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Abstract. Recently, enabling modularity aspects in Answer Set Programming
(ASP) has gained increasing interest to ease the composition of program parts to
an overall program. In this paper, we focus on modular nonmonotonic logic pro-
grams (MLP) under the answer set semantics, whose modules may have contextu-
ally dependent input provided by other modules. Moreover, (mutually) recursive
module calls are allowed. We define a model-theoretic semantics for this extended
setting, show that many desired properties of ordinary logic programming gen-
eralize to our modular ASP, and determine the computational complexity of the
new formalism. We investigate the relationship of modular programs to disjunc-
tive logic programs with well-defined input/output interface (DLP-functions) and
show that they can be embedded into MLPs.

Keywords: Knowledge Representation, Answer Set Programming, Modular
Logic Programming.

1 Introduction

In the recent years, there has been an increasing interest in studying modularity aspects
of Answer Set Programming (ASP), in order to ease the composition of program parts
to an overall program. Since the conception of Splitting Sets [1], which generalize strat-
ification and proved to be a useful tool to decompose programs, a number of approaches
to enhance ASP and LP in general with modularity have been made [2,3,4,5,6,7,8].

However, compared to the area of logic programming (LP) in general (see [4] for
a historic account), the work on modular ASP is still less developed. As in general
LP, there are two directions, namely Programming-in-the-large and Programming-in-
the-small. In the former, compositional operators are provided for combining sepa-
rate and independent modules based on standard semantics. This direction has been
followed, e.g., with answer set programs with Gaifman-Shapiro-style module archi-
tecture [2,3]. Programming-in-the-small aims at enhancing ASP with abstraction and
scoping mechanisms similar as in other programming paradigms. This direction has
been more widely considered, and modular extensions of ASP based on generalized
quantifiers [4], macros [5], and templates [6] have been proposed.

The two directions are quite divergent, as Programming-in-the-large requires to in-
troduce new operators in the language. Modular ASP Programs [4] were an early at-
tempt to narrow the gap between them a bit, using general quantifiers as a device
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to access from one module P1 another module P2 using module atoms of the form
P2[p].q(X) (in slightly different syntax), where p is a list of predicates and q is a pred-
icate; intuitively, the module atom evaluates to true for X if, on input of the values of
the predicates in p to the module P2, the atom q(X) will be concluded by P2 (under
skeptical semantics). For a system P1[q1], . . . , Pn[qn] of such modules, where qi is a
(list of) formal input predicates, answer sets have been defined using a generalization
of the Gelfond-Lifschitz reduct. As it has been shown, the resulting framework is quite
expressive, as it is EXPSPACE-complete in general.

However, the proposal in [4] has limitations and, due to the use of the Gelfond-
Lifschitz reduct, suffers from similar anomalies as answer sets for other extensions of
logic programs defined in this way. As for the former, an important restriction that was
made in [4] is that calls of modules must be acyclic; that is, following the call chain, one
may not return to the same call of a module. In fact, this condition was already imposed
at the syntactic level, and does not allow the use of recursion in modules, which is
a common and natural technique. Also other approaches exclude (mutually) recursive
calls (e.g., disjunctive logic programs with a well-defined input/output interface (DLP-
functions) exclude positive such calls [2]; see also Section 6).

Example 1. Consider the following recursive module P [q/1], which determines wheth-
er a set has an even number of elements:

q′(X) ∨ q′(Y )← q(X), q(Y ), X �= Y. skip(X)← q(X), not q′(X).
odd ← skip(X), P [q′].even . even ← not odd .

Here, q/1 is a (formal) unary input predicate that stores the set. The first two rules in the
top line effect, by stability of answer sets, that q becomes q′ with one element randomly
removed (for which skip is true). In the last line, the left rule determines recursively
whether q stores an odd number of elements, while the right rule defines even as the
complement of odd . Intuitively, if we call P with a predicate p for input, then even
is computed true, which is expressed by P [p].even , if p stores an even number of ele-
ments. Note that P is recursive, and for empty input p it calls itself with the same input
(one can easily rewrite this to mutual recursion between two modules for odd and even).

While a main motivation for the proposal in this paper is to allow for recursive calls
of program modules with input, another objective is to provide a global semantics for a
collection of modules. Comparatively, [4] was more concerned with defining local mod-
els of a single module, by importing conclusions of other modules rather than giving a
model based semantics to a collection P1, . . . , Pn of modules.

Concerning semantics, the use of the Gelfond-Lifschitz reduct effected that local
models were in the same vein as Nash equilibria, viz., that a model is (locally) stable
if assuming that all modules behave in the same way there is no need for the local
program to switch to another model. Specifically, a program P0 consisting of the clause
q ← P1.p[q], where P1[q1] consists of the single clause p ← q1, has two answer sets,
viz., ∅ and {q}. The reason is that q can be concluded in a self-stabilizing way from the
call P1.p[q]; however, arguably ∅ may be considered as the single answer set of P0.

Such behavior can be excluded using alternative reducts, like the Faber-Leone-Pfeifer
(FLP) reduct [9], which has been proposed in the context of ASP with aggregates to en-
sure that answer sets are minimal models. This reduct formed also the basis for defining
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the semantics of HEX-programs [10], which generalized the semantics of logic programs
with generalized quantifiers to the HiLog setting; however, the setting has been module-
centric like [4], and no global semantics for a collection of modules is evident. Moti-
vated by these shortcomings, we reconsider modular ASP and make the following main
contributions.
• We define a model theoretic semantics of a system P1[q1], . . . , Pn[qn] of program
modules, which are divided into one or multiple main modules Pi that have no input
(i.e., qi is void), and library modules which may have input (i.e., qi can be non-void).
Informally, the semantics assigns an answer set to each main module and module in-
stance that is called by the program under a call-by-value mechanism as in [4]; the
answer set must be reproducible from the rules along its recursive computation.

