Design and Architecture of Web Services for
Simulation of Biochemical Systems

Joseph O. Dada! and Pedro Mendes!»?

! School of Computer Science and Manchester Centre for Integrative Systems Biology,
The University of Manchester, Manchester Interdisciplinary Biocentre,
131 Princess Street, Manchester M1 7DN, UK
2 Virginia Bioinformatics Institute, Virginia Tech, Washington Street 0477,
Blacksburg, VA 24060, USA

{joseph.dada,pedro.mendes}@manchester.ac.uk

Abstract. Computer simulation of biochemical networks plays a cen-
tral role in systems biology. While there are several software packages for
modeling and simulation of these networks, they are based on graphical
user interfaces that operate on the local computer. However, it is now
often desirable to operate simulation tasks through a distributed com-
puting framework where data can be gathered from different sources and
distinct subtasks operated in different physical computers. In this paper
we describe a web services implementation for the COPASI biochemical
network simulator (CopasiWs). COPASI provides a range of numerical
methods for simulation, optimization and analysis of biochemical reac-
tion networks. Our aim is to allow easy integration of these powerful
functionalities with local and remote services to provide a distributed
computing platform for the simulation and analysis of biochemical mod-
els. One immediate result of this work is that simulation tasks are now
available to be used in a platform— and language-independent manner
as components of distributed workflows, for example using the Taverna
workflow engine. We describe the CopasiWS architecture, key design
and implementation issues, and illustrate the range of services available
through a web portal interface (CopasiWeb).

1 Introduction

Systems biology is a new approach to biological research where experimental
design and analysis are carried out based on a view of cells as systems of inter-
acting components, rather than each of its molecular components in isolation. A
major part of this new approach is fulfilled by mathematical and computer mod-
els of the underlying interaction network which are used for simulation. There
are several software packages for modeling and simulation of these networks,
such as COPASI [I], or CellDesigner [2], which are mostly based on graphi-
cal user interfaces that operate on the local computer. The field of biochemical
simulation has advanced mostly in terms of the analytic frameworks and numer-
ical algorithms, but not so much in terms of architecture, which is either based

N.W. Paton, P. Missier, and C. Hedeler (Eds.): DILS 2009, LNBI 5647, pp. 182 , 2009.
© Springer-Verlag Berlin Heidelberg 2009

Design and Architecture of Web Services 183

on single-computer or client—server solutions. Recent advances in grid and dis-
tributed computing suggest that it would be desirable to operate modeling and
simulation of biochemical systems in a language independent manner and in a
distributed computing environment. Such a system would allow accessing data
from different sources and carrying out different computational operations in
different servers on the network resulting in distributed simulations.

An earlier solution that allows for interoperable modeling and simulation tasks
is the Systems Biology Workbench (SBW) [3]. SBW is based on a communica-
tion bus and a simple messaging system that allows applications to interoper-
ate; SBW contains several applications that carry out specialized operations,
from computational analysis to visualization. Because the SBW messaging bus
is based on sockets, it is possible to run tasks in different computers and thus this
system already allowed for distributed computing. However, SBW is based on
a non-standard messaging protocol which is adopted only by a few specialized
applications. Unfortunately this means that non—systems biology applications
are not able to link with the SBW messaging system and thus this pioneering
effort is unlikely to fulfill the full potential of distributed computing.

Web services are a widely used standard for interoperable machine—to—
machine interaction over a network. Web services follow standard protocols
approved by the W3C organization. A Web service is a system implemented
by a software agent capable of sending and receiving messages defined through
the Web services description language (WSDL, an XML-based language), and
passed through the HTTP protocol. WSDL makes possible the discovery of web
services through service brokers.

The advantage of using Web services to facilitate distributed computing is
that unlike the case with SBW many more applications are immediately avail-
able, even outside the realm of systems biology. For example most bioinformatic
resources are accessible through Web services (e.g. the KEGG [], NCBI [5]
and EBI databases [6], as well as sequence analysis tools). There are also many
other scientific resources and even commercial services (e.g. Amazon.com). More
specific to systems biology, the Biomodels database [7], MIRIAM [g], and the
Systems Biology Ontology [J] are accessible through Web services. Workflow
Management Systems such as Taverna [10] and Triana [11] allow programs to be
created that combine these Web services in arbitrarily complex workflows — this
allows the output of an application to become the input to another, resulting in
computations carried out across the network, each task by specialized providers.

