,
while decisions are made after pignistic transformation [8]. On his side, in his
1989 paper [9] F. Voorbraak proposed to adopt the so-called relative plausibil-
ity function. This is the unique probability that, given a belief function b with
plausibility plb, assigns to each singleton its normalized plausibility.

The transformation problem can be posed in a different setting too. Belief
and probability functions on finite domains can be represented as points of a
large enough Cartesian space [10]. For instance, a belief function b : 2Θ → [0, 1]
is completely specified by its belief values {b(A), A ⊂ Θ,A 
= ∅, Θ} and can be
seen as a point of RN−2, N = 2|Θ|. We can then obtain different probability
transformations by minimizing different distances between the original belief
function and the set of all probabilities.

In particular, we introduced a new probability p[b] related to a belief function
b, which we called intersection probability, determined by the intersection of the
line joining a b.f. b and the related pl.f. plb with the region of all Bayesian
(pseudo) b.f. [11].

In this paper we show that the intersection probability can in fact be de-
fined for any interval probability system, as the unique probability obtained by
assigning to all the elements of the domain the same fraction of uncertainty
(Section 2). As a belief function determines an interval probability system, p[b]

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 287–298, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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exists for belief functions too (for which it was originally introduced). The inter-
section probability can then be compared with other classical transformations
like pignistic function and relative plausibility. In particular, the pignistic func-
tion has a strong credal interpretation as the barycenter of the polytope of all
probabilities consistent with b. We prove that the intersection probability also
possesses a credal interpretation in the probability simplex, as the “focus” of the
pair of simplices embodying the interval probability system (Section 3).

In Section 4 we compare p[b] with probability transformations of both the
“affine” and “epistemic” family. While pignistic transformation and orthogonal
projection commute with affine combination of belief functions, this is true for
the intersection probability if the considered interval probabilities attribute the
same “weight” to the uncertainty of each element.

2 The Intersection Probability and Its Rationale

Belief functions and probability intervals are different but related mathematical
representations of the bodies of evidence we possess on a given decision or esti-
mation problem Q. We assume that the possible answers to Q form a finite set
Θ = {x1, ..., xn}, called “frame of discernment”.

Given a certain amount of evidence we are allowed to describe our belief on
the outcome of Q in several possible ways: the classical option is to assume a
probability distribution on Θ. However, as we may need to incorporate imprecise
measurements and people’s opinions in our knowledge state, or cope with missing
or scarce information, a more sensible approach is to assume we have no access
to the “correct” probability distribution but the available evidence provides us
with some sort of constraint on this true distribution. Both interval probabilities
and belief functions are mathematical descriptions of such a constraint. They
hence define different credal sets or sets of probability distributions on Θ.

An “interval probability system” is a system of constraints on the probability
values of a probability distribution p : Θ → [0, 1] on a finite domain Θ of the
form:

(l, u) .= {l(x) ≤ p(x) ≤ u(x), ∀x ∈ Θ}. (1)

The system (1) determines an entire set of probability distributions whose values
are constrained to belong to a closed interval.

There are clearly many ways of selecting a single measure in order to rep-
resent a probability interval. We can point out, however, that all the intervals
[l(x), u(x)], x ∈ Θ have the same importance in the definition of the interval
probability. There is no reason for the different singletons x to be treated differ-
ently.

It is then reasonable to request that the desired probability, candidate to
represent the interval (1), should behave homogeneously in each element x of
the frame Θ. This translates into seeking a probability p such that

p(x) = l(x) + α(u(x) − l(x))
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Fig. 1. An illustration of the notion of intersection probability for an upper/lower
probability system

homogeneously for all elements x of Θ, for some value of α ∈ [0, 1] (see Figure 1).
Such value needs to be between 0 and 1 in order for the sought probability dis-
tribution p to belong to the interval. It is easy to see that there is indeed a
unique solution to this problem. It suffices to enforce the normalization con-
straint

∑
x p(x) =

∑
x[l(x) + α(u(x)− l(x))] = 1 to understand that the unique

solution is given by:

α = β[(l, u)] =
1−

∑
x∈Θ l(x)∑

x∈Θ
(
u(x)− l(x)

) . (2)

We can define the intersection probability associated with the interval probability
system (1) as the probability distribution with values

p[(l, u)](x) = β[(l, u)] · u(x) + (1− β[(l, u)]) · l(x). (3)

The most interesting interpretation of p[(l, u)] comes from its alternative form

p[(l, u)](x) = l(x) +
(
1−

∑
x

l(x)
)
R[(l, u)](x) (4)

where

R[(l, u)](x) .=
u(x)− l(x)∑
y(u(y)− l(y))

=
Δ(x)∑
y Δ(y)

, (5)

the quantity Δ(x) measuring the size of the probability interval on x. R(x)
measures how much the uncertainty on the probability value on a singletons
“weights” on the total uncertainty represented by the interval probability (1). It
is natural to call it relative uncertainty of singletons.

Example. Consider a probability interval on a domain Θ = {x, y, z}:

0.2 ≤ p(x) ≤ 0.8, 0.4 ≤ p(y) ≤ 1, 0 ≤ p(x) ≤ 0.4.

The widths of the corresponding intervals are Δ(x) = 0.6, Δ(y) = 0.6, Δ(z) =
0.4 respectively. By Equation (2) the “fraction of uncertainty” to add to l(x) to
get an admissible probability is

β =
1− 0.2− 0.4− 0
0.6 + 0.6 + 0.4

=
0.4
1.6

=
1
4
.

The intersection probability has then values (4):

p[(l, u)](x) = 0.2 + 1
40.6 = 0.35, p[(l, u)](y) = 0.4 + 1

40.6 = 0.55,
p[(l, u)](z) = 0 + 1

40.4 = 0.1.
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Intersection probability for belief measures. As a belief measure [1] also
determines a probability interval, the intersection probability can be defined for
belief functions too.

A “basic probability assignment” (b.p.a.) over a finite set or “frame of dis-
cernment” Θ is a function m : 2Θ → [0, 1] on its power set 2Θ = {A ⊆ Θ} such
that 1. m(∅) = 0; 2.

∑
A⊆Θ m(A) = 1; 3. m(A) ≥ 0 ∀A ⊆ Θ. Subsets A of Θ

associated with non-zero values m(A) 
= 0 of m are called “focal elements”.
The belief function b : 2Θ → [0, 1] associated with a basic probability assign-

ment m on Θ is defined as:

b(A) =
∑
B⊆A

m(B). (6)

A finite probability or Bayesian belief function is just a special b.f. assigning
non-zero masses to singletons only: mb(A) = 0, |A| > 1.

A dual mathematical representation of the evidence encoded by a belief func-
tion b is the “plausibility function” (pl.f.) plb : 2Θ → [0, 1], where plb(A) .=
1− b(Ac) =

∑
B∩A �=∅mb(B) ≥ b(A) and Ac denotes the complement of A in Θ.

In the following we denote by bA the unique “categorical” b.f. which assigns
unitary mass to a single event A: mbA(A) = 1, mbA(B) = 0 ∀B 
= A. We can
then decompose each belief function b with b.p.a. mb(A) as

b =
∑
A⊆Θ

mb(A)bA. (7)

A pair belief-plausibility determines an interval probability system associated
with a belief function, i.e.,

(b, plb)
.=
{
p ∈ P : b(x) ≤ p(x) ≤ plb(x), ∀x ∈ Θ

}
. (8)

In this case the intersection probability can be written as

p[b](x) = β[b]plb(x) + (1− β[b])mb(x) (9)

with

β[b] =

1−
∑
x∈Θ

mb(x)∑
x∈Θ

(
plb(x) −mb(x)

) =
1− kb

kplb − kb
(10)

where kplb
.=
∑

x∈Θ plb(x), kb
.=
∑

x∈Θ mb(x) are the total plausibility and belief
of singletons respectively.

3 Credal Geometry in the Probability Simplex

Credal interpretation of belief functions and pignistic function. It is well
known that a belief function determines an entire set of probabilities consistent
with it, i.e. such that b(A) ≤ p(A) ≤ plb(A) for all events A ⊆ Θ.
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Notice that this set [12,13]:

P [b] .= {p ∈ P : b(A) ≤ p(A) ≤ plb(A) ∀A ⊆ Θ} (11)

is different from the set of probabilities (8) determined by the probability inter-
val. A natural probabilistic approximation of b is then the center of mass of the
set of consistent probabilities or “pignistic function” [8]:

BetP [b](x) =
∑

A⊇{x}

mb(A)
|A| . (12)

BetP [b] is the probability we obtain by re-assigning the mass of each focal ele-
ment A ⊆ Θ of b homogeneously to each of its elements x ∈ A.

It is interesting to notice that the naive choice of choosing the barycenter of
each interval [l(x), u(x)] does not yield in general a valid probability function,
for ∑

x

[
l(x) +

1
2
(u(x)− l(x))

]

= 1.

This marks the difference with the case of belief functions, in which the barycen-
ter of the set of probabilities defined by a belief function has a valid interpretation
in terms of degrees of belief.

Credal interpretation of interval probabilities. However, a similar credal
interpretation can be given for the intersection probability too, once we deter-
mine the credal set associated with an interval probability (1). Here we develop
our argument in particular for the interval (8) determined by a belief function
b. The polytope P [b] can be naturally decomposed as the intersection

P [b] =
n−1⋂
i=1

T i[b] (13)

of the regions T i[b] .=
{
p ∈ P : p(A) ≥ b(A) ∀A : |A| = i

}
formed by all

probability meeting the lower probability constraint for size-i events. Let us
consider in particular the set of probabilities which meet the lower constraint on
singletons T 1[b],

T 1[b] .=
{
p ∈ P : p(x) ≥ b(x) ∀x ∈ Θ

}
.

It is also easy to see that

T n−1[b] .=
{
p ∈ P : p(A) ≥ b(A) ∀A : |A| = n− 1

}
=

{
p ∈ P : p({x}c) ≥ b({x}c) ∀x ∈ Θ

}
=

{
p ∈ P : p(x) ≤ plb(x) ∀x ∈ Θ

}
expresses instead the upper probability constraint on singletons.

Clearly, then, the pair (T 1[b], T n−1[b]) is the geometric counterpart of an in-
terval probability in the probability simplex, exactly as the polytope of consistent
probabilities P [b] represents there a belief function.
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They form a higher dimensional triangle or simplex, i.e. the convex closure

Cl(v1, ...,vk) =
{
v ∈ Rd : v = α1v1 + · · ·+ αkvk,

∑
i

αi = 1, αi ≥ 0 ∀i
}

(14)

of a collection v1, ...,vk of affinely independent points. The points v1, ...,vk
are said to be affinely independent if none of them can be expressed as an
affine combination of the others: �vi, {αj, j 
= i :

∑
j �=i αj = 1} such that

vi =
∑

j �=i αjvj .
We then call T 1[b] and T n−1[b] lower and upper simplices respectively. They

have very simple expressions in terms of the basic probability assignment of b.
Using the notation of Equation (7) it can be proven that [14]:

Proposition 1. The set T 1[b] of all probabilities meeting the lower probability
constraint on singletons is the simplex T 1[b] = Cl(t1x[b], x ∈ Θ) with vertices

t1x[b] =
∑
y �=x

mb(y)by +
(
1−

∑
y �=x

mb(y)
)
bx. (15)

A dual proof can be provided for the set T n−1[b] of probabilities which meet the
upper probability constraint on singletons [14]. We just need to replace belief
with plausibility values on singletons.

Proposition 2. T n−1[b] = Cl(tn−1
x [b], x ∈ Θ) is a simplex with vertices

tn−1
x [b] =

∑
y �=x

plb(y)by +
(
1−

∑
y �=x

plb(y)
)
bx. (16)

Consider as an example the case of a belief function

mb(x) = 0.2, mb(y) = 0.1, mb(z) = 0.3,
mb({x, y}) = 0.1, mb({y, z}) = 0.2, mb(Θ) = 0.1 (17)

defined on a ternary frame Θ = {x, y, z}. Figure 2 illustrates the geometry of its
consistent simplex P [b]. We can notice that by Equation (13) P [b] (the polygon
delimited by tiny squares) is in this case the intersection of two triangles (2-
dimensional simplices) T 1[b] and T 2[b]. The intersection probability

p[b](x) = mb(x) + β[b](mb({x, y}) + mb(Θ)) = .2 + .4
1.5−0.40.2 = .27;

p[b](y) = .1 + .4
1.10.4 = .245; p[b](z) = .485,

is the unique intersection of the lines joining the corresponding vertices of the
upper T 2[b] and lower T 1[b] simplices.

Intersection probability as focus of upper and lower simplices. This
fact, true in the general case, can be formalized by the notion of “focus” of a
pair of simplices.
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Fig. 2. The intersection probability is the focus of the two simplices T 1[b] and T n−1[b].
In the ternary case the latter reduce to the triangles T 1[b] and T 2[b]. Their focus is
geometrically the intersection of the lines joining their corresponding vertices.

Definition 1. Consider a pair of simplices S = Cl(s1, ..., sn), T = Cl(t1, ..., tn)
in Rn−1. We call focus of the pair (S, T ) the unique point f(S, T ) of Rn−1 which
has the same affine coordinates in both simplices:

f(S, T ) =
n∑
i=1

αisi =
n∑

j=1

αjtj ,

n∑
i=1

αi = 1. (18)

The focus of two simplices does not always fall in their intersection S∩T (i.e., αi
is not necessarily non-negative ∀i). However, if this is the case, the focus coincides
with the unique intersection of the lines a(si, ti) joining corresponding vertices of
S and T (see Figure 3): f(S, T ) =

⋂n
i=1 a(si, ti). Suppose indeed that a point p is

such that p = αsi+(1−α)ti ∀ i = 1, ..., n (i.e. p lies on the line passing through si
and ti ∀i). Then necessarily ti = 1

1−α [p− αsi] ∀ i = 1, ..., n. If p has coordinates

{αi, i = 1, ..., n} in T , p =
∑n

i=1 αiti, then p =
n∑
i=1

αiti =
1

1− α
[p − α

∑
i

αisi]

which implies p =
∑

i αisi, i.e. p is the focus of (S, T ).

Theorem 1. The intersection probability is the focus of the pair of upper and
lower simplices: p[b] = f(T n−1[b], T 1[b]).
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Fig. 3. If the focus of a pair of simplices belongs to their intersection, it is the unique
intersection of the lines joining their corresponding vertices

Proof. We need to show that p[b] has the same simplicial coordinates in T 1[b] and
T n−1[b]. These coordinates turn out to be the values of the relative uncertainty
function (5) for b:

R[b](x) =
plb(x) −mb(x)

kplb − kb
. (19)

Recalling the expression (15) of the vertices of T 1[b], the point of the simplex
T 1[b] with coordinates (19) is∑

x

R[b](x)t1x[b] =
∑

x

R[b](x)
[∑

y �=x

mb(y)by +
(
1 −

∑
y �=x

mb(y)
)
bx

]
=

∑
x

R[b](x)
[ ∑

y∈Θ

mb(y)by + (1 − kb)bx

]
=

∑
x

bx

[
(1 − kb)R[b](x) + mb(x)

∑
y

R[b](y)
]

=
∑

x

bx

[
(1 − kb)R[b](x) + mb(x)

]
as R[b] is a probability (

∑
y R[b](y) = 1).

By Equation (4) the above quantity coincides with p[b].
The point of T n−1[b] with the same coordinates {R[b](x), x ∈ Θ} is again∑

x

R[b](x)tn−1
x [b] =

∑
x

R[b](x)
[∑

y �=x

plb(y)by +
(
1 −

∑
y �=x

plb(y)
)
bx

]
=

∑
x

R[b](x)
[ ∑

y∈Θ

plb(y)by + (1 − kplb)bx

]
=

=
∑

x

bx

[
(1 − kplb)R[b](x) + plb(x)

∑
y

R[b](y)
]

=

=
∑

x

bx

[
(1 − kplb)R[b](x) + plb(x)

]
=

∑
x

bx

[
plb(x)

1 − kb

kplb − kb
− mb(x)

1 − kb

kplb − kb

]
= p[b] by Equation (19). �
Pignistic function and intersection probability both adhere to rationality prin-
ciples for belief functions and interval probabilities respectively. Geometrically,
this translates into a similar behavior in the probability simplex, in which they
are the center of mass of the consistent polytope and the focus of the pair of
lower and upper probability simplices.
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4 Intersection Probability and Other Transformations

The epistemic family. An approach to the problem of approximating a b.f.
with a probability seeks transformations which enjoy commutativity properties
with respect to some combination rule [9,15], in particular the original Demp-
ster’s sum [2]. Voorbraak’s relative plausibility of singletons [9] (rel.plaus.) p̃lb is
the unique probability that, given a belief function b with plausibility plb, assigns
to each singleton its normalized plausibility

p̃lb(x) =
plb(x)∑
y∈Θ plb(y)

=
plb(x)
kplb

, (20)

and commutes with Dempster’s orthogonal sum ⊕ [2,16].
Dually, a relative belief of singletons [15] (rel.bel.) can be defined which assigns

to the elements of Θ their normalized belief values:

b̃(x) .=
b(x)∑
y∈Θ b(y)

. (21)

Clearly b̃ exists iff b assigns some mass to singletons: kb =
∑

x∈Θ mb(x) 
= 0.
These two approximations form a strongly linked couple. They are sometimes

called the epistemic family of transformations [15].
It is important to notice, though, that in the interpretation of a belief function

as a probability interval (8), the probabilities we obtain by normalizing the lower
bound l̃(x) = l(x)/

∑
y l(y) or the upper bound ũ(x) = u(x)/

∑
y u(y) of the

interval are not consistent with the interval itself. If there exists an x ∈ Θ such
that b(x) = plb(x) (the interval has width zero for that element) we have that

b̃(x) =
mb(x)∑
y mb(y)

> plb(x), p̃lb(x) =
plb(x)∑
y plb(y)

< b(x),

and both the relative belief and plausibility of singletons fall outside the interval
(8). This holds for a general probability interval (1), and supports the argument
in favor of the interval probability.

The affine family. Uncertainty measures can be represented as points of a
Cartesian space [10]. In that context, affine combination is the geometric counter-
part of the normalization constraint imposed on basic probability assignments.
As a result, all significant entities form convex regions of the Cartesian space.

A different family of probability transformations commute indeed with affine
combination of belief functions (as points of such a space). This is the case of
pignistic function BetP [b] and orthogonal projection π[b] of a belief function b
onto the probability simplex P [11]. Whenever α1 + α2 = 1 we have that:

BetP [α1b1 + α2b2] = α1BetP [b1] + α2BetP [b2]
π[α1b1 + α2b2] = α1π[b1] + α2π[b2].

The condition under which the intersection probability commutes with affine
combination is indeed quite interesting.
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Theorem 2. Intersection probability p[b] and affine combination commute,
p[α1b1 + α2b2] = α1p[b1] + α2p[b2] for α1 + α2 = 1, if the relative uncertainty of
the singletons is the same for both intervals: R[b1] = R[b2].

Proof. By definition (9) p[α1b1 + α2b2] =

= α1m1(x) + α2m2(x) + (1− kα1b1+α2b2)
α1Δ1(x) + α2Δ2(x)∑

y∈Θ(α1Δ1(y) + α2Δ2(y))

that after defining R(x) .= α1Δ1(x)+α2Δ2(x)∑
y∈Θ(α1Δ1(y)+α2Δ2(y)) becomes

α1m1(x) + α2m2(x) + [1− (α1kb1 + α2kb2)]R(x) =
= α1

(
m1(x) + (1− kb1)R(x)

)
+ α2

(
m2(x) + (1− kb2)R(x)

)
which is equal to α1p[b1] + α2p[b2] iff

α1(1 − kb1)(R(x)−R[b1](x)) + α2(1 − kb2)(R(x)−R[b2](x)) = 0.

If R(x) = R[b1](x) = R[b2](x) ∀x the thesis is trivially true. �
The intersection probability does not possess the same nice relation with affine
combination which characterizes pignistic function and orthogonal projection.
However, Theorem 2 states that they commute exactly when each uncertainty in-
terval l(x) ≤ p(x) ≤ u(x) has the same “weight” in the two interval probabilities.

Comparison with the members of the affine family. It is natural to wonder
what are the other differences between p[b] and its “sister” functions BetP [b] and
π[b]. Some sufficient conditions [11] have been already worked out in the past.
More stringent conditions can be formulated.

Theorem 3. If a belief function b is such that its mass is equally distributed
among focal elements of the same size

mb(A) = const ∀A : |A| = k, ∀k = 2, ..., n. (22)

then its pignistic and intersection probabilities coincide: BetP [b] = p[b].

Proof. If b meets (22), then the expression for the probability values of the
intersection probability gives, for each x ∈ Θ,

p[b](x) = mb(x) + β[b]
∑
A�x

mb(A) = mb(x) + β[b]
n∑

k=2

σk
(
n−1
k−1

)(
n
k

) =

(as there are
(
n−1
k−1

)
events of size k containing x, and

(
n
k

)
events of size k)

= mb(x) + β[b]
n∑

k=2

σk
k

n
= mb(x) +

1
n

σ2 + ... + σn

2σ2 + ... + nσn
(2σ2 + ... + nσn)

= mb(x) +
1
n

(σ2 + ... + σn)
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after recalling the decomposition of β[b]:

β[b] =

∑
|B|>1 mb(B)∑
|B|>1 mb(B)|B| =

∑n
k=2

∑
|B|=k mb(B)∑n

k=2 k ·
∑
|B|=k mb(B)

=
σ2 + · · ·+ σn

2σ2 + · · ·+ nσn
. (23)

On the other side, under the hypothesis, the pignistic function reads as

BetP [b](x) = mb(x) +
n∑

k=2

∑
A�x,|A|=k

mb(A)
k

= mb(x) +
n∑

k=2

σk

k

(
n−1
k−1

)(
n
k

)
= mb(x) +

n∑
k=2

σk

k

k

k
= mb(x) +

n∑
k=2

σk

n

(24)

and the two functions coincide. �
Condition (22) is sufficient to guarantee the equality of intersection probability

and orthogonal projection [11] too.

Theorem 4. If a belief function b meets condition (22) (i.e., its mass is equally
distributed among focal elements of the same size) then the related orthogonal
projection and intersection probability coincide.

Proof. The orthogonal projection of a belief function b on to the probability
simplex P has the following expression [11]:

π[b](x) =
∑
A⊇x

mb(A)
(1 + |Ac|21−|A|

n

)
+

∑
A �⊃x

mb(A)
(1− |A|21−|A|

n

)
. (25)

Under condition (22) it becomes

π[b](x) = mb(x) +
n∑

k=2

(1 + (n− k)21−k

n

) ∑
A⊇x,|A|=k

mb(A)

+
n∑

k=2

(1− (n− k)21−k

n

) ∑
A �⊃x,|A|=k

mb(A)
(26)

where again
∑

A⊇x,|A|=kmb(A) = σkk/n, while

∑
A �⊃x,|A|=k

mb(A) = σk
(
n−1
k

)(
n
k

) = σk
(n− 1)!

k!(n− k − 1)!
k!(n− k)!

n!
= σk

n− k

n
.

Replacing those expressions in Equation (26) yields

mb(x) +
n∑

k=2

(1 + (n− k)21−k

n

)
σk

k

n
+

n∑
k=2

(1− (n− k)21−k

n

)
σk

n− k

n
=

= mb(x) +
n∑

k=2

(
σk

k

n2 + σk
n− k

n2

)
= mb(x) +

1
n

n∑
k=2

σk

which is exactly the value (24) of the intersection probability under the same
assumption. �
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5 Conclusions

In this paper we studied the intersection probability, a Bayesian transformation
of belief functions originally derived from purely geometric arguments, from the
more abstract point of view of interval probabilities, providing a rationality prin-
ciple for it. We studied its behavior in the probability simplex, proving that it
can be described as the focus of the upper and lower simplices which geomet-
rically embody an interval probability. We compared it to transformations of
both the affine and epistemic families, and studied the condition under which it
commutes with convex combination.
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cial Sciences 17, 263–283 (1989)

13. Dubois, D., Prade, H., Smets, P.: New semantics for quantitative possibility theory.
In: ISIPTA, pp. 152–161 (2001)

14. Cuzzolin, F.: Credal semantics of Bayesian approximations in terms of probability
intervals. IEEE Trans. on Systems, Man, and Cybernetics B (to appear) (2009)

15. Cuzzolin, F.: Semantics of the relative belief of singletons. In: International Work-
shop on Uncertainty and Logic UNCLOG 2008, Kanazawa, Japan (2008)

16. Cobb, B., Shenoy, P.: On the plausibility transformation method for translating
belief function models to probability models. IJAR 41(3), 314–330 (2006)



Can the Minimum Rule of Possibility Theory Be
Extended to Belief Functions?

Sébastien Destercke1 and Didier Dubois2

1 Centre de coopération internationale en recherche agronomique pour le
développement (CIRAD), UMR IATE, Campus Supagro, Montpellier, France

sebastien.destercke@cirad.fr
2 Toulouse Institute of Research in Computer Science (IRIT), Toulouse, France

Dubois@irit.fr

Abstract. When merging belief functions, Dempster rule of combina-
tion is justified only when sources can be considered as independent.
When dependencies are ill-known, it is usual to ask the merging opera-
tion to satisfy the property of idempotence, as this property ensures a
cautious behaviour in the face of dependent sources. There are different
strategies to find such rules for belief functions. One strategy is to rely
on idempotent rules used in either more general or more specific frame-
works and to respectively study their particularisation or extension to
belief functions. In this paper, we try to extend the minimum rule of
possibility theory to belief functions. We show that such an extension
is not always possible, unless we accept the idea that the result of the
fusion process can be a family of belief functions.

Keywords: Belief functions, idempotence, fusion, possibility.

1 Introduction

The main merging rule in the theory of evidence is Dempster’s rule [4], even if
other proposals exist [17]. Combining belief functions by Dempster’s rule is justi-
fied only when sources can be considered as independent. In other cases, a specific
dependence structure between sources can be assumed, and suitable alternative
merging rules can be used (e.g., the commensuration method [13,7]). However,
assuming that the (in)dependence structure between sources is well-known is of-
ten unrealistic. In those cases, an alternative is to adopt a conservative approach
when merging belief functions, by applying the “least commitment principle”,
which states that one should never presuppose more beliefs than justified. This
principle is basic in the frameworks of possibility theory, imprecise probability
[19], and the Transferable Belief Model (TBM) [18]. This cautious approach can
be interpreted and used in different ways [6,2,7]. However, all these approaches
agree on the fact that a cautious conjunctive merging rule should satisfy the
property of idempotence, as this property ensures that the same information
supplied by two dependent sources will remain unchanged after merging.

There are mainly three strategies to construct idempotent rules that make
sense in the belief function setting. The first one looks for idempotent rules

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 299–310, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



300 S. Destercke and D. Dubois

that satisfy a certain number of desired properties and appear sensible in the
framework of belief functions. This is the solution retained by Denoeux [6] and
Cattaneo [2]. The second strategy relies on the natural idempotent rule consisting
of intersecting sets of probabilities and tries to express it in the particular case
of belief functions (Chateauneuf [3]). Finally, the third approach, explored in
this paper, starts from the natural idempotent rule in a less general framework,
possibility theory, trying to extend it to belief functions. Namely, we study the
generalisation of the minimum rule, viewing possibility distributions as contour
functions of consonant belief functions [16]. If we denote by (m1,F1), (m2,F2)
two belief functions, P1,P2 two sets of probabilities, and π1, π2 two possibility
distributions, the three approaches are summarized in Figure 1 below.

P1, P2

(m1, F1), (m2, F2)

π1, π2

P1 ∩ P2

min(π1, π2)

Idempotent rule in
belief function frame

idempotence

idempotence

axioms [2,6]

particularise [3]

generalise

Fig. 1. Search of idempotent merging rules

Section 2 recalls basics of belief functions and defines conjunctive merging
in this framework. Section 3 then studies to what extent the minimum rule of
possibility theory can be extended to the framework of belief functions. The
idea is to request that the contour function after merging be the minimum of
the contour functions of the input belief functions, what we call the strong con-
tour function principle. Note that a similar property holds for the unnormalized
Dempster rule with respect to the product of contour functions. In the case of
the minimum rule, we are led to propose a weak contour principle as the former
condition turns out to be too strong.

2 Preliminaries

This section introduces the basics of belief functions needed in this paper. In the
whole paper, we consider that information pertains to a variable V taking its
values on a finite space V , with generic element denoted v.

2.1 Belief Functions

Suppose that beliefs can be modelled by a belief function, or, equivalently, by a
basic belief assignment (bba), that is, a function m from the power set 2|V| of
V to [0, 1] such that

∑
A⊆V m(A) = 1. Let MV be the set of bba’s on 2|V|. A

set A such that m(A) > 0 is called a focal set. We denote by F the set of focal
sets corresponding to bba m, and (m,F) a belief structure. m(A) is the mass
of A. Given a bba m, belief, plausibility and commonality functions of an event
E ⊆ V are:
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bel(E) =
∑
A⊆E

m(A); pl(E) =
∑

A∩E �=∅
m(A); q(E) =

∑
E⊆A

m(A)

A belief function measures to what extent an event is certainly supported by
the available information. A plausibility function measures the amount of evi-
dence that does not contradict a given event. A commonality function measures
the quantity of mass that may be re-allocated to a set from its supersets. The
commonality (resp. belief) function increases when bigger (resp. smaller) focal
sets receive greater mass, hence the greater the commonality (resp. the belief)
degrees, the less (resp. the more) informative is the bba. Note that the four
representations contain the same amount of information [16].

In Shafer’s seminal work [16], taken over by Smets in his Transferable Be-
lief Model [18], there is no reference to any underlying probabilistic interpre-
tation or framework. The bba and the associated belief function model beliefs
per se. However, a belief structure (m,F) can also be interpreted as a con-
vex set P(m,F) of probabilities [19] such that Bel(A) and Pl(A) are probability
bounds: P(m,F) = {P |∀A ⊂ X, Bel(A) ≤ P (A) ≤ Pl(A)}. Classical probability
distributions are retrieved when only singletons receive positive masses. This
interpretation is closer to random sets and to Dempster’s view [4].

2.2 Possibility Distributions and Contour Functions

A possibility distribution [9] is a mapping π : V → [0, 1] such that π(v) = 1 for
at least one element v ∈ V . The latter is the normalization condition. Two dual
functions (resp. the possibility and necessity function) can be defined from π:
Π(A) = supv∈A π(v) and N(A) = 1−Π(Ac). Their characteristic properties are:
Π(A ∪B) = max(Π(A), Π(B)); N(A ∩B) = min(N(A), N(B))∀A,B ⊆ V .

Definition 1. The contour function πm of a belief structure (m,F) is a mapping
πm : V → [0, 1] such that, for any v ∈ V, πm(v) = pl({v}) = q({v}),with pl, q
the plausibility and commonality functions of (m,F).

A belief structure (m,F) is called consonant when its focal sets are completely
ordered with respect to inclusion (for any A,B ∈ F , A ⊂ B or B ⊂ A). In
this case, the plausibility (resp. belief) function has the characteristic proper-
ties of a possibility (resp. necessity) function, and the information contained in
the consonant belief structure can be represented by the possibility distribution
π equal to the contour function

∑
v∈E m(E). Conversely, any possibility distri-

bution and its associated possibility (resp. necessity) function defines a unique
consonant belief structure and plausibility (resp. belief) function.

The contour function can be seen as a (possibly unnormalized) possibility
distribution, and is a trace of the whole belief structure (m,F) restricted to
singletons. Except when (m,F) is consonant, the contour function represents
only part of the information contained in (m,F). The contour function is however
a summary, easier to manipulate than the whole random set.



302 S. Destercke and D. Dubois

2.3 Information Orderings between Belief Functions

There are many notions extending classical set inclusion to the framework of
belief functions. The most classical notions are the pl-,q- and s-inclusions:

– A belief structure (m1,F1) is q- (resp. pl-) included in another belief struc-
ture (m2,F2), denoted (m1,F1) #q (m2,F2) (resp. (m1,F1) #pl (m2,F2)),
if and only if for all A ⊆ V , q1(A) ≤ q2(A) (resp. pl1(A) ≤ pl2(A)).

– A belief structure (m1,F1) with F1 = {E1, . . . , Eq} is s-included in an-
other belief structure (m2,F2) with F2 = {E′1, . . . , E′p}, denoted (m1,F1) #s

(m2,F2), if and only if there exists a non-negative matrix G with generic
term gij such that for j = 1, . . . , p, i = 1, . . . , q

q∑
i=1

gij = 1, gij > 0 ⇒ Ei ⊆ E′j ,

p∑
j=1

m2(E′j)gij = m1(Ei).

The strict part (m1,F1) �s (m2,F2) means (m1,F1) #s (m2,F2) and ∃i, j :
Ei ⊂ E′j . Our objective being to investigate the generalisation of possibilistic
idempotent rule to belief structures, we also use the notion of π-inclusion.

Definition 2 (π-inclusion). A belief structure (m1,F1) is said to be π-included
in another belief structure (m2,F2) if and only if, for all v ∈ V, πm1(v) ≤ πm2(v)
and this relation is denoted (m1,F1) #π (m2,F2)

Since notions of inclusion allow to compare informative contents, we will also
say, when (m1,F1) #x (m2,F2) ((m1,F1) �x (m2,F2)) with x ∈ {pl, q, s, π},
that (m1,F1) is (strictly) x-more committed than (m2,F2). The following im-
plications hold between these notions of inclusion [8]:

(m1,F1) #s (m2,F2) ⇒
{

(m1,F1) #pl (m2,F2)
(m1,F1) #q (m2,F2)

}
⇒ (m1,F1) #π (m2,F2).

Each of these notions induces a partial ordering between elements of MV . The
relation #π only induces a partial pre-order (i.e., we can have (m1,F1) #π

(m2,F2) and (m2,F2) #π (m1,F1) with (m1,F1) 
= (m2,F2)), while the others
induce partial orders. The first implication holds for strict inclusions as well. If
belief structures are consonant, then all the notions of pl, q, s and π-inclusion
reduce to the same definition (the one of π-inclusion).

Example 1. Consider the two belief structures (m1,F1), (m2,F2) on the domain
V = {v1, v2, v3}

F1 m1 F2 m2

E11 = {v2} 0.5 E21 = {v2, v3} 0.5
E12 = {v1, v2, v3} 0.5 E22 = {v1, v2} 0.5

They have the same contour function, but (m1,F1)�pl (m2,F2) and (m2,F2)�q

(m1,F1).
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Another way to compute informative contents is to use scalar information eval-
uations, such as expected cardinality. The interest of ordering belief structures
with such an evaluation is that it induces a complete (pre-)order on belief struc-
tures. The expected cardinality of a belief structure (m,F), denoted C|(m,F)|, is
C|(m,F)| =

∑
E∈F m(E)|E|. It is equal to the area under the contour function

πm [11]:
C|(m,F)| =

∑
v∈V

πm(v). (1)

Then (m1,F1) is said to be more C-specific than (m2,F2) if and only if C|(m1,F1)|
≤ C|(m2,F2)|, denoted (m1,F1) #C (m2,F2). It can be shown that C-specificity
is in agreement with other inclusion notions, namely, the following implications
hold:

1. (m1,F1) �π (m2,F2) → (m1,F1) �C (m2,F2)
2. (m1,F1) �s (m2,F2) → (m1,F1) �C (m2,F2)
3. (m1,F1) �pl (m2,F2) → (m1,F1) #C (m2,F2)
4. (m1,F1) �q (m2,F2) → (m1,F1) #C (m2,F2)

2.4 Conjunctive Merging and Least Commitment

Let (m1,F1), (m2,F2) be belief structures supplied by two, not necessarily inde-
pendent, sources. We define a belief structure (m∩,F∩) resulting from merging
(m1,F1), (m2,F2) as the result of the following procedure [7]:

1. A joint mass distribution m is built on V2, with focal sets of the form A×B
with A ∈ F1, B ∈ F2 and preserving m1,m2 considered as marginals. It
means that

∀A ∈ F1,m1(A) =
∑
B∈F2

m(A,B), ∀B ∈ F2,m2(B) =
∑
A∈F1

m(A,B). (2)

2. Each joint mass m(A,B) is allocated to the subset A ∩B only.

We call such a rule conjunctive1, and denote by M12 the set of conjunctively
merged belief structures. The idea behind the conjunctive approach is to gain
as much information as possible from the merging. Not every belief structure
obtained by conjunctive merging is normalized (i.e. one may get m(∅) 
= 0). In
this paper, unless stated otherwise, we do not assume that a belief structure
has to be normalised after conjunctive merging. We also do not renormalise
such belief structures, because, after renormalisation, they no longer satisfy
Eq. (2), and renormalisation is usually not required when working with pos-
sibility distributions. A belief structure obtained by a conjunctive merging rule
is a specialisation of both (m1,F1) and (m2,F2). The set M12 is a subset of
all belief structures that are specialisations of both (m1,F1) and (m2,F2), that
is M12 ⊆ {m ∈ MX |m #s mi, i = 1, 2}, and the inclusion is usually strict2.
Actually, three situations can occur [7]:
1 A disjunctive merging rule can be defined likewise, changing ∩ into ∪.
2 Take, for example, the empty belief structures m1(V) = m2(V) = 1 as marginals.
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1. M12 contains only normalized belief functions. It means that ∀A ∈ F1, B ∈
F2, A ∩B 
= ∅. The two bbas are said to be logically consistent.

2. M12 contains both subnormalized and normalized bbas. It means that ∃A,B,
A ∩ B = ∅ and that the marginal-preservation equations (2) have solutions
which allocate zero mass to such A × B. The two bbas are said to be non-
conflicting. Chateauneuf [3] has shown that being non-conflicting is a suffi-
cient and necessary condition for P(m1,F1) ∩ P(m2,F2) to be non-empty.

3. M12 contains only subnormalized belief functions. This situation is equiva-
lent to P(m1,,F1,) ∩ P(m2,F2) = ∅. The two bbas are said to be conflicting.

When both sources can be considered independent, the TBM conjunctive rule
yields the merged belief structure insideM12 such that m(A,B) = m1(A)·m2(B)
in Equations (2). When the sources (in)dependence structure is ill-known, a
common practice is to use the least-commitment principle (LCP) to merge belief
structures. Denote by M�x

12 the set of all maximal elements inside M12 with
respect to the order induced by x-inclusion, with x ∈ {s, pl, q, π,C}. Note that
{M�pl

12 ∪M�q
12 ∪M

�π
12 ∪M

�C
12 } ⊆M

�s
12 . LCP then often consists of choosing a

given x and picking a particular element insideM�x
12 that also satisfies a number

of desired properties.
In the rest of the paper, we study how to extend the minimum rule of possibil-

ity theory to belief structures, and under which conditions such an idempotent
merging of belief structures exists.

3 Extending the Minimum Rule

If π1, π2 denote two possibility distributions, the natural conjunctive idempotent
rule between these two distributions is their minimum min(π1, π2). It is also the
most cautious, as it is the most conservative of all t-norms [14]. Now, let us con-
sider two random sets (m1,F1), (m2,F2) and their respective contour functions
πm1 , πm2 . The first result is the following:

Proposition 1 (s-covering). The following inequality holds for any v ∈ V:

max
(m,F)∈M12

πm(v) ≤ min(πm1(v), πm2 (v)). (3)

It is known [15] that the same inequality holds for sets of probabilities. Consid-
ering the idempotent rule of possibility theory and this property, it makes sense
to ask for inequality (3) to become an equality. We now study two different ways
to formulate this requirement on conjunctively merged belief structures.

3.1 Strong Contour Function Principle (SCFP)

Let us first start with the strongest requirement.

Definition 3 (SCFP). An element (m,F) in M12 is said to satisfy the strong
contour function principle if, for any v ∈ V ,

π(m,F)(v) = min(πm1(v), πm2 (v)), (4)
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We require the selected merged belief structure to have a contour function equal
to the minimum of the two original contour functions. We retrieve the minimum
rule of possibility theory if both (m1,F1), (m2,F2) are consonant. Also, a merged
belief structure satisfying the SCFP has maximal expected cardinality among
elements of M12, and hence is coherent with previous approaches [7] studying
expected cardinality as a criteria to cautiously merge belief structures.

First assume that the two belief structures (m1,F1), (m2,F2) can satisfy
the SCFP. In this case, satisfying SCFP also implies satisfying the following
property:

Proposition 2 (s-coherence). Let (m1,F1) be s-included in the wide sense
in (m2,F2), that is (m1,F1) #s (m2,F2). Then, the unique element in M12
satisfying Equation (4) is (m1,F1).

This proposition indicates that satisfying the SCFP ensures idempotence (simply
take (m1,F1) = (m2,F2) in the above property) and is coherent with the notion
of specialisation, that is the notion of inclusion that we consider as the most
sensible to extend cautious possibilistic merging to belief structures. To see that
Proposition 2 is not valid for pl- and q-inclusions, consider Example 1, the fact
that one of them is either strictly pl- or q-included in the other and that none
of these two belief functions belong to M12.

The Case of Consonant Belief Structures. Let π1, π2 be two possibility
distributions and (m1,F1), (m2,F2) be the corresponding consonant belief struc-
tures. In this case, it is known [13] that the minimum of π1, π2 can be retrieved
by a bba inside M12 where dependency between focal set precision is assumed.

This merged belief structure has a maximal cardinality, meaning that it is
s-least committed inside M12 (i.e., it is inside M�s

12 ). It is also the single least
q-committed [12] element among M12 (i.e., M�q

12 is reduced to a single ele-
ment). The next example, which completes Example 1, indicates that M�s

12 is
not necessarily reduced to a single element.

Example 2. Consider the two following possibility distributions π1,π2, expressed
as belief structures (mπ1 ,Fπ1), (mπ2 ,Fπ2)

Fπ1 mπ1 Fπ2 mπ2

{v0, v1, v2} 0.5 {v2, v3, v4} 0.5
{v0, v1, v2, v3, v4} 0.5 {v1, v2, v3, v4, v5} 0.5

The two belief structures (m1,F1), (m2,F2) of Example 1 can be obtained by
conjunctively merging these two consonant belief structures. But none of the
belief structures in Example 1 is s-included in the other, while (m2,F2) �q

(m1,F1). The merged belief structure satisfying the SCFP is usually unnormal-
ized, except when (m1,F1), (m2,F2) are logically consistent.

Satisfying the SCFP in General. Necessary and sufficient conditions under
which the merged belief structure satisfies the SCFP are given by Dubois and
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Prade [10], however they are difficult to check. Constraining two belief structures
to be either logically consistent, non-conflicting or conflicting, as well as requiring
the conjunctively merged belief structure to be normalised are conditions that
are easier to check.

Let us first explore the most constraining case, that is, when belief structures
to be merged are logically consistent. The next example indicates that the SCFP
cannot always be satisfied, even in such a restricted case.

Example 3. Consider the merging of belief structures (m1,F1), (m2,F2) of Ex-
ample 1. They are logically consistent, have the same contour function, and if
there were a belief structure (m12,F12) inM12 that can satisfy SCFP, this belief
structure should have the same contour function again:

pl12(v1) = 0.5 pl12(v2) = 1 pl12(v3) = 0.5

with expected cardinality 2. As expected cardinality is a linear function, as well
as constraints (2), a conjunctively merged belief structure with maximal expected
cardinality can be found by linear programming. Running such a program, the
maximal value obtained with belief structures of Example 2 is 1.5, and is given,
for example, by m12({v2, v3}) = 0.5, m12({v2}) = 0.5.

This is less than what the expected cardinality a conjunctively merged belief
structure satisfying the SCFP should reach. It indicates that, even when belief
structures to be merged are logically consistent, the SCFP cannot be always
satisfied. The next examples show that the SCFP cannot always be satisfied
either for non-logically consistent input random sets, whether conflicting or not.

Example 4. Let us consider the space V = {v1, v2, v3} and the two non-conflicting
random sets (m1,F1), (m2,F2) summarized in the table below.

Set {v1} {v2} {v3} {v1, v2} {v1, v3} {v2, v3} X
m1 0.3 0 0 0 0 0.4 0.3
m2 0.2 0.1 0.1 0.2 0.2 0.1 0.1

The minimum πmin = min(π1, π2) of their contour functions is such that

πmin(v1) = 0.6 πmin(v2) = 0.5 πmin(v3) = 0.5.

The expected cardinality of πmin is 1.6. However, the linear program computing
the maximal expected cardinality reached by an element of M12 yields value 1.5
as solution. Therefore, no bba in M12 satisfies the SCFP for this example.

Example 5. Letus thenconsider the twoconflicting randomsets (m1,F1), (m2,F2)
summarised below.

(m1,F1) (m2,F2)
Focal sets Mass Focal sets Mass
E11 = {v2} 0.5 E21 = {v1v2, v3} 0.5
E12 = {v3} 0.5 E22 = {v1} 0.5
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The minimum πmin = min(π1, π2) of their contour functions is such that

πmin(v1) = 0 πmin(v2) = 0.5 πmin(v3) = 0.5.

Its expected cardinality is 1, while the maximum expected cardinality reachable
by an element of M12 is 0.5 (by assigning m2({v1v2, v3}) to v2 or v3).

All these examples indicate that the SCFP is too strong a requirement in general.
An alternative is to search for subsets of conjunctively merged belief structures
globally satisfying the contour function principle, admitting that the result of
the fusion is a set of belief functions rather than a single one. This is in the
spirit of proposals made by other authors dealing with situations where mass
functions of belief structures are not precisely known [1,5]. Such an alternative
is explored in the next section.

Table 1 summarizes cases when the SCFP can be satisfied. It shows that,
except for specific situations, the SCFP is difficult to satisfy in general.

Table 1. Satisfiability of SCFP given (m1,F1), (m2,F2).
√

: always satisfiable. ×: not
always satisfiable. N.A.: Not Applicable

�����������Situation
Constraints Consonant m1∩2(∅) = 0 unconst.

Logically consistent
√ × ×

Non-conflicting
√ × ×

Conflicting
√

N.A. ×

3.2 Weak Contour Function Principle (WCFP)

In this section, while we still require that the result of the conjunctive merging of
(m1,F1) and (m2,F2) coincides on singletons with the minimum of the contour
functions π1, π2, we no longer require the result of the merging to be a single
belief structure.

Definition 4 (WCFP). Consider two belief structures (m1,F1), (m2,F2) and
M12 the set of conjunctively merged belief structures. Then, a subset M ⊆M12
is said to satisfy the weak contour function principle if, for any v ∈ V ,

max
(m,F)∈M

πm(v) = min(πm1(v), πm2 (v)), (5)

Any random set satisfying the SCFP after merging also satisfies the WCFP.
However, we try to find subsets of M12 that always satisfy the WCFP.

Subsets of normalised merged belief functions. A first subset of interest is
the one of normalised conjunctively merged belief structures (that is, all (F ,m) ∈
M12 such that m(∅) = 0). As the lower measure induced by this subset is equal
to the lower probability of the intersection of the sets of probabilities induced by
the belief structures to be merged, we denote it by MP1∩P2 . The next example
shows that there are cases where the WCFP cannot be satisfied when we consider
the subset MP1∩P2 .



308 S. Destercke and D. Dubois

Example 6. Consider the two belief structures (m1,F1), (m2,F2) on V =
{v1, v2, v3} such that

m1({v1}) = 0.5, m1({v1, v2, v3}) = 0.5,
m2({v1, v2}) = 0.5, m2({v3}) = 0.5.

The minimum of contour functions πmin = min(π1, π2) is given by πmin(vi) = 0.5
for i = 1, 2, 3. The only merged bba m12 to be in MP1∩P2 is

m12({v1}) = 0.5; m12({v3}) = 0.5,

for which π12(v2) = 0 < 0.5.

The above example is not surprising: it recalls that requiring coherence (i.e.,
m(∅) = 0) while conjunctively merging uncertain information, can be too strong
a requirement. In particular, the element v2 is considered as impossible by
MP1∩P2 , while both sources consider v2 as possible.

Subsets of s-Least Committed Merged Belief Structures. Another pos-
sible solution is to consider a subset of minimally committed belief structures.
That is, given two belief structures (m1,F1), (m2,F2), we consider the subsets
M�x

12 , of least x-committed belief structures with x ∈ {s, pl, q, π}. The follow-
ing proposition is the main result of the paper. It implies that the subset of
x-least committed belief structures in M12 always satisfies the WCFP, with
x ∈ {s, pl, q, π}.

Proposition 3. The subset M�s
12 ⊆M12 satisfies the WCFP, in the sense that

max(m,F)∈M�s
12

πm(v) = min(π1(v), π2(v)).

To prove this proposition, we show that ∀v ∈ V there is at least one merged
belief structure (mv,Fv) in M12 such that π(mv ,Fv)(v) = min(π1(v), π2(v)). If
π1(v) =

∑
v∈E m1(E) ≤

∑
v∈E′ m2(E′) = π2(v), it is always possible to transfer

part of the masses m2(E′), v ∈ E′ ∈ F2 to subsets E ∩E′ containing v, so as to
ensure

∑
v∈E∩E′ mv(E,E′) =

∑
E∈Fv,1

m1(E), while respecting Eq. (2).
Given the implications between notions of inclusions of belief structures, it is

clear that, any element in M�x
12 with x = {pl, q, π} is also in M�s

12 . However,
there may be some elements of M�s

12 that are not in M�x
12 . What we have to do

is to show that, if one element is suppressed, then this element is of no use to
satisfy Proposition 3. Let us consider two such elements m, m′ that are in M�s

12
(i.e., they are s-incomparable) but are such that m′ #x m, hence m′ is not in
M�x

12 . For any x ∈ {pl, q, π}, we do have (see section 2.3)

m′ #x m ⇒ πm′ ≤ πm,

πm′ ≤ πm ensures that m′ is useless when taking the maximum of all least
s-committed contour functions that satisfy the WCFP.

Corollary 1. The subsets M�x
12 for x = {pl, q, π} satisfy the WCFP.



Can the Minimum Rule of Possibility Theory Be Extended 309

Corollary 2. If any of the subsets M�x
12 with x = {s, pl, q, π} is reduced to a

singleton (mx,Fx), then this bba satisfies the SCFP.

This is, for instance, the case with M�q
12 when both (m1,F1), (m2,F2) are con-

sonant. As for SCFP, Table 2 summarises for which subsets of merged belief
structures the WCFP is always satisfiable. So, one can always satisfy the WCSP
by selecting at most |V| merged belief structures, each of them obeying (2) for
one element v ∈ V . One can also restrict to bba’s in the set M�π

12 . However,
tools to compute them must be devised.

Table 2. Satisfiability of WCFP given (m1,F1), (m2,F2).
√

: always satisfiable. ×: not
satisfiable in general. N.A.: Not Applicable

���������Situation
Subset MP1∩P2 M	s

12 M	pl
12 M	q

12 M	π
12

Logically consistent
√ √ √ √ √

Non-conflicting × √ √ √ √

Conflicting N.A.
√ √ √ √

4 Conclusion

From a practical standpoint, our results are rather negative, as they show the
lack of a universal cautious merging rule for belief functions, extending the idem-
potent possibilistic rule. However, they do have theoretical interest, as they tend
to confirm the need to use of sets of belief structures rather than of a single one
as the result of cautious merging, particularly when dependencies are ill-known.
This indicates that single belief functions are perhaps not always sufficient to
tackle some problems. Section 3.2 also indicates that restricting ourselves to nor-
malised merged belief functions is too constraining if we want to comply with
our principles. This is in agreement with the Transferable Belief Model [18] and
the open world assumption, where unnormalized belief structures are authorised.

A pending question is whether the WCFP applies to the set of conjunctively
merged belief structures with maximal expected cardinality? If the answer is af-
firmative, a subset of conjunctively merged belief functions satisfying the WCSP
could be computed by means of linear programming techniques.
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Abstract. This paper deals with the lack of discrimination of aggrega-
tion operations in decision-evaluation methods, typically in multi-factorial
evaluation, and in decision under uncertainty. When the importance of
groups of criteria is modeled by a monotonic but non-additive set-function,
strict monotonicity of evaluations with respect to Pareto-dominance is no
longer ensured. One way out of this problem is to refine this set-function.
Two refinement techniques are presented, extending known refinements
of possibility and necessity measures, respectively based on so-called dis-
crimax and leximax orderings. Capacities then become representable by
means of belief functions, plausibility functions or both. In particular it
yields a natural technique for refining a Sugeno integral by means of a Cho-
quet integral.

Keywords: Capacities, belief functions, Sugeno integral, decision
evaluation.

1 Introduction

In decision evaluation problems [1], partial ratings are often aggregated into a
global evaluation. A natural condition to be respected is then Pareto dominance,
namely, if an alternative is rated as good as another alternative on all criteria, the
first one having a better rating on one criterion, then the first alternative should
be preferred. When numerical ratings make sense, the arithmetic mean yields a
ranking of alternatives that obeys this condition. This is no longer true, gener-
ally, with ordinal or qualitative ratings for which only maximum and minimum
aggregation operations sound natural: two alternatives, one of which Pareto-
dominates the other, may have equal ranks under qualitative aggregations. This
is the so-called drowning effect [6]. A similar defect appears when dependencies
between criteria are accounted for, which leads to attaching importance weights
to groups of criteria with a monotonic set-function κ called capacity or fuzzy
measure [11]: Choquet and Sugeno integrals do not satisfy Pareto dominance.

Some proposals exist for overcoming the drowning effect due to the use of
minimum and maximum operations in qualitative aggregation. For instance,
when comparing vectors by their component of minimal value, one may delete
components sharing the same value beforehand (this is the “discrimin” order [6]).
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A further refinement is “leximin”[3]. Similar techniques exist for the maximum
operator. More recently, Fargier and Sabbadin [9] generalized these lexicographic
refinements to the weighted maximum maxi=1:n min(πi, αi), where αi is a rating
according to feature i and πi is the weight of this feature, as well as the weighted
minimum. The idea is to nest leximin inside the leximax or conversely. This
study was pursued in [4] so as to refine a Sugeno integral of a tuple of ratings
Sκ(α) = maxλ∈L min(λ, κ(Aλ)), where Aλ is the set of features i for which
αi ≥ λ. This led to a refined ranking that can be represented by a Choquet
integral preserving the set-function κ on which the integral relies. Hence, this
approach handles the drowning effect due to maximum and minimum but the
one due to the set-function κ itself still remains. Hence the idea of refining a
capacity so as to fully overcome the drowning effect.

In this paper, we propose a method for refining the ranking of events induced
by a capacity, so as to make it more discriminant. Existing results for possibility
and necessity measures are recalled, for which a unique maximal refinement ex-
ists, that can be encoded by a big-stepped probability function. Then, based on
the notion of qualitative Möbius transform [10] that generalize possibility dis-
tributions, capacities are refined by means of orderings on sets compatible with
belief functions, plausibility functions or both. These results are then applied to
Sugeno integrals that are refined by means of Choquet integrals, thus general-
izing existing results for weighted minimum and maximum. Proofs are omitted
due to the lack of space.

2 Pareto Dominance for Capacity Functions

A capacity κ over a finite set S is a set function A ∈ 2S �→ κ(A) ∈ L, where L
is a bounded totally ordered set with maximal and minimal elements � and ⊥.
Capacities are required to be monotonic (if A ⊆ B then κ(A) ≤ κ(B)) and such
that κ(∅) = ⊥ and κ(S) = �. The conjugate of κ is a capacity κc(A) = ν(κ(Ac)),
where Ac = S \A and ν is the order-reversing map on L (typically, for L = [0, 1],
κc(A) = 1− κ(Ac)). Such set functions are widely used in multicriteria decision
problems, where they measure the importance of coalitions of criteria, and also in
decision making under uncertainty, where S is rather a set of possible states of the
world : in this case, A is a event and κ(A) measures its likelihood. Actually, the
same formal expressions can be found in the two domains, that is, expected utility
and weighted mean, their qualitative counterparts [8] and their extensions. In the
following, we do not make any assumption about the domain of interpretation
and simply consider S as a set of features, our goal being to define how a capacity
κ over S can be refined so as to satisfy Pareto dominance as much as possible.

When considering sets as Boolean vectors, the monotonicity property of ca-
pacity functions can be viewed as a weak Pareto dominance property. However
strict Pareto dominance cannot be written as a strict monotonicity property (if
A ⊂ B then κ(A) < κ(B)) because S may contain null subsets. A set B is said
to be null for κ if an only if

κ(A ∪B) = κ(A), ∀A ⊆ S (1)
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In uncertainty representations, null sets may represent impossible events. No-
tice that A is null is not equivalent to κ(A) = ⊥ : for necessity measures,
N(B) = ⊥ does obviously not mean that B is null. However, A null always
implies that κ(A) = ⊥ (and thus κ(A) > ⊥ implies that A is not null) but the
converse (namely, κ(A) = ⊥ =⇒ A null ) does not hold in general.

We shall then write the strict Pareto dominance requirement as follows :

SPAR: ∀A,B disjoint, if B is not null, then κ(A ∪B) > κ(A).

Requiring this condition is quite demanding. Possibility measures Π for instance
often violate SPAR. So do necessity measures and many belief and plausibility
functions [16]. Axiom SPAR is clearly violated as soon as there are two disjoints
sets A,B such that κ(B) > ⊥ and κ(A ∪B) = κ(A). Restricting SPAR to sets
B such that κ(B) > ⊥, yields a weak version of SPAR:

S (Strictness): if κ(B) > ⊥ then κ(A ∪B) > κ(A), ∀A,B disjoint,

It is called converse null-additivity by Z. Wang[18]. The converse of axiom S is :

NA: ∀A,B disjoint: κ(A ∪B) > κ(A) =⇒ κ(B) > ⊥.

This axiom also writes κ(B) = ⊥ =⇒ κ(A ∪ B) = κ(A) and is called null-
additivity by Z. Wang [17] (see also Pap[14]). When both NA and S holds, the
corresponding property is denoted NAS.

NAS: ∀A,B disjoint: κ(A ∪B) > κ(A) ⇐⇒ κ(B) > ⊥.

Proposition 1. NAS and SPAR are equivalent when there is no null set.

The approach of the paper to overcome the drowning effect pertaining to some
capacity k is to define a new capacity κ′ that is in agreement with κ and refines
it. In the following, �κ will denote the order among sets, induced by κ:

A �κ B ⇐⇒ κ(A) ≥ κ(B) (2)

Conversely, given any monotonic weak order � over 2S , we say that � is repre-
sented by a capacity κ whenever A � B ⇐⇒ κ(A) ≥ κ(B) (�≡�κ).

A reflexive relation �′ is said to refine a reflexive relation � iff ∀A,B : A �
B =⇒ A �′ B where � denotes the strict part of � ( A � B ⇐⇒ A � B but
not B � A). By extension, �′ refines κ whenever �′ refines �κ and a capacity
κ′ refines a capacity κ iff ∀A,B : κ(A) > κ(B) =⇒ κ′(A) > κ′(B).

A straightforward way to construct an ordering on sets obeying SPAR is to
refine the ranking induced by κ by means of the inclusion relation:

B �⊂κ A ⇐⇒ κ(B) > κ(A) or A 
 B. (3)

�⊂κ is obviously a strict partial ordering. Each equivalence class Cκ of equally
important sets in the sense of κ is partially ordered by the inclusion relation. The
strict partial ordering �⊂κ restricted to each Cκ can be embedded into a weak
order, for instance considering cardinality (where ∼ stands for indifference):

B �card
κ A ⇐⇒ κ(B) > κ(A) or (κ(B) = κ(A) and |A| < |B|) (4)

B ∼card
κ A ⇐⇒ κ(B) = κ(A) and |A| = |B|.
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�card
κ is a weak order, namely, complete and transitive. It can thus be represented

by a capacity κcard, that refines κ (notice that this κcard uses a larger scale
Λ ⊇ L). κcard is a refinement of κ and satisfies SPAR.

We could try to refine κ even more by means of a comparative probability
relation, i.e. enforcing the following preadditivity axiom:

PRAD: ∀A,D,C s. t. C∩(D∪A) = ∅: κ(D) � κ(A) ⇔ κ(D∪C) � κ(A∪C).

This axiom can be viewed as an instance of the Sure Thing Principle [15], re-
stricted to capacity functions. PRAD implies SPAR, since, under the former,
κ(A) > ⊥ is equivalent to A not null. However, a refinement of κ that satisfies
PRAD may not exist, since it may be that κ(B) > κ(A) and κ(B∪C) < κ(A∪C)
with C ∩ (A∪B) = ∅. This is frequent for instance with Shafer’s belief and plau-
sibility functions:

Bel(A) =
∑

E,E⊆A
m(E), ∀A ⊆ S (5)

Pl(A) = 1−Bel(Ac) =
∑

E,E∩A �=∅
m(E), ∀A ⊆ S (6)

where m is a mass function, i.e. a probability distribution over 2S \ ∅. It is
nevertheless always possible to look for the following weak version of PRAD:

BELPL: ∀A,B,C disjoints: κ(C ∪B) > κ(C) ⇐⇒ κ(C ∪B ∪A) > κ(A ∪C)

This axiom puts together two axioms already encountered in the literature:

BEL: ∀A,B,C disjoint, if κ(A ∪B) > κ(A) then κ(A ∪B ∪C) > κ(A ∪C).

PL: ∀A,B,C disjoint, if κ(A ∪B ∪ C) > κ(A ∪ C) then κ(A ∪B) > κ(A).

Belief functions satisfy BEL. Conversely, likelihood relations that are monotonic
under inclusion and obey property BEL can always (but not exclusively) be
represented by belief functions Bel [19]. The converse axiom, PL, is satisfied
by Shafer’s plausibility functions. The same properties make sense for a strict
partial order instead of a capacity.

Notice that BEL and PL are just slight reinforcements of the property
∀A,B,C disjoint sets: κ(A ∪ B) > κ(A) =⇒ κ(A ∪ B ∪ C) ≥ κ(A ∪ C),
which trivially holds for any capacity. So it is clear that relations among sets
induced by capacities differ from relations induced by belief functions only by
breaking some indifferences, so that it is always possible to refine a capacity
by another one satisfying BEL, PL or both. Belief and plausibility functions
representing a relation satisfying BELPL are not necessarily the conjugate of
each other. Indeed, while a relation satisfying axiom PRAD is self-conjugate
(A � B ⇐⇒ Bc � Ac), not all relations satisfying BELPL are.

Setting A = ∅ in the definition of axiom BEL (resp. PL) we recover axiom S
(resp. NA). More generally, it can be shown that:

Proposition 2. PRAD =⇒ BELPL =⇒ NAS =⇒ SPAR
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It is clear that the capacity κcard satisfies both BEL and PL (and thus NAS and
SPAR). It can thus be represented by a plausibility function, and also by a belief
function. Unfortunately, this refinement of κ is not always natural. Consider for
instance a possibility measure Π on S = {1, 2, 3, 4, 5}, with π(1) = 1, π(2) = 1,
π(3) = π(4) = π(5) = 0.1. The behavior of �card

Π may be counterintuitive, e.g.
when A = {1, 2} and B = {1, 3, 4, 5} since B �card

Π A. The drawback of the
cardinality-based refinement is that it does not pay any attention to the relative
importance of subsets of A and B. Alternative refinements of κ that satisfy
BELPL should be considered. Looking back to the literature on possibility and
necessity measures, one can identify dedicated refinement principles that are
much more attractive than �card

Π , as detailed in the next Section. The extension
of these principles to general capacities, that is the core the present work, is
detailed in Section 4. For the sake of simplicity, we will assume in the following
that there is no null set.

3 Refining Possibility and Necessity Measures

Possibility and necessity measures are generally defined from a possibility dis-
tribution, i.e. a mapping π from S to L (generally, L = [0, 1], ⊥ = 0 and � = 1):

Π(A) = max
x∈A

π(x); N(A) = ν(Π(Ac)) (7)

Possibility measures (resp. necessity measures) satisfy axiom PL (resp. BEL),
but they clearly fail to satisfy SPAR : it may happen that Π(A ∪ B) = Π(B)
even when Π(A) > ⊥. More generally Π(A) = Π(B) as soon as Π(A ∩ B) >
max(Π(A ∩ Bc), Π(Ac ∩ B)) and N(A) = N(B) as soon as Π(Ac ∩ Bc) >
max(Π(A ∩Bc), Π(Ac ∩B)).

A known technique for refining the max-based possibilistic ranking is to com-
pare the sets on the basic of their disjoint parts. This ”discrimax” comparison
(denoted �dΠ) is defined as follows [2][12][7]. ∀A,B ∈ 2S:

A �dΠ B ⇐⇒ Π(A ∩Bc) > Π(Ac ∩B) or A = B (8)

This relation is reflexive, transitive, and refines both rankings induced by pos-
sibility and necessity measures. It satisfies axiom PRAD, and thus SPAR, but
it cannot be represented by a capacity, since it is not complete. Completeness
can be recovered by using a further refinement, the ”leximax” refinement, origi-
nally defined for the comparison of vectors. Practically, the leximax and leximin
procedures consist in ranking both tuples in increasing order and then lexico-
graphically comparing them in a suitable way[3]. Let α,β ∈ Ln, and α(j) be the
jth least component of α:

α �lmin β ⇔ ∃i, ∀j < i, α(j) = β(j) and α(i) > β(i) (9)
α �lmax β ⇔ ∃i, ∀j > i, α(j) = β(j) and α(i) > β(i) (10)
α ∼lmax β ⇔ α ∼lmin β ⇔ ∀j, α(j) = β(j)
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The leximax refinement �lΠ of possibility measures comes down to represent-
ing each event A by a tuple A = (πA1 , . . . , πAn ), with πAi = π(si) if si ∈ A and ⊥
otherwise, and comparing tuples A and B using leximax [7]:

A �lΠ B ⇐⇒ A �lmax B. (11)

The leximax comparison is very discriminant. Indeed, A ∼lΠ B iff there exists
a one-to-one mapping σ : A → B such that ∀s ∈ A, π(s) = π(σ(s)). Since it is
complete and transitive, �lΠ can be represented by a capacity function, which is
actually a probability measure Pl, based on a big-stepped probability distribution
p, namely such that ∀s ∈ S, p(s) >

∑
s′ s.t. p(s′)<p(s) p(s

′), where p(s) = χ(π(s)).
Function χ is a super-increasing mapping from L = {λm = � > · · · > λ0 = ⊥} to
the unit interval, defined by χ(λi) > K ·χ(λi−1), ∀i = 2, . . . ,m, for some integer
K > 1. Here, we set χ(λi) = Ki−1

v , where K = Card(S) and v is a normalisation
factor allowing to recover probabilities whose sum equals 1. Notice that this
probability-based representation is not unique, i.e. there may be several measures
Pl such that A �lΠ B ⇐⇒ Pl(A) ≥ Pl(B). Since the refining capacity Pl is a
probability, axioms SPAR, BELPL and even PRAD are satisfied. Moreover,
it should be noticed that P refines both Π and its conjugate N .

4 Refining Capacities by Belief and Plausibility Functions

We investigate in the sequel of the paper whether these discri- and lexi-based
refinements of possibility measures can be extended to any kind of capacity
measure. First of all, notice that we cannot refine κ by means of the usual
definition of the possibilistic likelihood based on comparing disjoint parts of A
and B, as A �dcap B ⇐⇒ κ(A\B) > κ(B \A) because κ may be strongly non-
additive, i.e, it may be that κ(A) > κ(B) and κ(A \ B) < κ(B \ A) hold for κ.
There is nevertheless a way to extend possibility refinements to capacities.

4.1 Refinements Based on the Inner Qualitative Moebius Transform

The key idea is that any capacity can be understood as the max aggregation of a
vector of ordinal information. Indeed, Grabisch [10] has shown that any capacity
κ can be characterized by another set-function κ# defined by κ#(∅) = ⊥ and:

κ#(E) = κ(E) if κ(E) > max{κ(B), B ⊂ E} and κ#(E) = ⊥ otherwise. (12)

It is clear that κ# contains the minimal information to reconstruct κ as:

κ(A) = max
E⊆A

κ#(E). (13)

Hence function κ# plays the role of a “qualitative” mass function obtained via
a kind of Moebius transform [10]. The subsets E that receive a positive support
play the same role as the focal elements in Dempster-Shafer’s theory: they are
the primitive items of knowledge. The set-function κ# can also be viewed as
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a possibilistic mass assignment, a possibility distribution over the power set
2S, and (13) appears as the qualitative counterpart of the definition of a belief
function or an inner measure. This expression is also a generalization of the
definition of the degree of possibility of a set in terms of a possibility distribution
on S. Indeed, the function Π#(E) = ⊥ as soon as E is not a singleton, and
Π#({i}) = πi, ∀i ∈ S.

Possibility measures can be refined by a discrimax procedure. Likewise, we
shall define the discrimax refinement of a capacity κ, based on comparing values
κ#(E) for subsets E of A that are not subsets of B, and conversely [5]:

A �κ
dcap B ⇐⇒ max

E,E⊆A,E �⊆B
κ#(E) > max

E,E⊆B,E �⊆A
κ#(E) or A = B. (14)

In this definition, all subsets common to A and B play the same role in the
expressions of κ(A) and κ(B) and are canceled. It is easy to check that

Proposition 3. Relation �κ
dcap refines �κ and satisfies BEL.

The lexicographic refinement �κ
lcap of �κ

dcap is a ranking defined likewise:

A �κ
lcap B ⇐⇒ A# �lmax B# (15)

where A# (resp. B#) is the tuple with size 2S, containing all values κ#(E),
∀E ⊆ A (resp. ∀E ⊆ B), and ⊥ if E 
⊆ A (resp. E 
⊆ B).

Proposition 4. Relation �κ
lcap refines �κ

dcap.

It is clear that if κ is a possibility measure, then �κ
lcap boils down to the leximax

possibility ranking encountered in the previous section. Clearly, �κ
lcap is a weak

order. Like in the possibilistic case, it is possible to represent it by a capacity
κlcap on a refined ordinal scale Λ. Namely, we shall use a super-increasing trans-
formation as in the previous section, thus defining a big-stepped mass function
m# : 2S �→ [0, 1]:

m#(E) = χ(κ#(E)) (16)

where χ is the super-increasing mapping χ(λi)= Ki−1
v with, now, K=Card(2S);

v is a normalisation factor so that the sum of masses is 1.

Proposition 5. The belief function κlcap based on m# represents �κ
lcap.

Corollary 1. �κ
lcap and κlcap satisfy BEL.

As already pointed out, �Π
lcap and �Π

dcap are self-conjugate: they refine the con-
jugate necessity measure as well. However, in general neither �κ

dcap nor �κ
lcap

are self-conjugate, and of course generally not of the PL type as the existence
of E∗ ⊆ A ∪ B ∪ C while E∗ 
⊆ A ∪ C does not ensure that E∗ ⊆ A ∪ B and
E∗ 
⊆ A (for instance if E∗ = A ∪B ∪D with D ⊆ C not empty). Worse, �κ

dcap

is ineffective on necessity measures and belief functions.

Proposition 6. Relations �N
dcap and �N

lcap are equivalent to �N .

Proposition 7. If κ is a belief function, then �κ
dcap is equivalent to �κ.

However Bellcap may strictly refine Bel (if it is not a necessity measure), since
the former has more focal elements than the latter.
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4.2 Refinements Based on the Outer Qualitative Moebius
Transforms

In order to directly refine a necessity measure, another qualitative representa-
tion of a capacity κ can be used, namely a new set function, denoted κ#, the
knowledge of which is again enough to reconstruct the capacity:

κ#(A) = κ(A) if κ(A) < min{κ(F ), A ⊂ F} and � otherwise. (17)

and κ#(S) = �. The original capacity is then retrieved as [5]:

κ(A) = min
A⊆F

κ#(F ), (18)

which reminds of outer measures. Function κ# can be called outer qualitative
mass function of κ, as κ(A) is recovered from κ# via weights assigned to supersets
of set A, while κ# stands for an inner qualitative mass function. So we can
consider refining the κ ranking as follows:

A �dcap
κ B ⇐⇒ min

E:A⊆E,B �⊆E
κ#(E) > min

E:B⊆E,A �⊆E
κ#(E) or A = B; (19)

A �lcap
κ B ⇐⇒ A# �lmin B# (20)

where A# (resp. B#) is the tuple containing all values κ#(E), ∀A ⊆ E (resp.
∀B ⊆ E), and � if A 
⊆ E (resp. B 
⊆ E). These relations are generally not of
the BEL type but are of the PL type.

Proposition 8. Relations �dcap
κ and �lcap

κ satisfy PL and refine �κ.

�lcap
κ is a weak order that satisfies PL, so, it can be represented by a plausi-

bility function. In order to build this plausibility function, we cannot use equa-
tion (18) directly. However, note that Pl(A) = 1 − Bel(Ac) where Bel(Ac) =∑

A⊆E m(Ec), to be compared with the conjugate of κ, for which κc(Ac) =
maxA⊆E ν(κ#(E)). The mass function m# induced by κ# can be defined con-
sidering a big-stepped mass function m# : 2S �→ [0, 1]

m#(E) = χ(ν(κ#(Ec)), (21)

where χ is the super-increasing mapping χ(λi) = Ki−1
v , v being the normalisa-

tion factor and K being equal to Card(2S).

Proposition 9. The plausibility function κlcap(A) =
∑

A∩E �=∅m
#(E) repre-

sents �lcap
κ .

The question is whether there is or not a relationship between κlcap and κlcap.
It is easy to see that orders �dcap

κ and �κ
dcap differ (�Π

dcap strictly refines Π ,
while �dcap

κ does not) and can strongly diverge. The reason is that the sets of
values κ#(E) deciding if A �κ

dcap B and κ#(E) deciding if A �dcap
κ B are totally

independent (the former are attached to supersets of A and B, the latter to their
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subsets). So the capacities functions κlcap (that refines �dcap
κ ) and κlcap (that

refines �κ
dcap) may disagree.

Altogether, the two refinements based on inner and outer qualitative Moebius
transforms can be applied to a capacity and its conjugate, which makes two
possibly distinct refinements of �κ: �dcap

κ , �κ
dcap (and similarly for lcap refine-

ments). The same can be done for κc. Taking conjugates of these four refinements
into account, the landscape includes eight relations. Not all these eight relations
are distinct. Indeed, the inner qualitative mass function κc# of κc is related to
the outer qualitative mass function κ#:

Proposition 10. κ#(E) = ν(κc#(Ec)).

since κ(A) < min{κ(F ), A ⊂ F} also writes κc(Ac) > max{κc(F c), F c ⊂ Ac}.
For instance in the case of a necessity measure N#(E) 
= � only if E = S \ {i}
for some s ∈ S, and then N#(S \ {i}) = ν(πi). As a consequence, it holds
that A �dcap

κ B ⇐⇒ minE:A⊆E,B �⊆E ν(κc#(Ec)) > minE:B⊆E,A �⊆E ν(κc#(Ec)).
But B ⊆ E,A 
⊆ E also writes Ec ⊆ Bc, Ec 
⊆ Ac, so, A �dcap

κ B ⇐⇒
maxE:E⊆Ac,E �⊆Bc κc#(E) < maxE:E⊆BcE �⊆Ac κc#(E) ⇐⇒ Bc �κc

dcap Ac. If κ

is a necessity measure, then we get A �dcap
N B ⇐⇒ Bc �Π

dcap Ac, which is
equivalent to A �Π

dcap B. Also, Π(A) > Π(B) does imply Π(Bc) ≥ Π(Ac),
which allows for such a conjoint refinement : �κ

dcap and �dcap
κc coincide when κ

(resp. κc) is a possibility (resp. a necessity) measure. However in the general
case, we may have κ(A) > κ(B) and κc(B) > κc(A) so that refinements of κ
can be at odds with refinements of its conjugate. Basic results are summarized
in Table 1.

Table 1. Comparison of refinements

Type Relation is the same as Case κ = Π refined by Case κ = Π

BEL A �κ
dcap B Bc �dcap

κc Ac �Π
dcap=�dΠ κlcap(A) = 1 − (κc)lcap(Ac) Πlcap = Pl

BEL A �κc

dcap B Bc �dcap
κ Ac �N

dcap=�N (κc)lcap(A) = 1 − κlcap(Ac) Nlcap = N

PL Bc �κ
dcap Ac A �dcap

κc B �dcap
N =�dΠ (κc)lcap(A) = 1 − κlcap(Ac) N lcap = Pl

PL Bc �κc

dcap Ac A �dcap
κ B �dcap

Π =�Π κlcap(A) = 1 − (κc)lcap(Ac) Π lcap = Π

The results also hold for lcap. Indeed, due to Proposition 10, it is clear that
m#(E) = χ(κc#(E)) = mc

#(E), where mc
# is the mass function obtained from

the inner qualitative Moebius transform of the conjugate of κ. Hence, κlcap(A) =∑
A∩E �=∅m

c
#(E). So, the following identity holds:

Proposition 11. κlcap(A) = 1− κlcapc (Ac)

This result is sufficient to complete Table 1 for lcap refinements. In the case
when κ is a possibility function, Πlcap, N

lcap and their conjugates coincide with
a big-stepped probability function Pl, but Nlcap = N and Π lcap = Π .
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5 Refining Sugeno Integral

Let us now consider the use of a refined capacity in the context of Sugeno integral.
S is a set of n features or criteria (denoted by integers i), and the aim is to order
a set of vectors representing objects or items to be rated according to these
features. For rating the merit of objects, the totally ordered value scale L is used
and supposed to be common to all features. The set of objects will be identified
with the set Ln of n-tuples α of values of L. Using a Sugeno integral (see [11]),
the global evaluation of the merits of an object is based on the comparison
of ratings of the object w.r.t. different features. The importance of groups of
features is evaluated on the same scale and modeled by a capacity κ. Sugeno
integral is often defined as follows:

Sκ(α) = max
λ∈L

min(λ, κ(Aλ)) (22)

where Aλ = {i : 1 ≤ i ≤ n, αi ≥ λ} is the set of features having best ratings for
some object, down to utility threshold λ, and κ(A) is the degree of importance
of feature set A.

An equivalent expression is Sκ(α) = maxA⊆S min(κ(A),mini∈A αi) [13]. In
this disjunctive form expression the set-function κ can be replaced without loss
of information by the inner qualitative Moebius transform κ# defined earlier.

Sκ(α) = max
A∈P#(S)

min(κ#(A), αA) (23)

where αA = mini∈A αi and P#(S) = {A, κ#(A) > 0}. The above expression
of Sugeno integral has the standard maxmin form, viewing κ# as a possibility
distribution over 2S , since maxA⊆S κ#(A) = �. Applying the increasing trans-
formation χ that changes a maxmin form into a sum of products [9] yields :

Elsug
# (α) =

∑
A∈2S

χ(αA) · χ∗(κ#(A)) =
∑
A∈2S

χ(αA) ·m#(A), (24)

where χ(λm) = 1, χ(λ0) = 0, χ(λj) = K

K2m−j , j = 1,m− 1, and we set K = 2|S|

[4]. Function χ∗ is the normalization of χ in such a way that
∑

A∈2S χ∗(κ#(A)) =
1. Ranking tuples by Elsug

# (α) comes down to a Leximax(≥lmin) comparison
of (2n × 2) matrices with rows of the form (κ#(A), αA). Now, since χ(αA) =
χ(mini∈A αi) = mini∈A χ(αi), then Elsug

# (α) =
∑

A⊆S m#(A) ·mins∈A χ(αi) is
a Choquet integral w.r.t. the belief function κlcap refining κ. Elsug

# (α) refines
the original Sugeno integral and is the expression of a Choquet integral in terms
of the Moebius transform m# of the belief function κlcap:

Proposition 12. Elsug
# (α) =

∑m
j=1 κlcap(Aλj ) · (χ(λj)− χ(λj−1)).

This shows that any Sugeno integral can be refined by a Choquet integral w.r.t
a belief function. Contrary to the refinements based on the first expression of
Sugeno integral [4], the capacity κ is generally not preserved under the present
transformation. The resulting Choquet integral is generally more discriminant
than the original criterion. Two particular cases are interesting to consider:
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– If κ is a possibility measure Π , then Sugeno integral is the prioritized maxi-
mum, m# is a regular big-stepped probability function and Choquet integral
reduces to a regular weighted average. We retrieve the maximal refinement
WA+

χ(π) of the prioritized maximum proposed in [9].
– If κ is a necessity measure N , then Sugeno integral is the prioritized min-

imum, but Nlcap does not induce any further refinement. In this case, the
resulting Choquet integral is one with respect to a necessity measure. Only
the “max-min” framing of Sugeno integral has been turned into a “sum-
product” framing: the transformation preserves the nature of the original
capacity. This refinement of the prioritized minimum is not a weighted av-
erage, contrary to the one obtained in [9].

In order to recover the refinement of the weighted minimum by a weighted aver-
age, one must use the conjunctive form Sκ(α) = minA⊆S max(κ(Ac),maxi∈A αi)
of Sugeno integral [13]. Clearly, in this expression, κ can be replaced by its outer
qualitative Moebius transform κ#. Then compute

ν(Sκ(α)) = max
A⊆S

min(ν(κ#(Ac)),min
i∈A

ν(αi)) = max
A⊆S

min(ν(κ#(Ac)), ν(αA)).

Applying the increasing transformation χ that changes a maxmin form into
a sum of products, encoding its maximax(leximin) refinement, it yields:

E#
lsug(ν(α)) =

∑
A∈2S

χ(ν(αA)) ·χ∗(ν(κ#(Ac)) =
∑
A∈2S

m#(A) ·min
i∈A

χ(ν(αi)) (25)

Turning the expression upside down, and using the fact that, if f is a function
that takes values in the unit interval Chκ(f) = 1− Chκc(1− f), it yields

Ch(α) = 1− E#
lsug(ν(α)) =

∑
A∈2S

m#(A) ·max
i∈A

(1 − χ(ν(αi))). (26)

Note that φ(αi) = 1− χ(ν(αi)) is a numerical utility function that is increasing
with αi, and Ch(α) is a Choquet integral with respect to the plausibility function
with mass function m#.

6 Conclusion

This study lays bare two possible lines of refinements of a capacity κ and its
conjugate, using the outer and inner Moebius transforms. There is no unique
capacity refining both a prescribed capacity and its conjugate, except for spe-
cial cases like possibility measures. So one may get up to four refinements, two
obeying axiom BEL, and their conjugates obeying axiom PL. The next step to
this study is to iterate this refinement process so as to get refined capacities that
obey axiom BELPL.
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Abstract. In this paper, belief functions, defined on the lattice of par-
titions of a set of objects, are investigated as a suitable framework for
combining multiple clusterings. We first show how to represent clustering
results as masses of evidence allocated to partitions. Then a consensus
belief function is obtained using a suitable combination rule. Tools for
synthesizing the results are also proposed. The approach is illustrated
using two data sets.

1 Introduction

Ensemble clustering methods aim at combining multiple clustering solutions into
a single one, the consensus, to produce a more accurate clustering of the data. Sev-
eral studies have been published on this subject for many years (see, for example,
the special issue of the Journal of Classification devoted to the “Comparison and
Consensus of Classifications” published in 1986 [4]). The recent interest of the ma-
chine learning and artificial intelligence communities for ensemble techniques in
clustering can be explained by the success of such ensemble techniques in a super-
vised context. As recalled in [12,13], various ways of generating cluster ensembles
have been proposed. We may use different clustering algorithms or the same al-
gorithm while varying a characteristic of the method (starting values, number of
clusters,hyperparameter) [9].Wemay also resample the data set [8]. This approach
is called bagged clustering. Another well-known application of cluster ensembles is
calleddistributed clustering, which refers to the fact that clusterings are performed
using different (overlapping or disjoint) subsets of features [21,22,1]. A member of
the ensemble is called a clusterer. Once several partitions are available, they have
to be aggregated into a single one, providing a better description of the data than
individual partitions. A variety of strategies have been proposed to achieve this
goal: voting schemes [7], hypergraph partitioning [21], pairwise or co-occurrence
approach [9,11]. This last approach, which will be shown to have some connections
with what is proposed in this paper, is perhaps the simplest approach. The collec-
tion of partitions can be be mapped into a squared co-association matrix where
each cell (i, j) represents the fraction of times the pair of objects (xi, xj) has been
assigned to the same cluster. This matrix is then considered as a similarity ma-
trix which can be in turn clustered. A hierarchical clustering algorithm is the most
common algorithm used for this purpose.
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In this paper, we propose a new approach based on belief functions theory.
This theory has been already successfully applied to unsupervised learning prob-
lems [15,6,16,17]. In those methods, belief functions are defined on the set of
possible clusters, the focal elements being subsets of this frame of discernment.
The idea here is radically different. It consists in defining and manipulating belief
functions on the set of all partitions of the data set. Each clustering algorithm is
considered as a source providing an opinion about the unknown partition of the
objects. The information of the different sources are converted into masses of
evidence allocated to partitions. These masses can be combined and synthesized
using some generalizations of classical tools of the belief functions theory.

The rest of the paper is organized as follows. Section 2 gives necessary back-
grounds about partitions of a finite set and belief functions defined on the lattice
of partitions of a finite set. Section 3 describes how to generate the belief func-
tions, how to combine them and how to synthesize the results. The methodology
is illustrated using a simple example. The results of some experiments are shown
in Section 4. Finally, Section 5 concludes this paper.

2 Background

2.1 Partitions of a Finite Set

Let E denote a finite set of n objects. A partition p is a set of non empty subsets
E1,...,Ek of E such that:

1) the union of all elements of p, called clusters, is equal to E;
2) the elements of p are pairwise disjoint.

Every partition can be associated to an equivalence relation (i.e., a reflexive,
symmetric, and transitive binary relation), on E, denoted by Rp, and character-
ized, ∀x, y ∈ E, by:

Rp(x, y) =
{

1 if x and y belong to the same cluster in p
0 otherwise.

Example. Let E = {1, 2, 3, 4, 5}. A partition p of E, composed of two clusters,
the clusters of which are {1, 2, 3} and {4, 5} will be denoted as p = (123/45).
The associated equivalence relation is:

Rp =

⎛⎜⎜⎜⎜⎝
1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1

⎞⎟⎟⎟⎟⎠ .

The set of all partitions of E, denoted by P(E), can be partially ordered using
the following ordering relation: a partition p is said to be finer than a partition
p′ on the same set E (or, equivalently p′ is coarser than p) if the clusters of p
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can be obtained by splitting those of p′ (or equivalently, if each cluster of p′ is
the union of some clusters of p). In, this case, we write:

p � p′.

Note that this ordering can be alternatively defined using the equivalence rela-
tions associated to p and p′:

p � p′ ⇔ Rp(x, y) ≤ Rp′(x, y) ∀(x, y) ∈ E2.

The finest partition in the order (P(E),�), denoted p0 = (1/2/.../n), is the
partition where each object is a cluster. The coarsest partition is pE = (123..n),
where all objects are put in the same cluster. Each partition precedes in this
order every partition derived from it by aggregating two of its clusters. Similarly,
each partition succeeds (covers) all partitions derived by subdividing one of its
clusters in two clusters. The atoms of (P(E),�) are the partitions preceded by
p0. There are n(n−1)/2 such partitions, each one having (n−1) clusters with one
and only one cluster composed of two objects. Atoms are associated to matrices
Rp with only one off-diagonal entry equal to 1.

2.2 Lattice of the Partitions of a Finite Set

The set P(E) endowed with the �-order has a lattice structure [18]. Meet (∧)
and join (∨) operations can be defined as follows. The partition p ∧ p′, called
the infimum of p and p′, is defined as the coarsest partition among all partitions
finer than p and p′. The clusters of p ∧ p′ are obtained by considering pairwise
intersections between clusters of p and p′. The equivalence relation Rp∧p′ is
simply obtained by taking the minimum of Rp and Rp′ . The partition p ∨ p′,
called the supremum of p and p′, is similarly defined as the finest partition among
the ones that are coarser than p and p′. The equivalence relation Rp∨p′ is given
by the transitive closure of the maximum of Rp and Rp′ .

2.3 Belief Functions on the Lattice of Partitions

Belief functions [19,20] are most of the time defined on the Boolean lattice of
subsets of a finite set. However, following the first investigations of Barthélemy
[2], Grabisch [10] has shown that it is possible to extend these notions to the
case where the underlying structure is no more the Boolean lattice of sub-
sets, but any lattice. In particular, considering the lattice of partitions, some of
the classical constructions and definitions of belief functions (mass assignment,
mass combination, commonalities,...) remain valid, up to some adaptations. Let
L = (P(E),�) denote a lattice of partitions endowed with the meet and join
operations defined in section 2.2. A basic belief assignment (bba) is defined as a
mass function m from L to [0;1] verifying:∑

p∈L
m(p) = 1. (1)
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A bba m is said to be normal if m(p0) = 0. In the rest of this paper, only
normal mass functions will be considered. Each partition p that receives a mass
m(p) > 0 is called a focal element of m. A bba m is said to be categorical is there
is a unique focal element p with m(p) = 1. A bba m is said to be of simple support
if there exists p ∈ L and w ∈ [0; 1] such that m(p) = 1 − w and m(pE) = w,
all other masses being zero. The bba m can be equivalently represented by a
credibility function bel, and a commonality function q defined, respectively, by:

bel(p) 	
∑
p′�p

m(p′), (2)

q(p) 	
∑
p�p′

m(p′), (3)

∀p ∈ L. When the reliability of a source (e.g., a clustering algorithm) is doubtful,
the mass provided by this source can be discounted using the following operation
(discounting process):{

mα(p) = (1− α)m(p) ∀p 
= pE ∈ L,
mα(pE) = (1− α)m(pE) + α,

(4)

where 0 ≤ α ≤ 1 is the discount rate. This discount rate is related to the
confidence held by an external agent in the reliability of the source.

Two bbas m1 and m2 induced by distinct items of evidence on L can be
combined using the normalized Dempster’s rule of combination. The resulting
mass function m1 ⊕m2 will be defined by:

(m1 ⊕m2)(p) 	 1
1−K

∑
p′∧p′′=p

m1(p′)m2(p′′) ∀p ∈ L, p 
= p0 (5)

with
K =

∑
p′∧p′′=p0

m1(p′)m2(p′′). (6)

Alternatively, one may use the average of m1 and m2 defined by:

(mav)(p) 	 1
2

(m1(p) + m2(p)) ∀p ∈ L. (7)

3 Ensemble Clustering

3.1 General Approach

Belief functions, as defined in the previous section, offer a general framework
for combining and synthesizing the results of several clustering algorithms. We
propose to use the following strategy for ensemble clustering:

1) Mass generation: Given r clusterers, build a collection of r bbas m1,m2,...,mr;
2) Aggregation: Combine the r bbas into a single one using an appropriate

combination rule;
3) Synthesis: Provide a summary of the results.
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Mass generation. This step depends on the clustering algorithm used to build
the ensemble. The simplest situation is encountered when a clusterer produces a
single partition p of the data set. To account for the uncertainty of the clustering
process, this categorical opinion can be transformed into a simple support mass
function using the discounting operation (4). We propose to relate the discount-
ing factor of the source to a cluster validity index, measuring the quality of the
partition. Various cluster validity indices can be used for this purpose (see, for
instance, [23] for a review of fuzzy cluster validity). In the experiments reported
in Section 4, we have used the fuzzy c-means algorithm (converting the fuzzy
partition into a hard one) and a partition entropy to define the discounting fac-
tor as follows. Let μjk denote the fuzzy membership degree assigned to the jth
object and the kth cluster and c denote the number of clusters (note that c may
vary from a clusterer to another). The normalized partition entropy is a value
0 ≤ h ≤ 1 defined by:

h =
1

n log(c)

n∑
j=1

c∑
k=1

μjk log(μjk). (8)

This quantity is maximal (equal to 1) when the quality of the partition is poor,
i.e., when all membership values are equal to 1/c. This value can be used as a
discounting factor of the clusterer. This strategy leads to the generation of a bba
m, with two focal elements, defined by:{

m(p) = 1− h,
m(pE) = h.

(9)

Suppose now that a clusterer expresses its opinion by a hierarchical clustering
[14]. This kind of algorithm produces a sequence of nested partitions, p0 � ... �
pE . At each intermediate stage, the method joins together the two closest clus-
ters. In the single linkage approach, the distance between clusters is defined as
the distance between the closest pair of objects. The result of this algorithm is
commonly displayed as a dendrogram (or classification tree) such as represented
in Figure 1. The aggregation levels, used for the representation of the dendro-
gram, are usually equal to the distances computed when merging two clusters.
Note that aggregation levels may be normalized so that the first level is 0 and
the last level is 1. This normalization will be assumed in the sequel. Cutting
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Fig. 1. Example of a small dendrogram (left) and associated nested partitions (right)
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the tree at different levels of the hierarchy gives a sequence of nested partitions
{p0, p1, p2, ..., pK} (a chain in the lattice of the partitions) associated to levels
{0, i1, i2, ..., iK} with pK = pE and iK = 1. The masses associated to the differ-
ent partitions can be computed from the levels of the hierarchy as follows. The
size of a step between two consecutive levels of the hierarchy in the dendrogram
is often considered as an indication on the appropriate number of clusters and on
the height at which the dendrogram should be cut. So, we propose the following
mass allocation: {

m(pE) = 0
m(pk) = ik+1 − ik k = 0, . . . ,K − 1.

(10)

For example, cutting the dendrogram of Fig. 1 at different levels produces the bba
given in Table 1. It can be seen that the highest mass is allocated to the partition
that seems the most natural with respect to the shape of the dendrogram.

Table 1. Bba derived from the dendrogram of Fig. 1.

k pk ik m(pk)
0 p0 = (1/2/3/4/5) 0 0.2
1 p1 = (12/345) 0.2 0.1
2 p2 = (12/34/5) 0.3 0.1
3 p3 = (1234/5) 0.4 0.6
4 p4 = (12345) 1 0

Note that many other clustering methods can be described in the same frame-
work. For instance, fuzzy equivalence relations, used for cluster analysis [3], are
naturally represented by consonant belief functions on the lattice of partitions.

Combination and synthesis. Once r bbas are available, they can be aggregated
into a single one using one of the combination rules recalled in Section 2.3. The
interpretation of the results is a more difficult problem, since, depending on the
number of clusterers in the ensemble, on their nature anf the conflict between
them, and on the combination rule, a potentially high number of focal elements
may be found. If the number of focal elements in the combined bba is too high
to be explored, a first way to proceed is to select only the partitions associated
with the highest masses or use a simplification algorithm such as described in
[5]. We propose another approach which consists in building a matrix Q = (qij)
whose elements are the commonalities associated to each atom of the lattice
of partitions. This approach amounts computing, for each pair of object (i, j),
a new similarity measure qij by accumulating the masses which support the
association between i and j:

qij =
∑
p

m(p)Rp(i, j). (11)
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Matrix Q can be in turn clustered using, for instance, a hierarchical clustering
algorithm. If a partition is needed, the classification tree can be cut at a specified
level or so as to insure a user-defined number of clusters. Note that the co-
association method proposed in [9] is recovered as a special case of our approach
if the consensus has been obtained by averaging the masses of the individual
clusterers.

3.2 Toy Example

Let E = {1, 2, 3, 4, 5} be a set composed of 5 objects. We assume that two
clustering algorithms have produced partitions p1 = (123/45) and p2 = (12/345).
As it can be seen, the partitions disagree on the third element which is clustered
with {1, 2} in p1 and {4, 5} in p2. As proposed in Section 3.1, we construct two
simple mass functions by discounting each clusterer i by a factor αi. In a first
situation, we consider that we have an equal confidence in the two clusterers, so
we fix α1 = α2 = 0.1. We have:

m1(p1) = m2(p2) = 0.9 m1(pE) = m2(pE) = 0.1,

with pE = (12345). Applying Dempster’s rule of combination (5)-(6) leads to
the following combined bba m = m1 ∩©m2:

Focal elements mass m bel
p1 ∧ p2 = (12/3/45) 0.81 0.81
p1 = (123/45) 0.09 0.90
p2 = (12/345) 0.09 0.90
pE = (12345) 0.01 1

Suppose now that the confidence is less in the second clusterer than in the first
one. We fix α1 = 0.1 and α2 = 0.2. In that case, we obtain a bba m′ characterized
by:

Focal elements mass m′ bel’
p1 ∧ p2 = (12/3/45) 0.72 0.72
p1 = (123/45) 0.18 0.90
p2 = (12/345) 0.08 0.80
pE = (12345) 0.02 1

The commonalities of the atoms of the lattice are given for the two situations
by the following matrices:

Q =

⎛⎜⎜⎜⎜⎝
1 1 0.1 0.01 0.01
1 1 0.1 0.01 0.01

0.1 0.1 1 0.1 0.1
0.01 0.01 0.1 1 1
0.01 0.01 0.1 1 1

⎞⎟⎟⎟⎟⎠ Q′ =

⎛⎜⎜⎜⎜⎝
1 1 0.2 0.02 0.02
1 1 0.2 0.02 0.02

0.2 0.2 1 0.1 0.1
0.02 0.02 0.1 1 1
0.02 0.02 0.1 1 1

⎞⎟⎟⎟⎟⎠
Applying the single linkage algorithm to these two matrices gives the hier-

archical clusterings represented in Figure 2. The dendrogram may be seen as a
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good synthesis of the information (consensual and conflicting) provided by the
clusterers. On the left, we can see that no cut is able to recover a partition in
which object 3 is associated to the other objects (except in the root of the tree).
On the right, cutting the tree at a level greater than 0.8, allows us to recover the
partition given by m1, reflecting the fact that a greater confidence is allocated
to this source.

4 5 1 2 3
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0.4
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0.8

4 5 3 1 2
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0.2

0.4

0.6

0.8

Fig. 2. Dendrograms computed from Q (left) and Q′ (right) for the toy example

4 Two Examples

4.1 Distributed Clustering

In a distributed computing environment, the data set is spread into a number of
different sites. In that case, each clusterer has access to a limited number of fea-
tures and the distributed computing entities share only higher level information
describing the structure of the data such as cluster labels. The problem is to find
a clustering compatible with what could be found if the whole set of features
was considered. To illustrate this point, we used a dataset named 8D5K found
in [21]. This dataset is composed of five Gaussian clusters in dimension 8. Out of
the 1000 points of the original data set, we retain only 200 points (40 points per
cluster). We created five 2D views of the data by selecting five pairs of features.
We applied the fuzzy c-means algorithm in each view (each one with c = 5) to
obtain five hard partitions computed from the fuzzy partitions. These partitions
are represented in Figure 3. The left row shows the partitions in the 2D views,
and the right row shows the same partitions projected onto the first two princi-
pal components of the data. An ensemble of five mass functions was constructed
using the approach proposed in Section 3.1: each clusterer, discounted according
the entropy of partition (8), was represented by a mass function with two focal
elements. A “consensus” clustering was obtained by applying Dempster’s rule
of combination, computing the matrix Q and the associated tree using single
linkage, and cutting the tree to obtain five clusters. The consensus clustering is
presented in Figure 3. It may be seen that a very good clustering is obtained,
although some of the partitions provided by the clusterers were poor in the space
described by the eight features.

4.2 Non Elliptical Clusters

This section is intended to show that the proposed approach is able to detect
clusters with complex shapes. The half-ring data set is inspired from [9]. It
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Fig. 3. 8D5K data set [21]. The ensemble is composed of five individual clustering
solutions obtained from five 2D views of the data. The left row shows the partition
obtained in each two-dimensional features space and the right row shows the corre-
sponding partition in the plane spanned by the two first principal components.
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consists of two clusters of 100 points each in a two-dimensional space. To build
the ensemble, we use the fuzzy c-means algorithm with a varying number of
clusters (3 to 7). The hard partitions are represented in Figure 4.

As in the previous example, each partition was discounted using the entropy
of partition and five mass functions with two focal elements each were combined
using Dempster’s rule of combination. A tree was computed from the common-
ality matrix using the single linkage algorithm and a partition in two clusters
was derived from the tree. This partition is also represented in Figure 4. We can
see that the natural structure of the data is perfectly recovered.
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Fig. 4. Half-rings data set. Figures (a) to (e) show the individual clusterings in the 2D
views; the last figure shows the consensual clustering.

5 Conclusion

We have proposed in this paper a new approach for aggregating multiple cluster-
ings. This approach is based on the use of belief functions defined on the lattice
of partitions of the set of objects to be clustered. In this framework, it possible
to assign masses of evidence to partitions. We have shown that a wide variety
of clusterers can be naturally represented in this framework and that combina-
tion tools can provide a “consensual ” description of the data. The preliminary
experiments on several data sets have shown the usefulness of the method. A
drawback of the conjonctive combination, especially when the conflict between
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the clusterers is important, is to potentially generate a large number of focal
elements. A similar problem was already encountered in [15]. Future work will
investigate how to simplify the result by merging similar or unimportant focal
elements using a procedure similar to the one proposed in [5].
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Abstract. A random set can be regarded as the result of the imprecise
observation of a random variable. Following this interpretation, we study
to which extent the upper and lower probabilities induced by the random
set keep all the information about the values of the probability distri-
bution of the random variable. We link this problem to the existence of
selectors of a multi-valued mapping and with the inner approximations
of the upper probability, and prove that under fairly general conditions
(although not in all cases), the upper and lower probabilities are an ade-
quate tool for modelling the available information. Finally, we study the
particular case of consonant random sets and we also derive a relation-
ship between Aumann and Choquet integrals.

Keywords: Random sets, Dempster-Shafer upper and lower probabili-
ties, measurable selections, reducible σ-fields, Aumann integral, Choquet
integral.

1 Introduction

Random sets, or multi-valued mappings, have been used by several authors in
the context of imprecise (or incomplete) information. In this paper, we follow
the interpretation given to them by Kruse and Meyer [21] and we regard them
as the imprecise observation of a measurable mapping.

Dempster [9] summarised the probabilistic information of the random set by
means of the upper and lower probabilities, which constitute a generalisation to
a context of imprecise information of the concept of probability induced by a
random variable. The upper and lower probabilities of a random set are plausi-
bility and belief functions in the context of evidence theory [29], and capacities
of infinite order under Choquet’s terminology [5]. This type of set functions have
been thoroughly studied in the literature [6,27], not only in the context of multi-
valued mappings [10,12,14,29], as a powerful alternative to probability measures
that is able to deal with uncertain, or vague, knowledge. Nevertheless, under
Kruse and Meyer’s interpretation, the most precise piece of information that the
random set gives about the measurable mapping imprecisely observed is the set
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of the probability distributions of the measurable selections. The relationship
between this set and Dempster-Shafer upper and lower probabilities has already
been studied by some authors (see for instance [4,15,16]). In this paper we study
some additional aspects of this relationship. Let us introduce first some concepts
and notation.

Consider a probability space (Ω,A, P ), a measurable space (X,A′), and a
measurable mapping U0 : Ω → X . We will refer to U0 as the original random
variable. There may be some imprecision in the observation of the values of
U0. Following Kruse and Meyer ([21]), a possible model for this situation is
to consider a multi-valued mapping Γ : Ω → P(X), in the sense that for all
ω ∈ Ω we are certain that U0(ω) belongs to the set Γ (ω). As a consequence, we
shall assume throughout that Γ (ω) is non-empty for all ω. We will say that the
multi-valued mapping is closed (resp., compact, open, complete) when Γ (ω) is
a closed (resp., compact, open, complete) subset of X for all ω ∈ Ω.

Let us define

S(Γ ) := {U : Ω → X | U measurable, U(ω) ∈ Γ (ω) ∀ω}. (1)

This is the class of the measurable selections of Γ . Taking into account our
interpretation of Γ , all we know about U0 is that it is one of the elements of
S(Γ ). Concerning the probability distribution of U0, it will belong to

P(Γ ) = {PU | U ∈ S(Γ )}, (2)

the class of the probability distributions induced by the measurable selections
on A′. In particular, the probability that the value of U0 belongs to an event
A ∈ A′, i.e. PU0(A), is an element of P(Γ )(A) := {PU (A) | U ∈ S(Γ )}.

Hence, the interpretation of a multi-valued mapping as a model for the im-
precise observation of a random variable provides us with a Bayesian sensitivity
analysis model for the probability distribution of this variable: the set of prob-
ability distributions P(Γ ). There is, however, another set of probabilities that
shall also be interesting for our purposes. It is based on the notions of upper and
lower probabilities induced by multi-valued mapping.

Definition 1. [9,27] Let (Ω,A, P ) be a probability space, (X,A′) a measurable
space and Γ : Ω → P(X) a multi-valued mapping. Given A ∈ A′, its upper
inverse by Γ is Γ ∗(A) := {ω | Γ (ω)∩A 
= ∅}, and its lower inverse, Γ∗(A) :=
{ω | Γ (ω) ⊆ A}.

Following Nguyen [27], a multi-valued mapping is said to be strongly mea-
surable when Γ ∗(A) ∈ A for all A ∈ A′. In that case, we will refer to Γ as
random set. Taking into account the relationship Γ∗(A) = (Γ ∗(Ac))c, valid for
all A ∈ A′, a random set satisfies Γ∗(A) ∈ A for all A ∈ A′. We will use the
shorter notation A∗ = Γ ∗(A) and A∗ = Γ∗(A) when no confusion arises. Al-
though there are other measurability conditions for multi-valued mappings (see
for instance [17]), we shall only consider in this paper the strong measurability;
this condition is necessary if we want to define the upper and lower probabilities
of the random set on A′, as we see next.
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Definition 2. [9] Let (Ω,A, P ) be a probability space, (X,A′) a measurable
space and Γ : Ω → P(X) a non-empty random set. The upper probability
induced by Γ on A′ is defined as P ∗(A) = P (A∗) ∀A ∈ A′, and the lower
probability is given by P∗(A) = P (A∗) ∀A ∈ A′.

The upper probability of a random set is ∞-alternating and lower continuous,
and the lower probability is ∞-monotone and upper continuous [27]. They are
moreover conjugate functions, meaning that P ∗(A) = 1−P∗(Ac) ∀A ∈ A′. If the
final space is finite, they are a plausibility and a belief function, respectively. We
shall sometimes use the notation P ∗Γ := P ∗ and P∗Γ := P∗, if there is ambiguity
about the random set inducing the upper and lower probabilities. It is easy to
see that A∗ ⊆ U−1(A) ⊆ A∗ for every A ∈ A′ and every U ∈ S(Γ ). This implies
that the class P(Γ ) defined in Eq. (2) is included in

M(P ∗) = {Q : A′ → [0, 1] probability s.t. Q(A) ≤ P ∗(A) ∀A}, (3)

which is called the core of P ∗.
The upper probability of a random set generalises the concept of probability

distribution of a random variable, and is sometimes used as a model of the
probabilistic information of the random set. In this paper, we shall investigate if
it is appropriate to do so when Γ has the interpretation considered by Kruse and
Meyer. Specifically, we are going to study under which conditions we can use the
upper probability to represent the information about the probability that our
original random variable takes values in some arbitrary set A ∈ A′. That is, we
shall investigate under which conditions the equality P(Γ )(A) = [P∗(A), P ∗(A)]
holds. This is important because, as we shall show, when these two sets are not
equal the use of the upper and the lower probability could carry some serious
loss of information.

The study of the equality P(Γ )(A) = [P∗(A), P ∗(A)] can be split into two
different subproblems: on the one hand, we need to study the convexity of the
set P(Γ )(A); and on the other, we need to determine whether the supremum
and infimum values of this set coincide with the upper and lower probabilities
of A, respectively. Because of the duality existing between P ∗ and P∗, it suffices
to study one of the two equalities.

Although this problem has already been studied by some authors ([2,15,16]),
this has always been done as a support for other mathematical considerations,
and hence the sufficient conditions established for the equalities P ∗(A) =
supP(Γ )(A) and P∗(A) = inf P(Γ )(A) assume some hypotheses on the ran-
dom set that are not really necessary for the equalities to hold. We shall see
nevertheless that the problem is not trivial, and we shall improve the estab-
lished results. As far as we know, the most important result on this subject is
the following:

Theorem 1. [7, Prop. 3] Let (Ω,A, P ) be a probability space, (X, τ) a Pol-
ish space and let Γ : Ω → P(X) be a compact random set. Then, P ∗(A) =
supP(Γ )(A) for every A in βX , the Borel σ-field associated to τ .
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Recall here that a Polish space is a separable and completely metrizable topo-
logical space. We shall also use later Souslin spaces, which are the images of
Polish spaces by continuous mappings.

We shall study the equality P(Γ )(A) = [P∗(A), P ∗(A)] in detail in our next
section. First, we will investigate under which conditions P ∗(A) and P∗(A) are,
respectively, the supremum and infimum values of P(Γ )(A). For this, we shall
use some results on the existence of measurable selections and the inner ap-
proximations of the upper probability. Secondly, we will study the convexity of
P(Γ )(A). Finally, in Section 3 we shall show some of the consequences of our
results. Due to limitations of space, all proofs have been omitted.

2 [P∗(A), P ∗(A)] as a Model of PU0(A)

2.1 Study of the Equality P ∗(A) = sup P(Γ )(A)

Let us study first if the upper and lower probabilities of an event A are the most
precise bounds of PU0(A) that we can give, taking into account the information
given by Γ . As we shall show in the following example, this is not always the
case: in fact, it may happen that [P∗(A), P ∗(A)] = [0, 1] while P(Γ )(A) = {0}.
In such an extreme case, the set of the distributions of the measurable selections
would provide precise information, while the upper and lower probabilities would
give no information at all. The example we give is based on [18, Example 5]; the
differences are that Himmelberg et al. consider a weaker notion of measurability
and give an example of a multi-valued mapping which is measurable in that
sense and for which S(Γ ) = ∅.

Example 1. Let P be an absolutely continuous probability measure on (R, βR),
and let PN denote the product of countably many copies of P . Consider Ω :=
{F ⊆ R countable} and A := σ({FA | A ∈ βR}), with FA := {F ∈ Ω |
F ∩ A 
= ∅}. Let us define the mapping g : RN → Ω by g(z) = {x ∈ R | x =
zn for some n}. Then, g−1(FA) =

⋃
n

(∏n−1
i=1 R×A×

∏
i>n R

)
∈ βRN , so g is a

measurable mapping. Let us denote by Q the probability measure it induces on
A. Consider now the multi-valued mapping

Γ : Ω → P(R)
F ↪→ F ∪ {0}

– Take A ∈ βR. Then, Γ ∗(A) = Ω if 0 ∈ A, and Γ ∗(A) = FA otherwise. Hence,
Γ is strongly measurable.

– Given B = R \ {0}, Γ ∗(B) = FB, whence P ∗(B) = Q(FB) = PN(g−1(FB))
= PN(∪n(

∏n−1
i=1 R× B ×

∏
i>n R)) = 1 − PN({0, 0, 0, . . .}) = 1, taking into

account that PN is the product of an infinite number of copies of a continuous
probability measure.

– Now, if U ∈ S(Γ ) satisfies PU (B) > 0, U is also a measurable selection of the
multi-valued mapping Γ1 : Ω → P(R) given by Γ1(F ) = F if F ∈ U−1(B),
Γ1(F ) = F ∪{0} otherwise. However, reasoning as in [18, Example 5], it can
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be checked that Γ1 does not have measurable selections. As a consequence,
P(Γ ) = {δ0}.

Hence, P(Γ )(B) = {0} and [P∗(B), P ∗(B)] = [0, 1]. 


This example shows that the use of the upper and lower probabilities may carry
some serious loss of information: for instance, if the continuous probability P
considered in the example satisfies P ([0, 1]) = 1, and we use P ∗, P∗ to model the
expectation of the original random variable, we would obtain the interval [0, 1]
as the set of possible expectations; however, we know, because P(Γ ) = {δ0},
that the expectation of the original random variable is 0.

Hence, it is necessary to consider some additional hypotheses in the random
set to guarantee that the upper probability of a set A, P ∗(A), is the supremum
of the set P(Γ )(A) of its probabilities provided by the measurable selections.
Our next result shows that the supremum of P(Γ )(A) is indeed a maximum:

Proposition 1. Let (Ω,A, P ) be a probability space, (X,A′) be a measurable
space and let Γ : Ω → P(X) be a random set. Then, P(Γ )(A) has a maximum
and a minimum value for every A ∈ A′.

Let us now define

HΓ := {A ∈ A′ | P ∗(A) = maxP(Γ )(A)}. (4)

We can then rephrase our goal in this section by stating that we are interested
in providing conditions for the equality between HΓ and A′. To see that they
do not coincide in general, check that HΓ := {B ∈ βR : P (B) = 0 or 0 ∈ B} in
Example 1. It is also easy to modify the example in order to obtain a random
set without measurable selections. In that case the class HΓ would be empty.

In the following proposition, we state that a set A ∈ A′ belongs to the class
HΓ given by Eq.(4) if and only if a random set that we can derive from Γ has
measurable selections. The proof follows by taking into account that a measur-
able set A belongs to HΓ if and only if there is a measurable selection of Γ
taking values in A whenever possible (up to a set of zero probability).

Proposition 2. Let (Ω,A, P ) be a probability space, (X,A′) a measurable space
and let Γ : Ω → P(X) be a random set.

A ∈ HΓ ⇔ ∃H ∈ A, P (H) = 0, s.t. S(ΓA,H) 
= ∅,

where ΓA,H(ω) =

{
Γ (ω) ∩A if ω ∈ A∗ \H
Γ (ω) otherwise.

In the sequel, we shall denote ΓA := ΓA,∅ = (Γ ∩A)IA∗ ⊕ ΓI(A∗)c .
Proposition 2 shall be useful later on when studying which sets belong to

HΓ , because the existence of measurable selections of a random set is one of
the most important problems in this framework, and there are therefore many
results that may be applicable together with this proposition; see the survey on
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the existence of measurable selections by Wagner [30]. Together with some of
the results in [30], we shall prove and use another sufficient condition for the
existence of measurable selections. For this, we must introduce the notion of
reducible σ-field.

Definition 3. Consider a measurable space (X,A′). Given x ∈ X, we define
the minimal measurable set generated by x as [x] :=

⋂
{A ∈ A′ | x ∈ A}.

The σ-field A′ is called reducible when [x] ∈ A′ for all x ∈ X, and (X,A′) is
called then a reducible measurable space.

We can easily see that most σ-fields in our context are reducible: for instance,
the Borel σ-field generated by a T1 topology (and hence also by a metric) is
reducible, because in that case we have [x] = {x} ∀x ∈ X . To see that the
notion is not trivial, we give next an example of a non-reducible σ-field:

Example 2. Let ≤ be a well-order on the set of real numbers (existing by Zer-
melo’s theorem), and let P<

x := {y ∈ R | y < x} and P≤x := {y ∈ R | y ≤ x}
denote the sets of strict predecessors and predecessors of x under ≤, respectively.
Let us also define the notation P≥x := (P<

x )c.
There is x0 ∈ R such that P<

x0
uncountable and such that P<

x is countable for
every x < x0: it suffices to take the set of points with an uncountable number
of predecessors, and select its first element, existing because ≤ is a well-order.
Consider X := P≤x0

, and let us define B := {∅, A ⊆ P<
x0

countable} ∪ {P≥x ∪A |
A ⊆ P<

x , x ∈ P<
x0
}.

– Given a countable set A ⊆ P<
x0

, supA always exists, because ≤ is a well-
order, and it belongs to P<

x0
. Taking this into account, we can deduce that

B is closed under complementation. Since it is immediate that it is closed
under countable unions and that ∅, X belong to B, we deduce that B is a
σ-field.

– Note now that x0 does not have previous element under the order ≤: other-
wise, we contradict the uncountability of P<

x0
. Hence, the minimal measur-

able set generated by x0 is [x0] = ∩x<x0P≥x = {x0}. This set does not belong
to B and as a consequence this σ-field is not reducible. 


We have already mentioned that a random set may not possess measurable
selections, and that we need to make some requirements in order to guarantee
that the set S(Γ ) given by Eq. (1) is non-empty. The existing results usually
make some assumptions on the images of the random set and on the structure of
the final σ-field. In our next result, we give a sufficient condition for the existence
of measurable selections where the only thing we require in A′ is its reducibility,
and apply this condition to prove that countable sets belong to HΓ :

Proposition 3. Let (Ω,A, P ) be a probability space, (X,A′) a reducible mea-
surable space, and let Γ : Ω → P(X) be a random set.

1. If there is some countable {xn}n ⊆ X s.t. ∪nΓ ∗([xn]) = Ω, then S(Γ ) 
= ∅.
2. If S(Γ ) 
= ∅, then for any countable subset {xn}n of X, ∪n[xn] ∈ HΓ .
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We turn now to another property of random sets that shall be useful in our
quest for sufficient conditions for the equality between P(Γ )(A) and the interval
[P∗(A), P ∗(A)]: the existence of inner approximations of P ∗. We shall investigate
under which conditions there is some subclass A′1 of A′ such that P ∗ is the inner
set function of its restriction to A′1. The interest of this problem for our purposes
lies in the following proposition:

Proposition 4. Let (Ω,A, P ) be a probability space, (X,A′) a measurable space
and let Γ : Ω → P(X) be a random set. If B ∈ A′ satisfies P ∗(B) = supn P ∗(An)
for some increasing sequence {An}n ⊆ HΓ of subsets of B, then B ∈ HΓ .

We deduce that if P ∗ satisfies

P ∗(A) = sup
B⊆A,B∈HΓ

P ∗(B) ∀A ∈ A′, (5)

it also satisfies P ∗(A) = maxP(Γ )(A) for every A ∈ A′ (i.e., HΓ is actually
equal to A′). This will be helpful for our purposes because in some cases it will
be easier to prove the equality P ∗(A) = maxP(Γ )(A) for some specific types of
sets, such as closed or compact sets, and to show then that the upper probability
can be approximated from below using these sets. In particular, Proposition 4
and the lower continuity of P ∗ implies that HΓ is closed under countable unions.

In the language of measure theory, Eq. (5) means that P ∗ is the inner set
function of its restriction to HΓ , or that it is inner regular with respect to HΓ .
There are some results about the inner regularity of upper probabilities in the
literature (see [4,22]). In this respect, we have proven the following:

Lemma 1. Let (Ω,A, P ) be a probability space, (X, τ) a Polish space and con-
sider a closed random set Γ : Ω → P(X). For every A ∈ βX , P ∗(A) =
supK⊆A compact P

∗(K).

This lemma generalises a result in [22, Section 2.1]. Let us establish now sufficient
conditions for the equality between HΓ and A′.

Theorem 2. Let (Ω,A, P ) be a probability space, (X,A′) a measurable space
and Γ : Ω → P(X), a random set. Under any of the following conditions:

1. Ω is complete, X is Souslin and Gr(Γ ) ∈ A⊗ βX
2. X is a separable metric space and Γ is compact
3. X is a Polish space and Γ is closed
4. X is a σ-compact metric space and Γ is closed
5. X is a separable metric space and Γ is open
6. A′ is reducible and CΓ := {Γ ∗(B) : B ∈ A′} is countable
7. A′ is reducible and Γ has a countable range,

P ∗(A) = maxP(Γ )(A) and P∗(A) = minP(Γ )(A) ∀A ∈ A′.

The second and third points of Theorem 2 generalise Theorem 1. Moreover, this
theorem also generalises the results mentioned in the proofs of [2, Proposition
2.7] and [15, Theorem 1].
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This result shows that the upper and lower probabilities of a random set
provide, under fairly general conditions, the tightest available bounds for the
probabilities induced by the original random variable. They are hence an ade-
quate tool under the interpretation of Kruse and Meyer. Note that in particular
the bounds are attained for finite random sets, i.e., those where X is a finite
space and A′ = P(X). These random sets have been studied in detail in [23].

In our last proposition in this section, we provide a sufficient condition for the
equality P ∗(A) = maxP(Γ )(A) to hold for every set A in a field that is included
in the σ-field A′. This property shall be useful in Section 3.3, when we relate the
probability distributions in P(Γ ) and M(P ∗). Recall that a complete random
set is one whose images are complete subsets of the final space, i.e., subsets for
which any Cauchy sequence has a limit within the set.

Theorem 3. Let (Ω,A, P ) be a probability space, (X, d) a separable metric
space, let Γ : Ω → P(X) be a complete random set. For every A in Q(τ(d)),
the field generated by the open balls, P ∗(A) = maxP(Γ )(A) and P∗(A) =
minP(Γ )(A).

It is an open problem at this stage whether, for this type of random sets, HΓ

coincides with A′. An affirmative answer to this question would generalise the
second and third points from Theorem 2. One possible approach would be to
study whether HΓ is closed under countable intersections: in that caseHΓ would
include the monotone class generated by the field Q(τ(d)), which is the Borel
σ-field βX .

2.2 Convexity of P(Γ )(A)

As we mentioned in the introduction, the study of the equality between P(Γ )(A)
and [P∗(A), P ∗(A)] can be split into two different subproblems: the equality
between P ∗(A), P∗(A) and the maximum and minimum values of P(Γ )(A) and
the convexity of this last set. We focus our attention now on this second problem.
We introduce first the following definition:

Definition 4. [3] Let (Ω,A, P ) be a probability space. We say that a set B ∈ A
is not an atom when for every ε ∈ (0, 1) there is some measurable Bε 	 B such
that P (Bε) = εP (B).

Proposition 5. Let (Ω,A, P ) be a probability space, (X,A′) be a measurable
space and let Γ : Ω → P(X) be a random set. Let U1, U2 ∈ S(Γ ) satisfy
PU1(A) = maxP(Γ )(A), PU2 (A) = minP(Γ )(A). Then P(Γ )(A) is convex ⇔
U−1

1 (A) \ U−1
2 (A) is not an atom.

We deduce that whenever the equalities P ∗(A) = maxP(Γ )(A) and P∗(A) =
minP(Γ )(A) hold, P(Γ )(A) = [P∗(A), P ∗(A)] if and only if A∗ \ A∗ is not an
atom of the initial probability space. This immediately implies the following:

Corollary 1. Under any of the conditions listed in Theorem 2,

[P∗(A), P ∗(A)] = P(Γ )(A) ∀A ∈ A′ ⇔ ∀A ∈ A′, A∗ \A∗ is not an atom of A.
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The right-hand side of this equivalence holds trivially whenever the initial prob-
ability space is non-atomic; however, as we show in [23, Remark 1], there are
examples of random sets defined on a purely atomic probability space where
[P∗(A), P ∗(A)] = P(Γ )(A) ∀A ∈ A′.

3 Some Implications of the Previous Results

3.1 Consonant Random Sets

One particular type of random sets which is of interest in practice are the con-
sonant random sets, which are those whose images are nested. They have been
studied in connection with possibility and maxitive measures in a number of
works ([8,11,13,24]). Since a possibility measure is usually defined on all subsets
of its possibility space, we are going to assume in this section that the final
σ-field is P(X), which is in particular reducible.

In this paper we are going to consider the following notion of consonant ran-
dom sets. Other possibilities can be found in [24].

Definition 5. A random set Γ : Ω → P(X) is called consonant when the
following two conditions hold:

– For every ω1, ω2 ∈ Ω, either Γ (ω1) ⊆ Γ (ω2) or Γ (ω2) ⊆ Γ (ω1).
– Every A ⊆ Ω has a countable subset B for which ∩ω∈AΓ (ω) = ∩ω∈BΓ (ω).

This definition is a generalisation of the so-called antitone[8] random sets, where
the initial probability space is ([0, 1], β[0,1], λ[0,1]) and where x ≤ y ⇒ Γ (x) ⊇
Γ (y).

Proposition 6. Let (Ω,A, P ) be a probability space, (X,P(X)) a measurable
space and Γ : Ω → P(X) a consonant random set. Then P ∗(A) = maxP(Γ )(A)
for all A ⊆ X.

The proof of this result follows by showing that if Γ is consonant the upper
probability P ∗ is the inner approximation of its restriction to countable sets. We
can deduce from this and [24, Propositions 2.4 and 5.2] that P ∗ is a possibility
measure.

An open problem at this point is whether we can generalise Proposition 6 to
weaker notions of consonancy for random sets, such as those considered in [24].

3.2 Relationship between the Aumann and the Choquet Integral

Our results allow us also to relate the Choquet [10] integral of a bounded function
with respect to the upper and lower probabilities and the set of its integrals with
respect to the measurable selections. This set is related to the Aumann integral
of the random set, whose definition we recall:

Definition 6. [1] Let (Ω,A, P ) be a probability space, and let Γ : Ω → P(Rn)
be a random set. Its Aumann integral is given by

(A)
∫

ΓdP :=
{∫

fdP : f ∈ L1(P ), f(ω) ∈ Γ (ω) a.s

}
.
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Note that is this definition we consider the set of the integrals with respect to the
almost-surely integrable selections, which are those integrable mappings whose
images are included in the random set with probability one. Given a random set
Γ : Ω → P(X) and a measurable mapping f : X → R, it is not difficult to see
that f ◦ Γ : Ω → P(R) is also a random set.

Lemma 2. Let (Ω,A, P ) be a probability space, (X,A′) be a measurable space
and Γ : Ω → P(X) a random set. If P ∗(A) = maxP(Γ )(A) for all A ∈ A′,
then for any finite chain A1 ⊆ A2 ⊆ · · · ⊆ An there is some U ∈ S(Γ ) such that
PU (Ai) = P ∗(Ai) for every i = 1, . . . , n.

This lemma allows us to relate the Choquet integral of a simple mapping with
respect to the upper probability and the set of its integrals with respect to the
probability distributions of the measurable selections. As a consequence, we can
establish the following:

Theorem 4. Let (Ω,A, P ) be a probability space, (X,A′) be a measurable space
and Γ : Ω → P(X) a random set. If P ∗(A) = maxP(Γ )(A) for all A ∈ A′, then
for any bounded random variable f : X → R,

(C)
∫

fdP ∗ = sup
U∈S(Γ )

∫
fdPU = sup(A)

∫
(f ◦ Γ )dP,

and

(C)
∫

fdP∗ = inf
U∈S(Γ )

∫
fdPU = inf(A)

∫
(f ◦ Γ )dP.

Using this result together with Theorem 2, we can generalise [4, Theorem 3.2].

3.3 Measurable Selections and the Core of P ∗

As we said in the introduction, the set P(Γ ) of distributions of the selections
is included in the core M(P ∗) of the upper probability, given by Eq. (3). This
set can be more imprecise than P(Γ ); on the other hand, it has the advantage
of being convex and it is uniquely determined by the function P ∗. This makes
M(P ∗) easier to handle for practical purposes than P(Γ ).

We can use our results on the equality between P(Γ )(A) and [P∗(A), P ∗(A)] to
derive conclusions on the relationship between P(Γ ) and M(P ∗). In this respect,
we have proven in [25] the following result:

Theorem 5. [25, Theorem 4.4] Let (Ω,A, P ) be a probability space, (X, d)
a separable metric space and Γ : Ω → P(X) a random set. Let {xn}n be
a countable dense subset of X and let J := {B(xi, q) : q ∈ Q, i ∈ N}. If
P ∗(A) = maxP(Γ )(A) for all A in the field Q(J ) generated by J :

1. M(P ∗) = Conv(P(Γ )), where the closures are taken in the weak topology.
2. M(P ∗) = P(Γ ) ⇔ P(Γ ) is convex.
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Note that not only we can apply this result together with Theorem 2 and Propo-
sition 6, but also with Theorem 3, because for any separable metric space the
field generated by the open balls includes in particular the field generated by
J . Hence, under very general situations, we can relate the core of the upper
probability with the distributions of the measurable selections. Moreover, P(Γ )
is a convex set as soon as the initial probability space is non-atomic [25, The-
orem 4.7]; this allows us to derive conditions for applying the second point of
Theorem 5. On the other hand, the equality P(Γ ) = M(P ∗) does not imply in
general that P(Γ ) coincides with M(P ∗); an example and sufficient conditions
for this equality can be found in [26].

As a side result, we also deduce that under any of the conditions listed in
Theorem 2 and Proposition 6, P ∗ is the upper envelope of its core M(P ∗). This
relates our work to the problem studied by Krätschmer in [20], and also to some
results in [19,28].

4 Conclusions

The results we have established show that the upper and lower probabilities of
the random set are informative enough in most (but not in all) cases about the
values taken by the distribution of the original random variable. Indeed, the
features of Example 1 and the sufficient conditions listed in Theorem 2 make us
conclude that we can use the upper and lower probabilities in all cases of practical
interest. Moreover, the problem we have studied allows us to derive relationships
between the core of the upper probability and the set of distributions of the
measurable selections, and between the Aumann and Choquet integrals.

We have already pointed out in a few places some of the open problems
derived from our results. More generally, it would be interesting to investigate the
suitability of the upper and the lower probabilities when we have some additional
information on the distribution of the original random variable (for instance that
it belongs to some parametric family). Another interesting possibility would be
to consider the case where we model the imprecise observation of U0 by means
of a fuzzy random variable.
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Abstract. In this paper we address the problem of merging qualitative
constraints networks (QCNs). We propose a rational merging procedure
for QCNs. It is based on translations of QCNs into propositional for-
mulas, and take advantage of propositional merging operators.

1 Introduction

Representing and reasoning about time and space is an important task in many
domains such as natural language processing, geographic information systems,
computer vision, robot navigation. Several qualitative approaches have been
proposed so far to represent spatial or temporal entities and their relations
[1,24,21,18,19]. The majority of these formalisms use qualitative constraints net-
works (QCNs for short) as a representation language.

In some applications, especially multi-agent ones, spatial or temporal informa-
tion comes from different sources, i.e. each source provides a spatial or temporal
QCN representing relative positions of objects. The multiplicity of sources pro-
viding spatial or temporal information makes that the underlying QCNs are
generally conflicting. A way to address the conflict issue consists in defining a
merging operator which takes as input a set of QCNs N = {N1, · · · , Nm} mo-
deling the information provided by the different sources and returns a consistent
set of spatial or temporal information corresponding to the global information
deduced from the information of the different sources.

Merging multiple sources information has attracted much attention in the
framework of (weighted) propositional logic [22,23,12,13,14,11,3,2]. Inspired from
these works, Condotta et al. [5] have proposed a first merging approach to QCNs.
In this paper, we propose a new merging procedure for QCNs by first translating
each QCN into a propositional formula and then merging these formulas using
propositional merging operators [12,13]. The new approach can benefit from
recent advances on merging propositional formulas [9,10]. Different translations
have been proposed in literature. Initially such translations have been defined to
tackle the consistency problem for QCNs in propositional logic. Note that such
translations do not exist for all qualitative formalisms. For example, Nebel and
Bürckert [19] represent constraints of interval algebra by a set of propositional
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clauses. Other more generic translations [20,4] allow to represent QCNs defined
on a qualitative formalism for which the closure by weak composition is complete
for the consistency problem.

The aim of this paper is to characterize such translations and study the behav-
ior of propositional merging operators on a set of propositional formulas resulting
from the translation of a set of QCNs. The rest of this paper is organized as
follows. We present in Section 2 some necessary background on qualitative for-
malisms for representing space or time. In Section 3, we describe the problem
and briefly recall the merging procedure given in [5]. Then we present in Section
4 a merging procedure based on the translation of QCNs into propositional for-
mulas. We show that this procedure is equivalent to the one proposed in [5]. In
Section 5 we propose rationality postulates for merging QCNs and show how
one can define a rational QCNs merging operator from propositional merging
operators thanks to more generic translations. Lastly we conclude.

2 Background on Qualitative Formalisms

Let B be a finite set of binary relations (called basic relations) over a domain D.
Each of these basic relations represents a particular qualitative position between
two elements of D. We suppose that these basic relations are complete and
mutually exclusive, namely two elements of D satisfy one and only one basic
relation of B. The weak composition r1'r2 between two basic relations r1, r2 ∈ B
is defined by the set {r : ∃x, y, z ∈ D, x r1 y, y r2 z, x r z}. A denotes the set
2B, i. e. , the set of all subsets of B. An element R ∈ A is a set of basic relations
between two elements of D. Thus we have X R Y ⇔ ∃r ∈ R : X r Y . For
illustration, we consider the Point Algebra [24] which considers relations between
two points of the rational line. Figure 1 details the three basic relations of the
Point Algebra, forming the set Bpt.

precedes

follows >

=

<

same
x,y

yx

y x

SymbolRelation Illustration

Fig. 1. The 3 basic relations of the Point Algebra

Pieces of knowledge about a set of spatial or temporal entities can be repre-
sented by means of qualitative constraints networks (QCNs for short). A QCN
N is a pair (V,C), where V = {v0, · · · , vn−1} is a finite set of variables repre-
senting the spatial or temporal entities and C is a mapping which associates
to each pair of variables (vi, vj), with i < j, an element R of A. R represents
the set of all possible basic relations between vi and vj . We write Cij instead of
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Fig. 2. N1, a QCN of the Point Algebra

C(vi, vj) for short. A QCN N1 defined over 4 variables within the Point Algebra
is depicted on Fig. 2.

Definition 1. Let N = (V,C) be a QCN .

– A consistent instantiation of N over V ′ ⊆ V is a mapping α from V ′ to D
such that α(vi) Cij α(vj), ∀vi, vj ∈ V ′.

– N is consistent iff there exists a consistent instantiation of N over V .
– N is '-closed iff ∀vi, vj , vk ∈ V , Cij ⊆ Cik ' Ckj .
– A sub-network of N is a QCN N ′ = (V,C′), where C′ij ⊆ Cij, ∀i, j ∈
{0, · · · , n− 1}.

– A consistent scenario of N is a consistent sub-network of N , in which each
constraint is composed of one and only one basic relation of B.

Figure 3.a depicts a consistent scenario σ of N1 given in Fig. 2. Figure 3.b depicts
a consistent instantiation of σ.

0 1 2 3 4 5 6 7

{>}

{>}

{>}

{<}

{<}

{<}

(a) (b)

v2 v1 v0 v3

v0 > v1 v0 > v2

v1 > v2v0 < v3

v1 < v3 v2 < v3

v0 v1

v3v2

Fig. 3. A consistent scenario σ (a) and a consistent instantiation of σ (b)

[N ] denotes the set of consistent scenarios of a QCN N . NV
ALL denotes the

QCN defined on the set of variables V in which each constraint corresponds to
the set B. Thus the set of consistent scenarios defined on a set V corresponds to
the set [NV

ALL].

3 Merging QCNs

Let N = {N1, . . . , Nm} be a set of QCNs defined on the same set of variables
V = {v0, . . . , vn−1} and on the same qualitative algebra having B as the set
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of basic relations. The problem we consider consists in merging the different
information modeled by the QCN of N . A natural way to solve this problem is
to consider the set

⋂
Ni∈N [Ni] as the result of merging, i.e., the set of consistent

scenarios belonging to each QCN of N . However this set may be empty due to
the multiplicity of sources providing information. It is necessary to define a more
parsimonious merging method in order to get a consistent result. The problem of
merging QCNs has been addressed in [5] where the authors propose a merging
procedure inspired from propostional merging [22,12]. We first recall the merging
process in propositional setting before we recall the merging procedure of QCNs
developped in [5].

3.1 Merging Propositional Bases

We consider a propositional language PROP defined on a finite alphabet of
variables V . An interpretation is a mapping from V to {0, 1}. We denote by W
the finite set of all possible interpretations. An interpretation ω is a model of a
formula φ (denoted ω |= φ) if and only if it makes the formula true. A knowledge
base K is a finite set of propositional formulas {φ1, · · · , φm}. We consider K as
logically equivalent to the conjunction of its formulas: K = φ1 ∧ · · · ∧ φm. K is
consistent iff ∃ω ∈ W such that ω |= K. If K1 and K2 are two knowledge bases,
we denote K1 ≡ K2 when two knowledge bases K1,K2 are logically equivalent.
A multiset of knowledge bases {K1, · · · ,Km} is called a profile. Two profiles K1
and K2 are equivalent, denoted K1 ≡ K2, if there exists a bijection f between K1
and K2 such that ∀K ∈ K1, K ≡ f(K). & is the union operator for multisets.

A merging operator Δ is a mapping which associates a propositional formula
to a profile K and a propositional formula IC representing integrity constraints.
A logical characterization of merging operators under integrity constraints has
been proposed in [13], by means of a set of rationality postulates. The result
of merging is denoted ΔIC(K). For example, the first postulate (see Section
5) expresses that the propositional formula representing the result of merging
should pick its models in the set of models of IC, namely ΔIC(K) |= IC.

Merging operators in the propositional logic framework [17,12,13,14] are of-
ten based on a pseudo-distance d which is a mapping from W ×W to N such
that ∀ω, ω′ we have d(ω, ω′) = d(ω′, ω) and d(ω, ω) = 0. Merging propositional
knowledge bases is then a three step process. First, the “distance” between
an interpretation ω and a knowledge base K is defined as follows: d(ω,K) =
minω′|=K d(ω, ω′). Then an aggregation operator denoted ⊗ [17,12,22,23] is used
to compute the distance between an interpretation ω and a profile K. This dis-
tance is defined by d⊗(ω,K) = ⊗{d(ω,K) | K ∈ K}. Lastly, the result of merg-
ing, denoted Δ⊗,dIC (K), is the set of models of IC which are the closest to K w.r.t.
d. Formally, we have Δ⊗,dIC (K) = {ω |= IC | �ω′ |= IC, d(ω′,K) < d(ω,K)}.

3.2 Merging QCNs

Inspired from propositional operators described in the previous subsection, Con-
dotta et al. [5] have defined an operator for merging a set of QCNsN in a similar
way. The merging process also follows three steps.
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The first step consists in computing a local distance between each consistent
scenario of [NV

ALL] and each QCN of N . The distance between a scenario σ and
a QCN N is the minimum distance between σ and all consistent scenarios of N .

d(σ,N) =
{

min{dQCN (σ, σ′) | σ′ ∈ [N ]} if N is consistent,
0 otherwise.

Thus we need to define a distance between scenarios. Such a distance is a map-
ping from [NV

ALL]× [NV
ALL] to N such that ∀σ, σ′ ∈ [NV

ALL],{
dQCN (σ, σ′) = dQCN (σ′, σ)
dQCN (σ, σ) = 0.

Different distances between scenarios have been defined in [5]. Some of them
are inspired from distances between interpretations as defined in the proposi-
tional logic framework (e.g. drastic distance, Hamming distance. See Section 4).
Other more specific distances have also been defined in the context of QCNs
(e.g. the conceptual neighborhood distance [5]).

The second step consists in aggregating local distances computed in the previ-
ous step in order to compute a global distance between each consistent scenario
of [NV

ALL] andN . Different aggregation operators have been defined in literature.
For example, the majority operator

∑
[17], which computes the sum of local dis-

tances, favors the point of view of the majority of sources. Arbitration operator
MAX [23], which returns the greatest distance, has a more consensual behavior.
The global distance between a scenario σ and a set N of QCNs is defined by
d⊗(σ,N ) = ⊗{d(σ,N) | N ∈ N}, where ⊗ is an aggregation operator.

The result of merging, denoted Θ⊗,d
QCN

(N ), is the set of consistent scenarios
of [NV

ALL] which are the “closest” to N . These are consistent scenarios which
have a minimal global distance to N . Formally,

Θ⊗,d
QCN

(N ) = {σ ∈ [NV
ALL] | �σ′ ∈ [NV

ALL], d(σ′,N ) < d(σ,N )}.

4 A Merging Procedure of QCNs Based on a
Propositional Translation

4.1 Characterization of a Translation

We consider fixed a set of variables V and a qualitative formalism defined on
a set of basic relations B. We denote QCNV

B the set of QCNs defined on the
qualitative formalism given by B and V . We call translation a mapping from
QCNV

B to the set of propositional formulas PROP . The main advantage of
existing translations proposed in literature [19,20,4] is to benefit from works
made around the SAT problem in order to solve the consistency problem for
QCNs. A translation τ has to satisfy at least the following property:

Property 1. ∀N ∈ QCNV
B , τ(N) is satisfiable if and only if N is consistent.
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We mean that a QCN has to admit a consistent scenario if and only if its associ-
ated propositional formula admits a model. However this property is insufficient
in our context when considered alone. Indeed the merging process of QCNs de-
scribed in the previous section is based on distances between consistent scenarios
while merging propositional bases is based on distances between interpretations.
Therefore we suppose that τ also satisfies the following property:

Property 2

(a.) ∀N ∈ QCNV
B , τ(N) |= τ(NV

ALL),
(b.) There is a bijection μτ from the set of models of τ(NV

ALL) to [NV
ALL] such

that ∀N ∈ QCNV
B , {μτ (ω) | ω |= τ(N)} = [N ].

The last property makes it possible to identify (through a bijection μτ ) a con-
sistent scenario with an interpretation ω of W if ω |= τ(NV

ALL), and that
∀N ∈ QCNV

B , τ(N) represents through its models the set of consistent sce-
narios of N .

We now give an example of such a translation. Let τSup(N) be the translation
of a QCN N = (V,C) ∈ QCNV

B using the support encoding [8,6,20]. The
propositional formula τSup(N) is built on the set of propositional variables VT =
{rij | r ∈ B, 0 ≤ i < j ≤ n − 1}. The propositional variable rij is valuated to
true if and only if the basic relation r is satisfied for the constraint between
the two variables vi and vj of V . We say that l is a literal of VT if and only
if l is a variable of VT or its negation. ∀N = (V,C) ∈ QCNV

B , τSup(N) is the
conjunction of the following clauses:

•
∨
r∈Cij

rij , ∀0 ≤ i < j ≤ n− 1 (at least one),
• ¬rij ∨ ¬sij , ∀0 ≤ i < j ≤ n− 1, ∀r, s ∈ B, r 
= s (at most one),
• ¬rik ∨ ¬skj ∨

∨
t∈(r�s)∩Cij

t, ∀0 ≤ i < k < j ≤ n − 1, ∀r ∈ Cik, ∀s ∈ Ckj

(supports).

Since B is a given set of a constant number of basic relations, the size of the
translation τSup(N) only depends on the number of variables n of the QCN N .
Indeed the number of propositional variables of VT is in O(n2), the number of
clauses generated by τSup(N) is in O(n3) and the number of literals in any clause
of τSup(N) is in O(1).

If ω |= τSup(N), then ω represents the consistent scenario σ = (V,C′) of N
such that ∀0 ≤ i < j ≤ n − 1, C′ij is defined by the basic relation r ∈ Cij

such that the value of the propositional variable rij in ω is true. At least one
and at most one clauses certify that each constraint of σ is composed of one
and only one basic relation of the associated constraint in N , namely σ is a
scenario of N . The consistency of σ is given by the presence of supports clauses
which guarantee the '-closure of the scenario (we consider qualitative algebras
in which '-closed scenarios are consistent). Thus τSup satisfies Properties 1 and
2. Since the formula τSup(σ) admits exactly one model, we can represent it by a
conjunction of literals of VT .
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Fig. 4. A QCN N and its two consistent scenarios σ1 and σ2

Example. Figure 4 depicts a QCN N defined on Point Algebra where Bpt =
{<,=, >} and V = {v0, v1, v2}. N admits two consistent scenarios σ1 and σ2
depicted in the same figure.

τSup(N) is built on VT = {rij | r ∈ {<,=, >}, 0 ≤ i < j ≤ 2}. It is composed
of the following clauses:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(<01 ∨ =01), (<02), (>12 ∨ =12) (at least one)
(¬ <01 ∨¬ =01), (¬ =01 ∨¬ >01), (¬ <01 ∨¬ >01),
(¬ <12 ∨¬ =12), (¬ =12 ∨¬ >12), (¬ <12 ∨¬ >12),
(¬ <02 ∨¬ =02), (¬ =02 ∨¬ >02), (¬ <02 ∨¬ >02) (at most one)
(¬ <01 ∨¬ >12 ∨ <02 ∨ =02 ∨ >02), (¬ <01 ∨¬ =12 ∨ <02),
(¬ =01 ∨¬ >12 ∨ >02), (¬ =01 ∨¬ =12 ∨ =02) (supports)

τSup(N) admits exactly two models, which represents (by μτSup) the consistent
scenarios σ1 and σ2 of N , i.e., τSup(σ1) and τSup(σ2).

τSup(σ1) is equivalent to the following conjunction of literals of VT :

(<01 ∧ ¬ =01 ∧¬ >01 ∧¬ <12 ∧¬ =12 ∧>12 ∧<02 ∧ ¬ =02 ∧¬ >02).

τSup(σ2) is equivalent to the following conjunction of literals of VT :

(<01 ∧ ¬ =01 ∧¬ >01 ∧¬ <12 ∧=12 ∧ ¬ >12 ∧<02 ∧ ¬ =02 ∧¬ >02).

4.2 The Merging Process

We now consider a set N = {N1, . . . , Nm} of QCNs ∈ QCNV
B . Our merging

procedure is a three step process. We first encode each QCN Ni (i ∈ {1, . . . ,m})
into a propositional formula τ(Ni). Then, we apply an IC merging operator Δ⊗,dIC

on the resulting set K of propositional formulas, with IC = τ(NV
ALL). Lastly the

set of interpretations resulting from this merging will represent the subset of
consistent scenarios of [NV

ALL] resulting from the merging of N .
Recall that the first requirement for defining a propositional merging operator

is to define a local distance between interpretations. Given a distance dQCN be-
tween scenarios, we define a distance dPROP between interpretations as follows:
Definition 2. Let τ be a translation satisfying Properties 1 and 2 and a dQCN

be a distance between scenarios of [NV
ALL]. We define the distance dPROP between

models ω and ω′ of τ(NV
ALL) by dPROP (ω, ω′) = dQCN (μτ (ω), μτ (ω′)).

This definition is intuitively derived from Property 2.b.
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Differents proposals can be made to define distance dQCN between scenarios
[5]. We recall here the Hamming distance between scenarios and the Hamming
distance between interpretations.

Definition 3 (Hamming distance). The Hamming distance between scenar-
ios σ and σ′, denoted dQCNH (σ, σ′), is the number of constraints that are different
in the two scenarios. Formally,

dQCNH (σ, σ′) = |{(vi, vj) ∈ V : σ(i, j) 
= σ′(i, j), i < j}|,

where |E| is the number of elements of the set E. The Hamming distance between
two interpretations ω and ω′, denoted dH(ω, ω′), is the number of propositional
variables of VT which differ between the two interpretations. Formally,

dH(ω, ω′) = |{x ∈ VT : ω(x) 
= ω′(x)}|,

where ω(x) is the truth value of the literal x in ω.

Given a translation τ , thanks to Definition 2 we can define a distance between
the interpretations τ(σ) and τ(σ′) equivalent to dQCNH (σ, σ′) for all scenarios
σ, σ′ of [NV

ALL]. For the translation τSup we have the following result.

Proposition 1. ∀σ, σ′ ∈ [NV
ALL], 2 · dQCNH (σ, σ′) = dH(τSup(σ), τSup(σ′)).

Thus we can associate to the distance dQCNH between scenarios the distance
dPROPH such that ∀ω, ω′ models of τSup(NV

ALL), dPROPH (ω, ω′) = (1/2)·dH(ω, ω′).
A specific distance in the context of QCNs has been defined in [5]. This

distance, called the neighborhood distance, considers the notion of proximity
between basic relations of a qualitative algebra [7]. A neighborhood between
basic relations is often represented by a conceptual neighborhood graph. Some
lattice structures allowing to determine these graphs have been defined in the
literature [15,16]. The conceptual neighborhood is more precise and suitable
than Hamming distance in the context of QCNs. Using the translation τSup, we
cannot directly define a corresponding distance between interpretations. However
this will be possible if we add to τSup some additional clauses encoding the
conceptual neighborhood graph. We do not give further details on this issue due
to the lack of space.

The next steps in the merging process of propositional bases consist in ag-
gregating local distances computed in the previous step, using the aggregation
operator used for merging the QCNs under consideration. Therefore, we have
the following result:

∀σ ∈ [NV
ALL] σ ∈ Θ⊗,d

QCN

(N ) iff τ(σ) ∈ Δ⊗,d
PROP

τ(NV
ALL) (K).

Figure 5 summarizes the merging procedure.
In the next section we describe a set of rationality postulates for QCNs

merging and properties of the merging operator using a more generic class of
translations.
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N = {N1, . . . , Nm}

Θ⊗,dRCQ

K = {τ(N1), . . . , τ(Nm)}

W[NV
ALL]

Δ⊗,dPROP

τ(NV
ALL)

(K)Θ⊗,dRCQ

(N )

τ

μτ

Δ⊗,dPROP

τ(NV
ALL)

Fig. 5. QCNs merging procedure

5 Merging QCNs: Rationality Postulates and Rational
Operators

In the propositional setting, a number of postulates characterizing the rational
belief merging operators have been given [13]. The purpose of this section is
to present similar postulates for merging QCNs and to show how one can de-
fine rational operators for merging QCNs from propositional merging operators
thanks to translations. We first recall rationality postulates given in the propo-
sitional setting. We denote by

∧
K the conjunction of the knowledge bases of

the profile K.

Definition 4. Let K,K1 and K2 be three profiles, K1,K2 be consistent knowl-
edge bases and IC, IC1, IC2 be propositional formulas. Δ is an IC merging
operator iff it satisfies the following postulates.

(IC0) ΔIC(K) |= IC.
(IC1) If IC is consistent, then ΔIC(K) is consistent.
(IC2) If

∧
K ∧ IC is consistent, then ΔIC(K) ≡

∧
K ∧ IC.

(IC3) If K1 ≡ K2 and IC1 ≡ IC2, then ΔIC1(K1) ≡ ΔIC2(K2).
(IC4) If K1 |= IC and K2 |= IC, then if ΔIC({K1,K2}) ∧ K1 is consistent

then ΔIC({K1,K2}) ∧K2 is consistent.
(IC5) ΔIC(K1) ∧ΔIC(K2) |= ΔIC(K1 & K2).
(IC6) If ΔIC(K1) ∧ΔIC(K2) is consistent, then ΔIC(K1 & K2) |= ΔIC(K1) ∧

ΔIC(K2).
(IC7) ΔIC1(K) ∧ IC2 |= ΔIC1∧IC2(K).
(IC8) If ΔIC1(K) ∧ IC2 is consistent, then ΔIC1∧IC2(K) |= ΔIC1(K) ∧ IC2.
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For the sake of generality, we consider that information conveyed by a QCN N
is not reduced to the set [N ] of its consistent scenarios (as it is the case in [5])
but more generally to a subset 〈N〉 of QCNV

B (this enables us for taking some
context-dependent information into account). In the same vein, the result of the
merging is defined as a subset of QCNV

B (instead of a subset of [NV
ALL]). Thus

we now define a QCNs merging operator Θ as a mapping which associates to a
finite subset N of QCNV

B , a subset of QCNV
B .

The following rationality postulates are the direct counterparts in the QCNs
setting of the postulates (IC0) - (IC8) from [13] and the postulates (A1) -
(A6) from [12], for propositional merging. Before presenting them, we first need
to define a notion of equivalence between QCNs and between sets of QCNs:
Two QCNs N and N ′ are said to be equivalent, denoted N ≡ N ′, iff 〈N〉 = 〈N ′〉.
Two subsets N1 and N2 of QCNs are said to be equivalent, denoted N1 ≡ N2,
iff there exists a bijection f from N1 to N2 such that ∀N1 ∈ N1, N1 ≡ f(N1).

Definition 5. Let N ,N1 and N2 be finite sets of QCNs, and let N1, N2 be two
consistent QCNs. Θ is a QCNs merging operator iff it satisfies the following
postulates:

(N1) Θ(N ) 
= ∅.
(N2) If

⋂
Ni∈N 〈Ni〉 
= ∅, then Θ(N ) =

⋂
Ni∈N 〈Ni〉.

(N3) If N1 ≡ N2, then Θ(N1) = Θ(N2).
(N4) If Θ({N1, N2}) ∩ 〈N1〉 
= ∅, then Θ({N1, N2}) ∩ 〈N2〉 
= ∅.
(N5) Θ(N1) ∩Θ(N2) ⊆ Θ(N1 & N2).
(N6) If Θ(N1) ∩Θ(N2) 
= ∅, then Θ(N1 & N2) ⊆ Θ(N1) ∩Θ(N2).

(N1) ensures that the result of the merging is non-trivial. (N2) requires Θ(N )
to be the set of QCNs shared by 〈Ni〉 ∀Ni ∈ N , when this set is non-empty. (N3)
is a syntax-irrelevance principle. (N4) is an equity postulate: it asks that the
merging operator does not exploit any hidden preferences between two QCNs
to be merged. (N5) and (N6) state that, if there exists a non-empty set E of
QCNs shared by the mergings of two groups N1 and N2, then the merging of
the joint groups must be this set E.

We now show how one can define QCNs merging operators Θ satisfying
all those postulates (N1) - (N6) from propositional IC merging operators Δ
thanks to translations τ . We first need to slightly modify the notion of translation
presented in the previous section so that to ensure the existence of a bijection
from the set of models of the propositional formula τ(N) to 〈N〉:
Definition 6. A translation τ is a mapping from QCNV

B to PROP satisfying
Property 1 and such that:

(a.) ∃ϕτ ∈ PROP : ∀N ∈ QCNV
B , τ(N) |= ϕτ .

(b.) There exists a bijection μτ from the set of models of ϕτ to QCNV
B such

that ∀N ∈ QCNV
B , {μτ (ω) | ω |= τ(N)} = 〈N〉.

The conditions on τ ensure the existence of a propositional formula ϕτ associated
to τ , such that every model of ϕτ corresponds (in a bijective way via μτ ) to a
QCN of QCNV

B . For instance, one can have ϕτ = τ(NV
ALL), provided that
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∀N ∈ QCNV
B , τ(N) |= τ(NV

ALL). In addition, ∀N ∈ QCNV
B , the set of models of

τ(N) must be in bijection via μτ with 〈N〉. Observe that the notion of translation
defined in the previous section satisfies the requirements of Definition 6 assuming
that ∀N , 〈N〉 = [N ].

Definition 7. Let τ be a translation in the sense of Definition 6 and ΔIC an
IC merging operator (i.e., a propositional merging operator satisfying (IC0) -
(IC8)) with IC = ϕτ . The QCNs merging operator Θ induced by τ and ΔIC

is defined by: let N = {N1, . . . , Nm} be a set of QCNs, we have

Θ(N ) = {μτ (ω) | ω |= Δϕτ (τ(N1), . . . , τ(Nm))}.

(IC0) ensures that every model of Δϕτ (τ(N1), . . . , τ(Nm)) is associated to a
QCN from QCNV

B via μτ . We have:

Proposition 2. Every QCNs merging operator induced by a translation (in the
sense of Definition 6) and an IC merging operator satisfies (N1) - (N6).

6 Conclusion

Using a particular class of propositional distance-based merging operators, we
have shown that the QCNs merging operator presented in [5] can be reduced
to propositional merging. Thus we can retrieve some interesting results from the
widely studied topic of merging propositional bases to our work. For example,
we directly get a characterization of the complexity of the process [11]. Moreover
an efficient implementation of propositional merging operators has recently been
proposed [9] while the implementation of the merging method developed in [5]
is hard in practice.

Our method is valid for qualitative formalisms in which the closure by weak
composition is complete for its consistency problem, however it is not appropriate
if no translation allows a propositional formula to capture the set of consistent
scenarios of the translated QCN . In addition, we have proposed a set of ratio-
nality postulates for QCNs merging operators. These postulates are satisfied if
we use an appropriate translation from QCNs to propositional formulas and a
particular class of propositional merging operators.

This work can be extended in several directions. Given a context and a par-
ticular definition of the set 〈N〉 for all N , one can define and study some appro-
priate translations. Another perspective is to study properties about the QCNs
merging operator using other classes of propositional merging operators.
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Abstract. In [1], the authors have extended Parikh’s relevance-sensitive
model for belief revision by defining a new model for belief representation
and local belief revision called C-structure Model. This model allows to
make local revision when Parikh’s model fails to do it: the case of “fully
overlapping belief sets”. Using Grove’s system of spheres construction,
we consider additional constraints to define an ordering between inter-
pretations, and show that these constraints allow to formalize perfectly
the local revision by the mean of C-structure model, thus providing a
well defined semantics for revision of C-structures.

Keywords: Belief revision, C-structure model, systems of spheres.

1 Introduction

Agents facing incomplete, uncertain, and inaccurate information must use a ra-
tional belief revision operation in order to manage belief changes. The agent’s
epistemic state represents its reasoning process with his beliefs and belief revision
consists in modifying its initial epistemic state in order to maintain consistency,
while keeping new information and modifying the least possible previous infor-
mation.

Unfortunately, in the general case, the theoretical complexity of revision is
high. More precisely, it belongs to the

∏p
2 class in the framework of proposi-

tional logic [2,3,4,5]. Similarly for the few applications which have been devel-
oped for belief revision [6,7]. Hence reducing the amount of data to be processed
during the revision operation seems to be an interesting approach, since formal
complexity cannot be reduced.

Usually inconsistency is due to the accidental presence of a “few” pieces of con-
tradictory information about a given subject. Hence, revision may be restricted
to local portions of the belief corpus (those intersecting with the language of the
new epistemic input).

To introduce relevance-sensitivity into belief revision, Parikh [8] defined the
language splitting (LS) model which says that any set of beliefs may be repre-
sented as a family of letter-disjoint sets and that revision may be made locally
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on one of these sets. In practice, since beliefs do have some overlap, the par-
tition of the main set of beliefs cannot be actually strict. In view of this gap,
Parikh’s original model for belief revision [8] has been extended, by allowing for
such overlap, in the B-structures model [9]. However, this model is not able to
guarantee a global revision by only a local one, i.e., after revising our beliefs we
are not sure of their global consistency. This fact interfers with the correction of
belief revision (according to the rational belief revision principles called AGM
postulates [10]). The B-structures model also lacks a semantic characterization
at present.

In order to circumvent these problems, a new model called the C-structure
model, has been defined in [1]. This model allows some overlap between the
different belief subsets and preserves all the desirable properties of the language
splitting model (in particular, it allows to prove global consistency by the mean of
local consistency check). Furthermore, this model allows to perform local revision
when the LS model fails to do that; for instance, in cases where the belief set
cannot be split in more than one subtheory (the case of fully overlapping belief
sets).

Using Grove’s system of spheres construction [11], we provide semantics for
local revision by the mean of the C-structure model, by defining additional
constraints based on a distance measurement between interpretations. These
constraints characterize local revision by the mean of the C-structure model in
the case of fully overlapping theories.

The structure of the paper is as follows. In section 2, we provide some prelimi-
naries and background material on the AGM paradigm. In the following section,
we define the C-structure model. In section 4, we provide system of spheres se-
mantics for local revision by the mean of the C-structure model in the case of
fully overlapping belief sets.

2 Preliminaries

Throughout this paper, L is a propositional language defined on some finite set
of propositional variables (atoms) V and the usual connectors (¬, ∨, ∧, →, ↔). If
α ∈ L is a sentence, then V(α) represents the set of variables appearing in α, and
similarly V(X) for a set of sentences X . If V is a subset of V then L(V ) represents
the propositional sublanguage defined over V , i.e., L(V ) = {α ∈ L : V(α) ⊆ V }.
" represents the classical inference relation. A literal is a propositional variable
or its negation. A clause is a disjunction of literals. A clause c is an implicate of
a sentence α iff α " c. A clause c is a prime implicate of α iff for all implicates c′

of α such that c′ " c, it is the case that c " c′. We denote by Coveα an arbitrary
covering of α, which is a set of prime implicates of α such that for every clause c
where α " c, there exists c′ ∈ Coveα such that c′ " c. V(Coveα) is the minimal
set of atoms needed to express (a sentence logically equivalent to) α [12]. This
set is unique [8].

If X is a set of sentences then Cn(X) is the logical closure of X , i.e., Cn(X) =
{α ∈ L : X " α}. In particular, X is a theory, i.e., a belief set iff X = Cn(X).
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If T is a theory of L, it is said a fully overlapping theory if and only if for all
partitions V1, V2 of V there does not exist sentences α1 ∈ L(V1), and α2 ∈ L(V2)
such that T = Cn({α1, α2}). For a theory T , we denote by BT a belief base of
T which is a finite set of sentences that generates T , i.e., T = Cn(BT ). BT is a
minimal belief base of T iff (i) BT is a belief base of T , (ii) T is axiomatized by
BT (i.e., ∀α ∈ BT , (BT \ {α}) � α), and (iii) BT ⊆ Cove∧

α∈BT
.

If BT is an inconsistent belief base, M ⊆ BT is a minimal inconsistent subset
(MIS) of BT iff for all M ′ ⊂ M , M ′ is consistent. We denote the set of all
consistent theories of L by KL. We denote by IL the set of all interpretations of
L. For a set of sentences X of L, [X ] represents the set of all interpretations of
L that satisfy X (the set of models of X). Often we use the notation [α] for a
sentence α ∈ L, as an abbreviation of [{α}]. For a theory T and a set of sentences
X of L , T + X represents the set Cn(T ∪X).

Let L′ ⊆ L be defined over a subset V ′ of V , L′ represents the sublanguage
defined over the propositional variables in the complement of V ′, i.e., L′ =
L(V \ V ′). CnL′(X) for a set of sentences X ⊂ L′, represents the logical closure
of X in L′. When no subscript is present, it is understood that the operation is
relevant to the original languageL. Finally, let U be a set of interpretations in IL.
By U/L′ we denote the restriction of U to L′; that is, U/L′ = {w∩L′ : w ∈ U}.

In belief revision, much work takes as its starting point the AGM postulates
[10], which appear to capture much of what characterizes rational belief revision.
In this framework belief states are represented as theories of L, and the process
of belief revision is modelled by a revision function ∗ which is any function from
KL × L to KL, mapping 〈T, α〉 to T ∗ α that satisfies the AGM postulates [10].
This set of postulates describes a class of revision functions, however it does not
provide a constructive way of defining such a function.

Grove introduced in [11] a construction of revision functions that generates
precisely the class of functions satisfying the AGM postulates. It is based on a
special structure on consistent theories, called a system of spheres. Let T be a
theory of L, and ST a collection of sets of interpretations, i.e., ST ⊆ 2IL . ST is
a system of spheres centered on [T ] iff the following conditions are satisfied:

(S1). ST is totally ordered wrt set inclusion.
(S2). The smallest sphere in ST is [T ].
(S3). IL ∈ ST .
(S4). ∀α ∈ L, if there is any sphere in ST intersecting [α] then there is also
a smallest sphere in ST intersecting [α].

For a system of spheres ST and a sentence α ∈ L, the smallest sphere in ST in-
tersecting α is denoted CT (α)1. With any system of spheres ST , Grove associates
a function fT : L �→ 2IL defined as follows : fT (α) = [α] ∩CT (α). Consider now
a theory T of L and let ST be a system of spheres centered on [T ]. Grove uses
ST to define constructively the process of revising T , by means of the following
condition : (S∗) : T ∗ α =

⋂
fT (α).

1 In the limiting case where α is inconsistent, Grove defines CT (α) to be the set IL.
In this paper we only consider revision by consistent sentences.
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3 Local Revision by the Mean of the C-Structure Model

The C-structure model [1] extends the language splitting [8] and the B-structure
models [9]. It uses disjoint sublanguages to define a set of cores of a given lan-
guage, each surrounded by a covering of atoms. The concept of covering allows
some degree of overlap between the sublanguages defined over the coverings. We
now recall the main definitions and results of this model.

Definition 1. {V1, ..., Vn} is a set of cores of L iff it is a partition of V.

Example 1. Let the language L be built from the propositional variables a, b, c, d.
Let T be a fully overlapping theory of L, axiomatized by BT = {¬a ∨ b,¬b ∨
c,¬c ∨ b,¬c ∨ d}. The set {{a}, {b}, {c}, {d}} is a set of cores of L.

To order the atoms of L, we use the following relevance relation from [13].

Definition 2. Let T be a theory of L. We say that two atoms, p and q, are
directly relevant wrt BT , denoted by R(p, q, BT ) (or by R0(p, q, BT )), iff ∃α ∈ BT

s.t., p, q ∈ V(α). Two atoms p, q are k-relevant wrt BT , denoted by Rk(p, q, BT ),
if ∃p0, p1, ..., pk+1 ∈ V s.t.: p0 = p; pk+1 = q; and ∀i ∈ {0, ..., k}, R(pi, pi+1, BT ).

In Example 1, we find : R(a, b, BT ), R1(a, c, BT ), R2(a, d,BT ), etc.
To define clearly the extent of overlapping between the various sublanguages,

we define a distance between variables.

Definition 3. Suppose two atoms p, q ∈ V, T is a theory of L. The distance
between p, q wrt BT , denoted by dist(p, q, BT ), is defined as follows:

dist(p, q, BT ) =

⎧⎨⎩
0 if p = q
min{k : Rk(p, q, BT )} + 1 if such k exists
∞ otherwise.

In Example 1, dist(a, b, BT ) = 1, dist(a, c, BT ) = 2, dist(a, d,BT ) = 3, etc.
We now define the notion of a covering, parametrized by its thickness :

Definition 4. Let {V1, ..., Vn} be a set of cores of L and T be a theory of L.
Covk(Vi, BT ) is a covering of thickness k of Vi wrt BT iff: Covk(Vi, BT ) ⊆ V;
and ∀p ∈ V , if ∃q ∈ Vi s.t., dist(p, q, BT ) ≤ k then p ∈ Covk(Vi, BT ).

For example, the set of coverings with thickness 1 corresponding to the set of cores
{{a}, {b}, {c}, {d}}wrt BT (Example 1) is : {{a, b}, {a, b, c}, {b, c, d}, {c, d}}.

In order to parametrize a C-structure by a particular thickness (as we will see
later), we require a definition of the size of a MIS:

Definition 5. Let BT and B′T ′ be two belief bases such that V(B′T ′) ⊆ V(BT )
and B′T ′ is inconsistent. The size of the MIS M of B′T ′ wrt BT , Size(M,BT ) =
max{dist(a, b, BT ) : a, b ∈ V(M)}.

In Example 1, let M = {a ∧ ¬b,¬a ∨ b} be a MIS of B′T ′ = BT ∪ {a ∧ ¬b}, so
Size(M,BT ) = 1.

The only assumption made by the C-structure model is that the maximal
size of eventual existing MISs in a given belief base is known. Hence, when we
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construct a C-structure C on a belief base BT , we only require that the thickness
of coverings of cores (value of k) should be (at least) equal to the maximal size
of MISs which may exist in BT .

Informally, a C-structure represents the knowledge of an agent with a good
understanding of the interactions between subjects.

Definition 6. Let T be a theory defined in L and BT an arbitrary belief base
of T . The set C = {(V1, Covk(V1, BT ), T1), ..., (Vn, Covk(Vn, BT ), Tn)} is a C-
structure of T iff: (i) {V1, ..., Vn} is a set of cores of L, (ii) Cov(C) = {Covk(V1,
BT ), ..., Covk(Vn, BT )} is a corresponding set of coverings wrt BT s.t., ∀i ∈
{1, ..., n}∀α ∈ L(Covk(Vi, BT )), if BT ∪ {α} is inconsistent, then ∀M a MIS of
BT ∪ {α}, Size(M,BT ) ≤ k, and (iii) ∀Ti, Ti = CnL(Covk(Vi,BT ))(L(Covk(Vi,
BT ))∩T ). C is called an atomic C-structure of T iff ∀i ∈ {1, ..., n}, |Vi| = 1 (in
the case of redundancy of coverings, we merge the corresponding cores).

We obtain the following C-structure corresponding to Example 2 by assuming
that the maximal size of eventual exiting MISs in BT is 1 (condition (ii) of Def-
inition 6): {({a}, {a, b}, CnL({a,b})({¬a ∨ b})), ({b}, {a, b, c}, CnL({a,b,c})({¬a ∨
b,¬b∨c,¬c∨b})), ({c}, {b, c, d}, CnL({b,c,d})({¬b∨c,¬c∨b,¬c∨d})), ({d}, {c, d},
CnL({c,d})({¬c ∨ d}))}.

Now, we can formulate local revision by the mean of the C-structure model
as follows.

(Local Revision): Let T be a theory of L, BT an arbitrary belief base of T ,
and C = {(V1, Covk(V1, BT ), T1), ..., (Vn, Covk(Vn, BT ), Tn)} a C-structure
of T . If α ∈ L(Covk(Vi, BT )) for all i ∈ {1, ..,m} and V(Coveα) ∩ Vi 
= ∅,
then: T ∗α = (CnL(

⋂m
i=1 Covk(Vi,BT ))(

⋂m
i=1 Ti) ◦α) + (BT \

⋂m
i=1 Ti), where ◦

is a revision operator of the sublanguage L(
⋂m
i=1 Covk(Vi, BT )).

Informally, local revision has to precise two points. Firstly, anything outside
the related pat of T to α (BT \

⋂m
i=1 Ti) will not be affected during the revision

of the theory T by α. Secondly, the related part of the theory T to α (
⋂m
i=1 Ti)

should change into CnL(
⋂

m
i=1 Covk(Vi,BT ))(

⋂m
i=1 Ti)◦α, where ◦ is a revision func-

tion defined over the sublanguage L1 = L(
⋂m
i=1 Covk(Vi, BT )). In the following,

we consider the revision function ◦ that modifies the relevant part of T does not
vary from theory to theory, even when the relevant part

⋂m
i=1 Ti stays the same

(i.e., the case where the revision function ◦ is context-insensitive).
More formally, local revision, given above, can be defined by mean of the

following conditions.
Let C = {(V1, Covk(V1, BT ), T1), ..., (Vn, Covk (Vn, BT ), Tn)} be a C-

structure of T , α ∈ L(Covk (Vi, BT )), and V(Coveα) ∩ Vi 
= ∅, for all i ∈
{1, ..,m}. We denote by L1, the sublanguage L(

⋂m
i=1 Covk(Vi, BT )).

(C1). (T ∗ α) ∩ L1 = (CnL1(
⋂m
i=1 Ti) ◦ α) + (BT \

⋂m
i=1 Ti)) ∩ L1.

(C2). (T ∗ α) ∩ L1 = (Cn(
⋂m
i=1 Ti) ∗ α) ∩ L1.

Condition (C1) is straightforward : when revising a theory T by a sentence α,
the part of T that is not related to α is not affected by the revision; we do not
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remove any information from it since MISs generated by α are all in the related
part to α. However, we can deduce more consequences because the existence of
overlap between the parts related and unrelated to α. Condition (C2) is what
imposes the context-insensitivity of local revision. To see this, consider a revision
function ∗ (which defines a revision policy for all the theories of L), and let C =
{(V1, Covk(V1, BT ), T1), (V2, Covk(V2, BT ), T2), ..., (Vn, Covk(Vn, BT ), Tn)} and
C′={(V ′1 , Covk′ (V ′1 , BT ′), T ′1), (V

′
2 , Covk′ (V ′2 , BT ′), T ′2), ..., (V

′
n′ , Covk′ (V ′n′ , BT ′),

T ′n′)}, be two C-structures of the two theories T and T ′ on which are based the
revisions of T and T ′, respectively, by a sentence α ∈ L. If the relevant parts to
α of T and T ′ is in both cases the same, then according to (C2), the way that
this relevant part is modified in both T and T ′ is also the same.

The following result shows that (C1) and (C2) are indeed equivalent to local
revision for consistent fully overlapping theories.

Theorem 1. Let ∗ be a revision function satisfying the AGM postulates (T ∗1)–
(T ∗ 8). Then ∗ satisfies local revision iff ∗ satisfies (C1) and (C2).

Local revision makes associations between the revision policies of different fully
overlapping theories. Thus, by the mean of (C2), it introduces dependencies
between the revisions carried out on different (overlapping) C-structures. In [8],
the authors introduced the same property but only between theories which can
be split into at least two subtheories. However, the AGM postulates are too weak
to induce such property, since they all refer to a single theory T .

In the next section, we formulate system-of-spheres semantics for local revision
of consistent fully overlapping theories.

4 Semantics for Local Revision by the Mean of the
C-Structure Model

Let T be a consistent fully overlapping theory, and let ST be a system of spheres
centered on [T ]. The intended meaning of ST is that it represents comparative
plausibility between interpretations, i.e., the further away an interpretation is
from the center of ST , the less plausible it is to [T ] [14]. However, none of the
conditions (S1)–(S4) indicate how plausibility between interpretations should be
measured.

In order to formalize semantics for local revision in the realm of system of
spheres, we need to define a specific criterion of plausibilityPlaus to cover compar-
isons between an interpretation w and a fully overlapping theory T . This criterion
allows to define an ordering between interpretations based on condition (C1).

Our definition of Plaus is based on the comparison between an interpreta-
tion w and a C-structure C of T which verifies some conditions. First, this
C-structure should be an atomic one to get the smallest related part of T to
the new information. Hence, during revision operation, we avoid throwing away
non-tautological beliefs in T whenever it is possible. Second, it should contain
at least one subtheory whose removing restaures consistency between T and w,
i.e., ∃Ti ∈ C such that, w ∈ [BT \ Ti]. Third, C should be minimal in the sense
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that any atomic C-structure C′ whose thickness of coverings is k′ < k (k is the
thickness of coverings of C) has any subtheory T ′i such that, w ∈ [BT \T ′i ]. These
three conditions allow to locate, on BT , the minimal part which is responsible of
the inconsistency between T and w. Furthermore, since it may exist more than
one subtheory in C whose removing restores consistency between T and w, so
removing the intersection of these subtheories also restores consistency between
T and w.

The criterion of plausibility PlausT (w) gives the subset of variables on which
is defined the intersection of subtheories of C (the C-structure of T verifying the
last three conditions) whose removing restores consistency between T and w.

In particular, if w ∈ [T ], we have PlausT (w) = ∅, since k, the thickness
of the C-structure by which the comparison with w should be done, is equal
to 0. Hence, [T ] represents the most plausible subset of interpretations in IL.
Clearly, this fact is intuitively satisfactory, since it follows Grove’s construction
requirements.

Now, we define the criterion Plaus formally as follows: Now, we define the
criterion Plaus formally as follows:

Definition 7. Let T be a consistent fully overlapping theory of L, w an inter-
pretation, and C be an atomic C-structure of T constructed on a minimal belief
base BT , and k, the thickness of coverings of C, is such that:

1. ∃X ∈ Cov(C) such that w ∈ [BT \ (T ∩X)], and
2. ∀k′ < k, if C′ is the atomic C-structure of thickness k′ constructed on BT ,

then �X ∈ Cov(C′) such that w ∈ [BT \ (T ∩X)].

Then PlausT (w) =
⋂
{Covk(Vi, BT ) ∈ Cov(C) : w ∈ [BT \ Ti]}.

From Example 1, Table 1 below illustrates the computation of PlausT (wi) for
all wi ∈ IL \ [T ]2. [T ] = {abcd, abcd, abcd, abcd}.

Table 1. Computation of P lausT (wi) for Example 1

wi P lausT (wi) wi P lausT (wi)
w1 = abcd

⋂
{{b, c, d}, {c, d}} = {c, d} w7 = abcd

⋂
{{a, b}, {a, b, c}} = {a, b}

w2 = abcd
⋂

{{a, b, c}, {b, c, d}} = {b, c} w8 = abcd
⋂

{{c, d}, {b, c, d}} = {c, d}
w3 = abcd

⋂
{{a, b, c}, {b, c, d}} = {b, c} w9 = abcd

⋂
{{a, b, c}, {b, c, d}} = {b, c}

w4 = abcd
⋂

{{a, b, c}} = {a, b, c} w10 = abcd
⋂

{{a, b, c}, {b, c, d}} = {b, c}
w5 = abcd

⋂
{{a, b, c, d}} = {a, b, c, d} w11 = abcd

⋂
{{a, b, c}, {b, c, d}} = {b, c}

w6 = abcd
⋂

{{a, b}, {a, b, c}} = {a, b} w12 = abcd
⋂

{{b, c, d}} = {b, c, d}

4.1 Semantics for Condition (C1)

Saying that Condition (C1) requires keeping the part of T unrelated to α unaf-
fected by the revision of T by α, means that the two following conditions should
be satisfied:
2 In this table we are representing interpretations as sequences of literals. Moreover

the negation of a variable p is denoted p.
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(I1). during the revision operation by α, we do not remove any information
from the part of T unrelated to α, and

(I2). we do not accept any non “necessary” information into the part of T
unrelated to α; that means, T should be revised minimally, in the sense
that no new formula should be added unless it can be deduced from the
information received and the part of T unrelated to α.

For instance, consider the revision of the theory T given in Example 1 by the
formula α = a ∧ ¬b. The parts related and unrelated of T with respect to α
and the C-structure C given above for T , are respectively {a → b} and {b ↔
c, c → d}. For this example, (I1) indicates that both b ↔ c and c → d should
still be deductible from T ∗α. However, (I2) indicates that necessary information
as ¬c should appear in T ∗ α, since ¬c ∈ ({α} + {b ↔ c}), and non necessary
information as d should not be in T ∗α because its presence is counter-intuitive
for the revision operation.

Later in this section, the two general conditions (Q1) and (Q2) represent the
semantic counterparts corresponding respectively to the intuitive conditions (I1)
and (I2).

A simple example will help to formalize condition (Q1). Suppose that the
language L is built from the propositional variables a, b, c, and T is the theory
T = Cn({a → b, b ↔ c}), and the two systems of spheres ST , S′T centered on
[T ] are as represented below in Figure 1:

Fig. 1. Condition (Q1)

Clearly, the revision function ∗ induced from ST violates condition (I1) at T ;
simply consider the revision of T by α = a∧¬b which gives T ∗α = Cn({a∧¬b}).
So, ∗ removed b ↔ c which contradicts condition (I1) requirement, since the
two interpretations w = abc and w′ = abc are placed in the same sphere. On
the other hand, it is not hard to verify that the revision function ∗′ induced
by the system of spheres S′T , satisfies (I1). Hence, w and w′ should not be
placed in the same sphere, because of the following two reasons: First, w is more
plausible than w′, since PlausT (w) = {a, b} ⊂ {a, b, c} = PlausT (w′). Second,
w ∩ L(PlausT (w)) = w′ ∩ L(PlausT (w)) = {a, b}. It should be noted that the
first criterion alone (the fact that w is more plausible than w′) is not sufficient to
allow us to place w in a sphere before w′. That means, the plausibility criterion
is stronger than condition (I1). In particular consider the interpretations w′ and
w′′ = abc in the system of spheres S′T . While PlausT (w′′) = {b, c} ⊂ {a, b, c} =
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PlausT (w′), the two interpretations w′ and w′′ are placed in the same sphere
without violating condition (I1). Thus we have the following condition:

(Q1). If PlausT (w) ⊂ PlausT (w′) and w∩L(PlausT (w)) = w′∩L(PlausT (w))
then there is a sphere V ∈ ST containing w but not w′.

Condition (Q1) formalizes the intuition mentioned earlier about preserving
all information of the unrelated part by the revision operation.

Now, condition (Q1) alone does not suffice to guarantee the satisfaction of
local revision (condition (C1)); we have to formalize the condition corresponding
to condition (I2).

To do that, we consider the following example. The language L is built over
three propositional variables a, b, c, the initial belief set T is T = Cn({b ↔ c}),
and the two systems of spheres ST and S′T centered on [T ] are as given below in
Figure 2:

Fig. 2. Condition (Q2)

In this example all the interpretations outside [T ] (i.e. in IL \ [T ]) have the
same plausibility with respect to T , namely ∀w ∈ (IL \ [T ]), P lausT (w) = {b, c}.
While ST satisfies (Q1) since its antecedent PlausT (w) ⊂ PlausT (w′) never
holds for w,w′ /∈ [T ], the revision function ∗ induced from ST violates the
second requirement of (C1) (condition (I2)) at T . However, the revision function
∗′ induced by the system of spheres S′T , satisfies condition (I2).

In particular consider the revision of T by ¬b ∧ c using ST . The resulting
theory is equal to Cn({a,¬b, c}). Clearly, this contradicts condition (I2) since
we have the non necessary information a into the result.

To block that, we should place w = abc and w′ = abc in the same sphere
as in S′T . The particularity of these two interpretations is that: PlausT (w) =
PlausT (w′), and w ∩ L(PlausT (w)) = w′ ∩ L(PlausT (w)).

We conclude that whenever w and w′ are two interpretations such that the
two previous conditions are verified, then they should be placed in the same
sphere.

We now proceed with the presentation of condition (Q2), which together with
(Q1), brings about the correspondence with (C1). In the following condition, T
is a fully overlapping consistent theory of L, ST is a system of spheres centered
on [T ], and w,w′ are interpretations.
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(Q2). If PlausT (w)=PlausT (w′), and w∩L(PlausT (w))=w′∩L(PlausT (w′)),
then w,w′ belong to the same spheres in ST , i.e., for any sphere V ∈ ST , w ∈
V iff w′ ∈ V .

The promised correspondence between (C1) and the two conditions (Q1) and
(Q2) is given by the theorem below:

Theorem 2. Let ∗ be a revision function satisfying (T ∗ 1)–(T ∗ 8). Let T be a
consistent fully overlapping theory of L, and ST a system of spheres centered on
[T ], that corresponds to ∗ by means of (S∗). Then ∗ satisfies (C1) at T iff ST
satisfies (Q1)–(Q2).

Here we can show the advantage of our local revision approach with respect to
the one defined by the mean of axiom (P) [14]. In the case of fully overlapping
theories T , the approach based on axiom (P), is not capable to avoid the counter-
intuitive effect of throwing away all non-tautological beliefs in T whenever the
new information is inconsistent with T , regardless of whether these beliefs can
be kept or not.

For example, the system of spheres ST centred on [T ] (T is the theory of
Example 1), and satisfying axiom (P)3 is only composed of two spheres: the
sphere [T ] and the sphere IL, the set of all interpretations of L. However, systems
of spheres satisfying the two conditions (Q1) and (Q2) allows us to avoid such
undesirable systems of spheres. To see this, consider a system of spheres S′T
corresponding to the theory T of Example 1, and satisfying the two conditions
(Q1) and (Q2) as given below in Figure 3. Then, consider the revision of T by
a ∧ ¬b using ST and S′T . By ST , the result is Cn(a ∧ ¬b).

Fig. 3. System of spheres corresponding to Example 1 verifying Condition (C1)

4.2 Semantics for Condition (C2)

The context-insensitivity property of local revision is given by condition (C2).
In [14], the authors have proved that such conditions introduce dependencies
3 See [14] for all details on ST .
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between revision policies associated with different theories. That means, the con-
dition corresponding to (C2) that we define below, makes associations between
systems of spheres with different centers.

As usual, C and C′ are C-structures of the fully overlapping theories T and T ′

respectively. ST , ST ′ are systems of spheres centered on [T ] and [T ′] respectively.
We denote by ST /L′, such that L′ ⊆ L, the restriction of ST to L′; that is,
ST /L′ = {U/L′ : U ∈ ST }.

For any sublanguage L′ of L, ST /L′ is also a system of spheres [14]. The
condition (Q3) below is the semantic counterpart of (C2).

