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Preface

This volume contains the proceedings of the 25th International Conference on
Logic Programming (ICLP 2009). The conference took place in Pasadena, Cali-
fornia during July 14–17, 2009. The ICLP series of conferences is aimed at pro-
viding a technical forum for presenting and disseminating innovative research
results in the field of logic programming.

The conference, which was co-located with the International Joint Conference
on Artificial Intelligence (IJCAI), featured technical presentations, tutorials, in-
vited talks, and a number of special events, including:

– The 5th ICLP Doctoral Student Consortium
– The Second Workshop on Answer Set Programming and Other Computing

Paradigms (ASPOCP)
– The 6th International Workshop on Constraint Handling Rules (CHR)
– The 9th International Colloquium on Implementation of Constraint and

LOgic Programming Systems (CICLOPS)
– The 4th International Workshop on (Constraint) Logic Programming and

Software Engineering (CLPSE)
– The First Workshop on Commercial Users of Logic Programming (CULP)
– Workshop on ISO Prolog — WG17
– The 19th Workshop on Logic-based methods in Programming Environments

(WLPE)

Since the first conference held in Marseilles in 1982, ICLP has been the pre-
miere international conference for disseminating research results in logic pro-
gramming. The present edition of the conference received 69 submissions in
three categories: application, system and tool, and technical papers. From these,
the Program Committee selected 29 papers for presentation and inclusion in the
proceedings. In addition, the committee selected nine short papers describing
on-going research work, PhD theses and research project overviews for poster
presentations and inclusion in the proceedings.

As in previous years, the Program Committee selected the best paper and the
best student paper. The Best Paper Award went to Henning Christiansen and
John Gallagher for their paper “Non-discriminating Arguments and Their Uses”
while the Best Student Paper went to Matthias Broecheler and Gerardo Simari
for their paper (co-authored with V.S. Subrahmanian) “Using Histograms to
Better Answer Queries to Probabilistic Logic Programs.”

ICLP 2009 included invited talks by Taisuke Sato titled “Generative Model-
ing by PRISM;” by Paulo Moura titled “From Plain Prolog to Logtalk Objects:
Effective Code Encapsulation and Reuse;” by Chris Mungall titled “Experiences
Using Logic Programming in Bioinformatics;” and by Marc Denecker titled “A
Knowledge Base System Project for FO(.)”. The program also featured four tuto-
rials: “Probabilistic Logic Learning” by Luc De Raedt; “Enabling Serendipitous
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Search on the Web of Data Using Prolog” by Jan Wielemaker; “(C)LP Tracing
and Debugging” by Mireille Ducasse; and “Untangling Reverse Engineering with
Logic and Abstraction” by Andy King.

ICLP 2009 was organized by the Association for Logic Programming (ALP) in
collaboration with the IJCAI 2009 Organizing Committee and the Organizing
Committees of the special events associated with ICLP 2009. ICLP 2009 was
sponsored by ALP, the University of Texas at Dallas, and the University of
Nebraska, Omaha.

Many people contributed to the success of the conference, to whom we hereby
extend our gratitude and thanks. The IJCAI organizing staff, Carol Hamilton
(Executive Director, AAAI), Richard J Doyle (Local Arrangements chair) and
Craig Boutilier (PC Chair), enabled the successful collaboration and co-location
with IJCAI. The General Chairs, Gopal Gupta and Hai-Feng Guo, both worked
extremely hard to ensure a memorable event, providing leadership in all aspects
of the organization process. The members of the Program Committee provided
invaluable help in the process of selecting papers and developing the conference
program. The numerous referees invested countless hours in reading submissions
and providing professional reviews. Manuel Carro (the Workshop Chair) and
Marcello Balduccini (a Doctoral Consortium Co-chairs); and Tom Schrijvers
(a Doctoral Consortium Co-chair and the Prolog Programming Contest Chair)
contributed to ICLP by the addition of exciting and well-organized events, while
Ricardo Rocha, the Publicity Chair, helped to ensure its overall success. This
year, with only a very short period between ICLP 2008 (held in December 2008)
and the March 3 deadline for ICLP 2009 submitted papers, the biggest “thank
you” of all should go to the large number of researchers in the logic programming
community who rose to the challenge and submitted many excellent technical
papers and posters. Last but not least, we wish to thank the developers of the
EasyChair conference management system, which made our job much easier.

April 2009 Patricia M. Hill
David S. Warren
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Probabilistic Logic Learning – A Tutorial Abstract . . . . . . . . . . . . . . . . . . . 39
Luc De Raedt

Best Papers

Using Histograms to Better Answer Queries to Probabilistic Logic
Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Matthias Broecheler, Gerardo I. Simari, and V.S. Subrahmanian

Non-discriminating Arguments and Their Uses . . . . . . . . . . . . . . . . . . . . . . . 55
Henning Christiansen and John P. Gallagher

Applications I

Preprocessing for Optimization of Probabilistic-Logic Models for
Sequence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Henning Christiansen and Ole Torp Lassen



XII Table of Contents

Stabilization of Information Sharing for Queries Answering in
Multiagent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Phan Minh Dung, Do Duc Hanh, and Phan Minh Thang

Logic Programming for Multiagent Planning with Negotiation . . . . . . . . . 99
Tran Cao Son, Enrico Pontelli, and Chiaki Sakama

Implementation I

Answer Set Programming with Constraints Using Lazy Grounding . . . . . 115
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Experiences Using Logic Programming in
Bioinformatics

Chris Mungall

Abstract. Reverse engineering complex biological systems requires the
integration of multiple different databases using detailed background
knowledge. Logic programming can provide a means of both perform-
ing integrative queries and rule-based inference to account for implicit
knowledge.

The Biological Logic Programming toolkit (Blipkit) was developed
as a means of doing this kind of data integration. Implemented in SWI-
Prolog, Blipkit has models of different aspects of life sciences data,
including genes and gene sequences, RNA structures, evolutionary rela-
tionships, phenotypes and biological interactions. These can be combined
to answer complex questions spanning multiple datasources. Blipkit also
has means of integrating with and combining life sciences databases and
ontologies.

1 Introduction

1.1 Background

The study of biological systems is progressing at an astonishing rate. The deter-
mination of the three billion bases of the reference DNA sequence of the human
genome in 2001 was a landmark event in science, but accomplishment will be
dwarfed with the advent of next-generation massively parallel sequencing tech-
nologies which allow the sequencing of genomes of individual organisms or cells
on a truly massive scale. The scientific and medical potential is enormous. For
medical purposes we would like to know the mechanisms by which individual
chemical changes in DNA molecules combine with other forces to give rise to
effects of clinical importance. However, a DNA sequence is not in itself sufficient
to unlock this potential: sequence data must be analyzed in the context of other
rich and complex data derived from a variety of life forms. How is the gene struc-
tured in the genome? How is it related to other genes, going back to common
ancestors hundreds of millions of years ago? What structures do these genes en-
code, and how do these structures interact with other similar structures to give
rise to a functioning organism – or in the case of deleterious genetic variation,
the dysfunctioning of an organism?

This richness of data and the attendant challenges in analyzing it has lead
to a new multi-disciplinary endeavour: bioinformatics, the application of com-
puter science and informatics to solving biological problems. One of the biggest
challenges in bioinformatics is semantic multi-scale data integration, automati-
cally combining facts from a variety of heterogeneous sources using background

P.M. Hill and D.S. Warren (Eds.): ICLP 2009, LNCS 5649, pp. 1–21, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 C. Mungall

knowledge to answer complex questions and yield new insights. Historically this
integration has been done in an ad-hoc fashion, using scripting languages to
write disposable programs for gathering together data for specific purposes[19].
Recognizing the inherent problems with this approach, the community has been
a move towards providing Application Programmer Interfaces (APIs) to data,
both object-oriented and web services based[20]. These systems are typically suc-
cessful for answering specific questions about a limited range of datatypes, but
queries across databases cannot easily be combined. In addition, it is difficult to
integrate knowledge and semantics into the query answering process[21].

Whereas a large portion of scientific programming comes down to “number
crunching”, many bioinformatics analyses come down to “symbol crunching”.
This can be an ideal substrate for logic programming (LP). LP has been suc-
cessively applied to individual problems, programming “in the small”, but there
has been less in the way of using LP for integrative analyses and programming
“in the large”.

The Biological Logic Programming toolkit (Blipkit) was developed as an ex-
periment in applying LP techniques to data integration and “programming in
the large” in bioinformatics. It is a collection of prolog modules for integrating,
modeling, querying and performing complex operations over diverse biological
data. Also known as BioProlog, it comprises one of the Bio* projects under the
aegis of the Open Bioinformatics Foundation (OBF), alongside BioPerl, Bio-
Java, BioRuby and others. Each of these projects represents a community effort
to provide a relatively comprehensive integrated library of code for researchers
in the life sciences that takes advantages of the features of the host program-
ming language. Most of these bioinformatics language libraries use an object-
oriented approach, as is popular in software engineering today. Blipkit, written
in SWI-Prolog[23], offers a radically different approach, and can be described as
predicate-oriented as opposed to object-oriented. The assumption underpinning
the development of Blipkit was that this would offer some unique advantages,
especially when applied to complex multi-source data integration problems re-
quiring the application of logical rules and inference.

This paper first describes the organizational principles of the library, then
illustrates a subset of the domains covered, focusing on the biology of genomes.
The development of this library has yielded some interesting lessons, both in
bioinformatics and for the logic programming community at large. These are
presented at the end of the paper.

2 A Biological Logic Programming Toolkit

2.1 Modular Organisation

Most software developers would agree that all non-trivial programming projects
benefit from a modular design. Partitioning programs into modules helps make
programs maintainable by ensuring a separation of concerns. Unfortunately, Pro-
log systems vary tremendously with respect to their module systems (if they
provide them at all). This has not historically been a problem for “programming
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Table 1. List of packages included in Blipkit

Package Core Model Description
metadata metadata db annotations and metadata
ontol ontol db ontologies
genomic genome db , seqfeature db DNA sequences and features (1D)
structure rna db Secondary and tertiary structures (2D and 3D)
phylo phylo db Phylogenetic trees and evolutionary history
pheno pheno db Phenotypes and diseases
curation curation db Statements about biology
sb sb db , interaction db Systems biology and interactions
sql Relational databases
web Accessing data and services over the web
serval Web application framework
stats Statistical calculations
blipcore Miscellaneous, I/O

in the small” style research projects, but it does hamper the adoption of Prolog
for “programming in the large” style projects. The variability of module systems
means that Blipkit is largely restricted to its host implementation, SWI-Prolog.
The implications of this decision are discussed later on.

The modular organization of blipkit is as follows. Modules are organized into
packages, with each package consisting of multiple modules and corresponding
to a particular domain of the life sciences: for example, one package for rep-
resenting genes, the other for representing the evolutionary history of those
genes, and yet another for the interactions those genes participate in. There
are also packages that are independent of the life-sciences per-se – for example,
packages for representing metadata, or for working with relational databases.
Table 1 shows the packages that comprise Blipkit.

Models. Each package is centered around one or more models of the domain
in question1. Model modules by convention always have the db suffix. For any
given package there may be multiple models, each representing complementary
overlapping views on that domain. Model modules consist of modeling predi-
cates, each corresponding to some relationship or type within that domain. These
predicates are split into two disjoint categories, extensional and intensional. Ex-
tensional predicates are intended to be loaded or asserted as unit clauses or
facts (i.e head with no body), whilst intensional predicates have a body and are
never asserted. From a database perspective these can be thought of as tables
and views respectively. By convention, models generally adhere to the Datalog
subset of prolog (i.e. no compound terms as arguments) in order to increase
interoperability with relational databases and datalog systems.

Prolog has no inherent notion of intensional and extensional predicates –
clauses are largely treated equally (although systems may distinguish between
1 The term model is here used in the sense of a schema or data model, rather than of

a stable model in disjunctive datalog.
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dynamic and compiled predicates, these do not strictly correspond). Blipkit has a
metamodeling module dbmeta that each model uses to describe itself, primarily
using the extensional/1 directive/predicate to declare a predicate as being
extensive. This makes it easier to perform options such as writing all facts in
a model to a file. This can be thought of as partially analagous to the Data
Description Language (DDL) in a relational schema.

In addition, both extensional and intensional predicates are extensively
documented using the PlDoc system[24].

Utility modules. A large chunk of bioinformatics is unfortunately devoted to
prosaic plumbing exercises - there is a bewildering plethora of different data
formats of varying degrees of formality, and these formats must be parsed in
order to be able to integrate data from a variety of source. Often it is useful to
be able to export model facts conforming to these formats.

Thus blipkit provides many different parsers, translators and writers to handle
these different formats. These are divided into four categories: (i) XML-based
formats are parsed using the SWI-Prolog SGML package, and then translated
to model assertions using a prolog XSLT-like mapping specification (ii) Tabular
formats are translated to prolog facts using a uniform syntactic translation, and
then the facts are translated to model assertions using prolog (iii) For some
formats for which a BNF grammar exists or can be created, Blipkit uses a DCG
(Definite Clause Grammar) to parse the data (iv) for other formats we leverage
parsers written in other languages such as perl, and write perl programs to
generate prolog facts.

Uniform naming conventions help clarify large codebase. By convention, parsers
are named parser format . XML to model translation modules are named
model xmlmap format .

There are also modules for importing and exporting facts from ontological
representations and databases - these are discussed further on.

A general purpose module called io deals with input and output from these
formats. Each blipkit installation also has a data source registry. This means
that the programmer typically just has to call the load biosource/1 command,
giving the name of the data source, and the Blipkit system will utilize the correct
parser and populate the relevant model module with facts. The system will
also take care of fetching remote data dumps across HTTP, maintaining a local
cache. The SWI-Prolog qcompile/1 predicate is immensely useful for making a
fast-loading pre-compiled prolog database from a data source.

2.2 Ontologies and Metadata

Regardless of the domain being represented, there are often common modeling
predicates that can be reused in a number of contexts. For example, regardless
of whether the elements in our domain are representations of genes, chemical
entities or human patients, these elements have shared attributes such as the
primary label by which these elements are known, alternate labels, identifiers



Experiences Using Logic Programming in Bioinformatics 5

and so on. The metadata dbmodel consists of mostly extensional predicates
such as entity label/2, entity synonym/2 and so on.

Many Blipkit models are intended to work in concert with ontologies, com-
putable representations of the types of entity in some domain. The Open Bio-
logical Ontologies (OBO) project organizes and stratifies the various different
ontologies used in bioinformatics[17] into orthogonal domains, and the blipkit
ontol dbmodel is geared towards these ontologies, and is based on the OBO lan-
guage. This model includes extensional predicates such as subclass/2, which
represents the is a relationship[16] that can hold between two ontology classes.
The intensional predicate subclassT/2 is the transitive version of this predi-
cate, defined recursively in the standard fashion and resolved through WAM-
based backward chaining. The lack of tabling in SWI-Prolog can be problematic
here; certain kinds of inferences will lead to cycles. Two alternate strategies
are employed - one strategy is to write the facts to a file and use a different
set of intensional predicates within a Prolog such as Yap or XSB. In general
it is preferable to do the inferences directly from SWI-Prolog, so Blipkit also
provides a forward chaining inference engine called ontol reasoner. This iter-
atively applies rules to the existing database, asserting new facts until no new
facts can be inferred. Expressivity is limited in that rules which produce infinite
or prohibitively large databases are avoided.

One of the most popular ontologies in Bioinformatics is the Gene Ontology
(GO)[3], which is used to assign functions and cellular locations to the products
of genes. This adds semantics to gene databases, as it allows computable state-
ments such as “this gene encodes a product that regulates the transcription of
other genes” or “this gene encodes a product that produces the neurotransmit-
ter dopamine”. The curation dbmodel is used to represent these assignments,
together with associated provenance.

The ontol dbmodule is also used to implement Obol grammars[13]. These
provide a configurable means of automatically translating between biologist-
friendly textual descriptions and formal logical expressions using Definite Clause
Grammars (DCG), and have proved invaluable for the GO[12].

For example, the following portion of a DCG can be used to relate the tok-
enization of the string “permeability of mitochondrial membrane” to a prolog
expression that can be reasoned over:

phenotype( A that attribute_of( C ) ) --> physical_attribute(A), [of],object(C).
object( membrane that surrounds(C) ) --> relational_adjective(C), [membrane].

2.3 Genomes

Every living organism has a genome - a blueprint for life, carried by each cell in
that organism, encoded as a discrete sequence of chemicals called bases arranged
along a backbone of DNA (Deoxyribonucleic Acid). There are four types of bases
used, conventionally abbreviated as A, C, G and T, and these can be thought of
as the symbols of a molecular alphabet life uses to feed instructions to the cellular
machinery The genome sequence is passed on from generation to generation,
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with successive modifications and rearrangements giving rise to new phenotypes
(organismal characteristics) and ultimately new species.

The layout of information along a genome sequence can be difficult to reverse
engineer. The fundamental units are genes, genome subsequences which encode
the molecular agents that give rise to myriad biological processes. In many or-
ganisms, these gene sequences are often split into subsequences called exons,
interspersed with subsequences called introns (figure 1). The introns are later
excised by the cellular machinery. Whilst this may seem wasteful, it serves many
functions, one of which is to allow different combinations of exons of the same
gene to come together in vary contexts.

The blipkit genomic package contains a number of modules for representing
genome sequences and manipulating those representations. The architecture of a
genome can be conceived of in terms of discrete intervals. The inter-relationships
of these intervals can be formalized using the Allen Interval Calculus[2]. The
biorange module contains predicates for determining the relationship between
two intervals. This module extends the interval calculus as it deals with reverse
complementation – every DNA molecule has two complementary strands going
in reverse directions. A base on one strand is paired with a complementary base
on the other strand.

This module also includes relationships between discontiguous sets of inter-
vals, such as interleaves/2. These kinds of complex relationships are often
observed in higher organisms - figure 1 shows two interleaved genes on opposite
strands.

There are many other types of features encoded along a genome sequence - in
fact there is an entire ontology dedicated to these, the Sequence Ontology[9][10].
Other important feature types include various classes of regulatory region - these
provide cellular context for the switching on and off of genes as part of complex
regulatory networks. If genes are activated at the wrong time the consequences
can be disastrous - one illustration of this is in the fruitfly version of the human

gene A

gene B

DNA Strand

Complementary DNA Strand

Fig. 1. Two genes, each denoted by an arrow, interleaved on opposite strands of DNA
(dotted lines). When the gene is transcribed by the cell, the introns (bent lines) are
excised and the exons (boxes) are joined together. Different combinations (called tran-
scripts) are possible in different contexts (for example, the middle exon of gene A may
be omitted).
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PAX6 gene (implicated in eye conditions in humans). Inappropriate expression
of this gene leads to the insect growing eyes in the wrong places such as on wings
and legs.

Fast retrieval of features within a given range is a common operation. There
are two implementations of this: the first is a pure prolog implementation, the
second implementation is in C and uses the Nested Containment List argorithm[1].
The SWI-Prolog Foreign Language Interface (FLI) is used to wrap this such that
it is seamlessly accessible via prolog.

The biorange module ignores the actual bases themselves and treats genomic
features as intervals. The bioseq module has various predicates for performing
operations on sequences, including excising subsequences and finding the com-
plement of a sequence. These sequence operations are very standard for any kind
of bioinformatics software library.

Neither of these modules are models, according to how blipkit partitions pack-
ages. The predicates do not lookup facts in the prolog database, they operate
entirely on the arguments supplied as input.

There are two complementary models for representing genomic features:
genome dband seqfeature db; in addition there is a largely orthogonal model
called seqanalysis db. In addition, there is a module for performing operations
on genomic intervals, range, a module for handling sequences, bioseq.

The genome dbmodel contains a direct prolog representation of the elements
of a genome, with unary predicates corresponding to the major types of feature
(as represented in the Sequence Ontology), as well as extensional n-ary predicates
for representing the relationships between features. The collections of facts below
corresponds to the upper part of figure 1

gene(geneA).
exon(geneA_exon1).
exon(geneA_exon2).
exon(geneA_exon3).
dna(dnaseq1).
transcript(geneA_transcriptX).
exon_transcript_order(geneA_exon1,geneA_transcriptX,0).
exon_transcript_order(geneA_exon2,geneA_transcriptX,1).
exon_transcript_order(geneA_exon3,geneA_transcriptX,2).
exon_dnaseq_pos(geneA_exon1,dnaseq1,1000,2000,1).
exon_dnaseq_pos(geneA_exon2,dnaseq1,3000,4000,1).
exon_dnaseq_pos(geneA_exon2,dnaseq1,6000,6500,1).

Note that there are no facts for the introns (gaps between exons). Given any
two successive exons on a transcript, we can infer the existence of an intron
between them, as well as the position of that intron. The intensional predicate
intron/1 provides this inference, using a skolem term as intron identifier:
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intron( intron(Seq,End,Beg,Str) ):-
exon_transcript_order(X1,T,R1),
exon_transcript_order(X2,T,R2),
1 is R2-R1,
exon_dnaseq_pos(X1,Seq,_Beg,End,Str),
exon_dnaseq_pos(X2,Seq,Beg,_End,Str).

The arguments of the skolem term can be used in further intensional predicates
for inferring the position of the inferred intons. A number of other feature types
are inferred using intensional predicates (not shown here for brevity). This kind
of inference may seem simple to a logic programming expert, but in fact it turns
out to be tremendously useful for querying genome databases, where incomplete
information is the norm. In bioinformatics, a little inferencing can go a long way.

One limitation with the current inference model is that the decision as to which
feature types are extensional and which are intensional must be made a priori.
Whilst it is more commonly the case (for example) that introns need to be inferred
from exons, occasionally the situation is reversed. If we attempt to mutually define
exons and introns in terms of one another, then it is difficult to use an untabled
Prolog without the execution of queries getting caught in infinite loops.

A number of options are being explored here. One option is to use a Pro-
log which allows tabling, such as Yap or XSB. Currently this requires manual
porting of code, as Blipkit is SWI-specific. So far there is an extension to the
genome dbthat works with Yap and allows for a greater variety of inferences,
and allows for greater flexibility in what features are stated and which are in-
ferred. However, at this time the additional modules of Blipkit have not been
ported, which limits the potential for powerful integrative cross-domain queries.

Another option simultaneously being explored is to use an even more expres-
sive logical modeling paradigm such as Answer Set Programming (ASP) and Dis-
junctive Datalog. There is a separate implementation of the genome dbmodel
written for the DLV system, part of an extension of core Blipkit. Core DLV
lacks the ability to have compound terms as predicate arguments, which means
that the intensional predicate for intron shown above cannot be used. Fortu-
nately there is an extension to DLV called DLV-complex which does allow for
these more expressive rules. The use of DLV opens up other possibilities, such
as disjunctions in the head of rules, and the ability to specific constraints on the
model. This is extremely useful in the context of incomplete or incorrect genomic
information (a common scenario). Of course, DLV is not a Prolog system so the
rest of Blipkit cannot be used unless it too is converted.

In contrast to genome db, the seqfeature dbmodel contains an indirect
representation of the elements of a genome using a generic feature/1 predi-
cate, with the type of the feature represented using a binary feature type/2
predicate, the second argument of which is the name of the type taken from the
Sequence Ontology. In other words, types are reified (i.e. they are predicate argu-
ments and are thus part of the domain of discourse), in contrast to genome db,
where the types are directly realized in the prolog model as predicates. There is
a bridge module for converting between these two representations.
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2.4 RNA Molecules

Despite the inherent 3-dimensionality of DNA molecules, their sequences are
essentially linear and 1-dimensional. The cellular machinery transcribes genes
encoded along the DNA molecule into RNA molecule transcripts which assume
3-dimensional configurations. These RNA molecules were once assumed to be
passive intermediaries in between protein coding genes and protein molecules.
However, more recently attention has been focused on RNA genes, as these
molecules are shown to play critical roles in the cell, and have been implicated
in a number of diseases. In fact it has even been hypothesized that the origin of
all life was the “RNA world”.

An RNA molecule, like a DNA molecule, can be modeled as a discrete se-
quence of bases. However, additional interactions between the bases become
more significant.

The relationships between bases are modeled in structure dbusing a hierar-
chy of binary relations such as five prime to/2 and paired with/2, derived
from the RNA Ontology[4]. We can then define intensional predicates to infer
the presence of higher level relationships and features such as bulges and loops.

Figure 2 shows an RNA pseudoknot, the existence of which can be inferred
using the intensional predicate printed below.

pseudoknot(X):-
stemloop(SL1),
stemloop(SL2),
stem(S2),
loop(L1),
has_part(SL2,S2),
has_part(SL1,L1),
part_of(S2,L1),
mereological_union(SL1,SL2,X).

This is another area in which tabling is extremely useful. The RNA module
of Blipkit works best with Yap Prolog.

Fig. 2. RNA Pseudoknot
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2.5 Phylogenetics

A phylogenetic tree is a representation of the evolutionary relationships between
either a collection of species, molecules or molecular sequences. Unlike a taxo-
nomic tree, the branches or edges of a phylogenetic tree are labeled with distance
quantities.

The blipkit phylo dbmodel is used for representing phylogenetic relation-
ships. The extensional predicates correspond to the branches of the tree and
their lengths, together with additional metadata about the nodes (for example,
taxonomic identifiers). Intensional predicates are used for derived information,
such as transitive ancestors and cumulative branch distances. There are addi-
tional intensional predicates for comparing two phylogenetic trees.

Gene or protein trees are more complex than organismal phylogenetic trees
as both speciation and duplication events have to be taken into account. The
latter happens when the genome of an organism (in whole or in portion) is
duplicated within the cells of that organism, and passed on to its ancestors.
This can be crudely thought of as initially comprising a “backup copy” of the
genome, which then affords more freedom for other genes to vary and evolve.
The phylo dbmodel includes intensional predicates for inferring the relationship
between two genes based on whether the splitting event was a speciation or a
duplication.

Two popular formats for exchanging phylogenetic trees are New Hampshire
format and PhyloXML. Blipkit supplies a DCG for the former and an XML
mapping for the latter. The Nexus format is more complex, and has a pre-
existing Prolog parser that is being adapted for use with Blipkit.

One limitation of the phylo dbmodel is that the structure of the tree is
modeled as extensional predicates. The trees are themselves inferred, and this
inference could be performed in Prolog. One advantage of doing this in Prolog
is to combine information about shared features encoded using ontologies[11].
For now, it is assumed that tree inference is performed outside blipkit, which
justifies the use of extensional predicates.

2.6 Systems Biology and Biological Interactions

The study of genes in isolation is by definition reductive. Systems biology aims
to take a more holistic approach, looking at genes in the context of the func-
tion of other genes in the cell, and thereby study the emergent properties that
underly living systems. In practice this usually takes the form of studying biolog-
ical pathways and the interactions between genes, gene products and chemical
entities within and between cells. The Blipkit sb package provides functionality
for dealing with systems biology data.

Blipkit includes the sb dbmodel, strongly influenced by the SBML stan-
dard. SBML is an XML-based exchange format for representing cellular interac-
tions in a quantitative fashion. SBML can be imported and exported by many
simulation tools. SBML also includes the ability to annotate the model using
OBO ontologies with RDF.
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Like SBML, sb dbhas a reaction-centric view, and thus has predicates reac-
tion reactant/2, reaction product/2 and reaction modifier/2 for repre-
senting the inputs, outputs and agents in a biochemical reaction event. In SBML
terminology, these are all “species”. SBML allows the expression of complex for-
mula via embedded MathML. In sb dbthese have their cognate representations
as nested Herbrand terms.

At this time, there is no quantitive modeling built in to Blipkit. However, it is
possible to perform simple qualitative modeling – for example, the
species path/3 intensional predicate allows us to ask if there is a chain of
reactions that allows species A to be produced from species B.

Another format commonly used is the RDF-based BioPAX. Data expressed in
BioPAX can either be directly translated to the sb dbmodel using the provided
Blipkit bridge module (which itself uses the SWI-Prolog RDF library). There
is an alternative model which is a direct automated translation of the BioPAX
schema (expressed in OWL) to Blipkit extensional predicates. The programmer
has the option of choosing, depending on which model provides the best view
for the questions they wish to ask.

Yet another model within the sb package is the interaction dbmodel. This
provides a simplified view in terms of a binary interacts with extensional pred-
icate. Databases such as BioGRID[6] aggregate protein-protein interaction data
from a variety of sources. This data can be extremely powerful when combined
with other data types.

3 Integration with Relational Databases

Bioinformatics is an information science, and much of the relevant information
is stored in relational databases. Sometimes these databases are supplied with
an API (accessed via a specific programming language or as a web service) that
allows for programs to access data. However, these APIs typically do not allow
complex boolean expressive queries, as is possible with direct SQL queries. For-
tunately, many of the important bioinformatics databases make their data avail-
able as database dumps, or have an open SQL port through which queries can
be made remotely. For example, the ENSEMBL database system[5] has genomic
annotation data for most sequenced genomes and is thus crucially important for
bioinformatics analyses.

The pure subset of prolog is in part an extension of the relational model,
and the methods for mapping prolog predicates to relational databases have
been known for nearly twenty years[8]. Using the sql compilercode written by
Christoph Draxler, it is possible to automatically translate complex prolog goals
into SQL queries. This stands in contrast to the more commonly used imperative
languages based on object-oriented principles, in which the impedance mismatch
between the two formalisms is known to be problematic[7].

Draxler’s sql compilercode has been adapter to work with various Vendor-
specific prologs such as Ciao, YAP and XSB. This has also been adapted to SWI-
Prolog as part of the Blipkit library. The adaptation also introduces numerous
novel extensions to the original code, including:
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– Database connectivity. The original sql compilerwrites out SQL rather
than making queries to the database. This functionality is still retained, but
additional functionality is added using the SWI-Prolog ODBC library to
connect directly to a database and translate the result sets back into prolog
terms. In addition, prolog predicates can be bound to a database handle,
such that prolog execution of the goals will call the database “behind the
scenes”. Similar capabilities are available in some of the other adaptations
such as the one in Ciao prolog.

– Query optimization. The original sql compilercan produce some ineffi-
cient SQL queries for complex goals. By adding additional metadata about
the schema, particular unique key declarations, the Blipkit sql compilercan
rewrite queries to avoid redundant joins, resulting in faster queries.

– Query rewriting based on prolog clauses. In the original sql compiler,
all the terminal subgoals in the compiled goal must correspond to tables in
the relational schema. The Blipkit sql compilerwill rewrite subgoals that
correspond to prolog intensional predicates. This is in fact quite simple to
do due to the introspectability of prolog, and it turns out to be a powerful
feature, as the same prolog rules can be re-used in both in-memory contexts
and relational database contexts. The one proviso is that the prolog rules
are non-recursive pure prolog.

– Mapping to SQL Functions. Prolog functions such as sub atom/5 can
be translated to SQL functions such as substr. This increases interoperabil-
ity between the prolog code and SQL.

Blipkit includes both prolog metadata on a number of bioinformatics relational
schemas such as Ensembl and Chado[14], and mapping modules that translate
between the schema and models. These are shown in table 2.

The presence of mapping modules means that the same prolog model can be
used regardless of the underyling database schema. For example, the
genome dbmodel includes an intensional predicate called gene overlaps/2
to test if two genes overlap on the same DNA strand. This is defined as follows:

gene_overlaps(G1,G2):-
gene_dnaseq_pos(G1,Seq,Beg1,End1,Str),
gene_dnaseq_pos(G2,Seq,Beg2,End2,Str),
End1 >= Beg2,
Beg1 =< End2.

If blipkit is configured with this predicate bound at an Ensembl instance, then
calls to gene overlaps/2 will be translated behind the scenes to SQL queries in-
volving joins over multiple tables and executed against a remote Ensembl server,
with the results bound non-deterministically to prolog variables. The exact same
predicate definition can also be used with in-memory prolog databases.

Neither of the two main open source database vendors provide means of ex-
ecuting recursive SQL. To get round this limitation, Blipkit allows the use of
the ontol dbmodule to do some semantic query expansion. The strategy is to
perform the recursive part of the query first in Prolog, and then feed the results
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Table 2. Mappings between relational schemas and prolog models

Schema Mapping Model Package
Chado seqfeature sqlmap chado genome db genomic

Ensembl-core genome sqlmap enscore genome db genomic
Ensembl-compara phylo sqlmap enscompara phylo db phylo

GODB homol sqlmap go homol db phylo
GODB ontol sqlmap go ontol db ontol

back in to the SQL query. This is all taken care of behind the scenes in the
mapping module.

4 Integrating with XML and Web Services

Many biological databases and analysis programs are available as Web Services.
The National Center for Biotechnology Information (NCBI) make a number of
core databases and services available through eUtils[15].

The SWI-Prolog http client library makes it simple to access these services
programmatically. Blipkit contains a number of pre-written web wrapper mod-
ules for a variety of services. These include all the databases at NCBI, including
sequence databases and the PubMed service. There are also wrappers for caBIG
and Cancergrid.

In addition to these bioinformatics services, there are also wrappers for query-
ing Google, Yahoo and Wikipedia. These wrappers also provide the ability to
perform semantic query expansion using ontologies. For example, a search for
“neurotransmitter” will be expanded to the various subtypes of neurotransmitter
such as dopamine and serotonin.

Many web services return results in XML. In addition, many databases pro-
vided static XML dumps. SWI-Prolog provides the sgml module for parsing
XML, which translates XML documents into nested Herbrand terms. Mapping
code that translates between these XML terms and models can be quite verbose,
so Blipkit has an XSLT-inspired library called xml transform that can be used
to quickly write mapping code. This illustrates how prolog is a suitable language
for writing DSLs (Domain Specific Languages).

5 Integrating with Ontologies and the Semantic Web

The native ontology module in Blipkit is based around the OBO model, com-
monly used in Bioinformatics. Information is also increasingly available as OWL
ontologies, or as RDF triples.

For RDF datasources, SWI-Prolog provides the semweb package[25] which
allows for fast parsing of RDF sources. This is used for mapping some external
datasets, such as those encoded using BioPAX, into Blipkit models.

Even though the Web Ontology Language OWL can be layered on RDF, it
turns out that triples often provide a poor level of abstraction for complex class
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expressions. Here we use the Thea library, which exposes OWL axioms directly
as Prolog predicates. Thea is being extended to handle OWL2[22].

In addition, Blipkit provides a parser for the Common Logic Interchange
Format (CLIF), a lisp-like syntax that is used for encoding any collection of first
order logic sentences.

6 Presentation Layers

6.1 Visualization of Graphs

Network-style graph views are common for visualizing complex biological data,
such as interaction networks and ontological classification of genes. Blipkit pro-
vides two means of visualizing such data, the first through GraphViz, and the
second through XPCE.

GraphViz takes an abstract specification of a graph and uses a layout al-
gorithm to render it such that the nodes are placed as optimally as possible,
minimizing edge-crossings. The specification is in the form of the dot language,
a domain specific language for graphs. Blipkit includes a dot grammar, for gen-
erating dot files, given a prolog representation of a graph. In addition, graphs
can be configured using simple configuration predicates, for example, edges of
certain types can be colored or even nested.

One limitation of GraphViz is that the representation is static, the graph
cannot be manipulated, unless the dot file is imported via another program.
The alternate means of visualization graphs is via a bridge to XPCE, which
allows nodes to be dragged, and allows the graphs to be embedded in larger
XPCE applications. The main limitation here is that the XPCE canvas does not
have a layout algorithm, placement of nodes is arbitrary, leading to unsightly
edge crossings. One possible solution would be to use dot to perform the layout,
and then use this to guide placement within XPCE.

6.2 The Serval Web Application Framework

An increasing number of applications use the web browser as a platform. For
prolog applications, this has the advantage that the end user does not need to
install prolog on their machine.

SWI-Prolog includes the powerful http package which greatly simplifies the
task of writing web applications. However, this package does not include any
specific capabilities for translating HTML. The general paradigm is to generate
XHTML terms using a DCG, which introduces extra syntax that can obscure
the relationship between the code and output.

The paradigm used by most web application frameworks, such as the popular
Ruby on Rails is to use a template language. This introduces an additional
language, with possible language mismatch problems. Blipkit takes a different
approach with the bundled Serval module, which uses a scheme-like functional-
style language with prolog syntax to specify dynamic HTML.
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To give a trivial example, the following piece of code will generate a nested
HTML list (built with ul and li HTML elements) for a phylogenetic tree in the
phylo dbmodel, by recursively traversing down the tree.

phylohtml(Node) =>

if(phylonode_leaf(Node),

then: b(Node),

else:

ul(li( phylohtml(Child) ) forall phylonode_parent(Child, Node))).

The serval framework allows for the specification of state machine like rules
for determining how transitions are made from one web page to another. The
above code can be extended to allow for a dynamic tree in which nodes can be
expanded and collapsed by the user.

A number of Blipkit applications are available as web applications and web
services. One such application is an ontology browser and visualization tool2.

7 Composing Models and Complex Queries

Whilst each Blipkit package is useful as a standalone piece of software, the real
power comes from composing queries across multiple models and data sources.
For example, using the genome dbmodel and the bridge to the Ensembl database
we can query for all upstream regulatory regions for a given gene, or discoverer
which genes make which proteins. Using the ontol dbmodule and an ontology
of chemical entities we can find all the different kinds of neurotransmitter. Using
both Gene Ontology annotations and pathway databases we can find all proteins
that produces or transport those neurotransmitters. We can combine all these
as follows:

entity_label(NT,neurotransmitter),
subclassT(Entity,NT),
(produces(Protein,Entity) ; transports(Protein,Entity)),
encodes(Gene,Protein),
regulates(Reg,Gene),
upstream_of(Reg,Gene)

If blipkit is configured such that the relevant predicates query the correct sources,
then this will find the regulatory regions for genes whose expression determines
the identity of different kinds of neurotransmitter secreting cells.

Some of the subgoals will query the in-memory prolog database using in-
tensional predicates; others will be translated to relational queries. Unlike a
relational query, the ordering of subgoals is important, as they are executed
sequentially.

One possible future extension would be perform query optimization and
reorder subgoals within a goal.
2 http://berkeleybop.org/obo/
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8 Discussion

8.1 Comparison with Other Bioinformatics Toolkits

The Open Bioinformatic Foundation (OBF) is a non-profit organization that
acts as an umbrella for the open source Bio* projects. The Bio* projects in-
clude BioPerl, BioJava, BioPython, BioRuby and BioSQL, each representing a
community effort to provide a relatively comprehensive library of code for re-
searchers in the life sciences that takes advantages of the features of the host
programming language. The longest running and perhaps most comprehensive
of these projects is BioPerl[18], as perl is a popular language due to it’s string
matching and manipulation capabilities. Blipkit, being part of the OBF, an alias
for BioProlog. It thus makes sense to compare Blipkit/BioProlog with some of
the other Bio* projects such as BioPerl.

The organization and architecture of Blipkit is similar to, and influenced by
BioPerl. BioPerl is divided into sub-modules each dealing with a separate sub-
domain of biology. These are then further divided into object-oriented modeling
classes, and additional classes for parsing and writing a variety of data formats.
The libraries are intended to be used in similar ways, as tools for investigators
to ask questions of complex data, and also as core components within larger
infrastructures.

Of course, BioPerl is far more comprehensive due to a large critical mass
of developers and contributors, especially in the domain of genomics. However,
Blipkit offers many capabilities absent from BioPerl, such as modules for systems
biology data. For the set of capabilities in the intersection between the two
systems, the use of Prolog can offer a more concise declarative way to perform
operations. In many cases, prolog can offer a faster execution time, which can
be surprising to some people given the reputation of Prolog as an academic
language.

8.2 Comparison with Semantic Web Technology

An alternative approach to semantic data integration is to use semantic web
technology to query across multiple databases. Databases can be mapped to
RDF triples, either dynamically, using a system such as D2RQ, or statically, by
building a native RDF triplestore. However, RDF on its own does not provide
any of the “semantics” in the semantic web. For that there has to be some kind of
inference, usually driven by ontologies and ontological formalisms such as RDFS
or OWL.

RDFS on its own does not provide enough semantics for complex biological
data. OWL is more expressive, but most OWL reasoners do not scale to large
databases. Another issue is that the expressivity afforded by OWL and Descrip-
tion Logics in general may not be quite right for all bioinformatics applications.

For example, Description Logics are unable to represent accurately represent
cyclic classes of structure, such as carbon rings, regulatory networks or RNA
structures. For example, the following logic programming predicate can classify
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RNA tetraloops - chains of 4 bases, each end of which is connected to bases that
are themselves paired.

tetraloop([B,C,D,E]) :-
chain([A,B,C,D,E,F]),
paired_with(A,F).

The equivalent is not possible as an OWL class expression. One possibility is
to go beyond OWL and use the Semantic Web Rules Language (SWRL), which
is comparable in expressive power to Datalog. One crucial difference is that all
semantic web formalisms make the open world assumption, whereas the Datalog
family of languages from the relational model up through the pure subset of
prolog up to answer set programming makes the closed world assumption. The
open world assumption can be useful when making inferences over the web, but
it can prove to be a hindrance with bioinformatics since it can often be assumed
that certain classes of data are complete.

8.3 Blipkit Issues and Limitations

The main limitation of Blipkit is the lack of expressivity that comes from the
lack of predicate tabling. However, for a great many uses there are workarounds,
so in practice this often does not prove to be an unsurmountable problem. How-
ever, some of these workarounds are inelegant, tabling would result in a smaller
codebase and cleaner, more declarative code.

One of the problems with blipkit is that it is too big. Ideally it would consist
entirely of biolog-specific code, as it is there are lots of general purpose modules
that belong either in independent projects or even in some kind of prolog common
library. This applies especially to the sql compilercode.

8.4 Expressivity and Suitability of Prolog

For the majority of the tasks within the scope of Blipkit, the expressivity pro-
vided by Prolog is mostly sufficient. The declarative nature of the language
makes it well-suited to answering complex queries. In addition the programma-
bility of Prolog means that fully fledged applications can be constructed entirely
in prolog, avoiding any impedance mismatches that often result from connecting
together different technologies.

As mentioned, WAM type resolution can often be a limitation. In addition
there are cases where it is useful to go beyond the expressivity of Prolog, for
example, disjunctive datalog or nonmonotonic reasoning, as found in systems
like DLV. It would be useful to have a more seamless way of reusing portions
of the same programs across logic programming systems of varying expressivity.
Currently this is impeded by a lack of standards in these areas.

Currently the types of inference offered by Blipkit are purely logical. Often the
final step of semantic data integration is some kind of statistical or probabilistic
modeling. In the future a number of options will be explored. One is tighter inte-
gration with libraries developed using the statistical programming language R,
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such as BioConductor. Another is the use of formalisms that allow a more seam-
less integration of logical and statistical programming. This includes bayesian
CLP, inductive logic programming and bayesian probabilistic logical modeling,
as provided in the PRISM system.

8.5 Portability

Different prolog implementations offer different advantages. Ideally the same
library code could be reused across all implementations. Unfortunately Blipkit
is tied to one Prolog system, SWI-Prolog.

Historically, the initial implementation of Blipkit was in XSB Prolog. XSB
offers powerful deductive database capabilities, including tabling. The decision
was made to switch to SWI-Prolog due to a number of factors such as the more
extensive collection of libraries and development tools, an active mailing list,
frequent releases and ease of installation on a number of different operating
systems. The original goal was to maintain a compatibility layer, but this fell by
the wayside, and the system quickly become SWI-specific.

SWI-Prolog proved to be an excellent environment, but the lack of tabling
proved to be a hindrance. Certain parts of the code had to be rewritten to
avoid cycles in the deduction chain, which resulted in less compact code. Some
functionality is simply unavailable. Blipkit does include a module for performing
memoization on calls to goals (misleadingly called the tabling module, in fact
much less powerful than full tabling). This can increase efficiency in certain
contexts, but predicates must still be written to avoid cycles. Blipkit also has a
module for forward chaining, performing the full deductive closure, but this can
only be used in certain contexts, and can entail a large upfront time-penalty.

Recent efforts to improve interoperability between Yap and SWI are extremely
encouraging. Hopefully it will soon be possible to use Blipkit from within Yap,
which will open the possibility of using tabling, available in Yap.

One of the main sources of incompatibility between prolog systems is difference
in module systems. One possibility is to refactor Blipkit to use LogTalk as a
means of providing encapsulation between different modules.

8.6 Large Datasets and Relational Databases

Blipkit is in some sense a large modular multi-purpose deductive database schema.
The core is largely Datalog, with additional utility layers in Prolog. Prolog and
Relational Database Management Systems (RDBMSs) have many similarities,
but this similarity is often under-exploited.

To say that RDBMSs are more prevalent would be a massive understatement.
Yet RDBMs could benefit from the addition of logic programming features. The
SQL99 standard allows for a very limited kind of deductive predicate, and this
remains unimplemented in the two major open source RDBMSs. Programming
with RDBMSs is frequently difficult: procedural SQL is unwieldy, and use of
object oriented languages introduces an impedance mismatch. RDBMSs deserve
a relational language, along the lines of Prolog. Prolog can also be a more “Agile”
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alternative to full fledged database systems – a prolog database can be located
anywhere on the filesystem. In this respect Prolog shares some features with
lightweight databases such as SQLLite.

On the other hand, prolog systems could benefit from having additional op-
tional RDBMS like features. The lack of schemas or typing in Prolog is often a
boon, but sometimes it would be useful to have optional metamodeling facilities.
The programmer is of course free to roll their own (as in for example the Blipkit
dbmeta metamodel) but it would be better to have this as a standard library.

Better ways of making seamless transitions between the two would also be
welcome.

9 Conclusions

Integration of data across multiple databases remains a difficult problem, limiting
the number of and scope of questions that researchers can ask. Despite having
a critical mass of developers, the Blipkit library has slowly evolved to have a
core set of models and utility modules that make it useful for a wide variety
of powerful queries and data extraction operations. In particular, the ability to
combine inference rules, relational databases and ontologies with a collection of
pre-written mappings make it especially powerful.

Blipkit would not have been possible without the SWI-Prolog system. In par-
ticular, the comprehensive set of libraries offered by SWI-Prolog make it simple
to develop full web applications and web services using Blipkit. The extension
of Blipkit may require a hybrid solution, using different Prolog implementations
and logic programming systems in general depending on the particular task
at hand. The major barrier here is the lack of interoperability between logic
programming systems.
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Abstract. This talk reports on a project to build a Knowledge Base
System (KBS) equipped with several forms of inference able to solve
different sorts of tasks using the KB. The logic FO(.) used in the KBS
is an extension of classical logic (FO) with various language primitives
such as inductive definitions, aggregates, arithmetic, etc. The logic is a
natural integration (and further extension) of classical logic and logic
programming, and is based on the view of a logic program as a defini-
tion. We discuss informal and formal semantics of definitions in FO(.)
and consider the relationship with other knowledge principles such as
coinduction, the closed world assumption and causality and with the LP
formalisms ASP, ALP and deductive databases. On the computational
level, we will report on current attempts to build finite domain infer-
ence systems for model expansion, approximate reasoning, theory debug-
ging and model revision, with special focus on the IDP-system, a model
expansion system for FO(.).
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Abstract. Prolog affords concise, elegant, and clean solutions for many
interesting problems, but is not immune to the software engineering
challenges of large-scale application development. Code modularization,
using modules or objects, is a key feature to keep projects manage-
able. Since most literature, instruction, and practice focus exclusively
on object-oriented languages derived from imperative languages, objects
are perceived as alien to logic programming while modules are consid-
ered a natural fit. Logtalk is an object-oriented logic programming lan-
guage that can use most Prolog implementations as a back-end compiler.
Logtalk objects are about code encapsulation and reuse, providing an al-
ternative to Prolog module systems, and enabling natural solutions for
a wide range of problems that would be awkward to solve using mod-
ules. This talk presents the Logtalk design goals, followed by a tutorial
on Logtalk programming and some application examples. The talk ends
with a discussion on the problems and benefits of developing Logtalk as
a portable Prolog application.

The slides used in this talk are available at
http://logtalk.org/papers/ iclp2009/logtalk iclp2009.pdf
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Abstract. PRISM is a probabilistic extension of Prolog. It is a high
level language for probabilistic modeling capable of learning statistical
parameters from observed data. After reviewing it from various view-
points, we examine some technical details related to logic programming,
including semantics, search and program synthesis.

1 Introduction

Generative modeling is a way of probabilistic modeling that describes a gener-
ating process of an outcome in a sample space. It has however different nuances
in different fields. In statistics it is oftentimes used in the context of Bayesian
inference, which (hierarchically) assumes prior distributions on parameters. In
ML(machine learning), it means defining joint distributions p(x, y) where x is
an input and y an output in contrast to discriminative modeling, which defines
conditional distributions p(y | x) for the same x and y. Or in statistical natu-
ral language processing, it usually refers to language modeling by probabilistic
grammars such as HMMs (hidden Markov models) and PCFGs (probabilistic
context free grammars). Here we add another nuance; by generative modeling
we mean a specification of a sampling process by a probabilistic program for a
given distribution.

Traditionally probabilistic models have been specified by mathematical for-
mulas (equations) and graphs like BNs (Bayesian networks) and MRFs (Markov
random fields) and programming languages were not considered as a specifi-
cation language of probabilistic models. If, however, it becomes possible to use
programs as probabilistic models, we will have much more flexibility in modeling
because of the availability of various data structures (strings, trees, graphs) and
program constructs (such as composition, if-then-else and recursion), and also a
uniform mechanism (Turing machine). In addition, the expressive power of a high
level programming language will reduce the coding effort to a minimum. So it
seems beneficial to design a programming language and programs which denote
probabilistic models. Indeed there are already a plethora of such proposals, in
particular in a subfield of machine learning called PLL (probabilistic logic learn-
ing) originating in LP(logic programming)/ILP(inductive logic programming)
[1,2,3,4,5,6,7,8,9,10,11,12] and SRL(statistical relational learning) originating in
uncertainty reasoning by BNs [13,14,15,16,17,18,19,20,21,22,23,24].
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In this talk, we examine PRISM1[2,5], a probabilistic extension of Prolog
aiming at generative modeling by probabilistic logic programs. We will however
focus on the relationship between PRISM and LP and applications to machine
learning are not treated.

2 Three Viewpoints

We can see PRISM from three points of view.

[LP view] PRISM is a probabilistic extension of Prolog2.
Syntactically a PRISM program DB = F ∪R is a Prolog program such that
F is a set of probabilistic atoms called msw atoms (see below) and R is a set
of definite clauses whose head contains no msw atom. We use msw(i,X) to
simulate a probabilistic choice named i (ground term) which returns in X a
value probabilistically chosen from finite outcomes associated with i. Proba-
bilities of msw atoms being true are called parameters. Semantically PRISM’s
declarative semantics, the distribution semantics, defines a probability mea-
sure PDB (· | θ) on Herbrand models having parameters θ associated with msw
atoms. It subsumes the least model semantics of definite clause programs.
Practically what PRISM can do but Prolog cannot do is parameter learn-
ing. PRISM programs can learn θ from data and change their probabilistic
behavior.

[ML view] PRISM is a high level language for probabilistic modeling.
It is an outcome of PLL/SRL research, but unlike graphical models, it uses
logical rules such as definite clauses or sometimes normal clauses to define
distributions. Here is a short list of machine learning facilities supported by
PRISM.3

Sampling: For the program DB = F ∪ R, sample(G) executes G (atom)
exactly as a Prolog goal using clauses in R except msw(i,X)which returns
a probabilistically chosen value (ground term) in X.

Search: probf(G) returns, by searching for all SLD proofs for G with re-
spect to DB , a boolean formula E1 ∨ . . . ∨ En such that Ei ∧ R � G
(1 ≤ i ≤ n). Each Ei is a conjunction of ground msw atoms and called
an explanation for G. G ⇔ E1 ∨ . . . ∨ En holds with probability one in
terms of PDB (·).

Probability computation: prob(G) computes PDB (G), the probability
of G by PDB (·) whereas chindsight(G,G′) computes the conditional
probability PDB (G′ | G) of a subgoal G′ that occurs in a proof of G.

Viterbi inference: viterbif(G) returns the most probable explanation
for G together with its probability.

1 http://sato-www.cs.titech.ac.jp/prism/index.html
2 Currently PRISM is built on top of B-Prolog (http://www.probp.com/).
3 See the PRISM manual for the complete list of available predicates.
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Parameter learning: PRISM provides MLE(maximum likelihood estima-
tion), MAP(maximum a posteriori) estimation for parameter leaning and
VB (variational Bayes) for hyper parameter learning (priors are Dirichlet
distributions). These are available through learn/1 built-in predicate.

Model selection: To help structure learning, PRISM has special built-in
predicates to compute criteria for model selection. They include BIC
(Bayes information criterion), CS (Cheeseman-Stutz) score and VFE
(variational free energy).

The primary benefit of PRISM modeling from the ML point of view is the
ease of probabilistic modeling. We have only to write a program by a high
level language and use it. There is no need for a laborious chain of deriving
a learning algorithm, designing a data structure and implementing and de-
bugging them. The result is a significant saving of time and energy. This is
especially true when we attempt to develop a new model while going through
cycles of probabilistic modeling. Think of developing some variants of HMMs
for example. Once we write a basic HMM program, it is relatively easy to
modify it. If the modified model goes wrong, just rewrite the program. We
are free of implementing similar algorithms for similar HMMs all over again
from scratch.

[AI view] PRISM is a system for statistical abduction.
PRISM performs search, computation and learning, all necessary elements of
AI, in a unified manner under the distribution semantics. They are seamlessly
integrated as statistical abduction [25]. In logical abduction, we abduce an
explanation E for an observed goal G by search, using background knowledge
B, such that E ∧ B � G and E ∧ B is consistent. Usually E is restricted
to a conjunction of special atoms called abducibles. In statistical abduction,
we further assume a distribution on abducibles and learn their probabilities
from data. By doing so we can select E having the highest probability as
the best explanation for G. In PRISM’s case, the set R of definite clauses
in a program DB = F ∪R corresponds to B and msws in F play the role of
abducibles.

Here is a small PRISM program.

values_x(p1,[rock,paper,scissors],fix@[0.4,0.4,0.2]).

values_x(p2,[rock,paper,scissors],[0.1,0.3,0.6]).

rps(R1,R2):-

msw(p1,X),msw(p2,Y),

( X=Y -> R1=draw,R2=draw

; ((X=rock,Y=paper);(X=paper,Y=scissors);(X=sissors,Y=rock))

-> R1=lose,R2=win

; R1=win,R2=lose ).

Fig. 1. Rock-paper-scissors program
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This program simulates the rock-paper-scissors game. The first values x/3
clause introduces a probabilistic choice msw(p1,X)with a player p1 and a gesture
X being one of {rock, paper, scissors}, with corresponding parameters (prob-
abilities) 0.4, 0.4 and 0.2 for each. “fix@” means parameters associated with p1
do not change by learning. The second clause is understood similarly but the
parameters, 0.1, 0.3 and 0.6, are temporarily set and changeable by learning.
The last clause plays the rock-paper-scissors game. It first calls msw(p1,X) to
probabilistically choose a gesture X for p1 and similarly Y for p2 by msw(p2,Y).
It then determines win, lose or draw by comparing X and Y.

?- prism(rock_paper_scissors).

...

?- get_samples(1000,rps(R1,R2),Gs),learn(Gs).

...

#em-iterations: 0.......(79) (Converged: -1091.799641688)

Statistics on learning:

Graph size: 18

Number of switches: 2

Number of switch instances: 6

Number of iterations: 79

Final log likelihood: -1091.799641688

Total learning time: 0.004 seconds

Explanation search time: 0.000 seconds

?- show_sw.

Switch p1: rock (p: 0.4000) paper (p: 0.4000) scissors (p: 0.2000)

Switch p2: rock (p: 0.0641) paper (p: 0.3466) scissors (p: 0.5892)

?- viterbif(rps(win,lose)).

rps(win,lose) <= msw(p1,rock) & msw(p2,scissors)

Fig. 2. Learning session

Fig. 2 is a sample learning session (predicates used there are all built-ins). We
first load the program in Fig. 1 on a file rock paper scissors.psm by prism/1.
We then generate learning data Gs = [rps(win, lose), rps(draw, draw), . . .] by
get samples/3 which sampled rps(R1,R2) 1,000 times4. learn(Gs) internally
invokes a built-in EM algorithm to estimate parameters. The learning is com-
pleted after 79 iterations. The estimated values are shown by show sw/0. Using
the learned parameters, we compute by viterbif/1 the most probable gestures
that cause rps(win,lose), i.e. p1 wins and p2 loses. They are rock for p1 and
scissors for p2 with log-probability -2.1972.

4 p1 wins 343 times, p2 wins 375 times, draw 282 times.
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3 Inside PRISM: Three Topics

As mentioned before, PRISM can be seen from three points of view. In this
section we pick up the LP view and look into some details of three topics which
illustrate how PRISM is connected to LP. They are semantics [2,5], tabling [26]
and program synthesis [27].

3.1 Probabilistic Semantics

The distribution semantics of PRISM is a probabilistic generalization of the least
model semantics in LP. It defines a probability measure on the set of Herbrand
models. Let DB = F ∪ R be a PRISM program. Also let msw1, msw2, . . . be an
enumeration of the msw atoms in F . We identify an infinite 0-1 vector ωF =
(x1, x2, . . .) where xi ∈ {0, 1} with a Herbrand model that assigns msw1 = x1,
msw2 = x2, . . . where 1 means true and 0 false. Let PF (·) be an arbitrary base
measure on such ωF s such that for a choice named i with possible outcomes
{v1, . . . , vk}, PF (·) makes {msw(i,v1), . . . , msw(i,vk)} exhaustive and mutually
exclusive. That is PF (msw(i,v1) ∨ · · · ∨ msw(i,vk)) = 1 and PF (msw(i,vh) ∧
msw(i,vh′)) = 0 (h �= h′). It is straightforward to construct such PF (·).

We now extend the PF (·), using the mechanism of the least Herbrand model
construction, to a probability measure PDB (·) for the whole DB . Let ωF ′ be a
sample from PF (·) and F ′ the set of msw atoms made true by ωF ′ . Construct
the least Herbrand model M(F ′∪R) of the definite program F ′∪R. It uniquely
determines the truth value of every ground atom and by construction every
ground atom is a measurable function of ωF ′ with respect to PF (·). It follows
from this fact and Kolmogorov’s extension theorem that we can extend PF (·)
to the probability measure PDB (·) on the set of possible Herbrand models for
DB . PDB (·) is the denotation of DB in the distribution semantics [5]. If PF (·)
puts all probability mass on a single interpretation F ′, PDB puts all probability
mass on the least model M(F ′ ∪ R) also. Hence we can say the distribution
semantics is a probabilistic generalization of the least model semantics. Hereafter
for intuitiveness, we identify PDB (·) with an infinite joint distribution PDB (A1 =
x1, A2 = x2, . . .) on the probabilistic ground atoms A1, A2, . . . in the Herbrand
base of DB where xi ∈ {0, 1}, when appropriate.

We remark that our semantics (probability measure on possible models, or
worlds) is not new. Fenstad proved a representation theorem forty years ago [28].
It states that if we assign probabilities P (ϕ) to closed formulas ϕ in a countable
language L without equality, respecting Kolmogorov’s axioms for probability
while satisfying P (ϕ) = 1 if � ϕ and P (ϕ) = P (φ) if � ϕ ⇔ φ, P (ϕ) is given as
an integration

P (ϕ) =
∫

Ω

ϕ(ω)μ(dω)

where μ(·) is a probability measure on a certain set Ω of models related to L and
ϕ(ω) = 1 if a model ω ∈ Ω satisfies ϕ, else 05. What is semantically new here
5 The actual Fenstad’s theorem is more complicated than stated here. We show the

case of closed formulas for simplicity.
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is that we construct such μ(·) = PDB (·) concretely from a logic program DB so
that PDB (G) is computable for a goal G. We point out some unique features of
the distribution semantics.

– PDB (·) is an infinite joint distribution on countably many random atoms. It
is definable, unconditionally, for any DB . Other PLL formalisms often place
restrictions on DB such as acyclicity [1,8] and range-restrictedness [3,6,9]
for their distributions to be definable. SRL formalisms attempting to define
infinite distributions also have restrictions on their programs [21,29,30].