Example 2 (cont’d). In Example 1 above, an answer set for the module instance of
P [q], whose input q stores S = {c1, . . . , cn}, would have q′ storing S1 = S \ {cπ(1)}
and call the instance of P [q] with q storing S1, whose answer set in turn stores S2 =
S1 \ {cπ(2)} = S \ {cπ(1), cπ(2)} in q′, etc., where π is any permutation of {1, . . . , n}.
The value of even and odd in the answer sets of the instances is determined bottom up
from the ground: for the instance of P [q] where q = ∅, q′ and skip are void, and thus
odd must be necessarily false; hence, even is true. On the way back, even and odd are
complemented with their values at the next recursion level.

While a naive definition of the semantics is straightforward, a more difficult question
is to delineate the relevant instances of modules for the computation. Intuitively, many
(instances of) modules Pi[qi] in a library might be completely irrelevant for determining
the semantics of a particular collection of modules, but prevent the existence of a global
semantics if locally, for some input value of qi, the instance has no answer set.

Example 3 (cont’d). Suppose in the module P in Example 1 there would also be a fact
r(a) and a rule ok ← P ′[r].nonempty where the module P ′[q/1] consists of the rules
nonempty ← not nonempty and nonempty ← q(X). Then, an instance P ′ has an
answer set precisely if its input is nonempty. Thus, the call P ′[r].nonempty in the rule
will always lead to an answer set in which nonempty is true, and hence we expect an
answer set for the instance of P with input S. However, as P ′ has for empty input no
answer set, there is no global answer set; intuitively, the instance of P ′ with empty input
is irrelevant, and should not be considered.

To remedy this situation and keep the semantics simple, we use here minimal models
as an approximation of answer sets in module instances that are outside of a context
for which stability of models is strictly required; this context contains always the mod-
ules instances along the call graph of the program; the smaller the context, the more
permissive is the semantics.
• We analyze semantic properties of the approach, and show that many of the desired
properties of ordinary logic programs generalize to our modular ASP. This includes that
the answer sets of a positive modular ASP are its minimal models; that Horn programs
have a model intersection property, and thus a least model, which can be computed by
least fixpoint iteration; that the latter can be extended to stratified programs, which have
a canonical model modulo the relevant part.
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• We characterize the computational complexity of the new formalism. Our
modular ASP programs have the same complexity as ordinary ASP programs if the
modules have no input, i.e., deciding answer set existence is Σp

2 -complete in the propo-
sitional case and NEXPNP-complete in the non-ground (Datalog) case. For programs
with arbitrary inputs, the complexity is exponentially higher, viz. NEXPNP-complete
and 2NEXPNP-complete, respectively; note that EXPSPACE is believed to be strictly
contained in 2NEXPNP. The picture is analogous for deciding membership of an atom
in the least model of a Horn program, which is P-complete resp. EXP-complete with-
out inputs and EXP-complete resp. 2EXP-complete with arbitrary inputs. However, if
the inputs are naturally bounded, then the complexity is the same as in the case without
inputs, and thus as in ordinary ASP.
• We analyze the relationship between our modular ASP programs and DLP-functions,
which are one of the premier formalisms for combining ASP modules. As it turns out,
DLP-functions can be very naturally embedded into our formalism, and vice versa a
fragment of our modular ASP programs can be embedded into DLP functions. Since
our approach admits mutual recursion of calls and also input to modules in terms of call
by value, it can be viewed as a generalization of DLP-functions.

We believe that the approach presented in this paper contributes to modular ASP in
which modules can be used in an unrestricted and natural way for problem solving, and
looping recursion is handled by the very means of logic programming semantics.

2 Modular Nonmonotonic Logic Programs

In this section, we present our framework of modular ASP programs, and define first
syntax and then semantics of such programs. We assume that the reader is familiar with
basic notions of logic programming and the answer set semantics of nonmonotonic
logic programs [11]. The syntax is based on disjunctive logic programs; our modular
logic programs (MLPs) consist of modules as a way to structure logic programs. More-
over, such modules allow for input provided by other modules; it is safe to say that one
module may call other modules and additionally provide input.

We pose no essential restriction on the rules, and modules may mutually call each
other in a recursive way, and, on top of that, provide mutual input. The semantics we
provide for MLPs caters for this situation and is thus not straight-forward. By the very
notion of module input, it is apparent that modules must be instantiated before they
can be “used.” To this end, we delineate contexts of models that carry instantiations of
modules and serve to define answer sets for modular programs. As noted in [4], answer
sets of modular programs based on a Gelfond-Lifschitz-style reduct may be weaker
than those of ordinary logic programs, we thus use the FLP-reduct in order to gain the
desired property of minimality in answer sets.

Syntax of Modular Nonmonotonic Logic Programs. We consider programs in a fun-
ction-free first-order (Datalog) setting (this restriction is not essential from a conceptual
point of view, but convenient for the purposes of this work).

Let V be a vocabulary C, P , X , and M of mutually disjoint sets whose elements
are called constants, predicate, variable, and module names, respectively, where each
p ∈ P has a fixed associated arity n ≥ 0, and each module name in M has a fixed



Modular Nonmonotonic Logic Programming Revisited 149

associated list q = q1, . . . , qk (k ≥ 0) of predicated names qi ∈ P (the formal input
parameters). Unless stated otherwise, elements from X (resp., C ∪ P) are denoted with
first letter in upper case (resp., lower case).