(Q3). If C = {(V1, Covk(V1, BT ), T1), (V2, Covk(V2, BT ), T2), ..., (Vn, Covk(Vn,
BT ), Tn)}, C′ = {(V ′1 , Covk′ (V ′1 , BT ′), T ′1), (V

′
2 , Covk′ (V ′2 , BT ′), T ′2), ..., (V

′
n′ ,

Covk′ (V ′n′ , BT ′), T ′n′)}, and ∃i ∈ {1, ..,m}, j ∈ {1, .., p} such that
⋂m
i=1 Ti =⋂p

j=1 T ′j , then ST /L(V(
⋂m
i=1 Ti)) = ST ′/L(V(

⋂m
i=1 Ti)).

In other words, (Q3) says that if we have two C-structures C and C′ of two
theories T and T ′ respectively, which are intersecting on a subtheory T ′′ of T
and T ′, then the restriction of ST to the sublanguage over which T ′′ is defined
is equal to the restriction of S′T to the same sublanguage; i.e., ST /L(V(T ′′)) =
ST ′/L(V(T ′′)).

The following result shows that (Q3) is the semantic counterpart of (C2):

Theorem 3. Let ∗ be a revision function satisfying the AGM postulates (T ∗
1)–(T ∗ 8), and {ST}T∈KL a family of systems of spheres (one for each fully
overlapping theory T in KL), corresponding to ∗ by means of (S∗). Then ∗
satisfies (C2) iff {ST }T∈KL satisfies (Q3).

Theorems 1, 2 and 3 provide immediately the following theorem that provides
semantics for local revision using Grove construction.

Theorem 4. Let ∗ be a revision function satisfying the AGM postulates (T ∗1)–
(T ∗ 8), {ST }T∈KL a family of systems of spheres (one for each fully overlapping
theory T in KL), corresponding to ∗ by means of (S∗). Then ∗ satisfies local
revision iff {ST}T∈KL satisfies (Q1)–(Q3).

It should be noted that these results can be extended to the general case of arbi-
trary consistent theories (where a theory can be seen as a set of fully overlapping
theories) either by defining a C-structure on each fully overlapping theory and
keeping the conditions (Q1)–(Q3), or by defining a unique C-structure for the
theory and modifying slightly the conditions given above.

5 Conclusion

The contribution of this paper is that having Grove’s system of spheres construc-
tion as a base, we provide a semantics for local revision using the C-structure
model in the case of consistent fully overlapping theories. We do that by provid-
ing additional constraints based on a distance measurement between interpre-
tations, then we prove these constraints characterize local revision by the mean
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of the C-structure model. What is particularly pleasing about our result is that
these new constraints on systems of spheres extend those [14] given for local re-
vision defined by the language splitting model. Thus, our local revision approach
presents an extension of the one based on Parikh’s model and preserves all its
nice properties. Precisely, our approach allows to guarantee the satisfaction of
minimal change principle of revision for fully overlapping belief sets, to whome
Parikh’s revision approach fails to do that.

In future, we intend to extend our approach by generalizing our results to
arbitrary consistent belief sets.
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Abstract. This paper presents a method which allows for merging beliefs
expressed thanks to logic programming with stable model semantics. This method
is based on the syntactic merging operators described in the framework of
propositional logic. The study of these operators leads to a new definition of the
consequence relation between logic programs which is based on the logic of Here-
and-There brought by Turner. Moreover, the specificity of the non-monotonic
framework given by logic programming with stable model semantics allows for
describing a weakened version of the merging operation. Once the operators are
defined, their behaviour with respect to the Konieczny and Pino-Perez postulates
for merging are examined and discussed.

1 Introduction

Nowadays, the computer science field has to deal with distributed sources of knowledge,
especially in the context of databases. These sources are rarely synchronized, they gen-
erally conflict. Therefore, the interrogation and sharing of those distributed sources are
crucial questions for artificial intelligence.

This problem has been widely discussed within the framework of propositional logic
[5,19,3]. These operators have been defined in a semantic way [10], a syntactic way
[16,8] or based on morphologic properties of beliefs [4]. The last two methods has
led to an implementation [9]. The main advantages of propositional logic is both its
strong formal background and its simplicity. But, this simplicity can also be a drawback
for representing real world situations. Hence, logic programming with stable model
semantics [7] provides a belief representation formalism which is more interesting than
classical logic for non-monotonic reasoning. Thus, the question of belief bases merging
when beliefs are represented by logic programs deserves attention.

This paper presents a method for merging belief bases represented by logic programs.
This method is based on the syntactic operators defined in [9]. Moreover, the non-
monotonicity of the stable model semantics allows us to define a weakened version of
the merging operation in order to save more beliefs than the strong merging operation. A
study of properties will be conducted and an implementation of the merging operations
will be provided.

The rest of the paper is organized as follows. Section 1 gives a refresher on belief
bases merging and logic programming. Section 2 gives the definition of strong and
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weak version of merging operations. Section 3 presents an implementation of merging
operations based on logic programming with stable model semantics before concluding.

2 Preliminaries and Notations

In this section, we give the definitions and notations with respect to logic programming
with stable model semantics. We then remind the work described in [21] on the logic of
Here-and-There which is used to provide an alternative definition of stable models. We
also give a reminder on belief merging and on the Konieczny and Pino-Perez postulates
for merging operations.

We consider a finite alphabet P consisted in propositional atoms. Atoms and formu-
las are denoted by lower case letters. Sets of atoms are denoted by capital letters. An
interpretation is a function from P to {0, 1} and the set of every interpretation is de-
noted byW . For every interpretation I and every set of atoms A, we say that I implies
A (I |= A) iff every atom of A is true for I . If A and B are two sets of formulas, then
A |= B iff I |= A implies I |= B. mod(A) represents the set of models of A.

2.1 Logic Programming with Stable Model Semantics

A normal logic program is a set of rules with the form c ← a1, . . . , an, not b1, . . .,
not bm where c, ai(1 ≤ i ≤ n), bj(1 ≤ j ≤ m) are propositional atoms and the
symbol not stands for negation as failure. A basic program is a logic program with-
out negation as failure. Let r be a rule, we introduce head(r) = c and body(r) =
{a1, . . . , an, b1, . . . , bm }. Moreover, we define body+(r) = {a1, · · · , an} which rep-
resents the set of positive atoms in the body of this rule and body−(r) = {b1, . . ., bm}
which represents the set of negative atoms in the body of this rule, hence body(r) =
body+(r) ∪ body−(r). r+ represents the rule head(r) ← body+(r), obtained from r
by withdrawing negative elements to the body of r.

A set X of atoms is closed under a logic program Π iff ∀r ∈ Π , head(r) ∈ X when
body(r) ⊆ X . The smallest set of atoms which is closed under a basic program Π is
denoted CN(Π). The reduction of Gelfond-Lifschitz [7] of a program Π with respect
to a set X of atoms is defined by ΠX = {r+ | r ∈ Π and body−(r) ∩X = ∅}. A set
X of atoms is a stable model of Π iff CN(ΠX) = X . A logic program is said to be
inconsistent if it does not have any stable model.

Extended Logic Programs. In order to represent more complete information, it is pos-
sible to consider classical negation ¬ in addition to the negation as failure. Therefore,
an extended logic program is a set of rules in the form: c ← a1, . . . , an, not b1, . . .,
not bm where c, ai(1 ≤ i ≤ n), bj(1 ≤ j ≤ m) are literals (atoms or negation of
atoms). The previous definition of a stable model remains valid for any set of atoms X
which is consistent (does not contain an atom and its negation).

During the last years, logic programming with stable model semantics has been con-
sidered as a convenient tool to handle non-monotonic reasoning. It especially led to
several efficient systems, called ASP solvers: smodels [17], DLV [6], NoMore [1], AS-
SAT [13], CLASP [2].
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In [21], H.Turner gave an alternative definition of stable models of a logic program
based on the logic of Here-and-There. This logic, which is monotonic, represents in-
terpretations of a logic program in the form of pairs of sets of atoms. Intuitively, the
collection of all HT-interpretations can be constructed as follows. Let Π be a logic
program and X and Y be sets of atoms from Π . First, Y is a set of atoms which is
consistent with the program Π . Then, for every set Y , X is a set of atoms such that
X ⊆ Y and which is a set of plausible consequences of Π knowing Y .

Definition 1 (HT-interpretations). Let Π be a logic program and X and Y be con-
sistent sets of atoms such that X ⊆ Y . A pair (X,Y ) is a HT-interpretation of Π iff
Y |= Π and X |= ΠY . We denote by HT (Π) the set of all HT-interpretations of
program Π .

Example 1. Let us consider the following program Π = {a ← not b. b ← not a.}.
The sets of atoms consistent for every rule of Π are: {a}, {b} and {a, b}. It is not
possible to have an HT-interpretation with ∅ as a second element because the absence
of a entails the deduction of b (by the rule a ← not b.) and vice versa. For Y = {a},
ΠY = {a ←} then X = {a} is the only set of atoms which is consistent with ΠY ;
Similarly for Y = {b} then X = {b}; for Y = {a, b}, ΠY = ∅ then every X ⊆ Y is a
set of plausible consequences of ΠY .

Finally HT (Π) = {({a}, {a}), ({b}, {b}), (∅, {a, b}), ({a}, {a, b}), ({b}, {a, b}),
({a, b}, {a, b})}

If there is only one HT-interpretation ({Y }, {Y }) with a given Y as a second element
then Y is consistent with Π and every of its atom is justified.

Definition 2 (Stable models). Let Π be a logic program and Y be a set of atoms. Y is
a stable model of Π iff (Y, Y ) is the only element of HT (Π) where the second element
is Y .

Lemma 1. Let Π1 and Π2 be two logic programs then HT (Π1 ∪Π2) = HT (Π1) ∩
HT (Π2). This result is provided by [21].

Example 2. In the example 1, the only HT-interpretation of Π with a as a second
element is ({a}, {a}) then {a} is a stable model of Π . ({b}, {b}) is the only HT-
interpretation with {b} as a second element then {b} is a stable model of Π .

2.2 Belief Merging and Removed Sets Fusion

First works on belief merging came from the database area [20] and, later, Konieczny
[12] focused on belief merging from a semantical point of view. Belief merging aims
at associating a consistent interpretation or a consistent belief base to an inconsistent
set of belief bases (called belief profile). The interpretation or belief base resulting of
this operation has to be as close as possible to the original belief profile. Let Ψ =
{ϕ1, . . . , ϕn} be a belief profile. We denote Δ(Ψ) the result of the merging operation.
There are two straightforward ways to define Δ(Ψ) depending on if the sources are
conflicting or not, the classical conjunctive merging: Δ(Ψ) =

∧
ϕi∈Ψ ϕi suitable when
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the sources are not conflicting and the classical disjunctive merging:Δ(Ψ) =
∨
ϕi∈Ψ ϕi

appropriate in case of conflicting sources. These two opposite cases are not satisfactory,
so several methods have been proposed for fusion depending on if the bases have the
same importance or not.

When the solution provided by the merging operation is an interpretation, it is called
semantic merging. When the solution is a belief base, it is called syntactic merging, like
in [8]. In particular, the following classical fusion operators have been proposed ac-
cording to various strategies. The Sum operator, denoted by Σ, [15,18] which follows
the point of view of the majority of the belief bases of Ψ . The Cardinality operator,
denoted by Card, [3] which is similar to Σ but without taking repetitions into account.
The Max-based operator, denoted by Max [19], which tries to best satisfy all the be-
lief bases of Ψ . The Leximax-based operator, denoted by GMax, [11] which is the
lexicographic refinement of Max.

Some methods have been proposed within the context of semantic merging [5,14,3].
Among the approaches within the syntactic merging framework, Removed Sets Fusion
[9] provides a method and an implementation with the central idea to determine maxi-
mal consistent subsets of formulas. As an heuristic, we consider the set of formulas to
remove in order to restore consistency.

Definition 3 (Potential Removed Set). Let Ψ = {ϕ1, . . . , ϕn} be a belief profile con-
strainted by the belief base μ such that ϕ1 & . . . & ϕn & μ is inconsistent. Let X be a
subset of formulas of ϕ1 & . . .&ϕn. X is a potential Removed Set of ϕ1 & . . .&ϕn with
μ for constraints iff ((ϕ1 & . . . & ϕn)\X) & μ is consistent.

The Removed Sets Fusion framework captures the classical merging strategies thanks
to total pre-orders over Potential Removed Sets.

Definition 4 (Pre-order and strategies). Let Ψ = {ϕ1 & . . . & ϕn} be a belief pro-
file constrainted by the belief base μ and X and Y be potential Removed Sets of Ψ
constrainted by μ. For every strategy P , a pre-order ≤P over potential Removed Sets
is defined. X ≤P Y means that X is preferred to Y according to the strategy P . We
define <P as the strict pre-order associated with ≤P (i.e. X <P Y iff X ≤P Y and
Y 
≤P X).

Therefore, potential Removed Sets of ϕ1 & . . . & ϕn with μ for constraints which are
minimal according to the chosen strategy will be considered as the solutions of our
merging operation. These potential Removed Sets which are minimal for the <P pre-
order are called Removed Sets according to P .

Definition 5 (Removed Sets according to P ). Let Ψ = {ϕ1, . . . , ϕn} be a belief pro-
file constrainted by the belief base μ such that ϕ1&. . .&ϕn&μ is inconsistent. Let P be
a merging strategy. X ⊆ ϕ1& . . .&ϕn is a Removed Set of ϕ1& . . .&ϕn with μ for con-
straints according to the strategy P iff (i) X is a potential Removed Set of ϕ1& . . .&ϕn

with μ for constraints; (ii) There is no potential Removed Set Y of ϕ1 & . . . & ϕn with
μ for constraints such that Y <P X .

The collection of Removed Sets of Ψ with μ for constraints according to the strategy P
is denoted by FP

μ R(Ψ). The Removed Set Fusion operation is defined by:
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Definition 6 (Removed Sets Fusion). Let Ψ = {ϕ1, . . . , ϕn} be a belief profile con-
strainted by the belief base μ, the Removed Sets Fusion operation ΔP

μ (Ψ) is defined by:
ΔP
μ (Ψ) =

∨
X∈FP

μ R(Ψ){((ϕ1 & . . . & ϕn)\X) & μ}

Konieczny and Pino-Perez Postulates for Merging Operation. In [12], Konieczny
and Pino-Perez defined a set of postulates for belief bases merging. Let Ψ={ϕ1, . . . , ϕn}
be a belief profile and μ be a belief base.

(KP0) Δμ(Ψ) " μ.
(KP1) If μ is consistent, then Δμ(Ψ) is consistent.
(KP2) If Ψ is consistent with μ, then Δμ(Ψ) =

∧
Ψ ∧ μ.

(KP3) If Ψ1 ≡ Ψ2 and μ1 ≡ μ2, then Δμ1(Ψ1) ≡ Δμ2(Ψ2).
(KP4) If ϕ1 " μ and ϕ2 " μ, then Δμ(ϕ1 &ϕ2)∧ϕ1 
" ⊥→ Δμ(ϕ1 &ϕ2)∧ϕ2 
" ⊥.
(KP5) Δμ(Ψ1) ∧Δμ(Ψ2) " Δμ(Ψ1 & Ψ2).
(KP6) If Δμ(Ψ1) ∧Δμ(Ψ2) is consistent, then Δμ(Ψ1 & Ψ2) " Δμ(Ψ1) ∧Δμ(Ψ2).
(KP7) Δμ1 (Ψ) ∧ μ2 " Δμ1∧μ2(Ψ).
(KP8) If Δμ1(Ψ) ∧ μ2 is consistent, then Δμ1∧μ2(Ψ) " Δμ1(Ψ) ∧ μ2.

3 Syntactic Merging of Belief Bases Represented by Logic
Programs

We here propose to study Removed Sets Fusion when beliefs are expressed in terms
of logic programs with stable model semantics. The principle remains identical to the
propositional case: the removal of some formulas in order to restore consistency. For
the rest of this section, we consider that the belief bases are expressed in the form of
logic progams. We now give the definition of Removed Sets Fusion in this context, this
definition deals with constraints.

Definition 7 (Strong Potential Removed Set). Let Ψ = {ϕ1, . . . , ϕn} be a belief pro-
file constrainted by the belief base μ such that ϕ1 & . . . & ϕn & μ is inconsistent. Let
X be a subset of formulas of ϕ1 & . . . & ϕn. X is a strong potential Removed Set of
ϕ1 & . . . & ϕn constrainted by μ iff ((ϕ1 & . . . & ϕn)\X) & μ is consistent.

Definition 8 (Strong Removed Sets according to P ). Let Ψ = {ϕ1, . . . , ϕn} be a
belief profile constrainted by the belief base μ such that ϕ1&. . .&ϕn&μ is inconsistent.
Let P be a merging strategy. X ⊆ ϕ1 & . . . & ϕn is a Removed Set of ϕ1 & . . . & ϕn

constrainted by μ according to the strategy P iff (i) X is a strong potential Removed
Set of ϕ1 & . . . & ϕn constrainted by μ; (ii) There is no strong potential Removed Set
Y of ϕ1 & . . . & ϕn constrainted by μ such that Y <P X .

The collection of Strong Removed Sets of Ψ according to the strategy P is denoted by
FP
μ R(Ψ). The Removed Sets Fusion operation is defined by:

Definition 9 (Strong Removed Sets Fusion). Let Ψ = {ϕ1, . . . , ϕn} be a belief profile
constrainted by the belief base μ , the Strong Removed Sets Fusion operation ΔP

μ (Ψ) is
defined by: ΔP

μ (Ψ) =
∨
X∈FP

μ R(Ψ){((ϕ1 & . . . & ϕn)\X) & μ}
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3.1 Consequence Relation between Logic Programs

In propositional logic, the consequence relation between two set of formulas is clearly
defined (A |= B iff ∀I ∈ W , if I |= A then I |= B). This definition can hardly be
applied to logic programs.

Example 3. Let Π = {a} be a belief profile constrainted by the belief base μ = {c ←
not a. ¬b.}. Thus, the consequences of μ are {¬b, c} and the consequences of Π ∪ μ
are {¬b, a}.

One can easily see that the consequences of Π ∪ μ are completely different from the
consequences of μ and that a definition of a consequence relation given in terms of
stable models inclusion will not properly fit the logic programming framework. This
problem can be overcome by chosing a definition of the consequence relation in terms
of inclusions of HT-interpretations.

Definition 10 (Inference). Let Π1 and Π2 be logic programs, we define that Π1 im-
plies Π2, denoted by Π1 |= Π2 iff HT (Π1) ⊆ HT (Π2).

Example 4. Let us consider again the example 3 in order to illustrate the consequence
relation between two sets of rules. In this example, we have:

HT (μ) = {({¬b}, {¬b, a}), ({¬b, a}, {¬b, a}), ({¬b, c}, {¬b, c}),
({¬b}, {¬b, a, c}), ({¬b, a}, {¬b, a, c}), ({¬b, c}, {¬b, a, c}), ({¬b, a, c}, {¬b, a, c})}

HT (Π ∪ μ) = {({¬b, a}, {¬b, a}), ({¬b, a}, {¬b, a, c}), ({¬b, a, c}, {¬b, a, c})}
We have HT (Π ∪ μ) |= HT (μ) and therefore according to the previous definition

(Π ∪ μ) |= μ.

This new definition allows us to study properly the KP postulate for the Strong Removed
Sets Fusion operation.

3.2 KP Postulates with Respect to Removed Sets Fusion for Logic Programs

The Strong Removed Sets Fusion operation for logic programs verifies the following
KP postulates:

Strategies (KP0) (KP1) (KP2) (KP3) (KP4) (KP5) (KP6) (KP7)
Σ yes yes yes no no no no no

Card yes yes yes no no no no no
Max yes yes yes no no no no no

Gmax yes yes yes no no no no no

Sketch of Proofs. The counter-examples are explained only for the Σ operator but also
make sense for the other operators.

(KP0) Thanks to the theorem 1, we know that HT (Π ∪Π ′) = HT (Π) ∩ HT (Π ′).
By contruction, we have that HT (ΔΣ

μ (Ψ)) ⊆ HT (μ) and then ΔΣ
μ (Ψ) |= μ.

(KP1) and (KP2) True by construction
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(KP3) Consider Ψ1 = {p. q.}, Ψ2 = {p. q ← p.} and μ = {¬p.}.
ΔΣ
μ (Ψ1) = {¬p, q} HT (ΔΣ

μ (Ψ1)) = {({¬p, q}, {¬p, q})}
ΔΣ
μ (Ψ2) = {¬p, q ← p} HT (ΔΣ

μ (Ψ2)) = {({¬p}, {¬p}) ({¬p}, {¬p,¬q}
({¬p,¬q}, {¬p,¬q})}

(KP4) and (KP5)

Π1 =

⎧⎨⎩
a ← not ¬h. c ← b.

c ← a. b ← not ¬h.
¬c.

⎫⎬⎭ Π2 =

⎧⎨⎩
d ← not ¬c. h ← e.

h ← d. e ← not ¬c.
¬h.

⎫⎬⎭
ΔΣ
�(Π1) = {a ← not ¬h. b ← not ¬h. c ← a. c ← b.} and every HT-

interpretation has c in the first set of atoms of the pair. ΔΣ
�(Π2) = {d ← not ¬c. e ←

not ¬c. h ← d. h ← e.} and every HT-interpretation has h in the first set of atoms
of the pair. Hence, ΔΣ

�(Π1 & Π2) = Π1 ∪ Π2 and ¬c and ¬h are in the first set of
atoms of the pair.

(KP6) and (KP7)

Π =
{

a ← not c. ¬d. d ← a.
d ← b. b ← not c.

}
with μ2 = {c.}. ΔΣ

�(Π) = {a ← not c. b ← not c. d ← a. d ← b.}. Each
HT-interpretation of ΔΣ

�(Π) has d in the first set of atoms of the pair and each HT-
interpretation of ΔΣ

�∧μ2
(Π) has ¬d in the first set of atoms of the pair.

Discussion. The KP postulates have been defined in the framework of monotonic
propositional logic. It is normal that the operators described in this paper do not fully
respect them. For instance, the postulates (KP4) and (KP5) mean that if two sets of
rules agree on some consequences, their union should respect the consensus; which is
clearly not the case in logic programming with stable model semantics.

3.3 Weak Removed Sets Fusion for Logic Programs

Some sets of rules do not have stable models because they imply inconsistent sets of
atoms and some others because it is impossible to justify their consequences. For in-
stance, the program Π = {¬a. a ← b. b.} has for immediate consequences the set
of atoms {a,¬a, b} which is inconsistent. On the contrary, the program Π ′ = {a ←
not b. b ← not c. c ← not a.} which does not imply inconsistent sets of atoms but
does not have any stable models because it is impossible to find any self-justifying set
of atoms. In one hand, in the case of Π , there are no set of rules ϕ such that Π ∪ ϕ has
stable models. Though, the only way to restore consistency in those beliefs is to remove
some rule. On the other hand, the program Π ′ is not intrinsincally inconsistent. It is
possible to restore consistency without losing beliefs, for instance, the union Π ′ ∪ {a.}
has a stable model ({a, b}).

It seems reasonable to consider an operation which would keep as much rules as
possible as long as consistency can still be restored. We can call this operation a weak
merging operation.
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Formally, a set of formulas which has at least one HT-interpretation can still have its
consistency restored. Generally speaking, consider a logic program which has several
HT-interpretations where the second element is Y . If a set of facts Y is added, then this
new program will have Y as stable model. Actually, a set of atoms Y is a stable model
of Π iff the only HT-interpretation of Π where the second element is Y is (Y, Y ). Let
Ψ = {ϕ1, . . . , ϕn} be a belief profile and μ be a belief base such that ϕ1 & . . .&ϕn &μ
does not have any stable model, a set of rules X such that ((ϕ1&. . .&ϕn)\X)&μ has at
least one HT-interpretation, it is called weak potential Removed Set. A weak potential
Removed Set of Ψ constrainted by μ which is minimal according to the strategy P , is
called weak Removed Set of Ψ constrainted by μ according to P .

Definition 11 (Weak potential Removed Set). Let Ψ = {ϕ1, . . . , ϕn} be a belief pro-
file constrainted by the belief base μ such that ϕ1 & . . . & ϕn & μ does not have any
HT-interpretation. Let X be a subset of rules of ϕ1 & . . . & ϕn. X is a weak potential
Removed Set of ϕ1 & . . . & ϕn constrainted by μ iff ((ϕ1 & . . . & ϕn)\X) & μ has at
least one HT-interpretation.

Definition 12 (Weak Removed Set). Let Ψ = {ϕ1, . . . , ϕn} be a belief profile con-
strainted by the belief base μ such that ϕ1 & . . . & ϕn & μ does not have any HT-
interpretation. Let P be a merging strategy. X ⊆ ϕ1 & . . . & ϕn is a weak Removed
Set of ϕ1 & . . . & ϕn constrainted by μ iff (i) X is a weak potential Removed Set of
ϕ1 & . . .&ϕn constrainted by μ; (ii) There is no Y which is a weak potential Removed
Set of ϕ1 & . . . & ϕn constrainted by μ such that Y <P X .

The collection of Weak Removed Sets of Ψ according to the strategy P is denoted by
FP,w
μ R(Ψ). The Removed Sets Fusion operation is defined by:

Definition 13 (Weak Removed Sets Fusion). Let Ψ = {ϕ1, . . . , ϕn} be a belief pro-
file constrainted by the belief base μ and P be a merging strategy, the Weak Removed
Sets Fusion operation ΔP,w

μ (Ψ) is defined by: ΔP,w
μ (Ψ) =

∨
X∈FP,w

μ R(Ψ){((ϕ1& . . .&
ϕn)\X) & μ}

4 Implementation of the Merging Problem

The implementation of Removed Sets Fusion for logic programs stems from an ap-
proach similar to the propositional cases described in [8]. Let Ψ be a belief profile and
μ be a belief base representing constraints on Ψ . It constructs a logic program ΠΨ,μ,
such that for any strategy P , the preferred stable models of ΠΨ,μ according to P corre-
spond to the Removed Sets of Ψ constrainted by μ according to P . In the same way, we
construct a logic program Πw

Ψ,μ to solve the weak merging operation.
The first part of the program gives the potential Removed Sets of Ψ constrainted

by μ and the second part selects Removed Sets amongst them. It is done thanks to
the enumeration of possible interpretations which will provide the maximal consistent
subsets of logic program. There is however some differences with the propositional
case:

– A model for a propositional logic base can contain either a or ¬a. A stable model
can contain a, ¬a or none of them.
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– In Removed Sets Fusion, the subset of formulas generated by an interpretation has
to be consistent (the interpretation which generates it being the model), which is not
the case for logic programs because an interpretation can satisfy every rule without
being a stable model of the program.

Let Ψ = {ϕ1, . . . , ϕn} be a belief profile and μ be a belief base representing con-
straints. The set of all positive (resp. negative) literals of ΠΨ,μ is denoted by V +

(resp. V −). The set of atoms representing rules is defined by R+ = {rif | f ∈ ϕi}
and FO(rif ) denotes the rule of ϕi corresponding to rif in ΠΨ,μ. Namely, ∀rif ∈
R+, FO(rif ) = f . To each answer set of ΠΨ,μ we associate the potential Removed
Set FO(R+ ∩ S). Considering this, we will describe the logic program which will
represent the merging problem. Our program will have four steps:

– The first step generates the set of interpretations of V which can be stable models
of a subset of rules. (4.1)

– The second step assures that there exists a rule which allows the atom to be present
in the current interpretation. (4.2)

– The third step allows to point out the rules that should be removed. (4.3)
– The last step, finally, is used to encode the strategy. (4.4)

Example 5. We illustrate each part of the translation with the following example. Con-
sider Ψ = {ϕ1, ϕ2} with ϕ1 = {f1 : a ← not b. f2 : b ← not c.},
ϕ2 = {f3 : c ← not a. f4 : d ← a.} and μ = {← a.}.

4.1 First Step: Generating Interpretations

Generating all the interpretations of V for the set of atoms {a1, . . . , an} is done through
the rules {a1, a

′
1, . . . , an, a

′
n} where a′i represents the negation of ai. Finally, to avoid

the presence of an atom and its negation in the same interpretation, we introduce, for
every atom ai, the contrainst ← ai, a

′
i.

Case of Basic Program. When dealing with basic programs (which do not contain any
negation), this part can be reduced to the instruction {a1, . . . , an}.
Example 6. Continuing the example 5. Their interpretations are generated thanks to the
statement {a, b, c, d}.

4.2 Second Step: Rules to Remove

It is impossible that a set of atoms S is a stable model of a logic program ΠΨ,μ if there
exists a rule f such that S satisfies body(f) and head(f) 
∈ S. Such a rule should
therefore be removed in order to allow the interpretation to be a model.

Hence, for every rule f : head(f) ← body(f), we introduce the rule rf ←
not head(f), body(f). The presence of the atom rf means that the rule f should not
be considered in the stable model corresponding to S.

Example 7. Consider the example 5. The selection of rules to remove is done thanks to
r1 ← not a, not b. r2 ← not b, not c. r3 ← not c, not a r4 ← not d, a. 1

1 For the sake of readability, we will note ri instead of rfi .
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4.3 Third Step: Necessity of the Presence of an Atom

Generally speaking, a stable model represents the set of reasonable consequences of
a logic program. It means that an atom only belongs to a stable model if it has been
deduced thanks to a rule or a fact. It is necessary, for every set of atoms S, that there
exists a very reason for any atom to be true.

For every atom a, we define an atom auth(a) representing the fact that an atom
a has been authorized to be deduced. Therefore, for every atom a, we introduce the
rule ← a, not auth(a) which implies the impossibility for an atom to be present if its
presence is not justified.

Logically, auth(a) is deduced if a rule has not been removed and if body(f) ⊆ S.
For every rule f , we introduce the rule auth(head(f)) ← not rf , body(f).

Example 8. Continuing the example 5. The rules allowing to determine if an atom has a
reason for being deduced are: ← a, not auth(a).← b, not auth(b).← c, not auth(c).
← d, not auth(d). auth(a) ← not b, not r1. auth(b) ← not c, not r2. auth(c) ←
not a, not r3. auth(d) ← a, not r4.

The whole ΠΨ,μ program has the following stable models: {b, auth(b), r3} {r1,
r2, r3} {c, auth(c), r1}.

Proposition 1. Let Ψ = {ϕ1, . . . , ϕn} be an belief profile and μ be a belief base rep-
resenting constraints. Let S ⊆ V be a set of atoms. S is a stable model of ΠΨ,μ iff IS
is an interpretation of V + which satisfies ((ϕ1 & . . . & ϕn)\FO(R+ ∩ S)) & μ.

4.4 Fourth Step: Optimization

The optimization statements are similar to the ones presented in [9].

Example 9. Continuing the example 5.
For the Σ strategy, the optimization statement will be:

minimize{r1, r2, r3, r4}.
For the Max strategy, the optimization statements will be:

#domain possible(U). #domain base(V ). #domain possible(W ).
possible(1..2). base(1..2). size(U) ← U{rVf |F0(f) ∈ ϕV }U.
negmax(W ) ← size(U), U > W. max(U) ← size(U), not negmax(U).
minimize[max(1) = 1,max(2) = 2]

For both strategies, the preferred stable models of ΠΨ,μ are: {b, auth(b), r3} and
{c, auth(c), r1} which correspond to the Strong Removed Sets of Ψ constrainted by μ
according to Σ and Max: {a ← not b.} and {c ← not a.}.

The following proposition establishes the one-to-one correspondence between the pre-
ferred stable models of ΠΨ,μ according to P and the Strong Removed Sets of ΔP

μ (Ψ)

Proposition 2. The set of Strong Removed Sets of Ψ constrainted by μ according to P
is the set of preferred stable models of ΠΨ,μ according to P . This proposition holds for
Σ, Max, Card and Gmax.
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4.5 Weak Merging Operation

The main difference between the strong and weak merging operations is that an atom
does not need justification to belong to an interpretation. Therefore a program to solve
the weak version of merging operator will have the same rules as a strong one except
the rules described in 4.3.

Example 10. Consider again the example in 5. The program Πw
Ψ,μ is:

{a, b, c, d}. r1 ← not a, not b. r2 ← not b, not c.
← a. r3 ← not c, not a. r4 ← not d, a.

minimize{r1, r2, r3, r4}.

This program has 20 stable models and the minimal one for every strategy is {a, b,
c, d} which corresponds to the Weak Removed Set of Ψ constrainted by μ which is the
empty set.

The following proposition establishes the one-to-one correspondence between the pre-
ferred stable models of Πw

Ψ,μ and the Weak Removed Sets of ΔP,w
μ (Ψ)

Proposition 3. The set of Weak Removed Sets of Ψ constrainted by μ according to P
is the set of preferred stable models of Πw

Ψ,μ according to P . This proposition holds for
Σ, Max, Card and Gmax.

5 Conclusions and Perspectives

We presented a first approach for merging logic programs based on Removed Sets Fu-
sion. A study of the properties has been led thanks to the Konieczny and Pino-Perez
postulates. This study showed that the Konieczny and Pino-Perez postulates are not
suitable in the framework of belief bases merging when beliefs are expressed thanks to
logic programs with stable model semantics. We proposed a definition of an inference
relation between logic programs. We also defined a weakened version of the merging
operation.

Removed Sets Fusion for belief bases represented by logic programs is translated
into a logic program with stable model semantics and the one-to-one correspondence
between removed sets (both Weak and Strong version) and preferred stable models is
shown. Moreover, the paper shows how Removed Sets Fusion can be performed with
any ASP solver.

Future works will study the properties of the weak Removed Sets Fusion. A more
extensive experimentation of the Removed Sets Fusion for belief represented by logic
programs has to be performed. It also can be relevant to study KP postulates in order to
allow postulates for dealing with a broader range of frameworks for representing beliefs.
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Abstract. Most operators for merging multiple knowledge bases (where each is
a set of formulae) aim to produce a knowledge base as output that best reflects
the information available in the input. Whilst these operators have some valuable
properties, they do not provide explicit information on the degree to which each
formula in the output has been, in some sense, supported by the different knowl-
edge bases in the input. To address this, in this paper, we first define the degree
of support that a formula receives from input knowledge bases. We then provide
two ways of determining formulae which have the highest degree of support in
the current collection of formulae in KBs, each of which gives a preference (or
priority) over formulae that can be used to stratify the formulae in the output.
We formulate these two preference criteria, and present an algorithm that given a
set of knowledge bases as input, generates a stratified knowledge base as output.
Following this, we define some merging operators based on the stratified base.
Logical properties of these operators are investigated and a criterion for selecting
merging operators is introduced.

1 Introduction

The notion of priority (preference) is important in inconsistency-tolerant reasoning
(such that for potentially inconsistent knowledge-based systems [B+04], belief updat-
ing [Gad88], analyzing inconsistent regulations [BB04]; and analyzing social networks
[KG06]). Priorities can be encoded in two different ways, one way is to prioritize these
sources according to their reliability and another is to attach priorities to items of knowl-
edge within each source [BDP96]. Both approaches usually would require that infor-
mation on priorities is available explicitly, especially for the reliability of sources.

Merging operators for multiple knowledge bases therefore can be characterized for
whether they are designed to merge flat (e.g., [BKMS92, KLM04]) or stratified knowl-
edge/belief bases (e.g.,[B+98, DDL06]). Often, the result of merging, no matter whether
for stratified or for flat knowledge bases, is simply a flat base1. However, even if the

1 We only consider merging in the context of propositional logic. As for possibilistic logic, the
merged result is a new possibilistic knowledge base which can be regarded as prioritized.

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 383–395, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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original knowledge bases are not prioritized, some items of knowledge (i.e., some for-
mulae) receive more support (i.e. more preferred) then others. This information is often
ignored when a merged result is obtained.

The importance of differentiating more preferred (w.r.t. support) from less preferred
formulae can be seen in many applications such as in requirements engineering or
in analyzing findings from clinical trials. In requirements engineering, common re-
quirements from different sources are in general selected first before resolving con-
flicting requirements [Dav05]. Assume that there are four stakeholders involved in
building a new computer system. Stakeholder A (sales person) prefers the new sys-
tem to be open and fashionable, stakeholder B (system security) prefers the system
to be authorized and not open, stakeholder C (programmer) prefers open and fashion-
able, and stakeholder D (investor) prefers open, and fashionable and easy to use. We
can construct four knowledge bases as follows where p = open, q = fashionable,
s = authorized and r = easy to use, KA = {p, q}, KB = {¬p, s}, KC = {p, q},
and KD = {p, q ∧ r}. A combination method in [BKMS92] generates two possible
solutions M1 = {p, q, q ∧ r, s} and M2 = {¬p, q, q ∧ r, s}. With these two maxi-
mal consistent subsets, it is not possible to decide whether it should be p or ¬p in the
merged result, although p has support from three bases. The merging operators pro-
posed in [Kon00] overcome this problem. For instance, one of the three operators in
[Kon00] selects M1 = {p, q, q ∧ r, s} in the above example since this subset is consis-
tent with three of the four original bases. However, current merging operators cannot
tell which formulae are more preferred in the merged base. In this example, proposi-
tion p (the new system should be open) is directly required by three stakeholders, while
proposition s is only supported by one stakeholder, nevertheless, they are all treated
equally in the merged knowledge base. Furthermore, q is directly given in two bases
and is entailed from another base. This extra information is not retained either after
merging. We believe that the degree of support for p (no matter whether directly given
or implicitly entailed) from these sources should be reflected in a merged base, so the
output of merging also states that p is preferred to q and q is preferred to s.

In this paper, we investigate how the above two types of support to a formula can
be identified when multiple knowledge bases are present. For this, we first define the
degree of support that a formula receives from a profile, we then define both the notion
of most primed formulae and the most entailed formulae and propose methods to select
them. A formula with the highest degree of support in a set of knowledge bases (a pro-
file) is either a most primed or a most entailed formula in the profile. We also propose
an algorithm to stratify the union of formulae from multiple knowledge bases based on
the degree of support a formula receives, with the result being a stratified base. A strat-
ified base induces a total preorder relation which ranks a more preferred formula ahead
of less preferred ones. The significance of such a base can be shown in several aspects.
First, common beliefs (knowledge) from the majority of sources are given higher prior-
ities than other beliefs in a profile. Second, it can be used to determine which merging
result is better in terms of retaining more important formulae. Third, it can be taken as
a prioritized observation base and merging operators tailored towards such a base can
be applied [DDL06].
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The paper is organized as follows. The preliminaries are introduced in Section 2. Two
conceptualizations of most preferred formulae which have the highest degree of support
in the current profile are presented, namely, the most primed and the most entailed
formulae in Section 3. A stratification algorithm and its properties are studied in Section
4. In Section 5, some new merging operators are proposed and their logical properties
are discussed. Comparisons with related work and conclusions are given in Section 6.

2 Preliminaries

2.1 Propositional Logic

We consider standard finite classical propositional logic here. We denote atoms as
p, q, r, etc. and formulas as φ, ψ, γ,, etc.. A literal is an atom p or its negation ¬p and
is denoted as li. The classical consequence relation is denoted as ". An interpretation
(possible world), ω, is a function from A (the set of atoms) to {0, 1} and is denoted as
the conjunction of literals l1 ∧ ... ∧ l|A|, where |A| means the cardinality of set A. ω is
a model of a formula φ iff ω(φ) = 1. Two formulae φ and ϕ are said to be equivalent
(or equal), denoted as φ ≡ ϕ, iff they have the same set of models. In this paper, we say
φ is in Ki iff there exists a ϕ ∈ Ki such that φ ≡ ϕ regardless of their syntax. Also,
∧Ki " φ denotes ∧ϕj " φ where ϕj ∈ Ki.

A knowledge base, K , is a collection of propositional formulae and a knowledge
profile, E = {K1, ...,Kn} contains a set of knowledge bases which are not necessarily
distinct. In the following, we let E∪ = K1 ∪ ...∪Kn and let E∩ = K1 ∩ ...∩Kn where
∪ and ∩ are usual set-based union and intersection operators. A subset E of knowledge
profile E itself in turn is a knowledge profile and E∪ and E∩ are similarly defined. In
subsequent sections, we always use E to denote an original knowledge profile, and use
E (possibly with subscript) to denote a subset of E .

2.2 Stratified Knowledge Bases

A stratified knowledge base, also called a ranked knowledge base [Bre04] or a prior-
itized knowledge base [B+93] models a set of formulae with explicit preferences (or
priorities) among the formulae. Let K be a knowledge base containing a set of propo-
sitional formulae, (K,�) is a stratified base if there is a total preorder relation � on
K . � is a total preorder on K iff for any φ, ϕ ∈ K , either φ � ϕ or ϕ � φ holds. A
preorder relation,�, is transitive and reflexive and its associated strict preorder relation,
≺, is defined as φ ≺ ϕ iff φ � ϕ but ϕ 
� φ. φ � ϕ is interpreted as φ is at least as
preferred (or plausible) as ϕ and φ ≺ ϕ as φ is more preferred than ϕ. Two preorder
relations�1 and �2 are equivalent, denoted as �1≡�2, if for any two formulae φ and
ϕ, φ �1 ϕ implies φ �2 ϕ and vice versa.

For simplicity, in the following we use SK to denote a stratified version of a knowl-
edge base K without mentioning the total preorder relation on K and SK can be equiv-
alently represented as a tuple SK = 〈S1, ..., Sm〉 such that Si 
= ∅, (i = 1, ...,m) and
Si contains all the most preferred elements in K \ (∪i−1

j=1Sj) w.r.t�, that is, Si = {φ ∈
K \ (∪i−1

j=1Sj), s.t., ∀ϕ ∈ K \ (∪i−1
j=1Sj), φ � ϕ}. Each Si is called a stratum of K and

index i is the priority level of formulae in Si. Therefore, the lower the index is, the more
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preferred a formula is. A stratified knowledge base K can be inconsistent and the degree
of inconsistency of K is defined as Inc(SK) = i, i > 0s.t.,∪i−1

j=1Sj 
" ⊥,∪ij=1Sj " ⊥.
Let SK1 = 〈S1, ..., Sm〉 and SK2 = 〈T1, ..., Tn〉 be two tuples, the concatenation of
them is defined as SK1 ⊕ SK2 = 〈S1, ..., Sm, T1, ..., Tn〉. In particular for any tuple
SK , SK ⊕ 〈〉 = 〈〉 ⊕ SK = SK . Also, we write SK1 ≈ SK2 iff m = n and for
each i where Si = {β1, ..., βp} and Ti = {β′1, ..., β′p} it is the case that βj = β′j , for
j = 1, ..., p.

3 Most Preferred Formulae

To characterize that some formulae are more preferred than others in a collection of
knowledge bases, we first define the degree of support of a formula. The rational of this
definition is that there could be many ways to define a function from formulae to [0,1]
and some of them are not acceptable as formalizing the amount of support a formula
gets from a knowledge base. So we only give some constraints about what a degree of
support function shall obey, rather than specify a single function.

Definition 1. Let E be a knowledge profile and let φ be a formula. A real function SE
is a degree of support function for E iff it satisfies the following two conditions.

1. If |E| = 1 and φ ∈ E∪ then SE(φ) = 1
2. If E∪ �� ⊥ and φ ∈ E∪ then SE(φ) > 0, where E∪ �� ⊥ means E∪ is consistent.

φ is a most preferred formula if ∀ϕ ∈ E∪, abs(SE(φ)) ≥ abs(SE(ϕ)) holds, where
abs(SE(φ)) returns the positive value (the absolute value) obtained from SE(φ).

This definition contains two constraints. The first says that when a knowledge profile
contains a single knowledge base then every formula in the base should have the max-
imum support, and the second states that when a knowledge profile is consistent then
every formula appearing in the profile should have a positive degree of support. We now
provide some subsidiary definitions that we will use to define two possible definitions
of a degree of support functions. Let Atoms(E∪) be the set of atoms that appear in the
formulae in E∪. We can use the power set of Atoms(E∪) to denote the set of interpreta-
tions of E∪. For any I ⊆ Atoms(E∪), if α ∈ I then α is true in I , otherwise α is false
in I .

Definition 2. For a set of formulae X , the set of models of X in the context of E ,
denoted ME(X), is defined as ME(X) = {I ⊆ Atoms(E∪) | I |= ∧X}
Definition 3. Let K be a consistent set of formulae and let φ be a consistent formula.
The degree of entailment of K for φ in the context of E , denoted EE (K,φ), is defined
as EE (K,φ) = |ME(K∪{φ})|

|ME(K)| .

For instance, let K = {p, q∧ r}, then EE(K, p) = 1, EE(K, p∧ q) = 1, EE(K, q ∧ r∧
s) = 1

2 .
The Dalal distance (Hamming distance) between wi and wj , denoted Dalal(wi, wj),

is the difference in the number of atoms assigned true (i.e. Dalal(wi, wj) = |wi − wj | +
|wj −wi|). To evaluate the conflict between two formulae, we take a pair of models, one
for each formula, such that the Dalal distance is minimized. The degree of conflict is
this distance divided by the maximum possible Dalal distance between a pair of models.
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Definition 4. Let X and Y be sets of formulae, each of which is consistent. The set of
distances between X and Y , denoted DistE(X,Y ) is defined as

DistE(X, Y ) = {Dalal(wx, wy) | wx ∈ ME(X) ∧ wy ∈ ME(Y )}

Definition 5. Let K be a consistent set of formulae and let φ be a consistent formula.
The degree of conflict of K for φ in the context of E , denoted CE (K,φ), is defined as
follows:

CE(K, φ) =
Min(DistE(K, {φ}))

|Atoms(E∪)|

Once again, let K = {p, q∧r}, then CE(K, p) = CE(K, p∧q) = 0, CE(K, q∧¬r∧s) =
1/4.

We now define two instances of a degree of support.

Definition 6. Let E be a knowledge profile and let φ be a formula. The drastic degree
of support, denoted Sd

E , is defined as

Sd
E(φ) =

∑
K∈E,EE(K,φ)=1

EE(K,φ)

Definition 7. Let E be a knowledge profile and let φ be a formula. The balanced degree
of support, denoted Sb

E , is defined as

Sb
E(φ) =

∑
K∈E

EE(K,φ)−
∑
K∈E

CE (K,φ).

Proposition 1. Let E be a knowledge profile and let φ and ψ be formulae.

1. If φ " ψ then Sd
E(φ) ≤ Sd

E(ψ)
2. If E 
" ⊥ and φ " ψ, then Sb

E(φ) ≤ Sb
E(ψ)

Example 1. Let E = {KA,KB,KC ,KD} where KA = {p, q}, KB = {¬p, s},
KC = {p, q}, and KD = {p, q ∧ r} (as defined in the Introduction). Then the drastic
degrees of support and the balanced degree of support for formulae p, q, ¬p, s, and q∧r
respectively are

p q ¬p s q ∧ r
Sd
E(•) 3 3 1 1 1

Sb
E(•) 11

4
7
2

1
4

5
2

9
4

Formulae p and q have the highest drastic degree of support from these bases while q
is the only formula in E∪ that has the highest balanced degree of support. The balanced
degrees of support for p and ¬p are both less than their drastic degrees of support
because one of them contributed to the degree of conflict of the other. Sd

E(q ∧ r) = 1
is increased to Sb

E(q ∧ r) = 9/4 because q ∧ r is partially entailed by KA and KC ,
and it is not in conflict with KB . If we consider the drastic degree of support, p and
q are among the most preferred formulae. It should be pointed out that p is directly
given in three bases while q is given in two and is entailed by another, although they
have the same degree of support. We want to differentiate these two types of formulae
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when their degrees of support are the same, since we believe that p (as an individual
statement) holds more support than q (if we assume stakeholder D really prefers that
both q and r be true, not just q).

In this paper, we will only consider the drastic degree of support and we conceptu-
alize these two types of most preferred formulae which have the highest drastic degree
of support in the current profile, namely the most primed and the most entailed.

Definition 8. Let E = {K1, ...,Kn} be a knowledge profile. We define a total preorder
relation �p on E∪ as follows.

∀φ, ϕ ∈ E∪, φ �p ϕ iff Sdp
E (φ) ≥ Sdp

E (ϕ)

where Sdp
E (φ) = |	(E)|s.t., 	(E) = {K ∈ E|EE(K, φ) = 1 and φ ∈ K}.

Sdp
E (φ) is a variant of Sd

E(φ) in which we not only require that EE(K,φ) = 1 but also
φ ∈ K , so Sdp

E (φ) is more restricted than Sd
E(φ). For instance, with Example 1, we have

Sd
E(q) = 3 whilst Sdp

E (q) = 2, because q 
∈ KD although EE(KD, q) = 1.

Definition 9. Let E = {K1, ...,Kn} be a knowledge profile. φ ∈ E∪ is called a most
primed formula in E∪ iff φ �p ϕ, ∀ϕ ∈ E∪.

The most primed formulae are knowledge profile dependent, since a formula can be
a most primed formula in one profile but not in another. For example, if we have a
knowledge profile E = {K1,K2,K3} such that K1 = {p, q, r},K2 = {p, r, s}, and
K3 = {p, q,¬r}, then the most primed formula in E∪ is p. However, if we delete p
from K3, then the most primed formulae are {p, q, r}.

Definition 10. Let E = {K1, ...,Kn} be a knowledge profile. We define a total preorder
relation �e on E∪ as follows

∀φ, ϕ ∈ E∪, φ �e ϕ iff Sd
E(φ) ≥ Sd

E(ϕ)

φ is a most entailed formula in E∪ iff ∀ψ ∈ E∪, φ �e ϕ.

Like the most primed formulae in E∪, the most entailed formulae are dependent on
which knowledge profile is under consideration. A formula can be a most entailed for-
mula in one knowledge profile but is not in another.

It is obvious that given E = {K1, ...,Kn}, ∀φ ∈ E∪, Sdp
E (φ) ≤ Sd

E(φ).

Example 2. Let E1 = {K1,K2,K3} with K1 = {p, q}, K2 = {p ∧ q, r} and K3 =
{p, s}, then, Sd

E(p) = 3 and Sdp
E (p) = 2, Sd

E(q) = 2 and Sdp
E (q) = 1, and Sd

E(r) =
Sdp
E (r) = 1, Sd

E(s) = Sdp
E (s) = 1.

It should be noted that although the concept of most entailed formulae subsumes the
concept of most primed formulae, we still prefer to have these two types of prefer-
ences defined separately. One advantage of this is that we would be able to distinguish
a formula that is directly given by several knowledge bases (that is, this element of
knowledge is explicitly believed and supported) from a formula which is inferred from
the same number of knowledge bases (that is, this element of knowledge is implicitly
believed and supported), if these two formulae have the same degree of support. For
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instance, for p and q in Example 1 we have Sd
E(p) = Sd

E(q) = 3, however, p holds
more confidence in the four knowledge bases than q does. Therefore, we believe that p
is more preferred than q in the profile and this rationale is used in the algorithm in the
following section.

4 Stratification of a Knowledge Profile

The algorithm below ranks a more preferred formula (using the most primed and the
most entailed formulae) ahead of a less preferred formula. SMPE(E) stands for an algo-
rithm for Stratification based on the Most Primed and/or Entailed formulae in E∪.

Algorithm: SMPE(E)
1 Input: a knowledge profile E
2 Output: a stratified version of E∪, denoted SE
3 begin
4 Let SE = 〈〉, i = 1.
5 while E∪ �= ∅ do
6 Sup1 = max{Sdp

E (φ)|φ ∈ E∪}.
7 Sup2 = max{Sd

E(φ)|φ ∈ E∪}.
8 if Sup1 = Sup2

9 then do
10 Si = {φ|Sdp

E (φ) = Sup1, s.t., φ ∈ E∪}.
11 SE = SE ⊕ 〈Si〉.
12 i = i + 1.
13 E∪ \ Si.
14 end of then
15 else do
16 Si = {φ|Sd

E(φ) = Sup2, s.t., φ ∈ E∪}.
17 SE = SE ⊕ 〈Si〉.
18 i = i + 1.
19 E∪ \ Si.
20 end of else
21 end of while
22 end

Example 3. Let E = {K1, ...,K7} where K1 = K2 = K3 = {p}, K4 = K5 = K6 =
{q ∧ r} and K7 = {p, s}. Then SMPE(E) returns SE = 〈{p}, {q ∧ r}, {s}〉.
The stratification makes it explicit that if a formula (statement) is more primed or more
entailed, then it should be more preferred in a merged result than other formulae. There-
fore, it has the obvious advantage over using a merging operator that gives a flat base.
This is especially useful when knowledge bases are inconsistent.

Example 4. (Continue Example 1) Let E = {KA,KB,KC ,KD}, then the stratified
base from the algorithm is SE = 〈{p}, {q}, {¬p, s, q ∧ r}〉 which clearly shows that p
gathers more support from these sources.

Algorithm SMPE(E) can be modified to stratify a knowledge profile based on the criteria
of the most primed (resp. the most entailed formulae) only by using value Sup1 (resp.
Sup1) alone. The following example reveals the subtle difference between the algorithm
and its variants.
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Example 5. Let E = {K1,K2,K3,K4} where K1 = {p, q ∧ r}, K2 = {p, q ∧ r, s},
K3 = {p, q, s}, and K4 = {p, q, s}. The stratification of E∪ from the exact algorithm
is SE = 〈{p}, {q}, {s}, {q ∧ r}〉. The stratification of E∪ when only the most primed
formulae are considered (only Sup1 is used) is SE = 〈{p}, {s}, {q, q ∧ r}〉. On the
other hand, when only the most entailed formulae are used (only Sup2 is considered),
the result is SE = 〈{p, q}, {s}, {q ∧ r}〉.

Definition 11. Let E be a knowledge profile and every knowledge base in E be con-
sistent. We define an ordering relation �MPE on E∪ induced by SE from SMPE(E) as
φ �MPE ψ, iff φ ∈ Si, ψ ∈ Sj , and i ≤ j.

Proposition 2. Let �MPE be defined as above, then φ �MPE ϕ iff one of the following
conditions is true

Sdp
E (φ) = Sd

E(φ) = Sdp
E (ϕ) = Sd

E(ϕ);
Sd
E(φ) = Sd

E(ϕ) > Sdp
E (ϕ);

Sd
E(φ) > Sd

E(ϕ).

Conditions 1 and 3 correspond exactly to the if and else statements of lines 8 and line
15 respectively. For Condition 2, when Sdp

E (φ) = Sd
E(φ), it has the same effect as

Condition 3, i.e., φ is one stratum lower than ϕ; however when Sdp
E (φ) < Sd

E(φ), it has
the same effect as Condition 1, i.e., φ and ϕ are in the same stratum. For instance, in
Example 5, we have Sd

E(p) = Sd
E(q) > Sdp

E (q) (and Sd
E(p) = Sdp

E (p)), so Condition 2
is met and p is ranked ahead of q.

Definition 12. Let�p
MPE be a variant of�MPE on E∪ such that SMPE(E) considers only

the most primed formulae in E∪ for stratification.

Proposition 3. Let �p be as defined in Definition 8, then �p
MPE≡�p.

Definition 13. Let�e
MPE be a variant of�MPE on E∪ such that SMPE(E) considers only

the most entailed formulae in E∪ for stratification.

Proposition 4. Let �e be as defined in Definition 10, then �e
MPE≡�e.

Propositions 3 and 4 show that there is a stratification method corresponding to each of
the two total preorder relations defined in Section 3.

5 Merging Operators Based on Stratification

The result of SMPE(E) is a stratified base which can be inconsistent. This base can
also be viewed as a prioritized observation base [DDL06] where observations in Si
have higher priorities than observations in Sj for j > i. To obtain a consistent subset
from SMPE(E), we need to have suitable operators applicable to a stratified base. We
define two such operators here and call them merging operators. Let E be a knowledge
profile, and K = E∪, then SE = SK = 〈S1, ..., Sn〉 denotes its stratification. Let
A = 〈A1, ..., An〉 such that Ai ⊆ Si, we define A∪ = A1 ∪ ... ∪An.
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5.1 New Merging Operators

Definition 14. Let E be a knowledge profile and SE = 〈S1, ..., Sn〉 be its stratification.
Let A = 〈A1, ..., An〉 be a subset of SE such that Ai ⊆ Si and A∪ 
" ⊥. A lexico-
graphical maximal merging operator, denoted as Δleximax, is defined as

Δleximax(SE) =
∨

{A∪|if for any A′ = 〈A′
1, ..., A

′
n〉, A′

∪ �� ⊥, then

either ∀i |Ai| = |A′
i|,

or ∃i, s.t., |Ai| > |A′
i| and for j < i, |Aj | = |A′

j |}

When there is only one stratum in SE , merging operator Δleximax(SE) is equivalent to
operator Comb4(E ,�) in [BKMS92] and operator ΔC4

� (E) in [Kon00] (when we let
the integrity constraint IC be a tautology �). However, when SE has more than one
stratum, Δleximax(SE ) preserves more information.

Example 6. Let E = {K1, ...,K5} where K1 = {¬p, q}, K2 = {p, q}, K3 =
{p, q → r}, K4 = {¬p, s}, and K5 = {¬p,¬s}. Then SE = 〈{¬p}, {p, q}, {q →
r, s,¬s}〉. Applying operator Δleximax, we have Δleximax(SE) = ∨{{¬p, q, q →
r, s}, {¬p, q, q → r,¬s}} which is equivalent to {¬p, q, q → r}.

Definition 15. Let E be a knowledge profile and SE = 〈S1, ..., Sn〉 be its stratification.
Let A = 〈A1, ..., An〉 be a subset of SE such that Ai ⊆ Si and A∪ is consistent. Let
Inc(SE) = i. A maximal-consistency based merging operator Δconmax, is defined as

Δconmax(SE) =
∨

{A∪| ∪i−1
j=1 Sj ⊆ A∪, s.t., ∀A′ = 〈A′

1, ..., A
′
n〉, A′

∪ �� ⊥,

if ∪i−1
j=1 Sj ⊆ A′

∪ then |A∪| ≥ |A′
∪|}

This operator guarantees that all the more preferred consistent formulae are selected
first, before considering any further formulae. Δconmax and Δleximax are equivalent
when SE has only one stratum, i.e., SE = 〈E∪〉. Furthermore, we define Δi

conmax as a
variant of Δconmax such that Inc(SE ) = i and Δi

conmax = S1 ∪ ... ∪ Si−1.

Example 7. Let a stratified knowledge profile be SE = 〈{¬p, q}, {q → r, s,¬r,¬r ∧
q}, {r}〉. Then Δleximax(SE ) = {¬p, q, s,¬r,¬r∧ q} and Δconmax(SE) = ∨{{¬p, q,
s, q → r, r}, {¬p, q, s,¬r,¬r ∧ q}} which is equivalent to {¬p, q, s}. In this case,
Δleximax " Δconmax. However, these two operators are not comparable in general.

5.2 Properties

In [DDL06], three merging operators for a prioritized base2 are defined. Among them
operator best-out, ∗bo(SE ) is defined as

∗bo(SE) =
∧

(
∧

Sj |j < i, Inc(SE) = i)

for SE = 〈S1, ..., Sn〉 where
∧

Sj =
∧
φ∈Sj

φ.

2 Note: in their original paper a prioritized base is represented as σ = 〈σ(1), ..., σ(n)〉 where
σ(i) denotes a set of formulae with rank ki and σ(n) contains the highest ranked formulae. In
this paper, we let S1 (not Sn) denote the set of highest ranked formulae and ignore the rank
itself since it is not used in the merging.
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That is,
∧

Sj is the conjunction of all formulae in Sj and
∧

(
∧

Sj) is the conjunction
of all

∧
Sj for j = 1,..., i− 1.

Let Cons(SE) be the set of all consistent subsets of SE , that is, the set of all stratified
subsets A = 〈A1, ..., An〉, such that Ai ⊆ Si and A∪ is consistent. If � is a strict order
on set Y , then Max(�, Y ) is defined as Max(�, Y ) = {y ∈ Y |∀z ∈ Y, z 
� y}
Definition 16. [DDL06] For S, S′ ∈ Cons(SE), define S′ �discrimin S iff ∃k such
that

(a) 〈S1, ..., Sk〉 ∩ S′ ⊃ 〈S1, ..., Sk〉 ∩ S, and
(b) ∀i < k, 〈S1, ..., Si〉 ∩ S′ = 〈S1, ..., Si〉 ∩ S.
Then ∗discrimin(SE ) =

∨
{
∧

S, S ∈ Max(�discrimin,Cons(SE ))}
Definition 17. [DDL06] For S, S′ ∈ Cons(E∪), define S′ �leximin S iff ∃k such that

(a) |〈S1, ..., Sk〉 ∩ S′| > |〈S1, ..., Sk〉 ∩ S|, and
(b) ∀i < k, |〈S1, ..., Si〉 ∩ S′| = |〈S1, ..., Si〉 ∩ S|.
Then ∗leximin(SE ) =

∨
{
∧

S, S ∈ Max(�leximin,Cons(SE))}
The following logical properties3are given in [DDL06] on merging operators ∗ for pri-
oritized bases.

(PMon) for i < n, ∗(〈S1, ..., Si+1〉) � ∗(〈S1, ..., Si〉)
(Succ) ∗(SE) � ∗(S1)
(Cons) ∗(SE) is consistent
(Taut) ∗(SE , �) ≡ ∗(SE)
(Opt) if ∧SE is consistent then ∗(SE) ≡ ∧SE
(IS) If SE1 ≈ SE2 then ∗(SE1) = ∗(SE2)
(RA)4 ∗(〈S1, ..., Si〉) = ∗(∗(〈S1, ..., Si−1〉), Si)

Proposition 5. Δleximax(SE ) is equivalent to operator ∗leximin(SE ) and variant
Δi
conmax is equivalent to ∗bo(SE).

Proposition 6. Merging operators Δleximax(SE ) and Δi
conmax(SE) satisfy all the

seven properties given above. Δconmax(SE) satisfies (Cons), (Taut), (Opt), (IS) and
(RA).

Below we examine how a stratified profile can be used to compare different prioritized
merging operators.

Definition 18. Let SE = 〈S1, ..., Sn〉 where Inc(SE ) = i > 1. Let Γ be the set of
all formula-based merging operators for a prioritized base. Let Δ1 and Δ2 be two
operators in Γ . We define a partial order relation � over Γ as: Δ1 � Δ2 iff one of the
following conditions holds.

3 We only have space in this extended abstract to discuss these properties. In the full paper,
we consider further properties including the logical properties in [KP98] when we view the
input of such an operator as a knowledge profile and the output as a consistent subset without
considering the process of stratification in between. Our operators are also compared with the
Adjustment and the Maxi-Adjustment algorithms in [B+04].

4 Note: Given SE = 〈S1, ..., Sn〉, S1 has the most reliable formulae and it is equivalent to σn

in the original definition of a prioritized base in [DDL06], therefore, the Right Associativity
(RA) property looks like a Left Associativity property.
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– S1 ∪ ... ∪ Si−1 ⊆ Δ1(E) and S1 ∪ ... ∪ Si−1 
⊆ Δ2(E);
– S1 ∪ ... ∪ Si−1 ⊆ Δ1(E) and S1 ∪ ... ∪ Si−1 ⊆ Δ2(E), then |Δ1(E)| > |Δ2(E)|.

Δ1 � Δ2 indicates that Δ1 is at least as efficient as Δ2 to merge a knowledge profile.
Here |Δ(E)| denotes the cardinality of merging result Δ(E). The first condition says that
if an operator can select all the more preferred and consistent formulae while another
cannot, then the former is a better merging operator. The second conditions reveals that
when all the more preferred and consistent formulae are included, the operator with
more additional formulae is better than the other.

Proposition 7. Based on Definition 18, we have Δleximax(SE) � Δi
conmax(SE ) and

∗leximin(SE) � ∗discrimin(SE ) � ∗bo(SE). Δconmax(SE) is not comparable with
Δleximax(SE) or ∗discrimin(SE).

Operator Δconmax(SE) does not really take into account the priorities of formu-
lae. Therefore, although it may contain more formulae than other operators, such as,
Δleximax(SE), it is less desirable for a prioritized merging.

6 Related Work and Conclusion

Approaches to stratifying a knowledge base with default rules have been reported in
several research proposals [Pea90, GP91, Bre89, Cho94], all of which are about strat-
ifying a single knowledge base with defaults (rules and/or facts). Since we start with
multiple original knowledge bases and aim to merge them into a single knowledge base
with priorities automatically generated, these proposals cannot be applied. The prior-
ities of formulae are calculated based on the degree of support they receive from the
input knowledge bases. A knowledge profile is then stratified based on the priorities of
formulae in the profile, with formulae having the highest priority in the current profile
being the most preferred formulae. In this respect, our idea of stratification is in spirit
similar to Pearl’s method in [Pea90], that is, the more support a formula (rule) gets, the
higher rank it is assigned.

Our method on stratification has some similarities with voting systems. In a voting
system, many voting policies require that a voter simply votes for the chosen candi-
date(s) without requiring preferences over the chosen candidates. In plurality voting,
a voter is allowed to vote for one candidate only, so such a knowledge base contains
one formula (i.e., candidate). In approval voting, a voter can vote for multiple candi-
dates without preferring one over the other, so such a knowledge base contains multiple
formulae. For both cases, when our algorithm is applied to stratify a set of votes (knowl-
edge bases), the algorithm produces the same result as either of the two voting policies.
More specifically, in both voting policies, the candidates who receive the largest num-
ber of votes are the winners (at least for the current round, if a single winner has to be
selected, more rounds of votes are required). These candidates are exactly the formu-
lae selected in the first stratum in our algorithm. When this stratum contains a single
formula, a single winner is selected. Therefore, let E be a knowledge profile and each
knowledge base in E contains votes from a voter following the voting rules in plurality
(resp. approval) voting. Then the first stratum from SMPE(E) is equivalent to the result
of plurality (resp. approval) voting system.
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In conclusion, in this paper, we focused on how to extract information provided by
the original sources about which formulae gathered more support. This information is
preserved in the form of a stratified base for formulae in the union of original bases.
Stratifying a knowledge base in this way overcomes the problem of deciding which
formula should be kept when a choice has to be made to resolve a conflict after merging.
An obvious decision is that a higher ranked formula shall be kept. Also, such a merged
base provides a basis for ranking merging operators such as a merging operator that
preserve as many high ranked formulae as possible is certainly better than the one that
cannot.
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Abstract. Ordinal Conditional Functions (OCFs) are one of the predominant fra-
meworks to define belief change operators. In his original paper Spohn defines
OCFs as functions from the set of worlds to the set of ordinals. But in subsequent
paper by Spohn and others, OCFs are just used as functions from the set of worlds
to natural numbers (plus eventually +∞). The use of transfinite ordinals in this
framework has never been studied. This paper opens this way. We study gen-
eralisations of transmutations operators to transfinite ordinals. Using transfinite
ordinals allows to represent different “levels of beliefs”, that naturally appear in
real applications. This can be viewed as a generalisation of the usual “two levels
of beliefs” framework: knowledge versus beliefs; or rules base versus facts base,
issued from expert systems works.

1 Introduction

Ordinal Conditional Functions (OCFs) [14] are one of the predominant frameworks to
represent epistemic state and define belief change operators (see e.g.[14,16,3,10,13]).
The intuitive appeal of the definition explains its success: an OCF is a function that
maps worlds into ordinals. The smaller the ordinal, the more plausible the world for the
agent. This representation of epistemic state is more expressive than the one using total
pre-orders on worlds, that is one of the canonical ones for classical AGM belief revision
[12,3]. The fundamental role of OCF for defining belief revision operators is shown by
the fact that Spohn’s conditionalization of OCF [14] is often used to illustrate works on
iterated belief revision [3,10].

In his original paper Spohn defines OCFs as functions from the set of worlds to the
set of ordinals. But in subsequent papers by Spohn [15] and others, OCFs are just func-
tions from the set of worlds to natural numbers (and eventually +∞). This restriction is
natural, since it is enough to represent usual epistemic states and belief change operators.

But it is strange that in works using OCF it was never studied what the use of trans-
finite ordinals can bring to the representation of epistemic states, and its consequence
on the definition of belief revision operators.

This paper aims at studying transfinite OCFs, i.e. OCFs using transfinite ordinals.
Very roughly, transfinite ordinals allow to describe different “infinity levels”. From a
representational point of view, this allows to encode different “levels of beliefs”, i.e.
more or less strong beliefs, where the strong ones are considered as integrity constraints
by weaker ones.

This allows to define generalisation of usual frameworks. First, when one use OCFs
that are defined on the restriction 〈natural numbers ∪ {+∞}〉, the worlds that are

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 396–407, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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mapped to +∞ represent unquestionable beliefs1, that are usually called knowledge
in this case.

It is a difficult philosophical debate to determine if knowledge exist or not. Which
agent can have unquestionable beliefs ? How can an agent be sure that what he “knows”
(believes) is absolutely true. It seems to us that no human/artificial agent can be sure
of that2. So speaking of knowledge for a human/artificial agent is just a convenient
simplifying convention for designing beliefs much more entrenched than other ones.
But, even in these really entrenched beliefs some can be even more entrenched than
other ones. So having only one +∞ level to represent deep entrenched beliefs is not
enough. One would need to be able to represent differences in the entrenchment of
these deep entrenched beliefs.

This distinction between knowledge and belief recalls the traditional view of agent
representation in expert systems and in automation, that divides the epistemic state
of the agent between a base of rules (that corresponds to knowledge) that is a set of
entrenched beliefs (rules) on how the represented system evolves, and a base of facts
(that corresponds to beliefs), that is a set of observations made by the agent (through
captors for instance).

To illustrate this view let us give an example about a doctor’s epistemic state. The
doctor has a base of rules, that represents his medical expertise/beliefs, and has a base
of facts, that represents the symptoms that he observes on a particular patient (this can
be medical analysis, visual observations, etc.).

For most applications this representation is clearly sufficient. And it allows also to
illustrate interesting discussions on the status of iterated belief revision.

In most papers iterated belief revision is presented as the process of incorporating
successively incoming new evidences. So the main point seems to be that the succes-
sive inputs are just more and more recent observations. It is true that an autonomous
agent has to be able to do this kind of change, but it is an error to use iterated belief
revision operators [3] to do that. Iterated belief revision operators [3] do not allow to in-
corporate more and more recent observations, but more and more reliable observations.
This subject is the starting point of the two interesting papers [9,4], where it is clearly
explained that if one wants to incorporate more and more recent information, one has
to use prioritised belief merging. Roughly, if the observations incorporation order de-
pends only of recency, and that they can have different reliability, then just store the
observations with their degree of reliability, and merge all those observations.

In [4] Dubois identifies three different kinds of revision. We will focus on the two
first ones. The first one is the one we just discuss above, that is incorporation of more
and more recent observations. This basically corresponds to cases where the base of
rule does not change, and where the base of facts increases. So suppose that the doctor
receives successively several different medical analysis (that have different reliability).
The incorporation of these facts will change the beliefs of the doctor on the disease of
the patient, but will not change his medical expertise. This case can be basically handled
by classical AGM belief revision [1,7,12] if all the observations are jointly consistent

1 Note that in this case OCFs can be viewed as a semantics for possibilistic logic [5].
2 Under the hypothesis of his existence, the only agent that could hold real knowledge is a God

agent.
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(that is the case if the world does not evolve (usual hypothesis in belief revision - oth-
erwise one has to use update operators [11,8]), and when the captors are reliable (for
instance with direct visual observations)). If the observations are not jointly consistent
(for instance if some captors/sources are not reliable), then one has to use the prioritised
belief merging framework proposed in [9] to this aim.

The second kind of revision identified by Dubois is when the set of rules of the
agent has to be changed. Suppose that our doctor goes to a scientific congress and learn
new protocols about a specific disease, then he has to change his base of rules. This is
the typical use of iterated belief revision à la Darwiche and Pearl [3]: a more reliable
piece of information has to be incorporated in our current theory. So typical examples
of DP iterated revision should be scientific theory change rather than every day life
observations examples with birds.

Some years ago a very interesting paper from Friedman and Halpern already dis-
cuss the problems and dangers of developing new technical change operators without
specifying their exact application cases (i.e. without giving them an “ontology”) [6].
We think that the papers of Dubois [4] and Delgrande-Dubois-Lang [9] is an interesting
reminder of this discussion for iterated belief change.

So to sum up Dubois’ view in [4], consider that the agent epistemic state is repre-
sented by two bases: a base of rules and a base of facts, the base of rules being more
important/reliable/entrenched than the base of facts. Then the two kinds of revision are
defined by the base that has to be revised. The first one revise the base of facts, the
second one the base of rules.

We think that one can go further than that. There is no objective reason to restrict
this process to only two bases, one can need to use more levels of beliefs. So we want
to define as many bases as needed, and each of this base can be revised differently.

Let us come back to our doctor example. We can not seriously restrict the beliefs of
this agent to a base of medical expertise, and a base of facts on the patient. This agent
can have other beliefs much more entrenched that his medical expertise, such as basic
arithmetics for instance. So we have at least three “level of beliefs”: basic arithmetics
that is much more entrenched than medical expertise, that is much more entrenched
than facts on the patient.

This is the kind of situation that Transfinite Ordinal Conditional Functions allow to
represent and handle.

In next section we we give a short refresher on ordinals, and in Section 3 recall
the basic definitions of OCF theory change. Then in Section 4 we define Transfinite
Ordinal Conditional Functions, that allow to encode different levels of beliefs in an
OCF. In Section 5 we show how to define a Transfinite OCF from a set of classical
OCFs that represent the different levels of beliefs. In Section 6 we discuss the revision
of Transfinite OCFs, and define relative transmutations, that allow to localize the change
to the concerned level of beliefs. Finally we conclude in Section 7.

2 Naive Ordinal Arithmetics

In set theory, the natural numbers can be build from sets:

0 = {} (the empty set)
1 = { {} } = {0}
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2 = { {}, { {} } } = {0, 1}
3 = {{}, { {} }, { {}, { {} } }} = {0, 1, 2}
4 = { {}, { {} }, { {}, { {} } }, {{}, { {} }, { {}, { {} } }} }= {0, 1, 2, 3}
etc.

So every natural number can be seen as a well ordered set, and the natural order on
natural number is given by inclusion of the corresponding sets (α < β iff α ∈ β).

A possible definition of ordinals is that a set S is an ordinal if and only if S is
strictly well-ordered with respect to set membership and every element of S is also
a subset of S.

So, starting from 0 ({}), and using a successor operation, noted α + 1 = α ∪ {α},
allows to build the ordinals.

The ordinals that correspond to natural numbers are finite ordinals. The existence of
transfinite ordinals is ensured by the axiom of infinity. The first transfinite ordinal is
denoted ω. It corresponds to the set of natural numbers {0, 1, 2, . . .}. But we can define
a successor to this ordinal ω. So we can define ω + 1, ω + 2, etc. until ω + ω = ω.2.

If we describe ω as the set {a0, a1, a2 . . .}, where a0 < a1 < a2 < . . ., then ω + 1
can be seen as the set {a0, a1, a2, . . . , b0}, where a0 < a1 < a2 < . . . < b0. See
figure 1 for a graphical representation of ω2.

w
w.2

0

Fig. 1. A graphical “matchstick” representation of the ordinal ω2. Each stick corresponds to an
ordinal of the form ω.m + n where m and n are natural numbers. (Figure from Wikipedia).

Then one can similarly define ω.3, ω.4, etc. And the ordinal that is the set of all these
ordinals is denoted ω2, etc. We will not use ordinals greater than ω2 in this work.

The ordinals ω, ω.2, ω.3, . . ., ω2, . . ., that have no predecessor, are called limit
ordinals. β is a limit ordinal if there is no ordinal α such that α + 1 = β.

Let us now define addition on ordinals.

Definition 1. The addition on ordinals α + β is defined inductively by:

– α + 0 = α,
– α + (β + 1) = (α + β) + 1 3,
– if β is limit then α + β is the limit of the α + γ for all γ < β.

3 Recall that ”+ 1” denotes the successor of an ordinal.
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This definition coincides with natural addition when working with finite ordinals. But
with transfinite ordinals the addition is not any more commutative. It is for instance easy
to see that 3 + ω = ω and is different from ω + 3 that is the successor of the successor
of the successor of ω.

3 Classical OCF Theory

We consider a propositional language L defined from a finite set of propositional vari-
ables P and the standard connectives.

A world (interpretation) I is a total function from P to {0, 1}. The set of all worlds
is notedW . An interpretation I is a model of a formula ϕ ∈ L if and only if it makes it
true in the usual truth functional way. mod(ϕ) denotes the set of models of the formula
ϕ, i.e., mod(ϕ) = {I ∈ W | I |= φ}. Let us denoteO the class of ordinals.

Definition 2. An Ordinal Conditional Function (OCF) κ is a function from the set of
worldsW to the set of ordinals such that at least one world is assigned 0.

The meaning of an OCF is simple. The ordinal associated to a world denotes the world
plausibility. The higher the ordinal, the less plausible the world. So let us call this the
degree of disbelief of the world. In particular world that are assigned 0 are the most plau-
sible worlds, i.e. the currently believed worlds. This means that if one use OCFs as rep-
resentation of epistemic states for iterated belief revision, the belief base ϕ associated to
this epistemic state ϕ = Bel(κ) is defined by those models: mod(ϕ) = {I | κ(I) = 0}.
The set of OCFs will be denoted K.

The degree of disbelief can be straightforwardly extended to formulae (set of worlds).

Definition 3. The degree of disbelief of a formula ϕ is the minimum of the degree of
disbelief of its models: κ(ϕ) = minI|=ϕ κ(I).

And one can also define the degree of acceptance of a formula.

Definition 4. A formula ϕ is accepted (for an OCF κ) if κ(ϕ) = 0.
The degree of acceptance of an accepted formula ϕ is dκ(ϕ) = κ(¬ϕ).

Now we can define change operators in this setting as functions that change the degree
of acceptance of a formula:

Definition 5. A Transmutation [16] is a function that, given an OCF κ, a formula ϕ
and a degree of acceptance α, produces a new OCF κ ∗ (ϕ, α) such that ϕ is accepted
with degree dκ∗(ϕ,α)(ϕ) = α.

Several different transmutation operators can be defined. The problem is to meet the
condition of transmutation operators while keeping as much information as possible
from the old OCF. As for works on AGM belief revision there are several ways of
considering this minimality. The two most usual ones are conditionalization [14] and
adjustment [16].
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Definition 6. The (ϕ, α)-conditionalization of κ is a new OCF κ ∗C (ϕ, α) defined as

(κ ∗C (ϕ, α))(I) =
{
−κ(ϕ) + κ(I) if I |= ϕ
(−κ(¬ϕ) + κ(I)) + α if I |= ¬ϕ

where −β + α represents the ordinal γ such that β + γ = α.

Conditionalization moves all the models of ϕ. Adjustment moves only the most plausi-
ble models of ϕ (some models of ϕ are moved if necessary).

Definition 7. The (ϕ, α)-adjustment of κ is a new OCF κ ∗A (ϕ, α) defined as

(κ ∗A (ϕ, α))(I) =

⎧⎨⎩
0 if κ(I) = κ(ϕ)
α if I |= ¬ϕ and κ(I) < α
κ(I) otherwise

Adjustment can be seen as the counterpart of Boutilier’s natural revision [2] for OCFs.

4 Transfinite OCF

So the aim of this work is to encode different “levels of beliefs” in a same OCF. These
levels of beliefs have to be strictly hierarchized, in order to ensure that a belief in a
higher level is considered as an integrity constraint by the beliefs in lower levels. Let us
illustrate this need on a car-driving example.

Example 1. The most important beliefs of the agents are physical beliefs, that compose
the highest level of beliefs:

– The road is slippery if and only if it is snowed or frozen (sl ↔ sn ∨ f ).

Then the driving behaviour rules form the second level of beliefs:

– If the road is slippery, then adopt a moderate speed (sl → m).
– If there are roadworks, then adopt a moderate speed (w → m).

The first rule being more important/entrenched/believed than the second one (let us
assign a weight of 2 to the first rule, and a weight of 1 to the second one).

Finally the lowest level of beliefs is the one of facts that describe the agent’s beliefs
about the current situation:

– The road is snowed (sn).
– There are no roadworks (¬w). The road is not frozen (¬f ).

The belief that the road is snowed is more important/entrenched/believed than the fact
that the road is not frozen. Let us assign a weight of 5 to the first fact (the road is
snowed), and a weight of 2 to the other ones. The numbers reflect in a sense the intensity
of belief of these facts for the agent.

So we will use transfinite ordinals in order to encode the different levels of beliefs. The
idea is to use a limit ordinal as boundary between two levels of beliefs.
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Definition 8. A Transfinite OCF is an OCF κ such that for any world I either κ(I) = 0
or ω.(m− 1) < κ(I) < ω.m, and for at least one world I ′ κ(I ′) > ω.

When the last inequality hold m is called the level of belief of I , and is denoted
λκ(I). And if κ(I) = 0, then λκ(I) = 1.

The level of belief of a formula, noted λκ(ϕ), is the minimum level of beliefs of its
models: λκ(ϕ) = minI|=ϕ λκ(I).

So a Transfinite OCF that corresponds to the car-driving example of example 1 is for
instance:

Example 2. Let us introduce our representation of OCF. The ordinal at the left of the
line is the one associated to the worlds at the right. The propositional symbols are
considered in the order (f sn sl w m) for the interpretations. The notation ∗ represents
all the worlds where ∗ can be replaced by 0 or 1, for instance 1 ∗ 1 is a shortcut for
{101, 111}.

κ:
ω.2 + 1 {001 ∗ ∗, 010 ∗ ∗, 100 ∗ ∗, 110 ∗ ∗}
ω + 2 {10110, 01110, 01100, 10100, 11100, 11110}
ω + 1 {00010}
5 {00000, 00001, 00011, 10111, 10101}
2 {11101, 11111, 01111}
0 {01101}

This OCF represents the information given by the rules of Example 1. It is obtained
in the usual way [5]. So in this example the worlds that are associated to the ordinal 0
are the worlds that satisfy all the formulas of all the levels of beliefs. The worlds that are
associated to 2 or 5 are the worlds that satisfy the two most important levels of beliefs,
the worlds that are associated to 2 being more plausible than the ones that are associated
to 5. The worlds that are associated to ω + 1 and ω + 2 satisfy the most important level
of beliefs. The worlds that are associated to ω.2 + 1 do not satisfy the most important
level of beliefs.

5 Building a Transfinite OCF from a Set of Classical OCFs

It is possible to build a Transfinite OCF from a set of classical OCFs 4, each classical
OCF representing one level of beliefs.

Definition 9. Let κ1, . . . , κn being the classical OCFs that represent respectively the
first (least important), . . ., last (most important) level of beliefs. Then κ is the Transfinite
OCF defined inductively as κ(I) = κκ1,...,κn(I):

– κ∅(I) = 0

– κκ1,...,κn(I) =
{

ω.(n− 1) + κn(I) if κn(I) > 0
κκ1,...,κn−1(I) otherwise

4 Let us call Classical OCFs OCFs where all the ordinals associated to worlds are strictly smaller
than ω. And let us call Constrained OCFs OCFs where all the ordinals associated to worlds
are smaller or equal to ω.
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Coming back to the car-driving example, this amounts to consider the three following
classical OCFs representing the three levels of beliefs:

Example 3. The first level of belief, containing the facts, is encoded by κ1. The second
one, containing the driving behaviour rules, is encoded by κ2. The last one, containing
physical beliefs, is encoded by κ3.

κ1:
5 {101 ∗ ∗, 000 ∗ ∗, 001 ∗ ∗, 100 ∗ ∗}
2 {111 ∗ ∗, 01111, 01110, 01010, 01011, 110 ∗ ∗}
0 {01 ∗ 0∗}
κ2:
2 {∗ ∗ 1 ∗ 0}
1 {∗ ∗ 010}
0 {∗ ∗ 000, ∗ ∗ 001, ∗ ∗ 011, ∗ ∗ 101, ∗ ∗ 111}
κ3:
1 {001 ∗ ∗, 010 ∗ ∗, 100 ∗ ∗, 110 ∗ ∗}
0 {000 ∗ ∗, 101 ∗ ∗, 011 ∗ ∗, 111 ∗ ∗}
It is easy to check that starting from κ1, κ2, κ3 and using the construction of defini-

tion 9, we obtain κ of example 2.

6 Revising Transfinite OCFs

Of course, since Transfinite OCFs are a subclass of OCFs, then one can use usual con-
ditionalization (or adjustment, or any other transmutation) on Transfinite OCFs.

But this may cause some problems since conditionalization allows to change the
degree of acceptance of an interpretation (so of any formula), to any new degree.

This freedom may cause problems for Transfinite OCFs, since this means that this
allows to “merge” different levels of beliefs together, just as if there was only one
such level. So in this case this means that the representation using levels of beliefs
is useless. Since it would be possible for instance to define a classical OCF (using a
mapping from the Transfinite OCF) with exactly the same behaviour for transmuta-
tions/conditionalization (up to the mapping).

So we would rather need a conditionalization (or more generally a transmutation)
that allows only change inside each level of beliefs.

Let us see how to define this operation below. Let us call usual conditionalization
(resp. transmutation) absolute conditionalization (resp. absolute transmutation). We will
define now relative conditionalization (and relative transmutations).

First, let us illustrate what the Transfinite OCF means from each level of beliefs. This
is done using projections.

Definition 10. Let κ be a Transfinite OCF with n different levels of beliefs. The i-
projection of κ (projection of κ on the i-th level of belief), denoted κ↓i is defined as:

κ↓i(I) =

⎧⎨⎩ω if ω.i < κ(I)
κ(I) if ω.(i− 1) < κ(I) < ω.i
0 if κ(I) < ω.(i− 1)

So let us see a projection of the Transfinite OCF of the example:
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Example 4. From the most important level of beliefs point of view, the projection is
just:

κ↓3:
1 {001 ∗ ∗, 010 ∗ ∗, 100 ∗ ∗, 110 ∗ ∗}
0 {000 ∗ ∗, 101 ∗ ∗, 011 ∗ ∗, 111 ∗ ∗}

The worlds that are associated to 0 in the third level of beliefs, will be eventually
discriminated by lower levels.

From the second level of beliefs point of view, the third level of beliefs appear as
integrity constraints that can not be questioned, so all the worlds that are not associated
to 0 in the (projection of the) third level of beliefs are just impossible worlds. So the
projection is:

κ↓2:
ω {001 ∗ ∗, 010 ∗ ∗, 100 ∗ ∗, 110 ∗ ∗}
2 {01100, 10100, 11100, 11110, 10110, 01110}
1 {00010}
0 {00000, 00001, 00011, 10111, 10101, 11101, 11111, 01111, 01101}

Now from the first level of beliefs, all the highest levels of beliefs appear as integrity
constraints. So the projection is:

κ↓1:
ω {001 ∗ ∗, 010 ∗ ∗, 100 ∗ ∗, 110 ∗ ∗, 00010, 10110, 01110, 01100, 10100, 111 ∗ 0}
5 {00000, 00001, 00011, 10111, 10101}
2 {11101, 11111, 01111}
0 {01101}

These projection give an idea of how to revise Transfinite OCFs. A relative transmu-
tation will only change the corresponding projection (i.e. level of beliefs). Since if the
level of a formula is i, this means that a change of its degree of disbelief will change
the information of the i-th level of beliefs.

Let us define relative transmutation formally.

Definition 11. Let κ be a Transfinite OCF with n levels of beliefs. Let α be an ordinal
α < ω. Given a (absolute) transmutation ∗. Then the corresponding relative transmu-
tation � is defined as:

(κ � (ϕ, α))(I) =

⎧⎪⎪⎨⎪⎪⎩
κ(I) if κo(I) = ω
κ(I) if κo(I) = 0 and λκ(I) < λκ(ϕ)
B(κ, λκ(ϕ) − 1) + 1 if κo(I) = 0 and λκ(I) = λκ(ϕ)
ω.λκ(ϕ) + κo(I) otherwise

where

– κo = κ↓λκ(ϕ) ∗ (ϕ, α)
– B(κ, i) = max{I|λκ(I)=i} κ(I), if i > 0; and B(κ, 0) = −1.
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The main idea of this definition is to localize the change to the concerned level of
beliefs. This is the aim of κo, that does the transmutation only on the projection on
the concerned level. Then the result is incorporated in the full Transfinite OCF κ, with
the four points of the main definition. The first point ensures that worlds in higher
levels of beliefs are not moved during the change. The second point says similarly that
worlds that are in lower levels of beliefs, and that are not involved in the change at the
concerned level of belief, are not moved during the change. The fourth point just encode
the changes on the concerned level of beliefs. The interesting part of the definition is
given by the third point that says that if there are new worlds that are possible (i.e.
such that κo(I) = 0) after the transmutation on the concerned level, then they are
downgraded to the lower level of beliefs. The problem is then to know where to put
them in the lower level. In order to ensure minimal change for this lower level we have
to try to modify as little as possible the structure of that level. This can be done by
including the downgraded worlds as the least plausible worlds of this level (this is the
aim of the function B that allows to find the plausibility of the least plausible worlds in
a given level of beliefs).

Let us see this on the example.

Example 5. Suppose that we just bought a new car with new driving assistance systems,
that make us remove from our driving behaviour rules that sl → m. So to make this
contraction we make a relative 0-conditionalization

κ �C (sl → m, 0):
ω.2 + 1 {001 ∗ ∗, 010 ∗ ∗, 100 ∗ ∗, 110 ∗ ∗}
ω + 1 {00010}
6 {10110, 01110, 01100, 10100, 11100, 11110}
5 {00000, 00001, 00011, 10111, 10101}
2 {11101, 11111, 01111}
0 {01101}

An interesting point to note is that after this relative conditionalization, the formula
sl → m still holds in the Transfinite OCF κ �C (sl → m, 0). But it is no longer a
formula of the second level of belief (i.e. [κ �C (sl → m, 0)]↓2). It is now a formula
of the first level of belief. So now a change in the first level of belief can remove this
rule from the beliefs of the agent, whereas it was not possible before since beliefs of the
second level of beliefs can not be changed by revision of the first level.

Note in particular that, to remove completely this formula from the beliefs of the
agent, one has to do one more contraction:

Example 6. (κ �C (sl → m, 0)) �C (sl → m, 0):

ω.2 + 1 {001 ∗ ∗, 010 ∗ ∗, 100 ∗ ∗, 110 ∗ ∗}
ω + 1 {00010}
5 {00000, 00001, 00011, 10111, 10101}
2 {11101, 11111, 01111}
0 {01101, 10110, 01110, 01100, 10100, 11100, 11110}

Note that on this example we have (κ�C (sl → m, 0))�C (sl → m, 0) = κ ∗C (sl →
m, 0). But this is generally not the case.
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As explained in the introduction, it makes sense to use different revision operators for
the different levels of beliefs. For instance the less important level, that usually contains
factual information can use more drastic revision operators, since loss of information in
this level is not that important (with respect to loss in higher levels).

So this means that we need some adaptative change operators. We define such oper-
ators as relative transmutations where the computation of κo depends of the level of the
new piece of information:

Definition 12. Let κ be a Transfinite OCF with n levels of beliefs. LetA = {∗1, . . . , ∗n}
be a vector of n absolute transmutations. Let α be an ordinal α < ω. Then the corre-
sponding adaptative relative transmutation �A is defined as:

(κ �A (ϕ, α))(I) =

⎧⎪⎪⎨⎪⎪⎩
κ(I) if κo(I) = ω
κ(I) if κo(I) = 0 and λκ(I) < λκ(ϕ)
B(κ, λκ(ϕ)− 1) + 1 if κo(I) = 0 and λκ(I) = λκ(ϕ)
ω.λκ(ϕ) + κo(I) otherwise

where

– κo = κ↓λκ(ϕ) ∗λκ(ϕ) (ϕ, α)
– B(κ, i) = max{I|λκ(I)=i} κ(I), if i > 0; and B(κ, 0) = −1.

7 Conclusion

In this paper we have investigated how to represent and change beliefs of an agent that
are hierarchized through several levels of beliefs, where each level appears as integrity
constraint for less important levels. We have shown how to represent these levels by
using Ordinal Conditional Functions. This is the first time, as far as we know, that the
use of transfinite ordinals is investigated. Spohn in a footnote of [14] says:

“It would be a natural idea to restrict the range of OCFs to the set of natural
numbers. In fact, much of the following could thereby be simplified since usual
arithmetic is simpler than the arithmetic on ordinals. For the sake of formal
generality I do not impose this restriction. But larger ranges may be intuitively
needed. For example, it is tempting to use OCFs with larger ranges to represent
the stubbornness with which some beliefs are held in the face of seemingly
arbitrarily augmentable counter-evidence.”

So in this work we have proposed a representation of these stubbornly held beliefs
by mean of levels of beliefs. And, more importantly, we have discussed the inadequacy
of usual (absolute) transmutations to realize the change on these OCFs. So we have
proposed the definition of relative transmutations, that limit the change to the concerned
level of belief.

We are convinced that several other interesting change operators can be defined in
the framework of Transfinite OCFs. We let this for future work.
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Abstract. In this paper, a new algebraic representation by the non-Archimedean
fields is proposed to model stratified/ranked knowledge bases. The non-
Archimedean representation is in the form of the non-Archimedean polynomi-
als. With the non-Archimedean representation, the most widely used ordering
strategies are easily induced and compared. Moreover, a framework of prioritized
merging operators using the non-Archimedean representation is presented. It is
shown that these merging operators satisfy the prioritized merging properties pro-
posed by Delgrande, Dubois and Lang. In addition, several prioritized merging
operators in the literature are proved to be special cases of the framework. Fur-
thermore, the egalitarist fusion of incommensurable ranked bases by Benferhat,
Lagrue and Rossit is also derived from the non-Archimedean representation.

1 Introduction

In many applications, there is a need to combine possibly conflicting information from
different sources in order to get coherent knowledge. This is the origin of informa-
tion/data fusion problem. As a very important part of the data fusion problem, in the
last two decades, the merging of knowledge bases has attracted significant attention.

Knowledge bases (KBs) can be flat or stratified/ranked. In a flat KB, all the logical
formulae are viewed as equally important. In stratified KBs (SKBs), however, formulae
are assigned with different levels of importance (priority). A formula at a higher level
is viewed as more important than those at a lower level, while in a ranked KB (RKB),
each formula is attached to a rank (e.g., an ordinal number). A formula with a higher
rank is more preferred than those with lower ranks.

A significant property of stratified/ranked KBs is that higher level/rank items are
more important than lower ones. This property is exploited in all the prioritized merging
operators in different forms. That is, each of such merging operators involves a step that
captures prioritized information as well as a step that merges knowledge. In this paper,
we want to investigate whether there is a unified framework to represent the prioritized
information prior considering merging and hence use this unified framework to define
prioritized merging operators. To achieve this, we introduce the non-Archimedean fields
to represent stratified/ranked KBs. We demonstrate that this representation perfectly
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captures this property and its format is intuitive. In this way, a merging operator only
requires a simple definition since most of the work required for merging has already
been encoded in the non-Archimedean representation.

It appears that simple vectors of integers can also be used to represent Stratified KBs,
but they have some major drawbacks. First, it is difficult to represent ranked bases with
simple vectors, especially in performing the scalings of ranked bases (Def. 15). Second,
although simple vectors can be used to obtain orderings between possible worlds, it is
hard to present a unified picture on different ordering strategies. In contrast, our non-
Archimedean representation solves these problems easily.

The merging of stratified/ranked KBs has been studied in many papers such as,
[B+93, Leh95, Bre04, DDL06, QLB06, BLR07]. The extra knowledge implied in a
Stratified KB can be used to induce a total preorder relation on interpretations, and the
three widely used ordering strategies are best out, maxsat and leximin [B+93, Bre04].
In [Bre04], the relationship between the three orderings was studied.

In this paper, we first provide the non-Archimedean polynomial (NAP) representa-
tion for Stratified KBs which gives us a clear and unified representation of the three pre-
order relations on interpretations, and therefore, makes the relationship between them
immediately provable.

Second, we propose a family of merging operators for Stratified KBs in terms of
NAPs. This family of merging operators captures a wide class of prioritized merging
operators. It not only captures several existing prioritized merging operators in the lit-
erature, such as the linear and leximin operators, but also identifies new merging oper-
ators. Our family of prioritized merging operators is the counterpart of the DA2 family
of flat merging operators [KLM04].

When merging prioritized KBs, an issue to be considered is whether this set of bases
is commensurable. In fact, most of the merging operators for Stratified KBs proposed so
far require that the commensurability assumption is in place. For the incommensurable
situation, a method called the egalitarist fusion of Ranked KBs was proposed [BLR07].
It is proved that the egalitarist fusion, obtained from a maximum based ordering that is
unchanged in all compatible scalings, is equivalent to a Pareto-like operator. In this pa-
per, we show that our non-Archimedean representation of the ranked bases are sufficient
to simulate the egalitarist fusion.

In summary, the main contributions of this paper are as follows. First, this paper pro-
vides a uniform framework to represent prioritized information at a higher level than
embedding it in concrete merging operators. Second, this paper shows that the NAPs
provides a unified format to represent three commonly used ordering strategies so that
relationship between them can be induced easily. Third, this paper proposes a new fam-
ily of prioritized merging operators in terms of NAPs which covers a variety of prior-
itized merging operators in the literature. Fourth, this paper shows that the egalitarist
fusion for ranked bases can also be represented and interpreted by NAPs.

The rest of the paper is organized as follows. In Section 2, we recall some basic
concepts on propositional logic, Stratified KBs, and non-Archimedean fields. For con-
venience and subsequent representation, we also introduce some definitions from the
DA2 merging operators. In Section 3, we propose the NAPs and relate them to the three
ordering strategies. In Section 4, we introduce the framework of prioritized merging
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operators using NAPs. In Section 5, we give the NAP representation for Ranked KBs
and simulate the egalitarist fusion. Finally, we conclude the paper in Section 6.

2 Preliminaries

In this paper, we consider a propositional language LPS defined on a finite set PS of
propositional atoms, denoted by p, q, r etc. A proposition φ is constructed by proposi-
tional atoms with logical connectives ¬,∧,∨,→ in the usual way. An interpretation w
(or possible world) is a function that maps PS to {0, 1}. The set of all possible inter-
pretations on PS is denoted as W . Function w can be extended to any propositional
sentence in LPS in the usual way, w : LPS → {0, 1}. w is a model of (or satisfies) φ
iff w(φ) = 1, denoted as w |= φ. We use Mod(φ) to denote the set of models for φ.

For any set A, a pre-order ≤ is a reflexive and transitive relation over A × A. ≤ is
total iff for all elements a, b ∈ A, either a ≤ b or b ≤ a holds. Conventionally, a strict
order < and an indifferent relation = can be induced by ≤ such that ∀a, b ∈ A, a < b
iff a ≤ b but b 
≤ a, and a = b iff a ≤ b and b ≤ a. We use max(A,≤) to denote the
set {a ∈ A|�b ∈ A, b > a} and min(A,≤) for {a ∈ A|�b ∈ A, b < a}.

2.1 Flat/Stratified/Prioritized KBs

A (flat) KB K is a finite set of propositions. K is consistent iff there is at least one
interpretation that satisfies all propositions in K .

A SKB K is a set of propositions with a pre-order≤ on K , where φ ≤ ϕ means φ is
more important (plausible) than ϕ. Commonly, it is written as K = (S1, . . . , Sn) where
each Si (called a stratum) is a set of propositions with all the most important (plausible)
elements in K \

⋃i−1
j=1 Sj , i.e., Si = min(K \

⋃i−1
j=1 Sj ,≤), where φ < ϕ if φ ∈ Si and

ϕ ∈ φj s.t., i < j.
A knowledge profile E is a multi-set of KBs such that E = {K1, . . . ,Kn} where

Ki, 1 ≤ i ≤ n, is a flat or stratified KB. KE = K1
⊔

...
⊔

Kn denotes the set union of
Kis.

In [DDL06], the concept of prioritized observation base (POB) is introduced. A POB
K is in the form K = 〈σ1, ..., σn〉 with n ≥ 1, where each σi is a set of propositional
formulae with reliability level i and formulae with higher reliability levels are more
important than those with lower reliability levels (we require that each σi is not empty
without losing generality). Obviously, a POB K = 〈σ1, ..., σn〉 induces a SKB K =
(S1, ..., Sn) such that Si = σn+1−i.

Knowledge from a single source (e.g., an expert) can either be represented as a SKB
or a POB. However a POB can also be used to represent a collection of knowledge from
multiple sources/observations (e.g., a knowledge profile) as discussed in [DDL06]. In
this case, a POB is equivalent to a knowledge profile, that is a POB contains all the
formulae from a knowledge profile, and each formula is assigned with a reliability value
if KBs in the profile are stratified.

For simplicity and consistency, in the rest of the paper, we use K = 〈S1, ..., Sn〉 to
stand for a POB without explicitly considering priority levels, because we do not need
the values of these levels in the rest of the paper. Such a K can be taken as consisting



The Non-archimedean Polynomials and Merging of Stratified Knowledge Bases 411

of formulae from a knowledge profile of stratified bases where S1 contains all the most
reliability formulae. We still use K = (S1, ..., Sn) to denote a single SKB. We also
follow the notations below for a prioritized base [DDL06].

1. Ki→j = 〈Si, . . . , Sj〉, 1 ≤ i ≤ j ≤ n, particularly K1→n = K , Ki = Ki→i = Si.

2.
∧

Si =
∧
φ∈Si

φ,
∧

Ki→j =
∧t=j
t=i St.

3. If K = 〈S1, . . . , Sn〉 and K ′ = 〈S′1, . . . , S′p〉, then (K,K ′) is the concatenation of
K and K ′ such that (K,K ′) = 〈S1, . . . , Sn, S

′
1, . . . , S

′
p〉.

4. Cons(K) is the set of consistent subsets of K , that is, the set of all POBs K ′ =
〈S′1, . . . , S′n〉 such that

∧
K ′ is consistent and S′i ⊆ Si, 1 ≤ i ≤ n.

2.2 Non-archimedean Field

Now we give a brief introduction to the non-Archimedean fields [Rob73].

Definition 1. ([Ham99]) An ordered field 〈�,+, ·, 0, 1, >〉 is a set � together with:

1. the two algebraic operations + (addition) and · (multiplication);
2. the two corresponding identity elements 0 and 1;
3. the transitive and irreflexive total order > on � satisfying 1 > 0.

Moreover, the set�must be closed under + and ·. Addition and multiplication both have
to be commutative and associative; the distributive law must hold. And every element
x ∈ � must have both an additive inverse −x and a multiplicative inverse 1/x, except
that x/0 is undefined. The order > must be such that y > z ↔ y − z > 0. Also, the set
�+ of positive elements in � must be closed under both addition and multiplication.

Both the real line � and the rationals� are obvious examples of ordered fields.
The name “non-Archimedean” stems from the following Archimedes’ Axiom.

Axiom 1. For any ordered field �, and 0 < a < b, a, b ∈ �, ∃n ∈ �, s.t., na > b.

Thus a non-Archimedean field is a field dissatisfying the Archimedes’ Axiom.
The non-Archimedean fields contain real numbers and also infinite numbers and

infinitesimals (infinitely small). In this paper, we adopt the smallest non-Archimedean
field generated by combining the real line � and a single infinitesimal ε, denoted as
�(ε) [Rob73]. An infinitesimal ε is positive but smaller than any positive real number.
If ε is an infinitesimal, then εi is also an infinitesimal when i > 0. Moreover, for any
positive real numbers a, b, we have aεi+1 < bεi as ε < b/a (as b/a is a positive real
number). Note that if ε is an infinitesimal, then 1/ε is an infinite number (larger than
any positive real number), and vice versa. As �(ε) is an ordered field, it is also closed
under + and ·. Moreover, the usual arithmetic properties also apply in �(ε).

The non-Archimedean field, especially the non-standard probability (i.e., the proba-
bility values can involve infinitesimals), has already been introduced in the literature of
uncertainty reasoning. For example, in [Spo88], Spohn demonstrated the relationship
between his ordinal conditional function and the non-standard probability. In [Pea94],
Pearl used the non-standard probability to model non-monotonic reasoning.
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Definition 2. (≤ε) Let x =
∑s

i=1 aiε
bi and y =

∑t
j=1 cjε

dj be two polynomial rep-
resentations of infinitesimals, where all ai, cj are positive real numbers, bi, dj are inte-
gers, and b1 < . . . < bs, d1 < . . . < dt. We write x ≤ε y iff b1 ≥ d1. For convenience,
we also write 0 <ε x as 0 can be seen as 0 = ε+∞.

The ≤ε relation is not the usual mathematical ≤ relation, rather it aims to compare the
order of the infinitesimal ε, namely, we view x as O(εb1 ) and y as O(εd1).

Example 1. Let x = 2ε2 + 4ε4, y = ε2 + 3ε3, then we have x =ε y. That is, x and y
both can be seen as O(ε2).

We have the following result.

Proposition 1. Let x, y be two polynomial representations of infinitesimals, we have:
if x <ε y, then x < y, if x ≥ y, then x ≥ε y.

2.3 The DA2 Merging Operators

In [KLM04], a family of merging operators, called the DA2 merging operators, was
proposed to generalize both model-based and syntax-based merging operators. The DA2

merging operators, consisting of a distance relation between interpretations and two
aggregation functions, are defined below.

Definition 3. ([KLM04], distance) A distance relation between interpretations is a to-
tal function d from W ×W to N s.t. for every w1, w2 ∈W
1. d(w1, w2) = d(w2, w1), 2. d(w1, w2) = 0 iff w1 = w2.

The distance d between interpretations can be extended to be a distance between an
interpretation and a formula as d(w, φ) = minw′|=φd(w,w′).

Definition 4. ([KLM04], aggregation function) An aggregation function is a total func-
tion ⊕ associating a nonnegative integer to every finite tuple of nonnegative integers
and verifying (non-decreasingness), (minimality) and (identity).

non-decreasingness If x ≤ y, then ⊕(x1, . . . , x, . . . , xn) ≤ ⊕(x1, . . . , y, . . . , xn).
minimality ⊕(x1, . . . , xn) = 0 iff x1 = . . . = xn = 0.
identity For every nonnegative integer x, ⊕(x) = x.

Definition 5. ([KLM04], DA2 merging operators) Let d be a distance between in-
terpretations and ⊕ and � be two aggregation functions. For every knowledge pro-
file E = {K1, . . . ,Kn} and every integrity constraint IC, a DA2 merging operator
)d,⊕,�

IC (E) is defined in a model-theoretical way by:

Mod
(
)d,⊕,�

IC (E)
)

= min
(
IC,≤d,⊕,�

E

)
.

≤d,⊕,�
E is defined as w ≤d,⊕,�

E w′ iff d(w,E) ≤ d(w′, E), where

d(w,E) = �
(
d(w,K1), . . . , d(w,Kn)

)
,

and for every Ki = {φi,1, . . . , φi,ni}, d(w,Ki) = ⊕
(
d(w, φi,1), . . . , d(w, φi,ni )

)
.
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An example of distance function is the drastic distance defined as

dD(w1, w2) =
{

0 if w1 = w2,
1 otherwise.

For the drastic distance dD , we can easily get dD(w, φ) = 0 for w |= φ and dD(w, φ) =
1 otherwise. Thus it is the characterization function of Mod(φ). The commonly used
aggregation functions are max and sum with usual meanings.

3 NAP Representation of Interpretations

In this section, we discuss how to obtain non-Archimedean polynomials (NAPs) from
SKBs. With the non-Archimedean fields, we associate each stratum in a stratified base
with an infinitesimal of degree i (the level of the stratum in the base) , so the prioritized
information is represented. We then define a NAP for each interpretation w based on
the given SKB making use of the representation of prioritized information. This way,
the three ordering strategies can be easily simulated using NAPs of interpretations and
their relationships can be easily established and proved.

Let K = (S1, . . . , Sn) be a SKB, the three widely used ordering strategies are best
out, maxsat and leximin and they are defined as follows:

best out ordering [B+93] Let rBO(w) = mini{w 
|= Si}. Conventionally, mini∅ =
+∞. w ≤bo w′ iff rBO(w) ≥ rBO(w′).

maxsat ordering [Bre04] Let rMO(w) = mini{w |= Si}. w ≤maxsat w′ iff
rMO(w) ≤ rMO(w′).

leximin ordering [B+93] Let Ki(w) = {φ ∈ Si|w |= φ}. w ≤leximin w′ iff
1. |Ki(w)| = |Ki(w′)| for all i, or
2. ∃i such that |Ki(w)| > |Ki(w′)|, and |Kj(w)| = |Kj(w′)| for all j < i.

Definition 6. (NAP) Let K = (S1, . . . , Sn) be a SKB, d be a distance and ⊕ be an
aggregation function, then the NAP of an interpretation w is defined as

NAd,⊕
K (w) =

n∑
i=1

(d(w, Si)εi) (1)

where for Si = {φi1, . . . , φini}, d(w, Si) = ⊕(d(w, φi1), . . . , d(w, φini )).

Eq. 1 defines a family of NAPs of an interpretation w, e.g., NAdD,max
K (w) is one spe-

cific polynomial where d = dD and ⊕ = max. In the following, when there is no
confusion, we simplify NAd,⊕

K (w) as NAK(w).
If a SKB has {�} as its first stratum, then we have the following proposition.

Proposition 2. Let K be a SKB, then ∀w ∈W , NA({�},K)(w) = εNAK(w).

Now, we use NAPs to induce the above ordering strategies.

Definition 7. (best out simulation) For a SKB K , the best out simulation polynomial
bo(w) is defined as bo(w) = NAdD,max

K (w).
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When d = dD and ⊕ = max in Def. 6, we have d(w, Si) = maxφ∈Si(d(w, φ)) = 0
iff ∀φ ∈ Si, d(w, φ) = 0 (i.e., w |= Si). Therefore, bo(w) is actually simplified as

bo(w) =
{

εt +
∑n

i=t+1 d(w, Si)εi, if rBO(w) = t < ∞;
0, if rBO(w) = ∞.

bo(w) captures the best out strategy by making the most important stratum that w
falsifies as the largest ε−term.

In Definition 7, we can also let ⊕ = +, thus we get bo+(w) = NAdD,+
K (w). Based

on the pre-order≤ε defined in Definition 2, we have

Proposition 3. w ≤bo w′ iff bo(w) ≤ε bo(w′) iff bo+(w) ≤ε bo+(w′).

Definition 8. (maxsat simulation) For a SKB K , the maxsat simulation polynomial
maxsat(w) is defined as: maxsat(w) =∼ NAdD ,max

K (w) where for a polynomial
x =

∑n
i=1 aiε

i, ∼ x =
∑n

i=1∼ aiε
i s.t. ∼ ai = 1 if ai = 0 and ∼ ai = 0 otherwise.

For any w, if rMO(w) = t, we get NAdD,max
K (w) =

∑t−1
i=1 εi +

∑n
i=t+1 d(w, Si)εi,

then we have maxsat(w) =∼ NAdD ,max
K (w) = εt +

∑n
i=t+1∼ d(w, Si)εi.

maxsat(w) captures the maxsat strategy by making the most important stratum that
w satisfies as the largest ε-term from the ∼ operation.

Proposition 4. w ≤maxsat w
′ iff maxsat(w) ≥ε maxsat(w′).

From Definitions 7 and 8, given any stratified base K , the following should hold

bo(w) + maxsat(w) =
n∑
i=1

εi. (2)

For the leximin ordering strategy, we also define the leximin simulation.

Definition 9. (leximin simulation) For a SKB K , the leximin simulation polynomial
leximin(w) is defined as leximin(w) = NAdD,+

K (w).

Obviously, we have bo+(w) = leximin(w). As for leximin simulation, because of its
lexicographic nature, we cannot use the ≤ε relation to compare two leximin simulation
polynomials, instead, the usual mathematical comparative relation ≤ should be used.
Namely, we have the following result.

Proposition 5. w ≤leximin w′ iff leximin(w) ≤ leximin(w′).

With the help of NAPs, the three ordering strategies are represented in a very similar
form as shown by Propositions 3, 4 and 5, and the results in the following proposition
are immediate following Proposition 1 and Equation 2.

Proposition 6. [Bre04] Let w,w′ ∈W , then the following relationships hold:

1. w <bo w′ implies w <leximin w′.
2. w <bo w′ implies w ≤maxsat w

′ and w <maxsat w
′ implies w ≤bo w′.
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In fact, as bo+(w) = leximin(w), from w <bo w′, we get leximin(w) <ε

leximin(w′), thus from Proposition 1, we immediately get leximin(w) <
leximin(w′) which implies w <leximin w′. From w <bo w′ and Proposition 1, we
get bo(w) < bo(w′), from Equation 2, we have maxsat(w) > maxsat(w′), thus
Proposition 1 gives maxsat(w) ≥ε maxsat(w′) which implies w ≤maxsat w

′.

Example 2. Let K = {{p}, {q}, {¬p∧¬q}, {¬p∧ q}} be a SKB, and let w = ¬p∧ q,
w′ = ¬p ∧ ¬q be two possible worlds. Then we have

bo(w) = leximin(w) = ε + ε3, maxsat(w) = ε2 + ε4,
bo(w′) = leximin(w′) = ε + ε2 + ε4, maxsat(w′) = ε3.

Hence we get w =bo w′, w <maxsat w
′ and w <leximin w′.

4 The Non-archimedean Polynomial Merging Operators

Since a prioritized observation base (POB) is taken as containing formulae from a set of
SKBs, the issue of merging a set of SKBs becomes manipulating formulae in a single
POB to obtain a consistent formula (or a set of consistent formulae). To this end, we
define the non-Archimedean polynomial (np for short) merging operators for a POB as
follows (similar to Def. 5).

Definition 10. Let d be a distance relation between interpretations and ⊕ be an ag-
gregation function. For a POB K = 〈S1, . . . , Sn〉, a np merging operator)d,⊕(K) is
defined in a model-theoretical way by:

Mod
(
)d,⊕(K)

)
= min

(
W,≤d,⊕

K

)
.

≤d,⊕
K is defined as w ≤d,⊕

K w′ iff NAK(w) ≤ NAK(w′), where NAK is the NAP for
POB K by Definition 6.

Since the syntactic form of a POB K is the same as that of a SKB K ′, we can define
the NAP NAK(w) from a POB K based on the definition NAK′(w) from a SKB K ′.

When d and ⊕ are assigned with different distances and different aggregation func-
tions respectively, we get a family of prioritized merging operators.

Other families of prioritized merging operators can be obtainable in terms of NAPs.
For example, �d,⊕

K defined as w �d,⊕
K w′ iff NAK(w) ≤ε NAK(w′) gives us a new

family of prioritized merging operators. Due to space limitation, in this paper we only
consider the np merging operator defined in Definition 10.

A number of desirable properties for prioritized merging were proposed in [DDL06].
Let K be a POB and) be a prioritized merging operator, these properties are

PMon For every i < n,)(K1→i+1) " )(K1→i).
Succ )(K) " )(K1).
Cons )(K) is consistent.
Taut )({�},K) = )(K).
Opt If

∧
K is consistent, then)(K) =

∧
(K).

IS If K ≡ K ′, then)(K) = )(K ′).
RA )(K1→i) = )()(K1→i−1),Ki).
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Note: because we represent a prioritized base as K = 〈S1, ..., Sn〉 with S1 having
the most reliable formulae, and S1 is equivalent to σn in the original definition of a
prioritized base, the RA (Right Associativity) property looks like a Left Associativity
property.

Proposition 7. Let )d,⊕ be any np merging operator defined in Definition 10, then it
satisfies (PMon), (Succ), (Cons), (Taut), (Opt), (IS) and (RA).

Some existing prioritized merging operators, e.g., the )linear and the )leximin merg-
ing operators defined below are special cases of)d,⊕.

Definition 11. (linear, [DP91, Neb94]) Let K = 〈S1, . . . , Sn〉, and)linear be defined
inductively by:)linear() = �, and for j ≥ 1,

�linear(K1→j) =
{∧

Sj

∧
�linear(K1→j−1) if consistent,

�linear(K1→j−1) otherwise.

Definition 12. (leximin, [B+93, Leh95]) Let K = 〈S1, . . . , Sn〉. For K1,K2 ∈
Cons(K), define K2 >leximin K1 iff ∃j such that

1. |K1→j ∩K2| > |K1→j ∩K1|,
2. ∀i < j, |K1→i ∩K2| = |K1→i ∩K1|.

Then)leximin(K) =
∨
{
∧

K ′, s.t.,K ′ ∈Max(>leximin, Cons(K))}.

Proposition 8. Let d = dD and ⊕ = max in Definition 10, then)d,⊕ = )linear .

Proposition 9. Let d = dD and ⊕ = + in Definition 10, then)d,⊕ = )leximin.

However, not all the prioritized merging operators proposed so far in the literature can
be induced from the family of np merging operators. For instance,the discrimin operator
[B+93], as it makes use of set inclusion, cannot be represented by NAPs.

5 Non-archimedean Polynomial for Merging RKBs

In this section, we use NAPs to represent the merging of RKBs. That is, we aim to rep-
resent and further interpret the Egalitarist Fusion of incommensurable RKBs [BLR07].

A RKB K is a set of ranked propositions, i.e., K = {(φ1, r1), . . . , (φn, rn)}. ri is
the rank of φi, ri ∈ N ∪ {+∞}, 1 ≤ i ≤ n. Here a proposition with a higher rank
is more important (prioritized) than the one with a lower rank. The notion of RKB is
a generalization of SKBs. Each RKB induces a SKB in which formulae with the same
rank are in the same stratum and formulae with the highest rank are in the first stratum.
First, we recall some results in [BLR07].

Definition 13. (Ranking functions) A ranking function κK associated with a RKB K is
a function: W → N ∪ {0} such that:

κK(w) =
{

0 if ∀(φi, ri) ∈ K,w |= φi,
max(ri : w 
|= φi) otherwise.

With the help of κK(w), a strict order #EMax can be defined between interpretations.
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Definition 14. [BLR07] Let E = {K1, . . . ,Kn} be a knowledge profile of RKBs and
w,w′ ∈ W be two interpretations, then we have:

w #EMax w′ iff max(κKi(w) : 1 ≤ i ≤ n) < max(κKi(w
′) : 1 ≤ i ≤ n).

Example 3. Let E = {K1,K2} such that K1 = {(p, 4), (¬q, 2)} and K2 =
{(q, 3), (p, 1)}, then we have the following

p q κK1(w) κK2(w) max
w0 0 0 4 3 4
w1 0 1 4 1 4
w2 1 0 0 3 3
w3 1 1 2 0 2

Obviously, w3 is the smallest w.r.t. #EMax.

In [BLR07], it is explicitly stated that the scales used in different RKBs are not required
to be commensurable. To merge incommensurable ranked bases, a scaling method is
proposed as follows.

Definition 15. ([BLR07], Compatible scaling) Let E = {K1, . . . ,Kn} be a profile of
ranked bases, a scaling S is defined as (

⊔
represents the union of multi-sets):

S : K1

⊔
. . .

⊔
Kn → N (φij , rij) �→ S(φij).

S is said to be compatible with E iff ∀Ki ∈ E, we have ∀(φ, r), (φ′, r′) ∈ Ki, r ≤ r′

iff S(φ) ≤ S(φ′).

Given a compatible scaling S, KS (resp. ES) is used to denote the ranked base (resp.
profile of ranked bases) obtained from K (resp. E) by replacing each pair (φi, ri) with
(φi,S(φi)) (resp. replacing each Ki ∈ E with KSi ).

Example 4. (Exam. 3 cont.) Let E = {K1,K2}, then a scaling s1 produces Ks1
1 =

{(p, 2), (¬q, 1)} and Ks1
2 = {(q, 5), (p, 2)} is a compatible scaling. However, a scaling

s2 with Ks2
1 = {(p, 2), (¬q, 3)} and Ks2

2 = {(q, 5), (p, 2)} is not a compatible scaling
as s2(p) < s2(¬q) for Ks2

1 .

Definition 16. ([BLR07], Compatible scaling ordering) Let E = {K1, . . . ,Kn}, SE
be the set of all compatible scalings with E, then a partial order <E

∀ is defined on W
as

∀w,w′ ∈ W,w <E
∀ w′iff ∀S ∈ SE , w #E

S

Max w′.

Example 5. (Exam. 3 cont.) In Example 3, we have w2 #EMax w1. But after using the
compatible scaling s1 in Example 4, we get w1 #E

s1

Max w2, thus w2 
<E
∀ w1. It shows the

difference between #EMax and <E
∀ .

Definition 17. ([BLR07], Pareto-like ordering) Let E = {K1, . . . ,Kn}, we denote
w #Pareto w′ iff the following conditions are satisfied:
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1. ∃i ∈ {1, . . . , n}, κKi(w′) 
= 0.
2. ∀i ∈ {1, . . . , n}, κKi(w) = κKi(w′) = 0, or κKi(w) < κKi(w′).

The main result in [BLR07] is the proof of equivalence between Pareto-like ordering
and the compatible scaling ordering as stated in the following proposition.
Proposition 10. ([BLR07], Prop. 16) ∀w,w′ ∈W , we have w <E

∀ w′ iff w#Paretow
′.

Here we show that strict orders #EMax and <E
∀ can be represented by NAPs.

Definition 18. (NAPs from RKBs) Let d be a distance function, for every RKB K =
{(φ1, r1), . . . , (φn, rn)}, we define the NAP of an interpretation w as NAd

K(w) =∑n
i=1(d(w, φi)ε−ri).

When a SKB K = (S1, . . . , Sn) is viewed as a RKB

K∗ = {(φ11,−1), . . . , (φ1|S1|,−1), . . . , (φn1,−n), . . . , (φn|Sn|,−n)}
where φij ∈ Si, 1 ≤ j ≤ |Si|, 1 ≤ i ≤ n, the NAPs from K is exactly the same as that
from K∗, thus the above definition derives Definition 6 when the aggregation operation
⊕ is ‘+’. For simplicity, we write NAi(w) instead of NAd

Ki
(w), and use NAE(w) for∑|E|

i=1 NAi(w) in the rest of the section.

Definition 19. (non-Archimedean pre-order relation) Let E = {K1, . . . ,Kn} and
w,w′ be two interpretations. We denote w <Ki

NA w′ iff NAi(w) < NAi(w′). w <E
NA

w′ iff NAE(w) <ε NAE(w′).

Note that <Ki

NA deploys < while <E
NA deploys <ε.

Example 6. (Exam. 3 Cont.) Let E = {K1,K2}, then we have the following

p q NA1(w) NA2(w) NAE(w)
w0 0 0 ε−4 ε−3 + ε−1 ε−4 + ε−3 + ε−1

w1 0 1 ε−4 + ε−2 ε−1 ε−4 + ε−2 + ε−1

w2 1 0 0 ε−3 ε−3

w3 1 1 ε−2 0 ε−2

We can see that w0 <K1
NA w1, w0 >K2

NA w1, etc., and w3 is the smallest w.r.t. <E
NA.

Definition 20. Let E = {K1, . . . ,Kn} and w,w′ be two interpretations. We denote
w <Com

NA w′ iff
∑n

i=1 aiNAi(w) <ε
∑n

i=1 aiNAi(w′) where ai = εκKi
(w′) is a

commensurable coefficient.
We call <Com

NA the commensurable non-Archimedean pre-order relation because for
each i, εκKi

(w′)NAi(w′) has a minimum degree 0 for ε. That is, for any i, j ∈ [1, n],
εκKi

(w′)NAi(w′) and εκKj
(w′)NAj(w′) are somehow commensurable. This is illus-

trated by the following simple example.
Example 7. Let E = {K1,K2} s.t. K1 = {(p, 4), (¬q, 2)} and K2 = {(q, 3), (p, 1)}
and w′ = ¬p∧q be a possible world. We have NA1(w′) = ε−2+ε−4, and NA2(w′) =
ε−1. Obviously, the minimum degrees for ε in NA1(w′) and in NA2(w′) are not the
same. Now as κK1(w′) = 4 and κK2(w′) = 1, we get εκK1 (w′)NA1(w′) = 1 + ε2 and
εκK2(w′)NA2(w′) = 1, both having 0 as the minimum degree for ε (as 1 = ε0).
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The following theorems show that the egalitarist fusion can be characterized by the
non-Archimedean pre-orders.

Theorem 1. Let E be a profile of RKBs, ∀w,w′ ∈ W , we have w #EMax w′ iff w <E
NA

w′.

Theorem 2. Let E be a profile of RKBs, ∀w,w′ ∈ W , we have w <E
∀ w′ iff w #Pareto

w′ and iff w <Com
NA w′.

These theorems show that the egalitarist fusion for the incommensurable RKBs can
be described by our non-Archimedean approaches. Furthermore, from Theorem 2, it
shows that the egalitarist fusion can in particular be described by our commensurable
pre-order relation. Therefore, it is not surprising why the egalitarist fusion does not need
the commensurable assumption to deal with the incommensurable RKBs.

6 Conclusion

In this paper, we have proposed a new method to model stratified/ranked KBs. Un-
like the commonly used logical approaches, our method is largely numerical. We used
the non-Archimedean representation for stratified/ranked KBs to represent the ordering
strategies, to define new merging operators, and to simulate the egalitarist fusion for
incommensurable RKBs. This wide range coverage shows that the non-Archimedean
representation is very suitable for modeling stratified/ranked KBs.

In [Pap01], a polynomial representation for each possible world w was proposed
which associates w and each epistemic state Φ (which assigns w an ordinal as its weight)
with a polynomial pΦ(w) =

∑n
i=0 pi(w)xi. Here coefficients pi(w) ∈ {0, 1}, 0 ≤ i ≤

n, encodes the binary representation, read in reverse order of the weight assigned to
w [B+02], e,g, if the weight of w is 6, then its binary form is 110, so p0(w) = 0 and
p1(w) = p2(w) = 1. The interpretation of such polynomials differs from NAPs in the
following aspects. Papini’s polynomials consider epistemic states and their coefficients
are 0 or 1, representing the binary form of the weight of w provided by the epistemic
states whilst NAPs are for SKBs with each coefficient standing for the aggregation
result of distances of formulae in the same level to w, and is not limited to {0, 1}.
Therefore, Papini’s polynomial and NAP are very different.

Our new framework of prioritized merging operators based on NAPs is the coun-
terpart of the DA2 [KLM04] framework of flat merging operators. For each stratum
of stratified bases, NAP representation also uses the distance and aggregation function
to obtain an aggregated effect which is also used in the DA2 framework. Thus, our
framework can be seen as an extension of the DA2 framework for SKBs.

The non-Archimedean field is not an entirely new idea in artificial intelligence re-
search. It appeared in the nonstandard probabilities [Spo88, Pea94], in decision making
[Leh98] to model utilities to provide a unified theory for qualitative and quantitative
decision theories, and in data envelopment analysis [TN09] to define merit functions.
However, it has never been used to manipulate stratified/ranked KBs. Our work there-
fore is novel and significant. There are still many aspects that can be further developed,
such as, the relationship between various prioritized merging operators in the literature.
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Abstract. Most of belief revision operations have been proposed for to-
tally preordrered information. However, in case of partial ignorance, pieces
of information are partially preordered and few effective approaches of re-
vision have been proposed. The paper presents a new framework for revis-
ing partially preordered information, called Partially Preordered Removed
Sets Revision (PPRSR). The notion of removed set, initially defined in the
context of the revision of non ordered or totally preordered information is
extended to partial preorders. The removed sets are efficiently computed
thanks to a suitable encoding of the revision problem into logic program-
ming with answer set semantics. This framework captures the possibilistic
revision of partially preordered information and allows for implementing
it with ASP. Finally, it shows how PPRSR can be applied to a real appli-
cation of the VENUS european project before concluding.

1 Introduction

Belief revision has been extensively studied in the domain of knowledge repre-
sentation for artificial intelligence, mainly for totally preordered information. A
characterization of belief revision has been provided by Alchourron, Gärdenfors,
Makinson (AGM) with a set of postulates that any revision operation should
satisfy [6]. Katsuno and Mendelzon (KM) reformulated AGM’s postulates and
provided a representation theorem that characterizes revision operations based
on total preorders [11]. Belief revision has been discussed within different frame-
works (probabillity theory, Sphon’s conditional functions, Grove’s system of
spheres, etc · · ·). Some approaches have been implemented, among them, Re-
moved Sets Revision which has been initially proposed in [15] for revising a set
of propositional formulae. This approach stems from removing a minimal num-
ber of formulae, called removed set, to restore consistency. The Removed Sets
Revision (RSR) and then a prioritized form of Removed Sets Revision, called
Prioritized Removed Sets Revision (PRSR) [1] have been encoded into answer
set programming and allowed for solving a practical revision problem coming
from a real application in the framework of geographical information system.

However in some applications, an agent has not always a total preorder be-
tween situations at his disposal, but is only able to define a partial preorder

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 421–433, 2009.
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422 M. Sérayet, P. Drap, and O. Papini

between situations, particularly in case of partial ignorance and incomplete in-
formation. In such cases, an epistemic state can be represented by either a partial
preorder on interpretations or a partially preordered belief base.

The revision of partially preordered information has been less investigated in
the literature, however Lagrue and al. [4] pointed out that the KM’s postulates
are not appropriate for partial preorders and proposed a suitable definition of
faithful assignment, called P-faithful assignment, a new set of postulates and a
representation theorem. Some revision operations initially defined for total pre-
orders, such as revision with memory and possibilistic revision have been sucess-
fully extended to partial preorders [2]. This paper proposes a new framework for
revising partially preordered information and provides an efficient implementa-
tion thanks to Answer Set Programming. The main contributions of this paper
are the following:

– It extends the Removed Sets Revision to partially preordered information,
called Partially Preordered Removed Sets Revision (PPRSR). The paper
shows how the notion of removed set, roughly speaking, the subsets of for-
mulae to remove to restore consistency, initially defined in the context of
non ordered [15] or totally ordered [1] information is extended to the case of
the revision of partially preordered information,

– It provides an implementation of PPRSR with ASP. The revision problem
is translated into a logic program with answer set semantics and a one-
to-one correspondence between removed sets and preferred answer sets is
shown. The computation of answer sets is performed with any ASP solver
supporting the minimize statement.

– It shows that the possibilistic revision of partially preordered information
can be captured within the PPRSR framework allowing for an efficient im-
plementation with ASP.

The rest of this paper is organized as follows. Section 2 fixes the notations and
gives a refresher on RSR, on answer set programming and on partial preorders.
Section 3 presents the Partially Preordered Removed Set Revision (PPRSR) and
shows how it captures the possibilistic revision. Section 4 details the encoding of
PPRSR into logic programming with answer set semantics and the computation
of answer sets thanks to ASP solvers. It then shows the one-to-one correspon-
dence between removed sets and preferred answer sets. Section 5 illustrates how
PPRSR can be applied in the context of the VENUS project before concluding.

2 Background and Notations

2.1 Notations

In this paper we use propositional calculus, denoted by LPC , as knowledge rep-
resentation language with usual connectives ¬, ∧, ∨, →, ↔. Let X be a set of
propositional formulae, we denote by Cons(X) the set of logical consequences
of X . We denote by W the set of interpretations of LPC and by Mod(ψ) the set
of models of a formula ψ, that is Mod(ψ) = {ω ∈ W , ω |= ψ} where |= denotes
the inference relation used for drawing conclusions.
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2.2 Removed Sets Revision

We briefly recall the Removed Sets Revision approach. Removed Sets Revision
[15] deals with the revision of a set of propositional formulae by a set of propo-
sitional formulae1. Let K and A be finite sets of clauses. Removed Sets Revision
(RSR) focuses on the minimal subsets of clauses to remove from K, called re-
moved sets, in order to restore the consistency of K ∪ A. More formally: let K
and A be two consistent sets of clauses such that K ∪A is inconsistent. R a sub-
set of clauses of K, is a removed set of K ∪A iff (i) (K\R)∪A is consistent; (ii)
∀R′ ⊆ K, if (K\R′)∪A is consistent then | R |≤| R′ |2. Let denote by R(K ∪A)
the collection of removed sets of K ∪A, RSR is defined as follows: let K and A
be two consistent sets of clauses, K ◦RSRA =def

∨
R∈R(K∪A) Cons((K\R)∪A).

According to a semantic point of view, | NSK(ω) | denotes the number of clauses
of K falsfied by an interpretation ω and a total preorder on interpretations is
defined by: ωi ≤K ωj iff | NSK(ωi) |≤| NSK(ωj) |. Removed Sets Revision can
be semantically defined by Mod(K ◦RSRsem A) = min(Mod(A),≤K). It mini-
mizes the number of clauses falsified by the models of A and Mod(K ◦RSRA) =
Mod(K ◦RSRsem A). In case of prioritized belief bases, RSR has been extended
to Prioritized Removed Sets Revision (PRSR) [1].

2.3 Partial Preorders

A partial preorder, denoted by � on a set A is a reflexive and transitive binary
relation. Let x and y be two members of A, the equality is defined by x = y iff
x � y and y � x. The corresponding strict partial preorder, denoted by ≺, is
such that, x ≺ y iff x � y holds but x = y does not hold. We denote by ∼ the
incomparability relation x ∼ y iff x � y does not hold nor y � x. The set of
minimal elements of A with respect to ≺, denoted by Min(A,≺), is defined as:
Min(A,≺) = {x ∈ A, �y ∈ A : y ≺ x}.

Generally, epistemic states are represented by total preorders on interpreta-
tions, however, as mentionned in the introduction, in case of partial ignorance,
the agent is unable to compare all situations between them and a partial preorder
seems to be more suitable to represent epistemic states.

Let Ψ be an epistemic state and Bel(Ψ) its corresponding belief set, Ψ is first
represented by a partial preorder on interpretations, denoted by�Ψ . In [4], a suit-
able definition of faithful assignment is given: let Bel(Ψ) = min(W ,≺Ψ ), �Ψ is a
P-faifhful assignment if (1) if ω, ω′ |= Bel(Ψ) then ω ≺Ψ ω′ does not hold, (2) if
ω′ 
|= Bel(Ψ), then there exists ω such that ω |= Bel(Ψ) and ω ≺Ψ ω′, (3) if Ψ = Φ
then �Ψ=�Φ. Moreover, [4] gives a set of postulates an operation ◦ has to satisfy
and a representation theorem such that Mod(Bel(Ψ ◦ μ)) = min(Mod(μ),�Ψ ).
An alternative syntactic but equivalent representation of an epistemic state, Ψ
is a partially preordered belief base, denoted by (Σ,�Σ), where Σ is a set of

1 We consider propositional formulae in their equivalent conjonctive normal form
(CNF).

2 | R | denotes the number of clauses of R.
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propositional formulae, and �Σ is a partial preorder on the formulae of Σ. Sev-
eral ways of defining a partial preorder on subsets of formulae belonging to Σ,
called comparators, from a partial preorder on a set of formulae Σ have been
proposed: inclusion-based [10], possibilistic [3], lexicographic [16] comparators.
They are such that the preferred formulae are kept in the belief base. In our
approach, according to the Removed Sets strategy, we adopt a dual point of
view in the sense that we want to prefer the subsets of formulae to remove. For
example, we rephrase the possibilistic comparator (or weak comparator) used in
[3], already defined in [12] and reused by [8] as follows. Y is preferred to X if for
each element of Y , there exists at least one element of X which is preferred to
it, more formally: let �Σ be a partial preorder on Σ, Y ⊆ Σ and X ⊆ Σ. Y is
preferred to X , denoted by Y �w X iff ∀y ∈ Y , ∃x ∈ X such that x �Σ y.

We now briefly recall the extension of the semantic possibilistic revision to
partial preorders [2]. Let π be a possibility distribution [5] and let Ψ be an
epistemic state, represented by (W ,�Ψ ), such that ∀ω, ω′ ∈ W , ω �Ψ ω′ iff
π(ω′) � π(ω). The possibilistic revision of Ψ by a propositional formula μ leads
to the epistemic state Ψ ◦π μ, represented by (W ,�Ψ◦πμ) which considers all the
counter-models of μ as impossible and preserves the relative ordering between the
models of μ. More formally, Ψ ◦π μ corresponds to the following partial preorder:
(i) if ω, ω′ ∈Mod(μ) then ω �Ψ◦πμ ω′ iff ω �Ψ ω′, (ii) if ω, ω′ 
∈Mod(μ) then
ω =Ψ◦πμ ω′, (iii) if ω ∈Mod(μ) and ω′ 
∈Mod(μ) then ω ≺Ψ◦πμ ω′.

2.4 Answer Sets

A normal logic program is a set of rules of the form c ← a1, . . . , an, not b1, . . . , not
bm where c, ai(1 ≤ i ≤ n), bj(1 ≤ j ≤ m) are propositional atoms and the
symbol not stands for negation as failure. For a rule r like above, we introduce
head(r) = c and body(r) = {a1, · · · , an, b1, · · · , bm}. Furthermore, let body+(r) =
{a1, · · · , an} denotes the set of positive body atoms and body−(r) = {b1, · · · , bm}
the set of negative body atoms, and body(r) = body+(r) ∪ body−(r). Let r be a
rule, r+ denotes the rule head(r) ← body+(r), obtained from r by deleting all
negative body atoms in the body of r.

A set of atoms X is closed under a basic program P iff for any rule r ∈ P ,
head(r) ∈ X whenever body(r) ⊆ X . The smallest set of atoms which is closed
under a basic program P is denoted by CN(P ). The reduct or Gelfond-Lifschitz
transformation [13], PX of a program P relatively to a set X of atoms is defined
by PX = {r+ | r ∈ P and body−(r) ∩X = ∅}. A set of atoms X is an answer
set of P iff CN(PX) = X .

3 Partially Preordered Removed Sets Revision (PPRSR)

Let Ψ be an epistemic state for partially preordered information. Ψ is syntacti-
cally represented by (Σ,�Σ) where Σ is a set of formulae and �Σ is a partial
preorder on Σ. Ψ can be represented from a semantic point of view as (W ,�Ψ )
whereW is the set of interpretations and �Ψ is a partial preorder onW such that
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Mod(Bel(Ψ)) = min(W ,≺Ψ). We present the Partially Preordered Removed
Sets Revision (PPRSR) of an epistemic state Ψ by a formula μ. According to
the syntactic point of view, we focus on the preferred subsets of formulae to
remove from Σ to restore consistency. We first define the potential removed sets
as follows:

Definition 1. Let (Σ,�Σ) be a syntactic representation of Ψ . Let μ be a formula
such that Σ ∪ {μ} is inconsistent. R, a subset of formulae of Σ, is a potential
removed set of Σ ∪ {μ} iff (Σ\R) ∪ {μ} is consistent.

Example 1. Let Σ = {a, b, a ∨ ¬b,¬a ∨ b} and �Σ be a given partial preorder:

b

a

¬a ∨ b

a ∨ ¬b
(b ← a means that b ≺Σ a). We revise Σ by μ = ¬a ∨ ¬b.
Σ ∪ {μ} is inconsistent. The potential removed sets are R0 =
{a, a ∨ ¬b}, R1 = {a, a ∨ ¬b,¬a ∨ b}, R2 = {a, b, a ∨ ¬b}, R3 =
{a, b, a∨¬b,¬a∨b}, R4 = {b,¬a∨b}, R5 = {b, a∨¬b,¬a∨b}, R6 =
{a, b,¬a ∨ b}, R7 = {a, b}.

Let R(Σ ∪ {μ}) be the set of potential removed sets. Among them, we want to
prefer the potential removed sets which allow us to remove the formulae that are
not preferred according to �Σ . This leads to define a partial preorder on subsets
of formulae of Σ, called comparator [3,16], denoted by �C . We now generalize the
notion of Removed Sets to subsets of partially preordered formulae. We denote
by RC(Σ ∪ {μ}) the set of removed sets of Σ ∪ {μ}.
Definition 2. Let (Σ,�Σ) be a syntactic representation of Ψ . Let μ be a formula
such that Σ ∪ {μ} is inconsistent. R ⊆ Σ is a removed set of Σ ∪ {μ} iff

1. R is a potential removed set.
2. �R′ ∈ R(Σ ∪ {μ}) such that R′ ⊆ R.
3. �R′ ∈ R(Σ ∪ {μ}) such that R′ �C R.

Example 2. In the examples, we will use the weak comparator, denoted by �w

and defined in 2.3. We have R0 �w R1 because a �Σ a and ¬a ∨ b �Σ a ∨ ¬b.
The partial preorder on the potential removed sets is: R0 �w R1, R0 �w R2,
R0 �w R3, R0 �w R4, R0 ∼w R7, R1 ∼w R2, R1 �w R3, R1 ∼w R7, R2 �w R3,
R7 �w R2, R7 �w R3, R3 =w R4 =w R5 =w R6. We have �R′ ∈ R(Σ ∪ {μ})
such that R′ �w R0 and R′ �w R7. Moreover, R0 and R7 are minimal according
to the inclusion. So, Rw(Σ ∪ {μ}) = {R0, R7}.

Remark: We could refine the notion of removed set with an extra preference
according to a strategy P (cardinality or minimality). RC,P (Σ ∪ {μ}) denotes
the set of removed sets of Σ ∪ {μ} according to the strategy P . In this case,
a preferred removed set according to a strategy P is a removed set R such
that �R′ ∈ RC(Σ ∪ {μ}) such that R′ <P R. According to the cardinality,
RY ≤CARD RX iff |RY | ≤ |RX | with |X | the cardinality of the set X . According
to the minimality, RY ≤MIN RX iff |RY ∩MIN | ≤ |RX ∩MIN | with MIN =
{x|x ∈ Σ, �y ∈ Σ, y ≺Σ x}.
Example 3. We can apply strategies: Rw,CARD(Σ ∪ {μ}) = {R0, R7} and
Rw,MIN (Σ ∪ {μ}) = {R0}.
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The revision of an epistemic state represented by (Σ,�Σ) by a formula μ is a
new epistemic state represented by (Σ ◦�C μ,�Σ◦�C

μ) and is defined as follows:

Definition 3. Let (Σ,�Σ) be a syntactic representation of Ψ . Let μ be a for-
mula such that Σ ∪ {μ} is inconsistent. The Partially Preordered Removed Sets
Revision (PPRSR) is defined by:

– Σ ◦�C μ =
∨
R∈R(Σ∪{μ}) Cons((Σ\R) ∪ {μ})

– �Σ◦�C
μ: (i) ∀ψ ∈ Σ, μ ≺Σ◦�C

μ ψ; (ii) ∀ψ, φ ∈ Σ, ψ �Σ◦�C
μ φ iff ψ �Σ φ

Example 4. According to the example 1, Ψ is syntacti-
cally represented by (Σ,�Σ) and revising by μ using the
weak comparator gives Σ ◦�w μ = Cons({b,¬a∨ b,¬a∨
¬b}) ∨ Cons({a ∨ ¬b,¬a ∨ b,¬a ∨ ¬b}) and �Σ◦�wμ:

b

a

¬a ∨ b

a ∨ ¬b

¬a ∨ ¬b

In order to establish the equivalence between the syntactic and the semantic rep-
resentations of Ψ , we use the following definition where FΣ(ω) denotes the set
of formulae of Σ falsified by an interpretation ω.

Definition 4. ∀ω, ω′ ∈ W, ω �C
Ψ ω′ iff FΣ(ω)�C FΣ(ω′) and FΣ(ω′) � FΣ(ω).

Using this definition, the semantic representation of Ψ is (W ,�C
Ψ ) and is such

that Mod(Σ) = min(W ,≺C
Ψ ). Moreover the following proposition holds.

Proposition 1. Let Ψ be an epistemic state and �C
Ψ be a partial preorder on

W associated to Ψ . Then, �C
Ψ is a P-faithful assignment.

We are now able to define the semantic counterpart of PPRSR as follows:

Definition 5. Let Ψ be an epistemic state and μ be a formula. Mod(Ψ◦�sem
C

μ) =
min(Mod(μ),≺C

Ψ ).

The equivalence between the semantic and the syntactic PPRSR is given by the
following proposition.

Proposition 2. Let (Σ,�Σ) be a syntactic representation of Ψ and μ be a for-
mula. Mod(Σ ◦�C μ) = Mod(Ψ ◦�sem

C
μ).

The semantic representation of the revised epistemic state is (W ,�w
Ψ◦�sem

C
μ)

with �w
Ψ◦�sem

C
μ defined by ω �w

Ψ◦�sem
C

μ ω′ iff FΣ◦�C
μ(ω) �w FΣ◦�C

μ(ω′) and

FΣ◦�C
μ(ω′) � FΣ◦�C

μ(ω). When we select the weak comparator defined in 2.3,
the PPRSR framework can capture the possibilistic revision recalled in 2.3 and
the following proposition holds.

Proposition 3. Let ◦π be the possibilistic revision operator. ∀ω, ω′ ∈ W,
ω �w

Ψ◦�sem
w

μ ω′ iff ω �Ψ◦πμ ω′
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Example 5. Let (Σ,�Σ) be the syntactic representation of Ψ from the example
1 with Σ = {a, b, a ∨ ¬b,¬a ∨ b}. The interpretations are: ω0 = {¬a,¬b}, ω1 =
{¬a, b}, ω2 = {a,¬b} and ω3 = {a, b}. Using the definition 4 with the weak
comparator, we construct a partial preorder on the interpretations. The sets of
formulae of Σ falsified by the interpretations are FΣ(ω0) = {a, b}, FΣ(ω1) =
{a, a ∨ ¬b}, FΣ(ω2) = {b,¬a ∨ b} and FΣ(ω3) = ∅ and the partial preorder �w

Ψ

is given by the Fig. 1 (a). Therefore (W ,�w
Ψ ) is the semantic representation of

Ψ and is such that Mod(Σ) = min(W ,≺w
Ψ ).

Let (Σ ◦�w μ,�Σ◦�wμ) be the syntactic representation of the epistemic state
Ψ revised by μ. Using the definition 4 with the weak comparator, we construct
a new partial preorder on the interpretations. The sets of formulae of Σ ◦�w μ
falsified by the interpretations are FΣ◦�wμ(ω0) = {a, b}, FΣ◦�wμ(ω1) = {a, a ∨
¬b}, FΣ◦�wμ(ω2) = {b,¬a ∨ b} and FΣ◦�wμ(ω3) = {¬a ∨ ¬b} and the partial
preorder �Ψ◦�sem

w
is given by the Fig. 1 (b). Therefore (W ,�w

Ψ◦�sem
w

μ) is the
semantic representation of Ψ revised by μ and with the proposition 2 is such
that Mod(Σ ◦�w μ) = min(Mod(μ),≺w

Ψ ).
If we apply, the semantic possibilistic revision of (W ,�w

Ψ ) by μ which preserves
the relative ordering between the models of μ and considers all the counter-
models of μ as impossible, we obtain the partial preorder �Ψ◦πμ illustrated in
Fig. 1 (c). Therefore (W ,�w

Ψ◦�sem
w

μ) = (W ,�Ψ◦πμ).

ω0 ω1

ω2

ω3

(a) �w
Ψ

ω0 ω1

ω2

ω3

(b) �w
Ψ◦�sem

w
μ

ω0 ω1

ω2

ω3

(c) �Ψ◦πμ

Fig. 1. Partial preorders between interpretations

4 Encoding PPRSR in Answer Set Programming

In order to compute the removed sets, we extend the methods proposed by [9]
and [1] to the revision of partially preordered information. We first translate
our revision problem into a logic program with answer sets semantics, denoted
by ΠΣ∪{μ}. The set of answer sets is denoted by S(ΠΣ∪{μ}). We then define
a partial preorder between answer sets of ΠΣ∪{μ} and we show a one-to-one
correspondence between removed sets of Σ ∪ {μ} and preferred answer sets of
ΠΣ∪{μ}.

Let Σ be a set of partially preordered formulae and μ a formula such that
Σ ∪ {μ} is inconsistent. The set of all positive literals of ΠΣ∪{μ} is denoted
by V + and the set of all negative literals of ΠΣ∪{μ} is denoted by V −. The
set of all rule atoms representing formulae is defined by R+ = {rf |f ∈ Σ}
and FO(rf ) represents the formula of Σ corresponding to rf in ΠΣ∪{μ}, namely
∀rf ∈ R+, FO(rf ) = f . This translation requires the introduction of interme-
diary atoms representing subformulae of f . We denote by ρjf the intermediary
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atom representing f j which is a subformula of f ∈ Σ. To each answer set S
of ΠΣ∪{μ}, an interpretation of Σ ∪ {μ} is associated. Each interpretation of
Σ ∪ {μ} corresponds to several potential removed sets denoted by FO(R+ ∩ S).

1. In the first step, we introduce rules in order to build a one-to-one correspon-
dence between answer sets of ΠΣ∪{μ} and interpretations of V +. For each
atom, a ∈ V + two rules are introduced: a ← not a′ and a′ ← not a where
a′ ∈ V − is the negative atom corresponding to a.

2. In the second step, we introduce rules in order to exclude the answer sets
S corresponding to interpretations which are not models of (Σ\F ) ∪ {μ}
with F = {f |rf ∈ S}. According to the syntax of f , the following rules are
introduced:
– If f ≡ a, the rule rf ← not a is introduced;
– If f ≡ ¬f1, the rule rf ← not ρf1 is introduced;
– If f ≡ f1 ∨ . . . ∨ fm, the rule rf ← ρf1 , . . . , ρfm is introduced;
– If f ≡ f1 ∧ . . . ∧ fm, it is though necessary to introduce several rules to

the program. These rules are introduced: ∀1 ≤ j ≤ m, rf ← ρfj .
3. The third step rules out answer sets of ΠΣ∪{μ} which correspond to inter-

pretations which are not models of μ. According to the syntax of μ, the
following rules are introduced:
– If μ ≡ a, the rule false ← not a is introduced;
– If μ ≡ ¬f1, the rule false ← not ρf1 is introduced;
– If μ ≡ f1 ∨ . . . ∨ fm, the rule false ← ρf1 , . . . , ρfm is introduced;
– If μ ≡ f1 ∧ . . . ∧ fm, the rules ∀1 ≤ j ≤ m, false ← ρfj are introduced.

In order to rule out false from the models of μ, the following rule is intro-
duced: contradiction ← false, not contradiction.

Example 6. For the previous example, the logic program ΠΣ∪{μ} is the following:
a ← not a′ b ← not b′ ra ← a′ ra∨¬b ← a′, b
a′ ← not a b′ ← not b rb ← b′ r¬a∨b ← a, b′

false ← not a′, not b′ contradiction ← false, not contradiction

If f = ¬a ∨ b belongs to a removed set, then r¬a∨b should belong to an answer
set. f has to be falsified and so ¬f , i.e. a ∧ ¬b, has to be satisfied that is why
the rule r¬a∨b ← a, b′ is introduced to ΠΣ∪{μ}.

From the logic program, we show how we obtain a one-to-one correspondence
between the preferred answer sets of ΠΣ∪{μ} and the removed sets of Σ ∪ {μ}.
Let S be a set of atoms, we define the interpretation over the atoms of S ∩ V +

as IS = {a|a ∈ S} ∪ {¬a|a′ ∈ S} and the following result holds.

Proposition 4. Let ρ a rule atom or an intermediary atom. ρ ∈ CN(ΠS
Σ∪{μ})

iff IS 
|= FO(R+ ∩ S).

The correspondence between answer sets of ΠΣ∪{μ} and interpretations of
(Σ\FO(R+ ∩ S)) ∪ {μ} is given in the following proposition:

Proposition 5. Let Σ be a set of partially preordered formulae. Let S ⊆ V be a
set of atoms. S is an answer set of ΠΣ∪{μ} iff S corresponds to an interpretation
IS of V + which satisfies (Σ\FO(R+ ∩ S)) ∪ {μ}.
The proof of the proposition 5 is based on the rules construction.
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Example 7. The answer sets of ΠΣ∪{μ} are: S0 = {a′, b, ra∨¬b, ra}, S1 = {a, b′,
r¬a∨b, rb} and S2 = {a′, b′, ra, rb}.

In order to compute the answer sets corresponding to the removed sets, we
introduce new preference relations between answer sets according to a partial
preorder. We define the notion of preferred answer sets of ΠΣ∪{μ} according to
the weak comparator denoted by Sw(ΠΣ∪{μ}).

Definition 6. Let �Σ be a partial preorder on Σ, μ be a formula such that
Σ ∪ {μ} is inconsistent, S ∈ S(ΠΣ∪{μ}). S is a preferred answer set of ΠΣ∪{μ}
iff �S′ ∈ S(ΠΣ∪{μ}) such that FO(S′ ∩R+) �w FO(S ∩R+).

Example 8. We have FO(S0∩R+)�wFO(S1∩R+) and FO(S2∩R+)�wFO(S1∩
R+). So, Sw(ΠΣ∪{μ}) = {S0, S2}.

Remark: As previously, it is possible to refine the notion of preferred answer set
with an extra preference according to a strategy P . Let SX , SY ∈ Sw(ΠΣ∪{μ}).
SY is preferred to SX according to CARD (resp. MIN) iff |FO(SY ∩ R+)| ≤
|FO(SX ∩R+)| (resp. |FO(SY ∩R+) ∩MIN | ≤ |FO(SX ∩R+) ∩MIN |).
Example 9. We have S0 is as preferred as S2 according to CARD and S0 is
preferred to S2 according to MIN .

The one-to-one correspondence between preferred answer sets of ΠΣ∪{μ} and
the removed sets is given by the following proposition:

Proposition 6. Let Σ be a finite set of partially preordered formulae and μ be
a formula such that Σ ∪ {μ} is inconsistent. X is a removed set of Σ ∪ {μ} iff
there exists a preferred answer set S of ΠΣ∪{μ} such that FO(R+ ∩ S) = X.

Sketch of the proof: we show that the set of removed sets of Σ ∪ {μ} equals the
set of preferred answer sets of ΠΣ∪{μ}.

Example 10. We have FO(S0 ∩ R+) = {a, a ∨ ¬b} and FO(S2 ∩ R+) = {a, b}
which correspond to the removed sets R0 and R7 found in the previous section.

Performing PPRSR. Regarding the implementation, CLASP [7] gives us the
answer sets of ΠΣ∪{μ}. But our method requires to partially preorder the answer
sets with the comparator �w to obtain the preferred answer sets corresponding to
removed sets. This step is not yet implemented in ASP. We used a java program
to partially preorder the answer sets to obtain the preferred answer sets. We
denote by N the number of answer sets given by CLASP. The computation of the
partial preorder between them can be realized in less than N(N−1)

2 comparisons.
Indeed, it is sufficient to compare the minimal formulae according to �Σ of each
answer set and so using the following proposition, we reduce the cost of the
computation.

Proposition 7. Let �Σ be a partial preorder on Σ, μ be a formula such that
Σ ∪ {μ} is inconsistent and S, S′ ∈ S(ΠΣ∪{μ}). FO(S ∩ R+) �w FO(S′ ∩ R+)
iff ∀y ∈Min(FO(S ∩ R+),≺Σ), ∃x ∈ Min(FO(S′ ∩ R+),≺Σ) such that x �Σ y
where Min(FO(S ∩R+),≺Σ) = {x|x ∈ FO(S ∩R+), �y ∈ FO(S ∩R+), y ≺Σ x}.
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Moreover, the determination of the minimal answer sets according to this partial
preorder does not increase the cost since the complexity of CLASP is similar to
the complexity of the SAT problem.

5 VENUS Application

The europeanVENUS project (Virtual ExploratioNof UnderwaterSites) no (IST-
034924)3 aims at providing scientific methodologies and technological tools for the
virtual exploration of deep underwater archaeology sites. In this context, technolo-
gies like photogrammetry are used for data acquisition and the knowledge about
the studied objects is provided by both archaeologyand photogrammetry. We con-
structed an application ontology in [14] from a domain ontology which describes
the vocabulary on the amphorae (the studied artefacts) and from a task ontology
describing the data acquisition process. This ontology consists of a set of concepts,
relations, attributes and constraints like “If the typology of the amphora is Dres-
sel 20 then the total length of the amphora should be included between 0,368 and
0.552 m.” Our knowledge base contains our ontology and observations. The on-
tology represents the generic knowlegde which is preferred to observations. The
observations on the same amphora can be preordered according to the reliability
of the experts who provide them. In this context, we revise the generic knowledge
and the observations by new observations. We only consider a small part of the
ontology (Fig. 2) and some observations in order to provide an example where the
knowledge base is expressed in propositional logic.

MEASURABLE ITEM

ARCHAEOLOGICAL ITEM

AMPHORA ITEM

AMPHORA

METROLOGY
totalLength

totalHeight

AMPHORA METROLOGY
heightRims

bodyDiameter

concepts is a relation relations 1 cardinality

1

has metrology

1

has amphora metrology

Fig. 2. Extract of the application ontology

We use the following propositional variables: a for the amphora, t for the ty-
pology, b for Beltran 2B, h for the total height, l for the total length, ch (resp.
cl) for the constraint of compatibility between the height (resp. length) and the
typology. The propositional translation of the extract of the ontology can be
3 http://www.venus-project.eu
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resumed by the set of formulae: G = {(¬a ∨ h) ∧ (¬a ∨ t), (¬t ∨ ¬b ∨ h) ∧ (¬t ∨
¬b ∨ ch), (¬t ∨ ¬b ∨ l) ∧ (¬t ∨ ¬b ∨ cl)}. We then add the formulae provided
by the observations of the first expert denoted by O1 = {a, b, cl, ch, l, h, t}. We
obtain Σ = G∪O1 and �Σ is represented by the figure 3 (a). We revised by the
observations given by the second expert who is more reliable than the first one,
denoted by O2 = {¬cl,¬ch} and such that ¬cl ∼O2 ¬ch, the revised preorder
is represented by Fig. 3 (b). The revision presented in the section 3 is the first

a =Σ t =Σ b
↙ ↘

ch cl

↓ ↓
h l
↘ ↙

(¬a ∨ h) ∧ (¬a ∨ t)
=Σ

(¬t ∨ ¬b ∨ h) ∧ (¬t ∨ ¬b ∨ ch)
=Σ

(¬t ∨ ¬b ∨ l) ∧ (¬t ∨ ¬b ∨ cl)

(a) �Σ

a =Σ◦�C
μ t =Σ◦�C

μ b

↙ ↘
ch cl

↓ ↓
h l
↓ ↓

¬ch ¬cl

↘ ↙
(¬a ∨ h) ∧ (¬a ∨ t)

=Σ◦�C
μ

(¬t ∨ ¬b ∨ h) ∧ (¬t ∨ ¬b ∨ ch)
=Σ◦�C

μ

(¬t ∨ ¬b ∨ l) ∧ (¬t ∨ ¬b ∨ cl)

(b) �Σ◦�C
μ

Fig. 3. �Σ and �Σ◦�c
μ

step of the revision to apply in the VENUS context. Indeed, the revision could
be defined as follows:

– Σ◦�C O2 =
∨
R∈RC(Σ∪O2) Cons((O1\R)∪G∪O2) with a modified definition

of the potential removed sets of the definition 1. R is a potential removed
set of Σ ∪ {μ} iff (O1\R) ∪G ∪O2 is consistent.

– �Σ◦�C
O2 : (i) ∀ψ, φ ∈ O1, ψ ≺Σ◦�C

O2 φ iff ψ �Σ φ, (ii) ∀ψ, φ ∈ G,
ψ ≺Σ◦�C

O2 φ iff ψ �Σ φ, (iii) ∀ψ ∈ G, μ ∈ O2, ψ ≺Σ◦�C
O2 μ, (iv)

∀ψ ∈ G, φ ∈ O1, ψ ≺Σ◦�C
O2 φ and (v) ∀ψ ∈ O1, φ ∈ O2 such that ψ and φ

refers to the measures of the same attribute4, φ ≺Σ◦�C
O2 ψ.

6 Conclusion

This paper presents a new framework for revising partially preordered informa-
tion called Partially Preordered Removed Sets Revision (PPRSR) which extends
the Removed Sets approach to partial preorders. The paper shows that PPRSR
can be successfully encoded into answer set programming and proposes an im-
plementation stemming from ASP solvers. It shows that the extension of the
possibilistic revision to partial preorders can be captured within the PPRSR
4 It is obvious that measures of different attributes are incomparable.
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framework allowing for an efficient implementation with ASP. It illustrates how
PPRSR can be applied within the context of the VENUS european project
dealing with archaeological information. An experimental study has now to be
conducted in the context of the VENUS project in order to provide a more ac-
curate evaluation of the performance of PPRSR. We have to deeper investigate
the use of ASP solver statements in order to directly define a partial preorder
between answer sets. A future work will investigate the use of the lexicogtraphic
comparator for defining revision operations within the framework of PPRSR.
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16. Yahi, S., Benferhat, S., Lagrue, S., Sérayet, M., Papini, O.: A lexicographic infer-
ence for partially preordered belief bases. In: Brewka, G., Lang, J. (eds.) Proc. of
KR 2008, pp. 507–516 (2008)



A Distance-Based Operator to Revising Ontologies in
DL SHOQ�

Fangkai Yang1, Guilin Qi2, and Zhisheng Huang3

1Department of Computer Sciences, The University of Texas at Austin, USA
2AIFB-University of Karlsruhe, Karlsruhe, Germany

3 Department of Computer Science, Vrije Universiteit Amsterdam,
Amsterdam, The Netherlands

Abstract. In this paper, we propose a distance-based operator to revise on-
tologies with acyclic generalized terminology as its TBOX in description logic
SHOQ. Our operator resolves incoherence between the original ontology and
the newly received ontology. We first reformulate Dalal’s operator to SHOQ,
and propose a query-equivalent syntactical formulation based on a notion called
a revision policy. We then propose a tableau algorithm to generate such revision
policies and prove the correctness of the algorithm. We show that the complexity
of our algorithm stays at the same level as that of satisfiability check in SHOQ.

1 Introduction

Ontology change is an important topic in the Semantic Web. When ontologies evolve,
one of the central problems is to deal with logical contradictions [1,2]. When the newly
received information is considered as more reliable or important than the original one,
we will change the original ontology to resolve contradiction. In this case, this problem
is similar to the problem of belief revision. Therefore, instead of proposing a solution
from scratch, it is reasonable to reuse existing methods for belief revision to solve the
problem of inconsistency handling in ontology change.

The most influential work on belief revision is done by Alchourrón, Gärdenfors and
Makinson (AGM for short) who develop the so-called AGM theory of belief change
[3]. However, it is not a trivial task to apply AGM theory to Description Logics (DLs)
because some AGM assumptions fail for DLs. For example, the negation of a terminol-
ogy axiom cannot be defined in most of DLs. In [4], AGM postulates for contraction
are adapted to DLs, but they show that for some important DLs, such as SHIQ and
SHOIN , we cannot define a revision operator that satisfies all of their postulates.
Furthermore, in [5], the authors propose a set of postulates for characterizing a revi-
sion operator for ontologies in DLs by introducing axiom negation in ontologies. They
differentiate two kinds of logical contradictions in DLs during ontology change: incon-
sistency and incoherence. A DL-based ontology is inconsistent if it has no model and it
is incoherent if there is a concept in the ontology which always denotes an empty set.
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Indeed, incoherence is the logical error that occurs often in terminology part
of a DL-based ontology, when new terminology axioms are added into the origi-
nal ontology manually or automatically [6,7]. Although an incoherent ontology can
have a model, querying over it may result in undesirable conclusions. The following
scenario is adapted from [7], where new terminology axioms are added into an ontol-
ogy PROTON which consists of a set of terminology axioms, through human annotation
of the disjointness between two concepts. Suppose the following axioms are contained
in PROTON: {HydrographicStructure# Facility % Hydrographic,Reservoir # Lake %
HydrographicStructure,Lake # WaterRegion}. By learning that concept WaterRegion
is disjoint with concept Facility and adding this disjointness axiom to the above ontol-
ogy, we get an incoherence because concept Reservoir becomes unsatisfiable. Such a
logical error, if not repaired, will result in trivial inference as any concept subsumed by
concept Reservoir will become unsatisfiable. However, work on automatically resolving
incoherence of ontologies in ontology change is rare.

In this paper, we propose a novel distance-based revision operator for ontologies
in SHOQ [8] by adapting the well-known Dalal’s revision operator [9], which is an
intuitive, model-based revision operator satisfying all the AGM postulates. SHOQ is
an expressive DL that underpins the Web ontology language OWL-DL [10], and our
method is powerful in revising SHOQ ontology with acyclic generalized terminology
as its TBOX [11]. As far as we know, it is the first revision operator that resolves in-
coherence by following the principle of minimal change and is not dependent on the
syntactical forms of terminology axioms. Inspired by the work in [12], we propose a
notion named revision policy, which first substitutes a concept name by a fresh con-
cept name to resolve incoherence, and then asserts the cardinality difference between
the new name and the original one to guarantee minimal change. Based on the revision
policies, we can obtain an ontology which is query-equivalent to an ontology resulting
from the revision operator. Finally, we propose an algorithm to generate such revision
policies by extending the tableau algorithm for SHOQ. We prove its correctness and
show that the complexity our our algorithm stays at the same level as the complexity of
satisfiability check in SHOQ.

Proofs were omitted due to lack of space, but can be found in the technical report at
http://www.cs.utexas.edu/∼fkyang/rev.pdf.

2 Description Logic SHOQ

We assume that the reader is familiar with Description Logics (DLs) and refer to DL
Handbook [11] (Chapter 2) for more details. In this section, we give a brief review of
DL SHOQ. Let C, RA and I be disjoint sets of concept names, abstract role names, and
individual names. For R and S roles, a role axiom is either a role inclusion, which is of
the form R # S for R,S ∈ RA or a transitivity axiom, which is of the form Trans(R)
for R ∈ RA. A RBOXR is a set of role axioms. A role R is simple if, for ∗# the transitive
reflexive closure of # on R and for each role S, S ∗#R implies Trans(S) /∈ R. The
set of SHOQ-concepts (or concepts) is the smallest set such that each concept name
A ∈ C is a concept, for each individual name o ∈ I, {o} is a concept, and for C and
D concepts, R an abstract role, S a simple role, complex concepts can be built using
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conjunction (C % D), disjunction (C & D), concept negation (¬C), exists restriction
(∃R.C), universal restriction (∀R.C), atleast restriction (≥ n)S.C, atmost restriction
(≤ n)S.C. A TBOX is a finite set of concept inclusion axioms C # D, where C and
D are concepts. An ABox is a set of concept and role assertions C(a), R(a, b), and
(in)equality axioms a = b (a 
= b), where C is a concept, R is a role and a and b
are individuals. An ontology is a triple O = 〈T ,R,A〉, where T is a TBOX, R is an
RBOX, and A is an ABOX. In our paper, O is considered as the set union of T , R
and A.

The semantics of SHOQ ontology is given by an interpretation I = (ΔI , ·I) that
consists of a non-empty set ΔI (the domain of I) and the function ·I which maps
individuals, concepts and roles to elements of the domain, subsets of the domain and
binary relations on the domain, respectively. For a complete definition of the seman-
tics of SHOQ we refer the reader to [8]. An interpretation I is called a model of an
ontology O, denoted as I |= O, if it satisfies each axiom in the ontology. We use
M(O) to denote the set of all models of ontology O. A concept C is unsatisfiable if
for each model I of O, CI = ∅. An ontology O is incoherent if there exists an unsat-
isfiable concept in O and it is inconsistent if it has no model. Although incoherence is
a notion different from classical view of inconsistency, it is firmly relevant with incon-
sistency [5]. That is, given an incoherent ontology O, and a set of concept assertions
A = {C(iC)|for each concept name C inO}, then O+ = O ∪ A, named as the en-
hanced ontology of O, is inconsistent. Furthermore, for nominal {o}, its unsatisfiability
is defined to be a form of inconsistency, as we fail to find an interpretation for the
individual o.

We are interested in the problem of incoherence handling in this paper. Since inco-
herence often occurs in terminologies, we assume all the ontologies consist of a TBOX
and an RBOX, with empty ABOX, and all the logical contradictions take the form of
incoherence. Furthermore, each TBOX has a restricted form, called acyclic generalized
terminology (AGT) [11]. In a generalized terminology, each axiom is a GCI C # D,
where the left hand side is a concept name, which occurs at most once on the left hand
side of axioms in the ontology. For each concept inclusion axiom C # D, if a concept
name C′ occurs in D, we say C uses C′, and the relation uses is transitive so that we can
obtain a transitive closure. A generalized terminology is acyclic if any concept doesn’t
use itself. In the setting of ontology revision, given two ontologies O and O′ which are
represented as a set of DL axioms and assertions, we assume that the TBOX of O ∪O′

is an AGT. The concept names of O can be divided into two disjoint sets. BT are called
base symbols, in which each concept, named a primitive concept is a concept name oc-
curring only on the right hand side of the GCI, and NT are called named symbols, in
which each concept, named a defined concept, is the symbol occurred on the left hand
side of some axiom. Given the interpretations of symbols in BT , we can build models
of the terminology based on them.

Checking satisfiability of a SHOQ concept D is accomplished by a tableau al-
gorithm [8], which tries to explicitly build up a model by the completion forest for
the given concept and knowledge base by exhaustively applying a set of tableau
rules. The algorithm initializes the completion forest F to contain l + 1 root nodes
x0, x{o1}, . . . , x{ol} with labels L(xoi) = {{oi}}, where oi is nominal occurring in
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D, and begin to expand the completion forest by applying two sets of rules: a set of
non-deterministic rules NR, i.e.&-rule, choose-rule,≤ -rule, and the set of determinis-
tic rules DR, i.e, %-rule, ∃-rule, ∀-rule, ∀+-rule, ≥-rule, O-rule, and terminates when
the completion forest is complete: when either no more rules are applicable, where the
concept is satisfiable, or all applications of the rules result in a clash, where inconsis-
tency is met. Specifically, assuming there is no ABOX and no inconsistencies caused by
nominals, a clash is of the following two forms: (C1): for some concept names A ∈ NC ,
{A,¬A} ⊆ L(x), and (C2):for some role names S, (≤ n)S.C ∈ L(x), and there are
n + 1 S-successors y0, . . . , yn of x with C ∈ L(yi), for each 1 ≤ i < j ≤ n and
yi 
= yj .

3 A Semantic Revision Operator in SHOQ

3.1 Definition

Our revision operator is based on the well-known Dalal’s operator [9]. The idea of this
revision operator is that the models of the revised knowledge base of the operator should
be the models of the newly received knowledge base which have minimal distance with
the original one. However, adapting such idea to DLs is not trivial, because DLs have
first-order features. Following the idea of Dalal’s operator, we first define the distance
between two interpretations and use it to define the distance between an interpretation
and an ontology.

Definition 1. (Distance between interpretations) Let I = 〈Δ, ·I〉 and I ′ = 〈Δ, ·I′〉 be
two interpretations over the same domain. Let d(MI ,MI

′
) = |MI �MI

′ | where M
is a concept name or a role name. The distance between I and I′, denoted d(I, I ′), is
defined as follows:

d(I, I ′) =
∑
A∈LC

|AI �AI
′ |+

∑
R∈LR

|RI �RI
′ |

where S � S′ denotes the symmetric difference between sets S and S′, i.e., S � S′ =
(S ∪ S′) \ (S ∩ S′), LC and LR are respectively the sets of all concept names and role
names which are used to construct the DL ontology.

Definition 2. Let O = 〈T ,A〉 and O′ = 〈T ′,A′〉 be ontologies with empty ABOXes.
Let I be a model of O′. The distance between I and O, denoted d(I, O), is defined as
follows: d(I, O) = minI′|=Od(I, I ′), where I and I ′ are over the same domain.

Based on the above definition, we can define a total pre-order on the models of O′ as
follows: I �O I ′ iff d(I, O) ≤ d(I ′, O). We can also define the distance between
these two ontologies as d(O,O′) = minI|=O′d(I, O).

Incoherence doesn’t lead to the classical sense of contradiction: we may have d(O,
O′) = 0 if O ∪ O′ is incoherent but consistent. Therefore, unlike Dalal’s operator,
we cannot define the models of the revised ontology as the models of O′ which are
minimal w.r.t. the ordering �O. Instead, we append a fresh individual to each concept
in the ontology to render inconsistency so that we can apply the idea of Dalal’s op-
erator to define a revision operator for resolving incoherence. Based on the notion of
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enhanced ontologies in [5], we define the enhancement of O relative to O′ as O+
O′ =

O ∪ {C(iC)|for all the primitive concepts C of O ∪O′, iC is a fresh name for C}.

Definition 3. Let O and O′ be two ontologies, and O+
O′ and (O′)+O be their enhanced

forms. The result of revision of O by O′, denoted O ◦D O′, is defined in a model-
theoretical way as follows:

M(O ◦D O′) = Min(M((O′)+O),�O+
O′

).

That is, the models of the result of revision of O with O′ are models of enhanced
ontology of O′ that are minimal w.r.t. the total pre-order�O+

O′
.

Example 1. For O = {C # ∀R.D} and O′ = {C # ∃R.¬D}, O+
O′ = O ∪ {C(iD),

D(iD)} (O′)+O = O′ ∪ {C(iD), D(iD)}. Therefore, given Δ = {a, b, c, d, oC , oD}, let
CI = {a, b, oC}, DI = {c, d, oD}, and RI = {(a, c), (b, d), (oC , oD)}, (iC)I = oC
and (iD)I = oD , we have I |= O+

O′ . Let CI
′

= {a, b, oC}, DI
′

= {c, d}, and
RI

′
= {(a, c), (b, d), (oC , oD)}, (iC)I

′
= oC and (iD)I

′
= oD I ′ |= (O′)+O . So

d(I, I ′) = 1. Therefore, I ′ ∈Min(M((O′)+O),�O+
O′

) and thus I ′ ∈M(O ◦D O′)

Our revision operator leads to a coherent ontology while preserving the consistency of
the resulting ontology.

Theorem 1. Let O and O′ be two ontologies with empty ABOXes and O′ be consistent
and coherent, then O ◦D O′ is coherent and consistent.

3.2 Syntactic Formulation of Our Revision Operator

The syntactical formulation is inspired by the work in [12], in which a propositional
knowledge base K revised relative to a propositional formula φ using Dalal’s operator
is query-equivalently formulated as a cardinality-circumscription theory, where each
atomic proposition of K , say p, is substituted by a fresh name, say p′, and a fresh
proposition w defined as p = p′ is cardinality circumscribed. When dealing with first
order semantics, we formalize it by a notion of revision policy.

Definition 4. (Substitution) A substitution φ on ontology O is defined as [C/C′] where
C is the concept occurring in O and C′ is a fresh concept.

Given φ = [C/C′], we use Oφ to denote an ontology obtained by substituting each
occurrence of C in O by C′. For two substitution φ1 = [C/C′] and φ2 = [D/D′]
where C, D are different concept names in O and C′, D′ are fresh concept names, the
composition of φ1◦φ2 is defined as [C,D/C′, D′] and we have O(φ1◦φ2)

.= (Oφ1)φ2.
We now define the revision policy which is critical to the computation of our revision

operator.

Definition 5. (Revision Policy) Given ontology O, a revision policy P is a pair <
φ, nφ > where φ = [C/C′] is a substitution on a primitive concept C in O, and nφ
is an integer, called the degree of P. The ontology OP obtained by applying P to O is
defined in a model-theoretical way as: I ′ |= OP iff I ′ |= Oφ and there exists a model
I of O such that (1) CI

′ � CI = nφ, (2) C′I
′

= CI , and (3) DI
′

= DI), for any
other concept name D in O which is different from C.
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Imposing an revision policy P =< [C/C′], n > to O will result in another ontology
OP with fresh concept C′ such that (1) interpretation of C′ in OP is the same as that
of C in O, and the interpretation of C in OP has a distance of n from that in O.It
is intuitive to resolve incoherence by changing the interpretation of primitive concepts
because unsatisfiability of defined concepts are usually caused by primitive concepts.
The following theorem states the validity of the definition.

Theorem 2. Given an ontology O and a revision policy P =< C/C′, nφ >, for every
model I of O, there exists a model I ′ of OP such that CI

′ �CI = nφ, DI
′
= DI , for

other concept name D in O[C/C′], and (C′)I
′
= CI .

Given two revision policies P =< φ, nφ > and Q =< ξ, nξ >, where φ = [C/C′],
ξ = [D/D′] and C,D are not synonyms, the composition of P and Q is defined as
P ◦Q .=< φ ◦ ξ, {nφ, nξ} >.

Definition 6. Given an ontology O, the ontology O(P ◦Q) obtained by applying P ◦Q
to O is defined in a model-theoretical way as: I ′ |= OP ◦ Q iff I ′ |= Oφ ◦ ξ and there
exists a model I of O such that (1) CI

′�CI = nφ and DI
′�DI = nξ , (2) C′I

′
= CI

and D′I
′
= DI for new concept names C′, D′, (3) EI = EI

′
, for any concept name

E in O different from C and D. For two revision policies with same substitution, i.e.,
P =< φ, nφ > and Q =< φ, nξ >, P ◦Q .=< φ,max{nφ, nξ} >.

It is easy to check that for any revision policies P and Q and ontology O, we have
M(O(P ◦Q)) = M(O(P)Q) =M(O(Q ◦ P)).

We now consider the syntactical counterpart of revision policy. For ontology O on
language L, given a revision policy P =< [C/C′], nC >, we can obtain an axiom set
AP consisting of the following axioms {o1, . . . , o|nC |} ≡ ((C % ¬C′) & (¬C % C′)),
where o1, . . . , o|nC | are fresh nominals not occurring in L, and furthermore, we assume
unique name assumption (UNA) on them.

The following theorem states that a revision policy P can be syntactically character-
ized by substitution and axiom set AP.

Theorem 3. Given ontologyO, for a revision policy P =< φ, nφ > where φ = [C/C′],
we haveM(OP) = M(Oφ ∪ AP).

By Theorem 3, we have the following corollary.

Corollary 1. Given ontology O, for two revision policy P =< φ, nφ > and Q =<
ξ, nξ >, where φ and ξ only substitute the symbols occurring in L. We have O(P◦Q) =
O(φ ◦ ξ) ∪AP ∪ AQ.

Now we characterize the query-equivalent syntactical counterpart of the operator by
revision policies, beginning with the following definition and lemma.

Definition 7. Given two ontologies O, O′ and models I and I ′ of O and O′ respec-
tively such that d(I, I ′) = d(O+

O′ , O
′+
O ), for primitive concept C such that CI 
= CI

′
.

We say Pi is generated from I and I ′ if Pi =< [C/C′], |CI � CI
′ | >.
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Lemma 1. Let O◦DO′ |= C # D for GCI C # D. For all revision policies P1, . . . ,Pn

generated from model I of O, and I ′ of O′ such that d(I, I ′) = d(O+
O′ , O

′+
O ), they

satisfies (1) Σn
i=1deg(Pi) is minimal; (2) OP1 . . . Pn ∪ O′ is coherent and consistent,

and (3) OP1 . . . Pn ∪O′ |= C # D.

Theorem 4. Given ontology O and O′ and a query of the form C # D, where C and
D are concepts, then O ◦D O′ |= C # D if and only if for any sequence of revision
policies P1, . . . ,Pn on L such that

∑
1≤k≤n nPk

is minimal and (OP1 . . . Pn) ∪ O′ is
coherent and consistent, (OP1 . . .Pn) ∪O′ |= C # D.

4 A Tableau Algorithm for Policy-Based Revision

When an ontology is incoherent, its completion forest can only have clashes (C1),
(C2) given in Section 2. Our method focuses on resolving the clashes by extending
the tableau algorithm of SHOQ with several repairing rules so that no clash can be
met. The strategy for such repair is to generate revision policies with minimal degree.

Specifically, given ontologies O that is to be revised by O′, suppose that concept D
is unsatisfiable in O ∪ O′, the completion forest of D relative to O ∪ O′ will contain
clashes. Informally, we repair the above two kinds of clashes as follows.

– Concept Clash Repair. For clash (C1), we rename A by A′, and specify the differ-
ence between the interpretations of A and A′ as 1. Therefore, we generate a revision
policy P =< [A/A′], 1 > (see R1 in Fig.1).

– Role Clash Repair. For clash (C2), we rename C by C′, and specify the difference
between the interpretations of C and C′ as 1. Therefore, we generate a revision
policy P =< [C/C′], 1 >. If there are more than n+ 1 different S-successors of x,
then we increase the degree of P (see R2 in Fig.1).

We extend the tableau algorithm to repair the clashes in the completion forests. For
concept C in an ontology, we arrange all of its completion forests into a hyper-tree,
in which each node is a weak complete completion forest, and each leave is a com-
plete completion forest in the sense of [8]. If C is unsatisfiable, then each leaf contains
clash(es), from which the revision policies will be generated. First we define the notion
of weak-completeness for the completion forest.

Definition 8. Given a SHOQ concept D in Negation Normal Form (NNF), a com-
pletion forest is weak-complete iff all rules in DR have been applied till no more of
these rules are applicable and none of the nondeterministic rules in NR has ever been
applied.

From a weak completion tree, we then use rules in NR to generate its successors by first
duplicating all the items from a node into a new one and then using nondeterministic
rules in NR to make it weak-complete.

Definition 9. Given two completion forests F1 and F2 which are weak- complete, F2
is the successor of F1, denoted as succ(F1, F2), if (1) F1 is weak-complete; (2) F2 is
generated from F1 by first copying all the nodes of F1, the structure between the nodes,
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and the labels of the nodes, and then exhaustively applying rules in NR, and (3) F2 is
weak completed by rules in DR. A node F1 is successor complete if all of its successors
have been generated.

Finally, we define the completion hyper-tree, which organizes a set of weak completion
forests by the above successor relationship.

Definition 10. Given a SHOQ concept D, the completion hyper-tree T of D is induc-
tively defined as follows:

1. The root of T, denoted as root(T) is initialized in the same way as tableau algo-
rithm of SHOQ does, and then completed to be weak-complete.

2. The subtrees of root(T) are denoted as T1, . . . ,Tn, and succ(root(T), root(Ti))
holds for 1 ≤ i ≤ n, and Ti are all completion hyper-trees.

A completion hyper-tree is complete if (1) all of its non-leaf nodes are weak complete
and successor complete, and (2) all of the leaf nodes are complete in the sense of tableau
algorithm of SHOQ. When there are clashes in the set F of leaves of the hyper-tree,
for each node xi of F , R1 and R2 in Fig.1 will compute revision policies resolving each
clash. However, this is not enough because the concept influenced by the revision policy
may occur in O′ rather than O, which has no effect to O, as the following example
illustrates.

Example 2. Given O = {A = C1 % C2}, and O′ = {C1 # D,C2 # ¬D}, we have
a clash in the completion forest of A relative to O ∪ O′ as {D,¬D}, and by revision
policy P =< [D/D′], 1 > we can repair this clash. However, we find that P repairs
concepts in O′ rather than O. To deal with this case, we need to be aware that the clash
is caused by C1 and C2, which occur in O, and that C2 # ¬C1 (or C2 # ¬C1). Instead,
we can use < [C1/C

′
1], 1 > (or < [C2/C

′
2], 1 >) to repair the defined concept which

makes another concept involved in a clash.