– Probabilistic grammars such as HMMs and PCFGs that define finite stochas-
tic processes but whose length is unbounded are formally captured by PRISM
programs with the distribution semantics. Thanks to the rigor of the distri-
bution semantics, it is even possible to write a PRISM program defining
prefix probabilities for a given PCFG, though their computation requires an
infinite sum and cannot be handled by the current PRISM system6 [31].

– The distribution semantics is parameterized with a non-probabilistic seman-
tics M used to extend the base measure PF (·). That is, if we choose as M
the greatest model semantics instead of the least model semantics, we will
have another distribution, which is always definable but not necessarily com-
putable, giving non-zero probability to infinite recursion. M may be stable
model semantics [11,32] or well-founded semantics [8,33]. In such cases, we
will have distributions for normal probabilistic logic programs.

3.2 Tabling and Dynamic Programming

In PRISM the probability PDB (G) of an atom G is computed by first reducing
G logically to a disjunction E1 ∨ . . . ∨ En of explanations and then computing
PDB (G) by PDB (G) =

∑n
i=1 PDB (Ei), PDB (Ei) =

∏hi

k=1 θi,k where Ei = mswi,1∧
· · · ∧ mswi,hi and θi,k is the parameter of mswi,k (1 ≤ k ≤ hi). A computational
barrier here is that usually there are exponentially many explanations. In the
case of parsing where G represents a sentence and Ei a parse tree, it is not
rare to have millions of parse trees. One standard way to avoid such intractable
computation is applying DP (dynamic programming) to E1∨. . .∨En that factors
out common probability computations. But the real problem is not DP but how
to realize it without constructing E1 ∨ . . . ∨ En.

Our solution to this problem is tabling, or memoizing, which is a general tech-
nique to record what has been computed and reuse it later, thereby saving re-
peated computation. In addition, tabling has the side-effect of stopping infinite
recursion. This makes it possible to write a DCG grammar containing left recur-
sive rules such as NP → NP S. LP has a long history of tabling [26,34,35,36,37,38]7

and what we have found through the development of PRISM is that tabling is
well-suited, or vital to probability computation in machine learning.
6 Prefix probabilities can be computed by matrix operations [31].
7 Our tabling is linear-tabling [26] which does not use a suspend-resume mechanism

for tabled execution of logic programs but iteratively computes answers until they
saturate.
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By introducing tabling for all explanations search for a goal G, we can obtain
a boolean formula, equivalent to G ⇔ E1 ∨ . . . ∨ En, as a descendingly ordered
list of equivalences G ⇔ W0, A1 ⇔ W1, . . . , AM ⇔ WM such that Ai (1 ≤
i ≤ M), a tabled goal appearing in a proof of G, represents a subexpression
occurring multiple times in the explanations E1, . . . , En and Wi is a conjunction
of msw atoms and tabled goals in the lower layers. We consider this list as a
graph whose node are atoms and call it an explanation graph for G. In the
explanation graph, G is a root node and subgraphs (tabled goals) at one layer
are shared by subgraphs at higher layers. Hence probability computation (sum-
product computation) applied to it naturally becomes DP. Thus we can realize
DP by tabling while avoiding the construction of E1∨. . .∨En. We encode the DP
process as the g-IO (generalized IO) algorithm working on explanation graphs.
It is a generic routine in PRISM to compute probabilities [5].

The effect of tabling is decisive. The g-IO algorithm simulates known standard
probability computation/learning algorithms with the same time complexity;
O(N2L) for the Baum-Welch algorithm used in HMMs [39] where N is the
number of states, L input length, O(N3L3) for the Inside-Outside algorithm
used in PCFGs in Chomsky normal form [40] where N is the number of symbols
and L sentence length and O(N) for Pearl’s πλ message passing [41] used in
the probability computation of singly connected BNs where is N the number of
nodes in a BN [5].

Also, recently, it is discovered that the celebrated BP (belief propagation)
algorithm used for the probability computation of multiply connected BNs is
nothing but the g-IO algorithm applied to logically described junction trees [42].
In other words, to use BP, we have only to write a program describing a junction
tree8. We may say PRISM subsumes both probabilistic grammars and BNs not
only at the semantic level but also at the probability computation/learning level.

Tabling is useful in Bayesian inference as well. In [43] we introduced the VB
(variational Bayes) approach to PRISM and implemented the VB-EM algorithm
that learns hyper parameters of Dirichlet priors associated with msw atoms, in
a dynamic programming manner using explanation graphs and the slightly ex-
tended g-IO algorithm. Hyper parameter learning is done with the same time
complexity as usual parameter learning because both types of learning use the
same explanation graphs and isomorphic learning algorithms. We test the left-
corner parsing model and the profile-HMM model. Although there is no report
on their hyper parameter learning to our knowledge, all we need to do is to
write a declarative PRISM program for each model, and the rest of the task
- hyper parameter learning followed by Viterbi inference based on the learned
hyper parameters - is carried out automatically by the PRISM system.

3.3 Log-Linear Models and Logic Program Synthesis

The last topic is non-generative modeling. Generative modeling, typically PCFGs
to us, assumes no failure in the process of generating an outcome. However
8 The distribution of the PRISM system includes an example of logical junction tree.

Querying the tree with chindsight agg/2 is equivalent to running BP.
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logic programs may fail as we all know. The problem caused by failure to logic-
based probabilistic modeling such as SLPs (stochastic logic programs) [3,44] and
PRISM [45] is loss of probability mass. If the execution eventually fails after a
probabilistic choice is made, the probability mass put on the choice is lost. As
a result the total sum of probabilities for possible generation processes will be
less than unity, implying that our probability is not mathematically correct.

Suppose there is a PRISM program DB about q(X) which defines a distri-
bution PDB (·). Let t1, . . . , tN be all answer substitutions for the query ?-q(X).
If failure computation occurs during the search for all answers for ?-q(X) and
Z = PDB (∃Xq(X)) =

∑N
i=1 PDB (q(ti)) < 1 happens, we consider a normalized

distribution Z−1PDB (q(X)) over {q(t1), . . . , q(tN)} to recover probability.
However Z−1PDB (q(X)) is a log-linear model9and parameter learning of log-

linear models is known to be much harder than BNs and PCFGs due to the
computation of Z, a normalizing constant. Cussens proposed the FAM (failure-
adjusted maximization) algorithm for parameter learning of SLPs whose com-
putation may fail and hence defines log-linear models [44]. It is an EM algorithm
but requires the computation of “failure probability” 1−Z (Z is the probability
of success computation).

We incorporated the FAM algorithm into PRISM by applying a logic program
synthesis technique to PRISM programs to derive special programs called failure
programs to compute failure probabilities 1 − Z. Given a program DB for the
target goal q(X) which has failed computation paths, we consider another goal
failure⇔ ∀X(q(X) ⇒ false) and synthesize a failure program for this failure
predicate so that ?-failure faithfully traces every failed computation path for
?-q(X) in the original program DB . Under a certain condition10, it can be proved
PDB (failure) = 1−PDB (q(X)) = 1−Z [46]. The point here is not that we can
compute 1 − Z exactly but that we are now able to compute it using DP by
applying tabled search to the synthesized failure program. In [46], an example
of HMMs with constraints which may fail is presented. The synthesized failure
program runs by tabled execution in time linear in the length of input for the
original HMM program.

The program synthesis for failure programs is done by FOC (first-order com-
piler) [27]. It is an unfold/fold program transformation system for logic pro-
grams with universally quantified implicational goals ∀y(p(x, y) ⇒ q(y, z))11 in
the clause body. FOC transforms the original PRISM program while considering
the probabilistic semantics of msw atoms into a PRISM program with disequality
constraints.

The program in Fig. 3 models probabilistic singular/plural agreement be-
tween nouns and verbs in some hypothetical language. coin(a) determines the

9 Log-linear models take the form log p(x) =
∑

i wifi(x) where fi(x) is a real-valued
function called feature and wi is a real number called weight. In the case of SLPs,
fi(x) is the number of occurrences of an i-th clause in a refutation x.

10 Roughly every computation path for q(X) must terminate with finite failure or
success.

11 Negation ¬p(x, y) = (p(x, y) ⇒ false) is a special case.
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failure :- not(success). | failure:-closure_success0(f0).

success :- agree(_). | closure_success0(A):-closure_agree0(A).

|

agree(A):- | closure_agree0(_):-

msw(coin(a),A), | msw(coin(a),A),

msw(coin(b),B), | msw(coin(b),B),

A=B. | \+A=B.

Fig. 3. Agreement program (left) and the synthesized failure program (right)

singularity/plurality of a noun with probability 0.4/0.6 respectively and so does
coin(b) for a verb. If they do not agree, the sentence generation fails. failure
predicate on the left hand side is defined as the negation of ∃A agree(A) (success
of agree( )). FOC compiles it into the failure program on the right hand side
by removing negation while introducing new predicates closure success/1 and
closure agree0/1 (see [27] for details). As you can see, the compiled program
correctly computes failure probability.

4 Concluding Remarks

We have examined PRISM, an extension of Prolog with msw/2 predicate for
probabilistic choice, the distribution semantics, tabled search and generic rou-
tines for probability computation and parameter learning. We have been devel-
oping PRISM for more than a decade, to achieve generality and efficiency for
probabilistic modeling, but there remains a long way to go. The future work
includes an implementation of Gaussian distributions, also that of log-linear
models, and removing some modeling condition (the exclusiveness condition [5])
by the introduction of BDDs.
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Enabling Serendipitous Search on the Web of
Data Using Prolog

Jan Wielemaker

University of Amsterdam

Abstract. The Web of Data, also called the Semantic Web, provides
a knowledge representation formalism based on a uniform triple-model:
subject, predicate, object. A number of more expressive formalisms (e.g.,
RDFS, OWL, SKOS) are layered on top of the core triple-model. The
Web of Data has been developed to represent machine readable knowl-
edge on the internet. Designed to deal with heterogeneous knowledge,
the technology underlying the Web of Data is also suitable to unify
databases. We use this technology to unify collection information from
multiple museums, based on diverse schemas and multiple controlled lists
of terms (vocabularies). The resulting knowledge-base is enriched us-
ing automatic discovery of mappings between vocabularies. The current
challenge is how to provide meaningful services for the end-user based
on this knowledge, in particular, how to provide meaningful semantically
enriched search?

This tutorial presents the key-components of the Prolog-based ClioPa-
tria toolkit and shows how this infrastructure can be used to explore
the opportunities of semantic search. Topics discussed are: reasoning
with and editing of RDF models, web-application programming in Pro-
log combined with AJAX technology and issues when using Prolog for
programming ‘at large’. Prolog is both an RDF query language and a
general purpose programming language, and therefore provides a perfect
platform for a Semantic Web research and applications.
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Untangling Reverse Engineering with
Logic and Abstraction
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Reverse engineering is the filthy end of the security industry; it is the business of
extracting information from a program when the source is unavailable. Revers-
ing is often necessary when performing a security audit on a product that relies
on third-party software such as a library. Security engineers also reverse to rea-
son about the latest malicious programs and devise antivirus software. Security
engineers (and malicious hackers) do not attempt to reverse assembler into, say
C, which is the traditional aspiration in reversing, but merely to understand the
code to sufficient depth to locate a vulnerability.

The most popular tool that is used for reversing is the IDA Pro dissembler
[4]. This dissembler divides an executable into (more or less) its basic blocks,
presenting them visually to the engineer in a flow diagram. Needless to say, the
major impediment to reversing is the enormous effort required to understand an
executable even when it is presented as a flow diagram. In fact, even of recovering
the control-flow graph from a binary is more complicated than one would expect
[2] and, IDA Pro often fails to reconstruct the complete control-flow graph.

One notable body of work that also aims to support the reversing is the thesis
work of Balakrishnan [1]. Balakrishnan, under the direction of Reps, has devel-
oped a so-called value set analysis that attempts to uniformly track addresses
and numeric values. The rationale for this approach is that it enables sets of ad-
dresses on some word alignment to be accurately represented. We consider this
approach to be a major advance in the analysis of binaries, since it attempts
to seamlessly support addresses and numeric values. Recently it has also been
shown how logical techniques based on bit-blasting and SAT solving can also be
applied to extract bit-level modulo relationships [3].

The tutorial will review this growing body of work, highlighting the potential
for applying logical methods and abstraction techniques in reversing.
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Since Ehud Shapiro’s “Algorithmic debugging”, in 1983, there has been a con-
tinuous, even if not very abundant, flow of work on tracing and debugging for
(constraint) logic programming. The tutorial presents trace production tech-
niques, ranging from compiler instrumentations to dedicated meta-interpreters.
It reviews work on trace analysis, in particular algorithmic, declarative and ra-
tional debugging. It discusses the issue of trace querying and driving. Last but
not least, it describes the latest software engineering research on trace mining.

Throughout the presentation, we stress the importance of the nature of the
trace data used by the techniques. We show that CLP techniques have inspired
a number of work in other communities. We argue that trace mining techniques
can easily be applied to CLP.
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Probabilistic logic learning (PLL), sometimes also called statistical rela-
tional learning, addresses one of the central questions of artificial intel-
ligence: the integration of probabilistic reasoning with first order logic
representations and machine learning. It has received a lot of attention re-
cently and a rich variety of different formalisms and learning techniques
have been developed, which are now being applied to applications in
network analysis, robotics, bio-informatics, intelligent agents, etc.

This tutorial starts with an introduction to probabilistic representa-
tions and machine learning, and then continues with an overview of the
state-of-the-art in probabilistic logic learning. We start from classical set-
tings for logic learning (or inductive logic programming) namely learn-
ing from entailment, learning from interpretations, and learning from
proofs, and show how they can be extended with probabilistic methods.
While doing so, we review state-of-the-art probabilistic logic learning ap-
proaches and formalisms, such as PRISM, ICL, stochastic logic programs,
Bayesian logic programs, CP-Logic and Markov logic.

More detailed introductory overviews on probabilistic logic learning
can be found in [1,2,3,4,5].

Keywords: probabilistic logic learning, statistical relational learning,
logic and learning, inductive logic programming, logic programming.
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Abstract. Probabilistic logic programs (PLPs) define a set of probability distri-
bution functions (PDFs) over the set of all Herbrand interpretations of the under-
lying logical language. When answering a query Q, a lower and upper bound on
Q is obtained by optimizing (min and max) an objective function subject to a set
of linear constraints whose solutions are the PDFs mentioned above. A common
critique not only of PLPs but many probabilistic logics is that the difference be-
tween the upper bound and lower bound is large, thus often providing very little
useful information in the query answer. In this paper, we provide a new method
to answer probabilistic queries that tries to come up with a histogram that “maps”
the probability that the objective function will have a value in a given interval,
subject to the above linear constraints. This allows the system to return to the
user a histogram where he can directly “see” what the most likely probability
range for his query will be. We prove that computing these histograms is #P -
hard, and show that computing these histograms is closely related to polyhedral
volume computation. We show how existing randomized algorithms for volume
computation can be adapted to the computation of such histograms. A prototype
experimental implementation is discussed.

Keywords: Probabilistic Logic Programming, Imprecise Probabilities.

1 Introduction

Since the introduction of quantitative logic programs by Shapiro [1], van Emden [2],
and others, there has been extensive interest in logic programming with uncertainty.
While these early frameworks were fuzzy in nature, Ng and Subrahmanian [3] intro-
duced probabilistic logic programs by building on top of probabilistic logics studied
earlier by several authors such as Hailperin [4], Fagin et al. [5], and Nilsson [6]. There
has been much subsequent work in this vein [7,8,9].

A fundamental problem with all of these probabilistic logics is the assumption of
ignorance — it is assumed that we do not know of any dependencies or correlations
between the events represented in these logics. Given a probabilistic logic program Π
over a logical languageL, we write down an associated set LC(Π) of linear constraints.
Each (ground) rule in Π generates one constraint. In addition, we have one variable in
LC(Π) for each Herbrand interpretation for languageL. While the rules in Π constrain
what interpretations satisfy Π , these variables denote the probability that a Herbrand
interpretation I actually represents the true state of the world. Assuming that the Her-
brand Base of L is denoted BL, this means the linear program has 2BL variables in it,
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and O(|grd(Π)|) constraints. In many of these cases, 2BL is significantly larger than
|grd(Π)|. A consequence of this — well known to those in the field — is that LC(Π)
is vastly underconstrained as the number of variables very often significantly exceeds
the number of rules. This has profound implications for the prospective utility of prob-
abilistic logics and probabilistic logic programs. When answering a query Q (think of
a query for now as a logical formula), we need to find the “lower bound” probability
lowQ such that every Herbrand interpretation satisfying Π also satisfies Q with prob-
ability greater than or equal to lowQ. Likewise, we want to find the “upper bound”
probability upQ such that every Herbrand interpretation satisfying Π also satisfies Q
with probability less than or equal to upQ. To find the tightest such interval [lowQ, upQ]
of this type, we minimize and maximize (respectively) an objective function associated
with Q. When the problem is underconstrained as in most cases, it is often the case that
lowQ is very close to 0 and upQ is very close to 1, providing the user who wants to
know the probability of Q very little information about the true probability of Q. The
example below shows a very simple probabilistic logic program.

Example 1 (Stock Example). Consider a very simple probabilistic logic program Πstock

(using the syntax of [3]):

r1 stim pkg : [0.30, 0.90] ← .
r2 home sales up : [0.25, 0.85] ← .
r3 up ibm ∧ up goog : [0.40, 0.95] ← home sales up : [0.65, 0.90].
r4 up ibm ∨ up goog : [0.60, 0.95] ← home sales up : [0.65, 0.85].
r5 up ibm : [0.30, 0.80] ← stim pkg : [0.70, 1.0].

The first two rules intuitively say that there is a 30− 90% probability that a stimulus
package will be announced (today) and that there is a 25 − 85% probability that there
will be an economic report released (today) that home sales are up. Rule r3 says that if
such a home sales report is released today, then IBM and Google’s stock price will go up
tomorrow with 40− 95% probability. Rule r4 says that when such a home sales report
is released (today), there is a 60 − 95% probability that either IBM or Google’s stock
price will be up tomorrow. The last rule says that if an economic stimulus package is
announced today, then there is a 30−80% probability that IBM’s stock price will go up
tomorrow.1 Though this example is obviously very simplistic, the reader can easily see
that probabilistic logic rules that state that certain stocks go up when certain conditions
are true can easily be derived from historical stock market data. Clearly, a stock analyst
would like to make decisions based on such data.

According to the semantics of probabilistic logic programming [3], the probability
of the conjunctive query Q1 = (stim pkg ∧ home sales up ∧ up ibm ∧ up goog)
is given by the interval [0, 0.8]. This is the tightest possible interval that we can infer
for this query w.r.t. Πstock. A stock analyst would have very little ability to “act” based
on this answer, because the probability interval [0, 0.8] is so wide that it basically tells
the analyst very little. Past work in the AI community has often selected some value in

1 We don’t introduce time in this paper for the sake of simplicity. But you can think of the
propositional symbols in the heads of the last three rules intuitively denoting stock movements
tomorrow, while all other propositional symbols in Πstock refer to events today.
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this interval based on some principle (e.g., maximum entropy, assuming independence,
etc.). Worse still, the query Q2 = up ibm is entailed by Πstock with tightest probability
interval [0.4, 0.8]. Without any further information, the stock analyst may think that the
probability of IBM going up is greater than 0.5, which might induce him to bet on IBM
stock. However, the true story is that the probability of the probability of up ibm being
in the [0.4, 0.5] interval is actually 61%.

Moreover, no stock market analyst is going to want to risk millions of dollars of a
mutual fund’s investment based on what a probabilistic logic expert tells him (especially
when that probabilistic logic expert knows nothing about the stock market and speaks in
generalities about using maximal entropy, independence assumptions, etc.). The stock
analyst wants to make these decisions, not rely on AI experts who do not understand
the stock domain as well as he does.

Fig. 1. Histogram answers to queries Q1 (left) and Q2 (right) of Stock Example

Figure 1 shows visualizations of the histograms that we can present to such a stock
analyst without making any additional assumptions about the dependencies, correla-
tions, etc. that may or may not exist, that the analyst may or may not believe, etc. The
visualization shows a histogram for each query. The x-axis in Figure 1 (left), which
corresponds to query Q1, ranges from 0 to 0.8 (corresponding to the [0, 0.8] interval
associated with query Q). For a given point x in this interval, the histogram shows the
probability that the probability of Q is at most x. Figure 1 (left) shows a sample value
x0 and its corresponding value h(x0). The histogram in Figure 1 (right) is similar and
corresponds to query Q2.

The stock analyst has an immediate sense, by looking at the histogram in Figure 1
(right) that he should not bet on IBM stock going up. Likewise, the probability of query
Q1 having probability 0.5 or more is low. However, there is no way for him to see this
if we merely present him the interval [0.4, 0.8] as the answer to the query. The his-
togram presents this interval (as the x-axis bounds), but it also shows far more valuable
information that can enable the stock analyst to make a decision.

The goal of this paper is to show how to present answers of the kind mentioned above
to the user so that we (i) present more information to the user than we did before, and
(ii) so that this answer is expressed in an easy to understand graphical manner. We
do this by using higher order probabilities.
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The rest of this paper is organized as follows. In Section 2, we overview past work on
PLPs from [3]. Then, in Section 3, we present the basic declarative semantics underly-
ing histogram answers to PLP queries, and show that the histogram answer computation
(HAC) for PLP queries is closely related to the problem of computing volumes of con-
vex polytopes. In Section 4 we show that the HAC problem is #P -hard; we also present
two approximation algorithms for the HAC problem and prove appropriate complexity
theorems. Section 5 contains implementation and experimental results showing that one
of the approximation algorithms is far superior to the other.

2 Preliminaries

We now review (a simplified version of) the syntax and semantics of PLPs given in [10,3];
there is nothing particularly new in this section.

2.1 Syntax of PLPs

We assume the existence of a set of propositional Lpred logic symbols. Every proposi-
tional symbol is an atom. Formulas are defined as follows.

Definition 1 (Formula). An atom is a formula. If F1 and F2 are formulas, then F1∧F2,
F1 ∨ F2, and ¬F1 are formulas. Let Form(Lpred) denote the set of all formulas.

If F is a formula and [
, u] is a subset of the real unit interval, F : [
, u] is called an
annotated formula.

Returning to Example 1, we can see that stim pkg : [0.3, 0.9], (up ibm ∨ up goog) :
[0.4, 0.95] and (up ibm ∨ up goog) : [0.65, 0.85] are annotated formulas. We now
define the concept of probabilistic rule.

Definition 2. If F : μ, B1 : μ1, . . . , Bm : μm are annotated formulas, then F : μ ←
B1 : μ1 ∧ . . . ∧ Bm : μm is a probabilistic rule. If this rule is named r, then Head(r)
denotes F : μ, and Body(r) denotes B1 : μ1 ∧ . . . ∧Bm : μm.

Intuitively, a probabilistic rule is a statement saying that if the formulas in the body are
true with their associated probabilities, then the formula in the head is also true with its
associated probability.

Definition 3. A probabilistic logic program (PLP) is a finite set of probabilistic rules.

Again, it is easy to see that in Example 1, Πstock is a PLP. 2

2.2 Semantics of PLPs

PLPs are characterized by a Kripke style possible worlds semantics.

2 The syntax presented here is, due to space constraints, simpler than that in [3]. In particular,
variable annotations and function symbols over the annotation domain are eliminated; [3] also
removes the assumption of propositional logic and allows predicate symbols and FOL atoms.
However, the current framework can be easily extended to those cases. The definition of PLP
above, however, allows more complex formulas to appear in rules compared to those of [3]; in
particular, negation (not a non-monotonic form of negation though) can appear in rule heads.
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Definition 4 (World). A world is any set of atoms.

We use W to denote the set 2Lpred of all possible worlds. Since a world is simply a
Herbrand interpretation, it is clear what it means for a world to satisfy a formula. A
probabilistic interpretation is a probability distribution over worlds.

Definition 5. Let S be a set of annotated formulas in L, and W be the set of pos-
sible worlds. A probabilistic interpretation is a function I : W → [0, 1] such that∑

w∈W I(w) = 1.

Definition 6 (Satisfaction). Let F : [
, u] be an annotated formula and I be a proba-
bilistic interpretation. I is said to satisfy F : [
, u] iff 
 ≤

∑
wi∈W,wi|=F I(wi) ≤ u.

Let r = F : μ ← B1 : μ1∧ . . .∧Bm : μm be a probabilistic rule; I is said to satisfy
r iff either I satisfies Head(r) or I does not satisfy some Bi : μi ∈ Body(r).

A probabilistic interpretation satisfies a PLP Π if and only if it satisfies all rules in
Π . A PLP Π is said to be consistent if and only if there exists an interpretation I that
satisfies all formulas in Π , and Π entails an annotated formula F : μ if and only if
every interpretation that satisfies all rules in Π also satisfies F : [
, u].

The above definition naturally leads to the definition of a system of linear constraints
whose solutions will correspond to satisfying interpretations. We call this set LC(S),
and it contains one variable pi for each world wi ∈ W and the following constraints:

1. For each F : [
, u] ∈ S, 
 ≤
∑

wi∈W,wi|=F pi ≤ u, and
2.

∑
wi∈W pi = 1

It follows immediately from [3], that S is consistent if and only if LC(S) is solvable.

Fixpoint Operator. Via a straightforward extension of a similar procedure in [10,3], it
is possible to associate a fixpoint operator TΠ with any PLP Π 3. This operator maps
sets of annotated formulas to sets of annotated formulas as follows and first involves
defining an intermediate operator SΠ .

SΠ(X) = {F : μ | (F : μ ← B1 : μ1 ∧ · · · ∧ Bm : μm) ∈ Π ∧
(∀ 1 ≤ i ≤ m)(∃B′

i : μ′
i ∈ X)(Fi = Bi ∧ μi ⊆ μ′

i)}.

For each formula4 F , let [
F , uF ] denote the result of minimizing and maximizing∑
wi∈W,w|=F pi subject to LC(SΠ(X)). We now define TΠ(X) as follows.

TΠ(X) = {F : [
F , uF ] | F ∈ Form(Lpred)}.

Using results similar to those in [10,3], it is easy to show that TΠ has a least fixpoint
and an annotated formula F : [
, u] is a logical consequence of Π iff there is a formula
F : [
′, u′] in the least fixpoint such that [
′, u′] ⊆ [
, u].

3 W.l.o.g., we assume that no rules in Π have formulas with a [0, 1] annotation in the body.
4 Many methods can be used to reduce the number of formulas in Form(Lpred) we need to

consider. Due to space constraints, and as this is not central to this paper, we ignore this issue.
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3 Histogram Answers to a PLP Query

In classical PLPs, a query Q is an annotated formula F : [
, u] and we want to check
if Q is entailed by PLP Π (or alternatively if the least fixpoint of TΠ contains an
annotated formula F : [
′, u′] with [
′, u′] ⊆ [
, u]). An alternative version says the
query is a formula F and we want to find the annotated formula F : [
′, u′] in the least
fixpoint of TΠ . In this section, we propose a fundamentally different construct as the
answer to the query that provides far more information to the user. Given a formula F
as the query, we want to provide to the user a histogram answer to the query F w.r.t.
a PLP Π . In order to do this, and in order to make our theory consistent with standard
notation in (continuous) probability theory, we assume, without loss of generality, that
all worlds in W are enumerated as w1, w2, . . . , w|W| in some total order, and that an
interpretation I is represented as a vector (p1, . . . , p|W|) where each pi denotes the
probability of world wi according to interpretation I , i.e., I(wi) = pi. We now define
the probability that a query formula will lie within a given probability interval.

Definition 7 (Higher-Order Probability of Entailment). Suppose Π is a PLP and Q
is a query formula. Suppose [a, b] is a non-empty subset of [0, 1]. We define the higher
order probability that Q is entailed by Π with probability in [a, b] as:

L(a ≤ Q ≤ b | Π) =
∫

I∈Mod(Π)
χ[

a≤
∑

wi∈W,wi|=Q I(wi)≤b
]IdPΠI

where χ is the adapted set membership function, i.e., χC(x) = 1 if C(x) is true and 0
otherwise, for some condition C, and PΠ is the uniform probability distribution over
Mod(Π), the set of all interpretations that satisfy Π . Thus, χ[

a≤
∑

wi∈W,wi|=Q I(wi)≤b
]I

is true if interpretation I is such that
∑

wi∈W,wi|=Q I(wi) lies between a and b.

We now show that the expression above yields a valid probability distribution.

Theorem 1. Given probability distribution PΠ over the set of interpretations that sat-
isfy Π , a PLP Π , and some query formula Q, L(Q = x |Π) = L(x ≤ Q ≤ x |Π) is a
proper probability distribution over [0, 1].

Proof sketch. Let Mod(Π) be the set of all interpretations that satisfy Π . Then:∫ 1
0 L(Q = x |Π) = L(0 ≤ Q ≤ 1 |Π)

=
∫

Mod(Π) χ
[
0≤

∑
wi∈W′,wi|=Q pi≤1

](I = (pi))dPΠI

=
∫

Mod(Π) χ[true](I = (pi))dPΠI =
∫

Mod(Π) 1dPΠI = 1

The last equality holds since PΠ is a probability distribution over Mod(Π). �
We now return to Example 1 in order to illustrate the above definition of a higher order
probability of entailment.

Example 2. Consider the queries Q1 and Q2 of Example 1:

– L(0 ≤ Q1 ≤ 0.1 | Πstock). This represents the probability that Q1 is entailed by
Πstock with probability in the range [0, 0.1]. We compute this using Definition 7 by
solving the integral:

∫
I∈Mod(Π) χ

[
0≤

∑
wi∈W,wi|=Q1

I(wi)≤0.1
]IdPΠI .



46 M. Broecheler, G.I. Simari, and V.S. Subrahmanian

– L(0.7 ≤ Q2 ≤ 0.75 | Πstock). This represents the probability that Q2 is entailed by
Πstock with probability in the range [0.7, 0.75]. Similar to the first case, we compute
this by solving:

∫
I∈Mod(Π) χ

[
0.7≤

∑
wi∈W,wi|=Q2

I(wi)≤0.75
]IdPΠI .

Given a query formula Q, we can now ask for the probability that Q is entailed by PLP
Π with point probability p or with a probability in the range [a, b]. The answer to these
queries, respectively, are L(p ≤ Q ≤ p | Π) and L(a ≤ Q ≤ b | S). This gives us
more information than simply knowing the widest interval [
, u] of probability values
for the entailment of Q. L gives us the entire distribution of probability values for a
query formula and not just the smallest interval such that L(
 ≤ Q ≤ u |Π) = 1. Thus,
the higher order probability of entailment gives users strictly more information than
answers in classical PLP. Moreover, as shown in Figure 1, we can present the entire
distribution of L for a given query Q, and enable a naive user (who has no in-depth
knowledge of probability theory, and almost certainly no knowledge of higher order
probabilities) to visualize the probability distribution for his query. There are two ways
to do this. As Definition 7 provides a continuous probability distribution, we can just
present an approximation of the continuous histogram as shown in Figure 1, or we can
also present a discrete version of this answer.

Definition 8 (Histogram Answer). Suppose Π is a PLP and Q is a query. The his-
togram answer to query Q w.r.t. PLP Π is the function L.

Further suppose that k ≥ 1 is an integer and that the [
, u] is the tightest interval
such that Π |= Q : [
, u]. The k-discrete histogram answer to query Q w.r.t. PLP Π is
the set {L(
 + (i− 1) ∗ u−�

k ≤ Q ≤ 
 + i ∗ u−�
k |Π) | 1 ≤ i ≤ u−�

k }.

If the user wants a discrete (rather than a continuous) histogram answer, then he can
select an integer k which specifies the desired level of discretization. The k-discrete
histogram answer splits the tightest [
, u] interval such that Π |= Q : [
, u] into k
equally sized sub-intervals. For each of these subintervals, it finds the probability that
Q’s probability lies in that sub-interval using the formula given above. The following
theorem shows that computing these histograms is closely related to the problem of
volume computation in convex polyhedra.

Theorem 2. Let PΠ be the uniform probability distribution over Mod(S), Q a query
formula, and [a, b] ⊆ [0, 1]. Then:

L(a ≤ Q ≤ b |Π) =
vol

(
SOL

(
a ≤

∑
wi∈W,wi|=Π,wi|=Q prob(wi) ≤ b

))

vol (SOL(LC(Π)))

where SOL(X) denotes the set of solutions of a set of constraints X , and vol(B) de-
notes the m dimensional volume of a set of points B that form an m dimensional body
in Euclidean space5.

5 The solutions of LC(Π) and the models of the PLP Π are in exact one to one correspondence,
so we could speak interchangeably about either solutions of LC(Π) or models of Π . We prefer
the former, as we are using geometric intuitions in computing polytope volumes.
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For ease of notation, we will denote the numerator of the above expression by

Mod(Π)(a ≤ Q ≤ b) =
{
I ∈ Mod(Π) | a ≤

∑
wi∈W,wi|=Π,wi|=Q I(wi) ≤ b

}
.

Proof sketch. L(a ≤ Q ≤ b |Π) =

=

∫
I∈Mod(Π) χ

[
a≤

∑
wi∈W,wi|=Q I(wi)≤b

]IdPΠI

1

=

∫
I∈Mod(Π) χ

[
a≤

∑
wi∈W,wi|=Q I(wi)≤b

]IdPΠI
∫

Mod(Π) 1dPΠI

=
vol

(
SOL

(
a ≤

∑
wi∈W,wi|=Π,wi|=Q prob(wi) ≤ b

))

vol (SOL(LC(Π)))

�
Theorem 2 shows that computing the probability distribution L is closely related to
volume computations on the convex polytope formed by the linear constraints in LC(S)
in n dimensional Euclidean space.

Fig. 2. The polytope from Example 3 intersected by the two hyperplanes that are determined by
the query formula and its probability interval (region corresponding to Q is shown shaded)

Example 3. Suppose we have Π = {a : [0.6, 0.9], b : [0.2, 0.5]}, and the query formula
is Q = a ∧ ¬b. The set of possible worlds is given by w0 = {}, w1 = {a}, w2 = {b},
and w3 = {a, b}. In the following, let pi denote the probability of world wi being true;
LC(Π) is given by:

{0.6 ≤ p1 + p3 ≤ 0.9, 0.2 ≤ p2 + p3 ≤ 0.5, p0 + p1 + p2 + p3 = 1}
In this case, the query formula is satisfied only by world w1. Maximizing and minimiz-
ing the value of variable p1 in the LP above yields as a result that Q is entailed with a
probability in the interval [0, 0.5]. Figure 2 shows the geometric interpretation of these
constraints. Here, the shaded region corresponds to the probability that Q will be true
with a probability between 0.3 and 0.4.
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4 Volume Computation and Answer Histograms

As shown in the preceding section, computing L(a ≤ Q ≤ b |Π) can be reduced to the
problem of computing the ratio between the two volumes {I | I |= Π ∧ a ≤ I(Q) ≤ b}
and Mod(Π). Compared to Mod(Π), the former is also a convex polytope which is
defined via the set of linear constraints LC(Π) and two additional constraints:

(1)
∑

wi∈W,wi|=Q

pi ≥ a, (2)
∑

wi∈W,wi|=Q

pi ≤ b

We use LC(Π,Q, a, b) to refer to this modified set of constraints for a query Q.
Hence, we can build upon previous work on computing volumes of convex poly-

topes. A simple algorithm for the discrete histogram answer to PLP queries would
work as follows and uses a function called vol that takes a set of linear constraints as
input and returns the volume of the convex polytope generated by those constraints.

Algorithm DiscreteHistoAnswer(Π,Q, k)
1. Result = ∅;
2. Minimize and maximize

∑
wi∈W,wi|=Q pi subject to LC(Π) to get 
, u respectively;

3. Let c = (u− 
)/k;
4. for i = 1 to c do

a. V�+(i−1)∗c,�+i∗c = vol(LC(Π,Q,�+(i−1)∗c,�+i∗c))
vol(LC(Π,Q,�,u)) ;

b. Add V�+(i−1)∗c,�+i∗c to Result;
5. return Result;

The following result states that this algorithm correctly computes the discrete his-
togram answer and follows immediately from Theorem 2.

Theorem 3. Algorithm DiscreteHistoAnswer(Π,Q, k) correctly computes the k-
discrete histogram answer to this query.

As the correctness of the above algorithm depends on volume computation algorithms,
we provide a brief overview of those algorithms in Section 6. Due to the high dimen-
sionality of the PLP histogram answer computation problem, exact volume computa-
tion algorithms are not going to work in practice. [16] study such algorithms and only
consider cases with dimensionality below 20. Even in our very small stock market ex-
ample, which has just 4 propositional symbols, we already have a 16-dimensional space
as there are 16 possible worlds to consider! On the other hand, randomized volume
computation algorithms use random walks with rapid mixing time6 inside the poly-
tope. Such random walks generate a Markov chain where each point in the polytope
corresponds to a state in the Markov chain, and the transition probabilities denote the
probability of the random walk taking you from one point to another. Sampling from
this Markov Chain in accordance with the mixing time yields a uniform distribution
over the polytope. Using this sampling strategy, one can compute the ratio between the

6 The term mixing time refers to the number of steps the random walk must take in order to reach
its stationary distribution; see [17] for a complete treatment.
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volume of a known body (e.g., the unit cube) and the polytope of interest. Naively ap-
plying existing volume computation algorithms to compute L(a ≤ Q ≤ b |Π) as given
in the DiscreteHistoAnswer algorithm has two serious shortcomings:

(1) We wish to plot a histogram of the distribution of L, i.e., for an interval width
δ = u−l

k . Computing each of the volumes vol(LC(Π,Q, 
 + (i − 1) ∗ δ, 
 + i ∗ δ)) is
expensive as the (already expensive) volume computation algorithm would need to be
invoked k + 1 times (once for each of the k discretized components, and once for the
entire volume). This increases the running time by O(k).
(2) As stated before, computing L(a ≤ Q ≤ b | Π) requires the computation of the
ratio between the two volumes and not the actual volume. This raises the question: can
we somehow do better than volume computation algorithms?

The following theorem provides an answer to point (2).

Theorem 4. Let K denote an arbitrary n dimensional polytope which is defined as
the intersection of a set KM of half-spaces. Let A,B be two additional half-spaces
and let L denote the polytope which is the intersection of the half-spaces in LM =
KM ∪ {A,B}. Under these circumstances, computing vol(L)

vol(K) is #P -hard.

Proof sketch. Dyer and Frieze [13] have proven that computing the volume of a convex
polytope defined by the intersection of half-spaces is #P -hard. We show how convex
polytope volume computation can be reduced to relative volume computation in poly-
nomial time, thereby establishing #P -hardness of relative volume computation.

We assume that an arbitrary polytope K is defined by the intersection of a set of
KM of half-spaces. To compute the volume of K using relative volumes, we proceed
as follows. Firstly, we make the customary assumption that the origin o is inside K . We
can determine the maximal inscribed n dimensional sphere inside K in time polynomial
in the number of bounding half-spaces |KM |. Let r be the radius of this maximal sphere,
then we can fit a cube C of edge length 
 = 2r√

n
centered at the origin inside this circle

and hence C must be contained in K . For more details on how a contained cube can
be determined in polynomial time, the interested reader is referred to Applegate and
Kannan [18] who proved that one can find an affine mapping in polynomial time which
maps K to K ′ such that the unit cube is contained in K ′.

We can compute the volume of C in closed form as vol(C) = 
n. Using this base
volume we can derive the volume of K as follows. Let {F i

j} for i = 1, . . . , n and
j = 0, 1 denote the set of faces of the cube C where F i

0 , F
i
1 are parallel and opposing

faces, for all i. For our purposes, we consider the faces to be half-spaces which bound
the cube. Then C can be considered as the intersection of the n pairs of parallel half-
spaces F i

0 , F
i
1. Now, let Kd denote the polytope defined as the intersection of half-

spaces KM ∪ {F i
0, F

i
1 | i = 1, . . . , d} for 0 ≤ d ≤ n. Then K0 = K and Kn = C,

since C is contained in K . We can now derive the volume of K , vol(K) =

vol(K0) = vol(K1)
vol(K0)
vol(K1)

= vol(Kn)
n∏

d=1

vol(Kd−1)
vol(Kd)

= 
n
n∏

d=1

vol(Kd−1)
vol(Kd)

Hence, we have reduced computing the exact volume of K to the product of n relative
volume computations, which completes the polynomial reduction. �
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Fig. 3. Schematic Ball Walk (left) and Hit-and-Run (Right)

4.1 The Approx-HOPE Algorithm

We now present the Approx-HOPE algorithm (short for the Approximate Histogram
Oriented Probabilistic Entailment algorithm) which uses randomized methods to com-
pute the histogram answer to a query Q w.r.t. a PLP Π . The Approx-HOPE algorithm
uses a function called randomWalk that takes LC(Π) as input and performs a random
walk through the convex polytope defined by Π . This function can be implemented in
many ways, two of which we will discuss later.

Algorithm Approx-HOPE(Π,Q, k)
1. Result = ∅;
2. Let δ = (u− l)/k;
3. Sample = randomWalk(LC(Π));
4. For i = 1 to δ do

a. V�+(i−1)∗δ,�+i∗δ = |Sample ∩ [�+(i−1)∗δ,�+i∗δ]|
|textitSample| ;

b. Add V�+(i−1)∗δ,�+i∗δ to Result;
5. return Result;

The Approx-HOPE algorithm is quite simple. Rather than solve volume computa-
tion problems k + 1 times as the DiscreteHistoAnswer algorithm does, this algorithm
basically executes one pass of the sampling stage of these randomized volume compu-
tation algorithms. All these algorithms sample from a polytope with a view to inferring
the volume of the polytope. Rather than sample to determine the volume of the poly-
tope, we try to use the random walk to estimate the part of the polytope’s volume that
lies within one of the k probability intervals that we are discretizing our problem into.

Though Approx-HOPE can be used with any appropriately designed random walk
algorithm, we have tested it extensively with two well known ones:

(1) The random ball walk (RBW) starts at an arbitrarily chosen point p ∈SOL(LC(Π))
where SOL(X) denotes the set of solutions of a set X of constraints. It has a fixed asso-
ciated parameter r which denotes the radius of a “ball” used during the random walk. To
move to the next point, we uniformly sample a point q from the n dimensional sphere
of radius r with center p. If q lies inside the polytope LC(Π), the random walk moves
to point q, otherwise the point is rejected and the walk stays at p. The procedure is then
repeated at the selected (new or old) point. Figure 3 (left) visualizes the random ball
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walk and shows the point q1 which would be accepted as the next move and q2 which
would be rejected.
(2) The Hit-and-Run (HAR) walk also starts at an arbitrary point p ∈ SOL(LC(Π))
and has no parameters. At each step, a direction d (i.e., a point on the n dimensional
sphere surface) is chosen uniformly at random. We compute the segment of line l inside
the polytope Mod(Π), where l is the line through p in direction d. Finally, a point q is
chosen uniformly at random from this line segment and the walk moves to q. Figure 3
(right) shows a line segment inside the polytope and the next point q. Note that the
Hit-and-Run walk never rejects any points.

It has been shown that both RBW and HAR have a mixing time of O∗(n3); how-
ever, HAR achieves this mixing time under weaker assumptions [19]. As we will see in
Section 5, our experiments show that HAR performs much better in practice as it mixes
much more rapidly. This is due to the fact that the random ball walk frequently gets
“stuck” for large radii and moves only very slowly for small radii.

Theorem 5. Using either the RBW or HAR sampling strategy, Approx-HOPE runs in
time in O∗(n4m), where m is the number of rules in Π and n is the number of worlds.

Proof sketch. Sampling uniformly at random from a ball of radius r takes time linear
in the number of dimensions n. Determining whether a point lies inside the polytope
defined by LC(Π), as required by RBW, as well as computing the line fragment for a
given direction d, which is needed for HAR, can be done in time in O(nm). �

5 Experiments

We implemented Approx-HOPE with both the RBW and HAR methods in Matlab
7.7.0 on a single machine with a 2.6 GHz Intel Core Duo Processor using only a single
core and 3GB of RAM.

In our experiments, we randomly generated least fixpoints of PLPs. These fixpoints
contained 3 to 10 annotated formulas, each with up to 4 propositional symbols in them.
No fixpoint contained more than 12 propositional symbols in total. Though there should
be 2k worlds when there are k propositional symbols in such fixpoints, we eliminated
some worlds using a world equivalence method described in [20], which is why the
numbers of worlds in Figure 4 are not necessarily powers of two. We then recorded run
times for the Approx-HOPE algorithm using the RBW and HAR sampling strategies
and three different sample sizes. The running times in seconds are shown in Figure 4.

500,000 Samples 1,000,000 Samples 2,000,000 Samples
Ball Walk Hit-And-Run Ball Walk Hit-And-Run Ball Walk Hit-And-Run

3 rules, 7 worlds 13.7 23.1 28.6 46.7 56.1 91.4
4 rules, 15 worlds 14.6 23.8 29.7 47.7 58.3 95.6
5 rules, 31 worlds 15.4 26.1 30.7 52.2 62.1 102.6
6 rules, 59 worlds 16.5 29.7 32.9 60.4 65.3 119.0
7 rules, 71 worlds 17.0 31.5 34.0 63.3 68.3 127.5

8 rules, 112 worlds 19.9 38.4 40.5 76.4 76.7 153.5
9 rules, 159 worlds 25.9 46.4 52.0 93.4 100.7 180.8

10 rules, 239 worlds 38.5 65.2 77.1 130.7 149.6 259.8

Fig. 4. Running times in seconds for varying numbers of worlds and rules
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Fig. 5. Histograms output by different runs of the Ball Walk (left) and Hit and Run (right) algo-
rithms on the same PLP with 10 rules (341 variables in the LP) for different sample sizes. Note
that the y axis has different scales at different sample sizes.

As expected, the run times increase linearly with the number of samples for all rule sets.
Moreover, the run time increases with the number of worlds, because the computational
cost per sample depends on the number of worlds, as explained in the proof of Theo-
rem 5. We observe that the RBW strategy outperforms the HAR strategy in running
time since its cost per iteration is lower. Note that the sample sizes were identical for
all rule sets, irrespective of the number of worlds and therefore of the mixing times.

In the qualitative experiments we studied the convergence of the RBW and HAR
sampling strategies in detail by holding the rule set and query constant and varying the
sample size between 100,000 and 40 million. Part of the results for a single experiment
with 10 rules and 341 worlds are shown in Figure 5. Across all experiments we ob-
served that HAR converges more quickly to the uniform distribution than RBW. As an
example, Figure 5 shows that Approx-HOPE with HAR already clearly indicates the
subinterval with the highest probability after only 1 million samples, whereas the RBW
is still “walking” toward that region in the polytope. After 20 million samples, HAR has
converged to the uniform distribution (i.e., increasing the sample size does not change
the histogram) whereas RBW is still far from convergence. We conclude that the HAR
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sampling strategy significantly outperforms RBW, despite its favorable cost per itera-
tion, since HAR converges much more rapidly and requires significantly less iterations.
To verify the scalability of Approx-HOPE we experimented with a set of 15 rules giv-
ing rise to 682 worlds using different random queries. The HAR strategy took about 10
hours to converge to the uniform distribution after approximately 140 million samples.

6 Related Work

Probabilistic logic programming has been studied for almost 25 years [4,5,6,3,7,8,9].
For most of this time, researchers have known that the probability intervals associated
with PLP queries can be inordinately wide, often giving very little information to the
user about the truth or falsity of the query and, as illustrated in our stock example, mak-
ing it difficult for the user to make decisions. Past approaches to this problem have been
relatively ad hoc, arbitrarily choosing solutions in LC(Π) that somehow correspond to
some intuition of the researcher, such as maximal entropy. Such approaches are valid
when the assumptions are valid in the application domain, but little or no effort has
gone into verifying whether those assumptions are valid. Presumably the user will de-
cide, but consider the feasibility of asking a stock analyst who has no idea what entropy
is to decide whether maximal entropy is the right semantics for him.

Regarding exact volume computation algorithms, Cohen and Hickey [11] were the
first to propose methods based on triangulation with exponential run time complex-
ity, followed by Khachiyan [12] a decade after. Later, Dyer and Frieze [13] proved
that computing the volume of a convex polytope defined by a set of constraints is
#P -hard, thereby showing that this is the best time complexity one can achieve for
exact algorithms. Dyer et al. [14] proposed a randomized algorithm to compute arbi-
trarily tight bounds on the volume of convex polytopes with high probability in poly-
nomial time. [15] presented an O∗(n4) randomized polynomial time (approximation)
algorithm, where n is the dimensionality of the polytope7.

7 Conclusion

In this paper, we solve the problem of dealing with wide probability intervals without
making any assumptions, and at the same time providing a simple, graphical output to
the user in the form of an easy to understand histogram. We do this by defining, for the
first time, the unique notion of a histogram answer to a query w.r.t. a PLP. We show
that the histogram answer computation problem is #P -hard, and further show a close
relationship between this and volume computation in convex polytopes. We provide an
exact algorithm to compute histogram answers (which is expectedly inefficient because
of the #P -hardness result). We further develop an approximation algorithm Approx-
HOPE that can work with any sampling method and evaluate it using two types of
random walk sampling strategies: Random Ball Walk and Hit and Run. We develop an
initial (small) prototype and quickly discover that Approx-HOPE combined with Hit
and Run is much more efficient than with Random Ball Walk.

7 The O∗ notation ignores logarithmic factors and other factors such as error bounds.
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Abstract. We present a technique for identifying predicate arguments
that play no role in determining the control flow of a logic program with
respect to goals satisfying given mode and sharing restrictions. We call
such arguments non-discriminating arguments. We show that such argu-
ments can be detected by an automatic analysis. Following this, we define
a transformation procedure, called discriminator slicing, that removes the
non-discriminating arguments, resulting in a program whose computation
trees are isomorphic to those of the original program. Finally, we show how
the results of the original program can be reconstructed from trace of the
transformed program with the original arguments. Thus the overall result
is a two-stage execution of a program, which can be applied usefully in sev-
eral contexts; we describe a case study in optimising computations in the
probabilistic logic program language PRISM, and discuss applications in
tabling and partial evaluation. We also discuss briefly other possible ways
of exploiting the non-discriminating arguments.

1 Introduction

The first result presented here is the identification of predicate arguments that
play no role in determining the control flow of a logic program computation,
with respect to initial goals satisfying given mode and sharing restrictions. We
call such arguments non-discriminating arguments. The non-discriminating ar-
guments can be given either manually or determined by an automatic analysis.

Following this, we define a transformation procedure, called discriminator
slicing, that removes the non-discriminating arguments, resulting in a program
whose computations are isomorphic to those of the original program. The trans-
formation can be performed on a whole program or on individual modules,
assuming that mutually recursive modules do not occur.

We present a technique for decomposing the execution of a program into
two stages. The first stage executes a simplified transformed program called a
mode-sliced program, that establishes the control flow. The second stage per-
forms computations omitted in the first stage. We present certain practical and
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conceptual benefits of this two-stage execution. Non-discriminating arguments
could be used in other ways, though we focus here on transforming a program.

Removing non-discriminating arguments generates a simpler program whose
control flow mirrors that of the original program. The simpler program can be
executed, yielding a trace of its execution. From that trace, together with the
eliminated non-discriminating arguments, the results of executing the original
computation can be reconstructed by re-running the trace but including the
computations for the non-discriminating arguments.

There are various uses of this two-stage process, which might at first sight
appear simply to do the same work as the original computation, and even with
some additional overhead. We show how the technique can lead to overall opti-
misation. The simpler first stage can be of benefit in tabled computations. We
show such a case in the probabilistic logic program language PRISM [18].

The paper is structured as follows. In Section 2 we define the concept of a dis-
criminating argument, along with its relation to mode and sharing abstractions.
Then the slicing of a program, cutting out non-discriminating arguments, is de-
scribed. In Section 3 it is shown that slicing preserves computation traces, and a
two-phase execution scheme is introduced along with an illustrative example. In
Section 4 a particular application is studied, namely the calculation of the most
probable sequence of states in a hidden Markov model programmed in PRISM;
in this application exponential speedup can be achieved, due mainly to savings
in the tabled structures constructed. Sections 5 and 6 contain a discussion on
the applicability of the method and related work, and Section 7 concludes.

2 Preliminaries

We follow the standard terminology and notation for logic programs [10]. For
now, we consider definite logic programs that allow calls to declarative built-in
predicates.

Modes. We define mode abstractions {v, nv} having the following interpretation
given by a function mode. mode(v) is the set of variables and mode(nv) is the set
of non-variables. p(m1, . . . , mn) is a moded atom if p is an n-ary predicate symbol
and mj ∈ {v, nv}, 1 ≤ j ≤ n. A finite set of moded atoms for predicate p is called
a mode for p. We extend mode to atoms and set of atoms; mode(p(m1, . . . , mn)) =
{p(t1, . . . , tn) | ti ∈ mode(mi), 1 ≤ i ≤ n}, and mode(M) =

⋃
{mode(p(m̄)) |

p(m̄) ∈ M}. We say that an atom A respects a mode M if A ∈ mode(M).

Sharing. We adopt a variant of a standard technique [19] for representing possible
sharing among arguments of a predicate. A pair of terms {t1, t2} is said to share
if vars(t1)∩vars(t2) �= ∅, where vars(t) denotes the set of variables occurring in
term t. A pair-sharing abstraction (hereafter called simply a sharing abstraction)
for an n-ary predicate p is given by a subset of {{i, j} | i, j ∈ {1, . . . , n}, i �= j}.
A sharing abstraction S for n-ary predicate p denotes a set of atoms given by
share(S) = {p(t1, . . . , tn) | if {ti, tj} share then {i, j} ∈ S}, or equivalently
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as share(S) = {p(t1, . . . , tn) | {i, j} �∈ S implies {ti, tj} do not share}. Thus
a sharing abstraction represents possible sharing between the given argument
pairs, or equivalently definite independence of pairs of arguments that are ab-
sent. Namely, if {i, j} �∈ S for some sharing abstraction S, then for all atoms
p(t1, . . . , tn) ∈ share(S), ti and tj share no variable. We say that an atom A
respects a sharing abstraction S for its predicate if A ∈ share(S).

Definition 1. A (argument) discrimination for an n-ary predicate p is an atom
p(d1, . . . , dn), where di ∈ {d, nd}, where d stands for a discriminating argument
and nd stands for a non-discriminating argument. An argument discrimination
for a program Π is a set of discriminations, one for each p/n defined in Π.

The intention of a discrimination is to identify which arguments in a predicate
have an effect on the computation flow. A discriminating argument is one which
could fail to match with the corresponding argument in at least one clause head.
Conversely, a non-discriminating argument is one that does not influence the
success of unification of a call with any clause head. The next definition makes
this precise.

Definition 2. Given a program Π and a goal A, a discrimination for Π is
correct for the computation of Π with A if the following condition holds. For
every call p(t1, . . . , tn) arising in the computation, and standardised-apart clause
head p(u1, . . . , un),

– mgu(((t1, . . . , tn), (u1, . . . , un)) succeeds iff mgu((ti1 , . . . , tik
), (ui1 , . . . , uik

))
succeeds, where {i1, . . . , ik} is the set of discriminating arguments of p.

Example 1. Consider the usual append program.

append([],Ys,Ys).

append([X|Xs],Ys,[X|Zs] :- append(Xs,Ys,Zs).

Then append(d,nd,nd) is a correct discrimination for the goals append([a],U,V)
and append([a],[b],V). That is, only the first argument determines whether a
call matches a clause head, even though the second argument may also be non-
variable.

Since Definition 2 is given in terms of the set of all calls arising in a computation,
it is necessary to find some sufficient conditions in practice, since the set of calls
is infinite in general. The next definition characterises a correct discrimination
with respect to a program with a set of calls denoted by a mode abstraction and
a sharing abstraction.

Definition 3. Let Π be a program, M a mode and S a sharing abstraction. Let p
be a predicate and p(d1, . . . , dn) a discrimination for p. Then the discrimination
is correct with respect to M and S if for every standardised-apart clause head
p(u1, . . . , un) and p(m1, . . . , mn) ∈ M , the set of pairs {〈ui, mi〉 | 1 ≤ i ≤ n}
satisfies the following condition;
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– for all 1 ≤ i ≤ n, if di = nd then ui is a variable or mi = v; and
– there do not exist 〈ui, mi〉 and 〈uj, mj〉, i �= j, such that di = nd, mi = v

and {i, j} ∈ S, and uj is non-variable; and
– there do not exist 〈ui, mi〉 and 〈uj , mj〉, i �= j, such that di = nd, ui is a

variable, mj = nv and share(ui, uj).

Informally, consider a call p(t1, . . . , tn) that satisfies the mode and sharing dec-
larations for p, and a (standardised apart) clause head p(u1, . . . , un). Then for
each non-disriminating argument position i, according to Definition 3, at least
one of ti and ui is a variable. Furthermore, if ti is a variable and shares with
some other argument tj then uj is a variable; and if ui shares with some other
argument uj then tj is a variable.

Example 2. Consider again the append program, the mode {append(nv,nv,v)}
and sharing abstraction ∅ for append. Then append(d,nd,nd) is a correct dis-
crimination. Note that argument 2 is non-discriminating despite the fact that it
is non-variable. Although in clause head append([],Ys,Ys) arguments 2 and 3
share, they are not both matched to non-variables.

The following lemma states that a correct discrimination with respect to a
mode and sharing abstraction (Definition 3) safely approximates the condition of
Definition 2.

Lemma 1. Let Π be a program, M a mode and S a sharing abstraction. Assume
that for all A respecting M and S, every call in the computation of Π with A
respects M and S. Let Δ be a discrimination for Π. Then if Δ is correct with
respect to M and S for each predicate in Π then Δ is correct with respect to Π
and A, for all A respecting M and S.

Proof (Sketch). It can be verified that Definition 3 ensures that any call respect-
ing the given mode and sharing cannot fail due to unifying the non-discriminating
arguments. When unifying on a non-discriminating argument at least one of the
two terms is variable. Thus the only possible cause of failure (since the two terms
are standardised apart) is another occurrence of the variable that is matched to
a different term. This cause is excluded by the conditions of Definition 3. It fol-
lows that every call unifies with each clause head if and only if the discriminating
arguments unify, as required by Definition 2.

Constructing a discrimination from mode and sharing abstractions. Given a
mode and sharing abstraction, we can construct a discrimination that satisfies
the conditions of Definition 3.

Let Π be a program, M a mode and S a sharing abstraction; construct a
discrimination for each predicate p as follows. The ith argument of p is nd if and
only if either (a) the ith argument of each clause head for p is a variable, and
if the ith argument shares with another head argument then that argument is
also a variable, or (b) the mode of the ith argument is v in all mode atoms and
if {i, j} ∈ S then mj = v also. Note also that a discrimination can be relaxed by
replacing any nd by d, preserving correctness.
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Example 3. Consider the usual append program, the mode {append(nv,nv,v)}
and sharing abstraction ∅ for append. Then we derive append(d,nd,nd) as the
discrimination. As there is no sharing in the calls, the 2nd argument is non-
discriminating even though it is non-variable. Given the mode {append(nv,v,v)}
and the same sharing abstraction we obtain append(d,nd,nd) once again. Given
the mode {append(v,v,nv)} and the same sharing abstraction, we obtain the
discrimination append(nd,nd,d).

Analysis for Discrimination. Static analyses for freeness and sharing are well
established, starting with [19,4] and we can apply them for automatically con-
structing correct discriminations. Given an initial moded call and a sharing ab-
straction on the call, such an analysis returns, for each predicate, a safe mode and
sharing abstraction; that is, one respected by every call. An analysis is performed
for a given computation rule; in this paper we assume the standard left-to-right,
depth-first strategy. As discussed later, more precise analyses could be employed
to derive more accurate discriminations than the one described here, which is
based on very simple modes and no information on term structure.

2.1 Discriminator Slicing

Let Π be a program and Δ a discrimination for Π which is correct with respect
to a mode and sharing abstraction for Π .

An argument position pi where p is an n-ary predicate and 1 ≤ i ≤ n is
deletable if

– that argument position is nd in Δ, and
– no occurrence of that argument position in the program contains a term that

shares with an argument that is marked d.