The aim of this paper is to describe a Web services implementation of the CO-
PASI biochemical network simulator (hereafter named CopasiWs). COPASI [I]
provides a range of numerical methods for simulation, optimization and analysis
of biochemical reaction networks. COPASI, which is the successor to Gepasi [12],
is available for all common operating system platforms and is currently supplied
in two versions: one based on a graphical user interface (CopasiUI) and one that
is entirely driven through the command line (CopasiSE). CopasiSE was designed
such that simulations can be processed in batch mode without user intervention.
COPASI is able to read the SBML standard format for systems biology network

184 J.O. Dada and P. Mendes

models [I3], but also has its own file format (CopasiML, also based on XML).
While SBML only encodes a model, CopasiML also encodes all of the operations
to be carried out with the model and definitions of report files containing output
from the simulations.

Providing a Web services interface to COPASI will allow usage of simulation
and modeling tasks in distributed workflows, and it makes possible the creation
of simulation servers where computing cycles could be offered. Because COPASI
carries out a wide range of analyses the result of this work is a large set of
specific modeling and simulation Web services. The rest of this paper describes
the design, architecture, and prototype implementation of CopasiWs. It ends
with an illustration of the range of available services using a simple Web portal
interface. Finally a discussion is presented of the perspectives that Web services
can bring to systems biology.

2 Design of COPASI Modeling and Simulation Web
Services (CopasiWS)

Software clients interact with Web services through interfaces to use the func-
tionality provided by the service. In order to fulfill the client request, the Web
service interacts with the appropriate business logic, which may also need to
communicate with the application resource to accomplish the client request.
The flow of information to accomplish a client request in CopasiWS can be
modeled abstractly as a three—layer architecture as shown in Fig. 1. The design
and implementation of CopasiW$ need to take into consideration the various
components that will reside in each of the layers. In this section, we describe the
issues that had to be considered in the design of CopasiW$S and details of these
layers.

2.1 CopasiWS Design Issues

Web Service Interface Development Approach. A top-down approach
was used to develop the interface to avoid interoperability problems and to con-
form with WS-I [14]. Basically the development starts with the definition of the
WSDL. A stub code for the service is generated automatically and the developer
then completes the implementation of the Web service.

Web Services
Service |« Interaction |«
Client Layer

Logic M Resource
Layer |° | Layer

A 4

A 4

Fig. 1. A three-layer architecture model of CopasiWS. It shows a typical flow of in-
formation to accomplish client request to CopasiWs.

Design and Architecture of Web Services 185

Service Granularity. One of the main issues in building Web services is the
identification of the right granularity for the services provided. The COPASI
user interface defines independent tasks and thus it was natural to follow this
granularity for CopasiWS. Each COPASI task has specific input parameters and
generates output in predefined text files (many are tab—delimited) or alterna-
tively in some user—defined format. Some tasks have quite simple interfaces,
while others are complex and require many parameters to be defined. For ex-
ample, the time course simulation task can be carried out with deterministic,
stochastic or hybrid algorithms, each one requiring a set of specific control pa-
rameters. An alternative to providing each task as a single service would be to
process the entire specifications of a CopasiML document, like what is done by
the command-line batch tool CopasiSE. Providing each of the tasks as a sin-
gle Web service facilitates composing high—level workflows on top of these basic
services. This has the further advantage that since each service only runs one
task, it becomes natural to pass the model as an SBML model because then the
remaining inputs are only a few other parameters. This is advantageous because
otherwise client software would require being able to understand the CopasiML
syntax and semantics (CopasiML is specific for COPASI while SBML is under-
stood by numerous packages and a library is available [I5] to manipulate files
encoded in SBML).