Elements from C ∪ X are called terms. Ordinary atoms (simply atoms) are of the
form p(t1, . . . , tn), where p ∈ P and t1, . . . , tn are terms; n ≥ 0 is the arity of the
atom. A module atom is of the form

P [p1, . . . , pk].o(t1, . . . , tl) , (1)

where p1, . . . , pk is a list of predicate names pi ∈ P , called module input list, such that
pi has the arity of the formal input parameter qi, o ∈ P is a predicate name with arity l
such that for the list of terms t1, . . . , tl, o(t1, . . . , tl) is an ordinary atom, and P ∈ M
is a module name.

Intuitively, a module atom provides a way for deciding the truth value of a ground
atom o(c) in a program P depending on the extension of a set of input predicates.

A rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βm, notβm+1, . . . , notβn , (2)

where k ≥ 1, m, n ≥ 0, α1, . . . , αk are atoms, and β1, . . . , βn are either atoms or
module atoms. We define H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪B−(r), where
B+(r) = {β1, . . . , βm} and B−(r) = {βm+1, . . . , βn}. If B(r) = ∅ and H(r) �= ∅,
then r is a (disjunctive) fact; r is ordinary, if it contains only ordinary atoms.

We now formally define the syntax of modules.

Definition 1 (module). A module is a pair m = (P [q], R), where P ∈ M with asso-
ciated formal input q, and R is a finite set of rules. It is ordinary, if all rules in R are
ordinary, and ground, if all rules in R are ground. A module m is either a main module
or a library module; if it is a main module, then |q| = 0.

Recall that the formal input q is given by a list of predicate names pi ∈ P . We refer
with R(m) to the rule set of m. When clear from the context, we omit empty [] and
() from (main) modules and module atoms. E.g., the module P [q] in Example 1 is a
library module; further examples are given below.

Based on modules, we define modular logic programs as follows.

Definition 2 (modular logic program). A modular logic program (MLP) P is an n-
tuple of modules

(m1, . . . , mn) , n ≥ 1, (3)

consisting of at least one main module, where M = {P1, . . . , Pn}. We say that P is
ground, if each module is ground.

Example 4 (cont’d). Suppose that we have besides a module m2 = (P [q], R2), where
R2 is taken from the rules in Example 1, a further module m1 = (Q[], R1), in which

R1 =
{

s(a). s(b). s(c). s(d). s1(X) ∨ s2(X)← s(X).
ok ← P [s1].even, P [s2].even . ok ← not ok .

}
.

Informally, the disjunctive rule splits the predicate s into two predicates s1 and s2; the
subsequent rules check that they both store sets of even cardinality. Formally, P =
(m1, m2) forms the respective MLP; here, m1 is the (single) main module.
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Example 5. Take an MLP P = (m1, m2, m3), where both m1 = (P1[], {a← P2.b.}),
m2 = (P2[], {b ← P1.a.}) are main modules, and m3 = (P3[c], {c ← not c.}) is a
library module. Intuitively, m1 and m2 amount to the logic program {a← b. b← a.},
while m3 is a simple constraint with formal input c.

Semantics of Modular Nonmonotonic Logic Programs. We now define the seman-
tics of modular logic programs. It is defined in terms of Herbrand interpretations and
grounding as customary in traditional logic programming and ASP.

The Herbrand base w.r.t. vocabulary V , HBV , is the set of all possible ground or-
dinary and module atoms that can be built using C, P andM; if V is implicit from an
MLP P, it is the Herbrand base of P and denoted by HBP. The grounding of a rule
r is the set gr(r) of all ground instances of r w.r.t. C; the grounding of rule set R is
gr(R) =

⋃
r∈R gr(r), and the one of a module m, gr(m), is defined by replacing the

rules in R(m) by gr(R(m)); the grounding of an MLP P is gr(P), which is formed by
grounding each module mi of P.

The semantics of an arbitrary MLP P is given in terms of gr(P).
Let S ⊆ HBP be any set of atoms. For any list of predicate names p = p1, . . . , pk

and q = q1, . . . , qk, we use the notation S|p = {pi(c) ∈ S | i ∈ {1, . . . , k} } and
S|qp = {qi(c) | pi(c) ∈ S, i ∈ {1, . . . , k} }.

Next, we define module instantiations. Therefore, we need to index a module with a
particular, fixed set of input facts it receives, which is termed a value call.

Definition 3 (value call). For a P ∈ M with associated formal input q we say that
P [S] is a value call with input S, where S ⊆ HBP|q . Let VC (P) denote the set of all
value calls P [S] with input S such that P ∈M.1

Instantiating an MLP P is more complex than instantiating R(m) for every module m
of P, since all possible inputs for the modules need to be taken into account, yielding
different sets of ground rules. Rule bases indexed by value calls account for this.

Definition 4 (rule base). A rule base is an (indexed) tuple R = (RP [S] | P [S] ∈
VC (P)) of sets of ground rules RP [S].

Definition 5 (instantiation). For a module mi = (Pi[qi], Ri) from P, its instantiation
with S ⊆ HBP|qi , is IP(Pi[S]) = Ri ∪ S. For an MLP P, its instantiation is the rule
base I(P) = (IP(Pi[S]) | Pi[S] ∈ VC (P)).

Loosely speaking, a module instantiation is given by the rules of the module together
with particular, additional input facts. Intuitively, rule bases collect all possible such
instantiations with all possible inputs, and can be referenced by VC (P).

We next define (Herbrand) interpretations and models of an MLP.