A slice with respect to Δ is obtained by replacing each clause A0 ← A1, . . . , An

in Π by A′
0 ← A′

1, . . . , A
′
n where A′

i is obtained by deleting from Ai all deletable
arguments. We call the resulting program ΠΔ.

Discriminator slicing with respect to a predicate. Slicing with respect to a pred-
icate p allows the removal of body atoms in the clauses for p. A body atom can
be removed if it cannot influence the choice of clause for p, or some predicate
mutually recursive with p, in a computation,

Let Π be a program and Δ a discrimination for Π which is correct with respect
to a mode and sharing abstraction for Π . Let GΠ be the predicate dependency
graph of Π and c0, c1, . . . , cl be the sequence of strongly connected components
[21] of GΠ in some topologically sorted order (where cl is the “top” component).
Let A0 ← A1, . . . , An in Π be a clause whose head has predicate p and let ck be
the component containing p. Then Ai (i ≤ i ≤ n) is deletable if

– Ai’s component is cj where j < k, and
– no argument of Ai shares with any d argument of an atom Am, m �= i, where

Am’s predicate is in ck.
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Let ΠΔ
p be the program obtained by first constructing ΠΔ and then removing

any deletable atoms (with respect to predicate p).

Discriminator slicing with respect to built-ins or imported predicates. built-in
predicates are considered to be at the bottom of the predicate dependency graph.
Thus slicing with respect to a predicate p allows removal of calls to built-ins from
p’s clauses that cannot affect p’s control flow. However the same principle allows
imported predicates can be handled in a similar way, assuming that mutually
recursive predicates are not in separate modules. Thus predicate based slicing
can be used to remove calls to imported predicates from a module if they cannot
affect the control flow of the predicates of the module.

3 Discriminator Slicing and the Preservation of Traces

We now deal with the question of what properties of a program are preserved
by discriminator slicing. The overall answer is that the control flow is preserved.
To make this precise we introduce derivation trees and trace terms [3].

Derivations. A single moded atom is assumed for the top predicate, and a query
to a given program consists, for simplicity, of a single call to the top predicate
respecting its mode. The following characterisation of derivations and trace trees
is adapted from [3].

Definition 4. An AND-tree (for program Π) is a tree each of whose nodes is
labelled by an atom and a clause, such that

1. each non-leaf node is labelled by a clause A ← A1, . . . , Ak and an atom Aθ
(for some substitution θ), and has children A1θ, . . . , Akθ,

2. each leaf node is labelled by a clause A ← true and an atom Aθ (for some θ).

It was shown by Stärk [20] that A has answer θ in program Π if and only if
there is an AND-tree (for Π) with root node labelled by Aθ.

Furthermore, a successful derivation with left-right depth-first computation
rule (or any other computation rule) can be transformed into an AND-tree. Each
AND-tree can be associated with a trace term.

Definition 5. Let T be an AND-tree; define α(T ) to be either

1. fj, if T is a single leaf node labelled by the unit clause identified by fj; or
2. fi(α(T1), . . . , α(Tn)), if T is labelled by the clause identified by fi/n, and has

immediate subtrees T1, . . . , Tn.

Adding trace-terms to programs. Trace-terms can easily be added to logic pro-
grams, so that the computation returns a trace term as well as its normal result.
Let Π be a program and let the ith clause be p(t̄) ← q1(t̄1), . . . , qai(t̄ai). Let
fi/ai be the function symbol associated with the ith clause. Transform each such
clause to p(t̄, fi(Y1, . . . , Yai)) ← q1(t̄1, Y1), . . . , qai(t̄ai , Yai), where Y1, . . . , Yai are
distinct variables not occurring elsewhere in the clause.
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Finally, transform each atomic goal ← q(s̄) to ← q(s̄, W ), where W is a
variable not occurring elsewhere in the goal. Given a program Π we denote the
program obtained by adding trace terms by Π+.

We can modify the trace term to incorporate built-ins and imported predicates
for which the clauses are not available. We simply define a unique constant for
each such call and add it to the trace term. E.g. if qj(t̄j) in the clause p(t̄) ←
q1(t̄1), . . . , qj(t̄j), . . . , qai(t̄ai) is a call to a built-in, we transform the clause to
p(t̄, fi(Y1, . . . , b, . . . , Yai)) ← q1(t̄1, Y1), . . . , qj(t̄j), . . . , qai(t̄ai , Yai), where b is the
unique identifier for that built-in.

Preservation of traces by discriminator slicing. Consider the result of discrim-
inator slicing; some arguments are removed from the program but otherwise
the structure of clauses is intact. Assume that the same clause identifiers are
retained in the sliced program. Then the AND-trees of the sliced program are
in one-to-one correspondence with those of the original program. This implies
that, if we add trace-terms to both programs as in Definition 5, then the two
programs generate exactly the same trace terms.

Proposition 1. Let Π be a program and A a goal. Let Π+, A+ be the result
of adding trace terms to Π and A. Let Δ be a correct discrimination for Π;
ΠΔ, AΔ the discriminator slice, and ΠΔ+

, AΔ+
the result of adding trace terms.

Then there is an execution of A+ in Π+, yielding trace term t if and only if
there is an execution of AΔ+

in ΠΔ+
yielding t.

Proof (Sketch). The sliced program ΠΔ+
uses only the discriminating arguments

but a call unifies with a clause head in ΠΔ+
iff the corresponding call with all

arguments unifies with the corresponding clause head in Π+. Clearly the trace
terms do not influence the control flow. Hence the computation follows exactly
the same course and so the same trace terms are generated.

In the case of a slice with respect to a predicate, the trace term is preserved
apart from the subterms corresponding to the deleted atoms. We state the cor-
responding correctness result.

Proposition 2. Let Π be a program and A a goal. Let Π+, A+ be the result of
adding trace terms to Π and A. Let Δ be a correct discrimination for Π and
p a predicate; ΠΔ

p , AΔ the discriminator slice wrt p, and ΠΔ+

p , AΔ+
the result

of adding trace terms. Then there is an execution of A+ in Π+, yielding trace
term t if and only if there is an execution of AΔ+

in ΠΔ+

p yielding t′, where t′

is obtained from t by deleting the subterms corresponding to the deleted atoms.

Re-running a trace. Having generated a trace term t (using AΔ+
in ΠΔ+

p ), we
can then insert t into the trace term argument of the goal for the original goal
A+ in Π+. The trace term will force the computation to re-run exactly the same
path as given in the trace term. While there may have been backtracking while
generating the trace term, the re-run using a ground trace term is completely
deterministic.



62 H. Christiansen and J.P. Gallagher

Furthermore, some computation on failed branches is possibly avoided in the
sliced program due to the deletion of atoms that do not affect the control flow.
When re-running the program there is no backtracking. Thus it is possible that
there is an overall saving in executing a program in two stages; the first phase
to generate a successful trace using the sliced program, but doing less work in
the unsuccessful branches than would have occurred in the original program.
The second phase generates the full answer using the trace, with no redundant
computation.

Example 4. We consider an implementation of a finite state machine which
moves from states to states and consumes/emits a letter in each transition;
for simplicity, we let the state machine treat all different letters alike. The top
predicate m(history, letter-sequence) where the history records, for each step
consecutively numbered, the states passed and letters seen. For example, the let-
ter sequence [a, b] may give rise to the history [s(0,q1), e(0,a), s(1,q2),
e(1,b), s(2,end)]. We assume the following mode pattern indicating that the
program is used for mapping sequences of letters into histories, m(v, nv); the
program Π is as follows.

m(H,Ls):- m(q0,0,H,Ls).
m(end,N,[s(N,end)],[]).
m(Q,N,[s(N,Q),e(N,L)|H],[L|Ls]):-
suc(Q,Q1), N1 is N+1, m(Q1,N1,H,Ls).

suc(q0,q1). suc(q0,q3).
...

A discrimination for this program is given as follows; it can be derived automat-
ically from a sharing and freeness analysis with respect to the goal m(v,nv) with
no sharing between the arguments.

m(nd,nd), m(d,nd,nd,d), suc(d,nd),

We make now a two-stage transformation of this program, producing a sliced
version ΠΔ

m with respect to the predicate m/4. Notice the call to built-in “is” is
removed by this transformation, since N1 is N+1 processes only variables that
are non-discriminating in m/4. We then extend this with trace terms, correspond-
ing to the production of ΠΔ+

m .

mDeltaT(Ls,f1(T)):- mDeltaT(q0,Ls,T).
mDeltaT(end,[],f2).
mDeltaT(Q,[L|Ls],f3(T1,T2):-
sucDeltaT(Q,Q1,T1), mDeltaT(Q1,Ls,T2).

sucDeltaT(q0,q1,f4). sucDeltaT(q0,q3,f5).
...

Finally, we generate the trace term version of the original program, correspond-
ing to Π+.
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mPlus(H,Ls,f1(T)):- mPlus(q0,0,H,Ls,T).
mPlus(end,N,[s(N,end)],[],f2).
mPlus(Q,N,[s(N,Q),e(N,L)|H],[L|Ls],f3(T1,is,T2)):-

sucPlus(Q,Q1,T1),
N1 is N+1, mPlus(Q1,N1,H,Ls,T2).

sucPlus(q0,q1,f4). sucPlus(q0,q3,f5).
...

Instead of querying the original program by (i) m(H,a-list-of-letters), we can
pose the query equivalently as follows,

(ii) ?- mDeltaT(a-list-of-letters,T), mPlus(H,the-same-list-of-letters,T).

For measuring the difference in runtime, we detailed a state machine that needs
to explore combinatorially many failing branches before escaping through an
end state. While (ii) may look more complicated, it runs about 20% faster than
(i).1 To explain this difference, notice firstly that the call to mPlus is negligible
wrt. runtime as it executes deterministically for a correct trace. The unifications
in mDeltaT all involve patterns mentioned in the head of clauses, so that the
Prolog compiler can reduce them to very little work at runtime. Finally, the
queries to m and mPlusT involve exactly the same number of failing and suc-
cessful branches, so the speedup reflects the difference in efficiency of the single
clauses.

It is clear that an arbitrarily large speedup can be demonstrated by applying
this technique to suitably constructed programs with heavy use of built-ins and
backtracking. In fact, as noted, the technique can be generalized to remove also
calls to program defined predicates or imported predicates.

4 Discriminator Slicing in Tabling Systems, Including
PRISM

We now discuss a case study in which drastic speedup is achieved using discrim-
inator slicing in relation to tabled logic programming systems.

Very briefly, we can explain tabling [16] as a mechanism utilized in the ex-
ecution of Prolog programs that maintains a table of successful calls and their
answers, and whenever a call is encountered, it is checked if it (or perhaps a more
general call) is known in the table already; if so, there is no need to execute it
once again as the answers are ready in the table.

Comparing the use of tabling for a program Π and its reduced version ΠΔ,
we notice that different calls of Π differing only in the non-discriminating ar-
guments, will merge into a single call in ΠΔ. Thus the table can be much
smaller, and there is a larger chance that the current call has a match in the
table.
1 This test was made using the optimizing compiler of SICStus Prolog 4.0.4 under

Mac OS X 10.5.6, 2.4 GHz Intel Core 2 Duo with 4GB RAM.
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We have applied this principle in a preprocessor for the probabilistic-logic
PRISM [18] system, where in some cases, it reduces time complexity from expo-
nential or worse to linear for applications of the system’s generic Viterbi algo-
rithm. For a detailed explanation of PRISM’s facilities we refer to its manual [17];
PRISM is based on BProlog [25] from which it inherits a tabling mechanism.

Programs in PRISM are basically Prolog programs extended with random
variables, called multi-valued switches. With given probabilities for the switches,
a probabilistic semantics is induced that associates a probability to each true
atom in the program so that a program becomes a probabilistic model. One pos-
sible application of a PRISM program is to find the set of outcomes of switches
that provides the maximum probability, called the Viterbi probability, for a
given observation represented as a top-level goal g; this can be done by a call
viterbif(g). Another useful option is viterbig(g), which instantiates the vari-
ables in g to terms that provide the highest Viterbi probability. These predicates
are given in alternative versions that also provide the Viterbi probability as well
as an “explanation” which basically is a representation of the proof tree, includ-
ing outcomes for the switches, that gives rise to the Viterbi probability.

The viterbig facility is interesting, among others applications, for prediction
of structures in genomic sequence data. Many different models can be used and
PRISM appears as a very flexible tool for developing such models. Here we
will illustrate a Hidden Markov Model [14] (HMM) which can be represented
as a predicate hmm(annotation,sequence) where sequence is a sequence of the
letters a, c, g, t, in length between hundreds and in principle up to billions, and
annotation is a description of those structures that the biologists find interesting
(e.g., proposed positions of genes or detailed intron-exon structures).

A call such as viterbig(hmm(A,sequence)) typically leads to a combinatorial
explosion, but with our program slicing method we can achieve linear complexity
which is the best possible. We will explain the details for the following PRISM
program, ΠHMM; it defines a general HMM which records the sequence of states
during a run. The most probable sequence is the so-called Viterbi path.2

values(letter(_state), [a,c,g,t]).
values(next_state(_state), [q1,q2,end]).
hmm(A,S):- hmm(q1,A,S).
hmm(end,[end],[]).
hmm(Q,[Q|Qs],[L|S]):-

Q \= end,
msw(letter(Q),L), msw(next_state(Q), Q1),
hmm(Q1,Qs,S).

We have left out additional program lines that set the probabilities for the
switches defined by the values declarations; notice that a parameterized pat-
tern such as letter( state) indicates a family of random variables. The msw
predicate is a reference to a switch and may instantiate its second argument to
any outcome of the switch.
2 This code is inspired by similar examples in the PRISM manual [17].
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The strategy applied for Viterbi computations in PRISM is to explore all pos-
sible proof trees being stored as a so-called explanation graph, but using sharing
of subtrees whenever their top nodes are identical; this sharing is implemented
through clever use of the underlying tabling mechanism in a way that we shall
not describe here. When the program above is used for finding the best path for
a given sequence, calls of the form

hmm(sk, Qs,[�k,. . .,�n])

are made to the recursive predicate for all k and possible value of sk. PRISM
considers all possible answers for it, and they are entered in the underlying table;
these answers amount to all possible instances given by substitutions of the form

Qs→ [sk,. . .,sn].

The explanation graph needs to include all correspondingly instantiated nodes,
of which there are clearly exponentially many.

On the other hand, the annotation arguments are non-discriminating and can
be removed while still retaining the same set of proof trees (modulo mappings to
adds/remove the annotation arguments). However, without the annotations far
more nodes can share; more precisely the exponential amount of different nodes
for each k and sk reduces to a single node in the graph. To see this, consider
reduced program ΠΔ

HMM which is as follows.

hmm(S):- hmm(q1,S).
hmm(end,[]).
hmm(Q,[L|S]):-

Q \= end,
msw(letter(Q),L), msw(next_state(Q), Q1),
hmm(Q1,S).

The recursive calls are now of the form hmm(sk ,[�k,. . .,�n]) where all argu-
ments are grounded, thus only one possible answer, namely the empty substitu-
tion corresponding. This means that the explanation graph can be viewed as a
structure a width equal to the number of different states and a length equal to
the sequence length. The construction of this graph can be done in time linear
in the size sequence length.

It is now so fortunate that viterbif can return a representation of the best
proof tree extracted as a subgraph of the explanation graph. This tree can then
be mapped into a desired annotation in one efficient run of a program such as
our Π+

HMM adapted for PRISM’s particular proof tree format.
We have developed a little preprocessor, called autoAnnotations [1], which

given a program ΠHMM as above, produces automatically ΠΔ
HMM as well Π+

HMM.
The current version of this system requires the user to indicate the arguments
and body calls to be removed. With the analysis methods described here, this can
be done fully automatically from a single mode declaration for the top predicate.

We tested runtime for Viterbi computations with the reduced and non-reduced
version. While the non-reduced version did not return an answer for sequences
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of length 20 within several hours, the reduced one ΠΔ
HMM followed by our post-

processor Π+
HMM could produce Viterbi paths for lists of lengths up to 20,000 in

few minutes on a machine with sufficient amount of RAM.

5 Discussion

It is clear that the slicing technique and two-phase execution can slow a program
down. In the worst case no arguments or atoms are deletable so the program will
be executed twice in its entirety. On the other hand there are examples such the
one described above where spectacular speedup is achieved. Thus the technique
needs to be used with care and targeted to appropriate examples. It seems hard
to characterise precisely the class of programs that could benefit from its appli-
cation. Applications that require explicit manipulation of computation trees or
traces could be candidates; these might include online partial evaluation, where
an explicit representation of computation trees are constructed and some notion
of tabling is used to handle infinite branches of the tree [12,7]. In the case of the
Viterbi calculation in Section 4, a key point is that one computation path (the
most probable) is returned but the whole tree must be constructed first. Thus
savings while constructing the tree are worthwhile. Search problems in which
some structure is computed while searching for a solution are also liable to op-
timisation, as discussed in Example 4. The transformation can eliminate cases
where partial solutions are constructed on failing branches of the search and
then thrown away. Other examples in this class are non-deterministic parsers
constructing a syntax tree. It is likely that the arguments of the parser con-
structing the syntax tree are non-discriminating; thus it could be a substantial
optimisation for highly non-deterministic grammars to generate a trace of a suc-
cessful parse and then deterministically construct the syntax tree afterwards.

Apart from optimisation, there could be applications of discriminator slicing
for refactoring of logic programs [23]. The sliced program expresses the con-
trol part of the program. Thus two predicates p1, p2 that have isomorphic dis-
criminator slices with respect to p1, p2 respectively could be said to share the
same control. Such information could be useful for understanding, documenting
or comparing programs. Furthermore the idea of recording and replaying pro-
gram traces has applications in several other fields, especially debugging and
understanding of concurrent programs [15].

6 Related Work

Program slicing [24,22] is a collection of techniques for removing parts of the
code of a program that are irrelevant with respect to some chosen part of the
program’s semantics (the slicing criterion). Most slicing criteria concern the
values of some selected variables; by contrast our slicing technique preserves
control flow. However path slicing [5] is more similar; it concerns removing code
that does not affect a given computation path; we differ in that our slicing
criterion is the set of all computation paths rather than a specific one, and
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in that the underlying analyses are different from those used in an imperative
language. We have done some initial investigation on the formulation of our
approach as a value-based slicing technique using trace terms. The approach
is to construct a slice of the program augmented with trace terms (Section 3)
with respect to the trace term argument; the slice in principle contains only the
operations needed to preserve the trace terms, that is, the control flow. Using
a logic program slicing approach such as Leuschel and Vidal’s [9] incorporating
partial evaluation and the redundant argument filtering transformation [8] it
is possible to handle simple examples but it is unclear at present whether the
analyses incorporated in these tools are powerful enough.

Applications of mode and sharing analysis are many, including automatic
parallelisation [13], occur-check elimination [19,4], non-failure analysis [2] and
determinacy analysis [11]. The latter two applications resemble discriminator
analysis in some respects and give pointers to obtaining more precise discrimi-
nations. The conditions for detecting non-failure, for example, are that each call
unifies with at least one clause head, while the conditions for detecting deter-
minacy are that each call unifies with exactly one clause head. Adapting these
conditions and applying them argumentwise should lead to conditions express-
ing, for each argument or group of arguments, whether they unify with each
clause head. If these conditions are true for some argument and every clause
head, then that argument is non-discriminating. Further study is required.

We chose to apply discriminations to obtain a sliced program, but the same
information could be applied dynamically during execution. In this respect there
is a relation to control flow generation. Automatic generation of delay mecha-
nisms and reordering of subgoals in clause bodies for improving efficiency and
termination properties of logic programs have been considered by [6]. These tech-
niques are somewhat orthogonal to ours, but we notice that our method may be
adapted to generate delay declarations for calls which, in the construction of our
reduced programs, are subject to deletion. Consider the finite state machine pro-
gram of Example 4 in which the call N1 is N+1 can be removed in the reduced
program. Instead of deleting this call, we may delay it by an inline application
of freeze or by replacing it with a call addOne(N1,N) where the new predicate
is defined as follows.

:- block addOne(?,-).
addOne(N1,N):- N1 is N+1.

We can obtain an improved efficiency by only executing calls to addOne that
occur in a successful execution of the program, by changing the top clause of the
program into the following.

m(H,Ls):- m(q0,Zero,H,Ls),Zero=0.

(This step employs the data flow analysis of the program). An optimizing com-
piler and a runtime system with low overhead for delays may produce a program
that runs almost as efficiently as the reduced version. It is not clear at present
whether the approach of [6] will detect this opportunity for optimisation; the
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reordering of calls in the body for an optimised execution in their approach may
possibly be utilized in order to classify more arguments as non-discriminating.

7 Conclusion

We have presented the concept of discriminating arguments and shown that they
may be detected automatically given a moded goal. A slicing transformation was
defined in which the slice preserves the computation tree structure. Using trace
terms we then defined a two-phase execution in which the control flow is first
established and then the full results are generated from the trace. Applications
where this approach could be beneficial were presented and discussed.
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Abstract. A class of probabilistic-logic models is considered, which in-
creases the expressibility from HMM’s and SCFG’s regular and context-
free languages to, in principle, Turing complete languages. In general,
such models are computationally far too complex for direct use, so opti-
mization by pruning and approximation are needed. The first steps are
taken towards a methodology for optimizing such models by approxi-
mations using auxiliary models for preprocessing or splitting them into
submodels. Evaluation of such approximating models is challenging as
authoritative test data may be sparse. On the other hand, the original
complex models may be used for generating artificial evaluation data
by efficient sampling, which can be used in the evaluation, although it
does not constitute a foolproof test procedure. These models and evalu-
ation processes are illustrated in the PRISM system developed by other
authors, and we discuss their applicability and limitations.

1 Introduction

Models for data analysis are often based on probability theory which provides a
firm theoretical basis and a catalogue of well-understood computational meth-
ods, which may be exact or approximative. Hidden Markov Models (HMM) and
Stochastic Context-Free Grammars (SCFG) are well-known and popular tech-
niques For analysis of genomic sequences in biology and other comprehensive
sequential data sets. Both models consists of a logical and a probabilistic part,
where the logical part of a HMM is a finite state automaton and for a SCFG, a
Context-Free Grammar; see [7] for overview and detailed references. The logical
part defines a space of possible analysis results, and the probabilistic part as-
signs a probability to each such with the understanding that high probability is a
good or close-to-actual-truth result. There exists efficient Viterbi algorithms for
HMM’s that can find the state path of highest probability for a given sequence
in linear time, whereas SCFG requires cubic times to identify a best parse tree.

There is a strong interest in the automated extraction of information from
genomic and other biological sequence data due to demanding applications in
medicine, biological sciences, food industry, etc..., and there are basically two
complementary ways to approach this problem. Firstly, the computational power
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can be increased (e.g., by huge clusters of computers). Secondly, and this is the
direction that we pursue, more powerful and detailed models of higher formal ex-
pressibility can be developed as a basis for novel and more sophisticated analyses.
This may increase computational complexity drastically, and such new models
must be accompanied by optimizations in order to gain practical value.

Our main goal with the present work is to promote the application of new
strong models defined in declarative languages such as extensions to PROLOG.
This provides the familiar advantages of declarative programming; it is known
that standard models such as HMM and SCFG are embedded in natural ways,
they can be extended and combined in a very flexible manner, and long-distance
context-sensitive dependencies can be modelled using logical variables and ar-
bitrary auxiliary data-structures and predicates. While this extends up to in
principle Turing complete languages, even the cubic complexity that arises for a
model that incorporate elements of a SCFG is problematic for long sequences.
As a working example, we experiment with optimising and approximating an
essentially context-free model to reduce its overall complexity. The method un-
der investigation quite likely extents to even more complex problems but our
current experiments does not go beyond context-free features.

While most of our constructions do not reflect the actual domain, our primary
interest is on applications in computational biology, and our analysis takes into
account the particular restrictions imposed by this. We focus currently on models
that can be expressed in the PRISM system [16,17], but our general framework
is independent of the particular formalism used.

We suggest that it would be advantageous for probabilistic-logic models to be
developed by initially producing models that represent all the available knowl-
edge about the phenomena in focus as faithfully as possible, exploiting the
advantages of a powerful modelling language, and without being limited by
implementation issues. Such ideal and declarative models may be used for ini-
tial testing of very small data sequences, and as representation of intellectual
knowledge. Furthermore, they can be used for generating artificial samples of
sequences-with-annotations which may be useful for investigating the models
and for testing as we suggest below. Finally, these models can serve as specifi-
cations for, and standard of, the development of other, approximating models
which can be used for efficient analysis of real data. The work described here
represents the early steps taken towards this overall end, focussing on general
methodological efficiency rather than on domain specific accuracy.

These efforts are part of a larger research project concerned with logic-
statistical models that involves computer scientists, biologists, bioinformaticists,
developers of competitive software for bioinformatic applications, and a lead-
ing company producing biological cultures to the food industry world-wide (the
LoSt project [14]). Another big challenge in this project, that is not touched upon
in the present paper, is to learn how to apply these models for real biological
problems.

We consider in the present paper approximations based on preprocessing. For
example, an efficiently implemented HMM may be used as a preprocessor to
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provide “steering marks” for a more advanced analysis. In fact, this is quite
similar to tagging and period separation in natural language analysis.

Section 2 defines what we mean by a probabilistic-logic annotation model
and states our assumptions about them; section 3 explains how such models
can be defined and executed in PRISM as this is the context for the present
experiments. In section 4, we define pre-annotation models and explain how
they can utilized for optimized execution for prediction. Section 5 describes
the particular problems involved in evaluating the quality of an approximating
analysis independently of any specific domain of application. Section 6 describes
an experiment that defines a simplified model for analysis of genomic sequences
together with an approximating model; we consider also the suitability for these
examples of evaluation based on sampling and suggest some improvements of the
basic principle. Finally follows a short review of related work and conclusions.

2 Probabilistic-Logic Annotation Models

We consider probabilistic models that describe relationships between observed
data and annotations that capture hidden information or “semantics” embedded
in the data, and the intention is to use such models for computing the most
probable annotations for given sequences.

In our motivating applications, S will be a sequence of letters, but other sorts
of data structures may fit with the formal definitions as well; for simplicity of
usage, we continue to refer to the S argument as a sequence. A is an annotation
represented as a list identifying, say, the start and end positions for genes in S
or a more detailed level of introns and exons etc., depending on the biological
researcher’s choice. An annotation may also represent an entire parse tree in
case of a model that capture sophisticated features such as secondary or, in a
proper setting, tertiary RNA-structures. In section 6 we will describe a model
of a particular kind of secondary RNA structure.

Definition 1. An annotation model m = 〈L,P 〉 consists of a logical part L
which is a set of ground atoms of a predicate m(A,S) and a probabilistic part
P which is a probability distribution over L, i.e., 0 ≤ P (C) ≤ 1 for any C ∈ L
and

∑
C∈L P (C) = 1. For given S, we let P (S) =

∑
A P (A,S).

Whenever m(A,S) ∈ L, we say that A is an annotation of S; when, for
no m(A′, S) ∈ L that P (m(A′, S)) > P (m(A,S)), we say that A is a best
annotation of S.

We refer to the process of finding a best annotation for given sequences as
prediction.

The use of probabilistic models for prediction is based on an assumption that
there is a correlation between high probability and good score with standard
measurements such as precision and recall; however, the latter is hypothetical
when no authoritative test data are available, which is typically the case in
computational biology.
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3 Probabilistic-Logic Models in the PRISM System

PRISM is a powerful system developed by other authors [16,17] for working
with a particular sort of probabilistic-logic models, based on an extension to
Prolog with discrete random variables, called multi-valued switches. Consider as
an example the following declaration,

values(letter, [a,c,g,t]).

It creates a switch, which means that whenever msw(letter,X) is called within
the execution of a program, a value among [a,c,g,t] is assigned to X, under-
stood as the outcome of a random variable which is independent of any other
such variable, including other calls to the same switch. Switch declarations can
also be parametrized as shown in the example below.

As shown by [15], an assignment of probabilities to the possible outcomes
of each switch induces a probability distribution over program’s least Herbrand
model, and thus fits with our definition above; (a program needs to satisfy a few
natural restrictions for this to be true, but this is of no concern here).

Example 1. We define here a simple HMM as a PRISM program; it has internal
states s1 and s2 and a special end state; s1 is also the start state. Each state
emits probabilistically one of the same four letters, but potentially with different
probabilities. We extend it to an annotation model that records a history of states
that were visited during the creation of a given sequence.

values(letter(_state), [a,c,g,t]).
values(next_state(_state), [s0,s1,end]).

hmm(A,S):- hmm(s1,A,S).
hmm(end,[],[]).
hmm(Q,[Q|Qs],[L|S]):-

msw(letter(Q),L), msw(next_state(Q), Q1),
hmm(Q1,Qs,S).

Probabilities can be set explicitly or by means of learning algorithms built into
PRISM; we ignore these details here and assume simply that some fixed prob-
abilities are given. As an example, PRISM’s semantics assigns the following
probability to the atom hmm([s1,s2],[a,a]),

P (msw(letter(s1),a))× P (msw(next state(s1),s2))×
P (msw(letter(s2),a))× P (msw(next state(s2),end)).

Stochastic context-free grammars can be defined in an equally concise way as
the HMM in example 1 above by having a switch for each nonterminal whose
values represent the rules for that nonterminal. It is straightforward to extend a
grammar so that it builds annotations in the shape of parse trees or mark-ups
of specific subsequences. PRISM includes devices for calculating probabilities of
a given atom as well as generalized Viterbi algorithms that make it possible to
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obtain the best annotation for given sequence. The time complexity for these
varies with the inherent complexity of the given model as well as the degrees
of freedom in the specific queries; up to certain sequence lengths, Viterbi com-
putations for HMM’s are linear in the length of the sequence and for SCFG’s
cubic which is known to be theoretically best (however involving a substantial
constant factor).

Programs with annotations as the one shown in example 1 above should not
be given directly to PRISM for Viterbi computations, as it will lead to a com-
binatorial explosion. We will not go into explaining why this is the case, but
simply indicate that it is possible to run Viterbi in linear time for HMM pro-
grams with annotations taken out, and then reconstruct the annotations from a
proof tree produced by PRISM; [5] explains a tool based on automatic program
annotations so that the PRISM model developer does not have to care about
these subtleties.

4 Optimization by Pre-annotations

A central notion in our approach is that of a pre-annotation, which restricts the
class of possible annotations for a given sequence.

Definition 2. Given an annotation model m = 〈L,P 〉, a pre-annotation model
is a model mpre = 〈Lpre, P pre〉 equipped with a projection function π such that
for any m(A,S) ∈ L, there is a unique pre-annotation Apre with mpre(Apre, S) ∈
Lpre and π(A) = Apre.

A best annotation of S given pre-annotation Apre, is an annotation A with
π(A) = Apre for which there is no other A′ with π(A′) = Apre and P (m(A′, S)) >
P (m(A,S)).

In practice, a pre-annotation can be given as an additional argument to the
predicate of a model or as a partially instantiated argument.

Pre-annotations may provide ways to improve the time complexity of predic-
tion. This may be achieved when the time complexities of both

– calculating a best pre-annotation Apre and
– calculating a best annotation A given Apre

are strictly less than the time complexity of calculating the best annotation A∗

for S in m. However, for this to be useful, the possible deviations between A and
A∗ as well as between P (A,S) and P (A∗, S) must not be too large; we return
later to the question of how to characterize and estimate this accuracy.

We can make analogies to natural language processing techniques for showing
different kinds of pre-annotations. Tagging means to assign most likely word
classes and inflections to each word in a text, such that the parser can start
from there, analyzing sentence structures without bothering about these details.
Another preprocessing is identification of the beginning and end of periods. For
example, some occurrences of “.” indicates end of a period while others serve
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other purposes, e.g., as in “e.g.”. It is interesting to observe that HMM’s are
often used for tagging and period segmentation; see, e.g., [9].

Splitting a sequence into fixed subsequences that are then analyzed separately
can be an effective way to reduce time complexity.

Example 2. Sequence analysis using SCFG is known in general to be of cubic
complexity, and as we noted above, this can be obtained in PRISM. Often a
SCFG has a natural distinction of subsequences covered by a subset of rules; let
us refer to those as periods and assume they are limited by an upper length k.

Assuming now that we have an HMM which can produce reliable preanno-
tations that splits the sequence into (proposed) periods of lengths at most k.
While analysis of a sequence of length n with the SCFG takes time O(n3), the
use of the HMM to fix the periods which are then analyzed separately by the
SCFG, reducing the time to O(n/k · k3) = O(n) since, in all practical cases, k
is much smaller than n.

In other words, suppose we can represent a complex model as a SCFG of the
form (probabilities omitted):

S → A S | B S | ε
A → production rules for A-periods
...
B → production rules for B-periods
...

such that only the A-rules involves features requiring context-free analysis, while
the rules for B-periods in principle could be stated as a HMM instead. Then M
can simply be reformulated as the interaction of three interacting submodels:

1. a HMM for S of states A and B each initiating the corresponding submodel,
2. a SCFG for A-type periods, and
3. a HMM for B-type periods.

This sort of two-stage analysis is straightforward to implement in PRISM using
two successive calls to Viterbi predicates.

5 Estimating the Quality of an Approximating Model

5.1 Difficulties

Testing of tools for biological sequence analysis is a particularly difficult task,
as independent test data with trusted annotations are rare, and thus standard
tests based on recall and precision measurements are generally not possible.

This problem comes from the fact that it is very expensive and time con-
suming to perform the necessary laboratory work in order to produce a correct
annotation of a single sequence. Furthermore, the sparse trusted annotated data
are often used as training data for the model in question, which also makes them
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dubious as test data. But when data are available, we can refer to the role of
thumb of splitting known annotated data into training and validation data in
order to avoid over-fitting.

As hinted in the introduction, we suggest that when comparing a complex
model, mc, that we may call canonical, and its approximating (and assumed ef-
ficiently executable) model ma, we can use mc for generating artificial, annotated
test data for ma.

In this way, we abstract away the real world and may compare the two mod-
els in an objective way. However, this sort of probabilistic sampling of pairs,
〈ann, seq〉, of annotation and sequence introduces another problem, namely that
ann is not necessarily the annotation of highest probability for seq. In our ex-
periments, we have often seen that even the approximating model can generate
annotations of a higher probability (measured in mc for comparison). The hard
truth is that we have no way of checking whether a generated annotation really
is a good one or how far it is from a best one. With sampling in this very big
outcome space, it is in practice impossible to hit the same sequence more than
once, so it will be an illusion to refer to the law of big numbers to get a picture
of the distribution for the annotations of a given sequence. To make things even
more difficult, we have also observed that there is very little correlation between
the length of a sequence and the probability distribution for the annotations
of a given sequence. Even within the same model, some sequences have a single
obvious best annotation while others are highly ambiguous and can present mul-
titudes of almost equally good ones, with correspondingly small probability mass
left for each. In other words, it seems it is not possible to produce a meaningful
aggregation of collections of sampled data and their probabilities.

5.2 Considering Generated Samples for Evaluation

While samples with annotations generated from a canonical model cannot take
the role of affirmative test data, we will investigate what we are able to conclude
from such testing.

Sampling has the advantage that one can start the computer, have thousands
of samples generated and tested with the approximating model. Let us consider
a single sample 〈annsamp, seq〉 generated from the canonical model mc. We can
run seq through the approximative model in question, ma, and obtain its best
annotation annapprox as described above.

To compare the two, we can measure their probabilities P samp = P c(annsamp,
seq) and P approx = P c(annapprox, seq); notice that we measure both in the
distribution of the canonical model in order obtain measurements in the same
scale. A ratio P approx/P samp close to one indicate that the quality of the two
annotations are similar.

As we have discussed, using precision and recall is not always possible in
a general setting, so we may instead utilize a subjective measurement of the
similarity between the two annotations.

In our experiment that follows, we apply a simple principle for measuring sim-
ilarity that may apply independently of actual sort of annotations in questions.
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Each annotation is mapped into a sequence of symbols of the same length as the
sequence, indicating the findings of interest, and similarity is defined by the frac-
tion of all such symbol that are identical for the two sequences. When the nested
structures are important, the symbol sequence may indicate the structure using
brackets; for example, two tree structures may be mapped into “[-(-){-(-)}]”
and “[-(-){(-)-}]” that are identical in 8 of of 12 character, i.e., a similarity
measure of 0.667. When only the classification of particular subsequences is in-
teresting, e.g., distinguishing between genes and non-genes, this sort of measure-
ment still gives score to annotation that differs slightly in the begin and end po-
sitions of the subsequences. So the similarity between “nnnnnnngggggggggggnn”
and “nnnnnnnggggggggggggn” is 0.95.

6 A Simple Genefinder in PRISM and Its Evaluation by
Sampling

We show here an example of a pair of canonical and approximative model that
follows the pattern of example 2. The canonical model mc is a simplified SCFG
that resembles the sort of models that one will expect for genomic sequences
for prokaryotic organisms. It distinguishes between subsequences considered as
coding (genes) and non-coding; the non-coding parts are modelled basically by
an HMM whereas rules for the coding parts include description of a particular
kind of secondary RNA-structure called hairpins see figure 1, these hairpins do
not manifest themselves in the actual genome but in the mRNA produced by
the genes; so a good match with such structures could be perceived as indicating
the likeliness of a gene. Because hairpins are inherent nested structures, a SCFG
is necessary to describe them.

An approximating model ma is comprised by an HMM that fixes the bound-
aries between coding and noncoding regions, and then applies different submod-
els of mc for the each of the two kinds of subsequences.

As seen in example 2, mc requires cubic times whereas ma is linear. The
difference in accuracy between the models can be explained as follows: if mc is
applied (hypothetically!) for prediction, it has the degree of freedom to move
the coding/non-coding boundaries in order to get the optimal hairpin structure,
whereas ma fixes these boundaries first from a shallow analysis, and then finds
the best analyses for the subsequences irrespective of their context.

We indicate here the details of the models and investigate how far we can get
in an evaluation using the sampling strategy.

... noncoding noncoding ...start stop

a

g

a

t

a

t

c

t

a

t

... ...

...

Fig. 1. Hairpins or hairpin loops consists of a stem of mutually abstracted letters and
a loop of unpaired letters
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6.1 Overview of the Models

The canonical model is described in two levels, a top level that is structured as a
HMM with two states, for coding and non-coding regions; instead of emitting a
single letter as a HMM, a call is made to a the relevant submodel. The submodel
for noncoding regions is another HMM and the one for coding regions is a SCFG
involving the hairpin structures indicated above.

A gene is initiated by a start codon and terminated by a stop codon1, which is
one of {〈a, t, g〉, 〈g, t, g〉, 〈t, t, g〉} and of {〈t, a, a〉, 〈t, g, a〉, 〈t, a, g〉}, respectively;
but there is no guarantee that a start-stop codon pair actually indicates a coding
region. Furthermore, the possible lengths of coding regions are multiples of 3 as
to fit with a codon structure. The hairpin structures in the coding regions of
this model represent foldings in RNA that occur due to an attraction between
the molecules represented by a and t, and between c and g. So for example, the
subsequence agata . . . tatct may describe a hairpin, where the outermost 5+5
letters form a stem and those indicated by the dots form a loop at the top;
see illustration below; for simplicity we do not allow nested (cacti-like) hairpin
structures, although these occur frequently in nature.

The first phase of the approximating model ma uses a HMM that includes
start and stop codons, the multiple of 3 condition for coding regions and with
potentially different distributions of letters between coding and non-coding re-
gions. As indicated above (in section 4), this model is used for fixing a proposal
for the boundaries of coding/non-coding and then the two submodels inherited
from mc takes over.

6.2 Evaluation by Sampling and Some Improvements of the Method

When generating samples with mc, we have made an ad hoc improvement of the
annotations which is possible for models such as mc due to its clear subdivision
into subsequences: for each such subsequence, we run a Viterbi computation with
the relevant submodel and put this best sub-parse into the annotation instead of
the sampled one. Be aware that this is different from the approximating model,
as the sequences as well as boundary parts of the annotations are created from
the unaltered mc. We can measure, in the total probability, a clear improvement
with this trick so our tests reported below may be a bit more accurate in sort-
ing out bad annotations produced by mc. However, the problem that sampled
annotations are suboptimal is decreased but not eliminated.

We conducted four experiments, whose results are summarized in Fig. 2 and 3.
Everywhere we measured the probabilities in log space, so the ratio is represented
as a difference with 0 representing identity, and also the Hamming-like similarity
measure (referred to as match percentages in the figures) which takes into ac-
count the deep syntactic structures of the individual parses, as indicated above.
The scatterplots in Fig. 2 correlates these two measures; a dot represents a prob-
ability ratio together with match percentage; notice that dots to the left of the
1 A codon corresponds to a triplet of three letters that, depending on context, may

code for an amino acid, or serve a “control purpose” as start and stop codon.
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zero line represent cases where the ma found a more probable annotations than
the one given by the improved mc sampling.

Experiment a). Firstly we used uniform probabilities for all switches in the
model and no selection among the samples. As could be expected, the combined
plot indicates a diffuse distribution with the larger part of the results indicating
that ma provides the best annotations measured in probability. Thus we have no
clear indication of how good ma is compared with the objectively best samples
(which, by nature of the setting, are unknown), and we may thus also doubt
the value of the results where ma provides a results close to the sampled one.
However, the combined scatter plot is a bit misleading as dots may coincide, and
the detailed plots indicate that this is the case, as most measurements are close
to, or spot on, the ideal 0 resp. 100% marks.

Experiments b), c) and d). We changed the basic experiment in two direc-
tions in order to see if we could get different results when the models are made
more realistic by 1) training the models using the 100 shortest annotated genes
from E. Coli K12, whose lengths are between 50 and 178 letters; and/or 2) we
constrained generated samples to those satisfying the inherent length constraint
implied by the training data.

From Fig. 2 we see that training has a profoundly positive effect on the sim-
ilarity of parses, and that constraing the samples to comply with the inherent
length constraints of he domain of application affects the probability quotients of
the individual analyses similarly. Thus experiment d) represents a much higher
degree of correlation with far less occurrences of ma suggesting annotations with
higher probabilitites than those provided by improved sampling; this may tempt
us to have more confidence to all sampled annotations and thus more confidence
to an approximated annotation close to the sampled one. Both Fig. 2 and 3 in-
dicate here that most approximated and sampled annotations correlates closely.
Even with these deviations, the two meassures correlates perfectly in the vast
majority of cases, coinciding in (0, 100%) coordinates, as shown in Fig 3. All in
all this indicates that especially with the precautions taken in experiment d), we
may trust to the approximating model produce reasonably reliable results.

These experiments showed that the sampling based tests provide a clear indica-
tion of the quality of an approximating model; it is also clear that the method
works best for models with biased probabilities (so both ma as predictor as
mc as generator are better to distinguish between good and bad, so to speak).
Throwing away samples that do not respect the inherent constraints that also
are expected in actual data to be analyzed, removes irrelevant observations from
the statistics expressed in the diagrams; this also contributes to the improved
reliability of the tests. The more critical issues of this testing method is the lack
of quantitative summaries based on firm statistical considerations of how good
the approximation is. In the completely general setting with no specific domain
of applicaiton and sufficently annotated data, we doubt that such quantitative
meassures can be devised.
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Fig. 2. Representation of the sampling distributions of the four conducted
experiment. Along the X-axis are logarithmic probability quotients of the canonical
vs. approximative analyses. A quotient of 0 represents identity. Along the Y-axis are
the corresponding percentages of Hamming-like similarity between the two analyses
(match percentages). Dots to the left of the Y-axis represent cases where the approx-
imative analysis resulted in a more probable annotations than the one resulting from
the improved canonical sampling. In a) is shown the plot for uniform models and
unconstrained sampling. b) is the result of constraining samples to comply with the
length range of the 100 shortest genes of E.Coli. In c) the models were trained using
EM-learning on the aforementioned data from E.Coli. Finally, the plot in d) represents
the analyses of samples from the trained model complying with the length constraints
inherited from the training data. The plots in a) and b) illustrates the chaos of uni-
form parameters. The effect of training the models is easily observable in c), causing
the approximative and canonical analyses to agree to a much higher degree than in a)
or b). In d) we see that forcing domain-specific constraints on the sampling increases
the correlation between analysis and probability.
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run probability quotient = 0 match percentage = 100
a) 823/1000 822/1000
b) 839/1000 837/1000
c) 867/1000 865/1000
d) 947/1000 946/1000

Fig. 3. The degree of perfect correlation between canonical and approximative anal-
yses according to the probability-quotient measure and the match-percentage mea-
sure respectively. This represents the number of dots that coincides in the coordinates
(0,100%) of the scatter plots in Fig 2. Individually, both training and constraining
increases the degree of correlation in both measures, but combining training and con-
straining results in a profound increase of about 10% in both measures.

7 Related Work

Bayesian networks, HMM’s, and SCFG’s are traditional methods for sequence
analysis that can be seen as instances of probabilistic-logic models; while their
flexibility for modelling and formal expressibility are far below the models we
are aiming at (PRISM and similar), there exists a plethora of efficient algorithms
and implemented systems; see [7] for background and overview. These provide a
catalogue of possible preprocessors to be used within our approach.

More general and powerful formalisms have been suggested as extensions
to logic programs or equally expressive formalisms within the last 15 years,
we may mention PRISM [16,17] that we have exemplified, Stochastic Logic
Programs [13], Stochastic functional Programs [10], and Relational Bayesian
Networks [8].

There is a growing interest in such models for bioinformatical applications. In
particular [1,3] discuss applications to Systems Biology, but also various kinds
of sequence analysis have been studied ( see [6] for an excellent survey.

We may refer to [4] as a precursor of the present work, where similar ideas are
applied for a comparative test of three different genefinder programs [2,11,12]. A
detailed PRISM model was built for parts of human genomic sequences, it was
trained with known data, and then the trained model was used for producing
artificial genomic sequences (complemented with manual editing for the parts
not covered by the developed model). These data were used as test data, and the
quality of the genefinders was evaluated with precision and recall measures. In
this work, preprocessing analogously to what has been described in the present
paper was used to produce auxiliary annotations for speeding up training.

8 Conclusion and Future Work

We advocate the use of probabilistic-logic models based on logic programs (or
similarly expressive languages) as the basis for analysis of biological sequence
data; due to flexibility and generality, such models are candidates for providing
better and more detailed finds than the currently most used methods, however,
this is still to be proved.
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We intend that such models should be developed without consideration about
performance in order to document in a formal way and as faithfully as possible,
the available knowledge about the phenomena being modelled in what we called
a canonical model.

Using preprocessors, e.g., based on existing and efficiently implemented tech-
nologies, as a way to reach realistic execution times, we intend to get the best
of both worlds, flexibility and sophistication of the probabilistic-logic models
combined with feasible execution times.

Implementation involving preprocessing to fix certain choices before a detailed
analysis takes places, necessarily affects the accuracy, and we have discussed the
possible ways of testing such implementation in cases when no authoritative test
data is available. In the lack of such, and despite certain problems, the best
thing we can do seems to be to employ the possibility of using the complex
model for generation of annotated test data, and then compare with the anno-
tations produced by the implemented approximative models. While comparing
probabilities for the two annotations can give some indication, we found it best
to use subjectively defined measures that compares the similarity between the
sequences in a straightforward, syntactic fashion.

We noticed that the sampling method provide the best indications when the
model has biased probabilities, as it is easier to distinguish between good and bad
annotations. It also increases the chance that the annotations produced under
sampling are of a reasonable quality. We noticed also the advantage of applying
inherent constraints that are difficult to capture in probabilistic models, to sort
out the relevant samples and run the comparison tests on those only. These
constraints may typically concern the length of particular kinds of substrings,
where sampling will produce annotated sequences that do not reflect nature (or
the possible training data).

We intend to extend the methodology with a more firm statistically basis for
evaluation of the measurements produced by the sampling principle.

Acknowledgement. This work is supported by the project “Logic-statistic
modelling and analysis of biological sequence data” funded by the NABIIT pro-
gram under the Danish Strategic Research Council, and the CONTROL project,
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Abstract. We consider multiagent systems situated in unpredictable
environments. Agents viewed as abductive logic programs with abducibles
being literals the agent could sense or receive from other agents, must
cooperate to provide answers to users as they may not have the knowl-
edge or the capabilities to sense relevant changes in their environment. As
their surroundings may change unpredictably, agents may provide wrong
answers to queries. Stabilization refers to a capability of the agents to
eventually answer queries correctly despite unpredictable environment
changes and the incapability of many agents to sense such changes.It
could be viewed as the correctness criterium of communicating coopera-
tive multiagent systems.

For efficiency, a piece of information obtained from other agents may
be used to answer many queries. Surprisingly, this natural form of ”in-
formation sharing” may be a cause of non–stabilization of multiagent
systems. We formulate postulates and present a formal framework for
studying stabilization with information sharing and give sufficient con-
ditions to ensure it.

Keywords: Stabilization, Information Sharing, Abductive Logic
Programs, Cooperative Multiagent Systems.

1 Introduction

Cooperative agents are entities that work together to achieve common objectives.
To operate effectively in a changing and unpredictable environment, agents need
correct information about their surroundings. Due to limited knowledge and
sensing capability, agents need to cooperate with each other to get such infor-
mation by sending requests and receiving replies. Stabilization, a key character-
istics of cooperative multiagent systems, represents the capability of the agents
to eventually get correct information ([4]).

Example 1. Consider a system of two agents A and B, where the knowledge base
of A consists of the clause:

p ← q
while the knowledge base of agent B consists of the clause:

q ← f

P.M. Hill and D.S. Warren (Eds.): ICLP 2009, LNCS 5649, pp. 84–98, 2009.
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where f is a fluent about the environment and could be sensed by only B. We
assume B always notices any change on f instantly.

Suppose there is a user query from an external agent E to A on p. To answer
it, A sends a query on q to B and waits for a reply. Suppose that f is true. B
will send a reply ”q!” (q is true) to A informing that q is true. In turn, after
receiving ”q!” from B, A sends an answer ”p!” to E. E gets a correct answer for
the query on p from A in this case.

The environment can change unpredictably. Suppose immediately after B
sends reply ”q!” to A, but before A sends reply ”p!” to E, f changes to false.
The information on q that A has received from B, becomes incorrect and so does
the answer ”p!” that E receives from A.

Of course if the environment (i.e. f) does not change anymore afterwards, a
new query on p to A would be answered correctly because A would send a new
request on q to B, then B would reply with ”¬q!” (q is false), and at last A
would send ”¬p!” to E. Our system in this scenario is said to be stabilizing, i.e.
even though environment changes could cause temporarily incorrect
answers to some queries, but once the environment stops changing,
all queries will be answered correctly after some delay.

Example 2 (Continuation of Example 1)

Fig. 1. Message Exchanges in Example 2

Consider the message exchanges in Figure 1. Should A send a new query “q?”
to B to answer the second query “p?” from E?.

Naturally, A should not send another query “q?” to B. On receiving informa-
tion about q from B in the fourth message, A uses it to answer both user queries.
This information sharing is a natural common mechanism in real world mul-
tiagent systems (including humans) for efficiency. It is captured by the following
postulate:

Postulate 1: If a request for some information has been made and an
answer to it is being expected, then no request for the same informa-
tion should be made now.

The environment can change unpredictably and information an agent has ob-
tained from others may become incorrect without the agent being aware of it.
To deal with this problem, the agent should not use information obtained from
other agents forever. This motivates Postulate 2.

Postulate 2: No information obtained from other agents should be
used forever.
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When should input information be deleted? Ideally when it becomes false.
The problem is that an agent may not know when the environment changes and
so the agent may not know whether information obtained from other agents is
false or not. For instance in the above examples there is no way agent A could
know whether the information about q she has received from B is true or false.

The answer to the question could only be: “Information should be deleted
some time after it has been received”. Though this “some time” is domain-
dependent, we could ask whether there is a “lower bound” for that time.

Come back to the scenario in Figure 1, we expect that the reply “q!“ from B
to A should be used to answer the two queries ”p?“ that have been received by
A before. This motivates Postulate 3.

Postulate 3: Information obtained from other agents should be deleted
only after all queries received before the information is obtained and
to which the information is relevant, are answered.

The question we ask now is: “Would a multiagent system stabilize if Postulates
1 to 3 are satisfied?”.

Unfortunately, in general multiagent systems do not stabilize even if Postu-
lates 1 to 3 are all satisfied as the following example shows.

Example 3 Consider a system of two agents A and B where the knowledge base
of A consists of the clause:

q ← ¬r(x)
and the knowledge base of B consists of the clauses:

r(x + 1) ← r(x) and r(0) ← .
Note that there is no environment change in this case.

Suppose A receives a query “q?” from some external agent. Obviously the
correct answer to this query is “¬q!”. To answer the query “q?”, A may first
send a query “¬r(0)?” to B and B replies with “r(0)!”. A hence has to send
another query e.g. “¬r(1)?” to B and B replies with “r(1)!”. The exchanges will
continue that A will send a query ”¬r(n+1)?“ after receiving a reply ”r(n)!“ from
B and the information obtained by A is never sufficient to answer ”q?“. Hence
A could never be able to answer the query “q?”. The system is not stabilizing.

The purpose of this paper is to formalize the problem of stabilization in multi-
agent systems and study general conditions under which the stabilization with
information sharing following Postulates 1 to 3 is guaranteed.

The rest of this paper is organized as follows. In section 2 we briefly intro-
duce the basic notations, definitions and lemmas of acyclic and abductive logic
programs and admissibility semantics that are needed through this paper. Prob-
lem formalization and results are presented in section 3. We summarize related
works and conclude in section 4. Due to space limitation, proofs of lemmas and
theorems are skipped in this paper.

2 Acyclic Logic Programs and Admissibility Semantics

We assume the existence of a Herbrand base HB. A normal logic program is a
set of ground clauses of the form:
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a ← l1, . . . , lm
where a is an atom from HB, and l1, . . . , lm are literals (i.e. atoms or negations
of atoms) over HB, m ≥ 0. a is called the head, and l1, . . . , lm the body of the
clause. Note that clauses with variables are considered as a shorthand for the
set of all their ground instantiations.

Given a logic program P , head(P ) and body(P ) denote the sets of atoms
occuring in the heads and the bodies of clauses of P respectively.

For each atom a, the definition of a in P is the set of all clauses in P whose
head is a. A logic program is bounded if the definition of every atom is finite.

The atom dependency graph of a logic program P is a graph, whose nodes
are atoms in HB and there is an edge from a to b in the graph iff there is a
clause in P whose head is a and whose body contains b or ¬b.

A logic program P is acyclic iff there is no infinite directed path in its atom
dependency graph.

An atom b is said to be relevant to an atom a in P if there is a path from a
to b in the atom dependency graph of P . Further a literal l is relevant to another
literal l′ if the atom of l is relevant to the atom of l′.

Abusing notation we write ¬l for complement of l, i.e. ¬l is a if l is ¬a and
¬l = ¬a if l is a. Given a set S of literals, ¬S = {¬l | l ∈ S}. A set of literals is
consistent if it does not contain any pair of a literal and its complement.

Given a logic program P and a consistent set of literals S. We write P ∪S � l
iff there is a sequence of literals l1, . . . , ln = l, n ≥ 1 such that for all m =
1 . . . n: lm ∈ S or there exists a clause lm ← l′1, . . . , l

′
k in P s.t. l′1, . . . , l

′
k ∈

S ∪ {l1, . . . , lm−1}.
An abductive logic program is a tuple 〈P, Ab〉 where P is a logic program,

Ab is a set of atoms in body(P ) called abducible atoms such that no element of
Ab occurs in the head of any clause in P , i.e. Ab ∩ head(P ) = ∅. Literals over
Ab called abducible literals or abducibles for short ( [11], [10], [1] ). 〈P, Ab〉 is
acyclic if P is acyclic.

Let 〈P, Ab〉 be an abductive program. The set of assumptions A of 〈P, Ab〉
comprises Ab and the set of all negative literals including negative abducibles.

A set of assumptions S attacks a set of assumptions R if there is α ∈ R such
that P ∪ S � ¬α.

A set of assumptions is admissible if it does not attack itself and attacks
every set of assumptions attacking it. It is not difficult to see that admissible
sets of assumptions are consistent.

A preferred extension of 〈P, Ab〉 is a maximal (wrt set inclusion) admissible
set of assumptions. Note that in difference to a normal acyclic logic program, an
acyclic abductive logic program may have more than one preferred extensions.

Lemma 1. Let 〈P, Ab〉 be an acyclic program. For each maximal consistent set
S of abducibles there is a unique preferred extension E of 〈P, Ab〉 such that
S ⊆ E.

A set of assumptions S ⊆ A is a stable extension of 〈P, Ab〉 iff for every a ∈ Ab,
either a ∈ S or ¬a ∈ S and for every a �∈ Ab, either P ∪ S � a or ¬a ∈ S



88 P.M. Dung, D.D. Hanh, and P.M. Thang

([3],[9]). Similarly to [3] we can show that each preferred extension of an acyclic
abductive program is also stable.

A set S of abducibles is an abductive solution (or explanation) for a
literal l wrt 〈P, Ab〉 iff there exists an admissible set of assumptions S′ ⊆ A such
that S = S′ ∩ (Ab ∪ ¬Ab) and P ∪ S′ � l. It is not difficult to show that if there
exists an abductive solution S for l wrt 〈P, Ab〉 then there exists a preferred
extension E of 〈P, Ab〉 such that S ⊆ E and P ∪ E � l.

An abduction solution for l wrt 〈P, Ab〉 is non-redundant if it contains only
abducibles relevant to l in P .

As for every abductive solution S for a literal l wrt 〈P, Ab〉 there is a non-
redundant abductive solution R for l wrt 〈P, Ab〉 such that R ⊆ S, we restrict
our attention on non-redundant abductive solutions.

Example 4. Consider an abductive logic program 〈P, Ab〉 where
P = {q ← r q ← ¬p p ← t} and Ab = {r, t}.

S0 = {¬t} is an abductive solution for q wrt 〈P, Ab〉 as S′
0 = {¬p,¬t} is an

admissible set and P ∪ S′
0 � q. Note that P ∪ S0 �� q.

There are four preferred extensions E1 = {r, t}, E2 = {r,¬p,¬t}, E3 =
{¬r,¬p,¬t}, E4 = {¬q,¬r, t} of 〈P, Ab〉 where P ∪Ei � q, i = 1 . . . 3.

In general an admissible set of assumptions is determined largely by its subset
of abducibles as shown in the following lemmas.

Lemma 2. If E is a preferred extension of an acyclic abductive program 〈P, Ab〉
and R is an admissible set of assumptions such that all abducibles in R are in
E, i.e. R ∩ (Ab ∪ ¬Ab) ⊆ E, then R ⊆ E.

Lemma 3. Given an acyclic logic program 〈P, Ab〉 and a consistent set S of
abducibles (S ⊆ Ab ∪ ¬Ab). There is no abductive solution for a literal l wrt
〈P, Ab〉 consistent with S iff for every preferred extension E ⊇ S of 〈P, Ab〉:
P ∪ E � ¬l.

There are many ALP systems and abductive proof procedures proposed in the
literature (e.g. [5], [3], [7], [10], [1]). In this paper we do not consider complexity of
ALP systems. We simply assume the availability of abductive solution generation
algorithms.

3 Problem Formalization

Let l be a literal. A query whether l is true or a reply that l is true has a form
l? or l! respectively.

3.1 Agent and Multiagent System

Agents are situated in environments. An agent could sense some of the changes
of her surroundings though not all of them. Let ENV be a set of ground atoms
representing the fluents of the environments.

A multiagent system is a pair (A, ENV ) where A is a set of agents situated
in an environment characterized by fluent atoms in ENV .
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Definition 1 (Agent). An agent situated in an environment ENV is repre-
sented by a quadtuple A = (P, HBE, HBI, Λ) where

– P , is an acyclic logic program, representing the knowledge base of the agent.
– HBE ⊆ ENV , representing the sensing capability of the agent, is a set of

environment atoms whose truth values the agent could sense. Atoms in HBE
do not occur in the head of any clause of P .

– HBI is the set of input atoms, that occur in the body of some clause in
P but not in the head of any clause of P and not in HBE, i.e. HBI =
body(P ) \ (head(P ) ∪HBE).