The above example shows that if those concepts in the clash of the completion forrest
happen to be those in O′ but not in O, we need to revise the concepts in O that are
dependent on concepts in O′ that are involved in the clash. Based on this observation,
we define the notion of concept dependency in AGT.

Definition 11. Given ontology O, we use C to denote a set of concept names appearing
in O. Let C+ = C∪{¬C|C ∈ C}∪{{o}|for individual o inO}. A dependency relation
D is defined as a binary relation on C+ × C+ such that given two concepts C and C′

in C+, we say that C is dependent on C′ if there exists a specification C # D such that
C′ appearing in D. We use D to denote the dependence relation.

For each leaf of a completion hyper-tree which is complete, we can create a dependency
graph by Algorithm 1 with ⊥ on the top and� at the bottom. Based on the dependency
graph, we propose two tracing rules (see Fig. 1). As we assume that O ∪O′ is an AGT
and both O and O′ are coherent, tracing rules can always find a concept occurring in
O, otherwise O′ itself is incoherent. Furthermore, the first concept it finds must be a
primitive concept in O, otherwise O ∪O′ is not an AGT.
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Algorithm 1. Generating Dependency Graph
1: Procedure CreateDependencyGraph(T)
2: C+ := {C|C ∈ L(x)}, where x is the node of T.
3: DT := ∅
4: for all all C ∈ C+ such that there exists no C′ ∈ C+ which is dependent on C do
5: DT := {(⊥, C)} ∪ DT

6: CreateGraph(C, C+, DT)
7: end for
8: Procedure CreateGraph(C, C+, DT)
9: for all concept Ci ∈ C+ do

10: if C is dependent on Ci and (C, Ci) /∈ DT then
11: DT := DT ∪ (C, Ci)
12: CreateGraph(Ci, C+, DT)
13: else
14: DT := {(C, �)} ∪ DT

15: end if
16: end for

Based on the above algorithm, we can see that the dependency relation D for Exam-
ple 2 includes (A,C1), (A,C2), (C1, D) and (C2,¬D). The following theorem states
that Algorithm 1 terminates in polynomial time.

Theorem 5. Suppose T is a leaf of a complete completion hyper-tree, the algorithm
CreateDependencyGraph(T) terminates within polynomial time relative to |C+|, re-
turning a directed acyclic dependency graphD.

Extending the tableau algorithm with R1-rule, R2-rule, tracing rule-1 and tracing rule-2
in Figure 1, we can obtain a set of revision policies P1, . . . ,Pn addressing each kind of
clash. To repair all the clashes occurring in a completion forest, we need the composite
revision policy:

P = P1 ◦ . . . ◦ Pn
.=

∏
1≤i≤n

Pi (1)

where each revision policy contains different substitution. We will later prove that the
above rules only make minimal change to the difference between the introduced concept
and the original concept. For a completion forest F , and for all the nodes xi of F with
revision policy sets Sxi , we have

PF =
∏
xi∈F

(
∏

Pxi∈Sxi

Pxi),DF =
∑
xi∈F

(
∑

Pxi∈Sxi

deg(Pxi)) (2)

For any concept D, it usually has more than one completion forest, due to the exis-
tence of nondeterministic rules in DR. Given all completion forests with their revision
policies, we will choose those whose degrees are the minimal:

P = minDFi
{PFi |0 ≤ i ≤ n} (3)

In Fig.1, composite rule composes all the revision policies for each node to obtain the
revision policy of F . Finally, synthesis rule chooses the revision policy with smallest
degree at each branch of the hyper-tree. See the following example.
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R1-rule if C, ¬C ∈ L(x), then P =< [C/C′], 1 >

R2-rule if (≤ n)S.C ∈ L(x), and there are n + 1 S-successors y0, . . . , yn of x, C ∈
L(yi), for each 1 ≤ i < j ≤ n and yi �= yj , Rel �= ⇐ Rel �=\{yi �= yj},
and if there is no revision policy for C, then P = [< C/C′ >, 1] ; else P :=
increment(P). Rel �= is the binary relation recording all inequalities between
constants inherited from Tableau algorithm.

tracing-
rule-1 For a revision policy P =< C/C′, n > generated by R1-rule, if C occurs in

O′, trace in the dependency graph of the completion tree to the nearest concept
D such that D occurs in O and D is dependent on C or ¬C, and change P to be
< D/D′, 1 >.

tracing-
rule-2 For a revision policy P =< C/C′, n > generated by R2-rule, if C occurs in O′,

trace in the dependency graph of the completion tree to the nearest concept D such
that D occurs in O and D is dependent on C, and change P to be < D/D′, 1 >.

composition-
rule

For a node F , for all the node xi of F with the revision policy sets Sxi of, PF =∏
xi∈F (

∏
Pxi∈Sxi Pxi), and DF =

∑
xi∈F (

∑
Pxi∈Sxi deg(Pxi))

synthesis-
rule

For a node F of TD and all its successors F1, . . . , Fn ∈ TD,
PF = minDFi

{PFi |0 ≤ i ≤ n}
Note: For P =< [C/C′], n >, increment(P) =< [C/C′, n + 1] >

Fig. 1. The tableaux of revision policy generation

Example 3. We consider ontologies O and O′ adapted from PROTON:

O Reservoir# Lake% HydrographicStructure, Lake# NaturalWaterRegion
HydrographicStrure# (≥ 3) Owns.Harbor % Hydrographic

O′ NaturalWaterRegion# (≤ 1) Own.Harbor

By applying R2, we can obtain a revision policy P =< [Harbor/Harbor′], 1 >.
The revised ontology will be OP ∪ O′ = O[Harbor/Harbor′] ∪ O′ ∪ {{o1, o2} ≡
((Harbor%¬Harbor′)&(¬Harbor%Harbor′))}. In this case, Reservoir is satisfiable.
As P is the only revision policy generated, for query-answering on OP ∪ O′, we have
Reservoir# (≤ 1)Owns.Harbor and HydroGraphicStructure#Facility now becomes
unknown.

However, HydroGraphicStructure#HydroGraphic still holds, illustrating the syn-
tax irrelevance of our method. Furthermore, we can also obtain Reservoir# (= 1)
Owns.Harbor. Intuitively, the introduced name Harbor′ can be regarded as an abnor-
mal Harbor, which is different from Harbor with one individuals. Such advantage can
also benefit to build consistent ABOX afterwards: for each individual of Reservoir, it
can only have one Harbor. If it is connected with more harbors, they are inferred to be
synonyms.

We now discuss properties of the extended tableau for revising a SHOQ ontology.

Theorem 6. A SHOQ-concept C in NNF is satisfiable wrt a RBOX R if and only if
the expansion rules can yield a complete completion hyper-tree, and at least one of its
leaves does not contain revision policies.
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Theorem 7. Given a SHOQ ontology O and a concept C, the extended tableau algo-
rithm, when applied to C, will terminate in finite steps.

The following theorem shows the correctness of our algorithm.

Theorem 8. Given two SHOQ ontologies O and O′, and an unsatisfiable concept C
in O in O ∪ O′. Let the complete completion hyper-tree of O ∪ O′ be TD . Then the
revision policy of TD is PD if and only if deg(PD) is minimal relative to all revision
policies P such that D is satisfiable in O1P ∪O2.

The algorithm is applied multiple times to repair all unsatisfied concepts. As the revision
policies can be generated based on the framework of the tableau algorithm of SHOQ,
we have:

Theorem 9. Given a query Q, checking O ◦D O′ |= Q is EXPTime-complete.

5 Related Work

The work in [4,5] focus on the postulates of rational revision operators in DLs and no
concrete revision operator is given. In [13], two revision operators are given to revise
ontologies in DLALCO but they only consider the inconsistencies due to objects being
explicitly introduced in the ABOX and their operators are syntax-dependent. Unlike the
AGM-oriented approaches, the revision operators presented in [1,14,15] delete some
elements from the original ontology to accommodate the new ontology and so they are
all syntax-dependent. In [5], the authors argue that incoherence is also important dur-
ing revision. However, they do not give a revision operator to deal with this problem.
The work on debugging and repairing (see, for example, [6,16]) may be applied to give
a revision operator that can resolve incoherence. However, these approaches are also
syntax-dependent. In contrast, our revision operator is syntax-independent. Our work is
also related to the work on updating ABOX in DLs [17] where an ordering between in-
terpretations w.r.t. an interpretation is given and this ordering is used to define an update
operator. In contrast, we define an ordering on the interpretations based on a distance
function which is not dependent on a specific interpretation and use this ordering to
define our operator.

6 Conclusion and Future Work

In this paper, we proposed a novel revision operator for SHOQ ontologies by adapting
Dalal’s revision operator. Since a straightforward adaption does not work, we used the
notion of enhancement of an ontology to define our revision operator. We then proposed
a notion named revision policy to obtain an ontology which is query-equivalent to an
ontology resulting the revision operator. We extended the tableau algorithm for DL
SHOQ by proposing some novel rules to generate revision policies to resolve clashes
in the original tableau. We showed that our algorithm is correct and that the complexity
our our algorithm stays at the same level as the complexity of satisfiability check in
SHOQ. Our framework can be easily adapted to OWL-DL or even more expressive
language such as SHOIQ.
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As a future work, we will consider other revision operators such as Satoh’s operator
[12]. However, this problem is very challenging because Satoh’s operator is not based
on cardinality-circumscription. We are also considering applying this work into real
Semantic Web system.
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Abstract. Decision trees are simple structures used in supervised classification
learning. The results of the application of decision trees in classification can be
notably improved using ensemble methods such as Bagging, Boosting or Ran-
domization, largely used in the literature. Bagging outperforms Boosting and
Randomization in situations with classification noise. In this paper, we present an
experimental study of the use of different simple decision tree methods for bag-
ging ensemble in supervised classification, proving that simple credal decision
trees (based on imprecise probabilities and uncertainty measures) outperforms
the use of classical decision tree methods for this type of procedure when they
are applied on datasets with classification noise.

Keywords: Imprecise probabilities, credal sets, imprecise Dirichlet model, un-
certainty measures, classification, ensemble decision trees.

1 Introduction

A decision tree (or classification tree) is a simple structure that can be used as a clas-
sifier. A classifier can be applied on a given dataset, containing several samples where
each sample also contains a set of values belonging to an attribute or predictive variable
set and a variable labeled class variable. In the field of Machine Learning, the classi-
fication subject is based on the use of several techniques that infer rules from a given
data set in order to predict new values of the class variable (discrete or discretized) us-
ing a new set of values for the remaining variables (known as attribute variables). The
dataset used to obtain these rules is labeled the training data set and the data set used
to check the classifier is called the test dataset. The applications of classification are
important and distinguished in fields such as medicine, bioinformatics, physics, pat-
tern recognition, economics, etc., and are used for disease diagnosis, meteorological
forecasts, insurance, text classification, to name but a few.

An important aspect of decision trees is their inherent instability which means that
different training datasets from a given problem domain will produce very different
trees. This characteristic is essential to consider them as suitable classifiers in a ensem-
ble scheme as Bagging (Breiman [9]), Boosting (Freund and Schapire [14]) or Ran-
domforest (Breiman [10]). It is proved that the techniques to combine multiple trees, or
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committees of trees, allow us to obtain better results, in accuracy, than those that can
be obtained from a single model. This approach is not just restricted to decision trees
learning, it has been also applied to most other Machine Learning methods.

The performing of classifiers on datasets with classification noise is an important
field of Machine Learning methods. Classification noise is named to those situations
that appear when datasets have incorrect class labels in their training and/or test sets. It
is proved in the literature [12] that bagging scheme outperforms boosting and random-
ization schemes when they are applied on datasets with classification noise.

In this paper, we want to check the use of different simple decision trees, i.e. deci-
sion trees built with different simple split criteria and without pre or post prune process,
in a bagging scheme, with the aim to ascertain the best simple split criterion for this
scheme when it is used on datasets with classification noise. In our case, we will ex-
periment with datasets where we have introduced noise, in a random way, only in the
training sets. In our experimentation, we have introduced different percentages of noise
in 25 datasets, largely used in classification, to check the performance of different split
criteria used in a decision tree growing procedure into a bagging scheme.

In Section 2 of this article, we shall present basic concepts about decision trees and
the split criteria analyzed in this paper. In Section 3, we shall briefly describe bagging
scheme for combining simple decision trees. In Section 4, we shall check bagging pro-
cedures obtained with decision trees with different split criteria on datasets which are
widely used in classification. Section 5 is devoted to the conclusions.

2 Decision Trees and Split Criteria

A Decision tree is a structure that has its origin in Quinlan’s ID3 algorithm [18]. As a
basic reference, we should mention the book by Breiman et al. [8].

Within a decision tree, each node represents an attribute variable and each branch
represents one of the states of this variable. A tree leaf specifies the expected value
of the class variable depending on the information contained in the training data set.
When we obtain a new sample or instance of the test data set, we can make a decision
or prediction about the state of the class variable following the path to the tree from the
root until a leaf using the sample values and the tree structure. Associated to each node
is the most informative variable which has not already been selected in the path from
the root to this node (as long as this variable provides more information than if it had
not been included). In this last case, a leaf node is added with the most probable class
value for the partition of the data set defined with the configuration given by the path
until the tree root.

In order to measure the quantity of information, several criteria or metrics can be
used, and these are called split criteria. In this article, we will analyze the following
ones: Info-Gain, Info-Gain Ratio, Gini Index, and Imprecise Info-Gain.

Info-Gain [IG]. This metric was introduced by Quinlan as the basis for his ID3 model
[18]. This model has the following main features: it was defined to obtain decision trees
with discrete variables, it does not work with missing values, a pruning process is not
carried out, and it is based on Shannon’s entropy[21]. This split criterion can therefore
be defined on an attribute variable X given the class variable C in the following way:
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IG(X,C) = H(C)−H(C|X),

where H(C) is the entropy of C: H(C) = −
∑

j p(cj) log p(cj), with p(cj) = p(C =
cj), the probability of each value of the class variable estimated in the training data set.
In the same way,

H(C|X) = −
∑
t

∑
j

p(cj |xt) log p(cj |xt),

where xt, t = 1, .., |X |, is each possible state of X and cj , j = 1, .., k each possible
state of C. Finally, we can obtain the following reduced expression for the Info-Gain
criterion:

IG(X,C) = −
∑
t

∑
j

p(cj , xt) log
p(cj , xt)
p(cj)p(xt)

.

This criterion is also known as the Mutual Information Criterion and is widely used
for measuring the dependence degree between an attribute variable and the class vari-
able. It tends to select attribute variables with many states and consequently results in
excessive ramification.

Info-Gain Ratio [IGR]. In order to improve the ID3 model, Quinlan introduces the
C4.5 model, where the Info-Gain split criterion is replaced by an Info-Gain Ratio cri-
terion which penalizes variables with many states. A procedure can then be defined to
work with continuous variables, it is possible to work with missing data, and a posterior
pruning process is introduced.

The Info-Gain Ratio of an attribute variable Xi on a class variable C can be ex-
pressed as:

IGR(Xi, C) =
IG(Xi, C)
H(Xi)

.

Gini Index [GIx]. This criterion is widely used in statistics for measuring the impurity
degree of a partition of a data set in relation to a given class variable (we can say that a
partition is “pure” when it only has a single associated value of the class variable). The
work by Breiman et al. [8] can be mentioned as a reference for the use of the Gini Index
in decision trees.

In a given dataset, the Gini Index of a variable Xi can be defined as:

gini(Xi) = 1−
∑
j

p2(xij).

In this way, we can define the split criterion based on the Gini Index as:

GIx(Xi, C) = gini(C|Xi)− gini(C),

where
gini(C|Xi) =

∑
t

p(xit)gini(C|Xi = xit).
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We can see that the expression GIx is written in a different way to that used for the
previous split criteria because now the variable with the highest gini(C|Xi) value is
selected (contrary to what happens with the entropy).

Imprecise Info-Gain [IIG]. The Imprecise Info-Gain criterion was first used for build-
ing simple decision trees in Abellán and Moral’s method [3] and in a more complex pro-
cedure in Abellán and Moral [5]. In a similar way to ID3, this tree is only defined for
discrete variables, it cannot work with missing values, and it does not carry out a pos-
terior pruning process. It is based on the application of uncertainty measures on convex
sets of probability distributions. More specifically, probability intervals are extracted
from the dataset for each case of the class variable using Walley’s imprecise Dirichlet
model (IDM) [24], which represents a specific kind of convex sets of probability distri-
butions, and on these the entropy maximum is estimated. This is a total measure which
is well known for this type of set (see Abellán, Klir and Moral [6]).

The IDM depends on a hyperparameter s and it estimates that (in a given dataset) the
probabilities for each value of the class variable are within the interval:

p(cj) ∈
[

ncj

N + s
,
ncj + s

N + s

]
,

with ncj as the frequency of the set of values (C = cj) in the dataset. The value of
parameter s determines the speed with which the upper and lower probability values
converge when the sample size increases. Higher values of s give a more cautious in-
ference. Walley [24] does not give a definitive recommendation for the value of this
parameter but he suggests values between s = 1 and s = 2. In Bernard [7], we can find
reasons in favor of values greater than 1 for s.

If we label K(C) and K(C|(Xi = xit)) for the following sets of probability distri-
butions q on ΩC :

K(C) =
{

q| q(cj) ∈
[

ncj

N + s
,
ncj + s

N + s

]}
,

K(C|(Xi = xi
t)) =

{
q| q(cj) ∈

[
n{cj ,xi

t}

N + s
,
n{cj ,xi

t}
+ s

N + s

]}
,

with n{cj ,xi
t} as the frequency of the set of values {C = cj , Xi = xit} in the dataset,

we can define the Imprecise Info-Gain for each variable Xi as:

IIG(Xi, C) = S(K(C)) −
∑

t

p(xi
t)S(K(C|(Xi = xi

t))),

where S() is the maximum entropy function of a convex set.
For the previously defined intervals and for a value of s between 1 and 2, it is very

easy to obtain the maximum entropy using procedures of Abellán and Moral [2,4] or
the specific one for the IDM of Abellán [1].

3 Bagging Decision Trees

The technique of Bagging (Breiman [9]), or Boostrap-Aggregating, refers to the cre-
ation of an ensemble of models obtained using the same algorithm on a training dataset
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resampled with replacement. Finally, Bagging uses all the models with a majority vot-
ing criteria for classification.

This method needs of the instability of a learning algorithm, because it makes pos-
sible to obtain different classifiers using the same algorithm on different samples of the
original dataset. As Breiman [9] said about Bagging: The vital element is the instability
of the prediction method. If perturbing the learning set can cause significant changes in
the predictor constructed, then Bagging can improve accuracy. The final majority vote
procedure of the predictors obtained can improve the prediction of any single model.
If the algorithm is stable, then the different samples yield similar models and their en-
semble produces similar results than a single model. It is important to remark that to
combine multiple models helps to reduce the instability and the variance of the method
with respect to the single ones.

An important aspect of decision trees is their inherent instability which means that
different training datasets from a given problem domain will produce quite different
trees. This characteristic is essential to consider them as suitable classifiers in a en-
semble scheme as Bagging, Boosting [14] and Randomforest [10]. It is proved that the
techniques of combine multiple trees, or committees of trees, allow us to obtain better
results than those that can be obtained from a single model.

4 Experimentation

In our experimentation, we have used a wide and different set of 25 known datasets,
obtained from the UCI repository of machine learning databases which can be directly
downloaded from ftp://ftp.ics.uci.edu/machine-learning-databases. A brief description
of these can be found in Table 1, where column “N” is the number of instances in the
datasets, column “Attrib” is the number of attribute variables, “Num” is the number of
numerical variables, column “Nom” is the number of nominal variables, column “k”
is the number of cases or states of the class variable (always a nominal variable) and
column “Range” is the range of states of the nominal variables of each dataset.

For our experimentation, we have used Weka software [26] on Java 1.5, and we have
added the necessary methods to build decision trees using the different split criteria used
in this paper with the same procedure to built a decision tree. For the IIG criterion we
have used the parameter of the IDM s = 1.

We have applied the following preprocessing: databases with missing values have
been replaced with mean values (for continuous variables) and mode (for discrete vari-
ables) using Weka’s own filters. In the same way, continuous variables have been dis-
cretized using the Fayyad and Irani’s known discretization method [13]. We note that
these two preprocessing steps were carried out considering only information from train-
ing datasets. Hence, test datasets were preprocessed with the values computed from
these training datasets (information from test datasets were not used in this preprocess-
ing). Using Weka’s filters, we also added the following percentages of noise to the class
variable: 0%, 5%, 10%, 20% and 30%, for training datasets. In this case, these noise
levels were not introduced in test datasets (the classes of the test samples were not
modified). For each database, we have repeated 10 times a k-10 folds cross validation
procedure to estimate the accuracy of each classification model.
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Table 1. Dataset Description

Dataset N Attrib Num Nom k Range
Anneal 898 38 6 32 6 2-10
Audiology 226 69 0 69 24 2-6
Autos 205 25 15 10 7 2-22
Breast-cancer 286 9 0 9 2 2-13
Cmc 1473 9 2 7 3 2-4
Colic 368 22 7 15 2 2-6
Credit-german 1000 20 7 13 2 2-11
Diabetes-pima 768 8 8 0 2 -
Glass-2 163 9 9 0 2 -
Hepatitis 155 19 4 15 2 2
Hypothyroid 3772 29 7 22 4 2-4
Ionosfere 351 35 35 0 2 -
Kr-vs-kp 3196 36 0 36 2 2-3
Labor 57 16 8 8 2 2-3
Lymph 146 18 3 15 4 2-8
Mushroom 8123 22 0 22 2 2-12
Segment 2310 19 16 0 7 -
Sick 3772 29 7 22 2 2
Solar-flare1 323 12 0 12 2 2-6
Sonar 208 60 60 0 2 -
Soybean 683 35 0 35 19 2-7
Sponge 76 44 0 44 3 2-9
Vote 435 16 0 16 2 2
Vowel 990 11 10 1 11 2
Zoo 101 16 1 16 7 2

For the sake of simplicity, we use the same names of the split criteria for the bagging
methods using decision trees which each split criteria. For each method we have used
100 decision trees for the bagging scheme, as in Freund and Schapire [14].

For space reason we do not present all the results of the accuracy of each method on
each dataset with different percentages of noise added. We present, in Table 2 and in
Figure 1, the averages of the percentage of correct classifications (Accuracy in Figure
1) of each method on the 25 datasets with different percentages of noise added. The
bagging scheme with decision trees using the IIG criterion has a clear better perform-
ing with respect the others when we increase the level of noise, as it can be directly
appreciated in Figure 1. As we can see, the average in accuracy of the methods is very
similar when we add no noise and, when we add noise, all the method decrease in their
averages of accuracy, but this decrease is less reduced for the method with the IIG
criterion.

To compare the methods, we have used different tests (see Demsar [11] and Witten
and Frank [26]).
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Table 2. Averages of the percentage of correct classifications of each method on the 25 datasets
with 0%, 5%, 10%, 20% and 30% of classification noise

0% 5% 10% 20% 30%
IG 85.31 83.16 80.92 75.19 68.18
IGR 85.80 83.87 81.99 76.85 70.18
GIx 85.33 82.28 81.00 75.49 68.73
IIG 86.08 85.58 84.64 81.40 75.08

Fig. 1. Averages of the accuracy of each method on the 25 datasets with different percentages of
noise added in the training sets

–To compare two classifier on a single data set:

Corrected Paired T-test: a corrected version of the Paired T-test implemented
in Weka [26]. It is used to avoid some problems of the original test with cross
validation schemes. This test checks whether one classifier is better or worse than
another on average, across all training and test datasets obtained from a original
dataset. We use this test on the training and test datasets obtained from a 10 times
k-10 folds cross validation procedure on a original dataset. The level of significance
used for this test is 0.05.

–To compare two classifier on multiple data sets:

Wilcoxon Signed-Ranks test (Wilcoxon [25]): a non-parametric test which ranks
the differences in performance of two classifiers of each data set, ignoring the sings,
and compares the ranks for the positive and the negative differences. We will use
the level of significance of 0.05.
Counts of wins, losses and ties: Sign test (Sheskin [22]; Salzberg [20]): a bino-
mial test that counts the number of data sets on which an algorithm is the overall
winner. We will use the level of significance of 0.05.

–To compare multiple classifiers on multiple data sets:

Friedman test (Friedman [15,16]): a non-parametric test that ranks the algorithms
for each data set separately, the best performing algorithm getting the rank of 1, the
second best rank 2,...The null hypothesis is that all the algorithms are equivalent.
When the null-hypothesis is rejected, we can compare all the algorithms to each
other using the Nemenyi test (Nemenyi [17]).
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Table 3. Number of wins (W), ties (T) and defeats (D), noted as (W/T/D), obtained in the cor-
rected Paired T-test carried out on the 25 datasets with 0%, 5% and 10% of classification noise,
respectively

0% 5% 10%
1 2 3 1 2 3 1 2 3

1 IG . . . . . . . . .
2 IGR (1/24/0) . . (2/23/0) . . (3/22/0) . .
3 GIx (0/25/0) (0/24/1) . (0/24/1) (0/23/2) . (0/24/1) (0/23/2) .
4 IIG (2/22/1) (1/23/1) (2/22/1) (11/14/0) (10/15/0) (11/14/0) (13/12/0) (10/15/0) (13/12/0)

Table 4. Number of wins (W), ties (T) and defeats (D), noted as (W/T/D), obtained in the cor-
rected Paired T-test carried out on the 25 datasets with 20% and 30% of classification noise,
respectively

20% 30%
1 2 3 1 2 3

1 IG . . . . . .
2 IGR (3/22/0) . . (4/21/0) . .
3 GIx (2/22/1) (0/23/2) . (2/22/1) (0/22/3) .
4 IIG (16/9/0) (11/14/0) (18/7/0) (17/8/0) (11/14/0) (17/8/0)

Table 5. Results of the test carried out on the percentage of correct classifications on the 25
datasets with 0% of classification noise. Into the table are the numbers of the winners for each
test (’–’ indicates non statistical significant differences).

Wil. test Sing test Nem. test
1 2 3 1 2 3 Friedman rank 1 2 3

1 IG . . . . . . 2.92 . . .
2 IGR – . . – . . 2.52 – . .
3 GIx – – . – – . 2.70 – – .
4 IIG 4 – 4 4 – 4 1.86 4 – –

Table 6. Results of the test carried out on the percentage of correct classifications on the 25
datasets with 5% of classification noise. Into the table are the numbers of the winners for each
test between two methods (’–’ indicates non statistical significant differences).

Wil. test Sing test Nem. test
1 2 3 1 2 3 Friedman rank 1 2 3

1 IG . . . . . . 3.18 . . .
2 IGR 2 . . – . . 2.54 – . .
3 GIx – 2 . – 2 . 3.12 – – .
4 IIG 4 4 4 4 4 4 1.18 4 – –

In Tables 3 and 4, we can see the number of datasets where each method has obtained
wins (W), ties (T) and defeats (D) (W/T/D) with respect the others in the corrected T-test
carried out. For example (1/24/0) in the second row signifies that the bagging scheme
with IGR split criterion wins to the one with IG criterion (column label as number 1)
in 1 dataset, ties in 24 datasets and defeats in 0 datasets. All the split criteria perform
in a similar way when we add no noise, but the difference in favor of IIG criterion is
more clear when we increase the percentage of noise.
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Table 7. Results of the test carried out on the percentage of correct classifications on the 25
datasets with 10% of classification noise. Into the table are the numbers of the winners for each
test between two methods (’–’ indicates non statistical significant differences).

Wil. test Sing test Nem. test
1 2 3 1 2 3 Friedman rank 1 2 3

1 IG . . . . . . 3.26 . . .
2 IGR 2 . . 2 . . 2.36 – . .
3 GIx – 2 . – 2 . 3.26 – – .
4 IIG 4 4 4 4 4 4 1.12 4 4 4

Table 8. Results of the test carried out on the percentage of correct classifications on the 25
datasets with 20% of classification noise. Into the table are the numbers of the winners for each
test between two methods (’–’ indicates non statistical significant differences).

Wil. test Sing test Nem. test
1 2 3 1 2 3 Friedman rank 1 2 3

1 IG . . . . . . 3.20 . . .
2 IGR 2 . . 2 . . 2.16 2 . .
3 GIx – 2 . – 2 . 3.52 – 2 .
4 IIG 4 4 4 4 4 4 1.12 4 4 4

Table 9. Results of the test carried out on the percentage of correct classifications on the 25
datasets with 30% of classification noise. Into the table are the numbers of the winners for each
test between two methods (’–’ indicates non statistical significant differences).

Wil. test Sing test Nem. test
1 2 3 1 2 3 Friedman rank 1 2 3

1 IG . . . . . . 3.36 . . .
2 IGR 2 . . 2 . . 2.26 2 . .
3 GIx – 2 . – 2 . 3.26 – 2 .
4 IIG 4 4 4 4 4 4 1.12 4 4 4

Tables 5, 6, 7, 8 and 9 present the winners of the Wilcoxon test (Wil.) and Sing test
(Sing), the Friedman rank (in all cases the null hypothesis is rejected) and the winners
of the Nemenyi test (Nem.), when 0%, 5%, 10%, 20% and 30% percentage of noise is
added, respectively. The values also show that the method with IIG criterion is clearly
better than the rest when we increase the level of noise. As we can see in the last
row of each table (the row of IIG), the number of wins increases (method 4 is the
winner) in all tests, when we increase the level of noise. The method with IIG criterion
is the winner in all these tests when the percentage of noise is greater or equal than
10%. It must be remarked that the difference between the Friedman rank of the method
with IIG criterion with respect the ones with IG and GIx criteria, increases when we
increase the level of noise. Also, we can observe that the method with IGR outperforms
the one with IG and GIx in this way, being the method with IGR the second best in
this study. The methods with IG and GIx split criteria have a similar behavior in this
experimentation.
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Fig. 2. Averages of the time, in seconds, of each method on the 25 datasets with different percent-
ages of noise added in the training sets

The results of this experimental study can resume that IIG split criterion performs,
in accuracy, in a more robust way than the rest when it is used to built decision trees for
a bagging scheme on datasets with classification noise.

Other interesting aspect of the experimentation presented should be the time of pro-
cessing of every method. The study of the time of processing has not been totally an-
alyzed here, as the accuracy, due to space reasons, only, we present Figure 2, where
again we can see that IIG has a little better behavior than the rest. In this figure, we
present the average of the time for one partition between training/test sets1, expressed
in seconds.

5 Conclusions

We have presented an experimental study about the perform of different split criteria
when they are used to build decision trees in a bagging scheme under classification
noise. We have analyzed the behavior of three classic, and very used in the literature,
simple split criteria as: Info-Gain (IG), Info-Gain Ratio (IGR) and Gini index (GIx)
and the one of a new simple split criterion based on imprecise probabilities and uncer-
tainty measures (IIG). We have proved that bagging scheme using decision trees built
with IIG criterion has a strong behavior with respect similar scheme using the rest of
criteria when we increase the percentage of noise in a dataset.

Other aspect of the experimentation presented here is the time of processing of every
method. We have used simple decision trees because they have a reduced time of built,
that can allow us to apply some ensemble methods, as bagging scheme, on very large
datasets, such as the ones used in bioinformatics or text field classification. The study of
the time of processing has not been totally analyzed in this paper due to space reasons,
but we have checked that the method with IIG criterion is a little bit better than the one
with GIx and these better than the ones with the rest of criteria.

1 10 times a 10-folds cross validation procedure represents 100 partitions between training/test
sets.
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Abstract. In the last years, the problem of Frequent Itemset Mining
(FIM) from imperfect databases has been sufficiently tackled to handle
many kinds of data imperfection. However, frequent itemsets discovered
from databases describe only the current state of the data. In other
words, when data are updated, the frequent itemsets could no longer
reflect the data, i.e., the data updates could invalidate some frequent
itemsets and vice versa, some infrequent ones could become valid. In
this paper, we try to resolve the problem of Incremental Maintenance
of Frequent Itemsets (IMFI) in the context of evidential data. We intro-
duce a new maintenance method whose experimentations show efficiency
compared to classic methods.

1 Introduction

The field of Frequent Itemset Mining (FIM) is extensive in the context of per-
fect databases [1,8,17]. Nevertheless, many applications in the real world treat
imperfect data. For example, medical systems that store physician diagnosis [12]
or detection systems that are based on sensors [16] may generate imperfect data.
That is why, recent years knew emergence of FIM techniques that process un-
certain data. Mined data are probabilistic [13], possibilistic [7], fuzzy [4,6] and
evidential [9,3].

Frequent itemsets are patterns that describe the current state of the data, at
the instant t when FIM operation occurred producing a Frequent Itemset Base
(FIB). When mined data are updated, the FIB could become invalid. Indeed,
data updates may not only invalidate some already frequent itemsets, but also
turn some infrequent itemsets into frequent ones. The two general approaches
that solve the problem of frequent itemset maintenance after data updating are
(1) performing again an operation of FIM on the whole of the updated data,
and (2) applying an incremental maintenance on the initial FIB.

Like the FIM area, Incremental Maintenance of Frequent Itemsets (IMFI) one
has attracted attention of several researches and literature is abundant in this
way [5,10,2]. However, IMFI in uncertain databases is not sufficiently tackled
in spite of its importance and applicability on interesting fields where data are
frequently updated. In this paper we introduce a new method for maintaining in-
crementally frequent itemsets when increment of data is added to the initial one.
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Our solution processes evidential data, i.e., data whose imperfection is modelled
via the Dempster-Shafer theory.

The remainder of the paper is organized as follows: in section 2, we introduce
the basic concepts of the FIM from evidential data, in section 3, we introduce the
problem of IMFI in evidential data followed by the solution we propose, section
4 contains the experimentations led on our algorithm and finally section 5 is the
conclusion of the work accompanied with some perspectives.

2 The FIM Model in Evidential Databases

An evidential database, also called D-S database stores data that could be per-
fect or imperfect. It allows users to set null (missing) values and also uncertain
values. Uncertainty in such database is expressed via the evidence theory [14].
An evidential database is defined as follows:

It is a database with n attributes and d lines. Each attribute i (1 ≤ i ≤ n) has
a domain Di of discrete values. Each attribute k among the n ones could store
uncertain values. An instance of the attribute k in the line j is an evidential
value Vkj which is a bba defined as follows:

mkj : 2Dk → [0, 1] with:

mkj(∅) = 0 and
∑
x⊆Dk

mkj(x) = 1

Table 1. Evidential database example

id A B C

1 A1(0.6) B1(0.4) C1(0.5)
A2(0.4) {B5, B6, B7}(0.6) {C1, C2}(0.5)
A1(0.2) B1(0.4)

2 A3(0.3) {B2, B3}(0.6) C2

{A2, A3}(0.5)

FIM from evidential databases (table 1 is an example of evidential database)
is based on new item, itemset and support definitions that are adapted to the
uncertain context of the data. The basic concepts of this model [9,3] are the
following:

Basic Concepts. An evidential item denoted ivk is one focal element in a body
of evidence Vkj corresponding to the evidential attribute k. Thus, it is defined
as a subset of Dk (ivk ∈ 2Dk). For example, in table 1, C1 is an item, {C1, C2}
too.

An evidential itemset is a set of evidential items that correspond to differ-
ent attributes domains. For example, A1B1{C1, C2} is an evidential itemset.
Formally, an evidential itemset X is defined as: X ∈

∏
1≤i≤n 2Di
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The inclusion operator for evidential itemsets is defined as follows: let X and
Y be two evidential itemsets. The ith items of X and Y are respectively denoted
by iX and iY .

X ⊆ Y if and only if: ∀iX ∈ X, iX ⊆ iY

For example, the itemset A1B1{C1, C2} includes the itemset A1B1C1. Now,
the line body of evidence is defined thanks to the conjunctive rule of combination
[15]. A line body of evidence is computed from the evidential values composing
the line. The frame of discernment of a line BoE is the cross product of all
attributes domains denoted by Θ =

∏
1≤i≤n 2Di . Focal elements are included in

Θ, and thus are vectors of the form X = {x1, x2, . . . , xn} where xi ⊆ Di. The
mass of a vector X in a line j is computed via the conjunctive rule of combination
of the bba’s evidential values [15].

mj : Θ → [0, 1] with mj(∅) = 0 and mj(X) = ∩©i≤nmij(X) =
∏

ivi∈X
mij(ivi)

As example, we present here the first line body of evidence in our database
example (Table 1). The frame of discernment is Θ which is the cross product of
all attributes domains and the frame of discernment of the whole of the bodies
of evidence of the database lines. Focal elements are combinations of all evi-
dential items in the line, and thus the BoE of the first line contains eight focal
elements, for short we cite only the itemsets A1B1C1 with mass equal to 0.12
and A1{B5, B6, B7}{C1, C2} with mass equal to 0.18.

Now, we introduce the notion of evidential database body of evidence which
is induced from the line body of evidence notion since database is a set of lines.
The body of evidence of evidential database EDB is defined on the frame of
discernment Θ, the set of focal elements is composed of all possible evidential
itemsets existing in the database and the mass function mEDB is defined as
follows: Let X be an evidential itemset and d be the size of EDB:

mDB : Θ → [0, 1] with mDB(X) =
1
d

d∑
j=1

mj(X)

Belief function is naturally defined as follows: BelDB(X) =
∑

Y⊆X mDB(Y ).

Example 1. In our database (Table 1) the mass of evidential itemset A1B1
{C1, C2} is the sum of its line masses in the database divided by d = 2 so
mBD(A1B1{C1, C2}) = 0.06. Its belief in the database is the sum of all database
masses of evidential itemsets that are included in, which are A1B1C1(0.06),
A1B1C2(0.04) and A1B1{C1, C2}(0.06) so BelBD(A1B1{C1, C2}) = 0.16.

According to [9,3], the support of an itemset X in the evidential database, is its
belief measurement in the database BoE.

The FIM Problem. The problem of FIM in evidential databases is the same
as in perfect databases. It consists in mining evidential itemsets whose supports
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(and thus believes in the database’s BoE ) exceed a user-defined threshold of
support. Formally, let EDB be an evidential database, X be an evidential item-
set and Θ be the cross product of all attribute domains. F is the set of frequent
evidential itemsets in EDB mined under the user-defined support threshold de-
noted by minsupp; the problem is to extract the set F = {X ⊆ Θ/support(X) ≥
minsupp}.

3 Incremental Maintenance of Frequent Itemsets in
Evidential Databases

3.1 Problem Definition

The problem of IMFI in perfect databases was introduced in [5]. We present now
the same problem about evidential databases. It is formally defined as follows:

Let EDB be an evidential database and D be its size. Let F be the set of
frequent itemsets in EDB and minsup the support threshold under which F was
mined. After some updates of EDB -consisting in inserting the increment edb+

of size d+-, we obtain EDB′ = EDB ∪ edb+. The size of EDB′ is denoted by
D′. The problem of IMFI consists in computing F ′: the set of frequent evidential
itemsets in EDB′ under the initial support threshold minsup.

3.2 The Kinds of Itemsets

When EDB is updated by inserting the data increment edb+, some itemsets
that were infrequent in EDB will emerge to be frequent in EDB′, and vice
versa, some itemsets that were frequent in EDB will become infrequent under
the threshold minsup. That is why, itemsets in EDB′ are classified as follows:

– Winner Itemsets are itemsets X that were infrequent in EDB
(X.supportEDB < minsup × D) and become frequent in EDB′ thanks to
the update.

– Looser Itemsets are itemsets X that were frequent in EDB
(X.supportEDB ≥ minsup × D) and become infrequent in EDB′ because
of the update.

– Persistent Itemsets are itemsets X that were frequent in EDB
(X.supportEDB ≥ minsup × D) and remain frequent in EDB′ in spite of
the update.

– Invalid Itemsets are itemsets X that were infrequent in EDB
(X.supportEDB < minsup ×D) and remain also infrequent in EDB′.

– Hidden Itemsets are itemsets X that are composed of non singleton items
(such as A4{B5, B6}) and occur in the data increment but not in the initial
database. These itemsets could be frequent in EDB, but are not present in
F because they didn’t occur in.

The goal of the IMFI is to compute the set F ′ that is composed of the sets W
and P of respectively winner and persistent itemsets, but also of some hidden
itemsets (this type of itemset is well presented in the next section).
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3.3 The Method of IMFI

Our solution proceeds level-by-level in the itemset lattice and is based on can-
didate itemset generation at each level. It proceeds as follows:

First, we generate the set Ck (candidates of size k) from Fk−1′ (frequent item-
sets of size k−1 in EDB′) 1 via the Apriori Gen function [1]. Ck contains three
types of itemsets; (1) itemsets of Fk whose supports in EDB are known. These
itemsets compose the set PPk of potentially persistent itemsets, (2) itemsets
composed of singleton items (like A1B2C1 or A2B2C1 but not A2{B2, B3}) that
were not frequent in EDB and so future winner or invalid itemsets. They com-
pose the set PWk of potentially winner itemsets, and (3) itemsets composed of
non singleton items, that didn’t occur in EDB and thus we have no information
about their frequency (or not) in the initial database. These latter compose the
set FS and are handled in the set SS.

Thus, the set Ck is split into three complementary sets PPk, PWk and SSk;
the set PPk = Ck ∩ Fk including candidate itemsets that are in Fk (potentially
persistent itemsets) and the set PWk ∪ SSk = Ck \ Fk including the remainder
candidate itemsets (potentially winner itemsets). Then the set PWk contains
itemsets that are composed of singleton items, and SSk contains the rest. After
preparing our three candidates itemsets (PWk, PPk and SSk) , we scan the
increment edb+, we update supports of itemsets in PPk (so we get their supports
in the whole of the updated database EDB′) and also supports of itemsets in
PWk (we obtain their supports only in the increment edb+). We can already
distinguish between persistent itemsets (X.supportEDB′ ≥ minsup′ × D′) and
looser ones (X.supportEDB′ < minsup′ ×D′). The set Pk of persistent itemset
is already computed after a light scan of the data increment edb+. After that,
we compute the set Wk of winner itemsets starting from the set PWk. A first
pruning of this set, consists in eliminating all itemset whose supports in edb+

do not exceed the Candidate Pruning Threshold denoted by cpt (see proposition
1). This optimization is very important because it makes the obligatory return
to the initial database less heavy. Indeed, from the itemsets of PWk, only those
whose supports exceed the cpt will be updated when scanning the initial database
EDB, to obtain their supports in the whole of EDB′. After this scan, we can
filter the winner itemsets from the invalid ones by comparing their supports in
EDB′ to the minimum support threshold minsup ×D′. Finally, we are obliged
to compute the supports of the itemsets of SSk in the whole of EDB′, to get
the set FS of frequent ones in the updated database. The computation of FS
consists a costly operation.

Proposition 1 (The Candidate Pruning Threshold). Let be X an itemset
that was infrequent in EDB. X could not win if: X.supportedb+ < minsupp × d+

Proof. X is frequent in EDB′ if and only if: X.supportEDB′ ≥ minsup ×D′ ⇔
X.supportEDB + X.supportedb+ ≥ minsup × D′ ⇔ X.supportedb+ ≥ minsup ×
D′ − X.supportEDB (1) Now, we know that X is infrequent in EDB ⇔
X.supportEDB < minsup ×D (2)
1 Assume that the set C1 in the first level contains all possible items in EDB′.
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(1) and (2) ⇒ X.supportedb+ ≥ minsup×D′−minsup×D ⇔X.supportedb+ ≥
minsup × d+.

In the next section, we present the data structure we use to accelerate the support
computation. The data structure is adapted to the evidential character of the
data, it allows also the optimization of the early pruning of looser and invalid
itemsets.

3.4 Used Data Structure

The data structure we use to compute rapidly the supports of the itemsets is
the RidLists one. This structure showed its performance in the case of evidential
data [3] especially when data are sparse. It consists in storing for each evidential
item the list of the couples (1) record identifier of the line that contains the item
and (2) the belief of the item in the corresponding record. The table 2 presents
the RidLists that corresponds to our database example.

Table 2. The RidLists corresponding to the database example

item rid list

{A2, A3} (1, 0.4)(2, 0.8)
A1 (1, 0.6)(2, 0.2)
A2 (1, 0.4)
A3 (2, 0.3)

{B5, B6, B7} (1, 0.6)
{B2, B3} (2, 0.6)

B1 (1, 0.4)(2, 0.4)
{C1, C2} (1, 1)(2, 1)

C1 (1, 0.5)
C2 (2, 1)

Once we have the RidLists representation of the evidential database, we can
compute the support of any itemset via the intersection of the lists of its items. Its
support is the sum of the product of the believes of the shared records identifiers
of its items. An optimization we introduce in this paper consists in computing
the supports of the supersets of items before computing their subsets. Indeed,
the belief function being monotone, if a superset of items is infrequent, then all
its subsets are also. For example, if the item {A2, A3} is infrequent, then A2 and
A3 are too.

The property of monotony of the support function relative to the inclusion
itemset operator in one level helps us to prune again the set of candidate itemsets.
In fact, in each level of the search space, we start counting the support of the
largest evidential itemsets, i.e., evidential itemsets that contains the more the
elementary items, instead of computing the itemsets supports in a random way.
Then, we store each found infrequent itemset in the set OS (for Optimizing Set),
and we delete all the subsets of OS’s itemsets without computing their supports
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because we are sure they do not exceed our threshold. This optimization is
applied in the filtering of the sets PPk and PWk and saves much computation
time.

Proposition 2 (Monotony of the support function). Let φ be an evidential
database, X and Y two itemsets in φ with the same size k, X includes Y and
let α a support threshold.

If X.supportφ < α then Y.supportφ < α

Proof. The support function in evidential databases corresponds to the belief
function in the evidential database BoE (see section 2). Now, according to the
evidence theory, the belief function is monotone relatively to the inclusion oper-
ator [14], thus the support function is too.

3.5 The Algorithm

The first iteration of our main algorithm computes the frequent evidential items.
It is a particular iteration compared to the other ones, i.e., when k ≥ 2. Indeed,
when k ≥ 2 the set Ck -from which starts our method- is computed from the set
Fk−1′ via the Apriori Gen function. Thus, this latter function could not generate
the set C1, hence the particularity of the first iteration.

Table 3. The data increment edb+

id A B C

A1(0.2) B3(0.1)
3 A4(0.2) B8(0.6) C1(0.4)

{A1, A3}(0.6) {B2, B3}(0.1) {C1, C2}(0.6)
{B5, B6}(0.2)

The algorithm 1 presents the procedure that computes the frequent evidential
items. It starts not from a candidate set, but from both the items of the data
increment and the set of initial frequent items F1. This method allows to compute
the sets PP1 and PW1, but also the set SS of super items, i.e., non-singleton
items that are not in F1. This latter set is very special because it includes the only
items whose we do not know any information about their frequency in EDB.
In other words, we do not know if these items are frequent in EDB or not.
We present here the procedure ComputeFrequentItems followed by a detailed
example that explains more explicitly our method.
Example 2 (Maintaining the frequent evidential items). Let F be the set of fre-
quent evidential itemsets mined under the minimum support minsupp = 30%
and thus the absolute threshold 0.6(= 2 × 30%); F = {A1(0.8), {A2, A3}(1.2),
B1(0.8), {B2, B3}(0.6), {B5, B6, B7}(0.6), C2(1), {C1, C2}(2)}.

Let edb+ be a data increment (presented in table 3) that includes only one
record, we try here to compute the set F ′ that includes the frequent evidential
items in EDB′ = EDB ∪ edb+ following our procedure ComputeFrequentItems:
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Algorithm 1. ComputeFrequentItems

Require: RLEDB as RIDLIST, RLedb+ as
RIDLIST, F1 as Set of Items, minsupp as
Real

Ensure: F1′ as Set of Items
1 PP1 ← F1
2 for all item i in RLedb+ do
3 if ∀j ∈ OS, i � j then
4 if i ∈ PP1 then
5 Compute i.supportedb+
6 if i.supportEDB′ < minsupp × D′

then
7 Add i to OS if non-singleton
8 else
9 Add i to P1

10 Delete i from PP1
11 end if
12 else if i is a superset then
13 Add i to SS
14 else
15 Compute i.supportedb+

16 if i.supportedb+ ≥ minsupp × d+

then
17 Add i to PW1
18 end if
19 end if
20 end if
21 end for
22 for all item i in PP1 do
23 if ∀j ∈ OS, i � j then
24 Compute i.supportedb+

25 if i.supportEDB′ < minsupp × D′
then

26 Add i to OS if non-singleton
27 else
28 Add i to P1
29 end if
30 end if
31 end for
32 for all item i in PW1 do
33 if ∀j ∈ OS, i � j then
34 Compute i.supportEDB

35 if i.supportEDB′ < minsupp × D′
then

36 Add i to OS
37 else
38 Add i to W1
39 end if
40 end if
41 end for
42 for all item i in SS do
43 if ∀j ∈ OS, i � j then
44 Compute i.supportedb+

45 Compute i.supportEDB

46 if i.supportEDB′ < minsupp × D′
then

47 Add i to OS
48 else
49 Add i to FS
50 end if
51 end if
52 end for
53 F1′ ← P1 ∪W1 ∪ FS

1. Lines 1 to 21 in the algorithm 1: The vertical database RLedb+ is
scanned item by item . We obtain the set SS = {{A1, A3}, {B5, B6}} includ-
ing the non-singleton items that are not in F1. Then, we obtain the set OS
including the non-singleton looser items {B2, B3}. Then, we obtain the set
PW1 = {B8(0.6), C1(0.4)}. Note that these items are singleton (else they had
gone to the set SS), not in F1, exceed the cpt which is equal to 0.3 = 30%×1 in
our case (that’s why A4 is not in PW1) and are not included in any item of the
set OS (that is why B3 is not in PW1). After that, we obtain a part of the set
P of persistent items P = {A1, {C1, C2}}. Note that is only a part of persistent
items since items that are in F1 and not in RLedb+ are not processed yet.

2. Lines 22 to 31: In the second step, we complete the set P by handling the
items that are in F1 and not in RLedb+ . Each item that is a subset of any item
in OS is a looser one and is eliminated without computing its support in edb+,
else we compute its support in the increment, and having its in EDB, we decide
if it is a looser item (like B1 and {B5, B6, B7}) or a persistent one according
to the minimum support in EDB′, i.e., 0.9 = 30%× 3. Note that non-singleton
looser items are stored in OS. The result of this step is P = P ∪ {{A2, A3}, C2}
and OS = {{B5, B6, B7}}.
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3. Lines 32 to 41: Now, we can handle the potentially winner items. Each item
included in a one of OS is eliminated (like B7) without computing its support
in EDB. For the other ones, the return to EDB is necessary to update theirs
in EDB′ and only those whose supports in EDB′ exceed 0.9 are inserted into
W ; the set of winners. The result of this step is W = {C1}.
4. Lines 42 to 52: In the last step, we handle the non-singleton items that
are not in F1 and thus we have no information about their support in EDB;
it is the set SS. We do not know if they are frequent in the initial database or
not. For example, the item {A1, A3} is not in F1 even so it is frequent in EDB
because it did not occur in anymore. More generally, for this kind of items we are
also obliged to return to the initial database to compute their support in EDB
and also in the increment edb+ except they are subset of an item in OS (like
{B5, B6}). After that, we distinguish frequent items from infrequent according
to the support threshold 0.9. The result is FS = {{A1, A3}}.

The result of the procedure ComputeFrequentItems (line 53) in this example
is the set F1′ = P ∪W ∪ FS = {A1, {A1, A3}, {A2, A3}, C1, C2, {C1, C2}}.

Algorithm 2. ComputeFrequentItemsets

Require: RLEDB as RIDLIST, RLedb+ as
RIDLIST, F as Set of Itemsets, minsupp as
Real

Ensure: F ′ as Set of Itemsets
1 ComputeFrequentItems(RLEDB, RLedb+ ,

F1,minsupp, F1′)
2 k ← 1
3 while Fk′ �= ∅ do
4 k ← k + 1; Ck ← Apriori Gen(Fk−1′)
5 PPk ← Fk ∩ Ck;PWk ← Ck \ Fk

6 for all itemset X ∈ PPk do
7 if ∀j ∈ OS,X � j then
8 Compute X.supportedb+

9 if X.supportEDB′ < minsupp ×D′
then

10 Add X to OS if non-singleton
11 else
12 Add X to Pk

13 end if
14 end if
15 end for
16 for all itemset X ∈ PW1 do
17 if ∀j ∈ OS,X � j then
18 Compute i.supportedb+

19 if X is composed of singleton-items
then

20 if X.supportedb+ < minsupp ×
d+ then

21 Delete X from PWk

22 end if
23 else
24 Add X to SS
25 end if
26 end if
27 end for
28 for all itemset X ∈ SS do
29 if ∀j ∈ OS,X � j then
30 Compute X.supportedb+

31 Compute X.supportEDB

32 if X.supportEDB′ < minsupp ×D′
then

33 Add X to OS
34 else
35 Add X to FS
36 end if
37 end if
38 end for
39 Fk′ ← Pk ∪Wk ∪ FS
40 end while

We introduce above the process of our IMFI solution, detailed in section 3.3,
and presented formally in the algorithm 2 that generates the set F ′.

The next section presents the results of the experimentations we led on our
solution performance compared to classic ones. We recall that experimentations
concern only the performance side and not the quality one since all the solutions
give the same set of frequent itemsets, but the answer time is not the same.
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4 Experimentations

To evaluate the performance of our solution, we implemented the algorithms
of [3],[9] and the ours. Then we generated several synthetic databases where
each attribute in each record takes a random evidential value [3], for short, we
present here experimentations done on the database D5000I800C5%U10. The
parameter D is the size of the whole of the database, I is the size of all attributes
cardinal, C is the number of attributes and %U is the percent of records that
includes evidential values in the database.

Then, we performed an initial mining operation on only 4000 records of the
database under a threshold minsup and we stored the set F . Then we add the last
1000 records, and we perform the maintenance operation to compute F ′, the set
of frequent itemset in the whole of the database (D = 5000), using the three algo-
rithms [3,9] (classic maintenance solution) and our method (incremental solution).
We repeated these operations for a range of support thresholds, the figure 1 shows
how our solution (denoted IMFI in the figure) is more efficient compared to classic
ones (HPSS05 for [9] and BBM08a for [3]).

Fig. 1. Comparison performance between [3],[9] and IMFI

Another interesting experimentation (figure 2) presents the effect of the size of
the increment on the performance of our algorithm. Indeed, incremental main-
tenance is efficient when the data increment is small relatively to the initial
database. So, the more the data increment is large, the more efficiency of our
algorithm decreases and approaches classic methods one. Indeed, IMFI takes
advantage from the fast persistent itemsets computation. When the set Pk is
relatively small, its complement in Ck, i.e., PWk ∪ SSk, will be relatively large.
In this case, the return to the initial database EDB will be heavy because we
have to compute the supports of a great number of candidate itemsets. For
this reason, and to optimize the use of our algorithm, a study on this question
”When to maintain frequent evidential itemsets” would be interesting. It could
help the data miner to choose the propice time for maintenance while fulfilling
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a balance between (1) performance and (2) novelty of mined itemsets. Indeed,
someone could maintain the frequent itemsets base after each inserted record;
maintenance would be very fast since we do it after the smallest data increment
that possible, but this type of maintenance will not produce interesting results
because the mined set F ′ will not be really ”novel” compared to the initial one
F and that is logical since size of data increment is not large enough to change
the behavior of the whole of the data and so the discovered knowledge.

Fig. 2. Effect of the data increment size on the performance of IMFI

5 Conclusion

In this paper, we introduce a novel method for maintaining frequent eviden-
tial itemsets after data updates in an incremental manner. This solution is an
alternative to the classic way, i.e., mining the whole of the updated data and
ignore the previous results obtained in the initial FIM operation. The experi-
mental results showed that our method outperform the straightforward one from
a performance point of view.

This work opens several perspectives, like maintenance of frequent evidential
itemsets after not only data insert but also data delete. We also think that IMFI
methods are interesting in the field of inductive databases [11] where data and
patterns are stored both. The IMFI methods reduce the answer time of the
mining queries since previous results are stored in the database.
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Abstract. Random forest models [1] consist of an ensemble of random-
ized decision trees. It is one of the best performing classification models.
With this idea in mind, in this section we introduced a random split op-
erator based on a Bayesian approach for building a random forest. The
convenience of this split method for constructing ensembles of classifica-
tion trees is justified with an error bias-variance decomposition analysis.
This new split operator does not clearly depend on a parameter K as its
random forest’s counterpart, and performs better with a lower number
of trees.

1 Introduction

The idea of randomized decision trees was first proposed two decades ago by
Minger [2], but it was since ensembles of classifiers were introduced that the
combination of randomized decision trees arose as a very powerful approach for
supervised classification models [3,1,4].

Bagging [3] was one of the first approaches that exploited this idea. A group
of decision trees was built over a bootstrapped replicate of the former training
dataset. Finally, the last prediction was made by a majority voting criterion over
the set of predictions of each single decision tree. As each decision tree was built
following the usual approach [5] from different bootstrapped training data, each
tree comprised a different set of split nodes. Thus, the randomization was caused
by the different random variations of the bootstrapped training sets.

Another trend appeared with the use of random split node selection. For
example, Diettrich et al. [4] built ensembles of trees in which at each node,
the split was randomly selected from among the K best splits attributes. Some
years later, Breiman proposed the random forest model [1] as a combination
of the bagging approach with a random split node selection. In this method,
each decision tree was once again built over a bootstrapped replicate of the
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former training set. But, as opposed to the Diettrich et al. approach [4], first
K nodes were randomly selected and the best one of these was chosen. The
Random Forests outperformed the Bagging and Diettrich approaches [1]. One
issue relating to Random Forests is their sensitivity to the selection of the K
value [1,6], although Breiman suggested a K value around the logarithm of the
number of variables as a default choice.

One the main questions relating to ensembles of trees was a theoretical justifi-
cation of their excellent performance. The notion of bias-variance decomposition
of the error [7,8] appeared to provide some insights. Bias represents the system-
atic component of the error resulting from the incapacity of the predictor to
model the underlying distribution. However, variance represents the component
of the error that stems from the particularities of the training sample. As both
are added to the error, a bias-variance trade-off therefore takes place [8]. When
we attempt to reduce bias by creating more complex models that fit better the
underlying distribution of the data, we take the risk of increasing the variance
component due to overfitting of the learning data. As decision trees can easily
encode complex data distributions, their main disadvantage could lie in the high
variance they are associated with. A special role is played, in this sense, by the
selection of the K value in random forests. Higher K values usually imply low
bias but higher variance and, on the other hand, lower K values present poorer
bias but better variance [6].

In this work, we propose a new random split method derived from a Bayesian
approach for building ensembles of trees. This random split is similar to the
random forests one, but does not pose the problem of choosing an optimal K
value and allows better performance to be obtained with a lower number of trees.

The rest of the paper is divided as follows. Firstly in Section 2, the Bayesian
framework to inference classification trees is introduced. In Section 3, we present
our Bayesian approach to random split. And, finally, in Section 4 we show the
experimental results of the evaluation of this approach. We conclude giving the
main conclusions and proposing future work in Section 5.

2 Bayesian Inference of Classification Trees

In this section we introduce the basic tools to face the problem of inferring class
probabilities using trees and ensembles of tree models under a Bayesian inspired
approaches. We start giving the basic framework for a single tree and, after that,
we introduce the Bayesian notion of ensembles of trees.

2.1 Basic Framework

In order to introduce the basic framework for applying the Bayesian approach for
inferring classification trees, the notation used by Buntine [9] is followed. Buntine
was the first author to apply Bayesian techniques to this specific problem.

Classification trees partition the space of examples into disjoint subsets, each
one represented by a leaf in the tree, and associates a conditional probability
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distribution for the class variable in relation to the configuration that defines
the partition assigned to that leaf.

It is assumed that there are C mutually exclusive and exhaustive classes,
d1, ..., dC . Assuming that example x falls to leaf l in the tree structure T , then
the tree gives a vector of class probabilities φj,l for j = 1, ..., C, which are
the probability of class cj at leaf l. Thus, a classification tree has a discrete
component determined by the structure of tree T and a continuous component
that is given by the class probabilities of all the leaves of the tree ΦT = {φj,l :
j = 1, ..., C; l ∈ leaves(T )}. No more parameters are needed, as it is assumed
that all variables are multinomial, although continuous variables could be also
managed, including the cut-points in the branching nodes.

Thus, for the above mentioned example x falling into leaf l, its predicted
probability class value is described as P (C = cj |x, T, ΦT ) = φj,l. If a concrete
class had to be predicted, it would be the one with the highest probability.

Under the Bayesian approach, the quality of the models is evaluated as their
posterior probability, given the learning data. This learning data comprises a set
of N i.i.d. samples, (c̄, x̄) = {(c1, x1), ..., (cN , xN )}. The probability of the model
can be computed using the Bayes’s theorem as:

P (T,ΦT |c̄, x̄) ∝ P (T, ΦT |x)
N∏

i=1

P (ci|xi, T, ΦT ) = P (T, ΦT |x)
∏

l∈leaves(T )

C∏
j=1

φ
nj,l

j,l (1)

where nj,l is the number of samples of class dj falling into leaf l. P (T, ΦT |x)
can be considered equal to P (T, ΦT ) as the prior over the models, as T and ΦT

are conditioned to unclassified samples.
The factor ΦT can be removed from Equation 1 if a prior over the set of

parameters is defined and integrated into them. This can be easily achieved if
the conjugate of this prior has the same functional form, as it is the case of
Dirichlet distributions.

Parameters Priors. It is assumed that the prior beliefs over parameter values
are given by a Dirichlet distribution. It is also assumed that these distributions
are independent from the parameters of the different leaves of the tree. That can
be formulated as follows:

P (ΦT |T ) =
∏

l∈leaves(T )

1
BC(α1, ..., αC)

C∏
j=1

φ
αj,l−1
j,l

where BC is the C-dimensional beta function and αi,l are the parameters of
the Dirichlet. BC is computed in terms of product of gamma functions Γ (x)
(Γ (x + 1) = xΓ (x)) [9].

Posterior Tree Probability. Therefore, using these priors, the posterior prob-
ability of a tree, T , can be computed as follows:

P (T |x̄, c̄) ∝ P (c̄|x̄, T )P (x̄|T )P (T ) = P (x̄|T )P (T )
∫

ΦT

P (c̄|x̄, T, ΦT )P (ΦT |T )dΦT
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This integral can be computed using the above formulation. At the same time,
P (x|T ) is included in the proportional constant, as it is assumed to be the same
for all the tree structures.

P (T |x̄, c̄) ∝ P (T )
∏

l∈leaves(T )

BC(n1,l + α1, ..., nC,l + αC)
BC(α1, ..., αC)

(2)

Although Buntine tested several priors over the possible tree structures, P (T ),
in an attempt to favour simpler trees, there was no definitive recommendation
[9]. A uninform prior over the possible tree structures will therefore be assumed.

Posterior Class Probability Estimates. Finally, the estimations of the prob-
abilities of the leaves of the tree T are also computed by averaging all possible
parameter configurations, by means of expectation:

P (C = dj |x, T, x̄, c̄) =
∫
ΦT

Φj,lP (ΦT |T, c̄, x̄)dΦT =
nj,l + αj
nl + α0

where l is the leaf where x falls and nl =
∑C

j=1 nj,l and α0 =
∑C

j=1 αj .

2.2 Multiple Classification Trees

In the full Bayesian approach, inference considers all possible models with the
corresponding posterior probability and not just the most probable one. In or-
der to handle several models, the final prediction is performed by adding each
particular prediction of each model weighted by its posterior probability:

P (C = dj |x, c̄, x̄) =
∑
T

∫
ΦT

P (C = dj |x, T, ΦT )P (T, ΦT |c̄, x̄)dΦT (3)

here the summation covers all possible tree structures.
In Bayesian Model Averaging, Equation (3) is approximated by using im-

portance sampling and Monte-Carlo estimation. Thus, tree structures will be
generated in an approximate proportion to their posterior probabilities. But
applying Monte-Carlo methods in this huge model space would lead to a very
computationally expensive approach.

Buntine computed two approximations to this sum by reducing the set of
tree structures [9]. One approximation, known as Smoothing, restricted the
structures to the ones obtained by pruning a complete tree. It is a smoothing
because probabilities at final leaves are computed by averaging them with some
of the class probabilities from the interior nodes of the tree. The other approxi-
mation used by Buntine was called Option Trees [9]. This approximation was
based on searching and storing many dominant terms of the sum, i.e., trees with
high posterior probabilities. The multiple tree structures were compactly repre-
sented using AND-OR nodes. The final predictions were made by averaging the
predictions of the different models encoded in these option trees.
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3 Bayesian Ensembles of Classification Trees

In this section, we present the new approach for building an ensemble of classi-
fication trees. This approach is similar to Bayesian model averaging (Equation
(3)) which attempts to collect trees with high posterior probabilities. But the
predictions of these trees are not weighted. Rather, greater importance is given
to the most probable trees which appear more frequently in the ensemble of
trees. Thus, this approach should be viewed as a Monte-Carlo inspired one.

3.1 Justifying a Random Split with a Stop Criteria

The greedy approach has been usually employed to build decision trees, selecting
at each level of the tree the most promising split nodes [10,5,9]. But when you are
looking for a wide range of classification trees with higher posterior probabilities
(Section 2.2), this greedy approach does not seem very suitable. Firstly, it is
known to be very sensitive to the selection of the root node of the tree [11].
So, if there is a very high informative variable these greedy approaches such as
Bagging will probably start most of the trees of the ensembles with the same
root node. Therefore, greedy search schemes seems to discover most of the time
a narrow set of local maxima of the global posterior probability distribution over
the different decision trees.

With this in mind, we chose a random split criterion similar to the one used
in random forests. As the random selection of the split nodes at the beginning of
tree appears to be more suitable than a greedy scheme, the approach presented
differs from the random split of random forests in the introduction of a random
condition for stopping the branching.

Information-based scores used to grow random ensembles [1] such as informa-
tion gain [10] or Gini index [5] predict better partitions whenever a new split node
is added. Therefore, stop criteria usually include conditions such as a minimum
threshold for the number of samples or a pure partition of the data. Excessive
branching implies a higher risk of over-fitting, and post-pruning techniques were
therefore applied as suitable stop criteria (they reduce the size of three defining
shorter rules and, in consequence, establish better stop levels).

The use of a Bayesian approach enables us to tackle the stop branching prob-
lem in an elegant manner, because of the inherent penalty they impose upon
more complex models. Buntine proposed a Bayesian method that combined the
predictions of some of the pruned sub-trees of a given tree [9]. In a recent work
[12], we also proposed a different Bayesian approach to tackling the stop branch-
ing problem, this combining different classification rules. In both cases significant
performance improvements were noted. For these reasons, possibly stopping the
branching, as an additional option to be considered, appear to be justified.

3.2 A Bayesian Approach to Random Splits

In this subsection, we depicted the details of our random split criterion.
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As in random forests [1], at any node S0 of the tree, K split attributes
(S1, ..., SK) are randomly selected from the set of all possible split candidates.
Therefore a score, Score(TSi), is computed for each split node Si as the loga-
rithm of P (TSi |x̄, c̄) (Equation 2). Simultaneously, we also compute the score of
the model without further splitting at this point, Score(TS0). Exponentiating
and normalizing this vector of scores, we obtain a distribution ΛK = (λ0, ..., λK)
where each λi informs us of the degree of probability of the tree model with
the split node Si with respect to the rest of split candidate nodes and the tree
without further splits, TS0 . It must be remembered that Λ is a proper probabil-
ity distribution, because each Score(TSi) comes from a probability itself. This
would not be so evident if the scores were based on information theoretic criteria.

As Score(TSi) is computed with a logarithmic transformation in order to
avoid overflows, normalization has to be performed as follows:

λi =
ϕ(TSi)∑K
j=0 ϕ(TSj )

, i ∈ {0, ...,K}

where ϕ(TSi) is a scaled value by the maximum logarithmic score of the candidate
models, Score(TSmax):

ϕ(TSi) = e(Score(TSi
)−Score(TSmax )), i ∈ {0, ...,K}

Finally, our approach randomly samples the split node among the K candi-
dates according to ΛK distribution. If the TS0 tree is sampled (i.e., branching is
stopped at this leaf), the current K split attributes are discarded and other dif-
ferent K split attributes are randomly selected. The whole process of computing
the ΛK is conducted again. Thus, branching stops when TS0 is selected and there
are no more split attributes to repeat the whole process again. It is important
to remark that the discarded attributes in this process can be considered again
in the selection of another split node.

We now provide the pseudo-code of our Bayesian approach to a random split
criterion.

Algorithm 1. Bayesian Random Split

SelectSplit(S0, X = {X1, ..., Xn})
Z = AvailableAttributes(S0, X);
end = false;
while (not end)

{S1, ..., SK} = Random Selection(Z);
{S0, S1, ..., SK} = {S0} ∪ {S1, ..., SK};
ΛK = (λ0, ..., λK)=ComputeScores({S0 , ..., SK});
S∗=Sampling(ΛK);
Z = Z \ {S1, ..., SK};
if S∗ �= S0 OR Z �= ∅

end=true;
else if S∗ = S0 AND Z �= ∅

end=false;
return S∗;
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The function AvailableAttributes(S0,X) returns the attributes not included
as split nodes in the path from S0 to the root node. That is, all possible attributes
available to be used as split nodes.

Random forests perform the same steps but use an information-based score
instead of a Bayesian one; they select the split node with the highest score among
the K candidates rather than a random sampling of the split node; and they
stop branching when this reaches a pure partition or there are few samples in
the partition.

4 Bayesian Random Split Evaluation

In this section, we present the experimental results of the comparison of the
Bayesian approach for random splits with the random forest one. In the first
subsection we will detail the experimental approach employed and the evaluation
methodology, and the second subsection presents results and conclusions. The
approach presented will be denoted as Bayesian random split (BRS) as opposed
to random forests (RF).

Experimental and Evaluation Setup

For these experiments we selected a set of 23 different datasets taken from the
UCI repository. In Table 1, the datasets with their basic features are listed. In
the last row, we present the range of each feature of the data sets in order to
show the heterogeneity of this benchmark.

Table 1. Data Bases Description

Name t n c
anneal 898 39 6
audiology 226 70 24
autos 205 26 7
breast-cancer 286 10 2
horse-colic 368 23 2
german-credit 1000 21 2
pima-diabetes 768 9 2
glass2 163 10 2
hepatitis 155 20 2
hypothyroid 3772 30 4
ionosphere 351 35 2
kr-vs-kp 3196 37 2

..........

Name t n c
..........

labor 57 17 2
lymphography 148 19 4
segment 2310 20 7
sick 3772 30 2
solar-flare 323 13 2
sonar 208 61 2
soybean 683 36 19
sponge 76 45 3
vote 435 17 2
vowel 990 12 11
zoo 101 17 7
Range 57-4k 9-70 2-24

t = number of samples, n = number of variables and c = number of classes.

The approach presented, an ensemble of classification trees induced with a
Bayesian random split, was implemented in Elvira environment [13], whereas
the experiments, along with the rest of the classifiers evaluated, were carried
out in Weka platform [14]. We used non-informative Dirichlet priors over the
parameters, setting the αi,l parameters of this distribution at 1/C.
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The data were preprocessed with the Weka filters themselves: missing values
were replaced (with the mean value for continuous attributes and with the mode
for the discrete ones) and discretized with the Fayyad and Irani method [15].

We evaluated the performance of the classifiers with the error rate and with
a bias-variance decomposition of this error. For that purpose, we used the Weka
utility, following the bias-variance decomposition of the error proposed by Kohavi
and Wolpert [8] and using the experimental methodology proposed in [16].

Comparison of those performance measures followed the methodology proposed
by Demsar [17] for the comparison of several classifiers over severaldatasets. In this
methodology, the non-parametric Friedman test was used to evaluate the rejection
of the hypothesis that all the classifiers perform equally well for a given significant
α level (5% in this case). When the Friedman test detected significant differences,
a post-hoc test was also used to assess particular differences among these classi-
fiers: the Bonferroni-Dunn test [17] with a 5% significance level establishing a given
classifier (marked with % in the tables) as the reference model.

It is well known that non-parametric tests are hard for rejecting hypotheses.
So, in this evaluation it was displayed the ranking score that Friedman test assess
to each classifier (ranking scores close to 1 indicate better performance for those
classifiers) with the idea of detecting some trends although they do not reach
significance levels. Because of the lack of space and because this ranking scores
give enough clues to know which is the relative performance of each classifier,
Tables detailing the error, bias an variance exact values were removed.

Both Bayesian random split and Random Forests were evaluated with different
K values and number of trees in the ensembles. Concretely, K was fixed to 1, 3, 5
and equal to the logarithm of the number of variables as Breiman recommended.
Four different number of trees were evaluated: 10, 50, 100 and 200.

The Role of K and the Number of Trees in Bayesian Random Split
The aim of this initial analysis is to show that the Bayesian random split quickly
reaches a competitive performance level with a lower number of trees and that
this performance does not depend much on the K value as in the case of Random
Forests.

Firstly, the following comparison was made. An ensemble with the Bayesian
random split was built setting the number of trees at 10 and the K value at 1.
This ensemble was then compared with random forest ensembles with different
numbers of trees and different K values.

Table 2 shows the Friedman Test’s results when it was applied over the dif-
ferent number of trees: it is depicted the ranking scores of each ensemble as well
as the acceptation or the rejection of the null hypothesis (all classifiers performs
equally well). As it can be seen in Table 2, BRS ensemble with 10 trees and
K = 1 becomes difficult to beat using Random Forest ensembles with a higher
number of trees and different K values, but what it is most important, there
is any clear trend and Random Forests seems to beat BRS depending on the
concrete K value and with a concrete number of trees.
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Table 2. Evaluating BRS ensembles with 10 Trees - Ranking Scores

RF Trees
10
50
100
200

�BRS (10 trees) RF
K=1 K=1 K=3 K=5 K=Log N
2.0 3.9⊥ 3.1⊥ 2.9 3.1
3.4 3.5 2.6 2.9 2.7
3.7 3.2 2.3� 2.8 2.9
3.8 3.1 2.7 2.8 2.6

Friedman Test
Reject
Accept
Reject
Accept

�, ⊥ statistically significant improvement or degradation respect to BRS.

In a second step, we exchanged the roles and tested a Random Forest ensemble
with 10 trees and K = LogN (the recommended value by [1]) against different
BRS ensembles with different tree sizes and K values. The analogous results are
presented for this new analysis in Table 3.

In this new analysis, the trend is much clearer than in the previous case. As
can be seen in Table 3, the BRS ensembles now robustly outperform the Random
Forest ensembles with different K values and different numbers of trees.

Table 3. Evaluating Random Forests with 10 Trees - Ranking Scores

BRS Trees
10
50
100
200

�RF (10 trees) BRS
K=Log N K=1 K=3 K=5 K=Log N

4.3 3.2 2.1� 2.6� 2.8�

4.9 2.7� 2.3� 2.5� 2.6�

5.0 2.3� 2.5� 2.7� 2.6�

5.0 2.4� 2.4� 2.7� 2.5�

Friedman Test
Reject
Reject
Reject
Reject

�, ⊥ statistically significant improvement or degradation respect to RF.

The first conclusion seems clear: BRS forests reach a high performance level
with a low number of trees and this performance does not depend much upon
the concrete K value, as in the case of Random Forests. Throughout the next
subsection, we will show how this trend mainly results from a better trade-off
between the bias and the variance obtained with the Bayesian random split
operator.

Bias-Variance Analysis
Herein we conducted a bias-variance decomposition of the error for both the BRS
and RF models. With the aim of simplifying the result analysis, we evaluated the
BRS models with K = 1. Analyzing the results of the previous section devoted
to the role of K in BRS models, we did not find any good reason to prefer a
specific K value. The BRS with K = 1 appeared to stand out somewhat more
than the others.

Following Demsar’s methodology [17], Error (Table 4), Bias (Table 5) and
Variance (Table 6) were compared between the Bayesian random split operator
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and Random Forests. It is given the ranking score of each approach as well as
wether the Friedman test accepted or rejected the null-hypothesis (all classifier
performs equally well). The tests were independently carried out for the different
number of trees in the ensembles.

For the error, Table 4, only with 10 trees there are significant differences
among the classifiers. In that case, Bonferroni-Dunn Test [17] says that Bayesian
random split is significantly better than Random Forests with K = 1 (its ranking
is marked with ⊥). For higher number of trees although there are no significant
differences, our approach always get the best ranking. For Random Forests,
K = LogN seems to be the best option.

Table 4. Error - Ranking Scores

Trees
10
50
100
200

�BRS RF
K=1 K=1 K=3 K=5 K=Log N
2.01 3.9⊥ 3.1 2.9 3.1
2.41 3.7 2.9 3.1 2.9
2.51 3.6 2.7 3.1 3.2
2.41 3.5 3.1 3.1 2.9

Friedman Test
Reject
Accept
Accept
Accept

⊥ indicates this classifier is statistically worst than the respective BRS model.

Table 5 shows the bias evaluation results. As was mentioned in Section 1,
Random Forests K = 1 have the worst bias and it can be observed in this
table. The Bonferroni-Dunn test reveals significant differences of RF K = 1
with respect to the BRS. There is no difference with respect to the rest, but the
Bayesian random split model clearly shows a better ranking across the different
numbers of trees. Although the BRS exhibits a K value fixed to 1, it achieves the
best bias. This is a good indication, as the randomness introduction in the split
criteria through a Bayesian approach indicates a promising method for further
improvements.

Lastly, we evaluate the variance component (Table 6). In this case, the non-
parametric test indicates non significant differences among the classifiers, al-
though RF (K = 1) appears to stand out somewhat, with 200 trees.

Table 5. Bias - Ranking Scores

Trees
10
50
100
200

�BRS RF
K=1 K=1 K=3 K=5 K=Log N
2.51 3.8 2.9 3.0 2.9
2.21 3.8⊥ 3.0 3.1 2.9
2.11 3.8⊥ 2.8 3.0 3.2
2.31 3.9⊥ 3.0 3.0 2.7

Friedman Test
Accept
Reject
Reject
Reject

⊥ indicates this classifier is statistically worst than the respective BRS model.
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Table 6. Variance - Ranking Scores

Trees
10
50
100
200

�BRS RF
K=1 K=1 K=3 K=5 K=Log N
2.31 3.5 3.2 3.0 3.0
2.81 2.9 3.0 3.2 3.0
2.9 3.0 2.9 3.3 2.81

2.8 2.41 3.0 3.5 3.2

Friedman Test
Accept
Accept
Accept
Accept

Experimental Conclusions

The value of K in Random Forests has been known to affect the performance
of the ensembles [1]. In a bias-variance analysis, it was shown [6] that lower K
values reduce variance, but increase bias and viceversa. K = LogN seems to
present the best trade-off between bias and variance and, in consequence, the
best error rate. Our experiments confirm this trend.

This trend is broken with the introduction of more randomness in the split
criteria. In BRS ensembles with K = 1, the low variance is maintained, while the
bias shows a noteworthy decrease. Thus, we achieve the best trade-off between
bias and variance.

5 Conclusions and Future Works

In this study, we have presented a new random split operator for building ensem-
bles of classification trees based on Bayesian ideas. We also depicted the method
for constructing ensembles of classification trees using this random split through
a Bayesian approach.

In an experimental study, we showed that this new split operator does not
clearly depend upon the K parameter, like its counterpart of the random forests
models, and performs better with a lower number of trees. These advantages were
justified with the use of a bias-variance decomposition of the error. In random
forests, K = LogN attempts to find a balance between bias and variance. With
the Bayesian random split with K = 1 presented, the low variance is maintained
while the bias is clearly improved.

Under our point of view, this study provides some insights into how to address
the building of ensembles of classification trees through a Bayesian approach.
Further experiments and, specially, theoretical developments are needed.
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Gámez, J., Salmerón, A. (eds.) Proceedings of the 1st European Workshop on
Probabilistic Graphical Models, pp. 222–230 (2002)

14. Witten, I.H., Frank, E.: Data mining: practical machine learning tools and tech-
niques with Java implementations. Morgan Kaufmann Publishers Inc., San Fran-
cisco (2000)

15. Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes
for classification learning. In: Proc. of 13th Int. Joint Conf. on AI (1993)

16. Webb, G.I., Conilione, P.: Estimating bias and variance from data (2006)
17. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.

Learn. Res. 7, 1–30 (2006)



HODE: Hidden One-Dependence Estimator
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Abstract. Among the several attempts to improve the Naive Bayes
(NB) classifier, the Aggregating One-Dependence Estimators (AODE)
has proved to be one of the most attractive, considering not only the
low error it provides but also its efficiency. AODE estimates the cor-
responding parameters for every SPODE (Superparent-One-Dependence
Estimators) using each attribute of the database as the superparent, and
uniformly averages them all. Nevertheless, AODE has properties that can
be improved. Firstly, the need to store all the models constructed leads
to a high demand on space and hence, to the impossibility of dealing
with problems of high dimensionality; secondly, even though it is fast,
the computational time required for the training and the classification
time is quadratic in the number of attributes. This is specially significant
in the classification time, as it is frequently carried out in real time. In
this paper, we propose the HODE classifier as an alternative approach
to AODE in order to alleviate its problems by estimating a new variable
(the hidden variable) as a superparent besides the class, whose main
objective is to gather all the dependences existing in the AODE mod-
els. The results obtained show that this new algorithm provides similar
results in terms of accuracy with a reduction in classification time and
space complexity.

Keywords: AODE, SPODE, ODE, Bayesian Networks, Bayesian Clas-
sifiers, Classification.

1 Introduction

The probabilistic paradigm, more precisely Bayesian classifiers [1], offers impor-
tant advantages compared to other approaches for classification tasks. Bayesian
classifiers are able to naturally deal with uncertainty and estimate, not only the
label assigned to every object, but also, the probability distribution over the
different labels of the class variable.

NB [2] is the simplest Bayesian classifier and one of the most efficient and
effective inductive algorithms for machine learning. Despite the strong indepen-
dence assumption between predictive attributes given the class value, it provides
a surprisingly high level of accuracy, even compared to other more sophisticated
models [3]. However, in many real applications it is not only necessary to be
accurate in the classification task, but also to produce a ranking as precise as
possible with the probabilities of the different class values.

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 481–492, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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During the last few years, attention has focused on developing NB variants in
order to alleviate the independence assumption between attributes, of which so
far selective Bayesian classifiers (SBC) [4], tree-augmented naive Bayes (TAN)
[5], NBTree [6], boosted naive Bayes [7] and AODE [8] achieve a considerable
improvement over naive Bayes in terms of classification accuracy. Specially the
group of one dependence estimators (ODEs) [9], such as TAN, provides a pow-
erful alternative to NB. ODEs are very similar to NB but they also allow every
attribute to depend on, at most, another attribute besides the class. SPODEs
can be considered a subcategory of ODEs where all attributes depend on the
same attribute. They have received much attention because of their efficiency in
training time and their effectiveness and accuracy in classification [10]. Due to
all of these advantages, SPODE classifiers are considered a potential substitute
for NB in many real problems such as medical diagnosis, fraud detection, spam
filtering, document classification and prefetch of web pages.

Among all these approaches, AODE has come out as the most interesting
option due to its capability to improve NB’s accuracy with only a slight increase
in time complexity (fromO(n) toO(n2)). An extensive study comparing different
semi-naive Bayes techniques [11] proves that AODE is significantly better in
terms of error reduction compared to the rest of semi-naive techniques, with
the exception of Lazy Bayesian Rules (LBR) [12] and Super-Parent TAN (SP-
TAN)[13], which obtain similar results but with a higher time complexity.

Even though AODE is a fast classifier, it is quadratic in training and clas-
sification time. This latter issue in particular can be a handicap in many real
applications where the response time is critical. Furthermore, the memory re-
quired by AODE is quite large due to the necessity to store the n models, n being
the number of attributes in the data set. This fact can become a real problem
when the size of the database (mainly the number of attributes) is very large.

In this paper, we propose a new classifier which alleviates these two prob-
lems by estimating a new variable whose objective is to gather the dependences
represented by every superparent in AODE into a single model. The number of
states of the new variable as well as the distribution probabilities for the final
model are estimated by means of the EM algorithm [14].

This paper is organized as follows: sections 2 and 3 present an overview of
NB and AODE classifiers respectively, which are the bases for understanding the
new classifier developed. Section 4 provides a detailed explanation of the HODE
algorithm. In Section 5, we describe the experimental setup and results. And
finally, Section 6 summarizes the main conclusions of our paper and outlines the
future work related with the HODE paradigm for classification.

2 Naive Bayes

The problem of classification could be solved exactly using the Bayes theorem
in Equation 1. Unfortunately, the direct application of this theorem entails an
intractable computational cost in large databases, as it is necessary to estimate
the joint probability distribution.
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p(c|e) =
p(c)p(e|c)

p(e)
. (1)

where c represents the class variable, e = {a1, a2, · · · , an} the instance example
to classify with length n and ai the value of the ith attribute Ai.

NB estimates the class conditional probability, assuming all the attributes are
conditionally independent given the class: p(e|c) =

∏n
i=1 p(ai|c). This approach

is more feasible, as a large training set is not required to obtain an acceptable
probability estimation. Hence, the maximum a posteriori hypothesis (MAP hy-
pothesis) is obtained by Equation 2.

cMAP = argmaxc∈ΩC p(c|e) = argmaxc∈ΩC

(
p(c)

n∏
i=1

p(ai|c)
)

. (2)

At training time, NB has a time complexityO(tn), where t is the number of train-
ing examples. The space complexity is O(knv) where v is the average number of
values per attribute and k the number of classes. The resulting time complexity
at classification time is O(kn), while the space complexity is O(knv).

3 Averaged One-Dependence Estimators

AODE [8] classifiers are considered an improvement of NB and a good alternative
to other attempts such as LBR and SP-TAN, as they offer similar accuracy ratios,
but AODE is significantly more efficient at classification time compared to the
first one and at training time compared to the second.

Back in 1996, Sahami [9] introduced the notion of k-dependence estimators,
through which the probability of each attribute value is conditioned by the class
and, at most, k other attributes. In order to maintain efficiency, AODE is re-
stricted to exclusively use 1-dependence estimators. Specifically, AODE makes
use of SPODEs, as every attribute depends on the class and another shared
attribute, designated as superparent.

Considering the MAP hypothesis, the classification of a single example in a
SPODE classifier (and hence, a 1-dependence ODE) is defined in Equation 3.

cMAP = argmaxc∈ΩC p(c|e) = argmaxc∈ΩC p(c, aj)
n∏

i=1,i�=j

p(ai|c, aj) . (3)

The Bayesian network corresponding to an SPODE classifier is depicted in
figure 1. In order to avoid selection between models or, in other words, trying
to take advantage of all the created models, AODE averages the n SPODE
classifiers, which have every different attribute as superparent, as is shown in
Equation 4.

cMAP = argmaxc∈ΩC

⎛⎝ n∑
j=1,N(aj)>m

p(c, aj)
n∏

i=1,i�=j

p(ai|c, aj)

⎞⎠ . (4)
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C Aj

A1 A2
. . . Aj−1 Aj+1

. . . An

Fig. 1. Generalized structure of SPODE classifiers

The N(aj) > m condition is used as a threshold to avoid predictions from
attributes with insufficient samples, where N(aj) is a count of the number of
training examples having attribute-value aj and m the limit we place on the
support needed in order to accept a conditional probability estimate. If there is
not any value which exceeds this threshold, the results are equivalent to NB.

At training time, AODE has a O(tn2) time complexity, whereas the space
complexity is O(k(nv)2). The resulting time complexity at classification time is
O(kn2), while the space complexity is O(k(nv)2).

4 Hidden One-Dependence Estimators

Just as discussed above, one of the main drawbacks of AODE is the high space
cost it entails, as it is necessary to store all the SPODE models in main memory.
In order to alleviate these large memory requirements, we suggest the estimation
of a new variable, specifically, a hidden variable H , which gathers the suitable
dependences among the different superparents and the rest of the attributes.
In other words, instead of averaging the n SPODE classifiers, a new variable is
estimated in order to represent the links existing in the n models. In [15], the
authors try to improve NB by introducing hidden variables as well.

In this case, we have to estimate the probability of every attribute value
conditioned by the class and the new variable which plays the superparent role.
Figure 2(a) shows the structure of the Bayesian network to learn. The aim is not
to search exactly the same AODE structure (Figure 2(b)), but the class values
become the Cartesian product of the original class values and the estimated
states for H (#H).

Equation 5 shows the MAP hypothesis for the HODE algorithm. Each hj
represents the jth virtual value for H .

cMAP = argmaxc∈ΩC p(c|e) = argmaxc∈ΩC

⎛⎝#H∑
j=1

p(c, hj)
n∏
i=1

p(ai|c, hj)

⎞⎠ .

(5)
The following two sections explain how to adapt the EM algorithm to estimate

the probability distributions of the model, and the technique used to find out
the most suitable number of states for H .
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C, H

A1 A2
. . . An

C H

A1 A2
. . . An

Fig. 2. HODE classifier possible structures

4.1 Application of the EM Algorithm

As the different values for H are not known, we make use of the EM algorithm
to obtain the maximum likelihood estimation of the parameters, its use being
quite common in this kind of approaches [16],[17]. Algorithm number 1 shows
the detailed process followed by the straight adaptation of the EM algorithm
to this problem. Until convergence is reached, in the Expectation step (E-step),
the conditional probability tables (CPTs) are constructed using the weights esti-
mated in the Maximization step (M-step). These weights are, in turn, estimated
according to the attribute values, the class value and the corresponding label
assigned to H .

Algorithm 1. EM algorithm adaptation to HODE
1: Random initialization of weights;
2: {EM ALGORITHM}
3: while (!convergence()) do
4: {E-STEP}
5: Update prob. according to weights
6: {M-STEP}
7: for (j = 1 to j = numInstances) do
8: for (s = 0 to s < #H) do
9: w{c,hs,ai,··· ,an}j

= P (c, hs)P (a1|c, hs) · · · P (an|c, hs);
10: Normalize w;
11: end for
12: end for
13: end while

In EM, the database is virtually divided according to the following proce-
dure: we divide every instance into #H virtual instances. Each one of the subin-
stances corresponds to a different value of H and a weight reflecting its likelihood
(w{c,hs,ai,··· ,an}j

). At the beginning, these weights are randomly initialized (w
vector), considering that the sum of weights from a common instance has to be
equal to 1. Table 1 shows a virtual division example of a small database.

An example of how to adapt the said EM algorithm, is described below. For
the database in Table 1, the probabilities shown in Figure 3 are obtained in
every E-step.
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Table 1. Virtual division example of the database with H = {h1, h2}

A B C H w

a b c h1 0.3
h2 0.7

a b c
h1 0.5
h2 0.5

a b c h1 0.9
h2 0.1

a b c h1 0.6
h2 0.4

a b c
h1 0.7
h2 0.3

a b c h1 0.2
h2 0.8

Structure

A

C, H

B

P (A|C, H)

P (C, H)

P (B|C, H)

A priori probabilities

p(c, h1) =
0.3 + 0.9 + 0.6 + 0.2

6
= 0.33 p(c, h2) =

0.7 + 0.1 + 0.4 + 0.8

6
= 0.33

p(c, h1) =
0.5 + 0.7

6
= 0.2 p(c, h2) =

0.5 + 0.3

6
= 0.13

CPT for attributes A and B

p(a|c, h1) =
0.3 + 0.6 + 0.2

2
= 0.55 p(a|c, h1) =

0.5

1.2
= 0.42 p(b|c, h1) = 0.45 p(b|c, h1) = 0.58

p(a|c, h2) =
0.7 + 0.4 + 0.8

2
= 0.95 p(a|c, h2) =

0.5

0.8
= 0.625 p(b|c, h2) = 0.55 p(b|c, h2) = 0.375

Fig. 3. Count of database weights to obtain the CPTs (E-step)

The adaptation of the M-step to our problem consists in the estimation of the
corresponding weights of the virtual instances from the probabilities estimated
in the previous step. Equations in Figure 4 show how the M-step is carried out
for the first instance in our example. Once this M-step is finished for all the
instances, the following generation of weights is depicted in the table on the
right-hand side.

Finally, the following E-step would use the w2 vector weight and the cycle
would continue until the algorithm converges, in other words, until the weight
difference from adjacent iterations is lower than 5 thousandths.

4.2 Number of States for the H Variable

Even though the graphical structure is already fixed, we still have to perform
certain structural learning in order to find the inner structure of H , in other
words, its cardinality or number of states. To achieve this, we make use of the
following greedy technique: firstly, #H is fixed to 1 (base case equivalent to
naive Bayes), the EM algorithm is executed and the model built is evaluated;
after that, the number of states for H is increased one by one in every iteration
of the EM algorithm. If the result of the evaluation of one model is better than
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Weights count

p(c, h1|a, b) =
p(c, h1)p(a|c, h1)p(b|c, h1)

PH
i=1

`
p(c, hi)p(a|c, hi)p(b|c, hi)

´ =
0.33 · 0.55 · 0.45

0.254
= 0.32

(6)

p(c, h2|a, b) =
p(c, h2)p(a|c, h2)p(b|c, h2)

PH
i=1

`
p(c, hi)p(a|c, hi)p(b|c, hi)

´ =
0.33 · 0.95 · 0.55

0.254
= 0.68

(7)

Weights modification after
M-step

A B C H w1 w2

a b c h1 0.3 0.32
h2 0.7 0.68

a b c
h1 0.5 0.41
h2 0.5 0.59

a b c h1 0.9 0.92
h2 0.1 0.08

a b c h1 0.6 0.32
h2 0.4 0.68

a b c
h1 0.7 0.79
h2 0.3 0.21

a b c h1 0.2 0.41
h2 0.8 0.59

Fig. 4. Count of database weights (M-step)

the one in the previous iteration, the process continues, otherwise, the previous
model is restored and considered the final model.

How is the fitness of the model evaluated? We employ the log-likelihood (LL)
meassure to find how the mathematical model estimated fits the training data.
Equation 6 shows the formula used.

LL =
I∑

i=1

log

(#H∑
t=1

p(ci, ai1, · · · , ain, ht)
)

=
I∑

i=1

log

(#H∑
t=1

p(ci, ht)
n∏

r=1

p(air|ci, ht)
)

.

(6)
where I is the number of instances and the superscript i indicates the class or
the attribute value that correspond with the ith instance.

Nevertheless, when we use these measures, it is also necessary to add another
quality measure to counteract the monotonous feature of the LL. In other words,
it is necessary to somehow penalize, the increase in the number of states for H . To
do this, we firstly carried out experiments with the Minimum Description Length
(MDL) measure, for which the model complexity is computed in Equation 7.

C(M) =
n∑
i=1

((#H ·#C)(#Ai − 1)) + #H ·#C − 1 . (7)

where #C is the number of classes and #Ai the number of states of Ai.
Thus, the MDL measure could be defined as in Equation 8:

MDL = LL− 1
2

log I · C(M) . (8)

Later, we designed a different way to penalize the LL, which consisted in using
information measures with the basic idea of selecting the model which best fits
the data, penalizing according to the number of parameters needed to specify
its corresponding probability distribution. Specifically, we tested the so-called
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Fig. 5. Accuracy and #H obtained with AIC and MDL penalization in HODE

Akaike Information Criterion or AIC [18], which turns out to be equal to
the previous one but removing the 1

2 log I factor.

AIC = LL− C(M) . (9)

From our experiments testing these two measures, AIC is the one that testing a
smoother penalization over LL and hence, it achieved better results as it explores
more states of H (this is in concordance with [16], where large cardinalities
are used in order to achieve good modeling). The graph in Figure 5 shows the
comparison between accuracy results using both penalty measures. The left-hand
Y-axis represents accuracy results (upper pair of lines) whereas the right-hand
Y-axis represents the average #H obtained in the evaluation of each dataset
(lower pair of lines).

From now on in this paper, we will refer to HODE with the AIC measure as
HODE.

5 Experimental Methodology and Results

This section presents the experimental results of HODE compared to the AODE
classifier.

First, in Section 5.1 we study the accuracy results obtained for 36 UCI reposi-
tory datasets [19], whose main characteristics are summarized in Table 2; whereas
Section 5.2 is devoted to the study of the performance of HODE in terms of
efficiency.

5.1 Evaluation in Terms of Accuracy

Table 3 shows the classification accuracy of both classifiers (AODE and HODE)
on each dataset obtained via 10 runs of ten-fold cross validation. Each value
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Table 2. Main characteristics of the datasets: number of different values of the class
variable (k), number of predictive variables (n), and number of instances (I)

Id. Dataset k n I Id. Dataset k n I

1 anneal.ORIG 6 38 898 19 ionosphere 2 34 351
2 anneal 6 38 898 20 iris 3 4 150
3 audiology 24 69 226 21 kr-vs-kp 2 36 3196
4 autos 7 25 205 22 labor 2 16 57
5 balance-scale 3 4 625 23 letter 26 16 20000
6 breast-cancer 2 9 286 24 lymph 4 18 148
7 breast-w 2 9 699 25 mushroom 2 22 8124
8 colic.ORIG 2 27 368 26 primary-tumor 21 17 339
9 colic 2 27 368 27 segment 7 19 2310

10 credit-a 2 15 690 28 sick 2 29 3772
11 credit-g 2 20 1000 29 sonar 2 60 208
12 diabetes 2 8 768 30 soybean 19 35 638
13 glass 6 10 214 31 splice 3 61 3190
14 heart-c 2 13 303 32 vehicle 4 18 846
15 heart-h 2 13 294 33 vote 2 16 435
16 heart-statlog 2 13 270 34 vowel 11 13 990
17 hepatitis 2 19 155 35 waveform-5000 3 40 5000
18 hypothyroid 4 29 3772 36 zoo 7 17 101

Table 3. Accuracy results obtained with AODE and HODE classifiers

Dataset AODE HODE #H Dataset AODE HODE #H

anneal.ORIG 93,3185 •94,0646 2, 2 ionosphere 92,9915 •93,9886 4, 4
anneal 98,196 •99,1203 2, 8 iris 93,2 •93,7333 1
audiology 71,6372 •78,5841 1 kr-vs-kp 91,0325 90,8229 9, 7
autos 81,3658 •82,0975 1, 9 labor 95,0877 94,9123 1
balance-scale 69,344 •71,088 1 letter 88,902 •91,117 9, 8
breast-cancer •72,7273 71,4336 1, 3 lymph •87,5 81,1487 1, 5
breast-w 96,9671 96,9814 2, 8 mushroom •99,9508 99,6824 6, 2
colic.ORIG •75,9511 73,0707 1 primary-tumor •47,8761 45,7227 1
colic •82,5543 81,5489 2, 1 segment 95,7792 •96,1732 4, 8
credit-a •86,5507 85,5942 4, 1 sick •97,3966 97,3118 4, 6
credit-g •76,33 74,94 2, 9 sonar •86,5865 83,0769 4, 3
diabetes •78,2292 77,8516 1, 2 soybean 93,3089 •94,3631 1, 9
glass •76,2617 74,0187 1, 6 splice •96,116 95,8872 3, 9
heart-c 83,2013 •83,4323 1 vehicle 72,3049 72,3522 4, 9
heart-h 84,4898 85,0 1 vote 94,5288 •95,5173 3, 1
heart-statlog 82,7037 •83,7037 1, 9 vowel •80,8788 79,0101 3, 9
hepatitis 85,4839 •86,6452 2, 3 waveform-5000 86,454 86,54 4, 2
hypothyroid 98,7513 •99,0668 4, 5 zoo 94,6535 •96,2376 1

represents the arithmetical mean from the 10 executions. The bullet next to
certain outputs means that the corresponding classifier on this particular dataset
is significantly better than the other classifier. The results were compared using
a two-tailed t-test with a 95% confidence level.

In 16 of the 36 databases, HODE is significantly better than AODE, whereas
AODE outperforms HODE in 14 of them. They draw in 6 of them, hence 16/6/14,
where the notation w/t/l means that HODE wins in w datasets, ties in t datasets,
and loses in l datasets, compared to AODE. The results undergo no variation
when the confidence level is raised to 99%, obtaining 15/8/13.
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On the other hand, although it is not shown in the tables, we also studied
HODE with the MDL penalization, and observed that it was significantly better
than AODE in 11 of the 36 datasets, drew in 7 of them, and lost in 18 of them
(11/7/18).

5.2 Evaluation in Terms of Efficiency

As there is not a clear difference in terms of accuracy between the two classifiers,
what could make us vote for one or the other? In fact, HODE’s time complexity at
training time is quadratic in the worst case (1tn+2tn+ · · ·+ntn, considering the
different executions of the EM algorithm). However, AODE is usually faster than
HODE in model construction, as HODE spends more time executing the EM
algorithm to find the most suitable #H , increasing this time as #H increases.

With respect to classification time, HODE’s is linear, whereas AODE’s is
quadratic. Figure 6 shows the experimental classification times obtained, which
corroborate this theoretical study. Note that in most real applications, it is essen-
tial that classification time is as short as possible, as model training can usually
be performed offline. For example, consider spam detection in mail, the recom-
mendation of a specific product according to previous purchases, interpretation
of characters by an OCR tool, determining the folder for a certain e-mail, etc.
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Fig. 6. Classification time comparison between AODE and HODE

Furthermore, space complexity for AODE is higher than HODE’s, as the
former needs to store more CPTs. In fact, HODE’s is O(n#Hvk), where #H is
usually much lower than n. This requirement leads to a higher demand on RAM
memory which could be a big problem in large databases with a high number of
attributes, such as microarrays or DNA chips. To corroborate this fact, we have
experimented with a group of 7 databases of this type (see left part of table 4)
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Table 4. Main characteristics of the datasets (number of different values of the class
variable (k), number of genes (n), and number of microarrays (I)); and accuracy results
obtained with NB, AODE and HODE classifiers in these datasets

Dataset k n I NB AODE HODE
colon 2 2000 2 93, 5484 91, 9355 96, 7742
DLBCL-Stanford 2 4026 47 100 100 100
GCM 14 4026 47 60, 5263 OutOfMem 70
leukemia 2 7129 72 100 OutOfMem 98, 6111
lungCancerHarvard2 175 12533 181 98, 895 OutOfMem 99, 4475
lymphoma 9 4026 96 96, 875 OutOfMem 75
prostate tumorVS 2 12600 136 80, 1471 OutOfMem 95, 5882

and AODE had problems of overflow with a maximum of 8 gigabytes of memory
available, while HODE terminated its executions without problems, even with a
lower need for memory.

6 Conclusions and Future Work

In this paper, we have proposed an alternative to the AODE classifier named
HODE, which provides a linear order in classification time and a reduction in
space complexity as well. This leads to a lower time response in many real ap-
plications and a lower RAM consumption. Basically, HODE estimates a new
variable whose main objective is to model the dependences between each at-
tribute and the rest of the attributes that AODE takes into account. In order
to estimate the number of states of this new variable, we make use of the EM
algorithm, evaluating the fitness for every model with a greedy technique (LL).

So far, we have proved the good performance of this basic but innovative idea.
We have already tested the good performance of HODE in a parallel environ-
ment, as we are able to find a global optimum for #H . An additional advantage of
our proposal is the direct adaptation to work with missing values in the dataset,
due to the use of EM in its main cycle. Furthermore, we believe that there can
be lots of variations to this idea that could provide even better performance and
a clear alternative to AODE in many real applications.
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Abstract. Discussions about the trade-off between accuracy and di-
versity when designing Multiple Classifier Systems is an active topic in
Machine Learning. One possible way of considering the design of Mul-
tiple Classifier Systems is to select the ensemble members from a large
pool of classifiers focusing on predefined criteria, which is known as the
Overproduce and Choose paradigm. In this paper, a genetic algorithm is
proposed to design Multiple Classifier Systems under this paradigm while
controlling the trade-off between accuracy and diversity of the ensemble
members. The proposed algorithm is compared with several classifier se-
lection methods from the literature on different UCI Repository datasets.
This paper specifies several conditions for which it is worth using diver-
sity during the design stage of Multiple Classifier Systems.

Keywords: Supervised Classification, Multiple Classifier Systems, Di-
versity, Genetic Algorithm, Classifier Selection.

1 Introduction

Many advances in Machine Learning suggest using a set of individual classifiers,
or Multiple Classifier System, instead of a single predictor to address supervised
classification problems [16, 7]. A large number of studies show that Multiple
Classifier Systems generally achieve better results compared to a single classifier
in terms of misclassification error [8, 20]. This improvement of performances re-
lies on the concept of diversity [15, 5] which states that a good classifier ensemble
is an ensemble in which the examples that are misclassified are different from
one individual classifier to another. The comparison between Boosting [10] and
Bagging [3] approaches is one of the most significant illustration of the concept
of diversity and shows that a set of weak learners specialized on different hard
examples often produces an accurate classifier ensemble [23].

However, it appears that using diversity explicitely during the design stage
of Multiple Classifier Systems does not always give the expected performances
in terms of misclassification error [14]. The objective of this paper is to clarify
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the effectiveness of using diversity explicitely when training a classifier ensemble
under the Overproduce and Choose approach. To do so, we propose a genetic
algorithm to perform classifier selection from an initial set of decision trees while
focusing on the trade-off between accuracy and diversity of the resulting classifier
ensemble.

The remainder of this paper is organized as follows. The next section briefly in-
troduces the context of supervised classification and discusses about how Multi-
ple Classifier Systems address this problem in Machine Learning. The concept of
diversity between classifiers and its elusive behaviour are also introduced. Next,
we present a genetic algorithm to design Multiple Classifier Systems according
to the Overproduce and Choose paradigm. This algorithm selects the ensemble
members from an initial pool of decision trees obtained with the Adaboost al-
gorithm while focusing on the trade-off between accuracy and diversity of the
resulting classifier ensemble. The proposed algorithm is compared with several
classifier selection methods proposed in the literature on different datasets from
the UCI Repository. Finally, we present the different conclusions we draw from
the obtained results and propose possible improvements of the research work
presented in this paper.

2 Diversity in Multiple Classifier Systems

2.1 Multiple Classifier Systems: Overview

Given a set of N samples Z = {(X1, Y1), (X2, Y2), . . . (XN , YN )} where Xi ∈ +p
is an input vector and Yi ∈ Ω = {ω1, ω2, . . .ωc} is the class label of Xi, the
supervised classification problem consists in learning a classifier C : +p �→ Ω
from the available examples to automatically assign the corresponding class label
of new input vectors [19, 9]. Machine Learning provides numerous solutions to
address this problem, from neural networks [12] or decision trees [22] to support
vector machines [6].

Current research works suggest using simultaneously several classifiers and
combining their individual decisions to reduce the number of misclassified sam-
ples. This particular framework called Multiple Classifier System (or classifier
ensemble) is given in figure 1.

Unlike binary decomposition schemes that are necessary for multi-class sup-
port vector machines for instance [1], Multiple Classifier Systems are composed
of different classifiers trained to solve the same problem. The differences be-
tween these individual classifiers, that we will refer to with the term diversity
from now on, can be introduced at different levels of the design stage of the
ensemble, as shown in figure 1. The data level is composed of various techniques
that focus on the training data, like feature selection or resampling techniques
of the original training set. The classifier level mainly concerns manipulations of
architectures of the individual classifiers in the ensemble. Finally, the supervisor
level corresponds to the different combination rules used for the fusion of label
outputs. Brown and al. [5] define a possible taxonomy of techniques to generate



On the Effectiveness of Diversity When Training Multiple Classifier Systems 495

Fig. 1. General description of Multiple Classifier Systems

diversity between classifiers, on which rely the various ensemble learning meth-
ods proposed in the literature, like the well known Bagging [3] and Boosting
[10] techniques, random forests of decision trees [4, 13] and more recently the
Rotation Forest [24] or DECORATE [18] algorithms. Most of these methods en-
force diversity in an implicit or explicit manner during the design stage of the
ensemble to reduce the number of misclassified samples.

2.2 Ensembles of Diverse Classifiers

A large number of studies show that Multiple Classifier Systems generally achieve
better performances in terms of misclassification error compared to a single clas-
sifier [8, 20]. The effectiveness of this framefork relies on the assumption that
ensemble of classifiers which exhibit a certain diversity are generally more ac-
curate than ensemble of classifiers having a similar behaviour. Two classifiers
Ci and Cj are said diverse if they assign different class labels to the same ex-
amples. Various measures have been proposed to quantify the diversity between
two classifiers from their respective outputs [14]. Margineantu and Dietterich
[17] propose to use kappa error diagrams as a tool to observe the relation of en-
semble learning algorithms with diversity. An example of such diagram is given
figure 2.

Each dot in the diagram corresponds to a pair of classifiers CiCj defined
by its pairwise diversity κi,j and its pairwise error ei,j = ei+ej

2 . An ensemble
of L classifiers obtained with a given algorithm is represented by the scatter-
plot of the L(L−1)

2 possible pairs of classifiers within the ensemble. The scatter-
plot shape shows how ensemble algorithms interact with diversity. For instance,
the Boosting technique, which focus the training of the individual classifiers on
hard examples to enforce diversity, produces ensemble of classifiers generally less



496 D. Gacquer et al.

Fig. 2. Example of Kappa Error diagram used to compare ensemble of classifiers ob-
tained with Bagging and Boosting

accurate but more diverse compared to the Bagging algorithm whose scatterplot
is concentrated in the lower right part of the kappa error diagram. Moreover,
figure 2 shows the existence of a trade-off between accuracy and diversity in
classifier ensembles, the classifiers which exhibits important diversity being gen-
erally the ones that possess the lowest accuracy. Kappa error diagrams make a
passive use of diversity. In the next section, we briefly describe methods that
make an active use of diversity during the design stage of classifier ensembles.

2.3 Using Diversity to Train Classifier Ensembles

Comparisons between Bagging and Boosting show that, in most cases and given
noise free datasets, Boosting always produces more accurate classifier ensembles
[20, 8]. If we refer to the kappa error diagram given in figure 2, we can make the
assumption that weakening the individual accuracy of the ensemble members to
enforce diversity generally brings some benefits when the ensemble is used as a
whole using voting methods for instance. Following this assumption, numerous
research works were proposed to train diverse classifier ensembles.

The different methods that make an active use of diversity can be divided
into two category: those that enforce diversity during training of the individual
classifiers of the ensemble and those which use diversity to perform classifier
selection from a large pool of classifiers. The Adaboost algorithm for instance
belongs to the first category. A given number of classifiers are trained iteratively
on different weights distributions over the training set and the ensemble is built
in an ascending manner by adding iteratively those different classifiers. On the
contrary, the methods that belong to the second category build the ensemble in a
descending manner, by selecting the ensemble members that best satisfy certain
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criteria. This general method is called the Overproduce and Choose paradigm
and regroups different classifier selection heuristics used to prune a large pool of
classifiers [17, 25].

However, it appears that using diversity explicitely during the design stage of
Multiple Classifier Systems does not always give the expected performances in
terms of misclassification error and Kuncheva points out this elusive behaviour of
diversity in classifier ensembles [14]. To answer some of the questions that remain
about the use of diversity when training a classifier ensemble, we propose in the
next section a genetic algorithm to study the trade-off between accuracy and
diversity when training a classifier ensemble under the Overproduce and Choose
paradigm.

3 The Proposed Contribution

3.1 Overview of the Overproduce and Choose Paradigm

The Overproduce and Choose paradigm, also called Ensemble Pruning, consists
in selecting the ensemble members from a pool of individual classifiers of im-
portant size. There is no particular definition for the Overproduce step of this
approach. Margineantu and Dietterich [17] use the Adaboost algorithm to train
an ensemble of decision trees which is pruned with different selection heuristics.
Roli and al. [25] propose to prune a pool of classifiers containing neural networks
with different number of hidden nodes and nearest neighbor classifiers.

The selection step mainly relies on the use of various classifier selection meth-
ods based on different criteria. The Choose Best heuristic described in [21] con-
sists in selecting the L∗ classifiers which possess the highest individual accuracy.
This heuristic does not take into account diversity. On the contrary, the Kappa
Pruning heuristic [17] retrieves the L∗ classifiers which belong to the pairs of
classifiers of highest diversity. The previous selection methods do not consider the
trade-off between accuracy and diversity. To solve this limitation, Margineantu
and Dietterich [17] suggest pruning the initial pool of classifiers using the con-
vex hull of the kappa error diagram to select simultaneously the most diverse
(and less accurate) classifiers and the most accurate (and less diverse) classifiers.
A similar pruning method is proposed by Kuncheva [14] to select the individ-
ual classifiers which belong to the Pareto front of the kappa error diagram. An
illustration of these two pruning methods is given in figure 3.

Roli and al. [25] also propose several forward and backward search methods
as well as clustering algorithms and tabu search to perform classifier selections.
Most of the methods proposed in the literature are based on a single parameter
to select the ensemble members. Search methods based on the convex hull or the
Pareto front of the kappa error diagram consider both diversity and accuracy to
train the ensemble but with a greedy strategy which does not allow to control
the number of selected classifiers. To solve these limitations and study the trade-
off between accuracy and diversity that is visible in kappa error diagrams, we
propose a genetic algorithm which allows a direct control of the importance given
to the diversity and accuracy components of classifier ensembles.
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Fig. 3. Kappa error diagram obtained for the glass dataset from the UCI Repository.
The dotted and solid lines correspond respectively to the classifier ensembles obtained
with the kappa convex hull pruning and Pareto pruning heuristics.

3.2 The GenDiv Algorithm

We propose a genetic algorithm called GenDiv [11] to design Multiple Classifier
Systems under the Overproduce and Choose paradigm. Given a pool of decision
trees obtained with the Adaboost algorithm, a population of P classifier ensem-
bles is obtained by randomly selecting L∗ decision trees. Each solution is then
defined by a chromosome consisting of the different individual classifiers that
form the ensemble. To study the trade-off between accuracy and diversity, we
define the following fitness function to evaluate each classifier ensemble:

Fitness(E) = α×Acc(E) + (1− α)×Div(E) (1)

where Acc(E) and Div(E) correspond respectively to the accuracy and diversity
of the classifier ensemble E computed on validation samples. In this paper, we
use the kappa value between two classifiers to quantify their diversity. With this
metric, two classifiers are diverse if their kappa value is low. The overall diversity
Div(E) of a given classifier ensemble E is defined by:

Div(E) = 1− 2
L∗(L∗ − 1)

L∗−1∑
i=1

L∗∑
j=i+1

κE(i),E(j) (2)

where E(i) and E(j) correspond respectively to the classifiers Ci and Cj in the
ensemble E. The accuracy Acc(E) of the ensemble is also computed respectively
to a validation set using the usual weighted majority vote proposed for the
Adaboost algorithm. In the fitness function given previously, a value greater
than 0.5 for the α parameter will focus the classifier selection on the accuracy of
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the ensemble. On the contrary, a value of α lower than 0.5 will enforce diversity
during the selection process. The α parameter is used to study the trade-off
between accuracy and diversity when training classifier ensembles.

Ensembles that maximize the fitness function are selected to breed a new
population of P classifier ensembles of size L∗ using cross-over and mutation
mechanisms. Two distinct ensembles exchange some of their individual classi-
fiers to form new candidate solutions to be evaluated. This process is repeted
during a given number of iterations and the ensemble which possesses the highest
fitness in the final population is returned by the algorithm. In the next section,
we compare the performances of the GenDiv algorithm with different classifier
selection methods to investigate the effectiveness of diversity.

4 Experiments

4.1 Experimental Material

The proposed genetic algorithm is compared with several classifier selection
methods described in the previous section of this paper on different UCI datasets
[2]. The caracteristics of those datasets are reported in table 1. For each dataset,
we give respectively the number of classes, the number of features and the num-
ber of available samples. The last columns correspond respectively to the sizes
of the training set, validation set and test set used during our experiments.

Table 1. UCI datasets used to compare the different classifier selection methods

dataset #classes #samples #features #training #validation #test
letter 26 20000 16 2000 500 500
segment 7 2310 19 1310 500 500
german-credit 2 1000 20 600 200 200

The training set is used during the overproduce step of our experiments to
train 50 decision trees using the Adaboost.M1 algorithm. This step is common
for all the classifier selection methods that we have implemented. The validation
set is used to perform classifier selection using different selection methods and
the accuracy of the resulting classifier ensemble is computed on the test set
consisting of previously unseen examples.

For each dataset, we compare the accuracy of the classifier ensembles obtained
with the different classifier selection methods described in the previsous section:
Choose Best, Kappa Pruning, Convex Hull Pruning, Pareto Pruning and Early
Stopping. We also use a Random Selection method as a reference to determine
how well perform these heuristics respectively to a classifier ensemble whose
members are randomly chosen. The proposed GenDiv algorithm considers both
accuracy and diversity when selecting the ensemble members and the trade-off
between these two components is controlled by the α parameter in the fitness
function. Since it is commonly assumed that optimizing diversity alone is a poor
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strategy when designing classifier ensembles, we set the value of α to 0.8 to in-
crease the importance of the accuracy component for the experiments presented
in this section.

We use the protocol proposed by Margineantu and Dietterich [17] to study
the behaviour of the different classifier selection heuristics. Performances are
computed in terms of gain respectively to a single classifier and the initial pool
of decision trees obtained during the overproduce step of our implementation. A
gain equal to 1 indicates that the resulting classifier ensemble is as accurate as
the initial pool of classifiers. On the contrary, a value of 0 for the gain indicates
that the accuracy of the pruned ensemble is similar to the one of a single decision
tree. The curves presented below plot the evolution of the gain obtained with the
different selection heuristics for different pruning levels. When it is possible to
control the size of the pruned ensemble, we construct ensembles consisting of 40,
30, 20 and 10 decision trees. This corresponds to pruning levels respectively equal
to 20%, 40%, 60% et 80%. Values given for a pruning level of 0% correspond
to the accuracy of the initial pool of classifiers whereas a pruning level of 100%
corresponds to the accuracy obtained with a single decision tree. The different
plots presented below are obtained by averaging results over 30 different training-
validation-test splits of the available datasets.

4.2 Results and Discussions

Results obtained for the segment dataset are given in figure 4.
The initial pool of classifiers can be pruned until 60% while maintaining a gain

close to 1. The proposed GenDiv algorithm even exhibits a gain slightly superior
to 1 for pruning levels of 20% and 40 %. However, for levels of pruning superior to
60%, the reduction of accuracy for the pruned ensemble is more significant if we

Fig. 4. Comparison of classifier selection methods for the segment dataset
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focus on diversity to perform classifier selection. The random selection method
can even produce ensembles that are more accurate than the one obtained with
a selection algorithm which only rely on diversity. For small size ensembles, a
selection based on the individual accuracy of the ensemble members remains the
best available option, as shown by the performances achieved by the Choose Best
heuristic.

Similar observations can be made from the results obtained for the letter
dataset reported in figure 5.

Fig. 5. Comparison of classifier selection methods for the letter dataset

Until a pruning level of 60%, the GenDiv algorithm allows the construction
of classifier ensembles which are generally more accurate. However, when the
desired size for the pruned ensemble decreases, a selection based on individual
accuracy alone is more relevant than the proposed genetic algorithm.

We present in figure 6 the results obtained for the german-credit dataset.
Observations of these results show that diversity is not a relevant criterion

to perform classifier selection for this particular problem. The kappa pruning
heuristic, which only relies on diversity to select the ensemble members, even
exhibits a negative gain. This means that a single decision tree achieves better
performances than the pruned ensemble obtained by focusing on diversity only.
For this problem, the Choose Best heuristic seems to be a more relevant selection
strategy. We note that for this dataset, the overproduce step sometimes produces
an initial ensemble of decisions trees whose accuracy is lower than the accuracy
of a single decision tree train on a uniform distribution on the training set. In
this case, the initial pool of decision trees is rejected and another overproduce
step is performed. For the segment and letter datasets, we did not observe such
rejects of the initial pool of predictors.
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Fig. 6. Comparison of classifier selection methods for the german-credit dataset

Similar experiments were ran on additionnal UCI datasets and the same con-
clusions were drawn. It appears that accuracy is generally the component the
more relevant for classifier selection. This conclusion comes from the general
behaviour of the Choose Best heuristic presented in figures 4, 5 and 6. This
observation is somehow a contradiction with the conclusions that we can draw
from kappa error diagrams about the relevant aspect of diversity when design-
ing Multiple Classifier Systems. To the question Is it effective to use diversity
explicitely to train classifier ensembles ?, our answer would be yes, but with a
controlled importance and only under certain conditions. Indeed, it appears that
giving a strong importance to the diversity component of the trade-off often
limits the benefits we obtain in terms of accuracy compared to a single classifier.
This observation is illustrated by the Kappa Pruning heuristic which can even
produce Multiple Classifier Systems whose accuracy is inferior to the one of a
single classifier in case of a negative gain, which occurs for high pruning levels.

When the number of available samples is sufficient so that classifier selection is
not subject to overfitting problems, it appears that giving a moderate importance
to the diversity component leads to accurate classifier ensembles. For the letter
and segment datasets, pruning the initial pool of decision trees slighty increases
the accuracy for ensemble sizes ranging from 40 to 20 classifiers. However, for
small ensembles, enforcing diversity during classifier selection often limits the
accuracy of the resulting ensemble.

5 Conclusions and Future Works

In this paper, we have proposed a genetic algorithm to study the trade-off be-
tween accuracy and diversity when designing Multiple Classifier Systems under
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the Overproduce and Choose paradigm. We have compared this genetic algo-
rithm with several classifier selection methods using the protocol proposed by
Margineantu and Dietterich to prune a set of decision trees with different heuris-
tics. When the number of validation samples provided is not sufficient, classifier
selection is often subject to overfitting problems and discussions about the ef-
fectiveness of diversity are likely to lead to a dead end. However it appears that
for certain large datasets, a cleaver use of diversity during the selection of clas-
sifiers can improve the accuracy when pruning a pool of predictors under the
Overproduce and Choose paradigm. This observation comes from the results ob-
tained with the GenDiv algorithm which tries to optimize the trade-off between
accuracy and diversity.

So it seems that there are still many unanswered questions about the precise
role of diversity to provide further research works, like a more detailed study
of the trade-off between accuracy and diversity for instance. Running similar
experiments with two overproduce phases based respectively on Bagging and
Boosting would also be an interesting work to study the behaviour of differ-
ent classifier selection methods when the initial pool of predictors is accurate
but less diverse in general. Most of the diversity measures proposed in the lit-
erature are pairwise and only offer a local vision of the behaviour of diversity.
Our intuition is that when those pairwise measures are averaged to compute the
diversity of the ensemble as a whole, important interaction between classifiers
are not visible anymore and our understanding of the diversity mechanisms ap-
plied to the ensemble as a whole is limited. If we consider the proposed genetic
algorithm for instance, relevant pairs of classifier which exhibit an interesting
accuracy-diversity trade-off might be broken at each cross-over. To address this
limitation, a direct improvement of our work concerns the development of a
diversity measure more convenient for the design of Multiple Classifier Systems.
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Abstract. This paper presents an extension of a standard decision tree
classifier, namely, the C4.5 algorithm. This extension allows the C4.5 al-
gorithm to handle uncertain labeled training data where uncertainty is
modeled within the possibility theory framework. The extension mainly
concerns the attribute selection measure in which a clustering of pos-
sibility distributions of a partition is performed in order to assess the
homogeneity of that partition. This paper also provides a comparison
with previously proposed possibilistic decision tree approaches.

1 Introduction

Machine learning is gaining more and more popularity within the artificial intel-
ligence research field and is attracting a great attention in industry, e.g., pharma-
ceutical industry, banking, stock exchange, marketing, etc. Classification is one
among supervised learning tasks of machine learning. It consists in 1) inducing a
classifier from a set of historical examples (training set) with known class labels
and then 2) using the induced classifier to predict the class label (the category)
of new objects on the basis of values of their attributes.

This task is ensured by a large number of techniques, e.g., artificial neural
networks , k-nearest neighbors [5], Bayesian networks [16] and decision trees
[4,21]. The latter, namely, decision tree classifier, is considered as one of the
most popular classification techniques. They are able to represent knowledge in
a flexible and easy form and they present high classification accuracy rates.

Over the last years, many variants of standard decision tree classifiers have
been proposed depending on the hypotheses of the classification problem. For
instance, multi-label decision trees [2] deal with problems where training data
can be labeled by more than one class (not mutually exclusive). In Multi-instance
decision tree learning [2], the objective is to build a classifier from a set of labeled
bags rather than a set of labeled instances. A bag is a collection of instances that
is labeled positive if all its instances are positive otherwise it is labeled negative.
Ambiguous-label decision trees [8] deal with training instances that are labeled
by a subset of candidate classes.

In this paper, we deal with a more general form of ambiguous-label classi-
fication, namely, uncertain-label classification. In spite of the great progress in
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ordinary classification field in recent years, the problem of uncertain data has
remained a great challenge for classification algorithms. This uncertainty is often
inevitable in real-world applications due to reasons such as reliability of human
observers, imprecise measurement, outdated sources, sampling errors, etc. For
instance, in molecular biology, the functional category of a protein is often not
exactly known. If we aim to perform an efficient classification, uncertainty should
not be ignored but it should be well managed.

This paper addresses the problem of classification from uncertain data. More
precisely, we deal with possibilistic-labeled decision trees [12]. In this setting,
each training instance is labeled by a possibility distribution over the different
possible classes. Hence, instead of just giving a subset of potential labels (the
case of ambiguous-classification), an expert can express his opinion by giving an
order on the possible labels. Thus, a possibility degree of a given label expresses
the degree of confidence of the expert that the label is the true one.

Recently, a non-specificity based possibilistic decision tree approach has been
proposed in [12]. It dealt with building decision trees from possibilistic labeled
examples. This approach has good results for the general case of training in-
stances that are imprecisely labeled. However, it generates less accurate trees
for the particular case of full certainty (i.e. when all instances are exactly la-
beled). In this paper, we propose an approach that extends C4.5 algorithm to
deal with possibilistic labeled examples. Two clustering strategies will be used in
order to make the C4.5’s gain ratio attribute selection measure applicable even
on a set of possibility distributions. For the standard case of exactly labeled
training set, our so-called Clust-PDT (for clustering-based possibilistic decision
tree) approach recovers the C4.5 algorithm.

The rest of the paper is organized as follows: Section 2 gives the necessary
background concerning possibility theory. Section 3 is devoted to decision tree
classifiers. Section 4 summarizes all of the possibilistic decision tree approaches
and explains the difference between these approaches and the one presented in
this paper. Section 5 presents the different components of our proposed Cluster-
ing based possibilistic decision tree approach (Clust-PDT) with an illustrative
example. Finally, Section 6 concludes the paper.

2 Possibility Theory

Possibility theory represents an uncertainty theory, first introduced by Zadeh
[23] and then developed by several authors (e.g., Dubois and Prade [6]). In this
section, we will give a brief recalling on possibility theory.

Given a universe of discourse Ω, one of the fundamental concepts of possibility
theory is the possibility distribution denoted by π. π corresponds to a function
which associates to each element ωi from the universe of discourse Ω a value
from a bounded and linearly ordered valuation set (L,<). This value is called
a possibility degree: it encodes our knowledge on the real world. Note that, in
possibility theory, the scale can be numerical (e.g. L=[0,1]): in this case we have
numerical possibility degrees from the interval [0,1] and hence we are dealing
with the quantitative setting of the theory.
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By convention, π(ωi) = 1 means that it is fully possible that ωi is the real
world, π(ωi) = 0 means that ωi cannot be the real world (is impossible). Flexi-
bility is modeled by allowing to give a possibility degree from ]0,1[. In possibility
theory, extreme cases of knowledge are given by:

– Complete knowledge: ∃ωi, π(ωi) = 1 and ∀ ωj 
= ωi, π(ωj) = 0.
– Total ignorance: ∀ ωi ∈ Ω, π(ωi) = 1 (all values in Ω are possible).

A possibility distribution π is said to be normalized if there exists at least one
state ωi ∈ Ω which is totally possible. In the case of sub-normalized π,

Inc(π) = 1−max
ω∈Ω

{π(ω)} (1)

is called the inconsistency degree of π. It is clear that, for normalized π, maxω∈Ω
{π(ω)} = 1, hence Inc(π)=0. The measure Inc is very useful in assessing the
degree of conflict between two distributions π1 and π2 which is given by Inc(π1∧
π2). We take the ∧ as the minimum operator.

3 Decision Trees

A decision tree is a flow-chart-like hierarchical tree structure which is generally
made up of two major procedures:

Building procedure: Given a training set, building a decision tree is usually
done by starting with an empty tree and selecting for each decision node the
’appropriate’ test attribute using an attribute selection measure. The principle
is to select the attribute that maximally diminish the mixture of classes between
each training subset created by the test, thus, making easier the determination
of object’s classes. The process continues for each sub decision tree until reaching
leaves and fixing their corresponding classes.

Classification procedure: To classify a new instance, having only values of
all its attributes, we start with the root of the constructed tree and follow the
path corresponding to the observed value of the attribute in the interior node
of the tree. This process is continued until a leaf is encountered. Finally, we use
the associated label to obtain the predicted class value of the instance at hand.

Several algorithms for building decision trees have been developed. The most
popular and applied ones are: ID3 [21] and its successor C4.5 [22]. The main
component of these algorithm is the attribute selection measure.

Attribute selection measure generally based on information theory, serves
as a criterion in choosing among a list of candidate attributes at each decision
node, the attribute that generates partitions where objects are less randomly
distributed, with the aim of constructing the smallest tree among those consistent
with the data. The well-known measure used in the C4.5 algorithm of Quinlan
[22] is the gain ratio. The information gain relative to an attribute Ak is defined
as follows:

Gain(T,Ak) = E(T ) − EAk
(T ) (2)
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where

E(T ) = −
nc∑
i=1

nb(Ci, T )
|T | log2

nb(Ci, T )
|T | (3)

and

EAk
(T ) =

∑
v∈D(Ak)

|TAk
v |
|T | E(TAk

v ) (4)

nc in Equation (3) corresponds to the number of classes of the problem. nb(Ci,T )
denotes the number of objects in the training set T belonging to the class Ci,
D(Ak) in Equation (4) denotes the finite domain of the attribute Ak and |TAk

v |
denotes the cardinality of the set of objects for which the attribute Ak has the
value v. Thus, E(T ) corresponds to the entropy of the set T . The gain ratio is
given by:

Gr(T,Ak) =
Gain(T,Ak)

SplitInfo(T,Ak)
(5)

SplitInfo(T,Ak) measures the information in the attribute due to the partition-
ing of the training set T into |D(Ak)| training subsets. This quantity describes
the information content of the attribute itself. It is given by:

SplitInfo(T,Ak) = −
∑

v∈D(Ak)

|TAk
v |
|T | log2

|TAk
v |
|T | (6)

4 A Brief Overview of Possibilistic Decision Trees

Several approaches for building possibilistic decision trees were proposed. We
can divide them into two sets: those acting under standard decision tree learning
hypotheses (i.e. where training data are exactly labeled and therefore standard
decision tree algorithms can be applied) and those approaches dealing with non-
standard learning hypotheses (i.e. where training data are not exactly labeled
and consequently, standard decision trees cannot be used).

For instance, in the work of Borgelt et al. [3], authors dealt with a standard
decision tree learning problem. However, in order to assess the informational
contribution of a given attribute at a given node, they took the probability
distributions of the instances reaching each node as possibility distributions (an
interpretation which is based on the context model of possibility theory [18]).
Then, as the role of the non-specificity in possibility theory is similar to that of
Shannon entropy in probability theory, they have used non-specificity to choose
the attribute that gives more specific partitions.

The work developed by Hüllermeier [7] also dealt with standard decision tree
learning hypotheses. In this work, possibility theory was introduced to define a
possibilistic branching within the lazy decision tree technique [9] resulting on
possibilistic decisions (i.e. each leaf is labeled by a unique class value character-
ized by a possibility degree).
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Another work by Ben Amor et al. [1] have dealt with uncertainty in the classifi-
cation phase. More precisely, authors have proposed a method based on leximin-
leximax criterion [19] in order to make standard decision tree algorithms (e.g.
C4.5) able to classify instances having uncertain attribute values. In a previous
work [10], we have proposed the possibilistic option decision tree approach which
deals with the uncertainty related to the choice of an attribute at a given decision
node. In this approach, each decision node can be split according to more than
one attribute, using multiple attribute-value tests, or "options". These option
nodes are quantified via possibility distributions.

The second set of possibilistic decision tree approaches deals with uncertain
training data. Uncertainty can affect class labels and/or attribute values char-
acterizing some or all instances of the training set. In this setting, uncertainty
should not be ignored and consequently, standard decision tree algorithms should
be adapted to such contexts since they can not be directly applied. This has been
the focus of our recently published works [12] and [13,15].

The so-called Non-specificity based possibilistic decision tree (NS-PDT) [12]
handles the problem of possibilistic labeled examples using the concept of non-
specificity. The informational contribution of a given attribute (which is deter-
mined by the degree of homogeneity of partitions generated by that attribute)
corresponds to the average non-specificity of all representative possibility distri-
butions characterizing each partition. See also [3] for a similar work.

A similarity-based possibilistic decision tree approach (Sim-PDT) has been
proposed in [13,15]. This approach has the advantage of recovering the standard
C4.5 algorithm when dealing with a precise training set (all instances are labeled
by possibility distributions corresponding to a situation of complete knowledge).
The informational content of a training partition corresponds to the entropy of
the distribution of Meta-classes forming that partition weighted by the average
similarity of the original possibility distributions (labels of training data) per-
taining to each Meta-class. A Meta-class is a label associated to each original
possibility distribution which is in turn associated to the most similar wrapper
possibility distribution (binary possibility distributions).

5 The Clust-PDT Approach Components

The above approaches either NS-PDT or Sim-PDT present some problems. For
instance, the major problem for the NS-PDT approach is that it does not recover
C4.5 in the certain case. The main problem with the Sim-PDT approach is re-
lated to the number of wrapper possibility distributions (and hence the number
of Meta-classes) to be considered at the beginning of the building procedure. Sup-
pose that we have a problem with nc classes (i.e., Ω = C = {C1, C2, ..., Cnc}).
We define a degree of imprecision dimp ∈ {1, ..., nc} which will allow to deter-
mine the set of Wrapper possibility distributions WD and the set of Meta-classes
MC to be used.

The number of meta-classes is exponential in the number of classes. This
will badly affect the performance of the induced possibilistic decision trees in
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terms of classification accuracy and time. To avoid this problem, we propose two
clustering strategies: the first (baseline) strategy will use wrapper possibility
distributions1 (with dimp=1) and the second strategy will perform a hierarchi-
cal clustering of the whole possibility distributions reaching each partition to
automatically determine the meta-classes in each generated partition.

In this section, we will present the components of the Clust-PDT approach in
its two variants. We will mainly concentrate on the way the possibility distribu-
tions are clustered and on the attribute selection measure component, namely,
the Clust-Gain ratio measure. Before that, let us present a key element that
will be used in both clustering strategies, namely, the similarity between two
normalized possibility distributions.

Information Affinity: A possibilistic similarity measure
Comparing pieces of uncertain information given by several sources has attracted
a lot of attention for a long time. This could be ensured by the use of similarity
indexes. After an analysis of existing possibilistic similarity measures in [11],
we have proposed in a recent work [11,14] a new similarity index satisfying
interesting properties. The information affinity index, denoted by GAff takes
into account a classical informative distance, namely, the Manhattan distance
along with the well known inconsistency measure. GAff is applicable to any
pair of normalized possibility distributions.

Definition 1. Let π1 and π2 be two possibility distributions on the same uni-
verse of discourse Ω. We define a measure GAff(π1, π2) as follows:

GAff(π1, π2) = 1 − (0.5 ∗ d(π1, π2) + 0.5 ∗ Inc(π1 ∧ π2)) (7)

d represents a (Manhattan or Euclidean) normalized metric distance between π1
and π2. Inc(π1 ∧ π2) is the inconsistency degree between the two distributions
(see Equation (1)) where ∧ is the min operator.

Two possibility distributions π1 and π2 are said to have a strong affinity (resp.
weak affinity) if GAff(π1, π2) = 1 (resp. GAff(π1, π2) = 0).

5.1 Clustering of the Possibility Distributions

In possibilistic-labeled learning, instances labels are presented by means of pos-
sibility distributions on the different possible classes rather than a single class
label. Given the set of all possible labels, the possibility degree on each class
label expresses the confidence of an expert that this label is the true one.

Given a training set T containing n instances and given the set of attributes,
let us denote by πi the possibility distribution labeling the class of the instance
i in T . The direct application of the gain ratio criterion [22] (Equation (5))

1 Wrapper possibility distributions are binary possibility distributions (i.e., ∀ω ∈
Ω, π(ω) ∈ {0, 1}) representing special cases of complete knowledge, partial igno-
rance and total ignorance. For instance, for a 3-class problem, if dimp=1 (i.e. we
only consider cases of complete knowledge) then WD = {[1, 0, 0], [0, 1, 0], [0, 0, 1]}.
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has no sense since πi’s are most of the time very different, so it has no sense to
directly compute their frequencies in order to determine the entropy of T . Hence,
we will try to regroup similar πi’s into clusters using our proposed possibilistic
similarity measure [11,14]. Then, each cluster will be assigned a label (Clustj)
so that similar possibility distributions will no longer be considered as different
but will be labeled by the same label (the label of the cluster).

The following presents two strategies for clustering possibility distributions.

Clustering with First-Level Wrapper Distributions
The first clustering strategy is very intuitive and uses the concept of first-level
wrapper possibility distributions (i.e. wrapper possibility distributions corre-
sponding to complete knowledge (the case of dimp = 1).

To each πi, we will assign the most similar wrapper distribution, Clustj =
WDj such that j = arg maxmj=1{GAff(πi,WDj)} where m is the total num-
ber of wrapper distributions and GAff corresponds to the information affinity
index (Equation (7)). Note that, as in standard decision trees, ties are broken
arbitrarily.

In this baseline strategy, the number of clusters is known a-priori: it is equal
to the number of classes of the problem. Moreover, the clustering of πi’s should
be done from the beginning of the decision tree building procedure as a pre-
treatment. Namely, the clustering is done once for the whole training set. We
can easily check that the cluster into which a possibility distribution will fall will
be the same when performing the clustering before and after splitting the train-
ing set. This can be explained by the fact that the cluster that will be assigned
to a given possibility distribution πi is independent from the other possibility
distributions belonging to the same partition as πi.

Hierarchical clustering of the possibility distributions
In this strategy, we have chosen to automatically cluster possibility distributions
without fixing the number of clusters. Hence, we have opted for a hierarchical
clustering method.

Given a set of n possibility distributions πi=1..n to be clustered, and an n ∗ n
similarity matrix (the similarity between any two possibility distributions πk,
πl is determined by GAff(πk, πl)), the process of the agglomerative hierarchical
clustering [17] of a set of possibility distributions is performed as follows:

1. Start by assigning each πi to a cluster, so that if you have n possibility distri-
butions, you obtain n clusters, each containing just one possibility distribu-
tion. Let the similarities between the clusters be the same as the similarities
between the possibility distributions they contain.

2. Find the most similar pair of clusters and merge them into a single cluster,
so that now you have one cluster less.

3. Compute similarities between the new cluster and each of the old clusters.
4. Repeat steps 2 and 3 until reaching a predefined similarity threshold ST .

The similarity between two clusters of possibility distributions can be com-
puted in several ways which makes the difference between what are called single-
linkage, complete-linkage and average-linkage clustering. We have chosen the
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complete-linkage clustering in which the similarity between two clusters corre-
sponds to the similarity between the two least similar possibility distributions
(one from each cluster).

The similarity threshold ST plays the role of a stopping criterion in the clus-
tering process. In fact, after computing the different similarities between the
clusters formed in step s − 1, if the greatest similarity is strictly less than ST
OR ST < 0.5, we should stop the clustering process and hence keep the clusters
of step s − 1 as a final result. The similarity threshold is computed from the
initial training set and is given by:

ST =

∑n
i=1

∑n
j=i+1 GAff(πi, πj)
n∗(n−1)

2

(8)

In this strategy, performing the clustering before and after splitting will not
give the same results because the cluster that will be assigned to a given possi-
bility distribution will strongly depend on the other possibility distributions of
the same partition. Hence, to obtain accurate results, we will integrate the above
hierarchical clustering procedure in the attribute selection step. Namely, we will
re-perform the clustering whenever a splitting of a training partition is done.

5.2 The Clust-Gain Ratio Attribute Selection Measure

Regardless of the chosen clustering strategy (baseline or hierarchical), we define
the Clust-Gain ratio by:

ClustGr(T,Ak) =
ClustGain(T,Ak)
SplitInfo(T,Ak)

(9)

SplitInfo(T,Ak) is given by Equation (6) and ClustGain(T,Ak) is given by:

ClustGain(T,Ak) = ClustE(T ) − ClustEAk
(T ) (10)

where

ClustE(T ) = −
m∑
j=1

(
|Clustj|
|T | log2

|Clustj|
|T | ) (11)

and

ClustEAk
(T ) =

∑
v∈D(Ak)

|TAk
v |
|T | ClustE(TAk

v ) (12)

|Clustj | in Equation (11) denotes the cardinality of objects in (sub)-partition
T whose class labels (i.e. possibility distributions) were assigned to the cluster
Clustj. m denotes the number of obtained clusters. In the baseline strategy, m
is equal to the number of classes of the problem nc. However, in the hierarchical
strategy, m varies from one (sub)-partition T to another. Obviously, the attribute
maximizing ClustGr will be selected as the label of the current decision node.
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5.3 The Partitioning Strategy

Once an attribute is selected at a given decision node and since we only deal
with nominal attributes, the partitioning strategy will consist in partitioning the
training (sub)-set according to all values of the selected attribute which leads to
the generation of one partition for each possible value of the selected attribute.
For the case of continuous attributes, a discretization step is needed.

5.4 The Stopping Criteria

Several stopping criteria could be defined for the Clust-PDT approach for its
two variants. These criteria present cases for which we should stop the partition-
ing process for each generated training sub-partition Tp. Hence, we should stop
growing the tree if:

1. There is no further attribute to test.
2. There is a partition Tp with only one cluster: all possibility distributions in

Tp belong to the same cluster.
3. ClustGr <= 0: no information is gained.
4. |Tp|=0: the generated partition does not contain any instance.

5.5 Structure of Leaves

Stopping criteria are the same for both baseline and hierarchical variants of
the Clust-PDT approach. However, the structure of leaves is different. This is
due to the ways both variants are conceived. In fact, the baseline strategy is
conceived to make precise decisions which justifies our choice for the first-level
wrapper possibility distributions. Namely, leaves will be labeled by one among
the pre-defined wrapper possibility distributions.

In the other hand, the hierarchical variant seeks to remain faithful to the
original possibility distributions of the training set and hence will produce leaves
labeled by one among these possibility distributions.

The baseline Clust-PDT variant:

– When stopping criterion 1 or 3 is satisfied, we declare a leaf labeled by the
majority wrapper possibility distribution in Tp.

– When stopping criterion 2 is satisfied, we declare a leaf labeled by that
unique wrapper possibility distribution.

– When stopping criterion 4 is satisfied, we declare a leaf labeled by a randomly
chosen wrapper possibility distribution from WD.

The hierarchical Clust-PDT variant:

– When stopping criteria 1 or 2 or 3 is satisfied for a training partition Tp
containing n possibility distributions: we declare a leaf labeled by the repre-
sentative possibility distribution of that set (πRep), that is, the distribution
which corresponds to the closest distribution to all the remaining distribu-
tions in Tp: πRep = arg maxni=1{

∑
j �=i GAff(πi,πj)

(n−1) }
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– When stopping criteria 4 is satisfied, we declare a leaf labeled by the repre-
sentative possibility distribution (πRep) of the set of the previous level.

Property 1. If all training instances are precisely labeled then Clust-PDT (in
its both variants) is equivalent to C4.5.

Property 2. In the baseline variant, clustering all the possibility distributions
from the beginning of the building procedure gives the same result as clustering
them in each generated sub-partition during the development of the tree.

Property 3. In the hierarchical variant, the result of the clustering changes from
one (sub)-partition to another.

Property 4. In the hierarchical variant, if all training instances are precisely
labeled, then labeling a leaf by the closest distribution to all the remaining
distributions in that leaf is equivalent to choosing the majority class (the method
adopted by C4.5).

Example 1. In order to illustrate the Clust-PDT approach (we only illustrate
the hierarchical variant for reasons of space), we will consider an example in the
intrusion detection field.

The training set T given in Table 1 is composed of an excerpt of differ-
ent connections corresponding to a TCP/IP dump rows. Note that, for the
sake of simplicity, each connection is described by only three attributes which
are: protocole_type, service and flag. Domains of these attributes are:
DProtocole_type={tcp, udp}, DService={http, domain_u, private} and DFlag

={SF,REJ,RSTO}.
We asked a security administrator to give us his opinion about the class of

each connection. Three classes are possible either, Normal (N) or Probing (P )
or DOS (D). Normal corresponds to a normal connection while DOS and Prob-
ing are relative to two categories of attacks. Because of the lack of information
about each connection (only three attributes are provided), the security admin-
istrator was unable to give us an exact response. He therefore provided, for each
connection, a possibility degree for each possible class. This possibility degree
expresses his confidence that a given connection belongs to a given class.

Now, we should find the most informative attribute that will be selected as the
label of the root node. Namely, we should compute ClustGr(T, Protocole_type),
ClustGr(T, Service) and ClustGr(T, F lag) and choose the attribute providing
the greatest value. In this example, for reasons of space, we will only show steps
for computing ClustGr(T, Protocole_type).

Step1: Split_info(T, Protocole_type) = − 4
10 ∗ log2( 4

10 )− 6
10 ∗ log2( 6

10 ) = 0.971.

Step2: In order to compute ClustGain(T, Protocole_type), we should compute
ClustE(T ) and ClustEProtocole_type(T ). Let us start by computing ClustE(T ).
At this step, we should perform a hierarchical clustering of the possibility dis-
tributions in T as described in Section 5.1. The computation of the similarity
threshold ST associated to T gave the value: 0.679. In this example, GAff is
used with: d ≡Manhattan distance and ∧ ≡ min operator.
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Table 1. Training set with possibilistic class labels

Protocole_type Service Flag N P D

i1 tcp http SF 1 0.8 0.2
i2 tcp private SF 1 0.2 0
i3 tcp private RSTO 0.3 0.6 1
i4 tcp http RSTO 1 1 0.5
i5 udp private REJ 0 1 0
i6 udp domain_u SF 1 0.4 0.7
i7 udp domain_u RSTO 0 1 0.5
i8 udp http REJ 0 1 1
i9 udp http SF 0.3 1 0.3
i10 udp private SF 0.8 1 0.4

The application of the complete-linkage hierarchical clustering algorithm on
T gives 3 clusters: Clust1 = {i4, i5, i7, i9, i10}, Clust2 = {i1, i2, i6} and Clust3 =
{i3, i8}. Hence, ClustE(T ) = − 5

10 ∗log2( 5
10 )− 3

10 ∗log2( 3
10 )− 2

10 ∗log2( 2
10 ) = 1.485.

Now, to compute ClustEProtocole_type(T ), we should compute both ClustE

(TProtocole_type
tcp ) and ClustE(TProtocole_type

udp ) as we did with ClustE(T ).
The application of the complete-linkage hierarchical clustering algorithm on

T
Protocole_type
tcp with associated ST = 0.652 (resp. on T

Protocole_type

udp with asso-
ciated ST = 0.737) has given 2 clusters Clust1 = {i1, i2, i4} and Clust2 = {i3}
(resp. 2 clusters Clust1 = {i5, i7, i8, i9, i10} and Clust2 = {i6}). ⇒ ClustGr
(T, Protocole_type) = 0.771

0.971 = 0.794.
Similarly, we obtain ClustGr(T, Service) = 0.187 and ClustGr(T, F lag) =

0.488. Hence, the root node of our tree is labeled by Protocole_type. The final
Clust-PDT tree is given by Fig. 1.

Fig. 1. Final Clust-PDT tree

6 Conclusion

In this paper, we have developed a new approach so-called Clustering-based
possibilistic decision tree. This approach represents an extension of C4.5 to the
uncertain setting. The proposed approach integrates a clustering routine in the
attribute selection measure(the gain ratio criterion). Two clustering strategies
were proposed. The baseline strategy is more adapted to problems where the
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decision maker wants to obtain precise classifications from the Clust-PDT tree
(an exact label). However, the hierarchical strategy is more suited to problems
where the decision maker suggests a decision (a label) that is as faithful as
possible to original labels (a possibility distribution). A future work is to apply
our learning approach for attack detection for incomplete connections.
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Abstract. For a presented case, a Bayesian network classifier in essence
computes a posterior probability distribution over its class variable. Based
upon this distribution, the classifier’s classification function returns a sin-
gle, determinate class value and thereby hides the uncertainty involved.
To provide reliable decision support, however, the classifier should be able
to convey indecisiveness if the posterior distribution computed for the case
doesnot clearly favourone classvalue over another. In thispaperwepresent
an approach for this purpose, and introduce new measures to capture the
performance and practicability of such classifiers.

Keywords: Probabilistic classification, indecisiveness.

1 Introduction

Many real-life problems can be viewed as classification problems in which a case
described in terms of a number of features is to be assigned to one of several
distinct classes. In the management of animal health on dairy farms, for example,
the problem of establishing an appropriate diagnosis for a combination of clinical
signs can be viewed as a classification problem in which a cow has to be assigned
to one of a number of diagnostic categories. Bayesian network classifiers have
gained considerable popularity for solving such problems. These classifiers embed
a Bayesian network composed of a single class variable, modelling the possible
classes for the problem under study, and a set of feature variables, modelling
the features that constitute the basis for distinguishing between the classes.
For a presented case, this network serves to establish the posterior probability
distribution over the class variable given the case’s features. Based upon this
distribution, the classifier assigns a single, determinate class to the case [3,4].

Bayesian network classifiers are being applied in a wide range of domains
for a variety of problems; for some recent examples in the biomedical field we
refer to [1,2,5,6,7]. In some applications, such as in automated spam filtering,
the class value returned by the classifier conveys sufficient information to solve
the problem at hand and does not require any further decisions from the user.
We have noticed however, that in other applications the returned class value
may not always provide a sufficient basis for reliable further decision making.
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In our domain of animal health, for example, the actual problem is not just to
establish the most likely diagnosis but, even more importantly, to control the
disease patterns in a dairy herd by appropriate treatment. The diagnostic cate-
gory returned by the classifier does not necessarily provide sufficient information
for this purpose, as it hides the uncertainty involved in the classification result.
A differential diagnosis in which two or more diagnostic categories have almost
equal probabilities, for example, could call for a different treatment regime than
a differential diagnosis in which one disease clearly stands out. From the classi-
fication result however, the decision maker cannot distinguish between clear-cut
cases and cases which in essence are inconclusive.

In this paper, we enhance Bayesian network classifiers by allowing them to
be indecisive. The basic idea is that the classifier returns a classification result
for a case only if a single class value stands out convincingly in the posterior
probability distribution computed over the class variable. If none of the possible
class values receives sufficient support in the computed distribution, then the
classifier does not return a determinate classification result but leaves the case
unclassified instead. The case at hand then is left to the human decision maker,
who evaluates the probabilistic information computed by the classifier in view
of further decision making. For our new type of classifier we introduce measures
to express its classification performance and its practicability. These measures
closely resemble the well-known concept of classification accuracy, yet take into
account the classifier’s reduced practicability as a result of its occasional indeci-
siveness. We illustrate the usefulness of our new type of classifier for an example
application in animal health management.

The paper is organised as follows. In Section 2 we review Bayesian network
classifiers and introduce our domain of application. In Section 3, we discuss the
well-known concept of classification accuracy and study its dependence on the
probability thresholds commonly used by classification functions. In Section 4,
we introduce the new concept of stratifying classifier and define associated mea-
sures of classification performance and practicability. We illustrate our concept
of stratifying classifier and its associated measures for our domain of application
in Section 5. The paper ends with our concluding observations in Section 6.

2 Preliminaries

In this section, we briefly review Bayesian network classifiers. In doing so, we
restrict the discussion to naive Bayesian classifiers with binary variables only; the
illustrated concepts, however, are readily extended to non-binary variables and
to Bayesian network classifiers of more general topological structure. In addition,
we introduce our application domain, which will serve as a running example.

2.1 Naive Bayesian Classifiers

A naive Bayesian classifier includes a designated class variable C and a set F
of one or more feature variables Fi. If a variable Vj adopts the value true, we
will write vj ; we use v̄j to denote Vj = false. A joint value assignment to all
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feature variables concerned is termed a case and will be denoted by f . The
classifier’s graphical structure includes arcs C → Fi which capture dependence
of each feature variable on the class variable, yet mutual independence of any two
feature variables given this class variable. The classifier further specifies a prior
probability distribution Pr(C) over the class variable and a set of conditional
distributions Pr(Fi | C) for each feature variable. Naive Bayesian classifiers are
typically constructed by extracting the most discriminating feature variables,
and their associated probability distributions, from a set of example cases.

A naive Bayesian classifier in essence allows the computation of any proba-
bility of interest over its variables. More specifically, it provides for establishing,
for a presented case f , the posterior probability distribution Pr(C | f) over the
class variable given the case’s features. The classifier does not return this prob-
ability distribution, but instead establishes a single, determinate class value for
its output, using a classification function. For the binary class variable C, this
function takes the following form:

class(C, t; f) =
{

c, if Pr(c | f) ≥ t
c̄, otherwise

where t is a pre-defined threshold value. In most applications, the winner-takes-
all rule is used for the model’s classification function, which takes t = 0.50. For
applications with skewed prior distributions over the class variable, however,
other values of t are preferred. In general, the choice of an appropriate threshold
value is domain dependent. If the classification function of a classifier returns
class(C, t; f) = c for a case f , then we say that f is classified as belonging to
class c; analogous terminology is used for class(C, t; f) = c̄.

2.2 An Example Application in Dairy Science

Clinical mastitis is one of the most frequent and cost incurring diseases in a dairy
herd. The disease affects the cow’s udder, causing a reduction of the cow’s milk
production and an increased risk of the cow being culled. Clinical mastitis can
be caused by a large variety of pathogens; diagnosis of the causing pathogen is
done by bacteriological culturing. Bacteriological culturing takes at least three
days. Yet, a timely administered treatment is important to eliminate the disease
and to prevent recurrence as much as possible. Ideally, the disease is controlled
with limited use of antibiotics, to reduce the risk of antibiotic contamination of
the milk and to minimise the impact of treatment on antimicrobial resistance.
The most appropriate treatment is highly dependent upon the specific pathogen
causing the disease in the current instance, however. If a single specific pathogen
is convincingly favoured over other possible causal pathogens, a narrow-spectrum
antibiotic would be preferred; in case two or more pathogens are quite likely,
broad-spectrum antibiotic treatment would be more appropriate. Unfortunately,
a farmer will typically have to decide upon treatment in uncertainty, before the
actual causal pathogen is known from bacteriological culturing.

To support a dairy farmer in his treatment decisions, we constructed a stan-
dard naive Bayesian classifier. Cases of clinical mastitis to be presented to the
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classifier are described by a number of features which range from the cow’s mas-
titis history to such clinical signs as the appearance of the milk and the cow’s
demeanor. For a case, the classifier returns the most likely Gram-status of the
pathogen causing the mastitis; this status is an important indicator for the type
of antibiotics to be applied. For constructing the classifier, we had available a
set of 3 833 clinical mastitis cases; in 2 706 (or 70.6%) of these cases the disease
was caused by a Gram-positive pathogen, and in 1 127 cases the causal pathogen
was Gram-negative. We used 2 631 cases (67%) for constructing the classifier and
retained the remaining 1 202 cases for studying its performance. The constructed
classifier was optimised for a classification threshold value of t = 0.71.

3 The Accuracy Measure and Its Threshold Dependence

The performance of a Bayesian network classifier is commonly summarised as the
proportion of cases which are assigned to their true class value. In this section
we review this measure of accuracy. We further argue that the accuracy of a
Bayesian network classifier depends heavily on the threshold value used in its
classification function. We investigate this dependence and study the effects of
varying the threshold value on the classifier’s accuracy.

3.1 The Measure of Accuracy

We consider a naive Bayesian classifier with the classification function class . We
further consider a set F of cases for the classifier. The case set F is partitioned
into the set F+ which includes p cases belonging to class c, and the set F−
which includes n cases belonging to c̄, with p + n = m. A case belonging to
class c will be termed a positive case; likewise, a case with class c̄ is coined a
negative case. The function class of the classifier now partitions the case set F
into four mutually exclusive and collectively exhaustive subsets; the basic idea
of this partitioning is shown in Table 1. The first subset includes all cases from
F+ which are classified as belonging to class c by the classifier. This set is called
the set of true positive cases, denoted by TP; the size of this set is denoted by tp.
The cases from F+ which are incorrectly classified as belonging to c̄ constitute
the set of false negative cases, denoted by FN; the size of this set is fn. Note that
TP ∩ FN = ∅ and TP ∪ FN = F+, and hence that tp + fn = p. Likewise, we
define the set TN of true negative cases and the set FP of false positive cases; the
sizes of these sets are tn and fp respectively, with tn + fp = n. The performance

Table 1. The sizes of the partition subsets resulting from the classification function

classifier
c c̄ total

data c tp fn p
c̄ fp tn n

total m
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of a Bayesian network classifier now is commonly captured by its (empirical)
accuracy, which is defined as the proportion of correctly classified cases for a
given case set F :

accuracy(F) =
tp + tn

m

The case set from which a classifier’s accuracy is established, is usually omitted
from the notation; we adopt this convention and from now on leave F implicit.

3.2 Dependency on the Classification Threshold

The measure of accuracy reviewed above pertains to a given Bayesian network
classifier with a fixed classification function. The accuracy of a classifier in gen-
eral depends on the threshold value t used in its classification function. More
specifically, the sizes of the four partition subsets constructed from a case set F
are threshold dependent. For example, a classification function with t = 0 would
result in each and every case being assigned to class c, from which we would have
that tp + fp = m and fn = tn = 0; on the other hand, a threshold value t > 1
would distribute all cases over the two sets TN and FN, from which we would
have that fn + tn = m and tp = fp = 0. From now on, we make this dependency
on the threshold value explicit in our notations, by writing tp(t), tn(t), fp(t),
and fn(t) for the sizes of the four sets TP, TN, FP, and FN, respectively. The
accuracy of a classifier as a function of the threshold value t then becomes

accuracy(t) =
tp(t) + tn(t)

m

The above considerations show that a classifier’s accuracy can be manipulated
by choosing an appropriate threshold value t. We note that upon varying the
value of t from zero to one, cases migrate from the sets TP and FP to the sets
TN and FN. More specifically, upon varying t, cases from F+ can migrate, and
migrate only, between the sets TP and FN, whereas cases from F− can move
only between the sets FP and TN. Despite the seeming mutual independence of
the numbers of true positives and true negatives, these numbers are traded off
through their dependence on the threshold value t: while tp(t) is non-increasing
for increasing values of t, tn(t) is non-decreasing in t. The changes in size of
the sets TP and TN upon varying the threshold value t are illustrated for our
example application in Fig. 1.

4 Stratifying Classifiers

In this section we introduce the idea of stratified classification, by defining clas-
sification functions for Bayesian network classifiers with two separate threshold
values. In addition, we define associated performance measures.
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Fig. 1. The accuracy, the number of true positives, and the number of true negatives
as functions of the threshold value t for our example classifier and set of 1 202 cases

4.1 Introducing Stratification

The main motivation underlying the introduction of stratifying classifiers is that
Bayesian network classifiers should be able to convey indecisiveness, especially
when inconclusive cases call for different further decision making than cases
with a convincingly outstanding class value. In view of conveying indecisiveness,
we now look upon a Bayesian network classifier as distributing a case set over
different strata, based upon the computed posterior distribution over the class
variable. After stratification, the classifier returns a determinate class value for
the cases from some strata and leaves the cases from other strata unclassified. To
distinguish between determinate and inconclusive cases, a stratifying classifier
employs a partial classification function class∗ with two threshold values t− ≤ t+:

class∗(C, t−, t+; f) =
{

c, if Pr(c | f) ≥ t+

c̄, if Pr(c | f) < t−

The threshold value t− is termed the function’s lower threshold value; t+ is called
its upper threshold value. The ∗-notation is used to denote a function adapted
to stratification. Note that for t− < t+, the stratifying classification function
class∗ serves to classify only those cases f for which either Pr(c | f) ≥ t+ or
Pr(c | f) < t−. All cases with t− ≤ Pr(c | f) < t+ are left unclassified by the
stratifying classification function. Further note that the function class∗ has the
standard, single-threshold classification function as a special case, with t− = t+.

At first glance, the idea of stratifying classifiers shows similarities to multiway
classification and to threshold decision making. In multiway classification, the
purpose of the classifier is to distinguish between more than two distinct classes.
Stratification in contrast does not increase the number of class values under
consideration and thus differs conceptually from multiway classification. The idea
of threshold decision making, which was introduced to support physicians during
the diagnostic-testing phase in patient management [8], builds upon concepts of
decision analysis to establish two patient-specific threshold values, p− and p+, on
the probability of disease Pr(d) computed for a patient. These threshold values
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serve to decide between withholding treatment (Pr(d) < p−), further diagnostic
testing (p− ≤ Pr(d) < p+), and immediate treatment (Pr(d) ≥ p+). Taking
a decision of further diagnostic testing as conveying indecisiveness concerning
whether or not to treat the patient, the threshold decision making model can in
fact be implemented with a stratifying classifier.

4.2 The Accuracy of a Stratifying Classifier

We consider again the case set F = F+ ∪ F− with m = p + n cases. The clas-
sification function of the stratifying classifier partitions this set in five mutually
exclusive and collectively exhaustive subsets. Four of these subsets match the
sets TP, FP, TN, and FN introduced above; the fifth set is the set of unclassified
cases. The sizes of the five sets again depend upon the threshold values used
by the classification function. To capture this dependence, we observe that the
stratifying classifier displays the following behaviour:

∀ f ∈ C+ = {f | f ∈ F , Pr(c | f) ≥ t+} : class∗(C, t−, t+; f) = c

∀ f ∈ C− = {f | f ∈ F , Pr(c | f) < t−} : class∗(C, t−, t+; f) = c̄

∀ f ∈ Cu = F \ (C+ ∪ C−) : unclassified

This observation shows that all cases from the set C+ are classified as being
positive; the set thus is distributed over the two sets TP and FP. Since the size
of the set C+ depends on the upper threshold value t+, the sizes tp and fp of the
sets TP and FP depend on the value t+ as well; we will write tp(t+) and fp(t+),
respectively, to express this dependence. Similarly, the set C− is distributed over
TN and FN. The sizes tn and fn of these sets depend on the lower threshold value
t−; we will write tn(t−) and fn(t−), respectively, to express this dependence.

We recall that, for a standard Bayesian network classifier with a classification
function based on a single threshold value t, accuracy is defined as the proportion
of cases that are assigned to their true class value:

accuracy(t) =
tp(t) + tn(t)

m

The proportion of cases that are correctly classified by a stratifying classifier
now equals

accuracy(t−, t+) =
tp(t+) + tn(t−)

m

Since a stratifying classifier may leave some cases unclassified, one or more of
the sets TP, FP, TN, and FN may decrease in size compared to those with a
standard classifier. More specifically, we find that

tp(t+) + fn(t−) = p∗ ≤ p and tn(t−) + fp(t+) = n∗ ≤ n

where p∗ is the number of actually classified cases from F+ and n∗ is the number
of classified cases from F−; m− p∗ − n∗ cases are left unclassified by the strat-
ifying classifier. Now, if the stratification results in smaller sets TP and/or TN,
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then some of the cases considered inconclusive after stratification would have
been classified correctly, yet not convincingly, without the stratification. The
accuracy of the stratifying classifier then is smaller than that of the standard
classifier. On the other hand, if the stratification affects neither TP nor TN, then
the accuracy of the stratifying classifier remains unchanged compared to that
of the standard classifier, which indicates that all cases considered inconclusive
after stratification would have been classified incorrectly without the stratifica-
tion. For the stratifying classifier, the standard measure of accuracy thus still
captures the proportion of correctly classified cases from all cases presented to
the classifier, including those considered inconclusive. To capture the proportion
of correctly classified cases among the cases that were actually classified, we now
introduce a measure of stratified accuracy, defined by

accuracy∗(t−, t+) =
tp(t+) + tn(t−)

m∗

where m∗ equals p∗ + n∗ = tp(t+) + tn(t−) + fp(t+) + fn(t−).
The measure of stratified accuracy is in essence defined in terms of the sets

C+ and C−. The measure can also be related to the set Cu of cases that are left
unclassified by the stratifying classifier. To this end, we consider the distribution
of these inconclusive cases over the sets TP, FP, TN, and FN with a standard
classifier. For each f ∈ Cu, we have that

class(C, t−; f) = c and class(C, t+; f) = c̄

With the threshold value t−, therefore, a standard classifier would distribute
all cases from Cu over the two sets TP and FP, with sizes tp(t−) and fp(t−),
respectively. Similarly, with the threshold value t+, all cases from Cu would be
distributed over the sets TN and FN, with sizes tn(t+) and fn(t+). Upon varying
the threshold value from t− to t+, therefore, the cases f ∈ Cu would migrate
from the set TP to the set FN, and from FP to TN. This observation underlies
the following formula:

accuracy∗(t−, t+) =
tp(t−)−Δtp + tn(t+)−Δtn

m−Δtp−Δtn

where Δtp = tp(t−)− tp(t+) is the number of cases from Cu ∩F+ that would be
incorrectly classified as negative if t+ were to be taken as the single threshold
value; Δtn = tn(t+)− tn(t−) has an analogous interpretation.

The effects of stratification on the accuracy of a classifier can be studied by
comparing the resulting stratified accuracy to the standard accuracy. We con-
sider to this end a standard Bayesian network classifier with the classification
function class(C, t; f). Introducing stratification into this classifier entails choos-
ing two threshold values t− and t+, t− ≤ t ≤ t+, and replacing the function class
by the stratifying classification function class∗. If neither the set TP nor the set
TN is affected by the stratification, that is, if tp(t+) = tp(t) and tn(t−) = tn(t),
we find that

accuracy(t−, t+) = accuracy(t) and accuracy∗(t−, t+) ≥ accuracy(t)
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where equality holds for the formula on the right whenever tp(t−) = tp(t) and
tn(t+) = tn(t). If the stratification results in a decrease in size of the sets
TP and/or TN, then the standard accuracy decreases with the stratification:
accuracy(t−, t+) < accuracy(t). The stratified accuracy accuracy∗(t−, t+), how-
ever, can be smaller than, equal to, or larger than the standard accuracy, depend-
ing on the size of the set Cu of inconclusive cases and the standard classifier’s
performance on Cu. If accuracy∗(t−, t+) < accuracy(t), we say that stratification
results in a deterioration in the performance of the classifier. Such a deteriora-
tion indicates that, among the unclassified cases, a relatively large number were
classified correctly prior to the stratification. It further means that the cases
which remain incorrectly classified after the stratification, are cases for which
high posterior probabilities are established for the incorrect class value. Often,
however, the introduction of stratification will result in an improvement of the
performance of a classifier, that is, in accuracy∗(t−, t+) > accuracy(t). An ap-
propriate choice of threshold values can in fact result in extremely high stratified
accuracies, possibly even equal to 1.

4.3 The Classification Percentage

In most applications, the introduction of stratification into a Bayesian network
classifier will result in an increased stratified accuracy. The improvement in
classification performance, however, typically comes at the price of a reduced
practicability of the classifier for decision support. To capture the issue of prac-
ticability, we introduce the concept of classification percentage, which equals the
proportion of cases that are classified:

classification percentage =
m∗

m
· 100%

Note that a standard classifier has a classification percentage of 100%. By intro-
ducing stratification, the classification percentage will typically decrease. When
viewing a stratifying classifier as a tool for support to a decision maker in his
daily practice, the classification percentage indicates, given the stratification un-
der consideration, the percentage of cases for which the tool will actually advance
the decision-making process. Alternatively, the classification percentage conveys
information about the percentage of cases for which the tool will be indecisive,
that is, for which the tool will leave the actual decision to the decision maker.

5 Stratification in the Example Application

In our application domain of animal health management, a dairy farmer typically
has to decide upon treatment of a cow with clinical mastitis before knowing the
pathogen that causes the disease. As a result, often broad-spectrum antibiotics
are administered, where narrow-spectrum antibiotic treatment is preferred. The
administration of narrow-spectrum antibiotics is possible, however, only if one
specific pathogen is convincingly favoured over all others. Our naive Bayesian



When in Doubt . . . Be Indecisive 527

Table 2. Predicted and actual numbers of positive and negative cases for our stratifying
classifier, using threshold values t− = 0.30 and t+ = 0.80, with 1 202 cases

classifier
+ − total

data + 289 8 297
− 11 48 59

total 356

classifier supports the choice of antibiotics by classifying mastitis cases according
to the Gram-status of the causal pathogen. We recall that this Gram-status is an
important indicator for the type of antibiotics to be used. The predicted Gram-
status, however, may be quite uncertain for cases with a posterior probability
close to the threshold value of the classification function. For such cases, in fact,
a broad-spectrum treatment would still be preferred. In this section we use our
example application to illustrate the concepts, measures and observations put
forward in the previous section.

With our standard naive Bayesian classifier and with the case set of 1 202
mastitis cases, we find the following values tp and tn for the sizes of the sets TP
and TN of correctly classified cases, for different threshold values t:

t 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
tp 873 830 809 809 806 289 165 0
tn 48 90 118 118 121 310 321 321

With a threshold value of t = 0.50 for the classification function, for example,
the accuracy of our classifier equals (809+118)/1 202 = 0.77. We now introduce
stratification into our classifier, using a classification function with threshold
values t− = 0.30 and t+ = 0.80. With the resulting stratifying classifier, a total
of 356 cases from the case set are classified, giving a classification percentage
of 29.6%. For the remaining 846 cases the classifier is indecisive, indicating that
the dairy farmer should administer broad-spectrum antibiotics to the diseased
cows. The distribution of the classified cases over the four sets TP, FP, TN, and
FN is shown in Table 2. The stratifying classifier has a standard accuracy of 0.28
and a stratified accuracy of 0.95. Fig. 2 shows the effects of separately varying
the two threshold values t− and t+, on the two accuracies. The figure clearly
shows that an increasing distance between the two threshold values may result
in a higher stratified accuracy, which then typically comes at the expense of a
decrease in the classifier’s classification percentage.

Our earlier observation that the introduction of stratification may both serve
to improve and deteriorate classifier performance, is illustrated by the following
example. We consider two different classification functions for our stratifying
classifier: one function with the threshold values t− = 0.40 and t+ = 0.80 (I), and
another one with the threshold values t− = 0.40 and t+ = 1.00 (II). The resulting
classifiers both have a standard accuracy smaller than that of the standard
classifier. While the standard classifier has an accuracy of accuracy(0.50) = 0.77,
we find for the two stratifying classifiers:
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(I): accuracy(0.40, 0.80) =
289 + 90

1 202
= 0.32, and

(II): accuracy(0.40, 1.00) =
0 + 90
1 202

= 0.07

For classifier (I), we further find for its stratified accuracy:

accuracy∗(0.40, 0.80) =
289 + 90

1 202− (830− 289)− (310− 90)
= 0.86

which shows an increase in accuracy over the standard, single-threshold classifier.
This increase is explained by the observation that the decrease in the number
of correct classifications compared to the standard classifier, is smaller than the
relative decrease in the total number of classified cases. For classifier (II), on the
other hand, we find that

accuracy∗(0.40, 1.00) =
90

1 202− (321− 90)− (830− 0)
= 0.64

which reveals a decrease in accuracy compared to the standard classifier. This
decrease is explained by the observation that the relative decrease in the number
of correct classifications now is larger than that in the number of classified cases.

To conclude, by introducing stratification into our example naive Bayesian clas-
sifier with threshold values t− = 0.10 and t+ = 0.90, we find a stratified accuracy
of 1.00 at a classification percentage of 15.5%. A much poorer choice of threshold
values is t− = 0.20 and t+ = 1.00, which results in a stratifying classifier which is
decisive on just 4.5% of the cases and has a stratified accuracy of 0.87. The same
stratified accuracy is also obtained by setting the threshold value t+ to the smaller
value of t+ = 0.75. We now find a classification percentage of 58.7%!
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Fig. 2. The accuracy, stratified accuracy, and classification percentage for our example
classifier and 1 202 cases, as functions of (a) threshold value t−, with threshold value
t+ fixed at 0.80, and (b) threshold value t+, with t− fixed at 0.30



When in Doubt . . . Be Indecisive 529

6 Conclusions

For some problems, the single class value returned by a classifier does not nec-
essarily provide a sufficient basis for reliable further decision making. Building
upon this observation, we introduced stratifying classifiers as classifiers with
the ability to express indecisiveness by not classifying inconclusive cases. These
stratifying classifiers are particularly appropriate for applications in which in-
decisiveness about the class value for a case is a usable result for the decision
maker, as in our application domain. Associated with this new type of classifier,
we introduced new measures of classification performance and practicability;
these measures serve to give insight in the values of the two threshold values
to be used with the classification function. In the future we want to extend our
concept of stratification to multiway classification and to study the practicability
of returning two or more class values for inconclusive cases.
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Abstract. In this paper we consider conditional independence models
closed under graphoid properties. We investigate their representation
by means of acyclic directed graphs (DAG). A new algorithm to build
a DAG, given an ordering among random variables, is described and
peculiarities and advantages of this approach are discussed. Finally, some
properties ensuring the existence of perfect maps are provided. These
conditions can be used to define a procedure able to find a perfect map
for some classes of independence models.
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1 Introduction

Graphical models [6,8,9,10,12,15] play a fundamental role in probability and
statistics and they have been deeply developed as a tool for representing condi-
tional independence models. It is well known (see for instance [6]) that, under
the classical definition, the independence modelM associated to any probability
measure P is a semi–graphoid and, if P is strictly positive, M is a graphoid.
On the other hand, an alternative definition of independence (a reinforcement
of cs–independence [4,5]), which avoids the well known critical situations related
to 0 and 1 evalutations, induces independence models closed under graphoid
properties [13].

In this paper the attention is focusing on graphoid structures and we consider
a set J of conditional independence statements, compatible with a (conditional)
probability, and its closure J̄ with respect to graphoid properties. Since the
computation of J̄ is infeasible (its size is exponentially larger than the size of
J), then, as shown in [10,11,1], we will use a suitable set J∗ of independence
statements (obviously included in J̄), that we call “fast closure”, from which it
is easy to verify whether a given relation is implied, i.e. whether a given relation
belongs to J̄ . Some of the main properties of fast closure will be described.

The fast closure is also relevant for building the relevant acyclic directed graph
(DAG), which is able to concisely represent the independence model. In fact we
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will define the procedure BN-draw which builds, starting from this set and an
ordering on the random variables, the corresponding independence map. The
main difference between BN-draw and the classical procedures (see e.g. [7,9])
is that the relevant DAG is built without referring to the whole closure.

Finally, we give a condition assuring the existence of a perfect map, i.e. a DAG
able to represent all the independence statements of a given independence model.
By using this result it is possible to define a correct, but incomplete, method
to find a perfect map. First, a suitable ordering, satisfying this condition, is
searched by means of a backtracking procedure. If such an ordering exists, a
perfect map for the independence model can be found by using the procedure
BN-draw.

Since the above condition is not necessary, but only sufficient, as shown in
Example 3, such condition can fail even if a perfect map exists. The provided
result is a first step to look for a characterization of orderings giving rise to
perfect maps.

2 Graphoid

Throughout the paper the symbol S̃ = {Y1, . . . , Yn} denotes a finite not empty
set of variables. Given a probability P , a conditional independence statement
YA⊥⊥YB|YC (compatible with P ), where A, B, C are disjoint subsets of the set
S = {1, . . . , n} of indices associated to S̃, is simply denoted by the ordered triple
(A,B,C). Furthermore, S(3) is the set of all ordered triples (A,B,C) of disjoint
subsets of S, such that A and B are not empty. A conditional independence model
I, related to a probability P , is a subset of S(3). As recalled in the introduction
we refer to probabilistic independence models even if the results are valid for
any graphoid structure.

We recall that a graphoid is a couple (S, I), with I a ternary relation on the
set S(3), satisfying the following properties:

G1: if (A,B,C) ∈ I, then (B,A,C) ∈ I (Symmetry);
G2: if (A,B,C) ∈ I, then (A,B′, C) ∈ I for any nonempty subset B′ of B

(Decomposition);
G3: if (A,B1 ∪ B2, C) ∈ I with B1 and B2 disjoint, then (A,B1, C ∪ B2) ∈ I

(Weak Union);
G4: if (A,B,C∪D) ∈ I and (A,C,D) ∈ I, then (A,B∪C,D) ∈ I (Contraction);
G5: if (A,B,C ∪D) ∈ I and (A,C,B ∪D) ∈ I, then (A,B ∪ C,D) ∈ I (Inter-

section).

A semi–graphoid is a couple (S, I) satisfying only the properties G1–G4.
The symmetric version of rules G2 and G3 will be denoted by

G2s: if (A,B,C) ∈ I, then (A′, B, C) ∈ I for any nonempty subset A′ of A;
G3s: if (A1 ∪A2, B, C) ∈ I, then (A1, B, C ∪A2) ∈ I.
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3 Generalized Inference Rules

Given a set J of conditional independence statements compatible with a prob-
ability, a relevant problem about graphoids is to find, in an efficient way, the
closure of J with respect to G1–G5

J̄ = {θ ∈ S(3) : θ is obtained from J by G1−G5} .

A related problem, called implication, concerns to establish whether a triple
θ ∈ S(3) can be derived from J , see [16].

It is clear that the implication problem can be easily solved once the closure
has been computed. But, the computation of the closure is infeasible because
its size is exponentially larger than the size of J . In [1,2,3] we describe how it
is possible to compute a smaller set of triples having the same information as
the closure. The same problem has been already faced successfully in [11], with
particular attention to semi–graphoid structures.

In the following for a generic triple θi = (Ai, Bi, Ci), the set Xi stands for
(Ai ∪Bi ∪ Ci).

We recall some definitions and properties introduced and studied in [1,2,3]
useful to efficiently compute the closure of a set of conditional independence
statements. Given a pair of triples θ1, θ2 ∈ S(3) we say that θ1 is generalized–
included in θ2 (briefly g–included), in symbol θ1 # θ2, if θ1 can be obtained from
θ2 by a finite number of applications of G1, G2 and G3.

Proposition 1. Given θ1 = (A1, B1, C1) and θ2 = (A2, B2, C2), then θ1 # θ2 if
and only if the following conditions hold

(i) C2 ⊆ C1 ⊆ X2;
(ii) either A1 ⊆ A2 and B1 ⊆ B2 or A1 ⊆ B2 and B1 ⊆ A2.

Generalized inclusion is strictly related to the concept of dominance #a on S(3),
already defined in [10,11]. We say θ1 #a θ2 if θ1 can be obtained from θ2 with a
finite number of applications of G2, G3, G2s and G3s.

Therefore it is easy to see that θ′ # θ if and only if either θ′ #a θ or θ′ #a θT

where θT is the transpose of θ (θT = (B,A,C) if θ = (A,B,C)).
The definition of g–inclusion between triples can be extended to sets of triples

and its properties are showed in [2,3].

Definition 1. Let H and J be subsets of S(3). J is a covering of H (in symbol
H # J) if and only if for any triple θ ∈ H there exists a triple θ′ ∈ J such that
θ # θ′.

3.1 Closure through One Generalized Rule

The target of [10,2,3] is to find a fast method to compute a reduced (with respect
to g–inclusion #) set J∗ bearing the same information of J̄ , that is for any triple
θ ∈ J̄ there exists a triple θ′ ∈ J∗ such that θ # θ′.
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Therefore, the computation of J∗ provides a simple solution to the implication
problem for J . The strategy to compute J∗ is to use a generalized version of the
remaining graphoid rules G4, G5 and their symmetric ones (see also [11]).

These two inference rules are called generalized contraction (G4∗) and gener-
alized intersection (G5∗). The rule G4∗ allows to deduce from θ1, θ2 the greatest
(with respect to #) triple τ which derives from the application of G4 to all the
possible pairs of triples θ′1, θ

′
2 such that θ′1 # θ1 and θ′2 # θ2. The rule G5∗ is

analogously defined and it is based on G5 instead of G4.
It is possible to compute the closure of a set J of triples in S(3), with respect

to G4∗ and G5∗, that is

J∗ = {τ : J "∗G τ} (1)

where J "∗G τ means that τ is obtained from J by applying a finite number of
times the rules G4∗ and G5∗.

In [2,3] it is proved that J∗, even if it is smaller, is equivalent to J̄ with respect
to graphoids, in that J∗ # J̄ and J̄ # J∗.

A further reduction is to keep only the “maximal”(with respect to g–inclusion)
triples of J∗

J∗/
�

= {τ ∈ J∗ : �τ̄ ∈ J∗ with τ̄ 
= τ, τT such that τ # τ̄}.

Obviously, J∗/
�
⊆ J∗.

In [2,3] it is proved that J∗ # J∗/
�

, therefore there is no loss of information

by using J∗/
�

instead of J∗. Then, given a set J of triples in S(3), we compute

the set J∗/
�

, which we call “fast closure” and denote with J∗.

In [2,3] it is proved that the fast closure set {θ1, θ2}∗ of two triples θ1, θ2 ∈ S(3)

is formed with at most eleven triples. Furthermore, these triples have a particular
structure strictly related to θ1 and θ2 and they can be easily computed. By using
{θ1, θ2}∗, it is possible to define a new inference rule

C : from θ1, θ2 deduce any triple τ ∈ {θ1, θ2}∗.
We denote with J+ the set of triples obtained from J by applying a finite

number of times the rule C. As proved in [2,3], J+ is equivalent to J̄ with respect
to graphoids, that means J+ # J̄ and J̄ # J+. Obviously, by transitivity J+ is
equivalent to J∗.

Therefore, it is possible to design an algorithm, called FC1, which starts from
J and recursively applies the rule C and a procedure, called FindMaximal
(which computes H/

�
for a given set H ⊆ S(3)), until it arrives to a set of

triples closed with respect to C and maximal with respect to g–inclusion.
In [2,3] completeness and correctness of FC1 are proved.
Note that, as confirmed in [2,3] by some experimental results, FC1 is more

efficient than the algorithms based on G4∗ and G5∗.
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4 Graphs

In the following, we refer to the usual graph definitions (see e.g. [9]). We denote
by G = (U , E) a graph with set of nodes U and oriented arcs E formed by ordered
pairs of nodes. In particular, we consider directed graphs having no cycles, i.e.
acyclic directed graphs (DAG). We denote for any u ∈ U , as usual, with pa(u)
the parents of u, ch(u) the child of u, ds(u) the sets of descendants and an(u)
the set of ancestors. We use the convention that each node u belongs to an(u)
and to ds(u), but not to pa(u) and ch(u).