Definition 6 (interpretation). An interpretation M of an MLP P is an (indexed) tuple
(Mi/S | Pi[S] ∈ VC (P)), where all Mi/S ⊆ HBP contain only ordinary atoms.

An interpretation provides an assignment for every module instance, and thus is like-
wise indexed, i.e., Mi/S is an interpretation of the module instance referenced by Pi[S].

1 Note that VC (P) is also used as index set here.
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Definition 7 (model). An interpretation M of an MLP P is a model of

– a ground atom α ∈ HBP at Pi[S], denoted M, Pi[S] |= α, if in case α is an ordinary
atom, α ∈Mi/S, and if α =Pk[p].o(c) is a module atom, o(c) ∈Mk/((Mi/S)|qk

p );
– a ground rule r at Pi[S] (M, Pi[S] |= r), if M, Pi[S] |= H(r) or M, Pi[S] �|= B(r),

where (i) M, Pi[S] |= H(r), if M, Pi[S] |= α for some α ∈ H(r), and (ii) M, Pi[S] |=
B(r), if M, Pi[S] |= α for all α ∈ B+(r) and M, Pi[S] �|= α for all α ∈ B−(r);
– a set of ground rules R at Pi[S] (M, Pi[S] |= R) iff M, Pi[S] |= r for all r ∈ R;

– a ground rule base R (M |= R) iff M, Pi[S] |= RPi[S] for all Pi[S] ∈ VC (P).

Finally, M is a model of an MLP P, denoted M |= P, if M |= I(P) in case P is ground
resp. M |= gr(P), if P is nonground. An MLP P is satisfiable, if it has a model.

Intuitively, an interpretation M satisfies a ground module atom Pk[p].o(c) appearing in
an instantiation IP(Pi[S]), if the ordinary atom o(c) holds for the instantiation of the
module mk with the input which is given by the interpretation of p in Mi/S. On top of
this, satisfaction of ordinary atoms, rules, etc., is straightforward.

Example 6. Consider P from Example 5, then M = (M1/∅, M2/∅, M3/∅, M3/{c}) is
a model of P, where M1/∅ = {a}, M2/∅ = {b}, and M3/∅ = M3/{c}={c}. We have
M, P1[∅] |= a; M, P2[∅] |= b; M, P1[∅] |= P2.b; M, P2[∅] |= P1.a; hence M, P1[∅] |=
a ← P2.b; M, P2[∅] |= b ← P1.a. Moreover, M, P3[∅] |= c; M, P3[∅] |= c ← not c
(and similar for M at P3[{c}]); thus M, P1[∅] |= IP(P1[∅]), M, P2[∅] |= IP(P2[∅]),
M, P3[∅] |= IP(P3[∅]), and M, P3[{c}] |= IP(P3[{c}]); therefore M |= I(P), where
I(P) = (IP(P1[∅]), IP(P2[∅]), IP(P3[∅]), IP(P3[{c}])). Finally, M |= P.

We next proceed to define answer sets of an MLP P. To this end, we need to com-
pare models and single out minimal models. Furthermore, in order to focus on relevant
modules, we introduce the formal notion of a call graph.

Definition 8 (minimal models). For any interpretations M and M′ of P, we define
that M ≤M′, if for every Pi[S] ∈ VC (P) it holds that Mi/S ⊆M ′

i/S, and M < M′,
if both M �= M′ and M ≤ M′. A model M of P (resp., a rule base R) is minimal,
if P (resp., R) has no model M′ such that M′ < M. The set of all minimal models of
P (resp., R) is denoted by MM (P) (resp., MM (R)).

Definition 9 (call graph). The call graph of an MLP P is a labeled digraph CGP =
(V, E, l) with vertex set V = VC (P) and an edge e from Pi[S] to Pk[T ] in E iff
Pk[p].o(t) occurs in R(mi); furthermore, e is labeled with an input list p, denoted
l(e). Given an interpretation M, the relevant call graph CGP(M) = (V ′, E′) of P
w.r.t. M is the subgraph of CGP where E′ contains all edges from Pi[S] to Pk[T ]
of CGP such that (Mi/S)|qk

l(e) = T , and V ′ contains all Pi[S] that are main module
instantiations or induced by E′; any such Pi[S] is called relevant w.r.t. M.

Example 7. Consider P and I(P) from Example 6. The call graph of P is CGP =
(VC (P), E, l), where E = {(P1[∅], P2[∅]), (P2[∅], P1[∅])}, and l maps each edge to
the void input list. Both P1[∅] and P2[∅] are relevant, since they are main modules,
while P3[∅] and P3[{c}] are irrelevant (never called). Thus, we obtain that CGP(M) =
({P1[∅], P2[∅]}, E, l), for any interpretation M of P.
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We refer to the vertex and edge set of a graph G by V (G) and E(G), resp. For defin-
ing answer sets, we use a reduct of the instantiated program as customary in ASP. A
suggestive way is to apply a traditional reduct to each module instance of P; however,
this is not fully satisfactory, as in practice P might contain module instantiations which
have no answer sets for certain inputs, which compromises the existence of an answer
set of P. For this reason, we contextualize the notions of reduct and answer sets.

Definition 10 (context). Let M be an interpretation of an MLP P. A context for M is
any set C ⊆ VC (P) such that V (CGP(M)) ⊆ C.

Then, the reduct of an instantiated program is built w.r.t. a given context.

Definition 11 (context-based reduct). Let M be an interpretation of an MLP P and C
be a context for M. The reduct of P at P [S] w.r.t. M and C, denoted fP(P [S])M,C , is
the rule set Igr(P)(P [S]) from which, if P [S]∈C, all rules r such that M, P [S] �|=B(r)
are removed. The reduct of P w.r.t. M and C is the rule base fPM,C=(fP(P [S])M,C |
P [S] ∈ VC (P)).