– Λ is the initial state of the agent and will be defined shortly.

It is not difficult to see that 〈P, HBE ∪HBI〉 is an abductive logic program.

Definition 2 (Cooperative Multiagent System)
A multiagent system (A, ENV ) with A = (A1, . . . , An), Ai = (Pi, HBEi,

HBIi, Λi) is cooperative iff the following conditions are satisfied:

– ENV =
⋃

i=1...n

HBEi, i.e. each environment change is sensed by some agent.

– For each atom a, if a ∈ head(Pi) ∩ head(Pj) then a has the same definition
in Pi and Pj. In other words, agents’ domain knowledge bases are consistent.

– For every agent Ai, for each a ∈ HBIi, there is an agent Aj such that
a ∈ head(Pj) ∪HBEj, i.e. Ai can get the value of a or ¬a from Aj .

– No environment atom appears in the head of clauses in the knowledge base
of any agent, i.e. for all i: ENV ∩ head(Pi) = ∅.

– A state of (A, ENV ) is the collection of states of its agents and (Λ1, . . . , Λn)
is the initial state of (A, ENV ).

From now on, we focus solely on cooperative multiagent systems. Hence whenever
we say “multiagent systems”, we mean cooperative ones.

Definition 3 (Agent State). A state of agent A = (P, HBE, HBI, Λ) is a
quintuple σ = (EDB, RDB, SDB, IDB, t) where

– EDB ⊆ HBE ∪ ¬HBE is a maximal consistent set of environment literals
containing information the agent has sensed from the environment.

– SDB is a database containing the send–out requests whose replies have not
been received. An input literal l is inserted into SDB when A sends out a
query “l?” and is removed from SDB when A receives a reply “l!” or “¬l!”.

– RDB is a database of received queries of the form (sender,query, S, id)
where
• sender is the sender of the query;
• query is of the form l? where l is a literal;
• S is a non-redundant abductive solution for l wrt 〈P, HBE ∪HBI〉 or
⊥ representing non-existence of abductive solutions;

• id is a nonnegative integer used as the identification of the query. Each
received query/reply is assigned a unique identification that is also served
as a timestamp. The greater is the identification of a query/reply, the
more recent the query/reply is received.
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– IDB is a database containing input information A has obtained from other
agents. It is a consistent set of input literals associated with identifications.
When A receives a reply “l!”, 〈l, t〉 is inserted into IDB and the timestamp
counter t of A is increased by 1.

– t, a nonnegative integer, holds the current timestamp counter. In the initial
state t = 0.

Example 5. The multiagent system in Example 1 is represented by (A, ENV )
where A = (A, B), ENV = {f}, A = (PA, HBEA, HBIA, ΛA), B = (PB ,
HBEB, HBIB, ΛB) and

PA = {p ← q} HBEA = ∅ HBIA = {q} ΛA = (∅, ∅, ∅, ∅, 0)
PB = {q ← f} HBEB = {f} HBIB = ∅ ΛB = ({f}, ∅, ∅, ∅, 0)

Let S be a set of literals and IDB be the input database in an agent state.
Abusing the notation, we often say that S ∪ IDB is consistent meaning that
S ∪ {l | 〈l, id〉 ∈ IDB} is consistent.

Definition 4. Given a state σ = (EDB, RDB, SDB, IDB, t), let Θ =
(X, l?, S, id), S �= ⊥, be a query form in RDB. Θ is consistent wrt σ if
S ∪ EDB ∪ IDB is consistent. Otherwise it is inconsistent wrt σ. Θ is ver-
ified wrt σ if S ⊆ EDB ∪ IDB.

3.2 Agent Actions and Environment Changes

Let σ = (EDB, RDB, SDB, IDB, t) be the current state of an agent A =
(P, HBE, HBI, Λ). A state of A changes when the environment changes or A
receives/sends a query/reply from/to another agent or deletes some inputs from
IDB.

1. Environment change
An environment change is represented by a pair C = (T, F ) where T (resp.
F ) contains the atoms whose truth values have changed from false (resp.
true) to true (resp. false) and T ∩ F = ∅. Given an environment change
C = (T, F ), what agent A could sense of this change is a pair (TA, FA)
where TA = T ∩HBE and FA = F ∩HBE. Hence if a change C = (T, F )
occurs then A will update her environment database EDB to

EDB′ = (EDB \ (FA ∪ ¬TA)) ∪ TA ∪ ¬FA

The new state of A is denoted by
UpeA(σ, C) = (EDB′, RDB, SDB, IDB, t).

2. Receiving a query
When A receives a query “l?” from some agent X (X �= A), A will generate
a query form Θ = (X, l?, S, t) where S is an abductive solution for l wrt
〈P, HBE ∪HBI〉 consistent with EDB ∪ IDB and insert Θ into RDB. If
no such abductive solution exists, A will insert a query form (X, l?,⊥, t) into
RDB. The new received query database is denoted by RDB′.
The new state of A is denoted by

UpiA(σ, l?, X) = (EDB, RDB′, SDB, IDB, t + 1).
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3. Receiving a reply
When receiving a reply “l!” from some agent, A updates IDB by deleting
any input of the form 〈l, id〉 and 〈¬l, id〉 from it and inserting 〈l, t〉 into it.
The new input database is denoted by IDB′. A also removes l and ¬l from
SDB. The new sent–out database is denoted by SDB′.
The new state of A is denoted by

UpiA(σ, l!) = (EDB, RDB, SDB′, IDB′, t + 1).
4. Sending out a query

Definition 5. Let Θ = (X, l′?, S, id) be a query form in RDB.
We say that A is ready to request information l? from B for Θ wrt σ,
where l is an input literal, iff the following conditions are satisfied:
1. Θ is not verified wrt σ and

either S ∪EDB ∪ IDB is consistent and l ∈ S
or Θ is inconsistent wrt σ and there is a nonredundant abductive solution
S′ for l′ wrt 〈P, HBE∪HBI〉 consistent with EDB∪IDB, S′ �⊆ EDB∪
IDB and l ∈ S′,

2.
a. l �∈ SDB and ¬l �∈ SDB i.e. A is not waiting for replies for queries

“l?” or “¬l?” (Postulate 1).
b. if 〈l, id′〉 or 〈¬l, id′〉 occurs in IDB then id′ < id (Postulate 1).1

3. The atom of l is in head(PB) ∪HBEB (queries are only sent to agents
that can answer them).

If A sends a request “l?” to B (B �= A) for a query form Θ = (X, l′?, S, id) ∈
RDB in state σ then the following conditions are satisfied:
1. A is ready to request information l? from B for Θ wrt σ.
2. If Θ is inconsistent wrt σ then Θ is replaced in RDB by a new query

form (X, l′?, S′, id) where S′ is a new generated abductive solution for l′

wrt 〈P, HBE ∪HBI〉 consistent with EDB ∪ IDB, S′ �⊆ EDB ∪ IDB
and l ∈ S′,

After sending out “l?” to B, A will insert l into SDB. The new received
query and sent–out databases are denoted by RDB′ and SDB′ respectively.
The new state of A is denoted by

UpoA(σ, l?) = (EDB, RDB′, SDB′, IDB, t).
5. Sending out a reply

Definition 6. Let Θ = (X, l?, S, id) be a query form in RDB.
We say that A is ready to answer Θ by “l!” wrt σ iff either Θ is verified
wrt σ or if S ∪EDB ∪ IDB is inconsistent then there must be an abductive
solution S′ for l wrt 〈P, HBE ∪HBI〉 and S′ ⊆ EDB ∪ IDB.

1 Postulate 1 states that if A has been waiting for a reply l! or ¬l! then A should not
send a query l? or ¬l?. It implicitly implies that queries receiving before id′ (with
identification less than id′) should use 〈l, id′〉 or 〈¬l, id′〉 in their answers. Therefore,
if a new request for l is made, it should come from queries receiving after id′ (with
identification greater than id′).
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A is ready to answer Θ by “¬l!” wrt σ iff either S = ⊥ or there is no
abductive solution for l wrt 〈P, HBE ∪HBI〉 consistent with EDB∪ IDB.2

If A sends “l!” or “¬l!” to X (X �= A) in state σ then there must be a query
form Θ = (X, l?, S, id) in RDB such that A is ready to answer Θ by l! or
¬l! wrt σ respectively.

After sending out reply “l!” or “¬l!”, A will remove Θ from RDB. The
new received query database is denoted by RDB′.

The new state of A is denoted by
UpoA(σ, l!, X) = (EDB, RDB′, SDB, IDB, t).

6. Deleting possibly stale inputs
If A deletes an input 〈l, id〉 from IDB, then there is no query form Θ =
(X, l′?, S, id′) in RDB where l is relevant to l′ and id′ < id (Postulate 3).
A updates IDB to IDB′ = IDB \ {〈l, id〉}.
The new state of A is denoted by

UpdA(σ, del(l)) = (EDB, RDB, SDB, IDB′, t).

Example 6 (Continuation of Example 5). Consider the system in Example 1, 2
and 5 and the following table of changes in states of agents3.

Event A B
EDB RDB SDB IDB t EDB RDB SDB IDB t

0 ∅ ∅ ∅ ∅ 0 f ∅ ∅ ∅ 0
1 E, A, p? - (E, p?, {q}, 0) - - 1 - - - - -
2 A, B, q? - - q - - - (A, q?, {f}, 0) - - 1
3 B, A, q! - - ∅ 〈q, 1〉 2 - ∅ - - -

0. The initial states of A and B are shown in row 0.
1. A receives a query “p?” from an external agent E. A generates and adds

query form (E, p?, {q}, 0) into her received query database, and increases
her timestamp counter by 1.

2. A sends out a query “q?” to B and adds q into her sent–out database.
Receiving the query “q?”, B generates and adds query form (A, q?, {f}, 0)
into her received query database, and increases her timestamp counter by 1.

3. B sends out a reply “q!” to A and removes the only query form from her
received query database. Receiving the reply “q!”, A inserts input 〈q, 1〉 into
her input database and removes q from her sent–out database.

3.3 Runs

The semantics of a multiagent system is defined in terms of runs. A run of
a multiagent system is an infinite sequence of transitions that occur when the
environment changes or agents send out/receive queries/replies or delete possibly
stale inputs from their input databases.
2 Because by Lemma 3, for every preferred extension E of 〈P, HBE∪HBI〉 consistent

with EDB ∪ IDB: P ∪E � ¬l.
3 “-” means unchanged and event “A, B, π” means that A sends π to B.
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Definition 7 (Transitions). Let Σ = (σ1, . . . , σn) and Σ′ = (σ′
1, . . . , σ

′
n) be

states of a multiagent system (A, ENV ).

1. An environment transition Σ
C−→ Σ′ happens when there is an environment

change C = (T, F ) and the following conditions are satisfied:
– For every Ak �∈ SC : σ′

k = σk and
– For each agent Ai ∈ SC : σ′

i = Upei(σi, C),4 where SC denotes the set of
agents which could sense parts of C, i.e. SC = {Ai |HBEi∩(T∪F ) �= ∅}.

2. A query transition Σ
(X,Ai,l?)−−−−−−→ Σ′ happens when agent X sends a query on

l to agent Ai and the following conditions are satisfied:
– For every Ak �∈ {X, Ai}: σ′

k = σk.
– σ′

i = Upii(σi, l?, X).
– If X = Aj then σ′

j = Upoj(σj , l?).

3. A reply transition Σ
(Ai,X,l!)−−−−−−→ Σ′ happens when Ai sends “l!” to X and the

following conditions are satisfied:
– For every Ak �∈ {Ai, X}: σ′

k = σk.
– If X = Aj then σ′

j = Upij(σj , l!).
– σ′

i = Upoi(σi, l!, X).

4. An input delete transition Σ
(Ai,del(l))−−−−−−−→ Σ′ happens when Ai deletes input

〈l, id〉 from IDBi and the following conditions are satisfied:
– For every Ak, k �= i: σ′

k = σk.
– σ′

i = Updi(σi, del(l)).

5. An empty transition Σ
nil−−→ Σ′ denotes that there is no change in the states

of agents.5

We often simply write Σ → Σ′ if there is a transition from Σ to Σ′.

Definition 8 (Run). Let (A, ENV ) be a multiagent system. A runR of (A, ENV )
is an infinite sequence of transitions

R = Σ0 → Σ1 → · · · → Σm → . . .

where Σk = (σ1,k, . . . , σn,k), σi,k = (EDBi,k, RDBi,k, SDBi,k, IDBi,k, ti,k) such
that

1. Σ0 is the initial state of (A, ENV ).
2. There is a point h such that at every k ≥ h in the run, there is no more

environment change.
3. R satisfies the following fairness condition:6 For every agent Ai, for each k:

there is no query form Θ = (X, l?, S, id) such that

4 We write Upei(σi, C) for UpeAi(σi, C).
5 This transition is introduced to ensure that runs are infinite (See Definition 8).
6 The fairness condition ensures that actions of sending out request/reply are not

delayed indefinitely if they are ready.
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– for all m ≥ k, Θ ∈ RDBi,m and Ai is ready to request information from
other agents for Θ wrt σi,m

7 or
– for all m ≥ k, Θ ∈ RDBi,m and Ai is ready to answer Θ by l! or ¬l!

wrt σi,m.
4. For every k, for every input 〈l, id〉 ∈ IDBi,k: there is a m ≥ k such that
〈l, id〉 is deleted at m (Postulate 2)

– either explicitly by transition Σm
(Ai,del(l))−−−−−−−→ Σm+1

– or implicitly and replaced by 〈l, ti,m〉 or 〈¬l, ti,m〉 by transition Σm
(Aj,Ai,l!)−−−−−−→

Σm+1 or Σm
(Aj ,Ai,¬l!)−−−−−−−→ Σm+1 for some Aj in R.

5. If Σk
nil−−→ Σk+1 then for all m ≥ k: Σm

nil−−→ Σm+1.

Example 7 (Continuation of Example 6).
The sequence in Example 6 is a part of the following run:

Σ0
(E,A,p?)−−−−−→ Σ1

(A,B,q?)−−−−−→ Σ2
(B,A,q!)−−−−−→ Σ3

(∅,{f})−−−−→ Σ4
(A,E,p!)−−−−−→ Σ5 → . . .

It is easy to see from Definitions 7, 8 and conditions for sending out queries and
deleting inputs in section 3.2 that the following lemma holds.

Lemma 4. Each run of a multiagent system satisfies Postulates 1 to 3 of
information sharing.

3.4 Superagent

The superagent of a multiagent system represents the combined capacity (both
reasoning and sensing) of the multiagent system as the whole in the ideal case
where all agents are instantly provided all necessary information (e.g. located at
one place).

Let (A, ENV ) be a multiagent system with A = (A1, . . . , An) and Ai =
(Pi, HBEi, HBIi, Λi), Λi = (EDBi, RDBi, SDBi, IDBi, 0). The superagent
of (A, ENV ) is the agent SA = (PA, ENV, ∅, ΛA), where PA = P1 ∪ · · · ∪ Pn

and ΛA = (EDB, ∅, ∅, ∅, 0), EDB = EDB1 ∪ · · · ∪ EDBn.
Note that as SA can answer all queries by herself without the need to send re-

quests to other agents, her database of received queries, database of sent–out re-
quests and input database are all empty. Her timestamp is always 0 too. Her state
is therefore represented by EDB, a maximal consistent set of literals over ENV .

The answer of the superagent SA to a query “l?” at a state EDB is “l!” (resp.
“¬l!”) iff E ∪ PA � l (resp. E ∪ PA � ¬l) where E is the preferred extension of
〈PA, ENV 〉 such that EDB ⊆ E.

Intuitively, an answer of an agent in a multiagent system is correct if it
coincides with the answer of the superagent. Hence stabilization refers to the
convergence of agents’ answers to the answers of the superagent.

7 We say that A is ready to request information from other agents for a query form
Θ ∈ RDB wrt her state σ = (EDB, RDB, SDB, IDB, t) if there is an input literal
l such that A is ready to request information l? from some agent B for Θ wrt σ.
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3.5 Stabilization

Let R = Σ0 → · · · → Σh → . . . be a run of a multiagent system (A, ENV ).

Definition 9.

– A query “l?” from agent X to agent Ai at point k in R 8 has an answer l!
or ¬l! at m (m > k) iff there is a reply transition of the form

Σm
(Ai,X,l!)−−−−−−→ Σm+1 or Σm

(Ai,X,¬l!)−−−−−−−→ Σm+1

in R and there exist query forms Θ = (X, l?, S, id), Θ′ = (X, l?, S′, id) such
that RDBi,k+1 \RDBi,k = {Θ} and RDBi,m \RDBi,m+1 = {Θ′} 9.

– A query “l?” from X to Ai at k in R is said to be correctly answered iff
• it has the answer l! or ¬l! at some m > k and
• the superagent provides the same answer at state

EDBm = EDB1,m ∪ · · · ∪EDBn,m.

– R is convergent if there is a point h such that every query appearing in R
at any point k ≥ h is answered correctly.

Definition 10. A multiagent system is said to be stabilizing iff each of its
runs is convergent.

Example 3 shows that stabilization is not guaranteed in general. The following
example illustrates that even if the program of each agent is finite, stabilization
is not guaranteed.

Example 8. Consider a multiagent system (A, ENV ) whereA = (A, B), ENV =
{f} and

PA = {p ← q} HBEA = ∅ HBIA = {q} ΛA = (∅, ∅, ∅, ∅, 0)
PB = {q ← p q ← f} HBEB = {f} HBIB = {p} ΛB = ({¬f}, ∅, ∅, ∅, 0)

Consider the following run where A receives a query “p?” from an external
agent E and there is no environment change.

Σ0
(E,A,p?)−−−−−→ Σ1

(A,B,q?)−−−−−→ Σ2
(B,A,p?)−−−−−→ Σ3

nil−−→ Σ4
nil−−→ . . .

To answer the query “p?” from E, A sends out a query “q?” to B. To answer
the query “q?” from A , B sends out a query “p?” to A. According to Postulate
1, to answer the query “p?” from B, A should not send another query on q to B.
As B does not receive any new query, B will not send or receive anything from
A. Similarly A will not send or receive anything from B. Thus there is a deadlock
and both A and B would never get information about q and p respectively. So
the query “p?” will never be answered.

We introduce now sufficient conditions for stabilization.

8 i.e. there is a query transition Σk
(X,Ai,l?)−−−−−−→ Σk+1 in R.

9 i.e. Θ is generated when Ai receives “l?” from X at k and Θ′ is deleted when Ai

sends “l!” at m. Θ, Θ′ have the same identification.
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Definition 11. Let (A, ENV ) be a multiagent system and PA be its supera-
gent’s program. The I/O graph of (A, ENV ) is a graph obtained from the
atom dependency graph of PA by removing all nodes that are not relevant to any
input atom of agents. (A, ENV ) is IO-acyclic if there is no infinite path in its
I/O graph. (A, ENV ) is bounded if PA is bounded. (A, ENV ) is IO-finite if
its I/O graph is finite.

Theorem 1. IO–acyclic and IO–finite multiagent systems are stabilizing.

Theorem 1 introduces sufficient conditions for stabilization. Unfortunately these
conditions are rather strong. Could we weaken them? Are IO-acyclicity and
boundedness sufficient to guarantee the stabilization of a multiagent system?

Theorem 2. IO-acyclicity and boundedness are not sufficient to guarantee the
stabilization of a multiagent system.

Proof. We give a counterexample in Example 9.

Example 9. Consider a multiagent system (A, ENV ) with A = (A, B), ENV =
{p, q} and

PA = {r(1) ← p r(n + 1) ← s(n)} PB = {s(1) ← q s(n + 1) ← r(n)}
HBEA = {p} HBEB = {q}
HBIA = {s(n) |n ≥ 1} HBIB = {r(n) |n ≥ 1}
ΛA = ({¬p}, ∅, ∅, ∅, 0) ΛB = ({q}, ∅, ∅, ∅, 0)

Obviously, (A, ENV ) is bounded and IO–acyclic. It is easy to see that the se-
mantics of agents’ programs are as follows: If p is true (resp. false) then all
r(2n + 1) and s(2n + 2), n ≥ 0, are true (resp. false). Similarly, if q is true (resp.
false) then all s(2n + 1) and r(2n + 2), n ≥ 0, are true (resp. false).

Suppose that at the beginning p is false, q is true. Consider the following
infinite sequence S of message exchanges between agents:

1. Steps 0 to 5 are given in Figure 2.
2. For every n ≥ 2, steps 3n to 3n + 5 in S follow the patterns in Figure 3.

In Figure 2 A receives two queries on r(2) and sends only one request on s(1)
to B at step 1 (following Postulate 1). A uses the information in B’s reply
“s(1)!” to answer both queries on r(2). Because q is true, B’s answer to A’s

Fig. 2. Sequence S : Steps 0-5



Stabilization of Information Sharing for Queries Answering 97

(a) Sharing on s(n + 1) (Even n) (b) Sharing on r(n + 1) (Odd n)

Fig. 3. Sequence S : Steps 3n to 3n + 5

request on s(1) is “s(1)!” (s(1) is true) and A’s answers to both queries on r(2)
are “r(2)!” (r(2) is true).

In Figure 3(a), there are two queries on r(n+2) to A (at steps 3n and 3n+4)
but only one query on s(n + 1) to B (at step 3n + 1). Similarly in Figure 3(b),
there are two queries on s(n + 2) to B (at steps 3n and 3n + 4) but only one
query on r(n + 1) to A (at step 3n + 1).

To answer all user queries, A needs to request B to provide the value of each
s(n), n odd, only once (at step 1 if n = 1 and 3n − 2 if n > 1) and uses the
information in B’s reply on s(n) (at step 4 if n = 1 and 3n + 2 if n > 1) to
answer both queries on r(n + 1) from E and B (at step 3n + 5). Similarly, B
needs to request A to provide the value of each r(n), n even, only once (at step
3 if n = 2 and 3n − 2 if n > 2) and uses the information in A’s reply on r(n)
(at step 3n + 2) to answer both the queries on s(n + 1) from E′ and A (at step
3n + 5). As a result, the answers to queries on r(2), r(4), . . . and s(3), s(5),. . .
by A and B are all true.

As q is false at step 5 and there is no change in the environment after that,
the correct answers to queries on r(2), r(4), . . . , and s(3), s(5), . . . are all false.

Because of sharings, the wrong information in B’s reply “s(1)!′′ propagates to
A’s reply on r(2), the wrong information in A’s reply “r(2)!′′ propagates to B’s
reply on s(3). This propagation continues upward to replies on r(4), s(5), . . .
and never stops. Consequently, all these replies are incorrect. There is no point
in S where after it the user queries could be answered correctly again. Hence the
system is not stabilizing.

4 Related Works and Conclusions

Stabilization of distributed protocols has been studied extensively in the liter-
ature ([2],[6],[12]) where agents are defined operationally as automata. Dijkstra
([2]) defined a system as stabilizing if it is guaranteed to reach a legitimate state
after a finite number of steps regardless of the initial state. The definition of
what constitutes a legitimate state is left to individual algorithms.

There are many research works on multiagent systems where logic program-
ming is used to model agent interaction and/or dialogs/negotiations (e.g. [8],
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[11]). But until now research on multiagent systems has not considered the ques-
tion of stabilization.

Agent communications are either push-based or pull-based. In the push-based
communication, agents periodically send information to specific recipients with-
out being requested. Push–based communications are common in internet sys-
tems like routing systems. On the other hand, in the pull-based communication,
agents have to send requests for information to other agents and wait for replies.
Dung et al. ([4]) for the first time studies the stabilization of cooperative infor-
mation multiagent systems for the push-based communication mode.

In this paper we study the stabilization of multiagent systems based on pull–
based communication with information sharing.

Acknowledgments. We thank the referees for constructive comments and crit-
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the European Commission under the 035200 ARGUGRID project.
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Abstract. Multiagent planning deals with the problem of generating plans for
multiple agents. It requires formalizing ways for the agents to interact and coop-
erate, in order to achieve their goals. One way for the agents to interact is through
negotiations. Integration of negotiation in multiagent planning has not been ex-
tensively investigated and a systematic way for this task has yet to be found. We
develop a generic model for negotiation in dynamic environments and apply it to
generate joint-plans with negotiation for multiple agents. We identify the minimal
requirements for such a model and propose a general scheme for one-to-one nego-
tiations. This model of negotiation is instantiated to deal with dynamic knowledge
of planning agents. We demonstrate how logic programming can be employed as
a uniform platform to support both planning and negotiation, providing an ideal
testbed for experimenting with multiagent planning with negotiations.

1 Introduction

Negotiation and planning are two important tasks that autonomous agents are
frequently engaged in during their existence. Theories of negotiation have been de-
veloped to provide the agents with strategies and methods for doing negotiation (e.g.,
[1,4,13,15,19,20,17]). On the other hand planning research gears towards developing
systems and algorithms that allow agents with a way to select appropriate courses of
actions to achieve their individual goals (e.g., [11]). It is interesting to observe that there
has been limited connection between these research communities. On the other hand, in
many practical situations, there is a need for intelligent agents to negotiate when they
are planning, especially in multiagent systems. This can be seen in the following simple
example.

Example 1 (From [18]). Two home builder agents, A and B, need to hang a mirror (A’s
job) and a picture (B’s job). A can use a screw with a screwdriver to hang the mirror.
B can only use a nail and a hammer. Initially, A has a screwdriver and can buy a nail,
while B has a screw and a hammer. A and B cannot achieve their goals independently.

Let us now consider the following conversation between A and B: (1) A to B: can
you give me your screw? (2) B to A: yes, but only if you give me a nail; (3) A to B:
ok, but wait for me to buy some nails. Thereafter, A buys a nail and exchanges it for the
screw with B. Both can then achieve their goals independently. �

P.M. Hill and D.S. Warren (Eds.): ICLP 2009, LNCS 5649, pp. 99–114, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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This story illustrates two important issues that agents are facing in a multiagent envi-
ronment. Besides the planning capabilities, agents may also need to negotiate in or-
der to achieve their goals—where negotiation becomes a form of cooperation between
agents.

In this paper, we are interested in the problem of predicting whether a group of
agents, each with her own planning problem to solve, can achieve their independent
goals. In the process, the agents might need to negotiate with each others to place them-
selves in a position where they can achieve their goals.

We start by proposing a generic model of negotiation. This model is novel with re-
spect to existing formalisms (e.g., [1,4,13,17,19,20]). Our focus is on agents in dy-
namic environments, whereas most of the other formalisms concentrate on agents in
static environments. One of the main objectives is in predicting/generating success-
ful negotiations within the context of the agents achieving their planning goals. The
planning process is driven by the goals of all agents, while negotiations are only a
means for agents to achieve their goals. This is different from other models of ne-
gotiation (e.g., [1,13,17,19,20,24]), where the focus is on providing the receiver with
explanations about negotiations or on the development of languages for logic-based
negotiations.

We instantiate the proposed model of negotiation to the context of multiagent plan-
ning and define two different notions of planning with negotiations. The first notion
views complete negotiations as individual steps during planning, while the second one
allows the interleaving of steps of negotiations and action executions. Our main goal
is to generate a joint-plan for the agents before its execution. In this regards, our work
differs from many distributed continual planning systems (e.g., [6]), which concen-
trate on planning and replanning or deal with unexpected events during plan execu-
tion. More significantly, we explore the use of negotiation as a means for agents to
cooperate.

A key contribution of this work is to demonstrate how logic programming allows a
direct and modular encoding of both negotiation and multiagent planning. To the best of
our knowledge, this logic programming based solution is the first attempt to deal with
negotiation in multiagent planning. The declarative nature of logic programming allows
us to provide a compositional solution to the problem, by combining two orthogonally
developed logic programs—one describing the planning problem and one describing
the negotiation process.

In the past, multiagent planning has been considered using refinement planning (e.g.,
[2,12,5]) but without negotiation. In [14], negotiation has been integrated with planning
and control operations in the cycle theories, to create an agent architecture and to ensure
that the agents can achieve their goals. However, negotiation is used mainly to ensure
that the execution of a given plan is successful, e.g., to acquire necessary resources
for the execution of a plan—in particular, the authors do not investigate the integration
of negotiation within the planning phase. Negotiation using logic programming has
been investigated by others (e.g., [4]), with a focus on the principles of negotiation and
building new proposals, when the current one is not acceptable. Our characterization is
in similar spirit to this approach.
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2 Background: Answer Set Planning

In this section, we review the language A [9] for representing and reasoning about
actions and plans in single-agent domains. To simplify the notations in the rest of the
paper, we will assume that the discussion in this section is associated to an agent i. We
assume the reader to be familiar with the basic concepts of answer set programming.

A planning problem for i is defined over a set of fluents Fi and a set of actions Ai.
We assume that Ai contains a special action noop, which does not have any effect on
the agent’s world. A fluent literal is either a fluent f ∈ Fi or its negation ¬f . A domain
specification Di over Fi and Ai describes the actions of an agent and consists of laws of
the following forms:1 (a causes 
 if ϕ) (if ϕ = true then the if part will be omitted)
and (a executable ϕ), where a is an individual action (in Ai), 
 is a fluent literal and ϕ
is a set of fluent literals (interpreted as a conjunction). The first law is a dynamic law,
and states that if a is executed when ϕ is true then 
 becomes true. The second law is
an executability condition and it states that a can be executed only if ϕ is true.

The semantics of a domain specification Di is defined by the notion of state and by
a transition function ΦDi , that specifies the result of the execution of an action a in a
state s. A set of literals s satisfies a fluent literal 
, denoted by s |= 
, if 
 ∈ s. For
a set of fluent literals φ, s |= φ if s |= 
 for every 
 ∈ φ. A state s is a set of fluent
literals that is consistent—i.e., for each fluent f ∈ Fi we have that {f,¬f} �⊆ s—and
complete—i.e., for every f either f ∈ s or ¬f ∈ s. In the following, we use 
 to denote
the complement literal of 
, i.e., if 
 = f for some f ∈ Fi, then 
 = ¬f ; if 
 = ¬f for
some f ∈ Fi, then 
 = f . For a set of literals S, S = {
 | 
 ∈ S}.

An action a is executable in a state s if there exists an executability condition of the
form a executable ϕ in Di such that s |= ϕ. Let

ea(s) = {
 | ∃(a causes 
 if φ) ∈ Di.[s |= φ]}
The result of the execution of a in s is defined by ΦDi(a, s) = fails, if a is not exe-
cutable in s, and ΦDi(a, s) = s∪ea(s)\ea(s) if a is executable in s. The function ΦDi

can be extended to reason about the effects of a sequence of actions:

Definition 1. Let Di be a domain specification, s be a state, and α = [a1; . . . ; an]
be a sequence of actions. We define Φ̂Di(α, s) = s if n = 0, and Φ̂Di(α, s) =
ΦDi(an, Φ̂Di([a1; . . . ; an−1], s)), otherwise. Observe that ΦDi(a, fails) = fails.

An agent can use the transition function to reason about effects of its actions and to
perform planning. A planning problem is a tuple 〈Di, Ii, Oi〉 where Di is a domain
specification, Ii is a state describing the initial configuration of the world for i, and Oi

is a set of literals representing the desired goal.

Definition 2. Let Pi = 〈Di, Ii, Oi〉 be a planning problem. An action sequence α is a
plan for Pi iff Oi is true in Φ̂Di(α, Ii).

Example 2. The domain specification DA for A in Ex. 1 is defined over FA = {h nail,
h screw, mirror on, h hammer, h screwdriver} and AA = {hw screw, buy nail},
with the set of laws:

buy nail causes h nail hw screw causes mirror on
hw screw causes ¬h screw hw screw executable h screw, h screwdriver

1 Originally,A did not include a executable ϕ. It was later introduced by the creator of A.
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The domain specification of B is defined over AB = {hw nail} and FB = {h nail,
h screw, picture on, h hammer, h screwdriver}, with the set of laws:

hw nail causes picture on hw nail causes ¬h nail
hw nail executable h nail, h hammer

In all of the above, the prefix hw stands for “hang with” and h stands for “has.” �

Answer set planning (e.g., [16,23]) refers to approaches to planning using logic pro-
gramming with answer set semantics [8]. In these approaches, a planning problem is
translated into a logic program, whose answer sets correspond one-to-one to the so-
lutions of the original problem. As with the action language A, answer set planning
approaches have mainly focused on solving single agent planning problems. An excep-
tion is [10], dealing with multiagent systems supporting message-based coordination.

Let Pi = 〈Di, Ii, Oi〉 be a planning problem of agent i. We will now describe the
logic program Πn(Pi) that encodes Pi. Let us denote with n the maximal length of a
plan. The key predicates of Πn(Pi) are:

• h(i, 
, t)—the fluent literal 
 holds at the time step t; and
• o(i, a, t)—the action a is executed (by the agent) at the time step t;
• poss(i, a, t)—the action a can be executed at the time step t.

h(i, 
, t) can be extended to define h(i, ϕ, t) for an arbitrary fluent formula ϕ, which
states that ϕ holds at the time step t. We use h(i, {l1, . . . , lk}, T ) as a shorthand for
h(i, l1, T ), . . . , h(i, lk, T ). In all the program rules, T denotes a time step, ranging from
0 to n. Πn(Pi) is defined as follows:

• Rules for declaring fluents and actions of an agent i: For each fluent f ∈ Fi and
action a ∈ Ai, Πn(Pi) contains facts of the form fluent(i, f) and action(i, a).

• Rules for reasoning about effects of actions: For each action a ∈ Ai,
◦ if Di contains the law a executable ϕ then Πn(Pi) contains the rules

poss(i, a, T )← h(i, ϕ, T ). (1)

← o(i, a, T ),not poss(i, a, T ). (2)

◦ if Di contains the law a causes l if ϕ then Πn(Pi) contains the rule

h(i, l, T + 1)← o(i, a, T ), h(i, ϕ, T ). (3)

• Rules describing the initial state and the goal state: For each literal 
 ∈ Ii and for
each 
′ ∈ Oi, Πn(Pi) contains the rules

h(i, �, 0) ← ← not h(i, �′, n).

• Rules for encoding inertia: For each fluent f ∈ Fi, Πn(Pi) contains the rules

h(i, f, T + 1)←h(i, f, T ),not h(i,¬f, T+1). (4)

h(i,¬f, T + 1)←h(i,¬f, T ),not h(i, f, T+1). (5)

← h(i, f, T ), h(i,¬f, T ). (6)

• Rules for generating action occurrences: Πn(Pi) contains the rule

1 {o(i, A, T ) : action(i, A)} 1 ← T < n. (7)

which states that, at any time step, the agent must execute one of its actions.
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The following theorem can be proved.

Theorem 1. The program Πn(Pi) is consistent iff Pi has a plan of length n.

Let PA be the planning problem for A from Example 1. We can easily check that for
every n, Πn(PA) is inconsistent. Likewise, Πn(PB) is inconsistent.

3 Multiagent Planning and Answer Set Planning

In this paper, we are interested in the planning problem in multiagent environments.
We focus on situations where each agent has her own planning problem, and the agents
are loosely connected—i.e., they might or might not use the same language in their
representations (e.g., they might use different names to describe the same property).
Furthermore, there are group actions that should be executed together for their effects
to take place. Likewise, there are actions that cannot be executed by a group at the same
time. Let us start with some preliminary definitions.

Definition 3. Let {Pi}i∈AG be a set of planning problems of agents in AG. A tagged-
fluent is of the form f [i] where f is a fluent in Pi. A tagged-formula over AG is a
formula constructible from the set of tagged fluents.

We will call a sequence of states S = 〈si〉i∈AG a combined state between agents in
AG. Given a tagged-formula ϕ over AG and a combined state S = 〈si〉i∈AG , the truth
value of ϕ in 〈si〉i∈AG is determined as follows: if ϕ is a tagged-fluent f [i] (resp. the
negation of a tagged-fluent ¬f [i]) then ϕ is true in S if f is true (resp. false) in si; the
truth value of a complex formula is computed in the usual way.

Definition 4. A multiagent planning problemM is a tuple 〈AG, {Pi}i∈AG,F ,NC, C〉
where (i) AG is a set of agents, (ii) Pi is a planning problems for agent i ∈ AG, (iii)
F is the set of tagged-formulas over AG, and (iv) NC and C are sets of sets of pairs
(i, ai) where i is an agent and ai is an action in Ai.

Intuitively, F is a set of constraints on the combined states, NC is the set of non-
concurrent actions, and C is the set of concurrent actions within AG. For a multiagent
planning problemM, a joint-action sequence of length k of agents in AG is a sequence
〈αi〉i∈AG where, for each i ∈ AG, αi = [ai

0, . . . , a
i
k] is a sequence of actions in Di,

executed by i at the time steps 0, 1, . . . , k.

Definition 5. A joint-action sequence 〈αi〉i∈AG of length k is said to be compatible if,
for every l, 0 ≤ l ≤ k, the following conditions are satisfied:

• For each tagged-formula ϕ ∈ F , ϕ is true in 〈Φ̂Di(αi[l], Ii)〉i∈AG where αx[l]
denotes the action sequence [ax

0 , . . . , a
x
l ].

• For each S ∈ NC, there exists some (i, a) ∈ S such that ai
l �= a.

• For each S ∈ C, either {a | (i, a) ∈ S and a = ai
l} = {a | (i, a) ∈ S} or

{a | (i, a) ∈ S and a = ai
l} = ∅.

Intuitively, a joint-action sequence is compatible if no constraint in M is violated. The
first item indicates that the combined states must not violate the constraints in F , i.e.,
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the individual sequence of actions must agree with each other on their effects in shared
environment. The second and third items make sure that non-concurrent and concurrent
action constraints in NC and C are maintained by the joint-action sequence.

Definition 6. LetM = 〈AG, {Pi}i∈AG,F ,NC, C〉 be a multiagent planning problem.
A joint-action sequence of length n, 〈αi〉i∈AG , is a joint plan of length n for M if
〈αi〉i∈AG is compatible and for each i ∈ AG, αi is a plan of Pi.

Intuitively, a joint plan is composed of individual plans which allow the agents to
achieve their own goals and satisfy the various constraints of the problem.

Example 3. The story in Example 1 can be formalized as a multiagent planningMAB =
〈{A,B}, {PA,PB}, ∅, ∅, ∅〉wherePA = 〈DA, IA, OA〉 andPB = 〈DB, IB , OB〉with
DA and DB are given in Example 2 and
◦ IA = {¬h nail,¬mirror on, h screwdriver,¬h screw,¬h hammer},
◦ OA = {mirror on},
◦ IB = {¬h nail,¬picture on, h screw,¬h screwdriver, h hammer}, and
◦ OB = {picture on}.

We can easily show that MAB has no solution. �

Answer set planning can be easily extended to compute solutions of multiagent planning
problems. This is achieved by defining a program Πn(M), which consists of the rules
of Πn(Pi) along with rules enforcing the constraints in F , NC, and C:
• For each tagged-formula ϕ in F , a set of rules defining an atom h(tagged, nϕ, T ),

where nϕ is a unique name assigned to ϕ. Due to lack of space, we omit the set of
rules defining this atom (that can be found in [22]). To make sure that the formula is
satisfied by the combined state at each time point, we add to Πn(M) the constraint:

← not h(tagged, nϕ, T ).
• For each set {(i1, a1), . . . , (ik, ak)} in C, the constraint

← 0 {o(i1, a1, T ), . . . , o(ik, ak, T )} k − 1.
which makes sure that if a part of S is executed, i.e., o(ij , aj , T ) belongs to an an-
swer set, then the whole set S is executed.

• For each set {(i1, a1), . . . , (ik, ak)} in NC, the constraints
← o(i1, a1, T ), . . . , o(ik, ak, T ).

This guarantees that not all actions a1, . . . , ak are executed at the same time.
We can extend Th. 1 and prove that the program Πn(M) is consistent iff M has a
solution of length n.

4 Negotiations between Agents in Dynamic Environments

We consider one-to-one negotiations between agents in a dynamic environment and as-
sume that the negotiation is related to the world representation of each agent. Each agent
maintains her own world representation and has her own means to affect the world.
Exchanges between agents can be characterized by logical formulae constructible from
their representation languages. The acceptance by an agent i of an exchange coming
from agent j will affect i’s state of the world, and possibly that of j as well.
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We assume that each agent i uses her own representation language Li and a knowl-
edge base KBi, whose set of modelsWi represents the acceptable states that she could
be in. We assume that there exists a relation Ri,j ⊆ Wi ×Wj which encodes the set
of compatible models between agents i and j—i.e., a pair (wi, wj) ∈ Ri,j is a possible
combined state of the agents i and j. We will assume that Rj,i is the inverse relation of
Ri,j . We will not worry about how Ri,j could be defined or what properties it should
have. For example, if the agents in Example 1 have only one hammer, then any pair of
possible worlds between them should indicate that exactly one of them has the hammer.

Since negotiation entails an exchange between agents, and the agents can potentially
rely on distinct languages, we introduce partial functions ρi,j , called language match-
ing functions, that map formulae of Li to formulae of Lj . We will assume that these
functions are unambiguous w.r.t. equivalence of formulas, i.e., ρi,j(ϕ) = ρi,j(ψ) if
ϕ ≡ ψ. In the case of planning agents, the function ρA,B could be used to map fluents
of A to corresponding fluents of B—e.g., ρA,B(f) = g states that when A refers to
f , it will mean g for B. We require that for each pair of agents i and j there are two
functions ρi,j and ρj,i that are used by the agents in their communications. As in the
case of the compatible relationR, we will not worry about how ρ is defined. Before we
continue, let us illustrate these notions using the agents A and B from Ex. 1.

Example 4. A and B can use the languages constructible from FA and FB as LA and
LB respectively. Thus, we have that WA (resp. WB) is the set of possible states of A
(resp. B). Since there are no constraints on the combined states, we have that RA,B =
WA ×WB . The language matching functions between A and B are identities. �

A negotiation originates from an agent i (originator), who is trying to have agent j
(recipient) to establish for her a property (ψ). In turn, i may have to agree to establish
ϕ for j. Such an exchange is captured by the notion of a conditional proposal.

Definition 7. A conditional proposal (or, simply, proposal) from i to j has the form
ϕ

i,j⇒ ψ, where ϕ and ψ are formulae in Li s.t. ρi,j(ϕ) and ρi,j(ψ) are both defined.

A proposal ϕ
i,j⇒ ψ says that i is willing to establish ϕ for j (i.e., j can consider that

ρi,j(ϕ) is true in her state) and, in exchange, i requires j to establish ρi,j(ψ) for her.

For example, the conditional proposal h nail
A,B⇒ h screw from A to B in Ex. 1 states

that A wants to exchange her nail for B’s screw. A can make this offer if she has a nail,
and she will have a screw in the resulting state after the proposal is accepted by B.

Agents will negotiate by exchanging proposals. Each agent has her own way of eval-
uating and assimilating proposals within her knowledge base. We will assume that each
agent i is associated with three functions, RPrei, RPosti, and OPosti, which map
models and proposals to sets of models. The use of separate originators/receivers func-
tions allows us to formalize various types of negotiations, e.g., asymmetric ones.

OPosti describes the possible states i will be in if her proposal is accepted. RPrei

and RPosti represent the conditions for i to consider a received proposal and the con-
sequences of accepting it. These functions satisfy the following conditions:

• RPrei(w,ϕ
j,i⇒ ψ) ⊆ Wi and for each w′ ∈ RPrei(w,ϕ

j,i⇒ ψ), w′ |= ρj,i(ψ).
• RPosti(w,ϕ

j,i⇒ ψ) ⊆ Wi.

• OPosti(w,ϕ
i,j⇒ ψ) ⊆ Wi and for each w′ ∈ OPosti(w,ϕ

i,j⇒ ψ), w′ |= ψ.
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The condition on RPrei indicates that if i wants to accept the proposal ϕ
j,i⇒ ψ then she

should (somehow) have ρj,i(ψ) to satisfy the proposal. OPosti requires that if i made

the proposal ϕ
i,j⇒ ψ then she should have ψ if the proposal is accepted by j. Finally,

for all functions, it is required that the agent considers only acceptable states.

Example 5. Consider the agents in Example 4. A possible definition for RPreA w.r.t.
the proposal h screw

B,A⇒ h nail is

RPreA(w, h screw
B,A⇒ h nail) =

{
{w} if w |= h nail
∅ otherwise

(i.e., to accept the proposal, A should have a nail). A possible definition of RPostA
w.r.t. the proposal h screw

B,A⇒ h nail is

RPostA(w, h screw
B,A⇒ h nail) =

⎧⎨
⎩
{w′ | w′ = w \ {¬h screw, h nail}∪

{h screw,¬h nail}} if w |= h nail
∅ otherwise

A possible definition of OPostB w.r.t. the proposal h screw
B,A⇒ h nail is given next:

OPostB(w, h screw
B,A⇒ h nail) =

⎧⎨
⎩
{w′ | w′ = w \ {h screw,¬h nail}∪

{¬h screw, h nail}} if w |= h screw
∅ otherwise

Let us define when an agent can make a proposal and what she can do if a proposal
was made to her. If a proposal ϕ

i,j⇒ ψ is made, j can either accept the proposal, re-
ject it, or continue with the negotiation. First, if j were to accept the proposal, then
RPrej(w,ϕ

i,j⇒ ψ) should not be empty, since this set tells j that she can satisfy
the request of i (e.g., she has the formula that is being requested by i). Furthermore,
RPostj(w,ϕ

i,j⇒ ψ) should not be empty as this set indicates that the consequence of
accepting the proposal is acceptable to j. Otherwise, j can make a counter proposal
or reject the offer. A counter proposal can only be made if j thinks that she can offer
ρi,j(ψ) to i in exchange for ϕ′, i.e., ρj,i(ϕ′) i,j⇒ ψ should be a possible proposal. If j
cannot accept the proposal and cannot make a counter proposal to i, then she will reject
the proposal. We formulate these notions in the next definitions—where α = ϕ

i,j⇒ ψ is
a proposal from i to j and wi and wj are the current states of i and j, respectively.

Definition 8. α is acceptable to both i and j w.r.t. wi and wj if
◦ wi |= ϕ and OPosti(wi, α) �= ∅ (α is O-acceptable w.r.t. wi).
◦ RPrej(wj , α) �= ∅ and RPostj(wj , α) �= ∅ (α is R-acceptable w.r.t. wj).

Observe that the definitions of RPrej and RPostj take care of converting the formulae
in the proposal (that are in the language of i) to the local language of j.

Definition 9. α is R-negotiable w.r.t. wj if α is not R-acceptable w.r.t. wj , and there is
some ϕ′ (in the language of j) s.t. RPrej(wj , β) �= ∅ and RPostj(wj , β) �= ∅ where

β = ρj,i(ϕ′) i,j⇒ ψ. α is R-rejectable if it is not R-acceptable and not R-negotiable.



Logic Programming for Multiagent Planning with Negotiation 107

Definition 10. α is O-negotiable w.r.t. wi if α is not O-acceptable w.r.t. wi, and there
exists some ϕ′ such that wi |= ϕ′ and OPosti(wi, ϕ

′ i,j⇒ ψ) �= ∅. α is O-rejectable if it
is not O-acceptable and not O-negotiable.

Example 6. Let us assume that RPreB , RPostB , and OPostB are defined similarly
to RPreA, RPostA, and OPostA in Example 5. Given two states wA = IA and
wB = IB (Example 3) of A and B, we can easily check the following: (a) h nail

A,B⇒
h screw is O-negotiable in wA; (b) true

A,B⇒ h screw is O-acceptable w.r.t. wA and
R-acceptable to B; (c) h nail

A,B⇒ h screw is R-acceptable in wB . �

We will next define the notion of a negotiation. An exchange between i and j is either
a formula in Li or a critique, which is either accept or reject.

Definition 11. Let i and j be two agents and wi and wj be their current states. A
sequence of exchanges m0, . . . ,mn, . . . is a (i, j)-negotiation for ψ w.r.t. wi and wj if

• for every k, m2k
i,j⇒ ψ is O-negotiable w.r.t. wi and m2k+1

i,j⇒ ψ is R-negotiable
w.r.t. wj ;
• if mn is a critique then the sequence is finite and

◦ if mn = accept then mn−1
i,j⇒ ψ is acceptable w.r.t. wi and wj .

◦ if mn = reject then mn−1
i,j⇒ ψ is O-rejectable w.r.t. wi if n is even or

mn−1
i,j⇒ ψ is R-rejectable w.r.t. wj if n is odd.

Since acceptance of a proposal leads two agents to possibly change states, states com-
patibility becomes an issue:

Definition 12. Let i and j be two agents and wi and wj be their states. A finite (i, j)-
negotiation (m0, . . . ,mn) for ψ w.r.t. wi and wj is practical if mn = accept and

there exists a pair (w′
i, w

′
j) ∈ Ri,j such that w′

i ∈ OPosti(wi,mn−1
i,j⇒ ψ) and w′

j ∈
RPostj(wj ,mn−1

i,j⇒ ψ). We say that mn−1
i,j⇒ ψ is the outcome of the negotiation.

Definition 13. A (i, j)-negotiation m0, . . . for ψ w.r.t. wi and wj is non-repeating if,
for every pair of k �= t, mk is not logically equivalent to mt (i.e., �|= mk ⇔ mt).

The following theorem is an immediate consequence of the finiteness of the languages
of i and j and the definition of non-repeating negotiation.

Theorem 2. Any non-repeating (i, j)-negotiation for ψ w.r.t. wi and wj is finite.

5 Integration of Negotiation in Multiagent Planning

In this section, we will integrate the proposed method for negotiation in planning in
presence of multiple agents. We have seen (e.g., Ex. 3) that a planning problem may not
have a solution (e.g., agents A and B cannot achieve their goals). It is easy to see that, if
A purchases a nail and exchanges it with B for a screw, then both A and B can achieve
their goals. Thus, negotiation can provide the interaction between multiple agents nec-
essary to achieve success. In order for the negotiation to be used during planning, we
will need to instantiate our model of negotiation to the case of multiagent planning.
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5.1 Negotiation in Multiagent Planning

Let us consider a multiagent planning problem M = 〈AG, {Pi}i∈AG,F ,NC, C〉. In
this case, the language Li for negotiation used by agent i is the propositional language
built using the set of fluents Fi in Di. The set Wi of permissible states of i is the set
of all possible states in Pi.2 In this paper, we are concerned with the case where each
successful (i, j)-negotiation with outcome ϕ

i,j⇒ ψ, where ϕ and ψ are conjunctions of
literals, will result in (i) agent i having ψ and ϕ in the next state; and (ii) agent j having
ϕ and ψ in the next state (recall that ψ denotes the {
 | 
 ∈ ψ}). In order to accept
a proposal ϕ

i,j⇒ ψ, an agent j should have ψ. This means that the functions RPrej ,
RPostj , and OPosti are defined as follows.

RPrej(w, ϕ
i,j⇒ ψ) =

⎧⎨
⎩
{w} if w |= ρi,j(ψ)

∅ otherwise

RPostj(w, ϕ
i,j⇒ ψ) =

⎧⎨
⎩
{w ∪ e \ ē} if w |= ρi,j(ψ)

∅ otherwise

where e = ρi,j(ϕ) ∪ ρi,j(ψ). Furthermore,

OPosti(w,ϕ
i,j⇒ ψ) =

{
{w ∪ e′ \ e′} if w |= ϕ
∅ otherwise

where e′ = ψ ∪ ϕ. The model compatibility relation Ri,j consists of (s, s′) if there
exists a combined state 〈wt〉t∈AG such that s = wi, s′ = wj , and the formulas in F
are satisfied by 〈wt〉t∈AG . As there is no explicit requirement on the languages used in
formalizing M, we will keep assuming the existence of a language matching function
ρ. In our examples, ρ will simply correspond to the identity function.

5.2 Planning with Non-interleaved Negotiations

The first approach we consider is the case where agents participating in a negotiation
are prevented from performing any other activities until the negotiation is complete.

Let us assume that each finite length negotiation between any two distinct agents in
AG is assigned a unique name, and let us denote with Ni,j the set of the names of all
finite (i, j)-negotiations. A joint-action sequence with negotiation of length k for the
agents in AG is a sequence 〈αi〉i∈AG where, for each i ∈ AG, αi = [ai

0, . . . , a
i
k] and,

for each 0 ≤ l ≤ k, ai
l is either an action in Di or an element of Ni,j ∪ Nj,i. A joint-

action sequence 〈αi〉i∈AG of length k is said to be compatible if: (i) It is compatible
w.r.t. Definition 5, and (ii) If ai

l ∈ Ni,j ∪Nj,i then aj
l = ai

l . This is illustrated next.

Example 7. Consider the multiagent planning problem MAB in Ex. 3, where MAB

has no solution. It is easy to see that the following joint-action sequence can achieve the
goals of both A and B: (1) A buys a nail. (2) A proposes to B to exchange a screw for a
nail. (3) B accepts the proposal of A and the exchange is made. (4) A hangs the mirror

2 This set could exclude some interpretations, e.g., because of the F constraints of Def. 4.
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with her screwdriver and the screw. (5) B hangs the picture with the nail and the ham-
mer. This can be represented as 〈αi〉i∈{A,B}, where αA = [buy nail,N1, hw screw]
and αB = [noop, N1, hw nail], where N1 = h nail

A,B⇒ h screw, accept. �

Let us extend the definition of the transition function Φ to encompass negotiations.

Definition 14. Let N ∈ Ni,j be an (i, j)-negotiation and si and sj be the states of i
and j, respectively. We define Φ(N, si) and Φ(N, sj) as follows.

• If N ends with reject, then Φ(N, si) = si and Φ(N, sj) = sj .

• If N ends with accept and the outcome is ϕ
i,j⇒ ψ, then

Φ(N, si) = OPosti(si, ϕ
i,j⇒ ψ) and Φ(N, sj) = RPostj(sj , ϕ

i,j⇒ ψ). 3

The function Φ̂ can be extended to the case of sequences of actions with negotiations.
Definition 6 can then be used to define the notion of a joint-plan with negotiation for
multi-agent planning problems. For example, it is easy to see that 〈αi〉i∈{A,B} (Exam-
ple 7) is a joint-plan with negotiation for A and B in the problem MAB .

5.3 Planning with Interleaved Negotiations

A joint-plan with negotiation as defined in the previous subsection does not consider the
case where agents may align themselves to make a proposal acceptable. For example,
if B makes the proposal h screw

B,A⇒ h nail to A in the initial state, A—by virtue
of having no nail—will reject it. On the other hand, A can accept the proposal after it
purchases a nail, i.e., the following could be considered a joint-plan for A and B:

αA = [noop, buy nail, accept, hw screw]
αB = [h screw

B,A⇒ h nail, noop, noop, hw nail]
In the above joint-plan, individual exchanges of a negotiation act like individual actions.
To accommodate this, we introduce negotiation actions of the following forms:

a. starts(i, j, ϕ, ψ): i starts a negotiation with j, by making the proposal ϕ
i,j⇒ ψ;

b. proposes(i, j, ϕ, ψ): ϕ is a non-critique exchange in an (i, j)-negotiation for ψ;

c. accepts(i, j, ϕ, ψ): i and j accept the proposal ϕ
i,j⇒ ψ;

d. rejects(i, j): i and j reject the last exchange made and terminate the negotiation.
These actions are referred to as (i, j)-negotiation actions.

The notion of a compatible joint-action sequence has to be modified to account for
negotiation actions. Different views may lead to different definitions of a joint-action
with negotiation actions. In the following, we will require the following:
◦ at any time, one agent is engaged in at most one negotiation; and

◦ agents must finish one negotiation before they can start a new one.
We extend the definition of transition function to account for the negotiation actions:

ΦDi(starts(i, j, ϕ, ψ), w) = w
ΦDj (starts(i, j, ϕ, ψ), w) = fails
ΦDx(proposes(i, j, ϕ, ψ), w) = w
ΦDx(rejects(i, j), w) = w

3 Note that we slightly abuse the notation since OPost and RPost return singleton sets.
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ΦDi(accepts(i, j, ϕ, ψ), w) = OPosti(w,ϕ
i,j⇒ ψ)

ΦDj (accepts(i, j, ϕ, ψ), w) = RPostj(w,ϕ
i,j⇒ ψ)

where x ∈ {i, j}. Let αi = [ai
1, . . . , a

i
k] and αj = [aj

1, . . . , a
j
k] be two action sequences,

containing ordinary actions from Di and Dj and/or negotiation actions. Let αi ⊕ αj =
[C1, . . . , Ck] where Cl is the set of negotiation actions among {ai

l, a
j
l }. Let Ag(Cl) =

{x | ax
l ∈ Cl}. We say that (αi, αj) is syntactically correct if

• Cl is either an empty set or a singleton, i.e., |Cl| ≤ 1;
• for each 1 ≤ l < l′ ≤ k s.t. Cl �= ∅ and Cl′ �= ∅, if Cl+1 = · · · = Cl′−1 = ∅ then

Ag(Cl) ∪Ag(Cl′ ) = {i, j}.
The pair (αi, αj) is (i, j)-syntactically correct if it is syntactically correct and
• either no (i, j)-negotiation action occurs in αi ⊕ αj , or
• for each (i, j)-negotiation action ai

x or aj
x in αi⊕αj there exists l �= l′ such that (a)

l ≤ x ≤ l′, (b) Cl = {ai
l} = {starts(i, j, ϕl, ψ)}, (c) for every l < t < l′, Ct = ∅

or Ct = {proposes(i, j, ϕt, ψ)}, and (d) either ai
l′ = aj

l′ = accepts(i, j, ϕl′ , ψ) or
ai

l′ = aj
l′ = rejects(i, j).

We say a joint-action sequence 〈αi〉i∈AG of length k, where each ai
l is an action in Pi

or one of the negotiation actions, is compatible if:
• it satisfies the conditions in Definition 5; and

• for every i �= j, (αi, αj) is (i, j)-syntactically correct and, for every Ct in αi ⊕ αj

containing an (i, j)-negotiation action a we have that:

− if a = starts(i, j, ϕ, ψ) then ϕ
i,j⇒ ψ is O-negotiable w.r.t. Φ̂Di (αi[t− 1], Ii);

− if a = proposes(i, j, ϕ, ψ) and Ag(Ct) = i then ϕ
i,j⇒ ψ is O-negotiable w.r.t.

Φ̂Di(αi[t− 1], Ii);
− if a = proposes(i, j, ϕ, ψ) and Ag(Ct) = j then ϕ

i,j⇒ ψ is R-negotiable w.r.t.
Φ̂Dj (αj [t− 1], Ij);

− if a = accepts(i, j, ϕ, ψ) then ϕ
i,j⇒ ψ is acceptable w.r.t. Φ̂Di(αi[t − 1], Ii)

and Φ̂Dj (αj [t− 1], Ij);
− if a = rejects(i, j) and proposes(i, j, ϕ, ψ) or starts(i, j, ϕ, ψ) is the last

occurrence of an (i, j)-negotiation action in αi ⊕ αj before t, then ϕ
i,j⇒ ψ is

O-rejectable w.r.t. Φ̂Di (αi[t− 1], Ii) or R-rejectable w.r.t. Φ̂Dj (αj [t− 1], Ij).

Joint-plans with negotiation are defined accordingly.

5.4 Computing Plan with Negotiation Using Logic Programming

In the rest of this section, we will present a set of rules that, when added to Πn(M),
will generate joint-plans with negotiation. We refer to the new program as Γn(M).
Due to lack of space, we omit some of the more technical details and we make use of
a rather informal logic programming syntax. In the following rules, i, j, and k denote
possible agents. As in the previous discussion, we will consider the case where formulae
involved in negotiations are composed only of sets of literals. We assume the existence
of negotiation formula atoms in the program formula name(.), naming the possible set
of literals. The composition of the actual formula ϕ can be described as a collection of
facts in formula(ϕ, 
) for each literal 
 ∈ ϕ (with a slight abuse of notation, we will
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use ϕ as the name of the formula itself). We also assume that the language matching
functions are identities. For each agent i, we introduce

NAi =
{
starts(i, j, ϕ, ψ), proposes(i, j, ϕ, ψ),
accepts(i, j, ϕ, ψ), rejects(i, j) j ∈ AG, ϕ, ψ are fomulas names

}
.