Definition 2. If A, B and C are three disjoint subsets of nodes in a DAG G,
then C is said to d–separate A from B, denoted (A,B,C)G, if there is no path
between a node in A and a node in B along which the following two conditions
hold:

1. every node with converging arrows is in C or has a descendent in C;
2. every other node is outside C.

In order to study the representation of a conditional independence model, we
need to distinguish between dependence map and independence map, since there
are conditional independence models that cannot be completely represented by
a DAG (see e.g. [9,11]).

In the following we denote with J (analogously for J̄ , J∗) both a set of triples
and a set of conditional independence relations, obviously, the triples are defined
on the set S and the independence relations on S̃. Then a graph representing
the conditional independence relations of J has S as node set.

Definition 3. Let J be a set of conditional independence relations on a set S̃ of
random variables. A DAG G = (S,E) is a dependence map (briefly a D–map)
if for all triple (A,B,C) ∈ S(3)

(A,B,C) ∈ J̄ ⇒ (A,B,C)G.

Moreover, G = (S,E) is an independence map (briefly an I–map) if for all
triple (A,B,C) ∈ S(3)

(A,B,C)G ⇒ (A,B,C) ∈ J̄ .

G is a minimal I–map of J if deleting any arc, G is no more an I-map.
G is said to be a perfect map (briefly a p–map) if it is both a I–map and a

D–map.

The next definition and theorem provide a tool to build a DAG given a inde-
pendence model J̄ .

Definition 4. Let J̄ be an independence model defined on S and let π =<
π1, . . . , πn > an ordering of the elements of S. The boundary strata of J̄ rel-
ative to π is an ordered set of subsets < B1, B2, . . . , Bi, . . . > of S, such that
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each Bi is a minimal set satisfying Bi ⊆ S(i) = {π1, . . . , πi−1} and γi =
({πi}, S(i) \Bi, Bi) ∈ J̄ .

The DAG created by setting each Bi as parent set of the node πi is called
boundary DAG of J relative to π.

The triple γi is known as basic triple.
The next theorem is an extension of Verma’s Theorem [14] stated for condi-

tional independence relations (see [9]).

Theorem 1. Let J be a independence model closed with respect to the semi–
graphoid properties. If G is a boundary DAG of J relative to any ordering π,
then G is a minimal I–map of J .

The previous theorem helps to build a DAG for an independence model J̄P
induced by a probability assessment P on a set of random variables S̃ and a
fixed ordering π on indices of S.

Now, we recall an interesting result [9].

Corollary 1. An acyclic directed graph G = (S,E) is a minimal I–map of an
independence model J if and only if any index i ∈ S is conditionally independent
of all its non-descendants, given its parents pa(i), and no proper subset of pa(i)
satisfies this condition.

It is well known (see [9]) that the boundary DAG of J relative to π is a minimal
I-map.

5 BN-Draw Function

The aim of this section is to define the procedure BN–draw, which builds a
minimal I–map G (see Definition 3) given the fast closure J∗ (introduced in
Section 3) of a set J of independence relations. The procedure is described in
the algorithm 1.

Given the fast closure set J∗, we cannot apply the standard procedure (see
[7,9]) described in Definition 4 to draw an I–map because, in general, the basic
triples related to an arbitrary ordering π could not be elements of J∗, but they
could be just g–included to some triples of J∗, as shown in Example 1.

Example 1. Given J = {({1}, {2}, {3, 4}), ({1}, {3}, {4})}, we want to find the
corresponding basic triples and to draw the relevant DAG G related to the
ordering π =< 4, 2, 1, 3 >.

By the closure with respect to graphoid properties we obtain

J̄ = { ({1}, {2}, {3, 4}), ({1}, {3}, {4}), ({1}, {2, 3}, {4}), ({1}, {2}, {4}),
({1}, {3}, {2, 4}), ({2}, {1}, {3, 4}), ({3}, {1}, {4}), ({2, 3}, {1}, {4}), ({2}, {1},
{4}), ({3}, {1}, {2, 4}) }
and the set of basic triples is Γ = {({1}, {2}, {4}), ({3}, {1}, {2, 4})}.

By FC1 we botain J∗ = {({1}, {2, 3}, {4})} and it is simple to observe that
Γ # J∗.
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Algorithm 1. DAG from J∗ given an order π of S
1: function BN-draw(n, π, J∗) � n is the cardinality of S
2: for i ← 2 to n do
3: pa ← S(i)

4: for each (A, B, C) ∈ J∗ do
5: if πi ∈ A then
6: p ← C ∪ (A ∩ S(i))
7: r ← B ∩ S(i)

8: if (C ⊆ S(i)) and (p ∪ r = S(i)) and (r �= φ) and (|p| < |pa|) then
9: pa ← p

10: end if
11: end if
12: if πi ∈ B then
13: p ← C ∪ (B ∩ S(i))
14: r ← A ∩ S(i)

15: if (C ⊆ S(i)) and (p ∪ r = S(i)) and (r �= φ) and (|p| < |pa|) then
16: pa ← p
17: end if
18: end if
19: end for
20: draw an arc from each index in pa to πi

21: end for
22: end function

The procedure BN-draw finds, for each πi, with i = 2, . . . , n, and possibly for
each θ ∈ J∗, a triple ({πi}, B, C) # θ such that B ∪ C = S(i) and C has the
minimum cardinality (analogously for the triples of the form (A, {πi}, C)). It is
easy to see that for each πi, the triple with the smallest cardinality of C among
all the selected triples, coincides with the basic triple γi, if γi exists. The formal
justification of this statement is given by the following result:

Proposition 2. Let J̄ be an independence model on an index set S, J∗ its fast
closure and π an ordering on S. Then, the set

Bi = {({πi}, B, C) ∈ S(3) : B ∪ C = S(i), {({πi}, B, C)} # J∗}

is not empty if and only if the basic triple γi = ({πi}, S(i) \ Bi, Bi) related to π
exists, for i = 1, . . . , |S|.

Proof. Suppose that Bi is not empty. If there are two triples θ1, θ2 having the
same cardinality of pa(i) then, by definition of J∗, there is also the triple θ3

obtained by applying the intersection rule between them. Since the third com-
ponent of θ3 has a smaller cardinality than those of θ1 and θ2, this means that
the triple with the minimum cardinality of C is unique and it coincides with
the basic triple γi. Vice versa, if the basic triple γi = ({πi}, S(i) \Bi, Bi) for πi
exists, then it is straightforward to see that γi ∈ Bi. %&

Note that BN–draw allows to build the corresponding I–map, related to π, in
linear time with respect to the cardinality of J∗; while the standard procedure
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requires a time proportional to the size of J̄ , which is usually much larger, as
shown also in the empirical tests in [1]. Also the space needed in memory is almost
exclusively used to contain the fast closure. Note that a theoretical comparison
between the size of the whole closure and the size of the fast closure has not
already been found and seems to be a difficult task.

The next example compares the standard procedure recalled in Definition 4
with BN-draw to build the I–map, given a subset J of S(3) and an ordering π
among the elements of S.

Example 2. Consider the same independence set J of Example 1 and the ordering
π =< 4, 2, 1, 3 >, we compute the basic triple by applying BN-draw to J∗ =
{θ = ({1}, {2, 3}, {4})}. For i = 2 we have 2 ∈ B, p = φ, r = φ, C = {4} ⊆ {4},
then there is no basic triple. For i = 3 we have 1 ∈ A, p = φ, r = {2}, C = {4}
then (1, 2, 4) is a basic triple g–included to θ. For i = 4 we have 3 ∈ B, p = {2},
r = {1}, C = {4} then ({3}, {1}, {2, 4}) is a basic triple g–included to θ.

Therefore, we obtain the same set Γ computed in Example 1.
  
  

 
 

Y1 

Y4

Y2 

Y3 

Fig. 1. I − map related to π =< 4, 2, 1, 3 >

6 Perfect Map

In this section we introduce a condition ensuring the existence of a perfect map
for an independence model J̄ , starting from the fast closure J∗ of J (avoiding
to build the whole J̄ , as recalled in Section 2). Given an ordering π on S, we
denote with Gπ the corresponding I–map of J∗ with respect to π. Furthermore,
we associate to any index s ∈ S the set S(s) of indices appearing in π before s
and the minimal subset Bs of S(s) such that γs = (s, S(s) \ Bs, Bs) is the basic
triple, if any, as introduced in Definition 4.

Before stating the sufficient condition that ensures the existence of a perfect
map Gπ of the fast closure J∗, with respect to π, we want to underline some
relations among the indices of a triple represented in Gπ and g–included in J∗. In
particular, we focus our attention on the relationship among the nodes associated
to C and those related to pa(A ∪B).
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By Corollary 1, for any index i ∈ S the triple {({i}, S \ ds(i), pa(i))} is repre-
sented in Gπ and, since Gπ is an I–map, {({i}, S \ ds(i), pa(i))} # J∗. Moreover,
by d–separation, for any K ⊆ ds(i) \ {i} such that pa(i) d–separates S \ ds(i)
and K, also {({i} ∪K,S \ ds(i), pa(i)), ({i}, S \ ds(i), pa(i) ∪K)} # J∗.

Moreover, we have the following result considering I–maps and fast closure J∗.
Proposition 3. Let J be a set of conditional independence relations and J∗ its
fast closure.

If Gπ is an I–map of J∗, with respect to π, then, for any triple θ = (A,B,C) ∈
J∗ represented in Gπ, it holds pa(DB

A ) ∪ pa(DA
B) ⊆ C, where DB

A = ds(A) ∩ B
and DA

B = ds(B) ∩A.

Proof. Suppose by absurd that there exist α ∈ DB
A and j ∈ pa(α) such that

j 
∈ C. We want to show that θ′ = (A,B ∪ {j}, C) is represented in Gπ . Let ρ
a path from a ∈ A to j. If ρ passes through α, then ρ is blocked by C (because
(A,B,C)Gπ ). Otherwise, if ρ does not pass through α, then the path ρ′ from a
to α obtained from ρ adding the edge (j, α) is blocked by C. Since j is not a
converging node (and j 
∈ C), ρ is blocked by C.

Since Gπ is an I–map, it follows that {θ′} # J∗, but θ # θ′ and then θ would
not be a maximal triple. %&

By the previous observations and Proposition 3 it comes out the idea related to
the relationship between the component C and pa(A ∪B) of a triple (A,B,C),
behind the condition introduced in the next proposition assuring the existence
of a perfect map.

Proposition 4. Let J be a set of conditional independence relations and J∗ its
fast closure.

Given an ordering π on S, if for any triple θ = (A,B,C) ∈ J∗ the ordering π
satisfies the following conditions

1. all indices of C appear before all indices belonging to one of the sets A or B;
2. all indices of X = (A ∪ B ∪ C) appear in π before all indices belonging to

S \X;

then the related I–map Gπ is a perfect map.

Proof. Consider a triple θ = (A,B,C) ∈ J∗. Under the hypotheses 1. and 2.,
consider the restriction πX of π to X = (A∪B ∪C). If we assume (without loss
of generality) that all indices of C appear before of all those of B in πX , then
any index b ∈ B has as parents the set of indices Bb ⊆ C ∪ (S(b) ∩B). Therefore
no index of A is a parent of any index of B. Moreover, no index of A can be
a descendent of any index of B. In fact, the basic triple γb = (b, S(b) \ Bb, Bb)
associated to b satisfies the condition A ∩ S(b) ⊆ S(b) \ Bb, by construction,
and for any index a ∈ A appearing in π after at least a index b′ ∈ B, the
basic triple γa = (a, S(a) \Ba, Ba) satisfies conditions: B ∩ S(a) ⊆ S(a) \Ba and
Ba ⊆ C ∪ (S(a) ∩A).

We prove now that θ is represented in Gπ. By the previous observations, in
Gπ no arc can join any element of A and any element of B. Let us consider a
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path between a node a ∈ A and a node b ∈ B. If the path passes through a node
y outside X , then y must be a collider (i.e. both edges end in y), because each
index of X precedes each index outside X and therefore there are no arc from
y to any index of X . Since neither y nor any of its descendent is in C, this path
is blocked by C.

On the other hand, if the path passes only inside X , it must pass through a
node c in C which cannot be a collider, since c precedes all the elements of B. %&

This result is a generalization to triples of J∗ to that proved for basic triples in
Pearl [9].

The next example shows that even if the conditions 1. and 2. of previous
proposition are not satisfied, there could exist a perfect map.

Example 3. Let us consider the set J = {θ1 = ({1, 2, 3}, {4, 5, 6, 7}, {8, 9}), θ2 =
({1, 4}, {2, 5, 8}, {6, 9})} of independence relations. Then, by applying FC1 we
obtain

J∗ = {θ1, θ2, θ3 = ({1}, {2, 4, 5, 6, 7, 8}, {9}), θ4 = ({2}, {1, 4, 5, 6, 7}, {8, 9}),
θ5 = ({4}, {1, 2, 3, 5, 8}, {6, 9}), θ6 = ({5}, {1, 2, 3, 4}, {6, 8, 9}),
θ7 = ({2, 4}, {1, 5}, {6, 8, 9})}.

The conditions 1. and 2. of Proposition 4 do not hold: in fact, by considering
the triples θ3 and θ5 it is simple to observe that 7 ∈ X3, but 7 
∈ X5 and 3 
∈ X3,
but 3 ∈ X5. Then, there is no ordering π satisfying conditions 1. and 2. of
Proposition 4 for any θ ∈ J∗.

However, by considering the ordering π =< 1, 9, 2, 8, 3, 5, 6, 4, 7 >, we can
show that the related I-map Gπ is perfect, i.e. it represents any triple of J∗.

By using Proposition 4 it is possible to define the following Algorithm 2, called
SearchOrder

The algorithm SearchOrder searches for an ordering satisfying the condi-
tions stated in Proposition 4. It firstly tries to find all the ordering constraints
on the variables required by the condition 1. If an inconsistency is found, then
no ordering exists. Then, it uses a backtracking procedure which decides, for
each triple (A,B,C), if all the indices in C precede all the indices in A or all
the indices in B. In this step, an inconsistency causes a backtracking phase.
The algorithm can terminate with success by finding an ordering which satisfies
Proposition4, therefore a p–map for J∗ can be found by using BN–draw. On
the other hand, the algorithm can report a failure, because no ordering respects
the conditions. But as shown in the Example 3, a p–map can still exist, hence
the procedure can only give a partial answer to the question if J is representable
with a DAG.

The algorithm has been implemented by using a SAT solver to perform the
second step (the function Backtrack) because it is possible to formulate the
problem of finding an ordering which satisfies the condition 2 as a propositional
satisfiability problem. The first empirical results show that this method is quite
efficient.
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Algorithm 2.
1: function SearchOrder(K) � K ⊆ S(3)

2: for θ = (A, B, C) from K do
3: X ← A ∪ B ∪ C
4: R ← R ∪ (X � S \ X)
5: if R is inconsistent then
6: return ⊥
7: end if
8: end for
9: return Backtrack(K, R)

10: end function
11: function Backtrack(K, R) � K ⊆ S(3) and R is a partial order
12: if K = ∅ then
13: return an order taken from R
14: else
15: R′ ← R
16: R ← R ∪ (C � A)
17: if R is not inconsistent then
18: r ← Backtrack(K \ θ, R)
19: if r �= ⊥ then
20: return r
21: end if
22: end if
23: R ← R′ ∪ (C � B)
24: if R is not inconsistent then
25: return Backtrack(K \ θ, R)
26: else
27: return ⊥
28: end if
29: end if
30: end function

7 Conclusions

We have shown some properties of graphoid structures, which allow to compute
efficiently the closure of a set J of conditional independence statements, com-
patible with a conditional probability ([1,2,3]). Moreover, from these properties
it is possible to design an alternative method to build an I–map Gπ, given an
ordering π on the variable set S.

We have dealt with the problem of finding a perfect map given the fast closure
J∗. In particular, we are looking for an ordering π giving rise to a perfect map,
if there exists. Actually, we have made a first step in this direction by obtaining
a partial goal. In fact, we have introduced a sufficient condition for the existence
of a perfect map.

We are now working to relax this condition with the aim of finding a necessary
and sufficient condition for the existence of an ordering generating a perfect
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map. Our idea is that such a condition will need to explore the relations among
the triples in J∗ and the components of each triple. We are also interested in
translating this condition into an efficient algorithm.

Another strictly related, open problem is to find more efficient techniques to
compute J∗, because it is clearly the first step needed by any algorithm which
finds, if any, a DAG representing J .
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Abstract. In many applications, such as case based reasoning, data
mining or analogical reasoning, the choice of a particular measure of
similarity is crucial. In this paper, we propose to study similarity mea-
sures from the point of view of the ordering relation they induce on
object pairs. Using a classic method in measurement theory, introduced
by Tversky, we establish necessary and sufficient conditions for the exis-
tence of a specific numerical measure, or a class of measures, to represent
a given ordering relation, depending on the axioms this relation satisfies.
The interest is particularly focused on different conditions of indepen-
dence.

Keywords: Similarity, comparison measure, ordering relation, repre-
sentability, weak independence conditions.

1 Introduction

Similarity is a key concept in artificial intelligence [10] and similarity measures
have been extensively studied; Bouchon-Meunier et al. [3] or Lesot et al. [6] for
instance propose overviews of various approaches of similarity measures used
in data mining. Following the links to the concept of similarity in cognitive
science, especially in the process of categorization, the seminal work proposed
by Tversky [12] has often been considered as a reference for the description of
a general framework: it embeds numerous similarity measures and enables the
user to make an appropriate choice of a specific similarity measure when facing
a particular problem to solve. In [2,9] we have proposed a general form for
comparison measures, including similarity measures, compatible with Tversky’s
model, i.e. such that the proposed classes of measures satisfy the basic axioms
introduced by Tversky. Nevertheless, there is still a need for a consensus about
the choice of similarity measures; we study the converse approach in this paper,
starting from Tversky’s requirements and producing general classes of similarity
measures, that accept the classical measures as particular cases. We especially
focus on the independence axiom, introducing also relaxed variants.
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We follow the idea of Tversky [12] of studying similarity in the environment
of the theory of measurements [5,11]. This point of view has also been used more
recently in [4] and [1] to study particular classes of dissimilarity and similarity in-
dices used in Descriptive Statistics for the comparison of frequency distributions.
In this framework, and considering that object ranking is a frequent reason to use
similarity measures, we introduce a binary relation on a set of pairs of objects, ex-
pressing a comparative degree of similarity. We study the representability of this
comparative similarity by means of different numerical similarity measures: we
establish axioms stating necessary and sufficient conditions under which a given
comparative similarity is represented by a specific class of similarity measures.
In other words, given the set of properties possessed by a given comparative
degree of similarity, we characterise the form of the similarity measures that can
represent it.

Thus we obtain two kinds of equivalence classes of similarity measures: the first
one is given by measures representing the same ordering relation, as introduced
in [7,8]. The second, rougher, definition of equivalence is given by the measures
representing orders that are not exactly identical but that possess the same
properties and satisfy the same axioms. This definition permits to point out the
actual rules we accept when we choose one particular measure of similarity and
to make explicit underlying requirements on the induced order.

The paper is organized as follows. In Section 2, we consider as a starting point
the numerical similarity measures: after recalling the classic notion of equiva-
lence, we introduce basic axioms that are satisfied by comparative similarities
induced from given classes of numerical similarity measures. We then turn to
the reciprocal point of view, to relate given comparative similarities satisfying
specific axioms to classes of numerical similarity measures. In Section 3, we in-
troduce the independence axioms that are required to establish, in Section 4,
these necessary and sufficient conditions for the existence of a class of measures
to represent a given comparative degree of similarity.

2 From Numerical Similarity to Comparative Similarity

In this section, after introducing the notations used throughout the paper, we
discuss the classic definition of equivalence between numerical similarity mea-
sures and establish basic axioms satisfied by comparative similarities induced
from given classes of numerical similarities, following the ideas of Tversky to
study similarity using the framework of the measurement theory [12].

For simplicity we consider the case of data described by a set of characteris-
tics A that can be only present or absent in any object (so data are crisp and
correspond to subsets of A). We note that our approach can be easily extended
to the case where objects are described by fuzzy subsets of A.

2.1 Preliminaries

We consider that each object is described by p binary attributes, that is by the
set of present characteristics from the predefined list A. The data set is noted
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X = {0, 1}p: for every X ∈ X , X = {x1, ..., xp}, xi ∈ {0, 1}. The particular
object with xi = 0 for every i is denoted 0. We note xci the value 1 − xi, Xc

k =
{x1, ..., x

c
k, ..., xp} and Xc = {xc1, ..., xcp}. Finally, for any X ∈ X , we note IX =

{i : xi = 1} and |X | the cardinality of IX .
Given a pair (X,Y ) ∈ X we define x = |IX ∩IY |, i.e. the number of character-

istics present in both objects, y− = |IX \ IY |, i.e. the number of characteristics
present in X but not in Y , y+ = |IY \ IX |, i.e. the number of characteristics
present in Y but not in X , and y = y−+y+ = |(IX \IY )∪(IY \IX)|. Finally we
define y∗ = |IXc ∩ IY c | = p−x−y that represents the number of characteristics
absent of both objects.

Consider now a comparative degree of similarity, that is a binary relation � on
X 2, with the following meaning: for X,Y,X ′, Y ′ ∈ X , (X,Y ) � (X ′, Y ′) means
that X is similar to Y no more than X ′ is similar to Y ′.

The relations ∼ and ≺ are then induced by � as follows: (X,Y ) ∼ (X ′, Y ′)
if (X,Y ) � (X ′, Y ′) and (X ′, Y ′) � (X,Y ), meaning that X is similar to Y
as X ′ is similar to Y ′. Lastly (X,Y ) ≺ (X ′, Y ′) if (X,Y ) � (X ′, Y ′) but not
(X ′, Y ′) � (X,Y ), meaning that X is similar to Y less than X ′ is similar to Y ′.

It is to be noticed that if � is complete, then ∼ and ≺ are the symmetrical
and the asymmetrical parts of � respectively.

We now introduce the notion of representability of such a comparative degree
of similarity by a numerical similarity measure:

Definition 1. Given a comparative degree of similarity �, a similarity measure
S : X 2 → R represents � if and only if for any (X,Y ), (X ′, Y ′) ∈ X 2, both
following conditions hold:

(X,Y ) � (X ′, Y ′) ⇒ S(X,Y ) ≤ S(X ′, Y ′)
(X,Y ) ≺ (X ′, Y ′) ⇒ S(X,Y ) < S(X ′, Y ′)

We recall that if the relation � is complete the above conditions are equivalent
to the following one: (X,Y ) � (X ′, Y ′) ⇔ S(X,Y ) ≤ S(X ′, Y ′).

2.2 Similarity Measure Equivalence

Any similarity measure on X 2 induces a complete comparative degree of sim-
ilarity �, defined as follows: (X,Y ) ≺ (X ′, Y ′) if S(X,Y ) < S(X ′, Y ′) and
(X,Y ) ∼ (X ′, Y ′) if S(X,Y ) = S(X ′, Y ′).

Now the same ordering relation is induced by any similarity measure that
can be expressed as an increasing transformation of S: any similarity measure
S′ = ϕ(S), with ϕ : R → R strictly increasing is also a representation of �.
Moreover, no other measure S∗ represents �.

Thus, from a comparative point of view, all functions ϕ(S) are indistinguish-
able. Formally speaking, the relation r defined on the set of similarity measures
as SrS′ if and only if S and S′ induce the same comparative degree of similar-
ity on X is an equivalence relation. An equivalent formulation of this concept,
expressed only in terms of numerical similarity functions, is given in [7,8].
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For instance the similarity measures

Sρ(X,Y ) =
x

x + ρy
(1)

with ρ > 0, are all equivalent, since each of them is an increasing transformation
of any other. In particular, the Jaccard (ρ = 1), Dice (ρ = 1/2), Sorensen
(ρ = 1/4), Anderberg (ρ = 1/8) and Sokal and Sneath (ρ = 2) measures are
equivalent.

The same class also contains the function S(X,Y ) = log(x)− log(y), which is
of the kind proposed by Tversky [12] (a linear form of an increasing function):
S is an increasing transformation of S′(X,Y ) = x/y which is an increasing
transformation of S1.

It is to be noted that the function S(X,Y ) = α log(x)− β log(y) for α, β > 0
is not in the same class, but it is equivalent to all measures

S ∗ρ (X,Y ) =
xα

xα + ρyβ
.

2.3 Basic Axioms

We are now interested in a different classification of measures of similarity: in-
stead of considering the measures that induce the same order, we consider the
measures that induce orders satisfying the same class of axioms. In this section,
we consider axioms that lead to preliminary results regarding relations between
similarity measures and comparative degrees of similarity.

Basic Properties. The first two axioms we introduce describe basic properties
a binary relation has to satisfy to define a comparative degree of similarity: the
first one only states the relation must be a weak order.

Axiom S1 [weak order]
� is a weak order, i.e it is complete, reflexive and transitive.

The second axiom expresses boundary conditions: it imposes that for any X ,
whatever Y , X cannot be more similar to Y than it is similar to itself, and it
cannot be less similar to Y than it is to its complement. Lastly, it imposes that
X is similar to itself as Y is to itself: all data are equally similar to themselves.

Axiom S2 [boundary conditions] ∀X,Y ∈ X ,
(Xc, X) ∼ (Y c, Y ) � (X,Y ) � (X,X) ∼ (Y, Y ) and (Xc, X) ≺ (X,X)

The third axiom imposes a symmetry condition.

Axiom S3 [symmetry]
∀X,Y ∈ X , (X,Y ) ∼ (Y,X)

These properties lead to the following two definitions:
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Definition 2. A binary relation � on X 2 is a comparative similarity if and
only if it satisfies axioms S1 and S2.

Definition 3. A comparative similarity is symmetric if and only if it satisfies
axiom S3.

The next axiom expresses the idea that all attributes have the same role with
respect to the comparative similarity: a change in one attribute is equivalent to
the modification of any attribute of the same category, i.e. attributes representing
characteristics present in both objects (with indices in IX ∩ IY ), only in one of
them (with indices in IX \ IY or in IY \ IX) or absent of both (indices not in
IX ∪ IY ):

Axiom S4 [attribute uniformity] ∀h, k ∈ {1, ..., p},
if h, k ∈ IX ∩ IY , or h, k ∈ IX \ IY , or h, k ∈ IY \ IX , or h, k /∈ IX ∪ IY ,
then (X,Y c

k ) ∼ (X,Y c
h ) and (Xc

k, Y ) ∼ (Xc
h, Y ).

It must be underlined that any comparative similarity representable by a
similarity measure depending only on x,y+,y− and y∗ satisfies this axiom.
Reciprocally, as X 2 is finite, any comparative similarity satisfying axiom S4 can
be represented by a function depending only on x,y+,y− and y∗.

Monotonicity Axioms. The following three axioms of monotonicity govern the
comparative similarity among pairs differing in the presence/absence of only one
attribute: 4 pairs must then be compared, depending on whether the modification
is applied to both data, one or the other, or none of them. The different axioms
correspond to different choices regarding the semantics of the similarity measure,
as commented below.

Axiom S5 [monotonicity] ∀X,Y ∈ X , X 
= Y
∀k ∈ IX ∩ IY , (X,Y c

k ) ∼ (Xc
k, Y ) ≺ (Xc

k, Y
c
k ) ≺ (X,Y )

if IX ∩ IY = ∅, ∀k ∈ IX (X,Y ) ∼ (Xc
k, Y )

The first condition means that if an attribute possessed by both objects is
modified, the modified objects are less similar one to another than the initial
object pairs were. This corresponds to a strong semantic choice: it implies that
the common presence of an attribute is preferred to a common absence. More-
over, the axiom states that modifying both objects degrades the similarity to a
lesser extent than changing only one of them. Lastly, if only one object is modi-
fied, there is no difference whether X or Y is concerned. Equivalently, the axiom
can be written in the following three forms, describing the expected variations
when other attribute types are considered:

∀k ∈ IX \ IY , (Xc
k, Y

c
k ) ∼ (X,Y ) ≺ (Xc

k, Y ) ≺ (X,Y c
k )

∀k ∈ IY \ IX , (Xc
k, Y

c
k ) ∼ (X,Y ) ≺ (X,Y c

k ) ≺ (Xc
k, Y )

∀k /∈ IX ∪ IY , (X,Y c
k ) ∼ (Xc

k, Y ) ≺ (X,Y ) ≺ (Xc
k, Y

c
k )

The second condition considers the case where the intersection IX ∩ IY is
empty, i.e. when there is no common attributes: then it is indifferent whether
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the attributes are absent of both objects or present in one of them. In particular,
it implies that whatever X and Y such that IX ∩ IY = ∅, (X,Y ) ∼ (X,Xc).

It is easy to prove that any comparative similarity � representable by a sim-
ilarity measure S defined as

S(X,Y ) =
f(x)

f(x) + ρg(y)
(2)

with ρ > 0 and f and g non negative increasing functions (or any strictly in-
creasing transformation of this measure) satisfies Axiom S5. Thus in particular,
it is verified by the measures belonging to the Sρ class defined in Equation (1),
in which f and g coincide with the identity function.

Axiom S6 relaxes the conditions required by S5, insofar as it does not im-
pose conditions on the comparison of (X,Y c

k ) and (Xc
k, Y ), whereas they are

equivalent in Axiom S5:

Axiom S6 [weak monotonicity] ∀X,Y ∈ X , X 
= Y , ∀k ∈ IX ∩ IY ,
(X,Y c

k ) ≺ (Xc
k, Y

c
k ) � (X,Y ) and (Xc

k, Y ) ≺ (Xc
k, Y

c
k ) � (X,Y )

if IX ∩ IY = ∅, ∀k ∈ IX (X,Y ) ∼ (Xc
k, Y )

It is easy to prove that any comparative similarity � representable by a sim-
ilarity measure S defined as

S(X,Y ) =
f(x)

g(x + y−)h(x + y+)
(3)

with f, g, h non negative increasing functions such that ∀x, f(x) = g(x)h(x)
(ensuring that S(X,Y ) = 1 when y− = y+ = 0) satisfies Axiom S6 (as well as
any strictly increasing transformation of this measure). A particular case is the
Ochiai measure, where f is the identity function and g(.) = h(.) = √..

Axiom S6 is also satisfied by any comparative similarity �, representable by
a similarity measure S defined as

S(X,Y ) =
f(x)

g(x + y−)
+

f(x)
h(x + y+)

(4)

with f, g, h non negative increasing functions such that ∀x, f(x)(h(x) + g(x)) =
g(x)h(x) (ensuring that S(X,Y ) = 1 when y− = y+ = 0). In particular, it
holds for the Kulczynski measure, where g and h are the identity function and
f(x) = x/2.

Lastly Axiom S7 resembles Axiom S5 but considers the case where (X,Y ) and
(Xc

k, Y
c
k ) are equivalent, i.e. characteristics present in both objects or absent of

both objects play the same role. Besides, as Axiom S5, it requires that (X,Y c
k )

and (Xc
k, Y ) are equivalent, i.e. the modification is symmetrical.

Axiom S7 [monotonicity 2] ∀X,Y ∈ X , X 
= Y
∀k ∈ IX ∩ IY , (X,Y c

k ) ∼ (Xc
k, Y ) ≺ (Xc

k, Y
c
k ) ∼ (X,Y )

if IX ∩ IY = ∅, ∀k ∈ IX (X,Y ) ∼ (Xc
k, Y )
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This is equivalent to saying that the same property holds for any k not in IX∪IY
or to saying that, ∀k ∈ IX \IY and ∀k ∈ IY \IX , (Xc

k, Y
c
k ) ∼ (X,Y ) ≺ (X,Y c

k ) ∼
(Xc

k, Y ).
It is easy to prove that any comparative similarity � representable by a sim-

ilarity measure S defined as

S(X,Y ) =
f(x + y∗)

f(x + y∗) + ρg(y)
(5)

with f, g increasing functions, ρ > 0 satisfies Axiom S7. This corresponds to
so-called type II similarity measures [6]. In particular it holds for the Rogers
and Tanimoto, Sokal and Michener and Sokal and Sneath measures, for which f
and g are the identity function, α takes values 2, 1 and 1/2 respectively.

3 Independence Conditions

The objective is then to consider the reciprocal point of view: given the set of
properties possessed by a given comparative degree of similarity, to characterise
the form of the similarity measures that can represent it. To that aim, other
conditions must be imposed to the comparative similarities: we take into account
the basic properties considered by Tversky as fundamental for similarities in
[12], focusing on the independence axiom he introduced. Starting from his classic
definition, we extend it to weaker forms that will determine the class of measures
a comparative similarity can be represented by, as will be shown in Section 4.

Axiom I is the independence axiom introduced by Tversky [12]:

Axiom I [independence] For any 4-tuple (X1, Y1), (X2, Y2), (Z1,W1), (Z2,W2),
if one of the following conditions holds
(i) xi = zi and y−i = w−i (i = 1, 2), and y+

1 = y+
2 , w+

1 = w+
2

(ii) xi = zi and y+
i = w+

i (i = 1, 2), and y−1 = y−2 , w−1 = w−2
(iii) y+

i = w+
i and y−i = w−i (i = 1, 2), and x1 = x2, z1 = z2

then (X1, Y1) � (X2, Y2) ⇔ (Z1,W1) � (Z2,W2).

where zi = |IZi ∩IWi |, w−i = |IZi \IWi | and w+
i = |IWi \IZi | (the same notations

are used in the following).
Condition (i) for instance expresses that the joint effect of x and y− is inde-

pendent of the fixed component y+.
It must be underlined that comparative similarities representable by a similar-

ity measure S defined by Equation (2), and in particular of the class Sh defined in
Equation (1), do not satisfy this independence condition. This can be illustrated
as follows in the case of the Jaccard measure, i.e. Sh with h = 1: considering
hypothesis (i), by trivial computation, one has (X1, Y1) � (X2, Y2) if and only
if x1(y−2 + y+

1 ) ≤ x2(y−1 + y+
1 ) and (Z1,W1) � (Z2,W2) iff x1(y−2 + w+

1 ) ≤
x2(y−1 + w+

1 ). Now the two inequalities can be independently satisfied, as can
be shown using the following example: X1 = Z1 = W1 = (10000), Y1 = (11000),
X2 = Z2 = (11110), Y2 = (11101), and W2 = (11100).
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We introduce now a weaker form of independence in which we only require that
the common characteristics are independent of the totality of the characteristics
present in only one element of the pair.

Axiom WI [weak independence] For any 4-tuple (X1, Y1), (X2, Y2), (Z1,W1),
(Z2,W2), if one of the following conditions holds
(i) xi = zi (i = 1, 2), and y1 = y2, w1 = w2
(ii) yi = wi (i = 1, 2), and x1 = x2, z1 = z2

then (X1, Y1) � (X2, Y2) ⇔ (Z1,W1) � (Z2,W2).

It must be underlined that the comparative similarities representable by a
similarity measure S defined by Equation (2) satisfy this axiom, and thus in
particular the elements of the class Sh. We prove this assertion for hypothesis
(i): by trivial computation it holds that on one hand (X1, Y1) � (X2, Y2) iff
f(x1) ≤ f(x2), and on the other hand (Z1,W1) � (Z2,W2) iff f(x1) ≤ f(x2),
leading to the desired equivalence. The proof is similar for condition (ii).

Comparative similarities representable by a similarity measure S defined by
Equation (3) do not satisfy the weak independence axiom WI. In particular the
well known Ochiai measure does not satisfy WI, and, obviously, the independence
axiom I. The same considerations hold for comparative similarities representable
by a similarity measure S defined by Equation (4), and in particular for the
Kulczynski measure.

We now introduce another weak kind of independence that considers as com-
ponents the common characteristics and the sum of these common characteristics
and the characteristics present in only one of the two objects.

Axiom CI [cumulative independence] For any 4-tuple (X1, Y1), (X2, Y2),
(Z1,W1), (Z2,W2), if one of the following conditions holds
(i) xi = zi and xi + y−i = zi + w−i (i = 1, 2), and x1 + y+

1 = x2 + y+
2 ,

z1 + w+
1 = z2 + w+

2
(ii) xi = zi and xi + y+

i = zi + w+
i (i = 1, 2), and x1 + y−1 = x2 + y−2 ,

z1 + w−1 = z2 + w−2
(iii) xi + y+

i = zi + w+
i and xi + y−i = zi + w−i (i = 1, 2), and x1 = x2,

z1 = z2
then (X1, Y1) � (X2, Y2) ⇔ (Z1,W1) � (Z2,W2).

It is easy to prove that a comparative similarity representable by a similarity
measure S defined by Equation (3), in particular, the Ochiai measure, satisfies
the cumulative independence condition CI.

Finally we introduce another weak definition of independence that considers
as components the sum of characteristics which are common and those which
are absent of both objects and the sum of those present in only one object of
the pair.

Axiom TWI [totally weak independence] For any 4-tuple (X1, Y1), (X2, Y2),
(Z1,W1), (Z2,W2), if one of the following conditions holds
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(i) xi + y∗i = zi + w∗i (i = 1, 2), and y1 = y2, w1 = w2
(ii) yi = wi (i = 1, 2), and x1 + y∗1 = x2 + y∗2 z1 + w∗1 = z2 + w∗2

then (X1, Y1) � (X2, Y2) ⇔ (Z1,W1) � (Z2,W2).

It is easy to prove that comparative similarities representable by a similarity
measure S defined by Equation (5), in particular, the Rogers and Tanimoto, the
Sokal and Michener and the Sokal and Sneath measures, satisfy the axiom TWI.

4 Representation Theorems

In this section we establish the theorems stating necessary and sufficient condi-
tions for comparative similarities verifying the various independence axioms to
be representable by classes of numerical measures.

Theorem 1. Let � be a binary relation on X 2 \ {(0, 0)}. The following condi-
tions are equivalent:

(i) � is a comparative similarity satisfying axioms S4 and S5 and possessing
the weak independence property WI

(ii) there exist two non negative increasing functions f and g, with f(0) =
g(0) = 0 such that the function S : X 2 → [0, 1] defined by Equation (2)
represents �.

Proof: we first prove the implication (ii) ⇒ (i) and consider � the ordering
relation induced by a similarity measure S satisfying the conditions (ii). Then �,
representable by a function with values in R, is a weak order, i.e. satisfies Axiom
S1. Moreover, as ∀X ∈ X , S(X,X) = 1 > S(Xc, X) = S(X,Xc) = 0 and
S(X,Y ) ∈ [0, 1], � also satisfies Axiom S2. Thus it is a comparative similarity.

Furthermore, it satisfies the Axioms S5 and WI as already underlined in the
remarks following the introduction of these axioms (see pages 546 and 549): it
satisfies S5, because S is increasing with respect to x and decreasing with respect
to y. Besides if IX ∩IY = ∅, x = 0, thus S(X,Y ) = 0 = S(Xc

k, Y ) for all k ∈ IX .
It satisfies WI because of the independence properties of S.

We now prove the implication (i) ⇒ (ii) and consider a comparative similar-
ity � satisfying the conditions (i). Let us indicate by R∗ the compactification of
R, that is R∗ = R∪{−∞,+∞}. Since R∗ is a completely ordered set containing
R, all results related to the representability of a binary relation by a function
with values in R remain valid for functions with values in R∗ [5].

Due to S4, � is representable by a function S : X 2 → R∗, depending only on
x,y+,y− and y∗. Due to S5, it is strictly increasing in x and strictly decreasing
in y+ and y−. Due to condition WI, there exists a function f1 : R → R∗, that
moreover is strictly increasing due to S5, and two real numbers α, β > 0 so that
S is a strictly increasing transformation ϕ : R∗ → R∗ of a linear form of the
function f1, i.e.

S(X,Y ) = ϕ(αf1(x) − βf1(y)) (6)

Now from Axiom S2, necessarily f1(0) = −∞. Indeed from Axiom S2, it holds
that (X,X) ∼ (Y, Y ) and thus with Y = Xc

k, (X,X) ∼ (Xc
k, X

c
k), which implies
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S(X,X) = S(Xc
k, X

c
k). Applying Equation (6), S(X,X) = ϕ(αf1(|IX |)−βf1(0))

and S(Xc
k, X

c
k) = ϕ(αf1(|IX | − 1) − βf1(0)). As ϕ is strictly increasing, the

equality implies αf1(|IX |) − βf1(0) = αf1(|IX | − 1) − βf1(0). As f1 is strictly
increasing, f1(|IX |) > f1(|IX | − 1). For the equality to hold, it is necessary that
f1(0) = −∞: the unique possible elements of [−∞,+∞] which summed to two
different real numbers give the same results are −∞ and +∞, by monotonicity
of f1, we have f1(0) = −∞.

Letting f2 = exp(f1), that thus satisfies f2(0) = 0, and ψ = ϕ ◦ log, � is thus
representable by

S(X,Y ) = ψ

(
fα2 (x)

fβ2 (y)

)
(7)

considering the fraction takes value +∞ when y = 0.
Choosing as ψ2 the increasing function ψ2(z) = z/(z+ρ), with ρ positive real

number, then � is representable by ψ2(S(X,Y )). Denoting f(x) = fα2 (x) and
g(y) = fβ2 (y), the latter can be written

ψ2(S(X,Y )) =
f(x)

f(x) + ρg(y)

i.e. in the form of Equation (2). Furthermore, f and g satisfy the conditions
required in (ii): they are strictly increasing, and f(0) = g(0) = 0.

The following theorem considers the case of cumulatively independent com-
parative similarities:

Theorem 2. Let � be a binary relation on X 2 \ {(0, 0)}. The following condi-
tions are equivalent:

(i) � is a comparative similarity satisfying axioms S4 and S6 and possessing
the cumulative independence property CI

(ii) there exists a real-valued increasing function f , with f(0) = 0 and α, β, γ ≥
0, α = β + γ, such that the function S : X 2 → [0, 1] defined by

S(X,Y ) =
fα(x)

fβ(x + y−)fγ(x + y+)
(8)

represents �.

Proof: The proof of implication (ii) ⇒ (i) is direct and similar to that in Theorem
1. We prove (i) ⇒ (ii). By the hypotheses, following the same considerations as
in the previous theorem, there exists a class of functions S representing � that
are increasing transformations of a function such as

S(X,Y ) = αf1(x)− βf1(x + y−)− γf1(x + y+) (9)

By the hypothesis of monotonicity S6, the function f1 must be increasing and
convex and α, β, γ > 0. Moreover, by condition (X,X) ∼ (Y, Y ) for every X,Y ∈
X , we have necessarily α = β + γ. From condition (X,Xc) ∼ (Y c, Y ) of Axiom
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S2, with Y = Xc
k and k ∈ IX , it follows that f1(0) = −∞ using the same

argument as in the proof of Theorem 1.
A result in the special case where � is symmetrical can be established: if,

in condition (i), � is also required to satisfy Axiom S3 (symmetry), then the
function representing � is such that β = γ = α/2.

Lastly we consider the case of totally weak independent comparative similar-
ities:

Theorem 3. Let � be a binary relation on X 2. The following conditions are
equivalent:

(i) � is a comparative similarity satisfying axioms S4 and S7, and possessing
the totally weak independence property TWI

(ii) there exist three real-valued increasing functions f, g, with f(0) = 0 and
α, β ≥ 0, such that the function S : X 2 → [0, 1] defined by Equation (5)
represents �.

The proof is very similar to that given in Theorem 1.
Again for this theorem a ”symmetric version” can be proved: if, in condition

(i), � is also required to satisfy S3, then the function representing � is such that
g = f .

5 Conclusion

The approach of similarity we have presented is based on several basic hypothe-
ses. The first one is the environment of measurement theory, stemming from
Tversky’s reference work, which has been considered since then by the commu-
nity as a reasonable approach to model similarities managed by human beings.
The second hypothesis is the importance of ranking in the management of simi-
larities, which means that similarities are regarded as relative characteristics of
families of objects, rather than intrinsic descriptions of these families. We are
often interested in the comparison of similarity degrees attached to two pairs of
objects, more than in the level of similarity attached to each of these pairs. We
can remark that changing the measure of similarity in a model provides different
values for these degrees, and it is therefore reasonable not to attach too much
importance to the similarity degrees themselves, but to their relative values. The
third hypothesis we make is the importance of the independence axiom among
those proposed by Tversky.

We have therefore established a link between what we call comparative sim-
ilarities in a qualitative approach on the one hand, and possible numerical rep-
resentations of these similarities on the other hand, providing general forms of
similarity measures compatible with the independence axiom and with weaker
forms of this axiom. We show that such a framework embeds well-known similar-
ity measures, and we point out classes of such measures with the same behavior
with respect to independence.

It is to be hoped that this work will help users of similarities in all domains of
artificial intelligence and image processing, in particular, to make an appropriate
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choice of a convenient measure when they have to manage resemblances. It will
for instance avoid them to compare results based on the choice of several simi-
larity measures, since results appear to be analogous when the measures belong
to a same class. The choice of a similarity measure is then reduced to the choice
of a class of measures.

Future works will take into account extensions of such similarity measures
to graded values of attributes, in a fuzzy set based knowledge representation,
replacing the binary attributes we have only considered in this paper. Such a
work will meet a general framework for measures of similarity between fuzzy
sets we have already proposed [2,9], providing a qualitative view of similarities
associated with such numerical evaluations of similarities.
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Abstract. Without a clear, precise and rigorous mathematical frame,
is the likelihood “per se” a proper tool to deal with statistical inference
and to manage partial and vague information? Since (as Basu puts it)
“the likelihood function is after all a bunch of conditional probabilities”,
a proper discussion of the various extensions of a likelihood from a point
function to a set function is carried out by looking at a conditional prob-
ability as a general non-additive “uncertainty” measure P (E| · ) on the
set of conditioning events.

Keywords: Conditional probability, likelihood function, statistical in-
ference.

1 Introduction

Among statisticians there seems to be lack of consensus about the meaning of
“statistical information” and how such an important notion should be meaning-
fully formalized: see, e.g., Basu [1]. On the contrary, if we agree to the stipulation
that our search for the “whole of the relevant information in the data” should
be limited within the framework of a given statistical model, then most statis-
ticians could not find any cogent reason for not identifying the “information in
the data” with the likelihood function generated by it.

An ensuing and long debated problem concerns the following question: is the
likelihood just a point function or can it be also seen as a measure? Why can’t
we talk of the likelihood of a composite hypothesis in the same way as we talk
about the probability of a composite event? Statisticians are usually inclined to
accept the following “law of likelihood” [1]: of two (simple) hypotheses that are
consistent with given data x, the better supported by the data is the one that
has greater likelihood L(x|ω), where ω ranges in the parameter space Ω. An
immediate consequence of this is the controversial inferential method based on
the choice of the ω which corresponds to the “maximum likelihood” (also called
“profile likelihood”).

On the other hand, not all statisticians are willing to support also the so–
called “strong law of likelihood”, that can be expressed as follows: for any two
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subsets A and B of the parameter space Ω, the data x supports the hypothesis
A better than the hypothesis B if∑

ω∈A
L(x|ω) >

∑
ω∈B

L(x|ω) .

This amounts – essentially – to extend the domain of the likelihood function,
since these sums can in fact be interpreted as if they were the “aggregated”
likelihoods of the sets A and B.

In this paper we consider the extension of the likelihood L(x|ω) from a point
function to a set function (a suitable measure) as a consequence of coherence,
and we prove (in a finitely additive setting) that it is necessarily given by a
class of “mixtures” of the relevant laws L(x|ω) (see Theorem 4). We deal also
with the problem of managing “hypotheses” with zero probability. An interesting
application of this “integration method” is to the well–known nuisance parameter
elimination problem. As shown for example in [2], integrated likelihood has many
advantages with respect to profile likelihood.

The connection between likelihoods and membership functions of fuzzy sets has
been discussed by many authors, for instance [15], [10], [14]. In particular, in [10]
the aforementioned connection is based on the general theory of coherent condi-
tional probability. In this context, it is relevant the transition from a “pointwise
uncertainty” of the membership function to a sort of “global” membership.

2 Preliminaries

What is usually emphasized in the literature – when a conditional probability
P (E|H) is taken into account – is only the fact that P (·|H) is a probability
for any given H : this is a very restrictive (and misleading) view of conditional
probability, corresponding trivially to just a modification of the “world” Ω. It
is instead essential to regard the conditioning event H as a “variable”, i.e. the
“status” of H in E|H is not just that of something representing a given fact, but
that of an (uncertain) event (like E) for which the knowledge of its truth value
is not required.

2.1 Conditional Probability

The classic axioms for a conditional probability P , as given by de Finetti [12] (see
also [18], [13], [7]), in its most general sense related to the concept of coherence,
are: given a set C = G × Bo of conditional events E|H such that G is a Boolean
algebra and B ⊆ G is closed with respect to (finite) logical sums, and putting
Bo = B \ {∅} , then

P : C → [0, 1]

is such that

(i) P (H |H) = 1, for every H ∈ Bo ,
(ii) P (·|H) is a (finitely additive) probability on G for any given H ∈ Bo ,
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(iii) P
(
(E ∧ A)|H

)
= P (E|H) · P

(
A|(E ∧ H)

)
, for every E, A ∈ G and E,

E ∧H ∈ Bo.
In [20], condition (ii) is replaced by the stronger one of countable additivity.
A peculiarity – which entails a large flexibility in the management of any kind

of uncertainty – of this approach to conditional probability is that, due to its
direct assignment as a whole, the knowledge – or the assessment – of the “joint”
and “marginal” unconditional probabilities P (E ∧H) and P (H) is not required;
moreover, the conditioning event H – which must be a possible one – may have
zero probability.

2.2 Coherence

A conditional probability P is defined on G×Bo : however it is possible, through
the concept of coherence, to handle also those situations where we need to assess
P on an arbitrary set C = {Ei|Hi}i∈J of conditional events.

Definition 1. The assessment P (·|·) on C is coherent if there exists a conditional
probability P ′(·|·) which is an extension of P from C to C′ ⊃ C, with C′ = G×Bo
(G Boolean algebra and B ⊆ G closed with respect to finite logical sums). We
need also to recall the following

Definition 2. Given an arbitrary finite family {E1, ..., En} , of events, all inter-
sections

E∗1 ∧ E∗2 . . . ∧E∗n ,

different from the impossible event ∅, obtained by putting – in all possible ways
– in place of each E∗i , for i = 1, 2, . . . , n, the event Ei or its contrary Ec

i , are
called atoms generated by the given events. The events E1, ..., En are called
logically independent when the number of atoms equals 2n.

Definition 3. Let F be an algebra. A function μ : F → [−∞,∞] is said to be a
charge on F if the following conditions are satisfied:

μ(∅) = 0;
μ is finitely additive. Moreover a charge is a real charge if −∞ < μ(F ) < ∞

for any F ∈ F , it is bounded if sup{|μ(F )| : F ∈ F} < ∞, and it is positive if
μ(F ) ≥ 0 for any F ∈ F .

A charge is a probability if it is positive and μ(Ω) = 1.
A characterization of coherence is given by the following theorem: see, e.g.,

[6,8].

Theorem 1. Let C be an arbitrary family of conditional events. For a real func-
tion P on C the following statements are equivalent:

(a) P is a coherent conditional probability on C;
(b) there exists (at least) a class of function {mα}, with each mα defined on

suitable families Bα ⊆ C; they are restriction of positive charges defined on the
algebra generated by Bα, and for any conditional event E|H ∈ C there exists a
unique mα with
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mα(H) > 0 and P (E|H) =
mα(E ∧H)

mα(H)
;

moreover Bα ⊂ Bβ for α > β and mβ(H) = 0 iff H ∈ Bα;
(c) for any finite subset F = {E1|H1, . . . , En|Hn} of C, denoting by Ao the set

of atoms Ar generated by the events E1, H1, . . . , En, Hn, there exists (at least)
a class of probabilities {P0, P1, . . . Pk}, each probability Pα being defined on a
suitable subset Aα ⊆ A0, such that for any Ei|Hi ∈ C there is a unique Pα with

∑
r

Ar⊆Hi

Pα(Ar) > 0 and P (Ei|Hi) =

∑
r

Ar⊆Ei∧Hi

Pα(Ar)∑
r

Ar⊆Hi

Pα(Ar)
;

moreover Aα′ ⊂ Aα” for α′ > α” and Pα”(Ar) = 0 iff Ar ∈ Aα′ .

Any class {Pα} singled-out by condition (c) is said to agree with the coherent
conditional probability P restricted to the family F .

Notice that coherence of an assessment P (·|·) on an infinite set C of condi-
tional events is equivalent to coherence on any finite subset F of C .

Given a family C of conditional events {Ei|Hi}i∈I , where card(I) is arbitrary
and the events Hi’s are a partition of Ω, we recall the following corollary of the
characterization Theorem 1.

Corollary 1. Any function f : C → [0, 1] such that f(Ei|Hi) = 0 if Ei ∧Hi =
∅ and f(Ei|Hi) = 1 if Hi ⊆ Ei is a coherent conditional probability.

Concerning coherence, another fundamental result is the following, essentially
due – for unconditional events, and referring to an equivalent form of coherence
in terms of betting scheme – to de Finetti [12] (see also [16,19,21]).

Theorem 2. Let K be any family of conditional events, and take an arbitrary
family C ⊆ K. Let P be an assessment on C; then there exists a (possibly not
unique) coherent extension of P to K if and only if P is coherent on C.

3 Likelihood and Its (Coherent) Extensions

From now on, given an arbitrary event E, let C be a family of conditional events
{E|Hi}i∈I , where card(I) is arbitrary and events Hi’s are a partition of Ω ;
P (E| · ) is an arbitrary – coherent – conditional probability on C;H is the algebra
spanned by the Hi ’s, and Ho = H \ {∅}.

Here we list some of the main relevant results, taken from [9].
By Theorem 2, P can be extended to a coherent conditional probability on

C′ = {E|H : H ∈ Ho} , and the latter in turn can be extended to a coherent
conditional probability on C ′′ = C ′ ∪ {H |K : H,K ∈ H}. This satisfies, by
axiom (iii) of a conditional probability,

P (E|H ∨K) = P (E|H)P (H |H ∨K) + P (E|K)P (K|H ∨K) ,

for every H ∧K = ∅ .
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It follows that any coherent extension of P to C ′ = {E|H : H ∈ Ho} is such
that, for every H,K ∈ H, with H ∧K = ∅ ,

P (E|H ∨K) ≤ P (E|H) + P (E|K). (1)

Remark 1. The previous inequality can be easily extended to a partition of Ω.
Notice that, except in the trivial case that every partition has an event Hj with
P (E|Hj) = 1 while for all others P (E|Hi) = 0, the function L(·) = P (E|·) is
not additive. Moreover, since we have – by axioms (i) and (ii) of a conditional
probability – P (H |H∨K)+P (K|H∨K) = 1 for H∧K = ∅, we get the following
inequality

min{P (E|H), P (E|K)} ≤ P (E|H ∨K) ≤ max{P (E|H), P (E|K)} . (2)

Then, the function P (E|·), with P a coherent conditional probability, in gen-
eral is not monotone (with respect to implication). Moreover, among the coher-
ent extension of a coherent conditional probability P on {E|Hi}i∈I to C ′ there
is one such that

P (E|H ∨K) = max{P (E|H), P (E|K)} ,

for any H,K ∈ Ho with H ∧K = ∅. Then, this is the only extension of P which
is monotone.

4 Likelihood and Statistical Inference

In Section 3 we have shown different ways of extending coherently a conditional
probability P (E|·), and a very particular case of it – referring to discrete dis-
tributions – is the likelihood L(ω) = P (E|ω). As already noticed in Remark 1,
L(ω) is not additive, and this is true even when it is interpreted (in a Bayesian
context) as the posterior corresponding to a uniform prior.

Example 1. Consider a parameter space {ω1, ω2 ..., ωn}, with P (ωi) = 1
n ; we

have, assuming P (E) > 0,

P
(
(ω1 ∨ ω2)|E

)
=

P (ω1 ∨ ω2)P
(
E|(ω1 ∨ ω2)

)
P (E)

, (3)

P (ωi|E) =
P (ωi)P (E|ωi)

P (E)
=

P (E|ωi)
nP (E)

, i = 1, 2 , (4)

and so, by adding the two eqs. (4), we get

P (ω1|E) + P (ω2|E) = P
(
(ω1 ∨ ω2)|E

)
=

P (E|ω1) + P (E|ω2)
nP (E)

.

Then, since P (ω1 ∨ ω2) = 2
n , from (3) it follows

2P
(
E|(ω1 ∨ ω2)

)
= P (E|ω1) + P (E|ω2) ,

i.e. P
(
E|(ω1∨ω2)

)
is a convex combination (with equal weights) of P (E|ω1) and

P (E|ω2). Going back to the results of Section 3, the question is whether the two
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extreme cases obtained extending P (E|Ax) to the union of conditioning events
by taking the maximum or by taking the minimum are the most natural ways to
extend likelihood functions. We recall that, given a finite partition H◦ = {Hi}
of Ω, coherence implies

min
i
{P (E|Hi)} ≤ P

(
E
∣∣∨

i

Hi

)
≤ max

i
{P (E|Hi)}

and the converse holds if we extend just to a single conditional event E
∣∣∨

iHi.
But, considering the extension to more conditioning events the converse is not
true. So, in general, the values between the two extremes are not necessarily
coherent choices for the conditional probability P

(
E
∣∣ ·), which can be looked on

as a sort of “aggregated” membership or of likelihood “measure”.

Remark 2. Coherent choices have been essentially characterized – for a finite
family – in [5]: they are weighted means of the P (E|Hi)’s, where weights equal
to zero or one are allowed. Here is the relevant theorem (see also [11]), which
can be seen as a “discrete” version of the main theorem given in the following
Section.

Theorem 3. Let E be an arbitrary event and C be a finite family of conditional
events {E|Hi} (i = 1, 2, ..., n), where H◦ = {Hi} is a partition of Ω. Let A be the
algebra spanned by the Hi’s, and put A◦ = A\{∅}. If p : C →[0, 1] is a coherent
conditional probability, i.e. any function such that

p(E|Hi) = 0 if E ∧Hi = ∅ , p(E|Hi) = 1 if Hi ⊆ E ,

the following two statements are equivalent:
(i) P is a coherent conditional probability extending p to K= {E} × A◦;
(ii) there exist subfamilies H◦ ⊃ H1 ⊃ . . .Hα ⊃ . . . ⊃ Hk and relevant sets

of coefficients λαi ≥ 0 ( i = 1, ..., iα , where iα is the number of events Hi ∈ Hα,
with Hi ∈ Hα if and only if λα−1

i = 0 and λ−1
i = 0 for any i), with

∑
i λ

α
i = 1,

such that for every H ∈ A◦ the value x = P (E|H) is a solution of

x
∑

Hi⊆H
λαi =

∑
Hi⊆H

λαi p(E|Hi) (5)

for all Hα, and if at least one Hi belongs to Hα\Hα+1, then P (E|H) is the only
solution of (5).

We sketch the procedure to search for the λαi ’s, given an extension of the as-
sessment {p(E|Hi), i = 1, 2, ..., n}, and so to prove that the extension is co-
herent. Since all the Hi’s belong to Ho, then (5) holds (with α = 0) for all
(possible) events belonging to the algebra A. So the (first) set of coefficients
λoi , (i = 1, 2, ..., n) satisfy all equations of the kind (5), with x = P (E|H) for
every H ∈ Ao . Given now an H ∈ Ao, if at least one λoi (for i such that Hi ⊆ H)
is positive, then P (E|H) is the only solution of (5), and we have

P (E|H) =
1

λ(H)

∑
Hi⊆H

λoi p(E|Hi) , (6)
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where
λ(H) =

∑
Hi⊆H

λoi .

Note that λαi = P (Hi|Hα) , where

Hα =
∨

Hi∈Hα

Hi .

Moreover, if on the contrary λoi = 0 for all i such that Hi ⊆ H , then (5) is
trivially satisfied for all value of x, and all Hi ⊆ H belong to H1. In this case
we must find coefficients λ1

j satisfying all the equations (5) related (only) to the
events H obtained as unions of the Hi’s such that λoi = 0 ; and so on.

Notice that if we can assign to λoi positive values for every i, then we obtain
only one class of λαi , and we can write (6) for every H ∈ Ao . In particular,
for λoi = 1

n (i = 1, 2, ..., n) we are in the situation of Example 1. The opposite
situation corresponds to assign – for every α – value 1 to only one λαi∗ and value
0 to all others. So in this case P (E|H) = P (E|Hi∗) for all the events H ⊇ Hi∗ .
A particular case is when at any step α the value 1 corresponds, for E|Hi ∈ Hα,
to the maximum (or minimum) value of p(E|Hi).

5 Main Result

First of all, we need to recall the following well–known definitions.

Definition 4. Let (Ω,F , μ) be a charge space. A real valued function f on Ω
is T2-measurable if for every ε > 0, there exists a partition {F0, F1, . . . , Fn} of
Ω in F such that μ(F0) < ε and |f(w) − f(w′)| < ε for every w,w′ ∈ Fi for
every i = 1, . . . , n. Concerning T2-measurability, we show that the function in
Corollary 1 has this property in the case of a charge defined on a suitable σ-field,
but in general it is not T2-measurable.

Example 2. Consider the partition H = {Hi}i∈IN, an event E logical indepen-
dent from any Hi and the function p(E|Hi) = 1

2 if i = 2k, while p(E|Hi) = 1
if i = 2k + 1. Let A be the minimal algebra generated by H, then in A there
are only finite and co-finite sets, so p(E|·) is not T2-measurable with respect to
any positive bounded charge space (Ω,A, μ), since no infinite set of the kind
∨k∈INH2k belongs to A. On the other hand, by taking the positive charge space
(Ω,F ,m), where F is the field generated by A and by the event K = ∨k∈INH2k,
then p(E|·) is T2-measurable with respect to any charge space (Ω,F ,m).

Lemma 1. Let E = {E|Hi}i∈J be an arbitrary set of conditional events such
that the set of conditioning events H0 = {Hi}i∈J is a partition of Ω, and denote
by F the σ-field spanned by H0 and (Ω,F , μ) a charge space with μ a positive
bounded charge. Let p : E → [0, 1] be any function such that

p(E|Hi) = 0 if E ∧Hi = ∅ , p(E|Hi) = 1 if Hi ⊆ E ;
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then the function p is T2-measurable. Moreover, for any H ∈ F , the function
f(·) = p(E|·)IH , where IH is the indicator function of H, is T2-measurable.

Proof: Given ε = 1
k , with k ∈ IN, consider F0 = ∨n1Hi with μ(F0) < 1

k . The
event F0 ∈ F exists since no more than a finite number of Hj can have charge
greater than 1

k (μ is a positive bounded charge). Now, let F1 = ∨{Hj : Hj∧F0 =
∅, p(E|Hj) < 1

k}, and, for 2 ≤ i ≤ k − 1, Fi = ∨{Hj : Hj ∧ F0 = ∅, (i− 1) 1
k ≤

p(E|Hj) < i 1
k}, while Fk = ∨{Hj : Hj ∧ F0 = ∅, (k − 1)ε ≤ p(E|Hj)} (some

Fj could be empty), hence Fi ∈ F for any i = 1, ..., k, and moreover, for any
w, v ∈ Fi one has |p(E|w) − p(E|v)| ≤ ε. Therefore, it follows that p(E|·) is T2-
measurable. Moreover, taking f(·) = p(E|·)IH , with H ∈ F , taking as partition
F ′0 = F0 ∧Hc, F ′1 = F1 ∨H , F ′i = Fi ∧Hc, for i = 2, ..., k, T2-measurability of
p(E|·)IH follows. The hypothesis on F in the above Lemma is crucial, moreover
there could be a smaller field such that p(E|·) is T2-measurable (as shown in Ex-
ample 2). The importance of T2 measurability is related, for bounded functions,
to equivalence with D-integrability, and in the case of positive bounded charges
D-integrability and S-integrability coincide for real valued bounded functions
(see [4]).

Concerning the extension of the function in Lemma 1, we can prove the fol-
lowing result:

Theorem 4. Let E = {E|Hi}i∈J be an arbitrary set of conditional events such
that the set of conditioning events H0 = {Hi}i∈J is a partition of Ω. Denote by
F0 the σ-field spanned by H0, F0

0 = F0 \ {∅} and K = {E|H : H ∈ F0
0 }. Let

p : E → [0, 1] be any function such that

p(E|Hi) = 0 if E ∧Hi = ∅ , p(E|Hi) = 1 if Hi ⊆ E .

The following statements are equivalent:

– P is a coherent conditional probability extending p to K;
– there exists a class of positive (not necessarily bounded) charges {mα} on

σ-fields {Fα} defined by suitable families Bα with Bα ⊂ Bβ for α > β and
mβ(H) = 0 iff H ∈ Bα, and for any conditional event E|H ∈ K there is a
unique α such that H ∈ Bα, with 0 < mα(H) < ∞, and P (E|H) = x is
solution of the equation

x

∫
H

d(mα(y)) =
∫
H

p(E|y)d(mα(y)). (7)

Proof: Since p is coherent (see Corollary 1) there is a coherent extension P of
p on K = {E|H : H ∈ F0

0}. Moreover, for any conditional probability P ∗

on F0 × F0
0 there is a class {mα} of positive charges agreeing with P ∗ (see

Theorem 2, and also [17]). Take m0(A) = P ∗(A|Ω) for A ∈ F0; then, the positive
charge m0 is bounded and one has, from Lemma 1, that f(·) = p(E|·) and
f1(·) = p(E|·)IH(ω) (with H ∈ F0) are bounded and T2-measurable with respect
to the charge space (Ω,F0,m0). Then, f(·) is Daniell integrable with respect to
(Ω,F0,m0) (and equivalently is Stieltjes integrable, see [4]) and for any H ∈ F0

0
such that m0(H) > 0 it follows
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S

∫
f1dm0 =

∫
H

p(E|x)d(m0(x)) .

Moreover, from construction of Stieltjes integral one has that∫
H

p(E|x)d(m0(x)) = lim
P

n∑
i=0

( sup
w⊆Fi

p(E|w)IH(ω)m0(Fi)) =

lim
P

n∑
i=0

( inf
w⊆Fi

p(E|w)IH (ω)m0(Fi))

where P is the set of finite partitions of Ω in F0. Then, from disintegration
property, for any finite partition {F0, F1, ..., Fn} of Ω in F0,

P (E|H) =
n∑
i=0

P ∗(E ∧ Fi|H) =
n∑
i=0

P ∗(E|Fi ∧H)P ∗(Fi|H)

and
n∑
i=0

P ∗(E|Fi ∧H)P ∗(Fi|H) ≥
n∑
i=0

inf
w⊆Fi

p(E|w)IH(ω)
m0(Fi ∧H)

m0(H)

n∑
i=0

P ∗(E|Fi ∧H)P ∗(Fi|H) ≤
n∑
i=0

sup
w⊆Fi

p(E|w)IH(ω)
m0(Fi ∧H)

m0(H)

so from Stieltjes integrability of p(E|·) one has that for any ε > 0 there exists a
finite partition {F0, F1, ..., Fn} of Ω in F0 such that

n∑
i=0

sup
w∈Fi

p(E|w)IH (ω)m0(Fi ∧H)− ε ≤ P (E|H)m0(H) ≤

≤
n∑
i=0

inf
w∈Fi

p(E|w)IH (ω)m0(Fi ∧H) + ε .

Then equation (7) follows.
Now, consider any ideal Bα (formed by H ∈ F0 with m0(H) = 0) in F0, that is

an additive class, and let Fα the corresponding σ-field, we have the following two
situations: if in Bα there is an event K such that for all H ∈ Bα one has H ⊆ K,
then by putting mα(A) = P ∗(A|K) with A ∈ Fα, since mα(Ω) = P ∗(K|K) = 1
it follows that mα is a positive bounded charge on Fα, and so the proof goes
along the same lines of the previous step to show that the above equation holds.
Otherwise, if there is no event K ∈ Bα containing all events H ∈ Bα, then,
since Bα is an additive set, the cardinality of Bα is infinite. Then P ∗ agrees with
a positive charge mα on the minimal σ-field Fα containing Bα, but it is not
bounded on Fα. However, for any H ∈ Bα one has mα(H) < ∞ (while it could
happen, for some K ∈ Fα \ Bα, that mα(K) = ∞).
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We show how to compute the extension for a chosen conditioning event H
such that 0 < mα(H) < ∞, and for simplicity we avoid to refer to H and we
define λ(A) = mα(A∧H)

mα(H) for any A ∈ Fα. Then λ(·) is a bounded positive charge
in Fα with λ(Hc) = 0 and λ(Ω) = λ(H) = 1. Moreover f1(·) = f(·)IH∧Hα

(with Hα = ∨Hi∈BαHi) is measurable with respect to (Ω,Fα, λ). Hence f1 is
Stieltjes integrable with respect to (Ω,Fα, λ) (see Theorem 4.5.7 in [4]) and for
any H ∈ Bα such that λ(H) > 0 (i.e., 0 < mα(H) < ∞) it follows

S

∫
f1dλ =

∫
H

p(E|x)d(λ(x)) .

Moreover, from construction of Stieltjes integral one has that∫
H

p(E|x)d(λ(x)) = lim
P

n∑
i=0

( sup
w⊆Fi

p(E|w)IH(ω)λ(Fi ∧H)) =

lim
P

n∑
i=0

( sup
w⊆Fi

p(E|w)IH(ω)
mα(Fi ∧H)

mα(H)
) =

1
mα(H)

lim
P

n∑
i=0

( sup
w⊆Fi

p(E|w)IH(ω)mα(Fi ∧H))

and ∫
H

p(E|x)d(λ(x)) = lim
P

n∑
i=0

( inf
w⊆Fi

p(E|w)IH(ω)λ(Fi ∧H)) =

=
1

mα(H)
lim
P

n∑
i=0

( inf
w⊆Fi

p(E|w)IH (ω)mα(Fi ∧H))

where P is the set of finite partitions of Ω in Fα. Then, since for any finite
partition {F0, ..., Fn} of Ω in Fα

P (E|H) =
n∑
i=0

P ∗(E ∧ Fi|H) =
n∑
i=0

P ∗(E|Fi ∧H)P ∗(Fi|H) =

n∑
i=0

P ∗(E|Fi ∧H)
mα(Fi ∧H)

mα(H)

and from Stieltjes integrability one has that for any ε > 0 there exists a finite
partition {F0, F1, ..., Fn} of Ω in Fα such that

n∑
i=0

sup
w⊆Fi

p(E|w)IH(ω)mα(Fi ∧H)− ε ≤ P (E|H)mα(H) ≤

≤
n∑
i=0

inf
w⊆Fi

p(E|w)IH(ω)mα(Fi ∧H) + ε ,

then equation (7) follows.
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Note that Theorem 3 is a particular case of Theorem 4.
A result similar to the above one can be given by using the characterization of

conditional probabilities in a σ-additive setting, which corresponds to consider
a class of σ additive positive charges (see [20] and also [17]).

Remark 3. Theorem 4 characterizes coherent extensions in terms of class of
mixtures, each one related to a charge mα defined on the set of events H with
mα−1(H) = 0. The first mixture is based on m0, which is obviously defined on
the whole set of conditioning events. This specific mixture has been studied, in a
different context and terminology, in [3].

An example in which the class of the charges in Theorem 4 is not finite follows:

Example 3. Let {Hi}i∈IN be a partition of Ω and E an event logically indepen-
dent from any Hi with i ∈ IN. Consider the coherent assessment p(E|Hi) = 1

n
for i ∈ IN. A possible extension of the given assessment on the set E ×Ho, with
H the power set generated by {Hi}i∈IN and Ho = H \ {∅}, is

P (E|H) = sup
Hi⊆H

p(E|Hi)

for any H ∈ Ho. This extension is obtained by considering the sets Ho =
{Hi}i∈IN, H1 = {Hj ∈ Ho : j > 1}, .... Hi = {Hj ∈ Ho : j > i}, ....
and the charges mi(·) with i ∈ IN on H such that mi(H) = 1 if Hi+1 ⊆ H and
mi(H) = 0 otherwise.

6 Conclusions

The main result (Theorem 4) provides a characterization of all possible exten-
sions as set function of the (point function) likelihood. These extensions are
suitable mixtures (that in the finite case reduce to weighted means, see Remark
2) of likelihoods. This result can be also the starting point for the elimination
problem of nuisance parameters in a finitely additive setting, which is particu-
larly fit for handling “improper” distributions. Another interesting connection
is with possibility theory: in fact we obtain a possibility measure as a particular
extension of a likelihood (see Example 3 and, for a finite case, [9]).
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Abstract. A BN2O network is a Bayesian network having the structure
of a bipartite graph with all edges directed from one part (the top level)
toward the other (the bottom level) and where all conditional probability
tables are noisy-or gates. In order to perform efficient inference, graph-
ical transformations of these networks are performed. The efficiency of
inference is proportional to the total table size of tables corresponding
to the cliques of the triangulated graph. Therefore in order to get ef-
ficient inference it is desirable to have small cliques in the triangulated
graph. We analyze existing heuristic triangulation methods applicable to
BN2O networks after transformations using parent divorcing and tensor
rank-one decomposition and suggest several modifications. Both theoret-
ical and experimental results confirm that tensor rank-one decomposition
yields better results than parent divorcing in randomly generated BN2O
networks that we tested.

1 Introduction

A BN2O network is a Bayesian network having the structure of a directed bi-
partite graph with all edges directed from one part (the top level) toward the
other (the bottom level) and where all conditional probability tables are noisy-
or gates. Since the table size for a noisy-or gate is exponential in the number
of its parents, graphical transformations of these networks are performed in or-
der to reduce the table size and allow efficient inference. This paper deals with
two transformations - parent divorcing (PD) [1], which is the most frequently
used transformation, and rank-one decomposition (ROD) [2,3,4]. Typically, in
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order to get an inference structure, the graph obtained by parent divorcing is
further transformed by the following two consecutive steps – moralization and
triangulation that results in an undirected triangulated graph. The graph ob-
tained by rank-one decomposition is transformed by triangulation only resulting
in an undirected triangulated graph. The efficiency of inference is proportional
to the total table size (tts) of tables corresponding to the cliques of the trian-
gulated graph. The size of the largest clique minus one is often called the graph
treewidth (tw). Since a BN2O network consists only of binary variables, the size
of the largest probability table is 2tw+1.

Both methods, parent divorcing and rank-one decomposition, were designed
to minimize the size of probability tables before triangulation. In this paper, we
consider the total table size after triangulation, which is the crucial parameter
for efficiency of the inference. From this point of view, parent divorcing appears
to be clearly inferior. In Section 2 we show that the treewidth tw of the optimally
triangulated graph of a BN2O network after rank-one decomposition, which will
be called a base ROD (BROD) graph, is not larger than the treewidth of the
model preprocessed using parent divorcing, which will be called PD graph, and
the same rule holds for the total table size tts. Hence, if we can use optimal
elimination ordering (EO) for the transformed graphs, using ROD we never get
results worse by more than a linear term compared to PD. Since the search for
the optimal EO is NP-hard [5], we have to use heuristics. In this case, ROD is
also not worse, since the upper bound on tw and tts for ROD holds efficiently.
We propose an efficient procedure which transforms an EO for PD graph into an
EO for a base ROD graph with the required upper bound on tw and tts. Similar
conclusions concerning the comparison of ROD and PD transformations based
on purely experimental results were obtained in [6].

Having the above-mentioned facts in mind, in Section 3 we concentrate on the
search for a good EO to use in the BN2O graphs after the ROD transformation.
We analyze existing heuristic triangulation methods applicable to BN2O net-
works and suggest several modifications. The experimental results in Section 4
confirm that these modifications further improve the quality of the obtained
triangulation of the randomly generated BN2O networks we used.

2 Transformations of BN2O Networks

First, we introduce the necessary graph notions. For more detail see, e.g. [7].

Definition 1. An undirected graph G is triangulated if it does not contain an
induced subgraph that is a cycle without a chord of a length of at least four.

Definition 2. A triangulation of G is a triangulated graph H that contains the
same nodes as G and contains G as a subgraph.

Definition 3. A set of nodes C ⊆ V of a graph G = (V,E) is a clique if it
induces a complete subgraph of G and it is not a subset of the set of nodes in
any larger complete subgraph of G.
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Definition 4. For any graph G, let C(G) be the set of all cliques of G.

Definition 5. The treewidth of a triangulation H of G is the maximum clique
size in H minus one. The treewidth of G, denoted tw(G), is the minimum
treewidth over all triangulations H of G.

Definition 6. The table size of a clique C in an undirected graph is
∏

v∈C |Xv|,
where |Xv| is the number of states of a variable Xv corresponding to a node v.

In this paper all variables are binary, hence the table size of a clique C is 2|C|.

Definition 7. The total table size of a triangulation H of G is the sum of table
sizes for all cliques of H . The total table size of a graph, denoted tts(G), is the
minimum total table size over all triangulations H of G.

Definition 8. The set of neighbors of node v in an undirected graph G = (V,E)
is the set nbG(v) = {w ∈ V : {v, w} ∈ E}. The degree of v in G is |nbG(v)|.

Definition 9. A node v is simplicial in G if nbG(v) induces a complete subgraph
of G.

Definition 10. Elimination ordering of an undirected graph G = (V,E) is any
ordering of the nodes of G represented by a bijection f : V → {1, 2, . . . , n}.

The meaning of this representation is that, for every node u, the number f(u)
is the index of u in the represented ordering.

Definition 11. An elimination ordering f : V → {1, 2, ..., n} of an undirected
graph G = (V,E) is perfect if, for all v ∈ V , the set

B(v) = {w ∈ nbG(v) : f(w) > f(v)}

induces a complete subgraph of G.

A graph possesses a perfect elimination ordering if and only if it is triangulated.
If a graph G = (V,E) is not triangulated, then we may triangulate it using any
given elimination ordering f by considering the nodes in V in the order defined
by f , and sequentially adding edges to E so that after considering node v, the
set B(v) induces a complete subgraph in the extended graph.

Now, we restrict our attention to the family of BN2O networks and define the
corresponding graphs.

Definition 12. G = (U ∪V,E) is a graph of a BN2O network (BN2O graph) if
it is an acyclic directed bipartite graph, where U is the set of nodes of the top
level, V is the set of nodes of the bottom level, and E is a subset of the set of
all edges directed from U to V , E ⊆ {(ui, vj) : ui ∈ U, vj ∈ V }.

See Fig. 1 for an example of a BN2O graph.
Since the conditional probability tables in the BN2O networks take on a spe-

cial form – they are noisy-or gates – we can transform the original BN2O graph
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u1

v1 v2

u2 u3 u4

Fig. 1. A BN2O graph

and corresponding tables using methods exploiting their special form. Below we
deal with two methods – parent divorcing and rank-one decomposition. Since we
restrict ourselves to analyzing graph triangulation, we concentrate only on the
graphical transformations performed when these methods are applied.

The first transformation is parent divorcing [1]. It avoids connecting all parents
of each node of V (in the moralization step), which is achieved by introducing
auxiliary nodes in between nodes from U and V . The next definition describes
the graph obtained by a specific form of PD together with the moralization step.

Definition 13. The parent divorcing (PD) graph of a BN2O graph G = (U ∪
V,E) is the undirected graph GPD = (U ∪ V ∪W,H), where

W = ∪vi∈VWi and H = ∪vi∈V Hi

and for each node vi ∈ V with pa(vi) = {uj ∈ U : (uj , vi) ∈ E} the set of
auxiliary nodes

Wi = {wi,j , j = 1, . . . , k = |pa(vi)| − 2}

and the set of undirected edges

Hi = { {wi,1, uj1}, {wi,1, uj2}, {uj1 , uj2},
{wi,2, wi,1}, {wi,2, uj3}, {wi,1, uj3},
. . . ,

{wi,k, wi,k−1}, {wi,k, ujk+1}, {wi,k−1, ujk+1},
{vi, wi,k}, {vi, ujk+2}, {wi,k, ujk+2} } ,

where {uj1 , . . . , ujk+2} = pa(vi).

See Fig. 2 for an example of a PD graph.
The second transformation – rank-one decomposition – was originally pro-

posed by Dı́ez and Galán [2] for noisy-max models and extended to other models
by Savicky and Vomlel [3,4].

Definition 14. The rank-one decomposition (ROD) graph of a BN2O graph
G = (U ∪ V,E) is the undirected graph GROD = (U ∪ V ∪W,F ) constructed
from G by adding an auxiliary node wi for each vi ∈ V , W = {wi : vi ∈ V }, and
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v2

u2 u3 u4

w1,1
w2,1

v1

u1

Fig. 2. The PD graph of BN2O graph from Fig. 1

w2

v1

u1 u2 u3 u4

w1

v2

Fig. 3. The ROD graph of BN2O graph from Fig. 1

by replacing each directed edge (uj , vi) ∈ E by undirected edge {uj, wi} and
adding an undirected edge {vi, wi} for each vi ∈ V :

F = {{uj, wi} : (uj , vi) ∈ E} ∪ {{vi, wi} : vi ∈ V }

See Fig. 3 for an example of an ROD graph.
Nodes vi ∈ V are simplicial in the ROD graph and have degree one; therefore

we can perform optimal triangulation of the ROD graph by optimal triangulation
of its subgraph induced by nodes U ∪W [7]. This graph will be called the base
ROD graph or shortly the BROD graph. For the treewidth it holds

tw(GROD) = max{1, tw (GBROD)}

and for the total table size

tts(GROD) = tts (GBROD) + 4 |W | .

See Fig. 4 for the BROD graph of BN2O graph from Fig 1.

Definition 15. A graph H is a minor of a graph G if H can be obtained from
G by any number of the following operations:
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u1 u2 u3 u4

w1 w2

Fig. 4. The BROD graph of BN2O graph from Fig. 1

– node deletion,
– edge deletion, and
– edge contraction1.

Lemma 1. The BROD graph is a graph minor of the PD graph.

Proof. For each set of edges Hi in the PD graph (see Definition 13) we delete
the edge {uj1 , uj2} and contract edges

{vi, wi,k}, {wi,k, wi,k−1}, . . . , {wi,2, wi,1}

and name the resulting node wi. By these edge contractions the node wi gets
connected by undirected edges to all uj ∈ pa(vi). Repeating this procedure for
all i, vi ∈ V we get the BROD graph. %&

Theorem 1. The treewidth of the BROD graph is not larger than the treewidth
of the PD graph.

Proof. Due to Lemma 1 the BROD graph is a graph minor of the PD graph.
Therefore we can apply the well-known theorem (see, e.g. Lemma 16 in [8]) that
the treewidth of a graph minor is not larger than the treewidth of the graph
itself. %&

Lemma 2. Let G = (V,E) be a triangulated graph with a perfect elimination
ordering f and H = (U,F ) be the graph constructed from G by contraction of
the edge {u, v} with the resulting node named w. Further, let f(u) < f(v). Then
H is triangulated and its elimination ordering g constructed from f by

g(a) =

⎧⎨⎩f(a) if f(a) < f(u)
f(v)− 1 if a = w
f(a)− 1 otherwise

is perfect.

1 Edge contraction is the operation that replaces two adjacent nodes u and v by a
single node w that is connected to all neighbors of u and v.
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Proof. By the definition of perfect elimination ordering (Definition 11) it is suf-
ficient to show that for all nodes a ∈ U the set

BH(a) = {b ∈ U : {a, b} ∈ F and g(b) > g(a)}

induces a complete subgraph of H . Since f is a perfect elimination ordering of
G it holds for all nodes a ∈ V that the set

BG(a) = {b ∈ V : {a, b} ∈ E and f(b) > f(a)}

induces a complete subgraph of G. Nodes a ∈ U\{w} have either BH(a) = BG(a)
or BH(a) = (BG(a) \ {u, v}) ∪ {w}. In both cases these sets induce a complete
subgraph of H . Every node x ∈ BG(u) is connected by an edge with v in G
since v ∈ BG(u). Therefore {x ∈ BG(u), f(x) > f(v)} ⊆ BG(v). Consequently,
BH(w) = BG(v) and induces a complete subgraph of H . %&

Lemma 3. Let G be a triangulated undirected graph and H be the resulting
graph after the contraction of an edge. Then tts(H) ≤ tts(G).

Proof. Let H be the resulting graph after the contraction of an edge {u, v} in
G replaced by node w in H . Let φ be a mapping of nodes of G onto the nodes
of H such that it is an identity mapping except for φ(u) = w and φ(v) = w.
Let us prove that for every clique D in H there exists a clique C in G such that
D = φ(C). This assertion is obvious for cliques of H not containing node w. Let
D be a clique in H containing node w. The assertion is also obvious for |D| = 1.
For |D| = 2 it holds that D = φ({u, a}) = φ({v, a}) = φ({u, v, a}), where a 
= w
is a node from D. Furthermore, either {u, a}, {v, a}, or {u, v, a} is a clique in G.

Now assume that |D| ≥ 3. Denote

C1 = (D \ {w}) ∪ {u}
C2 = (D \ {w}) ∪ {v}
C3 = (D \ {w}) ∪ {u, v} .

It holds that D = φ(C1) = φ(C2) = φ(C3). To show that either C1 or C2 is a
complete subgraph of G, assume by contradiction that neither C1 nor C2 is a
complete subgraph of G. Then nodes a, b ∈ D \ {w} would exist, such that (a, u)
and (b, v) are not edges in G. Since w is connected by an edge to all nodes from
D \ {w}, a 
= b and (a, b), (a, v), and (b, u) are edges of G. Consequently the
cycle (a, v, u, b) does not have a chord in G, which is in contradiction with the
assumption that G is triangulated.

Hence, for some i = 1, 2, Ci is complete in G. Therefore one of Ci, i = 1, 2, 3
must be a clique in G – none of the strict supersets of C3 can be a clique in G,
since this would contradict the assumption that D is a clique.

The properties of the mapping φ imply that there is an injective mapping from
C(H) to C(G) non-decreasing the size of the cliques. Hence, we have

∑
A∈C(H) 2|A|

≤
∑

A∈C(G) 2|A|, which implies tts(H) ≤ tts(G), since G and H (by Lemma 2)
are triangulated. %&
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The following two lemmas hold for general, not necessarily triangulated, undi-
rected graphs. Their proofs are omitted and may be found in the extended version
of this paper [9].

Lemma 4. Let S be a set of some sets inducing complete subgraphs of a graph
H. Then S is the set of all cliques of H iff S contains only incomparable pairs
of sets and each set inducing a complete subgraph of H is a subset of an element
of S.

Lemma 5. If a graph H is obtained from a graph G by removing an edge {u, v},
then ∑

A∈C(G)

2|A| ≥
∑

A∈C(H)

2|A| .

Theorem 2. For any given elimination ordering f of a PD graph we can ef-
ficiently construct an elimination ordering g of the corresponding BROD graph
such that the treewidth (and the total table size) of the BROD graph triangulated
using g is not larger than the treewidth (and the total table size, respectively) of
the PD graph triangulated using f .

Proof. Let f be an elimination ordering for GPD, which yields a triangulation
Gf
PD. Let us construct a triangulation G′ of the GBROD from Gf

PD using the
same sequence of edge contractions as in the proof of Lemma 1. Along these
transformations we apply Lemma 2 to get an elimination ordering g for G′, and
by repeated application of Lemma 3 we obtain tts(G′) ≤ tts(Gf

PD).
Graph G′ has the same nodes as GBROD and contains GBROD as a subgraph.

Let Gg
BROD be the triangulation of GBROD obtained using the ordering g. In

each step of the process of triangulation of GBROD using g, we add only edges
that belong to G′. Hence, the resulting graph Gg

BROD is a subgraph of G′.
Consequently, by repeated use of Lemma 5 for all edges of G′ which do not
belong to Gg

BROD, we obtain tts(Gg
BROD) ≤ tts(G′). This proves the statement

concerning the total table size. The statement concerning the treewidth follows
from the fact that Gg

BROD is a graph minor of Gf
PD and hence cannot have

larger treewidth. %&

Corollary 1. The total table size of the BROD graph is not larger than the total
table size of the PD graph.

Proof. Use Theorem 2 for elimination ordering f , which yields a triangulation
of PD graph with the smallest total table size. %&

3 Triangulation Heuristics

In the previous section we have shown that using the PD graph for triangulation
is inferior to using the BROD graph in the sense that we can always triangulate
the BROD graph so that its treewidth (or total table size) is not greater than
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the treewidth (or total table size, respectively) of the PD graph. Therefore, in
this section we pay attention to efficient triangulation of the BROD graph.

First, we applied several well-known triangulation heuristics to the BROD
graph. We tested minfill [10], maximum cardinality search [11], minwidth [10],
H1, and H6 [12]. The results of the comparisons can be found in the extended
version of this paper [9]. Since minfill gave better results than the other heuris-
tics, we selected it as a basis for further development of triangulation heuristics
for the BROD graph. The minfill algorithm is described in Table 1. The output
is an elimination ordering f of G = (V,E)

Table 1. The minfill heuristics

For i = 1, . . . , |V | do:

1. For u ∈ V define set of edges F (u) = {{u1, u2} : {u1, u} ∈ E, {u2, u} ∈ E} to be
added for elimination of u.

2. Select a node v ∈ V which adds the least number of edges when eliminated, i.e.,
v ∈ arg minu∈V |F (u) \ E|, breaking ties arbitrarily.

3. Set f(v) = i.
4. Make v a simplicial node in G by adding edges to G, i.e., G = (V, E ∪ F (v)).
5. Eliminate v from the graph G, i.e. replace G by its induced subgraph on V \ {v}.

Return f .

Minfill of the PD Graph Used for the BROD Graph
In our experiments, we have observed for some BN2O graphs that the minfill
triangulation of a PD graph led to a graph with a smaller total table size than
the triangulation of the BROD graph by minfill. This may seem to contradict
the results from the previous section, but it does not, since the triangulation
heuristics does not guarantee finding the optimal triangulation. In order to avoid
this undesirable phenomenon, we can use the elimination ordering f found by
minfill for the PD graph and construct an elimination ordering g for the BROD
graph using the construction given in the proof of Theorem 2. This theorem
guarantees that the total table size of the BROD graph triangulated using g is
not larger than the total table size of the PD graph triangulated using f . We refer
to this method as PD-minfill and use it as a base method for the comparisons
in Section 4.

Minfill with n Steps Look-Ahead
Since the minfill algorithm is computationally fast for networks of moderate size,
one can minimize the total number of edges added to the graph after more than
one node is eliminated, i.e., one can look n steps ahead. Of course, this method
scales exponentially, therefore it is computationally tractable only for small n.
We refer to this method as minfill-n-ahd.
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Minfill That Prefers Nodes from the Larger Level
The following proposition motivates another modification of the minfill algo-
rithm. The proof is omitted and may be found in the extended version of this
paper [9].

Proposition 1. Let G = (U ∪W,F ) be a BROD graph. Then

tw(G) ≤ min{|U |, |W |} .

This upper bound on the treewidth is guaranteed by any elimination ordering
which starts with all nodes of the larger of the sets U and W .

This upper bound on the treewidth suggests a modification of the minfill heuris-
tics. We can enforce edges to be filled in the smaller level only by taking nodes
from the larger level into the elimination ordering first. Within the larger level
we can use the minfill algorithm to choose the elimination ordering of nodes
from this level. This gives a treewidth not larger than the number of nodes in
the smaller level. The nodes from the smaller level are included in the elimina-
tion ordering after the nodes from the larger level. We will refer to this method
as minfill-pll.

4 Experiments

In this section, we experimentally compare the proposed triangulation heuristics
on 1300 randomly generated BN2O networks. The BN2O graphs were generated
with varying values of the following parameters:

– x, the number of nodes on the top level,
– y, the number of nodes on the bottom level, and
– e, the average number of edges per node on the bottom level.

For each x-y-e type, x, y = 10, 20, 30, 40, 50 and e = 3, 5, 7, 10, 14, 20 (excluding
those with e ≥ x) we generated randomly ten BN2O graphs.

All triangulation heuristics were tested on the BROD graphs GBROD. We
used the total table size tts of the graph Gh

BROD triangulated by a triangulation
heuristics h as the criterion for comparisons. We used the PD-minfill method
as the base method against which we compared all other tested methods, since
it is the closest to the current standard, which is to use the PD graph. Since
randomness is used in the triangulation heuristics we run each heuristics ten
times on each model and selected a triangulation with the minimum value of
total table size tts.

For each tested model we computed the decadic logarithm ratio

r(pd, h) = log10 tts
(
GPD-minfill
BROD

)
− log10 tts

(
Gh
BROD

)
,

where h stands for the tested triangulation heuristics. In Table 2 we give fre-
quencies of several intervals of log-ratio r(pd, h) values for the tested heuristics
in the test benchmark.
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Table 2. Frequency of r(pd, h) values for the heuristics tested on the test benchmark

Intervals of r(pd, h) minfill minfill-1ahd minfill-2ahd minfill-pll minfill-comb

(−3, −2] 5 0 0 0 0
(−2, −1] 26 14 9 0 0
(−1, −0.05] 96 82 76 116 2
(−0.05, 0.05] 518 535 536 695 637
(0.05, 1] 328 339 350 177 334
(1, 2] 116 115 113 101 114
(2, 3] 101 103 104 99 101
(3, 4] 29 31 31 31 31
(4, 5] 27 27 27 27 27
(5, 6] 34 33 33 33 33
(6, 7] 9 10 10 10 10
(7, 8] 3 3 3 3 3
(8, 9] 8 8 8 8 8

From the table we can see that, on average, all tested heuristics perform sig-
nificantly better than PD-minfill, since positive differences of the logarithms are
more frequent and achieve larger absolute value. On the other hand, most of
the heuristics are worse than PD-minfill for some of the models. Since trian-
gulation heuristics minfill, minfill-pll, and PD-minfill are computationally fast
on moderately large networks, the best solution seems to be to run all three of
these algorithms and select the best solution. Already minfill-comb, which is the
combination of minfill and minfill-pll, eliminates most of the cases where minfill
is worse than PD-minfill.

5 Conclusions

In this paper we compare two transformations of BN2O networks that allow
more efficient probabilistic inference: parent divorcing (PD) and rank-one de-
composition (ROD). ROD appears to be superior to PD, since with ROD we
can always get a total table size of the resulting triangulated graph not larger
than using PD. The experiments confirm that in most cases, ROD leads directly
to a better result. In the remaining cases, it is the best to calculate the elimi-
nation order for the PD graph and transform it to the elimination order for the
ROD graph.

We also perform experiments with different triangulation heuristics and sug-
gest few modifications of the minfill heuristics for BN2O networks, which lead
to further improvements, although none of the heuristics is universally the best.
In order to get the best result for all models, we suggest running several of the
described heuristics, including minfill on the PD graph, and select the best so-
lution. This process is efficient, since determining tts for a triangulation is fast
and the actual inference is then performed with a well-chosen triangulation.



Triangulation Heuristics for BN2O Networks 577

Acknowledgments

We would like to thank Mark Chavira for providing us with the code extracted
from Ace [13], which we have used for the construction of PD graphs and for the
computation of elimination orderings in these graphs.

References

1. Olesen, K.G., Kjærulff, U., Jensen, F., Jensen, F.V., Falck, B., Andreassen, S.,
Andersen, S.K.: A MUNIN network for the median nerve — a case study on loops.
Applied Artificial Intelligence 3, 384–403 (1989); Special issue: Towards Causal AI
Models in Practice

2. Dı́ez, F.J., Galán, S.F.: An efficient factorization for the noisy MAX. International
Journal of Intelligent Systems 18, 165–177 (2003)

3. Vomlel, J.: Exploiting functional dependence in Bayesian network inference. In:
Proceedings of the 18th Conference on Uncertainty in AI (UAI), pp. 528–535.
Morgan Kaufmann, San Francisco (2002)

4. Savicky, P., Vomlel, J.: Exploiting tensor rank-one decomposition in probabilistic
inference. Kybernetika 43(5), 747–764 (2007)

5. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Algebraic
and Discrete Methods 2, 77–79 (1981)

6. Vomlel, J., Savicky, P.: Arithmetic circuits of the noisy-or models. In: Proceedings
of the Fourth European Workshop on Probabilistic Graphical Models (PGM 2008),
Hirtshals, Denmark, pp. 297–304 (2008)

7. Bodlaender, H.L., Koster, A.M.C.A., Eijkhof, F.V.D.: Preprocessing rules for tri-
angulation of probabilistic networks. Computational Intelligence 21(3), 286–305
(2005)

8. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. The-
oretical Computer Science 209(1-2), 1–45 (1998)

9. Savicky, P., Vomlel, J.: Triangulation heuristics for BN2O networks. Technical
report, Institute of Information Theory and Automation of the AS CR (2009),
http://www.utia.cas.cz/vomlel/ecsqaru2009-full-version.pdf

10. Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations. Graph Theory and Computing, 183–217 (1972)

11. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput. 13, 566–579 (1984)

12. Cano, A., Moral, S.: Heuristic algorithms for the triangulation of graphs. In:
Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds.) IPMU 1994. LNCS, vol. 945,
pp. 98–107. Springer, Heidelberg (1995)

13. Ace: A Bayesian network compiler (2008), http://reasoning.cs.ucla.edu/ace/

http://www.utia.cas.cz/vomlel/ecsqaru2009-full-version.pdf
http://reasoning.cs.ucla.edu/ace/


A Default Logic Patch for Default Logic
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Abstract. This paper is about the fusion of multiple information
sources represented using default logic. More precisely, the focus is on
solving the problem that occurs when the standard-logic knowledge
parts of the sources are contradictory, as default theories trivialize
in this case. To overcome this problem, it is shown that replacing
each formula belonging to Minimally Unsatisfiable Subformulas by a
corresponding supernormal default allows appealing features. Moreover,
it is investigated how these additional defaults interact with the initial
defaults of the theory. Interestingly, this approach allows us to handle
the problem of default theories containing inconsistent standard-logic
knowledge, using the default logic framework itself.

Keywords: Default logic, logic-based fusion, inconsistency tolerance,
MUS, Minimally Unsatisfiable Subformulas.

1 Introduction

In the Artificial Intelligence (A.I.) research community, one of the most popular
tools to handle forms of defeasible reasoning remain Reiter’s default logic [1]
and its major variants (e.g. [2], [3], [4] and [5] just to name a few other seminal
papers). Default logic has been defined to allow forms of reasoning by default to
be modelled. It permits an inference system to jump to default conclusions and
to retract them when new information shows that these conclusions now lead to
inconsistency.

For example, default logic is a very convenient framework to encode patterns
of reasoning like “Given an employee x, by default we should allow x to access
the database unless this would contradict security rules. If some further addi-
tional information makes such contradictions occur then the permission must be
retracted”.

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 578–589, 2009.
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A default-logic theory is made of two parts: a set of first-order logic formulas
representing knowledge and a set of default rules, i.e. a sort of inference rules
capturing patterns of defeasible reasoning as in the above example.

In this paper, we investigate how several1default theories in Reiter’s default
logic should be fused when it is assumed that each default theory represents the
knowledge of an agent or of a community of agents. More precisely, it is shown
that merging these theories is not an issue that is to be taken as granted when the
set-theoretical union of the standard-logic formulas to be fused is inconsistent.
Indeed, keeping all such formulas would make the whole language to be the set
of acceptable inferences because when the standard-logic knowledge part of a
default theory is inconsistent, the default theory itself trivializes.

Quite surprisingly, to the best of our knowledge, this trivialization property
of default logic has not been addressed so far in the literature. In this respect,
the goal of this paper is to revisit default logic in such a way that trivialization
is avoided in the presence of inconsistent premises, sharing the concerns of the
large research effort from the A.I. research community to study how to reason
in the presence of inconsistent knowledge and to develop inconsistency tolerence
techniques (see e.g. [6]). In particular, when several information sources are to
be aggregated, a single, possibly minor contradiction between two sources should
not cause the whole system to collapse.

In the paper, a family of approaches in that direction are discussed. Mainly,
they rely on the study of MUSes (Minimally Unsatisfiable Subformulas) in the
standard-logic formulas. Accordingly, a series of reasoning paradigms are inves-
tigated. Specifically, it is shown that replacing each formula in the set of MUSes
by a corresponding default rule is an appealing solution. As a special case, it
offers a powerful way to recover from the inconsistencies that might occur in
sets of standard-logic formulas. Interestingly, this latter technique can easily be
exported to the main variants of default logic, like e.g. constrained [2], ratio-
nal [3], justified [4] and cumulative default logic [5], of which some ensure that
general default theories have at least one extension.

The paper is organized as follows. In the next section, MUSes and the way
according to which they can be computed are presented. In Sections 3 and 4, an
approach to replace MUSes by additional default rules is introduced and studied
in the context of recovering from inconsistency in standard Boolean logic. Section
5 is devoted to how these additional rules interact with the default ones of the
initial theories. In Section 6, a complexity analysis of this technique is provided,
together with possible approximation techniques.

Throughout the paper, we use the following standard notations: ¬, ∨, ∧ and
⊃ represent the standard negation, disjunction, conjunction and material impli-
cation connectives, respectively. When Ω is a set of first-order formulas, Cn(Ω)
denotes the deductive closure of Ω. Also, let us recall that in the Boolean case a
CNF is a finite conjunction of clauses, where a clause is a disjunction of signed
Boolean variables.

1 On the other hand, the following applies to a single default theory, too.
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In the following, we assume that the reader is familiar with default logic [1].
A brief reminder about default logic is provided in Appendix A.

2 MUSes

Assume that Σ is a set of Boolean formulas. A Minimally Unsatisfiable Subfor-
mulas (MUS) Φ of Σ is defined as follows:

– Φ ⊆ Σ,
– Φ is unsatisfiable,
– ∀Ψ ⊂ Φ, Ψ is satisfiable.

Accordingly, a MUS of Σ is a subset of Σ that is contradictory and that
becomes satisfiable whenever any of its formulas is removed. Thus, a MUS of Σ
describes a contradiction within Σ using a set of formulas of Σ that cannot be
made smaller.

Note 1. The set of all MUSes of a set of formulas Σ is denoted MUS(Σ). The
set of all formulas occurring in the MUSes of Σ is denoted ∪MUS(Σ).

Example 1. Let Σ = {a, a ⊃ b,¬b, a ⊃ (c ∨ d),¬d, c ⊃ b, d ⊃ e, (c ∧ e) ⊃ a}.
Clearly, Σ is unsatisfiable and contains two MUSes, namely Φ1 = {a, a ⊃ b,¬b}
and Φ2 = {a ⊃ (c ∨ d), a,¬d, c ⊃ b,¬b}.

This example also illustrates that MUSes can share non-empty intersections.
Many techniques to handle contradictions in logic-based systems have been

discussed in the literature (see e.g [6] and [7] for surveys in that matter). One
family of approaches amount to recovering satisfiability by dropping MUSes or
parts of MUSes. Indeed, removing one formula in each MUS allows consistency
to be recovered. Two extreme approaches can thus be proposed in that direction.
On the one hand, we might drop the set-theoretical union of all MUSes, thus
removing every minimal (w.r.t. the number of involved formulas) cause of in-
consistency. On the other hand, we might prefer a minimal change policy, which
requires us to drop at most one formula per MUS.

3 How to Handle Default Theories Containing
Contradictory Standard-Logic Knowledge

In the following, we assume that Σ is a set of Boolean formulas and we are
mostly interested in default theories Γ = (Δ,Σ) where Σ is inconsistent. In
such a case, Γ has a unique extension, which is the whole logical language.

We distinguish between skeptical and credulous reasonings from a default
theory Γ : a formula f can be skeptically (resp. credulously) inferred from a
default theory Γ iff f belongs to all (resp. some) extensions of Γ .

Now, since a default theory consists of two parts, namely a set of defaults and
a set of facts, the fusion of default theories amounts to merging sets of facts and
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merging sets of defaults. In the following, we assume that facts (resp. defaults)
are unioned by this fusion process.

Assume that we are given n default theories Γi = (Δi, Σi) (i ∈ [1..n]) to be
fused, that are such that the set-theoretical union of their standard logic parts,
namely ∪ni=1Σi, is inconsistent. One direct way to address the trivialization of
the resulting aggregated default theory consists of removing enough formulas
from ∪ni=1Σi so that the resulting subset becomes consistent. However, dropping
formulas is unnecessarily destructive.

Indeed, a credulous reasoner might be interested in exploring the various ex-
tensions that could be obtained if regarding as being acceptable the various
maximal consistent subsets of the various MUSes of ∪ni=1Σi. Also, a skeptical
reasoner might want to explore what would belong to all those extensions. In
this respect, if we replace each formula f in the MUSes of ∪ni=1Σi by a corre-
sponding supernormal default :f

f , we get a new default theory where the reasoner
is considering that each formula f in the MUSes could be inferred if f could be
consistently assumed. However, since the set-theoretical union of the consequents
of these new defaults is inconsistent, default logic forbids the acceptance of all
such f within the same extension. Let us stress that this policy does not enforce
by itself any priority between the replaced formulas since all of those are treated
in a uniform way. Interestingly, this approach allows us to handle the problem
of default theories containing inconsistent standard-logic knowledge, using the
default logic framework itself.

Definition 1 (fused default theory). Let us consider a non-empty set of n
default theories of the form Γi = (Δi, Σi) to be fused. The resulting fused default
theory is given by Γ = (Δ,Σ) where:

– Σ = ∪ni=1Σi \ ∪MUS(∪ni=1Σi),
– Δ = ∪ni=1Δi ∪ { :f

f | f ∈ ∪MUS(∪ni=1Σi)}.

This definition thus corresponds to a policy that requires a uniform treatment
of formulas inside MUSes. On the contrary, alternative definitions could make
use of selection operators select to deliver a subset of ∪MUS(∪ni=1Σi) such
that ∪ni=1Σi \ select(∪MUS(∪ni=1Σi)) is consistent, and such that each formula
from select(∪MUS (∪ni=1Σi)) is to be replaced by a corresponding supernormal
default in the fused theories.

4 Addressing the Trivialization Issue in the Standard
Boolean Case

First, let us consider the basic situations where the set of defaults ∪ni=1Δi

is empty. Obviously enough, this coincides with the problem of fusing sets of
Boolean formulas that are such that their set-theoretical union is inconsistent.
The above definition thus provides an original approach to address this issue.

Example 2. Let Γ1 = (∅, {¬a ∨ b,¬b}) and Γ2 = (∅, {a}) two default theories
to be fused. Clearly, ∪2

i=1Σi = {¬a ∨ b, a,¬b} is inconsistent. The fused default
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theory Γ = ({ :a
a , :¬a∨b
¬a∨b ,

:¬b
¬b }, ∅) exhibits the extensions E1 = Cn({a,¬a ∨ b}),

E2 = Cn({¬b,¬a∨ b}) and E3 = Cn({a,¬b}); each of them containg two of the
consequents of the three defaults.

Interestingly, it is possible to characterize the set-theoretic intersection of all
extensions of the fused default theory, when the initial theories do not contain
any default.

To do that, we resort to (usual) choice functions θ for a finite family of non-
empty sets Ξ = {Ω1, . . . , Ωn}, which “pick” an element in every Ωi of the
family. In the limiting case that Ξ is empty, θ(Ξ) is empty.

Note 2. Let Θ denote the subclass of choice functions θ for Ξ = {Ω1, . . . , Ωn}
such that for i 
= j, θ(Ωi) ∈ Ωj ⇒ θ(Ωj) = θ(Ωk) for some k 
= j (but k may,
or may not, be i). This subclass is reduce to choices functions θ whose image is
minimal s.t. if θ ∈ Θ then �θ′ ∈ Θ s.t. θ′(Ξ) ⊂ θ(Ξ).

Proposition 1. Let n > 1. Consider n finite default theories of the form Γi =
(Δi, Σi) to be fused. If Δi is empty for i = 1..n, then the set-theoretic intersection
of all extensions of the resulting fused default theory Γ = (Δ,Σ) is Cn({ψ})
where:

ψ =
∨
θ∈Θ

∧(
(∪ni=1Σi) \ θ(MUS(∪ni=1Σi))

)
.

Remark 1. It is essential that the default theories to be fused are finite for Propo-
sition 1 to hold. Otherwise, MUS(∪ni=1Σi) can be infinite. Then, not only would
the axiom of countable choice be needed, but even worse, an infinite disjunction
would be needed (which is outside classical logic). For example, assume that the
default theories to be fused are Γ1 = (∅, Σ1), Γ2 = (∅, Σ2), and Γ3 = (∅, Σ3)
where:

Σ1 = {p1, q1, r1, . . .},
Σ2 = {p2, q2, r2, . . .},
Σ3 = {¬p1,¬p2,¬q1,¬q2,¬r1,¬r2, . . .}.

Clearly, MUS(∪3
i=1Σi) = {{p1,¬p1}, {p2,¬p2}, {q1,¬q1}, {q2,¬q2}, . . .} is infi-

nite. Therefore, ψ would have infinitely many conjuncts and disjuncts. For in-
stance, taking θ1 to pick only negative literals yields the infinite conjunction∧
{p1, p2, q1, q2, r1, r2, . . .}. The disjunction would also be infinite because in-

finitely many choice functions must be taken into account.
In this example, Σ is empty but it is easy to alter it to make Σ infinite:

Σ1 = {p1, q1, r1, s1, . . .},
Σ2 = {p2, q2, r2, s2, . . .},
Σ3 = {¬p1, p2, q1,¬q2,¬r1, r2, s1,¬s2, . . .}.

Interestingly, the following proposition shows us that any formula in the
set ∪MUS(∪ni=1Σi) belongs to at least one extension of the fused theory. Ac-
cordingly, no formula is lost in the fusion process in the sense that each non-
contradictory formula that is replaced by a default – and that would be dropped
in standard fusion approaches – can be found in at least one extension of the
fused theory.
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Proposition 2. Let n > 1. Consider n finite default theories Γi = (Δi, Σi) such
that ∪ni=1Δi is empty and ∪ni=1Σi is inconsistent. Let Γ denote the resulting fused
default theory. There exists no extension of Γ that contains ∪MUS(∪ni=1Σi) but
for any satisfiable formula f in ∪MUS(∪ni=1Σi), there exists an extension of Γ
containing f .

Based on the above proposition, it could be imagined that the intersection of
all extensions will merely coincide with the extensions of the default theory
Γ ′ = (∅,∪ni=1Σi \ ∪MUS(∪ni=1Σi)). As the following example shows, this is not
the case since the computation of the multiple extensions mimics a case analysis
process that allows inferences to be entailed that would simply be dropped if
∪MUS(∪ni=1Σi) were simply removed from ∪ni=1Σi.

Example 3. Let us consider Γ1 = (∅, {a∧b, c ⊃ d}) and Γ2 = (∅, {¬a∧c, b ⊃ d}).
Clearly, {a∧b,¬a∧c} is a MUS. If we simply drop the MUS, we get Γ ′ = (∅, {c ⊃
d, b ⊃ d}). Clearly, Γ ′ has a unique extension Cn({c ⊃ d, b ⊃ d}) that does not
contain d. This is quite inadequate since the contradiction is explained by the
co-existence of a and ¬a. Assume that a is actually true. Then, from a ∧ b and
b ⊃ d we should be able to deduce d. Similarly, if a is actually false then we
should also be able to deduce d. Now, Γ = ({ :a∧b

a∧b ,
:¬a∧c
¬a∧c }, {c ⊃ d, b ⊃ d}) exhibits

two extensions, each of them containing d. Accordingly, d can be inferred using
a skeptical approach to default reasoning.

This last example also shows us that this treatment of inconsistency permits
more (legitimate) conclusions to be inferred than would be by removing MUSes
or parts of MUSes. This is not surprising since by weakening formulas into default
rules, we are dropping less information than if we were merely removing them.
An alternative approach to allow such a form of case-analysis from inconsistent
premises can be found in [8].

Applying Proposition 1 to Example 3 shows what the consequences of the
resulting fused default theory Γ = (Δ,Σ) are:

Example 4 (con’d). MUS(∪2
i=1Σi) = {{a∧ b,¬a∧ c}} because Σ1∪Σ2 has only

one MUS, that is, {a∧b,¬a∧c}. Hence, there are only two choice functions over
{a ∧ b,¬a ∧ c}. One picks a ∧ b and the other picks ¬a ∧ c. Let us denote them
θ1 and θ2 respectively. Then, the formula ψ in Proposition 1 becomes:

ψ =
∨

θ∈{θ1,θ2}

∧(
(∪2

i=1Σi) \ θ(MUS(∪2
i=1Σi))

)
.

That is:
ψ =

∨
θ∈{θ1,θ2}

∧(
(Σ1 ∪Σ2) \ θ({{a ∧ b,¬a ∧ c}})

)
.

So:
ψ =

(∧
{¬a ∧ c, c ⊃ d, b ⊃ d}

)∨(∧
{a ∧ b, c ⊃ d, b ⊃ d}

)
.
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Applying various logical laws, ψ becomes the conjunction of the following four
formulas:

(¬a ∧ c) ∨ (a ∧ b),
((c ⊃ d) ∧ (b ⊃ d)) ∨ (¬a ∧ c),
((c ⊃ d) ∧ (b ⊃ d)) ∨ (a ∧ b),
((c ⊃ d) ∧ (b ⊃ d)) ∨ ((c ⊃ d) ∧ (b ⊃ d)).

Of course, the latter disjunction is equivalent with (c ⊃ d)∧(b ⊃ d) and subsumes
the preceding two formulas. As a consequence:

ψ = ((¬a ∧ c) ∨ (a ∧ b)) ∧ (c ⊃ d) ∧ (b ⊃ d).

Finally, the set-theoretic intersection of all extensions of the resulting fused de-
fault theory Γ = (Δ,Σ) is Cn({b ⊃ d, c ⊃ d, b ∨ c,¬a ∨ b, a ∨ c}).

Observe that Cn({b ⊃ d, c ⊃ d, b ∨ c,¬a ∨ b, a ∨ c}) can be simplified as
Cn({b ⊃ d, c ⊃ d,¬a ∨ b, a ∨ c}). In any case, both b ∨ c and d are in Cn({b ⊃
d, c ⊃ d,¬a ∨ b, a ∨ c}).
Now, another interesting feature of the fusion process given by Definition. 1 is
that a skeptical reasoner will be able to infer (at least) all formulas that it would
be able to infer if the MUSes of ∪ni=1Σi were simply dropped.

Proposition 3. Let n > 1. Consider n finite default theories Γi = (Δi, Σi) to
be fused. Let ∩jEj denote the set-theoretic intersection of all extensions of the
resulting fused default theory Γ = (Δ,Σ). Let E denote the unique extension of
Γ ′ = (∅, Σ). If Δi is empty for i = 1..n, then E ⊆ ∩jEj .

Example 5. Assume Γi=(Σi, Δi) where ∪ni=1Σi = {a,¬a∨¬b, b, c} and ∪ni=1Δi=
∅. ∪MUS(∪ni=1Σi) = {a,¬a ∨ ¬b, b}. The resulting fused default theory is Γ =
(Δ,Σ) where Σ = {c} and Δ = { :a

a , :¬a∨¬b
¬a∨¬b ,

:b
b }. The extensions of Γ are E1 =

Cn({c, a,¬a∨¬b}), E2 = Cn({c,¬a∨¬b, b}) and E3 = Cn({c, a, b}). The unique
extension of the default theory where all formulas from ∪MUS(∪ni=1Σi) are
dropped is E = Cn({c}). We have ∩nj=1Ej = Cn({c, a ∨ b}) and E ⊆ ∩nj=1Ej .

Let us now consider the general case where theories contain defaults, and study
how new defaults interact with defaults of the initial theories.

5 How the New Defaults Interact with the Defaults of
the Theories to be Fused

First, it is well-known that normal default theories enjoy interesting properties,
like semi-monotonicity [1]. This property ensures that whenever we augment a
normal default theory Γ with an additional normal default, every extension of
Γ is included in an extension of the new theory. Accordingly, we can insure that
the extension of Proposition 2 to normal default theories holds since we only
add supernormal defaults to the set-theorical union of initial theories.

On the other hand, the extension of Proposition 3 to normal default theories
does not hold: as the following example shows, the unique extension of Γ ′ =
(∪ni=1Δi, Σ) is not necessarily contained in the set-theorical intersection of all
the extensions of the resulting fused theory.
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Example 6. Let us assume that ∪ni=1Σi = {a,¬a ∨ ¬b, b, c} and ∪ni=1Δi = {a:dd ,
c:¬d
¬d }. The resulting fused default theory is Γ = (Δ,Σ) where Σ = {c} and Δ =
{ :a
a , :¬a∨¬b
¬a∨¬b ,

:b
b ,

a:d
d , c:¬d¬d }. The extensions of Γ are E1 = Cn({c, a,¬a ∨ ¬b, d}),

E2 = Cn({c,¬a ∨ ¬b, b,¬d}) and E3 = Cn({c, a, b, d}). The unique extension
of the default theory Γ ′ = (∪ni=1Δi, Σ) is E = Cn({c,¬d}) while ∩nj=1Ej =
Cn({c}). Thus E � ∪nj=1Ej .

Indeed, removing MUSes prevents the application of initial (normal) defaults
whose prerequisite belongs to MUSes. Accordingly, we derive the following
proposition.

Proposition 4. Let n > 1. Consider n finite normal default theories Γi =
(Δi, Σi) to be fused and Γ ′ = (∪ni=1Δi,∪ni=1Σi \ ∪MUS(∪ni=1Σi)). For any ex-
tension E of Γ ′, there exists an extension of the resulting fused default theory
that contains E.

Interestingly, this proposition ensures that whenever we iterate the fusion process
of normal default theories, we are always ensured that any extension can only
be extended in the process.

Now, in the general case, replacing MUSes or subparts of MUSes by corre-
sponding defaults does not ensure that we shall obtain supersets of the extensions
that would be obtained if those MUSes or some of their subparts were removed:
the semi-monotonicity does not hold.

Example 7. Let us consider Γ = (Δ, {a,¬a}) where Δ = { :b
b ,

a:c
¬b ,
¬a:c
¬b }. The

default theory Γ ′ = (Δ, ∅) exhibits one extension, which is Cn({b}). On the
contrary, (Δ ∪ { :a

a , :¬a¬a }, ∅) does not contain any extension containing b.

Generalizing Proposition 2 to default theories with non-empty sets of defaults
does not hold either: as shown by the following example, it may happen that
consistent formulas of ∪MUS(∪ni=1Σi) are in no extension of the resulting fused
default theory.

Example 8. Let us consider the default theory Γ1 = (∅, {a, c}) and Γ2 = ({ c:b¬a},
{¬a}) to be fused. ∪MUS(∪2

i=1Σi) = {a,¬a}. The resulting fused default theory
is Γ = ({ :a

a , :¬a
¬a , c:b¬a}, {c}). The unique extension of Γ is E = Cn({c,¬a}), which

does not contain a.

6 Complexity Issues and Approximation Techniques

In the Boolean case, computing MUSes is computationally heavy in the worst
case since checking whether a clause belongs or not to the set of MUSes of a
CNF is Σp

2 -complete [9]. Accordingly, the whole process of finding and replacing
contradictory formulas by corresponding defaults, and then achieving Boolean
credulous default reasoning is not computationally harder than credulous default
reasoning itself since, in the general case, the latter is also Σp

2 -complete (whereas
it is Πp

2 -complete in the skeptical case) [10].
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Interestingly, recent algorithmic techniques make it possible to compute one
MUS for many real-life problems [11]. However, the number of MUSes in a set of
n clauses can be intractable too, since it is C

n/2
n in the worst case. Fortunately,

efficient techniques have also been defined recently to compute all MUSes for
many benchmarks, modulo a possible exponential blow-up limitation [12].

However, in some situations we cannot afford to compute the set-theoretical
union of all MUSes. In this context, several techniques can then be applied.

First, it should be noted that it is not required to replace all formulas in all
MUSes by corresponding defaults to recover consistency. Indeed, one could first
detect one MUS, replace all its formulas by defaults, then iterate this process
until consistency is recovered. Such an approach may avoid us computing all
MUSes; it has been studied in the clausal Boolean framework in the context of
the detection of strict inconsistent covers [13].

Definition 2 (strict inconsistent cover). Let Σ be a set of Boolean formulas.
Σ′ ⊆ Σ is a strict inconsistent cover of Σ iff Σ \Σ′ is satisfiable and Σ′ = ∪A
for some A ⊆MUS(Σ) such that, if |A| > 1, any two members of A are disjoint.

Lemma 1. A strict inconsistent cover of Σ is empty iff Σ is satisfiable.

Lemma 2. A strict inconsistent cover of Σ always exists.

Lemma 3. For all M ∈MUS(Σ), there exists a strict inconsistent cover of Σ
that contains M .

Strict inconsistent covers IC(Σ) are thus minimal sets of formulas in Σ that
can capture enough sources of contradiction in Σ to recover consistency if they
were fixed. In [13] a technique to compute strict inconsistent covers in the
Boolean clausal case has been introduced and proved efficient for many diffi-
cult benchmarks. Clearly, strict inconsistent covers is an approximation of the
set-theoretical union of MUSes in the sense that all formulas of the cover always
belong to this union but not conversely, and that dropping the cover causes
consistency to be restored. The price to be paid for this approximation is that
several different inconsistent covers can co-exist for a given set of MUSes.

Now, most of the time, it is possible to extract a super-set Ω of all MUSes
of ∪ni=1Σi very quickly, in such a way that retracting Ω would restore the con-
sistency of ∪ni=1Σi. At the extreme, this super-set can be ∪ni=1Σi itself. Accord-
ingly, we could replace all formulas in Ω by corresponding supernormal defaults.
Clearly, such a process would restore consistency. The price to be paid is that
both uncontroversial and problematic information, i.e. both formulas belonging
and not belonging to MUSes would be downgraded and treated in the same
manner.

An alternative approach consists in replacing at most one formula per MUS.
Clearly, from a practical point of view, detecting one such formula does not
require us to compute one MUS exactly but simply a superset of a MUS, such
that dropping the formula would make this superset consistent. Since MUSes
can share non-empty intersections, let us note that it is however difficult to
guarantee that a minimal number of formulas are replaced without computing
all MUSes explicitly.
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7 Conclusions and Future Works

In this paper, a “patch” to default logic, one of the most popular logics for
representing defeasible reasoning, has been proposed. It allows a reasoner to
handle theories involving contradictory standard-logic bases whereas standard
default logic trivializes in this case. Interestingly, the new framework offers a
powerful way to treat inconsistent standard logic theories as well. Such a default
logic variant is of special interest when the fusion of several sources of knowledge
is considered: indeed, without the patch, a default logic reasoner would be able to
infer any conclusion (and its logical contrary) whenever two pieces of (standard
logic) information appear to be contradicting one another in the sources.

In the basic approaches described in the previous section, no distinction is
made between the defaults from the initial theories and the defaults that are
introduced to replace MUSes or subparts of MUSes, as if all defaults were of the
same epistemological nature. Indeed, the new defaults are introduced to correct
and weaken some pieces of knowledge that exhibit some deficiencies. Our way
to correct MUSes amounts to considering that formulas participating in MUSes
should be accepted by default. In this respect, it can be argued that the role of
the additional defaults is similar to the role of defaults of initial theories, which
are normally intended to represent pieces of default reasoning.

On the contrary, it can be argued that new defaults should be given a higher
(resp. lower) priority than defaults of initial theories. In these cases, we must
resort to a form of prioritized default logic (see eg. [14]). We plan to investigate
this issue in the future.
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Appendix A: Default Logic

The basic ingredients of Reiter’s default logic [1] are default rules (in short,
defaults). A default d is of the form:

α(x) : β1(x) , . . . , βm(x)
γ(x)

,

where α(x), β1(x), . . . , βm(x), γ(x) are first-order formulas with free variables
belonging to x = {x1, . . . , xn}, and are called the prerequisite, the justifications
and the consequent of d, respectively.

Intuitively, d is intended to allow the reasoning “Provided that the prereq-
uisite can be established and provided that each justification can be separately
consistently assumed w.r.t. what is derived, infer the consequent”.

Accordingly, the example in the introduction could be encoded by:

employee(x) : permit access DB(x)
permit access DB(x)

.

Such a default where the justification and consequent are identical is called a
normal default. A normal default with an empty prerequisite is called a super-
normal default. For a default d, we use pred(d), just(d), and cons(d) to denote
the prerequisite, the set of justifications and the consequent of d, respectively.

A default theory Γ is a pair (Δ,Σ) where Σ is a set of first-order formulas
and Δ is a set of defaults. It is usually assumed that Δ and Σ are in skolemized
form and that open defaults, i.e. defaults with free variables, represent the set
of their closed instances over the Herbrand universe. A default theory with open
defaults is closed by replacing open defaults with their closed instances. In the
following, we assume that defaults theories are closed.

Defining and computing what should be inferred from a default theory is not
a straightforward issue. First, there is a kind of circularity in the definition and
computation of what can be inferred. To decide whether a consequent of a default
should be inferred, we need to check the consistency of its justifications. However,
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this consistency check amounts to proving that the opposites of the justifications
cannot be inferred in turn. Actually, in the general case, fixpoints approaches
are used to characterize what can be inferred from a default theory. Secondly,
zero, one or several maximal sets of inferred formulas, called extensions, can be
expected from a same default theory. One way to characterize extensions is as
follows [1].

Let us define a series of sets of formulas Ei where E0 = Cn(Σ) and Ei+1 =

Cn(Ei ∪ {γ s.t.
α : β1, . . . , βm

γ
∈ Δ where α ∈ Ei and ¬β1, . . . ,¬βm 
∈ E}),

for i = 0, 1, 2, etc. Then, E is an extension of Γ iff E =
⋃∞
i=0 Ei.

A default d is called generating in a set of formulas Π , if pred(d) ∈ Π and
{¬a s.t. a ∈ just(d)} ∩Π = ∅. We note GD(Δ,E) the set of all defaults from
Δ that are generating in E. It is also well-known that every extension of a
default theory Γ = (Δ,Σ) is characterized through GD(Δ,E), i.e. E = Cn(Σ ∪
cons(GD(Δ,E))), where cons(Δ′) = {cons(d) s.t. d ∈ Δ′} for any set Δ′.
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Abstract. We address the problem of providing a logical characteriza-
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1 Introduction

One important feature of intelligent reasoning consists in the capability of asso-
ciating specific situations to general patterns and by doing so, extending one’s
initial knowledge. Reasoning based on stereotypes is a case in point. Loosely
speaking, a stereotype can be thought of as an individual whose characteristics
are such that it represents a typical (i.e. generic) individual of the class it belongs
to. For this reason a stereotypical individual can be expected to satisfy the key
properties which are typically true of the class to which the individual belongs
(see Section 2 below for an example). Of course exceptions might be waiting just
around the corner and an intelligent agent must be ready to face a situation
in which the properties projected on a specific individual by using stereotypical
information turn out not to apply. Stereotypical reasoning is therefore defeasible.

The purpose of this paper is to provide a logical insight on the problem of
modelling rational stereotypical reasoning. Our central idea consists in represent-
ing the latter as a two-stage inference process along the following lines. Given
a piece of specific information, an agent selects among some background infor-
mation available to it, those stereotypes which better fit the factual information
at hand. We expect this to normally expand the initial information available
to the agent. The second step is properly inferential: using the new (possibly
expanded) information set the agent draws defeasible conclusions about the sit-
uation at hand. The key ingredient in the formalization of the first stage is a
function which ranks the fitness of a set of stereotypes with respect to some
factual information. Following [7] we interpret fitness in terms of a semantic dis-
tance function. Due to the defeasible nature of reasoning based on stereotypes,
the inferential stage will have to be formalized by a non monotonic consequence
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relation. Since we are interested in representing rational reasoning, we shall be
asking for this consequence relation to be particularly well-behaved. In our model
this amount to requiring that stereotypical reasoning should be cumulative.

The paper is organized as follows. Section 2 sets the stage for our discus-
sion on stereotypes and provides a general characterization of semantic distance.
Section 3 is devoted to recall some basic facts about non monotonic reasoning
in general and default-assumption consequence in particular. We then review in
Section 4 Lehmann’s original proposal for distance-based stereotypical reasoning
and we highlight a basic shortcoming of such model. We attempt to fix this in
Section 5 where we propose a semantic distance for information which is po-
tentially inconsistent with an agent’s defaults. While overcoming the limitation
of Lehmann’s model, the distance function introduced there fails to lead to full
cumulative reasoning. We then combine the intuition behind both distances in
Section 6 where we define a lexicographic distance function which at the same
time admits inconsistency and leads to cumulative consequence relations.

Before getting into the main topic of this paper, let us fix some notation. We
denote by ' the set of sentences built-up from the finite set propositional letters
P = {p1, . . . , pn} using the classical propositional connectives {¬,∧,∨,→} in
the usual, recursive way. We denote by lowercase Greek letters α, β, γ, . . ., the
sentences of ' while sets of such sentences will be denoted by capital Roman
letters A,B,C, . . .. As usual we denote consequence relations by  and |∼. In
particular,  denotes the classical (Tarskian) consequence relation while we use
|∼ (with various decorations) for non-monotonic consequence relations. Since it
is sometimes handier to work with inference operations rather than consequence
operations, we shall use Cl for the classical inference operation, that is Cl(A) =
{β|A  β} and C (with decorations) for the non monotonic ones, that is C(A) =
{β|A |∼ β}.

Semantically, we take sets of classical (binary) propositional valuations on the
language W = {w, v, . . .} interpreted as possible states of the world. Then we
also use  for the satisfaction relation between valuations and formulae where
w  α reads as ‘The valuation w satisfies the formula α’. Given A ⊆ ' and a set
W , we shall write [A]W to indicate the set of the valuations in W which satisfy
all the sentences in A ([A]W = {w ∈ W | w  φ for every φ ∈ A}). We shall
drop the subscript and write simply [A] whenever the reference to the particular
set of valuations is irrelevant.

2 Stereotypes

Stereotypes have been vastly investigated in a number of areas, from the phi-
losophy of mind to the cognitive sciences, for their key role in the development
of theories of concept-formation and commonsense reasoning (for an overview,
see e.g. [6]). Stereotypes feature prominently in Putnam’s social characteriza-
tion of meaning (see, e.g. [11]) as well as in most of the current approaches to
conceptualization while Lackoff [5] points out their fundamental importance in
commonsense and uncertain reasoning.
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To fix a little our ideas on stereotypes, let us take a class of individuals, ‘birds’,
for example; a stereotype bird can be thought as a set of properties defining an
individual bird that we consider to be particularly representative of the very
concept of a bird. In this case, then, those properties could be identifying a
robin or some other little tree-bird. Hence, if we take a logical perspective on
the problem, we can think of stereotypes as a set of states that typically, but
not necessarily, are true of some particularly representative members of a class
(a stereotypical bird will be a flying winged animal, of little dimensions, covered
with feathers, with a beak, laying eggs, singing, nesting on trees, etc.). This idea
suggests identifying a stereotype with a finite set of sentences Δ = {α1, . . . , αm}
which are true exaclty at those states which characterize the stereotype. We
denote by S,T, . . . finite sets of stereotypes (S = {Δ1, . . . , Δn}).

In our interpretation, a set of stereotypes represents the stereotypical or default
information available to an agent. This interpretation is justified by recalling that
in defeasible reasoning, defaults refer to those pieces of information that an agent
considers to be typically, normally, usually, etc. true. So, by taking stereotypical
properties as defaults, we capture the idea that an agent considers stereotypical
information as defeasible, and hence possibly revisable in the event of evidence
to the contrary.

The close connection between defeasible and stereotypical reasoning has been
brought to the logician’s attention by D. Lehmann ([7]) who proposes a model
for stereotypical reasoning along the following lines. An agent starts with a set
of n stereotypes, S = {Δ1, . . . , Δn}, and is then given information about some
particular individual, represented by a factual formula α, that we assume is
consistent. This fixes what the agent considers true of the state of the world at
hand. The idea then is that an agent’s reasoning depends on “how good” α is
as a stereotype in S. In order to capture this formally, Lehmann introduces a
notion of semantic distance d(α,Δ) between the factual and the stereotypical
information available to the agent. The smaller the distance d, the better factual
information “fits” the stereotype Δ. To take good advantage of stereotypical
reasoning, then, the agent should associate to the factual information at hand
the nearest stereotype. More precisely, given α and every stereotype Δi in S,
the agent selects a subset of S, Sα

d , of maximally close (i.e. nearest) elements
of S to α with respect to d. This is interpreted as the set of stereotypes which
is natural for the agent to associate to α. Formally:

Sα
d = {Δi ∈ S| d(α,Δi) ≤ d(α,Δj) for every Δj ∈ S)} (()

The selection of the nearest stereotypes to a formula α leads naturally to
defeasible reasoning which is captured by the consequence relation |∼S,d. For
obvious reasons we refer to this latter as the consequence relation generated by
S and d. To recap, the model goes as follows. An agent is equipped with a finite
set of stereotypes S and a semantic distance function d. Given a factual formula
α, the agent selects the set Sα

d of stereotypes which d ranks nearest to α. Now
this set Sα

d is used to generate a consequence relation |∼S,d, which, as we shall
shortly see, provides an adequate tool to produce defeasible conclusions from α
and the default information contained in Sα

d .
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Thus, before recalling the constraints imposed by Lehmann on the distance
function d and the properties of the generated consequence relation, we need to
recall some basic facts about non monotonic consequence relations.

3 Cumulative and Default-Assumption Consequence

Among the many proposals to characterize defeasible reasoning (see [2] for an
overview) some core structural properties emerge as particularly compelling (see
[4], [9], and [10]). In particular, the class of cumulative consequence relations has
gained quite a consensus in the community as the industry standard.

Definition 1 (Cumulative Consequence Relations). A consequence rela-
tion |∼ is cumulative if and only if it satisfies the following properties:

REF α |∼ α Reflexivity

LLE
α |∼ γ  α ↔ β

β |∼ γ
Left Logical Equivalence

RW
α |∼ β β  γ

α |∼ γ
Right Weakening

CT
α |∼ β α ∧ β |∼ γ

α |∼ γ
Cut (Cumulative Transitivity)

CM
α |∼ β α |∼ γ

α ∧ β |∼ γ
Cautious Monotony

where  denotes as usual the tarskian consequence relation of classical logic.

Combining the flexibility of nonmonotonic (i.e. default, revisable, defeasible,
etc.) reasoning with many desirable metalogical properties, such as idempotence,
supraclassicality, and full-absorption (see [9]), cumulative consequence relations
constitute a tool of choice in the formalization of commonsense inference.

Among the class of cumulative consequence relations are the so-called default-
assumption consequence relations, which will play a key role in our model and
which we therefore turn to recall. The idea behind default-assumption reasoning
is that an agent’s information can be viewed as being two-fold. On the one hand
agents have defeasible information, a set Δ of defaults that an agent presumes to
be typically true. On the other hand agents might acquire factual information,
that is, information that the agent takes as true of the particular situation at
hand, and which is represented, in our setting, by a single formula α. Intuitively,
then, default-assumption reasoning takes place when an agent extends its factual
information α with those defaults which are compatible with α and takes the
result as premises for its inferences.

In order to formalize this we need to define the set of maximally α-consistent
subsets of Δ, or, equivalently, the notion of remainder set (see [3], p.12).

Definition 2 (Remainder Sets). For B a set of formulae and α a formula,
the remainder set B⊥α (‘B less α’) is the set of sets of formulae such that
A ∈ B⊥α if and only if:
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1. A ⊆ B
2. α /∈ Cl(A)
3. There is no set A′ such that A ⊆ A′ ⊆ B, and α /∈ Cl(A′)

Thus, for a set of defaults Δ, Δ⊥¬α is the set of every maximal subsets of Δ
consistent with α. Default-assumption consequence relation can then be defined
as follows:

Definition 3 (Default-assumption consequence relation). β is a default-
assumption consequence of α given a set of default-assumptions Δ, (written
α |∼Δ β) if and only if β is a classical consequence of the union of α and
every set in Δ⊥¬α:

α |∼Δ β iff α ∪Δ′  β for every Δ′ ∈ Δ⊥¬α
It is well-known that default-assumption consequence relations are cumulative
(see e.g. [1] and [10]).

4 Lehmann’s Model
In [7] Lehmann proposes a set of intuitive constraints that the semantic distance
d should satisfy in order to generate a well-behaved consequence relation |∼S,d.
We denote by δ Lehmann’s distance function and by Sα

δ the set of stereotypes
in S selected by δ with respect to a factual formula α as in (() above. Finally
we denote by |∼S,δ the consequence relation generated by S and δ.

Recall that the stereotypes in Sα
δ , are meant be those which fit better the

factual information represented by α i.e. those with minimal semantic distance
from α. Thus, it is natural to capture this by looking at the overlap between the
states of the world which make α and a set of stereotypes Δ true. But such states
are precisely the models of α and the models of Δ ([α] and [Δ], respectively).
The idea is obviously that greatest overlap means maximal closeness. So, given
a set of stereotypes S and a factual formula α, Lehmann requires that:

◦ For every Δ ∈ S, δ(α,Δ) should be anti-monotonic with respect to [Δ]∩ [α]
(the larger the overlap, the smaller the distance).

◦ For every Δ ∈ S, δ(α,Δ) should be monotonic with respect to [Δ] − [α]
(the larger the set of states which satisfy the defaults but not the factual
information, the larger the distance).

The following simplifying assumption is also made:

◦ |Sα
δ | = 1 (i.e. for every α and S, the agent selects exactly one element in

S).

The above constraints are formalized by:

[Δ′] ∩ [α′] ⊆ [Δ] ∩ [α] and [Δ]− [α] ⊆ [Δ′]− [α′] ⇒ δ(α,Δ) ≤ δ(α′, Δ′) (L1)

The generated consequence relation |∼S,δ is then defined by adding the infor-
mation of the only default set Δα

δ in Sα
δ to the premise set α:

α |∼S,δ β iff {α} ∪Δα
δ  β. (L|∼)

For any distance function δ satisfying (L1), Lehmann proves the following result:
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Theorem 1 ([7], Theorem 5.5). If ([α]∩ [Δα
δ ]) ⊆ [α′] ⊆ [α], then Sα′

δ = Sα
δ .

That is, if the agent becomes aware of new factual information α′ that is not
inconsistent with the stereotype previously selected (([α] ∩ [Δα

δ ]) ⊆ [α′]), then
the agent should not abandon the selected stereotype (Δα

δ ) to extend its factual
information (that is, Sα′

δ = Sα
δ ). From this theorem Lehmann proves his main

result: given a set of stereotypes S and a distance function δ, if the distance
function δ satisfies the constraint (L1), then the generated consequence relation
|∼S,δ is cumulative ([7], Corollary 5.6).

To see the importance of the result, let us observe one of its consequences
through namely the fact that |∼S,δ satisfies Cautious Monotonicity. Suppose
that α stands for the fact that Sherkan is a big feline with a black-striped,
tawny coat. Then it is natural to associate Sherkan to the stereotype of the tiger
and then using this information to conclude that Sherkan has also long teeth
(α |∼S,δ β) and is a predator (α |∼S,δ γ). Reasonably then, if we add to our
premises the information that Sherkan has long teeth, we should continue to
consider it to be a tiger and, consequently, a predator (α ∧ β |∼S,δ γ).
Intuitive as (L1) may be, Lehmann’s model has a significant shortcoming. The
problem lies in the requirement that in order for stereotypical reasoning to take
place, there should be a nonempty intersection between the factual information
at hand and the agent’s set of stereotypes. In other words, Lehmann does not
take into account the possibility that every stereotype in S is inconsistent with
the premise α. In such a case, then by the definition of |∼S,δ, we could set the
distance between the premise and a stereotype to ∞ (i.e. the largest the distance
according to δ):

δ(α,Δ) = ∞ iff [α] ∩ [Δ] = ∅.
So, any choice of stereotypes here is admissible, making stereotypical reasoning
basically vacuous (that is, Sα

δ = S). This shortcoming reduces significantly
the scope of Lehmann’s model for one key feature of stereotypical reasoning is
precisely the fact that an individual can be related to a stereotype even if its
properties do not match all the properties of the stereotype so that we can derive
defeasible conclusions on the basis of the pieces of stereotypical information
compatible with the premises. For example, knowing that Tweety is a penguin,
we can reason about it using the information contained in the stereotype of a
bird excluding the information that is known to be inconsistent with being a
penguin (flying, nesting in trees, etc.).

5 A Semantic Distance for Inconsistent Information.

So we now focus on the situation in which every stereotype available to an agent
turns out to be inconsistent with its factual information. More precisely we define
a notion of semantic distance, ε, with the idea of capturing the distance between
a formula α and a set of α-inconsistent default sets. If there are no α-consistent
stereotypes, we allow the choice of the ‘nearest’ α-inconsistent default sets.
This new notion of distance has clearly an effect on the associated consequence
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relation |∼S,ε: as α ∪Δ might be inconsistent, we need to move from the classi-
cal relation , used by Lehmann in (L|∼), to a default-assumption consequence
relation |∼Δ. Note that by definition 3 above, if the set {α}∪Δ is consistent, we
have α |∼Δ β if and only if {α} ∪Δ  β, as in Lehmann’s definition.

We begin by recalling the notion of semantic distance proposed by Lehmann,
Magidor and Schlechta [8] in the context of belief revision. We claim that this
is appropriate as a measure of ‘consistency distance’ between formulae. For an
arbitrary set Z we say that ε is a semantic pseudo-distance function

ε : W ×W → Z

if it satisfies the following:

(ε1) The set Z is totally ordered by a strict order <
(ε2) Z has a <-smallest element 0, and ε(w, v) = 0 if and only if w = v

Note that ε is not required to be symmetric (i.e. ε(w, v) = ε(v, w) for every
w, v ∈ U). This is matches our intuitive interpretation of distance. Indeed, as we
shall shortly see, an agent should have different attitudes towards the information
represented by the fist argument of the distance function, that refers to what
the agent takes to be certainly true, and the second argument, which concerns
default information.

Again, the distance between two given sets of formulae A and B is semantic as
it is defined with respect to their models [A] and [B], and the distance between
two sets of valuations U and U ′ (U,U ′ ⊆ W ) is set to be the minimal distance
between the valuations in U and U ′:

ε(U,U ′) = min{ε(w, v)|w ∈ U, v ∈ U ′}.

In analogywith equation (() above, given a finite set S of default sets {Δ1, . . . , Δn}
and a formula α, Sα

ε is identified with the set of ε-‘nearest’ default sets in S to α.
From now on we relax Lehmann’s assumption that Sα must contain a single

default set, thus allowing the possibility that, under the uncertainty connected
to the presence of inconsistencies, a set of premises is taken to be equally distant
from distinct default sets.

A few observations are in order. Note that since ε is a total function, S 
= ∅
implies SA

ε 
= ∅. Note also that it makes no difference if we use as arguments ε
sets of formulae A or sets of valuations [A]. That is, we ε(α,Δ) = ε([α], [Δ]) for
every α,Δ. Finally, since ε satisfies (ε2), if a factual formula and a default set
are mutually consistent, then the distance between them is 0, as they share at
least a valuation. Hence, the default sets which turn out to be consistent with
our set of premises have, intuitively, priority over those which are inconsistent.

We can now define |∼S,ε using default-assumption consequence relations:

α |∼S,ε β iff α |∼Δ β for every Δ ∈ Sα
ε . (*)

Note that the corresponding inference operation is

CS,ε(α) =
⋂
{CΔ(α)|Δ ∈ Sα

ε }
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where CΔ is the inference operation corresponding to the default-assumption
consequence relation |∼Δ. |∼S,ε so defined satisfies some properties of cumulative
consequence relations.

Lemma 1. Assume a pseudo-distance ε and a set of stereotypes S. The conse-
quence relation |∼S,ε satisfies REF, LLE, RW.

Proof. Assume a formula α and a set of stereotypes S. By means of our distance
function ε, we can identify the set Sα

ε . Since default-assumption consequence re-
lations are cumulative (see section 3), we have that, for every default set Δ,
the default-assumption relation |∼Δ satisfies REF, LLE, and RW. The inference
operation CS,ε(α) is defined as the intersection of every default-assumption in-
ference operation CΔ(α), s.t. Δ ∈ Sα

ε (CS,ε(α) =
⋂
{CΔ(α)|Δ ∈ Sα

ε }) and it is
straightforward to prove that REF, LLE, and RW are preserved under intersec-
tion.

To see that |∼S,ε is not cumulative, suppose that we have a set of stereotypes
S = {Δ,Δ′}, where Δ = {¬p, p → r, p → t} and Δ′ = {¬p, p ∧ r → ¬t}. Since
we have [Δ] ∩ [p] = [Δ′] ∩ [p] = ∅, we have that ε(p,Δ) 
= 0 and ε(p,Δ′) 
= 0.
Without loss of generality let ε(p,Δ) < ε(p,Δ′) and ε(p ∧ r,Δ′) < ε(p ∧ r,Δ).
Note that this satisfies both (d1) and (d2).

Now, from these assumptions we get p |∼S,ε r, p |∼S,ε t, since CS,ε(p) =
CΔ(p), but, since CS,ε(p ∧ r) = CΔ′(p ∧ r), we also get p ∧ r |∼S,ε ¬t, violating
cautious monotony.

To get cumulativity, we need ε to satisfy a further constrain which intuitively
ensures that given a premise α and a default set Δ, there is some valuation
satisfying both α and a maximal α-consistent subset of Δ that is at least as near
to Δ as any other valuation in [α]. To formalize this we first define [Δ⊥α] as the
set of valuations satisfying at least one element of the remainder set Δ⊥α (see
definition 2):

[Δ⊥α] =
⋃
{[B]|B ∈ Δ⊥α}

We can now define the required new constraint

(ε3) For every α and Δ, there is a w ∈ [α] ∩ [Δ⊥¬α] s.t. ε(w, [Δ]) ≤ ε(v, [Δ])
for every v ∈ [α].

In order to guarantee that [Δ⊥¬α] 
= ∅ (and hence that [α] ∩ [Δ⊥¬α] 
= ∅),
we can simply assume that every default set Δ contains a tautology (� ∈ Δ, for
every Δ). We now prove a series of lemmas leading to the result that if ε satisfies
(ε1)− (ε3), then the generated consequence relation |∼S,ε is cumulative.

Lemma 2. If [α] ⊆ [α′], then ε(α′, Δ) ≤ ε(α,Δ) for every Δ.

Proof. ε(α,Δ) = min{ε(w, v)|w ∈ [α], v ∈ [Δ]}. Since w ∈ [α] implies w ∈ [α′],
we have that min{ε(w, v)|w ∈ [α′], v ∈ [Δ]} ≤ min{ε(w, v)|w ∈ [α], v ∈ [Δ]},
i.e. ε(α′, Δ) ≤ d(α,Δ).

We now want to prove that if we add to the factual information information
which is itself derivable by means of |∼S,ε, then we continue to associate the
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same stereotypes to our premise (see the example about the tiger Sherkan in
section 4).

Lemma 3. If α |∼S,ε β and Δ ∈ Sα
ε , then ε(α ∧ β,Δ) = ε(α,Δ).

Proof. Recall that Sα
ε = {Δ ∈ S| ε(α,Δ) ≤ ε(α,Δ′) for every Δ′ ∈ S}.

By (ε3), we have that ε([α], [Δ]) = ε(w, [Δ]) for some w ∈ [α] ∩ [Δ⊥¬α].
α |∼S,ε β implies that α |∼Δ β for every Δ ∈ Sα

ε , which implies that if w ∈
[α] ∩ [Δ⊥¬α], then w ∈ [α ∧ β].

Given that ε([α], [Δ]) = ε(w, [Δ]), we have that ε(w, [Δ]) ≤ ε(v, [Δ]) for every
v ∈ [α]. Since [α∧β] ⊆ [α], we have that ε(w, [Δ]) ≤ ε(v, [Δ]) for every v ∈ [α∧β],
that is, ε(α ∧ β,Δ) = ε(w, [Δ]) = ε(α,Δ).

Lemma 4. If α |∼S,ε β, then Sα
ε = Sα∧β

ε .

Proof. Assume α |∼S,ε β. We show that Sα
ε ⊆ Sα∧β

ε . If Δ ∈ Sα
ε , then ε(α,Δ) ≤

ε(α,Δ′) for every Δ′ ∈ S. By Lemma 2, since [α ∧ β] ⊆ [α], we have that
ε(α,Δ) ≤ ε(α∧ β,Δ′) for every Δ′ ∈ S. Since Δ ∈ Sα

ε , by Lemma 3, we obtain
ε(α ∧ β,Δ) ≤ ε(α ∧ β,Δ′) for every Δ′ ∈ S, i.e. Δ ∈ Sα∧β

ε .
For Sα∧β

ε ⊆ Sα
ε , if Δ /∈ Sα

ε , then ε(α,Δ′) < ε(α,Δ) for some Δ′ ∈ Sα
ε . By

Lemma 2, we have that ε(α,Δ′) < ε(α∧β,Δ). Since Δ′ ∈ Sα
ε , by Lemma 3, we

obtain ε(α ∧ β,Δ′) < ε(α ∧ β,Δ), i.e. Δ /∈ Sα∧β
ε .

We are now ready to prove the key result about our notion of distance ε.

Theorem 2. Given a set of stereotypes S and a distance function ε satisfying
(ε1)-(ε3), the generated consequence relation |∼S,ε is cumulative.

Proof. We have to show that |∼S,ε satisfies CM and CT.
CM: assume α |∼S,ε β and α |∼S,ε γ, which correspond to saying that α |∼Δ β
and α |∼Δ γ for every Δ ∈ Sα

ε . Since every default-assumption consequence
relation |∼Δ, being cumulative (see section 3), satisfies CM, we have α∧β |∼Δ γ
for every Δ ∈ Sα

ε . Given α |∼S,ε β, we have, by Lemma 4, that Sα
ε = Sα∧β

ε ,
which implies that α ∧ β |∼Δ γ for every Δ ∈ Sα∧β

ε , i.e. α ∧ β |∼S,ε γ.

CT: assume α ∧ β |∼S,ε γ and α |∼S,ε β. Note again that α ∧ β |∼S,ε γ means
that α∧β |∼Δ γ for every Δ ∈ Sα∧β

ε . α |∼S,ε β implies, again by Lemma 4, that
Sα
ε = Sα∧β

ε . Hence, we have that α ∧ β |∼Δ γ and α |∼Δ β for every Δ ∈ Sα
ε .

Since every such |∼Δ, being cumulative, satisfies CT, we have α |∼Δ γ for every
Δ ∈ Sα

ε , i.e. α |∼S,ε γ.

Thus our notion of distance captures the stereotypical reasoning underlying
Lehmann’s approach while preserving the cumulativity of the generated con-
sequence relation in the general case in which an agent’s factual information
comes out to be inconsistent with its stereotypical information. However, this
revised distance function looses its appeal if more than one stereotype is consis-
tent with an agent’s factual information. In such a case, by (ε2), an agent cannot
distinguish between the stereotypes in S that are consistent with α, since their
mutual distance is always 0.
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6 A Lexicographic Combination of δ and ε

Summing up what has been done so far, we started by reviewing Lehmann’s
notion of distance δ and noted that while logically well-behaved (generates cu-
mulative consequence relations) it suffers from the drawback of not handling
inconsistency between factual and default information. In order to overcome
this limitation we considered a semantic pseudo-distance ε, which again leads to
cumulative reasoning, but which, at the same time, allows an agent to face the
situation in which its factual information turns out to be inconsistent with its
default information. The purpose of the remainder of this paper is to study a
combination of the two approaches which enables us to refine pseudo-distance
ε in order to let this latter distinguish between the stereotypes consistent with
α. To do this we define a lexicographic ordering of a distance dlex, with the
idea that the precedence should be given whenever possible to ε over δ. More
precisely:

dlex(α,Δ) ≤ dlex(α′, Δ′) ⇔

⎧⎨⎩
ε(α,Δ) < ε(α′, Δ′)
or
ε(α,Δ) = ε(α′, Δ′) and δ(α,Δ) ≤ δ(α′, Δ′)

Given a set of stereotypes S, a semantic distance dlex and a formula α, we
define, again in analogy with equation ((), the set Sα

ε of the stereotypes in S
which are nearest to α. |∼S,dlex

is defined analogously to |∼S,ε, using default-
assumption consequence relations as in equation (*). We devote the rest of this
paper to show that dlex does indeed combine the best of ε and δ since it eventually
leads to cumulative reasoning.

Recall that, given a set of stereotypes S, a semantic distance dlex, defined lex-
icographically over two distances ε and δ, and a formula α, we indicate by Sα

dlex

the set of the nearest stereotypes to α with respect to dlex, by Sα
ε the nearest

stereotypes with respect to ε, and by Sα
δ the nearest stereotypes with respect

to δ. As we have seen, they define, respectively, three consequence relations:
|∼S,dlex

, |∼S,ε, and |∼S,δ (and the correspondent inference operations CS,dlex
,

CS,ε, and CS,δ). Note that by the lexicographic definition of the dlex-ordering,
we have:

Sα
dlex

=

⎧⎨⎩Sα
ε if |Sα

ε | = 1

(Sα
ε )αδ if |Sα

ε | > 1

where (Sα
ε )αδ is the composition of the selection functions of the stereotypes in

S that ε and δ associate to α: we first select the subset of S nearest to α with
respect to ε (that is, Sα

ε ), and, if using ε we have not been able to distinguish
between distinct stereotypes (|Sα

ε | > 1), we refine our procedure by selecting
the δ-nearest stereotypes to α between those in Sα

ε (that is, (Sα
ε )αδ ).

Lemma 5. If α |∼S,dlex
β, then Sα

dlex
= Sα∧β

dlex
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Proof. We have three possibilities.

(1) |Sα
ε | = 1.

(2) |Sα
ε | > 1 and ε(α,Δ) > 0 for every Δ ∈ Sα

ε .
(3) |Sα

ε | > 1 and ε(α,Δ) = 0 for every Δ ∈ Sα
ε .

(1): |Sα
ε | = 1 implies that Sα

dlex
= Sα

ε and CS,dlex
(α) = CS,ε(α),that is,

α |∼S,dlex
β iff α |∼S,ε β. By Lemma 4, from α |∼S,ε β we obtain Sα

ε = Sα∧β
ε ,

that implies |Sα∧β
ε | = 1 and Sα∧β

dlex
= Sα∧β

ε , that is, Sα∧β
dlex

= Sα
dlex

.
(2): ε(α,Δ) > 0 for every Δ ∈ Sα

ε implies that the default sets in Sα
ε are not

consistent with the premise α. Therefore, δ cannot distinguish them out and we
have (Sα

ε )αδ = Sα
ε . Again we have that Sα

dlex
= Sα

ε and CS,dlex
(α) = CS,ε(α),

and the case is already covered by (1).
(3): ε(α,Δ) = 0 for every Δ ∈ Sα

ε implies that the stereotypes in Sα
ε are

consistent with α, and we can refine the choice by means of δ.
Since α |∼S,dlex

β, we have that some default sets in Sα
ε are consistent with α∧β

(surely the one in (Sα
ε )αδ ). Since Sα

ε is composed by every set in S consistent
with α, every default set consistent with α∧β is in Sα

ε . Hence, we have (Sα
ε )αδ ⊆

Sα∧β
ε ⊆ Sα

ε , that is,
Sα
dlex

⊆ Sα∧β
ε ⊆ Sα

ε

Since every element in (Sα
ε )αδ is in Sα∧β

ε , we have that (Sα∧β
ε )αδ = (Sα

ε )αδ =
Sα
dlex

.
Now take theorem 1, that is,

if ([α] ∩ [Δ]) ⊆ [α′] ⊆ [α], then Sα′

δ = Sα
δ , where Sα

δ = {Δ}.

Let α′ be α∧β and S be Sα∧β
ε , and, consequently, let (Sα∧β

ε )αδ = {Δ}. Given
that α |∼S,dlex

β and Sα
dlex

= (Sα∧β
ε )αδ , we have that ([α]∩ [Δ]) ⊆ [α∧ β] ⊆ [α],

and this, by theorem 1, implies (Sα∧β
ε )α∧βδ = (Sα∧β

ε )αδ .
Combining the equations, we have (Sα

ε )αδ = (Sα∧β
ε )α∧βδ , that is

Sα
dlex

= Sα∧β
dlex

as desired.

We now have all the ingredients to prove our central result.

Theorem 3. Given a set of stereotypes S and a distance function dlex, the
consequence relation |∼S,dlex

is cumulative.

Proof. Since CS,dlex
(α) is obtained by the intersection of default-assumption in-

ference operations, it satisfies REF, LLE, RW (see Lemma 1).
Cumulativity then follows by Lemma 5 with exactly the same procedure argu-
ment used in the proof of Theorem 2.

7 Conclusions

We have addressed the problem of providing a logical characterization of rea-
soning based on stereotypes and we presented a model which combines two
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basic intuitions. On the one hand, stereotypical reasoning requires an agent to
choose, given a piece of factual information, how this can be extended by rely-
ing on some background information about its class. This puts the agent in a
new epistemic state (usually richer than the original one) which can be used to
reason non-monotonically. Our central result shows that if we put appropriate
constraints on the selection of stereotypes – in our case by using appropriate
distance functions – we can generate a cumulative non monotonic consequence
relation which is widely regarded in the field as capturing some fundamental
aspects of commonsensical reasoning.
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Abstract. We consider a realization of Reiter-style default logic on top of de-
scription logic knowledge bases (DL-KBs). To this end, we present elegant trans-
formations from default theories to conjunctive query (cq-)programs that
combine rules and ontologies, based on different methods to find extensions of
default theories. The transformations, which are implemented in a front-end to a
DL-reasoner, exploit additional constraints to prune the search space via relations
between default conclusions and justifications. The front-end is a flexible tool for
customizing the realization, allowing to develop alternative or refined default se-
mantics. To our knowledge, no comparable implementation is available.

1 Introduction

Ontologies are very important for representing terminological knowledge. In particular,
description logics (DLs) have proved to be versatile formalisms with far-reaching appli-
cations like expressing knowledge on the Semantic Web; the Ontology Web Language
(OWL), which builds on DLs, has fostered this development.

However, well-known results from the literature show that DLs have limitations:
they do not allow for expressing default knowledge due to their inherent monotonic
semantics. One needs nontrivial extensions to the first-order semantics of description
logics to express exceptional knowledge.

Example 1. Take, as an example, a bird ontology expressed in the DL-KB L = {Flier
# ¬NonFlier , Penguin # Bird ,Penguin # NonFlier ,Bird(tweety)}. Intuitively,
L distinguishes between flying and non-flying objects. We know that penguins, which
are birds, do not fly. Nevertheless, we cannot simply add the axiom Bird # Flier to
L to specify the common view that “birds normally fly,” as this update will make L
inconsistent. From our bird ontology, we would like to conclude that Tweety flies; and
if we learn that Tweety is a penguin, the opposite conclusion would be expected.

Hence, the simple ontology L from above cannot express exceptional knowledge. De-
fault logic, a prominent formalism for expressing nonmonotonic knowledge in first-order
logic, was introduced in the seminal work by Reiter [1]. To allow for nonmonotonicity
in L, an extension of the semantics of terminological knowledge was given in [2], which
is an early attempt to support default logic in the domain of description logics.

� This research has been supported by the Austrian Science Fund (FWF) project P20841 and
P20840, and the EU research project IST-2009-231875 (ONTORULE).

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 602–613, 2009.
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Several other attempts to extend DLs with nonmonotonic features have been made,
based on default logics [3,4], epistemic operators [5,6], circumscription [7,8], or argu-
mentative approach [9]. They all showed that gaining both sufficient expressivity and
good computational properties in a nonmonotonic DL is non-trivial.

However, reasoning engines for expressive nonmonotonic DLs are still not available
(cf. Section 7). This forces users needing nonmonotonic features over DL-KBs to craft
ad hoc implementations; systems for combining rules and ontologies (see [10]) might be
helpful in that, but bear the danger that a non-standard semantics emerges not compliant
with the user’s intention. In fact, the less versatile a user is in KR formalisms, the higher
is the likelihood that this will happen, even if just simple default rules of the form: “If
A is true and B can be consistently assumed, then conclude C,” should be captured.

With the aim to offer a user-friendly reasoner over ontologies, we consider default
reasoning on top of ontologies based on cq-programs [11], which integrate rules and
ontologies. They slightly extend dl-programs [12] and allow for bidirectional communi-
cation between logic programs and DL-KBs by means of updates and powerful (unions
of) conjunctive queries. Our main contributions are as follows.

• We consider a realization of Reiter-style default logic on top of DL-KBs, which
amounts to a decidable fragment of Baader and Hollunder’s terminological default
logic [2], using cq-programs. A realization using dl-programs is discussed in [12], but
is complex and more of theoretical interest than practical.
• We present two novel transformations of default theories into cq-programs, which are
based on different principles and significantly improve over a similar transformation of
default theories into dl-programs [12], both at the conceptual and the computational
level. The former is apparent from the elegant formulation of the new transformations,
while the latter is evidenced by experimental results. Furthermore, we present optimiza-
tion methods by pruning rules, which are tailored specifically for the new translations.
• We describe a front-end as a new part of the dl-plugin [11] for the dlvhex engine
implementing cq-programs. In this front-end, users can specify input comprising default
rules in a text file and an ontology in an OWL file, run a command and get (descriptions
of) the extensions of the default theory. Importantly, expert users in logic programming
(LP) can exploit the front-end also at lower levels and customize the transformations, by
adding further rules and constraints. In this way, alternative or refined semantics (e.g.,
preferences) may be realized, or the search space pruned more effectively.

Our front-end approach provides a simple and intuitive way to encode default knowl-
edge on top of terminological KBs, relieving users from developing ad hoc implemen-
tations (which is rather difficult and error-prone). Furthermore, besides the benefit that
special constructs of logic programs like weak constraints or aggregates can be utilized
in customizations, the dlvhex implementation also offers the possibility to combine DL-
KBs with other knowledge sources like, e.g., RDF KBs on a solid theoretical basis.

2 Preliminaries

Description Logics. We assume familiarity with DLs (cf. [13]), in particular any exten-
sion ofALC which can be recast to first-order logic w.r.t. CQ-answering (conceptually,
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we can apply Reiter-style default logic on top of any such DLs).1 A DL-KB L is a finite
set of axioms (TBox) and factual assertions (ABox) α in the respective DL, which are
formed using disjoint alphabets of atomic concepts, roles, and individuals, respectively.
By L |= α we denote logical consequence of an axiom resp. assertion α from L.

Default Logic. In this paper, we restrict Reiter’s default logic [1] and consider only
conjunctions of literals in default rules. We adjust default theories in a way such that
the background theory, given by a DL-KB L, represents an ontology.

A default δ (over L) has the form α(X):β1(Y1),...,βm(Ym)
γ(Z) , where α(X) = α1(X1)∧

· · ·∧αk(Xk), βi(Yi) = βi,1(Yi,1)∧· · ·∧βi,
i(Yi,�i), γ(Z) = γ1(Z1)∧· · ·∧γn(Zn),
and X , Yi, and Z are all variables occurring in the respective conjuncts. We allow c
to be c∗ or ¬c∗ for every c ∈ {αi, βi,j , γi}, where each α∗i , β

∗
i,j , γ

∗
i is either an atomic

concept or role name in L. A default theory over L is a pair Δ= 〈L,D〉, where L is a
DL-KB and D is a finite set of defaults over L.

Example 2. Consider the DL-KB L in Ex. 1 and D =
{

Bird(X):Flier(X)
Flier(X)

}
, then Δ =

〈L,D〉 is a default theory over L.

Given that L is convertible into an equivalent first-order formula π(L), we can view
Δ as a Reiter-default theory T = 〈W,D〉 over a first-order language L, where W =
{ π(L) }, and apply concepts from [1] to Δ; we recall some of them in the sequel.

The semantics of T = 〈W,D〉 is given in terms of its extensions, which we recall
next; intuitively, they are built by applying defaults in D as much as possible to augment
the definite knowledge in W with plausible conclusions.

Suppose T = 〈W,D〉 is closed (i.e., defaults have no free variables). Then for any
set of sentences S ⊆ L, let ΓT (S) be the smallest set of sentences from L such that
(i) W ⊆ ΓT (S); (ii) ΓT (S) is deductively closed, i.e., Cn(ΓT (S)) = ΓT (S); and
(iii) if α:β1,...,βm

γ ∈ D, α ∈ ΓT (S), and ¬β1, . . . ,¬βm /∈ S then γ ∈ ΓT (S). Here, "
denotes classical derivability and Cn(F) = {φ | F " φ and φ is closed}, for every set
F of closed formulas. For an arbitrary T = 〈W,D〉, ΓT is applied to its closed version
cl(T ), i.e., each default in D is replaced by all its grounded instances w.r.t. L. Then, a
set of sentences E ⊆ L is an extension of T, iff E = ΓT (E) [1].

cq-Programs. Informally, a cq-program consists of a DL-KB L and a disjunctive pro-
gram P that may involve queries to L. Roughly, such a query may ask whether a specific
conjunction of atoms or union of such conjunctions is entailed by L or not.

Syntax. A conjunctive query (CQ) q(X) is an expression {X|Q1(X1), . . . , Qn(Xn)},
where each Qi is a concept or role expression and each Xi is a list of variables and in-
dividuals of matching arity; X ⊆ Vars(X1, . . . ,Xn) are its distinguished (or output)
variables, where Vars(X1, . . . ,Xn) is the set of variables appearing in X1, . . . ,Xn.
Intuitively, q(X) is a conjunction Q1(X1)∧· · ·∧Qn(Xn) of concept and role expres-
sions, which is true if all conjuncts are satisfied, and then projected on X .

A union of conjunctive queries (UCQ) q(X) is a disjunction
∨m
i=1 qi(X) of CQs

qi(X). Intuitively, q(X) is satisfied, whenever some qi(X) is satisfied.

1 This includes inverse roles (I), qualified number restrictions (Q), nominals (O), and role hier-
archy (H), where a DL-KB L is convertible into an equivalent first-order formula π(L) [13];
role transitivity (S) may occur in L as well, but is disallowed in defaults.
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A cq-atom α is of form DL[λ; q(X)](X), where λ = S1 op1 p1, . . . , Sm opm pm
(m ≥ 0) is an (input) list of expressions Si opi pi, each Si is either a concept or a
role name, opi ∈ {-, −∪}, pi is an (input) predicate symbol matching the arity of Si,
and q(X) is a (U)CQ. Intuitively, opi = - increases Si by the extension of pi, while
opi = −∪ increases ¬Si. If m=1, α amounts to a dl-atom DL[λ;Q](t) as in [12] where
X = Vars(t).

A literal l is an atom p or a negated atom¬p. A cq-rule r is an expression of the form
a1∨· · ·∨ak ← b1, . . . , bm, not bm+1, . . . , not bn , where every ai is a literal and every
bj is either a literal or a cq-atom. We define H(r) = {a1, . . . , ak} and B(r) = B+(r)
∪ B−(r), where B+(r) = {b1, . . . , bm} and B−(r) = {bm+1, . . . , bn}. If H(r) = ∅
and B(r) 
= ∅, then r is a constraint.

A cq-program KB = (L,P ) consists of a DL-KB L and a finite set of cq-rules P .

Example 3. Let L be from Ex. 1 and P = {flies(tweety)∨nflies(tweety); bird(X) ←
DL[Flier - flies ;Flier (X) ∨ NonFlier (X)](X)}. Then, KB = (L,P ) is a cq-pro-
gram. The body of the rule defining bird is a cq-atom with the UCQ q(X) = Flier (X)∨
NonFlier (X) and an input list λ = Flier -flies . In this cq-atom we update the concept
Flier in L with the extension of flies before asking for the answers of q(X).

Semantics. Given a cq-program KB = (L,P ), the Herbrand base of P , denoted HBP ,
is the set of all ground literals with predicate symbols in P and constant symbols in a
(predefined) set C. An interpretation I relative to P is a consistent subset of HBP . We
say I is a model of l ∈ HBP under L, or I satisfies l under L, denoted I |=L l, if l ∈ I .

For any CQ q(X) = {X | Q1(X1), . . . , Qn(Xn)}, let φq(X) = ∃Y
∧n
i=1 Qi(Xi),

where Y are the variables not in X , and for any UCQ q(X) =
∨m
i=1 qi(X), let

φq(X) =
∨m
i=1 φqi (X). Then, for any (U)CQ q(X), the set of answers of q(X) on L

is the set of tuples ans(q(X), L) = {c ∈ C|X| | L |= φq(c)}.
An interpretation I satisfies a ground instance a(c) of a(X) = DL[λ; q(X)](X)

(i.e., all variables in q(X) are replaced by constant symbols from C), denoted I |=L

a(c), if c ∈ ans(q(X), L∪λ(I)), where λ(I) =
⋃m
i=1 Ai(I) and (i) Ai(I) = {Si(e) |

pi(e) ∈ I}, for opi = -, and (ii) Ai(I) = {¬Si(e) | pi(e) ∈ I}, for opi = −∪.
I satisfies a ground cq-rule r, denoted I |=L r, if I |=L H(r) whenever I |=L B(r),

where I |=L H(r) if I |=L a for some a ∈ H(r), and I |=L B(r) if I |=L a for all
a ∈ B+(r) and I 
|=L a for all a ∈ B−(r).

I is a model of (or satisfies) a cq-program KB = (L,P ), denoted I |= KB , if
I |=L r for all r ∈ ground(P ). The (strong) answer sets of KB , which amount to
particular models of KB , are then defined like answer sets of an ordinary disjunctive
logic program using the Gelfond-Lifschitz reduct P I of P w.r.t. I , where cq-atoms are
treated like ordinary atoms; I is then a (strong) answer set of KB , if I is a minimal
model (w.r.t. set inclusion) of (L,P I) (cf. also [12]).

Example 4 (cont’d). The strong answer sets of KB in Ex. 3 are M1 = {flies(tweety),
bird(tweety)} and M2 = {nflies(tweety)}. The answer set M1 updates L in such a
way that we can infer q(tweety) from L∪λ(M1), thus bird(tweety) ∈M1, whereas in
M2, L ∪ λ(M2) 
|= q(tweety), and so bird(tweety) /∈M2.
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3 Transformations from Default Theories to cq-Programs

In the sequel, assume that we have a default theory Δ = 〈L,D〉 over L.
We first revisit the transformation in [12], which we call Π . For each default of form

α(X):β1(Y1),...,βm(Ym)
γ(Z) (where the βi and γ are just literals), it uses the following rules:

in γ(Z) ← not out γ(Z); out γ(Z) ← not in γ(Z) (1)

g(Z) ← DL[λ; α1](X1), . . . , DL[λ; αk](Xk), (2)

not DL[λ′; ¬β1](Y1), . . . , not DL[λ′; ¬βm](Ym)

fail ← DL[λ′; γ](Z), out γ(Z), not fail (3)

fail ← not DL[λ; γ](Z), in γ(Z), not fail (4)

fail ← DL[λ; γ](Z), out γ(Z), not fail (5)

where λ′ contains for each default δ an update γ∗ - in γ if γ(Z) is positive, and an
update γ∗−∪in γ if γ(Z) is negative; λ is similar with g in place of in γ.

Π is based on a guess-and-check approach: the rules (1) guess whether the con-
clusion γ(Z) belongs to an extension E or not. If yes, a ground atom with auxiliary
predicate in γ, which is used in the input list λ′ to update L, is inferred. Intuitively,
L∪ λ′(I) represents E. Next, the rule (2) imitates the ΓΔ operator to compute ΓΔ(E).
The outcome is stored in an auxiliary predicate g, which is used in a second input list λ
to update L (independent from λ′); intuitively, L∪ λ(I) represents ΓΔ(E), Finally, the
rule (3) checks whether the guess for E is compliant with L, and the rules (4) and (5)
check whether E and ΓΔ(E) coincide. If this is the case, then E is an extension of Δ.

A natural question is whether we can have a simpler transformation; in particular,
with fewer and more homogeneous cq-atoms, in the sense that the update lists are sim-
ilar; this would help to reduce communication between the rules and L, such that the
evaluation of the transformation is more effective.

We give a positive answer to this question and present two novel transformations,
called Ω and Υ , which are based on different ways of computing extensions, inspired by
algorithms select-default-and-check and select-justification-and-check that were earlier
mentioned in [14]. In fact, in both of them a single input list λ is sufficient for all
cq-atoms. Furthermore, by the use of UCQs, we can easily handle also defaults with
conjunctive justifications and conclusions.

The transformations Ω and Υ are compactly presented in Table 1, where we use the
following notation. Given a default α(X):β1(Y1),...,βm(Ym)

γ(Z) , for Ψ ∈ {in, cons , cons}
and e(W ) ∈ {γ(Z),γ∗i (Zi),βi(Yi), β∗i,j(Yi,j)}, we use Ψ(e(W )) to denote Ψe(W )
(where Ψe is a predicate name).

Transformation Ω. The main idea of Ω is to use only one update λ instead of both λ
and λ′ in Π , hence only one type of auxiliary predicates is needed, namely in(γ(X)).

This transformation is quite intuitive and follows exactly the usual way of evaluating
extensions in default theories: “If the prerequisites can be derived, and the justifications
can be consistently assumed, then the conclusion can be concluded.”

Intuitively, in the rule with head in(γ(X)), we apply the ΓΔ operator to find out
whether the whole consequent γ(Z) is in the extension E or not. If this is the case, then
each γi(Zi) in γ(Z) will also be concluded to be in E by rules inR. In order to check
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Table 1. Transformations Ω/Υ of default theory Δ to cq-program KBΩ(Δ)/KBΥ (Δ)

For Δ = 〈L, D〉 and X ∈ {Ω, Υ}, let KBX(Δ) = (L, PX), where PX =
⋃

δ∈D X(δ) and

Ω(δ) = R ∪ {in(γ(Z)) ← DL[λ; α(X)](X),
not DL[λ; d(β1(Y1))](Y1), . . . , not DL[λ; d(βm(Ym))](Ym) }

Υ (δ) = R ∪ {in(γ(Z)) ← DL[λ; α(X)](X), cons(β1(Y1)), . . . , cons(βm(Ym))} ∪⎧⎪⎪⎪⎨⎪⎪⎪⎩
fail ← cons(βi(Yi)), DL[λ; d(βi(Yi))](Yi), not fail ;
fail ← cons(βi(Yi)), not DL[λ; d(βi(Yi))](Yi), not fail;

cons(βi(Yi)) ← not cons(βi(Yi));
cons(βi(Yi)) ← not cons(βi(Yi)) | 1 ≤ i ≤ m

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where λ = (γ∗

i " inγi , γ
∗
i −∪ in¬γi | δ ∈ D), d(βi(Yi)) = ¬βi,1(Yi,1) ∨ · · · ∨ ¬βi,�i(Yi,�i),

and R = {in(γi(Zi)) ← in(γ(Z)) | 1 ≤ i ≤ n}.

the satisfaction of the prerequisite, we use a CQ, while consistency of a justification is
checked by a UCQ. In case the prerequisite or a justification is just a literal, the query
amounts to instance checking (which is more efficient).

Example 5. Consider default theory Δ in Ex. 2. Since the prerequisite, justification and
conclusion of the default in D are just literals,R can be simplified to ∅ and the cq-atoms
to instance checks. Therefore, PΩ consists only of the rule

inFlier (X) ← DL[λ;Bird ](X), not DL[λ;¬Flier ](X) ,

where λ = Flier - inFlier ,Flier −∪ in¬Flier . The single answer set of KBΩ(L,D) is
IΩ = {inFlier (tweety)} which corresponds to the single extension.

Transformation Υ. In this transformation, we make use of the Select-justifications-
and-check algorithm. The definition of Υ (δ) in Table 1 is explained as follows. The
first rule emulates the ΓΔ operator to find the set of consequences under a consistency
assumption for the default justifications βi(Yi) with the extension E; like above, with
γ(Z) also each γi(Zi) is concluded by the rules inR.

The assumptions for all justifications βi(Yi) are guessed with the last two rules, and
they are checked with two constraints: the first prevents cases in which we guess that
βi(Yi) is consistent with E but we can in fact derive ¬βi(Yi). Similarly, the second
constraint eliminates all models in which βi(Yi) is guessed to be inconsistent with E
but we cannot derive its negation.

We can see that transformation Υ involves less communication with the DL-KB
than Ω; instead, it has explicit guessing on the logic program side. If the number of
justifications is small, we may expect better performance.

Example 6. For the default theory Δ in Ex. 2, PΥ consists of the following rules:

consFlier (X) ← not consFlier (X); consFlier (X) ← not consFlier (X)

inFlier (X) ← DL[λ;Bird ](X), consFlier (X)

fail ← consFlier (X), DL[λ; ¬Flier ](X), not fail

fail ← consFlier (X), not DL[λ; ¬Flier ](X), not fail
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where λ = Flier - inFlier ,Flier −∪ in¬Flier . The single answer set of KBΥ (L,D) is
IΥ = {inFlier(tweety), consFlier (tweety)} which corresponds to the single extension.

The following theorem shows the correctness of our transformations.

Theorem 1. Let Δ = 〈L,D〉 be a default theory over L, and X ∈ {Ω, Υ}. Then:

(i) For each extension E of Δ, there exists a (unique) strong answer set M of KBX

(Δ), such that E = Cn(L ∪ λ(M)).
(ii) For each strong answer set M of KBX(Δ), the set E = Cn(L ∪ λ(M)) is an

extension of Δ.

Note that in general, answering UCQs over expressive DL-KBs may be undecidable;
in our case variables range effectively only over known individuals in the KB (i.e.,
constants in C). We also mention that the further transformation of KBX(Δ) into HEX-
programs [15] for execution in dlvhex requires rules to be domain-expansion safe; this
is easily accomplished by introducing a domain predicate dom, adding to the body of
each rule for each variable Y the atom dom(Y ), and appending a fact dom(a) to PX
for each individual a in the KB (see [15] for details).

4 Optimization

This section introduces pruning rules to reduce the search space in model computation.
In what follows, we consider defaults δ1 and δ2, where

δi =
αi,1(Xi,1) ∧ · · · ∧ αi,ki(Xi,ki) : βi,1(Yi,1), . . . , βi,mi(Yi,mi)

γi,1(Zi,1) ∧ · · · ∧ γi,ni(Zi,ni)
.

Based on the interaction of δ1 and δ2, we can add the following rules. Let γi(Zi) be
short for γi,1(Zi,1) ∧ · · · ∧ γi,ni(Zi,ni), where Zi =

⋃
1≤ji≤ni

Zi,ji , for i = 1, 2.

Forcing other defaults to be out. The well-known Nixon Diamond example motivates
a shortcut in dealing with defaults whose conclusions are opposite. In this example, the
conclusion of one default blocks the other. To prune such cases, we can add

fail ← in(γ1(Z1)), in(γ2(Z2)), not fail (6)

to PX , where X ∈ {Ω, Υ}, whenever there exist 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2 s.t.
γ1,j1(Z1,j1) and ¬γ2,j2(Z2,j2) are unifiable.

Furthermore, also the relations between conclusions and justifications can be ex-
ploited for pruning purpose. If there exist j ∈ {1, . . . , n1} and j′ ∈ {1, . . . ,m2} such
that γ1,j(Z1,j) is unifiable with a disjunct in ¬β2,j′(Y2,j′), then the conclusion γ1(Z1)
of δ1 will block the application of δ2 and the constraint (6) can also be added to PX .

Forcing other defaults to be in. If γ1(Z1) is part of γ2(Z2), then adding an instance
of γ2(Z2) to an extension E requires also to add the respective instance of γ1(Z1)
to E. Thus, if for every j1 ∈ {1, . . . , n1}, γ1,j1(Z1,j1) is unifiable with γ2,j2(Zi,j2)
for some j2 ∈ {1, . . . , n2}, then we add the following rule to PX , where X ∈ {Ω, Υ}:

in(γ1(Z1)) ← in(γ2(Z2)) .
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df−converter

DL−reasoner
dlvhex

dl−plugin

Defaults

DL−KB

Description of the ext−
ensions of Δ = 〈L, D〉

D

L

Fig. 1. Architecture of the front-end

Defaults whose conclusions are already in the background theory. Each extension
contains all consequences of the background theory W of the default theory (Cn(W ) ⊆
E). Hence, it is worth testing whether for a default α(X):β1(Y1),...,βm(Ym)

γ(Z) a conjunct
γi(Xi) ∈ γ(X) can be concluded from the DL-KB before the guessing phase or the
application of the ΓΔ operator. To this end, we can add to PX(X ∈ {Ω, Υ}) the rule

in(γi(Xi)) ← DL[γi](Xi) .

5 Implementation

We have implemented the transformations from Section 3 in a framework that provides
the user with a front-end to cq-programs for transparent default reasoning over ontolo-
gies. An architectural overview of this front-end is shown in Fig. 1.

The implementation makes use of the dlvhex environment,2 a framework for solv-
ing HEX-programs. It has a plugin facility that allows to define external atoms, and
dl-plugin is one of the plugins deployed in this environment. The dl-plugin provides a
mechanism for converting cq-programs to HEX-programs. It receives a cq-program or
a HEX-program together with an OWL ontology, communicates with a DL-reasoner to
evaluate queries in the program, and dlvhex processes the query answers and generates
models of the program. Based on this framework, we implemented a converter for de-
fault rules on top of description logics, df-converter, as a pre-processor in the dl-plugin
which takes a set of defaults and an OWL ontology as input, converts this input into
cq-rules according to a transformation, and transfers the result to the dl-plugin; dlvhex
then does the rest. Hence, all the complications including cq-programs, HEX-programs,
and the transformations are transparent to the users. They just need to specify defaults
in a simple format and get (descriptions of) the extensions of the input default theory,
which were modified from the models of the transformed HEX-programs.

The grammar for the syntax of input defaults is as follows:

lit ::= atom | −atom

conjunction ::= lit ( & lit )∗
default ::= [ conjunction︸ ︷︷ ︸

prerequisite

; conjunction ( , conjunction)∗︸ ︷︷ ︸
justifications

] / [ conjunction︸ ︷︷ ︸
conclusion

]

Here, ‘−’ is classical negation, ‘&’ is conjunction, and ‘atom’ is an atomic formula
with a concept or role.

As for the output, the interesting information about an extension E is the default
conclusions that are in E. To this end, we filter all ground literals from the answer sets

2 http://www.kr.tuwien.ac.at/research/systems/dlvhex/

http://www.kr.tuwien.ac.at/research/systems/dlvhex/
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belonging to the default conclusions derived in the program for the user (reasoning tasks
can be easily realized on top by customization).

The following example illustrates this elegant interface.

Example 7. For the Bird example, the input includes an OWL file for the ontology L in
Ex. 1 and a text file for D in Ex. 2, whose content simply is

[ Bird(X); Flier(X) ] / [ Flier(X) ]

We can now invoke dlvhex to ask for the extensions. We get only one extension in this
particular case, and the only fact returned to users is Flier(tweety).