Synchronous versus Asynchronous Web Services. Some COPASI tasks
can take very short runs (seconds or less), however others can be very long (hours
or more). Task execution time is usually proportional to the size of a model, but
even for a single model different tasks are much slower than others (e.g. a single
steady state calculation takes a lot less time than a fine—grained scan of param-
eter space). Usually tasks that take short computing times are better operated
in a synchronous mode, where the client blocks waiting for the final results from
the service. Others that are long are better operated in an asynchronous mode
where the client first requests the service then checks at discrete times whether
the service has ended before retrieving results. Unfortunately it is impossible to
predict the length of a task and thus it is not possible to select synchronous
vs. asyncronous modes automatically; the requestor of the service must decide a
priori which mode of operation to use. To address these two modes of operation
each of the tasks are implemented by one synchronous and one asynchronous
Web service.

The synchronous implementation is straightforward since it consists of simply
creating an intermediate CopasiML input file, running CopasiSE and returning
the results in an appropriate format. On the other hand, asynchronous services
could be implemented through various patterns of operation. We choose re-
quest/reply operations with a polling pattern that consist of many synchronous
operations in which the clients initiate all the interactions (i.e. no call-back func-
tions are needed). In this approach, the client is issued an identifier in the first
call to the service, and this is then used for subsequent operation calls. This ap-
proach decouples the client and service provider and make the implementation
of client applications very simple.

186 J.O. Dada and P. Mendes

Parameter Types of Web Service Operations. A client calls an appropriate
method with parameters on the service interface to use the functionality of the
service. The parameter types determine the style of the interface. Parameters
may be passed as either JAX-RPC value types or XML documents. CopasiWS
uses the XML document mode of parameter passing because some of the COPASI
tasks require a complex set of parameters.

COPASI Task Input. In order to maximize the level of compatibility of Co-
pasiWS with other systems biology software tools, it is important that it can
take SBML files as input. This means that a series of additional parameter val-
ues must to be passed as input, since they are needed for the operation of the
task but are not part of the SBML specification. Alternatively, the CopasiML
format contains all required parameters and therefore we also defined versions
of the services that take this format as input. The latter mode suggests that the
CopasiUl GUI-based software itself could be a client of CopasiWS; this would
allow users to chose between running tasks locally or remotely. The SBML input
versions of the services are better suited for workflows that use other SBML
software, such as the Biomodels database or the a wrapper to libSBML [2§].
The CopasiWS suite also includes a service to convert between the SBML and
CopasiML formats. When clients use the SBML version of services, the system
translates the SBML into CopasiML, then sets the appropriate task and associ-
ated parameters in the CopasiML document and then calls CopasiSE to run the
task.

COPASI Task Output. COPASI results can be formatted in flexible ways, but
there are already some predefined tab—delimited data formats for specific tasks.
These, however, are not very useful for Web services and make further processing
of the output data by the clients difficult. It is usual to have Web services results
be encoded in XML so we decided to format task results in the Systems Biology
Results Markup Language (SBRML), which is an XML-based language to encode
systems biology simulation results and experimental data [16].

Many modeling tasks are oriented towards changing details of a model rather
than producing numerical results. The results of these tasks are then better
suited to be expressed directly in SBML or CopasiML. The Web services that
encapsulate those tasks then produce output in exactly the same format as their
input. An example of such tasks is parameter estimation, which takes a model
together with some data and changes some numeric parameters of the model to
best match the data; the result being a new version of the model.

Experimental data. COPASI’s parameter estimation task has a more complex
input than other tasks as it requires not only a model but also target data that
the model should fit. COPASI takes these data in a tab—delimited format where
columns of data correspond to some model entities. The data columns must then
be mapped to model entities, a tiresome task that is usually done through the
GUI by the user. However the purpose of the SBRML format mentioned above
[16] is exactly to encapsulate data that is mapped to a model and so it is the
most appropriate means to pass these data to the parameter estimation Web

Design and Architecture of Web Services 187

service. The current implementation of this Web service decodes the SBRML
and converts it to COPASI’s native format; later it is expected that COPASI
itself be able to read SBRML directly, which will simplify the present code.