A predicate na(i, a) is used to identify the elements a ∈ NAi. Since the construction of
an exchange requires hypothetical reasoning, we assume a predicatehyp h(i, ϕ, ψ, 
, T )
that is true if 
 is true in OPosti(w,ϕ

i,j⇒ ψ), where w is the state for i described by
h(i, ·, T ). The definition of hyp h is straightforward. This allows us to describe states
that are not acceptable; in our case:

bad(i, ϕ, ψ, T ) ← fluent(i, f), hyp h(i, ϕ, ψ, f), hyp h(i, ϕ, ψ, neg(f))
The rules used to describe the effects of negotiation can be summarized as follows.

• Generation rules: The rule for generating action occurrences is expanded to:
1{o(i, a, T ) : na(i, a), o(i, A, T ) : action(i, A)}1 ← agent(i), time(T ), T < n

• Negotiation rules: These rules control the ability to perform steps of negotiation;
the predicate wait is used to indicate that it is not the agent’s turn to respond to a
negotiation, allowing to enforce the exchange protocol described earlier. Each non-
critique exchange will prompt wait to become true; each generated exchange will also
invalidate the wait of the other party. In the following, x ∈ {i, j} and ī = j and j̄ = i.
The variable T denotes the time parameter.

%% i starts
h(i, wait(i, j, ϕ, ψ), T + 1) ← o(i, starts(i, j, ϕ, ψ), T ).
h(j, neg(wait(i, j, ϕ, ψ)), T + 1) ← o(i, starts(i, j, ϕ, ψ), T ).
%% x exchanges
h(x, wait(i, j, ϕ, ψ), T + 1) ← o(x, proposes(i, j, ϕ, ψ), T ).
h(x̄, neg(wait(i, j, ϕ, ψ)), T + 1) ← o(x, proposes(i, j, ϕ, ψ), T ).
%% Suspend waiting on termination
h(x, neg(wait(i, j, ϕ, ψ)), T + 1) ← o(x, accepts(i, j, ϕ, ψ), T ).
h(x, neg(wait(i, j, ϕ, ψ)), T + 1) ← o(x, rejects(i, j), T ).

A successful completion of a negotiation will be achieved when an acceptable exchange
is reached. The bad predicate will be used to validate acceptability:

acceptable(i, j, T ) ← h(i, wait(i, j, ϕ, ψ), T ), h(i, ϕ, T ),not bad(i, ϕ, ψ, T ).
acceptable(i, j, T ) ← h(j, wait(i, j, ϕ, ψ), T ), h(j, ψ, T ),not bad(j, ψ, ϕ, T ).

If the negotiation is not acceptable, then an attempt to generate a new exchange is
made. We use a repeated predicate to avoid repeated exchanges (the code is simple but
tedious, and omitted).

valid proposal(i, j, ϕ′, T ) ← h(i, wait(i, j, ϕ, ψ), T ), formula name(ϕ′),
not repeated(i, j, ϕ′, T ), h(i, ϕ′, T ),not bad(i, ϕ′, ψ, T ).

valid proposal(i, j, ϕ′, T ) ← h(j, wait(i, j, ϕ, ψ), T ), formula name(ϕ′),
not repeated(i, j, ϕ′, T ), h(j, ψ, T ),not bad(j, ψ, ϕ′, T ).

negotiable(i, j, T ) ← h(i, wait(i, j, ϕ, ψ), T ),not acceptable(i, j, T ),
valid proposal(i, j, ϕ′, T ).

negotiable(i, j, T ) ← h(j, wait(i, j, ϕ, ψ), T ),not acceptable(i, j, T ),
valid proposal(i, j, ϕ′, T ).
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Using the above characterizations of what is acceptable and negotiable, we can intro-
duce constraints that will avoid generation of unsuitable negotiation actions:

%% Protocol: actions must be done in exchange way
← o(x, proposes(i, j, ϕ′, ψ′), T ), h(x,neg(wait(i, j, ϕ, ψ)), T ).
← o(x, accepts(i, j, ϕ′, ψ′), T ), h(x, neg(wait(i, j, ϕ, ψ)), T ).
← o(x, rejects(i, j)), h(x, neg(wait(i, j, ϕ, ψ)), T ).

%% Ensure only valid actions are performed
← o(i, starts(i, j, ϕ, ψ), T ),not h(i, ϕ, T ).
← o(i, proposes(i, j, ϕ, ψ), T ),not valid proposal(i, j, ϕ, T ).
← o(j, proposes(i, j, ϕ, ψ), T ),not valid proposal(i, j, ϕ, T ).
← o(i, accepts(i, j, ϕ, ψ), T ),not acceptable(i, j, T ).
← o(j, accepts(i, j, ϕ, ψ), T ),not acceptable(i, j, T ).
← o(i, rejects(i, j), T ),not negotiable(i, j, T ),not acceptable(i, j, T ).

Finally, we introduce rules to describe the state changes produced by a negotiation:

h(i, 
, T + 1) ← o(i, accepts(i, j, ϕ, ψ), T ), in formula(ψ, 
).
h(i, 
, T + 1) ← o(i, accepts(i, j, ϕ, ψ), T ), in formula(ϕ, 
).
h(j, 
, T + 1) ← o(j, accepts(i, j, ϕ, ψ), T ), in formula(ϕ, 
).
h(j, 
, T + 1) ← o(j, accepts(i, j, ϕ, ψ), T ), in formula(ψ, 
).

Theorem 3. For a multiagent planning problem M and an integer n,
• if I is an answer set of Γn(M) and αi = [ai

0, . . . , a
i
n−1] such that o(i, ai

t, t) ∈ I ,
then 〈αi〉i∈AG is a joint-plan.
• if 〈αi〉i∈AG where αi = [ai

0, . . . , a
i
n−1] is a joint-plan of length n, then there is an

answer set I of Γn(M) such that o(i, ai
t, t) ∈ I for i ∈ AG and 0 ≤ t ≤ n− 1.

Observe that the program Γn(M) can be easily modified to generate plans with non-
interleaved negotiations by adding constraints forbidding an occurrence of an ordinary
action for an agent i when the fluent wait(i, j, ., .) or wait(j, i, ., .) is true.

6 Discussion and Conclusions

In this paper, we presented a preliminary investigation of the use of logic programming
technology to address the composite problem of multiagent planning and negotiation.
We developed a generic model of negotiation, suitable for dynamic environments, and
instantiate it to the case of multiple planning agents with independent goals. We defined
different notions of planning with negotiations. We illustrated how logic programming
provides an elegant and modular encoding of the different aspects of the problem. Ob-
serve that the use of logic programming allows for a simple integration between plan-
ning and negotiation. The generation of an answer set satisfying the goal of the planning
problem drives the generation of any negotiation that needs to occur between agents.

This preliminary work offers several directions for future research. Part of our dis-
cussion relies on the use of identity function as a language matching functions. This
restriction was imposed for the sake of simplicity and it should be lifted to allow more
complex scenarios. For example, in planning with resources, two agents—one using
British pounds and one using Dollars—would need matching functions that convert be-
tween the two currencies. Other examples include agents using ontologies with different
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granularities; e.g., agent i uses has nail brand x(foo) to describe nail named foo,
while agent j uses separate predicates to describe individual properties of foo (e.g.,
is nail(foo) and is brand x(foo)). Thus, ρi,j applied to has nail brand x(foo)
should result in the formula is nail(foo)∧is brand x(foo)∧has(foo). The language
matching functions are domain-dependent but still expressible in logic programming.

The proposed model of negotiation is grounded and used in the most simple way. It
is suitable for negotiations involving exchanges of consumable resources, such as the
nail or the screw. Non-consumable resources may require different definitions of the
functions OPost, RPre, and RPost. In practice, there could be situations in which the
owner of a resource does not lose it after an exchange has happened. For example, a
student, agreeing to give another student a ride to school in exchange for the solution
of a homework, does not lose her car after the exchange.

There are also situations in which an agent may need to take into consideration what
other agents offer before deciding to accept or reject an offer. For example, a student
with a car without gasoline could agree to drive some friends to school if the friends give
her enough money to buy gasoline. In this case, the student has to take into consideration
what was offered before accepting the offer.

The implementation in planning assumes that agents negotiate on sets of literals.
This is not a limitation of the general planning framework, but the consequence of the
language restrictions of several answer set solvers. This restriction could be lifted by
adopting a more general logic programming framework e.g., [3,7].

Further generalizations include the use of negotiation models involving groups of
agents, preferences, more expressive action languages (e.g., with static causal laws,
concurrent actions), and more complex planning scenarios (e.g., joint-goals).
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Abstract. The paper describes a novel methodology to compute stable
models in Answer Set Programming. The proposed approach relies on a
bottom-up computation that does not require a preliminary grounding
phase. The implementation of the framework can be completely realized
within the framework of Constraint Logic Programming over finite do-
mains. The use of a high level language for the implementation and the
clean structure of the computation offer an ideal framework for the im-
plementation of extensions of Answer Set Programming. In this work,
we demonstrate how non-ground arithmetic constraints can be easily
introduced in the computation model. The paper provides preliminary
experimental results which confirm the potential for this approach.

1 Introduction

The recent literature has shown a booming interest towards the Answer Set
Programming (ASP) paradigm [2]. ASP builds on the theoretical foundations
of normal logic programs under stable model semantics, and it provides a pro-
gramming paradigm that elegantly integrates traditional logic programming,
non-monotonic reasoning, and some forms of constraint-based reasoning.

The popularity of ASP has been fueled by the realization that ASP offers
compact, elegant, and provably correct solutions for problems in a variety of
application domains (e.g., phylogenetic inference [4], planning [13], bioinformat-
ics [9]); significant effort has also been invested in the design of knowledge build-
ing blocks and methodologies (e.g., [2]). The development of novel applications
has also stretched to the limits both the traditional languages supported by ASP
as well as system implementations, emphasizing some of the limitations of the
currently used technology. This has been, for example, highlighted in a recent
study concerning the use of ASP to solve complex planning problems (drawn
from recent international planning competitions) [23]. A problem like Pipeline
(from IPC-5), whose first 9 instances can be effectively solved by state-of-the-
art planners like FF, can be solved only in its first instance using Lparse and
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Smodels; instances 2 through 4 do not terminate within several hours of execu-
tion, while instance 5 leads Lparse to generate a ground image that is beyond
the input capabilities of Smodels.

We have witnessed a flourishing of new proposals for language extensions (e.g.,
aggregates, domain-specific constraints, functions), to enable the declarative en-
coding of complex relationships. In turn, also these extensions have proved chal-
lenging for the implementors, often leading to unnecessarily complex machineries
to integrate extensions within the rigid framework of existing ASP solvers (e.g.,
[7,19]).

The majority of the existing ASP systems rely on a two-stage computation
model. The actual computation of the answer set is performed only on proposi-
tional programs—either directly (as in Smodels [21], DLV [12] and Clasp [8])
or appealing to the use of a SAT solver (as in ASSAT [14] and Cmodels [1]).
On the other hand, the convenience of ASP vitally builds on the use of first-order
constructs. This introduces the need of a grounding phase, typically performed
by a grounding module (e.g., a separate program, like Lparse or Gringo, or an
integrated module as in DLV). The presence of grounding represents a significant
obstacle to applications and extensions—it has the potential (often observed in
practice) of leading to extremely large ground programs and it may force devel-
opers to unnatural solutions to circumvent the grounding of certain components
of the program (e.g., as observed in some implementations of aggregates [7] and
domain-specific constraints [19]).

In this manuscript, we propose a different perspective on this problem, aimed
at creating a framework which executes ASP programs without preliminary
grounding and which enables ease integration of extensions like domain-specific
constraints. The proposed framework is called Grounding-lazy ASP (GASP). The
spirit of our effort can be summarized as follows:

• The framework is completely developed in a declarative language (Constraint
Logic Programming over finite domains)—where finite domain sets are em-
ployed for the compact representation of predicates in an ASP program.

• The execution model is bottom-up and does not require preliminary ground-
ing of the program.

This combination of ideas provides a novel system with significant potentials:

• It enables the simple integration of new features in the solver, such as
domain-specific constraints (e.g., numerical constraints). With a preliminary
grounding stage, these features would have to be encoded as ground pro-
grams, thus reducing the capability to devise general strategies to optimize
the search, and often leading to exponential growth in the size of the ground
program.

• The adoption of a non-ground search allows the system to effectively control
the search process at a higher level, enabling the adoption of Prolog-level
implementations of search strategies and the use of static analysis techniques.

• It reduces the negative impact of grounding the whole program before exe-
cution; grounding is lazily applied to the rules being considered during the
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construction of an answer set, and the ground rules are not kept beyond
their needed use.

GASP has been implemented in a prototype, implemented in SICStus Prolog
(using the clpfd library) and available at www.dimi.uniud.it/dovier/GASP.
GASP supports the use of numerical constraints in the ASP programs (provid-
ing language capabilities comparable to that of the system presented in [19]).
In spite of the overheads introduced by the intermediate Prolog layer, GASP is
performance-wise competitive; it is capable of outperforming systems like Smod-

els and Clasp especially in benchmarks where the ground image is large.
The ideas presented in this paper expand our preliminary work on compar-

ing ASP and CLP methodologies [6] and development of computation-based
characterizations of answer sets [15]. The work is also similar in spirit to the
concurrently proposed ASPeRiX system [11]. Both GASP and ASPeRiX have
their theoretical roots in the same notion of computation-based characterization
of answer sets [15]. ASPeRiX is implemented in C++ and develops heuristics
aimed at enhancing the choice of the rules when more of them are applica-
ble. Models for non-ground computation based on alternative execution schemes
(e.g., top-down computations) have also been recently proposed (e.g., [3]).

2 The Language GASP

Syntax. The signature Σ = 〈ΠC ∪ ΠU ,F ,V〉 of the language is defined as
follows. V is a denumerable set of variables. F = Z ∪ FZ ∪ FU ∪ {′..′/2} is the
set of constant and function symbols of the language, where

• Z = {0,−1, 1,−2, 2, . . .} is a set of constants for the integer numbers
• FZ is a set of function symbols representing operations over integer numbers,

such as +,−, ∗, div,mod, etc.;
• FU is a (possibly empty) set of user-defined constant symbols, with the

property that FU ∩ (Z ∪ FZ ∪ {‘..’}) = ∅.
• ‘..’ is a binary function symbol used to build intervals.

ΠU is the set of user-defined predicate symbols, while ΠC is the set of constraint
predicate symbols (we assume that ΠC ∩ΠU = ∅).

Each Σ-term of the form a..b is well-formed iff a, b are integer constants and
a ≤ b; we will refer to this type of terms as interval terms. Each Σ-term of
the form f(t1, . . . , tk), f ∈ FZ , is well-formed iff t1, . . . , tk are either variables,
or integer constants, or (recursively) well-formed compound terms of the same
form. Well-formed Σ-terms of the above form are called compound integer terms.
User-defined function symbols are not allowed in our language.
〈ΠU ,F ,V〉-atoms are user-defined atoms, while 〈ΠC ,F ,V〉-atoms are con-

straint atoms (or primitive constraints). We assume that interval terms can oc-
cur only in user-defined atoms (namely, in rule’s head atoms—see below), while
compound integer terms can occur only in constraint atoms. Negated literals
have the form notA, where A is a (positive) Σ-atom.

www.dimi.uniud.it/dovier/GASP
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The set of constraint predicate symbols ΠC of our language includes =, �= and
≤. t1 = t2, t1 �= t2 are well-formed iff t1 and t2 are Σ-terms, while t1 ≤ t2 is well-
formed iff t1 and t2 are integer terms (either constants, variables, or compound
integer terms). These symbols represent, respectively, the (syntactic) equality
and inequality over Z ∪ FU and the natural order relation over Z.

A GASP-constraint is a conjunction of constraint atoms. Other integer pred-
icates (e.g., <, ≥, and >) can be defined as GASP-constraints using =, �=, and
≤. Examples of well-formed terms and atoms are: p(1..10), p ∈ ΠU and X �= Y
+ 1. Hereafter, we will consider only well-formed terms and atoms.

Let us observe that our approach is parametric w.r.t. the constraint domain
considered. In the paper, however, we focus on integer constraints.

A GASP-rule has the form H ← B1, . . . , Bk, where H is a user-defined atom
or false, and B1, . . . , Bk are either user-defined literals or constraint atoms or
true. A GASP-rule of the form H ← true (abbreviated H) is called a fact. A
GASP-rule of the form false ← B1, . . . , Bk (abbreviated ← B1, . . . , Bk) is called
an integrity constraint. Intuitively, an integrity constraint B1, . . . , Bk expresses
the fact that we want to discard all models of the given program that entail
B1 ∧ . . . ∧Bk. A GASP-program is a collection of GASP-rules.

Given a GASP-rule H ← B1, . . . , Bk, let us denote with U body the collec-
tion of user-defined literals in B1, . . . , Bk, and with C body the collection of
constraint atoms in B1, . . . , Bk. Hence, H ← B1, . . . , Bk can be written as
H ← U body, C body. Moreover we define with body+ the collection of positive
literals in U body ∪ C body and with body− the collection of atoms that appear
in negative literals in U body.

We assume that our language provides also special atoms called cardinality
constraints [22]. Accordingly, ΠC includes the symbol {}/3 which is used to
construct cardinality constraints of the form h{ϕ}k. h{ϕ}k is well-formed iff
h and k are integer s.t. 0 ≤ h ≤ k, and ϕ is a sequence of atoms of the form
A : B1, . . . , Bn, n ≥ 0 (written A, if n = 0), where A,B1, . . . , Bn are user-defined
atoms and B1, . . . , Bn occur as head atoms in some rules of the program. Fur-
thermore, vars(B1, . . . , Bn) ⊆ vars(A). Cardinality constraints can occur both
in the head and in the body of a rule. When occurring in the head, their intu-
itive meaning is the following. h{A[X̄, Ȳ1, . . . , Ȳn] : B1[Ȳ1], . . . , Bn[Ȳn]}k forces
models of the given program to contain, for each tuple of ground terms t̄ for X̄ ,
a set R such that R ⊆ {A : X̄ = t̄, ∃Ȳ1 . . .∃Ȳn(B1, . . . , Bn)} ∧ h ≤ |R| ≤ k . For
example, given the program

r(1..3). q(a). q(b). 1{p(X,Y ) : r(Y )}1 ← q(X).

its models are required to contain exactly one among p(a, 1), p(a, 2), p(a, 3) and
exactly one among p(b, 1), p(b, 2), p(b, 3).

When cardinality constraints occur in the body of a rule, they will be entailed
by models that meet the above- mentioned property.

We assume, as done in several existing ASP systems, that programs satisfy
the range restriction property, suitably adapted to account for constraints. A
GASP-rule is range restricted if all variables occurring in its head (except those
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which are “local” to cardinality constraints) occur also in at least one positive
atom of U body. A GASP-program is range restricted iff every rule in it is range
restricted. In this way, all variables in the program are guaranteed to have a
finite set of possible values associated with.

Semantics. A GASP-program can be seen as a syntactic shorthand for an ASP
program where any non-ground GASP-rule represents a family of ground ASP
rules. Let A be a collection of propositional atoms. An ASP rule has the form:

p ← p0, . . . , pn,not pn+1, . . . ,not pm

where {p, p0, . . . , pn, pn+1, . . . , pm} ⊆ A. An ASP program is a collection of ASP
rules. The process of replacing each non-ground rule with an equivalent finite
set of ground rules is called grounding.

A ground instance of a rule R of P is obtained from R by replacing all variables
in it by ground terms built using the symbols in F \({′..′}∪FZ), respecting well-
formedness of the resulting ground atoms. In addition, each variable v ∈ V that
appears in a Σ-term whose functor is in FZ ∪ {′..′} or that appears in GASP-
constraints based on ≤ has to be grounded using an element of Z. Additionally,
note that:

• We omit compound integer terms from the grounding process—as these are
meant to be evaluated and replaced with the constants representing the
values of the compound terms (elements of Z);

• We omit intervals. Instead, we expect the grounding process to replace each
rule of the form p(t̄, a..b, s̄) ← body, with the set of rules

p(t̄, a, s̄) ← body p(t̄, a + 1, s̄) ← body · · · p(t̄, b, s̄) ← body

• each ground constraint atom C is replaced with true or false depending on
whether C is entailed or not in the traditional theory of integer arithmetic.

Let us note that C body disappears as soon as the program is grounded.
A ground program ground(P ) is obtained from P by replacing all rules in P

by all ground instances of all rules in P .
Integrity constraints are always removed from the generated program: an ASP

integrity constraint ← p0, . . . , pn,not pn+1, . . . ,not pm is equivalent, for stable
models, to p ← not p, p0, . . . , pn,not pn+1, . . . ,not pm, where p is a new propo-
sitional atom. Similarly, rules containing cardinality constraints are replaced by
a collection of rules that precisely capture their semantics.

Therefore we can use all definitions and results usually adopted in ASP to
provide a semantics characterization of GASP-programs. In particular, we con-
sider here the semantics based on the notion of well-founded model [24]. The
well-founded model [24] of a general program P is a 3-interpretation I, i.e., a
pair 〈I+, I−〉 such I+∪ I− ⊆ A and I+∩ I− = ∅. I+ denotes the atoms that are
known to be true while I− denotes those atoms that are known to be false.

The union between two 3-interpretations I ∪ J , where I = 〈I+, I−〉 and J =
〈J+, J−〉, is defined as 〈I+ ∪ J+, I− ∪ J−〉. The intersection is defined similarly.
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If I+ ∪ I− = A, then the interpretation I is said to be complete. Given two 3-
interpretations I, J , we use I ⊆ J to denote the fact that I+ ⊆ J+ and I− ⊆ J−.
The notion of entailment for 3-interpretations can be defined as follows. If p ∈ A,
then I |= p iff p ∈ I+; I |= not p iff p ∈ I−; I |= A∧B iff I |= A and I |= B, and
I |= H ← A1∧ . . .∧An iff I |= H or there is i ∈ {1, . . . , n} such that I |= notAi.

Intuitively, the well-founded model of P contains only (possibly not all) literals
that are necessarily true and the ones that are necessarily false in all stable
models of P . The remaining literals are undefined. It is well-known that a general
program P has a unique well-founded model wf(P ) [24]. If wf(P ) is complete
then it is also a stable model (and it is the unique stable model of P ).

3 Computation-Based Characterization of Stable Models

The computation model adopted in GASP has been derived from recent investi-
gations about alternative models to characterize answer set semantics for various
extensions of ASP—e.g., programs with abstract constraint atoms [17].

The work described in [15] provides a computation-based characterization of
answer sets for programs with abstract constraints. One of the side-effects of
that research is the development of a computation-based view of answer sets
for general logic programs. The original definition of answer sets [10] requires
guessing an interpretation and successively validating it—through the notion of
reduct (P I) and the ability to compute minimal models of a definite program
(e.g., via repeated iterations of the immediate consequence operator [16]).

The characterization of answer sets derived from [15] does not require the
initial guessing of a complete interpretation; instead it combines the guessing
process with the construction of the answer set.

We provide our formalization of computation in terms of GASP-computation
a nd show that it is an instance of [15]. We begin with the following notion:

Definition 1 (Applicable rule). We say that a ground rule a ← body is ap-
plicable w.r.t. an interpretation I, if body+ ⊆ I+ and body− ∩ I+ = ∅ .

We extend the definition of applicable to a non-ground rule R w.r.t. I iff there
exists a grounding r of R that is applicable w.r.t. I. Note that C body is replaced
by true during the local grounding stage.

Given a program P and an interpretation I, we denote with P ∪I the program

P ∪ I = (P \ {r ∈ P | head(r) ∈ I−}) ∪ I+.

Intuitively, P ∪ I is the program P modified in such a way to guarantee that all
elements in I+ are true and all elements in I− are false.

Definition 2 (GASP-computation). A GASP-computation of a program P is
a sequence of 3-interpretations I0, I1, I2, . . . that satisfies the following properties:

• I0 = wf(P )
• Ii ⊆ Ii+1 for all i ≥ 0 (Persistence of Beliefs)
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• if I =
⋃∞

i=0 Ii, then 〈I+,A \ I+〉 is a model of P (Convergence)
• for each i ≥ 0 there exists a rule a ← body in P that is applicable w.r.t. Ii

and Ii+1 = wf(P ∪ Ii ∪ 〈body+, body−〉) (Revision)
• if a ∈ I+

i+1 \ I+
i then there is a rule a ← body in P which is applicable w.r.t.

Ij, for each j ≥ i (Persistence of Reason).

The proofs of correctness and completeness of GASP-computation w.r.t. the
answer sets of a program P can be found at http://sole.dimi.uniud.it/

~agostino.dovier/GASP/.

4 A CLP Approach for Stable Models Computation

In this section we show how the GASP-computation can be implemented within
a CLP(FD) framework. The use of a Prolog based implementation allows fast
prototyping of the search techniques and heuristics. The CLP environment allows
non-ground computation of arithmetic constraints to be easily embedded into
the implemented system.

4.1 Representation of Interpretations Based on FDSETs

Instances of a predicate that are true and false within an interpretation are en-
coded as sets of tuples, and handled using FD techniques. In order to compute
the set of ground applicable rules, a local grounding phase is performed accord-
ing to the definition of applicable rule, i.e. only compatible assignments of the
rule w.r.t. the current interpretations are considered. During the construction
of a model, the effect of this strategy is to ground only those rules that effec-
tively contribute in supporting each stable model. Moreover, when arithmetic
constraints are present in a rule, the ability to treat them in their non-ground
version, allows to save on the enumeration of all possible admissible combinations
of their ground instances.

The computation of applicable rules is at the basis of the GASP-computation
and it is performed very frequently, i.e. at every node of the computation tree.
From a relational algebra point of view, this can be seen as a set of join and
projection operations on a set of tuples. If performed naively, these operations
may become inefficient, especially when the number of tuples increases. We cope
with this problem by introducing a compact and dynamic representation of the
interpretations based on FDSETs. This allows us to efficiently handle large sets
of tuples with respect to memory usage and query time. The compact represen-
tation is withdrawn to build a CSP whose solutions correspond to the applicable
ground rules.

FDSETs are a data structure available in the clpfd library of SICStus Prolog
that allows to efficiently store and compute on sets of integer numbers. Ba-
sically, a set {a1, a2, . . . , an} is interpreted as the union of a set of intervals
[ab1 ..ae1 ], . . . , [abk

..aek
] and stored consequently as [[ab1 |ae1 ], . . . , [abk

|aek
]]. A li-

brary of built-in predicates for dealing with this data structure is made available.

 http://sole.dimi.uniud.it/~agostino.dovier/GASP/
 http://sole.dimi.uniud.it/~agostino.dovier/GASP/
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We identify with pn a predicate p with arity n. In the program, a pred-
icate pn appears as p(X1, . . . , Xn) where, in place of some variables, a con-
stant can occur (e.g., p(a,X, Y, d)). The interpretation of the predicate pn can
be modeled as a set of tuples (a1, a2, . . . , an), where ai ∈ Consts(P )—where
Consts(P ) denotes the set of constants in the language used by the program
P . The explicit representation of the set of tuples has the maximal cardinal-
ity |Consts(P )|n. The idea is to use a more compact representation based on
FDSETs, after a mapping of tuples to integers. Without loss of generality, we
assume that Consts(P ) ⊆ N. Each tuple a = (a0, . . . , an−1) is mapped to
the unique number map(a) =

∑
i∈[0..n−1] aiM

i, where M is a “big number”,
M ≥ |Consts(P )|. In case of predicates without arguments (predicates of arity
0), for the empty tuple () we set map(()) = 0. We also extend the map function
to the case of non-ground tuples, using FD variables. If Y = (y1, y2, . . . , yn),
where yi ∈ Vars(P ) ∪ Consts(P ), then map(Y ) is the FD expression that rep-
resent the sum defined above. For instance, if Y = (3, X, 1, Y ) and M = 10,
then map(Y ) = 3 + X ∗ 10 + 1 ∗ 102 + Y ∗ 103. Moreover, all variables possibly
occurring in Y are constrained to have domain 0..M− 1.
A 3-interpretation 〈I+, I−〉 is represented by a set of 4-tuples (p, n, POSp,n, NEGp,n),
one for each predicate symbol, where p is the predicate name, n its arity, and

POSp,n = {map(x) : I+ |= p(x)} NEGp,n = {map(x) : I− |= not p(x)}

If clear from the context, we drop the subscript n from the notation. These
sets are represented and handled efficiently, by using FDSETs. For instance, if

POSp,3 = {map(0, 0, 1),map(0, 0, 2),map(0, 0, 3),map(0, 0, 8),
map(0, 0, 9),map(0, 1, 0),map(0, 1, 1),map(0, 1, 2)}

and M = 10, then its representation as FDSETs is simply: [[1|3], [8|12]], in other
words, the disjunction of two intervals.

4.2 Computing Applicable Rules

We briefly show now how local grounding is performed, highlighting the role of
arithmetic constraints in the rule.

The idea is to build a CSP where the variables appearing in the rule corre-
spond to FD variables. Solutions to the CSP correspond to ground rules that are
applicable. According to our definition, the applicable rule has its body+ that
is completely contained in I+ and its body− that has no ground predicate that
appears in I+. These requirements can be encoded in terms of FD constraints,
by linking the FD variables appearing in a predicate to the values associated to
the predicate by the function map and contained in the FDSET representation
of I. More formally, let us assume a rule

r ≡ p0(X0)← C(X), p1(Xp1), . . . , pk(Xpk),not pn+1(Xpn+1), . . . ,not pm(Xpm),

where C is C body of r (namely a conjunction of arithmetic constraints), Xi is
a list of variables and/or ground integers that are compatible to the arity of pi.
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For each variable in the rule, a corresponding FD variable is defined. Moreover,
for each predicate pi another FD variable Vi is created.

Every variable Vi is bounded to the corresponding variables Xi, according
to the map(X i) function, i.e. Vi = map(X i). Moreover, in order to implement
the semantics of applicable rule, we require that each predicate pi in body+ has
domain POSpi and each predicate pi in body− can not take values from POSpi .
In addition we require that the head does not appear in I, since in that case it
would be already supported and the rule would be applied redundantly. Finally,
the constraint C is added to the CSP by introducing the corresponding FD
constraints. This choice allows GASP to be easily extensible and to support a
wide range of constraints in a modular way.

The solutions of this CSP are all the ground instances of V0, computed through
labeling, that represent the possible head values to be added to the model.

The same technique is adapted to compute TP and the single steps of the
alternating fixpoint procedure for computing the well-founded models.

4.3 The Overall Algorithm

We describe now the methodology followed in the implementation of the GASP-
computation. We distinguish among three cases: the program is positive, the
program admits a well-founded model, the program does not admit a complete
well-founded model (it can have zero or more stable models).

In the first case, the computation of TP operator fixpoint is performed, and
the resulting interpretation is the only stable model. The computation of the
fixpoint uses similar techniques to the CSP-based computation of the applicable
rule, and it makes use of a dependency graph in order to select the rules to
activate during the fixpoint.

In the second case, the idea of alternating fixpoint [25] is coded in Prolog. The
implementation boils down to controlling the alternating fixpoint computation
and to encode the TP,J operator (see e.g., [25]). Once again, similar CSPs to
applicable rule computations are added in order to compute the TP,J operators.

In the third case, the GASP-computation is launched starting from that model.
Instead of starting from an empty model, literals that are necessarily true and
false respectively in each stable model are included in the starting model and
lesser application of rules are required.

The GASP-computation is implemented through a chronological backtracking
search where choice points contain the option whether to apply an applicable
rule or not. The key ingredients of the main loop are: the computation of an
extension of the TP operator fixpoint, the handling of some specific cardinality
constraint and the implementation of some rule-based propagators.

In Figure 1, we summarize in pseudocode the algorithm. Each applicable rule
represents a non-deterministic choice in the computation of a stable model. The
computation explores the first of these choices (line 4), and acts depending on
the head a of the rule. In case the head is a cardinality constraint (we currently
support exactly one, but this can be extended in the future), a non-deterministic
assignment is added to the model, where one literal out of the possible candidates
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(1) rec search(P,I)

(2) R = applicable rules(I)

(3) if (R = ∅ and I is a model) output: I is a stable model

(4) else select a ← body+,not body− ∈ R
(5) if (a = 1{...}1)
(6) ND-choice: I = 〈assignment, body−〉 ∪ I

(7) I = fixpoint(propagation(P,TP (P ∪(〈∅, body−〉 ∪ I))))

(8) else

(9) ( I = 〈{a}, body−〉 ∪ I,

(10) I = fixpoint(propagation(P,TP (P ∪(〈∅, body−〉∪I))))
(11) OR (Non-deterministic)

(12) P= P ∪{← body−},
(13) I = fixpoint(propagation(P,TP (P∪I))))
(14) if (I not failed) rec search(P,I)

Fig. 1. The answer set computation

is added to I+ and all the remaining to I− (line 6). After the assignment, a
fixpoint over the computation of TP and propagators is performed before entering
the recursive call. The propagation phase will be discussed in the next section.

If the head is a normal literal (line 9) then a non-deterministic choice is opened
(lines 9 or 12). In the first part, the rule is applied and thus a and body− are
added to I. After the fixpoint (line 10) the recursive call (line 14) is performed.
In the second part, we consider the case in which the rule is never chosen in the
subtree and to ensure this a new integrity constraint is added to the program
(line 12). After the fixpoint the recursive call is made.

Let us recall that every time the local grounding in invoked, a CSP is built.
We believe that the enhancement of this step (e.g., building CSPs less often
and/or incremental CSP) could reduce the search time significantly. In line 14
“I not failed” means that I+ ∩ I− �= ∅.

The process may encounter a contradiction while adding new facts to the inter-
pretation, and consequently the computation may encounter failures. Whenever
there are no more applicable rules, a leaf in the search tree is reached (line 3)
and the corresponding stable model is obtained (convergence property).

From the implementation point of view, it turns out that computing well-
founded models at every non-deterministic application of a rule is time consum-
ing. In particular, the computation of the extension of P with new facts from
the positive interpretation is inefficient.

To gain efficiency, we substitute the call to the well-founded computation with
a variant of the TP operator. The extension of TP to ASP considers rules where
body+ ∈ I+ and body− ∈ I−. The TP operator adds new positive atoms as stated
by the head of the rule. Using well-founded computation involves the alternating
fixpoint procedure which is not efficient enough to be included at each level of
the search. The combination of TP fixpoint and our propagators provide better
results. In future work we plan to improve the well-founded model computation
algorithm and to use it in place of the TP fixpoint.
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4.4 Non-ground Propagation

A propagation step is launched before each leaf expansion, in order to deduce
additional literals that can be safely introduced in the current interpretation and
that neither TP nor well-founded fixpoints are able to infer.

The ideas presented below represent a generalization of some of the techniques
that drive the search in Smodels. In particular, we deal with non-ground rules
and therefore we introduce a CSP-based analysis similar to the computation
of the applicability of rules. The resolution of the CSP is designed to avoid
the complete grounding of the rules involved. We address three settings where
negative literals can be deduced: inferring a literal that appears (i) in the body,
(ii) in the head and (iii) in a cardinality constraint in the head.

Let I = 〈I+, I−〉 be the current model, R be a non-ground ASP rule of the
form head(R) : −body+(R),not body−(R) and R′ a grounding of R.

The case (i) applies when there exists a grounding R′ such that head(R′) ∈ I−.
In this case the rule R′ should not become applicable, otherwise head(R′) would
be added in I+ and generate a failure. We consider the specific situation in
which body(R′) is completely satisfied except for exactly one undetermined literal
l ∈ body+ (l �∈ I+ ∪ I−). To prevent the rule R′ to fire, the literal l is added to
I−.

The case (ii) applies when it is possible to deduce that an undetermined literal
l �∈ I+ ∪ I− may not be introduced in I+ in any subsequent computation. The
(ground) literal l can be introduced in I+ only if there is at least one (potentially)
applicable rule R′ such that head(R′) = l. If some literals p ∈ body(R′) are
undetermined, we assume that they can potentially contribute to satisfy the
body: i.e., if p ∈ body+(R′) then p is assumed to be true and if p ∈ body−(R′)
then p is assumed to be false. If there is no such rule R′ then the literal l can be
safely added to I−.

The case (iii) applies when a positive ground literal in I+ and the predicate
matches the cardinality constraint (1{...}1) in the head of an applicable rule. In
this case, every other literal in the same range can be safely set to false.

Note that the inference of positive literals is possible as well, however they
can not be introduced in the model, unless a test for unfoundedness is performed
(they must be supported by some chains of applicable rules). We plan as future
work to investigate this kind of propagation that resembles a mixed top-down
approach in the computation of stable models.

5 Experiments

The prototype implementing the ideas described above and all the tests de-
scribed in this section are available at www.dimi.uniud.it/dovier/GASP. The
prototype has been developed using SICStus Prolog 4.0 (www.sics.se/isl/
sicstuswww/site/), chosen for its rich library of FDSET primitives. Although
faster constraint solvers are available (e.g., Gecode), we prefer to stay in the
realm of declarative programming.

www.dimi.uniud.it/dovier/GASP
www.sics.se/isl/sicstuswww/site/
www.sics.se/isl/sicstuswww/site/
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Table 1. Timings. ‘-’ means that computation was killed after 24 hours

Test Param Lparse Smodels Clasp GASP

non wf graph 40 4.035 0.735 1.720 1.82
(all sol) 80 29.824 6.874 7.8 13.55

160 235.039 61.568 45.6 120.81
320 1,885 - - 1,380.77

Send More Money (all) none 55.69 0.01 0.01 3.43
Queens 22 0.310 172.5 0.05 0.62

(1st sol) 23 0.360 395.9 0.06 1.68
24 0.415 220.0 0.08 1.20
25 0.464 2,067.0 0.09 8.38

Squares (19,7) 1.76 2.99 0.17 1.43
(1st sol) (6,24) 88 371.71 17.37 0.49

(6,45) 1,140 - - 1.48
p2 100 0.84 0.286 .200 0.75

(all sol) 200 3.346 1.172 1.45 3.00
300 8.338 2.691 5.54 7.72
400 13.242 4.819 15.27 14.81

We performed some preliminary experiments, using different classes of ASP
programs, and we report the execution times in Table 1. All the experiments
have been performed on an AMD Opteron 2.2 GHz Linux Machine. For the
ASP tests, we used Lparse 1.1.5, Smodels 2.33 (www.tcs.hut.fi/Software/
smodels/), Clasp 1.1.0 (www.cs.uni-potsdam.de/clasp) and ASPeRiX 0.1
(http://www.info.univ-angers.fr/pub/claire/asperix/).

In Table 1 we report on the benchmarks we run to compare the performances
of GASP and Lparse+Smodels and Lparse+Clasp. Times are in seconds.

The first set of benchmarks (non wf graph) is based on a non well-founded
program inspired by a graph problem, where the parameter determines the size
of the graph. The program admits two distinct stable models and basically com-
putes a transitive closure h of a binary predicate p, then add the predicate r:
r(X,Y ) :- h(X,Y ),not p(X,Y ) . Depending on the stable model, the predi-
cate p is slightly modified. The preliminary computation of well-founded model
returns a sub-model and the non-deterministic GASP computation procedure
must be used. The grounding time (and size of the program—with q = 320
the file is 1.9GB) are not negligible. However, in large instances GASP outper-
forms Lparse+Smodels and Lparse+Clasp even removing the time spent
for grounding.

The second benchmark is the classical Send + More = Money problem, coded
with ASP. Here constraint propagation performed by CLP in GASP is the key
for solving the problem efficiently. Compared to Lparse, it is interesting to note
that even if the size of the ground program is small (53K and 1300 rules), it
takes almost a minute to produce the file.

www.tcs.hut.fi/Software/smodels/
www.tcs.hut.fi/Software/smodels/
www.cs.uni-potsdam.de/clasp
http://www.info.univ-angers.fr/pub/claire/asperix/
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Table 2. GASP and ASPeRiX

Test Param GASP ASPeRiX GASP nodes ASPeRiX nodes
p2 100 0.75 0.22 0 10,000

(all sol) 200 3.00 1.20 0 40,000
300 7.72 3.53 0 90,000
400 14.81 7.92 0 160,000

non wf graph 40 1.82 0.096 2 1
(all sol) 80 13.55 0.671 2 1

160 120.81 5.315 2 1
320 1,380.77 42.918 2 1

The third set of benchmarks is the N queens problem. Here, GASP outperforms
Smodels, while the performances of Clasp are only biased by the grounding
time.

The fourth set is taken from the CSPLIB (www.csplib.org). The problem
# 9 is the perfect square placement problem, where a set of non-overlapping
squares must be placed inside a larger square. We designed 3 test sets, where
(N,S) indicates the number N of squares and S the master side: the set (19,7)
contains 1 square (side 4), 5 squares (side 2) and 13 squares (side 1); the set
(6,24) contains 1 square (side 16) and 5 squares (side 8); the set (6,45) contains
1 square (side 30) and 5 squares (side 15). In this test, the performances of
GASP are impressive, since the non-ground computation takes advantage of
FD constraint solving during the search. The time spent by Lparse increases
dramatically with the size of the master square as well as the size of the ground
program (for (6,24) we have 71MB and 3.5M rules, for (6,45) 945MB and 44M
rules), thus making it impossible for the solvers to find a solution.

Finally we included last test p2 taken from [11] and used by authors to prove
the effectiveness of ASPeRiX in a case with large grounding when one is inter-
ested in a single solution. The program admits a stable model that contains a
complete graph of a number of nodes that is provided as parameter. We can see
that the GASP is capable of finding the solutions in the time needed to ground
the program. Note that the ground program for 400 nodes has 22MB of size and
contains 880K rules.

In Table 2 we compare the performances of GASP and ASPeRiX on programs
that are supported by the latter (ASPeRiX does not support cardinality con-
straints). Since the approach is similar, we can compare the size of the search
trees (number of choice points nodes). For the time comparisons, recall that
ASPeRiX has a C++ implementation, while GASP is written in Prolog.

In the p2 program, despite the penalty for running into a Prolog environment,
GASP timings are comparable and linearly scaled to ASPeRiX. Moreover, the
rule-based propagators of GASP are able to reduce the search tree to a single
node, while ASPeRiX develops a quadratic sized tree. On the other hand, the
pruning of the tree in GASP represents the principal cost of the search.

In the second test (non wf graph), GASP is much slower than ASPeRiX, sug-
gesting that the propagators used by GASP perform unnecessary work. This issue

www.csplib.org
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will be considered in future work. In the current implementation, when propaga-
tion is performed, CSPs are built on the current interpretation and they ignore
the partial work performed in previous runs. Considering incremental versions
of these CSPs could save the largest fraction of time currently used.

6 Conclusions

In this paper, we provided the foundation for a bottom-up construction of stable
models of a program P without preliminary program grounding. The notion of
GASP-computation has been introduced; this model does not rely on the explicit
grounding of the program. Instead, the grounding is local and performed on-
demand during the computation of the answer sets. The GASP language handles
cardinality constraints and arithmetic constraints that can be implemented in
a non-ground fashion and provide significant enhancements in the computation.
We believe this approach can provide an effective avenue to achieve greater
efficiency in space and time w.r.t. a complete program grounding.

We illustrated our Prolog implementation of GASP using CSP on FD variables
and FDSETs. The performances of GASP show that, notwithstanding the Prolog
overhead and naive data structures used, the computations are comparable and
often better than traditional ground-based approaches.

We plan to investigate how to handle incremental CSPs in order to save
redundant work, to reimplement efficiently the well-founded computation and
include it in the main loop, to study a mixed goal-driven resolution (top-down
approach) that should guide the non-deterministic choices.
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and IIS0812267. We really thank Andrea Formisano for the several useful dis-
cussions.

References

1. Babovich, Y., Maratea, M.: Cmodels-2: SAT-based Answer Sets Solver Enhanced
to Non-tight Programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS,
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Abstract. We extend to disjunctive logic programs our previous work
on computing loop formulas of loops with at most one external support.
We show that for these logic programs, loop formulas of loops with no
external support can be computed in polynomial time, and if the given
program has no constraints, an iterative procedure based on these for-
mulas, the program completion, and unit propagation computes the least
fixed point of a simplification operator used by DLV. We also relate loops
with no external supports to the unfounded sets and the well-founded
semantics of disjunctive logic programs by Wang and Zhou. However, the
problem of computing loop formulas of loops with at most one external
support rule is NP-hard for disjunctive logic programs. We thus propose
a polynomial algorithm for computing some of these loop formulas, and
show experimentally that this polynomial approximation algorithm can
be effective in practice.

1 Introduction

This paper is about Answer Set Programming (ASP) where the main compu-
tational task is to compute the answer sets of a logic program. In this context,
consequences of a logic program, those that are true in all answer sets, are of
interest as they can be used to simplify the given program and help computing
its answer sets. The best known example is the well-founded model for normal
logic programs, which always exists and can be computed efficiently. All literals
in the well-founded model are consequences, and in all current ASP solvers, a
logic program is first simplified by its well-founded model. A natural question
then is whether there are other consequences of a logic program that can be
computed efficiently and used to simplify the given logic program. Motivated by
this, Chen et al. [1] proposed an iterative procedure of computing consequences
of a non-disjunctive logic program based on unit propagation, the program’s
completion and its loop formulas. They showed that when restricted to loops
with no external support, their procedure basically computes the well-founded
model. They also considered using loops with at most one external support, and
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showed that the loop formulas of these loops can be computed in polynomial
time.

In this paper, we consider extending this work to disjunctive logic programs.
As expected, loops with no external supports are closely related to well-founded
models and greatest unfounded sets in disjunctive logic programs as well. How-
ever, many other issues are more complicated in disjunctive logic programs. In
particular, the problem of computing the loop formulas of loops with at most
one external support rule is NP-hard.

This paper is organized as follows. We briefly review the basic notions of
logic programming in the next section. We then define loops with at most one
external support rule under a given set of literals, and consider how to compute
their loop formulas. We then consider how to use these loop formulas to derive
consequences of a disjunctive logic program using unit propagation, and discuss
related work, especially the greatest unfounded sets, the pre-processing step in
DLV, and the well-founded semantics for disjunctive logic programs proposed by
Wang and Zhou [2].

2 Preliminaries

In this paper, we consider only fully grounded finite disjunctive logic programs.
A disjunctive logic program is a finite set of (disjunctive) rules of the form

a1 ∨ · · · ∨ ak ← ak+1, . . . , am, not am+1, . . . , not an, (1)

where n ≥ m ≥ k ≥ 0 and a1, . . . , an are atoms. If k = 0, then this rule is called
a constraint, if k �= 0, it is a proper rule, and if k = 1, it is a normal rule. In
particular, a normal logic program is a finite set of constraints and normal rules.

We will also write rule r of form (1) as

head(r) ← body(r), (2)

where head(r) is a1∨· · ·∨ak, body(r) = body+(r)∧body−(r), body+(r) is ak+1∧
· · · ∧ am, and body−(r) is ¬am+1 ∧ · · · ∧ ¬an, and we identify head(r), body+(r),
body−(r) with their corresponding sets of atoms, and body(r) the set { ak+1, . . . ,
am,¬am+1, . . . ,¬an } of literals obtained from the body of the rule with “not”
replaced by “¬”.

Given a disjunctive logic program P , we denote by Atoms(P ) the set of atoms
in it, and Lit(P ) the set of literals constructed from Atoms(P ):

Lit(P ) = Atoms(P ) ∪ {¬a | a ∈ Atoms(P )}.

Given a literal l, the complement of l, written l̄ below, is ¬a if l is a and a if l
is ¬a, where a is an atom. For a set L of literals, we let L = { l̄ | l ∈ L }.

2.1 Answer Sets

The answer sets of a disjunctive logic program is defined as in [3]. Given a
disjunctive logic program P and a set S of atoms, the Gelfond-Lifschitz trans-
formation of P on S, written PS , is obtained from P by deleting:
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1. each rule that has a formula not p in its body with p ∈ S, and
2. all formulas of the form not p in the bodies of the remaining rules.

Clearly for any S, PS is the set of rules without any negative literals, so that PS

has a set of minimal models, denoted by ΓP (S). Now a set S of atoms is an
answer set of P iff S ∈ ΓP (S).

2.2 Completions

The completion of a disjunctive logic program P [4], Comp(P ), is defined to be
the set of propositional formulas that consists of the implication

body(r) ⊃ head(r), (3)

for every rule r in P , and the implication

a ⊃
∨

r∈P, a∈head(r)

⎛
⎝body(r) ∧

∧
p∈head(r)\{a}

¬p

⎞
⎠ , (4)

for each atom a ∈ Atoms(P ). Note that, if P is a normal logic program without
constraints, Comp(P ) is equivalent to the Clark’s completion of P [5].

We will convert the completion into a set of clauses, and use unit propagation
as the inference rule. Since unit propagation is not logically complete, it matters
how we transform the formulas in the completion into clauses. In the following,
let comp(P ) be the set of following clauses:

1. for each a ∈ Atoms(P ), if there is no rule in P with a in its head, then
add ¬a;

2. if r is not a constraint, then add head(r) ∨
∨

body(r);
3. if r is a constraint, then add the clause

∨
body(r);

4. if a is an atom and r1, . . . , rt, t > 0, are all the rules in P with a in their heads,
then introduce t new variables v1, . . . , vt, and add the following clauses:

¬a ∨ v1 ∨ · · · ∨ vt,

vi ∨
∨

body(ri) ∨
∨

p∈head(ri)\{a}
p, for each 1 ≤ i ≤ t,

¬vi ∨ l, for each l ∈ body(ri) ∪ head(ri) \ {a} and 1 ≤ i ≤ t.

2.3 Loops and Loop Formulas

We now briefly review the notions of loops and loop formulas in disjunctive
logic programs [4]. Given a disjunctive logic program P , the positive dependency
graph of P , written GP , is the directed graph whose vertices are atoms in P ,
and there is an arc from p to q if there is a rule r ∈ P such that p ∈ head(r)
and q ∈ body+(r). A set L of atoms is said to be a loop of P if for any p and q
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in L, there is a non-empty path from p to q in GP such that all the vertices in
the path are in L, i.e. the L-induced subgraph of GP is strongly connected.

Given a loop L, a rule r is an external support of L if head(r) ∩ L �= ∅ and
L∩body+(r) = ∅. In the following, let R−(L) be the set of external support rules
of L. Then the loop formula of L under P , written LF (L,P ), is the following
implication

∨
p∈L

p ⊃
∨

r∈R−(L)

⎛
⎝body(r) ∧

∧
q∈head(r)\L

¬q

⎞
⎠ . (5)

2.4 Unfounded Sets

The notion of unfounded sets for normal logic programs, which provide the basis
for negative conclusions in the well-founded semantics [6], has been extended to
disjunctive logic programs [7].

Let P be a disjunctive logic program, A be a set of literals. A set of atoms X
is an unfounded set for P w.r.t. A if, for each a ∈ X , for each rule r ∈ P such
that a ∈ head(r), at least one of the following conditions holds:

1. A ∩ body(r) �= ∅, that is, the body of r is false w.r.t. A.
2. body+(r) ∩X �= ∅, that is, some positive body literal belongs to X .
3. (head(r) \ X) ∩ A �= ∅, that is, an atom in the head of r, distinct from

elements in X , is true w.r.t. A.

Note that if P is a normal logic program, unfounded sets defined here coincide
with the definition given for normal logic programs in [6]. For normal logic
programs, the union of all unfounded sets w.r.t. A is also an unfounded set
w.r.t. A (called the greatest unfounded set). But this is not generally true for
disjunctive logic programs, thus for some disjunctive logic program P and set
of literals A, the union of two unfounded sets is not an unfounded set and the
greatest unfounded set of P w.r.t. A does not exist. From Proposition 3.7 in [7],
the greatest unfounded set exists for any P if A is unfounded-free. Formally, a
set of literals A is unfounded-free for a disjunctive logic program P , if A∩X = ∅
for each unfounded set X for P w.r.t. A. If A is unfounded-free for P , then the
greatest unfounded set exists. In the following, we use GUSP (A) to denote the
greatest unfounded set for P w.r.t. A.

Loops and unfounded sets are closely related [8,9]. In this paper, we show that
the greatest unfounded sets (if exist) can be computed from loops that have no
external support rules.

2.5 Unit Propagation

We use unit propagation as the inference rule for deriving consequences from the
completion and loop formulas of a logic program. Given a set Γ of clauses, we
let UP (Γ ) be the set of literals that can be derived from Γ by unit propagation.
Formally, it can be defined as follows:
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Function UP (Γ )
if (∅ ∈ Γ ) then return Lit;
A := unit clause(Γ );
if A is inconsistent then return Lit;
if A �= ∅ then return A ∪ UP (assign(A,Γ )) else return ∅;

where unit clause(Γ ) returns the union of all unit clauses in Γ , and assign(A,Γ )
is { c | for some c′ ∈ Γ, c′ ∩A = ∅, and c = c′ \A }.

3 Loops with at Most One External Support

The basic theorem about loop formulas says that a set of atoms is an answer
set of a logic program iff it is a model of the program’s completion and loop
formulas1. This is the case for normal logic programs [10] as well as disjunctive
logic programs [4]. This means that a sentence is a consequence of a logic program
iff it is a logical consequence of the program’s completion and loop formulas.
The problem is that logical entailment in propositional logic is coNP-complete,
and that in the worst case, there may be an infinite number of loops and loop
formulas. In [1], Chen et al. considered using unit propagation as the inference
rule, and some special classes of loops whose loop formulas can be computed
efficiently. In general terms, their procedure is as follows:

Input: a logic program P .
1. Initialize U = ∅, and convert Comp(P ) to a set C of clauses.
2. Based on U , compute a set of loop formulas, and convert them into a set L

of loop formulas.
3. Let K = {ϕ | U ∪ C ∪ L �P ϕ}, where �P is a sound inference rule in

propositional logic (such as unit propagation).
4. If K \ U = ∅, then return K, else let U = K and go back to step 2.

They showed that when �P is unit propagation, and the class of loops under U
is those that have no external support under U , then the above procedure ba-
sically computes the well-founded model for normal logic programs. They also
considered loops with at most one external support and showed that their loop
formulas can be computed efficiently.

Our main objectives are to extend these results to disjunctive logic programs.
We consider first these loops can be computed in disjunctive logic programs.

3.1 Loops with No External Support

It is easy to see that if a loop L has no external support rules, i.e. R−(L) = ∅,
then its loop formula (5) is equivalent to

∧
p∈L ¬p, if L has only one external

support rule, i.e. R−(L) = {r}, then its loop formulas (5) is equivalent to

∧
p∈L

¬p ∨

⎛
⎝body(r) ∧

∧
q∈head(r)\L

¬q

⎞
⎠ ,

1 Or the program and its loop formulas if singletons are always considered loops.
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which is equivalent to a set of binary clauses.
More generally, if we already know that A is a set of literals that are true

in all answer sets, then for any loop L that has at most one external support
rule whose body is active under A w.r.t. L, its loop formula is still equivalent
to either a set of literals or a set of binary clauses under A. A rule r is active
under A w.r.t. L if A ∩ body(r) = ∅ and A ∩ (head(r) \ L) = ∅.

Thus we extend the notion of external support rules, and have it conditioned
on a given set of literals. Let P be a disjunctive logic program, and A a set of
literals. We say that a rule r is an external support rule of L under A if r ∈ R−(L)
is active under A w.r.t. L. In the following, we denote by R−(L,A) the set of
external support rules of L under A. Note that if P is a normal logic program,
R−(L,A) defined here coincides with the same notion defined in [1].

Now given a disjunctive logic program P and a set A of literals, let

loop0(P,A) = {L | L is a loop of P such that R−(L,A) = ∅ },
floop0(P,A) = {¬a | a ∈ L for a loop L ∈ loop0(P,A) }.

Then loop0(P,A) is the set of loops that do not have any external support rules
under A, and floop0(P,A) is equivalent to the set of loop formulas of these loops.
In particular, the set of loop formulas of loops without any external support rules
is equivalent to floop0(P, ∅).

We now consider how to compute floop0(P,A). For normal logic programs,
Chen et al. showed that floop0(P,A) can be computed in quadratic time. How-
ever, for disjunctive logic programs, the problem is NP-hard in the general case.

Proposition 1. Given a disjunctive logic program P , a set A of literals, and an
atom a, deciding whether ¬a ∈ floop0(P,A) is NP-complete.

Fortunately, if the set A is unfounded-free2, then floop0(P,A) can be computed
in quadratic time. As we shall see, this restriction is enough for computing
consequences of a logic program using the procedure outlined above when �P is
unit propagation and the class of loops is that of loops without external support.

Our algorithm below for computing floop0(P,A) is similar to the correspond-
ing one in [1], and is through maximal loops.

Let ml0(P,A) be the set of maximal loops that do not have any exter-
nal support rules under A: a loop is in ml0(P,A) if it is a loop of P such
that R−(L,A) = ∅, and there does not exist any other such loop L′ such
that L ⊂ L′. Clearly,

floop0(P,A) =
⋃

L∈ml0(P,A)

L.

If P is a normal logic program, loops in ml0(P,A) are pair-wise disjoint [1]. For
disjunctive logic programs the property is not true in general, thus the reason
that floop0(P,A) is intractable. However, if A is unfounded-free, then loops
in ml0(P,A) are pair-wise disjoint. This follows from the following proposition:

2 Recall that A is unfounded-free if A∩X = ∅ for each unfounded set X of P w.r.t. A.



136 X. Chen, J. Ji, and F. Lin

Proposition 2. Let P be a disjunctive logic program, A be a set of literals such
that A ∩ (L1 ∪ L2) = ∅. If L1 and L2 are two loops of P that do not have any
external support rules under A, and L1 ∩ L2 �= ∅, then L1 ∪ L2 is also a loop
of P that does not have any external support rules under A.

The following example shows that the condition A∩(L1∪L2) = ∅ in Proposition 2
is necessary.

Example 1. Consider the following disjunctive logic program P :

a ∨ b ∨ c ← . a ← b, c. b ← a. c ← a.

Let A = {b, c}, L1 = {a, b} and L2 = {a, c}. L1 and L2 are belong to loop0(P,A),
but L1 ∪ L2 = {a, b, c} is a loop of P that has one external support under A.

Now consider the following algorithm:

Function ML0(P,A, S): P a program, A and S sets of literals of P
ML := ∅; G := the S induced subgraph of GP ;
For each strongly connected component L of G:

if R−(L,A) = ∅ then add L to ML
else append ML0(P,A,L \

⋃
r∈R−(L,A) H(r, A)) to ML.

return ML,

where GP is the positive dependency graph of P , and

H(r, A) =
{
head(r) if head(r) ∩A = ∅
head(r) ∩A if head(r) ∩A �= ∅.

Theorem 1. Let P be a disjunctive logic program, A and S sets of literals in P .

1. The function ML0(P,A, S) runs in O(n2), where n is the size of P as a set.
2. ML0(P,A,Atoms(P )) ⊆ loop0(P,A).
3. If A is unfounded-free, then ML0(P,A,Atoms(P )) = ml0(P,A).

3.2 Loops with at Most One External Support

Similarly, we can consider the set of loops that have exactly one external support
rule under a set A of literals, and the set of loop formulas of these loops:

loop1(P,A) = {L | L is a loop of P such that R−(L,A) = {r} },
floop1(P,A) = {¬a ∨ l | a ∈ L, l ∈ body(r) ∪ head(r) \ L, for some loop L and

rule r such that R−(L,A) = {r} }.

In particular, floop1(P, ∅) is equivalent to the set of loop formulas of the loops
that have exactly one external support rule in P .

Like floop0(P,A), floop1(P,A) is intractable.
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Proposition 3. Given a disjunctive logic program P , a set A of literals, an
atom a, and a literal l, deciding whether ¬a ∨ l ∈ floop1(P,A) is NP-complete.

While there is a polynomial algorithm for computing floop0(P,A) when A is
unfounded-free, this is not the case for floop1(P,A). Proposition 3 holds even
when we restrict A to be unfounded-free.

Notice that for normal logic programs, the complexity of floop1(P,A) is left
as an open question in [1]. Instead, a polynomial algorithm is proposed for com-
puting floop0(P,A)∪floop1(P,A)3 which corresponds to the set of loop formulas
of loops with at most one external support [1]. For disjunctive logic programs,
floop0(P,A) ∪ floop1(P,A) is still intractable even when A is unfounded-free4.