However, users are not confined to simple defaults. Expert users in LP can provide
more sophisticated pruning rules, or rules that select specific extensions (e.g., under
preference) in terms of cq- or HEX-rules. They are directly sent to the dl-plugin and
added to cq-rules supplied by the df-converter as an input for dlvhex. Our front-end
therefore is flexible and can meet requirements of different classes of users.

Typing predicates. The front end supports explicit typing predicates as a means to
control the instantiation of defaults and to limit the search space in advance. For exam-
ple, in a predicate hasScholarship(P, S) the first argument should be a Student while
the second should be a Scholarship.

Users can attach to each default δ a type guard θ(W ) whose variables W appear
in δ, and list all facts for the predicate θ, or even write a program which computes them.
Semantically, θ(W ) is added to the precondition of δ and all facts θ(c) are added to the
background knowledge of the default theory. If a rule r in a transformation of δ satisfies
W ⊆Vars(r), then each atom dom(X) in it with X ∈W is replaced by θ(W ).

Example 8 (cont’d). Suppose we have many instances of the concept Bird in L, but
just want to know whether tweety and joe fly or not. We can modify the input to

[ Bird(X); Flier(X) ] / [ Flier(X) ]<mb(X)>

and add facts mb(tweety), mb(joe) to specify these two birds.

We remark that in general, adding typing predicates makes the transformations incom-
plete w.r.t. to the original theory. However, for so called semi-monotonic default theo-
ries (where the extensions increase with an increasing set of defaults; e.g., the important
normal default theories [1] have this property) credulous conclusions are sound, as well
as skeptical conclusions if a unique extension is guaranteed.

6 Experimental Results

We have tested the transformations Π , Ω, and Υ using the prototype implementation
of the front-end as a new component in the dl-plugin for dlvhex, which uses RacerPro
1.9.2Beta [16] as DL-reasoner, to explore different aspects which can influence the
overall system performance, namely (i) the number of cq-atoms in each transformation,
(ii) the number of individuals (size of the ABox), (iii) size of the TBox, and (iv) the
query caching to the DL-reasoner. The tests were done on a P4 1.8GHz PC with 1GB
RAM under Linux. We report here only the outcome of the Bird benchmark, which
consists of a set of ontologies in spirit of Ex. 1 with increasing size of Bird instances.
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Fig. 2. Bird example – running time (x-axis: number of individuals)

Fig. 2 shows experimental results of this test, including running time of each transfor-
mation Π , Ω, Υ and the comparison between them when query caching to RacerPro is
applied. Missing entries mean time exhaustion during evaluation. For each transforma-
tion, we are interested in the total running time and time that RacerPro consumes when
caching is on. When caching is off, the difference between the total running time and
time used by RacerPro is insignificant, hence only the total running time is displayed.

The experimental results reveal that Ω and Υ are much faster than Π , since Ω has
fewer guessing rules and Υ has fewer cq-atoms, but Υ has a trade-off between consis-
tency guessing rules and cq-atoms in rules that compute extensions. Hence, the perfor-
mance of Ω and Υ depends very much on a particular set of defaults.

Regarding (i), the number of cq-atoms is important as they make up the search space
which increases exponentially. Regarding (ii), also the number of individuals is clearly
important (as it directly influences (i)), while for (iii), the size of the TBox was of
minor concern. When increasing the TBoxes (by enlarging the taxonomies systemat-
ically), the performance was not much affected. This is not much surprising, as DL
engines like RacerPro are geared towards efficient reasoning with (large) TBoxes (of
course, one could have used “hard” TBoxes, but this seems less relevant from a practi-
cal perspective). Regarding (iv), it appeared that query caching plays an important role,
as the system spends most of the time querying RacerPro for all ground cq-atoms.
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To undercut the impact of (ii) on (i), a new version of dlvhex has been developed in
which independence information about different cq-atoms, which is based on the indi-
viduals occurring in them, can be exploited to factorize a HEX-program into components
that can be evaluated in parallel (see [17]). In particular, in the Bird benchmark, for each
individual a separate component will be created; sequentially processed, this yields linear
scalability with respect to (ii) (see Fig. 2d). Currently, the new dlvhex version is beneficial
only to transformation Ω, but further improvements are expected for Π and Υ .

7 Related Work and Conclusions

As we already mentioned, this work is not the first considering default reasoning with
description logics. Earlier ones [2,3,4] posed varying restrictions on the terminological
representation to keep decidability, and provided no implementations or only for lim-
ited forms of defaults (on concepts). As our approach is theoretically based on a strict
separation between rules and ontologies, it guarantees decidability as long as the DL-
KB is convertible into a decidable first-order theory w.r.t. CQ-answering. Moreover, on
the practical side, we provide a concrete implementation for Reiter-style default logic
via a front-end hosted by a framework to combine rules and ontologies.

Hybrid Default Inheritance Theory (HDIT) [3] allows to specify defaults of form
A(X):C(X)

C(X) and A(X)∧R(X,Y ):C(Y )
C(Y ) . To retain decidability, concepts in HDIT must be

conjunctions of (negated) atomic concepts; [2] allows only DLs from ALC to ALCF .
An implementation of the DTL language is reported in [4], but roles cannot be defined.

The DL ALCK [6] adds an epistemic operator K to ALC which allows to specify
closed-world reasoning in queries. The later DLKNF [5] can be regarded as an exten-
sion of ALCK with epistemic operator A expressing “default assumption.” Defaults
can only be specified over concept expressions and are translated to TBox axioms using
K for prerequisites and conclusions, and ¬A for negated justifications.

In [7], circumscriptive (minimal) models have been used to define the Extended
Closed World Assumption (ECWA) over hybrid systems with a proof theory based on a
translation to propositional theories. However, hybrid systems are actually a fragment
of ALE and not very expressive. A recent paper [8] proposed extensions of expressive
DLs ALCIO and ALCQO to form circumscribed knowledge bases (cKBs). They can
avoid the restriction of nonmonotonic reasoning to named individuals in the domain,
but still allow only that concept names can be circumscribed.

Recently, [9] uses an argumentative approach for reasoning with inconsistent on-
tologies by translating DL ontologies into defeasible logic programs. However, only
inconsistent concept definitions were considered. Concerning semantics, this approach
is different from ours since it uses the notion of defeasible derivation which corresponds
to SLD-derivation in logic programming.

Concerning further work, the experimental comparison of the transformations Π , Ω
and Υ revealed several tasks that can help to improve performance. One is to investigate
more refined pruning rules that depend on the structure of the default theory. Another
issue is to look into particular kinds of default theories, such as normal or semi-normal
default theories, for which more efficient transformations may be found. At the bottom
level, we note that caching for cq-atoms (which is currently only available for plain dl-
atoms) would give additional benefit. Furthermore, dlvhex is currently using RacerPro
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as its (only) DL-reasoner; it would be interesting to have support for other DL-reasoners
such as KAON2 or Pellet, and compare the results. Finally, improvement of dlvhex eval-
uation at the general level (e.g., by refined dependency handling) would be beneficial.
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Abstract. Answer Set Programming (ASP), via normal logic programs,
is known as a suitable framework for default reasoning since it offers both
a valid formal model and operational systems. However, in front of a
real world knowledge representation problem, it is not easy to represent
information in this framework. That is why the present article proposed
to deal with this issue by generating in an automatic way the suitable
normal logic program from a compact representation of the information.
This is done by using a method, based on specificity, that has been
developed for default logic and which is adapted here to ASP both in
theoretical and practical points of view.

1 Introduction

Delgrande and Schaub [5] presented a general and automatic approach to intro-
duce specificity in non-monotonic theories. This approach was illustrated, among
others, for default logic [20]; however, they did not envisage any operational sys-
tem. In this present article, we pursue the same general goal but we also finish
the work by implementing the process of generation of default rules with ex-
ceptions. For that, we need a non monotonic framework where both the formal
model is correct and for which there exist performing operational systems. To
satisfy theses constraints, we chose to use Answer Set Programming (ASP).

In ASP, information is coded in the form of rules and an inference process
allows to make reasoning; some rules can be sometimes blocked (which captures
the non-monotonic property) and are able to express exceptions. ASP is a tested
paradigm and has different roots in knowledge representation, particularly non-
monotonic reasoning (with the default logic semantics) and logic programming.
For an interesting overview, the reader should refer to the articles in [8] celebrat-
ing the 20 Years of Stable Models Semantics [10] that is considered as the first
work on ASP. From a practical point of view, several ASP solvers are available
and the most powerful among them, like Clasp [9], Dlv [15] and Smodels [21] are
able to deal with highly combinatoric problems.

In a formal way, we use the normal logic programs which are suitable for
representing default rules with exceptions. Unfortunately, in a real world appli-
cation it may be difficult to write these complex rules directly and correctly. It
seems more appropriate to consider that knowledge is given in a compact way

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 614–625, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(that is without exceptions) and to generate automatically the suitable normal
logic program (using specificity), then to use the machinery of ASP to reason.

By the sequel, an initial compact common-sense default rule (”A’s are B’s”)
which is not linked to a particular formalism will be denoted by a → (A → B).
On its side a final rule linked to the formalism of normal logic programs will be
denoted by a ← (B ← A.). For instance, starting from a set of compact and easily
writable default rules like B → F , P → ¬F ,. . . representing the naive informa-
tions ”generally, birds fly”, ”generally, penguins do not fly”, . . . our goal is to
automatically build the normal logic program {F ← B, not P., ¬F ← P., . . .}
that correctly encodes the specificity hidden in the initial knowledge.

The article is given as follows. Section 2 is dedicated to a formal presentation
of ASP, section 3 presents the approach proposed by Delgrande and Schaub on
which ours is based. Then, in section 4, the theoretical aspect of our work is
developed. Some definitions were proposed by Delgrande and Schaub in a way
that is independent of the formalism. However, to be completed, the method
must be linked to a particular representation. That’s why we redefine all the
definitions in the framework of ASP to be able to associate the theoretical work
with an implementation. We end in section 5 by giving some perspectives to
continue this work.

2 Answer Set Programming and Specificity

2.1 Background on ASP

A definite logic program is a finite set of rules like
b ← a1, . . . , an. (n ≥ 0)

For such a rule r, head(r) = b is an atom called the head and body(r) =
{a1, . . . , an} is an atom set called the body. The intuitive meaning of rule b ← a.
is ”if we can prove a, then we can conclude b”. Given a rule r and an atom set
A, we say that r is applicable in A if body(r) ⊆ A. An atom set A is closed under
a program P if and only if for all rule r in P , if body(r) ⊆ A then head(r) ∈ A.
We call Cn(P ), or Herbrand model, the minimal atom set closed under P . For
a program P and an atom set A, the operator TP defined by

TP (A) = {head(r) | r ∈ P, body(r) ⊆ A}
computes the set of atoms deducible from A by means of P . It allows to define
the sequence T 0

P = TP (∅), T k+1
P = TP (T k

P ), ∀k ≥ 0. Cn(P ) is the least fix-point
of TP and Cn(P ) =

⋃
k≥0 T k

P contains all the consequences of the program P .
A normal logic program is a finite set of rules like

c ← a1, . . . , an, not b1, . . . , not bm. (n ≥ 0,m ≥ 0)
As previously, c, a1, . . . , an, b1, . . . , bm are atoms. For such a rule r, we denote
body+(r) = {a1, . . . , an} its positive body, body−(r) = {b1, . . . , bm} its negative
body, body(r) = body+(r) ∪ body−(r) and r+ = c ← a1, . . . , an. The intuitive
meaning of a rule with default negation like c ← a, not b. is ”if we can prove a,
and nothing proves b, then we can conclude c”. Such a non monotonic rule r is
applicable in an atom set A if body+(r) ⊆ A and body−(r) ∩A = ∅.
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The Gelfond-Lifschitz reduct of a program P by an atom set A is the program:
PA = {head(r) ← body+(r). | body−(r) ∩A = ∅}

Since it has no default negation, such a program is definite and then it has a
minimal Herbrand model Cn(P ). By definition, an answer set (originally called
a stable model [10]) of P is an atom set S such that S = Cn(PS). For instance
the program {a ← not b., b ← not a.} has two answer sets {a} and {b}.

For purposes of knowledge representation, one may have to use conjointly
strong negation (like ¬a) and default negation (like not a) inside a same program.
This is possible in ASP by means of an extended logic program [11] in which
rules are built with literals instead of atoms only. But, if we are not interested in
inconsistent models, and that it is explicitly the case in this work, the semantics
associated to an extended logic program is reducible to stable model semantics
for a normal logic program by taking into account the following conventions :

– every literal ¬x is encoded by the atom nx,
– for every atom x, the rule ⊥← x, nx. is added,
– a stable model should not contain the symbol ⊥.

Rules with a head equal to ⊥, sometimes noted without head, are called
constraints. Given a program P, we denote by PK the set of all constraints of P .
The use of a constraint like ⊥ ← x, nx. forbids to x and nx (ie ¬x) to appear
in the same stable model. By this way, only consistent stable models are kept.

2.2 Basic Principles of Computing Specificity in ASP

The goal of our work is to benefit from the power of ASP to reason while using
a compact representation of knowledge easy to express.

Example 1. The so-called example of birds (where B stands for ”birds”, W ”to
have wings”, P ”penguins” and F ”to fly”) can be encoded by the following
program: {F ← B, not P., W ← B., B ← P., nF ← P., ⊥ ← F, nF.}. When
we consider a penguin (represented by P ← .), there is one stable model: {W ,
P , B, nF}, which corresponds to the intuition.

It is currently admitted that normal logic programs are adapted for representing
default rules with exceptions. However, they are not easy to write since it is
necessary to express every exception or at least to describe the abnormalities.
But it is more convenient to write a simple representation of information, with-
out expressing exceptions in an explicit way. The idea is then first to express
rules in a compact form by writing a normal logic program without exceptions
(that is without a negative body). Unfortunately, this representation leads to
inconsistency.

That’s why our work consists in solving this by determining in an automatic
way the classes and sub-classes of information. The notion of specificity [19] is
then crucial. This aspect has yet been done formally for default logic [5] but
no implementation was given and it remains to apply it to ASP to define an
automatic process dealing correctly with exceptions in this framework (both in
theoretical and practical points of view).
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Hence, from the following example {B → F , B → W , P → B, P →
¬F} which is directly encoded in {F ← B., W ← B., B ← P., nF ← P.,
⊥ ← F, nF.}, we want to obtain the suitable normal logic program: {F ←
B, not nF, not P., W ← B., B ← P., nF ← P, not F.,⊥ ← F, nF.}. The
machinery of normal logic programs will give that birds fly and have wings while
penguins do not fly and have wings which is conform to the intuition. Let us
note that it is easy to generate the constraint in an automatic way. It is done
indeed by the implementation that we have developed.

3 Default Logic and Specificity

In this section, we present the approach proposed by Delgrande and Schaub [5],
applied particularly in the framework of Default Logic [20]. It consists in two
general steps. First, from a default theory, the conflicting rules which have not
the same specificity have to be localized; this is done by using a part of the
machinery of system Z [19]. For instance, in our example, it is clear that the
rules B → F and P → ¬F are conflicting (a contradiction is deduced, in fact F
and ¬F , due to P → B) and the second one is more specific than the first one
(P is a sub-class of B). Secondly, some rules must be modified so that if two
contradicting rules can be applied simultaneously then only the most specific
one is applied.

In System Z, a set of rules R is partitioned (stratified) in subsets R0, . . . , Rn

where the rules of a lower stratum are less specific than the ones of an upper
stratum. The resulting partitioning is called a Z-ordering; this ordering gives
specificity information. Rather to compute the entire Z-ordering, Delgrande and
Schaub first determine minimal conflicting sets, that are separately stratified;
thus, information is classified according to its specificity, in relation with con-
flict(s) in which it occurs. In our example, C = {B → F, P → B, P → ¬F}
is a conflict (in presence of P ). Delgrande and Schaub showed that Z-ordering
of a such set C is a binary partitioning (C0, C1) of the rules; the rules of C0
are less specific than the ones of C1. For instance, for C, the partitioning is
C0 = {B → F} and C1 = {P → B, P → ¬F}. Then, if the rules of C1 can be
applied, we must make sure that some rules of C0 are blocked.

After the conflicting rules being localized, it is necessary to determine the ones
that are candidates to be blocked and the way to block their application. We
want the most specific rules to be applied rather than the less specific ones, in an
independent way of the other rules of the set. This is done by localizing the rules
whose joint application leads to an inconsistency. In our example, the rules that
are concerned are B → F and P → ¬F (B → F ∈ C0 and P → ¬F ∈ C1). The
rules that are selected by this way in C0 constitute the ones which are candidates
to be blocked.

This selection criterion has the important property to be context-independent.
For default theories R and R′ such that R ⊆ R′, if r ∈ R is chosen then it should
also be chosen in R′. Moreover, if a rule should be blocked in the default theory
R then it should also be blocked in any superset R′.
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The second issue (”How to block the application of a rule?”) is dependent
of the used framework. For example, in default logic, the default theory corre-
sponding to our set of rules is composed of normal defaults, excepted for the
ones selected in the previous step that become semi-normal defaults; for these
last ones, the justification is composed by the consequent plus an assertion mak-
ing sure that the rules of C1 that are selected as in the previous way are not
applicable (these rules, in the form of material implications, are added to the
justification then a simplification is made if possible). Let us consider the set
C. The rules P → B and P → ¬F are transformed respectively in: P :B

B and
P :¬F
¬F . The rule B → F is transformed in: B:F∧(P→¬F )

F , that can be simplified
in: B:F∧¬P

F .
To summarize, the approach, proposed in [5] and described above, can be

decomposed in the following way, for a set of rules R:

Algorithm 1. Procedure set transformation
Input: A set R of default rules
Output: The set R modified to handle specificity

1 conf ← minimal conflicts(R)
2 for all C ∈ conf do
3 stratification(C)
4 rule selection(C)
5 end for
6 rule transformation(R, conf)

Let us note that the same basical semantics are shared by default logic
and ASP. In [1,11], by using the mapping Tr such that each rule r = c ←
a1, . . . , an, not b1, . . . , not bm. of a normal logic program Π is associated
with the default rule Tr(r) = a1∧...∧an:¬b1,...,¬bm

c , it is shown that if S is a sta-
ble model of Π then Th(S) is an extension of (∅, T r(Π)) and each extension
of (∅, T r(Π)) is the deductive closure of one stable model of Π . These results
show that ASP can be seen as a simplification of default logic and allow us to
use the formal results of [5] to ensure the validity of the work presented here.
Hence, in the framework of ASP, we proceed in the same way as algorithm 1: we
start by finding the conflicts, we stratify them, we compute their partitioning to
select rules and, last, we modify the rules that are candidates.

4 Specificity in ASP

We have adapted to ASP all the notions and the associated algorithms that have
been defined in the works [5,19] on which we have based ours.

Definition 1. For a rule r = b ← a1, . . . , an.(n ≥ 0) of a definite logic program
P , an atom set A
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– satisfies r if {a1, . . . , an} 
⊆ A or b ∈ A ;
– verifies r if {a1, . . . , an} ⊆ A and b ∈ A ;
– falsifies r if {a1, . . . , an} ⊆ A and b /∈ A.

Definition 2. A rule r of a program P is said to be tolerated by P if and only
if there is an atom set A, closed under P and consistent, which verifies r.

The tolerance of the rule characterizes the fact that its application does not
generate any contradiction. From this notion of tolerance, it is possible to obtain
a stratification of the program called Z-ordering.

In the following, the four steps of the algorithm 1 concerning the conflicts are
developed (that is lines 1, 3, 4 and 6 of the procedure set transformation). A
conflict being a minimal set, the rules that compose it can introduce only one
inconsistency; then, a conflict has one and only one constraint (see section 2 for
the definition of a constraint). For a conflict C, we define:

– constraint(C) the constraint of C;
– rules(C) = C \ {constraint(C)} ;
– constr(C) = body(constraint(C)) (atoms in conflict).

4.1 Conflict Computation (line 1 of the algorithm 1)

If the determination of the conflicts for few rules seems easy, it is not true in
general. The definition of a conflict (adapted to our framework) given in [5] is
the following, where a trivial Z-ordering has only one stratum:

Definition 3. Let P be a logic program. A set of rules C ⊆ P is a conflict in P
if and only if C has a non-trivial Z-ordering and ∀C′, C′ ⊂ C, C′ has a trivial
Z-ordering.

In the worst case, for a program P of n rules, it is necessary to isolate and
stratify the 2n subsets of P . Let us note that some similar works have been
yet done in other settings. In classical logic, particularly for the SAT-problem,
a MUS (Minimally Unsatisfiable Subformula) is an unsatisfiable set of clauses
such that all its subsets are satisfiable. Such a set gives then an ”explanation”
of the inconsistency which can not be smaller in terms of involved clauses, this
corresponding to our notion of conflicts. Some works have shown that the MUS
calculus is not possible to make in practice; indeed, to decide if a set of clauses is
a MUS is DP-complete [18], and to test if a formula belongs to the sets of MUS
is Σp

2 -hard [7]. But Bruni [4] has shown that for some classes of clauses (like
Horn clauses), the extraction of a MUS could be realized in polynomial time.

Let us note that every rule of the initial program is of the form b ← a1, . . . , an.
and can be translated into a clause b∨¬a1∨ . . .∨¬an. Moreover, every constraint
like⊥← x, nx. can be translated into the clause¬x∨¬nx. Following this consider-
ation, we have decided to use the algorithm HYCAM1 [12] which computes all the
MUS of an instance of SAT in a reasonable time. The function minimal conflicts
in algorithm 2 determines the conflicts using calls to HYCAM.
1 It is an improvement of an existing algorithm, CAMUS (Computing All MUS ) [16].



620 L. Garcia, S. Ngoma, and P. Nicolas

Algorithm 2. Function minimal conflicts
Input: A normal logic program P expressed in a compact form
Output: The set of conflicts of P

1 conflicts ← ∅
2 treated ← ∅
3 for all r ∈ P \ PK do
4 A ← body(r)
5 if A /∈ treated then
6 treated ← treated ∪ {A}
7 conf ← HYCAM(P ∪ A)
8 for all C ∈ conf do
9 if ∀C′ ∈ conflicts, C′ �⊆ C then

10 conflicts ← (conflicts ∪ {C}) \ {C′ ∈ conflicts | C ⊂ C′}
11 end if
12 end for
13 end if
14 end for
15 return conflicts

To determine the rules which are potentially responsible of a problem when
they are applicable simultaneously, it is necessary to add facts to the program
before using HYCAM (line 7). It is important to consider the interesting facts
without testing every possible combinations (some of them being useless). Like
System Z which uses the interpretations verifying a rule, we only use the atom
sets allowing this verification (it is impossible to generate the others via the
program). That is why we choose successively the atoms of the body of each rule
(lines 3 to 7) to ensure that each rule will be used at least once; the algorithm
then finds all the MUS where the rule occurs. We are computing the minimal
sets so it is necessary to ensure that no generated set is a super-set of a conflict
(lines 8 to 12).

Example 2. The program P = {Sh ← Mo.(r1), Mo ← Ce.(r2), nSh ← Ce.(r3),
Ce ← Na.(r4), Sh ← Na.(r5), ⊥ ← Sh, nSh.(c1)} means ”generally, the
molluscs (Mo) are shell-bearers (Sh), the cephalopods (Ce) are molluscs, the
cephalopods are not shell-bearers, the nautiluses (Na) are cephalopods and
the nautiluses are shell-bearers”. The sets of facts that have to be added are
{Mo}, {Ce} and {Na}. For {Mo}, no MUS (conflict) is detected. For {Ce},
the conflict C = {r1, r2, r3, c1} is obtained. For {Na}, the conflicts C′ =
{r1, r2, r3, r4, c1} and C′′ = {r3, r4, r5, c1} are obtained. C ⊂ C′, so C′ is
not minimal. The two conflicts of P are then C and C′′.

4.2 Conflict Stratification (line 3 of the algorithm 1)

As shown in [5], the Z-ordering of a conflict contains exactly two strata. So,
either a rule is tolerated in the conflict (line 4) and it belongs to the most
general stratum (line 5), either it is not tolerated (line 6) and it belongs to the
most specific stratum (line 7).
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Algorithm 3. Function stratification
Input: A conflict C
Output: The stratification (C0, C1) of C

1 C0 ← ∅
2 C1 ← ∅
3 for all r ∈ rules(C) do
4 if r is tolerated by C \ {r} then
5 C0 ← C0 ∪ {r}
6 else
7 C1 ← C1 ∪ {r}
8 end if
9 end for

10 return (C0, C1)

Example 3. Let us consider a conflict of the previous example: C = {Sh ←
Mo.(r1), Mo ← Ce.(r2), nSh ← Ce.(r3), ⊥← Sh, nSh.(c1)}. {Mo, Sh} verifies
r1, is closed under C and is consistent. So r1 is tolerated in C, and r1 ∈ C0.
The only closed set which verifies r2 and doe not falsify neither r1 nor r3 is
A = {Ce, Mo,Sh, nSh}; but A is inconsistent. So r2 ∈ C1. In the same way,
we obtain r3 ∈ C1. Finally, the Z-ordering associated to C is the following: C0
= {Sh ← Mo.} and C1 = {Mo ← Ce., nSh ← Ce.}.

4.3 Rule Selection (line 4 of the algorithm 1)

Three subsets of a stratified conflict can be expressed (the notations given in
[5] are taken here): the rules that are candidates to be modified (general rules
with exceptions), min(C); the rules indicating how to modify the previous rules
(expressing the exceptions), max(C); and the remaining rules which are present
in the conflict to link the previous sets, inf(C). They are based on the smallest
set of rules whose simultaneous application leads to an inconsistency.

Algorithm 4. Procedure rule selection
Input: A stratified conflict C
Output: The rules to modify (min(C)), the exceptions (max(C)) and the other rules

(inf(C))
1 core ← {r ∈ rules(C) | head(r) ∈ constr(C)}
2 min(C) ← core ∩ C0

3 max(C) ← core ∩ C1

4 inf(C) ← rules(C) \ core

Definition 4. Let (C0, C1) be the stratification of the rules in the conflict C. A
core of C is a pair of minimal sets

(
min(C),max(C)

)
such that min(C) ⊆ C0 ,

max(C) ⊆ C1 and {a ← .|a ∈ body(r) ∪ {head(r)}, ∀r ∈ min(C) ∪max(C)} ∪
{constraint(C)} leads to a contradiction.

The core is composed of the rules concluding on conflicting atoms (line 1); so, it
ensures that such a core is unique since the head of the rules contains only one
atom. It is then easy to partition the conflict (lines 2 to 4).
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Example 4. Let us take again the previously stratified conflict where constr(C)
= {Sh, nSh}: the core is

(
{Sh ← Mo.}, {nSh ← Ce.}

)
and min(C) = {Sh ←

Mo.}, max(C) = {nSh ← Ce.} and inf(C) = {Mo ← Ce.}.

4.4 Rule Modification (line 6 of the algorithm 1)

Once the core of each conflict is determined, the rules are transformed such that
the most general ones are blocked if at least one of their exceptions is applicable
but remain to be useful otherwise. For this aim, the most general rules are
transformed by putting their exceptions in their negative body. The negative
body of the other rules, which do not suffer any exception, remains empty. The
algorithm 5 does this task by transforming a logic program P from its set of
conflicts conflicts.

Algorithm 5. Procedure rule transformation
Input: A logic program without exceptions denoted P and a set of conflicts denoted

conflicts
Output: The logic program P transformed in a normal logic program with exceptions

taking into account the specificity of information
1 for all r ∈ P do
2 if r is a constraint then
3 for all r′ ∈ P such that head(r′) ∈ body+(r) do
4 body−(r′) ← body−(r′) ∪ (body+(r) \ head(r′))
5 end for
6 else
7 conf ← {C ∈ conflicts | r ∈ min(C)}
8 if conf �= ∅ then
9 for all C ∈ conf do

10 for all r′ ∈ max(C) do
11 if |body+(r′)| = 1 then
12 body−(r) ← body−(r) ∪ body+(r′)
13 else
14 P ← P ∪ {σr′}
15 body−(r) ← body−(r) ∪ {head(σr′)}
16 end if
17 end for
18 end for
19 end if
20 end if
21 end for

If r is a constraint, all the rules that can use the constraint (i.e. that can be
implied in a contradiction) are transformed (lines 3 to 5). If r is not a constraint,
the conflicts for which r ∈ min(C) (i.e. that can be modified) are found (line
7) then the rule is modified by expressing its exceptions (lines 9 to 18), with a
different treatment with respect to the number of atoms in the positive body
of the rule r′ defining the exception (line 12 or lines 14 and 15). For a rule r′
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containing several atoms in its positive body (lines 14 and 15), a new rule σr′ is
defined such that:

– head(σr′) is a new atom (which does not yet exist in the program);
– body+(σr′) = body+(r′) ;
– body−(σr′) = ∅.

By construction, σr′ is a rule that will be used each time r will be applicable.
So, for each one of its exceptions r′, r is blocked if every atom of the positive

body of r′ are proven (i.e. r′ is applicable) or if the head of r′ has been obtained
(or if the ”opposite” of the head of r has been yet concluded).

Example 5. For our example, the complete transformation process leads to the
normal logic program: P = {Sh ← Mo, not nSh, not Ce., Mo ← Ce., nSh ←
Ce, not Sh, not Na., Ce ← Na., Sh ← Na, not nSh., ⊥← Sh, nSh.}.

5 Conclusion and Perspectives

From a compact representation of information, we can now use ASP to ex-
press in an automatic way default information, then to reason via stable mod-
els semantics. Due to lack of place, we do not present the implementation but
it is important to notice that we have develop an operational system imple-
menting the algorithms described in this article. The programs are available at
http://www.info.univ-angers.fr/pub/pn/Softwares/specifASP.html. In partic-
ular, the conflict computation was not proposed in [5] where they consider the
conflicts as asset.

We have to notice that several works dealing with default reasoning, but not
linked to default logic, exist and it would be interesting to compare our proposal
to these other ones. Particularly, we are interested in studying the properties of
non-monotonic systems such as system P and rational monotony [14]. Moreover,
in other frameworks, for instance machine learning, some works focused on the
way to generate the exceptions but by observing some instances [13] while we
are interested in determining the classes and subclasses of information.

Dealing with specificity and logic programming has been yet developped in
several works. For example, in [22], an inheritance network is transformed in a
normal logic program. However this graphical model based on path computing
is less complex and does not allow to take into account rules with multiple
atoms in the body or constraints which are not binary. The closer work to ours
can be founded in [2]. Based on extended well founded semantics (WFSX) and
computing a global stratification over the program, it suffers from cautiousness:
on one hand, it does not allow to infer floating information (for example, with
Nixon diamond); on the other hand, it faces the blocking inheritance problem
(penguins do not have wings because of being abnormal birds).

Today, one of the domain of application of ASP is the semantic web [3]. In this
context, a realistic scenario of reasoning may be the following. Let us suppose
that we have different nodes of knowledge encoded by common-sense default

http://www.info.univ-angers.fr/pub/pn/Softwares/specifASP.html
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rules and distributed over a network. On a particular node the knowledge could
be very general as ”birds fly”. On another node, more specialized in some pieces
of knowledge, we can find informations like ”penguins are birds” and ”penguins
do not fly” but no information about the ability to fly of the birds. So, locally, the
knowledge is well represented, consistent and an automatic reasoning is possible.
But, if a system tries to exploit the entire knowledge of the network, then it
has to gather all the rules. And, then, as we have shown before some conflicts
arise and the reasoning is impossible if the system does not take into account
the different levels of specificity of every piece of knowledge. It is an evidence
that the methodology and the tools that we have described and developped
in our work could be used to build a coherent knowledge base of rules with
exceptions (automatically detected), allowing to infer conclusions based on the
global knowledge distributed over the network.

Last, let us note that, in a previous work, we have proposed to merge the han-
dling of default and uncertain information in ASP (for the default aspect) using
possibility theory (for the uncertainty aspect) [17]. The present work should im-
prove this proposal by allowing a compact representation of default information.
This work should then be linked to the one proposed in [6] which has also been
developped to deal with default and uncertain information but in the possibilistic
logic setting.
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Abstract. A generalised version of the label semantics framework is
proposed as an epistemic model of the uncertainty associated with vague
description labels. In this framework communicating agents make explicit
decisions both about which labels are appropriate to describe an element
x ∈ Ω (the underlying universe), and also about which negated labels
are appropriate to describe x. It is shown that such a framework can
capture a number of different calculi for reasoning with vague concepts as
special cases. In particular, different uncertainty assumptions are shown
to result in the truth-functional max-min calculus and the standard label
semantics calculus.

1 Introduction

Label semantics [5]-[7] is a random set framework for modelling the uncertainty
associated with vague description labels based on the epistemic view of vague-
ness as proposed by Williamson and others [10]. The latter suggests that vague
concepts have precise but uncertain boundaries. For instance, according to the
epistemic view there is a precise but uncertain threshold above which a height
is described as tall and below which it is described as not tall. In fact label
semantics requires communicating agents to adopt an epistemic stance which is
rather weaker that Williamson’s epistemic theory. It is also assumed that the use
of vague descriptions in language is governed by linguistic conventions adopted
by a population of communicating agents and furthermore, in accordance with
Parikh [8] and Kyburg [4], the focus of label semantics is on identifying which
labels are assertible or appropriate based on these conventions.

This paper proposes an extension of label semantics in which an agent makes
explicit decisions not only concerning which labels are appropriate to describe
a given object or value, but also on which negated labels are appropriate. This
more general framework is then shown to incorporate, as special cases, a number
of different calculi for combining labels using logical connectives. In particular,
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different uncertainty assumptions are shown to result in the truth-functional
max-min calculus and the original standard label semantics calculus. An outline
of the paper is as follows: Section 2 discusses the epistemic theory of vagueness
underpinning label semantics; section 3 introduces the new general label seman-
tics framework and gives a number of key results; section 4 discusses the laws
of non-contradiction and excluded middle within this new framework; section 5
identifies three uncertainty assumptions which result in a truth-functional max-
min calculus; section 6 shows that standard label semantics is a special case of
the new theory and finally section 7 gives a summary and some conclusions.

2 The Epistemic Stance

Label semantics concerns the decision making process an intelligent agent must
go through in order to identify which labels or expressions can actually be used
to describe an object or value. In other words, in order to make an assertion
describing an object in terms of some set of linguistic labels, an agent must first
identify which of these labels are appropriate or assertible in this context. Given
the way that individuals learn language through an ongoing process of interac-
tion with the other communicating agents and with the environment, then we
can expect there to be considerable uncertainty associated with any decisions of
this kind. Furthermore, there is a subtle assumption central to the label semantic
model, that such decisions regarding appropriateness or assertibility are mean-
ingful. For instance, the fuzzy logic view is that vague descriptions like ‘John is
tall’ are generally only partially true and hence it is not meaningful to consider
which of a set of given labels can truthfully be used to described John’s height.
However, we contest that the efficacy of natural language as a means of con-
veying information between members of a population lies in shared conventions
governing the appropriate use of words which are, at least loosely, adhere to by
individuals within the population.

In our everyday use of language we are continually faced with decisions about
the best way to describe objects and instances in order to convey the informa-
tion we intend. For example, suppose you are witness to a robbery, how should
you describe the robber so that police on patrol in the streets will have the best
chance of spotting him? You will have certain labels that can be applied, for ex-
ample tall, short, medium, fat, thin, blonde, etc, some of which you may view as
inappropriate for the robber, others perhaps you think are definitely appropriate
while for some labels you are uncertain whether they are appropriate or not. On
the other hand, perhaps you have some ordered preferences between labels so
that tall is more appropriate than medium which is in turn more appropriate
than short. Your choice of words to describe the robber should surely then be
based on these judgments about the appropriateness of labels. Yet where does
this knowledge come from and more fundamentally what does it actually mean
to say that a label is or is not appropriate? Label semantics proposes an interpre-
tation of vague description labels based on a particular notion of appropriateness
and suggests a measure of subjective uncertainty resulting from an agent’s par-
tial knowledge about what labels are appropriate to assert. Furthermore, it is
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suggested that the vagueness of these description labels lies fundamentally in
the uncertainty about if and when they are appropriate as governed by the rules
and conventions of language use.

The above argument brings us very close to the epistemic view of vagueness
as expounded by Williamson [10]. However, while there are marked similarities
between the epistemic theory and the label semantics view, there are also some
subtle differences. For instance, the epistemic view would seem to assume the
existence of some objectively correct, but unknown, definition of a vague concept.
Instead of this we argue that individuals when faced with decision problems
regarding assertions find it useful as part of a decision making strategy to assume
that there is a clear dividing line between those labels which are and those
which are not appropriate to describe a given instance. We refer to this strategic
assumption across a population of communicating agents as the epistemic stance
[7], a concise statement of which is as follows:

Each individual agent in the population assumes the existence of a set of
labeling conventions, valid across the whole population, governing what
linguistic labels and expressions can be appropriately used to describe
particular instances.

In practice these rules and conventions underlying the appropriate use of labels
would not be imposed by some outside authority. In fact, they may not exist at
all in a formal sense. Rather they are represented as a distributed body of knowl-
edge concerning the assertability of predicates in various cases, shared across a
population of agents, and emerging as the result of interactions and communi-
cations between individual agents all adopting the epistemic stance. The idea is
that the learning processes of individual agents, all sharing the fundamental aim
of understanding how words can be appropriately used to communicate infor-
mation, will eventually converge to some degree on a set of shared conventions.
The very process of convergence then to some extent vindicates the epistemic
stance from the perspective of individual agents. Of course, this is not to suggest
complete or even extensive agreement between individuals as to these appropri-
ateness conventions. However, the overlap between agents should be sufficient to
ensure the effective transfer of useful information.

3 Generalised Label Semantics

We assume that agents describe elements of an underlying universe Ω in terms
of a finite set of labels LA from which a set of compound expressions LE can
be generated through recursive applications of logical connectives. The labels
Li ∈ LA are intended to represent words such as adjectives and nouns which can
be used to describe elements from the underlying universe Ω. In other words, Li

correspond to description labels for which the expression ‘x is Li’ is meaningful
for any x ∈ Ω. For example, if Ω is the set of all possible rgb values1 then LA

1 rgb is an additive colour model in which red, green and blue are combined to repro-
duce a broad range of colours.
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could consist of the basic colour labels such as red, yellow, green, orange etc. In
this case LE then contains those compound expressions such as red & yellow,
not blue nor orange etc.

In the original label semantics framework [5]-[7], when describing an example
x ∈ Ω, an agent attempts to identify the set of labels Dx ⊆ LA corresponding
to those labels which they judge to be appropriate to describe x based on their
knowledge of labeling conventions. In this extended model we also assume that
the agent attempts to explicitly define a set Cx corresponding to those labels Li

for which the negation ¬Li is appropriate to describe x2.This explicitly separate
treatement of labels and negated labels is consistent with a bi-polar approach
to reasoning and representation [1]. In the face of their uncertainty regarding
labeling conventions the agent will be uncertain as to the composition of both
Dx and Cx, and this uncertainty is quantified by a joint mass function mx : 2LA×
2LA → [0, 1]. For F,G ⊆ LA mx(F,G) then quantifies the agent’s subjective
belief that (Dx, Cx) = (F,G).

Definition 1. Label Expressions
We now define the set of label expressions LE generated recursively from the
connectives ∧,∨ and ¬ as follows: LA ⊆ LE; ∀θ, ϕ ∈ LE θ ∧ ϕ, θ ∨ ϕ ∈ LE;
∀θ ∈ LE ¬θ ∈ LE

Definition 2. Mass Function
For x ∈ Ω let mx : 2LA× 2LA → [0, 1] such that

∑
F⊆LA

∑
G⊆LAmx(F,G) = 1

For an expression θ ∈ LE, the assertion ‘x is θ’ naturally provides direct con-
straints on Dx and Cx. For example, given Li ∈ LA, asserting ‘x is Li’ conveys
the information that Li ∈ Dx (i.e. Li is appropriate to describe x), while assert-
ing ‘x is ¬Li’ conveys the information that Li ∈ Cx (i.e. ¬Li is appropriate to
describe x). Also for example, asserting the compound expression ‘x is Li∧¬Lj ’
implies that Li ∈ Dx and Lj ∈ Cx. In general we can recursively define a map-
ping λ : LE → 22LA × 22LA

from expressions to sets of pairs of subsets of labels,
such that the assertion ‘x is θ’ directly implies the constraint (Dx, Cx) ∈ λ (θ)
and where λ (θ) is dependent on the logical structure of θ.

Definition 3. λ mapping
Let λ : LE → 22LA × 22LA

defined recursively by: ∀θ, ϕ ∈ LE; ∀Li ∈ LA
λ(Li) = {(F,G) : Li ∈ F}; λ(θ ∧ ϕ) = λ(θ) ∩ λ(ϕ); λ(θ ∨ ϕ) = λ(θ) ∪ λ(ϕ);
λ(¬θ) = {(Gc, F c) : (F,G) ∈ λ(θ)c}

The behaviour of the λ-mapping given in definition 3 is relatively intuitive except
perhaps in the case of negation, a possible justification of which is given as
follows: If (Dx, Cx) = (F,G) then Gc corresponds those labels Lj for which ¬Lj

is not appropriate to describe x and F c corresponds to those labels Li for which
Li is not appropriate to describe x. Now an agent might take the view that
if Li 
∈ Dx (i.e. Li is not appropriate) then this could provide some evidence

2 In standard label semantics it is implicitly assumed that Cx = (Dx)c.
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that Li ∈ Cx (i.e. ¬Li is appropriate) and similarly that if Lj 
∈ Cx (i.e. ¬Lj

is not appropriate) then this provides some evidence that Lj ∈ Dx (i.e. that
Lj is appropriate). Hence, given an agent for whom (Dx, Cx) = (F,G), then
(Dx, Cx) = (Gc, F c) would correspond to a dual state of knowledge obtained by
positively asserting, firstly those labels Lj for which ¬Lj has been ruled out
as inappropriate, and secondly those negated labels ¬Li for which Li has been
ruled out as inappropriate. For an expression θ ∈ LE, λ(¬θ) then consists of
those dual states (Gc, F c) for which the state (F,G) is not consistent with θ.

Example 1. For Li, Lj ∈ LA, λ(Li) = {(F,G) : Li ∈ F}, λ(¬Lj) = {(F,G) :
Lj ∈ G}, λ(Li ∧ ¬Lj) = {(F,G) : Li ∈ F,Lj ∈ G}

Given definitions 2 and 3 we can define an appropriateness measure μθ(x) quan-
tifying an agent’s subjective belief that expression θ ∈ LE is appropriate to
describe x ∈ Ω. Here μθ(x) is taken to be the sum of mx across those pairs
(F,G) consistent with θ (i.e. (F,G) ∈ λ(θ)).

Definition 4. Appropriateness Measures
μ : LE × Ω → [0, 1] such that ∀θ ∈ LE, ∀x ∈ Ω μθ(x) =

∑
(F,G)∈λ(θ) mx(F,G)

where μθ(x) is shorthand for μ(θ, x).

Notice that both Dx and Cx are random sets and hence definition 4 links ap-
propriateness measures to the work of Goodman and Nguyen on random set
interpretations of fuzzy membership functions [2], [3]. Here, however, the model
is two dimensional (i.e. based on two related random sets) and also the random
sets take sets of labels as values rather than sets of elements from the underlying
domain Ω as in Goodman and Nguyen’s work.

The following theorems show that appropriateness measures as defined above
satisfy De Morgan’s laws and Double Negation.

Theorem 1. De Morgan’s Laws
∀θ, ϕ ∈ LE

– λ(¬(θ ∧ ϕ)) = λ(¬θ ∨ ¬ϕ)
– λ(¬(θ ∨ ϕ)) = λ(¬θ ∧ ¬ϕ)

Proof.

λ(¬(θ ∧ ϕ) = {(Gc, F c) ∈ λ(θ ∧ ϕ)c} = {(Gc, F c) : (F,G) ∈ λ(θ)c ∪ λ(ϕ)c}
= {(Gc, F c) : (F,G) ∈ λ(θ)c} ∪ {(Gc, F c) : (F,G) ∈ λ(ϕ)c} = λ(¬θ) ∪ λ(¬ϕ)
= λ(¬θ ∨ ¬ϕ)

λ(¬(θ ∨ ϕ)) = {(Gc, F c) : (F,G) ∈ λ(θ ∨ ϕ)c}
= {(Gc, F c) : (F,G) ∈ λ(θ)c ∩ λ(ϕ)c}
= {(Gc, F c) : (F,G) ∈ λ(θ)c} ∩ {(Gc, F c) : (F,G) ∈ λ(ϕ)c} = λ(¬θ) ∩ λ(¬ϕ)
= λ(¬θ ∧ ¬ϕ)
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Corollary 1

∀θ, ϕ ∈ LE, ∀x ∈ Ω μ¬(θ∧ϕ)(x) = μ¬θ∨¬ϕ(x) and μ¬(θ∨ϕ)(x) = μ¬θ∧¬ϕ(x)

Proof. Follows trivially from theorem 1 and definitions 3 and 4.

Theorem 2. Double Negation
∀θ ∈ LE λ(¬(¬θ)) = λ(θ)

Proof. Suppose (F,G) 
∈ λ(θ) ⇒ (Gc, F c) ∈ λ(¬θ) ⇒ (Gc, F c) 
∈ λ(¬θ)c ⇒
(F,G) 
∈ λ(¬(¬θ))
Suppose (F,G) 
∈ λ(¬(¬θ)) ⇒ (Gc, F c) ∈ λ(¬θ) ⇒ (F,G) ∈ λ(θ)c ⇒ (F,G) /∈
λ(θ)

Corollary 2

∀θ ∈ LE, ∀x ∈ Ω μ¬(¬θ)(x) = μθ(x).

Proof. Follows trivially from theorem 2 and definitions 3 and 4.

The following theorem shows that for Ψ ∈ LE, λ(Ψ) contains embedded nested
sequences of pairs (F,G).

Theorem 3. Nestedness
∀Ψ ∈ LE if (F,G) ∈ λ(Ψ) and F ′ ⊇ F and G′ ⊇ G then (F ′, G′) ∈ λ(Ψ)

Proof. Let LE0 = LA and LEk = LEk−1 ∪ {θ ∧ ϕ, θ ∨ ϕ,¬θ : θ, ϕ ∈ LEk−1}
then by induction on k; For Li ∈ LA the result holds trivially. Now suppose true
for k and prove for k + 1. For Ψ ∈ LEk+1 either Ψ ∈ LEk in which case the
result holds trivially, otherwise one of the following cases hold:

– Ψ = θ ∧ ϕ where θ, ϕ ∈ LEk. In this case λ(Ψ) = λ(θ) ∩ λ(ϕ). Now sup-
pose that (F,G) ∈ λ(Ψ) then (F,G) ∈ λ(θ) and (F,G) ∈ λ(ϕ). Hence by
induction, if F ′ ⊇ F and G′ ⊇ G then (F ′, G′) ∈ λ(θ) and (F ′, G′) ∈ λ(ϕ).
Therefore, (F ′, G′) ∈ λ(θ) ∩ λ(ϕ) = λ(Ψ) as required.

– Ψ = θ ∨ ϕ where θ, ϕ ∈ LEk. In this case λ(Ψ) = λ(θ) ∪ λ(ϕ). Now suppose
that (F,G) ∈ λ(Ψ) then (F,G) ∈ λ(θ) or (F,G) ∈ λ(ϕ). Hence by induction,
if F ′ ⊇ F and G′ ⊇ G then (F ′, G′) ∈ λ(θ) or (F ′, G′) ∈ λ(ϕ. Therefore,
(F ′, G′) ∈ λ(θ) ∪ λ(ϕ) = λ(Ψ) as required.

– Ψ = ¬θ. In this case λ(Ψ) = {(Gc, F c) : (F,G) ∈ λ(θ)c}. Now suppose
(F,G) ∈ λ(Ψ) then (Gc, F c) ∈ λ(θ)c. Now if F ′ ⊇ F and G′ ⊇ G then
(F ′)c ⊆ F c and (G′)c ⊆ Gc which implies by induction that ((G′)c, (F ′)c) ∈
λ(θ)c 3 and hence (F ′, G′) ∈ λ(¬θ) = λ(Ψ) as required.

3 Otherwise suppose ((G′)c, (F ′)c) �∈ λ(θ)c then ((G′)c, (F ′)c) ∈ λ(θ) and hence by
induction (Gc, F c) ∈ λ(θ). Therefore (Gc, F c) �∈ λ(θ)c and hence (F, G) �∈ λ(¬θ)
which is a contradiction.
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Corollary 3. For any θ ∈ λ(θ)

– If λ(θ) 
= ∅ then (LA,LA) ∈ λ(θ)
– If (∅, ∅) ∈ λ(θ) then λ(θ) = 2LA × 2LA

The next result shows that there is no expression Ψ ∈ LE for which λ(Ψ) is either
empty or contains all possible pairs (F,G). Consequently there is no expression
Ψ such that for all possible mass functions mx either μΨ (x) = 0 or μΨ (x) = 1.

Theorem 4. Non-Triviality
∀Ψ ∈ LE λ(Ψ) 
= ∅ and λ(Ψ) 
= 2LA × 2LA

Proof. Let LE0 = LA and LEk = LEk−1∪{θ∧ϕ, θ∨ϕ,¬θ : θ, ϕ ∈ LEk−1} then
by induction on k; For Li ∈ LA λ(Li) = {(F,G) : Li ∈ F} so clearly λ(Li) 
= ∅.
Also (∅, ∅) 
∈ λ(Li) and hence λ(Li) 
= 2LA × 2LA. Now suppose true for k and
prove for k + 1. For Ψ ∈ LEk+1 either Ψ ∈ LEk in which case the result holds
trivially, otherwise one of the following cases hold:

– Ψ = θ ∧ ϕ where θ, ϕ ∈ LEk. In this case λ(Ψ) = λ(θ) ∩ λ(ϕ). Now by
induction λ(θ) 
= ∅ and λ(ϕ) 
= ∅. Then by Corollary 3 (LA,LA) ∈ λ(θ)
and (LA,LA) ∈ λ(ϕ). Therefore (LA,LA) ∈ λ(θ) ∩ λ(ϕ) = λ(Ψ) and hence
λ(Ψ) 
= ∅. Also, by induction λ(θ) 
= 2LA× 2LA and λ(ϕ) 
= 2LA× 2LA then
trivially λ(Ψ) = λ(θ) ∩ λ(ϕ) 
= 2LA × 2LA.

– Ψ = θ ∨ ϕ where θ, ϕ ∈ LEk. In this case λ(Ψ) = λ(θ) ∪ λ(ϕ). Now by
induction λ(θ) 
= ∅ and λ(ϕ) 
= ∅. Hence trivially λ(Ψ) 
= ∅. Also, by in-
duction λ(θ) 
= 2LA × 2LA and λ(ϕ) 
= 2LA × 2LA. Therefore by corollary
3 (∅, ∅) 
∈ λ(θ) and (∅, ∅) 
∈ λ(ϕ). Hence (∅, ∅) 
∈ λ(θ) ∪ λ(ϕ) and therefore
λ(Ψ) 
= 2LA × 2LA.

– Ψ = ¬θ. In this case λ(Ψ) = {(Gc, F c) : (F,G) ∈ λ(θ)c}. Now by induction
λ(θ) 
= 2LA × 2LA which implies that λ(θ)c 
= ∅ and hence λ(¬θ) 
= ∅. Also
by induction λ(θ) 
= ∅ and hence by corollary 3 (LA,LA) ∈ λ(θ). Therefore
(LA,LA) 
∈ λ(θ)c and hence (∅, ∅) 
∈ λ(¬θ). Hence λ(Ψ) 
= 2LA × 2LA.

Corollary 4. ∀Ψ ∈ LE (∅, ∅) 
∈ λ(Ψ)

The following theorem shows that for an expression Ψ∧¬Ψ , if (F,G) ∈ λ(Ψ∧¬Ψ)
then F and G must have labels in common.

Theorem 5. Weak Non-Contradiction
Let A = {(F,G) : F ∩G = ∅} then ∀Ψ ∈ LE λ(Ψ ∧ ¬Ψ) ∩ A = ∅

Proof. Let LE0 = LA and LEk = LEk−1 ∪ {θ ∧ ϕ, θ ∨ ϕ,¬θ : θ, ϕ ∈ LEk−1}
then by induction on k; For Ψ = Li ∈ LA then λ(Li ∧ ¬Li) = {(F,G) : Li ∈
F,Li ∈ G}. Hence, ∀(F,G) ∈ λ(Li ∧ ¬Li) F ∩G ⊇ {Li} 
= ∅. Now suppose true
for k and prove for k + 1. For Ψ ∈ LEk+1 either Ψ ∈ LEk in which case the
result holds trivially, otherwise one of the following cases hold: For θ, ϕ ∈ LEk

– Ψ = θ∧ϕ then λ(Ψ∧¬Ψ) = λ(Ψ)∩λ(¬Ψ) = λ(θ∧ϕ)∩λ(¬(θ∧ϕ)) by theorem
1 = [λ(θ)∩λ(ϕ)]∩ [λ(¬θ)∪λ(¬ϕ)] = [λ(θ ∧¬θ)∩λ(ϕ)]∪ [λ(ϕ∧¬ϕ)∩λ(θ)].
Hence, λ(Ψ ∧¬Ψ)∩A = [λ(θ ∧¬θ) ∩A∩ λ(ϕ)] ∪ [λ(ϕ∧ ¬ϕ)∩A∩ λ(θ)] = ∅
by induction.
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– Ψ = θ∨ϕ then λ(Ψ∧¬Ψ) = λ(Ψ)∩λ(¬Ψ) = λ(θ∨ϕ)∩λ(¬(θ∨ϕ)) by theorem
1= [λ(θ)∪λ(ϕ)]∩ [λ(¬θ)∩λ(¬ϕ)] = [λ(θ∧¬θ)∩λ(¬ϕ)]∪ [λ(ϕ∧¬ϕ)∩λ(¬θ)].
Hence λ(Ψ ∧¬Ψ)∩A = [λ(θ∧¬θ)∩A∩λ(¬ϕ)]∪ [λ(ϕ∧¬ϕ)∩A∩λ(¬θ)] = ∅
by induction.

– Ψ = ¬θ then λ(Ψ ∧ ¬Ψ) = λ(Ψ) ∩ λ(¬Ψ) = λ(¬θ) ∩ λ(¬(¬θ)) by theorem 2
= λ(¬θ) ∩ λ(θ) = λ(θ ∧ ¬θ). Hence, λ(Ψ ∧ ¬Ψ) ∩ A = ∅ by induction.

The following theorem shows that any pair of labels (F,G) where F ∪G = LA
is contained in λ(Ψ ∨ ¬Ψ) for any label expression Ψ .

Theorem 6. Weak Excluded Middle
Let B = {(F,G) : F ∪G = LA} then ∀Ψ ∈ LE λ(Ψ ∨ ¬Ψ) ⊇ B

Proof. Note that B = {(Gc, F c) : G ∩ F = ∅} = {(Gc, F c) : (F,G) ∈ A}. Then
by theorem 1

λ(Ψ ∨ ¬Ψ) = λ(¬(Ψ ∧ ¬Ψ)) = {(Gc, F c) : (F,G) ∈ λ(Ψ ∧ ¬Ψ)c}
⊇ {(Gc, F c) : (F,G) ∈ A}( since A ⊆ λ(Ψ ∧ ¬Ψ) by theorem 5) = B

4 Laws of Non-contradiction and Excluded Middle

In this section we show that two additional assumptions about mass function mx

ensures that the resulting appropriateness measures satisfy Non-Contradiction
and Excluded Middle.

Definition 5. Absolute Complementation
mx satisfies absolute complementation if

∑
F

∑
G:G⊆F c mx(F,G) = 1

Definition 5 is motivated by the assumption that if a label Li is appropriate to
describe x, then it’s negation ¬Li cannot also be appropriate i.e. Cx ⊆ (Dx)c

Definition 6. Total Coverage
The mass function mx satisfies total coverage if

∑
F

∑
G:G⊇F c mx(F,G) = 1

Definition 6 is motivated by the assumption that for every label Li ∈ LA either
Li is appropriate to describe x or its negation is appropriate i.e. Cx ⊇ (Dx)c

Theorem 7. Non-Contradiction
If mx satisfies absolute complementation then ∀Ψ ∈ LE μΨ∧¬Ψ(x) = 0.

Proof. By theorem 5 μΨ∧¬Ψ(x) =
∑

(F,G)∈λ(Ψ∧¬Ψ mx(F,G) ≤
∑

(F,G)∈Ac

mx(F,G) =
∑

(F,G):F∩G �=∅mx(F,G) = 0 by absolute complementation.

Theorem 8. Excluded Middle
If mx satisfies total coverage then ∀Ψ ∈ LE μΨ∨¬Ψ(x) = 1

Proof.

μΨ∨¬Ψ(x) =
∑

(F,G)∈λ(Ψ∨¬Ψ)

mx(F,G) ≥
∑

(F,G)∈B
mx(F,G)

=
∑
F

∑
G:G⊇F c

mx(F,G) = 1

by total coverage and theorem 6.
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5 Max-Min Truth-Functionality

This section introduces two constraints on mx which result in a truth-functional
min-max calculus for appropriateness measures of the form proposed by Zadeh
for fuzzy set membership function in his original 1965 paper [11].

Definition 7. Complement Symmetric
A mass function mx is complement symmetric if ∀F,G ⊆ LA mx(F,G) =
mx(Gc, F c).

Underlying the above property is the assumption that an agent allocates equal
belief to the state of knowledge (F,G) and its dual state (Gc, F c) as discussed
in section 3.

Definition 8. Pairwise Consonance
Let FGx = {(F,G) : mx(F,G) > 0}. Then a mass function mx is pairwise
consonant iff ∀(F1, G1), (F2, G2) ∈ FGx either F1 ⊆ F2 and G1 ⊆ G2 or F2 ⊆ F1
and G2 ⊆ G1.

Pairwise consonance might be justified if agents adopted the following approach
when estimating the composition of Dx and Cx: Given x ∈ Ω an agent would
generate two distinct rankings on labels; one based on their appropriateness to
describe x and a second on the appropriateness of their negations to describe x.
Given these rankings the agent’s judgments would then be based on what they
perceive to be the correct degree of ‘open-mindedness’ in the current context. In
particular, a high degree of ‘open-mindedness’ would result in labels lower down
the appropriateness ranking for labels being included in Dx, and labels lower
down the appropriateness ranking for negated labels being included in Cx.

Theorem 9. If mx is complement symmetric then ∀θ ∈ LE μ¬θ(x) = 1−μθ(x)

Proof.

μ¬θ(x) =
∑

(F,G)∈λ(¬θ)
mx(F,G) =

∑
(F,G) �∈λ(θ)

mx(Gc, F c)

= 1−
∑

(F,G)∈λ(θ)

mx(Gc, F c) = 1−
∑

(F,G)∈λ(θ)

mx(F,G) = 1− μθ(x)

by definitions 3 and 7.

Theorem 10. If mx is pairwise consonant then ∀θ, ϕ ∈ LE
μθ∧ϕ(x) = min(μθ(x), μϕ(x)) and μθ∨ϕ(x) = max(μθ(x), μϕ(x)).

Proof. If mx is pairwise consonant then w.l.o.g we can assume
FGx = {(F1, G1), . . . , (FN , GN )} where Fi ⊆ Fj and Gi ⊆ Gj for j ≥ i. Now by
theorem 3 there exists k, k′ ∈ {1, . . . , N} such that:

λ(θ) ∩ FGx = {(Fk, Gk), . . . , (FN , GN )} and
λ(ϕ) ∩ FGx = {(Fk′ , Gk′), . . . , (FN , GN )}
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Hence

λ(θ ∧ ϕ) ∩ FGx = {(Fmax(k,k′), Gmax(k,k′)), . . . , (FN , GN )} and
λ(θ ∨ ϕ) ∩ FGx = {(Fmin(k,k′), Gmin(k,k′)), . . . , (FN , GN )}

Therefore,

μθ∧ϕ(x) =
N∑

i=max(k,k′)

mx(Fi, Gi) = min(
N∑
i=k

mx(Fi, Gi),
N∑

i=k′

mx(Fi, Gi))

= min(μθ(x), μϕ(x))

μθ∨ϕ(x) =
N∑

i=min(k,k′)

mx(Fi, Gi) = max(
N∑
i=k

mx(Fi, Gi),
N∑

i=k′

mx(Fi, Gi))

= max(μθ(x), μϕ(x))

Corollary 5. If mx is both complement symmetric and pairwise consonant then
the resulting appropriateness measures are truth functional where: ∀θ, ϕ ∈ LE
μθ(x)= 1−μθ(x), μθ∧ϕ(x)=min(μθ(x), μϕ(x)) and μθ∨ϕ(x)=max(μθ(x), μϕ(x))

Example 2. Let LA = {L1, L2, L3, L4} then the following mass function satisfies
both complement symmetry and pairwise consonance:

mx := (∅, {L2}) : 0.3, ({L1}, {L2, L3}) : 0.2, ({L1, L4}, {L2, L3, L4}) : 0.2,
({L1, L4, L3}, {L1, L2, L3, L4}) : 0.3.

6 Standard Label Semantics as a Special Case

In this section we consider the standard label semantics model [5]-[7] as a special
case of generalised label semantics. As mentioned in section 3, in standard label
semantics agents only explicitly define Dx (the complete set of appropriate label
for x) and then implicitly assume that Cx = (Dx)c. This latter relationship
clearly identifies the following restricted class of mass functions.

Definition 9. Classical Mass Function
mx is a classical mass function if FGx ⊆ {(F, F c) : F ⊆ LA}4.

In standard label semantics the assertion ‘x is θ’ for θ ∈ LE is assumed to
generate the constraint Dx ∈ λ′(θ) where the mapping λ′ is defined as follows:

Definition 10. One-Dimensional λ-mapping
The one-dimensional λ-mapping is a function λ′ : LE → 22LA

defined recursively
as follows:

4 See definition 8.
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– ∀L ∈ LA λ′(L) = {F ⊆ LA : L ∈ F}
– ∀θ, ϕ ∈ LE; λ′(θ∧ϕ) = λ′(θ)∩λ′(ϕ), λ′(θ∨ϕ) = λ′(θ)∪λ′(ϕ) and λ′(¬θ) =

(λ′(θ))c

If an agent then defines a one-dimensional mass function m′x : 2LA → [0, 1] where
m′x(F ) is the agent’s subjective belief that Dx = F then for expression θ ∈ LE
in standard label semantics the appropriateness measure is given by μθ(x) =∑

F∈λ′(θ) m
′
x(F ). Now clearly a classical mass function (definition 9) naturally

generates such a one-dimensional mass function where m′x(F ) = mx(F, F c). The
following theorem shows that in such a case the standard and generalised label
semantics definitions of appropriateness measure coincide.

Theorem 11. Restriction
∀Ψ ∈ LE ∀F ⊆ LA (F, F c) ∈ λ(Ψ) iff F ∈ λ′(Ψ)

Proof. Let LE0 = LA and LEk = LEk−1 ∪ {θ ∧ ϕ, θ ∨ ϕ,¬θ : θ, ϕ ∈ LEk−1}
then by induction on k; For Ψ = Li ∈ LA then (F, F c) ∈ λ(Li) iff Li ∈ F (by
definition 3) iff F ∈ λ′(Li) (by definition 10). Now suppose true for k and prove
for k+1. For Ψ ∈ LEk+1 either Ψ ∈ LEk in which case the result holds trivially,
otherwise one of the following cases hold: For θ, ϕ ∈ LEk;

– Ψ = θ ∧ ϕ. If (F, F c) ∈ λ(Ψ) ⇒ (F, F c) ∈ λ(θ) ∩ λ(ϕ) (by definition 3) ⇒
(F, F c) ∈ λ(θ) and (F, F c) ∈ λ(ϕ) ⇒ F ∈ λ′(θ) and F ∈ λ′(ϕ) (by inductive
hypothesis) ⇒ F ∈ λ′(θ) ∩ λ′(ϕ) = λ′(θ ∧ ϕ) = λ′(Ψ) (by definition 10).
If F ∈ λ′(Ψ) ⇒ F ∈ λ′(θ) ∩ λ′(ϕ) (by definition 10) ⇒ F ∈ λ′(θ) and
F ∈ λ′(ϕ) ⇒ (F, F c) ∈ λ(θ) and (F, F c) ∈ λ(ϕ) (by inductive hypothesis)
⇒ (F, F c) ∈ λ(θ) ∩ λ(ϕ) = λ(θ ∧ ϕ) = λ(Ψ) (by definition 3).

– Ψ = θ ∨ ϕ. If (F, F c) ∈ λ(Ψ) ⇒ (F, F c) ∈ λ(θ) ∪ λ(ϕ) (by definition 3) ⇒
(F, F c) ∈ λ(θ) or (F, F c) ∈ λ(ϕ) ⇒ F ∈ λ′(θ) or F ∈ λ′(ϕ) (by inductive
hypothesis) ⇒ F ∈ λ′(θ) ∪ λ′(ϕ) = λ′(θ ∨ ϕ) = λ′(Ψ) (by definition 10). If
F ∈ λ′(Ψ) ⇒ F ∈ λ′(θ) ∪ λ′(ϕ) (by definition 10) ⇒ F ∈ λ′(θ) or F ∈ λ′(ϕ)
⇒ (F, F c) ∈ λ(θ) or (F, F c) ∈ λ(ϕ) (by inductive hypothesis) ⇒ (F, F c) ∈
λ(θ) ∪ λ(ϕ) = λ(θ ∨ ϕ) = λ(Ψ) (by definition 3).

– Ψ = ¬θ. If (F, F c) ∈ λ(Ψ) ⇒ (F, F c) ∈ λ(θ)c (by definition 3) ⇒ F ∈
λ′(θ)c (by inductive hypothesis) ⇒ F ∈ λ′(¬θ) = λ′(Ψ) (by definition 10). If
F ∈ λ′(Ψ) ⇒ F ∈ λ′(θ)c (by definition 10) ⇒ (F, F c) ∈ λ(θ)c (by inductive
hypothesis) ⇒ (F, F c) ∈ λ(¬θ) = λ(Ψ) (by definition 3).

Corollary 6. If mx is a classical mass function then

∀θ ∈ LE μθ(x) =
∑

F∈λ′(θ)

mx(F, F c)

Notice that a classical mass function trivially satisfies absolute complementation,
total coverage and complement symmetry. In fact it is straightforward to see that
classical mass functions are the only mass functions which satisfy both absolute
complementation and total coverage. However, classical mass functions do not
satisfy pairwise consonance since for (F1, F

c
1 ), (F2, F

c
2 ) ∈ FGx F1 ⊆ F2 implies

that F c
2 ⊆ F c

1 . For classical mass functions we can instead define a weaker version
of consonance in the standard way as follows:
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Definition 11. One-Dimensional Consonance
A classical mass function mx is (one-dimensionally) consonant if (F1, F

c
1 ),

(F2, F
c
2 ) ∈ FGx implies that either F1 ⊆ F2 or F2 ⊆ F1.

The following theorem [5], [9] shows that for classical mass functions satisfying
one dimensional consonance the resulting appropriateness measures satisfy the
max-min combination rules on a restricted class of label expressions.

Theorem 12. Let LE∧,∨ denote the label expressions in LE which only in-
volve connectives ∧ and ∨. If mx is a (one-dimensionally) consonant classical
mass function then ∀θ, ϕ ∈ LE∧,∨ μθ∧ϕ(x) = min(μθ(x), μϕ(x)) and μθ∨ϕ(x) =
max(μθ(x), μϕ(x)).

7 Summary and Conclusions

In this paper we have proposed a generalised version of the label semantics
framework in which communicating agents make explicit decisions both about
which labels are appropriate to describe an element x ∈ Ω, and also about
which negated labels are appropriate. We have shown that such a framework
can capture a number of different calculi for reasoning with vague concepts as
special cases.
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Abstract. Analogical proportions are statements of the form "A is to B
as C is to D" which play a key role in analogical reasoning. We propose
a logical encoding of analogical proportions in a propositional setting,
which is then extended to different fuzzy logics. Being in an analogical
proportion is viewed as a quaternary connective relating four proposi-
tional variables. Interestingly enough, the fuzzy formalizations that are
thus obtained parallel numerical models of analogical proportions. Po-
tential applications to case-based reasoning and learning are outlined.

1 Introduction

Although analogical reasoning is largely used by humans in creative thinking
(e.g. [17]) or for assessing day life situations, its place w. r. t. the other forms of
reasoning has remained singular. Indeed while deductive reasoning uses sound
and correct inferences, the conclusions obtained by analogical reasoning are pro-
visional in nature and are plausible at the best. Deduction, but also abduction,
or induction, have received rigorous logical formalizations, while it does not seem
that it is really the case for analogical reasoning. Deduction and analogy are two
very different forms of reasoning: Deductive entailment is based on the inclu-
sion of classes, while analogy parallels particular situations. The latter form of
reasoning applies when the former does not, and jumps to conclusions that may
be more creative since they are not implicitly contained in the premises as in
deduction. Although analogical reasoning has remained much less formalized, it
has been considered early in artificial intelligence, e. g. ([6], [12], [22]), and case-
based reasoning [1], a special form of it, has become a subfield in itself, while
more general forms of analogical reasoning continue to be investigated (e.g. in
conceptual graphs structures, [18], or in logic programming settings [8],[21]).

Analogical reasoning equates the way two pairs of situations differ, by stating
analogical proportions of the form “A is to B as C is to D”. It expresses that
A and B are similar, and differ, in the same way as C and D are similar, and
differ. The name "analogical proportion" comes from a quantitative view of
this correspondence as an equality of ratios between numerical features. In this
paper, we are interested in looking for a logical modeling that provides a symbolic
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and qualitative representation of analogical proportion, and may be extended to
fuzzy logic in order to obtain a logical graded counterpart of numerical models
(defined in terms of ratios, or of differences). Then situations A, B, C and D are
supposed to be described in terms of a family of properties, and to be represented
by vectors of degrees of truth. Each vector component is the degree to which the
corresponding property is true for the situation. In case of binary properties, the
vector components belong to {0, 1}, and is equal to 1 if and only if the property
holds in the considered situation.

The paper is organized in the following way. Section 2, after introducing the
notations, discusses existing postulates for analogical proportions in relation with
a set theoretic point of view. Section 3 proposes a classical logic representation of
analogical proportions, and then studies its properties. Section 4 presents some
fuzzy logic extensions of the logical modeling of analogical proportions, and
compare them to numerical models. Section 5 and Section 6 point out potential
applications in case-based reasoning and learning respectively.

2 Towards a Formalization of the Analogical Proportion

An analogical proportion is a statement of the form “A is to B as C is to D”.
This will be denoted by (A : B :: C : D). In this particular form of analogy,
the objects A, B, C and D usually correspond to descriptions of items under
the form of objects such as sets, multisets, vectors, strings, or trees (see [20]).
In the following, we are mainly interested in the basic cases where A, B, C
and D may be binary values in {0, 1}, or "fuzzy values" in the unit interval
[0, 1], and more generally, vectors of such values (which may be used for the
logical encoding of compound cases). These values can be thought in practice
as degrees of truth of statements pertaining respectively to A, B, C and D. In
the following if the objects A, B, C, and D are vectors having n components,
i.e., A = (a1, . . . , an), . . . , D = (d1, . . . , dn), we shall say that A, B, C, and D
are in analogical proportion if and only if for each component i an analogical
proportion “ai is to bi as ci is to di” holds. If there is no need to specify one
particular component, we shall simply write (a : b :: c : d) for stating that the
4-tuple (a, b, c, d) satisfies a relation of analogical proportion.

2.1 Postulates

We have now to specify what kind of relation an analogical proportion may
mean. Intuitively speaking, we have to understand how to interpret “is to” and
“as” in “A is to B as C is to D”. A may be similar (or identical) to B in some
respects, and differ in other respects. The way C differs from D should be the
same as A differs from B, while C and D may be similar in some other respects,
if we want the analogical proportion to hold. More formally, let us denote by
U the features that both A and B have, by V the features possessed by A and
not by B, and by W the features possessed by B and not by A, which can be
symbolically written by A = (U, V ), and B = (U,W ). If C and D differ in the
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same way as A and B, this forces to have C = (Z, V ), and D = (Z,W ), where
Z denotes the features that both C and D have. Note that U and Z may be
different. This view is enough for justifying the following three postulates that
date back to Aristotle’s time. See, e.g. [13].

Definition 1. An analogical proportion is a quaternary relation on a set X
that verifies, for all A, B, C and D in X the three postulates of analogy:

(ID) (A : B :: A : B); (S) (A : B :: C : D) ⇔ (C : D :: A : B)
(CP ) (A : B :: C : D) ⇔ (A : C :: B : D)

(ID) and (S) express reflexivity and symmetry for the comparison "as", while
(CP ) allows for a central permutation. These postulates are natural require-
ments, if we keep in mind that A = (U, V ), B = (U,W ), C = (Z, V ), and
D = (Z,W ). Indeed the first two are particularly obvious; concerning the third,
let us notice that V (resp. W ) is the common part of A and C (resp. B and D)
and when going from A to C, we leave U and get Z, as when going from B to
D. The third postulate is peculiar to analogical proportions (and is reminiscent
of numerical proportions). Immediate consequences of the postulates are:

(I): (A : B :: C : D) ⇔ (B : A :: D : C),
(EP ): (A : B :: C : D) ⇔ (D : B :: C : A),
(SR1): (A : B :: C : D) ⇔ (D : C :: B : A),
(SR2): (A : B :: C : D) ⇔ (B : D :: A : C),
(SR3): (A : B :: C : D) ⇔ (C : A :: D : B),

where (I) allows for the inversion of the relations (obtained by applying (CP ),
(S) and (CP )), (EP ) allows for external permutation (obtained by applying (S),
(CP ) and (S)), (SR1), (SR2) and (SR3) expressing symmetries for the reading
(and can be respectively obtained by (I) and (S), (CP ) and (S), and (S) and
(CP )). Note also that (A : A :: B : B) is obtained from (ID) and (CP ).

It has been noticed that starting with (A : B :: C : D), the repeated application
of (S) and (CP) generate only 8 of the 24 possible permutations of the 4-element
set {A,B,C,D}. Indeed, if (A : B :: C : D) is an analogical proportion, it is not
expected that (B : A :: C : D), or (C : B :: A : D) be analogical proportions also.
For instance, the statement “a calf is to a bull what a kitten is to a tomcat" does
not mean that “a bull is to a calf what a kitten is to a tomcat", or that “a kitten
is to a bull what a calf is to a tomcat", while the statement “a calf is to a kitten
what a bull is to a tomcat", obtained by (CP), sounds more acceptable.

2.2 The Set Theoretic Point of View

When the objects are finite sets, they can be seen as subsets of some universal
set P . The relation “as” is simply chosen as the equality between sets. In this
framework, Lepage has given in [13] the following informal definition: four subsets
of P are in analogical proportion (A : B :: C : D) if A is transformed into B and
C is transformed into D by adding and deleting the same elements. For example,
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the four sets A = {t1, t2, t3, t4, }, B = {t1, t2, t3, t5} and C = {t1, t4, t6, t7},
D = {t1, t5, t6, t7, } are in analogical proportion: t4 is deleted from A (resp. C)
and t5 is added to A (resp. C) in order to obtain B (resp. D).

More formally, a definition has been first proposed by Lepage in [13] in com-
putational linguistics a few years ago, and further developed in [19]. We restate
it in a different way here. We denote A the complementary set of A in P and
A − B = A ∩ B. We notice that "A : B" stands for the set operation that
transforms A into B by deleting the elements of A−B and adding the elements
of B − A. The analogical proportion states the identity of the operations that
transform A into B and C into D. This leads to the following definition:

Definition 2. Let A, B, C, D be subsets of a referential P.
(A : B :: C : D) ⇔ (A−B = C −D) and (B −A = D − C).

Definition 2 clearly satisfies the three postulates. Stroppa and Yvon [19] have
given an equivalent set-theoretic characterization of the analogical proportion:

Definition 3. Let A, B, C, D be subsets of P. (A : B :: C : D) holds if and
only if there exist four subsets U , V , W and Z of P, such that A = U ∪ V ,
B = U ∪W , C = Z ∪ V , D = Z ∪W .

This decomposition is not unique, and the sets U , V , W , Z do not need to be
disjoint. When they are, this provides a constructive description of the analogical
process: X (resp. Z) is the elements that are untouched when going from A and
B (resp. from C and D), while the elements in V go out, and those in W go in.

3 Proposal for a Classical Logic Embedding

Attempts at providing a logical embedding of analogical proportion at least dates
back to the proposal made by a computer scientist, Klein, working in anthro-
pology, more than twenty-five years ago in [10]. Klein used an operator (called
by him ATO for “Appositional Transformation Operator”) on binary truth-like
tables, which is nothing but the logical equivalence connective: a ≡ b = 1 if
(a = b) and a ≡ b = 0 otherwise. His view amounts to define an analogical pro-
portion semantically as a logical connective having the truth table of the logical
expression (a ≡ b) ≡ (c ≡ d). It partially agrees with the idea that A differs from
B as C w. r. t. D, since it can be also written (aΔb) ≡ (cΔd) where Δ denotes
XOR. It can still be rewritten as well as (a∧¬b)∨ (¬a∧ b) ≡ (c∧¬d)∨ (¬c∧d).

However, this latter expression remains symmetrical, since it makes no dif-
ference between the way A differs from B and the way B differs from A. It
is clearly weaker than stating the two equivalences (a ∧ ¬b) ≡ (c ∧ ¬d) and
(b ∧ ¬a) ≡ (d ∧ ¬c) separately. This is the logical counterpart of Definition 2
given from the set theoretic point of view. Klein’s view of analogy was indeed
too permissive, since (a ≡ b) ≡ (c ≡ d) is still equivalent to (b ≡ a) ≡ (c ≡ d),
thus making no difference between “A is to B" and “B is to A".

The 8 cases where Klein’s expression, (a ≡ b) ≡ (c ≡ d), takes truth value 1
are listed in Table 1. For the 8 other possible combinations of values of a, b, c,
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Table 1. Contrasting Klein’s definition of analogy with ours

a b c d (a ≡ b) ≡ (c ≡ d) (a : b :: c : d)
1 1 1 1 1 1 1
2 1 1 0 0 1 1
3 1 0 1 0 1 1
4 1 0 0 1 1 0
5 0 1 1 0 1 0
6 0 1 0 1 1 1
7 0 0 1 1 1 1
8 0 0 0 0 1 1

and d that are not in Table 1, (a ≡ b) ≡ (c ≡ d) has truth value 0. Cases 1, 2,
7, and 8 correspond to situations where a and b are identical as well as c and d.
Cases 3 and 6 correspond to changes from a to b, and from c to d, that go in
the same sense. All this fits the semantics of the analogical proportion. The two
other cases, namely 4 and 5, do not fit the idea that a is to b as c is to d, since
the changes from a to b and from c to d are not in the same sense. They in fact
correspond to cases of maximal analogical dissimilarity, where “d is not at all to
c what b is to a”, but rather “c is to d what b is to a”. It emphasizes the non
symmetry of the relations between b and a, and between d and c.

Our definition is equivalent to stating the two equivalences (a∧¬b) ≡ (c∧¬d)
and (b ∧ ¬a) ≡ (d ∧ ¬c) separately, which is coherent with the definition of
analogical proportion between finite sets given at section 2.2.

3.1 Logical Expressions for the Analogical Proportion

We are now looking for logical expressions corresponding to our definition, i.e.
only covering cases 1, 2, 3, 6, 7, 8 in Table 1. Viewing (a : b :: c : d) as a logical
connective that reflects the analogical process, it can be checked that, taking

(a : b :: c : d) = ((a ≡ b) ≡ (c ≡ d)) ∧ ((aΔb) → (a ≡ c)) (1)

this expression is true only for the 6 cases required in Table 1. Indeed, it expresses
in its second component that a and c should be identical where a and b differs,
which is a natural constraint for making sure that the change from c to d will
be in the same sense as the one from a to b. There exist equivalent expressions
whose structures well reflect the meaning of analogical proportion:

(a : b :: c : d) = ((a ≡ b) ∧ (c ≡ d)) ∨ ((a ≡ c) ∧ (b ≡ d)) (2)

(a : b :: c : d) = ((a → b) ≡ (c → d)) ∧ ((b → a) ≡ (d → c)) (3)

(a : b :: c : d) = ((a ∧ d) ≡ (b ∧ c)) ∧ ((a ∨ d) ≡ (b ∨ c)) (4)

(a : b :: c : d) = ((a ∧ d) ≡ (b ∧ c)) ∧ ((a ∨ d) ≡ (b ∨ c))1 (5)
1 Pointed out by Didier Dubois to the authors.



Handling Analogical Proportions in Classical Logic 643

These expressions help to understand the structure of analogical proportion. For
instance, expression (3) at the logical level parallels the difference-based view of
the analogical proportion, expressed by the condition (a − b) = (c − d). When
a and b are equal to 0 or 1, a − b ∈ {−1, 0, 1}. It is why expression (3), which
works in {0, 1}, states the equivalences in each sense (remember that a → b = 1
if a ≤ b and a → b = 0 if a > b, and observe that the condition a ≤ b covers two
situations: a = b (no change) or a < b (change)).

Clearly, since a − b ∈ {−1, 0, 1}, (a − b) is not a connective, but keeps
track of the sense of the change if any. It is the basis of the notion of ana-
logical dissimilarity AD(a, b, c, d) [15] that measures how far objects a, b,
c and d are from being in an analogical proportion. AD(a, b, c, d) must be
equal to 0 if they are in such a relation, and positive otherwise. Required
properties are: i) Coherence with analogy: AD(a, b, c, d) = 0 ⇔ (a : b ::
c : d) ii) Symmetry of “as”: AD(a, b, c, d) = AD(c, d, a, b) iii) Triangle in-
equality: AD(a, b, c, d) ≤ AD(a, b, e, f) + AD(e, f, c, d) iv) Central permuta-
tion: AD(a, b, c, d) = AD(a, c, b, d) v) Dissymmetry of “is to”: AD(a, b, c, d) 
=
AD(b, a, c, d), in general. Defining AD(b, a, c, d) = |(a− b)− (c− d)| agrees with
the required properties.

3.2 Some Properties

We now state some results (symbolic propositional expressions and their seman-
tical counterparts in terms of truth degrees are denoted in the same way):

Proposition 1. (a : b :: ¬b : ¬a) = 1.

This looks similar to the logical equivalence between a → b and ¬b → ¬a.

Proposition 2. If (a → b) = 1 and (a : b :: c : d) = 1 then (c → d) = 1. Similar
results hold if → is replaced by ←, ≡ or Δ. It does not hold for ∨ nor ∧.

It ensures that if “A is to B as C is to D”, and B is more general than A, then
D should be more general than C, as expected. More generally, it expresses a
form of agreement with connectives related to entailment.

Proposition 3. (a : b :: c : d) = 1, (c : d :: e : f) = 1 =⇒ (a : b :: e : f) = 1

It expresses that transitivity holds for analogical proportion. A less obvious result
is about the behavior of analogical proportion w.r.t. conjunction and disjunction.

Proposition 4. (a ∧ b : a ∧ c :: d ∧ b : d ∧ c) = 1 if and only if
(a ∨ b : a ∨ c :: d ∨ b : d ∨ c) = 1.

It can be seen as resulting from the combination of the two universal analogical
proportions (a : a :: d : d) = 1 and (b : c :: b : c) = 1.

3.3 Solving an Analogical Proportion Equation

In its basic form, analogical reasoning amounts to solving an analogical pro-
portion equation that is supposed to hold for some characteristics of objects,
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the assumption being generally based on the observation that the analogical
proportion already holds for other known characteristics. Solving an analogical
proportion equation consists in finding x s.t. (a : b :: c : x) = 1. When it exists,
the value of x is unique in the classical logic setting, but does not always exist.

Proposition 5. A triple (a b c) can be completed by d in such a way that
(a : b :: c : d) = 1 if and only if ((a ≡ b) ∨ (a ≡ c)) = 1.

Proposition 6. When it exists, the unique solution of the equation (a : b :: c :
x) = 1 is logically expressed by x = (a ≡ (b ≡ c)).

Proposition 5 points out that a should be equivalent to b or to c, in order to
get rid of the two triples (a b c) = (1 0 0) and (a b c) = (0 1 1) that cannot
be completed analogically (see Table 1). In the set-theoretic view, a, b, c, and d
stand for the membership degrees of an element in a referential P to A, B, C, and
D respectively. Then the impossibility of (a b c) = (1 0 0) and (a b c) = (0 1 1)
translates respectively into A∩ (B ∩C) = ∅ and A∩ (B ∩C) = ∅, i.e. the logical
condition for analogical completion (a ≡ b) ∨ (a ≡ c) = 1 can be written in set
terms as (B ∩ C) ⊂ A ⊂ (B ∩ C), a condition already given in Section 3.

Proposition 6 provides a compact writing of the solution of an analogical
proportion. This is the solution first suggested by Klein [10] who noticed that
the repeated use of what he called the ATO operator enables him to compute the
solution of analogical proportions, according to the equality d = (c ≡ (a ≡ b)).

Other expressions of x under the requirement of Proposition 5 exist, e.g.:

Property 1. When it exists, the unique solution of the analogical equation (a :
b :: c : x) = 1 is logically expressed by

x = ((b ∨ c) ∧ ¬a) ∨ (b ∧ c) = (b ∧ ¬a) ∨ (c ∧ ¬a) ∨ (a ∧ b ∧ c)

x = (a → (b ∧ c)) ∧ (b ∨ c) = (a → b) ∧ (a → c) ∧ (b ∨ c)

Both can be easily checked on a truth table. The first one is nothing but the
logical counterpart of expressions recently proposed in [15] in the “set element-
interpretation”. Both Proposition 6 and Proposition 1 could be applied when
(a b c) cannot be analogically completed, i.e. when (a ≡ b) ∨ (a ≡ c) = 0. Mind
that while Proposition 6 applied to the two “undesirable cases” (a b c) = (1 0 0)
and (a b c) = (0 1 1) yields x = 1 and x = 0 respectively, the two expressions
of Proposition 1 give the converse, namely x = 0 and x = 1 respectively in
these two cases. This means that the expression x = (a ≡ (b ≡ c)) is logically
equivalent to the two expressions in Proposition 1, only under the condition
(a ≡ b) ∨ (a ≡ c) = 1 (which is equivalent to conditions ((b ∧ c) → a) = 1 and
(a → (b ∨ c)) = 1). It can be seen from Proposition 1 that x is also such that
((b ∧ c) → x = 1) and (x → (b ∨ c)) = 1.

4 Extensions to Fuzzy Logic

When moving from the binary case to the graded (or fuzzy) case where truth
values now belong to the continuous interval [0, 1], many choices are possible for
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defining the connectives, and it should be clear that some of the equivalences
previously found may now fail to hold since, whatever the choices, we shall be
no longer in a Boolean algebra. Here we only consider choices that seem to be
especially worth of interest, due to their resemblance with numerical models.

4.1 Construction of a Fuzzy Analogical Proportion

Let us recall that in fuzzy logic [11] there are three main choices for the con-
junction, namely a ∧ b = min(a, b), a ∧ b = a · b, or a ∧ b = max(0, a + b − 1),
associated with the three disjunctions a∨ b = max(a, b), a ∨ b = a + b− a · b, or
a∨b = min(1, a+ b) respectively. Then there are two main ways for defining im-
plications, either as a → b = ¬a∨b, or by residuation: a → b = sup(x|a∧x ≤ b).

It leads to distinct connectives for the first two pairs of conjunc-
tion/disjunction: a → b = max(1 − a, b) (Dienes implication) and a →
b = 1 if a ≤ b and a → b = b if a > b (Gödel implication) for min/max,
a → b = 1 − a + a · b (Reinchenbach implication) and a → b = min(1, b/a)
if a > 0, and a → b = 1 if a = 0 (Goguen implication) with the second pair
(using ¬a = 1 − a). For the last pair of conjunction/disjunction, Lukasiewicz
implication a → b = min(1, 1− a + b) is obtained in both cases.

The equivalence connective associated to Dienes implication is (a ≡ b) =
min(max(1− a, b),max(1− b, a)) = max(min(a, b),min(1− a, 1− b)), to Gödel
implication is (a ≡ b) = 1 if a = b, and (a ≡ b) = min(a, b) otherwise (in a
crisp version, one may take (a ≡ b) = 0 if a 
= b). Using min conjunction and
Lukasiewicz implication, one gets (a ≡ b) = min(min(1, 1 − a + b),min(1, 1 −
b+a)) = 1−|a− b|. Using min or product conjunction and Goguen implication,
one gets (a ≡ b) = min(1, b/a, a/b) = min(b/a, a/b) = min(1, b/a) ·min(1, a/b)
for a 
= 0, b 
= 0 (if a = 0 and b 
= 0, (a ≡ b) = 0; if a = 0 and b = 0, (a ≡ b) = 1).

In the following, we only discuss the fuzzification of equation 3 that clearly
states the identity of the differences, using successively the two following choices:

1. a ∧ b = min(a, b); a → b = min(1, 1− a + b); a ≡ b = 1− |a− b|
2. a ∧ b = a · b; a → b = max(1, b/a); a ≡ b = min(b/a, a/b)

It leads to the two formulas below for the value of the fuzzy analogical proportion

min

{
1− |min(1, 1− a + b)−min(1, 1− c + d)|
1− |min(1, 1 + a− b)−min(1, 1 + c− d)|

min

(
max(1, ba )
max(1, dc )

,
max(1, dc )
max(1, ba )

)
. min

(
max(1, ab )
max(1, cd)

,
max(1, cd)
max(1, ab )

)
.

The first formula yields 1 iff a− b :: c− d, the values of a, b c and d being in the
unit interval. The second formula yields 1 iff a/b :: c/d. Both are also consistent
with the logical analogy defined above.
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4.2 Coherence with Numerical Analogy

When defining an analogical relation between four fuzzy values, first one has to
make sure that it remains consistent with the classical logical definition when
fuzzy values reach the bounds of the interval [0, 1], as discussed in subsection 4.1.
But it is also important to maintain a link with the definition of analogy between
real numbers. Several definitions have been proposed for analogical proportions
between real numbers, in particular: i) the additive analogy: (a : b :: c : d) ⇔
(a + d = b + c), ii) the multiplicative analogy: (a : b :: c : d) ⇔ (ad = bc).

The first fuzzification is rather coherent with the numerical additive case. We
can analyse their difference in taking s and t as small positive numbers. We get
in the fuzzy case (a : a + s :: c : c− t) = 1−min(s, t). In the numerical case, we
would have obtained (a : a+s :: c : c− t) = 1−AD(a, a+s, c, c− t) = 1− (s+ t),
still using the same definition of analogical dissimilarity, now applied to fuzzy
values. However, note that in the fuzzy case we deal with truth values, while in
the numerical case we deal with attribute values!

It is important to note here that the fuzzy counterpart of Proposition 1 cannot
be straightforwardly applied for finding the solution of an analogical proportion
in the graded case. Proper equivalent expressions have to be found. For instance,
if we use ((b → a) → c) if a → b = 1, and ¬(c → ¬(a → b)) if b → a = 1, which is
indeed equivalent to (a ≡ (b ≡ c)), we shall obtain with Lukasiewicz implication,
min(1, c+(b−a)) if a ≤ b, and max(0, c− (a−b)) if a ≥ b, which are normalized
versions of the solution of the numerical equation a− b = c− x.

5 Analogical Proportion-Based Reasoning

We have already noticed that, for any pair of propositions p and q it holds that
(p : q :: p : q) = 1 (consistently with the 1st postulate), and (p : q :: ¬q : ¬p) = 1.
This shows a form of agreement between the analogical proportion and the modus
ponens, and (which is less expected), with the modus tollens. Indeed from a non
specified, hypothetical relation between p and q, denoted by p : q and from p,
one concludes q, since it can be checked that x ≡ q is the only solution of the
equation (p : q :: p : x) = 1. Similarly, from (p : q :: ¬q : x) = 1, one gets x ≡ ¬p.
But (p : q :: ¬p : ¬q) = 1 does not hold (while it holds with Klein’s definition).

An object, a situation, a problem may be described in terms of sets of features
(resp. properties) that are present (resp. true) or absent (resp. false) in the binary
case, or more generally that are present (resp. true) to some extent in the fuzzy
case. In that respect, the classical logic equivalence (p : q :: r : s) ≡ (p : q ::
¬r : ¬s) insures the neutrality of the encoding whatever the convention used for
stating what is present and what is absent (¬p present is the same as p absent). It
holds in the fuzzy case under the form (a : b :: c : d) = (1−a : 1−b :: 1−c : 1−d)
for degrees of truth, using Lukasiewicz implication, since (1 − a) → (1 − b) =
min(1, 1− (1−a)+1−b) = min(1, 1−b+a) = b → a. It could be also preserved
using a symmetrized form of Goguen implication: min(1, b/a, (1− a)/(1− b)).

The featured view can be applied to logical formulas themselves, e.g. “¬p ∧ q
is to p∧ q as ¬p∧¬q is to p∧¬q” can be encoded as the 2-component analogical
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proportion ((01) : (11) :: (00) : (10)) where 0/1 stands for the negative/positive
presence of p and q in the clauses. This agrees with the use of Hamming distance
for computing the amount of change from a formula to another. It suggests that
analogical reasoning could be related to revision operations based on the idea of
minimal change, as recently proposed in case-based reasoning [14].

Towards case-based reasoning. Let us illustrate a more direct and practical use
of the featured view. Assume a base of cases describing houses to let. In the
example, we consider four features: nature (villa (1) or apartment (0)), air con-
ditioning (equipped (1) or not (0)), price (cheap (1) or expensive (0)), tax to
pay (yes (1) or no (0)). Assume we know the three cases:

A = (villa, equip., expen., tax) = (1, 1, 0, 1)
B = (villa, not-eq., cheap, tax) = (1, 0, 1, 1)
C = (apart., equip., expen., tax) = (0, 1, 0, 1)

Assume now a fourth house described by D = (apart., not-eq., x, y) =
(0, 0, x, y) for which one has to guess a price and if there is a tax to pay. After
checking that for the first two components we have an analogical proportion be-
tween A, B, C, and D (indeed in terms of truth values we have (1 : 1 :: 0 : 0) = 1,
and (1 : 0 :: 1 : 0) = 1), one may assume that it also holds for the two other
components and the unique solution of the equations (0 : 1 :: 0 : x) = 1 and
(1 : 1 :: 1 : y) = 1 is x = 1 and y = 1, which means “cheap” and “tax to pay”.

A refined version of the example can be described in a graded manner as
e.g., A = (1, 1, .2, .9), B = (1, 0, .8, .8), C = (0, 1, .3, .6), where the degrees
respectively stand for the extent to which the price is cheap and the tax is high.
Applying a difference-based approach, using Lukasiewicz implication, one gets
D = (0, 0, .9, .5), i.e. D should be quite cheap (.9) with a not too high tax (.5).

This example suggests that one may apply such an approach to case-based
reasoning. Then A, B and C are three problems with their respective solutions
that are identical according to some features and that differ with respect to other
features. Both problems and solutions (e.g., a disease and a medical treatment
for it) are described in terms of feature values, D is a new problem for which
one looks for a tentative solution. Then the solution for D will be computed
as an adapted version of those for cases A, B and C, from the differences and
similarities between them, as outlined in the above example where the role of
the "problem" was played by the nature and the air conditioning availability
of the house, and the problem was to guess the price of house D and if there
is a tax to pay. It is clear that in general there may exist in a repertory of
cases several triples Ai, Bi, Ci, from which the solution for D can be computed
analogically as just explained. Then it would lead to aggregate the different
solutions disjunctively into an imprecise solution, as already done in the simplest
type of case-based decision [4] and in case-based reasoning [5]. Indeed, in these
approaches, a solution is proposed for a new case on the basis of a formal principle
that states that “the more similar two cases are in some respects, the more
guaranteed the possibility that they are similar in the other respect for which a
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solution is looked for for the new case”. Then, since the new case may resemble
several cases, in the repertory of cases, which are different with respect to the
feature to predict (or the solution to choose) in the new case, a disjunctive
combination should take place for aggregating the solutions found. We are here
in a similar situation, since several triples Ai, Bi, Ci may be found in analogical
proportion with D. The details of the procedure are left for further research.

6 Analogical Proportion-Based Learning

Let S = {(x, ω(x))} be a finite set of training examples, where x is the description
of an example as a binary vector and ω(x) its label in a finite set. Given the
binary vector y of a new pattern, we want to assign a label ω(y) to y, based
only on knowledge in S. Finding ω(y) amounts to the inductive learning of a
classification rule from examples (e.g. [16]). The nearest neighbor (1-nn) method,
the most simple lazy learning technique, merely finds in S one description x�

which minimizes some distance to y and hypothesizes ω(x�), the label of x�, for
the label of y. Moving one step further, learning from one analogical proportion
would consist in searching in S for one triple (x�, z�, t�) such that x� : z� :: t� : y
or AD(x�, z�, t�, y) is minimal and would predict for y the label ω̂(y) solution of
equation ω(x�) : ω(z�) :: ω(t�) : ω̂(y).

The 1-nn method is easily extended to examine a larger neighbourhood, re-
sulting in the k-nn method: in S, find the k descriptions which minimize the
distance to y and let vote the k corresponding labels to choose the winner as the
label of y. Extending the learning from one analogical proportion to k ones can
be designed similarly. First, we define an analogical dissimilarity AD between
two binary vectors. It can straightforwardly be defined as the sum of the AD of
their components (see section 3.1). Secondly, we follow the following procedure:

– Consider only trivial equations on classes, e.g. (ω1 : ω2 : ω1 : ω̂(y)), which
produces the solution ω̂(y) = ω2.

– Use a weighting of the binary attributes (the weights are learned from S).
– For an integer k, use all the triples in S that make AD less than k for y.

To experiment the efficiency of this technique (learning from k analogical pro-
portions), we have made experiments on several classical datasets with binary
or nominal attributes, the latter being straightforwardly binarised. The results,
given in [2], show that it gives excellent results on all the data bases, including
those with missing data or composed with more than two classes. This method
can be seen as an extension of the k-nn method. It also suggests possible links
with fuzzy instance-based learning [9], which also extends the k-nn method.

7 Conclusion

This paper is a first attempt towards a logical formalization of analogical rea-
soning based on analogical proportions. It offers a unified treatment of symbolic
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and numerical analogical proportions, thanks to the extension of the proposed
classical logic formulation to different fuzzy logics keeping the additive or the
multiplicative flavors of numerical modeling. Beyond the theoretical interest of
such logical encodings, the paper has indicated how reasoning from several cases
and learning can benefit from the resolution of analogical proportions. Another
direction for further research would be to discuss the relation between fuzzy
set-based approximate reasoning and analogical reasoning, already studied in [3]
with another approach. In the long range, it would be also of interest to develop
cognitive validation tests in order to study if the predictions that can be obtained
with the approach are in agreement with human reasoning (as in e.g.[7]).
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Abstract. Qualitative possibilities and necessities are well known types
of confidence relations. They have been extensively studied semantically,
as relations on Boolean algebras (or equivalently, relations on algebras of
sets). The aim of this paper is to give a syntactical flavor to the subject
providing a sound and complete axiomatization of qualitative possibility
relations.

1 Introduction

The notion of a confidence relation arose from the need for modelling beliefs.
If �C is a confidence relation on some Boolean algebra, then α �C β reads
“the agent has at least as much confidence in β as in α”. For our purpose, the
underlying algebra will be a propositional Lindenbaum algebra LA over some
countable set of propositional letters.

Qualitative possibilities and necessities are well known types of confidence
relations. They have been extensively studied as relations on finite Boolean al-
gebras (or equivalently, relations on finite algebras of sets). The aim of this paper
is to give a syntactical flavor to the subject, through the form of a sound and
complete axiomatization of qualitative possibility relations.

There are many reasons for the purely syntactical approach, such as ver-
ification of proposed inference mechanisms and initial postulates, finding the
exact relationship between syntax and semantics (completeness theorems) and
so on. Though intended as a support for formal studies of probabilistic logics,
arguments of Nilsson published in [14] may be applied to the reasoning about
possibility as well.

Qualitative possibility and necessity relations are studied by many authors,
including Lewis, Dubois, Prade, Fariñas del Cerro, Herzig, Boutilier and many
others. Arguably, the starting point are papers [2, 9]. A survey on qualitative
possibility functions and integrals, which greatly influenced work presented here,
was given by Didier Dubois and Henri Prade in [4]. We emphasize that [4]
also contains an extensive list of references relevant for the study of qualitative
possibilities and necessities. A modal approach to possibility theory was given
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in [1,6]. Concerning qualitative probability and probabilistic reasoning in general,
which is related to the problem of formal axiomatization of qualitative possibility
relations in many different ways, we refer the reader to [5,7,8, 10, 11, 12, 13, 15,
16, 17, 18, 19,21,22,23,24].

The rest of the paper is organized as follows: Preliminaries are discussed in
Section 2. The next three sections give a gradual introduction of the Hilbert-
style formal system LΠ , in which the notion of qualitative possibility relation
is completely axiomatized. The main results are completeness and compactness
theorems. Concluding remarks are in the last section.

2 Preliminaries

In this paper we will use α, β and γ to denote classical propositional formu-
las or the corresponding equivalence classes in LA, the Lindenbaum algebra of
equivalence classes of propositional formulas, letting the context to determine
the corresponding meaning.

A binary relation �C on LA is a confidence relation if it has the following
properties:

– �C is a weak order, i.e. �C is total (α �C β of β �C α for any α and β)
and transitive;

– �C is monotone, i.e. α �LA β implies α �C β. Here �LA is the usual partial
order of LA: α �LA β if α ∧ β is equivalent with α (or equivalently, if α ∨ β
is equivalent with β);

– �C is nontrivial, i.e. ⊥ <C �;
– (weak stability) If α ∧ (β ∨ γ) is a contradiction, then

γ <C β implies α ∨ γ �C α ∨ β.

Here γ <C β means that γ �C β and not β �C γ.

Example 1. The first example of a confidence relation is the comparative proba-
bility, introduced by Bruno de Finetti in 1937. A binary relation �CP on proposi-
tional Lindenbaum algebra LA is a comparative probability if it has the following
properties:

– �CP is a non-trivial weak order;
– (consistency) ⊥ �CP α for any α;
– (pre–additivity) If α ∧ (β ∨ γ) is a contradiction, then

γ �CP β iff α ∨ γ �CP α ∨ β.

Clearly, pre-additivity is stronger than weak stability. To see that monotonicity
hold for �CP , we will combine consistency and pre–additivity in the following
way: suppose that α �LA β. By consistency, ⊥ �CP β. Since ⊥ ∧ (α ∨ β) is a
contradiction, pre–additivity implies ⊥∨α �CP β∨α. Finally, ⊥∨α is equivalent
with α and α ∨ β is equivalent with β (α �LA β), so α �CP β. �
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Definition 2. A binary relation �Π on LA is a qualitative possibility if it has
the following properties:

– �Π is a non-trivial weak order;
– ⊥ �Π α for all α;
– (disjunctive stability) If γ �Π β, then

α ∨ γ �Π α ∨ β

for all α. �

Clearly, disjunctive stability is stronger than weak stability. Monotonicity of �Π

can be shown in the similar way as in the case of comparative probabilities.
Thus, qualitative possibilities are confidence relations.

Another important example of confidence relations are qualitative necessities,
introduced by Didier Dubois in 1986 (see [2]).

Definition 3. A binary relation �N on LA is a qualitative necessity if it has
the following properties:

– �N is a non-trivial weak order;
– α �N � for all α;
– (conjunctive stability) If γ �N β, then

α ∧ γ �N α ∧ β

for all α. �

Notice that qualitative possibilities and necessities are dual relations in the fol-
lowing sense:

– If �Π is a qualitative possibility relation on LA, then, the relation �N

defined by
α �N β iff ¬β �Π ¬α

is a qualitative necessity relation on LA;
– If �N is a qualitative necessity relation on LA, then, the relation �N defined

by
α �Π β iff ¬β �N ¬α

is a qualitative possibility relation on LA.

Therefore, we will focus only on qualitative possibilities.

Definition 4. Suppose that �Π is a qualitative possibility relation on LA. A
function π : LA −→ [0, 1] will be called a distribution of �Π if it has the following
properties:

– α �Π β implies π(α) � π(β);
– α <Π β implies π(α) < π(β);
– π(⊥) = 0 and π(�) = 1. �
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Using the density of the order on [0, 1] and the fact that LA is countable, one
can easily show that any qualitative possibility has a distribution. Notice that
there are infinitely many distributions that correspond to some fixed qualitative
possibility relation.

The key property of qualitative possibility relations is the following maxitivity
principle, see [2, 4]. Namely, if �Π is a qualitative possibility on LA and π :
LA −→ [0, 1] is any distribution of �Π , then, for all α and β,

π(α ∨ β) = max(π(α), π(β)).

Maxitivity principle is a consequence of monotonicity, linearity and disjunctive
stability. Indeed, monotonicity implies that α �Π α ∨ β and β �Π α ∨ β. By
linearity, α �Π β or β �Π α. In the first case (α �Π β), disjunctive stability
gives us

α ∨ β �Π β ∨ β ∼Π β,

where ∼Π is an equivalence relation on LA defined by α ∼Π β iff α �Π β and
β �Π α. In the second case (β �Π α), disjunctive stability gives us

α ∨ β �Π α ∨ α ∼Π α.

Since, by monotonicity, we have α �Π α∨β and β �Π α∨β, it follows that, for
any α and β,

α ∨ β ∼Π α or α ∨ β ∼Π β,

or, in terms of distribution π,

π(α ∨ β) = max(π(α), π(β)).

Maxitivity fully characterizes qualitative possibilities. Namely, a confidence
relation �C is a qualitative possibility iff it has a maxitive distribution (conse-
quently, all distributions of �C will be maxitive). In purely qualitative terms,
maxitivity of �Π can be reformulated as follows: For any α1, α2, β1, β2, the fol-
lowing are equivalent:

(i) α1 ∨ α2 �Π β1 ∨ β2;
(ii) α1 �Π β1 and α2 �Π β1, or α1 �Π β2 and α2 �Π β2.

This reformulation of maxitivity actually provides a finitary strongly complete
axiomatization of the notion of qualitative possibility relation.

3 Syntax and Semantics

The primitive syntactical notions are:

– A countably many propositional letters. Propositional letters will be denoted
by p and q, indexed if necessary. The set of all propositional letters will be
denoted by V ar;
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– Classical propositional formulas, built over V ar. Classical formulas will be
denoted by α, β and γ, indexed if necessary. The set of all classical formulas
will be denoted by ForC ;

– Basic possibility formulas, i.e. formulas of the form α � β, where α and β
are classical formulas;

– Possibility formulas, which are Boolean combinations of basic possibility
formulas. Possibility formulas will be denoted by φ, ψ and θ, indexed if
necessary. The set of all possibility formulas will be denoted by For.

In order to simplify notation, we introduce the following abbreviations:

– α � β is α � β ∧ ¬(β � α);
– α ∼ β is α � β ∧ β � α.

By V ar(α) we will denote the set of all propositional letters appearing in α ∈
ForC . Similarly, V ar(φ) denotes the set of all propositional letters appearing in
φ ∈ For.

A possibility model is a pair M = 〈LA,�Π〉, where LA is the Lindenbaum
algebra of V ar and �Π is a qualitative possibility relation on LA. Satisfiability
relation |= between models and possibility formulas is defined as follows:

– M |= α � β if α �Π β;
– M |= ¬φ if M 
|= φ;
– M |= φ ∧ ψ if M |= φ and M |= ψ.

A possibility formula φ is satisfiable if there is a possibility model M that satisfies
it, i.e. M |= φ. A possibility formula φ is valid if it is satisfied in all possibility
models. The fact that φ is valid will be denoted by |= φ.

Suppose that T is a theory (T ⊆ For). We say that T is satisfiable if there
is a possibility model M such that M |= φ for all φ ∈ T . Finally, T |= φ means
that every model of T is also a model of φ.

The next theorem is an immediate consequence of the definition of satisfiabil-
ity relation |=. Therefore, its proof will be omitted.

Theorem 5. Let T ⊆ For and φ, ψ, θ ∈ For. Then:

1. T, φ |= φ;
2. T, φ,¬φ |= ψ;
3. T |= ¬¬φ iff T |= φ;
4. T |= φ → ψ iff T, φ |= ψ;
5. T |= ¬(φ → ψ) iff T |= φ and T |= ¬ψ;
6. T,¬¬φ |= ψ iff T, φ |= ψ;
7. T,¬(φ → ψ) |= θ iff T, φ,¬ψ |= θ;
8. T, φ → ψ |= θ iff T,¬θ |= φ and T,¬θ |= ¬ψ. �

4 Axiomatization

Formal system LΠ (possibility logic) is a Hilbert-style system with following
axioms and inference rules:
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Propositional axioms:

A1: Substitutional instances of classical tautologies.

Possibility axioms:

A2: (linearity) α � β ∨ β � α;
A3: (transitivity) (α � β ∧ β � γ) → α � γ;
A4: (monotonicity) α � β, whenever α → β is a tautology;
A5: (non-triviality)⊥ ≺ �, where ⊥ is any contradiction and � is any tautology;
A6: (disjunctive stability) α � β → (α ∨ γ) � (β ∨ γ).

Inference rules:

MP. (modus ponens) From φ and φ → ψ infer ψ.

Notions of theorem, proof (formal inference), consistency etc. are defined as
usual. The next theorem can be proved in the exactly the same way as in the
case of classical propositional logic.

Theorem 6. Let T ⊆ For and φ, ψ, θ ∈ For. Then:

1. T, φ " φ;
2. T, φ,¬φ " ψ;
3. T " ¬¬φ iff T " φ;
4. T " φ → ψ iff T, φ " ψ;
5. T " ¬(φ → ψ) iff T " φ and T " ¬ψ;
6. T,¬¬φ " ψ iff T, φ " ψ;
7. T,¬(φ → ψ) " θ iff T, φ,¬ψ " θ;
8. T, φ → ψ " θ iff T,¬θ " φ and T,¬θ " ¬ψ. �

The next technical lemma will allow us to prove the maxitivity principle.

Lemma 7. Let α, β ∈ ForC . Then,

" ((α ∨ β) ∼ α) ∨ ((α ∨ β) ∼ β).

Proof. By monotonicity (Axiom A4), " α � (α ∨ β) and " β � (α ∨ β). On the
other hand, by monotonicity and disjunctive stability,

α � β " (α ∨ β) � β

and
β ≺ α " (α ∨ β) � α.

Hence,
α � β ∨ β � α " ((α ∨ β) ∼ α) ∨ ((α ∨ β) ∼ β).

Finally, by linearity, " α � β ∨ β � α, so we have our claim. �
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Theorem 8 (Maxitivity principle). Let α1, α2, β1, β2 ∈ ForC . Then,

" (α1 ∨ α2) � (β1 ∨ β2) ↔ ((α1 � β1 ∧ α2 � β1) ∨ (α1 � β2 ∧ α2 � β2)).

Proof. By Lemma 7,

" ((α1 ∨ α2) ∼ α1) ∨ ((α1 ∨ α2) ∼ α2)

and
" ((β1 ∨ β2) ∼ β1) ∨ ((β1 ∨ β2) ∼ β2).

It is sufficient to prove that

(α1 ∨ α2) ∼ αi, (β1 ∨ β2) ∼ βj " φ

for all i, j, where φ is the formula

(α1 ∨ α2) � (β1 ∨ β2) ↔ ((α1 � β1 ∧ α2 � β1) ∨ (α1 � β2 ∧ α2 � β2)).

Since the proofs are identical, we will consider only the case i = j = 1. Let

T = {(α1 ∨ α2) ∼ α1, (β1 ∨ β2) ∼ β1, (α1 ∨ α2) � (β1 ∨ β2)}.

It is easy to see that T " α1 � β1 and T " α2 � β1, so

T " (α1 � β1 ∧ α2 � β1) ∨ (α1 � β2 ∧ α2 � β2).

By Deduction theorem,

(α1 ∨ α2) � (β1 ∨ β2) → ((α1 � β1 ∧ α2 � β1) ∨ (α1 � β2 ∧ α2 � β2))

is a deductive consequence of {(α1 ∨ α2) ∼ α1, (β1 ∨ β2) ∼ β1}.
For the converse implication, it is sufficient to prove that

(α1 � β1 ∧ α2 � β1) ∨ (α1 � β2 ∧ α2 � β2) " (α1 ∨ α2) � (β1 ∨ β2).

To obtain this, we will prove that

α1 � βi ∧ α2 � βi " (α1 ∨ α2) � (β1 ∨ β2)

for all i. Since proofs are identical, we will consider only the case i = 1. By
conjunctive stability, α1 � β1 " (α1 ∨ α2) � (β1 ∨ α2). The same argument
yields α2 � β1 " (β1 ∨ α2) � (β1 ∨ β1). By monotonicity and transitivity, we
obtain that α2 � β1 " (β1 ∨ α2) � β1. Now we have that

α1 � β1 ∧ α2 � β1 " (α1 ∨ α2) � β1.

Finally, " β1 � (β1 ∨ β2), which concludes the proof. �
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5 Completeness and Compactness

As it is usual in logic, the soundness part of the completeness theorem is a
straightforward but tedious induction on the length of inference. Therefore, we
will omit the proof of the following soundness theorem.

Theorem 9 (Soundness). Let T ⊆ For and φ ∈ For. Then, T " φ implies
T |= φ. �

In order to prove the simple completeness theorem (" φ iff |= φ), we will need
the following lema.

Lemma 10. Suppose that α1, . . . , α2n are all formulas of the form

±p1 ∧ · · · ∧ ±pn,

where p1, . . . , pn are pairwise distinct propositional letters, +pi is pi and −pi is
¬pi. Then, any weak partial order �L on {α1, . . . , α2n} can be extended to a
qualitative possibility relation �Π

L on LA.

Proof. Without loss of generality, we may assume that �L is a weak linear order,
since any partial weak order can be extended to a weak linear order. Let

αi = min
�L

(α1, . . . , α2n) and αj = max
�L

(α1, . . . , α2n).

If αj �L αi, then �Π
L can be defined as follows:

– α ∼Π
L β, if either both α and β are contradictions, or neither α nor β is a

contradiction;
– ⊥ <Π

L �.

Let αi <L αj . Recall that α, β ∈ LA are compatible if there is γ ∈ LA such that
⊥ <LA γ, γ �LA α and γ �LA β. Now we can define �Π

L as follows:

– αr �Π
L αs iff αr �L αs;

– α ∼Π
L αk iff αk = max

�L

{αr | α and αr are compatible};

– ⊥ <Π
L α, for any α that is not a contradiction.

Clearly, �Π
L extends �L. It is easy to see that �Π

L is a qualitative possibility. �

Theorem 11. Let α1, . . . , α2n be all formulas of the form

±p1,∧ · · · ∧ ±pn,

where p1, . . . , pn are pairwise distinct propositional letters. Then,

± (αi1 � αj1), . . . ,±(αim � αjm) |= ±(αi � αj) (1)
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iff exactly of the following two cases hold:

(i) {±(αi1 � αj1), . . . ,±(αim � αjm)} is inconsistent theory;
(ii) ±(αi �L αj), where �L is a weak partial order on {α1, . . . , α2n} induced by

{±(αi1 � αj1), . . . ,±(αim � αjm)}, i.e. αr �L αs iff

±(αi1 � αj1 ), . . . ,±(αim � αjm) " αr � αs.

Proof. If either (i) or (ii) holds, then obviously (1) holds as well. Conversely,
suppose that both (i) and (ii) fail. Then, �L can be extended to a weak linear
order �L′ on {α1, . . . , α2n} so that �L′ negates the order of αi and αj induced
by ±(αi � αj). For instance, if ±(αi � αj) is ¬(αi � αj), then αi �L′ αj .
By Lemma 10, �L′ can be extended to a qualitative possibility relation �Π . It
follows that M = 〈LA,�Π〉 is a model of ±(αi1 � αj1), . . . ,±(αim � αjm), but
it is not a model of the formula ±(αi � αj). Therefore, (1) also fails. �
The immediate consequence of theorems 9 and 11 is the following corollary:

Corollary 12. Let α1, . . . , α2n be all formulas of the form

±p1,∧ · · · ∧ ±pn,

where p1, . . . , pn are pairwise distinct propositional letters. Then,

±(αi1 � αj1 ), . . . ,±(αim � αjm) " ±(αi � αj)

iff exactly of the following two cases hold:

(i) {±(αi1 � αj1 ), . . . ,±(αim � αjm)} is inconsistent theory;
(ii) ±(αi �L αj), where �L is a weak partial order on {α1, . . . , α2n} induced

by {±(αi1 � αj1), . . . ,±(αim � αjm)}, i.e. αr �L αs iff

±(αi1 � αj1), . . . ,±(αim � αjm) " αr � αs. �
Now we are ready to prove the simple completeness theorem for LΠ .

Theorem 13 (Simple completeness). Let φ be a possibility formula. Then,
" φ iff |= φ.

Proof. If " φ, then |= φ by Theorem 9. Conversely, suppose that |= φ. Let
V ar(φ) = {p1, . . . , pn} and let α1, . . . , α2n be all formulas of the form

±p1 ∧ · · · ∧ ±pn.

By Theorem 8 and monotonicity, we can equivalently transform φ into possibility
formula ψ such that all basic possibility subformulas of ψ have a form

αr � αs.

Clearly, ψ is also valid. Now we apply Theorem 5 and equivalently reduce |= ψ to
finite (meta)conjunction of sequents of the form (1). By Theorem 11 and Corol-
lary 12, |= in each sequent of the form (1) can be equivalently replaced by ".
Now we start with the reverse reduction, but instead of Theorem 5, we use The-
orem 6. As result, we obtain " ψ. Finally, using Theorem 8 and monotonicity, we
obtain " φ. �
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As a consequence of the simple completeness theorem, every consistent theory
T is finitely satisfiable. Thus, in order to prove completeness theorem (T " φ iff
T |= φ), it is sufficient to prove compactness theorem.

Theorem 14. Every finitely satisfiable LΠ-theory T is satisfiable.

Proof. We will use compactness theorem for the classical propositional logic. Let
T be a finitely satisfiable LΠ-theory and let

P = {P(α, β) | α, β ∈ ForC}

be a new set of propositional letters. We define a P-theory T ∗ as a union of the
following P-theories:

– T1 = {φ∗ | φ ∈ T }, where each φ∗ is formed from φ substitutions of the form
α � β �→ P(α, β). For instance, if φ is the formula (α � β) ∨ (α � γ), then
φ∗ is the formula P(α, β) ∨ P(α, γ);

– T2 = {P(α, β) ∨ P(β, α) | α, β ∈ ForC};
– T3 = {(P(α, β) ∧ P(β, γ)) → P(α, γ) | α, β, γ ∈ ForC};
– T4 = {P(⊥,�) ∧ ¬P(�,⊥)};
– T5 = {P(α, β) | α �LA β};
– T6 = {P(α, β) → P(α ∨ γ, β ∨ γ) | α, β, γ ∈ ForC}.

Suppose that Γ is a finite subset of T . Since T is finitely satisfiable, there is a
possibility model M = 〈LA,�Π〉 of Γ . It is easy to see that evaluation e : P −→
{0, 1} defined by

e(P(α, β)) = 1 iff α �Π β

is a model of {φ∗ | φ ∈ Γ} ∪ T2 ∪ · · · ∪ T6. Thus, T ∗ is finitely satisfiable. By
compactness theorem for classical logic, T ∗ is satisfiable. Let evaluation e∗ :
P −→ {0, 1} be a model of T ∗. Then, we can define a possibility model of T in
the following way:

α �Π β iff e∗(P(α, β)) = 1. �

6 Conclusion

The present paper offers a sound and strongly complete finitary axiomatization
of the notion of qualitative possibility relation. We believe that the proposed for-
malism is of interest, since it naturally embeds the qualitative possibilities (and
their dual relations - qualitative necessities) into propositional logic framework.

To emphasis the expressivity of LΠ , we will show that possibilistic likelihood
relation (see [3]), is definable in LΠ . Indeed, let

α ≺ΠL β

be an abbreviation of the formula

(¬α ∧ β) ≺ (α ∧ ¬β)
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and let α �ΠL β be the formula ¬(β ≺ΠL α). If M = 〈LA,�Π〉 is any possibility
model and π is any distribution of �Π , then

M |= α ≺ΠL β iff M |= ¬(β ≺ΠL α)
iff (α ∧ ¬β) 
<Π (¬α ∧ β)
iff π(¬α ∧ β) � π(α ∧ ¬β).

In other words, α �ΠL β indeed behaves like possibilistic likelihood relation.
Using completeness theorem for LΠ , we can formally show well known properties
of possibilistic likelihood relations (coherence with deduction, pre-additivity, self-
duality etc.).

Another possible approach to the problem of formalization of qualitative pos-
sibilities is to introduce a probabilistic-like operator logic, with the intention
to formally capture distributions of possibility relations. More precisely, basic
formulas would have a form π(α) � s and π(α) � s, where s ∈ [0, 1] ∩ Q. The
intended meaning is rather obvious: π(α) � s reads “the possibility measure of
α is at least s”. Notice that there is no finitary complete axiomatization of such
logics, since the set

{π(p) > 0} ∪ {π(p) � 2−n | n ∈ ω}

is finitely satisfiable, but there is no real valued maxitive function that satisfies it.
Infinitary complete axiomatization can be obtained by modification of argument
presented in [19]. Similar modification can be done using [7], with addition of
some infinitary inference rules.
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19. Ognjanović, Z., Perović, A., Rašković, M.: Logic with the qualitative probability
operator. Logic journal of the IGPL 16(2), 105–120 (2008)
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Abstract. In a series of papers we have shown that fundamental prob-
abilistic reasoning problems can be encoded as hybrid probabilistic logic
programs with probabilistic answer set semantics described in [24]. These
probabilistic reasoning problems include, but not limited to, probabilis-
tic planning [28], probabilistic planning with imperfect sensing actions
[29], reinforcement learning [30], and Bayes reasoning [25]. Moreover, in
[31] we also proved that stochastic satisfiability (SSAT) can be mod-
ularly encoded as hybrid probabilistic logic program with probabilistic
answer set semantics, therefore, the applicability of SSAT to variety of
fundamental probabilistic reasoning problems also carry over to hybrid
probabilistic logic programs with probabilistic answer set semantics. The
hybrid probabilistic logic programs encoding of these probabilistic rea-
soning problems is related to and can be translated into SAT, hence,
state-of-the-art SAT solver can be used to solve these problems. This pa-
per establishes the foundation of using SAT solvers for reasoning about
variety of fundamental probabilistic reasoning problems. In this paper,
we show that fundamental probabilistic reasoning problems that include
probabilistic planning, probabilistic contingent planning, reinforcement
learning, and Bayesian reasoning can be directly encoded as SAT formu-
lae, hence state-of-the-art SAT solver can be used to solve these problems
efficiently. We emphasize on SAT encoding for probabilistic planning and
probabilistic contingent planning, as similar encoding carry over to rein-
forcement learning and Bayesian reasoning.

1 Introduction

In a series of papers we have shown that fundamental probabilistic reasoning
problems can be encoded as hybrid probabilistic logic programs with probabilis-
tic answer set semantics that is described in [24]. These probabilistic reasoning
problems include, but not limited to, probabilistic planning [28], probabilistic
planning with imperfect sensing actions [29], reinforcement learning [30], and
Bayes reasoning [25]. The hybrid probabilistic logic programs encoding of these
probabilistic reasoning problems is related to and can be translated into SAT,
hence, state-of-the-art SAT solver can be applied to solve these problems. The
relationship between these probabilistic reasoning problems encodings in hybrid
probabilistic logic programs and SAT stems from the fact that the hybrid proba-
bilistic logic programs with probabilistic answer set semantics encodings of these
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problems are reduced to classical normal logic programs with classical answer
set semantics [8]. However, classical normal logic programs with classical answer
set semantics is related to SAT. This is due to the presence of a one-to-one corre-
spondence between the classical answer sets of a classical normal logic program
and the models of a SAT translation of that classical normal logic program [19].
This means that SAT encoding of a variety of probabilistic reasoning problems
— including probabilistic planning, probabilistic contingent planning, reinforce-
ment learning, and Bayes reasoning — can be achieved from the encoding of
these probabilistic reasoning problems in classical normal logic programs — by
translating the classical normal logic programs encoding of these probabilistic
reasoning problems into equivalent SAT formulae as shown in [28,25,30,29]. This
implies that variety of probabilistic reasoning problems can be represented and
solved by SAT solvers. However, the SAT encoding — as well as the classical
normal logic program encoding — of probabilistic reasoning problems lacks the
proper representation and reasoning about probabilities inherit in these kinds of
problems. Therefore, as shown in [28,25,30,29], probabilistic reasoning problems
are solved by SAT solvers in three steps. These steps are:

1. Acquire the classical normal logic program with classical answer set seman-
tics encoding of a probabilistic reasoning problem, whose classical answer
sets correspond to solutions to the probabilistic reasoning problem.

2. Translate the classical normal logic program encoding of the probabilistic
reasoning problem into an equivalent SAT formula, whose models correspond
to solutions to the probabilistic reasoning problem. As classical answer sets
of a classical normal logic program are equivalent to the models of the SAT
translation of that classical normal logic program [19].

3. Calculate the probability of the probabilistic reasoning task represented in
the probabilistic reasoning problem, using the models of the SAT translation
of the classical normal logic program encoding of the probabilistic reason-
ing problem and the probability distributions associated to the probabilistic
reasoning problem.

We have shown the applicability of these three steps in a number of funda-
mental probabilistic reasoning problems including probabilistic planning [28],
probabilistic contingent planning [29], reinforcement learning [30], and reasoning
with causal Bayes nets [25]. However, achieving the SAT encoding of probabilis-
tic reasoning problems through classical normal logic programs encoding adds
extra complexity that can be avoided by encoding the probabilistic reasoning
problems directly into SAT which improves the efficiency of the probabilistic
reasoning system.

This paper lays the foundation for using SAT to represent and reason about
a variety of fundamental probabilistic reasoning problems. In this paper, we
show that fundamental probabilistic reasoning problems that include, proba-
bilistic planning, probabilistic contingent planning, reinforcement learning, and
Bayesian reasoning can be directly encoded as SAT formulae, hence state-of-the-
art SAT solver can be used to solve these problems efficiently. This is accom-
plished in two steps.
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1. The first step is to translate a probabilistic reasoning problem into a SAT
formula where the models of the SAT translation correspond to solutions to
the probabilistic reasoning problem.

2. The second step is to calculate the probability of the probabilistic reasoning
task associated to the probabilistic reasoning problem, using the models of
the SAT translation of the probabilistic reasoning problem and the proba-
bility distributions associated to the probabilistic reasoning problem.

We emphasize on SAT encoding for probabilistic planning and probabilistic con-
tingent planning, as similar encoding carry over to reinforcement learning and
Bayesian reasoning. In so doing, we present a direct SAT encoding of probabilis-
tic planning and probabilistic contingent planning domains represented in the
probabilistic action language P [29]. P is a probabilistic action language that
allows [29] representing and reasoning about actions with probabilistic effects,
sensing actions with probabilistic outcomes, executability conditions of actions,
indirect effects of actions, and the initial probability distribution over states.

2 Probabilistic Action Language P

In this section we review the syntax and semantics of the probabilistic action
language P [29] that is capable of representing and reasoning about the initial
probability distribution over states, indirect effects of actions, actions with prob-
abilistic effects, sensing actions with probabilistic outcomes, and executability
conditions of actions. The action language P overcomes the shortcomings in
the representation of sensing actions with probabilistic outcomes described in
[5], such as the sensing actions outcomes are represented by arbitrary strings
called observation labels that do not relate to the fluents that describe the world
and sensing action has preconditions and effects as well as outcomes resulting
from observing the environment. As [32] proved that sensing actions affect only
knowledge fluents and has no effect on the other fluents.

2.1 Syntax of P

A proposition that describes a property of the world is called a fluent. A fluent
literal is either a fluent or the negation of a fluent. A conjunction of fluent
literals is a conjunctive fluent formula. Sometimes we abuse the notation and
refer to a conjunctive fluent formula as a set of fluent literals (∅ denotes true). A
probabilistic action theory in P is a set of probabilistic propositions of the from:

initially {ψi : pi} (1)
l if ψ (2)

executable a if ψ (3)
a causes {φi : pi if ψi} (4)

a determines {φi : pi sensing ψi} (5)
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where l is a fluent literal and ψ, ψi, φi are conjunctive fluent formulae, pi ∈ [0, 1],
and a is an action. The set of all ψi must be exhaustive and mutually exclusive,
where ∀ i

∑
s pi Pr(ψi|s) = 1 and ∀ i, j, s, ψi 
= ψj ⇒ Pr(ψi ∧ψj |s) = 0, where

s is a state.
The initial probability distribution is presented by probabilistic proposition

(1). It says that a possible initial state ψi holds with probability pi. Probabilistic
proposition (2) describes Indirect effect of action. It states that l holds in every
state in which ψ also holds. Executability condition is represented by (3), which
mentions that an action a is executable in any state in which ψ holds. The
probabilistic effects of a non-sensing action a is described by (4). It says that for
all 1 ≤ i ≤ n, a causes φi to hold with probability pi in a successor state to a state
in which a is executed and ψi holds. Sensing action with probabilistic outcomes
is presented by (5). It states that executing a sensing action a in a state causes
any of φi to be known true with probability pi whenever a correlated ψi is known
to be true in a successor state to a state in which a is executed. The literals in
ψi determine what the sensor is observing and the literals in φi determine what
the sensor reports on. pi is the probability that φi holds whenever ψi holds after
executing a. Given that s̃I is a probabilistic proposition of the form (1) and AD
is a set of probabilistic propositions from (2)-(5), we say that D = 〈s̃I ,AD〉 a
probabilistic action theory. For convenience, we present an action a by the set
a = {a1, . . . , an}, where for each 1 ≤ i ≤ n, ai corresponds to φi and ψi.

2.2 Semantics of P

A set of literals φ is consistent if it does not contain a pair of complementary
literals. An indirect effect of action proposition (2) is satisfied by a set of literals
φ if l belongs to φ whenever ψ is contained in φ or ψ is not contained in φ.
CD(φ) is the smallest set of literals that contains φ and satisfies all the indirect
effects of actions propositions in the probabilistic action theory D. A state s
is a complete and consistent set of literals that satisfies all the indirect effects
of actions propositions. Let s be a state and G be conjunctive fluent formula.
The probability that G holds in s is given by Pr(G|s) = 1 if G ⊆ s, otherwise,
Pr(G|s) = 0. Let D be a probabilistic action theory, s be a state, a causes{φi :
pi if ψi} and a′ determines{φ′i : p′i sensing ψ′i}, 1 ≤ i ≤ n, be probabilistic
propositions, and a = {ai | (1 ≤ i ≤ n)}, a′ = {a′i | (1 ≤ i ≤ n)}, where each
ai(a′i) corresponds to φi (φ′i) and ψi (ψ′i). Then, CD(Φ(ai, s)) (CD(Φ(a′i, s))) is
the state resulting from executing a (a′) in s, where Φ(ai, s) is defined as follows:

1. l ∈ Φ(ai, s) and ¬ l /∈ Φ(ai, s) if l ∈ φi and ψi ⊆ s.
2. ¬ l ∈ Φ(ai, s) and l /∈ Φ(ai, s) if ¬ l ∈ φi and ψi ⊆ s.
3. Otherwise, l ∈ Φ(ai, s) iff l ∈ s and ¬ l ∈ Φ(ai, s) iff ¬ l ∈ s.

In addition, Φ(a′i, s) is defined as:

1. l ∈ Φ(a′i, s) and ¬ l /∈ Φ(a′i, s) iff l ∈ φ′i and ψ′i ⊆ s.
2. ¬ l ∈ Φ(a′i, s) and l /∈ Φ(a′i, s) iff ¬ l ∈ φ′i and ψ′i ⊆ s.
3. Otherwise, l ∈ Φ(a′i, s) iff l ∈ s and ¬ l ∈ Φ(a′i, s) iff ¬ l ∈ s.
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The probability of a state s′ resulting from executing a(a′) in a state s is given
by Pr′(s′|s, a) = pi if a causes{φi : pi if ψi} and s′ = CD(Φ(ai, s)). Otherwise,
Pr′(s′|s, a) = 0. Pr′(s′|s, a′) = p′i if a′ determines{φ′i : p′i sensing ψ′i} and
s′ = CD(Φ(a′i, s)). Otherwise, Pr′(s′|s, a′) = 0.

Probabilistic (contingent) plan is a sequence of actions 〈a, c〉, where a is a
non-sensing action with probabilistic effects and c is a probabilistic (contingent)
plan or it is a sequence of actions 〈a, case {φi → ci}ni=1〉, where a is a sensing
action with probabilistic outcomes and ci is a probabilistic (contingent) plan.
The probability a conjunctive fluent formula G holds after executing a non-empty
probabilistic (contingent) plan is given by:

– The probability of a state s′ holds after executing a plan in a state s is:
• Pr(s′|s, 〈a, c〉) =

∑
s′′ Pr′(s′′|s, a) Pr(s′|s′′, c).

• Pr(s′|s, 〈a, case {φi → ci}ni=1〉) =
∑

s′′|=φi
Pr′(s′′|s, a)Pr(s′|s′′, ci).

– The probability that G is true after executing a plan in a state s is given by:
• Pr(G|s, 〈a, c〉) =

∑
s′ Pr(s′|s, 〈a, c〉) Pr(G|s′).

• Pr(G|s, 〈a, case {φi → ci}n
i=1〉)=

∑
s′ Pr(s′|s, 〈a, case {φi → ci}n

i=1〉)Pr(G|s′).
– The probability G is true after executing a plan in the initial states s̃I is:

• Pr(G|s̃I , 〈a, c〉) =
∑

s Pr(G|s, 〈a, c〉) Pr(s̃I = s).
• Pr(G|s̃I , 〈a, case{φi → ci}n

i=1〉)=
∑

s Pr(G|s, 〈a, case{φi → ci}n
i=1〉)Pr(s̃I = s).

Example 1 ([5]). A robot is processing a widget with the goal to get a widget
painted (pa) and processed (pr) without errors (¬er)( by determining if it is
flawed (fl) or not flawed (¬fl)), then deciding to reject or ship the widget. Since
flawed (fl) property is not directly observable, the robot determines whether the
widget is flawed by performing inspect action that senses whether the widget is
blemished (bl). If the widget is blemished (bl) the robot reports widget is flawed
(fl) with 0.9 probability, however, it erroneously reports widget is not flawed
(¬ fl) with 0.1 probability due to imperfection in the robot’s sensor. The paint
action causes widget painted (pa) and all blemishes removed (¬ bl) with 0.95
probability in the state of the world in which the widget is not processed (¬ pr),
and causes no change in the same state of the world with 0.05 probability. But,
paint causes an error (er) in the state of the world in which widget is being
processed (pr). The effects of ship and reject are certain. Let initially the widget
be blemished and flawed with probability 0.3 and it is not blemished and not
flawed with probability 0.7. Consider also that the target is to find a probabilistic
contingent plan that achieves its goal with probability at least 0.95. This can be
represented by the probabilistic action theory D = 〈s̃I ,AD〉 where

s̃I = initially
{
{bl, f l,¬pa,¬pr,¬er} : 0.3
{¬bl,¬fl,¬pa,¬pr,¬er} : 0.7

}
and AD consists of: executable AC if ∅, where AC ∈{paint, inspect, ship, reject}.

paint causes

⎧⎨⎩ {pa,¬bl} : 0.95 if {¬pr}
∅ : 0.05 if {¬pr}
{er} : 1 if {pr}

⎫⎬⎭ ship causes

⎧⎨⎩ {pr} : 1 if {¬pr,¬fl}
{pr, er} : 1 if {¬pr, fl}
{er} : 1 if {pr}

⎫⎬⎭
reject causes

⎧⎨⎩ {pr, er} : 1 if {¬pr,¬fl}
{pr} : 1 if {¬pr, fl}
{er} : 1 if {pr}

⎫⎬⎭ inspect determines

⎧⎨⎩ {fl} : 0.9 sensing {bl}
{¬fl} : 0.1 sensing {bl}
{¬fl} : 1 sensing {¬bl}

⎫⎬⎭
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A 4-tuple PP = 〈s̃I ,AD,G, T 〉 is a probabilistic (contingent) planning problem,
where 〈s̃I ,AD〉 is a probabilistic action theory, G is conjunctive fluent formula
represents the goal to be satisfied, and 0 ≤ T ≤ 1 is the probability threshold
for the goal G to be achieved. A probabilistic (contingent) planning problem
PP has a probabilistic (contingent) plan q iff each a in q appears in AD and
Pr(G|s̃I , q) ≥ T .

3 SAT Probabilistic Planning

Satisfiability planning (SAT-planning) has been proven efficient and effective ap-
proach to classical planning. The appeal of SAT-planning arises from the fact
that [16] SAT is a central widely studied problem in computer science, there-
fore, many techniques have been developed to solve the problem, in addition
to the presence of many efficient SAT solvers. Building on the success of SAT-
planning, a probabilistic extension to SAT-planning for probabilistic planning
and probabilistic contingent planning has been developed using stochastic sat-
isfiability (SSAT) [21,22], which is a probabilistic extension to SAT [31]. Prob-
abilistic (contingent) planning using SSAT is NPPP -complete [21,22]. In this
section we describe a SAT-based probabilistic (continent) planning approach
called SAT probabilistic (contingent) planning. Therefore, state-of-the-art SAT
solvers can be used to efficiently solve probabilistic (contingent) planning prob-
lems. And hence, reduces the complexity of finding a probabilistic (contingent)
plan to NP-complete. SAT probabilistic (contingent) planning is developed by
providing a translation from a probabilistic (contingent) planning problem in
the probabilistic action language P into a SAT formula where the models of the
SAT formula correspond to solutions to the probabilistic (contingent) planning
problem. Although completely different, the following translation is inspired by
a SAT translation to classical planning presented in [12].

Let PP = 〈s̃I ,AD,G, T 〉 be a probabilistic planning problem defined on the
probabilistic action theory D = 〈s̃I ,AD〉. Let Lit be the set of all literals that
appear in D. Then, PP is encoded in SAT as follows.

– The possible initial states of the initial probability distribution over the
initial states, s̃I = initially {ψi : pi}, for 1 ≤ i ≤ n, are encoded as the SAT
formula,

I0 =
n∨
i=1

ψ0
i (6)

– F t
D is the conjunction of the following formulae:
• For each fluent literal l ∈ Lit, we have the formula

lt+1≡
∨

a causes {φi : pi if ψi}∈D and l∈φi

(at∧ψt
i) ∨

∨
l if ψ∈D

ψt+1 ∨ (lt+1∧lt)

(7)
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where t represents a time step, a is an action, a causes {φi : pi if ψi}
is a non-sensing action with probabilistic effects proposition, and l if ψ
is an indirect effect of action proposition. In the presence of sensing
actions with probabilistic outcomes, for each fluent literal l ∈ Lit, the
above formula becomes,

lt+1 ≡
∨

a determines {φi : pi sensing ψi}∈D and l∈φi

(at ∧ ψt
i) ∨ F t+1 (8)

where

F t+1 =
∨

a causes {φi : pi if ψi}∈D and l∈φi

(at ∧ ψt
i) ∨

∨
l if ψ∈D

ψt+1 ∨ (lt+1 ∧ lt)

• The following formula generates one action at a time step t.∨
a∈A

(at
∧

b ∈A\{a}
¬bt) (9)

where A is a set of actions names appearing in D.
• Each executability condition of an action a at time step t of the form (3)

is encoded as the formula
at ≡ ψt (10)

– The goal G at time step t is encoded as propositional formula Gt

Moreover, the use of propositional formulae to represent the domains of
probabilistic (contingent) planning problems allows easily to encode domain-
dependant constraints which helps further prune the search space and increase
the efficiency of finding probabilistic (contingent) plans.

4 Correctness

In this section we prove the correctness of the SAT probabilistic (contingent)
planning presented in the previous section. The correctness of the SAT transla-
tion of probabilistic (contingent) planning is given as follows. Let t represents
time steps, where the domain of t is {0, . . . , n − 1}. Let PP = 〈s̃I ,AD,G, T 〉
be a probabilistic (contingent) planning problem, Φ be a probabilistic transition
function associated with PP , s0 be a possible initial state (a state at time step
0), and a0, . . . , an−1 be a collection of (sensing and non-sensing) actions in A.
We say that s0 a0

j0 s1 . . . an−1
jn−1

sn is a trajectory in PP if si+1 = CD(Φ(aiji
, si)),

where ∀(0 ≤ i ≤ n − 1), si is a state, ai is an action occurs at time step i
and aiji

∈ ai = {ai1, . . . , aim}, where 1 ≤ ji ≤ m. We say that a trajectory
s0 a0

j0 s1 . . .an−1
jn−1

sn in PP achieves a conjunctive fluent formula G if G ⊆ sn.
Moreover, let RG be the set of all trajectories s0 a0

j0
s1 . . . an−1

jn−1
sn in PP that

achieve G. A probabilistic (contingent) plan q is said to achieve a goal G if the
execution of q in the initial states will yield a non-empty set of trajectories Rq

G
each of which achieves G.
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Theorem 1. Let PP = 〈s̃I ,AD,G, T 〉 be a probabilistic (contingent) planning
problem. Then, s0 a0

j0
s1 . . . an−1

jn−1
sn is a trajectory in PP that achieves G iff

s0 ∧ a0 ∧ s1 ∧ . . . ∧ an−1 ∧ sn is true in a model of

I0 ∧
n−1∧
t=0

F t
D ∧

n∨
t=0

Gt

Intuitively, the models of FPP = I0 ∧
∧n−1
t=0 F t

D ∧
∨n
t=0 Gt, the SAT encoding

of the probabilistic (contingent) planning problem PP , are equivalent to the
trajectories of PP .

Lemma 1. Let PP be a probabilistic (contingent) planning problem, S be a
model for FPP = I0 ∧

∧n−1
t=0 F t

D ∧
∨n
t=0 Gt, and q = 〈a, c〉 (q = 〈a, case {φi →

ci}mi=1〉) be a probabilistic (contingent) plan for PP. Let Rq
G be the set of all

trajectories s0 a0
j0

s1 . . .an−1
jn−1

sn of q that achieve G. Then,

∑
s0 a0

j0
s1...an−1

jn−1
sn∈Rq

G

Pr(s0)
n−1∏
i=0

pi
ji

=
∑

S|=s0∧a0∧s1∧...∧an−1∧sn

Pr(s0)
n−1∏
i=0

pi
ji
=Pr(G|s̃I , q)

The probability that a goal G is true, after executing a probabilistic (contingent)
plan q of PP in the possible initial states s̃I , is equivalent to the summation
(over all trajectories of q) of the product of transition probabilities, piji

in each
trajectory s0 a0

j0
s1 . . . an−1

jn−1
sn in q. This is also equivalent to the summation

(over all models of the SAT formula FPP that satisfies s0∧a0∧s1∧. . .∧an−1∧sn)
of the product of transition probabilities piji

, where (0 ≤ i ≤ n − 1) represents
the time steps, (1 ≤ ji ≤ m), and ai causes {φiji

: piji
if ψi

ji
}. The following

theorem follows directly from Lemma 1.

Theorem 2. Let S be a model for the SAT formula FPP and q = 〈a, c〉 (q =
〈a, case {φi → ci}mi=1〉) be a probabilistic (contingent) plan for PP. Let Rq

G
be the set of all trajectories s0 a0

j0
s1 . . . an−1

jn−1
sn of q that achieve G. Then,

Pr(G|s̃I , q) ≥ T iff

∑
s0 a0

j0
s1...an−1

jn−1
sn∈Rq

G

Pr(s0)
n−1∏
i=0

pi
ji

=
∑

S|=s0∧a0∧s1∧...∧an−1∧sn

Pr(s0)
n−1∏
i=0

pi
ji

≥ T

Theorem 2 shows that propositional satisfiability can be used to solve probabilis-
tic (contingent) planning problems in two steps. The first step is to translate a
probabilistic (contingent) planning problem, PP , into a SAT formula whose
models correspond to valid trajectories in PP . From the models of SAT trans-
lation of the probabilistic (contingent) planning problem PP , we can determine
the trajectories Rq

G of a plan q in PP that achieve the goal G. The second step
is to calculate the probability that the goal is satisfied by q by:
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∑
s0 a0

j0
s1...an−1

jn−1
sn∈Rq

G

Pr(s0)
n−1∏
i=0

piji

Hence, state-of-the-art SAT solvers can be used to solve probabilistic (contin-
gent) planning problems. This two-steps SAT solution to probabilistic (contin-
gent) planning carry over to reinforcement learning and Bayesian reasoning.

5 Examples

In this section, we present examples of SAT translation of probabilistic planning
and probabilistic contingent planning problems.

Example 2. The SAT encoding of the probabilistic contingent planning problem
described in Example 1 is the conjunction of the following formulae, where for
a plan of length n, we have for 0 ≤ t ≤ n− 1:

I0 = (bl0 ∧ fl0 ∧ ¬pa0 ∧ ¬pr0 ∧ ¬er0)
∨

(¬bl0 ∧ ¬fl0 ∧ ¬pa0 ∧ ¬pr0 ∧ ¬er0)

(paintt ∧ ¬inspectt ∧ ¬shipt ∧ ¬rejectt) ∨

(¬paintt ∧ inspectt ∧ ¬shipt ∧ ¬rejectt) ∨

(¬paintt ∧ ¬inspectt ∧ shipt ∧ ¬rejectt) ∨

(¬paintt ∧ ¬inspectt ∧ ¬shipt ∧ rejectt)

pat+1 ≡ (paintt ∧ ¬prt) ∨ (pat+1 ∧ pat)

¬blt+1 ≡ (paintt ∧ ¬prt) ∨ (¬blt+1 ∧ ¬blt)

True ≡ (paintt ∧ ¬prt)

ert+1 ≡ (paintt ∧ prt) ∨ (shipt ∧ ¬prt ∧ flt) ∨ (shipt ∧ prt) ∨ (rejectt ∧ ¬prt ∧ ¬flt)∨

(rejectt ∧ prt) ∨ (ert+1 ∧ ert)

prt+1 ≡ (shipt ∧ ¬prt ∧ ¬flt) ∨ (shipt ∧ ¬prt ∧ flt) ∨ (rejectt ∧ ¬prt ∧ ¬flt)∨

(rejectt ∧ ¬prt ∧ flt) ∨ (prt+1 ∧ prt)

flt+1 ≡ (inspectt ∧ blt) ∨ (flt+1 ∧ flt)

¬flt+1 ≡ (inspectt ∧ blt) ∨ (inspectt ∧ ¬blt) ∨ (¬flt+1 ∧ ¬flt)

blt+1 ≡ blt+1 ∧ blt

¬pat+1 ≡ ¬pat+1 ∧ ¬pat

¬prt+1 ≡ ¬prt+1 ∧ ¬prt

¬ert+1 ≡ ¬ert+1 ∧ ¬ert
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Example 3. Consider the following probabilistic planning problem from [18]. A
robot arm is trying to grasp a block; the grasping operation is not always suc-
cessful, especially when the robot’s gripper is wet. The robot is able to hold a
block (hb) with a probability 0.95 after executing the pickup action in the state
of the world in which the gripper is dry (gd), and is unable to hold the block
(¬hb), after executing the pickup action in the same state of the world, with 0.05
probability. On the other hand, executing the pickup action in the state of the
world in which the gripper is wet (¬ gd) yields hb with 0.5 probability and ¬ hb
with 0.5 probability. Let us assume that, initially, the robot is not holding the
block (¬hb), and the gripper is dry (gd) with probability 0.7. Therefore, there
are two possible initial states s1 = {gd,¬hb} and s2 = {¬gd,¬hb}, with the
probability distribution Pr(s1) = 0.7 and Pr(s2) = 0.3. Consider also that the
target is to find a probabilistic contingent plan that achieves its goal with prob-
ability at least 0.7. This can be represented by the probabilistic action theory
D = 〈s̃I ,AD〉 where executable pickup if ∅ and

s̃I = initially

{
{gd, ¬hb} : 0.7
{¬gd, ¬hb} : 0.3

}
AD = pickup causes

⎧⎪⎪⎨⎪⎪⎩
{hb} : 0.95 if {gd}
{¬hb} : 0.05 if {gd}
{hb} : 0.5 if {¬ gd}
{¬ hb} : 0.5 if {¬ gd}

⎫⎪⎪⎬⎪⎪⎭
The SAT translation of the above probabilistic planning problem is the con-

junction of the following formulae, where for a plan of length n, we have for
0 ≤ t ≤ n− 1:

I0 = (gd0 ∧ ¬hb0) ∨ (¬gd0 ∧ ¬hb0)

pickupt

hbt+1 ≡ (pickupt ∧ gdt) ∨ (pickupt ∧ ¬gdt) ∨ (hbt+1 ∧ hbt)

¬hbt+1 ≡ (pickupt ∧ gdt) ∨ (pickupt ∧ ¬gdt) ∨ (¬hbt+1 ∧ ¬hbt)

gdt+1 ≡ gdt+1 ∧ gdt ¬gdt+1 ≡ ¬gdt+1 ∧ ¬gdt

6 Conclusions and Related Work

We presented a framework for representing and reasoning about probabilistic
reasoning problems using SAT along with the application of the framework to
probabilistic (contingent) planning. The framework is introduced by providing a
translation from a probabilistic reasoning problem directly into a SAT formula
where the models of SAT formula correspond to solutions to the probabilistic
reasoning problem. We described a translation from a probabilistic (contingent)
planning problem presented in the action language P into a SAT formula, where
the models of the SAT translation correspond to solutions to the probabilistic
(contingent) planning problem. The action language P is a high level probabilis-
tic action language P [29] that overcomes the shortcomings in the representation
of sensing actions with probabilistic outcomes in [5]. Contrary to [5], in the prob-
abilistic action P , the sensing actions outcomes are represented by fluents that
describe the world and has no preconditions and effects. A detailed survey on
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probabilistic planning and probabilistic contingent planning can be found in
different venues including [2,28,29]. However, closely related work is described
below.

In [21] and [22], probabilistic planning and probabilistic contingent planning
approaches have been presented building on the success of SAT-planning [16].
The approaches of [21] and [22] for probabilistic planning and probabilistic con-
tingent planning respectively are developed by converting a probabilistic (con-
tingent) planning problem into a stochastic satisfiability problem and solving
the stochastic satisfiability problem instead to produce probabilistic (contin-
gent) plans. However, solving a probabilistic (contingent) planning problem as
a stochastic satisfiability problem is NPPP−complete [21,22]. However, SAT
probabilistic (contingent) planning framework presented in this paper encodes
probabilistic (contingent) planning problems directly into SAT formulae, where
the models of the SAT encoding correspond to probabilistic (contingent) plans,
and hence, reduces the complexity of finding a probabilistic (contingent) plan to
NP-complete.

In [28] and [29], probabilistic planning and probabilistic contingent planning
approaches have been described based on the success on another successful logic
based approach to classical planning, using normal logic programs with answer
set semantics (answer set planning) [34]. Three approaches are developed in [28]
and [29] to solve probabilistic planning and probabilistic contingent planning
problems respectively. The first approach is developed by translating a proba-
bilistic (contingent) planning problem into a normal hybrid probabilistic logic
program with probabilistic answer set semantics [24] whose probabilistic answer
sets correspond to solutions to the probabilistic (contingent) planning problem.
The second approach is to translate a probabilistic (contingent) planning prob-
lem into a classical normal logic program with classical answer set semantics
whose classical answer sets correspond to solutions to the probabilistic (contin-
gent) planning problem. The third approach is to convert the classical normal
logic program encoding of a probabilistic (contingent) planning problem into
an equivalent SAT formula where the models of the SAT formula correspond
to solutions to the probabilistic (contingent) planning problem. This indirect
conversion of a probabilistic (contingent) planning problem into SAT through
classical normal logic program encoding of the probabilistic (contingent) plan-
ning problem is avoided in this paper by converting a probabilistic (contingent)
planning problem directly into SAT formula.
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Abstract. Classical Description Logics (DLs) are not suitable to rep-
resent vague pieces of information. The attempts to achieve a solution
have lead to the birth of fuzzy DLs and rough DLs. In this work, we
provide a simple solution to join these two formalisms and define a fuzzy
rough DL. We also show how to extend two reasoning algorithms for
fuzzy DLs, which are implemented in the fuzzy DL reasoners fuzzyDL
and DeLorean.

1 Introduction

In the last years the interest in ontologies has significantly grown. An ontology is
defined as an explicit and formal specification of a shared conceptualization [13],
which means that ontologies represent the vocabulary of some domain. They
have gained widespread popularity due to their success in several applications
such as expert and multiagent systems or the Semantic Web. Description Logics
(DLs) are a family of logics for representing structured knowledge [1]. They
are the basis of most of the ontology languages, such as the current standard
language OWL [16]. For instance, the logic behind the recent language OWL 2
is SROIQ(D) [8].

However, it is widely agreed that “classical” ontology languages are not ap-
propriate to deal with fuzzy/vague/imprecise knowledge, which is inherent to
several real world domains. With the aim of managing vagueness in ontologies,
several extension of DLs have been proposed, being possible to group them in
two categories. On the one hand, the combination with fuzzy logic [30] pro-
duced fuzzy DLs. Some notable works are [15,25,26,28], for a survey we refer
to [21]. Under this approach, vagueness is quantified and expressed using a de-
gree of membership to a vague concept. On the other hand, the combination with
rough set theory [22] produced rough DLs [10,12,18,19,20,24]. These logics offer
a qualitative approach to model vagueness. Instead of providing a degree of a
membership, vague concepts are approximated by means of a couple of classical
sets: an upper and a lower approximation. This approach is very useful when it
is not possible to quantify the membership function of a vague concept.

Fuzzy logic and rough logic are complementary formalism to manage vague-
ness and hence it is natural to combine them by means of fuzzy rough sets [11,23].
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This is useful in several domains of application. For instance, in e-commerce, it
is possible to combine rough concepts such as “potential buyer” (an individual
which is possibly interested in some product) with fuzzy concepts such as “cheap
price” (which can be modeled with a trapezoidal membership function). Another
example is medicine, which combines rough concepts such as “possible patient”
(an individual affected by some of the symptoms of some disease, and hence
suspected of being patient) with fuzzy concepts such as “high blood pressure”.

In this paper we follow this approach and extend a fuzzy DL with fuzzy rough
sets. As we will see, the integration is seamless, as already pointed out by [24]
for the classical semantics case, as the rough set component can mapped into
the fuzzy DL component, with the non-negligible advantage that current fuzzy
DLs reasoners can be used with minimal adaption.

Related works are [9], which presents a rough fuzzy ontology but without
entering into the formal details of the subjacent logic, and [17], which considers
a less expressive logic than ours and not dealing with implementation issues.

We proceed as follows. The next section provides some background on mathe-
matical fuzzy logics and (fuzzy) rough set theory. Section 3 presents the definition
of a extension of the DL SROIQ(D), the logic behind OWL 2, with fuzzy and
fuzzy rough semantics. Section 4 describes two reasoning algorithms under two
fragments of our logic. Finally, Section 5 sets out some conclusions.

2 Preliminaries

Mathematical Fuzzy Logic. In fuzzy logics, the convention prescribing that
a statement is either true or false is changed. Changing the usual true/false
convention leads to a new concept of statement, whose compatibility with a
given state of facts is a matter of degree and can be measured on an ordered
scale S that is no longer {0, 1}, but, e.g., the unit interval [0, 1]. This degree of
fit is called degree of truth of the statement φ in the interpretation I.

Fuzzy logics logics provide compositional calculi of degrees of truth, including
degrees between “true” and “false”. A statement is now not true or false only, but
may have a truth degree taken from a truth space S, usually [0, 1] (in that case
we speak about Mathematical Fuzzy Logic [14]). In this paper, fuzzy statements
will have the form φ� l or φ� u, where l, u∈ [0, 1] and φ is a statement, which
encode that the degree of truth of φ is at least l resp. at most u.

Semantically, a fuzzy interpretation I maps each basic statement pi into [0, 1]
and is then extended inductively to all statements as follows:

I(φ ∧ ψ) = I(φ) ⊗ I(ψ), I(φ ∨ ψ) = I(φ) ⊕ I(ψ),
I(φ → ψ) = I(φ) ⇒ I(ψ), I(¬φ) = ' I(φ) ,

where ⊗, ⊕, ⇒, and � are so-called combination functions, namely, triangular
norms (or t-norms), triangular conorms (or t-conorms), implication functions,
and negation functions, respectively, which extend the classical Boolean conjunc-
tion, disjunction, implication, and negation, respectively, to the fuzzy case (see [14]
for a formal definition of these functions and their properties). An important type
of implication functions are R-implications, defined as a ⇒ b = sup {c | a⊗c ≤ b}.
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Table 1. Combination functions of various fuzzy logics

�Lukasiewicz Logic Gödel Logic Product Logic Zadeh Logic
a⊗ b max(a + b− 1, 0) min(a, b) a · b min(a, b)
a⊕ b min(a + b, 1) max(a, b) a + b− a · b max(a, b)

a⇒ b min(1− a + b, 1)

{
1 if a ≤ b

b otherwise
min(1, b/a) max(1 − a, b)

# a 1− a

{
1 if a = 0
0 otherwise

{
1 if a = 0
0 otherwise

1 − a

Several t-norms, t-conorms, implication functions, and negation functions
have been proposed, giving raise to different fuzzy logics with different logi-
cal properties. In fuzzy logic, one usually distinguishes three different logics,
namely �Lukasiewicz, Gödel, and Product logic [14]. Zadeh logic (the fuzzy op-
erators originally considered by Zadeh [30]) is a sublogic of �Lukasiewicz logic.
�Lukasiewicz, Gödel, and Product logics have an R-implication, while Zadeh logic
does not.

A fuzzy set R over a countable crisp set X is a function R : X → [0, 1]. A fuzzy
set A is included in B (denoted A ⊆ B) iff ∀x ∈ X,A(x) ≤ B(x). The degree of
subsumption between two fuzzy sets A and B is defined as infx∈X A(x) ⇒ B(x).

A (binary) fuzzy relation R over two countable crisp sets X and Y is a function
R : X × Y → [0, 1]. The inverse of R is the function R−1 : Y ×X → [0, 1] with
membership function R−1(y, x) = R(x, y), for every x ∈ X and y ∈ Y . The
composition of two fuzzy relations R1 : X × Y → [0, 1] and R2 : Y × Z → [0, 1]
is defined as (R1 ◦R2)(x, z) = supy∈Y R1(x, y)⊗R2(y, z). A fuzzy relation R is
reflexive iff ∀x ∈ X,R(x, x) = 1. R is symmetric iff ∀x ∈ X, y ∈ Y,R(x, y) =
R(y, x). R is transitive iff R(x, z)� (R ◦ R)(x, z). A fuzzy similarity relation is
a reflexive, symmetric and transitive relation.

A fuzzy interpretation I satisfies a fuzzy statement φ� l (resp., φ� u) or I is
a model of φ� l (resp., φ� u), denoted I |=φ� l (resp., I |=φ� u), iff I(φ)� l
(resp., I(φ)� u). The notions of satisfiability and logical consequence are de-
fined in the standard way. φ� l is a tight logical consequence of a set of fuzzy
statements K iff l is the infimum of I(φ) subject to all models I of K. Notice
that the latter is equivalent to l = sup {r | K |=φ� r}.

Rough Set and Fuzzy Rough Set Theories. The key idea in rough set the-
ory [22] is the approximation of a vague concept by means of a pair a concepts:
a sub-concept or lower approximation and a super-concept or upper approxi-
mation, describing the sets of elements which definitely and possibly belong to
the vague set, respectively, as Figure 1 illustrates. The approximation is based
on an indiscernibility equivalence relation (reflexive, symmetric and transitive)
between elements of the domain. Given an indiscernibility relation R, the upper
approximation of a set S is defined as: S = {x | ∃y : (x, y) ∈ R ∧ y ∈ S}. Simi-
larly, the lower approximation is defined as: S = {x | ∀y : (x, y) ∈ R → y ∈ S}.

A very natural extension is to consider a fuzzy similarity relation instead of
an indiscernibility relation, which gives raise to fuzzy rough sets [11,23]. Given a
fuzzy similarity relation R, a t-norm ⊗ and an implication function ⇒, the upper
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Fig. 1. Vague concept (bold line), upper approximation (striped line) and lower ap-
proximation (dotted line)

approximation of a fuzzy set S is given by the following membership function:
∀x ∈ X,S(x) = supy∈ΔI{R(x, y)⊗ S(y)}. Similarly, the lower approximation is
defined as: ∀x ∈ X,S(x) = infy∈ΔI{R(x, y) ⇒ S(y)}.

3 The Fuzzy Rough DL SROIQ(D)

In this section we describe a fuzzy rough extension of the fuzzy DL SROIQ(D),
which is based on the fuzzy DLs presented in [5,7,28], and extended with upper and
lower approximations of concepts. In the following, we assume *#∈ {≥, >,≤, <},
� ∈ {≥, >}, � ∈ {≤, <}, α ∈ (0, 1], β ∈ [0, 1), γ ∈ [0, 1].

Syntax. A fuzzy concrete domain [27] D is a pair 〈ΔD, ΦD〉, where ΔD is a
concrete interpretation domain, and ΦD is a set of fuzzy concrete predicates d
with an arity n and an interpretation dD : Δn

D → [0, 1], which is an n-ary fuzzy
relation over ΔD. Usual functions for specifying fuzzy set membership degrees
are the trapezoidal, the triangular, the L-function (left-shoulder function), and
the R-function (right-shoulder function). For backwards compatibility, we also
allow crisp intervals. These functions are defined over the set of non-negative
rationals Q+ ∪ {0} For instance, we may define Young : N → [0, 1] to be a fuzzy
concrete predicate over the natural numbers denoting the degree of a person
being young, as Young(x) = L(10, 30).

We further allow fuzzy modifiers, such as very, moreOrLess and slightly, which
apply to fuzzy sets to change their membership function. Formally, a modifier is
a function fm : [0, 1] → [0, 1]. We will allow modifiers defined in terms of linear
hedges and triangular functions. For instance, very(x) = linear(0.8).

Similarly as for its crisp counterpart, fuzzy SROIQ(D) assumes three alpha-
bets of symbols, for concepts, roles and individuals.

The abstract roles (denoted R) of the language can be built inductively as:

R → RA | (atomic role)
R− | (inverse role)
U | (universal role)

Concrete roles are denoted T and cannot be complex.
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Now, let n,m be natural numbers (n� 0,m > 0). The concepts (denoted
C or D) of the language can be built inductively from atomic concepts (A),
top concept �, bottom concept ⊥, named individuals (oi), abstract roles (R),
concrete roles (T ), simple roles (S) 1 and fuzzy concrete predicates (d) as:

C, D → A | (atomic concept)
� | (top concept)
⊥ | (bottom concept)

C ( D | (concept conjunction)
C ) D | (concept disjunction)

¬C | (concept negation)
∀R.C | (universal quantification)
∃R.C | (existential quantification)
∀T.d | (concrete universal quantification)
∃T.d | (concrete existential quantification)

{o1, . . . , om} | (nominals)
(≥ m S.C) | (at-least qualified number restriction)
(≤ n S.C) | (at-most qualified number restriction)
(≥ m T.d) | (concrete at-least qualified number restriction)
(≤ n T.d) | (concrete at-most qualified number restriction)

∃S.Self (local reflexivity)

Assume m fuzzy similarity relations si (i = 1, . . . ,m). The above syntax is
extended to include salient features of fuzzy DLs [3,7] as follows:

C, D → {α1/o1, . . . , αm/om} | (fuzzy nominals)
C → D | (fuzzy implication concept)

α1C1 + · · · + αkCk | (fuzzy weighted sum)
mod(C) | (modified concept)
[C ≥ α] | (cut concept)
[C ≤ β] | (cut concept)

C
i | (upper approximation)

Ci (lower approximation )

d → crisp(a, b) | (fuzzy crisp set)
L(a, b) | (fuzzy left-shoulder function)
R(a, b) | (fuzzy right-shoulder function)

triangular(a, b, c) | (fuzzy triangular function)
trapezoidal(a, b, c, d) (fuzzy trapezoidal function)

mod → linear(c) | (fuzzy linear modifier)
triangular(a, b, c) (fuzzy triangular modifier)

R → mod(R) | (modified role)
[R ≥ α] (cut role)

In the case of linear modifiers, we assume that a = c/(c + 1), b = 1/(c + 1).
Furthermore, for each of the connectives %,&,→, we have indexed connectives

1 Simple roles are needed to guarantee the decidability of the logic. Intuitively, simple
roles cannot take part in cyclic role inclusion axioms (see [6] for a formal definition).
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%X ,&X ,→X , where X ∈ {Gödel, �Lukasiewicz,Product}, which are interpreted
according to the semantics of the subscript.

Example 1. Concept Human % ∃hasAge.L(10, 30) denotes the set of young hu-
mans, with an age given by L(10, 30). If linear(4) represents the modifier very,
Human % linear(4)(∃hasAge.L(10, 30)) denotes the set of very young humans.

Furthermore, abstract individuals are denoted a, b ∈ ΔI , while concrete individ-
uals are denoted v ∈ ΔD.

A Fuzzy Knowledge Base (KB) contains axioms organized in a fuzzy ABox
A, a fuzzy TBox T and a fuzzy RBox R.

A fuzzy ABox consists of a finite set of fuzzy assertions of one of these types:

– a fuzzy concept assertion of the form 〈a :C *# α〉;
– a fuzzy role assertion, or constraint on the truth value of a role assertion,
〈Ψ *# α〉, where Ψ is of the form (a, b) :R, (a, b) :¬R, (a, v) :T or (a, v) :¬T ;

– an inequality assertion 〈a 
= b〉;
– an equality assertion 〈a = b〉.

A fuzzy TBox consists of a finite set of fuzzy General Concept Inclusions or fuzzy
GCIs, which are expressions of the form 〈C # D ≥ α〉 or 〈C # D > β〉.

A fuzzy RBox consists of a finite set of role axioms of one these types:

– Fuzzy Role Inclusion Axioms or fuzzy RIAs 〈w # R ≥ α〉, 〈w # R > β〉,
where w = R1R2 . . .Rm is a role chain, 〈T1 # T2 ≥ α〉, or 〈T1 # T2 > β〉;

– transitive role axioms trans(R);
– disjoint role axioms dis(S1, S2), dis(T1, T2);
– reflexive role axioms ref(R);
– irreflexive role axioms irr(S);
– symmetric role axiom sym(R);
– asymmetric role axioms asy(S).

Example 2. 〈paul : Tall ≥ 0.5〉 states that Paul is tall with at least degree 0.5.
The fuzzy RIA 〈isFriendOf isFriendOf # isFriendOf ≥ 0.75〉 states that the friends
of my friends can also be considered my friends with degree 0.75. %&

A fuzzy axiom has a truth degree in [0,1]. A fuzzy axiom is positive (denoted
〈τ�α〉) if it is of the form 〈τ ≥ α〉 or 〈τ > β〉. A fuzzy axiom is negative (denoted
〈τ � α〉) if it is of the form 〈τ ≤ β〉 or 〈τ < α〉.

Semantics. A fuzzy interpretation I with respect to a fuzzy concrete domain D
is a pair (ΔI , ·I) consisting of a non empty set ΔI (the interpretation domain)
disjoint with ΔD and a fuzzy interpretation function ·I mapping:

– an abstract individual a onto an element aI of ΔI ;
– a concrete individual v onto an element vD of ΔD;
– a concept C onto a function CI : ΔI → [0, 1];
– an abstract role R onto a function RI : ΔI ×ΔI → [0, 1];
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– a concrete role T onto a function T I : ΔI ×ΔD → [0, 1];
– an n-ary concrete fuzzy predicate d onto the fuzzy relation dD : Δn

D → [0, 1];
– a modifier mod onto a function fmod : [0, 1] → [0, 1].

Given arbitraries t-norm ⊗, t-conorm ⊕, negation function � and implication
function ⇒, the fuzzy interpretation function is extended to complex concepts
and roles as shown in Table 2, and to fuzzy axioms as shown in Table 3.

Table 2. Semantics of the fuzzy concepts and roles in fuzzy SROIQ(D)

Constructor Semantics

(�)I(x) = 1
(⊥)I(x) = 0
(A)I(x) = AI(x)

(C $D)I(x) = CI(x)⊗DI(x)
(C %D)I(x) = CI(x)⊕DI(x)

(¬C)I(x) = #CI(x)
(∀R.C)I(x) = inf

y∈ΔI {RI(x, y)⇒ CI(y)}
(∃R.C)I(x) = sup

y∈ΔI {RI(x, y)⊗ CI(y)}
(∀T.d)I(x) = infv∈ΔD

{TI(x, v)⇒ dD(v)}
(∃T.d)I(x) = supv∈ΔD

{TI(x, v) ⊗ dD(v)}
({α1/o1, . . . , αm/om})I(x) = sup

i | x=oI
i
αi

(≥ m S.C)I(x) = supy1,...,ym∈ΔI [(minm
i=1{SI(x, yi)⊗ CI(yi)})

⊗
(⊗j<k{yj �= yk})]

(≤ n S.C)I(x) = infy1,...,yn+1∈ΔI [(minn+1
i=1 {S

I(x, yi)⊗ CI(yi)})⇒ (⊕j<k{yj = yk})]
(≥ m T.d)I(x) = supv1,...,vm∈ΔD

[(minm
i=1{TI(x, vi)⊗ dD(vi)})

⊗
(⊗j<k{vj �= vk})]

(≤ n T.d)I(x) = infv1,...,vn+1∈ΔD
[(minn+1

i=1 {T
I(x, vi)⊗ dD(vi)})⇒ (⊕j<k{vj = vk})]

(∃S.Self)I(x) = SI(x, x)
(mod(C))I(x) = fmod(CI(x))
([C ≥ α])I(x) = 1 if CI(x) ≥ α, 0 otherwise
([C ≤ β])I(x) = 1 if CI(x) ≤ β, 0 otherwise

(α1C1 + · · · + αkCk)I(x) = α1C1
I(x) + · · · + αkCk

I(x)
(C → D)I(x) = CI(x)⇒ DI(x)

(Ci)
I
(x) = supy∈ΔI si

I(x, y)⊗ CI(y)
(Ci)

I(x) = infy∈ΔI si
I(x, y)⇒ CI(y)

(RA)I(x, y) = RI
A(x, y)

(R−)I(x, y) = RI(y, x)
(U)I(x, y) = 1

(mod(R))I(x, y) = fmod(RI(x, y))
([R ≥ α])I(x, y) = 1 if RI(x, y) ≥ α, 0 otherwise

(T )I(x, v) = TI(x, v)

CI denotes the membership function of the fuzzy concept C with respect to
the fuzzy interpretation I. CI(x) gives us the degree of being the individual x
an element of the fuzzy concept C under I.

Similarly, RI denotes the membership function of the fuzzy role R with respect
to I. RI(x, y) gives us the degree of being (x, y) an element of the fuzzy role R
under I.

A fuzzy interpretation I satisfies (is a model of):

– 〈a :C �� γ〉 iff (a :C)I �� γ,
– 〈(a, b) :R �� γ〉 iff ((a, b) :R)I �� γ,
– 〈(a, b) :¬R �� γ〉 iff ((a, b) :¬R)I �� γ,
– 〈(a, v) :T �� γ〉 iff ((a, v) :T )I �� γ,
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Table 3. Semantics of the fuzzy axioms in fuzzy SROIQ(D)

Axiom Semantics

(a :C)I = CI(aI)
((a, b) :R)I = RI(aI , bI)

((a, b) :¬R)I = #RI(aI , bI)
((a, v) :T )I = TI(aI , vD)

((a, v) :¬T )I = #TI(aI , vD)
(C � D)I = infx∈ΔI CI(x)⇒ DI(x)

(R1 . . . Rm � R)I = inf
x1,xn+1∈ΔI sup

x2...xn∈ΔI (RI
1 (x1, x2)⊗ · · · ⊗ RI

n(xn, xn+1))⇒ RI(x1, xn+1)

(T1 � T2)I = inf
x∈ΔI ,v∈ΔD

TI
1 (x, v)⇒ TI

2 (x, v)

– 〈(a, v) :¬T �� γ〉 iff ((a, v) :¬T )I �� γ,
– 〈a �= b〉 iff aI �= bI ,
– 〈a = b〉 iff aI = bI ,
– 〈C * D � γ〉 iff (C * D)I � γ,
– 〈R1 . . . Rm * R � γ〉 iff (R1 . . . Rm * R)I � γ,
– 〈T1 * T2 � γ〉 iff (T1 * T2)I � γ,
– trans(R) iff ∀x, y ∈ ΔI , RI(x, y) ≥ supz∈ΔI RI(x, z) ⊗ RI(z, y),
– dis(S1, S2) iff ∀x, y ∈ ΔI , SI

1 (x, y) = 0 or SI
2 (x, y) = 0,

– dis(T1, T2) iff ∀x ∈ ΔI , v ∈ ΔD, T I
1 (x, v) = 0 or T I

2 (x, v) = 0,
– ref(R) iff ∀x ∈ ΔI , RI(x, x) = 1,
– irr(S) iff ∀x ∈ ΔI , SI(x, x) = 0,
– sym(R) iff ∀x, y ∈ ΔI , RI(x, y) = RI(y, x),
– asy(S) iff ∀x, y ∈ ΔI , if SI(x, y) > 0 then SI(y, x) = 0,
– a fuzzy KB iff it satisfies each element in A, T and R.

Reasoning. The notions of logical consequence and tight logical consequence
are defined as in Sect. 2. Additionally, the maximal satisfiability degree [7] of a
concept C w.r.t. a fuzzy KB K is defined as glb(K, C) = supI supx∈ΔI CI(x).

Some logical properties. Due to the properties of fuzzy rough sets [23], in Zadeh,
Gödel, �Lukasiewicz and Product logics we have that:

– ⊥ ≡ ⊥ ≡ ⊥, � ≡ � ≡ �, C ≡ C, C ≡ C.

– ¬C ≡ ¬C, in Zadeh and �Lukasiewicz logics.

– ¬C ≡ ¬C, in Zadeh and �Lukasiewicz logics.

– C ( D ⊆ C ( D, C ( D ≡ C ( D,

– C ) D ≡ C ) D, in Zadeh and Gödel logics.

– C ) D ⊇ C ) D.

Note that fuzzy rough intersection and union are not truth-functional in general.

4 Reasoning and Implementation

In this section we will show how to extend two existing reasoning algorithms for
fuzzy DLs so they can support fuzzy rough DLs, and how we have implemented
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them in the fuzzyDL system [7] and in the DeLorean system [4]. To this end,
we recall that indeed we can map lower and upper approximation concepts into
fuzzy DL concepts. This is not surprising as already pointed out by [24] for the
crisp case. In fact, it is not difficult to see from the semantics of upper (C

i
) and

lower (Ci) approximation concepts, that these can be represented as fuzzy DL
concepts ∃si.C and ∀si.C, respectively. That is, we consider the transformation:

C
i �→ ∃si.C (1)

Ci �→ ∀si.C (2)

and, thus, we may replace upper and lover approximation concepts with ordinary
fuzzy DL concepts. This is exactly the same transformation as provided in [24].
In the following, we show how two currently highly expressive fuzzy DL reasoners
have been adapted to support our logic.

4.1 Tableau Rules and an Optimization Problem in fuzzyDL

fuzzyDL is a reasoner for fuzzy SHIF(D) extended with a lot of salient features
of fuzzy DLs, under Zadeh, �Lukasiewicz and Gödel logics [7]. It is available from
http://www.straccia.info, and supports the logic defined in Sect. 3 without
the additional elements of SROIQ, i.e., fuzzy nominals, qualified cardinality
restrictions, role assertions with a negated role, disjoint role axioms, complex
fuzzy RIAs (with w 
= R), irreflexive role axioms and asymmetric role axioms.

Its reasoning algorithm combines a tableaux algorithm and a mixed integer
linear optimization problem. The basic idea is to build a tableaux using a set of
satisfiability preserving rules which generate new simpler fuzzy assertion axioms
together with some inequations over [0, 1]-valued variables. Finally, an optimiza-
tion problem through the set of inequations is solved. A detailed description of
the reasoning algorithm cannot fit into this paper, but it can be found in [29].

To support upper and lower approximation concepts in fuzzyDL, essentially
we need to support reflexive roles (symmetric and transitive roles are already
supported). In particular, we firstly extend fuzzyDL with a couple of fuzzy role
axioms. Reflexive and symmetric role axioms are of the form (reflexive R)
and (symmetric R), respectively, where R is a fuzzy role. Symmetric role axioms
can already be simulated with fuzzyDL, and this axioms is just syntactic sugar.
Indeed, axiom R # R− implies that R is symmetric.

Then, we allow three additional concept constructors: upper approximations,
lower approximations and local reflexivity concepts, which are of the form (ua si
C), (la si C) and (self S), respectively, where si is a fuzzy similarity relation,
S is a simple fuzzy role and C is a fuzzy concept. Local reflexivity concepts are
not necessary for the rough extension, but adding them is easy (reasoning is
similar to the case of reflexive roles).

Similarity relations must be previously defined using the following syntax:
(define-fuzzy-similarity si).

http://www.straccia.info
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The reasoning algorithm is extended as follows:

– For every fuzzy similarity relation (define-fuzzy-similarity si) we assert
si to be reflexive, symmetric and transitive by adding the following axioms:
(reflexive R), (symmetric R), (transitive R).

– Every symmetric role axiom (symmetric R) is replaced with an inverse
role axiom (inverse R invR) and a role inclusion axiom (implies-role R
invR). Under an R-implication, it is well known that sym(R) is equivalent to
R # R−.

– Every upper approximation concept (ua si C) is replaced with an existential
restriction concept (some si C).

– Every lower approximation concept (la si C) is replaced with a universal
restriction concept (all si C).

– The rule for a local reflexivity concept (self S) asserts that an individual
is related to itself. Formally, in the calculus if 〈∃S.Self, l〉 ∈ L(v) (that is, if
v is an instance of ∃S.Self to degree not smaller than l) then append 〈S, l〉
to L(〈v, v〉) (that is, the pair 〈v, v〉 is an instance of S at least to degree l).

– The rule for reflexive roles (reflexive R) asserts that every individual is
related to itself. Formally, if 〈ref(R)〉 ∈ R and v is a node to which this rule
has not yet been applied then append 〈R, l〉 to L(〈v, v〉) (that is, the pair
〈v, v〉 is an instance of R to degree not smaller than l).

4.2 Reduction to Classical Description Logic in DeLorean

DeLorean is a reasoner for basic fuzzy SROIQ(D) [4] (not supporting the
additional features of fuzzy DLs defined in Sect. 3) under Zadeh and Gödel
(with an involutive negation) logics. The syntax of the supported language is
in [2].

Its reasoning algorithm is based on a reduction to a classical DL, so current
DL reasoners can be reused. A full description may be found in [3,5,6].

DeLorean already supported local reflexivity concepts, as well as reflexive
and symmetric roles. Hence, it only remained to extend it with upper and lower
approximations of the form (upper si C) and (lower si C), where si is a fuzzy
similarity relation and C is a fuzzy concept.

Now, the reasoning algorithm is extended as follows:

– Every concept (upper si C) is replaced with an existential restriction con-
cept (some si C). Furthermore, we add the following axioms if they do not
exist in the fuzzy RBox: (reflexive R), (symmetric R), (transitive R).

– Every concept (lower si C) is replaced with a universal restriction concept
(all si C). Once again, we add the following axioms in case they do not exist
in the fuzzy RBox: (reflexive R), (symmetric R), (transitive R).

5 Conclusions

In this paper we have studied a DL managing vagueness in two different but com-
plementary ways, combining a fuzzy DL with fuzzy rough sets. In particular, we
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have presented a very expressive fuzzy rough extension of the DL SROIQ(D),
the logic behind the language OWL 2. The rough extension is general (inde-
pendent of the family of fuzzy operators) and uses m possible fuzzy similarity
relations.

Reasoning under our general fuzzy rough DL is not currently possible, but we
have extended and implemented two well-known reasoning algorithms for fuzzy
DLs in order to deal with two important fragments of the logic. On the one hand,
fuzzyDL implements a combination of a tableaux algorithm and a mixed integer
linear optimization problem, and already supports fuzzy rough SHIF(D) (ex-
tended with salient features of fuzzy DLs) under Zadeh, �Lukasiewicz and Gödel
logics. On the other hand, DeLorean implements a translation to a crisp DL
and supports fuzzy rough SROIQ(D) under Zadeh and Gödel (with an involu-
tive negation) logics. Extending the of reasoning algorithms and the expressivity
reasoners remains an open research problem.
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Abstract. Fuzzy sets with non-numerical membership degrees, as well
as the related possibilistic distributions and measures, have been devel-
oped mostly under the simplifying assumption that their membership
or possibility degrees are taken from a complete lattice, so that all the
supremum and infimum values to be processed are defined. In this paper
the conditions imposed on the space in which possibilistic measures take
their values are weakened in such a way that this space is defined by an
inclusion-closed system of subsets of a space X, so that all subsets of
sets from this system are in this system also incorporated. Let us note
that the system of all finite subsets of an infinite space X (an incomplete
lattice) or the system of all subsets of X the cardinality of which does not
exceed a fixed positive integer are particular and intuitive examples of
inclusion-closed systems of subsets of X. Some simple properties of such
possibilistic measures are analyzed and compared with the properties of
their standard versions taking values in complete lattices.

1 Introduction and Motivation

Let us begin the way of explanation leading to the notion of possibility (or
possibilistic) measure with the already well-known idea of fuzzy set introduced
by L. A. Zadeh in his famous pioneering paper [7]. Purposedly leaving aside the
philosophical and methodological aspects of fuzzy sets and fuzziness as such,
broadly discussed in numerous sources (let us mention [3] just as an example),
we will take real-valued normalized fuzzy subset π of a crisp set (space) Ω as
mapping which takes Ω into the unit interval of real numbers in such a way that
the condition sup{π(ω) : ω ∈ Ω} = 1 is met.

With the aim to quantify the portion of fuzziness defined by the fuzzy subset
π of Ω and contained in a crisp subset A of Ω let us define the value Π(A) =
supω∈A π(ω) ∈ [0, 1], so defining the set function Π : P(Ω) → [0, 1], here P(Ω)
denotes the power set of all subsets of Ω. In order to emphasize the formal
and syntactical analogies between probability measures defined as set functions
in P(Ω) and induced by a probability distribution, and the set function Π,
taken as quantification of uncertainty, in the sense of fuzziness and vagueness,

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 688–699, 2009.
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L. A. Zadeh introduces, in [8], the terms possibility distribution on Ω for π, and
possibility measure induced by π on P(Ω) for Π. These terms, with preferences
given to the adjective “possibilistic”, will be used also below.