That is, outside C the module instantiations of P resp. gr(P) remain untouched, while
inside C the FLP-reduct [9] is applied.

Example 8. Consider P and M from Example 6, and a context C = {P1[∅], P2[∅]}.
The context-based reduct of P w.r.t. M and C is given by the rule base fPM,C =
(fP(P1[∅])M,C , fP(P2[∅])M,C , fP(P3[∅])M,C , fP(P3[{c}])M,C), which is equal
to I(gr(P)), i.e., fP(P1[∅])M,C = {a ← P2.b.}, fP(P2[∅])M,C = {b ← P1.a.},
fP(P3[∅])M,C = {c← not c.}, and fP(P3[{c}])M,C = {c; c← not c.}.
Definition 12 (answer set). Let M be an interpretation of a ground MLP P. Then M
is an answer set of P w.r.t. a context C for M, if M is a minimal model of fPM,C .

Note that C is a parameter that allows to select a degree of overall-stability for answer
sets of P. The extreme case C = VC (P) requires that all module instances have answer
sets. On the other end, the minimal context C = V (CGP(M)) is the relevant call graph
of P; we consider this as the default context and omit C from notation.

Example 9. Consider P from Example 4. We have that P has answer sets of four differ-
ent shapes, each of them having exactly two instances of s1 and two instances of s2 for
the model MQ/∅ of instantiation IP(Q[∅]). A particular answer set is the indexed tuple
with the entries (MQ/∅, MP /∅, MP /{q(a)}, MP /{q(b)}, MP /{q(c)}, MP /{q(d)},
MP /{q(a), q(c)}, MP /{q(b), q(d)}, . . . ), where MQ/∅ = {s1(a), s2(b), s1(c), s2(d),
ok, s(a), s(b), s(c), s(d)}, MP /∅ = {even}, all models for instantiations with sin-
gletons MP /{q(a)}, MP /{q(b)}, MP /{q(c)}, MP /{q(d)} contain odd and the resp.
skip’d element, and both MP /{q(a), q(c)} and MP /{q(b), q(d)} contain even .

Example 10. Consider P and M from Example 6. Let M0 = (M0
1 /∅, M0

2 /∅, M0
3 /∅,

M0
3 /{c}), such that M0

1 /∅ = M0
2 /∅ = ∅, M0

3 /∅=M0
3 /{c}={c}, be another interpre-

tation for P. One can verify that M0 is also a model of P. Since we fixed the context C
to {P1[∅], P2[∅]}, the reduct w.r.t. M0 is fPM0,C = (fP(P1[∅])M0,C ,fP(P2[∅])M0,C,
fP(P3[∅])M0,C, fP(P3[{c}])M0,C) = (∅, ∅, IP(P3[∅]), IP(P3[{c}])), and fPM,C is
as in Example 8. The minimal model of fPM0,C is M0, hence it is an answer set of P
w.r.t. C, whereas the minimal model of fPM,C is also M0, i.e., M is not an answer set
of P w.r.t. C.
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3 Semantic Properties

We now consider some properties of modular logic programs. Obviously, they conser-
vatively generalize ordinary logic programs.

Proposition 1. Let R be an ordinary logic program. Then M is an answer set of R
iff M = (M1/∅) with M1/∅ = M is an answer set of the MLP (m1), where m1 =
(P1[], R) is a main module and P1 is a module name.

Some well-known properties from standard answer set programming carry over to the
semantics of modular logic programs. This is of avail not only to encompass underly-
ing intuitions, but also for characterizing computational aspects. Two straightforward
consequences from the definition of FLP-reduct are the following.

Lemma 1. If M |= fPM,C for some context C for M, then M |= P.

Lemma 2. If M |= P, then M |= fPM′,C for any interpretation M′ and context C.

Consequently, we obtain that answer sets are minimal models of P.

Proposition 2. If M is an answer set of P w.r.t. context C, then M ∈ MM (P).

Furthermore, the semantics is a proper refinement of a naive semantics that would re-
quire stability w.r.t. all possible module instantiations disregarding their relevance. This
is a simple consequence of the following property.

Proposition 3. If M is an answer set of P w.r.t. context C ⊆ VC (P), then M is an
answer set of P w.r.t. every context C′ ⊆ C for M, i.e., V (CGP(M)) ⊆ C′ ⊆ C.

We next consider answer sets that, in a sense, face no inconsistency in the scope of
instantiations that are relevant to them. Let ord(P) denote the result of deleting from
an MLP P all rules containing module atoms in R(m) in all modules m of P. We call
an answer set M of P w.r.t. C fully stable, if V (CGP(M′)) ⊆ C for all M′ ≤M such
that M′ |= ord(P)M,C . Then the following holds.

Proposition 4. Every answer set of P w.r.t. C = VC (P) is fully stable, and if M is an
answer set of P w.r.t. C and fully stable w.r.t. C′ ⊆ C, then M is fully stable w.r.t. C.

Obviously, answer sets coincide with the naive semantics if V (CGP(M)) = VC (P)
for all interpretations M of P, in particular, when all modules are main. Moreover,
also for positive MLPs the semantics coincides with the naive semantics. Just like in
ordinary logic programs, it behaves like the minimal model semantics in absence of
negation.

Proposition 5. Let P be positive. Then, the answer sets of P coincide with MM (P).