Given this negative results about computing loop formulas of loops with at
most one external support in disjunctive logic programs, we turn our atten-
tion to polynomial algorithms that can compute as many loop formulas from
floop0(P,A) ∪ floop1(P,A) as possible. We propose one such approximation al-
gorithm below. It is based on the observation that if a loop has one external
support rule, then it often has no external support when this rule is deleted.
This would reduce the problem of computing loops with one external support
rule to that of loops with no external support, and for the latter we can use the
function ML0(P,A, S) when A is unfounded-free (Theorem 1).

Proposition 4. For any disjunctive logic program P and a set A of literals that
is unfounded-free for P . floop0(P,A) and floop1(P,A) imply the following theory

⋃
A∩body(r)=∅,L∈ML0(P\{r},A,Atoms(P\{r}))

{¬a∨l | a ∈ L, l ∈ body(r)∪head(r) \ L}.

(6)

In the following, we use fLoop1(P,A) to denote (6). According to Proposition 2
of [1], if P is a normal logic program, then floop0(P,A)∪floop1(P,A) is equivalent
to floop0(P,A)∪fLoop1(P,A) for any A. However, for disjunctive logic programs,
this two theories are not equivalent, even when A is unfounded-free, as the
following example illustrates.

Example 2. Consider the following logic program P :

a ∨ b ∨ c ← d. a ← b, c. b ← a. c ← b.

Let A = ∅, loop1(P,A) = { {a, b, c}, {a, b} }, both loops have one external support
rule: a ∨ b ∨ c ← d, thus ¬a ∨ ¬c,¬b ∨ ¬c ∈ floop1(P,A), but they can not be
computed from fLoop1(P,A).
3 Not exactly this set, but floop0(P, A) ∪ fLoop1(P, A), which is logically equivalent

to floop0(P, A) ∪ floop1(P, A), and especially UP (floop0(P, A) ∪ fLoop1(P, A)) =
UP (floop0(P, A) ∪ floop1(P, A)).

4 For normal logic programs, we need to compute T (P, A), we show that
floop0(P, A) ⊃ (floop1(P, A) ≡ fLoop1(P, A)) and furthermore UP (floop0(P, A) ∪
floop1(P, A)) = UP (floop0(P, A) ∪ fLoop1(P, A)). For disjunctive logic programs,
deciding whether a literal l ∈ T (P,A) or even l ∈ UP (floop0(P, A) ∪ floop1(P, A)),
A is unfounded-free, is NP-hard.
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So to summarize, while we can not efficiently compute floop0(P,A)∪floop1(P,A),
we can compute floop0(P,A) ∪ fLoop1(P,A) which is still helpful for comput-
ing consequences of a logic program. To compute floop0(P,A) ∪ fLoop1(P,A),
we first call ML0(P,A,Atoms(P )), and then for each proper rule r ∈ P such
that A ∩ body(r) = ∅, we call ML0(P \ {r}, A,Atoms(P \ {r})). The worse case
complexity of this procedure is O(n3), where n is the size of P .

4 Computing Consequences of a Program

Let’s now return to the iterative procedure given in the beginning of last section.
When �P is unit propagation UP , and the loop formulas are those from ML0
(maximal loops with no external support), it becomes the following one:

Function T0(P ) - P is a disjunctive logic program;
X := ∅; Y := comp(P ) ∪ {loop formulas of loops in ML0(P, ∅, Atoms(P ))};
while X �= UP (Y ) do

X := UP (Y ); Y := Y ∪{loop formulas of loops in ML0(P,X,Atoms(P ))};
return X ∩ Lit(P ).

Clearly T0(P ) runs in polynomial time and returns a set of consequences of P . It
is also easy to see that at each iteration, the set X computed by the procedure is
also a set of consequences of P . Thus by the following proposition and Theorem 1,
if P has at least one answer set, then at each iteration, the set of literals added
to Y , {loop formulas of loops in ML0(P,X,Atoms(P ))}, equals to floop0(P,X),
the set of loop formulas with no external support under X .

Proposition 5. Let P be a disjunctive logic program that has an answer set. If
A is a set of literals that are consequences of P , then A is unfounded-free for P .

Similarly, using floop0(P,A) ∪ floop1(P,A), we get the following procedure:

Function T 1(P ) - P is a disjunctive logic program;
Y := comp(P ) ∪ floop0(P, ∅) ∪ floop1(P, ∅); X := ∅;
while X �= UP (Y ) do

X := UP (Y ); Y := Y ∪ floop0(P,X) ∪ floop1(P,X);
return X ∩ Lit(P ).

Again it is easy to see that at each iteration, X is a set of consequences of P , and
in particular, T 1(P ) returns a set of consequences of P . As we have shown in the
last section, even for unfounded-free A, computing floop0(P,X) ∪ floop1(P,X)
is intractable. Thus we cannot show that the above procedure is polynomial.
However, this still leaves open the question of whether T 1(P ) can be computed
by some other methods that hopefully can be shown to run in polynomial time.
Unfortunately, this does not seem to be likely as we can show that computing
T 1(P ) is also intractable.

Proposition 6. For any disjunctive logic program P , deciding whether a literal
is in T 1(P ) is NP-hard.
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In the last section, we propose to use fLoop1(P,A) as a polynomial approxi-
mation of floop1(P,A). We can thus make use of this operator:

Function T1(P ) - P is a disjunctive logic program;
Y := comp(P ) ∪ floop0(P, ∅) ∪ fLoop1(P, ∅); X := ∅;
while X �= UP (Y ) do

X := UP (Y ); Y := Y ∪ floop0(P,X) ∪ fLoop1(P,X);
return X ∩ Lit(P ).

This is the function that we have implemented and used in our experiments. See
Section 6 for details.

5 Related Work

Here we relate our work to the preprocessing procedure in DLV [11] and the
well-founded semantics of disjunctive programs proposed by Wang and Zhou [2].

5.1 DLV Preprocessing Operator

We now show that T0(P ) coincides with the least fixed point of the operator WP
used in DLV for preprocessing a given disjunctive logic program. First, we show
that the greatest unfounded set of a disjunctive logic program (if exists) can be
computed from loop formulas of loops that have no external support rules.

Given a disjunctive logic program P and A a set of literals. The function
M(P,A), the least fixed point of the operator MA

P defined as follows:

loopA
0 (P,X) = { a | there is a loop L of P s.t. a ∈ L and R−(L,A ∪X) = ∅ },

FA
2 (P,X) = { a | a ∈ Atoms(P ) and for all r ∈ P , if a ∈ head(r) then
A ∩ body(r) �= ∅, X ∩ body(r) �= ∅, or (head(r) \ {a}) ∩A �= ∅ },

MA
P (X) = X ∪ loopA

0 (P,X) ∪ FA
2 (P,X).

Theorem 2. For any disjunctive logic program P and any A ⊆ Lit(P ) such
that the greatest unfounded set of P w.r.t. A exists. M(P,A) = GUSP (A).

From the above theorem, we can compute GUSP (A) by M(P,A). We do not yet
know any efficient way of computing loop0(P,A) for any possible A, but if A is
restricted to be unfounded-free, then GUSP (A) always exists, and loopA

0 (P,X) =⋃
L∈ML0(P,A∪X,Atoms(P )) L, which can be computed in polynomial time. Further-

more, FA
2 (P,X) can be computed in linear time. So, if A is unfounded-free, we

have proposed a loop-oriented approach for computing GUSP (A) in polynomial
time. Note that, different from other current approaches, GUSP (A) is computed
directly here, avoiding the computation of the complement of it.

Now we introduce the WP operator proposed in [7].

TP (X) = { a ∈ Atoms(P ) | there is a rule r ∈ P such that a ∈ head(r),
head(r) \ {a} ⊆ X, and body(r) ⊆ X },

WP(X) = TP(X) ∪GUSP (X).
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From Proposition 5.6 in [7], WP has a least fixed point, denoted Wω
P(∅), is

the consequence of the program. Wω
P(∅) can also be computed efficiently, thus it

is considered as a good start point to compute answer sets and is implemented
in DLV.

In the following, a disjunctive logic program P is said to be simplified if for
any r ∈ P , head(r)∩(body+(r)∪body−(r)) = ∅. Notice that any disjunctive logic
program is strongly equivalent to a simplified program: if head(r)∩body+(r) �= ∅,
then {r} is strongly equivalent to the empty set, thus can be safely deleted from
any logic program, and if head(r)∩body−(r) �= ∅, then {r} is strongly equivalent
to {r′} such that head(r′) = head(r)\body−(r) and body(r′) = body(r) (cf. [12]).

The following theorem relates T0(P ) and Wω
P(∅).

Theorem 3. For any disjunctive logic program P , Wω
P(∅) ⊆ T0(P ). If P is

simplified and without constraints, then Wω
P(∅) = T0(P ).

Note that, [7] proved that, if P does not contain constraints, Wω
P(∅) coincides

with the well-founded model of a normal logic program P ′ obtained by “shifting”
some head atoms to the bodies of the rules. Thus, if P is simplified, then T0(P )
coincides with the well-founded model of P ′ as well.

Given a disjunctive logic program P , we denote by sh(P ) the normal program
obtained from P by substituting every rule of form (1) by the k rules

ai ← ak+1, . . . , am, not am+1, . . . , not an, not a1, . . . , not ai−1, not ai+1, . . . , not ak.

(1 ≤ i ≤ k)

It is worth to note that, fLoop1(sh(P ), A) may be not a consequence of a
disjunctive logic program, even when A is unfounded-free for P or sh(P ).

Example 3. Consider the following logic program P :

d ← not e. e ← not d. a ∨ c ← d. a ∨ b ← e.

a ← b. b ← a. ← not a. ← not b.

Clearly, {a, b, d} and {a, b, e} are the only two answer sets of P , {a, b, d} is the
only answer set of sh(P ). Let A = {a, b}, A is unfounded-free for P and sh(P ).
¬a ∨ d ∈ fLoop1(sh(P ), A) which is false for {a, b, e}, thus not a consequence
of P .

A disjunctive logic program P is head-cycle free, if there does not exist a loop L
and a rule r, s.t. a, b ∈ L and a, b ∈ head(r). If P is head-cycle free, then a set
of atoms is an answer of P iff it is an answer set of sh(P ).

Proposition 7. For any head-cycle free disjunctive logic program P and a set A
of literals:

floop0(P,A) = ML0(P,A,Atoms(P )) = ML0(sh(P ), A,Atoms(P )),

fLoop1(P,A) =
⋃

A∩body(r)=∅,L∈ML0(sh(P\{r}),A,Atoms(P ))

{¬a ∨ l | a ∈ L,

l ∈ body(r) ∪ head(r) \ L },
and floop0(P,A) implies that floop1(P,A) is equivalent to fLoop1(P,A).
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5.2 Wang and Zhou’s Well-Founded Semantics for Disjunctive
Logic Programs

It is proved in [1] that T0 computes the well-founded model when the given
normal logic program is simplified and has no constraints. However, there have
been several competing proposals for extending the well-founded semantics to
disjunctive logic programs [7,13,2]. It is interesting that with a slight change of
unit propagation, the procedure computes the same results as the well-founded
semantics proposed in [2]. We now make this precise, first, we give one of the
definitions of the well-founded semantics proposed by Wang and Zhou.

Given a disjunctive logic program P , a positive (negative) disjunction is a dis-
junction of atoms (negative literals) of P . A pure disjunction is either a positive
one or a negative one. If A and B = A∨A′ are two disjunctions, then we say A
is a subdisjunction of B, denoted A ⊆ B. Let S be a set of pure disjunctions,
we say body(r) of r ∈ P is true w.r.t. S, denoted S |= body(r), if body(r) ⊆ S;
body(r) is false w.r.t. S, denoted S |= ¬body(r) if either (1) the complement of a
literal in body(r) is in S or (2) there is a disjunction a1 ∨ · · · ∨ an ∈ S such that
{not a1, . . . , not an } ⊆ body(r).

Now we extend the notion of unfounded set to under a set of pure disjunctions.
Let S be a set of pure disjunctions of a disjunctive logic program P , a set of
atoms X is an unfounded set for P w.r.t. S if, for each a ∈ X , r ∈ P such
that a ∈ head(r), at least one of the following conditions holds:

1. the body of r is false w.r.t. S;
2. there is x ∈ X such that x ∈ body+(r);
3. if S |= body(r), then S |= (head(r)−X). Here (head(r)−X) is the disjunction

obtained from head(r) by removing all atoms in X , S |= (head(r)−X) means
there is a subdisjunction A′ ⊆ (head(r)−X) such that A′ ∈ S.

Note that, if S is just a set of literals, then the above definition is equivalent to
the definition in Preparation. If P has the greatest unfounded set w.r.t. S, we
denote it by UP (S). However, UP (S) may be unfounded for some S.

Now we are ready to define the well-founded operator W ′
P for any disjunctive

logic program P and set of pure disjunctions S:

T ′
P (S) = {A a pure disjunction | there is a rule r ∈ P : A∨a1∨· · ·∨ak ← body(r),
such that S |= body(r) and not a1, . . . , not ak ∈ S },

W ′
P (S) = T ′

P (S) ∪ UP (S).

Note that T ′
P (S) is a set of positive disjunctions rather than a set of atoms.

From [2], the operatorW ′
P always has the least fixed point, denoted by lfp(W ′

P ),
and the well-founded semantics U -WFS is defined as U -WFS(P ) = lft(W ′

P ).
Now we extend T0 to treat about pure disjunctions. First, we extend the

notion floop0(P,A) to under a set of pure disjunctions S.
A rule r is active under S w.r.t. a loop L, if S �|= ¬body(r) and S �|= (head(r)\

L). A rule r is an external support rule of L under S, if r ∈ R−(L) is active
under S w.r.t. L. We use R−(L, S) to denote the set of external support rules
of L under S.
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Given a disjunctive logic program P and a set S of pure disjunctions, let

floop0(P, S) = {¬a | a ∈ L for a loop L of P such that R−(L, S) = ∅ }.

Then floop0(P, S) is equivalent to the set of loop formulas of the loops that do
not have any external support rules under S. Clearly, if S is just a set of literals,
the above definition of floop0 is equivalent to the definition in Section 3.

Now we extend unit propagation to return positive disjunctions. Given a set Γ
of clauses, we use UP ∗ to denote the set of positive disjunctions returned by the
extended unit propagation:

Function UP ∗(Γ )
if (∅ ∈ Γ ) then return Lit;
S := positive clause(Γ );
if S is inconsistent then return Lit;
if S �= ∅ then return S ∪ UP ∗(assign(S, Γ )) else return ∅;

where positve clause(Γ ) returns the union of all positive clauses (disjunctions)
in Γ , let A is the union of all unit clauses in S, then assign(S, Γ ) is { c |
for some c′ ∈ Γ, c′ ∩A = ∅, and c = c′ \A }.

We use the new unit propagation in T0, formally, the procedure computes the
least fixed point of the following operator:

T ∗
0 (P, S) = UP ∗(comp(P ) ∪ S ∪ floop0(P, S)) ∩DB(P ),

where DB(P ) denotes the set of pure disjunctions formed by the literals in Lit(P ).
We use T ∗

0 (P ) to denote such least fixed point.
The following theorem relates U -WFS(P ) and T ∗

0 (P ).

Theorem 4. For any disjunctive logic program P , U -WFS(P ) ⊆ T ∗
0 (P ). If P

is simplified and without constraints, then U -WFS(P ) = T ∗
0 (P ).

6 Some Experimental Results

We have implemented a program that for any given disjunctive logic program P ,
it first computes T1(P ), and then adds {← l̄ | l ∈ T1(P ) } to P .

We tried our program on a number of benchmarks. First, for the disjunc-
tive logic programs at the First Answer Set Programming System Competition,
T1(P ) does not return anything beyond the well-founded model of P . Next we
tried the disjunctive encoding of the Hamiltonian Circuit (HC) problem,5 and
consider graphs with the same structure proposed in [1]. Specifically, we create
some copies of a complete graph, and then randomly add some arcs to con-
nect these copies into a strongly connected graph such that any HC for this
graph must go through these special arcs. None of these “must in” arcs can be
computed using the WP operator, except one of them, others can be computed
from T1(P ), thus adding the corresponding constraints to P should help ASP
solvers in computing the answer sets.
5 From the website of DLV,

http://www.dbai.tuwien.ac.at/proj/dlv/examples/hamcycle



Computing Loops with at Most One External Support Rule 143

Table 1. Run-time Data for cmodels and DLV

Problem cmodels cmodelsT1 DLV DLVT1 T1 Problem cmodels cmodelsT1 DLV DLVT1 T1

10x10.1 58.29 22.01 43.96 1.04 25.65 9x11.1 >1h 24.05 384.83 1.32 25.71
10x10.2 227.52 22.86 43.90 1.04 24.63 9x11.2 >1h 24.04 385.07 1.32 26.34
10x10.3 361.62 21.77 43.09 1.03 24.46 9x11.3 959.18 24.51 389.44 1.34 27.05
10x10.4 447.36 28.98 44.16 1.05 24.50 9x11.4 797.76 23.29 385.89 1.33 26.07
10x10.5 66.62 21.19 1.28 1.05 21.63 9x11.5 1276.01 21.64 391.15 1.33 26.00
10x10.6 344.12 21.20 43.97 1.03 24.92 9x11.6 1339.06 27.19 1.79 1.34 22.76
10x10.7 289.98 21.32 43.78 1.03 24.80 9x11.7 206.85 23.58 386.94 1.31 25.83
10x10.8 508.95 21.63 43.42 1.04 25.45 9x11.8 2803.17 22.89 389.94 1.34 25.85
10x10.9 246.04 20.86 44.11 1.03 24.87 9x11.9 1837.58 20.70 1.79 1.29 26.16
10x10.10 1481.17 20.78 44.24 1.05 25.45 9x11.10 >1h 21.76 385.01 1.34 27.01

Table 1 contains the running times for these programs.6 In this table, MxN.K
stands for a graph with M copies of the complete graph with N nodes: C1, ..., CM ,
and with exactly one arc from Ci to Ci+1 and exactly one arc from Ci+1 to Ci,
for each 1 ≤ i ≤ M (CM+1 is defined to be C1). The extension K stands
for a specific way of adding these arcs. The numbers under “cmodelsT1” and
“DLVT1” refer to the run times (in seconds) of cmodels (version 3.77 [14]) and
DLV (Oct 11 2007 [11]) when the results from T1(P ) are added to the original
program as constraints, and those under “T1” are the run times of our program
for computing T1(P ). As can be seen, information from T1(P ) makes cmodels
and DLV run much faster when looking for an answer set. In addition to cmodels,
we also tried claspD [15], which is very fast on these programs, on average it
returned a solution in a few seconds.

7 Conclusion

We have extended the work of Chen et al. [1] on computing loops with at most
one external support from normal logic programs to disjunctive logic programs.
Our main results are that the set of loop formulas of loops that do not have
any external support under an unfounded-free set of literals can be computed
in polynomial time, and an iterative procedure using these loop formulas, pro-
gram completion and unit propagation outputs the same set of consequences as
computed by the preprocessing step of DLV, and is basically the same as Wang
and Zhou’s well-founded model semantics of disjunctive logic programs. How-
ever, the problem of computing loop formulas of loops with at most one external
support is intractable. As a result, we consider a polynomial time algorithm for
computing some of these loop formulas, and our experimental results show that
this algorithm is sometimes useful for simplifying a disjunctive logic program
beyond that can be done by the preprocessing step of DLV.

For future work, we plan to conduct more experiments with our algorithms
and to consider more effective ways of using consequences of a logic program.
6 Our experiments were done on an AMD Athlon(tm) 64 X2 Dual Core Processor

3600+ and 1GB RAM. The reported times are in CPU seconds as reported by
Linux “/usr/bin/time” command.
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Abstract. Recently, enabling modularity aspects in Answer Set Programming
(ASP) has gained increasing interest to ease the composition of program parts to
an overall program. In this paper, we focus on modular nonmonotonic logic pro-
grams (MLP) under the answer set semantics, whose modules may have contextu-
ally dependent input provided by other modules. Moreover, (mutually) recursive
module calls are allowed. We define a model-theoretic semantics for this extended
setting, show that many desired properties of ordinary logic programming gen-
eralize to our modular ASP, and determine the computational complexity of the
new formalism. We investigate the relationship of modular programs to disjunc-
tive logic programs with well-defined input/output interface (DLP-functions) and
show that they can be embedded into MLPs.

Keywords: Knowledge Representation, Answer Set Programming, Modular
Logic Programming.

1 Introduction

In the recent years, there has been an increasing interest in studying modularity aspects
of Answer Set Programming (ASP), in order to ease the composition of program parts
to an overall program. Since the conception of Splitting Sets [1], which generalize strat-
ification and proved to be a useful tool to decompose programs, a number of approaches
to enhance ASP and LP in general with modularity have been made [2,3,4,5,6,7,8].

However, compared to the area of logic programming (LP) in general (see [4] for
a historic account), the work on modular ASP is still less developed. As in general
LP, there are two directions, namely Programming-in-the-large and Programming-in-
the-small. In the former, compositional operators are provided for combining sepa-
rate and independent modules based on standard semantics. This direction has been
followed, e.g., with answer set programs with Gaifman-Shapiro-style module archi-
tecture [2,3]. Programming-in-the-small aims at enhancing ASP with abstraction and
scoping mechanisms similar as in other programming paradigms. This direction has
been more widely considered, and modular extensions of ASP based on generalized
quantifiers [4], macros [5], and templates [6] have been proposed.

The two directions are quite divergent, as Programming-in-the-large requires to in-
troduce new operators in the language. Modular ASP Programs [4] were an early at-
tempt to narrow the gap between them a bit, using general quantifiers as a device
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to access from one module P1 another module P2 using module atoms of the form
P2[p].q(X) (in slightly different syntax), where p is a list of predicates and q is a pred-
icate; intuitively, the module atom evaluates to true for X if, on input of the values of
the predicates in p to the module P2, the atom q(X) will be concluded by P2 (under
skeptical semantics). For a system P1[q1], . . . , Pn[qn] of such modules, where qi is a
(list of) formal input predicates, answer sets have been defined using a generalization
of the Gelfond-Lifschitz reduct. As it has been shown, the resulting framework is quite
expressive, as it is EXPSPACE-complete in general.

However, the proposal in [4] has limitations and, due to the use of the Gelfond-
Lifschitz reduct, suffers from similar anomalies as answer sets for other extensions of
logic programs defined in this way. As for the former, an important restriction that was
made in [4] is that calls of modules must be acyclic; that is, following the call chain, one
may not return to the same call of a module. In fact, this condition was already imposed
at the syntactic level, and does not allow the use of recursion in modules, which is
a common and natural technique. Also other approaches exclude (mutually) recursive
calls (e.g., disjunctive logic programs with a well-defined input/output interface (DLP-
functions) exclude positive such calls [2]; see also Section 6).

Example 1. Consider the following recursive module P [q/1], which determines wheth-
er a set has an even number of elements:

q′(X) ∨ q′(Y ) ← q(X), q(Y ), X �= Y. skip(X) ← q(X), not q′(X).
odd ← skip(X), P [q′].even . even ← not odd .

Here, q/1 is a (formal) unary input predicate that stores the set. The first two rules in the
top line effect, by stability of answer sets, that q becomes q′ with one element randomly
removed (for which skip is true). In the last line, the left rule determines recursively
whether q stores an odd number of elements, while the right rule defines even as the
complement of odd . Intuitively, if we call P with a predicate p for input, then even
is computed true, which is expressed by P [p].even , if p stores an even number of ele-
ments. Note that P is recursive, and for empty input p it calls itself with the same input
(one can easily rewrite this to mutual recursion between two modules for odd and even).

While a main motivation for the proposal in this paper is to allow for recursive calls
of program modules with input, another objective is to provide a global semantics for a
collection of modules. Comparatively, [4] was more concerned with defining local mod-
els of a single module, by importing conclusions of other modules rather than giving a
model based semantics to a collection P1, . . . , Pn of modules.

Concerning semantics, the use of the Gelfond-Lifschitz reduct effected that local
models were in the same vein as Nash equilibria, viz., that a model is (locally) stable
if assuming that all modules behave in the same way there is no need for the local
program to switch to another model. Specifically, a program P0 consisting of the clause
q ← P1.p[q], where P1[q1] consists of the single clause p ← q1, has two answer sets,
viz., ∅ and {q}. The reason is that q can be concluded in a self-stabilizing way from the
call P1.p[q]; however, arguably ∅ may be considered as the single answer set of P0.

Such behavior can be excluded using alternative reducts, like the Faber-Leone-Pfeifer
(FLP) reduct [9], which has been proposed in the context of ASP with aggregates to en-
sure that answer sets are minimal models. This reduct formed also the basis for defining
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the semantics of HEX-programs [10], which generalized the semantics of logic programs
with generalized quantifiers to the HiLog setting; however, the setting has been module-
centric like [4], and no global semantics for a collection of modules is evident. Moti-
vated by these shortcomings, we reconsider modular ASP and make the following main
contributions.
• We define a model theoretic semantics of a system P1[q1], . . . , Pn[qn] of program
modules, which are divided into one or multiple main modules Pi that have no input
(i.e., qi is void), and library modules which may have input (i.e., qi can be non-void).
Informally, the semantics assigns an answer set to each main module and module in-
stance that is called by the program under a call-by-value mechanism as in [4]; the
answer set must be reproducible from the rules along its recursive computation.

Example 2 (cont’d). In Example 1 above, an answer set for the module instance of
P [q], whose input q stores S = {c1, . . . , cn}, would have q′ storing S1 = S \ {cπ(1)}
and call the instance of P [q] with q storing S1, whose answer set in turn stores S2 =
S1 \ {cπ(2)} = S \ {cπ(1), cπ(2)} in q′, etc., where π is any permutation of {1, . . . , n}.
The value of even and odd in the answer sets of the instances is determined bottom up
from the ground: for the instance of P [q] where q = ∅, q′ and skip are void, and thus
odd must be necessarily false; hence, even is true. On the way back, even and odd are
complemented with their values at the next recursion level.

While a naive definition of the semantics is straightforward, a more difficult question
is to delineate the relevant instances of modules for the computation. Intuitively, many
(instances of) modulesPi[qi] in a library might be completely irrelevant for determining
the semantics of a particular collection of modules, but prevent the existence of a global
semantics if locally, for some input value of qi, the instance has no answer set.

Example 3 (cont’d). Suppose in the module P in Example 1 there would also be a fact
r(a) and a rule ok ← P ′[r].nonempty where the module P ′[q/1] consists of the rules
nonempty ← not nonempty and nonempty ← q(X). Then, an instance P ′ has an
answer set precisely if its input is nonempty. Thus, the call P ′[r].nonempty in the rule
will always lead to an answer set in which nonempty is true, and hence we expect an
answer set for the instance of P with input S. However, as P ′ has for empty input no
answer set, there is no global answer set; intuitively, the instance of P ′ with empty input
is irrelevant, and should not be considered.

To remedy this situation and keep the semantics simple, we use here minimal models
as an approximation of answer sets in module instances that are outside of a context
for which stability of models is strictly required; this context contains always the mod-
ules instances along the call graph of the program; the smaller the context, the more
permissive is the semantics.
• We analyze semantic properties of the approach, and show that many of the desired
properties of ordinary logic programs generalize to our modular ASP. This includes that
the answer sets of a positive modular ASP are its minimal models; that Horn programs
have a model intersection property, and thus a least model, which can be computed by
least fixpoint iteration; that the latter can be extended to stratified programs, which have
a canonical model modulo the relevant part.
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• We characterize the computational complexity of the new formalism. Our
modular ASP programs have the same complexity as ordinary ASP programs if the
modules have no input, i.e., deciding answer set existence is Σp

2 -complete in the propo-
sitional case and NEXPNP-complete in the non-ground (Datalog) case. For programs
with arbitrary inputs, the complexity is exponentially higher, viz. NEXPNP-complete
and 2NEXPNP-complete, respectively; note that EXPSPACE is believed to be strictly
contained in 2NEXPNP. The picture is analogous for deciding membership of an atom
in the least model of a Horn program, which is P-complete resp. EXP-complete with-
out inputs and EXP-complete resp. 2EXP-complete with arbitrary inputs. However, if
the inputs are naturally bounded, then the complexity is the same as in the case without
inputs, and thus as in ordinary ASP.
• We analyze the relationship between our modular ASP programs and DLP-functions,
which are one of the premier formalisms for combining ASP modules. As it turns out,
DLP-functions can be very naturally embedded into our formalism, and vice versa a
fragment of our modular ASP programs can be embedded into DLP functions. Since
our approach admits mutual recursion of calls and also input to modules in terms of call
by value, it can be viewed as a generalization of DLP-functions.

We believe that the approach presented in this paper contributes to modular ASP in
which modules can be used in an unrestricted and natural way for problem solving, and
looping recursion is handled by the very means of logic programming semantics.

2 Modular Nonmonotonic Logic Programs

In this section, we present our framework of modular ASP programs, and define first
syntax and then semantics of such programs. We assume that the reader is familiar with
basic notions of logic programming and the answer set semantics of nonmonotonic
logic programs [11]. The syntax is based on disjunctive logic programs; our modular
logic programs (MLPs) consist of modules as a way to structure logic programs. More-
over, such modules allow for input provided by other modules; it is safe to say that one
module may call other modules and additionally provide input.

We pose no essential restriction on the rules, and modules may mutually call each
other in a recursive way, and, on top of that, provide mutual input. The semantics we
provide for MLPs caters for this situation and is thus not straight-forward. By the very
notion of module input, it is apparent that modules must be instantiated before they
can be “used.” To this end, we delineate contexts of models that carry instantiations of
modules and serve to define answer sets for modular programs. As noted in [4], answer
sets of modular programs based on a Gelfond-Lifschitz-style reduct may be weaker
than those of ordinary logic programs, we thus use the FLP-reduct in order to gain the
desired property of minimality in answer sets.

Syntax of Modular Nonmonotonic Logic Programs. We consider programs in a fun-
ction-free first-order (Datalog) setting (this restriction is not essential from a conceptual
point of view, but convenient for the purposes of this work).

Let V be a vocabulary C, P , X , and M of mutually disjoint sets whose elements
are called constants, predicate, variable, and module names, respectively, where each
p ∈ P has a fixed associated arity n ≥ 0, and each module name in M has a fixed
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associated list q = q1, . . . , qk (k ≥ 0) of predicated names qi ∈ P (the formal input
parameters). Unless stated otherwise, elements from X (resp., C ∪ P) are denoted with
first letter in upper case (resp., lower case).

Elements from C ∪ X are called terms. Ordinary atoms (simply atoms) are of the
form p(t1, . . . , tn), where p ∈ P and t1, . . . , tn are terms; n ≥ 0 is the arity of the
atom. A module atom is of the form

P [p1, . . . , pk].o(t1, . . . , tl) , (1)

where p1, . . . , pk is a list of predicate names pi ∈ P , called module input list, such that
pi has the arity of the formal input parameter qi, o ∈ P is a predicate name with arity l
such that for the list of terms t1, . . . , tl, o(t1, . . . , tl) is an ordinary atom, and P ∈ M
is a module name.

Intuitively, a module atom provides a way for deciding the truth value of a ground
atom o(c) in a program P depending on the extension of a set of input predicates.

A rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βm, notβm+1, . . . , notβn , (2)

where k ≥ 1, m,n ≥ 0, α1, . . . , αk are atoms, and β1, . . . , βn are either atoms or
module atoms. We define H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪B−(r), where
B+(r) = {β1, . . . , βm} and B−(r) = {βm+1, . . . , βn}. If B(r) = ∅ and H(r) �= ∅,
then r is a (disjunctive) fact; r is ordinary, if it contains only ordinary atoms.

We now formally define the syntax of modules.

Definition 1 (module). A module is a pair m = (P [q], R), where P ∈ M with asso-
ciated formal input q, and R is a finite set of rules. It is ordinary, if all rules in R are
ordinary, and ground, if all rules in R are ground. A module m is either a main module
or a library module; if it is a main module, then |q| = 0.

Recall that the formal input q is given by a list of predicate names pi ∈ P . We refer
with R(m) to the rule set of m. When clear from the context, we omit empty [] and
() from (main) modules and module atoms. E.g., the module P [q] in Example 1 is a
library module; further examples are given below.

Based on modules, we define modular logic programs as follows.

Definition 2 (modular logic program). A modular logic program (MLP) P is an n-
tuple of modules

(m1, . . . ,mn) , n ≥ 1, (3)

consisting of at least one main module, where M = {P1, . . . , Pn}. We say that P is
ground, if each module is ground.

Example 4 (cont’d). Suppose that we have besides a module m2 = (P [q], R2), where
R2 is taken from the rules in Example 1, a further module m1 = (Q[], R1), in which

R1 =
{

s(a). s(b). s(c). s(d). s1(X) ∨ s2(X) ← s(X).
ok ← P [s1].even, P [s2].even . ok ← not ok .

}
.

Informally, the disjunctive rule splits the predicate s into two predicates s1 and s2; the
subsequent rules check that they both store sets of even cardinality. Formally, P =
(m1,m2) forms the respective MLP; here, m1 is the (single) main module.
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Example 5. Take an MLP P = (m1,m2,m3), where both m1 = (P1[], {a ← P2.b.}),
m2 = (P2[], {b ← P1.a.}) are main modules, and m3 = (P3[c], {c ← not c.}) is a
library module. Intuitively, m1 and m2 amount to the logic program {a ← b. b ← a.},
while m3 is a simple constraint with formal input c.

Semantics of Modular Nonmonotonic Logic Programs. We now define the seman-
tics of modular logic programs. It is defined in terms of Herbrand interpretations and
grounding as customary in traditional logic programming and ASP.

The Herbrand base w.r.t. vocabulary V , HBV , is the set of all possible ground or-
dinary and module atoms that can be built using C, P and M; if V is implicit from an
MLP P, it is the Herbrand base of P and denoted by HBP. The grounding of a rule
r is the set gr(r) of all ground instances of r w.r.t. C; the grounding of rule set R is
gr(R) =

⋃
r∈R gr(r), and the one of a module m, gr(m), is defined by replacing the

rules in R(m) by gr(R(m)); the grounding of an MLP P is gr(P), which is formed by
grounding each module mi of P.

The semantics of an arbitrary MLP P is given in terms of gr(P).
Let S ⊆ HBP be any set of atoms. For any list of predicate names p = p1, . . . , pk

and q = q1, . . . , qk, we use the notation S|p = {pi(c) ∈ S | i ∈ {1, . . . , k} } and
S|qp = {qi(c) | pi(c) ∈ S, i ∈ {1, . . . , k} }.

Next, we define module instantiations. Therefore, we need to index a module with a
particular, fixed set of input facts it receives, which is termed a value call.

Definition 3 (value call). For a P ∈ M with associated formal input q we say that
P [S] is a value call with input S, where S ⊆ HBP|q . Let VC (P) denote the set of all
value calls P [S] with input S such that P ∈M.1

Instantiating an MLP P is more complex than instantiating R(m) for every module m
of P, since all possible inputs for the modules need to be taken into account, yielding
different sets of ground rules. Rule bases indexed by value calls account for this.

Definition 4 (rule base). A rule base is an (indexed) tuple R = (RP [S] | P [S] ∈
VC (P)) of sets of ground rules RP [S].

Definition 5 (instantiation). For a module mi = (Pi[qi], Ri) from P, its instantiation
with S ⊆ HBP|qi , is IP(Pi[S]) = Ri ∪ S. For an MLP P, its instantiation is the rule
base I(P) = (IP(Pi[S]) | Pi[S] ∈ VC (P)).

Loosely speaking, a module instantiation is given by the rules of the module together
with particular, additional input facts. Intuitively, rule bases collect all possible such
instantiations with all possible inputs, and can be referenced by VC (P).

We next define (Herbrand) interpretations and models of an MLP.

Definition 6 (interpretation). An interpretation M of an MLP P is an (indexed) tuple
(Mi/S | Pi[S] ∈ VC (P)), where all Mi/S ⊆ HBP contain only ordinary atoms.

An interpretation provides an assignment for every module instance, and thus is like-
wise indexed, i.e.,Mi/S is an interpretation of the module instance referenced byPi[S].

1 Note that VC (P) is also used as index set here.
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Definition 7 (model). An interpretation M of an MLP P is a model of

– a ground atom α ∈ HBP at Pi[S], denoted M, Pi[S] |= α, if in case α is an ordinary
atom, α ∈Mi/S, and if α=Pk[p].o(c) is a module atom, o(c) ∈Mk/((Mi/S)|qk

p );
– a ground rule r at Pi[S] (M, Pi[S] |= r), if M, Pi[S] |= H(r) or M, Pi[S] �|= B(r),

where (i) M, Pi[S] |= H(r), if M, Pi[S] |= α for some α ∈ H(r), and (ii) M, Pi[S] |=
B(r), if M, Pi[S] |= α for all α ∈ B+(r) and M, Pi[S] �|= α for all α ∈ B−(r);
– a set of ground rules R at Pi[S] (M, Pi[S] |= R) iff M, Pi[S] |= r for all r ∈ R;

– a ground rule base R (M |= R) iff M, Pi[S] |= RPi[S] for all Pi[S] ∈ VC (P).

Finally, M is a model of an MLP P, denoted M |= P, if M |= I(P) in case P is ground
resp. M |= gr(P), if P is nonground. An MLP P is satisfiable, if it has a model.

Intuitively, an interpretation M satisfies a ground module atom Pk[p].o(c) appearing in
an instantiation IP(Pi[S]), if the ordinary atom o(c) holds for the instantiation of the
module mk with the input which is given by the interpretation of p in Mi/S. On top of
this, satisfaction of ordinary atoms, rules, etc., is straightforward.

Example 6. Consider P from Example 5, then M = (M1/∅,M2/∅,M3/∅,M3/{c}) is
a model of P, whereM1/∅ = {a}, M2/∅ = {b}, and M3/∅ = M3/{c}={c}. We have
M, P1[∅] |= a; M, P2[∅] |= b; M, P1[∅] |= P2.b; M, P2[∅] |= P1.a; hence M, P1[∅] |=
a ← P2.b; M, P2[∅] |= b ← P1.a. Moreover, M, P3[∅] |= c; M, P3[∅] |= c ← not c
(and similar for M at P3[{c}]); thus M, P1[∅] |= IP(P1[∅]), M, P2[∅] |= IP(P2[∅]),
M, P3[∅] |= IP(P3[∅]), and M, P3[{c}] |= IP(P3[{c}]); therefore M |= I(P), where
I(P) = (IP(P1[∅]), IP(P2[∅]), IP(P3[∅]), IP(P3[{c}])). Finally, M |= P.

We next proceed to define answer sets of an MLP P. To this end, we need to com-
pare models and single out minimal models. Furthermore, in order to focus on relevant
modules, we introduce the formal notion of a call graph.

Definition 8 (minimal models). For any interpretations M and M′ of P, we define
that M ≤ M′, if for every Pi[S] ∈ VC (P) it holds that Mi/S ⊆M ′

i/S, and M < M′,
if both M �= M′ and M ≤ M′. A model M of P (resp., a rule base R) is minimal,
if P (resp., R) has no model M′ such that M′ < M. The set of all minimal models of
P (resp., R) is denoted by MM (P) (resp., MM (R)).

Definition 9 (call graph). The call graph of an MLP P is a labeled digraph CGP =
(V,E, l) with vertex set V = VC (P) and an edge e from Pi[S] to Pk[T ] in E iff
Pk[p].o(t) occurs in R(mi); furthermore, e is labeled with an input list p, denoted
l(e). Given an interpretation M, the relevant call graph CGP(M) = (V ′, E′) of P
w.r.t. M is the subgraph of CGP where E′ contains all edges from Pi[S] to Pk[T ]
of CGP such that (Mi/S)|qk

l(e) = T , and V ′ contains all Pi[S] that are main module
instantiations or induced by E′; any such Pi[S] is called relevant w.r.t. M.

Example 7. Consider P and I(P) from Example 6. The call graph of P is CGP =
(VC (P), E, l), where E = {(P1[∅], P2[∅]), (P2[∅], P1[∅])}, and l maps each edge to
the void input list. Both P1[∅] and P2[∅] are relevant, since they are main modules,
while P3[∅] and P3[{c}] are irrelevant (never called). Thus, we obtain that CGP(M) =
({P1[∅], P2[∅]}, E, l), for any interpretation M of P.
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We refer to the vertex and edge set of a graph G by V (G) and E(G), resp. For defin-
ing answer sets, we use a reduct of the instantiated program as customary in ASP. A
suggestive way is to apply a traditional reduct to each module instance of P; however,
this is not fully satisfactory, as in practice P might contain module instantiations which
have no answer sets for certain inputs, which compromises the existence of an answer
set of P. For this reason, we contextualize the notions of reduct and answer sets.

Definition 10 (context). Let M be an interpretation of an MLP P. A context for M is
any set C ⊆ VC (P) such that V (CGP(M)) ⊆ C.

Then, the reduct of an instantiated program is built w.r.t. a given context.

Definition 11 (context-based reduct). Let M be an interpretation of an MLP P and C
be a context for M. The reduct of P at P [S] w.r.t. M and C, denoted fP(P [S])M,C , is
the rule set Igr(P)(P [S]) from which, if P [S]∈C, all rules r such that M, P [S] �|=B(r)
are removed. The reduct of P w.r.t. M and C is the rule base fPM,C=(fP(P [S])M,C |
P [S] ∈ VC (P)).

That is, outside C the module instantiations of P resp. gr(P) remain untouched, while
inside C the FLP-reduct [9] is applied.

Example 8. Consider P and M from Example 6, and a context C = {P1[∅], P2[∅]}.
The context-based reduct of P w.r.t. M and C is given by the rule base fPM,C =
(fP(P1[∅])M,C , fP(P2[∅])M,C , fP(P3[∅])M,C , fP(P3[{c}])M,C), which is equal
to I(gr(P)), i.e., fP(P1[∅])M,C = {a ← P2.b.}, fP(P2[∅])M,C = {b ← P1.a.},
fP(P3[∅])M,C = {c ← not c.}, and fP(P3[{c}])M,C = {c; c ← not c.}.

Definition 12 (answer set). Let M be an interpretation of a ground MLP P. Then M
is an answer set of P w.r.t. a context C for M, if M is a minimal model of fPM,C .

Note that C is a parameter that allows to select a degree of overall-stability for answer
sets of P. The extreme case C = VC (P) requires that all module instances have answer
sets. On the other end, the minimal contextC = V (CGP(M)) is the relevant call graph
of P; we consider this as the default context and omit C from notation.

Example 9. Consider P from Example 4. We have that P has answer sets of four differ-
ent shapes, each of them having exactly two instances of s1 and two instances of s2 for
the model MQ/∅ of instantiation IP(Q[∅]). A particular answer set is the indexed tuple
with the entries (MQ/∅, MP /∅, MP /{q(a)}, MP /{q(b)}, MP/{q(c)},MP/{q(d)},
MP /{q(a), q(c)},MP/{q(b), q(d)}, . . . ), where MQ/∅ = {s1(a), s2(b), s1(c), s2(d),
ok, s(a), s(b), s(c), s(d)}, MP /∅ = {even}, all models for instantiations with sin-
gletons MP /{q(a)}, MP /{q(b)}, MP /{q(c)}, MP /{q(d)} contain odd and the resp.
skip’d element, and both MP /{q(a), q(c)} and MP /{q(b), q(d)} contain even .

Example 10. Consider P and M from Example 6. Let M0 = (M0
1 /∅, M0

2 /∅, M0
3 /∅,

M0
3 /{c}), such that M0

1 /∅ = M0
2 /∅ = ∅, M0

3 /∅=M0
3 /{c}={c}, be another interpre-

tation for P. One can verify that M0 is also a model of P. Since we fixed the context C
to {P1[∅], P2[∅]}, the reduct w.r.t. M0 is fPM0,C = (fP(P1[∅])M0,C ,fP(P2[∅])M0,C,
fP(P3[∅])M0,C, fP(P3[{c}])M0,C) = (∅, ∅, IP(P3[∅]), IP(P3[{c}])), and fPM,C is
as in Example 8. The minimal model of fPM0,C is M0, hence it is an answer set of P
w.r.t. C, whereas the minimal model of fPM,C is also M0, i.e., M is not an answer set
of P w.r.t. C.
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3 Semantic Properties

We now consider some properties of modular logic programs. Obviously, they conser-
vatively generalize ordinary logic programs.

Proposition 1. Let R be an ordinary logic program. Then M is an answer set of R
iff M = (M1/∅) with M1/∅ = M is an answer set of the MLP (m1), where m1 =
(P1[], R) is a main module and P1 is a module name.

Some well-known properties from standard answer set programming carry over to the
semantics of modular logic programs. This is of avail not only to encompass underly-
ing intuitions, but also for characterizing computational aspects. Two straightforward
consequences from the definition of FLP-reduct are the following.

Lemma 1. If M |= fPM,C for some context C for M, then M |= P.

Lemma 2. If M |= P, then M |= fPM′,C for any interpretation M′ and context C.

Consequently, we obtain that answer sets are minimal models of P.

Proposition 2. If M is an answer set of P w.r.t. context C, then M ∈ MM (P).

Furthermore, the semantics is a proper refinement of a naive semantics that would re-
quire stability w.r.t. all possible module instantiations disregarding their relevance. This
is a simple consequence of the following property.

Proposition 3. If M is an answer set of P w.r.t. context C ⊆ VC (P), then M is an
answer set of P w.r.t. every context C′ ⊆ C for M, i.e., V (CGP(M)) ⊆ C′ ⊆ C.

We next consider answer sets that, in a sense, face no inconsistency in the scope of
instantiations that are relevant to them. Let ord(P) denote the result of deleting from
an MLP P all rules containing module atoms in R(m) in all modules m of P. We call
an answer set M of P w.r.t. C fully stable, if V (CGP(M′)) ⊆ C for all M′ ≤ M such
that M′ |= ord(P)M,C . Then the following holds.

Proposition 4. Every answer set of P w.r.t. C = VC (P) is fully stable, and if M is an
answer set of P w.r.t. C and fully stable w.r.t. C′ ⊆ C, then M is fully stable w.r.t. C.

Obviously, answer sets coincide with the naive semantics if V (CGP(M)) = VC (P)
for all interpretations M of P, in particular, when all modules are main. Moreover,
also for positive MLPs the semantics coincides with the naive semantics. Just like in
ordinary logic programs, it behaves like the minimal model semantics in absence of
negation.

Proposition 5. Let P be positive. Then, the answer sets of P coincide with MM (P).

By monotonicity of all module instances, one can easily show that the models of a
Horn MLP P are closed under a suitable notion of intersection. Given interpretations
M and N of P = (m1, . . . ,mn), let their intersection be the interpretation denoted
M∩N such that (M ∩N)i/S =

⋂
S′⊇S(Mi/S

′∩Ni/S
′), for every S ⊆ HBP|qi and

i = 1, . . . , n. Then:
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Proposition 6. Suppose M |= P and N |= P, where P is Horn. Then M ∩N |= P.

As a consequence, a Horn MLP has a canonical answer set.

Corollary 1. If P is Horn, then it has a unique answer set, which coincides with its
least model.

Like for ordinary programs, we can compute the answer set of a Horn MLP by means
of a bottom up fixed-point computation.

Definition 13 (TP-operator). Given a Horn MLP P and an interpretation M of P, we
define the operator TP(M) point-wise as follows:

TP(Mi/S) = {H(r) | r ∈ IP(Pi[S]), M, Pi[S] |= B(r)}.

Since the operator is continuous, it has a least fixed-point lfp(P) that results, starting
from the empty interpretation M∅, i.e., where Mi/S = ∅ for every Pi[S] ∈ VC (P) in
ω steps, i.e., lfp(P) = TP↑ω(M∅). We obtain the following result.

Proposition 7. For a Horn MLP P, lfp(P) is the unique answer set of P.

For normal MLPs, we generalize the notion of stratification as follows. Intuitively, the
usual notion of the dependency graph of a program is extended by nodes E for the
module atoms appearing in P, which serve to take care of the dependencies between
input to the module and module output. Furthermore, we assume that each predicate
occurs in ordinary atoms of at most one module.

Let P = (m1, . . . ,mn) be an MLP. The dependency graph of P is the following
digraph GP = (V,E). The vertex set V contains all p ∈ P ∪ E , with p appearing
somewhere in P, and E is the set of module atoms in P. The edge set E is as follows:

Let r ∈ R(mi). There is a �-edge p →� q in GP, � ∈ {+,−}, if either (i) p(t1) ∈
H(r) and q(t2) ∈ B�(r); (ii) p(t1), q(t2) ∈ H(r) and � = +; or (iii) p(t1) ∈ H(r)
and q is a module atom in B�(r). Moreover, for α = Pj [p].o(t) ∈ B(r), the set E
contains all edges a →+ b, where (iv) a = α and b appears in qj of Pj [qj ]; (v) a = α
and b = o; or (vi) a = q� and b = p�, where q� is in qj of Pj [qj ] and p� is in p.

Definition 14. We say that an MLP P is stratified if no cycle in GP has −-edges.

As for ordinary logic programs, given a stratified MLP P, there exists a labelling func-
tion l from HBP to the nonnegative integers, such that l(α) ≥ l(β) if a →+ b in GP,
and l(α) > l(β) if a →− b in GP, where α = a(t), or a ∈ E and a unifies with α,
respectively for β and b.

Let k be the maximal value assigned by a particular labelling function, and let
Strat i = {a ∈ HBP | l(a) = i} for 0 ≤ i ≤ k, then Strat0, . . . ,Stratk is a stratifica-
tion, i.e., a partitioning of HBP.

Towards an iterated fixed-point computation of answer sets for stratified MLPs, we
define the following operator.

Definition 15 (TL
P -operator). Given a normal MLP P, a subset L of HBP, and an

interpretation M of P, we define the operator TL
P(M) point-wise as follows:

TL
P (Mi/S) = Mi/S ∪ {H(r) | r ∈ IP(Pi[S]), M, Pi[S] |= B(r), B(r) ⊆ L}.
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By TL
P↑ω(M), we denote the application of TL

P in ω steps, starting with M. Fur-
thermore, let M0 = M∅ be the empty interpretation, i.e., where Mi/S = ∅ for ev-
ery value call Pi[S] ∈ VC (P), and let Li =

⋃
0≤j≤i Stratj .We inductively define

Mi+1 = T
Li+1
P ↑ω(Mi), for 0 ≤ i < k.

Proposition 8. Let P be normal and stratified. Then Mk is an answer set of P, for any
stratification Strat0, . . . ,Stratk of HBP.

A further consequence of stratification is that the relevant call graph is unique.

Proposition 9. Let P be normal and stratified. Then V (CGP(M)) = V (CGP(Mk)),
for any answer set M of P and any stratification Strat0, . . . ,Stratk of HBP.

Therefore, answer sets of stratified, normal MLPs coincide on relevant instances. The
answer set obviously is unique if all value calls of VC (P) are relevant, or if all irrele-
vant instances have a unique minimal model.

4 Computational Complexity

To begin with, let us restrict our attention to Horn MLPs. Considering the propositional
case, if the modules mi = (Pi[qi], Ri) in P have no input (i.e., qi is void), then I(P)
has polynomial size and lfp(P) is computable in polynomial time. For arbitrary propo-
sitional P with no inputs, we can guess and verify an answer set M of P in polynomial
time with an NP oracle. As MLPs (Proposition 1) subsume ordinary logic programs, we
thus obtain by known results (cf. [12]) the same complexity. With slight abuse of nota-
tion, for a ground atom α and an interpretation M of P, we write α ∈ M if α ∈Mi/S
for a given Pi[S] ∈ VC (P).

Theorem 1. Given a propositional MLP P = ((P1[], R1), . . . , (Pn[], Rn)), (i) if P is
Horn, the unique answer set M = lfp(P) of P is computable in polynomial time and
to decide whether α ∈ M for a ground atom α is P-complete; (ii) to decide whether P
has an answer set is Σp

2 -complete.

These results generalize to the case where the module inputs in P have bounded length,
i.e., |qi| ≤ k for some constant k, as I(P) and M have polynomial size. For unrestricted
inputs, however, I(P) and M are exponential and we get a blowup.

Theorem 2. Given a propositional MLP P (i) if P is Horn, the unique answer set
M = lfp(P) of P is computable in exponential time and to decide whether α ∈ M
for a ground atom α is EXP-complete; (ii) to decide whether P has an answer set is
NEXPNP-complete.

The hardness parts can be shown e.g. by encodings of Turing machines, which adapt
constructions in [12]. Superficially, one uses modulesP [c, t], where c amounts to a tape
cell index and t to a time stamp during a computation; with |c|= |t|=n, 2n cells and 2n

time stamps can be modeled. Further atoms store the cell contents, state of the machine,
and the position of the read-write head. The transition function is encoded by rules with
access to the contents of neighboring cells, which is realized by respective (recursive)
module calls; neighboring cells and time stamps are computed using local rules.
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Table 1. Complexity of MLPs (P is Horn in the first two columns, α is a ground atom)

MLP P Computing lfp(P) Deciding α ∈ lfp(P) Answer set existence
prop. P, empty inputs polynomial time P-complete Σp

2 -complete
prop. P exponential time EXP-complete NEXPNP-complete
non-ground P double exponential time 2EXP-complete 2NEXPNP-complete

In the Datalog setting, we get for MLPs a similar picture as for ordinary logic pro-
grams, where the complexity of Datalog programs is exponentially higher than the one
of propositional programs. Intuitively, the process of grounding may introduce exponen-
tially many ground atoms for an atom, which in turn may result in double exponentially
many module instances; thus, I(P) and interpretations M have double exponential size
in general. Computing lfp(P) for Horn MLPs P may thus take double exponential time,
and a guess for an answer set has double exponential size. We get the following results.

Theorem 3. Given a non-ground MLP P, (i) if P is Horn, the unique answer set M =
lfp(P) of P is computable in double exponential time and to decide whether α ∈ M
for a ground atom α is 2EXP-complete; (ii) to decide whether P has an answer set is
2NEXPNP-complete.

The hardness parts an be shown by lifting the constructions for the propositional case.
Here, n-ary predicates p(X1, . . . , Xn) are used to store 2n bits of a number, such that
a range of 22n

tape cells and time stamps can be spanned via module inputs q.
Finally, we note that the complexity drops by an exponential to the one of ordinary

logic programs, if the arities of input predicates are bounded by a constant (as then I(P)
and M have single exponential size). Our results are compactly summarized in Table 1.

5 Relationship to DLP-Functions

DLP-functions [2] are a proposal for modular logic programs under answer set seman-
tics in conformance with Programming-in-the-large. The approach creates a semantics
for a sequence of modules by defining a suitable input-output interface, and allows
combining compatible answer sets between joinable modules.

More specifically, a DLP-function has form Π = 〈R, I,O,H〉, where R is a set of
propositional disjunctive rules and I,O,H are sets of propositional atoms defining in-
put, output, and hidden atoms, respectively. An operator ⊕ forms a new DLP-function
from two DLP-functions that respect hidden atoms of each other. In addition, if two such
DLP-functions Π1 and Π2 are not mutually (positive) dependent, their join Π1 � Π2
is defined. Joinability allows negative loops between DLP-functions but not positive
ones; one can use ⊕ to generate the join. On top of joinable DLP-functions, the Module
Theorem is the basis for computing the answer sets of a sequence of DLP-functions by
taking the union of mutually compatible answer sets of each member; hence joinable
DLP-functions qualify for having a compositional semantics.

We now show a translation from DLP-functions to MLP modules, and briefly out-
line a translation from a fragment of MLPs without input to an equivalent sequence
of DLP-functions. For space reasons, we must omit recalling the formal machinery of
DLP-functions here, but stick to definitions of [2] as much as possible. To be in line
with [2], we consider only the propositional case.
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Translation from DLP-Functions to MLPs. We now define a translation ∇ which
maps sequences of DLP-functions to MLPs. To this end, we map input atoms a ap-
pearing in bodies of rules in some DLP-function to module atoms of MLPs, whenever
there is an output of another DLP-function which contains a. Other atoms remain un-
changed. Then, we add further guessing rules to the modules; intuitively, they guess the
truth value for input atoms which have not been fixed by some output.

Let Π = (Π1, . . . , Πn) be a sequence of DLP-functions, where Πi is a DLP-
function 〈Ri, Ii, Oi, Hi〉, and the join

⊔n
i=1 Πi is defined. For a propositional atom

a in At(Ri), if a ∈ Ii and there exists another DLP-function Πj in Π such that
a ∈ Ato(Πj), then ∇(a) = Pj .a (note that such a Πj is unique due to the condition
Ato(Πk) ∩Ato(Π�) = ∅ for every k �= 
); otherwise ∇(a) = a.

Let r be a propositional rule in Πi of the form (2). We create ∇(r) by replacing
each βi by ∇(βi);2 for Πi, let ∇(Πi) = (Pi,∇(Ri)) where Pi is a module name and
∇(Ri) = {∇(r) | r ∈ Ri} ∪Qi, where Qi = {a ∨ ā | a ∈ Ati(Πi) \

⋃
j =i Ato(Πj)}

and all ā are fresh propositional atoms. Finally ∇(Π) = (∇(Π1), . . . ,∇(Πn)), where
each ∇(Πi) is a main module.

Example 11. Let Π = (Π1, Π2) be a sequence of DLP-functions consisting of Π1 =
〈{a ← not b}, {b}, {a}, ∅〉 and Π2 = 〈{b ← not a}, {a}, {b}, ∅〉. The translation
of Π to MLP is ∇(Π) = (∇(Π1), ∇(Π2)), where ∇(Π1) and ∇(Π2) are the main
modules whose associative sets of rules are {a ← not P2.b} and {b ← not P1.a},
resp. Here, both Π and ∇(Π) possess two answer sets: Π has {a} and {b}, while
∇(Π) has ({a}, ∅) and (∅, {b}).

Now, let Π1 be from above and Π = (Π1). In this case, ∇(Π) = (∇(Π1)), where
∇(Π1) = (P1,∇(R1)) and ∇(R1) = {a ← not b; b ∨ b̄}. Both Π and ∇(Π) have
two answer sets; Π has {a} and {b}, while ∇(Π) has ({a, b̄}) and ({b}).
The following proposition shows that ∇ is correct.

Proposition 10. Let Π = (Π1, . . . , Πn) be a sequence of DLP-functions whose join⊔n
i=1 Πi is defined. Then, the answer sets of ∇(Π) correspond 1-1 to those of Π .

Translation from MLPs to DLP-Functions. Compared to DLP-functions, MLPs have
a fine-grained input mechanism. DLP-functions import atoms from other DLP-functions
by means of an explicit input/output interface; an atom, whose truth value originates from
a different DLP-function, can be seen as a call-by-reference. To clarify, take an MLP with
library modulesmk = (P [q], Rk) andm� = (Q[p], R�). Consider a module atomQ[b].a
appearing in Rk; we are confronted with two different types of input:

(1) m� retrieves input b from mk explicitly in form of an additional fact p whenever b
holds in some instantiation of P [q], which can be seen as call-by-value, and

(2) mk retrieves input from m� implicitly in form of a, which plays a similar role to
call-by-reference input in DLP-functions.

Here, we restrict our attention to MLPs with input of type (2). By complexity arguments,
translating MLPs with inputs of type (1) into sequences of DLP-functions is likely to
cause an exponential blowup in general.

2 Constraints are allowed in [2]; they can be emulated by adding fail (not fail) to the head
(body) of∇(r), where fail is a fresh propositional atom.
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Given a propositional MLP P = (m1, . . . ,mn), where each mi = (Pi[], Ri) has no
formal input parameter, we can do the translation by mapping in Ri each ordinary atom
a to Δ(a)= aPi , each module atom Pj .b to Δ(Pj .b)= bPj . For each module mi, the
input (output) atoms of the corresponding DLP-function are determined by applying Δ
to module atoms occurring in Ri (resp., module atoms Pi.a occurring in P). Based on
this idea, P can be translated into a sequence Δ(P) of DLP-functions where the com-
position operator ⊕ is defined. However, to have the join operator � defined and thus
answer sets of Δ(P), the modules in P must respect a condition akin to “not mutually
dependent” [2], which is based on the sharing of strongly connected components in the
positive dependency graph. On top of this condition, our translation gives a variant of
the Module Theorem in [2]. Technical details and proofs are given in an accompanying
technical report.