The key operations applied when processing probability values and measures
are those of addition (series taking, integration), which can be hardly extended
to definition domains with non-numerical elements. On the other side, the opera-
tions of infimum and supremum, playing the key role when processing possibilis-
tic measures, can be defined also in non-numerical domains and structures like,
e.g., partially ordered (p.o.) sets, in particular, in Boolean algebras and lattices,
e.g., represented by various systems of subsets of spaces of elementary possibility
or fuzziness degrees. It is why the idea of fuzzy sets with non-numerical degrees
of fuzziness emerged (cf. [5]) as soon as four years after the Zadeh’s originat-
ing work and the related non-numerical possibilistic distributions and measures
also followed (cf. the excellent work [2] by G. De Cooman). In order to simplify
the work, the fuzziness and possibility degrees are supposed to be taken from a
complete lattice, so that the existence of all supremum and infimum values is
ensured.

In this paper we will investigate possibilistic distributions defined on a fixed
space Ω and taking their values in the power-set of all subsets of another fixed set
X, hence, our attention will be focused to mappings π : Ω → P(X) such that
the relation

⋃
ω∈Ω π(ω) = X holds. However, when processing these distribu-

tions we will be faced with the following problem: not all elements of P(X) will
be completely identifiable and distinguishable from each other but only those
belonging to certain fixed subsystem S ⊂ P(X). So, given ω ∈ Ω and asking
(an oracle, say) for the value π(ω), we obtain the demanded value only when
π(ω) ∈ S is the case, otherwise the answer reads just that the demanded values
is outside the scope defined by S without any more specification of this value.

An easy illustration of such a situation may be as follows: the technical devices
processing the elements of P(X), i.e., subsets of X, are able to process only
subsets of limited cardinality, say, only those A ⊂ X for which the inequality
‖A‖ ≤ R < ‖X‖ holds for fixed R (in case when the subsets of X are processed
through their binary or decadic enumerations a similar restriction is imposed
on the number of digits allowed). It may easily happen that the system S of
observable subsets of X is not closed with respect to set union, i.e., supremum
in S induced by set inclusion, as for some A,B ⊂ X for which ‖A‖, ‖B‖ ≤ R
holds, ‖A∪B‖ ≤ R need not be the case. The problem will be analyzed, below,
from the two close points of view. Either, instead of the original possibilistic
distribution π : Ω → P(X) we will consider its restriction to S, i.e., the partial
mapping πS : Ω → P(X) defined by πS(ω) = π(ω), if π(ω) ∈ S, and leaving
πS(ω) undefined (or defined by an auxiliary conventional symbol, say, πS(ω) = ∗,
if π(ω) ∈ S does not hold. The problem then reads, whether, and in which sense
and degree, the mapping πS may serve as an approximation of the original
mapping (possibilistic distribution) π on Ω. Or, the restriction of values from
P(X) to S may be taken as an a priori condition and we will try to define an
appropriate lattice or lattice-like structure on S and a mapping π0 : Ω → S in
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such a way that π0 appropriately simulates the nature of fuzziness which may be
defined within the restricted framework of set-valued fuzziness (or possibility)
degrees.

For a more detailed and systematic information dealing with p.o.sets, lat-
tices, Boolean algebras and structures in general the reader is recommended to
consult either the already classical monographs [1], [4], [6] or some more recent
monographs and textbooks.

2 Inclusion-Closed Fragments of Power-Sets and Related
Complete Lattices

Let Y be a nonempty set. A binary relation ≤ on Y is called partial pre-ordering,
if it is reflexive and transitive. If the relation ≤ is also antisymmetric, then it is
called partial ordering on Y and the pair Y = 〈Y,≤〉 is called partially ordered
set (p.o.set or poset). Given B ⊂ Y, we define the supremum

∨
y∈B y or simply∨

B as the least upper bound (l.u.b.) and the infimum
∧
y∈B y or simply

∧
B as

the greatest lower bound (g.l.b.) of elements from B. In general, neither
∨

B nor∧
B need be defined for every B ⊂ Y, but if

∨
B and/or

∧
B are defined, they

are defined uniquely. P.o.set Y = 〈Y,≤〉 is called lattice, if for each finite B ⊂ Y
both the values

∨
B and

∧
B are defined, and Y is called complete lattice, if∨

B and
∧

B are defined for each B ⊂ Y.

Definition 1. Let X be a nonempty set. A fragment S ⊂ P(X) of the power-
set P(X) is called inclusion-closed (or shortly closed, if no misunderstanding
menaces), if S does not contain X and if, for each A ∈ S and each B ⊂ A,B ∈ S
holds as well.

Let us introduce some examples. The largest closed fragment of P(X) is ob-
viously the system of all proper subsets of X, which may be easily written as
P(X)−{X} =

⋃
{P(X−{x}) : x ∈ X}. Given a proper subset A of X, the power-

set P(A) also defines a closed fragment of P(X) and the same is the case when
S =

⋃
{P(A0) : A0 ∈ S0} for some S0 ⊂ P(X) − {X}. Indeed, if A ∈ S holds,

then A ∈ P(A0) for some A0 ∈ S0 follows, hence, for each B ⊂ A,B ∈ P(A0)
and B ∈ S are also valid. Let us note that closed fragments of P(X) are closed
with respect to (w.r.to) set intersection in the sense that, for each A ∈ S and
no matter which A ⊂ X,A ∩ B ∈ S holds. However, closed fragments are not
closed, in general, w.r.to set union. Indeed, for proper subsets A1, A2 of X such
that A1 − A2 
= ∅ and A2 − A1 
= ∅ hold, and for S = P(A1) ∪ P(A2), the set
A1 ∪A2 does not belong to S.

Other examples of closed fragments of P(X) may read as follows. If the X
is infinite, then the system Pf (X) of all finite subsets of X evidently defines a
closed fragment of P(X). Similarly, if R is a positive integer such that ‖X‖ > R
holds, then the system PR(X) of all subsets of X the cardinality of which does
not exceed R, i.e., the system PR(X) = {A ⊂ X : ‖A‖ ≤ R}, also defines a
closed fragment of P(X).
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Definition 2. Let X be a nonempty set, let S be a closed fragment of P(X). S-
related inclusion on P(X) is a binary relation ⊂S defined in this way: if A,B ∈ S
is the case, then A ⊂S B holds if and only if A ⊂ B holds, and if B ∈ P(X)−S
is valid, then A ⊂S B holds for each A ⊂ X.

Consequently, if both the sets A,B are out of S, then A ⊂S B and B ⊂S A
holds together, so that the sets A and B are indistinguishable by ⊂S contrary
to the case of standard set inclusion ⊂ applied to sets from S, where A ⊂ B and
B ⊂ A holding together yields that A = B (axiom of extensionality in standard
set theory). According to the intuition behind taking the sets beyond S as “too
large”, the contemporary validity of both the inclusions A ⊂ B and B ⊂ A for
sets out of S can be taken as formalized description of the fact that sets out
of S are not distinguishable from each other by the limited tools being at our
disposal. Let us emphasize explicitly, that for no A ∈ P(X)− S and B ∈ S the
relation A ⊂S B holds.

Lemma 1. Let X and S be as in Definition 2, then the S-related inclusion ⊂S
defines a partial pre-ordering relation on P(X).

Proof. For both A ∈ S and A ∈ P(X)− S the relation A ⊂S A holds trivially.
Let A ⊂S B and B ⊂S C holds for A,B,C ⊂ X. If C ∈ P(X)− S is the case,
then A ⊂S C follows immediately from the definition of ⊂S . According to this
definition, B ⊂S C does not hold no matter which B ∈ P(X) − S and C ∈ S
may be. Hence, the validity of B ⊂S C for C ∈ S yields that B ∈ S holds and,
applying the same reasoning to valid relation A ⊂S B, we obtain that A,B,C
are in S, so that A ⊂ C and A ⊂S C holds. The assertion is proved.

Let us define the binary relation ≡ on P(X) as follows: given A,B ⊂ X,A ≡ B
holds, if A ⊂S B and B ⊂S A holds together. Obviously,≡ defines an equivalence
relation on P(X), so that we may define the factor-space P(X)|≡, its elements
are equivalence classes [A] = {B ⊂ X : B ≡ A} for each A ⊂ X. Namely, if
A ∈ S, then [A] = {A}, if A ∈ P(X) − S, then [A] = P(X) − S = [X ], as
X ∈ P(X)− S holds. Hence,

P(X)|≡ = {[A] : A ∈ S} ∪ [X ] = {{A} : A ∈ S} ∪ {(P(X)− S)} (2.1)

holds. Given A,B ⊂ X, set [A] ⊂∗S [B], if A0 ⊂S B0 holds for some A0 ∈ [A],
B0 ∈ [B], the choice of the representants A0 and B0 being obviously irrelevant.
As 〈P(X),⊂S〉 defines a partial pre-ordering on P(X), the pair 〈P(X)|≡,⊂∗S〉
defines a p.o.set and this p.o.set is isomorphic to the p.o.set 〈S ∪{X},⊆〉, where
⊆ is the restriction of the standard set inclusion from P(X) to S ∪{X}. Indeed,
the isomorphism in question is settled by the simple one-to-one mapping σ :
P(X)|≡ ←→ S∪{X} defined by σ([A]) = σ({A}) = A for A ∈ S, and σ([x]) = X
for [X ]. Hence, without any loss of generality we may (and will) replace the
p.o.set 〈P(X)|≡,⊂∗S〉 by the p.o.set 〈S ∪ {X},⊆〉.

Lemma 2. The p.o.set 〈S ∪ {X},⊆〉 defines a complete lattice.

Proof. Take ∅ 
= A ⊂ S ∪{X}. If X ∈ A, then X is the only upper bound for A,

so that the supremum value
∨S A =

∨S
A∈AA is defined and identical with X.
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Let ∅ 
= A ⊂ S be the case, let there exist A0 ∈ S such that A ⊂ A0 holds for
each A ∈ A. Then

⋃
A∈AA =

⋃
A ⊆ A0 holds, hence,

⋃
A ∈ S follows (let us

recall that S is an inclusion-closed fragment of P(X)). So,
∨S A is defined and

identical with
⋃
A. Let ∅ 
= A ⊂ S hold, but there is no A0 ∈ S dominating all

A ∈ A. In this case X is the only element in S ∪ {X} dominating every A ∈ A,

so the
∨S A is defined and identical with X.

As far as the infimum
∧S A for A ⊂ S ∪ {X} is concerned, if there is A0 ∈

A, A0 
= X, then A0 ∈ S follows, hence, as
⋂
A =

⋂
A∈AA ⊂ A0 holds,

⋂
A ∈ S

follows (S is a closed fragment of P(X)), so that the infimum
∧S A =

⋂
A ∈ S

is defined. If A = {X}, then X ⊂ A ⊂ X holds for each A ∈ A, so that⋂S A = X =
∨S A. The assertion is proved.

Let us describe the following reason for the condition that S should be an
inclusion-closed fragment of P(X). Given A,B ⊂ X, we analyze these four cases.

(i) A,B ∈ S holds: then A ⊂ B in P(X) implies that A ⊂S B holds as well.
(ii) A ∈ S, B ∈ P(X) − S : then A ⊂S B holds in general, in particular also

when A ⊂ B holds in P(X).
(iii) A ∈ P(X)−S, B ∈ S : then A ⊂S B does not hold, but also A ⊂ B cannot

hold in P(X) supposing that S is closed fragment of P(X).
(iv) A,B ∈ P(X)− S : the same situation as in (ii).

Hence, if S is closed fragment of P(X), then in no case A ⊂ B and not
(A ⊂S B) holds together, in other terms, the S-inclusion ⊂S does not contradict
the standard set inclusion ⊂ in P(X). However, if S does not meet the condition
of closedness, this need not be the case. Indeed, let A ∈ S be such that, for some
A0 ⊂ A,A0 is not in S. Then we obtain that A ⊂S A0 but not (A0 ⊂S A) holds
– a counter-intuitive result.

3 Possibilistic Distributions with Values in Spaces Given
by Closed Fragments of Power-Sets

Definition 3. Let X be a nonempty set, let S ⊂ P(X) be an inclusion-closed
fragment of P(X), let S∗ = 〈S ∪ {X},⊂〉 be the related complete lattice. Let
Ω be a nonempty set. A mapping π : Ω → S ∪ {X} is called an S∗-(valued)
possibilistic distribution on Ω, if the relation

∨S
ω∈Ω π(ω) = X holds. For such

π, let Π : P(Ω) → S ∪ {X} be defined, for each ∅ 
= A ⊂ Ω, by Π(A) =∨S
ω∈A π(ω), Π(∅) = ∅ = /S∗ for the empty subset of Ω. Then Π is called the

S∗-(valued) possibilistic measure on P(Ω) induced by π.

Lemma 3. Let X,S and S∗ be as in Definition 3, let ϕS : P(X) → S ∪ {X}
be defined by ϕS(A) = A, if A ∈ S holds, ϕS(A) = X otherwise, let π : Ω →
P(X) be a mapping such that Π(Ω) = X, where Π(A) =

⋃
ω∈A π(ω) for each

∅ 
= A ⊂ Ω,Π(∅) = ∅ by convention. Then the mapping πS : Ω → S ∪ {X}
defined by ϕS(π(ω)) for each ω ∈ Ω is an S∗-possibilistic distribution on Ω and
the relation ΠS(A) = ϕS(Π(A)) holds for each A ⊂ Ω.
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Proof. Given A ⊂ Ω,Π(A) ⊂ X holds, so that ϕS(Π(A)) = Π(A), if Π(A) ∈ S
is the case, so that π(ω) ∈ S holds for each ω ∈ A. Hence, π(ω) = πS(ω) =
ϕS(π(ω)) for each ω ∈ A, consequently, the relation

ΠS(A) =
S∨

ω∈A
πS(ω) =

S∨
ω∈A

π(ω) =
⋃
ω∈A

π(ω) = Π(A) = ϕS(Π(A)) (3.1)

is obvious. If Π(A) ∈ S does not hold, then ϕS(Π(A)) = X follows, but in
this case also

⋃
ω∈A πS(ω) ∈ S does not hold, so that ΠS(A) = X = ϕS(Π(A))

follows. The assertion is proved.

Lemma 4. In each complete lattice T = 〈T,≤〉 the following elementary rela-
tions are valid.

(i) for each T1 ⊂ T2 ⊂ T,
∨T T1 ≤

∨T T2 and
∧T T1 ≥

∧T T2 holds
(ii) for each A ⊂ P(T ) and for T0 =

⋃
A =

⋃
S∈A S the identities

T∨
T0 =

T∨
S∈A

( T∨
t∈S

t

)
,

T∧
T0 =

T∧
S∈A

( T∧
t∈S

t

)
(3.2)

are valid.

Proof. Indeed, (i) is obvious. For each t ∈ T0 there exists S∗ ∈ A such that t ∈ S∗
is the case, hence,

∨T S∗ =
∨T
t∈S∗

t ≥ t and, consequently,
∨T
S∈A(

∨T S) ≥ t

follows. On the other side, let t∗ ≥ t for each t ∈ T0 =
⋃
A hold, then t∗ ≥

∨T S∗
follows, where S∗ ∈ A, t ∈ S∗ is valid. For each ∅ 
= S ∈ A there exists t ∈ T0
such that S may be taken as S∗, hence, t∗ ≥

∨T
S∈A(

∨T
S) holds and the value∨T

S∈A(
∨T
t∈S t) meets the demands imposed on

∨T
T0 =

∨T (
⋃
A), so that the

first relation in (3.2) is proved. For
∧T

T0, the proof is dual.

Theorem 1. Let X,S and S∗ be as in Definition 3, let Ω be a non-empty set, let
π : Ω → S∪{X} be an S∗-possibilistic distribution on Ω, let Π : P(Ω) → S∪{X}
be the S∗-possibilistic measure on P(Ω) induced by π. Then Π is completely
maxitive in the sense that for each ∅ 
= E ⊂ P(Ω) the relation

Π
(⋃

E
)

= Π

( ⋃
E∈E

E

)
=

S∨
E∈E

Π(E) (3.3)

is valid.

Proof. Applying to the complete lattice S∗ the first part of (3.2) (ii), we obtain
that

Π
(⋃

E
)

= Π

( ⋃
E∈E

E

)
=

S∨
ω∈

⋃
E∈E E

π(ω) =
S∨

E∈E

( S∨
ω∈E

π(ω)

)
=

=
S∨

E∈E
Π(E). (3.4)

The assertion is proved.
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4 Convergence and Continuity of S∗-Valued Possibilistic
Measures

Definition 4. Let Y be a nonempty set, let ≈ denote an equivalence relation
on the power-set P(Y ) so that, for each E1, E2, E3 ⊂ Y, (i) E1 ≈ E1, (ii) if
E1 ≈ E2, then E2 ≈ E1, and (iii) if E1 ≈ E2 and E2 ≈ E3, then E1 ≈ E3 holds.
A sequence {Ei}∞i=1 of subsets of Y tends (converges) to E0 ⊂ Y with respect
to equivalence relation ≈ ({Ei} →≈ E0, in symbols), if there exists, for each
n = 0, 1, 2, . . . , a subset E∗n ⊂ Y such that E∗n ≈ En holds and {E∗n}∞n=1 tends
to E∗0 in the standard sense, i.e., the relation

lim inf{E∗n} =
∞⋃
n=1

∞⋂
j=n

E∗j = E∗0 =
∞⋂
n=1

∞⋃
j=n

E∗j = lim sup{E∗n} (4.1)

holds.

Obviously, if the identity relation on P(Y ) is taken as the equivalence relation on
P(Y ), then convergence relation w.r.to ≈ reduces to the standard convergence of
{En}∞n=1 to E0, so that Definition 4 indeed generalizes and weakens the standard
notion of convergence of sequence of sets.

Theorem 2. Let X,S,S∗, π and Π be as in Theorem 1, let ≡ (S) be the equiv-
alence relation on P(X) such that, denoting by [·] the corresponding equivalence
classes, [x]≡(S) = {x}, if x ∈ S, and [x]≡(S) = [X ]≡(S) for each other x ⊂ X. Let
E1 ⊂ E2 ⊂ . . . be a monotone sequence of subsets of Ω, let E0 =

⋃∞
i=1 Ei. Then

Π(En) →≡(S) Π(E0) holds, hence, Π(
⋃n
j=1 Ej) tends to Π(

⋃∞
j=1 Ej) = Π(E0)

with respect to the equivalence relation ≡ (S) on P(X).

Proof. Consider a sequence E1 ⊂ E2 ⊂ · · · ⊂ E0 =
⋃∞
i=1 Ei of subsets of Ω. Let

us analyze, first of all, the case when Π(E0) ∈ S holds, so that Π(E0) 
= X is
the case. Then we obtain that

Π(E0) =
⋃

ω∈E0

π(ω) =
∞⋃
i=1

( ⋃
ω∈Ei

π(ω)

)
=
∞⋃
i=1

Π(Ei) (4.2)

and all the values Π(Ei) are in S as subsets of Π(E0). Consequently, Π(Ei)
tends to Π(E0) in the standard sense of (4.1), hence, also with respect to any
equivalence relation on P(X) including the relation ≡ (S). Consider, again, the
sequence E1 ⊂ E2 ⊂ · · · ⊂ E0 =

⋃∞
i=1 Ei as above, but this time with Π(E0)

outside S, hence, with Π(E0) = X. Let Π(Ei) = X for some i = 1, 2, . . . As
Ei ⊂ Ej holds for each j ≥ i and as Π is monotone w.r.to set inclusion on
P(Ω), then Π(Ej) = X for each j ≥ i and the assertion Π(Ei) →≡(S) Π(E0) is
trivially valid.

What remains to be solved is the case when Π(E0) = X, but Π(Ei) 
= X
for each i = 1, 2, . . . , hence, Π(Ei) =

⋃
ω∈Ei

π(ω) ∈ S holds. As
⋃∞
i=1 Ei = E0

holds, for each ω0 ∈ Ω there exists n0(ω0) ∈ N = {1, 2, . . .} such that ω0 ∈ Ej
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is the case for each j ≥ n0(ω0). Consequently, the subset π(ω0) of X is contained
in

⋃
ω∈Ej

π(ω) for each j ≥ n0(ω0). So, the relation

⋃
ω∈E0

π(ω) =
∞⋃
j=1

⎛⎝ ⋃
ω∈Ej

π(ω)

⎞⎠ = lim
j→∞

Π(Ej) (4.3)

is valid. In other notation, Π(Ej) →
⋃
ω∈E0

π(ω) holds in the standard sense
of convergence of sequences of sets. However, as Π(E0) = X, the relation⋃
ω∈E0

π(ω) ∈ S does not hold, so that the equivalence X ≡ (S)
⋃
ω∈E0

π(ω)
is valid. As an immediate conclusion the relation Π(Ei) →≡(S) X = Π(E0)
follows and the assertion is proved.

It is perhaps worth being noted explicitly that the set
⋃
ω∈E0

π(ω), even when it
is not in S, need not be identical with Π(E0), so that the assertion of Theorem 2
is not valid when replacing the equivalence relation ≡ (S) on P(X) by the
identity on P(X). Indeed, let E0 = Ω = {ω1, ω2, . . . } and X = {x1, x2, . . . } be
infinite countable sets, let R ∈ N or R = f be given, let S = PR(X) = {A ⊂
X : ‖A‖ ≤ R}(S = Pf (X) = {A ⊂ X : ‖A‖ < ∞}, resp.). Let πS(ωi) = {x2i}
for each i = 1, 2, . . . , let En = {ω1, ω2, . . . , ωn} ⊂ Ω for each n = 1, 2, . . .
Then {En}∞n=1 tends to

⋃∞
n=1 En = Ω in the standard sense and ΠS(En) =⋃

ω∈En
πS(ω) = {x2, x4, . . . , x2n} ⊂ X for each n = 1, 2, . . . So,

⋃
ω∈Ω πS(ω) =⋃∞

n=1
⋃
ω∈En

πS(ω) = {x2, x4, . . . } is an infinite proper subset of X even when∨S
ω∈Ω πS(ω) = X holds for each S = PR(X) with R ∈ {1, 2, . . .} ∪ {f}.
Theorem 2 deals with convergence and continuity of S∗-valued possibilistic

measures from below, i.e., for increasing nested sequences of subsets of the space
Ω. Let us consider also the convergence and continuity of S∗-valued possibilistic
measures from above, i.e., for decreasing nested sequences of sets, keeping in
mind that the roles of the supremum and infimum operations when processing
possibilistic measures are not dual. The following assertion is almost trivial.

Lemma 5. Let X,S,S∗, π and Π be as in Theorems 1 and 2, let E1 ⊃ E2 ⊃
· · · ⊃ E0 =

⋂∞
i=1 Ei be a monotone sequence of subsets of Ω. If Π(E0) = X, then

Π(Ei) = X for each i = 1, 2, . . . , if Π(Ei) ∈ S holds for some i = 1, 2, . . . , then
Π(E0) = Π(

⋂∞
j=i0

Ej), for some i0 ∈ N , so that, in both the cases, {Π(Ei)}∞i=1
trivially tends to Π(E0) in the standard sense of convergence of sequences of
sets.

Proof. If Π(E0) = X, i.e, if E0 is not in S, then, for each i = 1, 2, . . . , Ei

does not belong to S, so that Π(Ei) = X follows. If Ei0 ∈ S holds for some
i0 = 1, 2, . . . , then Ej ∈ S holds for each j ≥ i0, as Ej ⊆ Ei0 is the case, so
that Π(Ej) ⊂ Π(Ei0 ) for each j ≥ i0 and for j = 0. Consequently, Π(E0) =
Π(

⋂∞
i=1 Ei) = Π(

⋂∞
j=i0

Ej) = Π(E0) holds and the assertion is proved.

As a simple example shows, the property of continuity from above for S∗-valued
possibilistic measures does not hold in general. Let X = {x1, x2, . . . } and Ω =
{ω1, ω2, . . . } be infinite countable sets, let π : Ω → P(X) be such that π(ωi) =
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{xi} for each i = 1, 2, . . . let S = Pf(X) = {A ⊂ X : ‖A‖ < ∞}, so that
Π(A) = {xi : ωi ∈ A} for each finite A ⊂ Ω and Π(A) = X for infinite A ⊂ Ω.
Consider the sequence {Ei}∞i=1 of subsets of Ω such that Ei = {ωi, ωi+1, ωi+2,...
for each i = 1, 2, . . . Consequently, {Ei}∞i=1 is a decreasing nested sequence of
subsets of Ω such that E0 = limi→∞ Ei =

⋂∞
i=1 Ei = ∅ (the empty subset of Ω),

so that Π(E0) = ∅ (the empty subset of X). However, Π(Ei) =
∨S
ω∈Ei

π(ω) = X
for each i = 1, 2, . . . , as Π(Ei) = {xi, xi+1, . . . } is an infinite subset of X for
each i = 1, 2, . . . So, we obtain that

lim
i→∞

Π(Ei) =
S∞∧
i=1

Π(Ei) = X 
= Π( lim
i→∞

Ei) = Π

( ∞⋂
i=1

Ei

)
= Π(E0) = ∅ (4.4)

Consequently, (limi→∞Π(Ei)) ≡ (S)(Π(
⋂∞

i=1 Ei)) does not hold as well.

5 Approximations of Possibilistic Distributions over
Boolean Complete Lattices by S∗-Valued Distributions

Possibilistic distributions taking their values in inclusion-closed fragments of
power-sets may be applied as tools to obtain approximations of possibilistic
distributions defined over richer structures, in particular over Boolean complete
lattices. Given a nonempty set X, the most sophisticated structure over the
power-set P(X) is the set-valued complete Boolean algebra BX = 〈P(X),∪,∩,
(·)C ,/X 1X〉, where ∪ and ∩ denote the union and intersection of sets from
P(X), AC = X − A for each A ⊂ X, and /X = ∅ (the minimum or zero
element of BX), 1X = X (the maximum or unit element of BX). Taking BX as
complete lattice and given a BX-possibilistic distribution π on Ω, set for each
∅ 
= E ⊂ Ω,Π(E) =

⋃
ω∈E π(ω); setting Π(∅) = ∅ by convention, the obtained

mapping Π : P(Ω) → P(X) is called the BX -(valued) possibilistic measure on
P(Ω) induced by π. As may be easily seen, Π defines a completely maxitive
(consequently, also monotonne w.r.to set inclusion) B-possibilistic measure on
P(Ω) and the identity Π(E) ∪Π(EC) = X = 1X holds for each E ⊂ X.

Let S be an inclusion-closed fragment of P(X), let S∗ = 〈S ∪ {X},⊂〉 be
the related complete lattice as defined above. Given π : Ω → P(X) such that
Π(Ω) = X holds (in particular, given a B-valued possibilistic distribution π on
Ω), set πS(ω) = π(ω), if π(ω) ∈ S, and set πS(ω) = X otherwise.

Lemma 6. The mapping πS defines an S∗-valued possibilistic distribution on Ω.

Proof. By definition, πS(ω) ∈ S ∪ {X} holds for each ω ∈ Ω. Moreover, for
each ω ∈ Ω, πS(ω) ⊂ π(ω) is valid and, for each E ⊂ P(X),

∨S E =
∨S
A∈E A ⊃⋃

A∈E =
⋃
E holds. Hence, the identity

ΠS(Ω) =
S∨

ω∈Ω
πS(ω) ⊇

⋃
ω∈Ω

π(ω) = X(= 1X = 1S∗) (5.1)

follows and the assertion is proved.
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As a matter of fact, not every S∗-possibilistic distribution on Ω can be defined as
πS for some B-possibilsitic distribution π on Ω. Indeed, let X be an infinite set,
let Y be a proper subset of X which is not in S, and let π : Ω → P(X) be defined
in this way: π(ω0) = Y for just one ω0 ∈ Ω, π(ω) = ∅ (the empty subset of X)
for every ω ∈ Ω,ω 
= ω0. This mapping obviously does not define a B-valued
possibilistic distribution on Ω, as

⋃
ω∈Ω π(ω) = Y 
= X, but π defines an S∗-

valued possibilistic distribution on Ω. Indeed, the relation
⋃
ω∈Ω π(ω) = Y ∈ S

does not hold, so that ΠS(Ω) =
∨S
ω∈Ω π(ω) = X holds. Moreover, the relation

π(ω) = πS0 cannot hold (uniformly for each ω ∈ Ω) for no matter which B-
possibilistic distribution π0 on Ω, as for each inclusion-closed fragment S of
P(X) and each ω ∈ Ω the inclusion πS0 (ω) ⊃ π0(ω) holds, hence,

⋃
ω∈Ω πS0 (ω) =⋃

ω∈Ω π0(ω) = X, but this is not the case for π, as
⋃
ω∈Ω π(ω) = Y 
= X holds.

The following assertions are very simple and almost obvious, so that they are
introduced just as “facts” without explicit proofs.

Fact 1

(i) For each X 
= ∅, each mapping π : Ω → P(X), each inclusion-closed frag-
ments S1,S2 of P(X) such that S1 ⊂ S2 holds and for each ω ∈ Ω the
inclusions πS1(ω) ⊃ πS2(ω) ⊃ π(ω) hold. Consequently, for the induced
mappings ΠS1 , ΠS2 and Π on P(Ω) and for each E ⊂ Ω similar inclusions
ΠS1(E) ⊃ ΠS2(E) ⊃ Π(E) are valid.

(ii) Let π define an S∗1 -valued possibilistic distribution on Ω. Then π defines
also a B-valued possibilistic distribution on Ω if and only if the relation⋃
ω∈Ω π(ω) = X holds. If this last identity is the case, then π(ω) = πS2(ω)

holds for each S2 ⊃ S1 and each ω ∈ Ω.

As can be easily seen, for each nonempty proper subset Y of X the power-set
P(Y ) defines an inclusion-closed fragment of P(X), so that S∗(Y ) = 〈P(Y ) ∪
{X},⊆〉 is the related complete lattice as introduced above. The intuition behind
S∗(Y )-valued possibilistic distribution πS(Y ) and measure ΠS(Y ) is quite simple:
only the values of possibility degrees from Y can be fully identified and processed,
all the values beyond Y must be replaced by X as no better approximation is
accessible. By Sf we denote the inclusion-closed fragment of P(X) consisting of
all finite (proper, if X is finite) subsets of X, so that S∗f (X) = 〈{A ⊂ X,A 
=
X : ‖A‖ < ∞} ∪ {X},⊆〉.
Theorem 3. Let X and Ω be nonempty spaces (infinite in the case of X), let
π : Ω → Sf ∪ {X} be an S∗f -possibilistic distribution on Ω, so that, for each
ω ∈ Ω, π(ω) is a finite subset of X or π(ω) = X. Let {Yi}∞i=1 be a sequence of
subsets of X which converges to X in the standard sense, so that lim inf Yi = X
(for lim supYi this identity trivially follows). For each i = 1, 2, . . . and each
ω ∈ Ω, let πi(ω) = πS(Yi)(ω) = π(ω), if π(ω) ⊂ Yi, let πi(ω) = X otherwise.
Then, for each ω ∈ Ω,

⋂∞
i=1 πi(ω) = π(ω) holds.

Proof. As {Yi}∞i=1 tends to X, there exists, for each x ∈ X, an index n0(x) ∈
N = {1, 2, . . .} such that x ∈ Yj holds for each j ≥ n0(x). Consequently, for
each finite A ⊂ X,A ⊂ Yj holds for each j ≥ max{n0(x) : x ∈ A}. Applying this
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result to finite sets π(ω), ω ∈ Ω, we obtain that for each ω ∈ Ω there exists n1(ω)
such that π(ω) ⊂ Yj holds for each j ≥ n1(ω). So, the identity πj(ω) = π(ω) for
each j ≥ n1(ω) follows. As πi(ω) takes only the values π(ω) or X, the relation⋂∞
i=1 πi(ω) = π(ω) follows as well. In other terms, πi(ω) tends to π(ω) with

i increasing in the strong sense according to which πi(ω) is identical with the
limit value π(ω) for whole the sequence {πi(ω)}∞i=1 up to a finite initial segment
{πi(ω)}n1(ω)

i=1 . The assertion is proved.

It is perhaps worth being noted explicitly that the assertion just proved does
not hold in general when admitting also infinite proper subsets of X as possible
values taken by the possibilistic distribution π on Ω. Indeed, take Ω = {ω1, ω2},
take X = {x1, x2, . . . }, take Yn = {x1, x2, . . . , xn} ⊂ X, and take π : Ω → P(X)
in such a way that π(ω1) = {x1, x3, x5, . . . } and π(ω2) = {x2, x4, x6, . . . }. As
π(ω1) ∪ π(ω2) = X,π defines a Boolean-valued possibilistic distribution on Ω.
Then we obtain that πS(Yi)(ω1) = π(ω1) = {x1, x3, x5, . . . }, if π(ω1) ⊂ Yi =
{x1, x2, . . . , xi} holds, but this is not the case for no matter which Yi, so that
the relation πYi(ω1) = X follows for each i = 1, 2, . . . For ω2 the situation is
quite analogous, so that also πYi(ω2) = X holds for each i = 1, 2, . . . Hence, for
both j = 1, 2, limi→∞ πYi(ωj) 
= π(ωj) is the case (writing πYi instead of πS(Yi)

for simplification).

6 Conclusions

Among the ways of possible development of the results achieved here as well as
the results on which this paper is based but which could be developed also in
other directions than we did it here, let us mention the following ones.

It would be perhaps worth of being analyzed which of the ideas applied and
results obtained here could be shifted back to the case of real-valued possibilistic
distributions and measures, or at least to the case of possibility degrees taken
in the space of linear ordering (i.e., a fixed binary relation ≤ by which any two
values from its support set are comparable).

Other interesting extensions of the results dealing with approximations of
Boolean-valued possibilistic distributions and measures by their reductions to
inclusion-closed fragments of the complete lattice 〈P(X),⊆〉 can be obtained
when applying them to two- or more -dimensional possibilistic distributions and
measures.

It would be perhaps not so difficult present a number of other open prob-
lems and possible generalizations and extensions dealing with approximations of
Boolean-valued possibilistic distributions and measures, but as the long expe-
rience of scientific research proved, the most important problems to be solved
are not those presented ad hoc, but rather those emerging when solving the
problems already picked up as worth being solved in the domain of research in
question. The author hopes to be able to contribute, at least in fragments, to
this research effort in his future work.
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Abstract. Fuzzy vectors were introduced as a description of imprecise
quantities whose uncertainty originates from vagueness, not from a prob-
abilistic model. Support functions are a classical tool for representation
and computation with compact convex sets. The combination of these
two techniques—support functions of fuzzy vectors—has been proposed
by Puri and Ralescu. Independently, Bobylev proposed another type of
support functions which allows a more economical representation. How-
ever, the form of the functions is not very intuitive. We suggest a new type
of support functions which combines the advantages of both preceding
approaches. We characterize the functions which are support functions
of fuzzy vectors in the new sense.

1 Introduction

Fuzzy sets were suggested as a tool for computing with imprecise quantities. At
each point of the n-dimensional real vector space Rn, the membership function
of a fuzzy set attains a real value from [0, 1] describing to which extent this point
is a satisfactory approximation of the desired value. In contrast to probability
models, here we do not assume the existence of a random experiment deciding
whether the point belongs (totally) to the set or not; belongness is a matter of
degree expressed by the values from the unit interval.

In order to represent imprecise quantities, only some fuzzy subsets of Rn are
adequate. A natural requirement is that they are normal, i.e., at least one point
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has the degree of membership 1 and can serve as a representative crisp value.
Further, the membership function is expected to decrease with distance from this
point. A slightly stronger requirement is that the level sets (cuts) are compact
and convex. Under these assumptions, operations with fuzzy sets can be made
by the Zadeh’s extension principle, as well as by the Minkowski operations on
level sets; both give the same results. Nevertheless, pointwise operations with
sets are difficult to compute (even approximately). As an alternative, support
functions were suggested as a tool representing fuzzy vectors. Operations with
fuzzy vectors correspond to pointwise operations with support functions.

In this paper, we present and compare three types of support functions of
fuzzy vectors, the first by Puri and Ralescu, the second by Bobylev, the third
was introduced by Butnariu, Navara, and Vetterlein, but without any details on
its properties. We fill this gap now. We give formulas for conversions between
various types of support functions. We characterize those functions which can
occur as support functions (of all the three types). The new type of support
functions is often convex. However, we show that this is not a rule.

The paper is organized as follows: Section 2 summarizes known facts about
support functions of crisp sets, Section 3 recalls the vertical and horizontal rep-
resentations of fuzzy sets, with emphasis on fuzzy vectors. Section 4 describes
particular types of support functions of fuzzy vectors, their characterizations and
other properties. The final conclusions suggest possible applications of support
functions in computing with fuzzy vectors.

2 Support Functions of Crisp Sets

We denote by Kn the set of all non-empty compact convex subsets of Rn. The
set Kn is endowed with a linear structure (by R+ we denote the set of all non-
negative reals):

∀A,B ∈ Kn : A + B = {x + y | x ∈ A, y ∈ B} ,

∀A ∈ Kn ∀λ ∈ R+ : λA = {λx | x ∈ A} .

For r > 0, we denote by Sn
r ⊂ Rn the sphere with diameter r, centered in the

origin. If r = 1, we write Sn = Sn
1 , and we denote by Bn the closed unit ball in

Rn. The open unit ball will be denoted by Bn \ Sn.
For any A ∈ Kn, its support function, hA : Rn → R, is defined by

hA(x) = max{〈p,x〉 | p ∈ A} , (1)

where 〈·, ·〉 is the usual inner product in Rn (see e.g. [10]). The mapping A �→ hA
(defined on Kn) is injective, i.e., each compact convex set is uniquely represented
by its support function. Moreover, this mapping preserves the linear operations
on Kn and ordering by inclusion:

∀A,B ∈ Kn : hA+B = hA + hB , (2)
∀A ∈ Kn ∀λ ∈ R+ : hλA = λhA , (3)
∀A,B ∈ Kn, A ⊆ B : hA ≤ hB . (4)
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The functions which are support functions of compact convex sets can be
characterized using the epigraph [8] (or supergraph [6]) of a function h : Rn → R,
i.e., the set

epih =
{
(x0, x1, . . . , xn) ∈ Rn+1 | x0 ≥ h (x1, . . . , xn)

}
of points which are above the graph of h.

Proposition 1. A function h : Rn → R is a support function of some A ∈ Kn

if and only if epih is a proper convex cone in Rn+1, i.e., epih 
= Rn+1 and

∀x,y ∈ epih ∀λ, μ ∈ R+ : λx + μy ∈ epih .

In this case, h = hA for

A = {p ∈ Rn | ∀x ∈ Rn : 〈p,x〉 ≤ h (x)} ∈ Kn . (5)

For each x ∈ Rn, the set {p ∈ Rn | 〈p,x〉 ≤ h (x)} is a closed halfspace; A is
an intersection of such halfspaces, thus a closed convex set. Formula (1) (with
sup instead of max) can be applied also in the more general case when A is an
arbitrary bounded subset of Rn; however, the result is the same as for the closed
convex hull of A, thus the mapping is not injective when generalized to such
sets. As the set epih is above a graph of a function which does not attain infinite
values, epih− epih = Rn. The support function is continuous.

Proposition 2. The necessary and sufficient condition from Proposition 1 is
equivalent to the conjunction of the following conditions:

1. Positive homogeneity:

∀x ∈ Rn ∀λ ∈ R+ : h (λx) = λh (x) , (6)

2. Subadditivity:
∀x,y ∈ Rn : h (x + y) ≤ h (x) + h (y) , (7)

3. Continuity.

As a consequence (for λ = 0 and y = −x), we obtain

∀x ∈ Rn : h (x) + h (−x) ≥ 0 . (8)

Due to (6), it is sufficient to know the values of h on a sphere Sn
λ for some λ > 0,

i.e., the restricted support function ηλ = h � Sn
λ . The reverse transformation is

given by the formula

h (x) =
‖x‖
λ

ηλ

(
λ

‖x‖ x

)
.

For a continuous function ηλ, condition (6) is useless and (7) attains the form

∀x,y ∈ Rn \ {0} , x + y 
= 0 ∀λ ∈ R+ :

‖x + y‖ ηλ
(
λ

x + y

‖x + y‖

)
≤ ‖x‖ ηλ

(
λ

x

‖x‖

)
+ ‖y‖ ηλ

(
λ

y

‖y‖

)
. (9)

Following Bobylev [1], we call this property quasiadditivity.
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Remark 1. In the sequel, we shall generalize the notion of support function to
fuzzy vectors. In order to distinguish different terms, types of support functions
will be specified by prefixes (e.g., PR-support function). When we want to em-
phasize that we speak of a support function of a crisp set, we speak of a classical
support function.

3 Two Representations of Fuzzy Sets and Fuzzy Vectors

Before extending the notion of support function to fuzzy sets, let us recall the
properties of two representations of fuzzy sets (see, e.g., [4]) and their conse-
quences for fuzzy vectors. In the sequel, they will be applied to descriptions of
fuzzy vectors by support functions.

Let X be a non-empty crisp set (the universe) and V a fuzzy subset of X . The
vertical representation of V is given by the membership function mV : X → [0, 1];
mV (x) denotes the degree to which a point x belongs to V . The horizontal
representation of V is given by the function 'V : [0, 1] → 2X which assigns to
each α ∈ [0, 1] the corresponding α-level set (α-cut)

'V (α) = [V ]α = {x ∈ X | mV (x) ≥ α} ⊆ X .

For α = 0, the latter formula gives the whole space; instead of this, we make an
exception (see [5,7]) and define 'V (0) = [V ]0 as the closure of the set supp x =
{x ∈ Rn | mV (x) > 0} =

⋃
α>0[V ]α (supp x is called the support of x).

The membership function can be any function X → [0, 1]. However, when
the fuzzy set expresses an “imprecise quantity”, we often restrict attention to
“meaningful” fuzzy subsets of Rn; usual requirements are the following [4]:

1. Normality: ∃x ∈ Rn : mV (x) = 1 .
2. Fuzzy convexity:

∀x,y ∈ Rn ∀λ ∈ [0, 1] : mV (λ x+ (1− λ) y) ≥ min {mV (x) ,mV (y)} .

3. Boundedness: supp x is bounded.

A fuzzy set with these properties is called an (n-dimensional) fuzzy vector
[5,7]. We denote by Fn the set of all n-dimensional fuzzy vectors.

Remark 2. Normality says that there is at least one value x which belongs to V
“completely” and can be considered a crisp representative value of the imprecise
quantity V . Our definition (following [5,7]) admits more such points. (In particu-
lar, crisp sets which are fuzzy vectors are not only singletons, but all non-empty
compact convex sets.)

We have the following characterization of functions which appear in the hori-
zontal representation [4]:

Proposition 3. Let τ : ]0, 1] → 2X be a set-valued function. A necessary and
sufficient condition for the existence of a (unique) fuzzy set V such that τ coin-
cides with 'V on ]0, 1] is the conjunction of the following properties:
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1. Monotonicity: τ is non-increasing, i.e.,

∀α, β ∈ ]0, 1] , α ≤ β : τ (α) ⊇ τ (β) .

2. Continuity: τ is left continuous, i.e., ∀β ∈ ]0, 1] : τ (β) =
⋂
α<β

τ (α) .

In this case, mV (x) = sup {α ∈ ]0, 1] | x ∈ τ (α)} (where we put sup ∅ = 0).

Remark 3. If we want τ to be defined also at 0, then τ : [0, 1] → 2X must be
also right continuous at 0, i.e., τ (0) =

⋃
α>0 τ (α) . Due to left continuity, the

value of τ at 1 is also unnecessary; the values of τ on ]0, 1[ suffice to determine
the fuzzy set.

Fuzzy vectors in the horizontal representation can be characterized as follows:

Proposition 4. Let τ : [0, 1] → 2X be a set-valued function satisfying the con-
ditions of Proposition 3 and Remark 3 and V be the corresponding fuzzy set V .
Then V is a fuzzy vector if and only if all values of τ are non-empty compact
convex sets, i.e., ∀α ∈ [0, 1] : τ (α) ∈ Kn.

4 Different Types of Support Functions of Fuzzy Vectors

4.1 Approach by Puri and Ralescu

Following Puri and Ralescu [7] (see also the book by Diamond and Kloeden [5]),
we define the PR-support function of a fuzzy vector V ∈ Fn as the function
HV : [0, 1]× Rn → R such that

HV (α,x) = sup{〈p,x〉 | p ∈ [V ]α}. (10)

This means that, for each α ∈ [0, 1], HV (α, ·) is the (classical) support function
of the crisp α-level set [V ]α,

HV (α,x) = h[V ]α (x)

for all x ∈ Rn. As each fuzzy vector is uniquely determined by its collection
of level sets and these are described by their support functions, the PR-support
function characterizes the fuzzy vector completely. (The 0-level set is not needed,
because it does not carry any additional information.)

PR-support functions appeared useful in the computation of the Steiner point
of a fuzzy vector [11] (as a useful reference point describing the position of the
fuzzy vector).

Functions which can be PR-support functions of fuzzy vectors were charac-
terized in [3]:
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Theorem 1. A function ϕ : [0, 1] × Rn → R is the PR-support function of a
(unique) fuzzy vector V ∈ Fn if and only if it satisfies (the conjunction of) the
following conditions:

∀z ∈ Rn ∀λ ∈ R+ : ϕ(α, λz) = λϕ(α, z) , (11)
∀x,y ∈ Rn : ϕ(α,x + y) ≤ ϕ(α,x) + ϕ(α,y) , (12)
ϕ(·, z) is non-increasing, left continuous on ]0, 1] , and right continuous at 0 .

(13)

The proof follows directly from Propositions 2 and 3.

Remark 4. As mentioned in Remark 3, the values for the first argument 0 or 1
are unnecessary for the representation. If they are omitted (only the restriction
ϕ � ]0, 1[× Rn is used), Theorem 1 works if the requirement that ϕ(·, z) is right
continuous at 0 is replaced by boundedness of ϕ.

As in the case of classical support functions, the representation of a fuzzy vector
by the PR-support function HV : [0, 1]× Rn → R is redundant; the domain can
be restricted to [0, 1]×Bn, [0, 1]×Sn, or another appropriate set. The restriction
ϕ = HV � [0, 1]× Bn was used in [5,3]. The only difference in Theorem 1 is that
(11), (12) are applied only if all arguments fall in the restricted domain. In
particular, (11) can be formulated as

∀z ∈ Bn ∀λ ∈ [0, 1] : ϕ(α, λz) = λϕ(α, z) . (14)

For the restriction ϕ = HV � ]0, 1] × Sn, (11) is irrelevant and (12) has to be
modified as in (9):

∀x,y ∈ Sn : ‖x + y‖ϕ
(

x + y

‖x + y‖

)
≤ ‖x‖ϕ

(
x

‖x‖

)
+ ‖y‖ϕ

(
y

‖y‖

)
. (15)

4.2 Approach by Bobylev

The redundancy of the PR-support function inspired Bobylev to a more eco-
nomical representation [1]. Each sphere {α} × Sn, α ∈ ]0, 1], is mapped onto
Sn
α by the mapping (α,x) �→ αx. All these spheres fit into the unit ball Bn.

This reduces the dimensionality and facilitates computations with fuzzy vec-
tors via their support functions. It also saves space in (approximate) computer
representations of fuzzy vectors.

The B-support function of a fuzzy vector V ∈ Fn is defined as the function
H̄V : Bn → R,

H̄V (x) = max{〈p,x〉 | p ∈ [V ]‖x‖}. (16)

Apparently, it determines a fuzzy vector V uniquely. The conversions between
the two representations can be made by the following formulas:

∀x ∈ Bn : H̄V (x) = HV (‖x‖,x) ,

∀y ∈ Rn \ {0} ∀α ∈ ]0, 1] : HV (α,y) =
‖y‖
α

H̄V

(
α

‖y‖ y

)
.
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For each α ∈ ]0, 1], the mapping x �→ HV (α,x) coincides with H̄V on the
sphere Sn

α.
Functions which can be B-support functions of fuzzy vectors were character-

ized in [1] (we keep the original names of properties, although some of them
might be debatable):

Theorem 2. A function ϕ : Bn → R is the B-support function of a (unique)
fuzzy vector V ∈ Fn if and only if it satisfies the following conditions:

1) Upper semicontinuity:

∀x ∈ Bn : ϕ(x) = lim sup
y→x

ϕ(y) . (B1)

2) Positive semihomogeneity:

∀x ∈ Bn ∀λ ∈ [0, 1] : λϕ(x) ≤ ϕ(λx) . (B2)

3) Quasiadditivity:

∀x,y ∈ Rn,x,y,x + y 
= 0 ∀λ ∈ [0, 1] :

‖x + y‖ϕ
(
λ

x + y

‖x + y‖

)
≤ ‖x‖ϕ

(
λ

x

‖x‖

)
+ ‖y‖ϕ

(
λ

y

‖y‖

)
. (B3)

4) “Normality”:
∀x ∈ Bn : ϕ(x) + ϕ(−x) ≥ 0 . (B4)

5) Boundedness:

sup
{
|ϕ(x)|
‖x‖

∣∣∣∣ x ∈ Bn,x 
= 0
}

< ∞ . (B5)

6)
ϕ(0) = 0. (B6)

In this case, the fuzzy vector V such that H̄V = ϕ is given by

[V ]α =
{
p ∈ Rn | ∀x ∈ Sn

α : 〈p,x〉 ≤ H̄V (x)
}

for all α ∈ ]0, 1] and its membership function is

mV (p) = max
{
α ∈ [0, 1] | ∀x ∈ Sn

α : 〈p,x〉 ≤ H̄V (x)
}

Remark 5. Following [2], (B2) could be called more precisely [0, 1]-superhomo-
geneity; (6) is [0, 1]-homogeneity or R+-homogeneity.

Remark 6. [1] The values of the B-support function at x such that ‖x‖ ∈ {0, 1}
are unnecessary for the representation (cf. Remark 3). Condition (B6) is used
only for more consistent results, it is not needed for the description of the fuzzy
vector.

Remark 7. In this context, upper semicontinuity implies that

∀x ∈ Bn : ϕ(x) = lim
γ→1−

ϕ(γ x) .

Together with quasiadditivity, it also ensures that the restriction of ϕ to the
sphere Sn

α, α ∈ ]0, 1], is continuous.
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4.3 New Approach to Support Functions

One disadvantage of the Bobylev representation is that it is not very intuitive.
In particular, the B-support functions are usually neither convex nor concave.
Besides, the conditions characterizing B-support functions are not very elegant.

We propose an alternative. It was first announced in [3], without any details
on its properties. Here we give a characterization of functions obtained as support
functions in this sense (the conditions are simpler than for the Bobylev represen-
tation). Like the Bobylev approach, the support functions are again defined on the
unit ball, but the mapping is different. Each sphere {α}×Sn, α ∈ ]0, 1[, is mapped
onto Sn

1−α by the mapping (α,x) �→ (1− α) x. As a result, we obtain usually con-
vex functions. Moreover, convexity with (B3) and (B6) appears to be a sufficient
condition for a function to be a support function of a fuzzy vector in this sense.

The BNV-support function of a fuzzy vector V ∈ Fn is defined as the function
ĤV : Bn → R,

ĤV (x) = sup{〈p,x〉 | p ∈ [V ]1−‖x‖} . (17)

Apparently, it determines a fuzzy vector V uniquely. For each α ∈ ]0, 1], the
mapping x �→ HV (1−α,x) coincides with ĤV on the sphere Sn

α. The conversions
between the representations can be made by the following formulas:

∀x ∈ Bn : ĤV (x) = HV (1− ‖x‖,x) ,

∀y ∈ Rn \ {0} ∀α ∈ ]0, 1[ : HV (α,y) =
‖y‖

1− α
ĤV

(
1− α

‖y‖ y

)
,

∀x ∈ Bn \ (Sn ∪ {0}) : ĤV (x) =
‖x‖

1− ‖x‖ H̄V

(
1− ‖x‖
‖x‖ x

)
,

∀x ∈ Bn \ (Sn ∪ {0}) : H̄V (x) =
1− ‖x‖
‖x‖ ĤV

(
‖x‖

1− ‖x‖ x

)
.

Example 1. Let V ∈ F1 be the triangular fuzzy number given by its membership
function

mV (x) =

⎧⎨⎩
−1 + 2 x if x ∈ [−1/2, 0] ,
1− x if x ∈ ]0, 1] ,
0 otherwise.

From this we derive the horizontal representation:

'V (α) =
[
α− 1

2
, 1− α

]
,

and its support functions:

HV (α, x) =
{

α−1
2 x if x ≤ 0,

(1− α) x if x > 0,

H̄V (x) =
{ −x−1

2 x if x ∈ [−1, 0] ,
(1− x) x if x ∈ ]0, 1] ,

ĤV (x) =
{

x2

2 if x ∈ [−1, 0] ,
x2 if x ∈ ]0, 1] .
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Notice that the BNV-support function is convex.

Fig. 1. The triangular fuzzy number of Example 1: membership function (top), B-
support function (bottom thin), and BNV-support function (bottom thick)

BNV-support functions can be characterized as follows:

Theorem 3. A function ϕ : Bn → R is the BNV-support function of some fuzzy
vector V ∈ Fn if and only if it satisfies conditions (B1), (B3), (B4) of Theorem 2
and

∀x ∈ Bn ∀λ ∈ [0, 1] : λϕ(x) ≥ ϕ(λx) , (B2’)

ϕ is continuous at each point of Sn . (B5’)
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In this case, the fuzzy vector V such that ĤV = ϕ is given by

[V ]α =
{
p ∈ Rn | ∀x ∈ Sn

1−α : 〈p,x〉 ≤ ϕ (x)
}

(18)

for all α ∈ ]0, 1], and its membership function is

mV (p) = max
{
α ∈ [0, 1] | ∀x ∈ Sn

1−α : 〈p,x〉 ≤ ϕ (x)
}

(19)

Remark 8. Following [2], (B2’) could be called [0, 1]-subhomogeneity.

Proof. We prove the sufficiency of the conditions.
In this context, upper semicontinuity implies that

∀x ∈ Bn \ Sn : ϕ(x) = lim
γ→1+

ϕ(γ x) . (20)

Together with quasiadditivity, it also ensures that the restriction of ϕ to a sphere
Sn
β , β ∈ ]0, 1], is continuous (cf. Remark 7). For each α ∈ ]0, 1[, upper semiconti-

nuity and quasiadditivity imply that ϕ �Sn
1−α is continuous; it can be extended

to a positively homogeneous subadditive continuous function ηα : Rn → R by
the formula

ηα (y) =

{
||y||
1−α ϕ

(
1−α
||y|| y

)
if y 
= 0,

0 if y = 0.

It is a (classical) support function of some compact convex set, say Aα ⊂ Rn,

Aα =
{
p ∈ Rn | ∀x ∈ Sn

1−α : 〈p,x〉 ≤ ϕ (x)
}
∈ Kn .

Let 0 < α < β < 1 and let Aα, Aβ be the corresponding sets. For each
y ∈ Rn \ {0}, we apply (B2’) to

λ =
1− β

1− α
< 1 , x =

1− α

||y|| y ∈ Sn
1−α

and obtain

ηα (y) =
||y||
1− α

ϕ

(
1− α

||y|| y

)
=
||y||
1− α

ϕ(x)

≥ ||y||
1− α

1
λ
ϕ(λx) =

||y||
1− β

ϕ

(
1− β

||y|| y

)
= ηβ (y) .

Thus ηα ≥ ηβ and, by (4), Aα ⊇ Aβ . From (20) we infer that

ηα = lim
β→α−

ηβ

and hence
Aα =

⋂
β<α

Aβ .

We proved that the mapping 'V : α �→ 'V (α) = Aα is a horizontal representation
of a fuzzy set, in fact a fuzzy vector V whose level sets are of the form (18). The
form (19) is obtained by the standard conversion to the vertical representation.

We omit the proof of the necessity of the conditions. It is easier and it follows
the ideas used above.
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Remark 9. The values of the BNV-support function at x such that ‖x‖ ∈ {0, 1}
are unnecessary for the representation (cf. Remark 3).

Remark 10. For B-support functions, (B5) guaranteed the boundedness of sup-
port of the corresponding fuzzy vector. BNV-support functions satisfy (B5) as
a consequence of (B2’). On the other hand, boundedness is expressed by (B5’).
By Remark 9, the values on Sn are unnecessary; as limits of values on smaller
spheres, they do not bring any new information. Thus it is enough to define the
BNV-support functions on the open unit ball Bn \ Sn. However, even then a
boundedness condition is necessary. One possible formulation is that the BNV-
support function is bounded on the open unit ball.

BNV-support functions satisfy also (B6). (This condition refers to the value
at 0 which is unnecessary due to Remark 9.) Indeed, (B2’) for λ = 0 implies
0 = 0ϕ(x) ≥ ϕ(0 x) = ϕ (0) and (B4) for x = 0 gives ϕ (0) ≥ 0.

Proposition 5. A convex function ϕ : Bn → R satisfying (B3) and (B6) is the
BNV-support function of some fuzzy vector.

Proof. Convexity immediately implies (B2’) and (B4). With quasiadditivity, we
obtain boundedness, thus the function is also continuous. Theorem 3 applies and
gives the desired fuzzy vector.

BNV-support functions are often convex (cf. Example 1). However, convexity is
not a necessary condition in Proposition 5:

Example 2. In a 1-dimensional space R, consider the fuzzy vector V with

mV (p) =
√

max {0, 1− |p|} .

Its horizontal representation is 'V (α) =
[
−

(
1− α2

)
, 1− α2

]
and BNV-support

function ĤV (x) =
(
1− (1− |x|)2

)
|x| . Its second derivative, Ĥ ′′V (x) = 4−6 |x| ,

is negative for |x| > 2/3.

5 Conclusions – Computations with Support Functions

For all types of support functions introduced in this paper, the linear operations
on Fn correspond to the pointwise operations on the support functions as in
(2), (3). For the computation of Steiner points of fuzzy vectors (see [11]), all
types of support functions are equally useful, but B- and BNV-support functions
require one dimension less than PR-support functions.

Hausdorff metric on Kn gives rise to a metric on Fn which corresponds to the
L∞ (sup) norm on the space of PR-support functions on [0, 1]×Bn (see [5] for
details on this isometry). PR-support functions on [0, 1]× Sn can be considered
as well. Bobylev [1] introduced a metric on B-support functions on [0, 1] × Bn

and the isometry to the former metric was proved in [9]. Similar results can be
obtained for BNV-support functions.
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The advantage of BNV-support functions is that they form an irredundant
representation in an n-dimensional domain (as well as B-support functions) while
having a (usually convex) shape that reflects the properties of the fuzzy vector
in a more intuitive way.
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Abstract. Sugeno integrals are aggregation functions that return a
global evaluation that is between the minimum and the maximum of the
combined evaluations. The paper addresses the problem of the elicita-
tion of (families of) Sugeno integrals agreeing with a set of data, made of
tuples gathering the partial evaluations according to the different eval-
uation criteria together with the corresponding global evaluation. The
situation where there is no Sugeno integral that is compatible with a
whole set of data is especially studied. The representation of mental
workload data is used as an illustrative example, where several distinct
families of Sugeno integrals are necessary for covering the set of data
(since the way mental workload depends on its evaluation criteria may
vary with contexts). Apart this case study illustration, the contributions
of the paper are an analytical characterization of the set of Sugeno inte-
grals compatible with a set of data, the expression of conditions ensuring
that pieces of data are compatible with a representation by a common
Sugeno integral, and a simulated annealing optimization algorithm for
computing a minimal number of families of Sugeno integrals sufficient
for covering a set of data.

1 Introduction

Sugeno integrals are used in multiple criteria decision making and in decision
under uncertainty [7,2,3,15]. They are qualitative aggregation functions in the
sense that they can be defined on any completely ordered scale, and that they
return the median of a set of values made of the partial evaluations to be com-
bined on the one hand, and of weights associated with subsets of the partial
evaluation functions (or criteria) on the other hand. They can be seen as a
qualitative counterpart of Choquet integrals that apply to quantitative settings.
Discrete Choquet integrals and Sugeno integrals respectively include weighted
averages, and weighted mimimum or weighted maximum as extreme particular
cases. Their merits as general aggregation functions largely rely on the possi-
bility of weighting each evaluation criteria, but also any group of criteria, thus
offering the possibility of capturing some synergy between them.
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c© Springer-Verlag Berlin Heidelberg 2009



Elicitating Sugeno Integrals: Methodology and a Case Study 713

The problem of eliciting Choquet integrals agreeing with a set of data has re-
ceived some attention [4,9,6]. If we except results in [14], the elicitation of Sugeno
integrals has been much less studied. This is the topic of the present paper, both
from a theoretical and a practical point of view. Moreover, the perspective here is
not exactly the same as in the previous works. Indeed, the works just mentioned
were mainly motivated by the elicitation of a unique preference profile from a
set of data that as expected to be consistent. Even in [8], where fuzzy integrals
are computed for a set of classes, the classes are given and the problem is to
find one integral for each class. In other words, inconsistency was viewed either
as a kind of defect of the set of data (which then reflects preferences that are
not representable by the considered integral), or as the indication of a limited
number of outliers.

In this paper, it is not necessarily expected that all the data are representable
(up to outliers) by a unique Sugeno integral, for two kinds of reasons. First, even
if the data can be consistently represented by an integral, since the numerical
data reflect subjective evaluations (as it is in our case study) it is natural to be
interested in determining the bounds of the family of solutions (thus acknowl-
edging some potential imprecision). Second, it may be the case that the data set
refers to different classes of profiles that are not identified as such in the data set.
Note that our problem differs from a supervised learning one. Indeed, in learn-
ing, it is implicitly assumed that their exists an hypothesis to be found that is
at least approximately consistent with the data (possibly up to some outliers).
In our case we are interested in identifying possibly distinct subsets in the data,
obeying different aggregation policies, each of them being thus consistent with
different hypotheses.

The paper first presents a brief reminder on Sugeno integrals in Section 2.
Section 3 identifies the constraints induced by a piece of data on a family of
Sugeno integral. Next, in section 4, we show how to check the compatibility of
two pieces of data with respect to a Sugeno integral representation. This allows
us to propose an efficient method for checking the compatibility of a set of data.
In section 5 we propose an algorithm for building the smallest partition of a
data set into subsets (each subset gathering compatible data with respect to a
Sugeno integral representation). In the last section, we apply the algorithm to the
evaluation of the subjective mental workload of flying personals in a NASA-TLX
setting.

2 Sugeno Integrals: A Brief Reminder

Let C = {C1, . . . , Cn} be a set of n evaluation criteria. A n-tuple of evaluations
of some item on the basis of the n criteria is denoted a = (a1, . . . , an) where
ai ∈ [0, 1] ∀i ∈ {1, . . . , n}. Thus a n-tuple a is a function from C to the real
interval [0, 1]. In the following the set {1, . . . , n} is denoted N .

Discrete Sugeno integrals are particular aggregation functions [16,17], which
are defined through the specification of a fuzzy measure, or capacity v. This
capacity is a mapping from 2C to [0, 1], such that:
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– v(∅) = 0; v(C) = 1;
– if G ⊂ G′ ⊂ C then v(G) ≤ v(G′).

Given two capacities v1 and v2 such that v1 ≤ v2
1, the set of the capacities v

satisfying v1 ≤ v ≤ v2 is a lattice. More precisely, the considered set is a partially
ordered set according to ≤ in which any two elements have a supremum and an
infimum. A Sugeno integral of a function a from C to [0, 1] with respect to a
capacity v is defined by:

Sv(a) =
n∨
i=1

aσ(i) ∧ v(C(i)) (1)

where σ is a permutation on N such that aσ(1) ≤ . . . ≤ aσ(n).
∨

and ∧ denote
max and min respectively. Moreover C(i) = {Cσ(i), . . . , Cσ(n)}.

As first pointed out in [11] Sv(a) is the median for 2n− 1 terms. Namely

Sv(a) = median({aσ(1), . . . , aσ(n)} ∪ {v(C(i)), i = 2, . . . , n})

A noticeable property of Sugeno integral is:

n∧
i=1

ai ≤ Sv(a1, . . . , an) ≤
n∨
i=1

ai. (2)

An obvious consequence is: ∀c ∈ [0, 1], Sv(c, . . . , c) = c for any capacity v.

3 Constraints Induced on a Sugeno Integral Family by a
Set of Data

The problem considered in this paper is the elicitation of a family of Sugeno
integrals that are compatible with a set of data. Here, a set of data is a collection
of n-tuples a = (a1, . . . , an) associated with a global rating α. It is assumed that
∀i ai ∈ [0, 1] and α ∈ [0, 1]. More formally, a pair (a, α) is compatible with
a Sugeno integral Sv if and only if Sv(a) = α. In this section, we study the
constraints induced by a pair (a, α) on the Sugeno integrals compatible with it
and we fully characterize this family.

For convenience, we assume that the ai’s are already increasingly ordered i.e.
a1 ≤ . . . ≤ an. According to equation (2), there exists a Sugeno integral that
satisfies Sv(a) = α if and only if a1 ≤ α ≤ an. In the following we assume that
this condition holds for the pairs (a, α) considered. For discussing the equation
Sv(a) = α, it is useful to distinguish two cases.

Definition 1. A data (a, α) is

– a DIF type piece of data if ∀i ∈ {1, . . . , n} ai 
= α;
– a EQU type piece of data if ∃i ∈ {1, . . . , n} ai = α.

1 I.e., v1(G) ≤ v2(G) for all set of criteria G.
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3.1 DIF Case: ∀i ∈ {1, . . . , n} ai �= α

In this section we only work with DIF type data. Let i be the index such that
a1 ≤ . . . ≤ ai−1 < α < ai ≤ . . . ≤ an. We can then define two particular
capacities v̌a,α,DIF and v̂a,α,DIF :

Definition 2

∀X ∈ 2C , X 
= ∅, C v̌a,α,DIF (X) =
{

α if {Ci, . . . , Cn} ⊆ X
0 otherwise

∀X ∈ 2C , X 
= ∅, C v̂a,α,DIF (X) =
{

α if X ⊆ {Ci, . . . , Cn}
1 otherwise .

It can be shown that

Proposition 1

{v|Sv(a1, . . . , an) ≥ α} =
{

∅ if an < α
{v|v ≥ v̌a,α,DIF } otherwise.

{v|Sv(a1, . . . , an) ≤ α} =
{

∅ if α < a1
{v|v ≤ v̂a,α,DIF } otherwise.

As a corollary we have:

∀v s.t. Sv(a) = α we have v̌a,α,DIF ≤ v ≤ v̂a,α,DIF .

Thus v̌a,α,DIF and v̂a,α,DIF are the lower and upper bounds of the lattice of
capacities which defines the family of Sugeno integrals compatible with the pair
(a, α) in the DIF case. Moreover, to each pair (a, α) of the DIF type a unique
subset of criteria is naturally associated, namely Ga = {Ci, . . . , Cn}. Note that
v(Ga) = α.

3.2 EQU Case: ∃i ∈ {1, . . . , 6} ai = α

In this section we only work with EQU type data.
Let i and j be the indexes such that a1 ≤ . . . ≤ aj−1 < aj = . . . = ai−1 =

α < ai ≤ . . . ≤ an. We can then define two particular capacities v̌a,α,EQU and
v̂a,α,EQU :

Definition 3

∀X ∈ 2C , X 
= ∅, C v̌a,α,EQU (X) =
{

α if {Cj , . . . , Ci−1, . . .Cn} ⊆ X
0 otherwise

∀X ∈ 2C , X 
= ∅, C v̂a,α,EQU (X) =
{

α if X ⊆ {Ci, . . . , Cn}
1 otherwise .

It can be shown that
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Proposition 2

{v|Sv(a1, . . . , an) ≥ α} =
{

∅ if an < α
{v|v ≥ v̌a,α,EQU} otherwise.

{v|Sv(a1, . . . , an) ≤ α} =
{

∅ if α < a1
{v|v ≤ v̂a,α,EQU} otherwise.

As a corollary we have:

∀v s.t. Sv(a) = α we have v̌a,α,EQU ≤ v ≤ v̂a,α,EQU .

Thus v̌a,α,EQU and v̂a,α,EQU are the lower and the upper bounds of the lattice
of capacities which defines the family of Sugeno integrals compatible with the
pair (a, α) in the EQU case. Moreover, to each pair (a, α) of the EQU type, two
nested subsets of criteria are naturally associated, namely:

– G′a = {Cj , . . . , Ci, . . .Cn}
– Ga = {Ci, . . . , Cn}.

Note that v(G′a) ≥ α and v(Ga) ≤ α.

4 Consistency of a Set of Data with Respect to a Sugeno
Integral Representation

A general issue when we look for a family of Sugeno integrals compatible with
a set of data, is the question of how to compute it. In the following, we explain
how this family can be obtained from the families of integrals associated with
each piece of data in the dataset. Let us first consider two data pairs (a, α) and
(b, β). The problem is then to determine if it exists a capacity v compatible with
the two pairs i.e. such that Sv(a) = α and Sv(b) = β and how to compute it. It
turns out that the family of Sugeno integrals compatible with two pairs, when it
is non empty, can be obtained from the family associated with each of the two
pairs. Moreover it can be shown that it is enough in a set of data to be pairwise
compatible for having the whole set compatible (in the sense that it exists a non
empty family of Sugeno integrals compatible with each pair (a, α)).

4.1 Compatibility of Two Pairs

We have to examine three cases depending on the types (DIF or EQU) of the
two pairs.

Case 1: (a, α) and (b, β) Are Both of the DIF Type
A capacity v that is compatible with the two pairs is in the intersection of the
two following families :

– the lattice with the lower and upper bounds v̌a,α,DIF and v̂a,α,DIF .
– the lattice with the lower and upper bounds v̌b,β,DIF and v̂b,β,DIF .
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There exists a capacity compatible with the two data if and only if the inter-
section of these two lattices is not empty. This intersection is a family with the
lower bound v̌a,α,DIF ∨ v̌b,β,DIF and the upper bound v̂a,α,DIF ∧ v̂b,β,DIF . This
family is non empty if and only if the following inequality holds:

v̌a,α,DIF ∨ v̌b,β,DIF ≤ v̂a,α,DIF ∧ v̂b,β,DIF . (3)

To compare the previous capacities we do not have to do it on each criterion.
We just need to compare the subset of criteria associated with each data pair.

Proposition 3

– If α < β then (a, α) and (b, β) are compatible if and only if Gb 
⊆ Ga.
– If β < α then (a, α) and (b, β) are compatible if and only if Ga 
⊆ Gb.
– If β = α then (a, α) and (b, β) are always compatible.

We omit the proof for a sake of brevity. Anyway it is only a matter of careful
checking. For instance, when β = α the result is a direct consequence of equation
(3). In this case, a new piece of data can only increase the number of subsets
that receive the value α.

Case 2: (a, α) and (b, β) Are Both of the EQU Type
This case is quite similar to the previous one, using the appropriate bounds.
Namely, the intersection of the two involved lattices is not empty if and only if

v̌a,α,EQU ∨ v̌b,β,EQU ≤ v̂a,α,EQU ∧ v̂b,β,EQU .

Similarly to the previous case we just need to compare two subsets of criteria.

Proposition 4

– If α < β then (a, α) and (b, β) are compatible if and only if G′b 
⊆ Ga.
– If β < α then (a, α) and (b, β) are compatible if and only ifi G′a 
⊆ Gb.
– If β = α then (a, α) and (b, β) are always compatible.

Case 3: (a, α) is of the DIF Type and (b, β) is of the EQU Type
This case is quite similar to the previous one, using the appropriate bounds.
Namely, the intersection of the two involved lattices is not empty if and only if

v̌a,α,DIF ∨ v̌b,β,EQU ≤ v̂a,α,DIF ∧ v̂b,β,EQU .

Again, we just need to compare two subsets.

Proposition 5

– If α < β then (a, α) and (b, β) are compatible if and only if G′b 
⊆ Ga.
– If β < α then (a, α) and (b, β) are compatible if and only if Ga 
⊆ Gb.
– If β = α then (a, α) and (b, β) are always compatible.
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5 Global Compatibility

As pointed out in the beginning of the previous section, a set of data are compat-
ible if there exists a non empty family of Sugeno integrals that are compatible
with each pair (a, α) in the dataset. Otherwise, it means that there is not a
representation of the dataset by a unique family of integrals and that several
families are necessary, each covering a distinct subpart of the dataset.

Proposition 6. Given (ai, αi)i∈{1,...,P} a dataset set that contains P pairs. The
set of data is compatible if and only if for any i and j in {1, . . . , P}, (ai, αi) is
compatible with (aj , αj).

Sketch of the proof
If the dataset is compatible, the result is straightforward. We suppose that for
any i and j in {1, . . . , P}, (ai, αi) is compatible with (aj , αj). In order to simplify
notations we note v̌i the lower bound (ai, αi) and v̂i the upper bound associated
with (ai, αi). Since (ai, αi) and (aj , αj) are compatible we have v̌i ∨ v̌j ≤ v̂i ∧ v̂j .
We have abbreviated the notations here since it is no necessary to enforce the
distinction between DIF and EQU types here. For all criteria C, we have v̌i ∨
v̌j(C) ≤ v̂i∧v̂j(C); which is equivalent to [v̌i(C), v̂i(C)]∩[v̌j(C), v̂j(C)] 
= ∅. Thus
we have a family of intervals for which all pairwise intersections are not empty.
From which we can conclude that the intersection of all the intervals is not empty;

see [1] for a proof of this state of fact. This intersection is : [
P∨
i=1

v̌i(C),
P∧
i=1

v̂i(C)].

This result is true for all criteria thus we have
P∨
i=1

v̌i ≤
P∧
i=1

v̂i, which is equivalent

to say that the dataset is compatible.

The previous proposition is especially of interest when the dataset is inconsistent
(which is often the case in practice). Indeed, as we shall see in the next section,
it facilitates the buiding of a partition of the dataset into compatible subsets.

6 Looking for Consistent Subsets of Data

According to the previous results, we are now able to check the existence of a
family of Sugeno integrals compatible with a set of data. If this family exists,
it can easily be constructed by considering the intersection of all the families of
Sugeno integrals associated with each pair (a, α) in the data set. However, in
practice, the data set may be inconsistent, in the sense that there is no family
of integrals compatible with all the data. In this case, an issue can be to build
the smallest partition (in terms of number of subsets) of the dataset where there
exists a family of integrals compatible for each subset of the partition.

This problem is an hard problem. Indeed, the number of possible partitions
of an set of p elements is given by the Bell’s number Bp = 1

e

∑∞
k=0

kp

k! . In order
to find the smallest partition, in the worst case, each partition have to be con-
sidered. Bn being greater than en the problem is intractable. Moreover, in order



Elicitating Sugeno Integrals: Methodology and a Case Study 719

to check the compatibility of a set of data, the simplest algorithm consists in
constructing the family of Sugeno integrals by considering the intersection of the
lattices associated to each pair. The size of this lattice being 2n−1, where n is
the number of criteria, checking the compatibility of the subset becomes costly
when n increases. However, this complexity can be reduced by considering the
results given by the propositions 3, 4, 5, and 6. The propositions 3, 4, 5 state
that the compatibility of two pairs (a, α) (b, β) can be checked with at most n
operations where n is the number of criteria. The proposition 6 states that p2

pairwise compatibility tests are needed for checking the compatibility of a data
set of p elements.

Finding the smallest partition being intractable with a deterministic algo-
rithm, we propose to use the simulated annealing [12] meta-heuristics in order
to build a partition as small as possible. Simulated annealing is a meta-heuristic
method developed for optimization problems. This method is inspired from a
well-known physical phenomena, coming from metallurgy. Let us consider a
function F : S �→ + to be minimized, and representing the energy of a sta-
tistical mechanical system in a given state s ∈ S. The probability for the system
to go from the state s to the state s′ at the temperature T is given by the
Boltzman-Gibbs distribution P (s) = min(1, e

−(F(s′)−F (s))
kT ) where k is the Boltz-

mann constant. For high values of T , all states have a high probability to be
accepted. On the opposite side, when T is close to zero, only states improving
the current minimization of the function will be accepted.

In order to apply simulated annealing for solving our problem, we have to
define the neighborhood of a partition, and a criterion measure that evaluates
the quality of our solution. The state space considered here is the space of the
partitions of the data set into compatible subsets. A neighbor of such a partition
is defined by simply moving a piece a data from one subset to another subset and
checking the compatibility of this last subset. The measure we want to maximize
is the following:

F (p1, . . . , pk) =
1
k
− c ∗

k∑
i=1

pi
p
log2(

pi
p

)

where k is the number of subsets, p the size of the dataset, pi the size of the ith

subset and c is a constant. The first part of the equation tends to minimize the
number of subsets in the partition. The second, entropy based, term is a regula-
tion term that favors the most contrasted partition (in terms of the cardinality of
its subsets), for a given number of subsets. Note that a proper tuning of c should
never block the possibility of getting a smaller partition. With this latter term
we favor partition with some large subsets (as far as possible). Indeed, there
exists data that are compatible with several subsets, and we try to put them
together by this means. This regulation term helps the algorithm converging to
the smallest partition by favoring the emergence of small subsets that may be
easily fused in larger ones. The remaining small subsets account for a form of
noise in the data. The starting state of the algorithm is the partition of the data
set into singletons.
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The constraints induced by a pair (a, α) may be too precise in practice. In
order to relax these constraints we propose to consider that a Sugeno integral
is compatible with a data pair if it respects the position of α with respect to
a1, . . . , an. More formally, let us consider a pair (a, α) of the DIF type (we apply
the procedure only to this type). We assume that a1 ≤ . . . ≤ an. Let i the index
such that a1 ≤ . . . ≤ ai−1 < α < ai ≤ . . . ≤ an. The bounds of the family of
Sugeno integrals are now v̌a,ai−1,EQU and v̂a,ai,EQU . This kind of compatibility
constraint is more adapted to the subjective nature of the values.

7 Illustration: Mental Workload Evaluation

Measuring the mental workload associated with various situations is a very im-
portant topic in cognitive ergonomics and human factors. However, measuring
mental workload is not a trivial task since subjective workload is generally de-
fined as a multidimensional construct. Among the most widely used methods is
the National Aeronautics and Space Administration-Task Load Index (NASA-
TLX [10]).

The NASA-TLX rating procedure provides an overall workload score based on
a weighted average of the ratings on six sub-scales: Mental Demands, Physical
Demands, Temporal Demands, Performance, effort, and Frustration. Depending
on situations, the various sources may differently contribute to the operators’
subjective workload. Taking into account the relative weights of the sources
first requires obtaining a measure of their relative importance. For example,
during the standard NASA-TLX procedure participants provide the 15 possible
pairwise comparisons of the six sub-scales. In each comparison, subjects select
the source that contributed to the workload more than the other. Each source
receives one point for each comparison where it was deemed to contribute more.
The relative weight of a source is then given by the sum of those points, divided
by 15 for normalization purposes. In order to avoid confusion, in this paper we
will call “rating” the value provided for each workload source, and “weight” the
relative importance of that source. After information about ratings and weights
is collected, the question is to choose the aggregation method. The NASA-TLX
makes use of a classical weighted mean, which simply sums the products of
ratings by their normalized weights (

∑
wi = 1). Thus, noting ai the rating

about the ith source and wi the relative importance of the same source, the
subjective workload SW in the NASA-TLX method is provided by

SW =
6∑

i=1

wiai.

where wi and ai respectively denote the weight and rating associated with the ith

workload source. The weighted average is easy to compute and familiar to most
users. On the other hand, despite its apparent simplicity, it is built upon several
strong mathematical assumptions that are not necessarily verified in workload
assessment. For example, it requires that weights do not depend on ratings. This
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condition could be attained, for example, by having operators providing the rat-
ings and external experts providing the weights independently. Unfortunately,
in the standard NASA-TLX procedure, each operator provides both the ratings
and weights. Second, weighted average does not allow taking into account inter-
actions between sources. Is it a reasonable choice to neglect dependencies and
interactions between workload sources? By neglecting such interaction effects, a
weighted average model might induce measurement biases.

This raises the question of the possiblity of finding an aggregation scale that
does not require the elicitation of both ratings and weights by the same subjects,
nor demand external expertise and still differentiates between aggregation poli-
cies. Moreover, one could want to process subjective data in a qualitative fashion
since subjective rating scales are not proved to possess full numerical properties.
Due to the qualitative nature of the data, least square error minimization regres-
sion does not sound much appropriate. This has motivated a recent study [13]
where two of the authors experimented Sugeno integrals as a tool for representing
a set of mental workload data. However no formal characterization of the family
of the Sugeno compatible with a set of data where provided and the algorithm
proposed for identifying subsets of compatible data, together with their Sugeno
integral representation, was fairly adhoc. As in the previous study [13], the data
used here were collected during a series of five rotations of planes pertaining to
a big European airline company. Overall, the rotations covered 48 flights. Three
types of planes were used (Airbus A319, A320, and A321). Each rotation covered
three days. Twenty-two participants of flying personnel, on board of the planes,
participated to the study. They were either stewards / stewardesses or cabin
chiefs. All participants responded to a subjective mental workload assessment
questionnaire once in each phase of the flight: preparation, taking off, cruise, and
landing. Overall, the data set contains 840 pairs (a, α) where a is a 6-component
vector corresponding to the evaluation of the six NASA-TLX criteria and α
is a global corresponding evaluation of their mental workload. All the values
are in [0, 1]. In practice, the participants where invited to estimate the criteria
and their global mental workload by crossing a linear bounded segment. Such a
qualitative assessment procedure makes differences between estimates not really
meaningful, which leads us to use a Sugeno rather than a Choquet integral.

We applied the simulated annealing algorithm defined in the previous to the
data. From the 840 data, 811 satisfy the representability condition (2). The 29
outliers were not further taken into consideration. We first consider the algorithm
without relaxing the constraints Sv(a) = α as described in section 3. We obtained
a partition with 30 subsets. The larger subset contains 168 pieces of data, 9
subsets have more than 30 elements and 6 subsets have less than 2 elements.
Using the previous algorithm [13] on the same dataset yields to 37 subsets. When
relaxing the constraints of the DIF type (as explained at the end of section 6),
the number of subsets found decreases to 4 (having respectively 497, 179, 76, 59
elements). A relaxed version of the heuristic algorithm [13] still found 12 subsets,
many of them being very small since the 4 largest subset gather 97% of the 811
compatible data. As it can be observed, the algorithm proposed in this paper
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performs better than the previous one. Still more importantly the proposed
algorithm is based on the rigorous analysis of the compatibility between pieces
of data and then use a well-founded meta-heuristics. The algorithm in [13] was
not offering such guarantees.

8 Conclusion

In this paper, we have provided a general approach to the elicitation of Sugeno
integrals where several partial coverages of the data set can be found in case the
data are not altogether compatible. Although we take into account the subjective
nature of the data by using Sugeno integral rather than Choquet integral, and
by allowing some relaxation in the algorithm, it would be also interesting at the
theoritical level to study constraints of the form Sv(a) ≤ α or Sv(a) ≥ α′ and the
sensitivity of the algorithm to slight variations of the ai’s. On this latter point,
note however that at least for the DIF type of data, the capacity is not changed as
long the position of the global rate α is not modified among the ai’s. This raises
the question of how to use the families of Sugeno integrals for prediction tasks. A
preliminary analysis of the results shows that, as it was already the case with the
previous heuristic algorithm, the larger subsets found are correlated with some
meaningful external features of the data. This has to be more deeply investigated.
Lastly, Choquet integrals have been also considered as a possible substitute to
the NASA-TLX weighted average [5]. This calls for a comparison of the relative
merits of Choquet and Sugeno integrals in the NASA-TLX perspective. Besides,
the problem that we have been dealing with is close to a learning problem. In
case of situations where the data are assumed to be somewhat consistent with
a unique hypotheses, we may introduce a compatibility measure, e.g. Spearman
correlation, to be maximized.
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Abstract. This paper discusses the application of a novel feature subset
selection method in high-dimensional genomic microarray data on type
2 diabetes based on recent Bayesian network learning techniques. We
report experiments on a database that consists of 22,283 genes and only
143 patients. The method searches the genes that are conjunctly the
most associated to the diabetes status. This is achieved in the context
of learning the Markov boundary of the class variable. Since the selected
genes are subsequently analyzed further by biologists, requiring much
time and effort, not only model performance but also robustness of the
gene selection process is crucial. Therefore, we assess the variability of our
results and propose an ensemble technique to yield more robust results.
Our findings are compared with the genes that were associated with
an increased risk of diabetes in the recent medical literature. The main
outcomes of the present research are an improved understanding of the
pathophysiology of obesity, and a clear appreciation of the applicability
and limitations of Markov boundary learning techniques to human gene
expression data.

1 Introduction

The identification of biologically relevant subset of genes (features) among tens of
thousands of genes with no more than one hundred samples that are not captured
by traditional statistical testing is a topic of considerable interest within the bio-
informatics community. It is also a very challenging topic of pattern recognition
research that has attracted much attention in recent years [1,2].

Type 2 diabetes mellitus (T2DM) affects over 140 million people worldwide
and is a principal contributor to vascular disease, blindness, amputation and
kidney failure. It is characterized by high blood sugar level (or hyperglycemia)
arising from a deteriorated tissue response to the biological effect of insulin (i.e.,
insulin resistance). It is often associated with obesity. The primary cellular cause

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 724–735, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Robust Gene Selection 725

of insulin resistance remains uncertain. Genomic analysis techniques offer pow-
erful tools to decipher the pathology of T2DM at a molecular level. In this study
we have used the results obtained from the Affymetrix microarray technology
that can examine the level of expression of thousand genes simultaneously. As
impaired insulin action in skeletal muscle is a hallmark feature of T2DM we have
focused this study on this tissue and pooled different microarray data from dif-
ferent published studies in order to have a microarray dataset from individuals
showing different stage of the disease (i.e. ; healthy subjects, insulin-sensitive
obese patients, insulin-resistant morbid obese patients, glucose-intolerant pa-
tients and type 2 diabetic patients). Our data set consists of 22,283 genes and
only 143 samples. It was obtained in collaboration with INSERM U870/INRA
1235 laboratory and represents a compilation of different microarray data pub-
lished during the last five years on the skeletal muscle from patients suffering
from type 2 diabetes or obesity or from healthy subjects.

As noted in [3], two problems arise when dealing with such high-dimensional
databases. First, very few methods can scale up to ten of thousands of variables
in reasonable time. Second, given the small sample size, the validity of existing
Feature Subset Selection (FSS) methods is questionable, as they are typically
tested on larger sample sizes and much lower dimensions. Therefore, when using
FSS in these domains, not only model performance but also robustness of the
feature selection process should be taken into account, as domain experts would
prefer a stable FSS algorithm over an unstable one. Clearly, biologists need to feel
confident in the selected features, as in most cases these features are subsequently
analyzed further, requiring much time and effort.

FSS techniques can be divided into three categories, depending on how they
interact with the classifier (i.e. filter, wrapper and embedded methods) [4]. In this
study, the FSS is achieved in the context of determining the Markov boundary
(MB for short) of the class variable that we want to predict. The MB of a variable
T , denoted by MBT , is the minimal subset of U (the full set) that renders the
rest of U independent of T . Inducing the MB automatically from data can be
achieved by constraint-based (CB) algorithms [5,6,7]. CB methods yield compact
MB by heeding independencies in the data using conditional independence tests.
They systematically check the data for independence relations and use those
relationships to infer necessary features in the MB.

A powerful and highly scalable CB algorithm called MBOR has been proposed
recently in [8,9]. MBOR has been shown to outperform the latest MB learning
proposal discussed in detail in [6], in terms of accuracy on large Markov bound-
aries on data sets scaling up to tens of thousand variables with small sample
sizes. In this study, we show experimentally that it is also slightly more robust.
Multiple runs of MBOR on resamples of the microarray data are combined, using
ensemble techniques, to yield more robust results. Genes are aggregated into a
consensus gene ranking and the top ranked features are analyzed by our domain
expert. We show that our findings are in nice agreement with the genes that were
associated with an increased risk of diabetes in the recent medical literature.
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The paper is organized as follows. In Sections 2, we briefly introduce the
principles of Bayesian networks and Markov boundaries. We discuss constraint-
based search methods in Section 3. The algorithm MBOR is detailed in section
4. Extensive experiments are then conducted in Section 5 to evaluate a robust
set of genes that are associated with diabetes.

2 Preliminaries

For the paper to be accessible to those outside the domain, we recall first the
principles of Bayesian networks. In this paper, we only deal with discrete random
variables. Formally, a BN is a tuple < G, P >, where G =< V , E > is a directed
acyclic graph (DAG) with nodes representing the random variables V and P a
joint probability distribution on V . A BN structure G entails a set of conditional
independence assumptions. They can all be identified by the d-separation crite-
rion [10]. We use X ⊥G Y |Z to denote the assertion that X is d-separated from
Y given Z in G. Formally, X ⊥G Y |Z is true when for every undirected path in
G between X and Y , there exists a node W in the path such that either (1) W
does not have two parents in the path and W ∈ Z, or (2) W have two parents
in the path and neither W nor its descendants is in Z. X ⊥G Y |Z. If < G, P >
is a BN, X ⊥P Y |Z if X ⊥G Y |Z. The converse does not necessarily hold. We
say that < G, P > satisfies the faithfulness condition if the d-separations in G
identify all and only the conditional independencies in P , i.e., X ⊥P Y |Z iff
X ⊥G Y |Z.

A Markov blanket MT of the T is any set of variables such that T is condition-
ally independent of all the remaining variables given MT . A Markov boundary,
MBT , of T is any Markov blanket such that none of its proper subsets is a
Markov blanket of T .

Theorem 1. Suppose < G, P > satisfies the faithfulness condition. Then X and
Y are not adjacent in G iff ∃Z ∈ U \ {X ∪ Y } such that X ⊥ Y |Z. Moreover,
for all X, the set of parents, children of X, and parents of children of X is the
unique Markov boundary of X.

A proof can be found for instance in [11]. We denote by PCGT , the set of parents
and children of T in G, and by SPGT , the set of spouses of T in G. The spouses
of T are the parents of the children of T . These sets are unique for all G, such
that < G, P > is faithful and so we will drop the superscript G. We denote by
dSep(X), the set that d-separates X from the (implicit) target T .

A structure learning algorithm from data is said to be correct (or sound)
if it returns the correct DAG pattern (or a DAG in the correct equivalence
class) under the assumptions that the independence test are reliable and that
the learning database is a sample from a distribution P faithful to a DAG G,
The (ideal) assumption that the independence tests are reliable means that they
decide (in)dependence iff the (in)dependence holds in P . The problem of learning
the most probable a posteriori Bayesian network (BN) from data is worst-case
NP-hard [12]. This challenging topic of pattern recognition has attracted much
attention over the last few years.
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3 Constraint-Based Methods

Having to learn a Bayesian network in order to learn a MB of a target can be very
time consuming for high-dimensional databases. Fortunately, there exists several
independence-test based (also called constraint-based) algorithms that search the
MB of a variable without having to construct the whole BN first (see [2] for a
review). Hence their ability to scale up to thousands of variables. In recent years,
there have been a growing interest in inducing the MB automatically from data.
Very powerful correct, scalable and data-efficient constraint-based (CB) algo-
rithms have been proposed recently, e.g., PCMB [6], MBOR [8,9], IAMB [13] or
its variants: Fast-IAMB [14] and Inter-IAMB [15]. CB methods systematically
check the data for independence relationships to infer the structure. Typically,
the algorithms run a χ2 independence test in order to decide upon the accep-
tance or rejection of the null hypothesis of conditional independence. In our
implementation we prefer a statistically oriented conditional independence test
based on the G-statistic:

G = 2
m∑
i=1

p∑
j=1

q∑
k=1

n(i, j, k) ln
n(i, j, k)n(·, ·, k)
n(i, ·, k)n(·, j, k)

. (1)

where n(i, j, k) is the number of times simultaneously X = xi, Y = yj and
Z = zk in the samples, that is, the value of the cell (i, j, k) in the contingency
table. The statistic is compared against a critical value to decide upon of the
acceptance or rejection of the null hypothesis of conditional independence.

4 Markov Boundary Discovery

A novel powerful and highly scalable CB algorithm called MBOR has been pro-
posed recently in [8,9]. MBOR was designed in order to endow the search proce-
dure with the ability to: 1) handle efficiently data sets with thousands of variables
but comparably few instances, 2) deal with datasets which present some deter-
ministic relationships among the variables, 3) be correct under the faithfulness
condition, and most important, 4) be able to learn large Markov boundaries.
MBOR should be viewed as a meta-procedure that applies an ensemble tech-
nique to combine the advantages of both divide-and-conquer and incremental
methods to improve accuracy, especially on densely connected networks. It is
based on a subroutine, called Interleaved Incremental Association Parents and
Children, Inter-IAPC, that takes a variables X as input and outputs an estimate
of the set of parents and children of X , PCX .

4.1 Inter-IAPC Algorithm

Inter-IAPC is a fast incremental method that receives a target node T as input
and promptly returns a rough estimate of PCT . It is a variant of an algorithm
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called Inter-IAMB that was proposed in [15]. The algorithm starts with a two-
phase approach. A growing phase (lines 3-8) attempts to add the most dependent
variables to T, followed by a shrinking phase (lines 9-13) that attempts to remove
as many irrelevant variables as possible. The shrinking phase is interleaved with
the growing phase. Interleaving the two phases allows to eliminate some of the
false positives in the current blanket as the algorithm progresses during the
growing phase. Once the MB is obtained, the spouses of the target (parents of
children) are removed (lines 15-21). While Inter-IAPC is very fast, it is considered
as data inefficient in [2] because PCT can be identified by conditioning on sets
much smaller than those used by Inter-IAPC(T). We will see next how MBOR
combines several runs of Inter-IAPC using ensemble techniques to alleviate its
data inefficiency.

4.2 MBOR Algorithm

MBOR receives a target node T as input and returns an estimate of MBT .
MBOR works in five phases and uses Inter-IAPC as a subroutine. In phase I
and II, MBOR constructs a superset of the parents and children to reduce as
much as possible the number of variables before proceeding further. The size
of the conditioning set Z is severely restricted to increase the reliability of the
conditional independence tests (data efficiency) : card(Z) ≤ 1 (at lines 3 and 10).
We denote by dSep(X), the set that d-separates X from the (implicit) target
T (lines 5, 12 and 20). In phase III, a superset of the spouses of T is built with
card(Z) ≤ 2 (at lines 20 and 26). Phase IV finds the parents and children in the
superset of PCT . The rule for X to be considered as adjacent to T (and vice-
versa) is as follows: X ∈ PCT if [X ∈ Inter-IAPC(T)] OR [T ∈ Inter-IAPC(X)].
Therefore, all variables that have T in their vicinity are included in PCT . This
procedure of phase IV not only improves accuracy in practice, but it also handles
some deterministic relationships (not discussed here for conciseness). Phase V
identifies the spouses of the target among the variables in the Markov boundary
superset (MBS) in exactly the same way PCMB does [2].

We would like to stress that the OR operator is one of the key advantage of
MBOR, compared to the state-of-the-art algorithms that use the AND operator
instead (for instance, MMMB [13], PCMB [2] and IAMB [13]). By loosening the
criteria by which two nodes are said adjacent, the effective restrictions on the
size of the neighborhood are far less severe. This simple ”trick” has significant
impact on the accuracy of MBOR as we will see. It enables the algorithm to
handle large neighborhoods while still being correct under faithfulness condition.
MBOR’s correctness under faithfulness condition is established by the following
theorem (see [8] for the proof):

Theorem 2. Under the assumptions that the independence tests are reliable
and that the database is an independent and identically distributed sample from
a probability distribution P faithful to a DAG G, MBOR(T ) returns MBT .
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Algorithm 1. MBOR
Require: T : target; U: variables
Ensure: MB: Markov boundary of T

Phase I: Remove X if T ⊥ X

1. PCS = U \ T
2. for all X ∈ PCS do
3. if (T ⊥ X) then
4. PCS = PCS \ X

5. dSep(X) = ∅
6. end if
7. end for

Phase II:Remove X if T ⊥ X|Y
8. for all X ∈ PCS do
9. for all Y ∈ PCS \X do
10. if (T ⊥ X | Y ) then
11. PCS = PCS \ X

12. dSep(X) = Y ; go to 15
13. end if
14. end for
15. end for

Phase III: Find super set for SP

16. SPS = ∅
17. for all X ∈ PCS do
18. SPSX = ∅
19. for all Y ∈ U \ {T ∪PCS} do
20. if (T �⊥ Y |dSep(Y ) ∪X) then
21. SPSX = SPSX ∪ Y
22. end if
23. end for
24. for all Y ∈ SPSX do
25. for all Z ∈ SPSX \ Y do
26. if (T ⊥ Y |X ∪ Z) then
27. SPSX = SPSX \ Y ; go to 30
28. end if
29. end for
30. end for
31. SPS = SPS ∪ SPSX

32. end for
Phase IV: Find PC of T

33. PC = Inter-IAPC(T,D(PCS ∪ SPS)
34. for all X ∈ PCS \PC do
35. if T ∈ Inter-IAPC(X,D) then
36. PC = PC ∪X
37. end if
38. end for

Phase V: Find spouses of T

39. SP = ∅
40. for all X ∈ PC do
41. for all Y ∈ Inter-IAPC(X,D)\{PC∪T}

do
42. Find minimal Z ⊂ PCS∪SPS\{T ∪Y }

such that T ⊥ Y |Z
43. if (T �⊥ Y |Z ∪X) then
44. SP = SP ∪ Y
45. end if
46. end for
47. end for

Algorithm 2. Inter-IAPC
Require: T : target; D: data set; V set of vari-

ables
Ensure: PC: Parents and children of T ;
1. MB = ∅
2. repeat
3. Add true positives to MB
4. Y = argmaxX∈(V\MB\{T})
5. AssocMeasure(T,X|MB)
6. if T �⊥ Y |MB then
7. MB = MB ∪ Y
8. end if

Remove false positives from MB
9. for all X ∈MB do
10. if T ⊥ X|(MB \X) then
11. MB = MB \ X

12. end if
13. end for
14. until MB has not changed

Remove parents of children from MB
15. PC = MB
16. for all X ∈MB do
17. if ∃Z ⊂ (MB \X)
18. such that T ⊥ X | Z then
19. PC = PC \X
20. end if
21. end for
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4.3 FSS Robustness

When using FSS on data sets with large number of features, but a very small
number of samples, not only model performance but also robustness of the FSS
process is important. In microarray analysis, domain experts clearly prefer a sta-
ble gene selection as in most cases these genes are subsequently analyzed further,
requiring much time and effort. Surprisingly, the robustness of FSS techniques
has received relatively little attention so far in the literature. As noted in [3],
modification of the dataset can be considered at different levels: perturbation at
the instance level (e.g. by removing or adding samples), at the feature level (e.g.
by adding noise to features), or variation of the parameter of the FSS algorithm
(here the critical p-value of the independence test), or a combination of them.
In the current work, we focus on perturbations at the instance level because
our microarray sample size is very small. In addition, critical p-value and the
variable order is chosen at random before each run. We define the robustness of
FSS selector as the variation of the output due to small changes in the data set
and variations in the critical value of the independence test.

Here, following [16], we take a similarity based approach where feature sta-
bility is measured by comparing the outputs of the feature selectors on the k
subsamples. We use the Jaccard index as the similarity measure between two
subsets S1 and S2. The more similar the outputs, the higher the stability mea-
sure. The overall stability can be defined as the average over all pairwise simi-
larity comparisons between the different feature selectors:

Itot =

∑n
i=1

∑n
j=i+1 I(Si, Sj)

n(n− 1)
with I(Si, Sj) =

|Si
⋂

Sj |
|Si

⋃
Sj |

.

4.4 Ensemble FSS by Consensus Ranking

In this section, we discuss a simple ensemble technique that works by aggregating
the feature rankings provided by the FSS selector into a final consensus ranking.
We adopt a subsampling based strategy discussed in [3]. Consider a data set
X = {x1, . . . , xM} with M instances and N features. Then k subsamples of size
xM (0 < x < 1) are drawn randomly from X, where the parameters k and x can
be varied. Note that the proportion between classes in the original data set is
maintained in each resampled data set, which is known as stratified bootstrap.
Subsequently, the FSS algorithm is run p times on each of the k subsamples. Our
implementation breaks ties at random: a random permutation of the variables
is carried out and a random critical value α for the independence test is chosen
before each algorithm is run. The more similar the features subsets, the higher
the stability measure.

On the basis of all FSS, the confidence of each feature is computed as the
relative frequency of its presence in the outputs. The consensus among all the
induced models produces an ordered list of variables. The confidence level of a
given feature is the number of times that feature appears in the outputs. By
changing the confidence level, the biologists can build a hierarchy of feature
subsets.
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5 Experiments

In this section, we first jointly compare the robustness and the accuracy of
MBOR against several other scalable FSS learning algorithms on synthetic data
with as few samples as in our gene expression data set. More experiments on
several UCI data bases are provided in [8,9] with larger sample sizes. We then use
the ensemble method discusses in Section 4.4 on the expression data to provide
the biologist with a list - as robust as possible - of genes statistically associated
to diabetes, ranked in decreasing order of relevancy.

5.1 Robustness vs. Classification Accuracy

We first conducted several supervised experiments to evaluate the stability index
Itot and the predictive performance on synthetic data of MBOR and various
correct and scalable MB learning algorithms, i.e. PCMB [6], Fast-IAMB [14]
and Inter-IAMB [15], as a function of the size of the MB. The networks used in
the evaluation are PIGS, and GENE (See [5] for references). The algorithms are
run on each node and the robustness and performance indexes are average over
all nodes. The aim was twofold: 1) to analyze the effect of the true MB size on the
variability of the FSS output by the algorithms, 2) to assess the performance of
the selected features in terms of accuracy. To evaluate the accuracy, we combine
precision (i.e., the number of true positives in the output divided by the number
of nodes in the output) and recall (i.e., the number of true positives divided by
the true size of the Markov Boundary) as

√
(1 − precision)2 + (1− recall)2, to

measure the Euclidean distance from perfect precision and recall, as proposed
in [2].

We evaluate the effect of the size of MB on the robustness of the feature
selector. Results are shown in Figures 1 and 2. Itot was averaged over 50 runs
on each node with distinct subsets of 143 instances that were independent and
identically sampled from these networks. The robustness seems to slow down
with the number of features in the Markov boundary as we expected initially.
This is more visible on the Pigs data where the maximum MB size is as much
as 68, compared to 15 for Genes. MBOR seems more robust in most cases.
Interestingly, MBOR’s variability is far less dependent upon the MB size.

FSS needs to be combined with a classification model to estimate the prac-
tical relevancy of the features. We used the above BN-based FSS methods and,
for sake of completeness, we also assessed the accuracy of two filter and one
embedded FSS method. Note that the robustness of these methods was eval-
uated [3]. We discarded wrapper approaches because there are computation-
ally not feasible for the large feature sizes we are dealing with. For the filter
methods, we selected one univariate and one multivariate method. Univariate
methods consider each feature separately, while multivariate methods take into
account feature dependencies, which might yield better results. The univariate
method we choose is the Gain Ratio Attribute Evaluation method. It evaluates
the worth of an attribute by measuring the gain ratio with respect to the class,
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i.e. GainR(C,X) = (H(C) − H(C|X))/H(X) where X and C represent a fea-
ture and the class respectively, and the function H calculates the entropy. As a
multivariate method, we choose the RELIEF algorithm [17], which evaluates the
worth of an attribute by repeatedly sampling an instance and considering the
value of the given attribute for the nearest instance of the same and different
class. In our experiments, ten neighboring instances were chosen. As embedded
method, we evaluate the worth of an attribute by using support vector machines
(SVM) classifier as discussed in [18]. Attributes are ranked by the square of the
weight assigned by the SVM.

Figure 3 and 4 (upper plots) summarize the distribution of the Euclidean
distance over 25 data sets for CB-based FSS methods and (lower plots) for non
bayesian FSS methods. They summarize the variability of the Euclidean distance
in the form of boxplots on the largest MB only using the CB-based algorithms.
As may be seen, a clear picture emerges from the experiments. MBOR consis-
tently outperforms the other algorithms in terms of Euclidean distance in both
experiments.

5.2 Ensemble FSS Technique on Diabetes Data

In view of the good trade-off between performance and robustness on small
sample/large feature size data, MBOR was chosen as our FSS selector. The en-
semble strategy is used with k = 50 subsamples of size 0.9M (i.e. each subsample
contains 90% of the data). Then, MBOR was run with p = 25 times on each
subsample with a random permutation of the genes and α drawn at random in
the interval [0.001, 0.05]. To increase the reliability of the independence tests, the
expression levels of the genes in each training fold were transformed into binary
ones using the class-attribute interdependence maximization algorithm (CAIM)
[19]. CAIM maximizes the class-attribute interdependence and generate a list
of thresholds. The association was measured by the G-statistic. The thresholds
were then applied on both the training and test fold instances. Microarray data
were separated into 8 different subsets in order to answer to 4 different relevant
biological questions (i.e., case studies). These four case studies are:

1. Case study 1: the diabetes status, i.e. diabetic patients vs. obese + morbid
obese + glucose-intolerant + healthy patients. 143 patients in total.

2. Case study 2: the diabetes status only, i.e. diabetic patients vs. obese +
morbid obese patients. 45 instances in total.

3. Case study 3: the obesity status, i.e. obese + morbid obese + glucose-
intolerant patients vs healthy patients. 125 patients in total.

4. Case study 4: the insulin-resistance status, i.e. morbid obese + diabetic
patients vs healthy patients. 132 patients in total.

The top 15 ranked genes are shown in Figures 5 to 8 in decreasing order of
frequency. The common genes between these case studies are shown in Table 1.
We considered only the genes that appeared with a frequency of at least 1%.
According to our biologist, the results obtained are biological relevant as some
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Table 1. Common genes that appeared with a frequency of at least 1% in the output
of MBOR

Case studies Common genes

Case 1 vs Case 2 ’202441 at’, ’219357 at’, ’220380 at’, ’218070 s at’, ’220246 at’
Cas 1 vs Cas 3 none
Case 1 vs Case 4 ’205997 at’, ’219392 x at’, ’207057 at’,

’201447 at’, ’208090 s at’, ’212194 s at’, ’220137 at’
Case 2 vs Case 3 none
Cas 2 vs Cas 4 none
Case 3 vs Case 4 ’218776 s at’, ’AFFX-hum alu at’, ’201609 x at’,

’202074 s at’, ’204144 s at’, ’211284 s at’

genes which can discriminate between each case studies have been already iden-
tified as abnormally expressed in the skeletal muscle of type 2 diabetic patients,
like PPARGC1A (219195 at in Fig.4) [20]. Moreover when we compared the two
lists of genes obtained between case 1 and case 2, we found CAMK1D (220246 at,
in Table 1) which has been identified as a candidate gene for type 2 diabetes in
genetic studies [21]. These results are thus highly promising and give new tracks
to the biologists to identify new genes that would be related to the development
of the disease.

5.3 Conclusion

This paper discusses the application of a novel feature subset selection method
on a genomic database that consists of 22,283 genes and only 143 patients. We
assessed the variability of our results and proposed an ensemble techniques to
yield more robust results. Preliminary results are promising according to our
domain expert. Future substantiation through more experiments are currently
being undertaken and comparisons with other FSS techniques will be reported
in due course.
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Abstract. One of the challenging tasks in the medical area is brain
tumor segmentation which consists on the extraction process of tumor
regions from images. Generally, this task is done manually by medical
experts which is not always obvious due to the similarity between tu-
mor and normal tissues and the high diversity in tumors appearance.
Thus, automating medical image segmentation remains a real challenge
which has attracted the attention of several researchers in last years. In
this paper, we will focus on segmentation of Magnetic Resonance brain
Images (MRI). Our idea is to consider this problem as a classification
problem where the aim is to distinguish between normal and abnormal
pixels on the basis of several features, namely intensities and texture.
More precisely, we propose to use Support Vector Machine (SVM) which
is within popular and well motivating classification methods. The exper-
imental study will be carried on Gliomas dataset representing different
tumor shapes, locations, sizes and image intensities.

1 Introduction

Magnetic Resonance Imaging (MRI) provides detailed images of brain studies.
MRI data are used in brain pathology studies, where regions of interest (ROI’s)
are explored in detail. This assistant diagnostic device is very helpful for doctors
during disease diagnosis and treatment. The plenty of acquired images show the
inside to doctors, but, doctors seek to know more details about images, such as
emphasizing the tumor area, quantifying its size, and so on. If these tasks are
made by doctors themselves, it is possibly inaccurate or even impossible. There-
fore, image processing by computers is relevant in radiology. There are already
several computer-aided diagnosis (CAD) systems which are used in disease mon-
itoring, operation guiding tasks, etc. [1]. In fact, CAD seeks to assist doctors by
providing computer outputs, which are considered as a second opinion during
abnormalities detection, disease progress survey, etc.

Among all medical image processing, image segmentation remains a crucial
task consisting on extracting regions of interest from images. But it is still not
well solved because of the complexity of medical images [1].

This task is too time consuming, tedious, and even impossible in some cases
due to the large amounts of information provided by each image [3]. In fact,
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automatic segmentation is not preferable for doctors since their knowledge and
experience is more important than computers simulations. So CAD systems
should find a good compromise between manual and automatic intervention
in the segmentation procedure. To reach this goal, we will propose a supervised
method for brain image segmentation based on a classification method, namely
Support Vector Machines (SVM).

This paper will be structured as follows; In Section 2 we will briefly describe
some image segmentation methods. Section 3 will detail the classification method
SVM. Section 4 will present the environment and the input data in our system.
In Section 5, 6, we will describe main processing steps which are image pre-
processing (registration and noise reduction) and features computation. Section
7 will be dedicated to describe the brain tumor segmentation using SVM. Finally,
Section 8 presents our experimental study.

2 Image Segmentation

Image analysis usually refers to computer image processing with the objective
of finding image objects. Image segmentation is one of the most critical tasks in
automatic image analysis. It plays a crucial role in many imaging applications
and consists on subdividing an image into its constituent parts and extract-
ing the regions of interest that should be homogeneous with respect to some
characteristics such as intensity or texture.

A great variety of segmentation algorithms have been developed in the last few
decades and this number continually increases each year. These methods vary
widely dependly on the specific application and other factors. A classification on
these methods was proposed in [2] on the basis of five criteria namely: region,
contour, shape, structural approaches and graph theory.

Since we are interested in brain tumor segmentation, then tumor regions can
be scattered all over the image. This explains the fact that determining the
regions of interest is also called pixel classification and the sets are called classes.
In fact, pixel classification rather than classical segmentation methods are often
preferable especially when disconnected regions of interest belonging to the same
class should be extracted.

Classifiers can be considered as pixel classification methods. For this reason,
we will adopt the region criteria and more precisely the Support Vector Ma-
chines (SVM) as a segmentation method. Our choice is especially motivated by
its fastness, robustness in generalization preperties and its capacity to handle
voluminous data [5]. Also, many studies have indicated that SVM outperforms
other binary classifiers in most cases [21]. Basics of this approach are given in
the following Section.

3 Support Vector Machines

Support vector machines (SVM) represent a class of state-of-the-art classifiers
that have been successfully used for classification [16]. It performs binary clas-
sification tasks.
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Given a set of n labelled data points {(x1, y1), ..., (xn, yn)} where yi = ± 1,
an SVM learns a decision function by searching a separating hyperplane ≺w,x�
+ b = 0, where xi ∈ Rn, w ∈ Rn and b ∈ R. In the linear case, SVM looks
for an hyperplane that maximizes the margin by minimizing 1

2 · ||
−→w ||2, subject

to yi(≺ w, xi � +b) >= 1, i = 1, 2, ....n. In the linear non-separable case, the
optimal hyperplane is computed by adding slack variables εi = 1, 2, . . . , n and a
penality parameter C and the optimization problem is expressed as follows:

min
1
2
· ||−→w ||2 + C

n∑
i=1

εi

subject to yi(≺ w, xi � +b) >= 1− εi, i = 1, 2, ....n

(1)

Using the Lagrangian formulation, these optimization problems are solved by
introducing a new unknown scalar variable, αi called the Lagrange multiplier
which is introduced for each constraint and forms a linear combination involving
the multipliers as coefficients. The problem will be expressed as follows:

Ld =
n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjxixj (2)

After resolution of the optimization problem, the data points associated with
the non zero αi correspond to specific data (xi,yi) called support vectors. These
data are used for computing the decision function, while the remaining data are
discarded.

For the non linear case, the surface separating the two classes is not linear,
so the idea is to transform data points to another high dimensional feature
space where the problem is linearly separable. If the transformation to the high
dimensional space is ϕ then the Lagrangian function can be expressed as:

Ln =
n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjϕ(xi)ϕ(xj) (3)

The dot product ϕ(xi) ϕ(xj) in that high dimensional space defines a kernel
function k(xi, xj). Within the most common kernel functions, we cite:

– Linear: xi.xj ,
– Polynomial of degree d: (xi.xj + 1)d,

– Radial Basis Function (RBF): exp(−||xi−xj||2
2σ2 ).

Once the support vectors have been determined, the SVM decision function
has the form:

f(x) =
Supportvectors∑

j=1

αjyjK(xj , x) (4)
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4 Medical Image Description

MRI is a powerful visualization technique that produces images of internal
anatomy in a safe and non-invasive way. It generates a set of sagittal, coronal
and axial images for each patient moving from the top of the head to the bot-
tom. These images follow the Digital Imaging and Communications in Medicine
(DICOM) standard which is an international standard for communication of
biomedical diagnostic using digital images [3].

MRI offers different visualizations of images due to a combination of the
device parameters (i.e., repetition time (TR), echo time (TE)). In our study,
we handle T1 and T2-weighted images such as a T1-weighted image is produced
by a relatively short TR/short TE sequence, and a long TR/long TE sequence
produces a T2-weighted image. For the sake of simplicity, T1-weighted and T2-
weighted will be referred to as T1 and T2, respectively.

In our work, we will focus on tumor images. In fact, brain tumor segmentation
is a very complex problem since many indicators should be investigated, namely:
the localization of tumor, evaluation of its shape, its volume, its homogeneity, its
nature and its interactions with nearby brain structures, the presence of swelling,
etc. Thus a unique segmentation method can not generalize all tumor types [4],
that is why we only focus on a subset of tumor types, namely, Gliomas which
are developped from glial cells.

5 Image Pre-processing

Image pre-processing is important for real-life data which are often noisy and
inconsistent. The purpose of this step is to improve the quality of the image by
transforming it into another image that is better suited for machine analysis.
In our work, we will adopt image registration and noise reduction techniques as
explained below.

5.1 Image Registration

Image registration represents the process of spatially aligning two images by
computing a transformation applied to an input image in order to match it to
a template image that is assumed stationary. The major challenge associated to
this step is defining a quantitative measure that assesses spatial alignment and
given this measure, the task is reduced to a search of a set of transformations pa-
rameters that optimize it. These transformations can be affine, rigid or curved.
The rigid transformation is a special case of the affine transformation. It is com-
posed of translations and rotations operations, while the affine transformation
adds scaling and shearing operations.

In what follows, we will adopt two kinds of registration methods dependly on
two criteria namely: modality and subject criteria.

– The first one is referred to by co-registration and consists on aligning different
modalities of the same patient (e.g., T1 and T2). This step is essential if the
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used modalities are not in perfect alignment which is often the case with real
data [5].

– The second corresponds to template registration and aligns the modalities
with a template image in a standard coordinate system in order to average
signals from brain images of different subjects. This is often done by mapping
all the images into a recognized brain coordinate system. The coordinate
system used in our work is the MNI [19] since it handles templates in different
modalities i.e., T1 and T2.

5.2 Noise Reduction

The noise that corrupts the signal recorded at each pixel could be totally or par-
tially removed. Within famous and successful methods, we cite the anisotropic
diffusion filtering which is a technique introduced by Perona and Malik [6] com-
monly used to reduce the effects of local noise. It represents a simple method
to reduce the effects of local noise without requiring a tissue model. This filter
strengthens the difference between regions and eliminates the noise by increasing
regions homogeneity and preserving the edges.

6 Image-Based Features

The calculation of image-based features is a primordial step in our work due to
the fact that each pixel should have characteristics used for the differentiation
between the tumor and the normal pixels. A great variety of features can be
computed for each image such as intensities, textures, distances to labels, spatial
tissue prior probabilities and existing works combine several of them depending
on the nature of problem [7,8,9].

In fact, the main consideration when selecting features is that they should
reflect properties that can help us to discriminate between normal and tumor
pixels.

In our work, we will adopt intensities and texture features since there are the
most commonly used features in brain tumor segmentation [5]. More precisely,
the first pixel-level feature is pixel intensities from each modality (T1 and T2)
and the second set is relative to calculations that can characterize patterns in
region intensities. There is a large variety of methods that compute features
characterizing image textures. Recent surveys can be found in [13] and [14].

We will explore first-order and second-order texture parameters. The first-
order parameters which are called (statistical moments) ignore spatial infor-
mation and are essentially features that characterize properties of the local
histogram. We calculate the parameters from [11], which are mean, variance,
skewness, kurtosis, energy and entropy. While the second-order ones, the most
commonly used features that characterize textures in the medical imaging area
are the Haralick features which represent a set of 14 statistics including mea-
sures such as angular second momentum, contrast, dissimilarity, entropy, cluster
shade, cluster prominence, local homogeneity and inertia.
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These features are computed from a gray-level spatial coocurrence matrix [15]
which is an estimation of the likelihood that two pixels of intensities i and j will
occur at a distance d and an angle of θ within a neighborhood. In general, d and
θ take the following values : d = 1, 2, etc. and θ = 0◦, 45◦, 90◦, 135◦.

To obtain these features, cooccurrence matrix should be computed. This task
involves defining the value of d and θ and computing the number of frequencies
of each couple of intensities values in the image matrix with respect to d and θ.

7 Brain Tumor Segmentation Using Support Vector
Machines

Our aim in this work is the extraction of tumor regions from brain images. To
ensure this task, images should first be pre-processed in order to improve their
quality. Moreover, classification methods need an attributes set characterizing
each instance which corresponds in our case to a features set relative to each
pixel. This will be done via an extraction step which consists on computing
image-based features. Therefore, our segmentation method is based on four main
phases, namely pre-processing, features extraction, SVM training and testing and
segmentation. The whole process is illustrated by the diagram of Fig. 1 which
can be detailed as follows:

7.1 Pre-processing Phase

This first phase ensures the pre-processing step. It is composed of six steps:

– Acquisition: this step is ensured via MRI and represents a primordial step
since the remainder of the process will depend on the quality of acquired
images. Note that the MR images can be axial, coronal or sagittal and that
their number and type depends on the tumor localization. The output of
this step is a set of 2D slices.

– Reconstruction: this step maps the 2D sequential slices of each patient to an
entirely volume (i.e., 3D image). This step is needed in our system in order
to register images using the SPM1 software which handles 3D images. This
step will be done using the XMedCon2 software.

– Co-registration: this step spatially aligns volumes of each patient having
different modalities (i.e., T1 and T2). The common tool to ensure this task
is SPM software.

– Template registration: having as input co-registered volumes, this step con-
sists on aligning the modalities (T1 and T2) with a template image in the
MNI standard coordinate system in order to average signals from brain im-
ages of different subjects. This can also be ensured by SPM software.

1 Statistical Parametric Mapping, available at http://www.fil.ion.ucl.ac.uk/spm/
2 X Medical Conversion, available at http://xmedcon.sourceforge.net/
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– Extraction of slices of interest : in this step, we will choose the ’interesting’
slices from the registered volumes, i.e., the slices where we can see the tumor
regions. The output of this step is a set of 2D pathological images. The
tool that will be used in this step is MIPAV3. In fact, any medical imaging
software ensuring volumes visualization can be used in this step.

– Noise reduction: this step improves the quality of data through the applica-
tion of methods of denoising (see (Sub)Section 5.2).

7.2 Features Extraction Phase

Given denoised images, this phase refers to various quantitative measurements
used for making decisions regarding the pathology of a tissue. More precisely,
for each pixel, we should compute a feature vector composed of features already
described in Section 6. Thus, the output of this phase will be unlabelled data
set. In this phase, we have used the MIPAV tool.

7.3 Training and Testing Phase

In this phase, the Gliomas regions for each image in the training set will be
selected manually and validated by the radiologist. In fact, axial images are
displayed on the computer screen, one slice at a time. Next, representative regions
of interest (i.e., tumor regions) are selected interactively on the computer screen
using a mouse-driven interface aided by active contour models [18]. These models
are used for definition and tracking of tumor regions contours due to their ability
to approximate accurately the random shapes of boundaries [17]. After that,
pixels within any of the defined regions of interest are labeled as tumor, while
pixels outside of tumor contours are labeled as normal.

Once the labeled training set containing normal and tumourous pixels is con-
structed, SVM can be trained in order to fix support vectors as already explaind
in Section 3, so that the output of this step will be the classification model
allowing the differentiation between normal and tumor pixels. Note that the
choice of appropriate parameters for the SVM model can be done through a
testing phase by an analysis of the PCC (Percentage of correct classification).
In the present study, the implementation of SVM is based on the strategy of the
package LibSVM4.

7.4 Segmentation Phase

To ensure this phase, we propose two steps:

– Classification step: in this step, the classification model generated from the
previous phase will be used to affect the tumor or the normal class for each
pixel in the new images which are pre-processed.

3 Medical image processing, analysis and visualization, available at
http://mipav.cit.nih.gov/

4 Library for Support Vector Machines, available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Fig. 1. Diagram illustrating our segmentation system

– Tumor extraction step: after that, the set of tumor pixels is grouped to form
the tumor region. To clarify our output segmentation, we will propose for
each segmented image, a binary image where the black region is the image
background and the white region represents the tumor one.

8 Experimental Study

In order to test the efficiency of our segmentation method, we apply it on a
real database relative to 80 images of 4 patients collected from August 1, 2008,
to January 31, 2009 such that patients’ ages are ranged from 18 to 64 years.
For each patient, we have 20 tumor images (10 axial, 5 coronal and 5 sagittal)
corresponding to Gliomas in different grades, for 3 different modalities (i.e., T1,
T1 after injection of contrast agent and T2). For training, we have chosen 9 axial
slices for each patient and the remaining slices are used for testing.

Once our data set is constructed, we follow different steps of our system
described in the previous Section.

The implementation of the whole system needs several tools and consecu-
tively several parameterizations. For the experimental study, our choices can be
summarized as follows:

– for the reconstruction step, 2D images for each patient should be stacked into
one volume. XMedCon, the software used in this step requires a sequence of
images sorted alphabetically which is used to construct 3D images. Note that
a specialized doctor brings a great help if he validates the image sequence.
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– for the co-registration, the rigid-body model that can be parameterized by
only translations and rotations is used and the objective function that is
maximized in this case will be the normalized mutual information (NMI)
measure since it is one of the most popular measures of co-registration in
medical imaging [5].

– the measure used in template registration is the sum of squared difference. It
needs the computation of a linear 12-parameters affine transformation that
has twelve parameters due to the fact that each image has 3 dimensions and
this consists of one parameter for each of the three dimensions with respect
to translation, rotation, scaling, and shearing.

– images are denoized using the anisotropic diffusion filtering that is imple-
mented using Matlab.

– for each pixel, the selected feature vector is restricted to intensities values
and the following texture values: (angular second momentum, contrast, dis-
similarity, entropy, cluster shade, cluster prominence, local homogeneity and
inertia).

– After these steps, SVM will be applied. First of all, a kernel function (poly-
nomial, linear, etc.) should be chosen. Then, kernel parameters have to be
selected (σ for the RBF function, the degree d of a polynomial function,
etc.). After that, data training can be done using these parameters. Finally,
testing images are segmented using the SVM model. In fact, pixels classified
as tumor ones represent the tumor region.

In our experimentation we apply the RBF kernel due to the fact that many
studies have demonstrated that the preferable choice is RBF [20], and the tech-
nique used to fix its optimal parameters is a grid search using a cross-validation.
In fact, a grid search with 10-fold cross-validation searches the best parameters
among an interval of values which achieve a high accuracy during training and
testing. For our data, we have obtained the following values: σ = 0.5, C = 8
with a PCC value of 79.89 %. We note that PCC is computed by Eq. 5 where
TP , TN , FP and FN denote respectively the number of true positives, true
negatives, false positives and false negatives pixels.

PCC =
TP + TN

TP + TN + FN + FN
(5)

In order to quantitatively assess the quality of our segmentation in comparison
to the ground truth GT obtained from the boundary drawings of a radiologist,
we choose to use the commonly used criteria the Match Percent measure MP
[12]. It is calculated as the direct ratio of the true positives to the number of
ground truth tumor pixels. It is expressed by Eq. 6.

MP =
#TP

#GT
(6)

This measure is equal to 1 if the segmentations are identical, while it will
approach to 0 for completely dissimilar segmentations. In our case, we have
obtained 81.97 % of similar segmentations.
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Fig. 2, Fig. 3 and Fig. 4 show the output of our segmentation method for
axial, coronal and sagittal orientations using the RBF kernel.

Fig. 2. Axial image and its segmentation
output

Fig. 3. Coronal image and its segmenta-
tion output

Fig. 4. Sagittal image and its segmentation output

9 Conclusion and Future Work

Medical image segmentation tools have already proved their efficiency in research
applications and are now used for computer aided diagnosis and radiotherapy
planning. They will be valuable in areas such as computer integrated surgery,
where the visualization of the anatomy is fundamental.

This paper proposes a medical image processing system which is a user in-
teractive tool for image segmentation. More precisely, we focus on brain tumor
images issued from MRI device.

The proposed system considers the segmentation as a classification problem.
More precisely, the SVM classification method is applied to ensure a segmen-
tation task since it is significantly faster than other classification methods, also
due to its robustness in generalization preperties and its capacity to handle vo-
luminous data.

Our system is based on four main phases, namely pre-processing, features ex-
traction, training and testing phase and segmentation phase. The pre-processing
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phase consists on registering images of different modalities with each other and
registering them using a template image, i.e., MNI before filtering them to re-
duce the effect of eventual noise. While the features extraction phase computes
for each pixel a feature vector that is characterized by intensities and texture
values. After that, SVM constructs a classification model allowing the discrimi-
nation between normal and tumor pixels. Finally, this model is used to classify
new pixels in order to extract tumor regions (i.e., the set of tumor pixels). Within
the challenges of our system, we cite the choice of parameters which ensure a
good accuracy. Effectively, as shown by Fig. 1 our system needs several steps
with several tools, and at each step we should fix multiple parameters. To this
end, the experimental study presents an appropriate way to fix them and our
results from this study are motivating since the PCC is around 80 %. This rate
can obviously be improved by enriching the training data, which remains the
other challenge in this work due to the lack of real data in brain tumor imaging
area.

This point presents our first line of research, since it will allow us to optimize
choices at each step of the whole proposed segmentation method. In particular,
the features selection phase can be improved by a better selection of features.
For instance, we can include tumor characteristics and tumor localization and
even some personal characteristics of patients which will enable us to extend our
approach to a whole decision support system.
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Abstract. In this paper, a new ensemble learning method is proposed.
The main objective of this approach is to jointly use knowledge-based
and data-driven submodels in the modeling process. The integration of
knowledge-based submodels is of particular interest, since they are able
to provide information not contained in the data. On the other hand,
data-driven models can complement the knowledge-based models with
respect to input space coverage. For the task of appropriately integrat-
ing the different models, a method for partitioning the input space for
the given models is introduced. The benefits of this approach are demon-
strated for a real-world application.

1 Introduction

Real-world applications are characterized by an increasing complexity. To gen-
erate adequate models the consideration of all available information sources
is necessary. For this purpose, more and more sophisticated combinations of
knowledge-based and data-driven models are required which are representing
these sources. While data-driven models are learned from available training data
the integration of knowledge-based models is of particular interest since they are
able to provide information not contained in the training data. The knowledge-
based models are designed for particular regions of the input space. In order to
ensure that the models are only active in regions they are designed for, their
specific validity ranges have to be included in the modeling process.

The use of multiple submodels is motivated by the paradigm that different
submodels can complement each other avoiding the weakness of a single model.
The combination of models constitutes an ensemble as depicted in Fig. 1. Ac-
cording to the divide-and-conquer principle a complex task is solved by dividing
it into a number of simpler tasks and then combining the solutions of those tasks.
The ensemble fuses information yj acquired by model j, j = 1, . . .M , to produce
an overall solution y that is supposedly superior to that attainable by any one
of them acting alone. Literature describes many approaches that address the
problem of learning local models. Examples of such methods are boosting [1],
mixture of experts [2], or ensemble averaging [3]. The algorithms for learning
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Fig. 1. A common ensemble model. The dashed line indicates that the Combiner can
involve the current input in its decision dependent on the combining method.

local models can be discriminated with respect to several aspects: in the way
they divide the training data into subsets, the type of submodels they use, or
how they combine the outputs of the submodels. However, none of the existing
methods are able to integrate predefined models that are designed for particular
regions of the input space.

The paper is organized as follows: In Sect. 2, an introduction of multi-source
fusion is given and Sect. 3 describes an ensemble learning model for combining
data-driven and knowledge-based models. In Sect. 4, some experiments on a
real-world application are outlined. Sect. 5 concludes the paper.

2 Multi-source Information Fusion

The term information fusion (IF) encompasses the process of merging and in-
tegrating heterogeneous information components from multiple sources, for in-
stance, in the form of sensors, human experts, symbolic knowledge, or physical
process models (according to Dasarathy [4]). IF is an important technique in
different application domains, such as sensor fusion [5], identity verification [6],
or signal and image processing [7].

Fusion implies the combination of information from more than one source.
There are different reasons for fusion of multiple sources:

– The combined solution is able to attain more accurate, transparent, and
robust results since the different information sources can complement each
other with respect to their strengths and weaknesses.

– A model that depends on a single source is not robust with respect to
error-proneness, i.e. if the single source is erroneous the whole model is af-
fected. Models based on fused information sources are more robust since
other sources are able to compensate for incorrect information.
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– Fusion of information sources will provide extended coverage of information
of the process to be modeled.

We consider two kinds of fusion approaches: complementary and cooperative
fusion. They are discriminated with respect to the relationship among the infor-
mation sources. In complementary fusion each source provides information from
a different region of the input space, i.e. their responsibilities do not overlap.
These sources provide locally a high performance. However, outside their re-
gions the results are not valid. Cooperative fusion means that the information is
shared among several information sources in the same region of the input space
and has to be fused for a more complete modeling of the underlying process.

The next section describes an ensemble learning approach for IF. The infor-
mation sources will be represented by predefined models. The process of parti-
tioning the input space and the fusion of the models is performed by a separate
data-driven model.

3 Combining Knowledge-Based and Data-Driven Models

The proposed ensemble model, referred to as heterogeneous mixture of experts
(HME) model, is based on the mixture of experts (ME) approach [2], [8]. This
model consists of a set of submodels that perform a local function approximation.
The decomposition of the problem is learned by a gate function which partitions
the input space and assigns submodels to these regions. In contrast to the ME
model, the proposed ensemble learning method starts with some knowledge-
based submodels, representing different information sources. Fig. 2 illustrates
a general HME model. It consists of different models and a gate. To ensure
that these submodels are assigned to those domains of the input space they are
designed for, information about the specific validity ranges of the predefined
knowledge-based submodels is used for the partitioning of the input space. It is
assumed that the knowledge-based models will only cover a part of the input
space while data-driven models learn the remainder.

From the probabilistic perspective the output of the HME model can be in-
terpreted as the probability of generating output y(n) given input vector x(n):

P
(
y(n)

∣∣∣x(n), Θ
)

=
M∑
j=1

P
(
z
(n)
j

∣∣∣x(n), θg

)
P

(
y(n)

∣∣∣x(n), θj

)
, (1)

where M is the number of submodels, Θ is the set of parameters
{
θg, {θj}Mj=1

}
of the gate and of the submodels, respectively. The input vector x(n) ∈ +k

and the output y(n) ∈ +, where n = 1, . . .N . The probability P
(
z
(n)
j

∣∣x(n), θg

)
represents the mixture coefficient of model j. The latent variable z

(n)
j indicates

which input vector x(n) was generated by model j. Its introduction simplifies
the training algorithm and allows the HME to be trained with the Expectation-
Maximization (EM) algorithm [9]. The probability P

(
y(n)

∣∣x(n), θj
)

represents
the conditional densities of target y(n) for model j.



Ensemble Learning for Multi-source Information Fusion 751

Fig. 2. Architecture of the proposed ensemble model. We include the case that gate
and submodels may depend on different feature subsets of the input vector.

To compute the validity of each knowledge-based submodel j for an input
vector a mapping vj : +k → [0, 1], ∀j = 1, . . . ,M is defined. The specific validity
function of a knowledge-based submodel j for the i-th dimension is

vj

(
x

(n)
i

)
=

⎛⎝ 1

1 + exp
(
sj

(
x

(n)
i − uji

)) − 1

1 + exp
(
sj

(
x

(n)
i − lji

))
⎞⎠ , (2)

where lji and uji are the lower and the upper bound of the validity range of
submodel j in dimension i. The parameter sj determines the slope of the border
of the validity range. Its influence on vj is illustrated in Fig. 3.

For small sj the slope of the border is more flat. The higher sj gets, the steeper
is the slope of the border. In this way, the transition between the submodels can
be controlled. If there are smoothness assumptions about the target function one
can choose a lower value for sj .

To update the model parameter the EM algorithm is used. In the expectation
step, the validity values are integrated into the computation of the posterior
probability h

(n)
j of selecting submodel j for input vector x(n):

h
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This enforces the gate to reduce the weights of submodel outputs if the input vec-
tors are located outside their domains. The particular amount of weight decrease
depends on the value of vj .
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Fig. 3. The figure shows several validity ranges with different values of s: s = 0.8
(dottet line), s = 2 (dashed line), and s = 100 (solid line)

In the maximization step, the log likelihood function

L =
N∑
n=1

M∑
j=1

h
(n)
j log

(
P

(
z
(n)
j

∣∣∣x(n), θg

)
P
(
y(n)

∣∣∣x(n), θj

))
(4)

is to be maximized with respect to the parameters of the gate and of the data-
driven submodels.

4 Real-World Application

The application addresses the simulation of the electrical energy flow in the
powertrain of a hybrid electric vehicle. Four distinct driving modes can be defined
by the available expert knowledge: pure electric drive mode, hybrid drive mode,
brake mode, and drag mode. Dependent on the current drive mode electrical
energy is used in several different ways. In pure electric drive mode and hybrid
drive mode energy is provided by the battery to drive the electric motor. In
brake mode and drag mode the electric motor is operating as a generator to
recuperate the kinetic energy to be used for charging the battery. Domain experts
designed specific models for each mode. These models represent complementary
information sources since they are defined for different regions of the input space
with each model providing information for different mutually exclusive driving
modes. Furthermore, the battery must maintain certain chemical limits. These
limits determine the maximum charge and discharge capabilities of the battery
dependent on its state of charge and temperature.

The data set is randomly divided into a training data set (80% of the data) and
a test data set (20% of the data). The overall experiment is performed ten times
and the results are averaged. The following models were compared: an HME,
an ME, a multi-layer perceptron (MLP), and an ensemble of MLPs. The HME
model uses four expert models. Two characteristic maps and a mathematical
model represent the pure electric drive mode, brake, and drag mode. However,
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since there is no model provided for the hybrid drive mode a two-layer MLP
with 5 input units, 6 hidden units and one output unit was learned. Each mode
has different input features. As gate, an MLP with 4 hidden units was applied.
For each knowledge-based model j a validity function vj is defined by the the
domain experts. For the data-driven model no validity function is given. Instead,
it is assumed to be valid in the entire input space.

The ME consists of 4 MLPs with 6 hidden units and as gate an MLP with
5 hidden units was used. The single MLP comprises 14 hidden units. In the
ensemble 10 members were combined. All members have the same architecture,
i.e. MLPs with a single hidden layer of 8 hidden units. The ensemble is generated
using K-fold cross-validation, where K is the number of ensemble members. The
output of the ensemble is computed as follows:

yEns

(
x(n)

)
=

1
K

K∑
j=1

yj

(
x(n)

)
, (5)

where yj
(
x(n)

)
is the output of the j ensemble member. We used the mean

absolute error to compare the perfomance of the models:

e =
1
N

N∑
n=1

∣∣∣y(n) − f
(
x(n)

)∣∣∣ . (6)

Table 1 summarizes the results. The HME achieves superior performance due
to the incorporation of available information sources. Fig. 4 shows the outputs of
the gate model (the activation of the submodels) of the HME. In most cases, the
gate selects only one submodel for each input vector. This behaviour is consistent
with the knowledge of the domain expert that the submodels were defined for
different mutually exclusive modes. The ME model was not able to identify the
driving modes and dividing the input space in a technically non-plausible way.
This is illustrated in Fig. 5. The overall output is composed of the outputs of
the submodels.

The chemical battery limits are violated by all models, except the HME,
since they predict energy flows that cannot be provided by the battery. Some
violations of the limits are shown in Fig. 6 of (a) the MLP, (b) the ME, and
(c) the ensemble. The necessary information about these limits is not contained

Table 1. Mean absolute error for the hybrid electric vehicle data set

Model
Mean absolute error
training testing

HME 1.82 1.84
ME 2.57 2.71
MLP 2.05 2.11

Ensemble 1.97 2.03
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Fig. 4. The figure shows the activations of the different submodels by the gate of the
HME model
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Fig. 5. The figure shows the activations of the different submodels by the gate of the
ME model for the same data as shown in Fig 4
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Fig. 6. The figures (a)-(c) show examples of violations of the chemical battery limits
(depicted as horizontal lines) of (a) the MLP (solid line), (b) the ME (solid line), and
(c) the ensemble (solid line). The target values for the energy flow and the outputs of
the HME are depicted as dotted and dashed lines.

Table 2. Responsibilities of the mode models for data of the corresponding driving
mode

HME Model
Driving mode (in %)

brake pure electric drive drag hybrid
HME 97 94 92 96
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Table 3. Mean absolute error for different sizes of the training data set T for the
hybrid electric vehicle data set

Model Mean absolute error
T T/2 T/4 T/8 T/16

HME 1.82 1.81 1.83 1.86 1.90
ME 2.57 2.61 2.68 2.82 3.10
MLP 2.05 2.11 2.24 2.39 2.63

Ensemble 1.97 2.03 2.10 2.19 2.34

T T/2 T/4 T/8 T/16
1.5

2

2.5

3

3.5

Fig. 7. The figure shows the predictive error of the models for different sizes of the
training data set T . The HME model (square) has a slight increasing error for small
training data set sizes. If the size of the training data set gets smaller the error of the
ME model (downward-pointing triangle), the MLP (circle), and the ensemble (upward-
pointing triangle) increases fast.

in the training data, but it is implicitly contained in the given knowledge-based
models.

For the HME model Table 2 shows the distribution of the responsibilities
of the mode models for data of the corresponding driving modes. The values
indicate that the mode models are correctly assigned to the partitions of the
driving modes.

An additional advantage of incorporating available knowledge is that fewer
training data are required. In Table 3 and Fig. 7 the results for different sizes
of the training data sets are shown. The smaller the training data set size the
less robust are the results of the purely data-driven models. The results indicate
that the HME model requires fewer training data compared to other regression
methods in order to achieve a good predictive performance. This is useful if few
training data are available.
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5 Conclusions

By applying the proposed ensemble learning model it is possible to fuse informa-
tion from multiple sources represented by knowledge-based models. Data-driven
submodels are used to complement these models with respect to the coverage of
the input space. To be able to integrate given knowledge-based models into the
process of simultaneously training the data-driven submodels and a gate model it
is crucial to incorporate the validity ranges of the knowledge-based models. The
integration of knowledge-based models does not only lead to a superior perfor-
mance but also results in an improved plausibility and reliability of the proposed
model compared to the other models. Furthermore, the HME benefits from the
additional information provided by the knowledge-based models as shown in the
application example.
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Abstract. Early warning systems help to mitigate the impact of disas-
trous natural catastrophes on society by providing short notice of an
imminent threat to geographical regions. For early tsunami warning,
real-time observations from a seismic monitoring network can be used
to estimate the severity of a potential tsunami wave at a specific site.
The ability of deriving accurate estimates of tsunami impact is limited
due to the complexity of the phenomena and the uncertainties in seis-
mic source parameter estimates. Here we describe the use of a Bayesian
belief network (BBN), capable of handling uncertain and even missing
data, to support emergency managers in extreme time critical situa-
tions. The BBN comes about via model selection from an artifically
generated database. The data is generated by ancestral sampling of a
generative model defined to convey formal expert knowledge and physi-
cal/mathematical laws known to hold in the realm of tsunami generation.
Hence, the database implicitly holds the information for learning a BBN
capturing the required domain knowledge.

Keywords: Bayesian belief network, learning, tsunami warning system,
decision support, seismic source parameters.

1 Introduction

The tsunami disaster of December 2004 where over 230’000 people lost their
lives has shocked the international community and awakened the awareness of
the tsunami hazard world wide. The tragedy has exposed the vulnerability and
the lack of a warning system in a cruel way.

During the last four years many studies have been launched aiming at estab-
lishing technically advanced concepts and modern equipments for robust tsunami
early warning systems. Much effort has been undertaken in installing a variety
of monitoring instrumentation. Focus has been set to the fast and exact analysis
and evaluation of near-real time seismological, geodetical, and other geophysi-
cal data. All of these measures are important contributions to the mitigation of
future tsunami hazard. Still scientific personnel at tsunami warning centers are
in urgent need of operational tools that will provide an accurate answer to the
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question whether a tsunami has been generated co-seismically (once an earth-
quake occurred) in order to guide immediate decisions for evacuation and rescue
operations.

For Indonesia or countries surrounding the Mediterranean Sea where the dis-
tance from an earthquake epicenter to the coast is small due to the geological
situation, a tsunami wave may reach the populated coast in 20 min or even less.
Consequently we need any evidence about a potential tsunami triggering as fast
as possible. The first indirect measurements of tsunami generation come from
the analysis of seismic waves, mostly available after about 5 min. Unfortunately,
the seismic source parameter estimates are prone to large uncertainties at such
early stages. Tsunami confirmation by tide gauges may arrive too late for timely
evacuation measures. Therefore tsunami warning center’s personnel face a dif-
ficult challenge: to issue tsunami warning based on incomplete and ambiguous
data.

Currently, the automated evaluation of seismic source parameter estimates
with respect to tsunami generation is achieved by rule-based systems. Only three
variables are evaluated: First there is a boolean variable indicating whether the
epicenter was located offshore or not, second an earthquake size estimate through
magnitude is compared to a threshold and finally the depth of the hypocenter
is categorized as being shallow or not. Current rule-based systems do not take
into account the uncertainties of the earthquake parameter estimates and are
not able to generate any decision support as long as one of the three variables
is missing.

Within this study we apply a new approach based on Bayesian belief net-
work (BBN) being capable of handling uncertain or even missing data. We show
how to integrate more than the commonly used three variables by taking into
account all estimated source parameters (size, orientation, rupture characteris-
tics) independently. Generally they become available at irregular time instances
and are updated continuously. Using a BBN for the automatized evaluation of
the incoming evidences allows for integrating each information piece instanta-
neously and estimate the probability of the imminent tsunami risk supporting
the decision maker from the very beginning. In this paper we will describe the
construction of a first BBN draft.

Due to the fact that large earthquakes capable to trigger tsunamis are in-
frequent and tsunamis are even less frequent the set of historical data is very
sparce. During the last 30 years about 230 tsunamis were observed world wide.
Focusing on one of our sites of interest, offshore Sumatra (Indonesia), out of
approximately 1800 earthquakes with magnitude larger than 5 a dozen tsunamis
with run-ups between 0.1 m and 50 m since 1976 have been observed (see
Figure 1). For most of these events the available earthquake parameters are
epicentral location, magnitude and depth only. For a small part additional infor-
mation about focal mechanism is available. Other interesting information as e.g.,
length or rupture velocity are discussed in particular cases only, or lack entirely.
All the aforementioned variables are evaluated with post-processing methods.
To our knowledge, there is no database available representing realistic real-time
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Fig. 1. Historical and synthetic earthquake locations and model constraints for target
region Sumatra

evaluated earthquake parameter estimates for historical tsunami events. Thus, it
is not feasible to learn a BBN from the existing database. But fortunately many
experts have expressed their knowledge about the physical process of tsunami
generation through different theoretical or empirical formulas. We will extract
this “formula knowledge” and transform it into a BBN. The following steps have
to be considered and will be discussed within this paper:

1. The set of formulas is assembled covering the whole process of a tsunami
event from the triggering earthquake to the run-up approximation of the
wave at the coast. The various formulas are outlined in Section 2 to give an
idea of the physical background and to show the spectrum of the complexity
of the formulas which have to be transformed into a BBN.

2. In a second step the variables for the BBN have to be defined and a database
has to be generated. To generate records we employ ancestral sampling from
our generative model derived from the formulas given in Section 2. This is
described in Section 3.

3. Learning the structure as well as the parameters of the BBN is based on the
synthetic database as described in Section 4.

4. Finally in Section 5 a first draft of a BBN is discussed which has to be tested
and refined over several iterations in future research.
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The elicitation-scheme for “formula knowledge” presented in this paper certainly
is of interest in other domains where data is difficult to obtain or does not exist
but a basic understanding of the fundamental physical processes is available.

BBNs are getting more and more popular in natural risk assessment in dif-
ferent subjects as earthquakes [1], volcanos [2], avalanches [3], rock fall [4] or
desertification due to burned forests [5]. The field of tsunami hazard has been
probabilistically analyzed in recent years by several authors [6], [7], [8], [9], [10].
These approaches differ fundamentally from the approach presented here.

2 Physical Background

Most earthquake triggered tsunamis originate at subduction zones where one
plate is sliding underneath an other plate, at rates typically measured in cen-
timeters per year (see Figure 2). The accumulated stress is released from time
to time in an earthquake when the brittle material breaks. If the focal depth
is shallow enough, the energy release is able to deform the Earth’s crust up to
the surface and in case of an offshore epicenter to displace a large water volume
resulting in a gravity wave which eventually reaches the coast as destructive
tsunami.

There is no direct way to measure tsunami generation. However we can infer
from earthquake source parameter estimates specifying the location, size, ori-
entation and rupture characteristic. In Section 2.1 we will sketch the different
source parameters, estimated generally for earthquakes and outline on which
assumptions they were determined. To estimate surface deformation (at the sea
floor) given the earthquake rupture we use a model described in Section 2.2 to
derive the displaced water volume. Knowledge about the displaced water vol-
ume allows then to calculate the wave height near the shore using differential
equations of wave propagation for long waves in the ocean. This is described
in Section 2.3. Finally, the approximation of the tsunami run-up from the near
shore peak amplitude estimates is described in Section 2.4.

Fig. 2. Schematic view on tsunami triggering mechanism at a subduction zone
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2.1 Earthquake Source Parameter Estimates

An earthquake can be observed indirectly by seismic waves. By analyzing their
arrival times, amplitudes and waveform characteristics the location, size and fo-
cal depth (df , compare with Figure 2) of the earthquake is determined shortly
after event detection. Whereas the localization of rupture initiation is rather ac-
curate, uncertainties of the size of an earthquake might still be large at this early
stage of observations. The uncertainties come about mainly from incomplete in-
formation about the Earth structure on local scales, which is a problem especially
if the number of observations is small. Thus, further investigations on an increas-
ing amount of available seismic records lead generally to a diminishment of the
epistemic uncertainties, although sometimes contradicting information may be
determined due to the analysis of local and distant observations.

Furthermore additional source parameters can be determined specifying rup-
ture orientation, area (assumed to be rectangular with length l and width w) and
the average displacement within the fault called average slip u. Their (real-time)
estimation techniques are more complex and subject to actual research.

As long as no independent estimates of these measures are available, scaling
relations from magnitude can give a rough estimate. The magnitude evaluated
by seismic wave inversion scales logarithmically with the seismic moment M0
[11], one of the most adequate measure representing the size of an earthquake
as it is proportional to the released energy. M0 is related by scaling laws to fault
geometry by

M0 = μu l w, (1)

μ being the rigidity of the material [12]. Many studies have been conducted to
obtain observational evidence of the direct link between magnitude and length
and width of the fault area or the slip along the fault. In one widely cited analysis
of Wells & Coppersmith (1994) [13], regression formulas are calculated from 244
detailed studied crustal earthquakes yielding a set of linear relations of the form

E[log(l)] = a + bMw,

for different fault geometries. As this study does not include subduction earth-
quakes data of additional studies [14], [15], [16], [17] has been added and new
regression parameters were calculated.

To estimate the potential tsunami wave height not only earthquake parame-
ters but also the water depths at the epicenter (dw) and offshore near the specific
target site (d0) are of interest. The final tsunami run-up approximation used in
the BBN is estimated as shown in the following sections. As intermediate vari-
ables the wave height at the epicenter h and in shallow water near the site h0
are needed.

2.2 From Material Rupture to Sea Floor Deformation

A standard equation for surface deformation caused by an extended earthquake
fault buried at depth has been developed by Okada (1985) [18]. His compact
analytical set of formulas describes surface displacements due to inclined shear
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and tensile faults in a half-space for finite rectangular fault geometries. Based
on theory of elastic dislocations, we can write

ui =
1
F

∫ ∫
Σ

Δuj

[
λδij

∂uni
∂ξn

+ μ

(
∂uji
∂ξk

+
∂uki
∂ξj

)]
νkdΣ.

Here, ui is the ith component of the displacement field at (x1, x2, x3) due to
dislocation Δuj(ξ1, ξ2, ξ3) across a surface Σ in an isotropic medium indicated
by a point force of magnitude F at (ξ1, ξ2, ξ3). δjk is the Kronecker delta, λ and
μ are Lamé’s material constants, νk is the direction cosine of the normal to the
surface element dΣ.

This intimidating formula just points out the complexity of the theory we are
dealing with and it becomes obvious that the conversion of the “formula knowl-
edge” to a BBN is non-trivial. For numerical computation of surface deformation
we use the code of Wang et al. 2003 [19].

2.3 Tsunami Propagation

A tsunami is a gravity wave generated by fast water displacement. The propa-
gation is well understood in fluid dynamics and can be described by the shallow-
water wave equation assuming a much smaller water depth (dw) than the wave
length. Including the bottom friction and the Coriolis force, the equation of
motion for long waves can be written for a tree-dimensional case as

∂U
∂t + U ∂U

∂x + V ∂U
∂y = −fV − g ∂h∂x − Cf

U
√
U2+V 2

d+h ,
∂V
∂t + U ∂V

∂x + V ∂V
∂y = fU − g ∂h∂y − Cf

V
√
U2+V 2

d+h ,

with the corresponding equation of continuity

∂U

∂t
+

∂

∂x
[V (h + d)] = 0,

whereh is the wave amplitude, f is the Coriolis parameter,Cf is a non-dimensional
frictional coefficient, and U and V are the average velocities in the x and y di-
rections, respectively. Our generative model will use a tool, which calculates the
tsunami propagation in a linearized form.

2.4 Run-Up Approximation

As numerical tsunami simulations work with limited bathymetry resolution which
is not fine enough to calculate run-up height at the coast but just a near shore
peak amplitude offshore at sites with water depth d0 of about 20 m. Several run-
up approximation theories of different complexities exists. We have chosen Green’s
law [20]

ts = h0 ·
(
d0

dr

)0.25

, (2)

where h0 is the sea surface height offshore calculated by the tsunami propagation
model, and subscript r refers to the value at the coast (dr = 1 m).
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3 Method

In a next step we transform the knowledge encoded by the physical formulas into
a generative model, and from there to a database via ancestral sampling. First
off we have selected those variables which provide the most information about
tsunami generation and which can be realistically obtained from near real-time
measurements. The tsunami warning BBN system consists of the nine variables:

– Epicentral location categorized in regions (reg) and evaluated using bathy-
metry information to water depth (dw),

– Magnitude (m),
– Rupture geometry: length (l) and width (w),
– Mean slip (u),
– Focal depth (df ),
– Focal mechanism (fm) is mainly defined by the rake angle λ describing the

direction of the displacement,
– Tsunami wave height at the coast, called run-up (ts).

The generative model is constructed by coupling the various (sub)systems de-
scribed in Section 2 in a hierarchical fashion as a directed graphical model. By
exploiting the directed local Markov property, we employ simple ancestral sam-
pling allowing us to generate an arbitrary number of cases/records. Metaphori-
cally speaking “input” is passed down the system from the root variables down
to the leaf-variables. The topmost random variables are identified as the three
variables, epicentral location, loc, magnitude, m, and rake, λ (assumed to be
marginally independent). For the ith record we therefore have

(m, loc, λ)i ∼ P (M,Loc, Λ) = P (M)P (Loc)P (Λ).

Without going into details, the probability distributions are defined and con-
strained by:

– The chosen study area Sumatra (“model box” in Figure 1) and the subduc-
tion zone [21] for location. Within these boundaries location is assumed to
be distributed uniformly.

– Magnitude is restricted between 6.5 ≤M ≤ 9.3 and distributed according to
Gutenberg Richter (1954) [22] so that the small events are more likely than
the larger ones.

– We allow all possible rake values −180◦ ≤ Λ ≤ 180◦. In order to account
for the tectonic situation (subduction zone regime), we choose a multinomial
distribution for drawing rake values.

The remaining variables are derived using the set of formulas given in Section 2.
In the following, deterministic operations/mappings on/of (random) variables
are denoted by F·(·). The two variables reg and dw can simply be derived from
the location, loc

regi = Freg(loci),
diw = Fdw(loci; Bathymetry),
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where Bathymetry denotes the constant bathymetry [23]. In analogy we will
write Earthmodel for the use of the Earth model assumptions [24].

The core or the generative model consists of a numerical simulation of sea floor
deformation and the open water tsunami propagation for earthquakes offshore
Sumatra (Fts), calculating tsunami wave height at a specific site. The requested
input parameters are slip up and rake λp (= λ for all patches) defined at every
grid patch of the modeled subduction geometry. Again, for the ith record we
have

tsi = Fts(uip, λi;Bathymetry, Earthmodel).

To specify up two intermediate steps have to be done:

1. The rupture area is determined by l, w and epicentral location, loc. l and
w are inferred from magnitude by scaling laws (Fsl) dependent on rake. To
reflect the uncertainties, the values are disturbed by ±30% providing that
the rupture plane fits totally into the grid mapping the subduction zone

li ∼ P (L | fsl(mi, λi)),
wi ∼ P (W | fsl(mi, λi)).

2. Mean slip follows from Equation 1 given m, l, w and the depth dependent
rigidity

ui = Fu(li, wi,mi;Earthmodel).

The spatial slip distribution is a sinusoidal shape approximation over the
rupture area with the maximum slip in the middle and decreasing values
towards the boundaries, uip = Fup(loci, li, wi, ui).

Focal depth is fixed by the projection of the epicenter on the subduction ge-
ometry. For the database the shallowest value is chosen, because for tsunami
generation it is of interest how close to the surface a rupture is extended

dif = Fdf
(loci, wi;Earthmodel).

Pre-calculated Green’s functions allow to calculate sea floor deformation as
well as tsunami wave propagation with linear superposition at given locations.
The underling model uses a finite-difference scheme on a structured grid [23]
[personal communication with Andrey Babeyko].

The output of the tsunami simulation consists of amplitudes at given locations
near shore (d0 ≈ 30 m) every 25 sec. The final maximal wave height at the coast,
ts, is determined for specific sites (e.g., the city Padang) by Equation 2.

In summary, a complete case i of the synthetic tsunami database becomes

di = {mi, λi, li, wi} ∪ {Freg(loci),Fts(uip, λi;Bathymetry, Earthmodel),

Fu(li, wi,mi;Earthmodel),Fdw(loci;Bathymetry),
Fdf

(loci, wi;Earthmodel)}.
The first part denotes the set of random variables and the 2nd part denotes the
set of deterministic variables (note that although loc is a random variable, it is
not used in the BBN - only the derivatives thereof are used). In the remainder,
all variables are treated as random variables.
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4 Structure and Parameter Learning

We take a Bayesian approach to learning the “best” BBN (i.e., model selection),
and consider the structure G and parameter Θ of the BBN as random variables,
and define a joint prior P (G,Θ) = P (Θ|G)P (G), where P (Θ|G) is a product
Dirichlet distribution, and P (G) is uniform. In particular, we want the maximum
a posteriori BBN pair (MAP) given the database, d, i.e.,

(̂g,θ) = arg max
(g,θ)

P (g,θ|d).

We note this is different from merely learning the MAP model structure via the
BD [25] scoring criterion and in a 2nd step estimate the BBN parameter (this is
the classical approach to learning BBNs). Riggelsen [26] showed that optimizing
the joint pair is beneficial in several regards. Moreover, no extra assumptions
or constraints are imposed compared to the BD criterion, and computationally
there is no disadvantage of using MAP BBN scoring metric instead of the BD
scoring metric. The MAP BBN scoring criterion allows us to use the same traver-
sal strategies as for any other BBN scoring criterion. We use a hill-climber to
traverse the search space of essential graphs, simulated via the repeated covered
arc reversal operator [27].

An important but difficult task is the discretization of the data. A sensitiv-
ity study showed strong influence even on the learned structure depending on
number of discrete bins per variable as well as chosen thresholds. However, as
we are able to generate an almost unlimited amount of data we discretize the
parameter range in fine steps to combine bins with similar effects afterwards
together again.

5 A First BBN Draft

Figure 3 shows a very first draft of the tsunami decision support BBN learned
on a synthetic database of 50’000 records for the city of Padang.1 Notice that
although some variables are sampled/generated independently of each other in
the (generating) hierarchical model they may be connected in the BBN struc-
ture (such as magnitude m and focal mechanism fm). However, this can be
explained by the fact that learning BBNs from data yields minimal I-maps only
(i.e., the structure only gives rise to the conditional independencies, not the
dependencies).

Given any evidence the resulting marginal distributions of the parameters
behave in a coherent and expected way. Assuming an earthquake was estimated
around magnitude m ≈ 8.0 the probability for a dangerous tsunami augments
instantaneously. The tsunami probability distribution changes significantly by
additional information about the region where the earthquake was detected as
1 The tsunami BBN can be downloaded from http://www.geo.uni-potsdam.de/

mitarbeiter/blaser/blaser.html and interactively tested with the freely available
software GeNIe (http://genie.sis.pitt.edu/).

http://www.geo.uni-potsdam.de/mitarbeiter/blaser/blaser.html
http://www.geo.uni-potsdam.de/mitarbeiter/blaser/blaser.html
http://genie.sis.pitt.edu/
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it is expected. Further additional evidences for other variables would not change
the estimated tsunami risk significantly in this hypothetic case. This confirms the
variable selection of the existing rule-based tsunami warning systems. Magnitude
and location decide mainly over the warning status, given a shallow focal depth.
The latter is implied in our model by the restrictions of the subduction geometry
model which reaches maximal depth of 60 km, still classified as “shallow”.

An advantage in comparison to the usual rule-based warning algorithm is the
fact that a BBN provides probability distributions for all other variables, giving a
visual overview and an intuitive better understanding for the existing situation.
Furthermore the BBN is able to give an assessment at the time when the first
evidence is coming in, where the rule-based system has to wait until all variables
are known. The first draft of a BBN as shown in Figure 3 is a first step in building
a tsunami early warning BBN which will be followed by a number of iterations
of testing and refining to get an optimal solution. A single “best” BBN will not
be able to deal with the uncertainties of the incoming earthquake parameter
estimates or the uncertainties of the model structure. Hence, in a next step we
will enable the tsunami warning BBN model to include “evidence uncertainty”
as well as “model uncertainty”. The former part will allow to insert an evidence
distribution (e.g. m ∈ [7.5 < m ≤ 8.3]: 80%, m ∈ [7.0 < m ≤ 7.5]: 20%). The
“model uncertainty” covers not only different possible net structures but can also
be used to balance the sensitivity of the discretization problem by adding BBNs
learned with variable discretization bins. In further steps expert knowledge will
be elicited and incorporated to the tsunami warning BBN solution ensemble,
too. We expect not only different net structures and parameter settings but also
selections of additional variables (e.g., rupture velocity).

We will validate our different solutions on recent tsunami events where (near)
real-time data is available (e.g., 2007-09-07, Bengkulu) as well as on cases not
triggering a tsunami although it would have been expected due to offshore loca-
tion and large magnitude. Considering those events is important to reduce the
rate of false alarm.

Figure 4 depicts the iterative process of building, testing, refining and enlarg-
ing the BBN.

Fig. 3. A first BBN draft, structure and parameters learned from synthetic data
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Fig. 4. BBN construction, testing and refinement iterations

6 Conclusion

Our first draft of a tsunami early warning BBN learned on synthetic data behaves
in a coherent way and confirms the variable selection of the common rule-based
systems. However, the resulting discrete probability distribution for the tsunami
risk may help the emergency manager at a tsunami warning center to analyze
the situation and decide on releasing a tsunami warning under extreme time
pressure.

Moreover, this paper illustrates that a transform from rigorous mathematical
and physical knowledge to a BBN via a generative hierarchical model and a
synthetic database, provides a feasible addition or alternative to more traditional
BBN knowledge acquisition techniques.
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Abstract. In this paper, we are interested in taking preferences into
account for a family of queries inspired by the anti-division. An anti-
division query aims at retrieving the elements associated with none of
the elements of a specified set of values. We suggest the introduction of
preferences inside such queries with the following specificities: i) the user
gives his/her preferences in an ordinal way and ii) the preferences apply
to the divisor which is defined as a hierarchy of sets. Different uses of
the hierarchy are investigated, which leads to queries conveying different
semantics and the property of the result delivered is characterized.

1 Introduction

Queries including preferences have received a growing interest during the last
decade [1,3,4,5,6,8,9]. One of their main advantages is to allow for some dis-
crimination among the elements of their result thanks to the compliance with
the specified preferences. However, up to now, most of the research works have
focused on fairly simple queries where preferences apply only to selections. The
objective of this paper is to enlarge the scope of preference queries by consider-
ing more complex ones, founded on the association of an element with a given
set of values, in the spirit of the division operation. Moreover, a purely ordinal
framework is chosen and the user has only to deal with an ordinal scale, which
we think to be not too demanding. Lastly, taking preferences into account will
allow for keeping only the best k answers, in the spirit of top-k queries [4].

In the following, anti-division queries are considered. Let r be a relation of
schema R(X, A) and s a relation of schema S(B, Y ), with A and B compatible
(sets of) attributes. The anti-division query r[A ÷ B]s retrieves the X-values
present in relation r which are associated in r with none of the B-values present in
s. By analogy with a division, relation r may be called the dividend and relation
s the divisor. Knowing that an anti-division delivers a non-discriminated set of
elements, the idea is here to introduce preferences in this operator. Several lines
for assigning preferences may be thought of, depending on whether preferences
concern the divisor, the dividend or both, tuples individually (see e.g., [2,3], or
(sub)sets of tuples. In this paper, we investigate the case where: i) preferences
are purely ordinal and ii) they apply to the divisor only, which is structured as
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a hierarchy (a set of layers). An element x of the dividend will be all the more
acceptable as it is not connected with a certain number of the subsets (Si’s)
defined over the divisor. Three different roles allotted to the divisor (described
as a hierarchical set) are envisaged in the remainder of this paper. They differ
in the way the layers of the divisor are taken into account for discrimination.

The rest of the paper is organized as follows. Section 2 is dedicated to some
reminders on the division and anti-division operators. Three types of layered
anti-division queries are studied and modeled in Section 3. In Section 4, it is
shown that the result returned by these queries can be characterized as an “anti-
quotient”, i.e., a largest relation according to a given inclusion constraint. Section
5 deals with implementation aspects and presents some experimental results as
to the performances of different algorithms implementing stratified anti-division
queries. The conclusion summarizes the contribution of the paper and draws
some lines for future research in particular as to implementation issues.

2 Some Reminders about the Anti-division

In the rest of the paper, the dividend relation r has the schema (A, X), while
that of the divisor relation s is (B) where A and B are compatible sets of at-
tributes. The division of relation r by relation s is defined as:

r[A÷B]s = {x |x ∈ r[X ] ∧ s ⊆ Ωr(x)} (1)
= {x | x ∈ r[X ] ∧ ∀a, a ∈ s ⇒ (a, x) ∈ r} (2)

where r[X ] denotes the projection of r over X and Ωr(x) = {a | (a, x) ∈ r}. In
other words, an element x belongs to the result of the division of r by s iff it is
associated in r with at least all the values a appearing in s. The justification of
the term “division” assigned to this operation relies on the fact that a property
similar to that of the quotient of integers holds. Indeed, the resulting relation
d-res obtained with expression (1) has the double characteristic:

∀t ∈ d-res, s×{t} ⊆ r (3a) ∀t /∈ d-res, s×{t} � r (3b)

× denoting the Cartesian product of relations. Expressions (3a) and (3b) ex-
press the fact that relation d-res is a quotient, i.e., the largest relation whose
Cartesian product with the divisor returns a result included in the dividend. In
a similar way, we call anti-division the operator � defined the following way:

r[A�B]s = {x |x ∈ r[X ] ∧ s ⊆ cp(Ωr(x))} (4)
= {x |x ∈ r[X ] ∧ ∀a, a ∈ s ⇒ (a, x) /∈ r}. (5)

The result ad-res of the anti-division may be called an “anti-quotient”, i.e.,
the largest relation whose Cartesian product with the divisor is included in the
complement of the dividend. Thus, the following two properties hold:
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∀t ∈ ad-res, s×{t} ⊆ cp(r) (6a) ∀t ∈ (r[X ]−ad-res), s×{t} � cp(r) (6b)

where E − F denotes the difference between E and F and cp(r) is the com-
plement of r. In an SQL-like language, the division of r by s may be expressed:

select X from r [where condition] group by X
having set(A) contains {v1, ..., vn}

and the anti-division similarly as:

select X from r [where condition] group by X
having set(A) contains-none {v1, , vn} (7)

where the operator “contains-none” states that the two operand sets do not
overlap. An alternative expression of the latter can be based on a difference:

(select X from r) differ (select X from r where A in (select B from s)). (8)

Example 1. Let us consider the following relations P(product, component,
proportion), which describes the composition of some chemical products and
N(component) which gathers the identifications of noxious components:

P = {(p1, c1, 3), (p1, c2, 4), (p1, c3, 54), (p2, c2, 30), (p3, c2, 8), (p3, c6, 22)},
N = {c1, c2, c5}.

The query “retrieve any product which does not contain any noxious compo-
nent in a proportion higher than 5%” can be expressed as the anti-division of
the relation Prod′ derived from Prod made of {(p1, c3), (p2, c2), (p3, c2), (p3,
c6)} by Nox, whose result according to (4) or (5) is {p1} and it is easy to check
that formulas (6a-6b) both hold. '

3 Three Types of Layered Anti-division Queries

3.1 Anti-division and Preferences

What has been said until now concerns what we could call traditional anti-
division queries inasmuch as no preferences come into play. We now move to
more advanced queries mixing anti-division and the expression/handling of pref-
erences. The three types of queries investigated here are the following:

– CJ queries: a direct extension of the anti-division in a conjunctive way, where
the connection with the first layer of the divisor is forbidden and the non-
association with the following ones is considered only desirable: find the
elements x not connected with S1 and if possible ... and if possible Sn (which
is somehow related to bipolarity [7] since the non-connection with S1 is a
constraint while the non-connection with other levels is a wish),



772 P. Bosc, O. Pivert, and O. Soufflet

– DJ queries: a disjunctive view where x is all the more satisfactory as it
is connected with none of the values of a highly preferred sub(set) of the
divisor: find the elements x not connected with S1 or else ... or else Sn,

– FD queries: an intermediate approach where x is all the more highly ranked
as it is not connected with numerous and preferred (sub)sets of the divisor:
find the elements x not connected with S1 and-or ... and-or Sn.

Knowing that the dividend may be any intermediate relation and the divisor
is explicitly given by the user along with his/her preferences, the expression of
these three types of anti-division queries is inspired from (7):

select top k X from r [where condition] group by X
having set(A) contains-none {v1,1, ..., v1,j1} connector ...

connector {vn,1, ..., vn,jn}

where “connector” is either “and if possible”, or “or else”, or “and-or”, and
not from (8) inside which the integration of the layers of the divisor would not
be easy. Such a statement induces an order over the divisor, namely (S1 = {v1,1,
..., v1,j1}) � ... � (Sn = {vn,1, ..., vn,jn}) where a � b denotes the preference
of a over b. Actually, this order is about dislikes, i.e., S1 contains the values the
most highly undesired (sometimes excluded) and Sn those which are the most
weakly unwanted. Associated with this preference relation is an ordinal scale L
with labels li’s (such that l1 > ... > ln > ln+1) which will be used to assign levels
of satisfaction to elements pertaining to the result of stratified anti-divisions (l1
and ln+1 are extreme elements similar to 0 and 1 in the unit interval).

Example 2. Let us consider the case of a consumer who wants food products
(e.g., noodles or vegetal oil) without certain additive substances. In the presence
of the relation Products(p-name, add-s) describing which additives (add-s) are
involved in products, a possible query is:

select top 6 p-name from Products group by p-name
having set(add-s) contains-none {AS27, BT12, C3}
and if possible {AS5, D2} and if possible {D8}

which induces the scale L = l1 > l2 > l3 > l4. '

3.2 Conjunctive Queries (CJ)

As mentioned before, CJ queries are basically seen as an extension of the regular
anti-division. To be more or less satisfactory, an element x must be connected
with none of the elements having the maximal importance (S1). In addition, as
soon as it is connected with at least one of the elements of a set Sk, its association
with values of any set Sk+p does not intervene for its final ranking. An element
x is all the more preferred as it is not associated with any of the values of the
succession of sets S1 to Si where i is large (if possible n for “perfection”). In
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other words, x is preferred to y if x is associated with none of the values of the
sets S1 to Sp and y is not associated with a shorter list of sets. This behavior is
formalized using two approaches.

First, we consider the formal framework of relations assorted with preferences
where every tuple t of a relation r is assigned a symbolic level of preference
denoted by prefr(t). Tuples of the divisor are graded according to the ordering
given by the user and since no preference applies to the dividend, its tuples have
the maximal grade l1 (conversely, any tuple absent from it is considered as hav-
ing the grade ln+1). The usual implication (p ⇒ q = (not p) or q), is extended
to this context, which requires an adequate definition for both the negation and
the disjunction. This latter is expressed thanks to the maximum (denoted by
max), which satisfies most of the usual properties of the regular disjunction (as-
sociative, commutative, increasingly monotone with respect to each arguments,
admittance of ln+1 as the neutral element). As to the negation, it corresponds
to order reversal (denoted by rev(−)) defined as: ∀i ∈ [1, n+1], rev(li) = ln+2−i
which is involutive, i.e., rev(rev(li)) = li.

Example 3. Let us consider the following scale related to the importance of
a phenomenon: complete > high > medium > low > no. The inverse scale is:

rev(complete) < rev(high) < rev(medium) < rev(low) < rev(no)
= = = = =
no low medium high complete

'
This leads to the symbolic (or ordinal) version of Kleene-Dienes’ implication
defined as: p → q = max(rev(p), q). This implication coincides with the regu-
lar one when p and q take only the values l1 and ln+1 (corresponding to true
and false) and it obeys most of its properties, in particular contraposition and
monotony with respect to the arguments.

Adapting the anti-division (formula (5)) to ordinal relations leads to assign
each x of the dividend r the level of satisfaction sat(x) defined as:

sat(x) = minv∈s prefs(v) → rev(prefr(v, x)))
= minv∈s max(rev(prefs(v)), rev(prefr(v, x))). (9)

Knowing that prefr(v, x) takes only the values l1 and ln+1 depending on the pres-
ence or absence of the tuple (v, x) in relation r, each term max(rev(prefs(v)),
rev(prefr(v, x))) equals l1 if x is not connected with v in r ((v, x) /∈ r) and
rev(prefs(v)) otherwise. In particular, if x is connected with none of the values
of the divisor, the maximal level l1 is obtained and as soon as an association
is encountered, the level of satisfaction decreases all the more as the undesired
element is highly rejected.

Another description of CJ queries may also be provided. Its interest lies
in its closeness to those given later for DJ and FD queries, which cannot be
modeled by means of (logical) expressions in the spirit of (9). Let us denote:
I(x) = {i | Si � cp(Ωr(x))} and imin(x) = min(I(x)) (n + 1 if I(x) = ∅).
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The grade of satisfaction obtained by an element x (sat(x)) is expressed thanks
to the scale L (implicitly) provided by the user as follows:

sat(x) = ln+2−imin(x). (10)

So doing, the satisfaction is seen as a composition of the results of the anti-
division of the dividend with each of the layers of the divisor. It is easy to prove
that formulas (9) and (10) deliver the same result.

3.3 Disjunctive Queries (DJ)

While CJ queries have a conjunctive behavior, DJ queries are meant disjunctive
instead, and S1 is no longer a completely forbidden subset. Here, the order of
the subsets according to user’s preferences is used so that an element x is all the
more preferred as it is connected with none of the values of Sk and k is small
(ideally 1 for “perfection”). In this case again, the associations with the subsets
of higher index (> k), and then lower importance, do not play any role in the
discrimination strategy. In other words, x is preferred to y if x is associated with
at least one of the values of each set S1 to Sk−1 and with none of the values of
Sk and y is associated with at least one of the values of each set S1 to Sp−1 and
with none of the values of Sp and k < p. Let us denote:

I ′(x) = {i | Si ⊆ cp(Ωr(x))} and imin′(x) = min(I ′(x)) (n + 1 if I ′(x) = ∅).

Here again, the grade of satisfaction obtained by an element x is expressed
using the ordinal scale L and:

sat(x) = limin′(x). (11)

The satisfaction is still a combination of the results of the anti-division of the
dividend with each of the layers of the divisor. The grade l1 is obtained if x is
associated with none of the values of S1, while ln+1 expresses rejection when the
connection with at least one element of each of the Si’s holds.

3.4 Full Discrimination Queries (FD)

Queries of type FD are designed so as to counter the common disability of CJ
and DJ queries in distinguishing between elements which are equally ranked be-
cause additional associations are not taken into account. So, the principle for
interpreting FD queries is to consider all the layers for which no association
occurs. An element is all the more preferred as it is connected with none of
the elements of a set Si highly excluded and this same point of view applies
to break ties. In this case, the grade of satisfaction for x may be expressed
thanks to a vector V (x) of dimension n where Vi(x) = 1 if x is associated with
none of the values of Si, 0 otherwise. Ordering the elements is then a matter of
comparison between such vectors according to the lexicographical order (�lex):
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x �lex y ⇔ ∃k ∈ [1, n] s.t. ∀j < k, Vj(x) = Vj(y) and Vk(x) > Vk(y). (12)

Here, scale L is not used directly even if the order of the elements of the vectors
reflects it in the sense that, if i < j, Vi(x) is more important than Vj(x) as li > lj .

Example 4. Let us take the divisor {{a, b} � c � {d, e}} and the dividend:
r = {(c, x1), (g, x1), (f, x2), (c, x3), (e, x3), (a, x4), (k, x4)}. Here n = 3 and
according to formula (9) or (10):

sat(x1) = l3, sat(x2) = l1, sat(x3) = l3, sat(x4) = l4 and x2 � {x1, x3} � x4.

With formula (11), one gets:

sat(x1) = sat(x2) = sat(x3) = l1, sat(x4) = l2 and {x1, x2, x3} � x4.

Last, using formula (12), we get a refinement of the previous two orderings,
namely: x2 � x1 � x3 � x4 where the tie between x1, x2 and x3 (resp. x1 and
x3) in the result obtained with (11) (resp. (10)) is broken. '

4 Characterizing the Result of Anti-division Queries

In this section, we provide a characterization (in terms of an “anti-quotient”) of
the result delivered by the three previous types of queries. In other words, the
result returned by each of these queries is a maximal relation and it obeys for-
mulas similar to (6a-6b). Due to space limitation, the characterization formulas
are given, but not proved. Since relations are graded, (symbolic or ordinal) levels
of satisfaction (li’s) in both the result and the dividend have to be to considered
for the characterization.

For CJ queries, if tuple x of the result is assigned the grade li (i ∈ [1, n+ 1]),
the following properties hold:

if i ∈ [1, n], ∀k ∈ [1, n− i + 1], Sk × {x} ⊆ cp(r)
if i = n + 1 S1 × {x} � cp(r) (13a)

∀i ∈ [1, n], Sn−i+2 × {x} � cp(r). (13b)

In a similar way, for DJ queries, if x has received the grade of satisfaction li
(letting Sn+1 be empty) one has the double property:

Si×{x} ⊆ cp(r) (14a) ∀k ∈ [1, i−1], Sk×{x} � cp(r). (14b)

As to FD queries, let us recall that the grade of satisfaction of x is basically
expressed as a function of the values of the vector V stating whether x is con-
nected (Vi(x) = 0) or not (Vi(x) = 1) with at least one of the values of layer i
of the divisor according to formula (12). So, the following properties hold:

∀i ∈ [1, n] such that Vi(x) = 1, Si × {x} ⊆ cp(r), (15a)
∀i ∈ [1, n] such that Vi(x) = 0, Si × {x} � cp(r). (15b)
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which means that if sat(x) is increased, some constraint(s) of type (15a) will be
violated. The validity of (13a-15b) can easily be checked over Example 4.

5 Implementation Aspects and Experimental Results

In this section, we outline some evaluation strategies and algorithms suited to
anti-division queries of type CJ. First, we describe three algorithms implementing
formula 9, then we present the experimentation and the results obtained.

5.1 Sequential Scan of the Dividend (SSD)

In this first algorithm, the idea is to access the tuples from the dividend relation
(r) “in gusts”, i.e., by series of tuples which share the same X-attribute value
(in the spirit of what is performed by a group by clause). Moreover, we order the
tuples (x, a) inside a group in increasing order of their A-attribute value. All
this is performed by the query:

select * from r order by X , A.

Thanks to a table which gives, for each value (val-A) of the divisor, the layer to
which it belongs (str-A), one can update the number of values from each layer
which are associated with the current element x, while scanning the result of
the query above. At the end of a group of tuples from the dividend, one checks
the layers in decreasing order of their importance. This step stops as soon as the
current element x is associated with at least one of the values from a layer Vi.
Three cases can appear:

1. element x is associated with none of the values from any layer of the divisor
and it gets the preference level l1,

2. the stop occurs while checking layer Vi whose importance is not maximal
(i > 1) and x gets the preference level rv(li) = ln+2−i ,

3. the stop occurs while checking layer V1; element x gets the level ln+1 and is
thus rejected.

5.2 Access Guided by the Divisor (AGD)

In this second algorithm, instead of scanning the dividend exhaustively and then
checking the layers satisfied by a given x by means of the aforementioned table,
one first retrieves the X-values from the dividend, and for each such x, one checks
the associations with the different layers by means of an SQL query involving the
aggregate count. Again, a layer is checked only if the layers of higher importance
had none of their values associated with x.

The first step is to retrieve the distinct values of attribute X present in r by
means of the query: select distinct X from r. Then, for each value x returned,
one counts the A-values from V1 which are associated with x in r:
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select count(*) from r where X = :x and A in
(select A from s where pref = l1);

If the value returned equals zero, one checks layer V2 by means of a similar
query and so on; otherwise the loop stops. The preference level assigned to x is
computed according to the same principle as described above.

5.3 Series of Regular Anti-division Queries (SRA)

This third strategy consists of two steps: i) process as many regular anti-division
queries as there are layers in the divisor, ii) merge the different results and com-
pute the final preference degrees. The algorithm has the following general shape:

Step 1: For each layer Vi of the divisor, one processes an anti-division query
which retrieves the x’s which are associated in r with none of the values from Vi.
The layers are examined in decreasing order of their importance and an element
x is checked only if it belongs to the result associated with the previous layer.

create view T1 as select distinct X from r where X not in
(select X from r, s where r.A = s.B and s.pref = l1);

for i := 2 to n do
begin

create view Ti as select X from Ti−1 where X not in
(select X from r, s where r.A = s.B and s.pref = li)

end;

Step 2: The results of the previous anti-division queries are merged by tak-
ing them in decreasing order of the corresponding layers. An element x which
belongs to the result of layer Vi but not to that of layer Vi+1 gets the preference
level ln−i+1. It is assumed hereafter that there exists a table Tn+1 which is empty.

for i := 1 to n do
begin

declare cursor ci as
select X from Ti where X not in (select X from Ti+1);

open ci; fetch ci into :x;
while not end (active set) do
begin

result := result + {ln−i+1/x};
fetch ci into :x;

end;
end;

We also tested different variants of this algorithm where set differences in both
steps are performed either by means of the operator minus (instead of not in)
or are expressed by an outer join. It appears that the most efficient expression
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is that where the set differences are based on: i) the operator minus in Step 1,
ii) an outer join in Step 2.

5.4 Experimental Measures

The objectives of the experimentation are: i) to assess the additional processing
cost related to the handling of preferences and ii) to compare the performances
of the three algorithms presented above. The experimentation was performed
with the DBMS OracleTM Enterprise Edition Release 8.0.4.0.0 running on an
Alpha server 4000 bi-processor with 1.5 Gb memory. Even though the scope
of the experiment presented here is still limited and should be extended in the
future, it gives an interesting trend as to the cost of such queries.

A generic stratified anti-division query has been run on dividend relations of
300, 3000 and 30000 tuples, and a divisor including five layers made of respec-
tively 3, 2, 1, 2 and 2 values.

The query taken as a reference is the analogous anti-division query without
preferences, where the divisor is made of the sole first layer (which corresponds
to a “hard constraint” as mentioned before). The reference query has been eval-
uated using two methods:

– algorithm AGD without preferences, denoted by REF2,
– first step of algorithm SRA with one layer only, denoted by REF3.

Notice that algorithm SSD without preferences would have the same complexity
as SSD itself since it would also involve an exhaustive scan of the dividend (this
is why there is no reference method “REF1”). Moreover:

– we used synthetic data generated in such a way that the selectivity of each
value vi from the divisor relatively to any x from the dividend is equal to
25% (for a given value vi from the divisor and a given x from the dividend,
tuple (x, vi) has one chance out of four to be present in the dividend),

– each algorithm was run 8 times, so as to avoid any bias induced by the load
of the machine,

– the time unit equals 1/60 second.