Simulation Resource Management. To process long simulation tasks Co-
pasiWS provides asynchronous processing. For each asynchronous simulation
request the system creates a simulation resource. A simulation resource is iden-
tified by a unique identifier and has associated a number of files which are stored
transiently in the server (the SBML or CopasiML files, simulation output file,
experimental data file, resource life time, etc.) CopasiWS therefore needed a
mechanisms to manage the resources created by the users.

Simulation Engine Management. CopasiSE, the command line driven ver-
sion of COPASI, is the ultimate executor of the actual tasks and resides in
the resource layer (see Fig. 1). Because CopasiWS is available to many po-
tential clients simultaneously, there will be at times the need to access several
instances of CopasiSE simultaneously. This calls for having high—performance or
high—throughput computing resources in the server, and this also requires spe-
cific modules to manage these resources. As an example we have implemented
a high-throughput simulation engine module using the University of Wiscon-
sin’s Condor system [I7]. Condor creates pools of computers which make their
computational power available when idle. In our prototype, CopasiSE jobs are
queued to a Condor pool whenever needed by asynchronous Web service calls.
Of course, for a responsive and fast service one should set aside sufficient ded-
icated machines to deal with the required throughput (though these could also
be managed through the Condor system if needed).

2.2 Design of CopasiWS Interface

Most of the efforts in designing a Web service interface are spent on the service
operations. In this case there was a clear guideline consisting in the COPASI
user interface since the Web services follow the same division of tasks. Here we
briefly describe the functionalities of each task.

Importing/Exporting and Validation Tasks. COPASI provides methods
for converting files from SBML to CopasiML format and vice versa, and also to
validate files in either of these formats. These tasks are exposed as Model Proces-
sor Web service with operations for converting between SBML and CopasiML,
and also for XML schema validation.

Steady State Task. Systems biology models are dynamic models which may
be able to reach steady states (i.e. where the values of their variables do not
change). This task finds one steady state of the dynamical system if it exists.
The numerical method used in this task has a number of control parameters,
including a tolerance value, and which numerical methods to solve for the steady
state (Newton-Raphson and/or numerical integration).

188 J.O. Dada and P. Mendes

Time Course Task. Since these models are dynamical systems, one of the
most basic tasks is to determine a trajectory of the system given an initial con-
dition (which is specified in the input files). COPASI provides different methods
for calculating the trajectory: Deterministic (which uses the LSODA ordinary
differential equation solver [I8], Stochastic (using Gillespie’s stochastic simula-
tion algorithm [19] and Hybrid simulation (using a combination of the previous
two [I]). Each of these methods has a different set of control parameters. All of
these tasks are available through a single Time Course Web service (which can
use any one of the three methods).

Metabolic Control Analysis (MCA) Task. MCA is a special type of sen-
sitivity analysis which has a particular interpretation for metabolic networks
[20] and quantifies how much the rates of reactions affect the concentrations or
fluxes at the steady state. This task has only one control parameter that dictates
whether the coefficients are to be scaled or unscaled.

Optimization Task. COPASI provides a framework to find optima of any
model state variable or any arbitrary function of state variables. It does this
by providing a series of alternative numerical optimization methods, from tradi-
tional gradient—based to stochastic global optimizers. Each of these algorithms
requires its own particular control parameters. The interface of the Optimization
Web service allows the calling function to choose the optimization method and
the objective function.

Parameter Estimation Task. Biochemical models depend on many numer-
ical parameters, but quite frequently their values are unknown and have to be
estimated from some data set [2I]. This task makes use of the optimization al-
gorithms mentioned in the previous section to minimize a least squares function
(representing the distance between the model simulation and a set of experi-
mental data). Because this task usually requires high computational demands,
we have implemented it as an asynchronous Web service only. The client of this
service needs to first call the CreateSimulationResource operation, which creates
a simulation resource with a unique id which is returned to the client. The client
then uses this resource id as one of the parameters for the subsequent opera-
tion calls. There are operations for submitting the model, for submitting the
experimental data, for starting the simulator and for checking and collecting the
results. The result of this Web service is a model in SBML or CopasiML formats,
plus a set of statistics of the goodness of fit.