6 Related Work and Conclusion

In the ASP context, several modular logic programming formalisms have been proposed
We already discussed the modular logic programs of [4] and DLP-functions [2].

Towards code reusability in ASP, [5] defines modules in terms of macros. On top of
this, the authors define ensembles, which group modules comparable to the way classes
keep their methods together in object-oriented programming languages, and an inheri-
tance mechanism for ensembles. In a similar way but more focused on aggregates, [6]
defines “template” predicates to quickly introduce new predefined constructs and to deal
with compound data structures. The DLPT language based on this notion was imple-
mented on top of DLV. Both [5] and [6] have the restriction that no cycle is allowed
between macros/templates.

A different approach is used in [13]. Here, the modules allow to import answer sets
from other modules to compute the overall solution. However, this approach considers
only modular ASP programs with acyclic dependency graph. Another system called
RSig [14] allows to specify modules and provides an information hiding mechanism.
Direct communication between modules was not addressed; instead, modules exchange
information with a global state via import/export declarations. The semantics of such a
system is given by a (polynomial) compilation into an ordinary ASP program.

Another formalism with multiple nonmonotonic logic programs is [15], targeting
a Semantic Web environment. It allows to interlink logic programs that may refer to
remote knowledge bases distributed on the Web. The authors propose a context-aware
form of negation as failure to deal with the inherent incompleteness of data on the Web.
The MWeb framework [16] is a further attempt to enhance the Semantic Web with scope
and context for modular web rule bases. However, it is mainly concerned with support
for hidden knowledge and the safe use of strong and weak negation, and modular rule
bases are translated into ordinary logic programs, respecting different reasoning modes.

While we have presented the basic approach, several issues remain for further work.
An interesting issue is to further analyze contexts and, e.g., to determine conditions for
contexts that are fully stable, which desirably should be small. Some (less effective)
conditions may be determined by syntactic analysis.

Another issue is extensions of MLP to richer classes of programs, including constructs
like strong negation, constraints, external functions, nesting, etc. On the semantical side,
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we can imagine alternative ways of tolerating violations of stability outside the context.
This could be done, e.g., by using partial FLP-reducts (where not all rules with false bod-
ies are dropped, leading to a superset of the answer sets), or by genuine approximations.
Variants of stratification and splitting sets would also be interesting.

On the computational side, a detailed complexity study of MLPs that considers
various fragments is of interest, where in particular the interplay of major classes of
ordinary logic programs with dependency information through module calls deserves
attention; various notions similar as in [4] might be considered here. Furthermore, effi-
cient methods and algorithms to compute answer sets of MLPs remain to be developed,
as well as implementations. To this end, methods based on reductions to ordinary logic
programs and extensions are under investigation.
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Abstract. This paper considers a semantic approach for merging logic programs
under answer set semantics. Given logic programs P1, . . . , Pn, the goal is
to provide characterisations of the merging of these programs. Our formal
techniques are based on notions of relative distance between the underlying
SE models of the logic programs. Two approaches are examined. The first
informally selects those models of the programs that vary the least from the
models of the other programs. The second approach informally selects those
models of a program P0 that are closest to the models of programs P1, . . . , Pn.
P0 can be thought of as analogous to a set of database integrity constraints.
We examine formal properties of these operators and give encodings for
computing the mergings of a multiset of logic programs within the same logic
programming framework. As a by-product, we provide a complexity analysis
revealing that our operators do not increase the complexity of the base formalism.

Keywords: answer set programming, belief merging, strong equivalence.

1 Introduction

Answer set programming [1] is an appealing approach for representing problems in
knowledge representation and reasoning: It has a conceptually simple theoretical foun-
dation, while at the same time it has found application in a wide range of practical
problems. As well, there are now efficient and well-studied implementations. However,
as is the case with any large program or body of knowledge, a logic program is not
a static object in general, but rather it will evolve and be subject to change, whether
as a result of correcting information in the program, adding to the information already
present, or in some other fashion modifying the knowledge represented in the program.

In the past, research on the evolution of logic programs mostly focussed on updat-
ing logic programs [2,3,4,5,6,7]. In such approaches, the issue was to characterise the
answer sets of a sequence 〈P1, . . . , Pn〉 of programs, where for j > i, program Pj has
higher priority, in some sense, over Pi. However, seemingly the nonmonotonic nature
of extended logic programs makes the problem of belief change intrinsically harder
compared to a monotonic setting, often leading to subtle effects. In previous work [8],
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we addressed this challenge by defining an approach for revising logic programs under
answer set semantics based on the notion of an SE model [9]. The key point of this
undertaking is that SE models provide a monotonic semantic foundation of answer set
programs. More specifically, SE models derive from models in the logic of here-and-
there, which is intermediate between classical logic and intuitionistic logic, represent-
ing the logical underpinning of strong equivalence [10]. Indeed, the latter notion can
be seen as the logic programming analogue of ordinary equivalence in classical logic,
in the sense that both equivalence notions adhere to a substitution principle. With our
revision approach for logic programs based on SE models we thus phrased the problem
of belief revision in logic programs in terms analogous to those of revision in classical
logic. Additionally, the approach possesses appealing features as it satisfies all but one
of the established postulates for belief revision [11].

In this paper, we employ these techniques to address the merging of logic programs.
The problem of merging multiple, potentially conflicting bodies of information arises
in different contexts. For example, an agent may receive reports from differing sources
of knowledge, or from sets of sensors that need to be reconciled. As well, an increas-
ingly common phenomenon is that collections of data may need to be combined into a
coherent whole. In these cases, the problem is that of combining knowledge sets that
may be jointly inconsistent in order to get a consistent set of merged beliefs.

In characterising the merging of logic programs, the central idea is that the SE mod-
els of the merged program are those that are in some sense “closest” to the SE models
of the programs to be merged. However, as with merging knowledge bases expressed in
classical logic, there is no single preferred notion of distance nor closeness, and conse-
quently different approaches have been defined for combining sources of information.
We introduce two merging operators for logic programs under answer set semantics.
Both operators take an arbitrary (multi-)set of logic programs as argument. The first
operator can be regarded an instance of arbitration [12]. Basically (SE) models are se-
lected from among the SE models of the programs to be merged; in a sense this operator
is a natural extension of our belief revision operator, presented in previous work [8]. The
second merging operator can be regarded as an instance of Konieczny and Pino Pérez’s
merging operator [13]. Here, models of a designated program (representing information
analogous to database integrity constraints) are selected that are closest to (or perhaps,
informally, represent the best compromise among) the models of the programs to be
merged.

2 Background

Answer Set Programming. A (generalised) logic program1 (GLP) over an alphabet A
is a finite set of rules of the form

a1; . . . ; am;∼bm+1; . . . ;∼bn ← cn+1, . . . , co,∼do+1, . . . ,∼dp, (1)

where ai, bj, ck, dl ∈ A are atoms, for 1 ≤ i ≤ m ≤ j ≤ n ≤ k ≤ o ≤ l ≤ p.
Operators ‘;’ and ‘,’ express disjunctive and conjunctive connectives. A default literal
is an atom a or its (default) negation ∼a. A rule r as in (1) is called a fact if p = 1,

1 Such programs were first considered by Lifschitz and Woo [14].
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normal if n = 1, disjunctive if m = n, and an integrity constraint if n = 0, yielding
an empty disjunction denoted by ⊥. Accordingly, a program is called disjunctive, or a
DLP, if it consists of disjunctive rules only. Likewise, a program is normal if it contains
normal rules only. We furthermore define H(r) = {a1, . . . , am,∼bm+1, . . . ,∼bn} as
the head of r and B(r) = {cn+1, . . . , co,∼do+1, . . . ,∼dp} as the body of r, for r as
in (1). Moreover, given a set X of literals, X+ = {a ∈ A | a ∈ X}, X− = {a ∈
A | ∼a ∈ X}, and ∼X = {∼a | a ∈ X ∩ A}. For simplicity, we sometimes use a
set-based notation, expressing r as in (1) as H(r)+;∼H(r)−← B(r)+,∼B(r)−.

In what follows, we restrict ourselves to a finite alphabet A. An interpretation is
represented by the subset of atoms in A that are true in the interpretation. A (classical)
model of a program P is an interpretation in which all of the rules in P are true according
to the standard definition of truth in propositional logic, and where default negation is
treated as classical negation. By Mod(P ) we denote the set of all classical models of
P . An answer set Y of a program P is a subset-minimal model of

{H(r)+← B(r)+ | r ∈ P, H(r)− ⊆ Y, B(r)− ∩ Y = ∅}.
The set of all answer sets of a program P is denoted by AS (P ). For example, the
program P = {a ←, c; d ← a,∼b} has answer sets AS(P ) = {{a, c}, {a, d}}.

As defined by Turner [9], an SE interpretation is a pair (X, Y ) of interpretations
such that X ⊆ Y ⊆ A. An SE interpretation (X, Y ) is an SE model of a program P if
Y |= P and X |= P Y . The set of all SE models of a program P is denoted by SE (P ).
Note that Y is an answer set of P iff (Y, Y ) ∈ SE (P ) and no (X, Y ) ∈ SE (P ) with
X ⊂ Y exists. Also, we have (Y, Y ) ∈ SE (P ) iff Y ∈ Mod(P ).

A program P is satisfiable just if SE (P ) �= ∅. Two programs P and Q are strongly
equivalent, symbolically P ≡s Q, iff SE (P ) = SE (Q). Alternatively, P ≡s Q holds
iff AS(P ∪ R) = AS(Q ∪ R), for every program R [10]. We also write P |=s Q iff
SE (P ) ⊆ SE (Q). For simplicity, we often drop set-notation within SE interpretations
and simply write, e.g., (a, ab) instead of ({a}, {a, b}).

A set S of SE interpretations is well-defined if, for each (X, Y ) ∈ S, also (Y, Y ) ∈
S. A well-defined set S of SE interpretations is complete if, for each (X, Y ) ∈ S, also
(X, Z) ∈ S, for any Z ⊇ Y with (Z, Z) ∈ S.

We have the following properties: (i) for each GLP P , SE (P ) is well-defined; and
(ii) for each DLP P , SE (P ) is complete. Furthermore, for each well-defined set S of SE
interpretations, there exists a GLP P such that SE (P ) = S, and for each complete set
S of SE interpretations, there exists a DLP P such that SE (P ) = S. Programs meeting
these conditions can be constructed thus [15,16]: In case S is a well-defined set of SE
interpretations over a (finite) alphabetA, define P by adding

1. the rule rY : ⊥ ← Y,∼(A \ Y ), for each (Y, Y ) /∈ S, and
2. the rule rX,Y : (Y \X);∼Y ← X,∼(A \ Y ), for each X ⊆ Y such that (X, Y ) /∈

S and (Y, Y ) ∈ S.

In case S is complete, define P by adding

1. the rule rY , for each (Y, Y ) /∈ S, as above, and
2. the rule r′X,Y : (Y \X) ← X,∼(A \ Y ), for each X ⊆ Y such that (X, Y ) /∈ S

and (Y, Y ) ∈ S.

We call the resulting programs canonical.
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For illustration, consider S = {(p, p), (q, q), (p, pq), (q, pq), (pq, pq), (∅, p)} over
A = {p, q}.2 Note that S is not complete. The canonical GLP is as follows:

r∅ : ⊥ ← ∼p,∼q;
r∅,q : q;∼q ← ∼p;

r∅,pq : p; q;∼p;∼q ← .

For obtaining a complete set, we have to add (∅, pq) to S. Then, the canonical DLP is
as follows:

r∅ : ⊥ ← ∼p,∼q; r∅,q : q ← ∼p.

One feature of SE models is that they contain “more information” than answer sets,
which makes them an appealing candidate for problems where programs are examined
with respect to further extension (in fact, this is what strong equivalence is about).
We illustrate this point with the following well-known example, involving programs
P = {p; q ←} and Q = {p ← ∼q, q ← ∼p}. Here, we have AS(P ) = AS(Q) =
{{p}, {q}}. However, the SE models (we list them for A = {p, q}) differ:

SE (P ) = {(p, p), (q, q), (p, pq), (q, pq), (pq, pq)};
SE (Q) = {(p, p), (q, q), (p, pq), (q, pq), (pq, pq), (∅, pq)}.

This is to be expected, since P and Q behave differently with respect to program ex-
tension (and thus are not strongly equivalent). Consider R = {p ← q, q ← p}. Then,
AS(P ∪R) = {{p, q}}, while AS(Q ∪R) has no answer set.

Belief Merging. This section reviews previous work in belief merging. We survey re-
lated work, first in logic programming and then in the belief merging literature.

With respect to merging logic programs, we have already mentioned updating logic
programs, which can also be considered as prioritised logic program merging. With
respect to combining logic programs, Baral et al. [17] describe an algorithm for com-
bining a set of normal, stratified logic programs in which the union of the programs is
also stratified. In their approach the combination is carried out so that a set of global
integrity constraints, which is satisfied by individual programs, is also satisfied by the
combination. Buccafurri and Gottlob [18] present an interesting approach whereby rules
in a given program encode desires for a corresponding agent. A predicate okay indicates
that an atom is acceptable to an agent. Answer sets of these compromise logic programs
represent acceptable compromises between agents. While it is shown that the joint fix-
points of such logic programs can be computed as stable models, and complexity results
are presented, the approach is not analysed from the standpoint of properties of merging.
Sakama and Inoue [19] address what they call the generous and rigorous coordination
of logic programs in which, given a pair of programs P1 and P2, a program Q is found
whose answer sets are equal to the union of the answer sets of P1 and P2 in the first
case, and their intersection in the second. As the authors note, this approach and its
goals are distinct from program merging.

Earlier work on merging operators includes approaches by Baral et al. [20] and
Revesz [21]. The former authors propose various theory merging operators based on

2 We assume henceforth that the alphabet in an example consists of just the mentioned atoms.
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the selection of maximum consistent subsets in the union of the belief bases. The lat-
ter proposes an “arbitration” operator (see below) that, intuitively, selects from among
the models of the belief sets being merged. Lin and Mendelzon [22] examine major-
ity merging, in which, if a plurality of knowledge bases hold φ to be true, then φ is
true in the merging. Liberatore and Schaerf [12] address arbitration in general, while
Konieczny and Pino Pérez [13] consider a general approach in which merging takes
place with respect to a set of global constraints, or formulas that must hold in the merg-
ing. We examine these latter two approaches in detail below.

Konieczny, Lang, and Marquis [23] describe a very general framework in which
a family of merging operators is parameterised by a distance between interpretations
and aggregating functions. More or less concurrently, Meyer [24] proposed a general
approach to formulating merging functions based on ordinal conditional functions [25].
Booth [26] also considers the problem of an agent merging information from different
sources, via what is called social contraction. Last, much work has been carried out in
merging possibilistic knowledge bases; we mention here, e.g., the method by Benferhat
et al. [27].

We next describe the approaches by Liberatore and Schaerf [12] and by Konieczny
and Pino Pérez [13], since we use the intuitions underlying these approaches as the
basis for our merging technique. First, Liberatore and Schaerf [12] consider merging
two belief bases built on the intuition that models of the merged bases should be taken
from those of each belief base closest to the other. This is called an an arbitration
operator (Konieczny and Pino Pérez [13] call it a commutative revision operator). They
consider a propositional language over a finite set of atoms; consequently their merging
operator can be expressed as a binary operator on formulas. The following postulates
characterise this operator:

Definition 1. � is an arbitration operator (or a commutative revision operator) if � sat-
isfies the following postulates.

(LS1) � α � β ≡ β � α.
(LS2) � α ∧ β ⊃ α � β.
(LS3) If α ∧ β is satisfiable then � α � β ⊃ α ∧ β.
(LS4) α � β is unsatisfiable iff α is unsatisfiable and β is unsatisfiable.
(LS5) If � α1 ≡ α2 and � β1 ≡ β2 then � α1 � β1 ≡ α2 � β2.

(LS6) α � (β1 ∨ β2) =

⎧⎨
⎩

α � β1 or
α � β2 or
(α � β1) ∨ (α � β2).

(LS7) � (α � β) ⊃ (α ∨ β).
(LS8) If α is satisfiable then α ∧ (α � β) is satisfiable.

The first postulate asserts that merging is commutative, while the next two assert that,
for mutually consistent formulas, merging corresponds to their conjunction. (LS5) en-
sures that the operator is independent of syntax, while (LS6) provides a “factoring”
postulate, analogous to a similar factoring result in (AGM-style) belief revision and
contraction. Postulate (LS7) can be taken as distinguishing � from other such opera-
tors; it asserts that the result of merging implies the disjunction of the original formu-
las. The last postulate informally constrains the result of merging so that each operator
“contributes to” (i.e., is consistent with) the final result.
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Next, Konieczny and Pino Peréz [13] consider the problem of merging possibly
contradictory belief bases. To this end, they consider finite multisets of the form
Ψ = {K1, . . . , Kn}. They assume that the belief sets Ki are consistent and finitely
representable, and so representable by a formula. Kn is the multiset consisting of n
copies of K . Following Konieczny and Pino Peréz [13], let Δμ(Ψ) denote the result of
merging the multi-set Ψ of belief bases given the entailment-based integrity constraint
expressed by μ. The intent is that Δμ(Ψ) is the belief base closest to the belief multiset
Ψ . They provide the following set of postulates (multiset union is denoted by ∪):

Definition 2 ([13]). Let Ψ be a multiset of sets of formulas, and φ, μ formulas (all
possibly subscripted or primed). Then, Δ is an IC merging operator if it satisfies the
following postulates.

(IC0) Δμ(Ψ) � μ.
(IC1) If μ �� ⊥ then Δμ(Ψ) �� ⊥.
(IC2) If

∧
Ψ �� ¬μ then Δμ(Ψ) ≡

∧
Ψ ∧ μ.

(IC3) If Ψ1 ≡ Ψ2 and μ1 ≡ μ2 then Δμ1(Ψ1) ≡ Δμ2(Ψ2).
(IC4) If φ � μ and φ′ � μ then Δμ(φ ∪ φ′) ∧ φ �� ⊥ implies Δμ(φ ∪ φ′) ∧ φ′ �� ⊥.
(IC5) Δμ(Ψ1) ∧Δμ(Ψ2) � Δμ(Ψ1 ∪ Ψ2).
(IC6) If Δμ(Ψ1) ∧Δμ(Ψ2) �� ⊥ then Δμ(Ψ1 ∪ Ψ2) � Δμ(Ψ1) ∧Δμ(Ψ2).
(IC7) Δμ1(Ψ) ∧ μ2 � Δμ1∧μ2(Ψ).
(IC8) If Δμ1(Ψ) ∧ μ2 �� ⊥ then Δμ1∧μ2(Ψ) � Δμ1(Ψ) ∧ μ2.

(IC2) states that, when consistent, the result of merging is simply the conjunction of
the belief bases and integrity constraints. (IC4) asserts that when two belief bases
disagree, merging does not give preference to one of them. (IC5) states that a model of
two mergings is in the union of their merging. With (IC5) we get that if two mergings
are consistent then their merging is implied by their conjunction. Note that merging
operators are trivially commutative. (IC7) and (IC8) correspond to the extended AGM
postulates (K ∗ 7) and (K ∗ 8) for revision, but with respect to the integrity constraints.

3 Merging Logic Programs

We denote (generalised) logic programs by P1, P2, . . . , reserving P0 for a program rep-
resenting global constraints, as described later. For logic programs P1, P2, we define
P1  P2 to be a program with SE models equal to SE (P1)∩ SE (P2) and P1 �P2 to be
a program with SE models equal to SE (P1)∪SE (P2). By a belief profile, Ψ , we under-
stand a sequence 〈P1, . . . , Pn〉 of (generalised) logic programs. For Ψ = 〈P1, . . . , Pn〉
we write  Ψ for P1  · · ·  Pn. We write Ψ1 ◦ Ψ2 for the (sequence) concatenation
of belief profiles Ψ1, Ψ2; and for logic program P0 and Ψ = 〈P1, . . . , Pn〉 we abuse
notation by writing 〈P0, Ψ〉 for 〈P0, P1, . . . , Pn〉. A belief profile Ψ is satisfiable just
if each component logic program is satisfiable. The set of SE models of Ψ is given by
SE (Ψ) = SE (P1) × · · · × SE (Pn). For S ∈ SE (Ψ) such that S = 〈S1, . . . , Sn〉, we
use Si to denote the ith component Si of S. Thus, Si ∈ SE (Pi). Analogously, the set of
classical propositional models of Ψ is given by Mod(Ψ) = Mod(P1)×· · ·×Mod(Pn);
also we use X i to denote the ith component of X ∈ Mod(Ψ).
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Let! denote the symmetric difference operator between sets, i.e., X!Y = (X\Y )∪
(Y \X) for every set X, Y . We extend! so that it can be used with SE interpretations
as follows: For every pair (X1, X2), (Y1, Y2),

(X1, X2)! (Y1, Y2) = (X1 ! Y1, X2 ! Y2).

Similarly, (X1, X2) ⊆ (Y1, Y2) iff X1 ⊆ Y1 and X2 ⊆ Y2, and, moreover, (X1, X2) ⊂
(Y1, Y2) iff (X1, X2) ⊆ (Y1, Y2) and either X1 ⊂ Y1 or X2 ⊂ Y2.

3.1 Arbitration Merging

For the first approach to merging, called arbitration, we consider models of Ψ and se-
lect those models in which, in a global sense, the constituent models vary minimally.
The result of arbitration is a logic program made up of SE models from each of these
minimally-varying tuples. Note that, in particular, if a set of programs is jointly consis-
tent, then there are models of Ψ in which all constituent SE models are the same. That
is, the models that vary minimally are those S ∈ SE (Ψ) in which Si = Sj for every
1 ≤ i, j ≤ n; and merging is the same as simply unioning the programs.

The first definition provides a notion of distance between models of Ψ , while the
second then defines merging in terms of this distance.

Definition 3. Let Ψ = 〈P1, . . . , Pn〉 be a satisfiable belief profile and let S, T be two
SE models of Ψ (or two classical models of Ψ ).

Then, define S ≤a T , if Si ! Sj ⊆ T i ! T j for every 1 ≤ i < j ≤ n.

Clearly, ≤a is a partial pre-order. In what follows, let Mina(N) denote the set of all
minimal elements of a set N of tuples relative to ≤a, i.e.,

Mina(N) = {S ∈ N | T ≤a S implies S ≤a T for all T ∈ N} .

Preparatory for our central definition to arbitration merging, we furthermore define,
for a set N of n-tuples,

∪N = {S | S = Si for some S ∈ N and some i ∈ {1, . . . , n}}.

Definition 4. Let Ψ be a belief profile. Then, the arbitration merging, or simply arbitra-
tion, of Ψ , is a logic program ∇(Ψ) such that

SE (∇(Ψ)) = {(X, Y ) | Y ∈ ∪Mina(Mod(Ψ)), X ⊆ Y,

and if X ⊂ Y then (X, Y ) ∈ ∪Mina(SE (Ψ))} ,

providing Ψ = 〈P1, . . . , Pn〉 is satisfiable, otherwise, if Pi is unsatisfiable for some
1 ≤ i ≤ n, define ∇(Ψ) = ∇(〈P1, . . . , Pi−1, Pi+1, . . . , Pn〉).

For illustration, consider the belief profile

〈P1, P2〉 = 〈{p ← , u ←}, {← p , v ←}〉 . (2)

Given that SE (P1) = {(pu, pu), (pu, puv), (puv, puv)} and SE (P2) = {(v, v),
(v, uv), (uv, uv)}, we obtain nine SE models for SE (〈P1, P2〉). Among them, we find
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Table 1. Examples on Arbitration Merging

P1 P2 SE (∇(〈P1, P2〉)) ∇(〈P1, P2〉)
{p ←} {q ←} {(pq, pq)} {p ← , q ←}
{p ←} {← p} {(p, p), (∅, ∅)} {p;∼p ←}

{p ← ∼p} {← p} {(∅, p), (p, p), (∅, ∅)} {}
{p ← , q ←} {← p, q} {(pq, pq), (p, p), (q, q)} {p; q ←, p;∼p ←, q;∼q ←}

{⊥ ← ∼p ,⊥ ← ∼q} {← p, q} {S ∈ SE (∅) | S �= (∅, ∅)} {⊥ ← ∼p,∼q}
{⊥ ← p ,⊥ ← q} {p; q ←} {(∅, ∅), (p, p), (q, q)} {← p, q, p;∼p ←, q;∼q ←}

a unique ≤a-minimal one, yielding Mina(SE (〈P1, P2〉)) = {〈(puv, puv), (uv, uv)〉}.
Similarly, 〈P1, P2〉 has a single≤a-minimal collection of pairs of classical models, viz.
Mina(Mod(〈P1, P2〉)) = {〈puv, uv〉}. Accordingly, we get

∪Mina(Mod(〈P1, P2〉)) = {puv, uv},
∪Mina(SE (〈P1, P2〉)) = {(puv, puv), (uv, uv)}, and

SE (∇((P1, P2))) = ∪Mina(SE (〈P1, P2〉)) .

We thus obtain the program ∇(〈P1, P2〉) = {p;∼p ← , u ← , v ←} as the resultant
arbitration of P1 and P2.

For further illustration, consider the technical examples given in Table 1.
We note that merging normal programs often leads to disjunctive or generalised pro-

grams. Although plausible, this is also unavoidable because merging does not preserve
the model intersection property of the reduced program satisfied by normal programs.

Moreover, we have the following general result.

Theorem 1. Let Ψ = 〈P1, P2〉 be a belief profile, and define P1 � P2 = ∇(Ψ). Then, �
satisfies the following versions of the postulates of Definition 1.

(LS1′) P1 � P2 ≡s P2 � P1.
(LS2′) P1  P2 |=s P1 � P2.
(LS3′) If P1  P2 is satisfiable then P1 � P2 |=s P1  P2.
(LS4′) P1 � P2 is satisfiable iff P1 is satisfiable and P2 is satisfiable.
(LS5′) If P1 ≡s P2 and P ′

1 ≡s P ′
2 then P1 � P2 ≡s P ′

1 � P ′
2.

(LS7′) P1 � P2 |=s P1 � P2.
(LS8′) If P1 is satisfiable then P1  (P1 � P2) is satisfiable.

3.2 Basic Merging

For the second approach to merging, programs P1, . . . , Pn are merged with a target
logic program P0 so that the SE models in the merging will be drawn from models of
P0. This operator will be referred to as the (basic) merging of P1, . . . , Pn with respect to
P0. The information in P0 must hold in the merging, and so can be taken as necessarily
holding. Konieczny and Pino Pérez [13] call P0 a set of integrity constraints, though
this usage of the term differs from its usage in logic programs. Note that in the case
where SE (P0) is the set of all SE models, the two approaches do not coincide, and that
merging is generally a weaker operator than arbitration.
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Definition 5. Let Ψ = 〈P0, . . . , Pn〉 be a belief profile and let S, T be two SE models
of Ψ (or two classical models of Ψ ).

Then, define S ≤b T , if S0 ! Sj ⊆ T 0 ! T j for every 1 ≤ j ≤ n.

As in the case of arbitration merging, ≤b is a partial pre-order. Accordingly, let
Minb(N) be the set of all minimal elements of a set N of tuples relative to ≤b. In
extending our notation for referring to components of tuples, we furthermore define
N0 = {S0 | S ∈ N}. We thus can state our definition for basic merging as follows:

Definition 6. Let Ψ be a belief profile. Then, the basic merging, or simply merging, of
Ψ , is a logic program Δ(Ψ) such that

SE (Δ(Ψ)) = {(X, Y ) | Y ∈ Minb(Mod(Ψ))0, X ⊆ Y,
and if X ⊂ Y then (X, Y ) ∈ Minb(SE (Ψ))0} ,

providing Ψ = 〈P1, . . . , Pn〉 is satisfiable, otherwise, if Pi is unsatisfiable for some
1 ≤ i ≤ n, define Δ(Ψ) = Δ(〈P0, . . . , Pi−1, Pi+1, . . . , Pn〉).
Let us reconsider Programs P1 and P2 from (2) in the context of basic merging. To this
end, we consider the belief profile 〈∅, {p ← , u ←}, {← p , v ←}〉. We are now faced
with twenty-seven SE models for SE (〈∅, P1, P2〉). Among them, we get the following
≤b-minimal SE models

Minb(SE (〈∅, P1, P2〉)) = {〈(uv, uv), (puv, puv), (uv, uv)〉,
〈(uv, puv), (puv, puv), (uv, uv)〉, 〈(puv, puv), (puv, puv), (uv, uv)〉}

along with Minb(Mod(〈∅, P1, P2〉)) = {〈uv, puv, uv〉, 〈puv, puv, uv〉}. We get:

Minb(Mod(〈∅, P1, P2〉))0 = {puv, uv},
Minb(SE (〈∅, P1, P2〉))0 = {(uv, uv), (uv, puv), (puv, puv)}, and

SE (Δ(〈∅, P1, P2〉)) = Minb(SE (〈∅, P1, P2〉))0 .

While arbitration resulted in ∇(〈P1, P2〉) = {p;∼p ← , u ← , v ←}, the more conser-
vative approach of basic merging yields Δ(〈∅, P1, P2〉) = {u ← , v ←}.

We have just seen that basic merging adds “intermediate” SE models, viz. (uv, puv),
to the ones obtained in arbitration merging. This can also be observed on the exam-
ples given in Table 1, where every second merging is weakened by the addition of
such intermediate SE models. This is made precise in Theorem 3 below. We summarise
the results in Table 2 (but omit programs due to limited space). In fact, the programs
Δ(〈∅, P1, P2〉) are obtained from ∇(〈P1, P2〉) in Table 1 by simply dropping all rules
of form p;∼p ← and q;∼q ←, respectively.

The next example further illustrates the difference between arbitration an basic merg-
ing. Take P1 = {p ← , q ←} and P2 = {∼p ← ,∼q ←}. Then, we have that
SE (∇(〈P1, P2〉)) = {(pq, pq), (∅, ∅)} and SE (Δ(〈∅, P1, P2〉)) = SE (∅). That is, in
terms of programs, we obtain

∇(〈P1, P2〉) = {p;∼p ←, q;∼q ←, ← p,∼q, ← ∼p, q} and Δ(〈∅, P1, P2〉) = ∅ .
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Table 2. Examples on Basic Merging

P1 P2 SE (Δ(〈∅, P1, P2〉))
{p ←} {q ←} {(pq, pq)}
{p ←} {← p} {(p, p), (∅, ∅)} ∪ {(p, ∅)}

{p ← ∼p} {← p} {(∅, p), (p, p), (∅, ∅)}
{p ← , q ←} {← p, q} {(pq, pq), (p, p), (q, q)} ∪ {(p, pq), (q, pq)}

{⊥ ← ∼p ,⊥ ← ∼q} {← p, q} {S ∈ SE (∅) | S �= (∅, ∅)}
{⊥ ← p ,⊥ ← q} {p; q ←} {(∅, ∅), (p, p), (q, q)} ∪ {(p, ∅), (q, ∅)}

Theorem 2. Let Ψ be a belief profile, P0 a program representing global constraints,
and Δ as given in Definition 6. Then, Δ satisfies the following versions of the postulates
of Definition 2:

(IC0′) Δ(〈P0, Ψ〉) |=s P0.
(IC1′) If P0 is satisfiable then Δ(〈P0, Ψ〉) is satisfiable.
(IC2′) If  (Ψ) is satisfiable then Δ(〈P0, Ψ〉) ≡s P0  ( (Ψ)).
(IC3′) If P0 ≡s P ′

0 and Ψ ≡s Ψ ′ then Δ(〈P0, Ψ〉) ≡s Δ(〈P ′
0, Ψ

′〉).
(IC4′) If P1 |=s P0 and P2 |=s P0 then:

if Δ(〈P0, P1, P2〉) P1 is satisfiable, then Δ(〈P0, P1, P2〉) P2 is satisfiable.
(IC5′) Δ(〈P0, Ψ〉)  Δ(〈P0, Ψ

′〉) |=s Δ(〈P0, Ψ ◦ Ψ ′〉).
(IC7′) Δ(〈P0, Ψ〉)  P ′

0 |=s Δ(〈P0  P ′
0, Ψ〉).

(IC9′) Let Ψ ′ be a permutation of Ψ . Then, Δ(〈P0, Ψ〉) ≡s Δ(〈P0, Ψ
′〉).

We also obtain that arbitration merging is stronger than (basic) merging in the case of
tautologous constraints in P0.

Theorem 3. Let Ψa and Ψb = 〈∅, Ψa〉 be belief profiles. Then, ∇(Ψa) |=s Δ(Ψb).

As well, for belief profile Ψ = 〈P1, P2〉, we can express our merging operators in terms
of the revision operator defined in previous work [8].

Theorem 4. Let 〈P1, P2〉 be a belief profile.

1. ∇(〈P1, P2〉) = (P1 ∗ P2) � (P2 ∗ P1).
2. Δ(〈P1, P2〉) = P2 ∗ P1.

Note that in the second part of the preceding result, P1 is regarded as a set of constraints
(usually with name P0) according to our convention for basic merging.

4 Computational Issues

In this section, we provide encodings of arbitration and basic merging into logic pro-
grams. Since our encodings can be computed efficiently from a given belief profile, we
are able to provide complexity results for decision problems typically associated to merg-
ing operators. We start, however, with the formal machinery required for the encodings.

In what follows, for basic merging, we consider the program representing integrity
constraints to be part of a belief profile, and conventionally have it as the first element
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of the belief profile. Thus, we write Ψ = 〈Pα, . . . , Pn〉, and depending on the merging
operator, we have α = 0 or α = 1. Moreover, we restrict ourselves to satisfiable belief
profiles here. In fact, a generalisation of the subsequent encodings to the general case is
possible but requires some further technical efforts, which we omit in order to provide
a more succinct presentation of the basic ideas.

We let A be the set of all atoms occurring in Ψ and require mutually disjoint atoms

{ai
h, ai

t, a
i
m, âi

h, âi
t, â

i
m | a ∈ A, α ≤ i ≤ n}, (3)

which are used as follows: atoms ai
h, ai

t (1 ≤ i ≤ n) characterise SE (Pi), and like-
wise ai

m is used to characterise Mod(Pi). In other words, an assignment to the atoms
{ai

h, ai
t | a ∈ A, 1 ≤ i ≤ n} represents a candidate for S ∈ SE (Ψ) and an assignment

to the atoms {ai
m | a ∈ A, 1 ≤ i ≤ n} represents a candidate for X ∈ Mod(Ψ). The

atoms âi
h, âi

t, â
i
m play analogous roles and are used to range over further SE models

(resp., classical models) T of Ψ . In particular, we compare T to S (resp., to X) to make
the necessary checks for the merging operators. We give the formal details below.

To “guess” assignments, we need each atom a from the set (3) also in a “negated
way”, ã. Moreover, we use further atoms O = {ao

h, ao
t | a ∈ A} to carry our final re-

sult, SE (∇(Ψ)) (resp., SE (Δ(Ψ))), and atoms H for particular technical programming
issues, which we introduce as we go along. For the moment, we just have to assume that
our encodings are given over an alphabet AΨ which contains each atom from the set (3)
and its negation, the output atoms O and further atoms H .

We use sub- and superscripts also as renaming functions: Given a set Y ⊆ A of
atoms, x ∈ {h, t, m}, and an index i, Y i

x denotes the set {yi
x | y ∈ Y }, Ŷ i

x denotes the
set {ŷi

x | y ∈ Y }, etc. Likewise for a rule r, ri
x denotes the rule r after replacing each

of its atom y by yi
x, and r̂i

x denotes the rule r after replacing each atom y by ŷi
x, etc.

We are now able to formally associate an interpretation I ⊆ AΨ to several SE and
classical interpretations over A as follows: Let I ⊆ AΨ and i an index. Then,

σi(I) = {(X, Y ) | X, Y ⊆ A, X i
h = I ∩Ai

h, Y i
t = I ∩Ai

t} and

πi(I) = {X | X ⊆ A, X i
m = I ∩Ai

m}.

Moreover, let

σ(I) = 〈σα(I), . . . , σn(I)〉 and π(I) = 〈πα(I), . . . , πn(I)〉.

Likewise, for a set I of interpretations over AΨ , we define Σi(I) =
⋃

I∈I σi(I),
Πi(I) =

⋃
I∈I πi(I), Σ(I) = Σα(I) × · · · × Σn(I), and Π(I) = Πα(I) × · · · ×

Πn(I).
We define the following module for an index i:

G[i] = {ai
x; ãi

x ←, ⊥ ← ai
x, ãi

x | a ∈ A, x ∈ {h, t, m}}∪
{⊥ ← ai

h, ãi
t | a ∈ A}∪

{⊥ ← H+(r̃i
y), H−(ri

y), B+(ri
y), B−(r̃i

y) | r ∈ Pi, y ∈ {t, m}}∪
{⊥ ← H+(r̃i

h), H−(ri
t), B

+(ri
h), B−(r̃i

t) | r ∈ Pi}.

We note that Σi(AS (G[i])) = SE (Pi) and Πi(AS (G[i])) = Mod(Pi)). Consequently,
Σ(AS(G[α] ∪ · · · ∪G[n])) = SE (Ψ) and Π(AS(G[α] ∪ · · · ∪G[n])) = Mod(Ψ).
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The next module guesses the remaining atoms which are used to check minimality of
the guess above. However, we use now a spoiling technique rather than constraints, to
exclude (SE) interpretations which are not (SE) models of the respective program. The
new atom z indicates whether we have to spoil. Moreover, this spoiling is also activated
below where we compare the new guess with the guess from above. We define:

H [i] = {âi
x; ˜̂ai

x ←, z ← âi
x, ˜̂ai

x, âi
x ← z, ˜̂ai

x ← z | a ∈ A, x ∈ {h, t, m}}∪
{z ← âi

h, ˜̂ai
t | a ∈ A}∪

{z ← H+(˜̂ri
y), H−(r̂i

y), B+(r̂i
y), B−(˜̂ri

y) | r ∈ Pi, y ∈ {t, m}}∪
{z ← H+(˜̂ri

h), H−(r̂i
t), B

+(r̂i
h), B−(˜̂ri

t) | r ∈ Pi}.

For the moment, we can assume that the H [i] modules act in the same way as the G[i]
modules. In particular, assuming that each Pi has at least one SE model, there exists
a situation where z is not derived. Below, on the one hand, we derive z to indicate the
outcome of several checks, and finally force z to be included in an answer set. However,
for the moment, we can use the operators σ̂, π̂, Σ̂, Π̂ in an analogous way as above.
Hence, for instance, given I ⊆ AΨ and an index i, we have π̂i(I) = {X | X ⊆
A, X̂ i

h = I ∩ Âi
h}, and so on.

Next, we want to compare different models, e.g., Σ(I) with Σ̂(I), for some I ⊆ AΨ .
By the considerations above, this allows us to compare two SE models S, T of Ψ .

We require the following property:

Lemma 1. For a belief profile Ψ = 〈Pα, . . . , Pn〉, we have S ∈ Mina(SE (Ψ)) iff

(i) for each T ∈ SE (Ψ), S ≤a T , and
(ii) there exist α ≤ i < j ≤ n such that Si ! Sj �= T i ! T j .

An analogous result holds for Mod(Ψ) instead of SE (Ψ).

Exploiting a somewhat dual method to this lemma, the following module derives, for
given i, j,

– the atom z iff Si ! Sj �⊆ T i ! T j , and
– the atom zi,j iff Si ! Sj = T i ! T j .

For the latter, we require further new atoms ai,j
x,δ, for x ∈ {h, t, m}. Indeed, the com-

pared models S and T are characterised via I ⊆ AΨ by Σ(I) = S and Σ̂(I) = T ,
resp., Π(I) = S and Π̂(I) = T . We define

C[i, j] = {z ← ai
x, ãj

x, âi
x, âj

x, z ← ai
x, ãj

x, ˜̂ai
x, ˜̂aj

x,

z ← ãi
x, aj

x, âi
x, âj

x, z ← ãi
x, aj

x, ˜̂ai
x, ˜̂aj

x,

ai,j
x,δ ← ai

x, ãj
x, âi

x, ˜̂aj
x, ai,j

x,δ ← ai
x, ãj

x, ˜̂ai
x, âj

x,

ai,j
x,δ ← ãi

x, aj
x, âi

x, ˜̂aj
x, ai,j

x,δ ← ãi
x, aj

x, ˜̂ai
x, âj

x,

ai,j
x,δ ← ai

x, aj
x, âi

x, âj
x, ai,j

x,δ ← ai
x, aj

x, ˜̂ai
x, ˜̂aj

x,

ai,j
x,δ ← ãi

x, ãj
x, âi

x, âj
x, ai,j

x,δ ← ãi
x, ãj

x, ˜̂ai
x, ˜̂aj

x | a ∈ A, x ∈ {h, t, m}}∪
{zi,j ← Ai,j

h,δ ∪Ai,j
t,δ, zi,j ← Ai,j

m,δ}.
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In other words, if we have guessed S and T in such a way that Si ! Sj �⊆ T i ! T j ,
then S ≤a T cannot hold and we derive the spoiling atom z. In case Si!Sj = T i!T j ,
we store this result by deriving an intermediate spoiling atom zi,j . Below, we spoil if
all relevant zi,j’s have been derived.

Arbitration Merging. For a belief profile Ψ = 〈P1, . . . , Pn〉, we put things together as
follows, where Z is the set {zi,j | 1 ≤ i < j ≤ n}:

E(Ψ) =
⋃n

i=1(G[i] ∪H [i]) ∪
⋃n

i=1
⋃n

j=i+1 C[i, j] ∪
{z ← Z, ⊥ ← ∼z} ∪ {g1 ∨ · · · ∨ g2n ←} ∪
{ao

t ← gi, a
i
m, ao

h ← gi, a
i
m,

ao
t ← gn+i, a

i
t, ao

h ← gn+i, a
i
h | a ∈ A, 1 ≤ i ≤ n} ∪

{fj ← gn+i, a
j
m, ãi

t, fj ← gn+i, ã
j
m, ai

t | 1 ≤ i, j ≤ n, a ∈ A} ∪
{⊥ ← f1, . . . , fn}.

Roughly speaking, the guess via the gi’s selects from which Pi we now add a pair
(X, Y ) into SE (∇(Ψ)). More precisely, if a gi is selected, with 1 ≤ i ≤ n, we add
(Xi, Xi) for the currently guessed X ∈ Mod(Ψ). Otherwise, i.e., when gn+i is selected
(1 ≤ i ≤ n), we add Si = (X, Y ), where S ∈ SE (Ψ) is the current guess, provided
that Y matches some Xj .

Let us now define, for a set I of interpretations over AΨ ,

Σo =
⋃
I∈I

{(X, Y ) | X, Y ⊆ A, Xo
h = I ∩Ao

h, Y o
t = I ∩Ao

t}.

We obtain the following result:

Theorem 5. SE (∇(Ψ)) = Σo(AS (E(Ψ))).

Basic Merging. We now continue with the encoding for basic merging. We already
have most ingredients at hand. In fact, for a belief profile Ψ = 〈P0, . . . , Pn〉, we define

F (Ψ) =
⋃n

i=0(G[i] ∪H [i]) ∪
⋃n

i=1 C[0, i] ∪
{z ← z0,1, . . . , z0,n, ⊥ ← ∼z} ∪ {g0 ∨ g1 ←} ∪
{ao

t ← g0, a
0
m, ao

h ← g0, a
0
m, ao

t ← g1, a
0
t , ao

h ← g1, a
0
h | a ∈ A} ∪

{⊥ ← g1, a
0
m, ã0

t , ⊥ ← g1, ã
0
m, a0

t}.

F (Ψ) follows the same ideas as used in E(Ψ) but significantly simplifies due to the
special role of P0 in basic merging. Note that we require much less comparisons C[0, i]
here. As well, we only have to select classical and SE models of P0 to become output
atoms. Our result is thus as follows:

Theorem 6. SE (Δ(Ψ)) = Σo(AS (F (Ψ))).

Complexity. In our previous work [8], the following decision problem has been studied
with respect to the revision operator ∗: Given GLPs P , Q, R, does P ∗Q |=s R hold?
This problem was shown to be ΠP

2 -complete. Accordingly, we give here results for the
following problems:
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Given a belief profile Ψ and a program R: (1) Does∇(Ψ) |=s R hold? (2) Does
Δ(Ψ) |=s R hold?

By Theorem 4, it can be shown that the hardness result for the revision problem
also applies to the respective problems in terms of merging. On the other, hand ΠP

2 -
membership can be obtained by a slight extension of the above encodings such that
these extensions possess an answer set iff the respective problem (1) or (2) does not
hold. Since checking whether a program has at least one answer set is a problem on the
second of layer of the polynomial hierarchy and our (extended) encodings are polyno-
mial in the size of the encoded problems, the desired membership results follow.

Theorem 7. Given a belief profile Ψ and a program R, deciding ∇(Ψ) |=s R (resp.,
Δ(Ψ) |=s R) is ΠP

2 -complete.

5 Discussion

We have addressed the problem of merging logic programs under the answer set se-
mantics. Unlike related work in updating logic programs, but similar to our work in
logic program revision [8], our approach is based on a monotonic characterisation of
logic programs, given in terms of the set of SE models of a sequence of programs.
We defined and examined two operators for logic program merging, the first following
intuitions from arbitration [12], the second being closer to IC merging [13]. Notably,
since these merging operators are defined via a semantic characterisation, the results of
merging are independent of the particular syntactic expression of a logic program. As
well as giving properties of these operators, we also considered the complexity and an
encoding scheme for both.

This work is original, given that it addresses merging in terms familiar to researchers
in belief change. However, it applies these concepts in the context of logic programs.
While we considered set-containment-based merging here, cardinality-based merging
(which in fact would be closer to the specific operators proposed by Konieczny and
Pino Pérez [13]) can also easily be defined.
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Abstract. Over the years, the stable-model semantics has gained a position of
the correct (two-valued) interpretation of default negation in programs. How-
ever, for programs with aggregates (constraints), the stable-model semantics, in
its broadly accepted generalization stemming from the work by Pearce, Ferraris
and Lifschitz, has a competitor: the semantics proposed by Faber, Leone and
Pfeifer, which seems to be essentially different. Our goal is to explain the rela-
tionship between the two semantics. Pearce, Ferraris and Lifschitz’s extension of
the stable-model semantics is best viewed in the setting of arbitrary propositional
theories. We propose an extension of the Faber-Leone-Pfeifer semantics, or FLP
semantics, for short, to the full propositional language, which reveals both com-
mon threads and differences between the FLP and stable-model semantics. We
establish several properties of the FLP semantics. We apply a similar approach to
define supported models for arbitrary propositional theories.

Keywords: Stable models, answer-set programming, logic here-and-there.

1 Introduction

The stable-model semantics, introduced by Gelfond and Lifschitz [1], is the founda-
tion of answer-set programming [2,3,4], a paradigm for modeling and solving search
problems. From its inception, developing theoretical underpinnings of the stable-model
semantics has been a major research objective. In particular, a contribution by Pearce
[5] explained the stable-model semantics in terms of models of theories in the logic
here-and-there (HT, for short), introduced by Heyting [6].

Pearce’s work had two important consequences. First, it resulted in a generaliza-
tion of the stable-model semantics, originally limited to a restricted syntax of program
rules, to arbitrary theories in the language of propositional logic. Second, it brought
about the notion of strong equivalence of programs, fundamental to modular program
development [7].

The original definition of stable models [1] was based on the reduct of a program
with respect to a set of atoms. The characterization in terms of the logic HT makes no
reference to reducts but employs a form of model minimization. Lifschitz and Ferraris
[8,9] extended the notion of reduct to propositional theories, and developed the reduct-
based definition of stable models equivalent to that provided by the logic HT.
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The question motivating the present work is whether there are other generalizations
of the stable-model semantics to the case of arbitrary logic theories. An indication that
it might be so comes from the work by Faber, Leone and Pfeifer [10] on programs with
aggregates. Aggregates, in the form of weight aggregates, were introduced to answer-set
programming by Niemelä and Simons [11], who extended the stable-model semantics
to that class of programs. Ferraris and Lifschitz [9] cast that generalization in terms
of stable models of propositional theories. Stable models of programs with weight
constraints are no longer guaranteed to be minimal models. From the perspective of
the Ferraris and Lifschitz’s result, it is not unexpected. Stable models of propositional
theories in general do not have the minimal-model property.

However, as minimization is an important knowledge-representation principle, Faber
et al. [10] sought an alternative semantics for programs with constraints, one that would
have the minimal-model property. Naturally, they also wanted it to coincide with the
original semantics on the class of programs without aggregates. They came up with a
solution that satisfied both requirements by modifying the concept of the reduct.

In the setting with aggregates, the Faber-Leone-Pfeifer stable-model semantics, or
FLP semantics, is different than the extension of the original stable-model semantics
based on the logic HT (throughout the paper, whenever we speak about the stable-model
semantics, we have this specific semantics in mind). Thus, the question we raised earlier
is relevant.

In this paper, we have the following goals: (1) To extend the semantics of Faber et
al. [10] to the language of propositional logic. We do so in two equivalent ways: by
means of a generalization of the reduct introduced by Faber et al., as well as in terms of
a certain satisfiability relation similar to the one that defines the logic HT. We show that
the FLP semantics generalizes several properties of the stable-model semantics of logic
programs and so, it can be regarded as its legitimate generalization, alongside with the
extension based on the logic HT. We derive several additional properties of the FLP
semantics, including a characterization of strong equivalence under that semantics, and
a normal-form result. (2) To relate the FLP and stable-model semantics of propositional
theories. We show that each can be expressed in each other in the sense that there
are modular translations that do not use any auxiliary atoms and such that FLP-stable
models of a theory are stable models of its image under the translation (and vice versa).
(3) To apply a similar two-pronged approach, exploiting both some notion of reduct and
a certain satisfiability relation, to the supported model semantics. We show that also
supported models can be defined for arbitrary propositional theories. We generalize to
propositional language some well-known properties of supported models, as well as the
results connecting stable and supported models of programs.

2 Preliminaries

We consider the language of propositional logic determined by an infinite countable set
At of atoms, and boolean connectives⊥,∧, ∨, and→. A Backus-Naur Form expression
ϕ ::= ⊥ |A | (ϕ∧ϕ) | (ϕ∨ϕ) | (ϕ → ϕ), where A ∈ At , provides a concise definition of
a formula. The parentheses are used only to disambiguate the order of binary operations.
Whenever possible, we omit them. Generalizing the concept of the head of a program
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rule, we say that an occurrence of an atom is a head occurrence if it does not occur
in the antecedent of any implication. Finally, when writing formulas, we often use the
following shorthands:

" = ⊥ → ⊥ and ¬F = F → ⊥.

A set of formulas is a theory. In the case of all semantics we discuss here, there is no
essential difference between finite theories and formulas. The former can be represented
as the conjunctions of their elements. We distinguish between formulas and theories as
we want to address the case of infinite theories, too.

In the paper, we consider several special types of formulas and theories. A rule is a
formula

A1 ∧ . . . ∧Am ∧ ¬B1 ∧ . . . ∧ ¬Bn → C1 ∨ . . . ∨ Cr ∨ ¬D1 ∨ . . . ∨ ¬Ds, (1)

where Ai’s, Bi’s Ci’s and Di’s are atoms. We call A1 ∧ . . . ∧Am ∧ ¬B1 ∧ . . . ∧ ¬Bn

and C1 ∨ . . . ∨ Cr ∨ ¬D1 ∨ . . . ∨ ¬Ds the body and the head of the rule, respectively.
If m = n = 0, we represent the rule by its head. If r = s = 0, we write ⊥ for the head
of the rule. A program is a set of rules.

The stable-model semantics was defined first for normal programs (rule heads have
exactly one atom and no negated atoms). It was later extended to disjunctive programs
(rule heads have no negated atoms) [12], programs as understood here (that is, collec-
tions of rules as defined above) [13], and to programs with nested expressions [14].
Finally, the case of arbitrary theories was addressed by Pearce [5] and, later and in a
different way, by Ferraris and Lifschitz [8,9]. These two approaches are equivalent. We
will now discuss each of them, starting with the latter one.

For a formula F and a set of atoms Y , we define the GL-reduct of F with respect to
Y , written as FY , by induction:

R1. ⊥Y = ⊥

R2. If A is an atom: AY =
{

A if Y |= A
⊥ otherwise

R3. For ◦ = ∧ and ∨: (G ◦H)Y =
{

GY ◦HY if Y |= G ◦H
⊥ otherwise

R4. For →: (G → H)Y =
{

GY → HY if Y |= G → H
⊥ otherwise.

We could have folded case (R4) into the case (R3). However, all definitions of reduct
we consider later in the paper differ only in the way the implication is handled and so,
we show this case separately.

For a theoryF , we define the GL-reductFY by setting FY = {FY |F ∈ F}. Next,
we define Y ⊆ At to be a stable model of F if Y is a minimal model of the theory FY .
One can show that stable models are models (hence, the term stable model is justified).

This notion of a stable model generalizes all earlier ones. It also coincides with the
one proposed by Pearce [5]. The approach by Pearce is based on the logic HT [6], a logic
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located strictly between the intuitionistic and the propositional logics. Stable models
are defined in terms of the satisfiability relation |=ht in the logic HT. A pair 〈X, Y 〉,
where X, Y ⊆ At , is an HT-interpretation if X ⊆ Y . The relation |=ht, between HT-
interpretations and formulas, is defined inductively as follows:

1. 〈X, Y 〉 �|=ht ⊥
2. 〈X, Y 〉 |=ht A if X |= A (applies only if A ∈ At)
3. 〈X, Y 〉 |=ht F ∧G if 〈X, Y 〉 |=ht F and 〈X, Y 〉 |=ht G
4. 〈X, Y 〉 |=ht F ∨G if 〈X, Y 〉 |=ht F or 〈X, Y 〉 |=ht G
5. 〈X, Y 〉 |=ht F → G if Y |= F → G; and 〈X, Y 〉 �|=ht F , or 〈X, Y 〉 |=ht G.

The relation extends in a standard way to theories. If for a theory F , 〈X, Y 〉 |=ht F ,
then 〈X, Y 〉 is an HT-model of F .

Pearce [5] defined Y to be a stable model of a theory F if and only if 〈Y, Y 〉 |=ht F
and for every X ⊆ Y if 〈X, Y 〉 |=ht F , then X = Y (a form of minimality). Lifschitz
and Ferraris [9] proved that the two approaches are equivalent by showing the following
two key results.

Theorem 1. Let F be a theory.

1. For every Y ⊆ At , Y |= F if and only if Y |= FY

2. For every X ⊆ Y ⊆ At , X |= FY if and only if 〈X, Y 〉 |=ht F .

3 FLP Semantics

Faber et al. [10] based their work on a notion of reduct that differs from the one proposed
by Gelfond and Lifschitz. Using our notation, it can be defined as follows. Let R be a
disjunctive rule

A1 ∧ . . . ∧Am ∧ ¬B1 ∧ . . . ∧ ¬Bn → C1 ∨ . . . ∨ Cr,

where Ai, Bi and Ci are atoms, and let Y be a set of atoms. The FLP-reduct RY (the
notation we use is meant to distinguish between the FLP- and the GL-reduct) is either
R, if Y |= A1 ∧ . . . ∧ Am ∧ ¬B1 ∧ . . . ∧ ¬Bn, or ", otherwise. Given a disjunctive
program P , PY is obtained by replacing each rule R ∈ P with RY . Finally, Y is a
stable model of P in the sense of Faber et al., if Y is a minimal model of PY . Faber et
al. [10] proved that their stable models of disjunctive programs coincide with standard
stable models. They also observed that the FLP-reduct does not depend on the syntactic
form of the body of a rule. All that matters is whether the body is satisfied by Y . Thus,
they extended the definition to more general formulas that are of the form

F → C1 ∨ . . . ∨ Cr, (2)

where Ci are atoms and F is a propositional formula.1 That allowed them to extend
the concept of a stable model to the class of theories that consist of such “generalized”
disjunctive rules. Importantly, they proved that stable models, in their sense, of such
theories are minimal models, while the stable-model semantics does not have that prop-
erty (for instance, the program P = {¬¬A → A} has only one “Faber et al.” stable
model, ∅, but two standard stable models, ∅ and {A}).

1 They used conjunctions of literals and aggregate atoms as F , but that detail is immaterial here.
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3.1 General FLP Semantics

To extend that approach to arbitrary propositional theories, we first generalize the notion
of the FLP-reduct. To this end, we follow the inductive pattern of the definition of the
GL-reduct. There is no change for F = ⊥, F = A, where A ∈ At , and F = G ◦H ,
where ◦ = ∨ and ∧. Indeed, there does not seem to be any other way, in which these
cases could be handled. Thus, the only case that requires a discussion is that of F =
G → H . Once that case is settled, we will define Y to be an FLP-stable model of a
theory F if Y is a minimal model of the FLP-reduct FY .

So, let us discuss the case of the implication. A literal reading of the FLP-reduct for
rules suggests the following inductive definition for the case F = G → H :

(G → H)Y = G → H, if Y |= G; otherwise, (G → H)Y = ".

However, under that choice, all occurrences of → (and so, also all occurrences of ¬) in
the consequent of another implication would be interpreted in the classical way. While
not a problem for formulas that do not have any implications occurring in the conse-
quent of any “top-level” implication (and so, working correctly for the class of formulas
considered by Faber et al.), in general it leads to some counterintuitive behavior.

For instance, let F = {¬¬p} and G = {¬q → ¬¬p}. As q does not appear in the
head of the rule of G, it must be false in every reasonable generalization of the stable-
model semantics. Consequently,F and G should have the same stable models. However,
under the proposed definition it would not be so. Let Y = {p}. Since ¬¬p = (p →
⊥) → ⊥ and Y �|= p → ⊥, we would have FY = {"}. Consequently, Y would not be
a minimal model ofFY = {"} (as ∅ is a model, too) and so, Y would not be a “stable”
model of F . On the other hand, as Y |= ¬q, GY = {¬q → ¬¬p}. Thus, clearly, Y
would be a minimal model of GY and, consequently, a “stable” model of G. A problem
in itself, it brings up yet another one. In G, p has no head occurrence (informally, there
is no “defining clause” for p in G), yet G would have {p} as a “stable” model.

Thus, we need to handle the case of → differently, but in such a way that under the
restriction to theories consisting of formulas (2) we obtain the same concept of a stable
model as the one proposed by Faber et al. In particular, we must ensure that all occur-
rences of → in the consequent of another occurrence of → are treated consistently in
the same non-classical way. In the remainder of this section we will argue that it can be
accomplished by the following definition:

FLP4. (G → H)Y =

⎧⎨
⎩

G → HY if Y |= G and Y |= H
" if Y �|= G
⊥ otherwise (that is, when Y �|= G → H).

While it looks different than the original definition by Faber et al. [10], it preserves
its basic idea of keeping intact the bodies of rules that contribute to the reduct. In-
deed, when the implication is “strongly” satisfied (both its antecedent and consequent
are satisfied by Y ), we keep the antecedent unchanged. However, to make sure the im-
plications occurring in the antecedent are treated in a consistent way, we replace the
consequent recursively with its reduct. The case when Y “weakly” satisfies the impli-
cation, that is, does not satisfy its antecedent, is dealt with as in the previous attempt
(and as in the definition by Faber et al.), reflecting the principle that if the implication
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“does not fire,” it is immaterial and can be replaced by" (“removed”). In the case when
the implication is not satisfied by Y , it can be replaced by ⊥. Faber et al. do not dis-
tinguish this case and, in fact, proceed differently. They keep the rule in the program.
However, they could have replaced it with ⊥, as we propose (following the pattern for
GL-reduct), without affecting the resulting concept of a stable model. Indeed, if Y does
not satisfy a rule in a program, Y cannot be a stable model of that program. Replacing
a rule violated by Y with ⊥ just makes that explicit.

To summarize, we define the FLP-reduct of the formula F with respect to Y , FY ,
recursively, by using the clauses (R1) - (R3) of the definition of the GL-reduct (adjusted
to the notation FY ), as well as the clause (FLP4) for the implication →. We extend the
definition to theories in the standard way. With this definition in hand, we define next
the notion of an FLP-stable model of a propositional theory (as announced above).