The results reported in Table 1 show that:

– among the reference methods for non-stratified anti-divisions, REF3 is much
more efficient than REF2;

– the performances of REF2, AGD, and SSD vary linearly w.r.t. the size of
the dividend. As to REF3 and SRA, their complexity is less than linear;

– the best algorithm for stratified anti-divisions is SRA, which is significantly
better than AGD, itself much more efficient than SSD.

– the extra cost of SRA w.r.t. the most efficient reference algorithm, namely
REF3, is still rather important (multiplicative factor between 4.6 and 8).

What all these measures show was somewhat predictable: the best way to process
an anti-division query (stratified or not) is to express it by means of a single
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Table 1. Experimental results

Size of the dividend 300 3000 30000
REF2 41.4 400.7 4055
REF3 13.2 81.4 760.2
SSD 108.6 960.5 10418
AGD 54.2 645.2 6315
SRA 106 375.1 4353

Number of answers (top layer) 37 427 4365

query that can be efficiently handled by the optimizor of the system, and not by
external programs which induce a more or less important overhead. The extra
cost attached to SRA w.r.t. REF3, is also explainable by the fact that SRA
processes five regular anti-division queries — one for each layer — instead of one
for REF3, and then has to merge the results of these queries. If the stratified
anti-division functionality were to be integrated into a commercial DBMS, it is
quite clear that it would have to be handled by the optimizor at an internal
level, and processed as one query involving a new type of “having” clause, as in
expression 7.

6 Conclusion

In this paper, preferences for a family of queries stemming from the relational
anti-division have been considered. The key idea is to make use of a divisor
made of a hierarchy of subsets of elements. So doing, the result is no longer a
flat set but a list of items provided with a level of satisfaction. Three uses of the
hierarchy have been investigated, which leads to three distinct semantics of the
corresponding queries. Moreover, a characterization of the result produced in all
cases has been suggested: it is an “anti-quotient”, i.e., the largest relation whose
product with the divisor remains included in the complement of the dividend.
Besides, some experimental measures have been carried out in order to assess
the feasibility of such anti-division queries. Even though these measures still
need to be completed — only one of the three semantics has been considered
so far —, they show that the additional cost induced by the stratified nature of
the divisor is quite high (factor 4-8 w.r.t. a classical anti-division) but that the
overall processing time is still acceptable for medium-sized dividend relations.
To reach better performances, it would be of course necessary to integrate the
new operator into the processing engine of the system, so as to benefit from a
real internal optimization, instead of processing stratified anti-division queries
externally, as we did here.

We are now planning to: i) design algorithms for implementing anti-division
queries of types DJ and FD, ii) make experiments in order to evaluate these
algorithms, as we did for CJ queries, and iii) check whether the results obtained
are confirmed when another DBMS (e.g. PostgresQL or MySQL) is used.
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Abstract. This paper presents mixtures of truncated exponentials
(MTE) potentials in two applications of Bayesian networks to finance
problems. First, naive Bayes and TAN models where continuous proba-
bility densities are approximated by MTE potentials are used to provide
a distribution of stock returns. Second, a Bayesian network is used to
determine a return distribution for a portfolio of stocks. Using MTE
potentials to approximate the distributions for the continuous variables
in the network allows use of the Shenoy-Shafer architecture to obtain a
solution for the marginal distributions. We also illustrate the problem
that arises in these models where deterministic relationships between
variables appear, which is related to the partitioning of the domain of
the MTE distributions. We propose a solution based on simulation.

1 Introduction

Finance models for predicting asset and portfolio returns focus on modeling
relationships between historical, economic data. A multi-factor model of the
rate of return on an asset [1] is

Ri = ai + bi1F1 + bi2F2 + · · ·+ bikFk + ei , (1)

where the independent factors are denoted by F1, . . . , Fk and bi1, . . . , bik are
constants. Portfolio return (Rp) is defined as the weighted average of the n
individual assets in the portfolio, Rp =

∑n
i=1 wiRi, where wi denotes the pro-

portional amount invested in asset i. For the remainder of this paper, we will
consider only equally weighted portfolios of assets with portfolio return calcu-
lated as Rp = (

∑n
i=1 Ri) /n.

This paper presents two applications of Bayesian networks to asset and port-
folio valuation problems involving the gold mining stocks BGO (Bema Gold
Corp.), ABX (Barrick Gold Corp.), and AEM (Agnico Eagle Mines). Shenoy
and Shenoy [2] use Bayesian network models to predict the returns on a port-
folio of these three stocks, with each of the stock returns being conditioned on

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 781–792, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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market returns (represented by returns on the S&P 500 index) and gold returns
(represented by the London PM Gold closing price), as well as a stock-specific
effect for each stock. We use weekly returns for the period of January 1996
through February 19981.

In our first application we compare a least-squares regression parameterization
of the multi-factor model (see Equation 1) for the return on each stock to a Naive
Bayes model that gives a distribution of stock returns. In the latter model,
the distributions of the variables in the network are represented by mixtures
of truncated exponentials (MTE) potentials [3]. Next, we use MTE potentials
to parameterize a Bayesian network model to determine a distribution for the
returns on an equally-weighted portfolio of the stocks BGO, ABX, and AEM.

The remainder of the paper is organized as follows. Section 2 gives some back-
ground on Bayesian networks and their relationship to regression models. Sec-
tion 3 defines mixtures of truncated exponentials (MTE) potentials and Section 4
describes a Naive Bayes predictor model that uses MTE potentials. Section 5
describes the example of using the Naive Bayes model with MTE potentials for
predicting stock returns and Section 6 contains the example of using a Bayesian
network with MTE potentials to predict portfolio returns. Section 7 describes
a Monte Carlo simulation model for determining marginal return distributions.
Section 8 summarizes the paper.

2 Bayesian Networks and Regression

Bayesian networks [4,5] are efficient tools for handling problems that can be
defined by a multivariate probability distribution over a set of variables X =
{X1, . . . , Xn}. A Bayesian network is a directed acyclic graph (DAG) where
each vertex represents a random variable Xi ∈ X and there is a conditional
distribution for each variable Xi given its parents pa(Xi), so that the joint
distribution can be expressed as p(x1, . . . , xn) =

∏n
i=1 p(xi|pa(xi)).

A Bayesian network can be used for classification purposes if it consists of a
class variable, C, and a set of feature variables X1, . . . , Xn, so that an individ-
ual with observed features x1, . . . , xn will be classified as a member of class c∗

obtained as c∗ = arg maxc∈ΩC p(c|x1, . . . , xn), where ΩC denotes the support of
variable C. Similarly, a Bayesian network can be used for regression, i.e., when
C is continuous. However, in this case the goal is to compute the posterior dis-
tribution of the class variable given the observed features x1, . . . , xn. Once this
distribution is computed, a numerical prediction can be given using the mean,
the median or the mode.

Note that p(c|x1, . . . , xn) is proportional to p(c) × p(x1, . . . , xn|c), and there-
fore solving the regression problem would require specification of an n dimensional
distribution for X1, . . . , Xn given the class. Using the factorization determined by
the Bayesian network, this problem is simplified. The extreme case is the so-called

1 Shenoy and Shenoy [2] use a similar time period, but have 115 observations, whereas
our data has 113 observations.
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Class

Feature 1 Feature 2 Feature n· · ·

Fig. 1. Structure of a Naive Bayes classifier/predictor

Class

Feature 1 Feature 2 Feature 3 Feature 4

Fig. 2. Example of a TAN structure with 4 features

Naive Bayes structure [6,7], where all the feature variables are considered indepen-
dent given the class. An example of Naive Bayes structure can be seen in Figure 1.

The restrictive independence assumption behind Naive Bayes models is com-
pensated by the reduction on the number of parameters to be estimated from
data, since in this case, it holds that p(c|x1, . . . , xn) = p(c)

∏n
i=1 p(xi|c), which

means that we operate with smaller distributions.
The Naive Bayes model assumes that the feature variables are independent

given the class. The Tree Augmented Network (TAN) model [6] allows some
dependencies in the feature variables, so that each feature variable can have at
most one parent apart from the class variable. This parent is chosen according to
the conditional mutual information of the variables, given the class. An example
of such structure can be seen in Figure 2.

3 The MTE Model

Random variables are denoted by capital letters, and their values by lowercase
letters. In the multi-dimensional case, boldfaced characters are used. The domain
of the variable X is denoted by ΩX. The MTE model is defined as follows [3]:

Definition 1. (MTE potential) Let X be a mixed n-dimensional random vector.
Let Y = (Y1, . . . , Yd) and Z = (Z1, . . . , Zc) be the discrete and continuous parts
of X, respectively, with c + d = n. A function f : ΩX �→ R+

0 is a Mixture of
Truncated Exponentials potential (MTE potential) if one of the next conditions
holds:

i. Y = ∅ and f can be written as

f(x) = f(z) = a0 +
m∑
i=1

ai exp

⎧⎨⎩
c∑

j=1

b
(j)
i zj

⎫⎬⎭ (2)



784 B.R. Cobb, R. Rumı́, and A. Salmerón

for all z ∈ ΩZ, where ai, i = 0, . . . ,m and b
(j)
i , i = 1, . . . ,m, j = 1, . . . , c

are real numbers.
ii. Y = ∅ and there is a partition D1, . . . , Dk of ΩZ into hypercubes such that

f is defined as
f(x) = f(z) = fi(z) if z ∈ Di ,

where each fi, i = 1, . . . , k can be written in the form of equation (2).
iii. Y 
= ∅ and for each fixed value y ∈ ΩY, fy(z) = f(y, z) is defined as in ii.

Example 1. The function φ defined as

φ(z1, z2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2 + e3z1+z2 + ez1+z2 , 0 < z1 ≤ 1, 0 < z2 < 2,
1 + ez1+z2 0 < z1 ≤ 1, 2 ≤ z2 < 3,
1
4

+ e2z1+z2 1 < z1 < 2, 0 < z2 < 2,
1
2

+ 5ez1+2z2 1 < z1 < 2, 2 ≤ z2 < 3.

is an MTE potential since all of its parts are MTE potentials.

Definition 2. (MTE density) An MTE potential f is an MTE density if∑
y∈ΩY

∫
ΩZ

f(y, z)dz = 1 .

A conditional MTE density can be specified by dividing the domain of the con-
ditioning variables and specifying an MTE density for the conditioned variable
for each configuration of splits of the conditioning variables.

4 Bayesian Network Predictors Based on MTE Potentials

In [8], a regression model based on Bayesian networks is proposed. The networks
have a Naive Bayes structure and the conditional distributions are MTE poten-
tials. The advantage of using MTE potentials is that the independent variables
can be discrete or continuous. In the MTE framework, the domain of the vari-
ables is split into pieces and in each resulting interval an MTE potential is fitted
to the data. In this work we will use the so-called five-parameter MTE, which
means that in each split there are five parameters to be estimated from data:

f(x) = a0 + a1e
a2x + a3e

a4x . (3)

The choice of the five-parameter MTE is motivated by its low complexity
and high fitting power [9]. We follow the estimation procedure developed in [10],
which has these main steps: (i) a Gaussian kernel density is fitted to the data, (ii)
The domain of the variable is split according to changes in concavity/convexity
or increase/decrease in the kernel density, (iii) in each split, a five-parameter
MTE is fitted to the kernel by least squares estimation.



Predicting Stock and Portfolio Returns 785

In [11,12] the TAN classifier is adapted to the MTE model. The conditional
mutual information in the MTE model cannot be computed exactly, but in [11]
it is shown how to approximate it by means of Monte Carlo simulation. The
distributions are learned afterwards using the same procedure as with Naive
Bayes.

Once the models are constructed, they can be used to predict the value of the
class variable given observed values of the feature variables. The prediction is
carried out by obtaining a numerical prediction from the posterior distribution of
the class given the observed values for the features. In the experiments reported
in [8], the best results are obtained using the expected value and the median.
The posterior distribution for the class variable is computed using the Shenoy-
Shafer algorithm [13] for probability updating in Bayesian networks, adapted to
the MTE case as in [14].

5 Predicting Stock Returns Using a Bayesian Network
Regression Model

This section describes the results of using a Naive Bayes and a TAN regression
model as defined in Section 4 to predict the BGO, ABX and AEM returns (see
Section 1). Since the size of the database is small (113 total observations), we
have carried out a five-fold cross-validation procedure to check the performance
of the models.

The accuracy of each model is measured as follows. Let c1, . . . , cm represent
the values of the class for the observations in the corresponding test database
and ĉ1, . . . , ĉm represent the corresponding estimates provided by the model.
The RMSE (root mean squared error) is obtained as

RMSE =

√√√√ 1
m

m∑
i=1

(ci − ĉi)2 . (4)

The final RMSE is the sum of the RMSE of the five test databases for each
model. We have constructed nine different regression models, three for each
variable (BGO, ABX and AEM): one linear model (LM), a Naive Bayes predictor
(NB), and a TAN predictor (TAN). The accuracy of the fitted models is reported
in Table 1.

Table 1. Root mean squared error for the nine fitted models

BGO ABX AEM
LM 0.1219 0.0369 0.0524
NB 0.1059 0.03829 0.05443
TAN 0.1055 0.03821 0.055558
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The differences in RMSE between the LM, NB and TAN models are very
small. In order to test whether the differences in the estimates produced by the
LM, NB and TAN can be considered statistically significant we have carried out
a Friedman test; the p-value obtained is 0.7156.

These results support the use of Bayesian network predictors as competitive
with the LM, because the differences in the model predictions are small and the
Bayesian network models have an important added value with respect to the
LM. These models not only give a numerical prediction of the class variable, but
they also give its posterior distribution, so that other kinds of inferences can be
performed. For instance, probabilities that the return is in a given interval, e.g.,
the return is positive, can be calculated from the posterior distribution.

6 Predicting Portfolio Returns Using a Bayesian Network

Figure 3 shows a Bayesian network model for determining returns for a portfolio
of BGO, ABX, and AEM stocks. Again, each stock return, Xi, i = 1, 2, 3, is
affected by market returns (M) and gold returns (G).

The node for portfolio return (P ) is shown as a conditionally deterministic
node, i.e. the values of portfolio return are completely determined by the values
of the individual stock returns. The model depicted is similar to the simplest
model described by Shenoy and Shenoy [2]. In their model, the distributions for
market and gold returns are assumed to be normal and are parameterized by
calculating the mean and variance of the observed returns. The residual stock
effects are captured by separate nodes and are assumed to be normal with means
of zero and variances equal to the residuals of the regressions. The stock return
nodes have a functional relationship determined by least-squares regression. The
model is solved by using Monte Carlo simulation to generate values for the in-
dependent variables and using the functional relationships to calculate marginal
stock return and portfolio return distributions.

The MTE model requires no assumptions about the normality of market re-
turn, gold return, or stock-specific effects. The residual stock specific effects
are considered in the procedure for determining the splits of the domain of the
variables in the resulting MTE functions, as this ultimately determines the vari-
ance of the conditional distributions. The marginal stock return distributions

Fig. 3. A Bayesian network model for a portfolio
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in the MTE model are determined by using the Shenoy-Shafer architecture [13]
as adapted for MTE potentials in [14]. MTE potentials are closed under this
propagation scheme because (closed-form) integration of MTE potentials and
multiplication of MTE potentials results in a function in the MTE class [3]. To
calculate the portfolio return distribution, a convolution operation defined by
Cobb and Shenoy [15] is utilized. Assuming a linear relationship among vari-
ables, this operation also results in an MTE potential. Since the result of the
solution for the marginal portfolio return distribution is an MTE potential, we
can easily calculate probabilities of interest for this distribution. For instance,
we can calculate the probability that the portfolio has a positive return.

In this example, marginal MTE potentials for the variables G and M and con-
ditional MTE potentials for X1, X2, and X3 are determined using the procedure
in [10]. The domains of the variables are divided into four regions (or splits) in
each MTE distribution. Although using additional regions would increase the
accuracy of the marginal distributions, the computational complexity required
to obtain an exact solution increases. Rumı́ and Salmerón [14,16] discuss meth-
ods for approximate inference that can lower the computational cost of inference
when using MTE potentials.

As examples of the individual stock return distributions, the marginal distri-
bution of BGO returns (X1) and AEM returns (X3) are shown in Figures 4 (a)
and (b), respectively. The return on the portfolio is determined by the linear
relationship P = X1/3+X2/3+X3/3, i.e. the portfolio is equally weighted. The
marginal MTE potentials for BGO, ABX, and AEM returns are denoted by φ1,
φ2, and φ3 respectively. The joint distribution for {X1, X2, X3} is calculatead as
φ4 = φ1 ⊗ φ2 ⊗ φ3. To calculate the marginal distribution for the portfolio (P ),
we use the operation defined by Cobb and Shenoy [15] to remove X1 as follows:

φ5(p, x2, x3) = 3 · φ4

(
3 ·

(
p− 1

3
x2 −

1
3
x3

)
, x2, x3

)
This operation (as opposed to the usual marginalization operation involving inte-
gration) is required because the joint distribution of the variables {P,X1, X2, X3}
is three-dimensional, as P is a conditionally deterministic variable.

The variables X2 and X3 are subsequently eliminated by integration as follows:

-0.2 0.2 0.4 0.6 0.8 1

1

2

3

4

-0.1 0.1 0.2
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7

(a) (b)

Fig. 4. The marginal distribution for (a) BGO return (X1) and (b) AEM return (X3)
in the MTE model and (b) t
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Fig. 5. The marginal distribution for portfolio return (P ) in the MTE model

φ6(p) =
∫
ΩX3

(∫
ΩX2

φ5 (p, x2, x3) dx2

)
dx3 .

The marginal distribution of portfolio return (P ) is shown graphically in
Figure 5.
The probability that the portfolio earns a positive return is calculated as

P (p > 0) =
∫ ∞

0
φ6 (p) dp = 0.511 .

One weakness of the operations used to determine the marginal distribution
for portfolio returns is that it results in a potential that does not strictly adhere
to Definition 1. Specifically, the resulting potential contains the variable X1 in
the domain of the pieces of the function. This makes the limits of the integration
above very difficult to determine. The next section addresses this computational
issue.

7 Monte Carlo Simulation of Marginal Distributions

The convolution operation in the previous section involves a change in variable
X1 in both the functional form of the density and the domain of the function.
The following example will illustrate this concept. Let φX be a potential for X
and φY a potential for Y , with

φX(x) =

{
f1(x) 0 ≤ x < 0.5
f2(x) 0.5 ≤ x ≤ 1

φY (y) =

{
g1(y) 0 ≤ y < 0.5
g2(y) 0.5 ≤ y ≤ 1

Then, potential φ defined for (X,Y ) is

φ(x, y) = (φX ⊗ φY ) (x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f1(x)g1(y) 0 ≤ x < 0.5, 0 ≤ y < 0.5
f1(x)g2(y) 0 ≤ x < 0.5, 0.5 ≤ y ≤ 1
f2(x)g1(y) 0.5 ≤ x ≤ 1, 0 ≤ y < 0.5
f2(x)g2(y) 0.5 ≤ x ≤ 1, 0.5 ≤ y ≤ 1
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If we want to obtain the marginal of a new variable Z = (X +Y )/2, then a new
potential φ2 = 2 · φ

(
2
(
z − 1

2y
)
, y

)
is defined as

φ2(z, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f1(2(z − 1

2y))g1(y) 0 ≤ 2(z − 1
2y) < 0.5, 0 ≤ y < 0.5

f1(2(z − 1
2y))g2(y) 0 ≤ 2(z − 1

2y) < 0.5, 0.5 ≤ y ≤ 1
f2(2(z − 1

2y))g1(y) 0.5 ≤ 2(z − 1
2y) ≤ 1, 0 ≤ y < 0.5

f2(2(z − 1
2y))g2(y) 0.5 ≤ 2(z − 1

2y) ≤ 1, 0.5 ≤ y ≤ 1

where the limits of variable Z are

1
2
y ≤ z < 0.25 +

1
2
y (5)

0.25 +
1
2
y ≤ z ≤ 0.5 +

1
2
y (6)

That is, the limits of variable Z are not independent of Y , which is a problem for
the posterior integral. An MTE continuous probability tree representing φ can
be seen in Figure 6, while the tree representing φ2(z, y) is depicted in Figure 7.
The limits for variable Z in boldface are computed according to Equations (5)
and (6) restricted to the corresponding values for variable Y . These intervals
are not a partition of the domain of Z, since the intersection is not empty. The

Y

X X

f1(x)g1(y) f2(x)g1(y) f1(x)g2(y) f2(x)g2(y)

0 − 0.5 0.5 − 1

0 − 0.5 0.5 − 1 0 − 0.5 0.5 − 1

Fig. 6. Tree representing φ(x, y)

Y

Z Z

2f1(2z − y)g1(y)g 2f2(2z − y)g1(y) 2f1(2z − y)g2(y) 2f2(2z − y)g2(y)

0 − 0.5 0.5 − 1

0 − 0.5 0.25 − 0.75 0.25 − 0.75 0.5 − 1

Fig. 7. Tree representing φ2(z, y)
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Fig. 8. A simpler model with only 2 stocks
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Fig. 9. A new marginal distribution for portfolio return (P ) in the MTE model

actual problem is that, after performing the convolution, the resulting potential
does not fulfill point ii) in Definition 1, since the joint domain of the variables is
not split into hypercubes, and so the potential is not actually an MTE potential,
and so the marginalization operation cannot be performed properly.

However, the integral over φ2(z, y) can be performed approximately. For ex-
ample, the marginal for P depicted in Figure 5 was obtained using the software
Mathematica 5.2. However, in a different setting, even considering only 2 corre-
lated stocks (see Figure 8), the Mathematica software is not able to obtain an
approximation to the solution.

To solve this problem, we have followed a similar approach, that is, approxi-
mate the actual distribution of P , but using a Monte Carlo algorithm:

1. Consider N1 a sub-network by removing from the original one the determin-
istic node (P in our example).

2. Learn this sub-network from the database.
3. Simulate a large database from this network.
4. Generate the deterministic variable P in the database from the stocks.
5. Learn an MTE distribution for the new variable P in the generated database.

Using this scheme, a new distribution for P can be seen in Figure 9, and we
have again computed the probability of a positive return

P (p > 0) =
∫ ∞

0
φ6 (p) dp = 0.513 .

8 Summary

This paper has demonstrated two applications of models using MTE potentials
to stock and portfolio valuation. First, a Naive Bayes and a TAN regression
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model were compared to a linear regression model as a means of predicting gold
mining stock returns based on market and gold returns. Second, a Bayesian
network where continuous distributions were approximated by MTE potentials
was used to value a portfolio of gold mining stocks. This Bayesian network was
similar to the simplest model used by Shenoy and Shenoy [2].

In the first application, the Bayesian network models and the linear model
yield similar predictions. An advantage of the Naive Bayes and TAN models
with MTE potentials is the ability to calculate probabilities from the marginal
asset return distribution. In the second application, use of MTE potentials al-
lows the Bayesian network model to be solved approximately without assuming
any standard probability distribution for the independent factors affecting stock
returns.

We have also pointed out the problem that arises when handling deterministic
relationships between MTE variables, which results in a bad partitioning of the
domain of the variables. The problem has been solved by simulation.

A comparison of Bayesian network models with MTE potentials to the more
complex models in [2] which consider correlations among residual assets was not
performed, but may be the subject of future research in this area. Other future
research may compare the performance of the valuation methods presented in
this paper to distributions of actual returns using historical data to further
determine the viability of these methods as decision-making tools in finance.
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Abstract. We introduce a modular framework for formalizing reason-
ing with incomplete and inconsistent information. This framework is
composed of non-deterministic semantic structures and distance-based
considerations. The combination of these two principles leads to a va-
riety of entailment relations that can be used for reasoning about non-
deterministic phenomena and are inconsistency-tolerant. We investigate
the basic properties of these entailments and demonstrate their useful-
ness in the context of model-based diagnostic systems.

1 Introduction

In this paper, we propose a general framework for representing and reasoning
with uncertain information and demonstrate this in the context of model-based
diagnostic systems. Our framework consists of two main ingredients:

• Semantic structures for describing incompleteness: The principle of truth func-
tionality, according to which the truth-value of a complex formula is uniquely
determined by the truth-values of its subformulas, is in an obvious conflict with
non-deterministic phenomena and other unpredictable situations in everyday life.
To handle this, Avron and Lev [6] introduced non-deterministic matrices (Nma-
trices), where the value of a complex formula can be chosen non-deterministically
out of a certain nonempty set of options. This idea turns out to be very useful for
providing semantics to logics that handle uncertainty (see [4]). In this paper, we
incorporate this idea and consider some additional types of (non-determinisitic)
semantic structures for describing incompleteness.

• Distance-based considerations for handling inconsistency: Logics induced by
Nmatrices are inconsistency-intolerant: whenever a theory has no models in a
structure, everything follows from it, and so it becomes useless. To cope with
this, we incorporate distance-based reasoning, a common technique for reflecting
the principle of minimal change in different scenarios where information is dy-
namically evolving, such as belief revision, data-source mediators, and decision
making in the context of social choice theory. Unlike ‘standard’ semantics, in
which conclusions are drawn according to the models of the premises, reasoning

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 793–804, 2009.
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in distance-based semantics is based on the valuations that are ‘as close as pos-
sible’ to the premises, according to a pre-defined metric. As this set of valuations
is never empty, reasoning with inconsistent set of premises is not trivialized.

Example 1. Consider the circuit that is represented in Figure 1.

�

�
�

�

�

�
�

�

AND

OR

?in3

in2

in1

out1

out2

Fig. 1. The circuit of Example 1

Here, partial information (e.g., when it is unknown whether the ?-gate is an AND
or an OR gate) may handled by non-deterministic semantics (see Example 7),
and conflicting evidences (e.g., that the input line in1 and the output line out1
always have opposite values) can be handled by the incorporation of distance-
based considerations (see Example 12).

In [2] Nmatrices were first combined with distance considerations and some prop-
erties of the resulting framework were investigated. This paper generalizes these
results in two aspects: First, we incorporate new types of structures into the
framework and study the relations among them. Secondly, we define new meth-
ods of constructing distance functions, tailored specifically for non-deterministic
semantics, some of them are a conservative extension of well-known distances
used in the classical case. The robustness of what is obtained for reasoning with
uncertainty is demonstrated in the context of model-based diagnosis.

2 Semantic Structures for Incomplete Data

2.1 Preliminaries

Below, L denotes a propositional language with a set WL = {ψ, φ, . . .} of well-
formed formulas. Atoms = {p, q, r . . .} are the atomic formulas in WL. A theory
Γ is a finite set of formulas in WL. Atoms(Γ ) and SF(Γ ) denote, respectively,
the atoms appearing in the formulas of Γ , and the subformulas of Γ .

Given a propositional language L, a propositional logic is a pair 〈L,"〉, where
" is a consequence relation for L, as defined below:

Definition 1. A (Tarskian) consequence relation for L is a binary relation "
between sets of formulas in WL and formulas in WL, satisfying:
Reflexivity : if ψ ∈ Γ then Γ " ψ.
Monotonicity : if Γ " ψ and Γ ⊆ Γ ′, then Γ ′ " ψ.
Transitivity : if Γ " ψ and Γ ′, ψ " ϕ then Γ, Γ ′ " ϕ.
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2.2 Matrices, Nmatrices and Their Families

We start with the simplest semantic structures used for defining logics: many-
valued (deterministic) matrices (see, e.g., [12] and [14]).

Definition 2. A (deterministic) matrix for L is a tuple M = 〈V ,D,O〉, where
V is a non-empty set of truth values, D is a non-empty proper subset of V , called
the designated elements of V , and for every n-ary connective ' of L, O includes
an n-ary function '̃M : Vn → V .

A matrix M induces the usual semantic notions: An M-valuation for L is a
function ν : WL → V such that for each n-ary connective ' of L and every
ψ1, . . . , ψn ∈ WL, ν('(ψ1, . . . , ψn)) = '̃(ν(ψ1), . . . , ν(ψn)). We denote by Λs

M the
set of all the M-valuations of L.1 A valuation ν ∈Λs

M is an M-model of ψ (or
M-satisfies ψ), if it belongs to modsM(ψ) = {ν ∈ Λs

M | ν(ψ) ∈ D}. A formula ψ is
M-satisfiable if modsM(ψ) 
= ∅ and it is an M-tautology if modsM(ψ) = Λs

M. The
M-models of a theory Γ are the elements of the set modsM(Γ ) = ∩ψ∈ΓmodsM(ψ).

Definition 3. The relation "sM that is induced by a matrix M is defined for
every theory Γ and formula ψ ∈ WL by Γ "sM ψ if modsM(Γ ) ⊆ modsM(ψ).

It is well-known that "sM is a consequence relation in the sense of Definition 1.
Deterministic matrices do not always faithfully represent incompleteness. This

brings us to the second type of structures, called non-deterministic matrices,
where the truth-value of a complex formula is chosen non-deterministically out
of a set of options.

Definition 4. [6] A non-deterministic matrix (Nmatrix) for L is a tuple N =
〈V ,D,O〉, where V is a non-empty set of truth values, D is a non-empty proper
subset of V , and for every n-ary connective ' of L, O includes an n-ary function
'̃N : Vn → 2V \ {∅}.

Example 2. Consider an AND-gate, '1, that operates correctly when its inputs
have the same value and is unpredictable otherwise, and another gate, '2, that
operates correctly, but it is not known whether its is an OR or a XOR gate. These
gates may described by the following non-deterministic truth-tables:

'̃1 t f
t {t} {t, f}
f {t, f} {f}

'̃2 t f
t {t, f} {t}
f {t} {f}

Non-determinism can be incorporated into the truth-tables of the connectives
by either a dynamic [6] or a static [5] approach, as defined below.

Definition 5. Let N be an Nmatrix for L.

– A dynamic N -valuation is a function ν :WL→V that satisfies the following
condition for every n-ary connective ' of L and every ψ1, . . . , ψn ∈ WL:

ν('(ψ1, . . . , ψn)) ∈ '̃N (ν(ψ1), . . . , ν(ψn)). (1)
1 The ‘s’, standing for ‘static’ semantics, is for uniformity with later notations.
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– A static N -valuation is a function ν :WL→ V that satisfies condition (1)
and the following compositionality principle: for every n-ary connective ' of
L and every ψ1, . . . , ψn, φ1, . . . , φn ∈ WL,

if ∀ 1 ≤ i ≤ n ν(ψi) = ν(φi), then ν('(ψ1, . . . , ψn)) = ν('(φ1, . . .φn)). (2)

We denote by Λd
N the space of the dynamic N -valuations and by Λs

N the static
N -valuations. Clearly, Λs

N ⊆ Λd
N .

In both of the semantics considered above, the truth-value ν('(ψ1, . . . , ψn))
assigned to the formula '(ψ1, . . . , ψn) is selected non-deterministically from a
set of possible truth-values '̃(ν(ψ1), . . . , ν(ψn)). In the dynamic approach this
selection is made separately, independently for each tuple 〈ψ1, . . . , ψn〉, and
ν(ψ1), . . . , ν(ψn) do not uniquely determine ν('(ψ1, . . . , ψn)). In the static se-
mantics this choice is made globally, and so the interpretation of ' is a function.

Note 1. In ordinary (deterministic) matrices each '̃ is a function having singleton
values only (thus it can be treated as a function '̃ : Vn → V). In this case the
sets of static and dynamic valuations coincide, as we have full determinism.

Example 3. Consider the circuit of Figure 2.

�
�

�
�

�
�

�

,

,

XOR

in1

in2

in3

in4

out

Fig. 2. A circuit of Example 3

If both of the ' components implement the same Boolean function, which is
unknown to the reasoner, the static approach would be more appropriate. In
this case, for instance, whenever the inputs of these components are the same
(that is, in1 = in3 and in2 = in4), the outputs will be the same as well, and so
the output line (out) of the circuit will be turned off.

If, in addition, each one of these components has its own unpredictable be-
haviour, the dynamic semantics would be more appropriate. In this case, for
instance, the outputs of the '-components need not be the same for the same in-
puts, and so the value of the circuit’s output line cannot be predicted
either.2

2 Also, in Example 2, the situation represented by ,̃1 is more suitable for dynamic
semantics, while the one represented by ,̃2 is more adequate for the static semantics.
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Definition 6. Let N be an Nmatrix for L.

– The dynamic models of ψ and Γ are defined, respectively, by:
moddN (ψ) = {ν ∈ Λd

N | ν(ψ) ∈ D} and moddN (Γ ) = ∩ψ∈Γ moddN (ψ).
– The consequence relation induced by the dynamic semantics of N is

Γ "dN ψ if moddN (Γ ) ⊆ moddN (ψ).
– The corresponding definitions for the static semantics are defined similarly,

replacing d in the previous items by s.

Again, it is easily verified that "dN and "sN are consequence relations for L.

Note 2. It is important to observe that by Note 1, ifN is a deterministic Nmatrix
and M is its corresponding (standard) matrix, it holds that "dN = "sN = "sM.

Example 4. Consider again the circuit of Figure 2. The theory below represents
this circuit and the assumption that both of the '-gates have the same input:

Γ =
{

out ↔ (in1 ' in2)⊕ (in3 ' in4), in1 ↔ in3, in2 ↔ in4
}

.

Suppose now that N is a two-valued non-deterministic matrix in which ↔ and ⊕
have the standard interpretations for double-arrow and xor, and ' has the truth-
table of '2 in Example 2. Denote by t and f the propositional constants that
are always assigned the truth-values t and f, respectively. Then Γ "sN out↔ f ,
while Γ 
"dN out↔ f (consider a valuation ν ∈Λd

N such that ν(out) = ν(ini) = t
for 1 ≤ i ≤ 4, and ν(in1 ' in2) = t but ν(in3 ' in4) = f; see also Example 3).

A natural question to ask at this stage is whether logics induced by non-
deterministic matrices are representable by (finite) deterministic matrices. The
answer is negative for dynamic semantics (Proposition 1) and is positive for
static semantics (Proposition 2). To show this, we use yet another type of se-
mantic structures, which is a simplification of the notion of a family of matrices
of [14].

Definition 7. A family of matrices is a finite set of deterministic matrices F =
{M1, . . . ,Mk}, where Mi = 〈V ,D,Oi〉 for all 1 ≤ i ≤ k. An F -valuation is any
Mi-valuation for i ∈ {1, . . . , k}. We denote Λs

F = ∪1≤i≤k Λs
Mi

. The relation "sF
that is induced by F is defined by: Γ "sF ψ if Γ "sM ψ for every M ∈ F .

Example 5. The circuit of Figure 1 may be represented as follows:

Γ = {out1 ↔ (in1 ∧ in2) ∨ in1 , out2 ↔ (in1 ∧ in2) ' in3}.
Suppose that the connectives in Γ are interpreted by a family F of matrices with
the standard meanings of ∧, ∨, and ↔, and the following interpretations for ':

'̃1 t f
t t t
f t f

'̃2 t f
t t f
f f f

'̃3 t f
t t t
f f f

'̃4 t f
t t f
f t f

In this case we have, for instance, that Γ "sF out1 ↔ in1, but Γ 
"sF out2 ↔ in2
(a counter-model assigns f to in2, t to in3, t to out2, and interprets ' by '̃1).



798 O. Arieli and A. Zamansky

Lemma 1. For a family F of matrices, denote modsF (ψ) = {ν ∈ Λs
F | ν(ψ) ∈ D}

and modsF (Γ ) = ∩ψ∈Γ modsF(ψ). Then Γ "sF ψ iff modsF(Γ ) ⊆ modsF (ψ). 3

Corollary 1. For a family F of matrices, "sF is a consequence relation for L.

The next proposition, generalizing [6, Theorem 3.4], shows that dynamic Nma-
trices characterize logics that are not characterizable by ordinary matrices.

Proposition 1. Let N be a two-valued Nmatrix with at least one proper non-
deterministic operation. Then there is no family of matrices F such that "dN="sF .

In static semantics the situation is different, as reasoning with "sN can be simu-
lated by a family of ordinary matrices. To show this, we need the following:

Definition 8. [4] Let N1 = 〈V1,D1,O1〉 and N2 = 〈V2,D2,O2〉 be Nmatrices
for L. N1 is called a simple refinement of N2 if V1 = V2, D1 = D2, and '̃N1(x) ⊆
'̃N2(x) for every n-ary connective ' of L and every tuple x ∈ Vn.

Intuitively, an Nmatrix refines another Nmatrix if the former is more restricted
than the latter in the non-deterministic choices of its operators.

Definition 9. For an Nmatrix N , the family of matrices �N is the set of all the
deterministic matrices that are simple refinements of N . A family of matrices F
for L is called Cartesian, if there is some Nmatrix N for L, such that F = �N .

Example 6. Consider the Nmatrix N for describing '1 in Example 2. Then �N
is the (Cartesian) family of the four deterministic matrices in Example 5.

Proposition 2. For every Nmatrix N it holds that "sN = "s�N .

Proposition 2 shows that Nmatrices are representable by Cartesian families of
deterministic matrices. Yet, there are useful families that are not Cartesian:

Example 7. Suppose that a gate ' is either an AND or an OR gate, but it is not
known which one. This situation cannot be represented by truth table of '̃1 in
Example 2, as in both static and dynamic semantics the two choices for '̃1(t, f)
are completely independent of the choices for '̃1(f, t). What we need is a more
precise representation that makes choices between two deterministic matrices ,
each one of which represents a possible behaviour of the unknown gate. Thus,
among the four matrices of Example 5, only the first two faithfully describe ':

F =

⎧⎨⎩
'̃1 t f
t t t
f t f

,

'̃2 t f
t t f
f f f

⎫⎬⎭
We now combine the concepts of Nmatrices and of their families.

3 Due to a lack of space proofs are omitted. For full proofs see the longer version of
the paper in http://www2.mta.ac.il/∼oarieli/, or ask the first author.
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Definition 10. A family of Nmatrices is a finite set G = {N1, . . . ,Nk} of Nma-
trices, where Ni = 〈V ,D,Oi〉 for all 1 ≤ i ≤ k.4 A G-valuation is any Ni-
valuation for i ∈ {1, . . . , k}. For x ∈ {d, s}, we denote Λx

G = ∪1≤i≤nΛ
x
Ni

, and
define: Γ "xG ψ if Γ "xN ψ for every N ∈ G.

Lemma 2. Let G = {N1, . . . ,Nk} be a family of Nmatrices. For x ∈ {d, s},
denote modxG(ψ) = {ν ∈ Λx

G | ν(ψ) ∈ D} and modxG(Γ ) = ∩ψ∈Γ modxG(ψ). Then
Γ "xG ψ iff modxG(Γ ) ⊆ modxG(ψ).

Corollary 2. Both of "dG and "sG are consequence relations for L.

Concerning the simulation of "xG by other consequence relations, note that:
(a) In the dynamic case we have already seen that even logics induced by a single
Nmatrix cannot be simulated by a family of ordinary matrices.
(b) In the static case, logics induced by a family of Nmatrices can be simulated
using a family of ordinary matrices:

Proposition 3. For every family of Nmatrices G there is a family of matrices
F such that "sG = "sF .

2.3 Hierarchy of the Two-Valued Semantic Structures

In the rest of the paper we focus on the two-valued case, using a language L that
includes the propositional constants t and f . We shall also use a meta-variable M
that ranges over the two-valued structures defined above, and the metavariable
x that ranges over {s, d}, denoting the restriction on valuations. Accordingly,
Λx

M and modxM(ψ) denote, respectively, the relevant space of valuations and the
models of ψ. The following conventions will be useful in what follows:

– An M-logic is a logic that is induced by a (standard) two-valued matrix. The
class of M-logics is denoted by M.

– An SN-logic (resp., a DN-logic) is a logic based on a static (resp., a dynamic)
two-valued Nmatrix. The class of SN-logics (DN-logics) is denoted SN (DN).

– An F-logic is a logic that is induced by a family of two-valued matrices. The
corresponding class of F-logics is denoted by F.

– An SG-logic (DG-logic) is a logic based on a family of static (dynamic) two-
valued Nmatrices. The class of SG-logics (DG-logics) is denoted SG (DG).

For relating the classes of logics above, we need the following proposition.

Proposition 4. Let F be a family of matrices for L with standard negation and
conjunction. Then L = 〈L,"sF〉 is an SN-logic iff F is Cartesian.

Example 8. The family of matrices F in Example 7 (enriched with classical
negation and conjunction) is not Cartesian and so, by Propositions 1 and 4, it
is not representable by a (finite) non-deterministic matrix.

Theorem 1. In the notations above, we have that: (a) M = DN ∩ SN,
(b) SN 	 F, (c) F 
⊂ DN, (d) SG = F, and (e) DN 	 DG

A graphic representation of Theorem 1 is given in Figure 3.
4 To the best of our knowledge, these structures have not been considered yet.
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Fig. 3. Relations among the different classes of logics

3 Distance Semantics for Inconsistent Data

A major drawback of the logics considered above is that they do not tolerate
inconsistency properly. Indeed, if Γ is not M-consistent, then Γ "xM ψ for every
ψ. To overcome this, we incorporate distance-based considerations. The idea is
simply to define a distance-like measurement between valuations and theories,
and for drawing conclusions, to consider the valuations that are ‘closest’ to the
premises. This intuition is formalized in [2] for deterministic matrices and for
Nmatrices under two-valued dynamic semantics only. It can also be viewed as a
kind of a preferential semantics [13]. Below, we extend this method to all the se-
mantic structures of Section 2. We also introduce a new method for constructing
distances, which allows us to define a wide range of distance-based entailments.

3.1 Distances between Valuations

Definition 11. A pseudo-distance on a set S is a total function d : S×S → R+

that is symmetric (∀ ν, μ ∈ S d(ν, μ) = d(μ, ν)) and preserves identity (∀ ν, μ ∈
S d(ν, μ) = 0 iff ν = μ). A pseudo-distance d is a distance (metric) on S if it also
satisfies the has the triangular inequality (∀ν, μ, σ ∈ S d(ν, σ) ≤ d(ν, μ)+d(μ, σ)).

Example 9. The following functions are two common distances on the space of
the two-valued valuations.

– The drastic distance: dU (ν, μ) = 0 if ν = μ, otherwise dU (ν, μ) = 1.
– The Hamming distance: dH(ν, μ) = |{p ∈ Atoms | ν(p) 
= μ(p)}|.5

These distances can be applied on any space of static valuations (see also Note 3
below).

In the context of non-deterministic semantics, one needs to be more cautious in
defining distances, as two dynamic valuations can agree on all the atoms of a
complex formula, but still assign two different values to that formula. Therefore,
complex formulas should also be taken into account in the distance definitions,
5 Note that this definition assumes a finite number of atomic formulas in the language.
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but there are infinitely many of them to consider. To handle this, we restrict the
distance computations to some context , i.e., to a certain set of relevant formulas.6

Definition 12. A context C is a finite set of formulas closed under subformulas.
The restriction to C of ν ∈ Λx

M is a valuation ν↓C on C, such that ν↓C(ψ) = ν(ψ)
for every ψ in C. The restriction to C of Λx

M is the set Λx↓C
M = {ν↓C | ν ∈ Λx

M}.
Distances between valuations are now defined as follows:

Definition 13. Let M be a semantic structure, x ∈ {d, s}, and d a function on⋃
{C=SF(Γ )|Γ⊆WL} Λ

x↓C
M × Λx↓C

M .

• The restriction of d to C is a function d↓C s.t. ∀ ν, μ∈Λx↓C
M , d↓C(ν, μ) = d(ν, μ).

• d is a generic (pseudo) distance on Λx
M if for every context C, d↓C is a (pseudo)

distance on Λx↓C
M .

General Constructions of Generic Distances
We now introduce a general method of constructing generic distances. These
constructions include the functions of Example 9 as particular cases of generic
distances, restricted to the context C = Atoms (see Note 3 and Proposition 6).

Definition 14. A numeric aggregation function is a complete mapping f from
multisets of real numbers to real numbers, such that: (a) f is non-decreasing in
the values of the elements of its argument, (b) f({x1, . . . , xn}) = 0 iff x1 = x2 =
. . .xn = 0, and (c) f({x}) = x for every x ∈ R.

As we aggregate non-negative (distance) values, functions that meet the condi-
tions in Definition 14 are, e.g., summation, average, and the maximum.

Definition 15. Let M be a (two-valued) structure, C a context, and x ∈ {d, s}.
For every ψ ∈ C, define the function *#ψ: Λx↓C

M × Λx↓C
M → {0, 1} as follows:

• for v1, v2 ∈ {t, f}, let ∇(v1, v2) = 0 if v1 = v2, otherwise ∇(v1, v2) = 1.
• for an atomic formula p, let *#p (ν, μ) = ∇(ν(p), μ(p))
• for a formula ψ = '(ψ1, . . . , ψn), define

*#ψ(ν, μ) =

{
1 if ν(ψ) 
= μ(ψ) but ∀i ν(ψi) = μ(ψi),

0 otherwise.
For an aggregation g, define the following functions from Λx↓C

M ×Λx↓C
M to R+:

• d↓C∇,g(ν, μ) = g
(
{∇(ν(ψ), μ(ψ)) | ψ ∈ C}

)
,

• d↓C!",g(ν, μ) = g
(
{*#ψ(ν, μ) | ψ ∈ C}

)
.

Proposition 5. Both of d↓C∇,g and d↓C!",g are pseudo-distances on Λx↓C
M .

The difference between d↓C∇,g and d↓C!",g is that while d∇,g compares truth assign-
ments , d!",g compares (non-deterministic) choices (see also Example 10).
6 Thus, unlike [1,8] and other frameworks that use distances as those of Example 9,

we will not need the rather restricting assumption that the number of atoms in the
language is finite.
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Note 3. The pseudo distances defined above generalize those of Example 9:
• Both d∇,max and d!",max are natural generalizations of dU . Moreover, for any
ν, μ ∈ Λs

M and finite set Atoms, dU (ν, μ) = d↓Atoms
∇,max (ν, μ) = d↓Atoms

!",max(ν, μ).
• Both d∇,Σ and d!",Σ are natural generalizations of dH . Moreover, for any
ν, μ ∈ Λs

M and finite set Atoms, dH(ν, μ) = d↓Atoms
∇,Σ (ν, μ) = d↓Atoms

!",Σ (ν, μ).

Proposition 6. If g({x1, . . . , xn, 0}) = g({x1, . . . , xn}) for all x1, . . . , xn ∈
{0, 1}, then d↓C!",g(ν, μ) = d

↓Atoms(C)
!",g (ν, μ).

By Proposition 5, generic pseudo distances may be constructed as follows:

Proposition 7. For an aggregation function g, define the following functions:

d∇,g(ν, μ) = g
(
{∇(ν(ψ), μ(ψ)) | ψ ∈ C}

)
, (3)

d!",g(ν, μ) = g
(
{*#ψ(ν, μ) | ψ ∈ C}

)
. (4)

Then d∇,g and d!",g are generic pseudo distances on ΛxM.

3.2 Distance-Based Entailments

We now use the distances between valuations for defining entailments relations.

Definition 16. A (semantical) setting for L is a tuple S = 〈M, (d, x), f〉, where
M is a structure, d is a generic pseudo distance on Λx

M for some x ∈ {d, s}, and
f is an aggregation function.

A setting identifies the underlying semantics, and can be used for measuring the
correspondence between valuations and theories.

Definition 17. Given a setting S = 〈M, (d, x), f〉 define

– d↓C(ν, ψi) =

{
min{d↓C(ν↓C, μ↓C) | μ ∈ modxM(ψi)} if modxM(ψi) 
= ∅,
1 + max{d↓C(μ↓C1 , μ↓C2 ) | μ1, μ2 ∈ Λx

M} otherwise.

– δ↓Cd,f(ν, Γ ) = f({d↓C(ν, ψ1), . . . , d↓C(ν, ψn)}).
The intuition here is to measure how ‘close’ a valuation is to satisfying a formula
and a theory. To be faithful to this intuition, we are interested only in contexts
where the distance between a formula and its model is zero, and is strictly
positive otherwise.

Proposition 8. Let M be a semantic structure, C a context, and x ∈ {d, s}.

• If Atoms(ψ)⊆C, then d↓C(ν, ψ) = 0 iff ν ∈ modsM(ψ).
• If SF(ψ)⊆C, then d↓C(ν, ψ) = 0 iff ν ∈ moddM(ψ).

It follows that the most appropriate contexts to use are the following:

Definition 18. Given a setting S = 〈M, (d, x), f〉, denote:

Cx(Γ ) =

{
Atoms(Γ ) if x = s,
SF(Γ ) if x = d.
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Definition 19. The most plausible valuations of Γ with respect to a semantic
setting S = 〈M, (d, x), f〉 are the elements of the following set:

ΔS(Γ ) =

{{
ν ∈ Λx

M | ∀μ ∈ Λx
M δ

↓Cx(Γ )
d,f (ν, Γ ) ≤ δ

↓Cx(Γ )
d,f (μ, Γ )

}
if Γ 
= ∅,

Λx
M otherwise.

Example 10. Let N be an Nmatrix that interprets negation in the standard
way, and ' according to '1 in Example 2. Then Γ = {p, q,¬(p ' q)} is not N -
satisfiable, and moddN (Γ ) = ∅. Consider now the settings S1 = 〈N , (d∇,Σ , d), Σ〉
and S2 = 〈N , (d!",Σ , d), Σ〉, where d∇,Σ and d!",Σ are, respectively, the generic
distances defined in (3) and (4). Then:

p q p ' q ¬(p ' q) δ↓Cd

S1
(νi, Γ ) δ↓CdS2

(νi, Γ )
ν1 t t t f 3 1
ν2 t f t f 3 2
ν3 t f f t 1 1
ν4 f t t f 3 2
ν5 f t f t 1 1
ν6 f f f t 2 2

and so ΔS1(Γ ) = {ν3, ν5} and ΔS2(Γ ) = {ν1, ν3, ν5}.

Proposition 9. For every S = 〈M, (d, x), f〉 and Γ , ΔS(Γ ) is nonempty. If Γ
is M-satisfiable, ΔS(Γ ) = modxM(Γ ).

Next, we formalize the idea that, according distance-based entailments, conclu-
sions should follow from all of the most plausible valuations of the premises.

Definition 20. For S = 〈M, (d, x), f〉, denote: Γ |∼S ψ if ΔS(Γ ) ⊆ modxM(ψ)
or Γ = {ψ}.

Example 11. In Example 10, under the standard interpretation of disjunction,
Γ |∼S1 ¬p ∨ ¬q while Γ 
|∼S2 ¬p ∨ ¬q.

Example 12. Consider the F -consistent theory Γ of Example 5 that represents
the circuit of Figure 1. Learning that lines in1 and out1 always have opposite
values, the revised theory, Γ ′ = Γ ∪{out1 ↔ ¬in1}, is not F -satisfiable anymore,
so "F is useless for making plausible conclusions from Γ ′. However, using the
setting S = 〈F , (d∇,Σ , s), Σ〉, or S = 〈F , (d!",Σ , s), Σ〉, it can be verified that:

• The assertion out1 ↔ (in1 ∧ in2) ∨ in1 is falsified by some most plausible
valuations of Γ ′, and so, while Γ "F out1 ↔ in1, we have Γ ′ 
|∼S out1 ↔ in1.
• The assertion out2 ↔ (in1 ∧ in2) ' in3 is validated by all the most plausible
valuations of Γ ′, and so, despite the F -inconsistency of Γ ′, the information
about the relation between out2 and in1, in2 may be retained.

The distance-based entailments defined above generalize the usual methods for
distance-based reasoning in the context of deterministic matrices. This includes,
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among others, the operators in [8,10,11] and the distance-based entailments for
deterministic matrices in [1,3]. The entailment |∼S for Nmatrices and dynamic
valuations is studied in [2]. To the best of our knowledge, distance entailments for
Nmatrices and static valuations, and entailments based on families of matrices
and (static or dynamic) Nmatrices, have not been considered before.

Theorem 2. Let S = 〈M, (d, x), f〉. For every M-consistent theory Γ , it holds
that Γ |∼S ψ iff Γ "xM ψ.

Theorem 3. Let S = 〈M, (d, x), f〉 be a setting in which f is hereditary.7 Then
|∼S is a cautious consequence relation, i.e., it has the following properties:
Cautious Reflexivity : ψ |∼S ψ
Cautious Monotonicity [9]: if Γ |∼S ψ and Γ |∼S φ, then Γ, ψ |∼S φ.
Cautious Transitivity [7]: if Γ |∼S ψ and Γ, ψ |∼S φ, then Γ |∼S φ.
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Abstract. Even though in Artificial Intelligence, a set of classical logi-
cal formulae is often called a belief base, reasoning about beliefs requires
more than the language of classical logic. This paper proposes a simple
logic whose atoms are beliefs and formulae are conjunctions, disjunctions
and negations of beliefs. It enables an agent to reason about some be-
liefs of another agent as revealed by the latter. This logic, called MEL,
borrows its axioms from the modal logic KD, but it is an encapsulation
of propositional logic rather than an extension thereof. Its semantics is
given in terms of subsets of interpretations, and the models of a formula
in MEL is a family of such non-empty subsets. It captures the idea that
while the consistent epistemic state of an agent about the world is rep-
resented by a non-empty subset of possible worlds, the meta-epistemic
state of another agent about the former’s epistemic state is a family of
such subsets. We prove that any family of non-empty subsets of inter-
pretations can be expressed as a single formula in MEL. This formula is
a symbolic counterpart of the Möbius transform in the theory of belief
functions.

1 Motivation

Formal models of interaction between agents are the subject of current signifi-
cant research effort. One important issue is to represent how an agent can reason
about another agent’s knowledge and beliefs. Consider two agents E (for emitter)
and R (for receiver). Agent E supplies pieces of information to agent R, explain-
ing what (s)he believes and what (s)he thinks is only plausible or conceivable.
For instance, E is a witness and R collects his or her testimony. How can agent
R reason about what E accepts to tell the former, that is, E ’s revealed beliefs?
On this basis, how can R decide that E believes or not a prescribed statement?
It is supposed that E provides some pieces of information of the form I believe
α, I am not sure about β, to R. The question is: how can R reconstruct the
epistemic state of E from this information?
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In this paper, the information provided by agent E will be represented in
a minimal modal logic, sufficient to let agent R reason about it. A formula
α in a propositional belief base, understood as a belief, is encoded by �α in
our logic. This is in contrast to, e.g. belief revision literature [8], where beliefs
are represented by formulas in Propositional Logic (PL), keeping the modality
implicit. A set of formulae in this language is called a meta-belief base, because
it represents what R knows about E ’s beliefs. However, the nesting of modalities
is not allowed because we are not concerned with introspective reasoning of R
about his or her own beliefs. Some minimal axioms are proposed in such a way
that the fragment of this modal logic restricted to propositions of the form �α
is isomorphic to propositional logic, if the � operator is dropped. We call the
resulting logic a Meta-Epistemic Logic (MEL) so as to emphasize the fact that
we deal with how an agent reasons about what (s)he knows about the beliefs of
another agent.

At the semantic level, agent E has incomplete knowledge about the real world,
which can be represented by a subset E of interpretations of E ’s language, one
and only one of which is true. This subset is not empty as long as the epistemic
state of agent E is consistent, which is assumed here. All agent R knows about
E ’s epistemic state stems from what E told him or her. So R has incomplete
knowledge about E ’s epistemic state E. The epistemic state of an agent regarding
another agent’s beliefs is what we call a meta-epistemic state. The meta-epistemic
state of R (about E ’s beliefs) built from E ’s statements can be represented by
a family F of non-empty subsets of the set V of all propositional valuations
(models), one and only one of which is the actual epistemic state of E . Moreover,
any such family F can stand for a meta-epistemic state. In order not to confuse
models of propositional formulae with models of MEL formulae, we call the
latter meta-models since they are non-empty subsets of interpretations. Indeed,
models of α in PL and �α in MEL have a different nature, the use of meta-
models enabling more expressiveness, such as making the difference between
�(α∨β) and �α∨�β (the last one being impossible to encode in a belief base).
The encoding of a belief as α instead of �α, also leads to a confusion between
¬�α(≡ ♦¬α) and �¬α. In MEL their sets of meta-models are again different.

The paper demonstrates that the semantics of MEL exactly corresponds to
meta-epistemic states modelled by families of non-empty subsets of propositional
valuations. So, MEL can account for any consistent meta-epistemic state of an
agent about another agent. Related works are discussed further and perspectives
are outlined. In particular, an important connection is made between MEL
and belief functions. Indeed, a meta-epistemic state can be viewed as the set
of focal sets of a belief function. It is shown that the formula in MEL that
exactly accounts for a complete meta-epistemic state (when the epistemic state
of the emitter is precisely known by the receiver) can be retrieved by means
of the Möbius transform of the belief function. This result looks promising for
extending MEL to uncertainty theories. Most proofs are omitted due to the lack
of space.
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2 The Logic MEL

Let us consider classical propositional logic PL, with (say) k propositional vari-
ables, p1, . . . , pk, and propositional constant �. A propositional valuation, as
usual, is a map w : PV → {0, 1}, where PV := {p1, . . . , pk}. V , as mentioned
in Section 1, denotes the set of all propositional valuations. For a PL-formula
α, w |= α indicates that w satisfies α or w is a model of α, i.e. w(α) = 1
(true). If w |= α for every α in a set Γ of PL-formulae, we write w |= Γ .
[α] := {w : w |= α}, is the set of models of α. Let E denote the epistemic state
of an agent E . We assume that an epistemic state is represented by a subset
of propositional valuations, understood as a disjunction thereof. Each valuation
represents a ‘possible world’ consistent with the epistemic state of E . So, E ⊆ V ,
and it is further assumed that E is non-empty. Note that, for any E, |E| ≤ 2k.

2.1 The Language for MEL

The base is PL, and α, β... denote PL-formulae. We add the unary connective
� to the PL-alphabet. Atomic formulae of MEL are of the form �α, α ∈ PL.
The set of MEL-formulae, denoted φ, ψ..., is then generated from the set At of
atomic formulae, with the help of the Boolean connectives ¬,∧:

MEL := �α | ¬φ | φ ∧ ψ.
One defines the connective ∨ and the modality ♦ in MEL in the usual way.

Namely φ∨ψ := ¬(¬φ∧¬ψ) and ♦α := ¬�¬α, where α ∈ PL. Like �, modality
♦ applies only on PL-formulae. It should be noticed that PL-formulae are not
MEL-formulae, and that iteration of the modal operators �,♦ is not allowed in
MEL (as explained in Section 1).

An agent E provides some information about his or her beliefs about the
outside world to another agent R by means of the above language. Any set Γ of
formulae in this language is interpreted as what an agent E declares to another
agent R. It forms the meta-belief base possessed by R; on this basis, agent R
tries to reconstruct the epistemic state of the other agent. Some of the basic
statements that agent E can express in this language are as follows.

– For any propositional formula α, �α ∈ Γ means agent E declares that (s)he
believes α is true.

– ♦α ∈ Γ means agent E declares that, to him or her, α is possibly true, that
is (s)he has no argument as to the falsity of α. Note that this is equivalent
to ¬�¬α ∈ Γ , that is, all that R can conclude is that either E believes α is
true, or ignores whether α is true or not. So, ♦α cannot be interpreted as a
belief, but rather as an expression of partial ignorance.

– ♦α ∧ ♦¬α ∈ Γ means agent E declares to ignore whether α is true or not.
– �α ∨ �¬α ∈ Γ means agent E says (s)he knows whether α is true or not,

but prefers not to reveal it.
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2.2 The Semantics

For a given agent E , we define satisfaction of MEL-formulae recursively, as
follows. �α ∈ At, φ, ψ are MEL-formulae, and E is the epistemic state of an
agent E . Note that ∅ 
= E ⊆ V , the set of all propositional valuations.

– E |= �α, if and only if E ⊆ [α].
– E |= ¬φ, if and only if E 
|= φ.
– E |= φ ∧ ψ, if and only if E |= φ and E |= ψ.

It is clear that in the logic MEL, the meta-models, i.e. non-empty sets of valu-
ations, play the same role as propositional valuations in classical logic. E |= �α
means that in the epistemic state E, agent E believes α. Viewed from agent R,
if agent E declares (s)he believes α (i.e. �α ∈ Γ ), any E such that E |= �α,
is a possible epistemic state of E . It is then clear that E |= ♦α, if and only if
E ∩ [α] 
= ∅, i.e. there is at least one possible world for agent E , where α holds.
If ♦α ∈ Γ , it means that agent E declares that α is plausible (or conceivable) in
the sense that there is no reason to disbelieve α. As a consequence, the epistemic
state of E is known by agentR to be consistent with [α]. Note that �α∨�¬α ∈ Γ
is not tautological. Generally, in the case of a disjunction �α∨�β, the only cor-
responding possible epistemic states form the set {E ⊆ [α]} ∪ {E ⊆ [β]}. It is
clearly more informative than �(α ∨ β), since the latter allows epistemic states
where none of α or β can be asserted. As usual, we have the notion of semantic
equivalence of formulae:

Definition 1. φ is semantically equivalent to ψ, written φ ≡ ψ, if for any
epistemic state E, E |= φ, if and only if E |= ψ.

If Γ is a set of MEL-formulae, E |= Γ means E |= φ, for each φ ∈ Γ . So the set
of meta-models of Γ , which may be denoted FΓ , is precisely {E : E |= Γ}. Now
R can reason about what is known from agent E ’s assertions:

Definition 2. For any set Γ ∪ {φ} of MEL-formulae, φ is a semantic conse-
quence of Γ , written Γ |=MEL φ, provided for every epistemic state E, E |= Γ
implies E |= φ.

For any family F of sets of propositional valuations, F |= φ means that for each
E ∈ F , E |= φ. A natural extension gives the notation F |= Γ , for any set Γ of
MEL-formulae. So, for instance, FΓ |= Γ .

3 Axiomatization

For any set Γ ofPL-formulae,Γ " α denotes thatα is a syntactic PL-consequence
of Γ . And " α indicates that α is a PL-theorem. For α, β ∈ PL, φ, ψ, μ ∈ MEL,
we consider the following KD-style axioms and rule of inference.

Axioms:
(PL) : φ → (ψ → φ); (φ → (ψ → μ)) → ((φ → ψ) → (φ → μ));

(¬φ → ¬ψ) → (ψ → φ).
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(RM) : �α → �β, whenever " α → β.
(M) : �(α ∧ β) → (�α ∧�β).
(C) : (�α ∧�β) → �(α ∧ β).
(N) : ��.
(D) : �α → ♦α.

Rule: (MP ) If φ, φ → ψ then ψ.
Observing valid formulae and rules in MEL indeed suggests that the modal

system KD may provide an axiomatization for it – we establish this formally.
Axioms (RM), (M), (C), (N) mean that agent E is logically sophisticated, in the
classical sense, i.e. the agent R assumes that E is a propositional logic reasoner.
In particular, it means that E believes tautologies of the propositional calculus.
Moreover, if E claims to believe α and to believe β, this is equivalent to believing
their conjunction. It is thus that E follows (RM) as well: if it is true that α → β
and E believes α, (s)he must believe β. This is also the symbolic counterpart
of the monotonicity of numerical belief measures for events, in the sense of set-
inclusion. Axiom (D) comes down to considering that asserting the certainty of α
is stronger than asserting its plausibility (it requires non-empty metamodels E).
It is also a counterpart of numerical inequality between belief and plausibility
functions [16], necessity and possibility measures [6] etc. in uncertainty theories.
Finally, (PL) and (MP ) enable agent R to infer from agent E ’s publicly de-
clared beliefs, so as to reconstruct a picture of the latter agent’s epistemic state.
Syntactically, MEL’s axioms can be viewed as a Boolean version of those of the
fuzzy logic of necessities briefly suggested by Hájek [10].

Taking any set of MEL-formulae, one defines a compact syntactic conse-
quence in MEL (written "MEL), in the standard way. Soundness of MEL w.r.t
the semantics of Section 2.2, is then easy to obtain. Using soundness we get
the following result, which demonstrates that deriving a �-formula, say �α, in
MEL is equivalent to deriving α in PL. It may be noted that the result was
proved in [5] for the modal system KD45 having the standard Kripke seman-
tics. The proof is immediately carried over to MEL. In fact, it holds for the
MEL-fragment containing �-formulae and only their conjunctions.
For any set Γ of PL-formulae, let �Γ := {�β : β ∈ Γ}.

Theorem 1. �Γ "MEL �α, if and only if Γ " α.

From the point of view of application, this result means that agent R can reason
about E ’s beliefs (leaving statements of ignorance aside) as if they were R’s own
beliefs. In case �Γ "MEL �α, if agent R were asked whether E believes α from
what E previously declared to believe (�Γ ), the former’s answer would be yes
because E would reason likewise about α. By virtue of Theorem 1, one may
say that propositional logic PL is encapsulated in MEL; MEL is not a modal
extension of PL: it is a two-tiered logic.

We recall that a Kripke model [13] for the system KD, is a triple M :=
(U,R, V ), where the accessibility relation R is serial. M,u |= φ denotes that
the KD-formula φ is satisfied at u(∈ U) by V , i.e. V (φ, u) = 1. The possibility
of considering simplified models of modal systems like S5 and KD45, omitting
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the accessibility relation in Kripke structures (assuming all possible worlds are
related), is pointed out in [12] p. 62. It is interesting to see that an analogous
result may be obtained for the MEL-fragment of KD.

Proposition 1. Let M := (U,R, V ) be a KD-Kripke model and u ∈ U . Then
there is a structure M0 := (U0, R0, V0) with R0 := U0 × U0, and a state u0 ∈ U0
such that for any MEL-formula φ, M,u |= φ, if and only if M0, u0 |= φ.

So we may omit the accessibility relation R0 and obtain a simpler structure
(U0, V0) that suffices for consideration of satisfiability of MEL-formulae in terms
of Kripke models. In fact, the MEL-semantics achieves this in an even simpler
manner, as we do not have to deal with the valuation V0 either. This is because,
the following two key results establishing a passage to and from the MEL seman-
tics and Kripke semantics, yield Proposition 1: (i) For any KD-Kripke model
M and u ∈ U , there is an epistemic state Eu such that for any MEL-formula
φ, M,u |= φ, if and only if Eu |=MEL φ; (ii) every epistemic state E gives a
KD-Kripke model ME such that for any MEL-formula φ, E |=MEL φ, if and
only if for every w ∈ E, ME , w |= φ.

These two results also give the completeness theorem for MEL.

Theorem 2. (Completeness) If Γ |=MEL φ then Γ "MEL φ.

4 The Logical Characterization of Meta-epistemic States

Let F be any collection of non-empty sets of propositional valuations, represent-
ing the meta-epistemic state of an agent regarding another agent’s beliefs. It is
shown here that a MEL-formula δF may be defined such that : (i) F satisfies
δF ; (ii) furthermore, if F satisfies any set Γ ′ of MEL-formulae, the syntactic
consequences of Γ ′ must already be consequences of δF . So the MEL-formula δF
completely characterizes the meta-epistemic state F . For this purpose, we follow
the line of characterization of Kripke frames by Jankov-Fine formulae (cf. [1]).
Here, a Jankov-Fine kind of formula for any non-empty epistemic state is consid-
ered, keeping in mind the correspondence with the simpler Kripke frame (with
universal accessibility relation), outlined at the end of Section 3. The formula is
then extended naturally to a collection F of non-empty epistemic states.

4.1 Syntactic Representation of Meta-epistemic States

Let E ⊆ V , E 
= ∅. Further, let αE :=
∨
w∈E αw, where αw is the PL-formula

characterizing w, i.e. αw :=
∧
w(p)=1 p ∧

∧
w(p)=0 ¬p, where p ranges over PV .

Observe that E |= ♦αw if and only if w ∈ E, since [αw] = {w}. On the other
hand, E |= �αw, if and only if E = {w}, since E 
= ∅. Consider now a meta-
epistemic state, say the collection F := {E1, . . . , En}, where the Ei’s are non-
empty sets of propositional valuations. Note that |F| ≤ 22k−1.

In order to exactly describe F , we need a MEL-formula such that it is satis-
fied by all members of F only. In particular, it must not be satisfied by
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(a) sets having elements from outside
⋃
F ,

(b) sets of valuations lying within
⋃
F , but not equal to any of the Ei’s,

(c) especially, subsets of members of F .
Such a (non-unique) MEL-formula is denoted δF and if F := {E}, δF is denoted
δE . Now for any epistemic state E := {w1, . . . , wm}, consider δE to be the
conjunction of (i) �(αw1 ∨ . . . ∨ αwm) and (ii) ♦αwi , i = 1, . . . ,m, i.e.,

δE := �αE ∧
∧
w∈E ♦αw.

Then E |=MEL δE , and it is easy to check that for any epistemic state E′,

Observation 1. E′ |=MEL δE, if and only if E′ = E.

A natural extension to the general case, where F := {E1, . . . , En} is a collection
of mutually exclusive epistemic states, gives

Definition 3. δF :=
∨

1≤i≤n δEi .

Thus we see that the set of meta-models of δF is preciselyF , and any consequence
of sets of formulae satisfied by all epistemic states of F , is also a consequence
of δF .

Theorem 3

(a) F |=MEL δF , i.e. for each Ei ∈ F , Ei |=MEL δF .
(b) If F ′ is any other meta-epistemic state such that F ′ |=MEL δF , F ′ ⊆ F .
(c) If Γ ′ is a set of MEL-formulae such that F |=MEL Γ ′, Γ ′ "MEL φ
would imply {δF} "MEL φ, for any MEL-formula φ.

Proof. (c) Suppose Γ ′ "MEL φ, and let E |=MEL δF . By part (b) of this
theorem, E ∈ F . Then E |=MEL Γ ′, by assumption. Soundness of MEL gives
Γ ′ |=MEL φ, and so E |=MEL φ. Thus {δF} |=MEL φ, and by completeness of
MEL, we get the result. �

4.2 The Meta-models of Meta-belief Bases

Conversely, let Γ be any set of MEL-formulae representing a meta-belief base.
We consider the family FΓ of all meta-models (sets of propositional valuations)
of Γ (cf. Section 2.2), FΓ := {E ⊆ V : ∅ 
= E |= Γ}. If Γ := {φ}, we write Fφ.

The following theorem extends the classical properties of semantic entailment
over to meta-models. It is the companion of Theorem 3. We see that FΓ is the
maximal set of meta-models of Γ that satisfies precisely the consequences of Γ .

Theorem 4

(a) If Γ ′ is any set of MEL-formulae such that FΓ |=MEL Γ ′, Γ ′ "MEL φ
would imply Γ "MEL φ, for any MEL-formula φ.
(b) Let Con(Γ ) := {φ : Γ "MEL φ} and Th(FΓ ) := {φ : FΓ |= φ}. Then
Con(Γ ) = Th(FΓ ).
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Definition 3 proposes an encoding of a meta-epistemic state into a MEL formula.
We can also obtain the set of meta-models of any meta-belief base. We can now
iterate the construction. It shows the bijection between classes of semantically
equivalent formulae in MEL and sets of non-empty subsets of valuations.

Theorem 5

(a) If Γ ∪ {φ} is any set of MEL-formulae, Γ "MEL φ, if and only if
{δFΓ } "MEL φ. In other words, the MEL-consequence sets of Γ and δFΓ

are identical: Con(Γ ) = Con(δFΓ ).
(b) If F is any collection of non-empty sets of propositional valuations,
F = FδF .

This result shows that MEL can precisely account for families of non-empty
subsets of valuations. Moreover, the following bijections can be established.

Corollary 1

(a) The Boolean algebra on the set of MEL-formulae quotiented by seman-
tical equivalence ≡, is isomorphic to the power set Boolean algebra with do-
main 22V\{∅}. The correspondence, for any MEL-formula φ, is given by:
[φ]≡ �→ Fφ.
(b) There is a bijection between the set of all meta-epistemic states and the
set of all belief sets of MEL, i.e. Γ such that Con(Γ ) = Γ . For any family
F , the correspondence is given by: F �→ Con(δF ).

5 From Meta-epistemic States to Belief Functions

A connection between MEL and belief functions was pointed out in the Intro-
duction. A belief function [16] Bel is a non-additive monotonic set-function (a
capacity) with domain 2V and range in the unit interval, that is super-additive
at any order (also called ∞-monotone), that is, it verifies a relaxed version of
the additivity axiom of probability measures. The degree of belief Bel(A) in a
proposition A evaluates to what extent this proposition is logically implied by
the available evidence. The plausibility function Pl(A) := 1 − Bel(Ac) evalu-
ates to what extent events are consistent with the available evidence. The pair
(Bel, P l) can be viewed as quantitative randomized versions of KD modalities
(�,♦) [17]. Interestingly, elementary forms of belief functions arose first, in the
works of Bernoulli, for the modeling of unreliable testimonies [16], while MEL
encodes the testimony of an agent. Function Bel can be mathematically defined
from a (generally finite) random set on V , that has a very specific interpretation.
A so-called basic assignment m(E) is assigned to each subset E of V , and is such
that m(E) ≥ 0, for all E ⊆ V and

∑
E⊆V m(E) = 1.

The degree m(E) is understood as the weight given to the fact that all an agent
knows is that the value of the variable of interest lies somewhere in set E, and
nothing else. In other words, the probability allocation m(E) could eventually
be shared between elements of E, but remains suspended for lack of knowledge.
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For instance, agent R receives a testimony in the form of a statement �α such
that E = [α]; m(E) reflects the probability that E correctly represents the
available knowledge. A set E such that m(E) > 0 is called a focal set. In the
absence of conflicting information it is generally assumed that m(∅) = 0. It
is then clear that a collection of focal sets is a meta-epistemic state in our
terminology. Interestingly, a belief function Bel can be expressed in terms of the
basic assignment m [16]:

Bel(A) =
∑
E⊆A

m(E).

This formula is clearly related with the meta-models F�α = {E ⊆ V : E ⊆ [α]}
of atomic belief �α (cf. Section 2.2). The converse problem, namely, reconstruct-
ing the basic assignment from the belief function, has a unique solution via the
so-called Möbius transform

m(E) =
∑
A⊆E

(−1)|E\A|Bel(A).

It is clear that the assertion of a MEL formula �α is faithfully expressed
by Bel([α]) = 1. The fact that the calculus of belief functions is a graded ex-
tension of the KD45 modal logic was already briefly pointed out by Smets [17];
especially, Bel([α]) can be interpreted as the probability of �α. Moreover, there
is a similarity between the problem of reconstructing a mass assignment from
the knowledge of a belief function and the problem of singling out an epistemic
state in the language of MEL as in Section 4.1. Namely, consider the MEL-
formula �αE ∧ ¬

∨
w∈E �¬αw ≡ δE , whose set of meta-models is {E}. We

shall show that this expression can be written as an exact symbolic counterpart
of the Möbius transform. To see it, in fact, rewrite the Möbius transform as

m(E) =
∑

A⊆E:|E\A| even
Bel(A) −

∑
A⊆E:|E\A| odd

Bel(A).

Now translate
∑

into
∨

, Bel(A) into �α, “−” into ∧¬, and get the following:

Proposition 2. δE ≡
∨
α|=αE :|E\[α]| even �α ∧ ¬

∨
α|=αE :|E\[α]| odd �α.

Proof. If β |= α, �α ∨ �β ≡ �α in MEL, so,
∨
α|=αE :|E\[α]| even �α ≡ �αE .

Now the set of meta-models of the formula �αE ∧
∨
w∈E �¬αw is

{A : A ⊆ E} ∩ ∪w∈E{A ⊆ V : w 
∈ A} = ∪w∈E{A ⊆ E : w 
∈ A}.

It is not difficult to see that the above is also the set of meta-models of the for-
mula

∨
w∈E �αE\{w}, and of the more redundant formula

∨
α|=αE :|E\[α]| odd �α

equivalently. So the Möbius-like MEL-formula is semantically equivalent to
�αE ∧ ¬(�αE ∧

∨
w∈E �¬αw) ≡ δE . �

So one may consider belief (resp. plausibility) functions as numerical generalisa-
tions of atomic (boxed) formulae of MEL (resp. diamonded formulae), and for-
mulae describing single epistemic states (totally informed meta-epistemic states)
can be obtained via a symbolic counterpart to Möbius transform.
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6 Related Work

The standard modal logic approach to the representation of knowledge viewed
as true belief relies on the S5 modal logic, while beliefs are captured by KD45
[12]. At the semantic level it uses Kripke semantics based on an accessibility
relation R among possible worlds. Our approach does not require axioms 4
and 5 (positive and negative introspection), since we are not concerned with
an agent reasoning about his or her own beliefs. The fact that we rule out
nested modalities and do not consider introspection does not make this kind
of semantics very natural. Nevertheless, our setting is clearly similar to the one
proposed by Halpern and colleagues [12] reinterpreting knowledge bases as being
fed by a “Teller” that makes statements supposed to be true in the real world.
The knowledge base is what we call receiver and the teller what we call emitter.
Important differences are that we are mainly concerned with beliefs held by
the Teller (hence making no assumptions as to the truth of such beliefs), that
these beliefs are incomplete, and that the Teller is allowed to explicitly declare
partial ignorance about specific statements. Finally, even if not concerned with
nonmonotonic reasoning, MEL may be felt as akin to early nonmonotonic modal
logics such as Moore’s autoepistemic logic (AEL) [14]. Expansions of an AEL
theory can be viewed as meta-models expressing epistemic states. However, there
are a couple of important differences between MEL and AEL. In autoepistemic
logic an agent is reasoning about his or her own beliefs, or lack thereof, not about
another agent’s beliefs. So AEL naturally allows for the nesting of modalities,
contrary to MEL. Moreover, sentences of the form �α ∨ ¬α (meaning that if
α is not believed, then it is false) involving boxed and non-boxed formulae are
allowed in AEL (and are the motivation for this logic), thus mixing propositional
and modal formulae, which precisely MEL forbids.

The closest work to MEL is Pauly’s logic for consensus voting [15] that has a
language and axiomatization identical to those of MEL. However, the semantics
is set in a different context altogether. A consensus model for n individuals is
a collection of n propositional valuations that need not be distinct. So instead
of epistemic states that are sets of valuations, Pauly uses multisets thereof. The
subpart of consensus logic restricting models to subsets of distinct valuations
coincides with MEL. However, the general completeness result obtained for
MEL (cf. Theorem 2) will not find an analogue in the setting of consensus logic.

At first glance the semantics of MEL also seems to bring us close to neighbor-
hood semantics of modal logics proposed by D. Scott and R. Montague [3]. How-
ever, neighborhood semantics replaces Kripke structures by collections of subsets
of valuations in the definition of satisfiability (which enables logics weaker than
K to be encompassed) while in MEL a model is a non-empty collection of val-
uations. Partial logic Par [2], like MEL, uses special sets of valuations in place
of valuations, under the form of partial models. A partial model σ assigns truth-
values to a subset of propositional variables. The corresponding meta-model is
formed of all completions of σ. Unfortunately, Par adopts a truth-functional
view, and assumes the equivalence σ |= α ∨ β if and only if σ |= α or σ |= β.
So it loses classical tautologies, which sounds paradoxical when propositional
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variables are Boolean [4]. Actually, the basic Par keeps the syntax of classical
logic, which forbids to make a difference between the fact of believing α∨β and
that of believing α or believing β.

However a more promising connection is between MEL and possibilistic logic.
Possibilistic logic has been essentially developed as a formalism for handling
qualitative uncertainty with an inference mechanism that remains close to the
one of classical logic [6]. A standard possibilistic logic expression is a pair (α, a),
where α is a propositional formula and a a level of certainty in [0, 1]. Actually, the
fragment of MEL restricted to boxed propositional formulae and conjunctions
thereof is isomorphic to special cases of possibilistic logic bases where weights
attached to formulae express full certainty. It suggests an extension of MEL
to multimodalities (like the FN system suggested by Hájek [10] p. 232), using
formulae such as �aα expressing that the agent believes α at level at least a,
and changing epistemic states into possibility distributions. Such an extension
of MEL might also extend possibilistic logic by naturally allowing for other
connectives between possibilistic formulae, such as disjunction and negation,
with natural semantics already outlined in [7] in the scope of multiagent systems.

7 Conclusion

This paper lays the foundations for a belief logic that is in close agreement with
more sophisticated uncertainty theories. It is a modal logic because it uses the
standard modal symbols � and ♦ for expressing ideas of certainty understood
as validity in an epistemic state and possibility understood as consistency with
an epistemic state. It differs from usual modal logics (even if borrowing much
of their machinery) by a deliberate stand on not nesting modalities, and not
mixing modal and non-modal formulae, thus yielding a two-tiered logic. At the
semantic level we have proved that the MEL language is capable of accounting
for any meta-epistemic state, viewed as a family of non-empty subsets of classical
valuations, just as propositional logic language is capable of accounting for any
epistemic state, viewed as a family of classical valuations. In this sense, MEL is
a higher-order logic with respect to classical logic. It prevents direct access to the
actual state of the world: in the belief environment of this logic, an agent is not
allowed to claim that a proposition is true in the real world. We do not consider
our modal formalism to be an extension of the classical logic language, but an
encapsulation thereof, within an epistemic framework; hence combinations of
objective and epistemic statements like α ∧ �β are considered meaningless in
this perspective. This higher-order flavor is typical of uncertainty theories. The
subjectivist stand in MEL does not lead us to object to the study of languages
where meta-statements relating belief and actual knowledge, observations and
objective truths could be expressed. We only warn that epistemic statements
expressing beliefs and doubts on the one hand and other pieces of information
trying to bridge the gap between the real world and such beliefs (like deriving
the latter from objective observations) should be handled separately.

This study is a first step. Some aspects of MEL require more scrutiny, like
devising proof methods and assessing their computational complexity. One of
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the merits of MEL is to potentially offer a logical grounding to uncertainty
theories of incomplete information. An obvious extension to be studied is towards
possibilistic logics, using (graded) multimodalities and generalizing epistemic
states to possibility distributions. In fact, modal logics capturing possibility and
necessity measures have been around since the early nineties [11], but they were
devised with a classical view of modal logic and Kripke semantics. One important
contribution of the paper is to show that MEL is the Boolean version of Shafer’s
theory of evidence, whereby a mass function is the probabilistic counterpart to a
meta-epistemic state. It suggests that beyond possibilistic logic, MEL could be
extended to belief functions in a natural way, and it would be useful to compare
MEL with the logic of belief functions devised by Godo and colleagues [9].
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Abstract. Partially preordered belief bases are very convenient for an
efficient representation of incomplete knowledge. They offer flexibility
and avoid to compare unrelated pieces of information. A number of
inference relations for reasoning from partially preordered belief bases
have been proposed. This paper sheds light on the following approaches:
the partial binary lexicographic inference, the compatible-based lexico-
graphic inference, the democratic inference, the compatible-based inclu-
sion inference, the strong possibilistic inference and the weak possibilistic
inference. In particular, we propose to analyse these inference relations
according to two key dimensions: the computational complexity and the
cautiousness. It turns out that almost all the corresponding decision
problems are located at most at the second level of the polynomial hi-
erarchy. As for the cautiousness results, they genereally extend those
obtained in the particular case of totally preordered belief bases.

1 Introduction

Handling inconsistency is a fundamental problem in commonsense reasoning.
This problem arises in several situations like belief revision, exceptions tolerant
reasoning, information fusion, etc. For instance, in a cooperative intrusion detec-
tion framework, several intrusion detection systems (IDSs) need to be dispatched
throughout the network in order to enhance the detection process. However, such
a cooperation may easily lead to conflicting situations according to the topolog-
ical and functional visibility of each IDS.

A number of approaches have been proposed to reason under inconsistency
without trivialization. While some of them consist in weakening the inference
relation such as paraconsistent logics [7], others weaken the available beliefs like
the so-called coherence-based approaches [15] which are quite popular.

Coherence-based approaches can be considered as a two step process consist-
ing first in generating some preferred consistent subbases and then using classical
inference from some of them. Among these approaches, we can distinguish those
that are dedicated for totally preordered (or stratified) belief bases and those
which are more general and which deal with partially preordered belief bases.
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c© Springer-Verlag Berlin Heidelberg 2009



818 S. Benferhat and S. Yahi

The most frequently encountered coherence-based approaches dedicated for
totally preordered belief bases are the possibilistic inference [8], the inclusion in-
ference [4] and the lexicographic inference [1,11]. All these inferences have been
deeply analyzed from both the computational complexity and the cautiousness
sides [2,12,13,5,1].

However, no such necessary study has been devoted, at the best of our knowl-
edge, to the several inference relations from partially preordered belief bases
despite the flexibility they offer.

In this paper, we are interested in such approaches. In particular, we shed
light on the partial binary lexicographic inference [16], the compatible-based
lexicographic inference [16], the democratic inference [6], the compatible-based
inclusion inference [10], the strong possibilistic inference and the weak possibilis-
tic inference [3]. The common denominator of all these inferences is that each
one of them is an extension of some popular approach for totally preordered
belief bases.

This paper analyzes the previous inference relations by studying the corre-
sponding computational complexity and comparing them in terms of cautious-
ness or equivalently in terms of productivity. We do believe that such an analysis
is worth the effort in order to enable one to choose the most suitable inference
that fits with the cautiousness required by the application at hand with the
lowest computational cost.

The remainder of the paper is structured as follows. In Section 2, we give some
formal preliminaries. In Section 3, we briefly review the inference relations from
partially preordered belief bases that make the object of our study. In Section 4,
we give the complexity results and in Section 5 we present the cautiousness-based
comparison. Section 6 concludes the paper and gives some perspectives.

2 Preliminaries

We consider a finite set of propositional variables which are denoted by lower
case Roman letters. Formulae are denoted by upper case Roman letters. Let Σ
be a finite set of formulae, Cons(Σ) denotes the set of all the consistent subbases
of Σ while MaxCons(Σ) denotes the set of all its maximal (with respect to set
inclusion) consistent subbases.

A partial preorder � on a finite set A is a reflexive and transitive binary
relation. In this paper, a � b expresses that a is at least as preferred as b. A
strict order ≺ on A is an irreflexive and transitive binary relation. a ≺ b means
that a is strictly preferred to b. A strict order is defined from a preorder as a ≺ b
if and only if a � b holds but b � a does not hold. The equality, denoted by
≈, is defined as a ≈ b if and only if a � b and b � a. Moreover, we define the
incomparability, denoted by ∼, as a ∼ b if and only if a � b and b � a. The set
of minimal elements of A with respect to ≺, denoted by Min(A,≺), is defined
as: Min(A,≺) = {a ∈ A, �b ∈ A : b ≺ a}. A total preorder ≤ on a finite set A
is a reflexive and transitive binary relation such that ∀a, b ∈ A, either a ≤ b or
b ≤ a.
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We assume that the reader is familiar with some basic notions about com-
plexity theory, like the classes P, NP and co-NP. Now, we will sketch the classes
of the polynomial hierarchy (PH) (see [9,14] for more details). Let X be a class
of decision problems. Then PX denotes the class of decision problems that can
be solved using a polynomial algorithm that uses an oracle for X (informally, a
subroutine for solving a problem in X at unit cost). Similarly, NPX denotes the
class of decision problems that can be solved using a nondeterministic polyno-
mial algorithm that uses an oracle for X. Based on these notions, the classes Δp

k,
Σp
k and Πp

k (k ≥ 0) are defined as follows: Δp
0 = Σp

0 = Πp
0 = P , Δp

k+1 = PΣp
k ,

Σp
k+1 = NPΣp

k and Πp
k+1 = co-Σp

k+1.
Hence, Σp

1 = NP and Πp
1 = co-NP . The class Δp

2[O(log n)] contains the
problems in Δp

2 that can be solved with O(log n) many calls to an NP oracle.

3 A Refresher on the Inference from Partially Preordered
Belief Bases

3.1 Inference from Totally Preordered Belief Bases

We first recall some popular inference relations from totally preordered belief
bases, namely the lexicographic inference [1,11], the inclusion inference [4] and
the possibilistic inference [8].

Let (Σ,≤) be a totally preordered belief base where Σ is a set of formulae
and ≤ is a total preorder reflecting the priority relation that exists between these
formulae. (Σ,≤) can be viewed as a stratified belief base Σ = S1∪· · ·∪Sm such
that the formulae in Si have the same level of priority and have a higher priority
than those in Sj with j > i.

Definition 1. Let A,B ∈ Cons(Σ).

– A is lexicographically preferred to B, denoted by A <lex B, iff ∃i, 1 ≤ i ≤
m such that |Si ∩A| > |Si ∩B| 1 and ∀j, j < i, |Sj ∩B| = |Sj ∩A|.

– A is preferred to B with respect to the inclusion preference, denoted by
A <incl B, iff ∃i, 1 ≤ i ≤ m such that (Si ∩ B) ⊂ (Si ∩ A) and ∀j, j < i,
(Sj ∩B) = (Sj ∩A).

Let Lex(Σ,≤) (resp. Incl(Σ,≤)) denote the set of all the preferred consis-
tent subbases of Σ with respect to <lex (resp. <incl), namely Lex(Σ,≤) =
Min(Cons(Σ), <lex) and Incl(Σ,≤) = Min(Cons(Σ), <incl). Then,

Definition 2. Let ψ be a formula.

– ψ is said to be a lexicographic consequence of Σ, denoted by Σ "lex ψ, iff
∀B ∈ Lex(Σ,≤) : B |= ψ.

– ψ is said to be an inclusion consequence of Σ, denoted by Σ "incl ψ, iff
∀B ∈ Incl(Σ,≤) : B |= ψ.

1 |A| denotes the number of formulae of A.
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As to the possibilistic inference, it is defined by

Definition 3. A formula ψ is a possibilistic consequence of (Σ,≤), denoted by
(Σ,≤) |=pos ψ, iff (

⋃s−1
i=1 Si) |= ψ, where s is the smallest index such that

⋃s
i=1 Si

is inconsistent. If
⋃m
i=1 Si is consistent then (Σ,≤) |=pos ψ iff (

⋃m
i=1 Si) |= ψ.

Let Lex, Incl and Pos denote the decision problems respectively associated
with "lex, "incl and "pos. Then, it has been shown that Lex is Δp

2-complete [5],
Incl is Πp

2 -complete [12] and Pos is Δp
2[O(log n)]-complete [13]. Moreover, the

possibilistic inference is more cautious than the inclusion inference which is itself
more cautious than the lexicographic inference [1].

3.2 Inference Relations from Partially Preordered Belief Bases

A number of inference relations from partially preordered belief bases have been
defined by extending the inference relations from totally preordered belief bases
recalled in the previous section. Then, the compatible-based lexicographic infer-
ence [16] and the partial binary lexicographic inference [16] extend the lexico-
graphic inference. Both the democratic inference [6] and the compatible-based
inclusion inference [4] generalise the inclusion inference. As to the possibilistic
inference, it is extended by the strong possibilistic inference [3] and also by the
weak possibilistic inference [3].

Before sketching these inference relations, let us recall the notion of totally
preordered belief bases compatible with a given partially preordered belief base
(Σ,�) [3]. Intuitively, a totally preordered belief base (Σ,≤) is said to be com-
patible with a (Σ,�) iff the total preorder ≤ extends or completes the partial
preorder �. More formally: 1) ∀ϕ, φ ∈ Σ : if ϕ � φ then ϕ ≤ φ and 2) ∀ϕ, φ ∈ Σ :
if ϕ ≺ φ then ϕ < φ.

We denote by Comp(Σ,�) the set of all the totally preordered belief bases
compatible with (Σ,�).

1. Compatible-based Lexicographic Inference: This inference, denoted
here by Cmp-lexicographic inference, is based on the idea of totally preordered
compatible belief bases [16].

Definition 4. Let B ∈ Cons(Σ). B is said to be Cmp-lexicographically pre-
ferred iff there exists a totally preordered base (Σ,≤) compatible with (Σ,�)
such that B is lexicographically preferred in (Σ,≤).

Let CmpLex(Σ,�) denote the set of all the Cmp- lexicographically preferred
consistent subbases: CmpLex(Σ,�) =

⋃
(Σ,≤)∈Comp(Σ,�) Lex(Σ,≤). Then, a

formula ψ is said to be a Cmp-lexicographic conclusion of (Σ,�), denoted by
(Σ,�) �cmp

lex ψ, iff
∀B ∈ CmpLex(Σ,�), B |= ψ.

2. Partial Binary Lexicographic Inference: The idea of this inference which
will be denoted by P-lexicographic inference is to compare directly two consistent
subbases [16]. First, Σ is partitioned as follows Σ = E1 ∪ . . . ∪En (n ≥ 1) such
that:
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– ∀i, 1 ≤ i ≤ n, we have ∀ϕ,ϕ′ ∈ Ei: ϕ ≈ ϕ′,
– ∀i, 1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ n with i 
= j, we have ∀ϕ ∈ Ei, ∀ϕ′ ∈ Ej : ϕ 
≈ ϕ′.

So, each subset Ei represents an equivalence class of Σ with respect to ≈. Then,
a preference relation between two equivalence classes Ei and Ej , denoted by ≺s,
is defined by: Ei ≺s Ej iff ∃ϕ ∈ Ei, ∃ϕ′ ∈ Ej such that ϕ ≺ ϕ′. One can easily see
that this partition is a generalization of the idea of stratification associated with
totally preordered belief bases. Now, the P-lexicographic preference between two
consistent subbases of a partially preordered belief base (Σ,�), denoted by �p

lex,
is defined as follows:

Definition 5. Let A,B ∈ Cons(Σ). Then, A is said to be P-lexicographically
preferred to B, denoted by A �p

lex B, iff ∀i, 1 ≤ i ≤ n : if |Ei ∩ B| > |Ei ∩ A|
then ∃j, 1 ≤ j ≤ n such that |Ej ∩A| > |Ej ∩B| and Ej ≺s Ei.

Let PLex(Σ,�) = Min((Σ,�),≺p
lex). Then, a formula ψ is a P-lexicographic

conclusion of (Σ,�), denoted by (Σ,�) �p
lex ψ, iff

∀B ∈ PLex(Σ,�) : B |= ψ.

3. Democratic Inference: The democratic inference [6] is based on the fol-
lowing preference:

Definition 6. Let A,B ∈ Cons(Σ). Then, A is said to be democratically pre-
ferred to B, denoted by A ≺demo B, iff ∀b ∈ B/A, ∃a ∈ A/B such that a ≺ b.

Let Demo(Σ,�) = Min(Cons(Σ,�),≺demo) denote the set of all the demo-
cratically preferred consistent subbases of (Σ,�). Then, a formula ψ is said to
be a democratic conclusion of (Σ,�), denoted by (Σ,�) �demo ψ, iff

∀B ∈ Demo(Σ,�), B |= ψ.

4. Compatible-based Inclusion Inference: This inference, denoted here by
Cmp-inclusion inference, is also based on the notion of compatible totally pre-
ordered belief bases [10].

Definition 7. A ∈ Cons(Σ) is said to be a Cmp-inclusion preferred subbase iff
there exists a compatible (Σ,≤) such that A ∈ Incl(Σ,≤).

Let CmpIncl denote the set of all the Cmp-inclusion preferred subbases. Then,

(Σ,�) �cmp
incl ψ iff ∀B ∈ CmpIncl(Σ,≤), B |= ψ.

5. Strong and Weak Possibilistic Inferences: The corresponding preference
relations are defined as follows [3].

Definition 8. Let A,B ∈ Cons(Σ). Then,

– A is preferred to B with respect to the strong possibilistic preference, denoted
by A ≺s

pos B, iff ∃b /∈ B such that ∀a /∈ A, b ≺ a.
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– A is preferred to B with respect to the weak possibilistic preference, denoted
by A ≺w

pos B iff ∀a /∈ A, ∃b /∈ B such that b ≺ a.

Let Poss(Σ,�) and Posw(Σ,�) denote respectively Min((Σ,�),≺s
pos) and

Min((Σ,�),≺w
pos). Then,

– (Σ,�) �s
pos ψ iff ∀B ∈ Poss(Σ,�), B |= ψ

– (Σ,�) �w
pos ψ iff ∀B ∈ Posw(Σ,�), B |= ψ.

4 Computational Complexity Results

In this section, we present complexity results for reasoning from partially pre-
ordered belief bases using the inference relations recalled in the previous section.
Let us consider the following inference relation:

Σ �mc ψ iff ∀B ∈MaxCons(Σ) : B |= ψ

and let MaxCons denote the corresponding decision problem which is known
to be ΠP

2 -complete [12].
Let Pos-S, Pos-W, Demo, CmpIncl, PLex and CmpLex denote the de-

cision problems respectively associated with: (Σ,�) �s
pos ψ, (Σ,�) �w

pos ψ,
(Σ,�) �demo ψ, (Σ,�) �cmp

incl ψ, (Σ,�) �p
lex ψ and (Σ,�) �cmp

lex ψ.
Let us first give the complexity of PLex:

Proposition 1. PLex is Πp
2 -complete.

Proof Sketch

1. Membership to Πp
2

Let us show that the complementary problem co-PLex ((Σ,�) �p
lex ψ)

belongs to Σp
2 . Membership in Σp

2 follows from Algorithm 1.1.

Algorithm 1.1: co-PLex((Σ, �), ψ)
begin

1. Guess a subbase A of Σ
2. Check that A is consistent
3. Check that A ∈ PLex(Σ, �)
4. Check that A �|= ψ

end

Clearly, points 2 and 4 can be solved using an NP oracle. As for point 3, it
can be solved by checking that there is no a consistent subbase B such that
B ≺p

lex A. The problem which consists in checking whether such a base exists
will be denoted by NotLexPref and it can be solved via Algorithm 1.2
which is nondeterministic polynomial. So, NotLexPref ∈ NP. Moreover,
we can reduce the well known GSat problem (the satisfiability problem of
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Algorithm 1.2: NotLexPref((Σ, �),A)
begin

Guess an interpretation ω
B ← ∅
for each φ ∈ Σ do

if ω satisfies φ then
B ← B ∪ {φ}

Check that B ≺lex A

end

a propositional formula) which is NP-complete to NotLexPref using a
polynomial transformation. Hence, NotLexPref is NP-complete.

Thus, Algorithm 1.1 is non deterministic (point 1) polynomial that uses
an NP oracle. So, co-PLex ∈ NPNP = Σp

2 and hence PLex ∈ co-Σp
2 = Πp

2 .

2. Completeness
Given a belief base Σ, let us consider a new partially preordered belief base
(Σ,�) such that: ∀α, β ∈ Σ : α ∼ β. Now, let us show that MaxCons(Σ) =
PLex(Σ,�).
– It has been shown in [16] that each P-lexicographically preferred consis-

tent subbase is maximal consistent, i.e., PLex(Σ,�) ⊆MaxCons(Σ).
– Now, let us show the other inclusion, namely ∀A,B ∈ MaxCons(Σ):

A ∼p
lex B.

Let A,B ∈MaxCons(Σ). (Σ,�) =
⋃m=|Σ|
i=1 Ei such that:

• ∀i, 1 ≤ i ≤ m: Ei contains only one formula φ ∈ Σ.
• ∀i, 1 ≤ i ≤ m, ∀j, 1 ≤ j ≤ m such that i 
= j, we have Ei ∼s Ej .

On the other hand, neither A 
⊂ B nor B 
⊂ A. Then, given α ∈ A − B
and β ∈ B − A, let Ea = {α} and Eb = {β}. So, ∃b, 1 ≤ b ≤ m with
|Eb ∩B| = 1 > |Eb ∩A| = 0 such that �j, 1 ≤ j ≤ m with Ej ≺s Eb and
|Ej ∩ A| > |Ej ∩ B|. This means that A �p

lex B. In the same way, we
prove that B �p

lex A. Hence, ∀A ∈MaxCons(Σ), A ∈ PLex(Σ,�).
Thus, MaxCons(Σ) = PLex(Σ,�), i.e., Σ �mc ψ iff (Σ,�) �p

lex ψ. So,
MaxCons ∝ PLex and since MaxCons is Πp

2 -complete and PLex ∈ Πp
2 ,

we deduce that PLex is Πp
2 -complete. �

Now, the complexity of CmpLex is as follows:

Proposition 2. CmpLex is Πp
2 -complete.

Proof Sketch

1. Membership in Πp
2

Let us show that the complementary problem co-CmpLex ∈ Σp
2 via Algo-

rithm 1.3. This algorithm is nondeterministic given point 1. Then, clearly
point 2 can be achieved in polynomial time. Point 3 can be achieved using
a polynomial number of an NP oracle since it is known that Lex is Δp

2-
complete. So, co-CmpLex ∈ NPNP = Σp

2 . Thus, CmpLex ∈ Πp
2 .
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Algorithm 1.3: co-CmpLex((Σ, �), ψ)
begin

1. Guess a totally preordered belief base (Σ, ≤)
2. Check that (Σ, ≤) is compatible with (Σ, �)
3. Check that (Σ, ≤) �lex ψ

end

2. Completeness
Using the same polynomial transformation given for PLex, we show that
MaxCons ∝ CmpLex and hence CmpLex is Πp

2 -complete 2. �

Then, it turns out that the democratic inference belongs to the same class as the
P-lexicographic and the Cmp-lexicographic inferences as shown by the following
proposition:

Proposition 3. Demo is Πp
2 -complete.

Indeed, membership in Πp
2 can be shown by proving that co-Demo ∈ Σp

2 using
similar ideas as those given for PLex. Completeness derives from the fact that
Incl which is Πp

2 -complete is a particular case of Demo.
As for the compatible-based inclusion inference, we give the following upper

and lower bounds:

Proposition 4. CmpIncl ∈ Πp
3 and is Πp

2 -hard.

In fact, Algorithm 1.4 shows that co-CmpIncl ∈ Σp
3 .

Algorithm 1.4: co-CmpIncl((Σ, �), ψ)
begin

1. Guess a totally preordered belief base (Σ, ≤)
2. Check that (Σ, ≤) is compatible with (Σ, �)
3. Check that (Σ, ≤) �Incl ψ

end

Clearly, point 2 can be achieved in polynomial time while point 3 can be
achieved using a Σp

2 -complete oracle since co-Incl is Σp
2 -complete. So, this is a

nondeterministic (point 1) polynomial algorithm that uses a Σp
2 oracle. Hence,

co-CmpIncl ∈ NPΣp
2 = Σp

3 . Consequently, CmpIncl ∈ Πp
3 . Hardness for Πp

2
holds since Incl which is Πp

2 -complete is a particular case of CmpIncl.
Finally, concerning the strong and weak possibilistic inferences, the following

always holds:

Proposition 5. We show that

1. Pos-S ∈ Πp
2 and is Δp

2[O(log n)]-hard.
2. Pos-W ∈ Πp

2 and is Δp
2[O(log n)]-hard.

2 For lake of space we only present proofs of some propositions.
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Once again, membership in Πp
2 can be achieved using similar ideas as those given

for PLex. As to the hardness, it follows from the fact that Pos that is known
to be Δp

2[O(log n)]-complete is a particular case of both Pos-S and Pos-W for
totally preordered belief bases.

All these results are summarized by Table 1. It turns out that almost all these
decision problems are at most at the second level of the polynomial hierarchy PH.

Table 1. Complexity results

Inference problem Complexity
PLex Πp

2 -complete
CmpLex Πp

2 -complete
Demo Πp

2 -complete
CmpIncl in Πp

3 , Πp
2 -hard

Pos-S in Πp
2 , Δp

2[O(logn)]-hard
Pos-W in Πp

2 , Δp
2[O(logn)]-hard

5 Cautiousness Analysis

The purpose of this section is to compare the previous inference relations in
terms of cautiousness.

First, the democratic inference is more cautious than the P-lexicographic in-
ference, namely:

Proposition 6. Let (Σ,�) be a partially preordered belief base and ψ be a propo-
sitional formula. Then, we have only

(Σ, �) �demo ψ ⇒ (Σ,�) �p
lex ψ.

On the other hand, the compatible-based inclusion inference and the
P-lexicographic inference are incomparable: neither the former is more cautious
than the later nor the converse.

Indeed, if (Σ,�) is totally preordered then CmpIncl(Σ,�) = Incl(Σ,�) and
PLex(Σ,�) = Lex(Σ,�). Moreover, it is known that Lex(Σ,�) ⊂ Incl(Σ,�).
So, CmpIncl(Σ,�) 
⊂ PLex(Σ,�).

Now, the following example shows that PLex(Σ,�) 
⊂ CmpIncl(Σ,�):

Example 1. Let (Σ,�) be such that Σ = {a∧¬d,¬a, a∧f, d} with a∧¬d ≺ a∧f
and ¬a ≺ d.

Clearly, MaxCons = {A,B,C} such that A = {a ∧ ¬d, a ∧ f}, B = {¬a, d}
and C = {a ∧ f, d}. Then, we can show that CmpIncl(Σ,�) = {A,B}. Indeed,
there is no a totally preordered belief base (Σ,≤) compatible with (Σ,�) such
C ∈ Incl(Σ,≤). Moreover, A ∼p

lex B, A ∼p
lex C and B ∼p

lex C which means that
PLex(Σ,�) = {A,B,C}. Therefore, PLex(Σ,�) 
⊂ CmpIncl(Σ,�).

In addition, the weak possibilistic inference is more cautious than the democratic
one:
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Proposition 7. Let (Σ,�) be a partially preordered belief base and ψ be a propo-
sitional formula. Then, (Σ, �) �w

pos ψ ⇒ (Σ,�) �Demo ψ

Proof Sketch
Given A,B ∈ Cons(Σ), we show that A ≺w

pos B ⇒ A ≺demo B.
Let us suppose that A ≺w

pos B and A ⊀demo B. Thus,

– ∀δ /∈ A, ∃λ /∈ B such that λ ≺ δ . . . (h1)
– ∃β ∈ B −A, ∀α ∈ A−B we have α ⊀ β . . . (h2)

Let β ∈ B−A. So, β /∈ A and according to (h1), there must exist λ /∈ B such
that λ ≺ β. λ /∈ B so λ /∈ A ∩B.

Moreover, λ /∈ A − B since ∀α ∈ A − B we have α ⊀ β according to (h2).
Thus, λ /∈ A, i.e., λ ∈ Σ ∩ (A ∪B).

Now, let ξ ∈ Σ ∩ (A ∪B) be such that ξ � λ and ∀θ ∈ Σ ∩ (A ∪B) we have
θ ⊀ ξ.

Since ξ /∈ A, then according to (h1), there must exist χ /∈ B such that χ ≺ ξ.
χ /∈ A ∩ B. In addition, since χ ≺ ξ � λ ≺ β, i.e., χ ≺ β, we deduce from

(h1) that χ /∈ A−B . Hence, χ /∈ A∪B, i.e., χ ∈ Σ ∩ (A ∪B) and χ ≺ ξ which
contradicts the definition of ξ. Then, A ≺w

pos B ⇒ A ≺demo B.
As for the converse, we can prove that it does not hold using the monotony

property. Indeed, on the one hand, we know that A ⊂ B ⇒ A ≺demo B. On
the other hand, it has been shown in [3] that A ⊂ B � A ≺w

pos B. Hence,
A ≺demo B � A ≺w

pos B. �

Finally, the compatible-based lexicographic inference is less cautious than both
the compatible-based inclusion inference and the P-lexicographic inference.

Proposition 8. Let (Σ,�) be a partially preordered belief base and ψ be a propo-
sitional formula. Then, 1) (Σ, �) �cmp

incl ψ ⇒ (Σ,�) �cmp
lex ψ and the converse

does not hold, 2) (Σ, �) �p
lex ψ ⇒ (Σ,�) �cmp

lex ψ and the converse does not
hold.

Clearly, ∀(Σ,≤) ∈ Comp(Σ,�), we have Lex(Σ,≤) ⊂ Incl(Σ,≤).
Then,

⋃
(Σ,≤)∈Comp(Σ,�) Lex(Σ,�) ⊂

⋃
(Σ,≤)∈Comp(Σ,�) Incl(Σ,�).

So, CmpLex(Σ,�) ⊂ CmpIncl(Σ,�). Moreover, it has been shown in [16]
that CmpLex(Σ,�) ⊆ PLex(Σ,�). An example that shows that this inclusion
is strict can be the following:

Example 2. Let (Σ,�) be such that:

Σ = {α1, α2, β1, β2, β3, γ1, γ2} with α1 = a∧¬b∧c, β1 = ¬a∧¬b∧c, γ1 = b∧d,
α2 = a ∧ ¬b ∧ d, β2 = ¬a ∧ ¬b ∧ d, γ2 = b ∧ e, β3 = ¬a ∧ ¬b ∧ e.

In addition, α1 ≈ γ1 ≈ γ2 and α2 ≈ β1 ≈ β2 ≈ β3.
Clearly, MaxCons = {A,B,C} such that A = {α1, α2}, B = {β1, β2, β3} and

C = {γ1, γ2}.
One can easily see that PLex = {A,B,C} while CmpLex = {B,C}. Hence,

we deduce that CmpLex(Σ,�) ⊂ PLex(Σ,�).



Complexity and Cautiousness Results 827

All these results are summarized by Figure 1 where A → B means that A is
more cautious than B. Note that the relation between the democratic inference
and the compatible-based inclusion inference has been given in [6].

Pos-S inference

Pos-W inference

Demo inference

Cmp-lncl inference P-Lex inference

Cmp-Lex inference

Fig. 1. Cautiousness results

These results preserve those known in the case of totally preordered be-
lief bases except the relation between the P-lexicographic inference and the
compatible-based inclusion inference. Surprisingly, they are incomparable while
the later is more cautious than the former in the totally preordered case.

6 Conclusion and Perspectives

In this paper, we have analysed a number of inference relations from partially
preordered belief bases regarding the computational complexity point of view.
It turns out that almost all the corresponding decision problems are located at
most at the second level of the polynomial hierarchy PH. On the other hand,
it is known that the decision problems associated with the inference relations
from totally preordered belief bases typically reside at the first level of PH. This
seems the price to be paid to win in flexibility.

Moreover, we have compared them according to another key dimension namely
the cautiousness one. All these results generalise those obtained in the partic-
ular case of totally preordered belief bases except the relation between the P-
lexicographic inference and the compatible-based inclusion inference.

Now, this work calls for several perspectives. A first one consists in investi-
gating the extent to which knowledge compilation can be used to circumvent
these complexity results. Another perspective is to extend this work to the case
of description logics in order to manage incoherence in cooperative intrusion
detection.
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Abstract. A logic LIS for complete information systems is proposed.
The language of LIS contains constants corresponding to attribute and
attribute-values. A sound and complete deductive system for the logic is
presented. Decidability is also proved.

1 Introduction

Rough set theory introduced by Pawlak is based on the concept of approximation
space [11] which is defined as a tuple (W,R), where R is an equivalence relation
on the set W . Any concept represented as a subset (say) X of the partitioned
domain W , is then approximated from ‘within’ and ‘outside’, by its lower and
upper approximations given as {[x] : [x] ⊆ X} and {[x] : [x]∩X 
= ∅} respectively.
[x] denotes the equivalence class of x ∈ W .

A practical source of a Pawlak approximation space is a complete informa-
tion system [11], formally defined as follows. There is also the notion of an
incomplete/non-deterministic information system, but in this paper we deal only
with complete information systems. So henceforth, we drop the word ‘complete’.

Definition 1. An information system S := (W,A,
⋃
a∈A V ala, f), comprises a

non-empty set W of objects, a non-empty set A of attributes, a non-empty set
V ala of attribute values for each a ∈ A, and f : W ×A →

⋃
a∈A V ala such that

f(x, a) ∈ V ala.

Any information system S := (W,A,
⋃
a∈A V ala, f) and B ⊆ A would induce an

‘indiscernibility’ relation IndS(B) on W :

x IndS(B) y if and only if f(x, a) = f(y, a) for all a ∈ B.

x IndS(B) y signifies that the objects x and y cannot be distinguished using
only the information provided by the attributes of the set B. As B differs, we get
different IndS(B), and therefore, different lower and upper approximations of
any X(⊆W ) as well. So any information system S and a set of attributes B yields
an approximation space (W, IndS(B)). It is not difficult to prove that, on the
other hand, for a given approximation space (W,R), there exists an information
system S and a set of attributes B such that IndS(B) = R.
� The authors would like to thank the referees for their valuable comments.

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 829–840, 2009.
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A logic that can express properties of information systems would be expected
to have attribute and attribute-value constants in its language. In this paper, our
aim is to define a logic for information systems which not only has these entities in
its language, but can also express properties of lower and upper approximations
of sets with respect to different subsets of attributes. The logic (denoted LIS) is
introduced in Section 4, and it is shown that LIS can express various concepts
related to dependencies in data and data reduction [11]. In Section 5, a sound
and complete deductive system for LIS is presented, and decidability of LIS is
proved in Section 6. The next section gives the preliminaries, Section 3 surveys
related existing logics, and Section 7 concludes the article.

2 Preliminaries

We refer to [11] for the definitions presented in this section.
Let S := (W,A, V al :=

⋃
a∈A V ala, f) be an information system.

Given X ⊆ W and B ⊆ A, the lower and upper approximations (cf. Section
1) of X with respect to the indiscernibility relation IndS(B) are denoted as
IndS(B)(X) and IndS(B)(X) respectively. IndS(B)(X), (IndS(B)(X))c and
IndS(B)(X) \ IndS(B)(X) respectively consist of the positive, negative and
boundary elements of X . If there are no boundary elements, X is said to be
definable, i.e. in this case, IndS(B)(X) = IndS(B)(X).

The notion of dependency of sets of attributes is given as follows.

Definition 2. Let P,Q ⊆ A.

(a) Q is said to depend on P (denoted P ⇒ Q), if IndS(P ) ⊆ IndS(Q).
(b) P and Q are called equivalent (denoted P ≡ Q), if IndS(P ) = IndS(Q).
(c) P and Q are independent (P 
≡ Q), if neither P ⇒ Q nor Q ⇒ P hold.

Given an information system, one may be interested in removing all ‘superfluous’
attributes, i.e. those which do not affect the partition of the domain, and con-
sequently, set approximations. This is the main idea of reduction of knowledge.
Formally, we have the definitions as below.

Definition 3. Let P,Q ⊆ A.

1. POSP (Q):=
⋃

X∈W/IndS(Q)

IndS(P )(X) is the P -positive region of Q, where

W/IndS(Q) denotes the quotient set for the equivalence relation IndS(Q).
2. b ∈ P is said to be Q−dispensable in P if POSP (Q) = POS(P\{b})(Q);

otherwise b is Q−indispensable in P .
3. If every b ∈ P is Q−indispensable, P is Q−independent; otherwise P is

Q−dependent.
4. S ⊆ P will be called a Q−reduct of P if S is Q−independent and POSS(Q)

= POSP (Q).
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We note that P ⊆ A may have multiple Q−reducts. Moreover, if P is infinite,
then it may not have any Q−reduct at all. In the special case that P = Q, we drop
the prefix ‘Q−’ in the above. In this case, observe that POSP (Q) = U , and the
condition under which b is dispensable in P , reduces to IndS(P ) = IndS(P \{b}).

3 Related Work

Several logics are proposed in which the language includes attribute and at-
tribute value constants (e.g. [8,9,7], or cf. [3,5]). In the logic NIL of Or�lowska,
the structures defining the models do not accommodate attributes, and the wffs
(which are built using attribute constants) just point to collections of objects
of the domain. On the other hand the logic DIL presented in [7] does not have
modal operators for indiscernibility or any other relations induced by informa-
tion systems. So it can only talk about the changes in attribute values of the
objects with time, and not about (changes in) set approximations. A class of
multimodal logics with attribute expressions are also defined in [8,9]. Models are
based on structures of the form (W,A, {ind(P )}P⊆A), where the indiscernibility
relation ind(P ) for each subset P of the attribute set A, has to satisfy certain
conditions. The language of the logics has a set of variables each representing a
set of attributes, and constants to represent all singleton sets of attributes. The
language can also express the result of operations on sets of attributes. However,
as remarked in [9], a complete axiomatization for such logics is not known.

As mentioned in the Introduction, every information system and a set of at-
tributes gives rise to an approximation space, and conversely, one obtains an
information system and a set of attributes from any approximation space, such
that the induced indiscernibility is just the equivalence relation of the approxima-
tion space. So it would appear that a semantics with models based on information
systems would be ‘equivalent’ to one based on approximation spaces. However,
as observed in [10], there is a difference. When we say that two objects are
indistinguishable in an information system, we actually mean that these are in-
distinguishable not absolutely, but with respect to certain properties/attributes.
So Or�lowska proposed a structure with relative accessibility relations for the
study of indiscernibility relations. These are of the form (W, {RB}B⊆A), called
information structure, where W is a non-empty set, A is a non-empty set of
parameters or attributes and for each B ⊆ A, RB is an equivalence relation
satisfying

R∅ = W ×W (1)
RB∪C = RB ∩RC . (2)

We note that given an information system S := (W,A,
⋃
a∈A V ala, f), the

structure (W, {IndS(B)}B⊆A) is an information structure. For every informa-
tion structure (W, {RB}B⊆A), can we determine an information system S :=
(W,A,

⋃
a∈A V ala, f) such that IndS(B) = RB for all B ⊆ A? The answer is

yes, provided A is finite. This is due to the fact that an information structure
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may not have the property RB =
⋂
b∈B Rb, B ⊆ A as shown in Example 1

below, but we always have IndS(B) =
⋂
b∈B IndS({b}).

Example 1. Consider F := (W := {x, y}, {RB}B⊆A) where RB := W ×W for
any finite subset B of A, while RB := IdW for infinite B. Note that for any
infinite B, we have RB 
=

⋂
b∈B Rb.

In the next section, we present LIS, the models of which are based on information
structures (W, {RB}B⊆A) with A finite. So LIS serves as a logic for information
systems as well.

It should be mentioned that Or�lowska [10] cited the axiomatization of a logic
with semantics based on information structures as an open problem. Later, Bal-
biani gave a complete axiomatization of the set of wffs valid in every information
structure. In fact, in [2], complete axiomatizations of logics with semantics based
on various types of structures with relative accessibility relations is presented.
One of these is a logic for information structures (cf. [1]). This, as required, is
a multi-modal logic with a modal operator [P ] for each P ⊆ A. Apart from
the S5−axioms for each modal operator, the axiom [P ]α ∨ [Q]α → [P ∪Q]α is
considered. The canonical model obtained for this system only satisfies the con-
dition RB∪C ⊆ RB ∩ RC . Such a model is called decreasing. Using the method
of copying, one obtains from a decreasing model, a model that satisfies condi-
tion (2) (viz. RB∪C = RB ∩ RC) and preserves satisfiability as well. Note that
condition (1) is not proved but one can obtain it using generated sub-models, as
we have done for LIS in Section 5.1.

However, the language ofBalbiani’s logic doesnot contain attribute or attribute-
value constants – a limitation that LIS overcomes.

4 The Logic LIS for Information Systems

The language of LIS contains (i) a non-empty finite setAC of attribute constants,
(ii) for each a ∈ AC, a non-empty finite set VCa of attribute value constants and
(iii) a non-empty countable set PV of propositional variables. Atomic formulae
are the propositional variables p from PV , and descriptors [11], i.e. (a, v), for
each a ∈ AC, v ∈ VCa. The set of all descriptors is denoted as D.

Using the Boolean logical connectives ¬ (negation) and ∧ (conjunction) and
unary modal connectives [B] for each B ⊆ AC, well-formed formulae (wffs) of
LIS are then defined recursively as: (a, v)|p|¬α|α ∧ β|[B]α.

Let L denote the set of all LIS-wffs.

4.1 Semantics

A LIS-model M is a tuple (W, {RB}B⊆AC) equipped with meaning functions for
the descriptors and the propositional variables. Formally,

Definition 4. M := (W, {RB}B⊆AC ,m, V ) where W is a non-empty set,
RB ⊆W ×W , m : D → 2W , and V : PV → 2W .
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We now proceed to define satisfiability of a wff α in a model M at an object w
of the domain W , denoted as M, w |= α. The Boolean cases are omitted.

Definition 5

M, w |= (a, v) if and only if w ∈ m(a, v), for (a, v) ∈ D.
M, w |= p, if and only if w ∈ V (p), for p ∈ PV .
M, w |= [B]α, if and only if for all w′ in W with (w,w′) ∈ RB, M, w′ |= α.

For any wff α in L and LIS-model M, let M(α) := {w ∈W : M, w |= α}.
α is valid in M, denoted M |= α, if and only if M(α) = W .
α is said to be valid, if M |= α for every model M. It will be denoted by |= α.

Since we wish to define a logic for information systems, some properties must
be imposed on the structure defined above. Thus we have the following.

Definition 6. By an IS-structure, we mean a tuple F := (W, {RB}B⊆AC ,m),
where W,RB and m are the same as in Definition 4 satisfying, in addition:

(IS1) For each a ∈ AC,
⋃
{m(a, v) : v ∈ VCa} = W .

(IS2) For each a ∈ AC, m(a, v) ∩m(a, v′) = ∅, for v 
= v′.
(IS3) R∅ = W ×W .
(IS4) RB ⊆ RC for C ⊆ B ⊆ AC.
(IS5) For B ⊆ AC and b ∈ AC, RB ∩Rb ⊆ RB∪{b}.
(IS6) For b ∈ AC, (w,w′) ∈ Rb if and only if there exists v ∈ VCb such that

w,w′ ∈ m(b, v)

Note that RB =
⋂
b∈B Rb, and so RB∪C = RB ∩RC . Each RB is an equivalence

relation. So the tuple (W, {RB}B⊆AC) in F forms an information structure (cf.
Section 3).

Also note that in the definition of IS-structure, one can replace the condition
(IS5) by

(IS5′) For B ⊆ AC and b ∈ AC, if (w,w′) ∈ RB and there exists v ∈ VCb such
that w,w′ ∈ m(b, v), then (w,w′) ∈ RB∪{b}.

(IS5′) is useful for getting the axiomatization of the logic for IS-structures, as
we shall see in the next section.

LIS-models based on IS-structures are called IS-models.
Given an information system S := (W,AC,

⋃
a∈AC VCa, f), the structure

(W, {IndS(B)}B⊆AC ,mS), where mS(a, v) := {w ∈ W : f(w, a) = v}, is an
IS-structure. We shall call it the standard IS-structure generated by S, following
Vakarelov [12]. It is not difficult to show that every IS-structure is a standard IS-
structure generated by some information system. Let standard IS-models be the
IS-models based on standard IS-structures. We shall write |=IS α and |=SIS α
if α is valid in all IS-models and all standard IS-models respectively. From the
above remark, we obtain,

Proposition 1. |=IS α if and only if |=SIS α for all α ∈ L.
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Let ∅ 
= B := {b1, b2, . . . , bn} ⊆ AC. Let DB be the set of all wffs of the form
(b1, v1)∧(b2, v2)∧ . . .∧(bn, vn), vi ∈ VCbi , i = 1, 2, . . .n. In the case when B = ∅,
we define DB := {�}. Then each element of the set DB represents the empty set
or an equivalence class with respect to the equivalence relation Ind(B). In fact,
n∧
i=1

(bi, vi) represents the equivalence class of objects which take the value vi for

the attribute bi, i = 1, 2, . . . , n. More formally, we have the following proposition.

Proposition 2. Let M := (W, {RB}B⊆AC ,m, V ) be an IS-model. Then

{M(α) : α ∈ DB} \ {∅} = {[w]RB : w ∈W}, for any B ⊆ AC.

So if M′ := (W, {RB}B⊆AC ,m, V ′) then M(α) = M′(α) for all α ∈ DB .
The next propositions show how the language of LIS may be used to express

the concepts presented in Section 2.
Let S := (W,AC,

⋃
a∈AC VCa, f) be an information system and consider the

corresponding standard IS-structure FS = (W, {IndS(B)}B⊆AC ,mS).

Proposition 3. Let P,Q, S ⊆ AC, and p, q be distinct propositional variables.
Then the following hold.

1. P ⇒ Q if and only if [Q]p → [P ]p is valid in FS, i.e. M |= [Q]p → [P ]p, for
all models M based on FS .

2. P 
≡ Q if and only if ¬[∅]([Q]p → [P ]p) ∧ ¬[∅]([P ]q → [Q]q) is satisfiable in
FS , i.e. there is M based on FS , and w ∈ W where the wff is satisfied.

3. b ∈ P is dispensable in P if and only if [P ]p ↔ [P \ {b}]p is valid in FS .

4. P is dependent if and only if
∨
b∈P

([P ]pb ↔ [P \ {b}]pb) is valid in FS , where

{pb : b ∈ P} is a set of distinct propositional variables.

5. Q ⊆ P is a reduct of P if and only if
∧
b∈Q
〈∅〉¬([Q]qb ↔ [Q \ {b}]qb) is satis-

fiable in FS and [Q]p ↔ [P ]p is valid in FS.

Proposition 4. Let M := (W, {IndS(B)}B⊆AC ,mS , V ) be the standard IS-
model on FS , for some valuation function V . Let P,Q, S ⊆ AC. Then the fol-
lowing hold.

1. M(
∨

α∈DQ

[P ]α) = POSP (Q).

2. b ∈ P is Q−dispensable in P if and only if
∨

α∈DQ

[P ]α ↔
∨

α∈DQ

[P \ {b}]α is

valid in M.
3. b∈P is Q−indispensable in P if and only if 〈∅〉¬(

∨
α∈DQ

[P ]α↔
∨

α∈DQ

[P \ {b}]α)

is valid in M.
4. P is Q−independent in P if and only if

∧
b∈P
〈∅〉¬(

∨
α∈DQ

[P ]α↔
∨

α∈DQ

[P \ {b}]α)

is valid in M.
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5. S ⊆ P is a Q−reduct of P if and only if
[∅](

∧
b∈S
〈∅〉¬(

∨
α∈DQ

[S]α↔
∨

α∈DQ

[S \ {b}]α)∧(
∨

α∈DQ

[P ]α↔
∨

α∈DQ

[S]α)) is valid in

M.

We next see that the expressive power of LIS will not be affected even if only
one modal operator, viz. [∅], is taken in the language.

Proposition 5. Let B ⊆ AC. Then [B]α ↔
∧
β∈DB

(β → [∅](β → α)) is valid
in all IS-models.

So Proposition 5 shows that for every wff α, there exists a wff α′ such that
α ↔ α′ is valid in all IS-models, and α′ does not involve any modal operator
[B], where B(
= ∅) ⊆ AC. However, the complexity of α′, denoted as |α′|, could
be very large compared to α. For instance, if α is of the form [B][B] . . . [B]︸ ︷︷ ︸

n−times

β,

where |DB| = m, then |α′| > mn|β|.
One may think of strengthening this result by requiring α′ to be such that it

does not even involve the modal operator [∅]. This is not possible as shown by
the following example.
Example 2. Let B ⊆ AC. Choose a ∈ AC such that a 
∈ B. For each b(
= a) ∈ AC,
choose a vb ∈ VCb, and v1

a, v
2
a ∈ VCa. Let W := {x, y}, and consider the IS-

structures F := (W, {RC}C⊆AC,m) and F′ := (W, {R′C}C⊆AC ,m′), where

– m(b, vb) = m′(b, vb) := {x, y}, m(b, v) = m′(b, v) := ∅ for all b(
= a) ∈ AC
and v(
= vb) ∈ VCb,

– m(a, v1
a) := {x, y}, m′(a, v1

a) := {x}, m′(a, v2
a) := {y},

– m(a, v) := ∅ for all v(
= v1
a) ∈ VCa,

– m′(a, v) := ∅ for all v ∈ VCa \ {v1
a, v

2
a},

– RC := W ×W for all C ⊆ AC,
– for a 
∈ C ⊆ AC, R′C := W ×W and for a ∈ C, R′C := IdW .

Let us consider the models M := (F, V ) and M′ := (F′, V ), for any V . We see
that M, x |= [B](a, v1

a), while M′, x 
|= [B](a, v1
a). But one can show that for any

α which does not involve any modal operator,
M, x |= α if and only if M′, x |= α.

So the wff [B](a, v1
a) cannot be logically equivalent to a wff that does not contain

any modal operator.
We end this section by giving some wffs which are satisfiable/valid in both

the class of IS and standard IS-structures.

Proposition 6

1. [B]p ↔ ((a1, v1) ∧ (a2, v2) ∧ · · · (an, vn)) is satisfiable.
2. ¬[B]p ↔ (

∧
α∈DB

(α → 〈∅〉(α ∧ ¬p))) is valid.
3. 〈∅〉(b, v) is satisfiable.
4. [∅](

∧
i∈{1,2,...,n}(ai, vi) → (a, v)) is satisfiable.
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5.
∧
i∈{1,2,...,n}(bi, vi) ↔ [B](

∧
i∈{1,2,...,n}(bi, vi)), B = {b1, b2, . . . , bn} is valid.

6.
∧
i∈{1,2,...,n+1}〈∅〉(pi ∧ (b, v)) →

∨
i�=j〈∅〉(pi ∧ pj) is satisfiable.

7. [∅][B](a, v) ↔ [∅](a, v) is valid.
8. 〈B〉δ → [B]δ is valid, where δ is the wff obtained by applying only Boolean

connectives on descriptors (b, v), b ∈ B.

If the wff in (1) is valid in an IS-model M, an object x is in the lower approxi-
mation of the set represented by p with respect to indiscernibility corresponding
to the attribute set B, if and only if x takes the value vi for the attribute
ai, 1 ≤ i ≤ n. Validity of the wff in (2) guarantees that an object x is not a pos-
itive element of a set X with respect to a attribute set, say B if and only if there
exists an object y which takes the same attribute value as x for each attribute
of B but y 
∈ X . The wff in (3) says that there is an object that takes the value
v for the attribute b. The wff in (4) represents a situation where there is an at-
tribute set {a1, a2, . . . , an, a} and attribute values v ∈ VCa, vi ∈ VCai , 1 ≤ i ≤ n
such that any object which takes the value vi for the attribute ai, 1 ≤ i ≤ n,
will take the value v for the attribute a. The wff in (5) represents the fact that
if any object, say x takes the value vi for the attribute bi, 1 ≤ i ≤ n, then
every R{b1,b2,...,n} related objects of x will also take the value vi for the attribute
bi, 1 ≤ i ≤ n. The wff in (6) is valid only in an IS-frame where there are at most
n elements taking the value v for the attribute b. The wff in (8) represents the
fact that any property defined using only Boolean connectives and attributes
from the set B is definable with respect to the partition induced by Ind(B).

5 Soundness and Completeness Theorems for LIS

In this section we present an axiomatic system for LIS and get the soundness
and completeness theorems with respect to the IS-models. Note that in case of
the IS-model, the modal operator [∅] is interpreted as the global modal operator
[4]. Let B,C ⊆ AC.
Axiom schema:

Ax1. All axioms of classical propositional logic (PL).
Ax2. [B](α → β) → ([B]α → [B]β).
Ax3. [∅]α → α.
Ax4. α → [∅]〈∅〉α.
Ax5. 〈∅〉〈∅〉α → 〈∅〉α.
Ax6. [C]α → [B]α for C ⊆ B ⊆ AC.
Ax7. (a, v) → ¬(a, v′), for v 
= v′.
Ax8.

∨
v∈VCa

(a, v)
Ax9. (a, v) → [a](a, v).
Ax10. ((b, v) ∧ [B ∪ b]α) → [B]((b, v) → α).

Rules of inference:

N. α MP. α
[B]α α → β

where B ⊆ AC β
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Ax3-Ax5 are the usual modal axioms. So [∅] satisfies all the S5−axioms. The
notion of theoremhood is defined in the usual way, with notation " α to say
‘α is a theorem’. We note that it is not necessary to write the S5−axioms
for the operators [B], B 
= ∅, as these are theorems. Ax6-Ax8 correspond
to (IS4),(IS2) and (IS1) respectively of Definition 6. Ax9 and Ax10 establish
the relationship between the indiscernibility relation and attribute, attribute
value pairs. Ax10 is the syntactic counterpart for the condition (IS5′). Note that
[B∪b]α → [B]α∧ [b]α would appear to be the counterpart of the condition (S5),
but in fact, there are IS-models in which it is not valid. For instance, consider any
IS-model M := (W := {w1, w2, w3}, {RB}B⊆AC,m, V ) such that for a, b ∈ AC,
W/Ra := {{w1, w2}, {w3}}, W/Rb := {{w1, w3}, {w2}} and V (p) = {w1}. Then
M, w1 
|= [{a, b}]p → [a]p ∧ [b]p.

We observe that the n-agent epistemic logic S5Dn [6] with knowledge operators
Ki (i = 1, . . . , n) and distributed knowledge operators DG for groups G of agents,
is embeddable in LIS with |AC| ≥ n. Suppose AC := {a1, a2, . . . , am}, m ≥ n.
Then the embedding Ψ fixes propositional variables, and takes Kiα to [ai] Ψ(α)
and D{i1,i2,...,is}α to [{ai1 , ai2 , . . . , ais}] Ψ(α). On the other hand, LIS is more
expressive than S5Dn , having the extra feature of the descriptors. Any study of
indiscernibility relations induced by information systems naturally involves de-
scriptors, as these determine both what value an object will take for an attribute,
and also the indiscernibility relation itself (shown by Ax9 and Ax10).

To illustrate the proof system, let us give a Hilbert-style proof of a LIS-wff.

Proposition 7. " (a, va) ∧ (b, vb) → [{a, b}]((a, va) ∧ (b, vb)).

Proof

(1) " (a, va) ∧ (b, vb) → [a](a, va) ∧ [b](b, vb) (Ax9 and PL).
(2) " [a](a, va) ∧ [b](b, vb) → [{a, b}](a, va) ∧ [{a, b}](b, vb) (Ax6 and PL).
(3) " [{a, b}](a, va) ∧ [{a, b}](b, vb) → [{a, b}]((a, va) ∧ (b, vb))

(Modal (K-)theorem).
(4) " (a, va) ∧ (b, vb) → [{a, b}]((a, va) ∧ (b, vb)) ((1), (2), (3) and PL). %&

It is not difficult to obtain

Theorem 1 (Soundness). If " α, then |=IS α.

5.1 Completeness

The completeness theorem is proved for any LIS-wff α, following the standard
modal logic technique [4]. As in normal modal logic, we have the following result.

Proposition 8. Every consistent set of LIS-wffs has a maximally consistent
extension.

We now describe the canonical model MC for LIS.
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Definition 7 (Canonical model). MC := (WC , {RC
B}B⊆AC ,mC , V C), where

– WC := {w : w is a maximally consistent set},
– for each B ⊆ AC, (w,w′) ∈ RC

B if and only if for all wffs α,
[B]α ∈ w implies α ∈ w′,

– mC(a, v) := {w ∈ WC : (a, v) ∈ w},
– V C(p) := {w ∈WC : p ∈ w}.

By giving the same argument as in normal modal logic, we obtain

Proposition 9 (Truth Lemma). For any wff β and w ∈ WC ,
β ∈ w if and only if MC , w |= β.

Using the Truth Lemma and Proposition 8 we have

Proposition 10. If α is consistent then there exists a maximal consistent set
Σ such that MC , Σ |= α.

Proposition 11. The canonical model MC satisfies (IS1), (IS2), (IS4), (IS5′) and
(IS6a) for b ∈ AC, if (w,w′) ∈ Rb, there is v ∈ VCb such that w,w′ ∈ m(b, v).

Proof. We only prove (IS5′) and (IS6a).
(IS5′) Let (w,w′) ∈ RB and let there exist a v ∈ VCb such that w,w′ ∈ mC(b, v).
Further, suppose [B ∪ {b}]α ∈ w. We need to prove α ∈ w′. Using Ax10 and
the fact that (b, v) ∧ [B ∪ {b}]α ∈ w, we obtain [B]((b, v) → α) ∈ w. This gives
(b, v) → α ∈ w′ and hence α ∈ w′ as (b, v) ∈ w′.

(IS6a) Let (w,w′) ∈ Rb, and v ∈ VCb be such that w ∈ mC(b, v), i.e. (b, v) ∈ w.
Then by Ax9, we obtain [b](b, v) ∈ w. So (b, v) ∈ w′, i.e w′ ∈ mC(b, v). %&

Note that we still have not proved (IS3) and the other direction of (IS6). In order
to get these properties, we construct a new model from MC .

Let Mg := (W g, {Rg
B}B⊆AC ,mg, V g) be the sub-model of MC generated by

Σ using the equivalence relation RC
∅ , i.e.

– W g is the equivalence class of Σ with respect to the equivalence relation RC
∅ ,

– Rg
B,mg, V g are the restrictions of RC

B,mC , V C to W g respectively.

Proposition 12. Mg := (W g, {Rg
B}B⊆AC ,mg, V g) is an IS model.

Proof. Clearly (IS1)-(IS4), (IS5′) and (IS6a) are satisfied. We only prove the
other direction of (IS6). Let there exist v ∈ VCb such that w,w′ ∈ mg(b, v). Let
[b]α ∈ w. We want to show α ∈ w′. Here we have (b, v) ∧ [b]α ∈ w and hence
from Ax10 with B = ∅, we obtain [∅]((b, v) → α) ∈ w. Since wRg

∅w
′, we obtain

(b, v) → α ∈ w′. This together with (b, v) ∈ w′ gives α ∈ w′. %&

Since RC
B ⊆ RC

∅ for all B ⊆ AC, Mg is also a generated sub-model of MC with
respect to RC

B. An easy induction on the complexity of the wff α gives us
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Proposition 13. For each wff α and w ∈ W g, we have
MC , w |= α, if and only if Mg, w |= α.

Thus we get the completeness theorem with respect to the class of all IS-models.

Theorem 2 (Completeness). For any LIS-wff α, if |=IS α, then " α.

Note that due to Proposition 1, this also gives the completeness theorem with
respect to the class of all standard IS-models.

6 Decidability

In this section, our aim is to prove the following result.
Theorem 3. We can decide for a given α ∈ L, whether |=IS α (|=SIS α).
For this, we prove that LIS has the finite model property (Proposition 17 below).
The standard filtration technique [4] is used, with natural modifications to the
definitions. Let Σ denote a finite sub-formula closed set of LIS-wffs.

Let M := (W, {RB}B⊆AC,m, V ) be a LIS-model. We define a binary relation
≡Σ on W as follows:

w ≡Σ w′, if and only if for all β ∈ Σ ∪D, M, w |= β if and only if M, w′ |= β.

Definition 8 (Filtration model). Given a model M = (W, {RB}B⊆AC ,m, V )
and Σ as above, we define a model Mf = (W f , {Rf

B}B⊆AC ,mf , V f ), where

– W f := {[w] : w ∈ W}, [w] is the equivalence class of w with respect to the
equivalence relation ≡Σ;

– Rf
B ⊆W f ×W f is defined as:

[w]Rf
B [u] if and only if there exist w′ ∈ [w] and u′ ∈ [u] such that w′RBu′;

– V f : PV → 2W
f

is defined as: V f (p) := {[w] ∈ W f : w ∈ V (p)} ;
– mf (a, v) := {[w] ∈W f : w ∈ m(a, v)}.

Mf is the filtration of M through the sub-formula closed set Σ.

Proposition 14. For any model M, if Mf is a filtration of M through Σ, then
the domain of Mf contains at most 2n elements, where |Σ ∪ D| = n.

Proof. Define the map g : W f → 2Σ∪D where g([w]) := {β ∈ Σ∪D : M, w |= β}.
Since g is injective, W f contains at most 2n elements. %&
If (W, {RB}B⊆AC ,m) is an IS-structure, so is (W f , {Rf

B}B⊆AC ,mf ). This gives

Proposition 15. If the model M is an IS-model then Mf is also an IS-model.

By induction on the complexity of the wff α, we therefore have
Proposition 16 (Filtration Theorem). Let Σ be a finite sub-formula closed
set of LIS-wffs. For all wffs β ∈ Σ ∪ D, all models M, and all objects w ∈W ,

M, w |= β if and only if Mf , [w] |= β.
So we get
Proposition 17 (Finite model property). Let α be a wff and Σ be the set
of all sub-wffs of α. If α is satisfiable, then it is satisfiable in a finite model with
at most 2|Σ∪D| elements.
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7 Conclusions

A logic LIS for the study of information systems is proposed. It is shown that the
wffs of LIS can express many important properties related to rough set theory.
Questions of axiomatization and decidability of the logic are also addressed.

The language of LIS contains finite sets of attributes and attribute values.
Although in practical problems, we usually consider finite sets, it would be in-
teresting to consider infinite sets of attributes and attribute values. Another
issue of interest to us is to see whether LIS may be suitably extended to capture
the situation when the information system changes with time. This could be the
result of an inflow of information, due to which there is a change in the attributes
or attribute values.

References

1. Balbiani, P.: Axiomatization of logics based on Kripke models with relative accessi-
bility relations. In: Or�lowska, E. (ed.) Incomplete Information: Rough Set Analysis,
pp. 553–578. Physica Verlag, Heidelberg (1998)

2. Balbiani, P., Or�lowska, E.: A hierarchy of modal logics with relative accessibility
relations. Journal of Applied Non-Classical Logics 9(2-3), 303–328 (1999)

3. Banerjee, M., Khan, M.A.: Propositional logics from rough set theory. In: Peters,
J.F., Skowron, A., Düntsch, I., Grzyma�la-Busse, J.W., Or�lowska, E., Polkowski,
L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 1–25. Springer,
Heidelberg (2007)

4. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

5. Demri, S., Or�lowska, E.: Incomplete Information: Structure, Inference, Complexity.
Springer, Heidelberg (2002)

6. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

7. Or�lowska, E.: Dynamic information systems. Fundamenta Informaticae 5, 101–118
(1982)

8. Or�lowska, E.: Logic of nondeterministic information. Studia Logica 44(1), 91–100
(1985)

9. Or�lowska, E.: Logic of indiscernibility relations. In: Goos, G., Hartmanis, J. (eds.)
SCT 1984. LNCS, vol. 208, pp. 177–186. Springer, Heidelberg (1985)

10. Or�lowska, E.: Kripke semantics for knowledge representation logics. Studia Log-
ica 49(2), 255–272 (1990)

11. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Dordrecht (1991)

12. Vakarelov, D.: Abstract characterization of some knowledge representation systems
and the logic NIL of nondeterministic information. In: Jorrand, Ph., Sgurev, V.
(eds.) Artificial Intelligence II, pp. 255–260. North-Holland, Amsterdam (1987)



C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 841–849, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

An Uncertainty-Based Belief Selection Method for 
POMDP Value Iteration 

Qi Feng, Xuezhong Zhou, Houkuan Huang, and Xiaoping Zhang 

School of Computer and Information Technology, Beijing Jiaotong University,  
Beijing 100044, China 

fengqi2008@gmail.com, xzzhou@bjtu.edu.cn, hkhuang@bjtu.edu.cn 

Abstract. Partially Observable Markov Decision Process (POMDP) provides a 
probabilistic model for decision making under uncertainty. Point-based value 
iteration algorithms are effective approximate algorithms to solve POMDP 
problems. Belief selection is a key step of point-based algorithm. In this paper 
we provide a belief selection method based on the uncertainty of belief point. 
The algorithm first computes the uncertainties of the belief points that could be 
reached, and then selects the belief points that have lower uncertainties and 
whose distances to the current belief set are larger than a threshold. The ex-
perimental results indicate that this method is effective to gain an approximate 
long-term discounted reward using fewer belief states than the other point-
based algorithms. 

Keywords: POMDP, value iteration, point-based algorithm, belief selection, 
uncertainty. 

1   Introduction 

Partially Observable Markov Decision Process (POMDP) constitutes a powerful 
mathematical model for planning under uncertainty environment [1, 2]. 

Value iteration algorithm [3] for POMDP is a well-known method. The optimal 
policy of POMDP could be computed using the optimal value function over the belief 
space. But traditional exact value iteration needs to update the value function over the 
entire belief space which makes it infeasible to solve the real-world POMDP prob-
lems. This motivated approximate algorithms for POMDP which have been proven to 
scale efficiently. Recently, point-based [4-10] approximate algorithms are known to 
be the promising approaches for computing value functions, such as PBVI [5], HSVI 
[6], Perseus [7], Breadth first belief selection (BFBS) [8], Distance-based belief ex-
pansion (DBBE) [9] and FSVI [10]. 

The selection of belief points is a crucial step in point-based algorithm. The algo-
rithms mentioned above use different heuristic methods for searching through belief 
space. For example, PBVI [5] chooses the belief point that is farthest away from the 
points already existing in the belief set, but PBVI may ignore some belief points that 
are important to update the value function. BFBS algorithm [8] expands the belief set 
to include all the beliefs that are reachable in the next time step. And the drawback of 
this algorithm is the size of the belief set may be expanded exponentially. DBBE [9] 
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improves BFBS algorithm by adding these beliefs that are farther than a threshold, but 
it is not feasible for large-scale domains.  

In this paper, we propose a belief selection algorithm based on the uncertainty of 
belief state (Uncertainty-based belief selection, UBBS). There exists the fact that the 
optimal value function over the belief space is piecewise linear and convex [1]. Agent 
could gain more long-term reward at the belief state that has lower uncertainty [2]. 
This property of convexity motivates that belief states that have lower uncertainties 
would be more helpful to improve value function. Our algorithm first computes the 
uncertainties of belief points that could be reached, and then adds to belief set the 
belief states that have lower uncertainties and whose distances to the current set are 
larger than a threshold. We give two different methods to describe uncertainty of a 
belief point: one uses entropy of a belief state, the other is based on the gap between 
the maximal and the minimal elements of a belief vector. 

The experimental results show that UBBS method for belief set expansion is effec-
tive: it could gain an approximate long-term discounted reward using fewer belief 
states compared with other point-based algorithms. 

This paper is organized as follows: in section 2, we introduce some basic concepts 
of POMDP and value iteration. In section 3, we present several related point-based 
value iteration algorithms. In section 4, we propose the UBBS algorithm and give two 
methods to describe the uncertainty of a belief point. In section 5, we describe the 
experimental results on POMDP benchmark problems. And we draw conclusions in 
section 6. 

2   POMDP and Value Iteration 

A POMDP framework is represented as a tuple <S, A, Ω, R, T, O, γ>, where S is a 
finite set of discrete world states, A is a set of discrete actions, Ω is a set of observa-
tions that provide incomplete information about world states, R is the reward function 
where R(s, a) is the reward received when taking action a at state s, T is the transition 
probability distribution where T(s,a,s’) = P(s’|s,a) represents the probability of transi-
tion from state s to state s’ when taking action a, O is the observation function where 
O(s’,a,o) = P(o|a,s’) is the distribution describing the probability of observing o from 
state s’ after using action a, and γ is discount factor [3]. 

An important assumption of POMDP is that the states are not completely observ-
able, so the agent maintains a belief state, denoted as |S|-dimension vector b, to repre-
sent the probability distribution over states. A belief state is a sufficient statistic for 
the given history. And the transition from a belief state to another is still Markovian, 
that is, the next belief state is depended on the current belief state and the current 
action. 

Given an action a and an observation o, the belief state is updated at each time step 
by Bayesian rule: 

S

( , ', ) ( ) ( , , ')
( ) ( , , )

( | , )
o s
a

O a s o b s T s a s
b s b a o

p o b a
τ ∈= =
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, 
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where, 

'

( | , ) ( ) ( , , ') ( , ', )
s S s S

p o b a b s T s a s O a s o
∈ ∈

=∑ ∑ . (2) 

The goal of POMDP is to find a optimal sequence of actions {a0, a1,…,at}, denoted 
as the optimal policy π, that maximizes the expected sum of long-term discounted 
reward ( , )t

t tt
E R s aγ⎡ ⎤⎣ ⎦∑ . If the state of agent is partially observable, the goal function 

above is changed to maximize expected reward for a belief state as follows: 

'

( ) max ( , ) ( , , ) ( )o o
a a

a A
b B

V b R b a T b a b V bγ
∈ ∈
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⎣ ⎦

∑
. 

(3) 

The optimal policy could be computed using value iteration algorithm which up-
dates the value function by applying backup operator on the previous value. 

It is well known that the value function over belief states is piecewise linear and 
convex [1]. Then the optimal value function over the belief space is represented as a 
maximum of the inner product of the belief state and the α -vectors: 

{ }
( ) maxV b b

α
α= ⋅ . After each iteration, the value function is constructed by a collec-

tion of hyperplanes. Each hyperplane is related to an action. And the α -vector is a 
vector of coefficients of the related hyperplane. The maximal value over the belief 
space is represented by the upper surface of hyperplanes (Fig. 1). 

 

 

Fig. 1. Vector representation of value function 

Rewriting the value function (equation 3) using vector representation, we could 
write the value update as: 
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where, 

,
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s S

g s O a s o T s a s sα
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=∑ . (8) 

Value iteration algorithm implements backup operator directly on α -vectors, 
which is: 

{ }

( ) arg max
b
a a A

b
a

g

backup b b g
∈

= ⋅
, 

(9) 

where, 
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,
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arg max
a o

b
a a a o

go

g R b gγ
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= + ⋅∑ . (10) 

3   Point-Based Value Iteration 

The exact value iteration algorithms for solving POMDP problems attempt to update 
the value function over the entire belief space, hence they are believed not to be able 
to solve large-scale POMDP problems. In recent years researchers have proposed lots 
of approximate algorithms, among which point-based methods [5-10] are most prom-
ising. Point-based value iteration is based on the following fact: for most of POMDP 
problems, even given arbitrary action and arbitrary observation, agent would only 
reach a small part of the belief points in the belief space [5]. Once the value of a belief 
is updated, the values of nearby belief points are likely to be improved. Thus point-
based value iteration need not to compute the value function over the belief space, it 
solves the POMDP on a finite set of belief points that are more probable to be 
reached. 

PBVI algorithm [5] is a typical point-based method. It solves the POMDP on a fi-
nite set of belief points B = {b0, b1, …, bm}. PBVI starts with an initial belief set B0 
which usually contains only the initial belief state, updates the values using backup 
operator for the belief set, and then expands the belief set. In PBVI algorithm, steps of 
belief set expansion and steps of value iteration are applied iteratively until some 
stopping criteria is reached. Belief selection in expansion of Bt is based on the fact 
that the approximate value is better when the belief points are uniformly distributed in 
the belief simplex as many as possible. So for each belief point of the set, PBVI finds 
a successive belief point that is farthest away from the points already existing in Bt. 

Because PBVI attempts to improve the density of belief set in the step of belief se-
lection, it may ignore some belief points that are important to update the value func-
tion. Izadi et al. proposed BFBS algorithm [8]. BFBS expands the belief set to include 
all the beliefs that are reachable in the next time step from the existing points of the 
set. Although BFBS is likely to provide the best approximation of value function, the 
size of the belief set is expanded exponentially. So it is not feasible for real-world 
problems. DBBE [9] improves BFBS algorithm, adding not all the beliefs that are 
reachable but a subset of these belief points that are farther from Bt than a given 
threshold. A reachable belief point b’ is added to the current set B if it satisfies the 
following formula: 
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1b B
D(b',B) = min 'b b ε

∈
− > . (11) 

But it is showed in our experiments that the belief set is still too large for value it-
eration. FSVI algorithm [10] is a trial-based algorithm. It selects a sequence of belief 
points using the action that is optimal for a sampled state of the underlying MDP, and 
then updates the value in reversed order. FSVI dose not perform very well in the 
problems that need many steps of information-gathering. 

4   Uncertainty-Based Belief Selection 

Belief selection is a key step in point-based value iteration. We propose a belief selec-
tion algorithm based on the uncertainty of a belief point (Uncertainty-based belief 
selection, UBBS). This algorithm is motivated by the fact that the optimal value func-
tion has a property of convexity over the entire belief space [2]. It could be illustrated 
in Fig. 1 that the values at the belief points in the middle of space are lower than that 
in the corner. Belief states in the middle of belief space have high uncertainties about 
the real-world state, so the agent could not take appropriate actions to gain higher 
reward. On the contrary, agent could gain higher reward in less uncertain belief states 
which are in the corner of the belief space. 

This fact indicates that the less uncertain belief points in the belief simplex may be 
more worthwhile for improving the value function of the belief space. UBBS algo-
rithm modifies the step of belief expansion in point-based value iteration, adding 
belief points that have lower uncertainties, and shares the same main framework with 
PBVI algorithm. The main framework of the algorithm is shown in Fig. 2. 

 
Algorithm PBVI 
 Initialize B0 and value function 
 while stopping criteria have not been reached 
  Value iteration; 

Belief set expansion; 
 End while. 

Fig. 2. Framework of the algorithm 

In this paper, we proposed two different methods to represent uncertainty of a be-
lief point, named Entropy-based belief selection (EBBS) and Gap-based belief selec-
tion (GBBS) respectively. The former is based on the entropy of the belief state; the 
latter is based on the gap between the maximal and the minimal probabilities of the 
belief state. 

Entropy is a well known scalar to describe the uncertainty of a random variable. 
EBBS algorithm measures the uncertainty of a belief state by entropy. Given a belief 
point b = (b(s1), b(s1), …b(s|S|)) describing the probabilities of the world states, the 
entropy could be computed by equation (12): 

( ) ( ) log ( )
s S

Entropy b b s b s
∈

= −∑ . (12) 
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The lower the entropy of a belief point, the less uncertainty it has, and the more 
long-term reward would be gained at the belief state. 

GBBS algorithm describes the uncertainty of a belief point using the gap between 
the maximal element and the minimal element of the belief vector. The value of each 
element b(s) in the belief state shows a probability that agent is at state s. If agent is 
sure that it is at a certain state si by observation, so the element b(si) of the belief 
vector is set to be 1, the other elements are set as 0, and the uncertainty of this 
belief state is the least. The gap of this belief point is highest. Another extreme 
case is when agent is so ambiguous that it could not distinct the states at all, the 
elements in the belief state are set as the same probabilities. Then the uncertainty 
of this belief is the highest, and the gap is 0. The wider of the gap of a belief 
point, the less uncertainty the belief point contains. GBBS algorithm uses equa-
tion (13) to measure uncertainty of belief state b: 

( ) max( ) min( )Gap b b b= − . (13) 

 
Algorithm UBBS(threshold ε) 

for all b∈B do 
for all a∈A do 

Sample current state s from b; 
Sample next state s’ from T(s,a,s*); 
for all o∈Ω do 

Compute next belief b’ reachable from b; 
Insert into a sorted list L according to uncertainty; 

end for 
         end for 
         while Get the first b’ from the sorted list L do 

if D(b',B) ε>  

then return B = B∪{b’}; 
         end while 

end for 

Fig. 3. Algorithm of Uncertainty-based belief selection 

These two methods (EBBS and GBBS) proposed above differ in the computing of 
uncertainty, whichever could be used in the framework of UBBS algorithm. They are 
both tested in the experiments in the next section. 

The nearby belief points have approximate values, so the values of the belief points 
in the neighborhood are improved at the same time when updating the value of a be-
lief state. This fact suggests that two selected belief points should not be too close in 
distance. In our UBBS algorithm, we share the same criteria with DBBE which is 
represented by formula (11). 

Uncertainty-based belief selection (EBBS or GBBS) algorithm is a part of point-
based value iteration illustrated in Figure 2, which improves the step of belief expan-
sion. EBBS and GBBS algorithms use the same process described in Fig. 3, which 
differ in the computing of uncertainty of a belief point. 
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5   Experiments 

We conduct the comparative experiments on 4 POMDP problems (Hallway, Hall-
way2, Tag Avoid and Rock Sample 4,4) with EBBS and GBBS algorithms, and the 
other three point-based algorithms. Table 1 shows the description of these 4 problems, 
where |S| represents the number of states, |A| is the number of actions and |Ω| repre-
sents the number of observations. Average discounted reward (ADR) is used as a 
target value that an agent is expected to gain in the problem. 

Table 1. Problem description 

Problem |S| |A| |Ω| Target ADR 
Hallway 61 5 21 0.51 

Hallway2 93 5 17 0.33 
Tag Avoid 870 5 30 -9.3 

Rock Sample 4,4 257 9 2 18 

 
In all domains, the discount factor is 0.95. The threshold value of the minimal 1-

norm distance is set to 0.9. For each problem we execute these algorithms for 10 
times with different random seeds, but DBBE algorithm on Hallway2 is run only once 
because it is time-consuming. To test the policy for each run of the algorithms on these 
problems, we do 100 trials of random exploration of 100 time steps and compute the 
average reward. And the results reported here are averaged over 10 runs. 

Table 2 presents the results for the problems, comparing the average discounted 
reward, the computation time for backup, the size of the belief set and the number of 
α -vectors. 

UBBS algorithm improves the step of belief set expansion of PBVI algorithm. Ex-
periment results indicate that EBBS and GBBS algorithms work more effectively than 
PBVI since they need fewer number of belief points than PBVI to get the similar 
long-term discounted reward, especially on problem Rock Sample 4,4. EBBS and 
GBBS algorithms could gain higher reward than PBVI on Tag Avoid problem using 
fewer belief states. 

EBBS and GBBS algorithms are more powerful than DBBE algorithm. The size of 
belief set grows exponentially during each expansion which makes DBBE method not 
feasible for real-world POMDP problems, although this method can gain good re-
ward. As PBVI, UBBS algorithm doubles the size of belief set at most for a belief set 
expansion. UBBS method needs not much unnecessary belief points and value up-
dates. 

Our algorithm outperforms FSVI on Hallway and Hallway2. But FSVI does better 
compared with UBBS algorithm especially on Rock Sample 4,4. A reason for the 
failure of UBBS algorithm is that our method considers only the uncertainty of a 
belief state but not the reward which the belief state could provide. FSVI simulates 
underlying MDP to search heuristically in the belief space in order to get higher re-
ward. Taking Rock Sample 4,4 for example, the immediate reward at a certain state 
may be 1, -1 or -100. Agent should avoid the state at which agent would get a reward 
like -100 by taking some actions, because this kind of actions seems fatal. Although  
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Table 2. Experiment results 

Method ADR Time |B| |V| 
Hallway(61s 5a 21o) 

PBVI 0.513 18.7 74.8 71.1 
DBBE 0.519 598 1747 178.9 
FSVI 0.512 44.8 289.7 136.4 
EBBS 0.517 19.7 86.2 80.5 
GBBS 0.513 8.7 63 59.9 

Hallway2(93s 5a 17o) 
PBVI 0.336 1303.7 304.8 254.6 

DBBE* 0.325 79762 6673 2127 
FSVI 0.329 523.4 642.4 556.5 
EBBS 0.327 539.9 189.9 165.6 
GBBS 0.334 224.4 128.9 118.3 

Tag Avoid(870s 5a 30o) 
PBVI -9.112 304.6 983.5 224.1 
DBBE -7.909 65.8 1035.3 186.5 
FSVI -11.50 15.6 547.5 29.9 
EBBS -8.760 361.5 527.3 279.3 
GBBS -8.511 280.8 518.8 308.7 

Rock Sample 4,4(257s 9a 2o) 
PBVI 17.958 37260 32897.6 617 
DBBE 18.020 975.6 6376.9 306.9 
FSVI 17.666 1.3 107 50 
EBBS 17.916 191.8 628.3 438 
GBBS 17.956 197.2 650.2 438.8 

 
the belief state keeps low uncertainty about this kind of real state, it should not be 
selected to expand the belief set. We claim that these beliefs would not be much help-
ful to improve the long-term discounted reward. But UBBS algorithm would not 
avoid this case which could be avoided by FSVI. We will consider it in our future 
work. Note that the ADR of FSVI on Tag Avoid in [10] is -6.612, but we do not achieve 
such a good result in this experiment. 

Usually, the number of the belief states |B| being backed up and the number of α -

vectors satisfy the following inequation [11]: |B| ≧ |V|. But if the ratio of |B| / |V| is 
large, it means lots of belief points share the same optimal policy. But a small ratio 
may suggest us that a better approximate value function could be gotten if we add 
more belief states to complete the value iteration. The experimental results indicate 
that this ratio of EBBS and GBBS algorithm ranges from 1.05 to 1.88, which outper-
forms the other algorithms in these 4 domains. 

6   Conclusion 

In this paper we propose a belief selection algorithm (UBBS) based on the uncertainty 
of belief state in point-based value iteration for POMDP. UBBS algorithm chooses 
the belief state that has low uncertainty and the minimal 1-norm distance between 
selected belief state and the existing points already in the belief set should be larger 
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than a threshold. We use two different methods to represent uncertainty of a belief 
point: one is EBBS, and the other is GBBS algorithm. EBBS uses entropy to describe 
the uncertainty of a belief point, and GBBS is based on the gap between the maximal 
and minimal elements of a belief state to compute the uncertainty. 

Uncertainty-based belief selection method improves the belief expansion in PBVI 
and DBBE. The experimental results show that UBBS algorithm could gain the ap-
proximate long-term discounted reward using fewer belief states compared with other 
point-based algorithms. Our future work is to consider the reward during belief selec-
tion in order to gain higher reward as quickly as possible. 
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Abstract. This paper deals with the solving multivariate partially observed
Markov decision process (POMDPs). We give sufficient conditions on the cost
function, dynamics of the Markov chain target and observation probabilities so
that the optimal scheduling policy has a threshold structure with respect to the
multivariate TP2 ordering. We present stochastic approximation algorithms to
estimate the parameterized threshold policy.

1 Introduction

This paper deals with multivariate POMDPs with two actions, where one of the actions
is a stop action. Such POMDPs arise in radar resource management of sophisticated
military radar systems. Consider L dynamical targets tracked by an agile beam multi-
function radar. How should the radar manager decide which target to track with high
priority during the time slot and for how long? Given Bayesian track estimates of the
underlying targets, the goal is to devise a sensor management strategy that at each time
dynamically decides how much radar resource to invest in each target. Several recent
works in statistical signal processing [1,2,3], study the problem as a multivariate par-
tially observed Markov Decision Process (POMDP) in the context of radar and sensor
management. A major concern with the POMDP formulation is that in most realis-
tic cases, POMDPs are numerically intractable as they are PSPACE hard problems.
The main aim of this paper is to show that by introducing structural assumptions on
multivariate POMDPs, the optimal scheduling policy can be characterized by a simple
structure and computed efficiently. We formulate a two level optimization framework.
The inner level optimization termed sensor micro-management deals with how long to
maintain a given priority allocation of targets. It is formulated as a multivariate partially
observed Markov Decision Process (POMDP). The main goal of this paper is to prove
that under reasonable conditions, the multivariate POMDP has a remarkable structure:
the optimal scheduling policy is a simple threshold. Therefore, the optimal policy can
be computed efficiently. Showing this result requires using the TP2 (totally positive
of order 2) multivariate stochastic ordering. We give a novel necessary and sufficient
condition for the optimal threshold policy to be approximated by the best linear hyper-
plane. We present stochastic approximation algorithms to compute these parameterized
thresholds.
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This paper generalizes [4,1] which dealt with structural results for scalar POMDPs.
These papers use the univariate monotone likelihood ratio (MLR) ordering. For multi-
variate POMDPs one needs to use the TP2 multivariate stochastic ordering of Bayesian
estimate which is not necessarily reflexive (unlike the univariate monotone likelihood
ratio ordering). The results of this paper are also related to [5] where conditions are given
for a POMDP to have a TP2 monotone increasing policy. However, to make those results
useful from a practical point of view, one needs to translate monotonicity of the policy
to the existence of a threshold policy. A major contribution of the current paper is to
develop the properties of a specialized version of the TP2 stochastic ordering on multi-
linear curves and lines. We show that this specialized TP2 order requires less restrictive
conditions on the costs compared to [5]. Moreover, we present necessary and sufficient
conditions can be given for the best linear and multi-linear approximation to the optimal
threshold policy. This allows us to estimate the optimal linear and multi-linear estimate
to the threshold policy via stochastic approximation algorithms. We also refer to [6,7]
for applications of POMDPs in sensor scheduling and multi-armed bandits.

2 Model and Dynamic Programming Formulation

We motivate our multivariate POMDP problem in terms of a radar resource
management problem. Consider L targets evolving over the fast time scale denoted
n = 1, 2, . . . ,. The slow time scale denoted by t = 1, 2 . . . indexes random length in-
tervals of time in the fast time scale. These intervals of length denoted τt are called
scheduling intervals. We use k = 1, . . . , τt to denote the time within a scheduling
interval.

2.1 Target Dynamics

Consider a radar with an agile beam, tracking L moving targets (e.g., aircraft). Each
target l is modeled as a finite state random process X

(l)
n indexed by l ∈ {1, . . . , L}

evolving over discrete time n = 0, 1, . . .. To simplify notation, assume each process
X

(l)
k has the same finite state space S = {1, . . . , S}. Each process X

(l)
n models a

specific attribute of target l. For example in [1], it models the distance of the target to
the base-station. The radar resource manager uses this information to micro-manage
the radar by adapting the target dwell time. Finally denote the composite process Xn =
(X(1)

n , . . . , X
(L)
n ) with state space Scomp = S × · · · × S = {1, . . . , SL}, where ×

denotes Cartesian product. We index the states of Xk by the vector index i or j, where
i = (i1, , . . . , iL) ∈ Scomp with generic element il ∈ S, l = 1, 2, . . . , L. Assume Xk

evolves according to a SL state Markov chain, with transition matrix

P = [pij]SL×SL , pij = P(Xn = j|Xn−1 = i); with π0(i) = P(X0 = i). (1)

Macro-management: Target Selection at: At each instant t on the slow time scale, the
sensor manager picks one target denoted at ∈ {1, . . . , L}, to track/estimate with high
priority, while the other L− 1 targets are tracked/estimated with lower priority.
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Micro-management: Scheduling Control uk: Once the action at is chosen, the micro-
manager is initiated for the t-th scheduling interval. The clock on the fast time scale k is
reset to k = 0 and commences ticking. At this fast time scale, k = 0, 1, . . ., the L targets
are estimated by a Bayesian tracker. The target at is given highest priority and allocated
the best quality sensors (or more time within the scheduling interval) for measuring
its state. The remaining L − 1 targets are given lower priority and tracked using lower
quality sensors (or given less time per scheduling interval). Micro-management is the
main focus of this paper. How long should the micro-manager track target at with
high priority before returning control to the macro-manager to pick a new high priority
target?

2.2 Formulation of Micro-management as a Multivariate POMDP

Below we formulate the micro-management of L targets as a multivariate POMDP.

Markov Chain: Xk defined in Sec.2.1 models the L evolving targets.

Action Space: At the (k+1)th time instant within the t-th scheduling interval, the micro-
manager picks action uk+1 as a function μat of the Bayesian estimates πk (defined in
(4)) of all L targets as uk+1 = μat(πk) ∈ {continue = 1, stop = 2} where μa ∈
Aa, and Aa denotes stationary scheduling policies. If uk = continue = 1, the micro-
manager continues with the current target priority allocation at. So k increments to k+1
and the L targets are tracked with target at given the highest priority. If uk = stop = 2,
the micro-manager stops the current scheduling interval t, and returns control to the
macro-manager to determine a new target at+1.

Multivariate Target Measurements: Given the state Xk of the L targets, measurement
vector Yk = (Y (1),

k . . . , Y
(L)
k ) is obtained at time k from the multivariate distribution

Pat(Yk|Xk, uk). Assume each target’s observation Y
(l)
k , l = 1, . . . , L, is finite valued,

Y
(l)
k ∈ y = {O1, O2, . . . , OM}, so Yk ∈ Y

+
= y × · · · × y (2)

Multi-target Bayesian Estimation: In scheduling interval t, with priority allocation at,
at time k, denote the history of past observations and actions as

Z
(l)
k = {at, πt−1, u1, Y

(l)
1 , . . . , uk, Y

(l)
k }

where Zk = (Z(1)
k , . . . , Z

(L)
k ). Here πt−1 is the a posteriori distribution of the L targets

from the macro-manager at the end of the (t−1)th scheduling interval. Based on Zk+1,
the Bayesian tracker computes the posterior state distribution πk+1 of the L targets

πk+1 = (πk+1(i), i ∈ Scomp}, πk+1(i) = Pat(Xk+1 = i|Zk+1) (3)

The SL-dimensional vector πk is computed via the Hidden Markov Bayesian filter:
πk+1 = Tat(πk, uk+1, Yk+1) where

Ta(π, u, Y ) =
Ba(u, Y )P ′π
σa(π, u, Y )

, σa(π, u, Y ) = 1′SLBa(u, Y )P ′π

and Ba(u, Y ) = diag(Pa(Y |1, u), . . . ,Pa(Y |SL, u)). (4)
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Here 1SL is the SL dimension vector of ones. πk is referred to as the information
state, since (see [4]) it is a sufficient statistic to describe the history Zk. The composite
Bayesian estimate πk in (4) lives in an SL − 1 dimensional unit simplex

Πcomp +=
{
π ∈ RSL

: 1′SLπ = 1, 0 ≤ π(i) ≤ 1 for all i ∈ Scomp
}

(5)

The Bayesian posterior distribution of each target l, defined as π(l)
k =Pat(X

(l)
k |Z

(l)
k ),

can be computed by marginalizing the joint distribution πk. π(l)
k lives in an S−1 dimen-

sional unit simplex Π
+
=

{
π(l) ∈ RS : 1′Sπ

(l) = 1, 0 ≤ π(l)(i) ≤ 1, i ∈ {1 . . . , S}
}

.

Tracking Cost: At time k, with given current composite state Xk of the L targets, if
action uk+1 = μat(πk) ∈ {continue = 1, stop = 2} is taken, then the micro-manager
accrues an instantaneous cost cpat

(Xk, uk+1). Here cpa(X,u) ≥ 0 and

cpa (X,u) =

{
u = 1 cost of continuing with current allocation a given state X

u = 2 cost of terminating current allocation a given state X .
(6)

In (6), the non-negative L dimensional vector p = (p(1), . . . ,p(L))′, denotes target
priority allocations and is set by the macro-manager. p links the micro and macro-
management. The costs cpa (X,u) are chosen as decreasing functions (elementwise) of
p since higher priority targets should incur lower tracking costs. The cost cpa(X, 2) can
also be viewed as a switching cost incurred by the micro-manager. If u = 2 is chosen,
control reverts back to the macro-manager to determine a new target priority allocation.
Let τt denote the time k (in the t-th scheduling interval) at which action uk = stop = 2
is chosen. The random variable τt is a stopping time, i.e., the event {τt ≤ k} for any
positive integer k is a measurable function of the sigma algebra generated by history
Zk. Let 0 ≤ ρ < 1 denote a user defined economic discount factor. Then the sample
path cost incurred during this interval is

Ĵp(μat , πt−1) =
τt∑
k=1

ρk−1Cp
at

(πk, uk+1) where uk+1 = μat(πk) ∈ {1, 2} (7)

Cp
a (πk, uk+1) = cpa

′(uk+1)πk, uk+1 = μa(πk), cpa(u)
+
=

[
cpa (1, u) · · · cpa (SL, u)

]′
Discounted Cost Stopping Time Problem Formulation: The objective is to compute the
optimal policy μ∗at

(πk) ∈ {continue = 1, stop = 2} to minimize the expected dis-
counted cost J(μat ,p) over the set of admissible control lawsA. That is, compute

inf
μ∈A

Jp(μat , πt−1) where Jp(μat , πt−1)
+
= E

{
τt∑
k=1

ρk−1Cp
at

(πk, μa(πk))|πt−1

}
.

(8)

(1), (2), (4), (6), (8) form a multivariate POMDP for sensor micro-management.

Remark: Special case. Independent targets with Independent Observations: If each tar-
get X(l)

k l ∈ {1, . . . , L}, evolves as an independent Markov chain with S×S transition
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matrix P (l) = [p(l)
ij ]S×S , (for i, j ∈ {1, . . . , S}), where p

(l)
ij = P(X(l)

k = j|X(l)
k−1 =

i). The initial distribution is then denoted as π
(l)
0 = [π(l)

0 (i)]S×1 where π
(l)
0 (i) =

P(X(l)
0 = i). If the measurements of the targets are also mutually independent, then

we observe Yk = (Y (1)
k , . . . , Y

(L)
k ) from product distribution Pat(Y

(1)
k |X(1)

k , uk) ×
· · · × Pat(Y

(L)
k |X(L)

k , uk). Note that the individual distributions Pa(Y (l)|X(l), u) can

be multivariate. The posterior distribution π
(l)
k

+
= Pat(X

(l)
k |Z

(l)
k ) for target l = 1, . . . , L

is computed as π
(l)
k+1 = T

(l)
at (π(l)

k , uk+1, Y
(l)
k+1) where

B(l)
a (u, Y ) = diag(P(l)

a (Y |1, u), . . . ,P(l)
a (Y |S, u))

T (l)
a (π(l), u, Y (l)) =

B
(l)
a (u, Y (l))P (l)′π(l)

σ
(l)
a (π(l), u, Y (l))

(9)

σ(l)
a (π(l), u, Y (l)) = 1′SB

(l)
a (u, Y (l))P (l)′π(l).

The joint state π is the Kronecker product of the individual information states: π =
π(1) ⊗ · · · ⊗ π(L) ∈ Πprod, where Πprod += {π ∈ Πcomp : π = π(1) ⊗ π(2) · · · ⊗ π(L)}.

3 Micro-management: Multivariate POMDP with Threshold
Policy

Consider the micro-management POMDP problem with objective function (8). For
fixed priority allocation vector p, the optimal stationary policy μp,∗

a : Πcomp → {1, 2}
and associated optimal cost Jp(μ∗a, π) are the solution to “Bellman’s equation” for
V p
a (π)

Jp(μ∗a, π) = V p
a (π) = min

u∈{1,2}
Qp
a(π, u), μp,∗

a (π) = arg min
u∈{1,2}

Qp
a (π, u) (10)

Qp
a (π, 1) = Cp

a (π, 1) + ρ
∑
Y ∈Y

V p
a (T (π, 1, Y ))σ(π, 1, Y ), Qp

a (π, 2) = Cp
a (π, 2)

Recall Cp
a (π, u) is defined in (7). Since the information state space Πcomp of a POMDP

is an uncountable set, the dynamic programming equations (10) do not translate into
practical solution methodologies as V (π) needs to be evaluated at each π ∈ Πcomp, an
uncountable set. In our multivariate POMDP, the state space dimension is SL (exponen-
tial in the number of targets) and so applying value iteration is completely intractable.
The rest of this section focuses on the structure of the POMDP. Theorem 1, shows that
under suitable conditions, the optimal scheduling policy is a simple threshold policy.
We then develop novel parameterizations of this threshold curve and compute them
efficiently.

3.1 Main Result: Existence of Threshold Policy for Multivariate POMDP

We list the assumptions for correlated targets. Assume for any fixed a ∈ {1, . . . , L},
the following conditions hold for the multivariate POMDP (8).
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(A1): The cost cpa (X,u) ≥ cpa (SL, u) for all X ∈ Scomp.
(A2): The transition matrix P in (1) of the L targets is MTP2 (see appendix for defini-

tion).
(A3): For a, u, L-variate observation probabilities Pa(Y |X,u) is MTP2 in (Y,X).

(S): cpa (X, 2)− cpa (X, 1) ≥ cpa(SL, 2)− cpa (SL, 1). (submodular costs)

A special case of the above assumptions involving independent targets is:

(A1’): cpa (X,u) is a separable cost function for the L targets of the form cpa (X,u) =∑L
l=1 cpa

(l)(X(l), u) where cpa
(l)(X(l), u) denotes the cost for individual target l.

Assume cpa
(l)(S, u) ≤ cpa

(l)(i, u) i = 1, 2, . . .S−1, u ∈ {1, 2}, l = 1, . . . , L.
(A2’): The transition probability matrix P (l) of each target l is MTP2 (see Definition

1).
(A3’): P(l)

a (Y (l)|X(l), u) is is MTP2 in Y (l), X(l).
(S’): cpa

(l)(i, 2)− cpa
(l)(i, 1) ≥ cpa

(l)(S, 2)− cpa
(l)(S, 1) for each target l.

Examples of the above conditions in radar management are discussed in Sec.3.4. The
main result below shows that the optimal micro-management policy has a threshold
structure, see Appendix 4 for definitions.

Theorem 1 (Existence of Threshold Policy for Sensor Micro-management). Con-
sider the multivariate POMDP and a fixed target priority allocation a ∈ {1, . . . , L}.
Then:

(i) Dependent Targets: Under (A1), (A2), (A3), (S), the optimal policy μ∗a(π) is TP2
increasing on lines in Πcomp. That is, π ≥

TP2L

π̃, implies μ∗a(π) ≥ μ∗a(π̃).

(ii) Independent Targets: Under (A1’), (A2)’, (A3’), (S’), the optimal policy μ∗a(π) is
TP2 increasing on curves in Πcomp. That is, π ≥

TP2C

π̃, implies μ∗a(π) ≥ μ∗a(π̃).

(iii) There exists a curve Γ (which we call a “threshold curve”) that partitions infor-
mation state space Πcomp into two individually connected regions R1, R2, such that:

Optimal scheduling policy μ∗a(π) =

{
continue = 1 if π ∈ R1

stop = 2 if π ∈ R2
(11)

Also regionR2 is convex. So Γ is continuous and differentiable almost everywhere. %&

Under the conditions of Theorem 1, the optimal scheduling policy for the multivariate
POMDP is a threshold policy with a threshold curve Γ that partitions the information
state space Πcomp. Note that without these conditions, the optimal policy of the mul-
tivariate POMDP can be an arbitrarily complex partition of the simplex Πcomp – and
solving such a multivariate POMDP is computationally intractable. The convexity of
regionR2 (statement (iii) of the theorem) follows from [8, Lemma 1].

3.2 Characterization of Best Linear and Multi-linear Threshold

Due to the existence of a threshold curve Γ , computing the optimal policy μ∗a reduces
to estimating this threshold curve. In this section, we derive linear and multi-linear ap-
proximations to Γ . Such linear/multi-linear thresholds have two attractive properties:
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(i) Estimating them is computationally efficient. (ii) We give novel conditions on the
threshold coefficients that are necessary and sufficient for the resulting linear/multi-
linear threshold policy to be TP2 increasing on lines. Due to the necessity and suf-
ficiency of the condition, optimizing over the space of linear/multi-linear thresholds
yields the “best” linear/multi-linear approximation to the threshold curve Γ .

Dependent Targets. We start with the following definition of a linear threshold policy:
For fixed target priority a ∈ {1, . . . , L}, define the linear threshold policy μθa(π) as

μθa(π) =

{
continue = 1 if θa

′π < 1
stop = 2 if θa

′π ≥ 1,
π ∈ Πcomp. (12)

Here θa ∈ RSL

+ denotes the vector of coefficients of the linear threshold policy.

Theorem 2 (Dependent Targets). Assume conditions (A1), (A2), (A3), (S) hold for the
multivariate POMDP (8). Then for any fixed target priority a ∈ {1, . . . , L}:
(i) The linear threshold policy μθa(π) defined in (12) is TP2 increasing on lines iff
θa(SL) ≥ θa(i), i = 1, . . . , SL−1. (ii) Therefore, the optimal linear threshold approx-
imation to threshold curve Γ of Theorem 1 is the solution of the following constrained
optimization problem:

θ∗a = arg min
θa∈RSL

+

Jp(μθa , π), subject to θa(SL) ≥ θa(i), i = 1, . . . , SL − 1.

(13)
where Jp(μθa , π) is obtained as in (8) by applying threshold policy μθa in (12). %&

Remark: To make the threshold vector parametrization θ∗a unique, we have incorporated
the following steps: The term ‘1’ on the right hand side of (12) (and also in (14) below),
is without loss of generality; otherwise one could scale both sides of these equations
resulting in non-uniqueness. The requirement that θ is a non-negative vector is without
loss of generality since a positive vector with identical elements can always be added.

Independent Targets. The main point in Theorem 3 below is that for L independent
but non-identical targets, we can construct a SL dimension threshold as the best multi-

linear approximation of Γ . Define SL dimension vector θ′a = (θ(1)
a

′
, θ

(2)
a

′
, . . . , θ

(L)
a

′
),

where each sub-vector θ(l)
a ∈ RS

+, l = 1, . . . , L. The elements of each sub-vector θ(l)
a

are denoted θ
(l)
a (i) and are associated with target l. The dimension SL of θa here is in

contrast to the SL dimension threshold for dependent targets in Theorem 2 above. Then
for any fixed a ∈ {1, . . . , L}, define the multi-linear threshold policy

μθa(π) =

{
continue = 1 if

∏L
l=1 θ

(l)
a

′
π(l) < 1

stop = 2 if
∏L

l=1 θ
(l)
a

′
π(l) ≥ 1,

π ∈ Πprod (14)

To make the threshold parameterization θa unique, we need to disallow scaling θ
(l)
a

′
π(l)

by a constant for one target l and dividing by the same constant for another target l′. So
we assume that maxi θ(1)(i) = maxi θ(2)(i) = · · · = maxi θ(L)(i).
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Theorem 3 (Independent targets). Assume conditions (A1’), (A2’), (A3’) and (S’)
hold for the multivariate POMDP (8). Then for any fixed a ∈ {1, . . . , L}:
(i) The multi-linear policy μθa(π) in (14) is TP2 increasing on lines iff θa(S) ≥ θ

(l)
a (i).

(ii) Therefore, the optimal multi-linear threshold approximation to threshold Γ is the
SL dimension threshold vector θ∗a which is the solution to the optimization problem:

θ∗a = arg min
θ∈RSL

+

Jp(μθ, π), with

{
θ
(l)
a (S) = constant indpt of l denoted as θa(S)

θa(S) ≥ θ
(l)
a (i), i = 1, . . . , S − 1, l = 1, . . . , L

(15)
In (15), Jp(μθ, π) is obtained as in (8) by applying policy μθ in (14). %&

Remark: The multi-linear threshold policy coefficients θ
(l)
a in (14) are the same, it suf-

fices to pick θa as a S dimension threshold vector: θa
+
= θ

(1)
a = θ

(2)
a = · · · = θ

(L)
a .

3.3 Algorithm to Compute the Optimal Multi-linear Threshold Policy

We focus on the independent identical targets case of Theorem 3, the algorithms for
dependent targets is similar and omitted. We resort to sample-path based simulation
optimization to estimate θ∗a ∈ RS

+: For batches indexed by n = 1, 2, . . ., evaluate the
sample path cost Ĵp

n (μθa , πt−1) by simulating the multivariate POMDP. The aim is:

Compute θ∗a = arg min
θ∈Θ

E{Ĵp
n (μθa , πt−1)} subject to constraints in (15). (16)

Consider the unconstrained S dimensional vector φ, with component vectors φ hav-
ing dimensions identical to θ. Set θa(S) = [φa(S)]2, θa(i) = [φa(S)]2 sin2 φa(i).
Since the square of a number is non-negative, [φa]2 ≥ 0. Also sin2(·) ∈ [0, 1]. Thus θa
automatically satisfies constraints. This equivalent unconstrained optimization problem
in solved via a stochastic approximation algorithm. For iterations n = 0, 1, 2, . . .:

1. Evaluate sample cost Ĵp
n (μφa , πt−1). Compute gradient estimate ∇̂φĴ

p
n (μφa , πt−1)

as: (we denote Ĵp
n (μφa , πt−1) as Ĵn(φ̂) to simplify notation):

∇̂φJn =
Jn(φ̂n + μnωn)− Jn(φ̂n − μnωn)

2μn
ωn, ωn(i) =

{
−1 with prob 0.5
+1 with prob 0.5.

where μn = μ
(n+1)γ .