2.3 CopasiWS WSDL Development

We used the functionalities of the COPASI tasks described above to develop
a WSDL specification for CopasiWS. Operations are grouped into port types,
which describe abstract end points of each Web service. The message element of
WSDL defines the data elements of an operation. The message data types are
defined using a platform neutral XML Schema syntax. Because there are some
data types that are common to some of the Web services, we created a separate

Design and Architecture of Web Services 189

CopasiWS.xsd SBML.xsd CopasiML.xsd SBRML.xsd

WSDL Tool

N

Service Interface
Definition
in High-Level Programming Language

Fig. 2. CopasiWS WSDL development process

XML Schema for the data types (CopasiWS.xsd). We use these data types to-
gether with other XML Schema data types for biochemical models (SBML.xsd
and CopasiML.xsd)and simulation results (SBRML.xsd) to develop the WSDL
for the Web services. Appropriate WSDL toolkit was used to generate the service
interface in a specific programming language as represented in Fig. 2.

3 CopasiWS Architecture

Figure 3 depicts the overall architecture of CopasiWS. The three layers already
depicted in Fig. 1 are shown here with their internal components. The client
communicates with the Web services interaction layer using standard Web ser-
vice calls, while the interaction layer communicates with the logic layer using a
local proprietary interface mechanisms. The logic layer again communicates with
the resource layer in order to accomplish the client requests. This model provides
a loose coupling between layers and makes it easy to implement components of
each layer independently. It also allows for changes in the internal layers while
keeping the same interface to the outside world.

3.1 Resource Layer

This layer contains the simulation engine (CopasiSE) that runs the simulation
tasks submitted by the logic layer. It also contains a database server that holds
relevant information about users and the simulation results.

3.2 Logic Layer

This layer contains various components that help the services interaction layer to
accomplish the client request. It contains the following components: simulation

190 J.O. Dada and P. Mendes

Web Service Clients

cw
L — z| 2 |%¢
Services Endpoint E =] [} g
L8| 2
=
©COOO0 O Tl w|
@ 8
0 <] g
= 2 g
O 000 O |%%]:¢
] Simulation Engine Manager
Simulation CondorJob CopasiSE Simulator
Resource Manager Connector Input
Manager Processor
Y -~

CondorJob
Scheduler

CopasiSE

Single machine/Condor pool/Grid

10ABT 901N0SY

Fig. 3. CopasiW$S Architecture

resource manager, user manager, simulator input processor, simulation engine
manager and the Condor job scheduler [I7], which is a third party component
(other grid queue managers could be implemented here as alternatives). The
components have well-defined interfaces for communicating with the services
interaction layer.

3.3 Services Interaction Layer

This layer provides the glue between the clients and the service functionalities.
All the Web service interfaces reside in this layer, and it is responsible for starting
the processes in the logic layer in response to client requests. It is also responsible
for routing requests to the appropriate components of the logic layer.

The communication between a service endpoint in the interaction layer and
the components of the logic layer is determined by the type of request from the
clients. An example of how the components of the layers send messages to one
another to accomplish a client request (e.g. runSimulator operation call to a
service endpoint) is shown in Fig. 4.

4 Prototype Implementation, Testing and Example
Usage

We have implemented a prototype of the CopasiWS. The services interaction
layer is developed in Java programing language [22]. We used an Apache Axis 2

Design and Architecture of Web Services 191

Service Endpoint Simulator Input Simulation
Processor Engine Manager

| 1: RunSimulator request I
| using SBML model

|
|
2: Process input file |

3: Input file in CopasiML format

> !

5: Run simulator usirlg CopasiML
|

| 6: Simulation complete

4: Execute CopasiSE__

I 7: Get simulation output

8: Simulation résults
9: Response |

Fig. 4. Sequence of messages between components of layers in CopasiW$s

toolkit [23] to generate the interface definition of the services in Java from their
WSDL as discussed in section 2 and then added each service interface implemen-
tation code to complete the coding process. The services run in an Apache Axis
2 engine, which is hosted on an Apache Tomcat server [24]. All the components
in the logic layer excluding the scheduler (the third party component) are also
developed in Java.