By monotonicity of all module instances, one can easily show that the models of a
Horn MLP P are closed under a suitable notion of intersection. Given interpretations
M and N of P = (m1, . . . , mn), let their intersection be the interpretation denoted
M∩N such that (M ∩N)i/S =

⋂
S′⊇S(Mi/S′∩Ni/S′), for every S ⊆ HBP|qi and

i = 1, . . . , n. Then:
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Proposition 6. Suppose M |= P and N |= P, where P is Horn. Then M ∩N |= P.

As a consequence, a Horn MLP has a canonical answer set.

Corollary 1. If P is Horn, then it has a unique answer set, which coincides with its
least model.

Like for ordinary programs, we can compute the answer set of a Horn MLP by means
of a bottom up fixed-point computation.

Definition 13 (TP-operator). Given a Horn MLP P and an interpretation M of P, we
define the operator TP(M) point-wise as follows:

TP(Mi/S) = {H(r) | r ∈ IP(Pi[S]), M, Pi[S] |= B(r)}.
Since the operator is continuous, it has a least fixed-point lfp(P) that results, starting
from the empty interpretation M∅, i.e., where Mi/S = ∅ for every Pi[S] ∈ VC (P) in
ω steps, i.e., lfp(P) = TP↑ω(M∅). We obtain the following result.

Proposition 7. For a Horn MLP P, lfp(P) is the unique answer set of P.

For normal MLPs, we generalize the notion of stratification as follows. Intuitively, the
usual notion of the dependency graph of a program is extended by nodes E for the
module atoms appearing in P, which serve to take care of the dependencies between
input to the module and module output. Furthermore, we assume that each predicate
occurs in ordinary atoms of at most one module.

Let P = (m1, . . . , mn) be an MLP. The dependency graph of P is the following
digraph GP = (V, E). The vertex set V contains all p ∈ P ∪ E , with p appearing
somewhere in P, and E is the set of module atoms in P. The edge set E is as follows:

Let r ∈ R(mi). There is a �-edge p →� q in GP, � ∈ {+,−}, if either (i) p(t1) ∈
H(r) and q(t2) ∈ B�(r); (ii) p(t1), q(t2) ∈ H(r) and � = +; or (iii) p(t1) ∈ H(r)
and q is a module atom in B�(r). Moreover, for α = Pj [p].o(t) ∈ B(r), the set E
contains all edges a→+ b, where (iv) a = α and b appears in qj of Pj [qj ]; (v) a = α
and b = o; or (vi) a = q� and b = p�, where q� is in qj of Pj [qj ] and p� is in p.

Definition 14. We say that an MLP P is stratified if no cycle in GP has −-edges.

As for ordinary logic programs, given a stratified MLP P, there exists a labelling func-
tion l from HBP to the nonnegative integers, such that l(α) ≥ l(β) if a →+ b in GP,
and l(α) > l(β) if a →− b in GP, where α = a(t), or a ∈ E and a unifies with α,
respectively for β and b.

Let k be the maximal value assigned by a particular labelling function, and let
Strat i = {a ∈ HBP | l(a) = i} for 0 ≤ i ≤ k, then Strat0, . . . ,Stratk is a stratifica-
tion, i.e., a partitioning of HBP.

Towards an iterated fixed-point computation of answer sets for stratified MLPs, we
define the following operator.

Definition 15 (T L
P -operator). Given a normal MLP P, a subset L of HBP, and an

interpretation M of P, we define the operator T L
P(M) point-wise as follows:

T L
P (Mi/S) = Mi/S ∪ {H(r) | r ∈ IP(Pi[S]), M, Pi[S] |= B(r), B(r) ⊆ L}.
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By T L
P↑ω(M), we denote the application of T L

P in ω steps, starting with M. Fur-
thermore, let M0 = M∅ be the empty interpretation, i.e., where Mi/S = ∅ for ev-
ery value call Pi[S] ∈ VC (P), and let Li =

⋃
0≤j≤i Stratj .We inductively define

Mi+1 = T
Li+1
P ↑ω(Mi), for 0 ≤ i < k.

Proposition 8. Let P be normal and stratified. Then Mk is an answer set of P, for any
stratification Strat0, . . . ,Stratk of HBP.

A further consequence of stratification is that the relevant call graph is unique.

Proposition 9. Let P be normal and stratified. Then V (CGP(M)) = V (CGP(Mk)),
for any answer set M of P and any stratification Strat0, . . . ,Stratk of HBP.

Therefore, answer sets of stratified, normal MLPs coincide on relevant instances. The
answer set obviously is unique if all value calls of VC (P) are relevant, or if all irrele-
vant instances have a unique minimal model.

4 Computational Complexity

To begin with, let us restrict our attention to Horn MLPs. Considering the propositional
case, if the modules mi = (Pi[qi], Ri) in P have no input (i.e., qi is void), then I(P)
has polynomial size and lfp(P) is computable in polynomial time. For arbitrary propo-
sitional P with no inputs, we can guess and verify an answer set M of P in polynomial
time with an NP oracle. As MLPs (Proposition 1) subsume ordinary logic programs, we
thus obtain by known results (cf. [12]) the same complexity. With slight abuse of nota-
tion, for a ground atom α and an interpretation M of P, we write α ∈M if α ∈Mi/S
for a given Pi[S] ∈ VC (P).

Theorem 1. Given a propositional MLP P = ((P1[], R1), . . . , (Pn[], Rn)), (i) if P is
Horn, the unique answer set M = lfp(P) of P is computable in polynomial time and
to decide whether α ∈M for a ground atom α is P-complete; (ii) to decide whether P
has an answer set is Σp

2 -complete.

These results generalize to the case where the module inputs in P have bounded length,
i.e., |qi| ≤ k for some constant k, as I(P) and M have polynomial size. For unrestricted
inputs, however, I(P) and M are exponential and we get a blowup.