2. Update threshold coefficients φ̂n via (where εn below denotes step size)

φ̂n+1 = φ̂n−εn+1∇̂φĴ
p
n (μφa , πt−1), εn=ε/(n+1+s)κ, 0.5 < κ ≤ 1, and ε, s > 0.

(17)
In Step 2, the initial value πt−1 ∈ Πprod can be chosen arbitrarily, since by definition

any stationary policy does not depend on the initial condition (but of course, the cost
does). The simultaneous perturbation stochastic approximation (SPSA) algorithm [9]
picks a single random direction ωn along which direction the derivative is evaluated at
each batch n. So to evaluate the gradient estimate ∇̂φJn in (17) requires only 2 POMDP
simulations, i.e., the number of evaluations is independent of dimension of parameter φ.
Because the stochastic gradient algorithm (17) converges with probability one to local
optima, it is necessary to try several initial conditions φ̂0.
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3.4 Discussion of Assumptions

(A1), (A1’): Suppose states 1, 2, . . . , S denotes decreasing distance of the target to a
base-station. Then the closer the target, the higher the threat, and more incentive to track
it. (A1) means that the reward (negative of cost) for tracking the target is smallest when
it is at maximum distance. This is natural since the further away the target the lower
the threat. Similarly, if states 1, 2, . . . , S denote increasing covariances of the target
estimate, then the larger the covariance, the higher the incentive to track the target.

(A2) and (A2’): For independent targets, if the target is at state i, 1 ≤ i ≤ S, at time
k then at time k + 1, it is reasonable to assume that it is either still in state i or with
a lesser probability in the neighboring states i + 1 or i− 1. Each target can then be
modeled as a S state Markov chain with tridiagonal transition probability matrix P . As
shown in [10, pp.99–100], a necessary and sufficient condition for tridiagonal A to be
TP2 is that pi,ipi+1,i+1 ≥ pi,i+1pi+1,i. Such a diagonally dominant tridiagonal matrix
satisfies (A2’). (A2) can model correlated convoy behavior of targets.

(A3), (A3’): Several observation models satisfy the TP2 ordering (A3), see [11]. Sup-
pose sensor l measures the target in quantized Gaussian noise. The observation proba-

bilities are P
(l)
a (Y |i, u) = b̄iY (u)∑

M
m=1 b̄iY (u)

where b̄iY (u) = 1√
2πΣ(l)

u

exp
(
− 1

2
(Y−g′ei)2

Σ
(l)
u

)
with O1 > O2 > · · · > OM . Here Σ

(l)
u > 0 denotes the noise variance of the sensor u

and thus reflects the quality of its measurements. Here g1 > g2 > . . . > gS denotes the
quantized distance of the target to the base-station. It is easily verified that (A3’) holds.
The ordering O1 > O2 > · · · > OM is consistent with our discussion in (A1’) where
state 1 was the farthest distance and S the closest.

(S), (S’): The difference in rewards between deploying an accurate estimator and a
less accurate estimator should increase as the threat level goes up. This gives economic
incentive to pick the more accurate action when the target is close or threat is high.

4 Numerical Example

We consider L = 3 independent Markovian targets, each with S = 30 states corre-
sponding to quantized distance. The composite state space of 303 is enormous. Without
structural results, the POMDP is intractable. We construct a POMDP to satisfy assump-
tions (A1’), (A2’), (A3’) and (S’). All targets have the same tridiagonal S×S transition
matrix P with pi,i = 0.8, pi,i+1 = pi,i−1 = 0.1. This satisfies (A2’). The target obser-
vation probabilities are Pa(Y (l)|X(l), u) = 0.99 for l = a and 0.6 for l 
= a. Then (A3’)
holds. For fixed target priority allocation a, we chose the tracking cost for target a as
ca(X(a) = x, u = 1) = e−x/10, ca(X(a) = x, u = 2) = 2ca(x, 1), x = 1, . . . , S. For
the remaining L−1 targets, ca(X(l), u) = 0.1ca(X(a), u), l 
= a. Thus ca(X(l) = x, u)
decreases with x and is submodular so (A1’) and (S’) hold.

Since the POMDP satisfies (A1’), (A2’), (A3’), (S’), Theorem 1 implies the existence
of an optimal threshold policy. Theorem 3 implies that the best multi-linear policy ap-
proximation of dimension S = 30 to the optimal threshold curve can be constructed.
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Fig. 1. Performance of the policy gradient for the multivariate POMDP comprising of 303 states.
This policy is compared with a heuristic myopic policy and periodic policy with period ω = 10.

The sample path cost of the POMDP was evaluated according to (7). The SPSA algo-
rithm parameters in (17) were chosen as μ = 8.0, ε = 0.05, γ = 0.8. As shown in Fig.1,
the SPSA algorithm converges to the optimal multi-linear threshold. We compared the
performance with a simple myopic policy and a periodic policy. Fig.1 shows the per-
formance of the optimal multi-linear policy is significantly better than the myopic and
periodic policies.
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Appendix 1: TP2 Stochastic Ordering, and Submodularity

To compare multivariate information states π and π̃, we use the multivariate totally
positive of order 2 (TP2) stochastic partial ordering. It is ideal for information states
since it is preserved after conditioning on any information [4,11]. Let i = (i1, . . . , iL)
and j = (j1, . . . , jL) denote indices of L-variate probability mass functions (pmfs)
Denote i∧ j = [min(i1, j1), . . . ,min(iL, jL)]′, i∨ j = [max(i1, j1), . . . ,max(iL, jL)]′.

Definition 1 (TP2 ordering and MLR ordering). Let P and Q denote L-variate pmfs.
Then P ≥

TP2

Q if P (i)Q(j) ≤ P (i∨ j)Q(i∧ j). For univariate P and Q this is equivalent

to the MLR ordering denoted as P ≥r Q. A multivariate distribution P is said to be
multivariate TP2 (MTP2) if P ≥

TP2

P holds, i.e., P (i)P (j) ≤ P (i ∨ j)P (i ∧ j).

Denote ΠTP2 += {π ∈ Πcomp : π is TP2 reflexive}. Because every product state is TP2
reflexive, Πprod ⊂ ΠTP2 ⊂ Πcomp.

Lemma 1
(i) For all π ∈ Πcomp, e1 ≤

TP2

π ≤
TP2

eSL .

(ii) If π0 ∈ ΠTP2, then under (A2), (A3), the information state trajectory πk, k =
1, 2, . . . computed via the Bayesian estimator (4), satisfies πk ∈ ΠTP2.

(iii) π ∈ ΠTP2, implies for ε ∈ [0, 1], π̃
+
= εeSL +(1−ε)π is reflexive and π ≤

TP2

π̃ ≤
TP2

eSL .

(iv) If π(l) ≥r π̃(l), l = 1, . . . , L, then π(1) ⊗ · · · ⊗ π(L) ≥
TP2

π̃(1) ⊗ · · · ⊗ π̃(L).

TP2 Ordering over lines: Although the TP2 ordering over Πcomp is used in [5], it is
a stronger condition than we require and it does not yield a constructive procedure to
implement a threshold scheduling policy for a multivariate POMDP. We define a novel
TP2 ordering over lines. Define the SL−2 dimensional simplexH ∈ Πcomp comprising
of π ∈ Πprod with last element π(SL) = 0. That is,H = convex hull(es, . . . , eSL−1) =
{π̄ : π̄ ∈ Πcomp and π̄(SL) = 0}. For each π̄ ∈ H, construct the line L(eSL , π̄) that
connects π̄ to eSL . Thus L(eSL , π̄) comprises of information states π of the form:

L(eSL , π̄) = {π ∈ Πcomp : π = (1 − ε)π̄ + εeSL , 0 ≤ ε ≤ 1}, π̄ ∈ H. (18)

For notational simplicity, we denote a generic line L(eSL , π̄) as L(eSL).

Definition 2 (TP2 ordering on lines). π1 is greater than π2 with respect to the TP2
ordering on the line L(eSL) – denoted as π1 ≥

TP2L

π2, if π1, π2 ∈ L(eLS , π̄) for some

π̄ ∈ H, i.e., π1,π2 are on the same line connected to eLS , and π1 ≥
TP2

π2.

A nice property of ≥
TP2L

is that if π ∈ L(eLS , π̄) is TP2 reflexive, then all points in the line

L(eLS , π̄) between eLS and π are TP2 orderable and TP2 reflexive; see Lemma 1.

Result 1 (Submodular function, [12]). A function f(π) is TP2 increasing on lines in
Πcomp if π1 ≥

TP2L

π2 implies f(π1) ≥ f(π2). f : Lr(eS , π̄)×{1, 2}→ R is submodular if

f(π, u)−f(π, ū) ≤ f(π̄, u)−f(π̄, ū), for ū ≤ u, π̄ ≤
TP2L

π. If f : L(eS , π̄)×{1, 2}→ R

is submodular, then u∗(π) = argminu∈{1,2} f(π, u) is TP2 increasing on Πcomp.
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Appendix 2: Proof of Theorems

Theorem 4. The following properties hold for the multi-variate POMDP.

1. Under (A1), C(π, u) is TP2 decreasing on lines L(eS , π̄)..
2. Under (A1), (A2), (A3), Q(π, u) is TP2 decreasing on lines L(eS , π̄)..
3. Under (A1), (A2), (A3), (S), Q(π, u) is submodular wrt ≥

TP2L

.

Thus the optimal policy μ∗(π) is TP2 increasing on lines L(eS , π̄).

Proof of Part 1: Let π ≥
TP2L

π̃. Then π = (1 − ε)π̄ + εeSL and π̃ = (1 − ε̃)π̃ + ε̃eSL ,

where 1 ≥ ε ≥ ε̃ ≥ 0. But C(π, u) − C(π̃, u) = (ε − ε̃)
[
c(SL, u) − c′π̄

]
. Therefore

c(sL, u) ≤ c(X,u), i.e., (A1), is a sufficient condition for C(π, u) < C(π̃, u).

Proof of Part 2: The proof is by mathematical induction on the value iteration:

Vk+1(π) = min
u∈{1,2}

Qk+1(π, u), μ∗k+1(π) = argminu∈{1,2}Qk+1(π, u) (19)

Qk+1(π, u) = C(π, u) + ρ
∑
Y ∈Y

Vk (T (π, u, Y )) σ(π, u, Y ), π ∈ Π,u ∈ {1, 2}.

The value iteration algorithm converges uniformly in π [4], i.e., limk→∞ Vk(π) →
V (π) and limk→∞ μ∗k(π) → μ∗(π) uniformly in π. Choose V0(π) as an arbitrary TP2
decreasing function of π in (19). Consider (19) at any stage k. Assume Vk(π) is TP2
decreasing in π. Consider π ≥

TP2L

π̃. Denote optimal actions for π, π̃ as μ∗(π) and μ∗(π̃).

From [5, Theorem 4.2] under (A2) and (A3),
∑

Y ∈Y Vk (T (π, u, Y )) σ(π, u, Y ) is TP2
decreasing in π. From Part 1, under (A1), C(π, u) is TP2 decreasing on lines. Since the
sum of decreasing functions is decreasing, the result follows.

Proof of Part 3: To show that Q(π, u) is submodular, requires showing that Q(π, 1)−
Q(π, 2) is TP2 decreasing on lines. From Part 2 Vk(π) is TP2 decreasing over lines if
(A1), (A2), (A3) hold. So to prove Q(π, u) is submodular, we show C(π, 1)−C(π, 2)
is TP2 decreasing over lines. Similar to proof of Part 1, C(π, 1)−C(π, 2) is decreasing
over lines if (S) holds. Then, Result 1, implies μ∗(π) is TP2 increasing on lines.

Proof of Theorem 1: Part 3 in the above proof establishes the first claim of Theo-
rem 1. To prove the second claim, for each π̄ ∈ H construct the line segment L(eS , π̄)
connecting H to eS as in (18). Part 2 of Theorem 4 says that μ∗(π) is monotone for
π ∈ L(eS , π̄). There are two possibilities: (i) There is at least one reflexive information
state on line information L(eSL , π̄) apart from eSL . In this case, pick the reflexive state
with the smallest ε ∈ [0, 1] – call this state π. Then by Lemma 1, on the line segment
connecting (1 − ε)π + εeSL , all information states are TP2 orderable and reflexive.
Moving along this line segment towards eSL , pick the largest ε for which the μ(π) = 1.
The information state corresponding to this ε is the threshold information state – denote
it by Γ(π̄) = πε

∗,π̄ ∈ L(e1, π̄) where ε∗ = max{ε ∈ [0, 1] : μ∗(πε,π̄) = 1}. (ii) There
is no reflexive state on L(eSL , π̄) apart from eSL . In this case, define the threshold
information state arbitrarily. It is irrelevant since from Lemma 1, the trajectory of all in-
formation states is TP2 reflexive. The above construction implies that onL(eS , π̄), there
is a unique threshold point Γ(π̄). The entire simplex can be covered by considering all
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pairs of lines L(es, π̄), for π̄ ∈ H, i.e., Π = ∪π̄∈HL(es, π̄). Combining all points Γ(π̄)
for all pairs of lines L(es, π̄), π̄ ∈ H, yields the threshold curve Γ = ∪π̄∈HΓ(π̄).

Proof of Theorem 2: Given π1, π2 ∈ L(π̄) with π1 ≤
TP2L

π2, we need to prove the linear

threshold policy satisfies μθ(π1) ≤ μθ(π2) iff θ(SL) ≥ θ(i), i = 1, 2, . . . , L− 1. Also
π ≤

TP2L

π2 means that π1 = ε1eSL + (1− ε1)π̄, π2 = ε2eSL + (1 − ε2)π̄ and ε1 ≤ ε2.

Necessity: We show that if θ(SL) ≥ θ(l)(i) for i 
= SL, then μθ(π) is TP2 increasing
on lines L(π̄). Note that from (12), θa

′π2 − θa
′π1 = (ε2 − ε1)(θ(SL)− θ′π̄), is of the

same sign as (ε2− ε1) for all π̄ ∈ H. Therefore ε2 ≥ ε1 implies μθ(π2) > μθ(π1). That
is, π2 ≥

TP2L

π1 implies μθ(π2) ≥ μθ(π1). This implies μθ(π) is TP2 increasing on L(π̄).

Sufficiency: Suppose μθ(π) is TP2 increasing on lines. We need to prove θ(SL) ≥ θ(i).
From (12), for π1 ≤

TP2L

π2, since μθ(π) is TP2 increasing, it follows that μθ(π1) ≤
μθ(π2). This is equivalent to (ε2− ε1)(θ(SL)− θ′π̄) ≥ 0 for all π̄ ∈ H. Since ε2 ≥ ε2,
the expression is positive iff θ(SL) > θ′π̄ ∀π̄ ∈ H. This implies θ(SL) ≥ θ(i) for
i 
= SL.
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Abstract. This paper provides a new method for computing a risk cri-
terion for decision-making in systems modelled by an Evidential Markov
Chain (EMC), which is a generalization to the Dempster-Shafer’s Theory
of Evidence [1]: it is a Markov chain manipulating sets of states instead
of the states themselves. A cost is associated to each state. An evidential
risk measurement derived from the statistical ones will be proposed. The
vector of the costs of the states, the transition matrix of the Markov
model, and the gauge matrix describing the repartition of the sets will
be used to construct matrix calculations in order to provide an upper
and a lower bound of the estimated risk. The former is a Choquet inte-
gral following the belief function, and the latter is established from the
plausibility function.

1 Introduction

On applications such as crisis management, the decision-maker’s role is crucial.
Indeed, if he performs a good and early choice of what actions to do, taking
into account his limited available resources, he can avoid an important part
of human or financial losses. He can manage at two levels: the survey before
the crisis, when one must decide whether to intervene or not, and during the
ongoing crisis, when one must decide what to do. In both cases, the objective
is to provide him with an aid by computing an evaluation of the future risk
as decision criterion. The proposed approach focuses on a Markov modelling of
the system (the interacting phenomena), which is well suited in many situations
involving propagation (e.g. fire). Risk measurement requires also a model for the
cost of the system states, which leads us to aim at defining a simplified Markov
Decision Process (MDP) [2]. This is a sequential decision process consisting in
a collection of possible actions, with a Markov and a cost models depending on
each one. Solving entirely a MDP is finding a policy, i.e. which action to do for
each state of the system. In this paper we focuse on one single action (the fact
to wait) to plot the risk value as a function of future time.

Methods have been proposed in the literature for pure probabilistic Markov
models [3] [4] [5] [6].

But the main difficulty in applications such as early crisis management is
that the data are missing for a probabilistic model, due to the uncertainty about
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what may happen, the lack of observations at the very beginning of a crisis, and
their imprecision (e.g. text). This is why we shall consider a generalization of
the Markov chain called Evidential Markov Chain (EMC) [7], to the Dempster-
Shafer’s Theory of Evidence [1]. We shall use this generalization in order to
propose a new measure of risk.

There already exist works on generalized MDPs with imprecise parameters [8]
(a POMDP with a given model of parameter intervals) and [9] (some conclusions
about POMDP with Imprecise Probabilities). Harmanec [10] proposes also to
delimitate the utility function (which is a generalization of the risk criterion) by
two bounds, as in the proposed approach, which also includes a calculus from
a Choquet integral. But Harmanec’s objective [10] is different, since he aims at
provinding ideas for solving a whole MDP.

In the proposed approach the cost is modelled by a vector (and not a reward
matrix as in MDPs). This vector-based model for the cost allows to perform the
matrix computation that will be described in this paper.

2 Preliminary

2.1 Reminder about Belief Functions

One calls frame of discernment a set Ω of all possible mutually exclusive hy-
potheses; It can be discrete or continuous. A mass function, also called BBA
(Basic Belief Assignment) [1], is a normalized mapping m : 2Ω → [0, 1] (2Ω is
the set of all subsets of Ω). A subset A ⊆ Ω whose mass is nonzero is called
a focal set. In this paper, we suppose m(∅) = 0. The mass function becomes a
classical probability when the focal sets are singletons. F ⊆ 2Ω will denote the
set of all focal sets. A mass function allows to define the classical belief function
Bel and plausibility function Pl [11]. Several interpretations of Shafer’s model
of belief functions [1] have been proposed, like the upper and lower probability
[11]; let Pr be a probability with its associated σ-algebra on Ω. Pr is compati-
ble with the belief mass m if and only if for any subset S ⊆ Ω belonging to the
σ-algebra, one has Pr(S) ≥ Bel(S). (Thus Bel(S) is the lower probability). One
has the consequent relationship:

Bel(S) ≤ Pr(S) ≤ Pl(S) (1)

Thus a given mass allows a family of compatible probabilities. They are said
imprecise probabilities since they belong to an interval. A geometric model illus-
trates this in [12].

2.2 Choquet Integral

A capacity [13] [14] on Ω is a set function μ : 2Ω → [0, 1] satisfying μ(∅) = 0,
μ(Ω) = 1, and for subsets A and B of Ω, A ⊆ B ⇒ μ(A) ≤ μ(B). Note that a
belief function Bel is a capacity.
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Definition 1. Let μ be a capacity on Ω defined on a set of subsets F ⊆ 2Ω. Let
be a function f : Ω → R which is measurable w.r.t. μ, i.e. f−1(y) ∈ F for all
y ∈ R. Suppose that f(x) can take N possible values f1 < f2 < ... < fN . The
Choquet integral [13] fo f w.r.t. μ is defined by:

Cμ(f) =
N∑
n=1

fn (μ(An)− μ(An+1))

where An = {x : f(x) ≥ fn} and AN+1 = ∅.

2.3 Matrix Tools

We consider a BBA on a finite discrete frame Ω containing N elements. Nf is
the number of focal sets. One will define the mass vector M by its coordinates:
M(j) = m(Aj) = mj for all focal set Aj , 1 ≤ j ≤ Nf .

Matrix Representations for Belief Functions. It is known [14] that the
relation between a BBA m and the corresponding belief function Bel is a bijec-
tion. A mass function m can be deduced from a belief function Bel thanks to
the so-called Möbius transform:

m(A) =
∑
B⊆A

(−1)|A\B|Bel(B) (2)

The column vector Bel containing all the values of the belief function on the
nonempty subsets will also be of size 2N , and it can be calculated from the mass
vector M thanks to a matrix product: Bel = BfrM.M , and the Möbius trans-
form is then performed by the inverse matrix BfrM−1. BfrM is a generalization
matrix defined by BfrM (A,B) = 1 if B ⊆ A and 0 otherwise [15]. Similarly, the
plausibility function will be computed the gauge (pattern) matrix:

Definition 2. The gauge matrix of a collection of subets Ai is defined by:

Ga(i, j) =
{

1 if Ai ∩Aj 
= ∅
0 otherwise

The 2N -size column vector Pl of the plausibility function is then defined by:
Pl = GaM . Note that Ga can also be deduced from BfrM because of the
relationship Pl(A) = 1−Bel(A).

Markov Kernel Matrix. Let be X and Y two discrete random variables. A
Markov kernel is a matrix of the conditional probabilities p(i|k) of the occurrence
Y = yi given X = xk has occurred. (In Markov chains, the Markov kernel is the
state transition matrix).

Now, let be a frame Ω with a mass function m and let be F the set of ts
focal sets. Let be a finite partition H = {Xi / 1 ≤ i ≤ Nx} ⊆ 2Ω on Ω.
Each one of the Nx subsets Xi can be called a class. They may be for example
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the singletons of Ω. One would like to estimate which class contains the truth.
Classes and focal sets can be viewed as random sets X and S, taking values in
H and F respectively. Each focal set Ak can occur with a probability mk.

One assumes that there exists a Markov kernel K, transforming masses into
compatible probabilities. K is defined by K(i, k) = p(i|k) such that

pi =
Nf∑
k=1

p(i|k)mk (3)

where pi = Pr(Xi) is a compatible probability and mk = m(Ak) is a mass. This
can also be written with P , the vector of the probabilities of the classes:

P = K.M (4)

Note that K is zero where Ga is zero. As 0 ≤ p(i|k) ≤ 1 for all (i, k), one can
verify from the definitions of the belief and the plausibility functions that for
any compatible kernel K, the relation (1) is satisfied.

Matrix Representations for Classes. One can still define the gauge matrix
Ga of size Nx × Nf by Ga(i, j) = 1 if Xi ∩ Aj 
= ∅, and 0 otherwise, for all
classes Xi and for all focal sets Aj . Any Markov kernel K compatible with the
BBA is zero where Ga is zero. The lines of the transposed matrix GT

a can be
seen as base-2 representations of the focal sets. One can describe entirely a belief
mass by its gauge matrix Ga and its mass vector M . When the classes are not
singletons, the cardinality |A| of a focal set A is defined as the number of classes
it hits. This number is obtained by

(11...1) .Ga =

⎛⎜⎜⎜⎝
|A1|
|A2|

...
|ANf

|

⎞⎟⎟⎟⎠
The computation of the belief and the plausibility functions with matrix products
is still possible, as it was shown by Smets [15] and at paragraph 2.3, for the 2Nx

subsets of Ω that are unions of subsets Xi:

Bel = BfrM.M Pl = Ga.M

where BfrM was defined by Smets [15] (BfrM is a generalization matrix whose
non null elements are 1); Ga is the gauge matrix (2). They are all (2Nx×Nf)-sized
matrices.

3 Proposed Evidential Risk Measures

Risk analysis consists first in listing qualitatively the risks in all possible se-
quences of events, then determining the cost of each of these risks, and finally
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in measuring the associated corresponding level of risk, taking into account the
probability of occurrence of each risk. A review of probabilistic measures for the
level of risk can be found at [3] [6]. A generic expression will be reminded here.
Extensions to belief functions will be proposed in this section. Let Ω be the set
of all possible hypotheses, defined as the frame of discernment in the belief func-
tions approach. The classical probabilistic risk measures (average cost, variance,
worst case, partial momentum) can be written as the average of a function of
the cost f(c): R =< f(c) >.

Evidential Approach. The generalization of the calculus of averaging, which
is performed through an integration in the probabilistic case, will be achieved
with a Choquet integral [16]. The cost is no more a random variable but an
uncertain number C whose probability (for each value of cost) is bounded by
Bel and Pl (1), these bounds will be used in the calculation, to define an interval
of risk, thus two values R0 and R1 to propose to the decision-maker:

R0 ≤ R ≤ R1

The details of the calculus of R0 and R1 will be described in this section. Then
we shall verify that these values are bounds for the probabilistic expected cost
risk.

Lower Choquet Risk Based on the Belief Function. As said at paragraph
2.2, a belief function allows to compute a Choquet integral. Let’s define the
cumulative cost belief: μ(An) = Bel(C > cn). An example is shown at figure 2
for the BBA shown at figure 1.

Fig. 1. A basic belief assignment for Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Here the clases are
the singletons of Ω. The focal sets are represented with a colour corresponding to their
mass.
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Fig. 2. Cumulative belief corresponding to the BBA of figure 1 for the calculus of the
Choquet integral

Thus, one can extend the calculus of the probabilistic risk to the belief function
by the Choquet integral providing the Choquet risk :

R0 = CBel(f(C))) =
∑
n

f(cn) (Bel(C > cn)−Bel(C > cn+1)) (5)

where f(c) is the cost function. It is the quantity which is averaged in the prob-
abilistic risk computation.

Upper Bound Based on the Plausibility Function. The plausibility of the
classes allows to calculate an upper bound for the risk. We propose to integrate
the plausibility function (as a upper bound of the probability) in a Riemann way
on all the sets defined by the value of their cost. One will obtain the following
expression for the upper bound R1 of the risk:

R1 =
∑
n

f(cn)Pl(C = cn)

If f(c) ≥ 0 is a non-decreasing function, for any probability distribution com-
patible with a given mass function, the lower Choquet risk is less than the prob-
abilistic risk. This is the consequence of Schmeidler’s theorem upon expected
utility [17]. On the other hand, the upper plausibility risk is greater than the
probabilistic risk, since Pr(cn) = Pr(C = cn) ≤ Pl(C = cn) for all n.

4 Use in an Evidential Markov Chain

An Evidential Markov Chain (EMC) [18] [7] [19] is a Markov chain involving sub-
sets of Ω instead of its elements themselves. A generalization of Hidden Markov
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Models (HMMs) to EMCs has even been proposed by Ramasso [20] [21] and
applied to human motion in video sequences. The states of the system are the
classes. At time t, the state transition matrix Q operates on the vector Mt of the
masses of the focal sets, instead of the vector of probabilities of classical Markov
chains:

Mt = QMt−1

The focal sets do not change in this model. The gauge matrix Ga is thus fixed.
Note that the (Nf ×Nf )-sized matrix Q must not be confused with the Markov
kernels K which relates the masses to compatible probabilities (4).

The objective is to perform the evidential computation of the risk in such a
model. For that purpose one considers the costs of the classes; their values are
sorted in a vector C in a strictly increasing order. The size of C is thus Nc ≤ Nx.

4.1 Choquet Risk Calculus

The Choquet risk (5) is computable with matrix computation in EMCs. One
must first compute a matrix DCh which provides the decreasing distribution
function of the cost F as a function of the mass vector M . DCh depends only
on the gauge Ga. It has Nc lines and Nf columns and is calculated as follows:

DCh(i, j) =
{

1 if Aj ⊆ B(ci)
0 otherwise

where Aj is a focal set. The cost decreasing distribution is then obtained by:

F = DCh.M

Then from DCh one computes the matrix MCh which performs the Choquet
integration. It has the same dimensions as DCh and is obtained by:

∀j, MCh(1, j) = 1−DCh(1, j)

and
∀i > 1, ∀j MCh(i, j) = DCh(i− 1, j)−DCh(i, j)

The Choquet risk calculus is then performed through the matrix product: R0 =
f(C)TMCh.M where f(C) is the vector of coordinates |C − cm|α whose coordi-
nates outside [c0, c1] are assigned to zero. This is the function to be averaged to
obtain the probabilistic risk.

4.2 Plausibility Risk Calculus

This time, the computation matrix for the plausibility of each cost will be named
MPl; it is also calculated from the gauge Ga. For a given cost value c = ci, the
plausibility will involve all the focal sets hitting the set

D(ci) = {x ∈ Ω/c(x) = ci}
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In consequence, the computation matrix is:

MPl(i, j) =
{

1 if Aj ∩D(ci) 
= ∅
0 otherwise

The upper bound of the risk R1 is obtained by: R1 = f(C)TMPlM .

4.3 Mid-Term and Long-Term Risk

For an initial mass vector M0, we have at time t:

R0(t) = f(C)TMChQ
tM0 R1(t) = f(C)TMPlQ

tM0

These expressions are the estimate of the future risk when the mass allocation
is known at the present time t = 0.

5 Application Example

An earthquake has just started, or a hurricane has just arrived, in a region
covering several towns. We are in the very first moments of the crisis. Local
rescue teams (brigades...) have already started to intervene. It is crucial that the
decision-makers take arrangements very rapidly. To help them to decide when
and where to send rescuers, the EMC-based tool will propose them an interval
of risk evaluation expressed as a number of possible new casualties by time unit
as a forecast for the next hours of the crisis.

In the numerical example proposed here, we focus on 8 values for the cost: 0,
10, 20, 50, 100, 200, 500, and 10000 new casualties per time unit. These values
define 8 classes. The considered focal sets are described in the table 5.

In this example, the gauge matrix Ga, which is also illustrated at figure 3,
and the vector of the costs C are:

Ga =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 1 0
0 1 0 0 1 1
0 1 0 0 0 1
0 1 1 1 0 1
0 0 1 1 0 1
0 0 1 1 0 0
0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
10
20
50
100
200
500
1000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and one chooses the following transition matrix for this EMC:

Q =

⎛⎜⎜⎜⎜⎜⎜⎝
0.9 0 0 0 0.5 0
0.06 0.06 0.06 0.06 0.06 0.06
0.04 0.04 0.04 0.04 0.04 0.04
0 0.3 0.4 0.4 0 0
0 0.5 0.1 0.1 0.3 0.1
0 0.1 0.4 0.2 0.1 0.8

⎞⎟⎟⎟⎟⎟⎟⎠
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Table 1. Focal sets in the crisis management example at the beginning of an earthquake

No. Focal set description Covered classes
1 nothing happens 0 casualties

(ex : false alarm)
2 new incident 10 to 100 casualties

(ex : building collpases...)
3 new incident, more serious 100 to 1000 casualties
4 consequence (ex : wall falls 100 to 500 casualties

on evacuating people)
5 efficient local intervention 10 to 20 casualties
6 need for more intervention 20 to 200 casualties

Fig. 3. Result on the earthquake example

This transition matrix expresses that a minor incident is likely to occur at
any moment; it is the same with a greater incident, but less probably; the over-
accident probability appears in the transition from A2 to A4 and A3 to A4.
When the incident is serious, there is a greater probability that the local rescuer
resources will not be enough.

At present, the date is t = 0, and some information about what is going on
or has just occurred are available (from phone calls, for example). They allow to
establish belief masses for the focal sets. For example, if we know that something
has just occurred and we think that it is rather serious; we have some belief in
the hypothesis that the local rescuers will be able to cope with the problem. The
corresponding initial mass vector M0 is then:

M0 =

⎛⎜⎜⎜⎜⎜⎜⎝
0.3
0.6
0
0

0.1
0

⎞⎟⎟⎟⎟⎟⎟⎠
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With those data, the computation of the risk bounds (Choquet risk as lower
bound, and plausibility risk as upper bound), has been performed. We used the
function f(c) = c, so this is the expected cost risk. We obtained the results
illustrated at figure 4.

Fig. 4. Result on the earthquake example

These curves show that the forecasted risk jumps at relatively short term, and
afterwards it decreases. This is not surprising, because the initial state indicates
that an incident has likely occurred, which may provoke consequent incidents
within the next moments.

6 Conclusion

Until now, Evidential Markov chains (EMCs) had been proposed only in a very
different context (airborne image segmentation for remote sensing [18] [7]). But
in fact EMC models have potentially interesting applications in the field of un-
certain systems, particularly those involving human behaviors or imprecise data
such as text. An example was given in crisis management of a earthquake or a
hurricane. Validated by numerical results, this approach has the advantage to
address an operational need: to provide a fast decision support tool for the very
beginning of a large-scale crisis, in spite of uncertainty in the knowledge about
the ongoing situation. The proposed algorithm may be extended to other models
such as hidden Markov models (HMMs); it can also be used in an algorithm for
planning or for proposing alternatives to the decision-maker, particularly in a
generalization of the Markov Decision Processes (MDPs) [2], to belief functions.
The EMCs themselves may also be useful to perform simulations (e.g. events
due to the tenseness between two conflicting countries).
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2 Università dell’Insubria, Dipartimento di Informazione e Comunicazione

via Mazzini 5, I-21100 Varese, Italy
brunella.gerla@uninsubria.it

3 Università degli Studi di Milano, Dipartimento di Informazione e Comunicazione
via Comelico 39–41, I-20135 Milano, Italy

marra@dico.unimi.it

Abstract. Associated with any [0, 1]-valued propositional logic with a
complete algebraic semantics, one can consider algebras of families of
fuzzy sets over a classical universe, endowed with the appropriate op-
erations. For the three most important schematic extensions of Hájek’s
Basic (Fuzzy) Logic, we investigate the existence and the structure of
such algebras of fuzzy sets in the corresponding algebraic varieties. In
the general case of Basic Logic itself, and in sharp contrast to the three
aforementioned extensions, we show that there actually exist different,
incomparable notions of algebras of fuzzy sets.

1 Introduction

By a fuzzy set we shall mean, as usual, a function f :X → [0, 1] from a set
X to the real unit interval [0, 1]. We write [0, 1]X to denote the family of all
fuzzy sets over X . Already in his first paper on fuzzy sets, Zadeh introduced an
algebraic structure on [0, 1]X by considering operations between fuzzy sets that
generalise classical union, intersection, and complement [23, § II]. Specifically,
given f, g:X → [0, 1], Zadeh defined union as (f ∨ g)(x) = max {f(x), g(x)},
intersection as (f ∧ g)(x) = min {f(x), g(x)}, and complement as (¬f)(x) =
1 − f(x), where x ∈ X . In passing, he remarked on the connection between
the nascent theory of fuzzy sets, and many-valued logic [23, Footnote 3, and
Comment on pp. 341–342]. Later, several other possible families of fundamental
operations on fuzzy sets have been considered. Each such family induces a notion
of algebra of fuzzy sets. Specifically, any subset of [0, 1]X that is closed under
the chosen operations is such an algebra. Algebras of fuzzy sets are also known
as bold algebras [4], and are related to clans of fuzzy sets, see e.g. [6, Ch. I] and
[20, 12.4].

A triangular norm (t-norm, for short) is an operation T : [0, 1]× [0, 1] → [0, 1]
that is associative, commutative, has 1 as identity element, and is monotone,

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 875–886, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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meaning that T (x, y) ≤ T (x′, y′) whenever x ≤ x′ and y ≤ y′, for any x, y, x′, y′ ∈
[0, 1]. For background, we refer to [20]. Now, t-norms that are left-continuous
can be used as the [0, 1]-valued semantics of conjunction in certain many-valued
logics. This is because each such t-norm T has an associated residuum R defined
by the condition

R(x, y) = max {z | T (z, x) ≤ y} .

The residuum R provides the [0, 1]-valued semantics for an implication con-
nective associated with a conjunction whose semantics is given by T . If ab-
solute falsity is interpreted as 0, negation can then be interpreted as R(x, 0),
for each x ∈ [0, 1]. This leads to a framework of monoidal t-norm-based logics,
first introduced in [11]. Throughout, we shall focus on the important special
case of t-norms that are continuous functions; hence, for the rest of this paper,
‘t-norm’ means ‘continuous t-norm’. In this paper we assume familiarity with
Hájek’s treatment [16] of Basic Logic (BL, for short) — the logic all t-norms
and their residua —, and with its most important schematic extensions, namely,
�Lukasiewicz, Gödel, and Product logic.

In this paper we address a problem that can be informally stated as follows.

Does each one of �Lukasiewicz, Gödel, Product, and Basic logic admit a
well-defined notion of algebra of fuzzy sets?

In order to make this question precise, it is convenient to work in an algebraic
setting. We recall that there is a variety BL of algebras, called BL-algebras,
corresponding to BL. This variety provides the (complete) algebraic semantics
for Hájek’s Basic Logic, and each BL-algebra arises as the Tarski-Lindenbaum
algebra of a theory in BL, provided the language is sufficiently large. Schematic
extensions of BL are in one-one correspondence with subvarieties of BL. The al-
gebras thus associated with Product and Gödel logic are just called Product and
Gödel algebras, respectively. Those associated with �Lukasiewicz logic are known
as MV-algebras1 [8]. The corresponding varieties are denoted P, G, and MV, re-
spectively. Let S be a subvariety of BL associated with the schematic extension E
of BL. If a t-norm T and its residuum R satisfy the additional equations satisfied
by S, equivalently, if they satisfy the corresponding additional axiom schemata
for E , then the structure S = 〈[0, 1], T, R, 0〉 is an algebra of S, called a standard
algebra (for S or E ). If E is complete with respect to [0, 1]-valued assignments
to atomic formulæ extended to non-atomic formulæ through the use of a fixed
t-norm T and its residuum, then E is said to satisfy standard completeness with
respect to the t-norm T . In algebraic language, this is equivalent to saying that
the variety S is generated2 by S or, equivalently, that S is generic for S. (In gen-
eral E satisfies standard completeness if the corresponding variety S is generated
1 Traditionally, MV-algebras are presented on a different signature, see [8, 1.1.1]. Here,

we regard them as a subvariety of BL-algebras, and thus adopt the corresponding
signature.

2 Recall that this means that any equation in the language of S that fails for some
evaluation into some algebra in S, must already fail for some evaluation into the
algebra S.
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by a class of standard algebras.) Any generic standard algebra S can be used to
define a notion of algebras of fuzzy sets (for S or E ). For, we note first that S
induces a structure of S-algebra on the family of functions [0, 1]X , for any set X ,
by defining operations pointwise. Then, we shall say that an S-algebra A is an
S-algebra of fuzzy sets if and only if A is isomorphic to a subalgebra of [0, 1]X .
However, this notion leaves much to be desired when S is not generated by S.
Indeed, in this case a standard argument shows that there exists a formula ϕ in
the logic E that is not provable, and yet no countermodel for ϕ can be produced
in any S-algebra of fuzzy sets. Here, the connection between S-algebras of fuzzy
sets and the underlying logic is too tenuous to be defensible. We therefore always
ask that S be generated by S. Under this assumption, let us write F (S, S) for
the class of all S-algebras of fuzzy sets in S. Now the mathematical counter-
part of the question above is tackled by looking at how F (S, S) depends on S.
Specifically, given another standard algebra S′ = 〈[0, 1], T ′, R′, 0〉 that generates
S, let us write

F (S, S) # F (S, S′)

if each algebra in F (S, S) is isomorphic to some algebra in F (S, S′), and

F (S, S) ≡ F (S, S′) (1)

when the converse also holds. The latter is then a happy situation, for the logic E
induces an essentially unique notion of algebras of fuzzy sets, and the dependence
of the notion of fuzzy sets on the choice of S becomes immaterial. In particular,
(1) certainly holds when S has, up to isomorphism, just one standard generic
algebra. This is known to be the case for MV, P, and G — see below for details
and references. In these cases, then, the question arises whether one can charac-
terize those algebras that are isomorphic to some algebra of fuzzy sets. Again,
in some cases the answer is available via the literature, as explained below. Our
contribution here is Theorem 1, where we characterize product algebras of fuzzy
sets. Zadeh’s fuzzy logic — a case not encompassed by Hájek’s framework — has
the interesting feature that all its algebras are algebras of fuzzy sets; see §4.2.

The last part of our paper deals with BL-logic itself. Our second main result,
Theorem 2, shows that in this case there indeed are incomparable notions of
algebras of fuzzy sets. More generally, as an anonymous referee pointed out to us,
from the results in [13] an algorithm can be extracted that settles the question
whether a given subvariety of BL generated by a single standard algebra has
the property that all its generating standard algebras are isomorphic. Such an
algorithm semi-decides whether (1) holds. A further concluding discussion is in
the final §6.

2 �Lukasiewicz Logic

Let x� y = max {x + y − 1, 0} denote the �Lukasiewicz t-norm, and let x →�L y
be its associated residuum, that is, x →�L y = 1 if x ≤ y, x →�L y = 1 − x + y,
otherwise.
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2.1 Standard Generic MV-Algebras

Up to isomorphism, the algebra [0, 1]�L = 〈[0, 1],�,→�L, 0〉 is the only standard
MV-algebra: see [16, 2.1.22–23]. It is also generic for MV, by Chang’s Com-
pleteness Theorem [8, 2.5.3]. Therefore, there is a unique notion of �Lukasiewicz
algebras of fuzzy sets.

2.2 �Lukasiewicz Algebras of Fuzzy Sets

In accordance with general universal algebra, an MV-algebra is called simple if
it has no non-trivial congruences. Up to an isomorphism, simple MV-algebras
are the subalgebras of [0, 1]�L [8, 3.5.1]. An MV-algebra is semisimple if the
intersection of all its maximal ideals is the singleton ideal. Using the correspon-
dence between congruences and ideals, this is the same thing as saying that the
MV-algebra is a subdirect product of simple MV-algebras. (Semisimplicity is also
equivalent to the absence of “infinitesimal elements”; for a precise statement and
proof, see [8, 3.6.3–4].) From this, and the above-mentioned characterization of
simple MV-algebras, it follows at once [8, 3.6.1] that an MV-algebra embeds into
[0, 1]X�L , for some set X, if and only if it is semisimple. This result is essentially
due to Chang [7, 4.9]; see also also [4, Theorem 4].

3 Product Logic

Let x·y = xy denote the usual multiplication of real numbers, and let x →Π y be
its associated residuum, that is, x →Π y = 1 if x ≤ y, x →Π y = y/x, otherwise.

3.1 Standard Generic Product Algebras

Up to isomorphism, the algebra [0, 1]Π = 〈[0, 1], ·,→Π , 0〉 is the only standard
product algebra: see [16, 2.1.22]. It is also generic for P, by [16, 4.1.13]. Therefore,
as for �Lukasiewicz logic, there is a unique notion of product algebras of fuzzy
sets. We now turn to the problem of characterizing them.

3.2 Product Algebras of Fuzzy Sets

Our analysis of product algebras of fuzzy sets requires some background on
hoops. We recall that a hoop is an algebra 〈H, ∗,⇒,�〉 such that 〈H, ∗,�〉 is a
commutative monoid, and for all x, y, z ∈ H ,

1. x ⇒ x = �,
2. x ∗ (x ⇒ y) = y ∗ (y ⇒ x),
3. x ⇒ (y ⇒ z) = (x ∗ y) ⇒ z.

Derived operations are x ∧ y = x ∗ (x ⇒ y) and x ∨ y = ((x ⇒ y) ⇒ y) ∧ ((y ⇒
x) ⇒ x). These make H into a lattice, and we shall feel free to use the associated
lattice order ≤ on H . A bounded hoop is an algebra 〈H, ∗,⇒,⊥,�〉 such that
〈H, ∗,⇒,�〉 is a hoop, and ⊥ ≤ x for all x ∈ H .
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A basic hoop is a hoop satisfying (x ⇒ y) ∨ (y ⇒ x) = �. A Wajsberg hoop is
a basic hoop satisfying (x ⇒ y) ⇒ y = (y ⇒ x) ⇒ x. A product hoop is a basic
hoop satisfying (y ⇒ z) ∨ ((y ⇒ (x ∗ y)) ⇒ x) = �. A basic hoop is cancellative
if it satisfies x ⇒ (x ∗ y) = y. For more details on hoops, we refer the reader
to [1].

BL-algebras are the same thing as bounded basic hoops, and basic hoops are
the hoop subreducts of BL-algebras. Similarly, the classes of MV-algebras and
product algebras respectively coincide with the class of bounded Wajsberg hoops
and bounded product hoops; Wajsberg hoops and product hoops are respectively
the hoop-subreducts of MV-algebras and product algebras.

Note that each cancellative hoop is a Wajsberg hoop. In general a product
hoop is not cancellative. However, totally ordered product hoops are cancellative
by [9, Cor. 2.6].

If H is a hoop, a subset F ⊆ H is a filter of H if and only if it is closed under
∗ (x, y ∈ F implies x ∗ y ∈ F ) and is an upper set (x ∈ F and x ≤ y ∈ H imply
y ∈ F ). Filters of a BL-algebra B are defined as the filters of its hoop reduct.

The hoop subreduct of the standard product algebra 〈(0, 1]Π , ·,→, 1〉 is a
cancellative hoop, commonly called the standard cancellative hoop.

We shall also need to use lattice-groups as tools. We refer the reader to [15] for
all the additional background needed. Let 〈G,+,−, 0,≤〉 be an abelian lattice-
ordered group — for short, just an '-group. That is, 〈G,+,−, 0〉 is an abelian
group with identity 0 and unary inverse operation −, 〈G,≤〉 is a lattice order,
and x ≤ y implies x+ z ≤ y + z for all x, y, z ∈ G. The negative cone of such an
'-group is

G− = {x ∈ G | x ≤ 0} .

Now, G− is made into a hoop by endowing it with the operation

x� y = (y − x) ∧ 0 .

Lemma 1. Each cancellative hoop 〈H, ·,→, 1〉 is isomorphic (as a hoop) to the
hoop 〈G−,+,�, 0〉 obtained from the negative cone of an '-group 〈G,+,−, 0,≤〉.
Further, the latter '-group is unique, to within an isomorphism of '-groups.

Proof. This is proved in [3]. See also [10, Thm. 2], [9, Thm. 2.5]. %&
The '-group G ≡ 〈G,+,−, 0,≤〉 is archimedean if for all 0 < x, y ∈ G there
exists a positive integer n such that nx 
< y. If G is totally ordered then the
above condition reduces to the following.

For all 0 < x, y ∈ G there exists 0 < n ∈ Z such that nx ≥ y . (2)

Following usual algebraic terminology, a hoop H ≡ 〈H, ·,→, 1〉 is called simple
if the set of its filters is {{1}, H}. Notice that if H is simple then it is totally
ordered. This is proved by a standard argument.

Lemma 2. Let H ≡ 〈H, ·,→, 1〉 be a totally ordered hoop and let G− ≡ 〈G−,
+,�, 0〉 be the negative cone of the '-group G ≡ 〈G,+,−, 0,≤〉 such that H ∼=
G−, as in Lemma 1. Then H is a simple hoop if and only if the group G is
archimedean.
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Proof. By (2), it suffices to show that H is simple if and only if for all x, y < 1
there exists a positive integer n such that xn ≤ y. If H is simple then for each
x ∈ H , with x < 1, the filter 〈x〉 generated by x coincides with the whole of H .
Since 〈x〉 = {y | xn ≤ y for some 0 < n ∈ Z}, it follows that for all x, y < 1
there exists a positive integer n such that xn ≤ y. For the converse implication,
assume H is not simple, and let F be a proper non-trivial filter of H and y an
element of H \F . Note that y < 1. Then for all x ∈ F and for all positive integers
n we have xn > y, otherwise y ∈ F , a contradiction. %&

In [9] it is observed that the only simple product algebra is the two-element
chain. Simplicity is thus a very strong notion for product algebras. Our analysis
hinges upon a weaker notion of simplicity that will turn out to be more useful.

A product algebra A ≡ 〈A, ·,→, 0〉 is hoop-simple if its hoop-subreduct H(A)
= 〈A \ {0}, ·,→, 1〉 is a simple hoop. Here, if A is totally ordered, by Lemma 2
it follows that A is hoop-simple if and only if H(A) is isomorphic to the hoop
obtained from the negative cone of an archimedean '-group. Furthermore, H(A)
is cancellative. By direct inspection, the standard product algebra [0, 1]Π is hoop-
simple.

A product algebra is hoop-semisimple if it is isomorphic to a subdirect product
of a family of hoop-simple product algebras. For example, the free n-generated
product algebra is hoop-semisimple, for each integer n ≥ 0.

In the next proof we shall use a classical result, Hölder’s Theorem: A totally
ordered group is archimedean if and only if it is isomorphic (as an ordered group)
to a subgroup of the additive group of reals R. For a proof, see [15, 4.A].

Lemma 3. A product algebra A ≡ 〈A, ·,→, 0〉 is hoop-simple if and only if it is
isomorphic to a subalgebra of the standard product algebra [0, 1]Π.

Proof. First assume A is a subalgebra of [0, 1]Π . Pick 0 < x, y < 1 ∈ A. By
the elementary properties of real multiplication there exists a positive integer n
such that xn ≤ y. Then xn ∈ A, because A is a subalgebra. This means that the
only filters of the cancellative hoop A \ {0} are {1} and A \ {0}, that is, A is
hoop-simple.

Conversely, assume now A is hoop-simple. Then A is of the form {⊥} ∪ G−,
where, by Lemma 2, G− is the negative cone of an archimedean '-group G. Note
that G is necessarily totally ordered. By Hölder’s Theorem, G embeds into the
additive group of reals R. Say ϕ:G → R is this embedding. Next observe that
there is an isomorphism of product algebras ψ: {−∞} ∪ R− → [0, 1]Π , where
−∞ is a new element such that −∞ < x for all x ∈ R−, and the operations
are extended in the obvious manner. To wit, the isomorphism ψ: {−∞}∪R− →
[0, 1]Π is given by the map ψ(x) = ex for all x ∈ R−, and ψ(−∞) = 0. Then the
restriction of ψ ◦ ϕ to G− is a hoop embedding of G− into the hoop subreduct
(0, 1] of [0, 1]Π . This proves that A is a product subalgebra of [0, 1]Π . %&

We are now ready to characterize product algebras of fuzzy sets.

Theorem 1. A product algebra is isomorphic to a subalgebra of [0, 1]XΠ for some
set X if and only if it is hoop-semisimple.
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Proof. By Lemma 3, if such an algebra A is hoop-semisimple, then it embeds
into a direct product of subalgebras of [0, 1]Π , say

A ↪→
∏
x∈X

Ax ↪→
∏
x∈X

[0, 1]Π ,

where each Ax is isomorphic to a subalgebra of [0, 1]Π . We conclude A ∼= B for
some B ⊆ [0, 1]XΠ . The converse is obvious. %&

Just like MV-algebras are not all semisimple, so there are product-algebras that
are not hoop-semisimple — Theorem 1 is not void. As an example, consider the
ordered set Z = {⊥} ∪ (Z

→
× Z)−, where Z is the additive ordered group of

integers,
→
× denotes the lexicographic product (please see [15, 1.3.25] for details),

and ⊥ < (h, k) for all (h, k) ∈ (Z
→
× Z)−. It is easy to see that Z can be

endowed with the structure of a totally ordered product algebra, and (Z
→
× Z)−

is a cancellative hoop. By construction, the '-group (Z
→
× Z) is not archimedean,

and hence Z is not hoop-simple. The ordered set of filters of Z contains a minimal
proper element, namely {(0, h) | h ∈ Z−}. Hence, Z is subdirectly irreducible.
We conclude that Z is not hoop-semisimple, and thus, by Theorem 1, cannot be
represented as a product algebra of fuzzy sets.

4 Gödel and Zadeh-Kleene Logics

4.1 Gödel Logic

We next consider Gödel logic, the logic of the minimum t-norm and its residuum
x →G y = 1 if x ≤ y, x →G y = y otherwise. Its algebraic semantics is
the subvariety G of those BL-algebras that have an idempotent monoidal op-
eration, called Gödel algebras. We write [0, 1]G for the standard Gödel algebra
〈[0, 1],min,→G, 0〉.

As is well known, Gödel logic coincides with the extension of the intuitionistic
propositional calculus by the prelinearity axiom scheme (ϕ → ψ)∨ (ψ → ϕ); see
[16, 4.2.8]. Thus, Gödel algebras are the same thing as the subvariety of Heyting
algebras satisfying prelinearity. Background on Heyting algebras can be found
e.g. in [18].

Standard Generic Gödel Algebras. Observe that the isomorphism type of
a Gödel algebra G is entirely determined by its bounded lattice reduct. Indeed,
regarding G as a BL-algebra, the monoidal operation coincides with the lattice
meet operation, and the implication is uniquely determined by the lattice struc-
ture via residuation. It follows immediately that the only standard Gödel algebra
is [0, 1]G, to within an isomorphism. Moreover, [0, 1]G is generic for G by [16,
4.2.17].
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Gödel Algebras of Fuzzy Sets. Some Gödel algebras are not algebras of fuzzy
sets. To explain this, let us recall a well-known fact. If H is any Heyting algebra,
and t 
∈ H , then one constructs another Heyting algebra H ∪ {t} with t > h
for all h ∈ H , and having the same order as H otherwise. Since, by a standard
universal-algebraic theorem [5, 8.4], an algebra is subdirectly irreducible if and
only if its lattice of congruences has a unique atom, one verifies that H ∪ {t}
is subdirectly irreducible. Further, it is easy to check that H ∪ {t} is a linearly
ordered Gödel algebra if H is. Now consider a linearly ordered Gödel algebra C
of cardinality > 2ℵ0 (there obviously exist Gödel chains of any cardinality), then
the Gödel algebra C ∪ {t} is not an algebra of fuzzy sets. The argument needed
to prove this assertion is analogous — mutatis mutandis — to the one we shall
give below in the proof of Theorem 2; due to space constraints, we omit details.

Quite unlike the case of MV and P, it is doubtful that Gödel algebras of fuzzy
sets enjoy significant structural properties. It is clear that a Gödel algebra is
isomorphic to a subalgebra of [0, 1]XG for some set X if and only if it is a subdirect
product of Gödel chains, each of which embeds into [0, 1]G. However, the latter
chains do not appear to admit a non-trivial characterization. Indeed, the problem
reduces to characterizing the suborders of (0, 1) (equivalently, of R). It is known
that there are at least continuosly many non-isomorphic such suborders [22,
2.25], but to the best of our knowledge no complete characterization is available.

4.2 Zadeh-Kleene Logic

By this we mean the equational logic of Kleene algebras. The latter are algebras
〈A,∧,∨,¬,⊥,�〉 such that 〈A,∧,∨,⊥,�〉 is a bounded distributive lattice, ¬ is
an involution satisfying De Morgan’s laws, i.e. ¬¬x = x and ¬(x∧y) = ¬x∨¬y,
and, moreover, x ∧ ¬x ≤ y ∨ ¬y. Let us stress that the logic of Kleene algebras
is not an extension of BL. As a matter of fact, the involutive negation ¬ is
not definable as the pseudo-complement with respect to ⊥ of the residuum of
∧. In the literature, when an implication operator is added to the signature of
Kleene algebras, is not the residual one, usually. Logics comprising both residual
implication of the t-norm and involutive negation have been studied in [12,14].

Standard Generic Kleene Algebras. Kalman proved3 [19, Theorem 2] that
the only non-trivial subdirectly irreducible Kleene algebras are the two-element
Boolean algebra, and the three-element chain K = {�,m,⊥} (where m satisfies
¬¬m = m). Since the former is a Kleene subalgebra of the latter, it follows that
the variety K of Kleene algebras is generated by K. Now consider the standard
Kleene algebra [0, 1]K = 〈[0, 1],min,max,¬, 0, 1〉, where ¬x = 1 − x. Since K
embeds into [0, 1]K via the map m �→ 1/2, it follows that [0, 1]K is generic for
K. Any other standard Kleene algebra is isomorphic to [0, 1]K (see [21]). In
summary, in the variety K there is, up to an isomorphism, just one standard
generic algebra, namely [0, 1]K .
3 Kalman called Kleene algebras normal i-lattices, and did not assume that they are

bounded.
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Kleene Algebras of Fuzzy Sets. As mentioned in the Introduction, every
Kleene algebra A is an algebra of fuzzy sets. This follows at once from Kalman’s
[19, Theorem 2]. The latter says that A is a subdirect power of K over some
index set X . Thus, we have an embedding A ↪→ KX . But since K ↪→ [0, 1]K ,
we also have an embedding KX ↪→ [0, 1]XK . By composition, we get the desired
representation of A as an algebra of fuzzy sets.

5 Hájek’s Basic Logic

5.1 Standard Generic BL-Algebras

Let 〈I,≤〉 be a linearly ordered set and for any i ∈ I let Ai be a hoop with top
element 1 such that Ai ∩ Aj = {1} for i 
= j. The ordinal sum of the family
{Ai}i∈I is the structure

⊕
i∈I

Ai =

(⋃
i∈I

Ai, ·,→, 1

)
where

x · y =

⎧⎨⎩x ·Ai y if x, y ∈ Ai

y if there exists j < i, x ∈ Ai, 1 
= y ∈ Aj

x otherwise,

and

x → y =

⎧⎨⎩
x →Ai y if x, y ∈ Ai

y if there exists j < i, x ∈ Ai, y ∈ Aj

1 otherwise.

The ordinal sum of I copies of the same hoop A will be denoted by IA. Thus,
for instance, the standard Gödel algebra [0, 1]G is (isomorphic to) the ordinal
sum [0, 1]{0, 1}.

Up to isomorphism, for every integer n ≥ 1 there exists a unique linearly
ordered Wajsberg hoop with n + 1 elements that we shall denote by �Ln.

Lemma 4. An ordinal sum
⊕

i∈I Ai, where each Ai is a linearly ordered Wa-
jsberg hoop, i0 is the minimum element of I, and Ai0 is bounded, is generic for
the variety of BL-algebras if and only if

– for every n ≥ 1, �Ln embeds into Ai0 , and
– for every n ≥ 1, the set {i ∈ I | �Ln embeds into Ai} is infinite.

Proof. This is proved in [17] (see also [2]). %&

We shall presently use Lemma 4 to deduce our main lemma to Theorem 2. To
this end, we need a few preliminaries. We denote by ω the set of natural numbers
equipped with the usual order. If (P,≤P ) and (Q,≤Q) are posets, we denote by
P +Q the poset obtained by taking the disjoint union of P and Q with the order
given by x ≤ y if either x ≤P y, or x ≤Q y, or x ∈ P and y ∈ Q. By 1 we
denote an arbitrarily fixed poset with one element. By P ∂ we denote the set P
equipped with the order ≤′ such that p ≤′ q if and only if q ≤ p.
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Lemma 5. The BL-algebras ω[0, 1]�L, (ω + 1)[0, 1]�L, and (1 + ω∂)[0, 1]�L are
standard and generic for the variety of BL-algebras. Moreover, the latter two are
subdirectly irreducible, while the first one is not.

Proof. By Lemma 4, to establish the first statement we only have to prove that
the lattice reduct of each of the above algebras is order isomorphic to [0, 1].

1. Let f1 be the function that, for every n ∈ ω, linearly maps the n-th copy of
[0, 1]�L in the ordinal sum

⊕
n∈ω[0, 1]�L into the subinterval [n/(n + 1), (n +

1)/(n+2)] of [0, 1]. The function f1 is an order isomorphism between ω[0, 1]�L
and [0, 1].

2. Let f2 be the function that, for every n ∈ ω, linearly maps the n-th copy
of [0, 1]�L in the ordinal sum

⊕
x∈ω+1[0, 1]�L into the subinterval [n/(2(n +

1)), (n + 1)/(2(n + 2))] of [0, 1] and the last copy of [0, 1]�L to [1/2, 1]. Then
f2 is an order isomorphism between (ω + 1)[0, 1]�L and [0, 1].

3. Let f3 be the function that linearly maps the first copy of [0, 1]�L in the ordinal
sum

⊕
x∈1+ω∂ [0, 1]�L to [0, 1/2] and for every n ∈ ω, linearly maps the n-th

copy of [0, 1]�L into the subinterval [1/2+ 1/(2(n+ 2)), 1/2+1/(2(n+1))] of
[0, 1]. Then f3 is an order isomorphism between (1 + ω∂)[0, 1]�L and [0, 1].

As to the second statement, by a general theorem in universal algebra [5, 8.4],
an algebra is subdirectly irreducible if and only if its lattice of congruences has a
unique atom. Direct inspection shows that both (ω+1)[0, 1]�L and (1+ω∂)[0, 1]�L
do have a unique non-trivial minimal filter, namely, the last summand of the
ordinal sum, while ω[0, 1]�L fails this property. %&

5.2 Incomparable Notions of Algebras of Fuzzy Sets for BL

We can now exhibit two standard generic BL-algebras S and S′ such that

F (BL, S) 
# F (BL, S′) and F (BL, S′) 
# F (BL, S) . (3)

Theorem 2. The logic BL does not induce a unique notion of algebra of fuzzy
sets. Specifically, (3) holds for the standard generic BL-algebras S = (ω+1)[0, 1]�L
and S′ = (1 + ω∂)[0, 1]�L introduced above.

Proof. Clearly, T ∈ F (BL, T ) for each BL-algebra T , because the T -algebra
of those fuzzy sets having as domain a singleton is obviously isomorphic to T .
Let us show that S is not isomorphic to a subalgebra of S′X , whatever the
choice of the set X . Suppose by way of contradiction that e:S →

∏
X S′ is an

embedding of BL-algebras. Writing Ax for the range of the map px ◦ e:S →
S′, where px:

∏
X S′ → S′ is the xth projection map, we obtain a subdirect

embedding e∗:S ↪→
∏

x∈X Ax by setting e∗(s) = e(s) for s ∈ S. But since S is
subdirectly irreducible by Lemma 5, it follows that S is isomorphic to Ax for
some choice of x ∈ X . This is a contradiction, as we will show that S does not
embed into S′. To see this, for each BL-algebra B, write I(B) for the poset of
idempotent elements of B. Now note that I(S) is order-isomorphic to ω+2, while
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I(S′) is order-isomorphic to 1 + ω∂ . Since any homomorphism of BL-algebras
carries idempotents to idempotents and preserves order, from any BL-algebraic
embedding S ↪→ S′ we would obtain an order-embedding ω+2 ↪→ 1+ω∂, which
is impossible. It can be similarly shown that S′ is not isomorphic to a subalgebra
of SX , whatever the set X . %&

6 Conclusions

As we have seen in this paper, each of the varietis MV, P, and G induces a
unique notion of algebra of fuzzy sets. Following an analogy with the classical
representation theory for MV-algebras, we have characterized product algebras
of fuzzy sets as hoop-semisimple algebras (Theorem 1). As to Gödel algebras,
we have explained in §4.1 why a satisfactory structure theory along similar lines
appears problematic. For Kleene algebras, the algebraic semantics of Zadeh’s
fuzzy logic, we have indicated in §4.2 that there is just one possible notion of
algebras of fuzzy sets, and, interestingly, all Kleene algebras are representable
as algebras of fuzzy sets.

For the general case of BL-logic, we have proved as our second main result (The-
orem 2) that there are incomparable notions of algebras of fuzzy sets in BL. It is
thus clear that more research on BL-algebras is needed to clarify the situation —
for instance, is there a most general notion of BL-algebra of fuzzy set, i.e., is there
a standard generic BL-algebra S∗ such that for any other standard generic BL-
algebra S one has F (BL, S) # F (BL, S∗) ? This and other related directions for
future research require investigation of the structure of subalgebras of standard
generic algebras. By way of conclusion, we give a result along these lines.

Let B be a BL-algebra with top element 1, and let F(B) be the collection
of its filters (including the improper filter B). For each p ∈ F(B), let p∗ be the
subset of B defined by

p∗ =
(
p \

⋃
{q ∈ F(B) | q 	 p}

)
∪ {1} .

Theorem 3. For any BL-chain B the following are equivalent.

1. There exists a standard generic BL-algebra A such that B is a subalgebra of
A.

2. The set F(B) of filters of B is such that the set K = {p ∈ F(B) | |p∗| >
2} satisfies |K| ≤ ℵ0, and F(B) \ K is the union of at most denumerably
many intervals of F(B) (linearly ordered by inclusion), each of which order-
embeds into [0, 1]. Moreover, p∗ is either a bounded or a cancellative Wajsberg
subhoop of B for each filter p ∈ F(B), and B∗ is an MV-subalgebra of B.

We cannot include a proof of Theorem 3 here for lack of space, but we plan to
publish an extended account elsewhere.
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Abstract. We claim that divisible residuated lattices (DRLs) can act
as a unifying evaluation framework for soft constraint satisfaction prob-
lems (soft CSPs). DRLs form the algebraic semantics of a large family
of substructural and fuzzy logics [13,15], and are therefore natural can-
didates for this role. As a preliminary evidence in support to our claim,
along the lines of Cooper et al. and Larrosa et al. [11,18], we describe a
polynomial-time algorithm that enforces k-hyperarc consistency on soft
CSPs evaluated over DRLs. Observed that, in general, DRLs are neither
idempotent nor totally ordered, this algorithm accounts as a general-
ization of available enforcing algorithms over commutative idempotent
semirings and fair valuation structures [4,11].

1 Introduction

A constraint satisfaction problem (CSP) is the problem of deciding, given a
collection of constraints on variables, whether or not there is an assignment to the
variables satisfying all the constraints. In the crisp setting [19], any assignment
satisfying all the constraints provides a solution, and any solution is as good
as any other. In the soft setting [5], more generally, each constraint maps the
assignments to a valuation structure, which is a bounded poset equipped with a
suitable combination operator; the task is to find an assignment such that the
combination of its images under all the constraints is maximal in the order of
the valuation structure. Formal definitions are given in Section 2.

In its general formulation, the soft CSP is NP-complete, so that research
effort is currently aimed to characterize tractable cases [7,6], and investigating
constraints processing heuristics; amongst the latter, enforcing algorithms are
of the foremost importance.1 A typical enforcing algorithm takes in input a soft
CSP and enforces a local consistency property over it, producing two possible
outcomes: either the input problem is found locally inconsistent, implying its
global inconsistency; or else, the input problem is transformed into an equivalent
problem (called closure), possibly inconsistent but easier, that is, with a smaller

1 For further background on constraint processing, we refer the reader to [12].
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solution space. Despite their incompleteness as inconsistency tests, enforcing
algorithms are useful as subprocedures in the exhaustive search for an optimal
solution, for instance in branch and bound search. The generalization of local
consistency notions and techniques from the crisp to the soft setting plays a
central role in the algorithmic investigation of the soft CSP: for this reason,
any class of structures that allows for an easy migration of local consistency
techniques in the soft setting deserves consideration [4,18,11].

Not surprisingly, the weaker the properties of the valuation structure are,
the harder it is to migrate a local consistency technique from the crisp to the
soft setting. Indeed, a crisp CSP is equivalent to a soft CSP over a valuation
structure with very strong properties: the algebra ({0, 1},≤,�,⊥,�), where ⊥ =
0 ≤ 1 = � and x � y = 1 if and only if x = y = 1. At the other extreme, the
weakest possible valuation structure has to be a bounded poset, with top element
� and bottom element ⊥, equipped with a commutative, associative operation
x� y which is monotone over the order (x ≤ y implies x� z ≤ y � z), has � as
identity (x�� = x) and ⊥ as annihilator (x�⊥ = ⊥). Intuitively, an assignment
mapped to � by a constraint is entirely satisfactory, and an assignment mapped
to ⊥ is entirely unsatisfactory; if two assignments are mapped to x and y, in
case x ≤ y, the latter is preferred to the former, and in case x ‖ y, none is
preferred over the other; the operator � combines constraints in such a way that
adding constraints shrinks the solution space (as boundary cases, � does not
shrink the solution space, and ⊥ empties the solution space). In this setting,
two options arise: whether or not to allow incomparability (formally, whether
or not to admit non-totally ordered valuation structures); and, whether or not
to keep into account repetitions (formally, whether or not to allow for valuation
structures with nonidempotent combination operators). 2 The aforementioned
algebra ({0, 1},≤,�,⊥,�) is strong in the sense that it is totally ordered and
idempotent.

In this paper, we propose (commutative bounded) divisible residuated lattices
(in short, DRLs) as a unifying evaluation framework for soft constraints. Despite
DRLs form an intensively studied algebraic variety since [22], they have never
been proposed as an evaluation framework for soft constraints. However, there
are robust motivations for considering DRLs in the soft CSP setting, coming from
logic and algebra. As already mentioned, the soft CSP is a generalization of the
crisp CSP. Conversely, the crisp CSP can be seen as a particular soft CSP, evalu-
ated over the algebra ({0, 1},≤,�,⊥,�), that is, a reduct of the familiar Boolean
algebra 2 (taking � as ∧). Since 2 and the meet operation in 2 form the algebraic
counterparts of Boolean logic and Boolean conjunction respectively, it is natural
to intend the combination operator � in a valuation structure as a generaliza-
tion of the meet operation in 2, and to investigate the algebraic counterparts
of logics that generalize Boolean conjunction as candidate valuation structures
for soft CSPs. Intriguingly, a central approach in the area of mathematical fuzzy
logic, popularized by Hájek [15], relies on the idea of generalizing Boolean logic
starting from a generalization of Boolean conjunction by means of a class of

2 In the idempotent case x / x = x, so that repetitions do not matter.
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functions called (continuous) triangular norms [17]. The idea is the following.
A triangular norm ∗ is an associative, commutative, continuous binary function
over the real interval [0, 1]; moreover, ∗ is monotone over the (total, dense and
complete) order of reals in [0, 1], has 1 as identity and 0 as annihilator. Given a
(continuous) triangular norm ∗, there exists a unique binary function →∗ on [0, 1]
satisfying the residuation equivalence x∗z ≤ y if and only if z ≤ x →∗ y, namely,
x →∗ y = max{z | x ∗ z ≤ y}. This function is called residuum, and is a general-
ization of Boolean implication. Corresponding to any triangular norm ∗, a propo-
sitional fuzzy logic L∗ = ([0, 1],∧,∨,�,→,¬,⊥,�) is obtained by interpreting
propositional variables over [0, 1], ⊥ over 0, � over ∗, → over →∗, and eventually
by defining ¬x = x → ⊥, � = ¬⊥ = 1, x ∧ y = x � (x → y) = min(x, y), and
x∨y = ((x → y) → y)∧((y → x) → x) = max(x, y). Boolean logic can be readily
recovered from L∗ by restricting the domain and the connectives to {0, 1}. As
much as Boolean algebras form the equivalent algebraic semantics of Boolean
logic, the variety of BL-algebras (defined in Section 3) forms the algebraic se-
mantics of Hájek’s basic logic, the logic of all continuous triangular norms and
their residua [15,10].

Therefore, BL-algebras can be regarded as a first candidate evaluation frame-
work for soft CSPs. We shall see that, as far as we are concerned with the
implementation of local consistency techniques, for instance the k-hyperarc con-
sistency enforcing algorithm presented in Section 4, prelinearity turns out to be
redundant. Since prelinearity is exactly the property that specializes BL-algebras
inside the class of DRLs [16], we are led to the latter as a defensible level of gen-
erality for our unifying evaluation framework. On the logical side, the variety
of DRLs forms the algebraic semantics of an intersecting common fragment of
basic logic and intuitionistic logic, called generalized basic logic [3].

We shall observe that DRLs, in general lattice ordered and nonidempotent,
“subsume” preeminent valuation structures where local consistency techniques
succeeded, namely, commutative idempotent semirings, lattice ordered and idem-
potent [4], and fair valuation structures, totally ordered and nonidempotent [11].
Compare Proposition 1 and Proposition 2 in Section 3.

As a preliminary, initial evidence in support of the proposal of DRLs as valua-
tion structures for soft CSPs, we shall prove that DRLs readily host a polynomial-
time algorithm that enforces a useful local consistency property, called k-hyperarc
consistency (compare Definition 5 and Theorem 5 in Section 4). This property
guarantees that any consistent assignment to a variable i extends to an assign-
ment to any other≤ k−1 variables constrained by i, without producing additional
costs. We insist that our algorithm works uniformly over every DRL, including the
aforementioned, previously investigated structures as special cases.

DRLs allow for an extensive, smooth migration of constraint processing tech-
niques from the crisp to the soft setting, far beyond the technical result presented
in Section 4, which is intended as a first, concrete example of this new research
line. For instance, we reasonably expect that the problem of finding efficiently
optimal closures (in a suitable sense, required to embed enforcing algorithms



890 S. Bova

into branch and bound exhaustive search) can be formalized in purely algebraic
and logical terms in the setting proposed in this paper.3

We remark that analogous local consistency techniques have been investi-
gated by Bistarelli and Gadducci over tropical residuated semirings [2], and we
encourage a future comparison of the two settings in terms of unifying poten-
tial, structural insight, and computational viability. We also remark that the
idea of formalizing soft constraints consistency techniques as many-valued logics
refutations appears in the work of Ansótegui et al. [1].

Outline. The paper is organized as follows. In Section 2, we define soft CSPs and
valuation structures. In Section 3, we define divisible residuated lattices, and we
list a number of properties qualifying DRLs as suitable and natural valuation
structures for soft constraints. Then, we describe the relation between evaluation
frameworks such as commutative idempotent semirings and fair valuation struc-
tures, and DRLs. In Section 4 we present the main technical contribution of this
paper, that is a uniform polynomial-time algorithm for k-hyperarc consistency
enforcing on soft CSPs evaluated over DRLs. For background on partial orders
and universal algebra, we refer the reader to any standard reference.

2 Soft Constraint Satisfaction Problems

In this section, we define formally the notions of soft CSPs, valuation structure,
and optimal solution to a soft CSP.

A (soft) constraint satisfaction problem (in short, CSP) is a tuple P =
(X,D,P,A) specified as follows. X = {1, . . . , n} = [n] is a set of variables,
and D = {Di}i∈[n] is a set of finite domains over which variables are assigned,
variable i being assigned over domain Di. Let Y ⊆ X . We let

l(Y ) =
∏
i∈Y

Di

denote all the assignments of variables in Y onto the corresponding domains
(tuples). If Y = ∅, then l(Y ) contains only the empty tuple. For any Z ⊆ Y , we
denote by t|Z the projection of t onto the variables in Z. For every i ∈ Y , a ∈ Di

and t ∈ l(Y \ {i}), we let t · a denote the tuple t′ in l(Y ) such that t′|{i} = a and
t′|Y \{i} = t (if Y = {i}, then t · a = a).

A is an algebra with domain A and signature including a binary relation ≤,
a binary operation � and constants �, ⊥, such that the reduct (A,≤,�,⊥) is a
bounded poset (that is, ≤ is a partial order with greatest element � and least
element ⊥), and the reduct (A,�,�) is a commutative monoid (that is, � is
commutative and associative and has identity �) where � is monotone over ≤,
that is x ≤ y implies x� z ≤ y� z. A is called the valuation structure of P, and
� is called the combination operator over A.
3 This key problem has been recently solved over fair valuation structures [8]. An-

other, weaker consistency property, to be investigated in the DRLs setting, is virtual
consistency [9].
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P is a finite multiset4 of constraints. Each constraint CY ∈ P is defined over
a subset Y ⊆ X as a map

CY :
∏
i∈Y

Di → A.

A constraint CY has scope Y and arity |Y |.
Let (CY1 , . . . , CYm) be an m-tuple of constraints in P , and let f be an m-ary

operation on A. Then, f(CY1 , . . . , CYm) is the constraint with scope Y1∪· · ·∪Ym
defined by putting, for every t ∈ l(Y1 ∪ · · · ∪ Ym):

f(CY1 , . . . , CYm)(t) = f(CY1(t|Y1), . . . , CYm(t|Ym)).

The set S(P) of (optimal) solutions to P is equal to the set of t ∈ l(X) such
that

⊙
CY ∈P CY (t|Y ) is maximal in the poset:{ ⊙

CY ∈P
CY (t|Y )

∣∣∣∣∣ t ∈ l(X)

}
⊆ A,

where an element x is maximal in a poset if there is no element y > x in the poset
(notice that maximal elements in a poset form an antichain). If S(P) = {⊥}, we
say that P is inconsistent.

Let P = (X,D,P,A) and P′ = (X,D,P ′,A) be CSPs. We say that P and
P′ are equivalent (in short, P ≡ P′) if and only if for every t ∈ l(X),⊙

CY ∈P
CY (t|Y ) =

⊙
CY ∈P ′

CY (t|Y ).

In particular, if P ≡ P′, then S(P) = S(P′).
In the sequel we shall assume the following, without loss of generality: P

contains at most one constraint with scope Y 
= ∅ for every Y ⊆ X (other-
wise, we replace any pair of constraints C′Y , C′′Y by the constraint CY defined
by CY (t|Y ) = C′Y (t|Y ) � C′′Y (t|Y ) for every t ∈ l(Y )); P contains all the con-
straints C{i} for i = 1, . . . , n (otherwise, we add the constraint C{i} stipulating
that C{i}(a) = � for every a ∈ Di); C{i}(a) > ⊥ for every a ∈ Di (other-
wise, we remove a from Di, declaring the problem inconsistent if Di becomes
empty). Moreover, we shall assume that constraints are implemented as tables,
such that entries can be both retrieved and modified, and that algebraic oper-
ations over the valuation structure are polynomial-time computable in the size
of their inputs.

3 Divisible Residuated Lattices

In this section, we introduce the variety of DRLs and some of its subvarieties,
which are interesting with respect to soft CSPs. We give the logical interpretation
of each mentioned algebraic variety, and we formalize the relation between DRLs
and, commutative idempotent semirings and fair valuation structures.
4 Multisets are necessary to support nonidempotent combinations of constraints.
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Definition 1 (Divisible Residuated Lattice, DRL). A divisible residuated
lattice 5 is an algebra (A,∨,∧,�,→,�,⊥) such that: (i) (A,�,�) is a commu-
tative monoid; (ii) (A,∨,∧,�,⊥) is a bounded lattice (we write x ≤ y if and only
if x∧ y = x); (iii) residuation holds, that is, x� z ≤ y if and only if z ≤ x → y;
(iv) divisibility holds, that is, x∧y = x�(x → y). A DRL is called a DRL-chain
if its lattice reduct is totally ordered.

We remark that residuation can be readily rephrased in equational terms, so
that DRLs form a variety. Notice that divisible residuated chains are not closed
under direct products, thus they do not form a variety. As a matter of fact, the
lattice reduct of a DRL is distributive, that is, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

The monoidal operation of a DRL matches the minimal requirements im-
posed over the combination operator of a valuation structure in Section 2, as
summarized by the following fact [14].

Fact 1 (DRLs Basic Properties). Let A be a DRL. For every x, y, z ∈ A:
(i) x � (y � z) = (x � y) � z, x � y = y � x, x � � = x, and x � ⊥ = ⊥; (ii)
x ≤ y implies x� z ≤ y � z (in particular, x� x ≤ x).

We exploit the following facts from [14].

Fact 2 (DRLs Extra Properties). Let A be a DRL. For every x, y, z ∈ A:
(i) x ≤ y if and only if x → y = �; (ii) y ≤ x implies x � (x → y) = y; (iii)
y ≤ z implies (x� z)� (z → y) = x� y; (iv) x� (y ∨ z) = (x � y) ∨ (x� z).

Fact 3. [20] Let (A,∨,∧,�,⊥) be a complete bounded lattice, and let � be
a commutative monotone 6 operation over A such that � distributes over ∨.
There exists a unique operation x → y satisfying residuation, namely, x → y =∨
{z | x� z ≤ y}.

In the rest of this section, we discuss the relation between commutative idempo-
tent semirings and fair valuation structures, and DRLs. We first introduce some
subvarieties of DRLs.

Definition 2 (DRLs Subvarieties). A BL-algebra is a DRL satisfying pre-
linearity, that is, (x → y)∨(y → x) = �. A Heyting algebra is a DRL satisfying
idempotency, that is, x� x = x. A Gödel algebra is an idempotent BL-algebra.
A Heyting algebra (or a Gödel algebra) is a Boolean algebra if it satisfies invo-
lutiveness, that is, ¬¬x = x where ¬x = x → ⊥.

As we mentioned in the introduction, the variety of BL-algebras form the equiv-
alent algebraic semantics of Hájek’s basic logic. Analogously, the varieties of
Heyting algebras, Gödel algebras, and Boolean algebras respectively, form the
equivalent algebraic semantics of intuitionistic logic, Gödel logic, and classical
logic [21,15].

5 To our aims, we can restrict to commutative and bounded residuated lattices. We
refer the reader to [16] for a general definition.

6 Monotonicity of / on both arguments is sufficient.
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We consider first commutative idempotent semirings. The restriction to the
idempotent case is motivated in this context, since local consistency techniques
succeed only over idempotent semirings [5].

Definition 3 (Commutative Idempotent Semiring, CIS). A commutative
idempotent semiring is an algebra (A,∨,�,�,⊥) such that: (i) ∨ is commuta-
tive, associative, idempotent, x ∨ ⊥ = x and x ∨ � = �; (ii) � is commutative,
associative, idempotent, x � � = x and x � ⊥ = ⊥; (iii) � distributes over ∨,
that is x� (y ∨ z) = (x� y) ∨ (x� z).

Fact 4. [4, Theorem 2.9, Theorem 2.10] Let A = (A,∨,�,�,⊥) be a CIS.
Then, (A,∨,∧,�,⊥), where x ∧ y = x � y, is a complete bounded distributive
lattice.

Proposition 1. Let A = (A,∨,�,�,⊥) be a CIS. Then, the expansion A′ =
(A,∨,∧,�,→,�,⊥) of A, where x ∧ y = x� y and x → y =

∨
{z | x� z ≤ y},

is a Heyting algebra.

Proof. It is sufficient to prove that (A,∨,∧,�,⊥) is a bounded distributive lat-
tice, and that → is the residuum of ∧. The first part is given by Fact 4. The
second part is given by Fact 3: indeed, (A,∨,�,�,⊥) is complete by Fact 4, �
is monotone by [4, Theorem 2.4], and � distributes over ∨ by Definition 3(iii),
hence the operation → is the uniquely determined residuum of ∧. %&

Next we consider fair valuation structures. Accordingly to [11], a fair valuation
structure is a structure (A,≤,⊕,�,�,⊥) such that (A,≤,�,⊥) is a bounded
chain, the combination operator ⊕ is commutative, associative, monotone, with
identity ⊥ and annihilator �, and the structure is fair, that is, for every x ≤
y ∈ A there exists a maximum z ∈ A, denoted by y � x, such that x ⊕ z = y.
The fairness property is crafted ad hoc to preserve the soundness of constraints
processing inside the adopted nonidempotent framework [11, Section 4]. Techni-
cally, the authors have to guarantee that z ≤ y implies x⊕ y = (x⊕ z)⊕ (y� z).
We propose here a different, dual definition of a fair valuation structure.

Definition 4 (Dual Fair Valuation Structure, FVS). A (dual) fair valua-
tion structure is an algebra A = (A,∨,∧,�,→,�,⊥) such that (A,∨,∧,�,⊥) is
a bounded chain, (A,�,�) is a commutative monoid, and A satisfies residuation
and divisibility.

Remarkably, the aforementioned technical condition, which in our setting be-
comes y ≤ z implies x � y = (x � z) � (z → y), holds by divisibility. The
proposed dualization is defensible in logical terms, since the operation of com-
bining soft constraints is intended as a conjunction, and the monoidal operation
of a DRL is in fact a generalization of Boolean conjunction. In [11], the authors
explicitly relate their combination operator with triangular conorms. The latter
operations, dual to triangular norms, are customarily intended as generalizations
of Boolean disjunction.
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Proposition 2. A FVS is a DRL-chain.

We conclude this section mentioning that the soft CSP evaluation framework
known as fuzzy CSP [4], which has the form ([0, 1],∨,∧,�,⊥), can be extended
to the Gödel chain ([0, 1],∨,∧,�,→,�,⊥) putting x � y = x ∧ y and x → y
equal to y if y > x and to � otherwise. This chain singly generates the variety
of Gödel algebras.

4 Enforcing k-Hyperarc Consistency on Soft CSPs
over Divisible Residuated Lattices

In this section, we define a property of local consistency, called k-hyperarc con-
sistency, and we describe a polynomial-time algorithm that enforces k-hyperarc
consistency on soft CSPs evaluated over DRLs. Syntactically, the pseudocode
is almost identical to that presented in [11,18]; the important and nontrivial
point here is to show that it is sound over weaker structures, namely, DRLs
(Lemma 2).7

Definition 5 (k-Hyperarc Consistency). Let P = (X,D,P,A) be a CSP.
Let Y ⊆ X such that 2 ≤ |Y | ≤ k and CY ∈ P . We say that Y is k-hyperarc
consistent if for each i ∈ Y and each a ∈ Di such that C{i}(a) > ⊥, there exists
t ∈ l(Y \ {i}) such that,

C{i}(a) = C{i}(a)� CY (t · a). (1)

We say that P is k-hyperarc consistent if every Y ⊆ X such that 2 ≤ |Y | ≤ k
and CY ∈ P is k-hyperarc consistent.

Notice that equation (1) holds if CY (t · a) = �. In words, Y is k-hyperarc
consistency if each assignment a ∈ Di of variable i ∈ Y such that C{i}(a) > ⊥,
extends to an assignment t ∈ l(Y \ {i}) of variables Y \ {i} without producing
additional costs.

The idea beyond enforcing algorithms is to explicitate implicit constraints in-
duced by the problem over certain subsets of variables, thus possibly discovering
a local unsatisfiability at the level of these variables. As a specialization of this
strategy, our algorithm shifts costs from constraints of arity greater than one to
constraints of arity one, thus it possibly reveals the unsatisfiability of the sub-
problem induced over a single variable (or else, it possibly shrinks the domain
of that variable). Such a local unsatisfiability implies the unsatisfiability of the
whole problem, as the following proposition shows.

Proposition 3. Let P = (X,D,P,A) be a CSP and let i ∈ [n] be such that
C{i} ∈ P and C{i}(a) = ⊥ for every a ∈ Di. Then, P is inconsistent.

7 A technical advance of the present procedure, compared with the analogous proce-
dure presented by Bistarelli and Gadducci over tropical residuated semirings [2], is
termination.
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Proof. First recall that for every x ∈ A it holds that x � ⊥ = ⊥. But then,
C{i}(t|{i}) = ⊥ for every t ∈ l(X), so that

⊙
CY ∈P CY (t|Y ) = ⊥. Therefore,

S(P) = {⊥} and P is inconsistent. %&

Algorithm: k-HyperarcConsistency
Input: A CSP P = (X,D,P,A).
Output: ⊥ or a k-hyperarc consistent CSP P′ = (X,D,P ′,A) equivalent to P.

k-HyperarcConsistency((X,D,P,A))
1 Q ← {1, . . . , n}
2 while Q 
= ∅ do
3 i ← Pop(Q)
4 foreach Y ⊆ X such that 2 ≤ |Y | ≤ k, i ∈ Y and CY ∈ P do
5 domainShrinks ← Project(Y, i)
6 if C{i}(a) = ⊥ for each a ∈ Di then
7 return ⊥
8 else if domainShrinks then
9 Push(Q, i)
10 endif
11 endforeach
12 endwhile
13 return (X,D,P ′,A)

Project(Y, i)
14 domainShrinks ← false
15 foreach a ∈ Di such that C{i}(a) > ⊥ do
16 x ← a maximal element in {CY (t · a) | t ∈ l(Y \ {i})}
17 C{i}(a) ← C{i}(a)� x
18 if C{i}(a) = ⊥ then
19 domainShrinks ← true
20 endif
21 foreach t ∈ l(Y \ {i}) do
22 CY (t · a) ← (x → CY (t · a))
23 endforeach
24 endforeach
25 return domainShrinks

As already discussed in the introduction, enforcing k-hyperarc consistency over
the k-hyperarc inconsistent problem P may return in output several distinct
k-hyperarc consistent problems, depending on the choices made on Lines 1, 3, 4
and 16.

In the rest of this section, we prove that the algorithm runs in polynomial-
time (Lemma 1) and is sound (Lemma 2), leading to our main technical result
(Theorem 5).

Lemma 1 (Complexity). Let P = (X,D,P,A) be a CSP, where X = [n],
d = maxi∈[n] |Di| and e = |P |. Then, k-HyperarcConsistency terminates in
at most O(e2 · dk+1) time.
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Proof. The main loop in Lines 2-12 iterates at most n(d + 1) ≤ e(d + 1) times,
since n ≤ e without loss of generality and each i ∈ [n] is added to Q once on
Line 1 and at most d times on Line 9 (once for each shrink of domain Di of size
≤ d). Each iteration of the main loop involves at most e iterations of the loop
nested in Lines 4-11, since there are at most e constraints satisfying the condition
in Line 4 with respect to any given i ∈ [n]. Each such nested iteration amounts
to an invocation of Project and an iteration over domain Di of size ≤ d. Any
invocation of Project amounts to an iteration over domain Di of size ≤ d on
Line 15, and for each such iteration, two iterations over all the ≤ dk−1 tuples
t ∈ l(Y \ {i}), observing that 1 ≤ |Y \ {i}| ≤ k − 1 (Line 16 and Lines 21-23).
Summarizing, the algorithm executes at most

(e(d + 1))e(d + d(2dk−1))

many iterations, so that it terminates in at most O(e2 · dk+1) time. %&

Lemma 2 (Soundness). Let P = (X,D,P,A) be a CSP, and consider the
output of k-HyperarcConsistency(P):

(i) if it is ⊥, then P is inconsistent;
(ii) otherwise, it is a k-hyperarc consistent CSP equivalent to P.

Proof. First we show that the subprocedure Project preserves equivalence, in
the following sense. Let R′ be the multiset of constraints before the jth invocation
of Project in Line 5, let Y and i be the parameters of such invocation, and let
R′′ be the multiset of constraints computed by the jth execution of Lines 14-25.
We aim to show that for every t ∈ l(X),⊙

CY ∈R′

CY (t|Y ) =
⊙

CY ∈R′′

CY (t|Y ), (2)

that is, problems (X,D,R′,A) and (X,D,R′′,A) are equivalent.
Let t ∈ l(X) and let t|{i} = a ∈ Di such that C{i}(a) > ⊥ (Line 15). Clearly,

t|Y \{i} ∈ l(Y \ {i}). In Line 16, x is settled to a maximal element in the poset

{CY (t|Y \{i} · t|{i}) | t|Y \{i} ∈ l(Y \ {i})},

so that by construction CY (t|Y ) ≤ x. By Line 17, the constraint C{i}(t|{i}) in
R′ becomes

C{i}(t|{i})� x

in R′′, and by Line 22, at some iteration of the loop in Lines 21-23, the constraint
CY (t|Y ) in R′ becomes

x → CY (t|Y )

in R′′. Now, we claim that:

C{i}(t|{i})� CY (t|Y ) = (C{i}(t|{i})� x) � (x → CY (t|Y )).
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Indeed, in light of Fact 2(iii) and the aforementioned fact that CY (t|Y ) ≤ x,

(C{i}(t|{i})� x)� (x → CY (t|Y )) = C{i}(t|{i})� (x� (x → CY (t|Y )))
= C{i}(t|{i})� (x ∧ CY (t|Y ))
= C{i}(t|{i})� CY (t|Y ).

Eventually, Project does not modify constraints CZ ∈ R′ such that Z 
= {i}
and Z 
= Y , so that,⊙

CZ∈R′,Z �={i},Z �=Y

CZ(t|Z) =
⊙

CZ∈R′′,Z �={i},Z �=Y

CZ(t|Z).

Thus, since z′ = z′′ implies z � z′ = z � z′′ in A for every z, z′, z′′ ∈ A by
Fact 1(ii), we conclude that (2) holds.

Now suppose that the algorithm outputs ⊥ in Line 7. We claim that the input
problem P = (X,D,P,A) is inconsistent. Indeed, let j be such that after the jth
execution of Project, say over parameters Y and i, it holds that C{i}(a) = ⊥
for each a ∈ Di. Let P ′ be the multiset of constraints computed by such jth ex-
ecution. Since Project preserves equivalence, P′ = (X,D,P ′,A) is equivalent
to P. But, by Proposition 3, P′ is inconsistent, so that P is inconsistent too.

Next suppose that the algorithm outputs P′ = (X,D,P ′,A) in Line 13. We
claim that the output problem is k-hyperarc consistent and equivalent to the
input problem P = (X,D,P,A). For equivalence, simply note that Project
preserves equivalence. For k-hyperarc consistency, first note that every i ∈ [n]
is such that C{i}(a) > ⊥ for some a ∈ Di. Indeed, this holds in the input
problem P without loss of generality, and each execution of Project, which
possibly pushes some C{i}(a) down to ⊥ in Line 17, is followed by the check of
Lines 18-20.

Now, let Y ⊆ X be such that 2 ≤ |Y | ≤ k, i ∈ Y and CY ∈ P ′, and let a ∈ Di

be such that C{i}(a) > ⊥. We claim that there exists t ∈ l(Y \ {i}) such that

C{i}(a) = C{i}(a)� CY (t · a).

Note that, by Fact 1(i), equality holds if CY (t · a) = �. Let R′ and R′′ be
respectively the multisets of constraints before and after the last execution of
Project on input Y and i. Let t ∈ l(Y \ {i}) be such that CY (t · a) is the
maximal element in {CY (t · a) | t ∈ l(Y \ {i})} assigned to x in Line 16. Thus,
at some iteration of loop in Lines 21-23, we have that the constraint CY (t · a) in
R′ is updated to x → CY (t · a) in R′′. But, by Fact 2(i),

x → CY (t · a) = CY (t · a) → CY (t · a) = �,

therefore, CY (t ·a) = � in R′′. Noticing that subsequent assignments to CY (t ·a)
during the main loop have the form x → �, which is equal to � by Fact 2(i),
the claim is settled. %&

Theorem 5. Let P be a CSP, and let P′ = k-Hyperarc-Consistency(P).
Then, P′ is a k-hyperarc consistent CSP equivalent to P, computed in polynomial
time in the size of P.
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Abstract. The convergence with a fixed regulator has been studied for lattice
ordered groups and MV-algebras. In this paper we present some particular results
for the case of perfect MV-algebras using Di Nola-Lettieri functors and we extend
the notion of convergence with a fixed regulator for residuated lattices. The main
results consist of proving that any locally Archimedean MV-algebra has a unique
v-Cauchy completion and that in an Archimedean residuated lattice the v-limit is
unique.

1 Preliminaries

In this section we recall some definitions and results regarding the convergence with
fixed regulator in '-groups. For more details on the subject we refer the reader to [2,3,4].
On an MV-algebra A, the distance function d : A×A → A is defined by:

d(x, y) = (x� y−)⊕ (x− � y).

Among the properties of the distance function (see [8]), we will use the following:

(1) d(x, y) = 0 iff x = y, (2) d(x, y) = d(y, x), (3) d(x, 0) = x, (4) d(x, z) ≤
d(x, y)⊕ d(y, z), (5) x ≤ y implies y = x⊕ d(x, y).

An element x in an MV-algebra is said to be infinitely small or infinitesimal if x 
= 0
and nx ≤ x− for all n ∈ N. The set of all infinitesimals in A is denoted by Infinit(A).

The radical Rad(A) of an MV-algebra A is the intersection of all maximal ide-
als of A. The MV-algebra A is called perfect if A = Rad(A) ∪ (Rad(A))−, where
(Rad(A))− = {x− | x ∈ Rad(A)}. For any MV-algebra A, Rad(A) = Infinit(A)∪
{0}.

An MV-algebra A is said to be Archimedean or semisimple if nx ≤ x− for all n ∈ N
implies x = 0 (see [5]).

According to [11], a perfect MV-algebra A is called locally Archimedean whenever
x, y ∈ Rad(A) are such that nx ≤ y for all n ∈ N, it follows that x = 0.

Mundici proved in [13] that for any MV-algebra A there is an abelian '-group
(G,+, u) with strong unit u such that A is isomorphic to Γ (G, u) = [0, u] endowed
with a canonical structure of MV-algebra:

x⊕ y = (x + y) ∧ u, x− = u− x, x� y = (x + y − u) ∨ 0.

The Mundici functor Γ is a categorical equivalence between the category of abelian
'-groups with strong unit and the category of MV-algebras.

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 899–910, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In the case of perfect MV-algebras a crucial result is the categorical equivalence
between the category of perfect MV-algebras and the category of abelian '-groups es-
tablished by A. Di Nola and A. Lettieri ([10]).

Let G be an '-group and g ∈ G. We denote by g+ = g ∨ {0}, g− = (−g)∨ {0} and
we remind that g = g+ − g− and | g |= g ∨ (−g) = g+ + g−.

For each abelian '-group (G,+), consider the lexicographic product Z ×lex G and
define the perfect MV-algebra Δ(G) = Γ (Z×lex G, (1, 0)) with the operations:

(x, y)⊕ (u, v) = (1, 0) ∧ (x + u, y + v)
(x, y)− = (1, 0)− (x, y) = (1− x,−y)

(x, y)� (u, v) = (0, 0) ∨ (x + u− 1, y + v).

An element of Δ(G) has either the form (0, g) with g ≥ 0 or the form (1, g) with
g ≤ 0 (g ∈ G). With the above definitions, the distance function on Δ(G) becomes:

d((x, y), (u, v)) = (1, 0) ∧ ((0, 0) ∨ (x− u, y − v) + (0, 0) ∨ (u− x, v − y)) =

= (1, 0) ∧ (|x− u|, |y − v|) =
{

(0, |y − v|) if x = u
(1, 0) otherwise.

According to [8]) we have:

(1) (1, 0) is a strong unit of Z×lex G;
(2) If A is a perfect MV-algebra, then (Rad(A),⊕, 0) is a cancellative abelian monoid;
(3) Rad(Δ(G)) = {(0, x) | x ≥ 0}; (Rad(Δ(G)))− = {(1, x) | x ≤ 0}.

On Rad(A)×Rad(A) we define the congruence≈ by

(x, y) ≈ (u, v) iff x⊕ v = y ⊕ u

and denote by [x, y] the congruence class of (x, y) ∈ Rad(A)×Rad(A).
DenoteD(A) = Rad(A)×Rad(A)/ ≈ and define:

[x, y] + [u, v] = [x⊕ u, y ⊕ v]
[x, y] ≤ [u, v] iff x⊕ v ≤ y ⊕ u.

With these operationsD(A) becomes an abelian '-group such that:

[x, y] ∧ [u, v] = [(x⊕ v) ∧ (y ⊕ u), y ⊕ v]
[x, y] ∨ [u, v] = [x⊕ u, (x⊕ v) ∧ (y ⊕ u)].

Di Nola-Lettieri functors D : P → A and Δ : A → P realize a categorical equiv-
alence between the category P of perfect MV-algebras and the category A of abelian
'-groups([10]).

Proposition 1. ([8]) In D(A) we have:

(1) D(A)+ = {[x, 0] | x ∈ Rad(A)} ; (2) −[x, y] = [y, x];
(3) [x, y]+ = [x� y−, 0], [x, y]− = [x− � y, 0] ; (4) |[x, y]| = [d(x, y), 0].

We recall some notions regarding the v-convergence with a fixed regulator in '-groups
presented in [2] and [3]. Let G be an abelian '-group and 0 < v ∈ G.

The sequence (xn)n in G is said to be v-convergent to the element x ∈ G if for each
p ∈ N there is n0 ∈ N such that p|xn − x| ≤ v for each n ∈ N, n ≥ n0. In this case
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we denote xn →v x and we say that x is a v-limit of (xn)n. The element v is called
convergence regulator in G.

The sequence (xn)n in G is said to be v-fundamental or v-Cauchy if for each p ∈ N
there is n0 ∈ N such that p|xn − xm| ≤ v for each n,m ∈ N, m ≥ n ≥ n0.

If every v-Cauchy sequence is convergent in G, then G is said to be v-Cauchy com-
plete.

Definition 2. ([2]) If G is Archimedean, then an Archimedean '-group H is called a
v-Cauchy completion of G if the following conditions are satisfied:

(1) G is an '-subgroup of H;
(2) H is v-Cauchy complete;
(3) Every element of H is a v-limit of some sequence in G.

The v-Cauchy completion for an arbitrary '-group G is constructed in [2].
Residuated lattices are algebraic counterparts of logics without the contraction rule

and their properties have been studied by many authors, such as Ward and Dilworth
([16]) and Kowalski and Ono ([12], [14]).

Definition 3. A residuated lattice is an algebra L = (L,∧,∨,�,→, 0, 1) of the type
(2, 2, 2, 2, 0, 0) satisfying the following conditions:

(L1) (L,∧,∨, 0, 1) is a bounded lattice;
(L2) (L,�, 1) is a commutative monoid and the binary operation � is isotone with
respect the lattice order;
(L3) x� y ≤ z iff x ≤ y → z for any x, y, z ∈ L.

A totally ordered residuated lattice is called chain or linearly ordered residuated lattice.
In the sequel we will agree that the operations ∧,∨,� have higher priority than the
operation →. In a residuated lattice L = (L,∧,∨,�,→, 0, 1) we define for all x ∈ L:
x− = x → 0. We will refer to L by its universe L.

In a residuated lattice L we define the distance function d : L× L −→ L by

d(x, y) = (x → y) ∧ (y → x).

Proposition 4. ([9]) The distance function satisfies the following properties:

(1) d(x, y) = d(y, x) ; (2) d(x, y) = 1 iff x = y; (3) d(x, 1) = x;
(4) d(x, 0) = x−; (5) d(x, z)� d(z, y) ≤ d(x, y); (6) d(x, y) ≤ d(x � u, y � u);
(7) d(x, u)� d(y, v) ≤ d(x � y, u� v); (8) d(x, u)� d(y, v) ≤ d(y → x, v → u);
(9) d(x, u) ∧ d(y, v) ≤ d(x ∧ y, u ∧ v); (10) d(x, u) ∧ d(y, v) ≤ d(x ∨ y, u ∨ v);
(11) if x, y ∈ [x′, y′] then d(x′, y′) ≤ d(x, y).

For any n ∈ N, x ∈ L we put x0 = 1 and xn+1 = xn � x = x � xn. The order of
x ∈ L, denoted ord(x) is the smallest n ∈ N such that xn = 0. If there is not such an
n, then ord(x) = ∞.

Lemma 5. Let L be a linearly ordered residuated lattice. If x ∈ L such that ord(x) =
∞, then xn > x− for any n ∈ N.
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Proof. First, note that x > 0 (if x = 0, then x2 = 0), so x− < 1. For n = 0,
x0 = 1 > x−. For n ≥ 1, if xn ≤ x− = x → 0, then xn+1 = 0, a contradiction.
Hence, xn > x−. Thus, xn > x− for any n ∈ N. %&
Lemma 6. In any linearly ordered residuated lattice L, if x, y ∈ L such that xn�y > 0
for some n ∈ N, then xn > y−.

Proof. If we suppose xn ≤ y− = y → 0, then xn � y = 0, contradiction.
Therefore, xn > y−. %&

Proposition 7. In any residuated lattice the following properties are equivalent:

(i) xn ≥ x− for any n ∈ N implies x = 1;
(ii) xn ≥ y− for any n ∈ N implies x ∨ y = 1;
(iii) xn ≥ y− for any n ∈ N implies x → y = y and y → x = x.

Proof. (i) ⇒ (ii) Let x, y ∈ L such that xn ≥ y− for any n ∈ N. We have:
(x ∨ y)− = x− ∧ y− ≤ xn ≤ (x ∨ y)n,

hence (x ∨ y)n ≥ (x ∨ y)− for any n ∈ N. Thus, by the hypothesis we get x ∨ y = 1.
(ii) ⇒ (i) Consider x ∈ L such that xn ≥ y− for any n ∈ N.

By (ii), taking y = x we get x ∨ x = 1, hence x = 1.
(i) ⇒ (iii) Let x, y ∈ L such that xn ≥ y− for any n ∈ N.

Similarly with (i) ⇒ (ii), if x, y ∈ L we have (x ∨ y)n ≥ (x ∨ y)− for any n ∈ N,
hence, by the hypothesis, we get x ∨ y = 1.

In any resituated lattice we have x∨ y ≤ [(x → y) → y]∧ [(y → x) → x] (see [6]).
Since x ∨ y = 1, it follows that [(x → y) → y] ∧ [(y → x) → x] = 1,

hence (x → y) → y = 1 and (y → x) → x = 1.
From (x → y) → y = 1, we have x → y ≤ y and considering that y ≤ x → y we

obtain x → y = y. Similarly, y → x = x.
(iii) ⇒ (i). Consider x ∈ L such that xn ≥ x−, for any n ∈ N.
By the hypothesis we obtain x → x = x, hence x = 1. %&

Definition 8. A residuated lattice is called Archimedean if one of the equivalent condi-
tions from the above proposition is satisfied.

Proposition 9. In any Archimedean linearly ordered residuated lattice L the following
properties hold:

(1) if xn > 0 for any n ∈ N, n ≥ 2, then x = 1;
(2) if xn � y > 0 for any n ∈ N, then x ∨ y = 1;
(3) if xn � y > 0 for any n ∈ N, then x → y = y and y → x = x.

Proof. It follows from Lemmas 5, 6 and Proposition 7. %&
For a residuated lattice L let denote:

L∗ = {x ∈ L | x ≥ x−} and G(L) = {x ∈ L | x2 = x}.
Remark 10. Let L,L1 be two residuated lattices and h : L −→ L1 a RL-morphism.
Then:

(1) 0, 1 ∈ G(L);
(2) if x ∈ G(L), then xn = x for all n ∈ N, n ≥ 2;
(3) if x ∈ G(L), then h(x) ∈ G(L1).
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Proposition 11. Let L,L1 be two residuated lattices and h : L −→ L1 a RL-
morphism. Then:

(1) 1 ∈ L∗ and 0 /∈ L∗; (2) x ≤ y and x ∈ L∗, then y ∈ L∗;
(3) if x, y ∈ L∗, then x ∨ y ∈ L∗; (4) if x ∈ L∗, then h(x) ∈ L∗1.

Proof

(1) 1− = 0 < 1; 0− = 1 > 0;
(2) Since x ≤ y, we have y− ≤ x− ≤ x ≤ y, hence y ∈ L∗;
(3) We have (x ∨ y)− = x− ∧ y− ≤ x− ≤ x ∨ y, thus x ∨ y ∈ L∗;
(4) We have x ∈ L∗ iff x ≥ x− iff x− → x = 1 iff h(x− → x) = h(1) = 1 iff
h(x−) → h(x) = 1 iff h(x−) ≤ h(x) iff h(x)− ≤ h(x) iff h(x) ∈ L∗1 . %&

Corollary 12. Let L,L1 be two residuated lattices and h : L −→ L1 a RL-morphism.
Then:

(1) L∗ ∩G(L) 
= ∅; (2) if x ∈ L∗ ∩G(L), then h(x) ∈ L∗1 ∩G(L1).

Proposition 13. Let L be an Archimedean residuated lattice and x ∈ L, y ∈ L∗. Then:

(1) xn ≥ y for any n ∈ N implies x ∨ y = 1;
(2) xn ≥ y for any n ∈ N implies x → y = y and y → x = x.

Proof. By the definition of an Archimedean residuated lattice and L∗. %&

Example 14. ([15]) Consider the residuated lattice (L,∧,∨,�,→, 0, 1) defined on the
unit interval L = [0, 1] with the usual order and the operations:

x� y =
{

0, if x + y ≤ 1
2

x ∧ y, otherwise x → y =
{

1, if x ≤ y
max(1

2 − x, y), otherwise.

Since (1
3 )n = 1

3 > 1
6 = (1

3 )−, it follows that L is not Archimedean.
One can easily check that L∗ = [14 , 1] and G(L) = {0} ∪ (1

4 , 1].

2 Convergence with a Fixed Regulator in Perfect MV-Algebras

The functor Γ was used in [4] to obtain the v-convergence for MV-algebras from the
theory of v-convergence in '-groups. Using the functors D and Δ we will investigate
the v-convergence in perfect MV-algebras.

Definition 15. ([4]) Let A be an arbitrary MV-algebra and 0 < v ∈ A. The sequence
(xn)n in A v-converges to an element x ∈ A (or x is a v-limit of (xn)n), denoted
xn →v x, if for every p ∈ N there is n0 ∈ N such that pd(xn, x) ≤ v for each n ∈ N,
n ≥ n0.

Proposition 16. ([4]) If (xn)n and (yn)n are sequences in an arbitrary MV-algebra
A and x, y ∈ A such that xn →v x and yn →v y, then: x−n →v x−, xn ⊕ yn →v

x⊕ y, xn � yn →v x� y, xn ∨ yn →v x ∨ y, xn ∧ yn →v x ∧ y.
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Proposition 17. In an arbitrary MV-algebra A the following hold:

(1) If (xn)n ⊆ Rad(A), 0 < v ∈ Rad(A) and xn →v x, then x ∈ Rad(A);
(2) If (xn)n ⊆ (Rad(A))−, v ∈ (Rad(A))−, v < 1 and xn →v− x, then x ∈
(Rad(A))−.

Proof
(1) Since xn →v x, for each p ∈ N there is n0 ∈ N such that pd(xn, x) ≤ v for each
n ∈ N, n ≥ n0. Using the properties of the distance function on A we have:

x = d(x, 0) ≤ d(x, xn)⊕ d(xn, 0) = d(xn, x)⊕ xn ≤ v ⊕ xn
Because Rad(A) is an ideal and v, xn ∈ Rad(A) it follows that v ⊕ xn ∈ Rad(A)

and then x ∈ Rad(A).
(2) We have (x−n )n ⊆ Rad(A), 0 < v− ∈ Rad(A) and apply (1). %&

Proposition 18. Let A be a locally Archimedean MV-algebra. Then:
(1) A sequence (xn)n ⊆ Rad(A) has a unique v-limit for any 0 < v ∈ Rad(A);
(2) If (xn)n, (yn)n ⊆ Rad(A) and 0 < v ∈ Rad(A) such that xn →v x, yn →v y and
xn ≤ yn for any n ∈ N, then x ≤ y.

Proof.
(1) Consider x1, x2 ∈ A such that xn →v x1 and xn →v x2. Then, by the above
proposition we have x1, x2 ∈ Rad(A) and by the properties of distance:

pd(x1, x2) ≤ pd(x1, xn)⊕ d(xn, x2) ≤ 2v for all p ∈ N.
Since A is locally Archimedean, we get d(x1, x2) = 0, hence x1 = x2.
(2) Since xn ≤ yn, we have x−n ⊕ yn = 1 →v 1. By Proposition 16 it follows that
x−n ⊕ yn →v x− ⊕ y and by (1) we get x− ⊕ y = 1. Thus x ≤ y. %&

Proposition 19. ([1]) If A is a perfect MV-algebra, then the following are equivalent:
(i) A is locally Archimedean ; (ii) D(A) is an Archimedean '-group.

Proposition 20. If A is a perfect MV-algebra, (xn)n ⊆ Rad(A) and 0 < v ∈ Rad(A)
then the following are equivalent:
(i) xn →v x in A; (ii) [xn, 0] →[v,0] [x, 0] in D(A).

Proof. (i)⇒(ii) Assume that for each p ∈ N there is n0 ∈ N such that pd(xn, x) ≤ v
for each n ∈ N, n ≥ n0. Then, for each p ∈ N and n ∈ N, n ≥ n0 we have

p|[xn, 0]− [x, 0]| = p|[xn, x]| = p[d(xn, x), 0] =
= [pd(xn, x), 0] ≤ [v, 0]

Thus [xn, 0] →[v,0] [x, 0] in D(A).
(ii)⇒(i) is proved similarly. %&

Definition 21. ([4]) Let A be an arbitrary MV-algebra and 0 < v ∈ A. The sequence
(xn)n in A is said to be v-fundamental or v-Cauchy if for each p ∈ N there is n0 ∈ N
such that pd(xn, xm) ≤ v for each m,n ∈ N, m ≥ n ≥ n0.

Proposition 22. ([4]) Let A be an arbitrary MV-algebra and 0 < v ∈ A. If the se-
quence (xn)n is v-convergent in A, then (xn)n is v-Cauchy in A.
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Proposition 23. ([4]) Let A be an arbitrary MV-algebra and 0 < v ∈ A. If the se-
quence (xn)n is v-Cauchy in A, then the sequences xn⊕yn, xn�yn, xn∨yn, xn∧yn,
x−n are v-Cauchy in A.

Corollary 24. Let A be a perfect MV-algebra, (xn)n ⊆ Rad(A) and 0 < v ∈ Rad(A).
If ([xn, yn])n is a [v, 0]-Cauchy sequence in D(A), then ([xn, yn]+)n and ([xn, yn]−)n
are also [v, 0]-Cauchy sequences in D(A).

Proposition 25. Let (xn)n be a v-Cauchy sequence in the perfect MV-algebra A with
0 < v ∈ Rad(A). Then there is n0 ∈ N such that {xn | n ≥ n0} ⊆ Rad(A) or
{xn | n ≥ n0} ⊆ (Rad(A))−.

Proof. Because (xn)n is a v-Cauchy sequence, for each p ∈ N there is n0 ∈ N such
that pd(xn, xn+k) ≤ v for each n, k ∈ N, n ≥ n0. Thus d(xn, xn+k) ∈ Rad(A).
Assume there are n ∈ N and k ∈ N such that xn ∈ (Rad(A))− and xn+k ∈ Rad(A),
so xn+k ≤ xn. It follows that xn = xn+k ⊕ d(xn, xn+k), with xn+k, d(xn, xn+k) ∈
Rad(A). It follows that xn ∈ Rad(A), which is a contradiction. Similarly, if xn ∈
Rad(A) and xn+k ∈ (Rad(A))−, then xn ≤ xn+k and xn+k = xn ⊕ d(xn, xn+k),
with xn, d(xn, xn+k) ∈ Rad(A). It follows that xn+k ∈ Rad(A), which is again a
contradiction. %&

Generaly, a v-Cauchy sequence in A is not convergent (see [4]). If every v-Cauchy
sequence in A is convergent, then A is said to be v-Cauchy complete.

Similar to the proof of Proposition 20 we can prove the following result.

Proposition 26. If A is perfect MV-algebra, (xn)n ⊆ Rad(A) and 0 < v ∈ Rad(A),
then the following are equivalent:

(i) (xn)n is a v-Cauchy sequence in A;
(ii) ([xn, 0])n is a [v, 0]-Cauchy sequence in D(A).

Theorem 27. If A is a perfect MV-algebra and 0 < v ∈ Rad(A), then the following
are equivalent:

(i) A is v-Cauchy complete MV-algebra;
(ii) D(A) is [v, 0]-Cauchy complete '-group.

Proof. (i)⇒(ii) Suppose that ([xn, yn])n is a [v, 0]-Cauchy sequence inD(A). It follows
that ([xn, yn]+)n and ([xn, yn]−)n are also [v, 0]-Cauchy sequences. By Proposition 1
and Proposition 26, xn � y−n and x−n � yn are v-Cauchy sequences in A. Since A is v-
Cauchy complete, it follows that xn� y−n →v z1 and x−n � yn →v z2, with z1, z2 ∈ A.
By Proposition 17 we have z1, z2 ∈ Rad(A). By Proposition 1 and Proposition 20 we
get [xn, yn]+ →[v,0] [z1, 0] and [xn, yn]− →[v,0] [z2, 0]. Since [z1, z2] = [z1, 0]−[z2, 0]
we get [xn, yn] →[v,0] [z1, z2]. Thus D(A) is a [v, 0]-Cauchy complete '-group.

(ii)⇒(i) Consider the v-Cauchy sequence (xn)n in A. According to Proposition 25
we can assume (xn)n ⊆ Rad(A) or (xn)n ⊆ (Rad(A))−.

If (xn)n ⊆ Rad(A), applying Proposition 26, the sequence ([xn, 0])n is [v, 0]-
Cauchy in D(A). Therefore there is x ∈ Rad(A) such that [xn, 0] →[v,0] [x, 0]. From
Proposition 26 it follows that xn →v x in A.
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If (xn)n ⊆ (Rad(A))−, then (x−n )n ⊆ Rad(A) and we get similarly that x−n →v

x−.
By Proposition 16 it follows that xn →v x. Thus, A is v-Cauchy complete. %&

Definition 28. Let A be a locally Archimedean MV-algebra and 0 < v ∈ Rad(A). A
locally Archimedean MV-algebra B is called v-Cauchy completion of A if the following
are satisfied:

(1) A is a subalgebra of B; (2) B is v-Cauchy complete;
(3) Every element of Rad(B) is a v-limit of some sequence in Rad(A).

Theorem 29. Let A,B be two locally Archimedean MV-algebras, A ⊆ B and 0 < v ∈
Rad(A). The following are equivalent:

(i) B is a v-Cauchy completion of A;
(ii) D(B) is a [v, 0]-Cauchy completion of D(A).

Proof. (i)⇒(ii) We prove the conditions (1)-(3) from Definition 2:

(1) A ⊆ B ⇒ D(A) ⊆ D(B);
(2) follows by Theorem 27;
(3) Take [x, y] ∈ D(B). Then there are two sequences (xn)n, (yn)n ⊆ Rad(A) such
that xn →v x and yn →v y. Thus, [xn, yn] →[v,0] [x, y], henceD(B) is a [v, 0]-Cauchy
completion of D(A).

(ii)⇒(i) We show that conditions (1)-(3) from Definition 28 hold:
(1) holds by hypothesis and (2) holds by Theorem 27;
(3) Take x ∈ Rad(B). There is a sequence ([xn, 0])n inD(A) such that [xn, 0] →[v,0]

[x, 0]. Thus xn →v x and therefore B is a v-Cauchy completion of A. %&

Theorem 30. Any locally Archimedean MV-algebra has a unique v-Cauchy
completion.

Proof. Let A be a locally Archimedean MV-algebra. By Proposition 19, D(A) is an
Archimedean '-group. By Theorems 3.16 and 3.17 from [2], there is a unique v-Cauchy
completion G of the abelian '-group D(A). But G = D(B) for some B = Δ(G), so
D(B) is the unique v-Cauchy completion of D(A). By Theorem 29 it follows that B is
the unique v-Cauchy completion of D(A). %&

3 Convergence with a Fixed Regulator in Residuated Lattices

Definition 31. Let L be a residuated lattice and v ∈ G(L) \ {0}. The sequence (xn)n
is said to be v-convergent to an element x ∈ L (or x is v-limit of (xn)n) denoted by
xn →v x, if for every p ∈ N there is n0 ∈ N such that d(xn, x)p ≥ v for all n ∈ N,
n ≥ n0. The element v is called convergence regulator in L.

Example 32
a) The constant sequence (x, x, x, ..., x, ...) v-converges to x for any v ∈ G(L);
b) Consider the residuated lattice L in Example 14, v = 1

2 ∈ G(L) and the sequence
(xn)n with xn = n−1

n for all n ∈ N. Then xn → 1
2

1. Indeed, for any p ∈ N, we have

d(xn, 1)p = xpn = (n−1
n )p = n−1

n ≥ 1
2 for all n ≥ 2. Thus, for any p, n0 = 2.



On the Convergence with Fixed Regulator in Residuated Structures 907

Remarks 33
(1) Let u ∈ G(L), u < v. If xn →v x, then xn →u x.
(2) If G(L) = {0, 1}, then the constant sequences are the only v-convergent sequences.

Proposition 34. Let (xn)n, (yn)n be two sequences in L and x, y ∈ L such that xn →v

x and yn →v y. Then the following properties hold:

(1) xn ∧ yn →v x ∧ y; (2) xn ∨ yn →v x ∨ y; (3) xn � yn →v x� y;
(4) (xn → yn) →v (x → y); (5) x−n →v x−; (6) a� xn →v a� x for any a ∈ L.

Proof. By the hypothesis, for every p ∈ N there are n1, n2 ∈ N such that d(xn, x)p ≥ v
for all n ∈ N, n ≥ n1 and d(yn, y)p ≥ v for all n ∈ N, n ≥ n2.

Obviously, d(xn, x) ≥ d(xn, x)p ≥ v for all n ≥ n1 and d(yn, y) ≥ d(yn, y)p ≥
v for all n ≥ n2. We will apply the properties of the distance function asserted in
Proposition 4.

(1) For every p ∈ N we have d(xn∧yn, x∧y)p ≥ (d(xn, x)∧d(yn, y))p ≥ (v∧v)p =
vp = v, for all n ∈ N, n ≥ n0 = max{n1, n2}. Thus, xn ∧ yn →v x ∧ y;
(2), (3) and (4) can be proved in a similar manner as (1);
(5) We have d(x−n , x−) = d(xn → 0, x → 0) ≥ d(xn, x) � d(0, 0) = d(xn, x). Thus,
x−n →v x;
(6) Since d(a � xn, a � x) ≥ d(a, a) � d(xn, x) = d(xn, x), it follows that, for all
p ∈ N d(a� xn, a� x)p ≥ d(xn, x)p ≥ v for all n ∈ N, n ≥ n1, so a� xn →v a� x.

%&
Proposition 35. Let L,L1 be two residuated lattices,h : L → L1 a RL-morphism and
v ∈ G(L). If xn →v x in L, then h(xn) →h(v) h(x) in L1.

Proof. According to Remark 10 and Proposition 11, it follows that h(v) ∈ G(L1).
Since xn →v x, then for every p ∈ N there is n0 ∈ N such that d(xn, x)p ≥ v for all
n ∈ N, n ≥ n0. It follows that for every p ∈ N we have:

d(h(xn), h(x))p = h(d(xn, x))p = h(d(xn, x)p) ≥ h(v) for all n ∈ N, n ≥ n0.
Thus, h(xn) →h(v) h(x). %&

Theorem 36. The v-convergence in a residuated lattice L defines a topology on L.

Proof. We define a closed set X to be a subset of L such that, if (xn)n ⊆ X with
xn →v x, then x ∈ X. We show that the set T of all closed sets of L defines a topology
on L. Obviously, ∅, L ∈ T . Also, it is easy to check that if Xi ∈ T , then ∩i∈IXi ∈ T .
Consider X1, X2 ∈ T and (xn)n ⊆ X ∪ Y such that xn →v x (that is, for every
p ∈ N there is n0 ∈ N such that d(xn, x)p ≥ v for all n ∈ N, n ≥ n0). Each of the
elements of {xn, n ∈ N} is in X or Y , hence if we define I1 = {n ∈ N : xn ∈ X}
and I2 = {n ∈ N : xn ∈ Y }, then I1 or I2 is infinite. Suppose that I1 is infinite. This
means that there exists a subsequence (yn)n = (xk(n))n of (xn)n such that (yn)n ⊆ X
(k : N −→ N is an arbitrary increasing function). It follows that for every p ∈ N there
is n0 ∈ N such that d(yn, x)p ≥ v for all n ∈ N, n ≥ n0, so x ∈ X , since X is closed.
We conclude that x ∈ X ∪ Y , hence X ∪ Y is closed. Thus, T is a topology on L. %&
The above constructed topology is called v-topology.
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As an immediate consequence of Proposition 34, the operations ∧,∨, ∗,→ of the
residuated lattice L are continuous w.r.t. the v-topology.

Proposition 37. Let L be an Archimedean residuated lattice. Then:

(1) The v-limit is unique determined for each v ∈ L∗ ∩G(L);
(2) If (xn)n, (yn)n ⊆ L such that xn →v x, yn →v y and xn ≤ yn for all n ∈ N, then
x ≤ y.

Proof
(1) Suppose there exist x1, x2 ∈ L such that xn →v x1 and xn →v x2.
It follows that for every p ∈ N there is n1, n2 ∈ N such that d(xn, x1)p ≥ v for all
n ∈ N, n ≥ n1 and d(xn, x2)p ≥ v for all n ∈ N, n ≥ n2.
Let’s consider p ∈ N and m ≥ n1, n2. Then we have:

d(x1, x2)p ≥ d(x1, xm)p � d(xm, x2)p ≥ v2 = v ≥ v−.

Because L is Archimedean, we obtain d(x1, x2) = 1.
Thus, by Proposition 4(2) we have x1 = x2.
(2) Since xn ≤ yn for all n ∈ N , we have xn → yn = 1, so (xn → yn) →v 1.
On the other hand (xn → yn) →v (x → y) and applying (1) we get x → y = 1, hence
x ≤ y. %&

Remark 38. If the residuated lattice L is not Archimedean, then the v-limit of a se-
quence (xn)n is not always unique.

Indeed, let L be the non Archimedean residuated lattice from Example 14. Then for
the sequence (xn)n = (1

3 , 1,
1
3 , 1, ...) we have:

d(xn,
1
3
) =

{
1 if n is odd
1
3 if n is even and d(xn, 1) =

{ 1
3 if n is odd

1 if n is even.

It follows that d(xn, 1
3 )p ≥ (1

3 )p = 1
3 and d(xn, 1)p ≥ (1

3 )p = 1
3 for all p ∈ N,

p ≥ 1.
Taking v = 1

3 ∈ L∗ ∩G(L), we get xn →v
1
3 and xn →v 1.

Definition 39. Let v ∈ G(L). The sequence (xn)n is said to be v-Cauchy or
v-fundamental sequence if for every p ∈ N there is n0 ∈ N such that d(xn, xm)p ≥ v
for all n,m ∈ N, m ≥ n ≥ n0.

Proposition 40. Let v ∈ G(L). If the sequence (xn)n is v-convergent, then (xn)n is
v-Cauchy.

Proof. Suppose that xn →v x, that is for every p ∈ N there is n0 ∈ N such that
d(xn, x)p ≥ v for all n ∈ N, n ≥ n0. Let m,n ∈ N,m ≥ n ≥ n0.

By Proposition 4(5) we have d(xn, xm)p ≥ d(xn, x)p � d(xm, x)p ≥ v2 = v.
Hence, the sequence (xn)n is v-Cauchy. %&

Proposition 41. Let (xn)n, (yn)n be v-Cauchy sequences in L and a ∈ L. Then, the
sequences (xn ∧ yn)n, (xn ∨ yn)n, (xn � yn)n, (xn → yn)n, (xn)−n , (a � xn)n are
v-Cauchy.
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Proof. By the hypothesis, for every p ∈ N there is n1, n2 ∈ N such that d(xn, xm)p ≥
v for all n,m ∈ N, m ≥ n ≥ n1 and d(yn, ym)p ≥ v for all n,m ∈ N, m ≥ n ≥ n2.

By Proposition 4(9), for any p ∈ N and m ≥ n ≥ n0 = max{n1, n2} we have

d(xn ∧ yn, xm ∧ yn)p ≥ (d(xn, xm) ∧ d(yn, yn))p ≥ (v ∧ v)p = vp = v.

Thus, (xn ∧ yn)n is a v-Cauchy sequence. Similarly for the other sequences. %&

Corollary 42. C(L) = {(xn)n ⊆ LN | (xn)n v-Cauchy } is a residuated lattice with
component-wise operations.

Proof. By the above proposition, C(L) is a stable part of LN.
The conditions in the definition of a residuated lattice are verified taking into con-

sideration the component-wise defined operations. C(L) has the bounds (0)n and (1)n.
%&

On C(L) we define the relation ≡ by (xn)n ≡ (yn)n iff (d(xn, yn))n →v 1.
By (x)n we denote the constant x sequence.

Proposition 43. The relation ≡ is a congruence on C(L).

Proof. First we show that ≡ is an equivalence:
Reflexivity: (xn)n ≡ (xn)n because (d(xn, xn))n = (1)n →v 1.
Symmetry: (xn)n ≡ (yn)n implies (yn)n ≡ (xn)n because d(xn, yn) = d(yn, xn).
Transitivity: Let’s consider (xn)n ≡ (yn)n and (yn)n ≡ (zn)n, that is
(d(xn, yn))n →v 1 and (d(yn, zn))n →v 1. It follows that for every p ∈ N there exist
n1, n2 ∈ N such that d((d(xn, yn)), 1)p ≥ v for all n ≥ n1 and d((d(yn, zn)), 1)p ≥ v
for all n ≥ n2.

Taking under consideration that d(x, 1) = x we get d(xn, yn)p ≥ v for all n ≥ n1
and d(yn, zn)p ≥ v for all n ≥ n2. We have: d(xn, zn)p ≥ d(xn, yn)p � d(yn, zn)p ≥
v2 = v.

Taking n0 = max{n1, n2}, we get d(xn, zn)p ≥ v for all n ≥ n0.
Hence, (d(d(xn, zn)), 1)p ≥ v for all n ≥ n0, so (d(xn, zn))n →v 1, that is

(xn)n ≡ (zn)n.
For the compatibility of the relation ≡ with the operations we apply Propoposition

4(6-9). Thus,≡ is a congruence on C(L). %&

Corollary 44. L1 = C(L)/ ≡ is a residuated lattice.

Denote by [(xn)n] the equivalence class of the sequence (xn)n.

Proposition 45. If L is Archimedean, then the map i : L → L1, i(x) = [(x)n] is an
embedding of residuated lattices.

Proof. Consider x1, x2 ∈ L such that (x1)n ≡ (x2)n, that is (d(x1, x2))n →v 1.
On the other hand, since (d(x1, x2))n is a constant sequence, it follows that

(d(x1, x2))n →v d(x1, x2). Hence, according to Proposition 37 we get d(x1, x2) = 1,
that is x1 = x2. Thus, the map x → [(xn)n] is injective. Applying Proposition 4 and
Proposition 34 it is easy to check that this map is morphism. Therefore, the map i is an
embedding of residuated lattices. %&
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Definition 46. A residuated lattice L is said to be v-Cauchy complete if every v-Cauchy
sequence in L is v-convergent.

A residuated lattice L is a complete if is complete as a lattice, that is, if every subset A of
L has both a greatest lower bound (infimum, meet) and a least upper bound (supremum,
join) in L. These are denoted by

∨
A and respectively

∧
A.

Theorem 47. If the residuated lattice L is complete, then L is v-Cauchy complete.

Proof. Let (xn)n be a v-Cauchy sequence in L, that is for every p ∈ N there is n0p ∈ N
such that d(xn, xm)p ≥ v for all n,m ∈ N, m ≥ n ≥ n0p . Since L is a complete lattice,
there exists x =

∧
p∈N

∧
n≥n0p

xn. Obviously, [xn, x] ⊆ [xn, xm].
Hence, according to Proposition 4(11), for each p ∈ N we have d(xn, x)p

≥ d(xn, xm)p ≥ v for all n ∈ N, n ≥ n0p .
Thus, xn →v x and it follows that L is a v-Cauchy complete lattice. %&
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Abstract. In the elementary case of finitely many events, we generalise
to Gödel (propositional infinite-valued) logic — one of the fundamental
fuzzy logics in the sense of Hájek — the classical correspondence be-
tween partitions, quotient measure spaces, and push-forward measures.
To achieve this end, appropriate Gödelian analogues of the Boolean no-
tions of probability assignment and partition are needed. Concerning
the former, we use a notion of probability assignment introduced in the
literature by the third-named author et al. Concerning the latter, we
introduce and use open partitions, whose definition is justified by inde-
pendent considerations on the relational semantics of Gödel logic (or,
more generally, of the finite slice of intuitionistic logic). Our main result
yields a construction of finite quotient measure spaces in the Gödelian
setting that closely parallels its classical counterpart.

1 Introduction

We assume familiarity with Gödel (propositional infinite-valued) logic, one of
the fundamental fuzzy logics in the sense of Hájek [4]; we recall definitions in
Section 2.1 below. The problem of generalising elementary probability theory to
such fuzzy logics has recently attracted considerable attention; let us mention e.g.
[9] for �Lukasiewicz logic, [8] for [0, 1]-valued logics with continuous connectives,
and [2], [1] for Gödel logic. This paper falls into the same general research field.

Consider a finite set of (classical, yes/no) events E , along with the finite
Boolean algebras B(E ) that they generate. A probability assignment to B(E ) is
a function P :B(E ) → [0, 1] satisfying Kolmogorov’s axioms, namely,

(B1) P (�) = 1, and
(B2) P (X) + P (Y ) = P (X ∨ Y ) + P (X ∧ Y ) for all X,Y ∈ B(E ).

Here, � is the top element of B(E ), and ∨ and ∧ denote the join and meet
operation of B(E ), respectively. The assignment P is uniquely determined by
its values on the atoms A = {a1, . . . , am} of B(E ). In fact, there is a bijection
between probability assignments to B(E ), and probability distributions on the
set A, that is, functions p:A → [0, 1] such that

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 911–922, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(BD)
∑m

i=1 p(ai) = 1 .

In one direction, one obtains such a p from a probability assignment P to B(E )
just as the restriction of P to A. Conversely, from a probability distribution
p on A one obtains a probability assignment P to B(E ) by setting P (X) =∑

ai≤X p(ai) for any event X ∈ B(E ). If one represents B(E ) as the Boolean
algebra of subsets of A, this means that, for any X ⊆ A, one has P (X) =∑

ai∈X p(ai). In probabilistic parlance, one calls the set A a sample space, and
its singleton subsets elementary events.

In several contexts related to probability theory, partitioning the sample space
A is a process of fundamental importance. A partition of A is a collection of non-
empty, pairwise disjoint subsets of A — often called blocks — whose union is
A. A partition π of A can be regarded as a quotient object obtained from A.
Indeed, there is a natural projection map A → π given by

a ∈ A �→ [a]π ∈ π ,

where [a]π denotes the unique block of π that a belongs to. (Thus, [a]π is the
equivalence class of a under the equivalence relation on A uniquely associated
with π.) When, as is the present case, A carries a probability distribution, one
would like each such quotient set π to inherit a unique probability distribution,
too. This is indeed the case. Define a function pπ:π → [0, 1] by

pπ([a]π) =
∑

ai∈[a]π

p(ai) = P ([a]π) . (1)

Then pπ is a probability distribution on the set π. To close a circle of ideas, let
us return from the distribution pπ to a probability assignment to an appropriate
algebra of events. For this, it suffices to observe that the partition π = {[a]π |
a ∈ A} determines the unique subalgebra Sπ of B(E ) whose atoms are given by∨

[a]π, for a ∈ A. We can then define a probability assignment PSπ :Sπ → [0, 1]
starting from P via

PSπ(X) =
∑

[a]π≤X
P ([a]π) .

In other words, in the light of (1), PSπ is the unique probability assignment to
Sπ that is associated with the probability distribution pπ on the atoms of Sπ.

Although our current setting is restricted to finitely many events, and is thus
elementary, generalisations of the standard ideas above play an important rôle in
parts of measure theory. In particular, in certain contexts one constructs quotient
measure spaces using as a key tool the push-forward measure along the natural
projection map.1 For our purposes, let f :A → B be a function between the finite
sets A and B, and let p:A → [0, 1] be a probability distribution on A. Define a
map pf :B → R by setting

pf (b) =
∑

a∈f−1(b)

p(a)

1 For an influential account of these ideas, please see [10].
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for any b ∈ B. We call pf the push-forward of p along f . (Here, as usual,
pf (b) = 0 when the index set is empty.) One checks that pf is again a probability
distribution. If, moreover, f is a surjection, and thus induces a partition of A by
taking fibres (=inverse images of elements in the codomain), then the following
fact is easily verified.

Fact. Let A be a finite set, π a partition of A, and q:A → π the natural projection
map. Then, for every probability distribution p:A → [0, 1] on A, the push-forward
probability distribution pq of p along q coincides with pπ in (1).

Summing up, the fact above provides the desired construction of quotient mea-
sure spaces in the elementary case case of finitely many events. Our main result,
Theorem 2 below, affords a generalisation of this construction to Gödel logic. To
achieve this end, we need appropriate Gödelian analogues of the Boolean notions
of probability assignment and partition. Concerning the former, we use a notion
of probability assignment recently introduced in [2]; the needed background is in
Subsection 2.3. Concerning the latter, in Section 3 we introduce open partitions,
whose definition is justified by independent considerations on the relational se-
mantics of Gödel logic. As a key tool for the proof of Theorem 2, we obtain in
Theorem 1 a useful characterisation of open partitions.

2 Preliminary Results, and Background

2.1 Gödel Logic

Equip the real unit interval [0, 1] with the operations ∧, →, and ⊥ defined by

x ∧ y = min(x, y) , x → y =
{

1 if x ≤ y ,
y otherwise , ⊥ = 0 .

The tautologies of Gödel logics are exactly the formulas ϕ(X1, . . . , Xn) built
from connectives {∧,→,⊥} that evaluate constantly to 1 under any [0, 1]-valued
assignment to the propositional variables Xi, where each connective is inter-
preted as the operation denoted by the same symbol. As derived connectives,
one has ¬ϕ = ϕ → ⊥, � = ¬⊥, ϕ ∨ ψ = ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ).
Thus, � is interpreted by 1, ∨ by maximum, and negation by

¬x =
{

1 if x = 0 ,
0 otherwise .

Gödel logic can be axiomatised in the style of Hilbert with modus ponens as only
deduction rule. In fact, completeness with respect to the many-valued semantics
above can be shown to hold for arbitrary theories. For details, we refer to [4].

Gödel logic also coincides with the extension of the intuitionistic propositional
calculus by the prelinearity axiom scheme (ϕ → ψ) ∨ (ψ → ϕ) (see again [4]).
Thus, the algebraic semantics of Gödel logic is the well-known subvariety of
Heyting algebras2 satisfying prelinearity, which we shall call Gödel algebras. By
2 For background on Heyting algebras, see e.g. [7].
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[6, Thm. 1], and in analogy with Boolean algebras, a finitely generated Gödel al-
gebra is finite. Throughout, the operations of a Gödel algebra are always denoted
by ∧, ∨, →, ¬, � (top element), and ⊥ (bottom element).

2.2 Posets and Open Maps

For the rest of this paper, poset is short for partially ordered set, and all posets
are assumed to be finite. If P is a poset (under the relation ≤) and S ⊆ P , the
lower set generated by S is

↓ S = {p ∈ P | p ≤ s for some s ∈ S} .

(When S is a singleton {s}, we shall write ↓ s for ↓ {s}.) A subposet S ⊆ P is a
lower set if ↓ S = S. Upper sets and ↑ S are defined analogously. We write MinP
and MaxP for the set of minimal and maximal elements of P , respectively.

As we already mentioned, Gödel algebras are the same thing as Heyting alge-
bras satisfying the prelinearity axiom. From any finite poset P one reconstructs
a Heyting algebra, as follows. Let SubP be the family of all lower sets of P .
When partially ordered by inclusion, SubP is a finite distributive lattice, and
thus carries a unique Heyting implication adjoint to the lattice meet operation
via residuation. Explicitly, if L is a finite distributive lattice, then its Heyting
implication is given by

x → y =
∨
{z ∈ L | z ∧ x ≤ y}

for all x, y ∈ L. Accordingly, we regard SubP as a Heyting algebra.
Conversely, one can obtain a finite poset from any finite Heyting algebra H , by

considering the poset SpecH of prime filters of H , ordered by reverse inclusion.
Equivalently, one can think of SpecH as the poset of join-irreducible elements
of H , with the order they inherit from H . (Let us recall that a filter of H is an
upper set of H closed under meets; it is prime if it does not contain the bottom
element of H , and contains either y or z whenever it contains y ∨ z. We further
recall that x ∈ H is join-irreducible if it is not the bottom element of H , and
whenever x = y ∨ z for y, z ∈ H , then either x = y or x = z.)

The constructions of the two preceding paragraphs are inverse to each other,
in the sense that for any finite Heyting algebra H one has an isomorphism of
Heyting algebras

Sub SpecH ∼= H . (2)

In fact, the isomorphism (2) is natural. To explain this, let us recall that an
order-preserving function f : P → Q between posets is called open if when-
ever f(u) ≥ v′ for u ∈ P and v′ ∈ Q, there is v ∈ P such that u ≥ v and
f(v) = v′. From a logical point of view, if one regards P and Q as finite Kripke
frames, then open maps are known as p-morphisms ; cf. e.g. [3]. It is a folk-
lore result that there is a categorical duality between finite Heyting algebras
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and their homomorphisms, and finite posets and open order-preserving maps
between them. Given a homomorphism of finite Heyting algebras h:A → B, the
map Spech: SpecB → SpecA given by p �→ h−1(p) (where p is a prime filter
of B) is open and order-preserving. Conversely, given an open order-preserving
map f :P → Q, the function Sub f : SubQ → SubP given by Q′ �→ f−1(Q′) is a
homomorphism of Heyting algebras. Specifically, the order-preserving property
of f is equivalent to Sub f being a lattice homomorphism; and the additional
assumption that f be open insures that Sub f preserves the Heyting implication,
too. It can be checked that Spec and Sub (now regarded as functors) yield the
aforementioned categorical duality.

Let us now restrict attention to finite Gödel algebras. A forest is a poset F
such that ↓ x is totally ordered for any x ∈ F . In this case, it is customary to
call MinF and MaxF the sets of roots and leaves of F , respectively. Further,
a lower set of the form ↓ x, for x ∈ F , is called a branch of F . Note that
any lower set of a forest F is itself a forest, and we shall call it a subforest of
F . Horn proved [5, 2.4] that a Heyting algebra H is a Gödel algebra if and
only if its prime filters are a forest under reverse inclusion, i.e. if SpecH is a
forest. Using this fact, one sees that the categorical duality of the preceding
paragraph restricts to a categorical duality between finite Gödel algebras with
their homomorphisms, and forests with open maps between them. Since Gödel
logic is a generalisation of classical logic, this duality has a Boolean counterpart
as a special case. Namely, finite Boolean algebra and their homomorphisms are
dually equivalent to finite sets and functions between them. To obtain this result
starting from Gödel algebras, one just observes that a finite Gödel algebra G is
Boolean if and only if SpecG is a forest consisting of roots only, that is, a finite
set, and that an open map between such forests is just a set-theoretic function.
Observe that the folklore duality between finite Boolean algebra and finite sets
underlies the correspondence between probability assignments and distributions
illustrated in the Introduction. Similarly, the folklore duality between forests and
open maps will underlie the analogous correspondence for Gödel logic, which we
will state in Proposition 1 below.

Example 1. If G = {�,⊥}, then SpecG is a single point, the prime filter {�}. If,
even more trivially, G is the degenerate singleton algebra G = {� = ⊥}, then G
has no prime filter at all, and thus SpecF is the empty forest. On the other hand,
there is no such thing as a Gödel algebra with empty underlying set, because the
signature contains the constant ⊥. Next suppose G is the Gödel algebra whose
Hasse diagram is depicted in Fig. 1. The join-irreducible elements of G are those
labeled by X , ¬X , and ¬¬X . Therefore, SpecG is the forest depicted in Fig. 2.
To recover G from SpecF , consider the collection Sub SpecG of all lower sets
of SpecG ordered by inclusion. This is depicted in Fig. 3. Ordering Sub SpecG
by inclusion, we get back (an algebra naturally isomorphic to) G. (Let us note
that here, using algebraic terminology, G is the Gödel algebra freely generated
by the generator X .)
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Fig. 1. A Gödel algebra G

Fig. 2. The forest SpecG (cf. Fig. 1)
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Fig. 3. The elements of SubSpec G (cf. Fig. 1 and 2)

2.3 Probability Assignments

Let G be a finite Gödel algebra. By a probability assignment to G we mean a
function P :G → [0, 1] such that, for any X,Y, Z ∈ G,

(G1) P (�) = 1 and P (⊥) = 0,
(G2) X ≤ Y implies P (X) ≤ P (Y ),
(G3) P (X) + P (Y ) = P (X ∨ Y ) + P (X ∧ Y ) for all X,Y ∈ G, and
(G4) if X is covered3 by Y that is covered by Z, and each X,Y, Z is either
join-irreducible or coincides with ⊥, then P (X) = P (Y ) implies P (Y ) =
P (Z).

These axioms were first put forth in [2]. Clearly, (G1–3) are just standard prop-
erties of Boolean probability assignments: the first is normalisation; the second,
monotonicity; the third, finite additivity. On the other hand, (G4) is characteris-
tic of the Gödel case. If G happens to be a Boolean algebra, (G4) holds trivially,
for in this case any two join-irreducible elements (=atoms) are incomparable.
When G is not Boolean, then (G4) is an actual constraint on admissible distri-
butions of values — a constraint arising from the nature of implication in Gödel
logic. A further discussion of (G4) can be found in [2, Section III].
3 This means that X < Y , and there is no element lying properly between X and Y .
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As in the Boolean case, there is a notion of probability distribution corre-
sponding to (G1–G4). To define it, consider the forest F = SpecG. A probability
distribution on F is a function p:F → [0, 1] such that

(GD1)
∑

x∈F p(x) = 1, and
(GD2) for all x ≤ y ∈ F , p(x) = 0 implies p(y) = 0.

Axiom (GD2) is equivalent to the condition that p−1(0) be an upper set of F .
Now, the following correspondence result holds.

Proposition 1. Let G be a finite Gödel algebra. Without loss of generality, let
us assume G = SubF for a finite forest F . Let P be the family of all probability
assignments to G, and D the family of all probability distributions on F . With
each P ∈ P, let us associate the map p:F → [0, 1] such that, for each x ∈ F ,

p(x) = P (↓ x)− P (↓ x�) , (3)

where x� is the unique element of F that is covered by x, if x 
∈ MinF , and
x� = ⊥, otherwise. Then the correspondence p �→ P is a bijection between P
and D . Its inverse is given by

P (X) =
∑
x∈X

p(x) , (4)

for each X ∈ G = SubF .

For reasons of space, we shall omit the proof of Proposition 1. In the rest of the
paper we shall find it expedient to work with distributions rather than assign-
ments. Using Proposition 1 in a straightforward manner, it is possible to obtain
a version of Theorem 2 below for probability assignments. Details are omitted,
again due to space limitations.

3 Open Partitions

We next introduce a key tool for the statement and proof of Theorem 2, namely,
a notion of partition for forests.

Remark 1. It turns out that our results in this section apply equally well to (al-
ways finite) posets, with no additional complications. Therefore, here we shall
work with posets and open maps between them. As mentioned in Subsection 2.2,
in logical terms this amounts to working with finite Kripke frames and their p-
morphisms, that is, with the relational semantics of the finite slice of intuitionistic
logic. On the other hand, both in Proposition 1 and in Theorem 2 we restrict
attention to forests only. Indeed, while the notion of open partition can be jus-
tified for the whole finite slice of intuitionistic logic, the notion of probability
distribution given in (GD1–2) is intimately related to a complete [0, 1]-valued
semantics for the logic at hand — and, as is well known, no such complete se-
mantics is available for full intuitionistic logic. We reserve a thorough discussion
of these points for a future occasion.
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In the Boolean case, a partition of a set A is the same thing as the collection of
fibres of an appropriate surjection f :A → B. Accordingly, we define as follows.

Definition 1. An open partition of a poset P is a set-theoretic partition π =
{B1, . . . , Bm} of P that is induced by some surjective open map f :P → Q onto
a poset Q. That is, for each i = 1, . . . ,m there is y ∈ Q such that

Bi = f−1(y) = {x ∈ P | f(x) = y} .

It follows that an open partition π of P carries an underlying partial order :
namely, define

Bi � Bj

if and only if
f(Bi) ≤ f(Bj) in Q .

It is easily verified that the order � does not depend on the choice of f and
Q. Also note that π, regarded as a poset under �, is order-isomorphic to (any
choice of) Q.

Definition 1 has the advantage that it can be recast in quite general category-
theoretic terms. However, it is also apparent that, in practice, it is quite incon-
venient to work with — one needs to refer to f and Q, whereas in the Boolean
case one has at hand the usual definition in terms of non-empty, pairwise dis-
joint subsets. This initial drawback is fully remedied by our main result on open
partitions.

Theorem 1. Let P be a poset, and let π = {B1, . . . , Bm} be a set-theoretic
partition of P . Then π is an open partition of P if and only if for each Bi ∈ π
there exist i1, i2, . . . , it ∈ {1, . . . ,m} such that

↑ Bi = Bi1 ∪Bi2 ∪ · · · ∪Bit . (5)

In this case, the underlying order � of π is uniquely determined by

Bi � Bj iff Bj ⊆ ↑ Bi iff there are x ∈ Bi, y ∈ Bj with x ≤ y ,

for each Bi, Bj ∈ π.

Proof. Suppose π is an open partition of P . By Definition 1 there exists a sur-
jective open map f from P onto a poset Q whose set of fibres is π. Suppose, by
way of contradiction, that (5) does not hold. Thus, there exist p, q ∈ Bj such
that p ∈ ↑ Bi, but q /∈ ↑ Bi, for some Bi, Bj ∈ π. Let f(Bi) = y. Since f is
order-preserving, y ∈ ↓ f(p). Since f is open, y /∈ ↓ f(q), for else we would find
x ∈ Bi with x ≤ q. But f(q) = f(p) and we have a contradiction.

Suppose now that π satisfies (5). Endow π with the relation �, defined as in
Theorem 1. Observe that under the condition (5), for each Bi, Bj ∈ π, Bj ⊆ ↑ Bi

if and only if there are x ∈ Bi, y ∈ Bj with x ≤ y. Indeed, whenever x ≤ y, the
block Bj intersects the upper set of the block Bi. By (5), Bj must be entirely
contained in ↑ Bi. The converse is trivial.
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We show that � is a partial order on π. One can immediately check that � is
reflexive and transitive. Let Bi, Bj ∈ π be such that Bi � Bj and Bj � Bi. Let
x ∈ Bi. Since Bj � Bi there exists y ∈ Bj such that y ≤ x. Since Bi � Bj there
exists z ∈ Bi such that z ≤ y ≤ x. Iterating, since P is finite, we will find p ∈ Bi

and q ∈ Bj satisfying p ≤ q ≤ p. Since π is a partition, we obtain Bi = Bj .
Thus, the relation � is antisymmetric, and it is a partial order on π.

Let us consider now the projection map f : P → π which sends each element
of P to its block. Let x ∈ Bi, y ∈ Bj , for Bi, Bj ∈ π. If x ≤ y then f(x) = Bi �
f(y) = Bj and f is order-preserving. By construction, since π does not have
empty blocks, f is surjective. To show f is open, we consider u ∈ P , f(u) = Bt,
and Bs � Bt, for some Bs ∈ π. Since Bt ⊆ ↑ Bs, there exists v ∈ Bs such that
v ≤ u. Since f(v) = Bs, f is open.

It remains to show that the last statement holds. Endow π with a partial
order �′ different from � and consider the map f ′ : P → π that sends each
element of P to its own block. We consider two cases.

(Case 1). There exist Bi, Bj ∈ π such that Bi � Bj , but Bi �′ Bj . Since there
are x ∈ Bi, y ∈ Bj with x ≤ y, f ′ is not order-preserving.

(Case 2). There exist Bi, Bj ∈ π such that Bi �′ Bj , but Bi � Bj . Let y ∈ Bj .
By the definition of �, for every x ∈ Bi, x � y. Thus, f ′ is not an open map.

Thus, if one endows π with an order different from �, one cannot find any sur-
jective open map fromP to π which induces the partition π. We therefore conclude
that the order on π is uniquely determined, and the proof is complete. %&

Fig. 4. Two set-theoretic partitions of a forest

Example 2. We consider two different set-theoretic partitions π = {{x, y}, {z}},
and π′ = {{x, z}, {y}} of the same forest F . The partitions are depicted in Figure
4. It is immediate to check, using Condition (5) in Theorem 1, that π is an open
partition of F , while π′ is not.

4 Main Result

In Table 1, we summarise the correspondence between the fragments of the prob-
ability theory for Gödel logic sketched in the above, and the classical elementary
theory. To state and prove our main result, we need one more definition to gener-
alise the push-forward construction from finite sets to forests. Let f :F1 → F2 be
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Table 1. Gödelian analogues of Boolean concepts

Concept Boolean model Gödelian model

Sample space Set Forest
Event Subset Subforest
Elementary event Singleton Branch
Partition Set-theoretic partition Open partition
Structure of events Boolean algebra of sets Gödel algebra of forests
Probability assignment Function satisfying (B1–2) Function satisfying (G1–4)
Probability distribution Function satisfying (BD2) Function satisfying (GD1–2)

an open map between forests, and let p:F1 → [0, 1] be a probability distribution.
The push-forward of p along f is the function pf :F2 → R defined by setting

pf (y) =
∑

x∈f−1(y)

p(x)

for any y ∈ F2.

Theorem 2. Let F be a forest, π an open partition of F , and q:F → π the
natural projection map, Then, for any probability distribution p:F → [0, 1], the
push-forward pq of p along q is again a probability distribution on π.

Proof. It is clear that pq takes values in the non-negative real numbers, because
p does. Thus we need only prove that pq satisfies (GD1–2).

We first prove that (GD1) holds. Let us display the given open partition as
π = {B1, . . . , Bm}, and let us write � for its underlying order, and ≺ for the
corresponding strict order. By definition, we have

pq(Bi) =
∑

x∈q−1(Bi)

p(x) (6)

for each Bi ∈ π. Since q:F → π is the natural projection map onto π, (6) can
be rewritten as

pq(Bi) =
∑
x∈Bi

p(x) (7)

Summing (7) over i = 1, . . . ,m, we obtain

m∑
i=1

pq(Bi) =
m∑
i=1

∑
x∈Bi

p(x) . (8)

Since π is, in particular, a set-theoretic partition of F , from (8) we infer

m∑
i=1

pq(Bi) =
∑
x∈F

p(x) = 1 , (9)

with the latter equality following from the fact that p satisfies (GD1). This proves
that pq satisfies (GD1), too.
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To prove (GD2), suppose, by way of contradiction, that p−1
q (0) is not an upper

set — in particular, it is not empty. Then there exist Bi 
= Bj ∈ π with

pq(Bi) = 0 , (10)

but
Bi ≺ Bj (11)

and
pq(Bj) > 0 . (12)

From (11), together with Theorem 1 and the fact that Bi ∩ Bj = ∅, we know
that there exist xi ∈ Bi and xj ∈ Bj such that

xi < xj .

From (10), along with (7) and the fact that p has non-negative range, we obtain

pq(x) = 0 for all x ∈ Bi . (13)

By precisely the same token, from (12) we obtain that there exists an element
x′j ∈ Bj such that

pq(x′j) > 0 . (14)

In (14) we possibly have x′j 
= xj . However, we make the following

Claim. There exists x′i ∈ Bi with x′i < x′j .

Proof. By way of contradiction, suppose not. Then, writing Bi = {xi1 , . . . , xiu},
we have

x′j 
∈ (↑ xi1) ∪ · · · ∪ (↑ xiu)

But, clearly,
(↑ xi1 ) ∪ · · · ∪ (↑ xiu ) = ↑ Bi ,

so that
x′j 
∈ ↑ Bi .

Since, however, x′j ∈ Bj , the latter statement immediately implies

Bj 
⊆ ↑ Bi .

Since, moreover, Bi ≺ Bj by (11), this contradicts Theorem 1. The Claim is
settled. %&

Now the Claim, together with (13–14), amounts to saying that p−1(0) is not an
upper set, contradicting the assumption that p satisfies (GD2). Thus, pq satisfies
(GD2), too. This completes the proof. %&

Example 3. We refer to the forest F and its open partition π = {{x, y}, {z}}
depicted in Figure 4. Consider the probability distribution p : F → [0, 1] such
that f(x) = 1, and f(y) = f(z) = 0. Let q : F → π be the natural projection
map.

The push-forward pq of p along q is again a probability distribution on π.
Indeed, pq({x, y}) = 1 and pq({z}) = 0, and thus pq satisfies (GD1-2).
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Abstract. In this paper we present completeness results of several fuzzy
logics trying to capture different notions of necessity (in the sense of
Possibility theory) for Gödel logic formulas. In a first attempt, based on
different characterizations of necessity measures on fuzzy sets, a group of
logics, with Kripke style semantics, are built over a restricted language,
indeed a two level language composed of non-modal and modal formulas,
the latter moreover not allowing for nested applications of the modal
operator N . Besides, a full fuzzy modal logic for graded necessity over
Gödel logic is also introduced together with an algebraic semantics, the
class of NG-algebras.

1 Introduction

The most general notion of uncertainty is captured by monotone set functions
with two natural boundary conditions. In the literature, these functions have
received several names, like Sugeno measures [24] or plausibility measures [20].
Many popular uncertainty measures, like probabilities, upper and lower prob-
abilities, Dempster-Shafer plausibility and belief functions, or possibility and
necessity measures, can be therefore seen as particular classes of Sugeno mea-
sures.

In this paper, we specially focus on possibilistic models of uncertainty. A pos-
sibility measure on a complete Boolean algebra of events U = (U,∧,∨,¬, 0U , 1U)
is a Sugeno measure μ∗ satisfiying the following ∨-decomposition property for
any countable set of indices I

μ∗(∨i∈I ui) = sup
i∈I

μ∗(ui),

while a necessity measure is a Sugeno measure μ∗ satisfying the ∧-decomposition
property

μ∗(∧i∈I ui) = inf
i∈I

μ∗(ui).

Possibility and necessity are dual classes of measures, in the sense that if μ∗

is a possibility measure, then the mapping μ∗(u) = 1 − μ∗(¬u) is a necessity

C. Sossai and G. Chemello (Eds.): ECSQARU 2009, LNAI 5590, pp. 923–934, 2009.
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measure, and vice versa. If U is the power set of a set X , then any dual pair of
measures (μ∗, μ∗) on U is induced by a normalized possibility distribution, i.e. a
mapping π : X → [0, 1] such that, supx∈X π(x) = 1, and, for any A ⊆ X ,

μ∗(A) = sup{π(x) | x ∈ A} and μ∗(A) = inf{1− π(x) | x 
∈ A}.

Appropriate extensions of uncertainty measures on algebras of events more
general than Boolean algebras need to be considered in order to represent and
reason about the uncertainty of non-classical events. For instance, the notion of
(finitely additive) probability has been generalized in the setting of MV-algebras
by means of the notion of state [22]. In particular, the well-known Zadeh’s notion
of probability for fuzzy sets (as the expected value of the membership function)
defines a state over an MV-algebra of fuzzy sets. States on MV-algebras have
been used in [12] to provide a logical framework for reasoning about the prob-
ability of (finitely-valued) fuzzy events. Another generalization of the notion of
probability measure has been recently studied in depth by defining probabilistic
states over Gödel algebras [1].

On the other hand, extensions of the notions of possibility and necessity mea-
sures for fuzzy sets have been proposed under different forms and used in different
logical systems extending the well-known Dubois-Lang-Prade’s possibilistic logic
to fuzzy events, see e.g. [7,9,16,3,2,4]. All the notions of necessity for fuzzy sets
considered in the literature turn out to be of the form

N(A) = infx∈U π(x) ⇒ A(x) (*)

where A is a fuzzy set in some domain U , π : U → [0, 1] is a possibility dis-
tribution on U and ⇒ is some suitable many-valued implication function. In
particular, the following notions of necessity have been discussed:

(1) x ⇒KD y = max(1− x, y) (Kleene-Dienes);
(2) x ⇒RG y = 1 if x ≤ y, and x ⇒RG y = 1−x otherwise (reciprocal of Gödel);
(3) x ⇒�L y = min(1, 1− x + y) (�Lukasiewicz).

All these definitions actually extend the above definition over classical sets or
events.

In the literature different logical formalizations to reason about such exten-
sions of the necessity of fuzzy events can be found. In [19], and later in [17], a full
many-valued modal approach is developed over the finitely-valued �Lukasiewicz
logic in order to capture the notion of necessity defined using ⇒KD. A logic
programming approach over Gödel logic is investigated in [3] and in [2] by re-
lying on ⇒KD and ⇒RG, respectively. More recently, following the approach of
[12], modal-like logics to reason about the necessity of fuzzy events in the frame-
work of MV-algebras have been defined in [13], in order to capture the notion of
necessity defined by ⇒KD and ⇒�L.

The purpose of this paper is to explore different logical approaches to reason
about the necessity of fuzzy events over Gödel algebras. In more concrete terms,
our ultimate aim is to study a full modal expansion of the [0, 1]-valued Gödel logic
with a modality N such that the truth-value of a formula Nϕ (in [0, 1]) can be
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interpreted as the degree of necessity of ϕ, according to some suitable semantics.
In this context, although this does not extend the classical possibilistic logic,
it seems also interesting to investigate the notion of necessity definable from
Gödel implication, which is the standard fuzzy interpretation of the implication
connective in Gödel logic:

(4) x ⇒G y = 1 if x ≤ y, and x ⇒G y = y otherwise (Gödel);

This work is structured as follows. After this introduction, in Section 2 we
recall a characterization of necessity measures on fuzzy sets defined by implica-
tions ⇒KD and ⇒RG and provide a (new) characterization of those defined by
⇒G. These characterizations are the basis for the completeness results of several
logics introduced in Section 3 capturing the corresponding notions of necessity
for Gödel logic formulas. These logics, with Kripke style semantics, are built over
a two-level language composed of modal and non-modal formulas, moreover the
latter not allowing nested applications of the modal operator. In Section 4 a
full fuzzy modal logic for graded necessity over Gödel logic is introduced to-
gether with an algebraic semantics. Finally, in Section 5 we mention some open
problems and new research goals we plan to address in the near future.

Due to lack of space, we cannot include preliminaries on basic notions regard-
ing Gödel logic and its expansions with truth-constants, with Monteiro-Baaz’s
operator Δ and with an involutive negation, that will be used throughout the
paper. Instead, the reader is referred to [17,10,11] for the necessary background.

2 Some Necessity Measures over Gödel Algebras of
Fuzzy Sets and Their Characterizations

Let X be a (finite) set and let F (X) = [0, 1]X be the set of fuzzy sets over
X , i.e. the set of functions f : X → [0, 1]. F (X) can be regarded as a Gödel
algebra equipped with the pointwise extensions of the operations of the standard
Gödel algebra [0, 1]G. In the following, for each r ∈ [0, 1], we will denote by r
the constant function r(x) = r for all x ∈ X .

Definition 1. A mapping N : F (X) → [0, 1] satisfying

(N1) N(∧i∈Ifi) = infi∈I N(fi)
(N2) N(r) = r, for all r ∈ [0, 1]

is called a basic necessity.

If N : F (X) → [0, 1] is a basic necessity then it is easy to check that it also
satisfies the following properties:

(i) min(N(f), N(¬Gf)) = 0
(ii) N(f ⇒G g) ≤ N(f) ⇒G N(g)

The classes of necessity measures based on the Kleene-Dienes implication
and the reciprocal of Gödel implication have been already characterized in the
literature. We do not consider here the one based on �Lukasiewicz implication.
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Lemma 2 ([3,2]). Let N : F (X) → [0, 1] be a basic necessity. Consider the
following properties:

(NKD) N(r ⇒KD f) = r ⇒KD N(f), for all r ∈ [0, 1]
(NRG) N(r ⇒RG f) = r ⇒RG N(f), for all r ∈ [0, 1]

Then, we have:

(1) N satisfies (NKD) iff N(f) = infx∈X π(x) ⇒KD f(x)
(2) N satisfies (NRG) iff N(f) = infx∈X π(x) ⇒RG f(x)

for some possibility distribution π : X → [0, 1] such that supx∈X π(x) = 1.

The characterization of the necessity measures based on Gödel implication is
somewhat more complex since it needs to consider also an associated class of
possibility measures which are not dual in the usual strong sense.

Definition 3. A mapping Π : F (X) → [0, 1] satisfying

(Π1) Π(∨i∈Ifi) = supi∈I Π(fi)
(Π2) Π(r) = r, for all r ∈ [0, 1]

is called a basic possibility.

Note that if Π : F (X) → [0, 1] is a basic possibility then it also satisfies
max(Π(¬f), Π(¬¬f)) = 1.

For each x ∈ X , let us denote by x its characteristic function, i.e. the function
from F (X) such that x(y) = 1 if y = x and x(y) = 0 otherwise. Observe that
each f ∈ F (X) can be written as

f =
∧
x∈X

x ⇒G f(x) =
∨
x∈X

x ∧ f(x).

Therefore, if N and Π are a pair of basic necessity and possibility on F (X)
respectively, by (N1) and (Π1) we have

N(f) = inf
x∈X

N(x ⇒G f(x)) and Π(f) = sup
x∈X

Π(x ∧ f(x)).

Then we obtain the following characterizations.

Proposition 4. Let Π : F (X) → [0, 1] be a basic possibility. Π further satisfies

(Π3) Π(f ∧ r) = min(Π(f), r), for all r ∈ [0, 1]

iff there exists π : X → [0, 1] such that supx∈X π(x) = 1 and, for all f ∈ F (X),
Π(f) = supx∈X min(π(x), f(x)).

Proof. One direction is easy. Conversely, assume that Π : F (X) → [0, 1] satisfies
(Π1) and (Π3). Then, taking into account the above observations, we have

Π(f) = sup
x∈X

Π(x ∧ f(x)) = sup
x∈X

min(Π(x), f(x)).

Hence, the claim easily follows by defining π(x) = Π(x) . �
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Proposition 5. Let N : F (X) → [0, 1] be a basic necessity and Π : F (X) →
[0, 1] be a basic possibility satisfying (Π3). N and Π further satisfy

(ΠN) N(f ⇒G r) = Π(f) ⇒G r, for all r ∈ [0, 1]

iff there exists π : X → [0, 1] such that supx∈X π(x) = 1 and

N(f) = inf
x∈X

π(x) ⇒G f(x) and Π(f) = sup
x∈X

min(π(x), f(x)).

Proof. As for the possibility Π , this is already shown above in Proposition 4. Let
N be defined as N(f) = infx∈X π(x) ⇒G f(x) for the possibility distribution
π : F (X) → [0, 1] determined by Π . We have N(f ⇒G r) = infx∈X(π(x) ⇒G

(f(x) ⇒G r)) = infx∈X((π(x) ∧ f(x)) ⇒G r) = (supx∈X π(x) ∧ f(x)) ⇒G r =
Π(f) ⇒G r. Hence, Π and N satisfy (ΠN).

Conversely, suppose that N and Π satisfy (ΠN). Then, using the fact that
Π(x) = π(x) for each x ∈ X , we have N(f) = infx∈X N(x ⇒G f(x)) =
infx∈X Π(x) ⇒G f(x) = infx∈X π(x) ⇒G f(x). �

3 Four Complete Logics: The Two-Level Language
Approach

The language of the logics we are going to consider in this section consists of
two classes of formulas:

(i) The set Fm(V ) of non-modal formulas ϕ, ψ . . ., which are formulas of GΔ(Q)
(Gödel logic G expanded with Baaz’s projection connective Δ and truth
constants r for each rational r ∈ [0, 1]) built from the set of propositional
variables V = {p1, p2, . . .};

(ii) And the set MFm(V ) of modal formulas Φ, Ψ . . ., built from atomic modal
formulas Nϕ, with ϕ ∈ Fm(V ), where N denotes the modality necessity,
using the connectives from GΔ and truth constants r for each rational r ∈
[0, 1]. Notice that nested modalities are not allowed.

The axioms of the logic NG0 of basic necessity are the axioms of GΔ(Q) for
non-modal and modal formulas plus the following necessity related modal
axioms:

(N1) N(ϕ → ψ) → (Nϕ → Nψ)
(N2) N(r) ↔ r, for each r ∈ [0, 1] ∩Q.

The rules of inference of NG0 are modus ponens (for modal and non-modal
formulas) and necessitation: from " ϕ infer " Nϕ.

It is worth noting that NG0 proves the formula N(ϕ ∧ ψ) ↔ (Nϕ ∧ Nψ),
which encodes a characteristic property of necessity measures.
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As for the semantics we consider several classes of possibilistic Kripke models.
A basic necessity Kripke model is a system M = 〈W, e, I〉 where:

– W is a non-empty set whose elements are called nodes or worlds,
– e : W × V → [0, 1] is such that, for each w ∈ W , e(w, ·) : V → [0, 1]

is an evaluation of propositional variables which is extended to a GΔ(Q)-
evaluation of (non-modal) formulas of Fm(V ) in the usual way.

– For each ϕ ∈ Fm(V ) we define its associated function ϕ̂W : W → [0, 1],
where ϕ̂W (w) = e(w,ϕ). Let F̂m = {ϕ̂ | ϕ ∈ Fm(V )}

– I : F̂m → [0, 1] is a basic necessity over F̂m (as a G-algebra), i.e. it satisfies
(i) I(r̂W ) = r, for all r ∈ [0, 1] ∩Q
(ii) I(∧i∈I ϕ̂iW ) = infi∈I I(ϕ̂iW ).

Now, given a modal formula Φ, the truth value of Φ in M = 〈W, e, I〉, denoted
‖Φ‖M, is inductively defined as follows:

– If Φ is an atomic modal formula Nϕ, then ‖Nϕ‖M = I(ϕ̂W )
– If Φ is a non-atomic modal formula, then its truth value is computed by eval-

uating its atomic modal subformulas, and then by using the truth functions
associated to the GΔ(Q) connectives occurring in Φ.

We will denote by N the class of basic necessity Kripke models. Then, taking
into account that GΔ(Q)-algebras are locally finite, following the same approach
of [13] with the necessary modifications, one can prove the following result.

Theorem 6. NG0 is sound and complete for modal theories w.r.t. the class N
of basic necessity structures.

Now our aim is to consider extensions of NG0 which faithfully capture the
three different notions of necessity measure considered in the previous section.
We start by considering the following additional axiom:

(NKD) N(r ∨ ϕ) ↔ (r ∨Nϕ), for each r ∈ [0, 1] ∩Q.

Let NGKD be the axiomatic extension of NG0 with (NKD). Then, using Lemma
2, it is easy to prove that indeed NGKD captures the reasoning about KD-
necessity measures.

Theorem 7. NKD is sound and complete for modal theories w.r.t. the subclass
NKD of necessity structures M = 〈W, e, I〉 such that the necessity measure I is
defined as, for every ϕ ∈ Fm(V ), I(ϕ̂W ) = infw∈W π(w) ⇒KD ϕ̂W (w) for some
possibility distribution π : W → [0, 1] on the set of possible worlds W .

To capture RG-necessities, we need to expand the base logic GΔ(Q) with an
involutive negation ∼. This corresponds to the logic G∼(Q), as defined in [10].
So we define NGRG as the axiomatic extension of NG0 over G∼(Q) (instead of
over GΔ(Q)) with the following axiom:

(NRG) N(∼ϕ → 1− r) ↔ (∼Nϕ → 1− r), for each r ∈ [0, 1] ∩Q.
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Then, using again Lemma 2 and the fact that also G∼(Q)-algebras are locally
finite, one can also prove the following result.

Theorem 8. NGRG is sound and complete for modal theories w.r.t. the subclass
NRG of necessity structures1 M = 〈W, e, I〉 such that the necessity measure I is
defined as, for every ϕ ∈ Fm(V ), I(ϕ̂W ) = infw∈W π(w) ⇒RG ϕ̂W (w) for some
possibility distribution π : W → [0, 1] on the set of possible worlds W .

It is worth pointing out that if we added the Boolean axiom ϕ ∨ ¬ϕ to the
logics NKD and NRG, both extensions would basically collapse into the classical
possibilistic logic.

Finally, to define a logic capturing NG-necessities, we need to expand the
language of NG0 with an additional operator Π to capture the associated
possibility measures according to Proposition 5. Therefore we consider the
extended set MFm(V )+ of modal formulas Φ, Ψ . . . as those built from atomic
modal formulas Nϕ and Πϕ, with ϕ ∈ Fm(V ), truth-constants r for each
r ∈ [0, 1] ∩ Q and GΔ connectives. Then the axioms of the logic NΠG are
those of GΔ(Q) for non-modal and modal formulas, plus the following necessity
related modal axioms:

(N1) N(ϕ → ψ) → (Nϕ → Nψ)
(N2) N(r) ↔ r,
(Π1) Π(ϕ ∨ ψ) ↔ (Πϕ ∨Πψ)
(Π2) Π(r) ↔ r,
(Π3) Π(ϕ ∧ r) ↔ (Πϕ ∧ r)
(NΠ) N(ϕ → r) ↔ (Πϕ → r)

where (N2), (Π2), (Π3) and (NΠ) hold for each r ∈ [0, 1] ∩ Q. Inference rules
of NΠG are those of GΔ(Q) and necessitation for N and Π .

Now, we also need to consider expanded Kripke structures of the form M =
〈W, e, I, P 〉, where W and e are as above and the mappings I, P :→ [0, 1] are such
that, for every ϕ ∈ Fm(V ), I(ϕ̂W ) = infw∈W π(w) ⇒G ϕ̂W (w) and P (ϕ̂W ) =
supw∈W min(π(w), ϕ̂W (w)), for some possibility distribution π : W → [0, 1]. Call
NPG the class for such structures. Then, using Proposition 5 we get the following
result.

Theorem 9. NΠG is sound and complete for modal theories w.r.t. the class
NPG of structures.

4 Possibilistic Necessity Gödel Logic and Its Algebraic
Semantics: The Full Modal Approach

The logics defined in the previous section are not proper modal logics since
the notion of well-formed formula excludes those formulas with occurrences of
1 With the proviso that the evaluations e of propositional variables extend to G∼(Q)-

evaluations for non-modal formulas and not simply to GΔ(Q)-evaluations.
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nested modalities. Our aim in this section is then to explore a full (fuzzy) modal
approach.

We start as simple as possible by defining a fuzzy modal logic over Gödel
propositional logic G to reason about the necessity degree of G-propositions.
The language of Possibilistic Necessity Gödel logic, PNG, is defined as follows:
formulas of PNG are built from the set of G-formulas using G-connectives and
the operator N . Axioms of PNG are those of Gödel logic plus the following
modal axioms:

1. N(ϕ → ψ) → (Nϕ → Nψ).
2. Nψ ↔ NNψ.
3. ¬N0.

Deduction rules for PNG are Modus Ponens and Necessitation for N (from ψ
derive Nψ). These axioms and rules define a notion of proof "PNG in the usual
way.

Notice that in PNG the Congruence Rule “from ϕ ↔ ψ derive Nϕ ↔ Nψ”
as well as the theorems N1 and N(ϕ ∧ ψ) ↔ (Nϕ ∧ Nψ) are derivable. Also
observe that, if we had restricted the Necessitation Rule only to theorems, we
would have obtained a local consequence relation (instead of the global one
we have introduced here). For this weaker version of the logic, the Deduction
Theorem in its usual form would holds, nevertheless this logic turns out not to
be algebraizable.

Theorem 10. [Deduction Theorem] If T ∪ {ϕ, φ} is any set of PNG-formulas,
then T ∪ {ϕ} "PNG φ iff T "PNG (ϕ ∧Nϕ) → φ.

Kripke style semantics based on possibilistic structures (W, e, I) could be also
defined as in Section 3, but now the situation is more complex due to the fact
that we are dealing with a full modal language. Moreover, it seems even more
complex to try to get some completeness results with respect to this semantics
so this is left for future research. This is the reason why in the rest of the paper
we will turn our attention to the study of an algebraic semantics, following the
ideas developed in [15,14] for the case of a probabilistic logic over �Lukasiewicz
logic, and see how far we can go.
We start by defining a suitable class of algebras which are expansions of Gödel
algebras with a new unary operator trying to capture the notion of necessity.

Definition 11. An NG-algebra is a structure (A, N) where A is a G-algebra
and N : A → A is a monadic operator such that:

1. N(x ⇒ y) ⇒ (Nx ⇒ Ny) = 1
2. Nx = NNx
3. N1 = 1

The function N is called an internal possibilistic state on the G-algebra A.

Observe that, so defined, the class of NG-algebras is a variety. Examples of
internal possibilistic states are the identity function Id, the Δ operator and the
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¬¬ operator. The variety of G-algebras can be considered as a subvariety of NG-
algebras, namely the subvariety obtained by adding the equation N(x) = x. It
is easy to check, using the definition of NG-algebra that, for every NG-algebra
(A,N) such that N(A) = A we have N = Id, and that, given a, b ∈ A, a ≤ b
implies Na ≤ Nb.

Definition 12. An NG-filter F on an NG-algebra (A,N) is a filter on the G-
algebra A with the following property: if a ∈ F , then Na ∈ F .

By an argument analogous to the one in Lemma 2.3.14 of [17], if ∼F is the
relation defined by: for every a, b ∈ A, a ∼F b iff (a ⇒ b) ∈ F and (b ⇒ a) ∈ F ,
then ∼F is a congruence on (A, N) and the quotient algebra (A, N)/ ∼F is an
NG-algebra.

Lemma 13. Let F be an NG-filter on an NG-algebra (A,N). Then, the least
NG-filter containing F as a subset and a given a ∈ A is

F ′ = {u ∈ A : ∃v ∈ F such that u ≥ v ∗ a ∗Na}

By Corollary 4.8 of [5], it is easy to check that PNG is finitely algebraizable and
that the equivalent algebraic semantics of PNG is the variety of NG-algebras.
As a corollary we obtain the following general completeness result.

Theorem 14. The logic PNG is strongly complete with respect to the variety of
NG-algebras. This means that for any set of formulas Γ ∪ {Φ}, Γ "PNG Φ iff,
for all NG-algebra A and for all evaluation e on A, if e(Ψ) = 1A for all Ψ ∈ Γ ,
then e(Φ) = 1A.

Observe that it is not possible to prove completeness with respect to linearly
ordered NG-algebras. Otherwise N(Φ ∨ Ψ) ↔ (NΦ ∨NΨ) would be a theorem.
Now we prove some satisfiability results of formulas of the logic PNG.

Formulas of the language of PNG can be seen also as terms of the language of
NG-algebras. Therefore for the sake of clarity, in the following proofs we work
with first-order formulas of the language of NG-algebras proving that they are
satisfiable, if the corresponding formulas of the language of PNG are satisfiable.

Proposition 15. Let φ(x1, . . . , xn) be a PNG-formula. If φ is satisfiable, then
φ = 1 is satisfiable in an NG-algebra (B,Ω), by a sequence (b1, . . . , bn) of ele-
ments of B such that, for every 0 < i ≤ n, we have either bi = 1 or Ω(bi) = 0.

Proof. Let (A,N) be an NG-algebra such that φ = 1 is satisfiable in (A,N) by
(a1, . . . , an). Without loss of generality we assume that there is k ≤ n such that
for every 0 < i ≤ k, N(ai) 
= 0 and for i > k, N(ai) = 0.

Now we build a finite sequence of NG-algebras (B1, . . . , Bk) and homomor-
phisms (h1, . . . , hk) such that for every 0 < i ≤ k, φ is satisfied in Bi by

(c1, . . . , ci−1, hi ◦ hi−1 ◦ · · · ◦ h1(ai), . . . , hi ◦ hi−1 ◦ · · · ◦ h1(an))

where each ci ∈ {0, 1}. We define only the first homomorphism, the others can
be introduced analogously. Let F = {x ∈ A : Nx ≥ Na1}. So defined, it is easy
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to check that F is an NG-filter. And since, by a previous assumption, Na1 
= 0,
the filter F is proper. Thus, (A,N)/∼F is an NG-algebra. Now let h1 be the
canonical homomorphism from (A,N) to (A,N)/∼F , and let B1 = (A,N)/∼F .
It is easy to check that φ = 1 is satisfied in B1 by (h1(a1), . . . , h1(an)), that
h1(a1) = 1 and that for i > k, N(h1(ai)) = 0. Finally, take (B,Ω) = (Bk, hk ◦
· · · ◦ h1 ◦N). �

Definition 16. An unnested atomic formula of the language of NG-algebras,
is an atomic formula of one of the following four forms: x = y, c = y (where c
is a constant c ∈ {0, 1}), Nx = y or F (x) = y (for some function symbol F of
the language of the Gödel algebras).

Lemma 17. Let φ be a term of the language of NG-algebras. Then there is a
set Γφ of unnested atomic formulas such that, for every NG-algebra (A,N):

φ = 1 is satisfiable in (A,N) iff Γφ is satisfiable in (A,N).

Proof. It is a direct consequence of Theorem 2.6.1 of [21]. �

Example: Let φ be the term x1 ∨ N(x2 ⇒ N(x3 ⇒ 0)), take Γφ to be the
following set of unnested atomic formulas:

{x1 ∨ y = z, 1 = z,Nw = y, (x2 ⇒ v) = w,Nq = v, (x3 ⇒ p) = q, 0 = p}

Theorem 18. Let φ(x1, . . . , xn) be a PNG-formula. If φ is satisfiable, then φ =
1 is satisfiable in the NG-algebra ([0, 1]G, Δ) by a sequence of rational numbers.

Proof. Let (A,Ω) be an NG-algebra in which φ(x1, . . . , xn) = 1 is satisfiable by
an n-tuple (a1, . . . , an). Without loss of generality we may assume that:

– φ is a conjunction of unnested atomic formulas (by using Lemma 17);
– for every 0 < i ≤ n, ai 
= 0 and ai 
= 1 (otherwise we can work with the

formulas φ(xi/1) or φ(xi/0), by substituting the corresponding variables by
the constants 0 or 1);

– for every i, we have Ω(ai) = 0 (by Proposition 15).

Now we consider the unnested conjuncts of φ. For the sake of simplicity, assume
that there is k ≤ n such that only in case that 0 < i ≤ k, the variable xi has an
occurrence in an unnested atomic formula of the form Nxi = y. We work now
with the formula γ = φ(Nxi/0), obtained by substituting in φ all the occurrences
of Nxi by the constant 0, for every 0 < i ≤ k.

Observe that, so defined, γ is a conjunction of unnested atomic formulas
in the language of the G-algebras which is satisfied in (A,Ω) by (a1, . . . , an).
Therefore, the conjunction γ0 = γ∧

∧
0<i≤k(xi 
= 1) is also satisfied in (A,Ω) by

(a1, . . . , an) (by our assumptions at the beginning of this proof). Finally, since
γ0 is a formula in the language of the G-algebras, it is satisfied in [0, 1]G by a
sequence of rational numbers, and thus, by definition of γ0, it is easy to check
that φ is also satisfied in ([0, 1]G, Δ). �
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5 Future Work

Several issues related to the logic PNG deserve further investigation. A topic that
is worth studying in depth is the relation between the algebraic semantics for
the logic PNG (and of some meaningful axiomatic extensions) and the Kripke
style semantics of the kind used in Section 3. This is crucial if one wants to
keep as the intended graded semantics of the N operator one of the possibilistic
necessities of the families described in Section 2. Actually, the PNG logic might
only capture the logic of basic necessities, and so, different axioms (and possibly
operators as well) must be added in order to capture other more specific families
of necessities, somehow related to axioms (NKD), (NRG), (Π3) or the axiom
(NΠ).

Also as a future task, we aim at studying the complexity of the sets of sat-
isfiable formulas for both NGKD, NGRG and NΠG. Given the results in [18],
we conjecture that the problem of checking satisfiability for those logics is in
PSPACE. As for PNG, notice that from the results in the above section and the
fact that satisfiability for GΔ is an NP-complete problem (easily derivable from
[17]), we immediately obtain that the set of satisfiable PNG-formulas is in NP.
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Gómez Lucero, Mauro J. 131
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Ramon, Sébastien 578
Rašković, Miodrag 651
Raufaste, Eric 712
Renooij, Silja 518
Rico, Agnès 712
Rifqi, Maria 542
Riggelsen, Carsten 757
Rodrigues de Morais, Sergio 724
Rome, Sophie 724
Rotstein, Nicolás D. 144
Rumı́, Rafael 240, 781

Saad, Emad 663
Salmerón, Antonio 240, 781
Savicky, Petr 566
Scherbaum, Frank 757
Schwind, Nicolas 347
Scozzafava, Romano 554
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