The CopasiSE that resides in the resource layer is the command line version
of COPASTI (originally written in C++, though only the executable binary is
used here) and runs on the actual server; alternatively it can run on a Condor
pool or on a grid system. The user database is presently implemented using a
file system. Future versions of CopasiWS$ will likely use a database management
system for the user database.

Interested users should consult [25] to obtain the WSDL for simulation ser-
vices presently available in CopasiWS. Currently there is no requirement for
users to register before using the CopasiWs synchronous version. However those
interested in using the asynchronous version should contact the authors to obtain
username and password.

4.1 Web Portal User Interface (CopasiWeb)

To test the range of services available in CopasiWS, we developed a web por-
tal user interface (CopasiWeb). CopasiWeb is one of the possible clients of

192 J.O. Dada and P. Mendes

CopasiWS. It is basically divided into two parts: the first part is the simple
HTML page that appears in user’s browser and provides a means of interacting
with the CopasiWS, while the second part is the Web service manager, which is
hosted on a Tomcat Server. This converts the user’s request from the browser
into Web service calls that are directed to the CopasiWS. CopasiWeb is based
on the Model View Controller (MVC) architecture and is implemented using
Apache Struts 2 [26]. A detailed description of CopasWeb is outside the scope
of this paper.

CopasiWeb is available from [27]. There is no requirement for users to register to
use it, except if they want to execute the asynchronous services as described above.

4.2 Example Usage

CopasiWS provides a suite of services that can easily be combined with other
applications and services to provide a flexible platform for modeling, simulation
and analysis of biological processes. The steps involved in running CopasiWS
depend on which version (synchronous or asynchronous) a client wants to use.
For the synchronous version, the communication with the service follows a simple
request and response approach. The client sends a run simulator request to the
service and waits for a response. In the case of asynchronous version, client needs
to follow a sequence of steps to execute the service. Here we use parameter
estimation Web service to illustrate how to use the asynchronous version.

The parameter estimation task/service as earlier described is used to estimate
the values of the unknown parameters in biochemical models. To carry out model
parameter estimation process, the user needs to make the following available to
the service:

1. a biochemical model in SBML format;

2. experimetal data in SBRML format;

3. information about the model parameters to estimate (i.e. model parameter
identifier with lower and upper boundary values);

4. optimization method and its parameter values.

The above data are then passed to the service by the client application through
the following sequence of steps using appropriate service operations:

1. Client creates a simulation resource using username and gets resource ID in

return;

Client uses the resource ID to submit biochemical model in SBML;

Client submits experimental data in SBRML format using the resource ID;

4. Client sets the model parameter items to estimate and optimization method

to use using the resource ID;

Client starts the simulator using the resource ID;

6. Client periodically checks the simulation status (polling approach) using the
resource ID;

7. Client gets the simulation results (usually updated SBML model);

8. Client destroys the created resource. A resource that is not destroyed by the
client will be destroyed by the system after it’s lifetime.

w N

o

Design and Architecture of Web Services 193

This sequence of steps can easily be automated using a workflow management
system. For instance a systems biology workflow can be constructed to retrieve
the SBML model from the Biomodels database [7] and experimental data in
SBRML from other Web services and then use these as input to the parameter
estimation service to estimate the unknown SBML model parameters. Each of
these tasks would be operating from a different server on the Internet.

5 Conclusion and Further Work

Systems biology is an increasingly popular mode of research in the biological
sciences which makes heavy use of computational methods and resources. We
have constructed a collection of Web services, named CopasiW$, that expose the
functionalities of the systems biology modeling and simulation software COPASI.
To our knowledge this is the first implementation of systems biology simulation
tasks conforming to Web services standards. The availability of such methods
through the means of Web services will allow a more flexible approach to com-
putational systems biology where data and services are distributed throughout
the Internet. An obvious use of these Web services would be to provide the sim-
ulation tasks that are currently only available through a graphical user interface
in a client—server model where heavy computational resources are hosted behind
this interface. Another new computing paradigm that these Web services allow,
is the construction of distributed workflows, for example using Taverna [I0],
which is is already widely used in the related field of bioinformatics. Further-
more this will also open up the possibility of running complex simulations across
the network. For example this interface could easily be exploited to construct a
multi-scale simulation environment where the COPASI tasks fulfill one of the
levels (e.g. cellular) while other Web services, or Web services clients, implement
other levels (e.g. tissue or organ).