Theorem 2. Given a propositional MLP P (i) if P is Horn, the unique answer set
M = lfp(P) of P is computable in exponential time and to decide whether α ∈ M
for a ground atom α is EXP-complete; (ii) to decide whether P has an answer set is
NEXPNP-complete.

The hardness parts can be shown e.g. by encodings of Turing machines, which adapt
constructions in [12]. Superficially, one uses modules P [c, t], where c amounts to a tape
cell index and t to a time stamp during a computation; with |c|= |t|= n, 2n cells and 2n

time stamps can be modeled. Further atoms store the cell contents, state of the machine,
and the position of the read-write head. The transition function is encoded by rules with
access to the contents of neighboring cells, which is realized by respective (recursive)
module calls; neighboring cells and time stamps are computed using local rules.
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Table 1. Complexity of MLPs (P is Horn in the first two columns, α is a ground atom)

MLP P Computing lfp(P) Deciding α ∈ lfp(P) Answer set existence
prop. P, empty inputs polynomial time P-complete Σp

2 -complete
prop. P exponential time EXP-complete NEXPNP-complete
non-ground P double exponential time 2EXP-complete 2NEXPNP-complete

In the Datalog setting, we get for MLPs a similar picture as for ordinary logic pro-
grams, where the complexity of Datalog programs is exponentially higher than the one
of propositional programs. Intuitively, the process of grounding may introduce exponen-
tially many ground atoms for an atom, which in turn may result in double exponentially
many module instances; thus, I(P) and interpretations M have double exponential size
in general. Computing lfp(P) for Horn MLPs P may thus take double exponential time,
and a guess for an answer set has double exponential size. We get the following results.

Theorem 3. Given a non-ground MLP P, (i) if P is Horn, the unique answer set M =
lfp(P) of P is computable in double exponential time and to decide whether α ∈ M
for a ground atom α is 2EXP-complete; (ii) to decide whether P has an answer set is
2NEXPNP-complete.

The hardness parts an be shown by lifting the constructions for the propositional case.
Here, n-ary predicates p(X1, . . . , Xn) are used to store 2n bits of a number, such that
a range of 22n

tape cells and time stamps can be spanned via module inputs q.
Finally, we note that the complexity drops by an exponential to the one of ordinary

logic programs, if the arities of input predicates are bounded by a constant (as then I(P)
and M have single exponential size). Our results are compactly summarized in Table 1.

5 Relationship to DLP-Functions

DLP-functions [2] are a proposal for modular logic programs under answer set seman-
tics in conformance with Programming-in-the-large. The approach creates a semantics
for a sequence of modules by defining a suitable input-output interface, and allows
combining compatible answer sets between joinable modules.

More specifically, a DLP-function has form Π = 〈R, I, O, H〉, where R is a set of
propositional disjunctive rules and I, O, H are sets of propositional atoms defining in-
put, output, and hidden atoms, respectively. An operator ⊕ forms a new DLP-function
from two DLP-functions that respect hidden atoms of each other. In addition, if two such
DLP-functions Π1 and Π2 are not mutually (positive) dependent, their join Π1 � Π2

is defined. Joinability allows negative loops between DLP-functions but not positive
ones; one can use⊕ to generate the join. On top of joinable DLP-functions, the Module
Theorem is the basis for computing the answer sets of a sequence of DLP-functions by
taking the union of mutually compatible answer sets of each member; hence joinable
DLP-functions qualify for having a compositional semantics.

We now show a translation from DLP-functions to MLP modules, and briefly out-
line a translation from a fragment of MLPs without input to an equivalent sequence
of DLP-functions. For space reasons, we must omit recalling the formal machinery of
DLP-functions here, but stick to definitions of [2] as much as possible. To be in line
with [2], we consider only the propositional case.
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Translation from DLP-Functions to MLPs. We now define a translation ∇ which
maps sequences of DLP-functions to MLPs. To this end, we map input atoms a ap-
pearing in bodies of rules in some DLP-function to module atoms of MLPs, whenever
there is an output of another DLP-function which contains a. Other atoms remain un-
changed. Then, we add further guessing rules to the modules; intuitively, they guess the
truth value for input atoms which have not been fixed by some output.

Let Π = (Π1, . . . , Πn) be a sequence of DLP-functions, where Πi is a DLP-
function 〈Ri, Ii, Oi, Hi〉, and the join

⊔n
i=1 Πi is defined. For a propositional atom

a in At(Ri), if a ∈ Ii and there exists another DLP-function Πj in Π such that
a ∈ Ato(Πj), then ∇(a) = Pj .a (note that such a Πj is unique due to the condition
Ato(Πk) ∩Ato(Π�) = ∅ for every k �= 	); otherwise∇(a) = a.

Let r be a propositional rule in Πi of the form (2). We create ∇(r) by replacing
each βi by ∇(βi);2 for Πi, let ∇(Πi) = (Pi,∇(Ri)) where Pi is a module name and
∇(Ri) = {∇(r) | r ∈ Ri} ∪Qi, where Qi = {a ∨ ā | a ∈ Ati(Πi) \

⋃
j �=i Ato(Πj)}

and all ā are fresh propositional atoms. Finally∇(Π) = (∇(Π1), . . . ,∇(Πn)), where
each∇(Πi) is a main module.

Example 11. Let Π = (Π1, Π2) be a sequence of DLP-functions consisting of Π1 =
〈{a ← not b}, {b}, {a}, ∅〉 and Π2 = 〈{b ← not a}, {a}, {b}, ∅〉. The translation
of Π to MLP is ∇(Π) = (∇(Π1), ∇(Π2)), where ∇(Π1) and ∇(Π2) are the main
modules whose associative sets of rules are {a ← not P2.b} and {b ← not P1.a},
resp. Here, both Π and ∇(Π) possess two answer sets: Π has {a} and {b}, while
∇(Π) has ({a}, ∅) and (∅, {b}).

Now, let Π1 be from above and Π = (Π1). In this case, ∇(Π) = (∇(Π1)), where
∇(Π1) = (P1,∇(R1)) and ∇(R1) = {a ← not b; b ∨ b̄}. Both Π and ∇(Π) have
two answer sets; Π has {a} and {b}, while∇(Π) has ({a, b̄}) and ({b}).
The following proposition shows that∇ is correct.

Proposition 10. Let Π = (Π1, . . . , Πn) be a sequence of DLP-functions whose join⊔n
i=1 Πi is defined. Then, the answer sets of∇(Π) correspond 1-1 to those of Π .

Translation from MLPs to DLP-Functions. Compared to DLP-functions, MLPs have
a fine-grained input mechanism. DLP-functions import atoms from other DLP-functions
by means of an explicit input/output interface; an atom, whose truth value originates from
a different DLP-function, can be seen as a call-by-reference. To clarify, take an MLP with
library modules mk = (P [q], Rk) and m� = (Q[p], R�). Consider a module atom Q[b].a
appearing in Rk; we are confronted with two different types of input:

(1) m� retrieves input b from mk explicitly in form of an additional fact p whenever b
holds in some instantiation of P [q], which can be seen as call-by-value, and

(2) mk retrieves input from m� implicitly in form of a, which plays a similar role to
call-by-reference input in DLP-functions.

Here, we restrict our attention to MLPs with input of type (2). By complexity arguments,
translating MLPs with inputs of type (1) into sequences of DLP-functions is likely to
cause an exponential blowup in general.

2 Constraints are allowed in [2]; they can be emulated by adding fail (not fail) to the head
(body) of ∇(r), where fail is a fresh propositional atom.
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Given a propositional MLP P = (m1, . . . , mn), where each mi = (Pi[], Ri) has no
formal input parameter, we can do the translation by mapping in Ri each ordinary atom
a to Δ(a)= aPi , each module atom Pj .b to Δ(Pj .b)= bPj . For each module mi, the
input (output) atoms of the corresponding DLP-function are determined by applying Δ
to module atoms occurring in Ri (resp., module atoms Pi.a occurring in P). Based on
this idea, P can be translated into a sequence Δ(P) of DLP-functions where the com-
position operator ⊕ is defined. However, to have the join operator � defined and thus
answer sets of Δ(P), the modules in P must respect a condition akin to “not mutually
dependent” [2], which is based on the sharing of strongly connected components in the
positive dependency graph. On top of this condition, our translation gives a variant of
the Module Theorem in [2]. Technical details and proofs are given in an accompanying
technical report.

6 Related Work and Conclusion

In the ASP context, several modular logic programming formalisms have been proposed
We already discussed the modular logic programs of [4] and DLP-functions [2].

Towards code reusability in ASP, [5] defines modules in terms of macros. On top of
this, the authors define ensembles, which group modules comparable to the way classes
keep their methods together in object-oriented programming languages, and an inheri-
tance mechanism for ensembles. In a similar way but more focused on aggregates, [6]
defines “template” predicates to quickly introduce new predefined constructs and to deal
with compound data structures. The DLPT language based on this notion was imple-
mented on top of DLV. Both [5] and [6] have the restriction that no cycle is allowed
between macros/templates.

A different approach is used in [13]. Here, the modules allow to import answer sets
from other modules to compute the overall solution. However, this approach considers
only modular ASP programs with acyclic dependency graph. Another system called
RSig [14] allows to specify modules and provides an information hiding mechanism.
Direct communication between modules was not addressed; instead, modules exchange
information with a global state via import/export declarations. The semantics of such a
system is given by a (polynomial) compilation into an ordinary ASP program.

Another formalism with multiple nonmonotonic logic programs is [15], targeting
a Semantic Web environment. It allows to interlink logic programs that may refer to
remote knowledge bases distributed on the Web. The authors propose a context-aware
form of negation as failure to deal with the inherent incompleteness of data on the Web.
The MWeb framework [16] is a further attempt to enhance the Semantic Web with scope
and context for modular web rule bases. However, it is mainly concerned with support
for hidden knowledge and the safe use of strong and weak negation, and modular rule
bases are translated into ordinary logic programs, respecting different reasoning modes.

While we have presented the basic approach, several issues remain for further work.
An interesting issue is to further analyze contexts and, e.g., to determine conditions for
contexts that are fully stable, which desirably should be small. Some (less effective)
conditions may be determined by syntactic analysis.

Another issue is extensions of MLP to richer classes of programs, including constructs
like strong negation, constraints, external functions, nesting, etc. On the semantical side,
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we can imagine alternative ways of tolerating violations of stability outside the context.
This could be done, e.g., by using partial FLP-reducts (where not all rules with false bod-
ies are dropped, leading to a superset of the answer sets), or by genuine approximations.
Variants of stratification and splitting sets would also be interesting.

On the computational side, a detailed complexity study of MLPs that considers
various fragments is of interest, where in particular the interplay of major classes of
ordinary logic programs with dependency information through module calls deserves
attention; various notions similar as in [4] might be considered here. Furthermore, effi-
cient methods and algorithms to compute answer sets of MLPs remain to be developed,
as well as implementations. To this end, methods based on reductions to ordinary logic
programs and extensions are under investigation.
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