Future work will consist of implementing access security features and further
user management functions. Because it is likely that computing power needs will
increase, we plan on implementing methods to access Grid resources in the logic
layer. Additionally, we would like to demonstrate the power of combining Web
services by creating distributed workflows that access other resources, such as
the Biomodels database.

Acknowledgments. We thank Stefan Hoops, Douglas Kell, Peter Li, Norman
Paton, Irena Spasi¢ and Neil Swainston for many helpful discussions. We greatly
benefited from the lessons taught by Anwar Ul Haq’s first prototype of COPASI
Web services. We thank the generous financial support by the BBSRC and EP-
SRC to this project through funding of the Manchester Centre for Integrative
Systems Biology. The MCISB is a Centre of the Biotechnology and Biological
Sciences Research Council.

194

J.O. Dada and P. Mendes

References

1]

2]

3]

[5]

[6]

8]

[12]

[13]

Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu,
L., Mendes, P., Kummer, U.: COPASI — a COmplex PAthway SImulator. Bioin-
formatics 22, 3067-3074 (2006)

Funahashi, A., Tanimura, N., Morohashi, M., Kitano, H.: CellDesigner: a process
diagram editor for gene-regulatory and biochemical networks. Biosilico 1, 159-162
(2003)

Sauro, H.M., Hucka, M., Finney, A., Wellock, C., Bolouri, H., Doyle, J., Ki-
tano, H.: Next Generation Simulation Tools: The Systems Biology Workbench
and BioSPICE Integration. A Journal of Integrative Biology 7(4), 355-372 (2003)
Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., Kanehisa, M.: KEGG:
Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 27(1), 29-34
(1999)

Baxevanis, A.D.: Searching NCBI databases using Entrez. Current protocols in
bioinformatics 24, 1.3.1-1.3.26 (2008)

Labarga, A., Valentin, F., Anderson, M., Lopez, R.: Web services at the European
bioinformatics institute. Nucleic Acids Research 35, W6-W11 (2007)

Le Novére, N., Bornstein, B., Broicher, A., Courtot, M., Donizell, M., Dharuri,
H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J., Hucka, M.: Biomodels
database: a free, centralized database of curated, published, quantitative kinetic
models of biochemical and cellular systems. Nucleic Acids Research 34, D689—
D691 (2006)

Le Novére, N., Finney, A., Hucka, M., Bhalla, U.S., Campagne, F., Collado-
Vides, J., Crampin, E.J., Halstead, M., Klipp, E., Mendes, P., Nielsen, P., Sauro,
H., Shapiro, B., Snoep, J., Spence, H., Wanner, B.: Minimum Information Re-
quested In the Annotation of Biochemical Models (MIRIAM). Nature Biotech-
nology 23(12), 1509-1515 (2005)

Systems Biology Ontology (SBO), http://www.ebi.ac.uk/sbo/

Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M.R., Li, P.; Oinn,
T.: Taverna: a tool for building and running workflows of services. Nucleic Acids
Research, W729-W732 (2006)

Taylor, 1., Shields, M., Wang, 1., Harrison, A.: The Triana Workflow Environ-
ment: Architecture and Application. In: Taylor, I.J., Deelman, E., Gannon, D.B.,
Shields, M. (eds.) Workflows for e-Science. Scientific Workflows for Grids, pp.
320-339. Springer, London (2007)

Mendes, P.: GEPASI: A software package for modeling the dynamics, steady states
and control of biochemical biology and other systems. Computer Application in
the Biosciences 9(5), 563-571 (1993)

Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., Arkin,
A.P., Bornstein, B.J., Bray, D., Cornish-Bowden, A., Cuellar, A.A., Dronov, S.,
Gilles, E.D., Ginkel, M., Gor, V., Goryanin, 1., Hedley, W.J., Hodgman, T.C.,
Hofmeyr, J.H., Hunter, P.J., Juty, N.S., Kasberger, J.L., Kremling, A., Kummer,
U., Le Novére, N., Loew, L.M., Lucio, D., Mendes, P., Minch, E., Mjolsness, E.D.,
Nakayama, Y., Nelson, M.R., Nielsen, P.F., Sakurada, T., Schaff, J.C., Shapiro,
B.E., Shimizu, T.S., Spence, H.D., Stelling, J., Takahashi, K., Tomita, M., Wag-
ner, J., Wang, J.: The Systems Biology Markup Language (SBML): A medium for
representation and exchange of biochemical network models. Bioinformatics 19,
524-531 (2003)

http://www.ebi.ac.uk/sbo/

[14]
[15]

[16]

[17]

[18]

[19]

[20]
21]

Design and Architecture of Web Services 195

Web Services Interoperability Basic Profile, 1.1, http://www.ws-i.org/
Profiles/BasicProfile-1.1.html

Bornstein, B.J., Keating, S.M., Jouraku, A., Hucka, M.: LibSBML: An API Li-
brary for SBML. Bioinformatics 24(6), 880-881 (2008)

Dada, J.O., Paton, N.W., Mendes, P.: Systems Biology Results Markup Lan-
guage — Structure and Facilities for Systems Biology Results Representation
(SBRML Specification) (2008), http://www.comp-sys-bio.org/tiki-index.
php?page=SBRML

Thain, D., Tannenbaum, T., Livny, M.: Distributed Computing in Practice: The
Condor Experience. Concurrency and Computation: Practice and Experience 17,
2-4 (2005)

Petzold, L.: Automatic selection of methods for solving stiff and nonstiff sys-
tems of ordinary differential equations. SIAM Journal on Scientific and Statistical
Computing 4(1), 136-148 (1983)

Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal
of Physical Chemistry 81(25), 23402361 (1977)

Fell, D.: Understanding the Control of Metabolism. Portland Press, London (1996)
Mendes, P., Kell, D.: Non-linear optimization of biochemical pathways: applica-
tions to metabolic engineering and parameter estimation. Bioinformatics 14(10),
869-883 (1998)

Java programming language, http://java.sun.com

Axis toolkit site, http://ws.apache.org/axis/

Tomcat Apache servlet site, http://tomcat.apache.org/

Copasi Web Services Services, http://turing.mib.man.ac.uk:8080/CopasiWs/
services/listServices

Apache Struts 2, http://struts.apache.org/2.x/

CopasiWeb: Web Portal Interface to CopasiW$S, http://turing.mib.man.ac.uk:
8080/CopasiWeb/CopasiWebUI/

Li, P., Oinn, T., Soiland, S., Kell, D.B.: Automated manipulation of systems
biology models using libSBML within Taverna workflows. Bioinformatics 24(2),
287-289 (2008)

http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.comp-sys-bio.org/tiki-index.php?page=SBRML
http://www.comp-sys-bio.org/tiki-index.php?page=SBRML
http://java.sun.com
http://ws.apache.org/axis/
http://tomcat.apache.org/
http://turing.mib.man.ac.uk:8080/CopasiWS/services/listServices
http://turing.mib.man.ac.uk:8080/CopasiWS/services/listServices
http://struts.apache.org/2.x/
http://turing.mib.man.ac.uk:8080/CopasiWeb/CopasiWebUI/
http://turing.mib.man.ac.uk:8080/CopasiWeb/CopasiWebUI/

	Design and Architecture of Web Services for Simulation of Biochemical Systems
	Introduction
	Design of COPASI Modeling and Simulation Web Services (CopasiWS)
	CopasiWS Design Issues
	Design of CopasiWS Interface
	CopasiWS WSDL Development

	CopasiWS Architecture
	Resource Layer
	Logic Layer
	Services Interaction Layer

	Prototype Implementation, Testing and Example Usage
	Web Portal User Interface (CopasiWeb)
	Example Usage

	Conclusion and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