Definition 1. Let F be a theory. A set of atoms Y is an FLP-stable model of F if Y is
a minimal model of FY .

3.2 Basic Properties

We start with a generalization of the well-known property of the standard GL-reduct of
disjunctive programs (cf. Theorem 1).

Proposition 1. For every theory F and for every set of atoms Y , Y |= F if and only if
Y |= FY .

Proof. It is enough to prove that for every formula F , we have Y |= F if and only if
Y |= FY . We proceed by induction. The base cases of F = ⊥ and F = A, where
A ∈ At , are evident. Let F = G ∧ H . If Y �|= F , then FY = ⊥. Thus, both sides
of the equivalence are false, and the equivalence follows. If Y |= F or Y |= FY , then
FY = GY ∧HY . By the definition:

1. Y |= F if and only if Y |= G and Y |= H , and
2. Y |= FY if and only if Y |= GY and Y |= HY .

By the induction hypothesis, the equivalence of Y |= F and Y |= FY follows. The
argument for ∨ is similar. Thus, let F = G → H . If Y �|= F , then FY = ⊥ and the
equivalence in the assertion holds. Similarly, if Y �|= G, then FY = ", and both Y |= F
and Y |= FY hold. Finally, let Y |= G and Y |= H . In that case, FY = G → HY .
By the inductive hypothesis, Y |= HY and so, Y |= G → HY . Thus, also in that case,
both Y |= F and Y |= FY hold. �

It follows that FLP-stable models are indeed models of formulas and theories.

Corollary 1. Let F be a theory and Y a set of atoms. If Y is an FLP-stable model of
F , then Y is a model of F .

This result allows us to prove that on theories consisting of formulas of the form (2)
FLP-stable models defined here and stable models of Faber et al. [10] coincide. Thus,
our approach is a generalization of the one by Faber et al.
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Theorem 2. Let P be a theory consisting of formulas of type (2). Then Y is a stable
model of P according to the definition by Faber et al. [10] if and only if Y is the FLP-
stable model, according to Definition 1.

Proof. Let P be a theory consisting of formulas (2), and let Y be a set of atoms. For a
formula R = F → C1 ∨ . . . ∨ Cr from P , we denote by R′ and R′′ the reducts of R
with respect to Y according to Faber et al., and according to our definition, respectively.
We also extend this notation to sets of such formulas.

Reasoning in either direction we can assume that Y is a model of P (it is known
that stable models according to Faber et al., are models [10]; for FLP-stable models, it
follows from Corollary 1). Thus,P ′ consists of those rules R = F → C1∨ . . .∨Cr, for
which Y |= F . In addition, it might possibly contain ". The reduct P ′′ differs only in
that each formula R = F → C1 ∨ . . .∨Cr from P that is retained in P ′, contributes to
P ′′ its reduct R′′ = F → C′

1 ∨ . . . ∨ C′
t, where C′

1, . . . C
′
t are precisely those elements

in {C1, . . . , Cr} that hold in Y . In addition, as P ′, P ′′ may also contain". It is evident,
that for every Z ⊆ Y , Z |= P ′ if and only if Z |= P ′′. Thus, Y is a minimal model of
P ′ if and only if Y is a minimal model of P ′′, and so, the result follows. �

One of problematic properties of the literal attempt to generalize the approach by Faber
et al. was that stable models of some theories contained atoms without head occur-
rences. The next result shows that our generalization behaves properly.

Proposition 2. Let F be a theory and Y an FLP-stable model of F . Then every atom
in Y has a head occurrence in F .

Finally, we note two properties that we use later in the paper.

Proposition 3. For every formulas F and G, and for every set of atoms Y :

1. FY ≡ ⊥ if and only if Y �|= F
2. (F ◦G)Y ≡ FY ◦GY , where ◦ = ∧ or ∨.

3.3 Minimal-Model Property

The main objective of Faber et al. [10] was to generalize the stable-model semantics to
the class of theories consisting of rules of the form (2) so that stable models would be
minimal models. Faber et al. proved that their generalization indeed has that property.

The extended FLP semantics has the minimal-model property for a broad class of
theories, including those consisting of rules (2), but not in general. Let F = ¬A ∨ A
and Y = ∅. Since Y |= A → ⊥ and Y �|= A, (¬A)Y = (A → ⊥)Y = ". Moreover,
AY = ⊥. Thus, FY ≡ (¬A)Y ∨ AY ≡ ". Clearly, Y is a minimal model of FY

and so, an FLP-stable model of F . Next, let us consider Z = {A}. We now have
(¬A)Z = (A → ⊥)Z = ⊥ and AZ = A. Thus, FZ ≡ (¬A)Z ∨AZ ≡ A. Again, Z is
a minimal model of FZ and so, an FLP-stable model of F . Thus, FLP-stable models of
F do not form an antichain and Z is not a minimal model of F .

To describe a broad class of theories for which FLP-stable models are minimal mod-
els, we introduce disjunctive-monotone formulas. A formula F is monotone if for every
X ⊆ Y ⊆ At , X |= F implies Y |= F . A formula F is disjunctive-monotone if every
occurrence of ∨ in F operates on monotone formulas.
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Proposition 4. For every disjunctive-monotone formula F and every sets of atoms X
and Y such that X ⊆ Y , if X |= F and Y |= F then X |= FY .

Proof. We proceed by induction. The case of F = ⊥ is vacuously true. If F = A,
where A is an atom, then FY = A = F (it follows from the assumption that Y |= A).
Thus, X |= FY . For the inductive step, there are three cases to consider.

Case 1. F = G ∧H . Clearly, both formulas G and H are disjunctive-monotone, X |=
G, X |= H , Y |= G and Y |= H . By the induction hypothesis, X |= GY and X |= HY .
Consequently, X |= GY ∧HY = (G ∧H)Y = FY .
Case 2. F = G ∨ H . Since X |= F , X |= G or X |= H . Wlog we may assume
that X |= G. Since F is disjunctive-monotone, G is disjunctive-monotone. Moreover,
G is monotone. Thus, Y |= G. By the induction hypothesis, X |= GY . Since FY ≡
GY ∨HY , X |= FY .
Case 3. F = G → H . Since Y |= F , FY �= ⊥. If FY = " then X |= FY = ". Thus,
we may assume that Y |= G, Y |= H and FY = G → HY . If X �|= G, then X |= FY .
If X |= G, then X |= H . Since H is disjunctive-monotone, by induction it holds that
X |= HY . Thus, X |= FY in that case, too. �

Corollary 2. Let F be a theory such that every formula in F is of the form H or
G → H , where H is disjunctive-monotone. For every X ⊆ Y ⊆ At , if X |= F and
Y |= F , then X |= FY .

Proof. To prove the result, it suffices to prove it for each formula F in F . If F is
monotone-disjunctive, then the result follows from Proposition 4. If F = G → H ,
where H is monotone-disjunctive, we reason as follows. Since Y |= F , we have FY =
"; or Y |= G, Y |= H and FY = G → HY . In the first case, X |= FY is evident. In
the second case, if X �|= G, the assertion follows. Otherwise, since X |= F , X |= H .
By Proposition 4, X |= HY follows. Consequently, X |= FY follows, as well. �

Corollary 3. Let F be a theory such that every formula in F is of the form H or
G → H , where H is disjunctive-monotone. If Y is an FLP-stable model of F then Y is
a minimal model of F .

Proof. Since Y is a model of FY , Y is a model of F (Proposition 1). Let us assume
that X |= F and X ⊆ Y . By Corollary 2, X |= FY . Since Y is a minimal model of
FY , X = Y . Thus, Y is a minimal model of F . �

Corollary 3 extends the result by Faber et al., as it applies to theories consisting of
formulas of type (2). It can be generalized further to the case, where each formula in a
theory is of the form Hk → (Hk−1 → (. . . → (H1 → H0) . . .)), where k ≥ 0 and H0
is disjunctive monotone. The argument is essentially the same.

3.4 Computational Complexity for FLP Semantics

It is well known that the truth value of a formula in an interpretation can be found in
polynomial time. It follows that given a formula and a set of atoms Y , one can compute
FY in polynomial time by means of a simple recursive algorithm that directly follows
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the definition of the reduct. It follows also that the problem to decide whether a model
of a formula is a minimal model is in the class coNP. Thus, the existence of the FLP-
stable model is in the class ΣP

2 . ΣP
2 -hardness of the problem follows from the fact

that on disjunctive programs FLP-stable models coincide with stable models [10], and
the existence problem for stable models is ΣP

2 -complete [15]. Consequently, deciding
the existence of an FLP-stable model is ΣP

2 -complete, too. We state that result below,
together with two other related results that can be proved by similar arguments.

Theorem 3. The problem of the existence of the FLP-stable model is ΣP
2 -complete.

The skeptical reasoning with FLP-stable models (is a given atom a member of every
FLP-stable model) is ΠP

2 -complete. The brave reasoning with FLP-stable models (is a
given atom a member of some FLP-stable model) is ΣP

2 -complete.

3.5 HT-Interpretations and FLP Semantics — Strong Equivalence

We now describe FLP-stable models in terms of HT-interpretations, and apply that re-
sult to characterize strong equivalence with respect to the FLP semantics. First, we
define a certain satisfiability relation |=flp between HT-interpretations and formulas.
The definition is inductive and follows the same pattern as that for |=ht. The cases
〈X, Y 〉 |=flp F for F = ⊥, F = A, where A ∈ At , F = G ∧ H and G ∨ H , are
handled as in the case of |=ht. For the implication we have the following clause:

5′. 〈X, Y 〉 |=flp G → H if Y |= G → H ; and Y �|= G, or X �|= G, or 〈X, Y 〉 |=flp

H .

The relation |=flp extends in a standard way to HT-interpretations and sets of formulas.
If F is a theory and 〈X, Y 〉 |=flp F , we say that 〈X, Y 〉 is an FLP-model of F (not to
be confused with an FLP-stable model).

We have the following simple property of |=flp , mirroring a similar one for |=ht [9].

Proposition 5. Let F be a theory. For every sets X ⊆ Y ⊆ At , if 〈X, Y 〉 |=flp F , then
Y |= F .

Proof. It suffices to prove that for every formula F , if 〈X, Y 〉 |=flp F , then Y |= F
The case F = ⊥ is evident. If F = A, where A ∈ At , and 〈X, Y 〉 |=flp F , then
A ∈ X . Thus, A ∈ Y and Y |= F . The inductive step for F = G∧H and F = G∨H
is standard. If F = G → H and 〈X, Y 〉 |=flp F then, in particular, Y |= F (by the
definition of |=flp for the case of implication). Thus, the result follows. �

The |=flp relation and the FLP-reduct are closely connected (cf. Theorem 1).

Proposition 6. For every formula F and for every two sets of atoms X ⊆ Y , X |= FY

if and only if 〈X, Y 〉 |=flp F .

Proof. We proceed by induction. The case when F = ⊥ is straightforward. Let F = A,
where A ∈ At . If X |= AY , then AY �= ⊥. Thus, AY = A. It follows that X |= A
and so, 〈X, Y 〉 |=flp A. Conversely, if 〈X, Y 〉 |=flp A, then X |= A. Since X ⊆ Y ,
Y |= A. Thus, AY = A and X |= AY as required.
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Next, let F = G∧H . If X |= (G∧H)Y , then (G∧H)Y = GY ∧HY . Thus, X |= GY

and X |= HY . By the inductive hypothesis, 〈X, Y 〉 |=flp G and 〈X, Y 〉 |=flp H .
Thus, 〈X, Y 〉 |=flp G ∧ H , as needed. Conversely, let 〈X, Y 〉 |=flp G ∧ H . Then
〈X, Y 〉 |=flp G and 〈X, Y 〉 |=flp H and, by the inductive hypothesis, X |= GY and
X |= HY . Thus, X |= GY ∧ HY . By Proposition 3, GY ∧HY ≡ (F ∧ G)Y . Thus,
X |= (F ∧G)Y .

The argument for the case F = G ∨ H is similar. Thus, we move on to the case
F = G → H . We have the following equivalences:

1. X |= (G → H)Y

2. Y �|= G; or Y |= G and Y |= H , and X |= G → HY

3. Y �|= G; or Y |= H and X |= G → HY

4. Y �|= G or Y |= H ; and Y �|= G or X |= G → HY

5. Y |= G → H ; and Y �|= G or X �|= G, or X |= HY

6. Y |= G → H ; and Y �|= G or X �|= G, or 〈X, Y 〉 |=flp H

The last statement is equivalent to 〈X, Y 〉 |=flp F and the result follows. �

Corollary 4. Let F be a theory and Y a set of atoms. Then Y is an FLP-stable model
of F if and only if 〈Y, Y 〉 |=flp F and for every X ⊂ Y , 〈X, Y 〉 �|=flp F .

Proof. By the definition, Y is an FLP-stable model ofF if and only if Y |= FY and, for
every X ⊂ Y , X �|= FY . We apply Proposition 6. The former condition is equivalent
to 〈Y, Y 〉 |=flp F . The latter one is equivalent to 〈X, Y 〉 �|=flp F . Thus, the assertion
follows. �

We are now ready to discuss the notion of strong FLP-equivalence. Theories F and G
and strongly FLP-equivalent if for every theoryH, the theories F ∪H and G ∪H have
the same FLP-stable models. This is a literal adaptation of the standard definition of
strong equivalence [7] to the case of FLP-stable models.

Theorem 4. Let F and G be two formulas. Then,F and G are strongly FLP-equivalent
if and only if F and G have the same FLP-models.

Proof. (⇐) For every theoryH, 〈X, Y 〉 |=flp F ∪H if and only if 〈X, Y 〉 |=flp G ∪H.
By Corollary 4, F ∪H and G ∪ H have the same FLP-stable models.
(⇒) Let us assume that there are X ⊆ Y ⊆ At such that 〈X, Y 〉 satisfies one of F and
G but not the other. Wlog, we may assume that 〈X, Y 〉 |=flp F and 〈X, Y 〉 �|=flp G. By
Proposition 6, it follows that X |= FY and X �|= GY . The first property implies that
FY �≡ ⊥. Consequently, by Proposition 3, Y |= F . By Proposition 1, Y |= FY .

Case 1. Y �|= GY . It follows that 〈Y, Y 〉 �|=flp G. Thus, for every H, Y �|= G ∪ H
and so, Y is not an FLP-stable model of G ∪ H. Let us now define H = Y . We have
(F ∪H)Y ≡ FY ∪HY . Moreover,HY = H. Thus, (F ∪H)Y ≡ FY ∪H. It follows
that (a) Y |= (F ∪H)Y , and (b) there is no X ⊂ Y such that X |= (F ∪H)Y . Thus, Y
is an FLP-stable model of F ∪H. As we noted, Y is not an FLP-stable model of G ∪H.
Thus, F and G are not strongly FLP-equivalent, a contradiction.

Case 2. Y |= GY . We recall that X �|= GY . Thus, X ⊂ Y . We define

H = X ∪ {A → B |A, B ∈ Y \X}.
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We have (F ∪ H)Y ≡ FY ∪ HY , Moreover, it is easy to check that HY = H. Thus,
(F ∪ H)Y ≡ FY ∪ H. We recall that X |= FY . We also have X |= H. Thus, X |=
(F ∪ H)Y and so, Y is not an FLP-stable model of F ∪ H. It follows that Y is not an
FLP-stable model of G ∪ H and so, there is Z ⊂ Y such that Z |= (G ∪ H)Y . Since
(G ∪ H)Y ≡ GY ∪H, Z |= H and so, Z = X . However, X �|= GY , a contradiction. �

4 Normal Forms and a Comparison with Stable-Model Semantics

The following result was obtained by Cabalar and Ferraris [16]. It concerns representing
theories by programs — theories consisting of rules (formulas of the form (1)).

Theorem 5. For every theory F there is a program G (in the same language) such that
F and G have the same HT-models (are equivalent in the logic HT).

In other words, every theory F is strongly equivalent to some program G. A similar
result holds for the FLP-models. In what follows we write ¬Y for {¬y | y ∈ Y }. We
first state three auxiliary results (the proofs are simple and we omit them).

Proposition 7. Let X ⊂ Y ⊆ Z be finite. Then 〈U, V 〉, where U ⊆ V ⊆ Z , is an
FLP-countermodel of

∧
X ∧

∧
¬Y →

∨
X ∨

∨
¬Y (where the set complements X

and Y are defined with respect to Z) if and only if U = X and V = Y .

Proposition 8. Let Y ⊆ Z be finite. Then 〈U, V 〉, where U ⊆ V ⊆ Z , is an FLP-
countermodel to

∧
Y ∧

∧
¬Y → ⊥ (where the set complement Y is defined with

respect to Z) if and only if V = Y .

Proposition 9. Let F be a formula. If 〈Y, Y 〉 is an FLP-countermodel of F , then for
every X ⊆ Y , 〈X, Y 〉 is an FLP-countermodel of F .

Theorem 6. Let F be a theory. There exists a program G such that F and G have the
same FLP-models.

Proof. For F ∈ F , we consider FLP-countermodels 〈X, Y 〉 of F such that Y ⊆
At(F ). For each FLP-countermodel 〈X, Y 〉 with X ⊂ Y , we take the formula defined
in Proposition 7 (with Z = At(F )). For each countermodel 〈X, Y 〉 such that X = Y ,
we take the formula from Proposition 8. We take for G the set of all rules constructed
in that way from countermodels of formulas in F . By Proposition 9, F and G have the
same FLP-countermodels consisting of atoms in At(F) and so, the same FLP-models
consisting of atoms in At(F). Thus, they have the same FLP-models. �

We saw that not every stable model of a theory is an FLP-stable model of a theory.
We also note that not every FLP-stable model is a stable model. For instance, let F =
(A ∨ ¬A) → A, and Y = {A}. It is easy to check that FY = A → A. Since ∅ |= FY ,
Y is not a stable model of FY . However, FY = (A ∨ ¬A) → A ≡ A. Thus, Y is
an FLP-stable model of F . It follows that the two semantics are different and neither is
stronger than the other one. However, each can be expressed in terms of the other one.
To see that, we first observe that HT- and FLP-models of rules coincide.
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Proposition 10. Let R be a rule. Then, R has the same HT- and FLP-models.

Theorems 5 and 6 yield now the following two corollaries relating the two semantics.

Corollary 5. For every theory F there are programs F ′ and F ′′ such that

1. 〈X, Y 〉 is an HT-model of F if and only if 〈X, Y 〉 is an FLP-model of F ′

2. 〈X, Y 〉 is an FLP-model of F if and only if 〈X, Y 〉 is an HT-model of F ′′

Corollary 6. For every theory F there are programs F ′ and F ′′ such that

1. Y is a stable model of F if and only if Y is an FLP-stable model of F ′

2. Y is an FLP-stable model of F if and only if Y is a stable model of F ′′

5 Supported Models

The approach that yielded generalizations of stable- and FLP-model semantics for ar-
bitrary propositional theories can also be applied to the supported-model semantics.

For a formula F and a set of atoms X , we define the SPP-reduct of F with respect
to Y , written as FY , by adapting to the new notation the inductive clauses (R1) - (R3),
and using the following definition for the implication:

SPP4. (G → H)Y =

⎧⎨
⎩

HY if Y |= G and Y |= H
" if Y �|= G
⊥ otherwise.

This notion of reduct is motivated by the definition of supported models in the case
of programs with disjunctive rules (no negation in the head) [17]. The reduct that is
relevant there consists of the heads of rules with bodies satisfied by Y . In the first case,
we define the reduct (G → H)Y to be HY rather than just H due to the same reasons
we followed when generalizing the FLP-reduct.

Definition 2. Let F be a theory. A set of atoms Y is a supported model of F if Y is a
minimal model of FY .

The results and the proofs that worked in the case of stable-model and FLP semantics
work, with only minor changes (and with one exception), in the case of supported mod-
els, too. Thus, we omit most of the proofs. We start by gathering in one result several
basic properties of the SPP-reduct and supported models.

Proposition 11. For every theory F and every set of atoms Y :

1. Y |= F if and only if Y |= FY

2. if Y is a supported model of F , then Y is a model of F
3. if Y is a supported model of F , then every atom in Y has a head occurrence in F .

Next, we characterize supported models in terms of a certain satisfiability relation that
connects HT-interpretations and formulas. It follows closely the definitions of |=ht and
|=flp but is modified for the case of the implication.
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5′′. 〈X, Y 〉 |=spp F → G if Y |= F → G, and Y �|= F or 〈X, Y 〉 |=spp G.

If 〈X, Y 〉 |=spp F , we say that 〈X, Y 〉 is an SPP-model of F .
The following result is analogous to similar results for |=ht and |=flp , and ties the

SPP-reduct and the relation |=spp.

Proposition 12. For every formula F and for every two sets of atoms X ⊆ Y , X |=
FY if and only if 〈X, Y 〉 |=spp F .

The main consequence of Proposition 12 is a characterization of supported models in
terms of the relation |=spp.

Corollary 7. Let F be a theory and Y a set of atoms. Then Y is a supported model of
F if and only if 〈Y, Y 〉 |=spp F and for every X ⊂ Y , 〈X, Y 〉 �|=spp F .

We use these results to study strong SPP-equivalence of theories. Two theories F and
G are strongly SPP-equivalent if for every theory H, F ∪ H and G ∪ H have the same
supported models. Corollary 7 implies that if F and G have the the same SPP-models
then they are strongly SPP-equivalent. Unlike in the other two cases, though, a weaker
condition suffices to provide a characterization of strong SPP-equivalence. An SPP-
model is essential if it is of the form 〈Y, Y 〉 or 〈Y \ {A}, Y 〉, where A ∈ At . We
now have the following characterization of strong SPP-equivalence. Unlike the one
developed for programs [18], where the general case is established through a certain
reduction to normal programs, the present characterization is direct. We state first an
auxiliary property, which can be demonstrated by simple induction.

Proposition 13. For every formula F and for every interpretation Y , FY is monotone.

Theorem 7. Let F and G be two theories. Then, F and G are strongly SPP-equivalent
if and only if F and G have the same essential SPP-models.

Proof. (⇒) Let 〈Y, Y 〉 be an SPP-model of F . It follows that Y is a supported model
of F ∪ Y . Thus, Y is a supported model of G ∪ Y . Consequently, Y is a model of G
and so, 〈Y, Y 〉 is an SPP-model of G (indeed, by Proposition 11, Y |= GY , and the
claim follows by Proposition 12). Next, let 〈Y \ {A}, Y 〉 be an SPP-model of F . It
follows that Y \ {A} |= FY . Let us assume that 〈Y \ {A}, Y 〉 is not an SPP-model
of G. Then, Y \ {A} �|= GY . Let us consider G ∪ (Y \ {A}). Since 〈Y, Y 〉 is an SPP-
model of F , 〈Y, Y 〉 is an SPP-model of G (we proved that above). Since every model
of (G ∪ (Y \ {A}))Y ≡ GY ∪ (Y \ {A}) contains Y \ {A}, and Y \ {A} �|= GY , it
follows that Y is a minimal model of (G ∪ (Y \ {A}))Y . Thus, Y is a supported model
of G ∪ (Y \ {A}). Consequently, it is a supported model of F ∪ (Y \ {A}). But we
have Y \ {A} |= (F ∪ (Y \ {A}))Y , a contradiction. Thus, 〈Y \ {A}, Y 〉 is an essential
SPP-model of G. By symmetry, essential SPP-models of F and G coincide.

(⇐) Let H be any theory and let Y be a supported model of F ∪ H. It follows that
〈Y, Y 〉 is an SPP-model of F and of H. By the assumption, 〈Y, Y 〉 is an SPP-model of
G and of H. Thus, 〈Y, Y 〉 |=spp G ∪ H and so, Y |= (G ∪ H)Y . Let X ⊂ Y be such
that X |= (G ∪H)Y . It follows that X |= GY and X |= HY . Let A ∈ Y \X (such an a
exists). Then, by Proposition 13, Y \{A} |= GY and Y \{A} |= HY . Thus, 〈Y \{A}, Y 〉
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is an SPP-model of G and so, of F . Moreover, Y \ {A} |= FY ∪ HY = (F ∪ H)Y .
This contradicts Y being a supported model of F ∪ H. Thus, no such X exists and Y
is a supported model of G ∪ H. The claim follows now by the symmetry argument. �

We conclude with two properties of supported-model semantics. The first one relates
(FLP-)stable and supported models. The second one is a normal form result.

Theorem 8. For every theory F and every set of atoms Y , if Y is a stable model of F
or Y is an FLP-stable model of F , then Y is a supported model of F .

Theorem 9. Let F be a theory. Then there is a normal program G such that F and G
have the same essential SPP-models (and so, are strongly SPP-equivalent and have the
same supported models).

6 Discussion and Conclusions

Ferraris and Lifschitz [9] proved that the stable-model semantics can be extended to
the language of propositional logic by means of an appropriate generalization of the
notion of the GL-reduct. We showed that the approach by Ferraris and Lifschitz can be
adapted to two other semantics of programs: the FLP and supported-model semantics.
Moreover, the generalizations require only small changes in the definition of the reduct
that concern how the implication is handled in the case both its antecedent and conse-
quent are satisfied by the context. In the case of the FLP-reduct, we keep the antecedent
of the implication unchanged, in the case of the SPP-reduct, we drop it.

Not only the definitions follow the same pattern. The theories of the three seman-
tics are quite similar, too, both in the way the results are stated as well as proved. In
particular, in each case, we have a corresponding characterization of the semantics in
terms of a satisfiability relation between HT-interpretations and formulas. As before,
what differentiates between the relations is the way the implication is handled.

The uniformity with which the three semantics can be defined and studied is striking.
It suggests that considering the reduct-based approach in the general language of logic,
may reveal new insights into the phenomenon of nonmonotonicity. A related question
is whether any other semantics can be defined in this way, that is, whether there are any
other notions of reduct that might lead to useful formalisms. As there seem to be no
simple ways to modify the reduct left, the uniform approach presented here suggests
that the realm of nonmonotonic semantics of programs and theories may essentially
boil down to the three ones discussed in the paper.

The uniformity notwithstanding, there are also differences. We saw that the relation
|=spp is, in some sense, weaker than the other two. Further, the relation |=ht, which
captures the stable-models semantics defines a logic, namely the logic HT. To the con-
trary, the relation |=flp , which captures the FLP semantics does not: the set of formulas
F such that for every 〈X, Y 〉, 〈X, Y 〉 |=flp F , while closed under modus ponens, is
not closed under substitution. Also, while stable and FLP semantics are closely related,
supported-model semantics is essentially different (cf. the characterization of strong
SPP-equivalence, and the normal-form theorem). A detailed comparison of the seman-
tics is beyond the scope of this paper. We leave it for future work.
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Abstract. Suspension-based tabling systems have to save and restore
computation states belonging to OR branches. Stack freezing combined
with (forward) trailing is among the better-known implementation ap-
proaches for this purpose. Resuming a goal using this technique reinstalls
the bindings for all the variables in the environment where the goal was
suspended. In this paper we explore an alternative approach where vari-
ables can keep track of several bindings, associated with suspensions.
Resuming a goal boils down to determining which suspension has to
be resumed, in order to select, when dereferencing, the bindings which
were active at the moment of suspending. We present the ideas behind
this approach, highlight several advantages over other suspension-based
implementations, and perform an experimental evaluation. We also re-
call the similarity between OR-parallelism and suspension-based imple-
mentations of tabling, and discuss similarities with the Version Vectors
Method, among others.

Keywords: Logic Programming, Tabling, Implementation, Performance,
OR-Parallelism.

1 Introduction

Tabling [1,2,3] is a strategy for executing logic programs which memoizes already
processed calls and their answers to improve several of the limitations of the SLD
resolution strategy. It guarantees termination for programs with the bounded
term size property, improves efficiency in programs which repeatedly perform
some computation, and has been successfully applied to deductive databases [4],
program analysis [5,6], semantic Web reasoning [7], model checking [8], etc.

There are two main approaches for the implementation of tabling: suspension-
based tabling and linear tabling. In suspension-based tabling the computation
state of suspended tabled subgoals has to be preserved to avoid backtracking
over them. This is done either by freezing the stacks, as in XSB [9], by copy-
ing to another area, as in CAT [10], or by using an intermediate solution as in
CHAT [11]. Linear tabling maintains instead a single execution tree without re-
quiring suspension and resumption of sub-computations. The computation of the
(local) fixpoint is performed by failing on branches which loop and reexecuting
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them when there is an answer (obtained from some other branch) for the looping
goal, until no more solutions are found. Examples of this method are the linear
tabling of B-Prolog [12,13] and the DRA scheme [14]. Suspension-based mecha-
nisms achieve very good performance but, in general, they need more memory,
used to freeze consumer states and to save answers to be reused. Linear mecha-
nisms, on the other hand, do not use memory to freeze computations, but their
efficiency is affected by subgoal recomputation.

The most successful suspension-based implementations of tabling are based
on trail management. In these, suspension and resumption operations, which
allow stopping the execution in a part of the search tree and restarting it in a
different node, use the regular trail and/or a forward trail to record the bindings
made in the execution path between two nodes (saved as choicepoints in the
corresponding stack) and to remember which bindings have to be reinstalled.
This technique can perform speculative work if the bindings which are reinstalled
are not used.

In order not to incur in the possible overheads stemming from reinstalling
bindings which are not going to be used, we propose an implementation based
on using variables with multiple bindings (Multi Value Binding variables). A
global flag indicating which consumer is active at each moment is used as a key
to retrieve, from a MVB, the value corresponding to that consumer. Therefore,
switching to a consumer is a constant-time operation, triggered by giving this
global flag the appropriate value. In turn, and in our current implementation,
variable access is not constant-time any more.1 Herein, we present and evaluate
an implementation of this idea.

2 Tabling and Variable Management

We start by providing a brief introduction to tabling. Due to space limitations
several details of the implementation of tabling based on suspension are not
discussed. For a more complete description, the reader is referred to [9,11,15].

Tabling Basics: Tabling changes the operational semantics for predicates
marked with the :- table declaration. The compiler and runtime system dis-
tinguish the first occurrence of a goal marked as tabled (the generator) and
subsequent variant calls (the consumers). The generator applies resolution us-
ing the program clauses to derive answers for the goal. When a call identical to a
previous one is found,2 the consumer suspends the current execution path (using
implementation-dependent means) and starts execution on a different branch.

When an alternative branch finally succeeds, the answer generated for the
initial query is inserted in a table associated with the original goal. This makes
it possible to reactivate suspended calls and to continue execution at the point

1 We are not taking into account the dereferencing cost here, assuming instead that
it is a constant-time operation which was already present in the system.

2 Which would enter an infinite loop in SLD resolution.
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where they were stopped. Thus, consumers do not use SLD resolution, but ob-
tain instead the answers from the table where they were previously inserted by
the generator. Predicates not marked as tabled are executed according to SLD
resolution, hopefully with minimal overhead due to the availability of tabling.
The overall process can be seen graphically as the ability to suspend execution in
a part of the tree which cannot progress (because it enters a loop) and continue
it somewhere else, where a solution for the looping goal can be produced.

5

G

C1 C2

C3

1

2 3

4

Fig. 1. Sharing trail in CHAT

Tabling Implementations Based
on Trail Management: We use the
CHAT [11] approach in order to il-
lustrate suspension-based techniques
which try to fully reinstall consumer
environments and show that that can
incur in costs due to speculative work.
We have chosen CHAT because of its
simplicity and because we think that
the improved version of CHAT pre-
sented in [16] is among the most ef-
ficient tabling implementations based
on trail management.

CHAT implements suspension by
freezing (i.e., protecting by updating
pointers) the heap and the local stack
and saving the consumer choice points
to be reinstalled when the consumer
is to restart. Consumers keep track of
their conditional bindings (i.e., those bindings appearing in the part of the trail
between the consumer and its leader generator3) to enable them to be reinstalled
later on when resuming. Using a tree structure as conditional binding storage
(Figure 1), each of these bindings is saved only once, although they are shared
between several consumers: the trail of consumer C1 is composed of segments
1, 2 and 4, but segment 2 is shared with consumer C2 and segment 1 is shared
also with consumer C3. The conclusion is that CHAT, just as SLG-WAM, per-
forms very well with respect to memory usage because it shares all that can be
shared and no bindings are saved twice (see [16] for a detailed explanation of
CHAT trail management). There is, however, a speculative component of work
in CHAT and in all tabling implementations based on trail management. When
a consumer restarts, all of its conditional bindings are reinstalled in the stacks.
However, in general not all of these bindings will be necessary in the rest of
the execution (some of them might not even be visible at that point). Rein-
stalling them is, therefore, wasted work. As an extreme example, consider the
3 A leader is the generator which marks the following completion point of a consumer.

Originally, the leader of a consumer is its generator, but it can change to previ-
ous generators if the consumer generator cannot be directly completed because of
dependencies.
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case of a consumer that has a (large) number of conditional bindings, which are
reinstalled when the consumer is restarted. If the consumer fails immediately
after that, these bindings will never be accessed and will instead be immediately
untrailed.

3 MVB Tabling

One of the aims of MVB-based tabling is to avoid the speculative work of systems
based on trailing. To this end, we have defined a new kind of variable (assigning
a new tag, MVB, to it), which can keep several bindings at once. Depending
on a global flag, which we will name the sid (from Suspension Identifier), the
correct binding of a variable is accessed. Therefore, dereferencing a variable can,
under this approach, be seen as a function:

Deref : Variable × SuspensionId −→ Value

which can retrieve the value a given variable had when a suspension was per-
formed if we provide the identifier of such a suspension.

We now present more details on how this suspension identifier is managed,
and how the multi-value binding variables are accessed and kept up to date.

The Management of the Suspension Identifier: the value of the sid global
flag associated with a normal SLD execution is zero. Whenever a consumer
appears, a new sid is associated with it by incrementing a global counter, last
sid. When a generator completes, last sid and the sid global flag are reset to
the value they had at the moment in which the generator was created —i.e., a
sort of backtracking is performed on the last sid when completing generators.

With this scheme, resuming a consumer boils down to changing the value
of sid to the identifier of the suspension associated with the consumer. Con-
sequently, the bindings accessed through MVB variables will correspond to the
bindings existing when the consumer was suspended.

Which Variables are MVB? The variables which have to maintain different
bindings for each consumer are those appearing in the trail between a consumer
and its leader, because these bindings would otherwise be lost on backtracking.
These bindings are associated with the suspension identifier of the consumer
which suspends. For the zero suspension identifier the corresponding variables
behave as normal WAM variables, and they will be unbound on backtracking.

How is an MVB Variable Implemented? The implementation of MVB vari-
ables is orthogonal to the idea behind them. In our current implementation, MVB
variables keep their bindings using a list relating sidswithvariablevalues. Travers-
ing this list is necessary in order to determine the value a variable has for some
suspension, which makes accessing the value of a variable a non-constant time op-
eration. The (faster) alternative of using an array indexed by suspension identifier
may need reserving too much memory in advance. Other possibilities, such as hash
tables, are under consideration (and are discussed further in Section 5).
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It is important to remark that the suspension identifiers for bindings inserted
in the list associated with an MVB are increasing and consecutive, because they
correspond to consumers which have been created on or after the initial cre-
ation of the variable. Not all (conditional) variables will necessarily be bound
to different values in different suspensions. Additionally, a binding of an MVB
can be seen by several consumers, for the same reason that a segment of trail
can be shared between different consumers in CHAT. Therefore, we actually
compress somewhat the list representation. Instead of a single suspension iden-
tifier per node in the list, each binding is associated with a pair of sids which
represent a range of suspensions for which the variable had the same value.
Thus, each of the elements of the list of an MVB variable is a tuple of the form
<bind,first,last>, where bind is the binding for the variable for the sids
between first and last, both included.

To reduce the impact of non-constant variable access, an MVB variable is
equipped with a cache where the last accessed value and the range of suspen-
sion identifiers for which it is valid are stored. If retrieving from the cache fails
(because the sid looked up is not available), the binding is searched for in the
list and the cache is updated. In addition, the list is kept sorted from the most
recent suspensions, with the highest sid, to older suspensions, with a lower sid.
Whenever a new binding is added to the list, its associated sid is necessarily
greater than all the sids associated with existing bindings, because consumers
are generated in a sequential order, and therefore it just has to be added to the
front of the list. Keeping the list sorted improves the efficiency of lookups (see
later a description of how lookups are done).

If an MVB variable is accessed with a sid which does not appear in the MVB
list, the cache is updated to point to a new free value, which allows considerable
memory savings, since the elements of the list will always be bindings. If that
free variable is bound and a suspension is performed later, those bindings will
generate a new element of the MVB list.

This MVB representation is illustrated in Figure 6. For example, in heap stack
number 5 variable B has created an MVB variable pointing to the cache (which
is a free variable associated with sid zero) and then the value 3 associated with
the 〈2, 2〉 range of sids and the value 2 associated with the 〈1, 1〉 range.

Suspensions Nested Inside Resumptions: Assume that consumer A is
restarted and consumer B appears in this restarted execution. There might be
MVB variables of consumer A which are associated with the sid of consumer
A. If consumer B is restarted, some of these variables could be accessed. The
right binding for consumer B is the same as the binding for consumer A, but
the sid associated with consumer B does not belong to that MVB variable and
a free variable would be returned instead.

To solve this problem the dependence between consumer A and consumer
B has to be remembered. Since a consumer can depend directly on at most
another consumer, it is enough to have a single field per consumer to record this
dependency. This dependency is registered when suspending, and the sid of the
consumer which suspends is made to depend on the sid of the consumer within
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Term accessMVB(Ref var) {
int sidAux = sid;
<value, first, last> = cache(var);
if (sidAux in [first,last]) return value;
<value,first,last> = firstElem(var);
do {

if (sidAux in [first,last]) {
if (sid == sidAux) updateCacheMVB(var,<value,first,last>);
else updateCacheMVB(var,<value,sid,sid>);
return value;

}
if (sidAux > last) {

sidAux = getDependence(sidAux)
if (!sidAux) {

updateCacheMVB(var,<free var,sid,sid>);
return free var;

}
}
else <value,first,last> = nextElem(var);

} while (hasMoreElem(var));
}

Fig. 2. Pseudo-code for MVB access

whose resumption the new consumer has appeared. A sid can of course depend
on other sids transitively.

As sids are generated in sequential order, a suspension can only depend on
another previous suspension, which would have a smaller sid. Therefore when
the MVB list is accessed, if the sid S we are looking for is greater than the last
sid of the element of the MVB list under inspection (which means that it is
not going to appear in that list) we can search for the sid which S depends on,
starting at that point in the list. Thanks to the order of sids in the list and
the ordering between dependencies, the MVB variable is traversed at most once,
even if several dependencies are followed. The code for MVB variable access is
shown in Figure 2. Note that we do not advance to the next element if there is
a sid dependency, because the same element should be inspected again.

When are MVB Variables Created? MVB variables could be created when
suspending a goal, by examining which variables reachable from that goal are
conditional and have been recorded in the trail. However, this in the end needs
to “simulate” backtracking by traversing the choicepoints and the associated
entries in the trail. Since this is going to be done anyway on backtracking, we
have decided to actually create them when backtracking from the consumer
choicepoints. This saves also work when a binding is shared between several
consumers, because regular variables in the shared part are converted into MVB
variables only by one of them. This is in some sense similar to trail sharing (see
Section 2) in CHAT.



196 P.C. de Guzmán, M. Carro, and M. Hermenegildo

if (!TrailYounger(trailPointer, top(MVBstateStack)) {
createOrUpdateMVB(trailPointer);
trailPointer = trailPointer − 1;
top(MVBstateStack) = trailPointer;
if (top(MVBstateStack) == pre top(MVBstateStack)) pop(MVBstateStack);

}
else Untrail(trailPointer);

Fig. 3. Pseudo-code for MVB untrail

A possible solution is to use a special type of backtracking for the choicepoints
associated with tabled execution. When a consumer suspends, the choicepoints
between that consumer and the generator have to be marked to reflect the initial
suspension they belong to. This is done by scanning the choicepoint stack from
the topmost choicepoint (i.e., the one corresponding to the suspending consumer)
until an already marked choicepoint (which belongs to the execution of another
suspended consumer) is found. On backtracking, MVB variables would have to be
created and associated with a range of suspensions. The sid range associated with
these variables is the one which goes from the mark associated with the choicepoint
where that variable was trailed to that of the last consumer which suspended. This
is,however,difficult to implement in systemswhichdiscard choicepoints just before
the last alternative is taken (this includes our implementation platform, Ciao [17]):
in such cases the bindings of such an alternative would be wrongly associated with
the sid of the previous choicepointsidmark. Non-trivial changes to the stackman-
agement have to be made to avoid this (i.e., not removing a choicepoint when the
last alternative is taken), and a memory optimization will be lost.

Our solution is implemented in the untrail operation, and the idea is to use an
additional stack (the MVBstateStack) which will implement a mechanism similar
to the choicepoint-based one, but where the MVBstateStack keeps track only of
the fields which would otherwise go in the choicepoints. This makes it possible to
make these fields survive choicepoint removal without having to fiddle around with
the choicepoint management and keeping its “last alternative optimization.”

Each time a consumer suspends, the pointer to the top of the trail is pushed
onto the MVBstateStack, and it is associated with the sid of the consumer which
suspends. When performing untrailing, if the trail pointer is equal to the value of
the topmost element of MVBstateStack, we create an MVB variable (or insert a
new binding in the MVB list if it was already created) and the current binding is
associated with the suspension range from the sid corresponding to the topmost
element of MVBstateStackand the last consumer which suspended, last sid. The
trail pointer stored at the top of the MVBstateStack is then decremented, and if it
is equal to the previous element in MVBstateStack, it is popped out because the
following value to be untrailed is also shared with previous consumers.

The code of the new untrail operation is shown in Figure 3. This can obviously
be made more efficient, but we are showing a simple version for clarity.

When Are MVB Variables Removed? When a generator is completed,
none of the MVB variables (or, more precisely, none of their bindings) created
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within its execution are needed any longer. As we want to interfere as little as
possible with the existing backtracking / untrailing mechanism, each time an
MVB variable is created (or updated) it is recorded in a list associated with the
last generator. On generator completion, the bindings added under the subtree
of that generator are removed. If all of the elements of the MVB list are removed,
the MVB variable is made a regular and free variable again.

Freezing Stacks: The way choice points, the heap, and the local stack are
managed in the MVB approach is just the same as in CHAT with the improve-
ments in [16]. The main difference is the management of the trail. CHAT saves
the values pointed to from the trail of each consumer to reinstall them when
resuming, and MVB tabling uses MVB variables to do that.

Changes to the Prolog Virtual Machine: The changes to be made to a
Prolog engine are a special untrail operation (Figure 3), an additional case for the
dereferencing routine in order to make it understand MVB variables4 (Figure 2),
and the changes needed to freeze stacks à la CHAT. In the case of Ciao, a WAM
instruction also has to be modified: get first local value gives the first value
to a local variable. As it just checks if the local variable was or not initialized
to a stack variable, an MVB variable living there could be overwritten. The
new get first local value instruction checks if the previous value is an MVB
variable to make the assignment without destroying the MVB information. In
that case the assignment is stored in the cache of the MVB variable.

These changes are in our experience quite local and easy to do, which allows
us to conclude that MVB tabling-based implementation is not hard.

4 MVB Tabling Execution

We will try to illustrate the MVB tabling approach presented previously using a
simple tabled program (Figure 4). The tabled execution tree of this program (not
specifically for MVB tabling) is shown in Figure 5, and Figure 6 shows the cre-
ation of MVB variables. Figure 7 shows the management of the MVBstateStack
to create MVB variables to be shared between several consumers.

We start with the query p(X). Execution starts with a global sid of zero. A
and B are created as unbound variables in Figure 6 (1), and they are unified
with A = 1 and B = 2 (Figure 6 (2)) before the execution is suspended because
a consumer is found (step 3). The suspension identifier associated with this
consumer is sid = 1, and last sid is updated to be 1.

Figure 7 (1) shows the entries in the trail for A,B and the record to be
inserted in MVBstateStack. Each consumer inserts a pair <trail pointer,
consumer sid> in the MVBstateStack —in this case, it is the pair <2,1>.

Execution fails then and backtracks over the last choice point (2). Since
the trail pointer is equal to the value of the trail stored at the top of the
MVBstateStack, an MVB variable is created and associated with the range from
4 Which in our case are marked with a special tag.
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:− table p/1.

p(X) :−
A = 1,

(B = 2; B = 3),
p(X),
A = B.

p(1).

Fig. 4. Tabled program

8.− fail.

13.− X = 1

12.− complete
?− p(X).

1.− A = 1, (B = 2; B = 3), p(X), A = B. 5.− p(1).

2.− (B = 2; B = 3), p(X), 1 = B.

3.− p(X), 1 = 2.

suspension

6.− p(1), 1 = 2.

4.− p(X), 1 = 3.

9.− p(1), 1 = 2.

10.− 1 = 2.

11.− fail.

suspension

7.− 1 = 2.

Fig. 5. MVB tabling execution
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the sid of the topmost element of MVBstateStack to the last sid variable,
which is 1 (Figure 6 (3)). Besides, the value of the trail pointer in the top-
most element of MVBstateStack is decremented (Figure 7 (2)). Recall that free
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Fig. 7. MVB trail management

variables are created in the cache associated with sid zero. This corresponds to
the (unbound) variable which would have been restored on backtracking. The
previous binding is maintained as an MVB list element.

After backtracking, B = 3 (step 4) is executed and the cache of the MVB
variable is updated (Figure 6 (4)). A new consumer is found which is associated
with the sid 2, and last sid is updated to be 2. A new element is inserted
in MVBstateStack, <2,2>, which represents the current trail pointer and
the new consumer sid (Figure 7 (3)). Execution fails and backtracks over the
second clause of p/1. When B is untrailed, its MVB variable is updated to the
value B = 3 and it is associated with the sids (2,2) (Figure 6 (5)), inserted in
descending order, as explained in Section 3.

To know the sids that B is associated with, the topmost item of MVBstate-
Stack is used. When the trail value stored there is decremented, it reaches the
same value as the previous element in MVBstateStack, and the top of the stack
is popped out. (Figure 7 (4)). Now, variable A is untrailed, and a new MVB
variable is created (Figure 6 (6)), but it is associated with sids (1,2) because
last sid is 2 and the topmost element of MVBstateStack represents sid 1.

The second clause of p/1 is executed and the first answer, p(1), is found (step
5). It is inserted in an external table (as all tabling implementations do), and
then consumers can be restarted with this answer. In order to do that, the sid
variable is updated to be the sid associated with the consumer being restarted:
for example, when consumer 1 is restarted (step 6) and variable A is accessed, the
cache of its MVB variable is updated with the value associated with sid 1, and
the same for variable B (Figure 6 (7)). When consumer 2 is restarted (step 9),
variable A is accessed in the cache, but the cache of variable B has to be updated
(Figure 6 (8)). Finally, the generator p(X) can be completed (step 12) and all
of the MVB variables created under its execution tree are unbound (Figure 6
(9)). The sid and last sid variables are updated to the value just before the
generator execution (zero, in this case) and the answers found and stored in the
answer table are returned on backtracking (step 13).

5 Performance Evaluation

In the following two sections we will analyze the performance of our MVB scheme
and CHAT, both from a theoretical and an experimental point of view.



200 P.C. de Guzmán, M. Carro, and M. Hermenegildo

5.1 CHAT and MVB — A Conceptual Comparison

In any realization of CHAT and MVB, some essential operations will remain
largely untouched regardless of the implementation details. We will focus on
these to compare CHAT and MVB at a high abstraction level.

MVB and CHAT freeze the heap and local stacks using the same techniques,
and they store consumer choice points and answers using also a similar approach;
therefore, their memory consumption should be similar as well. Even the cost
of saving the trail of a consumer can be comparable with the cost of creating
the MVB variables of such a consumer. Memory consumption should be in the
same order too: for each trailed value, CHAT uses 2 slots (value and pointer),
and MVB uses 4 slots (value, initial state, last state, and a pointer to the next
list element). In our view, the main differences between both approaches are:

– CHAT reinstalls (speculatively) the conditional bindings of consumers.
– MVB variable access is affected by MVB variable indirection.

Although we are using an MVB cache, sometimes the MVB list has to be
traversed to find the right MVB bindings for the current sid.5 Consequently,
MVB should outperform CHAT when the speculative work of reinstalling the
conditional bindings of a consumer is larger than the cost of the overhead due to
the MVB variable access, which we will experimentally measure in Section 5.2
for a number of common benchmarks.

This means that artificial code can be created where large parts of the trail
are saved in a consumer to be later reinstalled and not really used. Therefore
MVB could be arbitrarily better than CHAT for such an example. On the other
hand, similarly artificial code can also be written where MVB variables have a
large amount of bindings and they continuously suffer from cache misses. In this
case, MVB could perform arbitrarily worse than CHAT. The question therefore
remains: in practice, and assuming similarly involved implementation techniques
for, e.g., CHAT and MVB, how much does MVB variable handling (including
dereferencing), the special untrailing, and the additions to backtracking affect
both tabled and regular (SLD) execution.

5.2 Experimental Evaluation

We have implemented the techniques proposed in this paper as an extension
of the Ciao system [17]. All of the timings and measurements have been made
with Ciao-1.13, using the standard, unoptimized bytecode-based compilation,
and with the MVB extensions loaded. For XSB we have used XSB 3.1. All the
executions were performed using local scheduling and disabling garbage collec-
tion. We used gcc 4.1.1 to compile all the systems, and we executed them on a
machine with Debian Linux 5.0, kernel 2.6.18, and an Intel Xeon DESCHUTES
processor.
5 A more efficient mechanism for accessing variable bindings is possible (Section 6),

but practical experiments make us doubt about its real usefulness (Section 5.2).
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Impact of MVB on SLD Execution: A question to ask is to what extent
the changes we have introduced in the Prolog machinery (e.g., special trail-
ing, extra cases in dereferencing, changes in one WAM instruction) impact the
speed of non-tabled execution. We have measured this using the ECRC set of
analytical benchmarks6 which test different characteristics of Prolog execution
using dedicated benchmarks. In our experiments, enabling or disabling the MVB
extensions did not have any measurable impact on SLD execution speed.

Impact of MVB on Variable Access: We have measured also to what extent
having to traverse a list of bindings (even with the improvement of a cache for the
most recently accessed value —in the case of a cache hit the value is accessed
in constant time) can impact accessing a given value for a consumer. This is
difficult to predict as it depends, for each benchmark and variable, on how many
conditional bindings for that variable are made by the different consumers.

To measure this, we have instrumented our implementation to count the num-
ber of value cache misses, the percentage of cache misses with respect to the
total accesses, the average length of the chain of values, and the average number
of items traversed in this list for each cache miss.7 The statistics are shown in
Table 1. The main conclusions we can draw are: even if the number of consumers
is in principle unknown and can be very large, value chains are usually rather
small, which suggests that an implementation with direct indexing may not in
the end bring large advantages. Moreover, the benchmark with the longest value
chains (sgm) has as well the best cache behavior: only 1% of the accessed values
were not in the cache. The cache behavior is in general reasonable in the rest of
the benchmarks as well.

Table 1. Some statistics on the dynamic behavior of MVB variables

Measure sgm atr2 pg kalah gabriel disj cs o cs r peep Avg.

Cache misses 1504 2545 147 100 155 103 33 54 335 —
Cache misses (%) 1% 7% 16.6% 17.8% 9% 9.5% 6.5% 5.3% 5.7% 8.7%
Avg. MVB length 30.6 1 3.5 1.4 1.8 1.3 1.2 1.2 2.1 4.9
Avg. list trav. 15.8 1 11.5 1.3 3.8 2.5 1.8 1.7 5.4 5

General Performance Assessment: Table 2 aims at determining how the
proposed implementation of tabling compares with other tabling implementa-
tions. To that end we have implemented CHAT tabling in Ciao, in order to have
a system with a comparable base speed and a similar code maturity. We are
also comparing with XSB, arguably the most successful tabling system based on
trailing. We have used a set of benchmarks which appear in other performance
evaluations of tabling approaches.
6 Available as a Ciao Prolog 1.13 library and also at the URL http://www.cs.cmu.

edu/afs/cs.cmu.edu/project/ai-repository/ai/lang/prolog/code/library/
7 This can be larger than the average list length because value searches can concentrate

on lists with lengths over the average.
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Table 2. MVB vs. CHAT vs. XSB

Program MVB CHAT XSB

sgm 1806 1905 1649
atr2 339.2 353.4 351.0
pg 13.11 13.20 12.03
kalah 19.23 18.82 16.77
gabriel 19.83 19.39 18.42
disj 15.19 15.12 14.02
cs o 29.18 29.28 25.30
cs r 58.19 57.80 51.03
peep 60.01 59.20 52.10

In this table we provide, for sev-
eral benchmarks, the raw time (in
milliseconds) taken to execute them
using tabling. Since these benchmarks
do not create large memory struc-
tures, the differences between CHAT
and MVB are not as large as could
be using bigger benchmarks. Expand-
ing this assessment is part of our fu-
ture work. Besides, the code quality
of both implementations (CHAT and
MVB) can still be improved, as well as
that of the consumer scheduler, MVB
representation, etc. However, in general we believe that these two implementa-
tions are at a similar level of maturity and should be comparable in terms of
speed. Of course any improvement in them would bring a competitive advantage
with respect to XSB.

The results are in general quite encouraging: speed results are very similar
both to CHAT and to XSB, which arguably makes the technique competitive.
This provides confidence that an improved implementation (for example, tabling
primitives are not yet compiled into WAM code and still have to traverse the
Prolog-C interface as in [15]), the internal representation for MVB can be im-
proved, and goal scheduling is still simplistic and does not try to favor our tech-
nique by decreasing the probability of cache misses) can make MVB a viable
technique for tabling which does not need very complicated stack management
and which can compete with state-of-the-art systems.

6 Tabling and Implementation Techniques for
Or-Parallelism

The basic problem of Or-parallel systems is “how to represent different bindings
of the same variable corresponding to different branches of the search space” [18].
This is of course a concern shared with suspension-based systems for tabling,
where suspending and resuming a goal basically has to resort to a representation
which makes it possible to save and recover bindings existing at some other part
of the search tree. This has been recognized in early work [19]. The similarity
between Or-Parallel and tabling using complex trail and stack management (e.g.,
implementations of the SRI model [20] and SLG-WAM) and those relying on
copying (e.g., CHAT and the MUSE [21]) have been mentioned elsewhere [11].

However, to the best of our knowledge, variable access has remained largely
untouched in all tabling systems, when, from an abstract point of view, making
a variable access different values depending on the environment (e.g., the sid
global flag) which the variable is seeing is a fundamental operation. This has
been tackled by installing as a “solid block” all the bindings a consumer has to
see, instead of using a switch to change the viewpoint of the consumer. This is
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precisely what systems such as Aurora [22] did —in that case by maintaining
variables as indexes on a binding array with different entries for each processor.

This is not radically different from out approach. In both cases the function
in Section 3 is implemented. However, Aurora first discriminates on the sec-
ond function argument (to select the worker) and then on the first (to select
the variable). In our case we take first the variable to dereference, and then
the consumer inside whose environment it has to be evaluated; that matches
what the Version Vectors model [23] does. While, as mentioned before, the re-
lation between Or-Parallelism and tabling has been studied before, we believe
that it is still possible to establish further connections which can bring more
implementation techniques and, e.g., scheduling algorithms developed in the
realm Or-Parallelism to tabled systems, and thus also make new implementations
possible which seamlessly exploit these relationships.

7 Conclusions

We have presented and evaluated an implementation technique for tabling based
on keeping simultaneously several bindings for variables (MVB), corresponding
to the environments of the consumers. From the experiments we can conclude
that, while theoretically MVB can be arbitrarily better or worse than CHAT, in
practice it is a viable way of avoiding some speculative work inherent to trailing-
based implementations of tabling. Although our implementation can still be im-
proved in several directions, the performance we obtain is already acceptable and
comparable with state-of-the-art systems. Finally, we have revisited the similar-
ity between OR-parallelism and suspension-based implementations of tabling,
and conclude that some additional cross-fertilization is probably still possible.
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Abstract. A critical component in the implementation of an efficient
tabling system is the design of the data structures and algorithms to
access and manipulate tabled data. Arguably, the most successful data
structure for tabling is tries. However, when used in applications that
pose many queries and/or have a large number of answers, tabling can
build arbitrarily many and/or very large tables, quickly filling up mem-
ory. In this paper, we propose a new design for the table space orga-
nization where all terms in tabled subgoal calls and tabled answers are
represented only once in a common global trie instead of being spread
over several different trie data structures. Our initial experiments using
the YapTab tabling system show significant reductions on memory usage
without compromising running time.

Keywords: Tabling Logic Programming, Table Space, Implementation.

1 Introduction

Tabling is an implementation technique that overcomes some limitations of tradi-
tional Prolog systems in dealing with redundant sub-computations and recursion.
Tabling has become a popular and successful technique thanks to the ground-
breaking work in the XSB Prolog system and in particular in the SLG-WAM
engine [1]. The success of SLG-WAM led to several alternative implementations
that differ in the execution rule, in the data-structures used to implement tabling,
and in the changes to the underlying Prolog engine. Implementations of tabling
are now widely available in systems like Yap Prolog, B-Prolog, ALS-Prolog, Mer-
cury and more recently Ciao Prolog.

A critical component in the implementation of an efficient tabling system
is the design of the data structures and algorithms to access and manipulate
tabled data. Arguably, the most successful data structure for tabling is tries [2].
Tries are trees in which common prefixes are represented only once. The trie
data structure provides complete discrimination for terms and permits look up
and possibly insertion to be performed in a single pass through a term, hence
resulting in a very efficient and compact data structure for term representation.
� This work has been partially supported by the FCT research projects STAMPA
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Despite the good properties of tries, when used in applications that pose many
queries and/or have a large number of answers, tabling can build arbitrarily
many and/or very large tables, quickly filling up memory [3]. A possible solution
for this problem is to dynamically abolish some of the tables. This can be done
by using explicit tabling primitives or by using a memory management strategy
that automatically recovers space among the least recently used tables when
memory runs out [4]. An alternative approach is to store tables externally in a
relational database system and then reload them back only when necessary [5].

A complementary approach to the previous problem is to study how less re-
dundant and more compact data structures can be used to better represent the
table space. In this paper, we propose a new design for the table space organiza-
tion where all terms in tabled subgoal calls and tabled answers are represented
only once in a common global trie instead of being spread over several different
trie data structures. Our approach resembles the hash-consing technique [6], as
it shares data that is structurally equal, thus saving memory usage by reducing
redundancy in term representation. We will focus our discussion on a concrete
implementation, the YapTab system [7], but our proposals can be easy general-
ized and applied to other tabling systems.

The remainder of the paper is organized as follows. First, we briefly introduce
some background concepts about tries and the table space. Next, we introduce
YapTab’s new design for the table space organization using the common global
trie and then, we describe how we have extended YapTab to provide engine
support for the new design. At last, we present some experimental results and
we end by outlining some conclusions.

2 Tabling Tries

The basic idea behind tabling is straightforward: programs are evaluated by
storing answers for tabled subgoals in an appropriate data space, called the
table space. Repeated calls to tabled subgoals1 are not re-evaluated against the
program clauses, instead they are resolved by consuming the answers already
stored in their table entries. During this process, as further new answers are
found, they are stored in their tables and later returned to all repeated calls.

Within this model, the table space may be accessed in a number of ways: (i)
to find out if a subgoal is in the table and, if not, insert it; (ii) to verify whether
a newly found answer is already in the table and, if not, insert it; and (iii) to
load answers to repeated subgoals. With these requirements, a correct design of
the table space is critical to achieve an efficient implementation. YapTab uses
tries which is regarded as a very efficient way to implement the table space [2].

A trie is a tree structure where each different path through the trie data units,
the trie nodes, corresponds to a term described by the tokens labelling the nodes
traversed. Two terms with common prefixes will branch off from each other
at the first distinguishing token. For example, the tokenized form of the term

1 A subgoal repeats a previous subgoal if they are the same up to variable renaming.
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f(X, g(Y,X), Z) is the sequence of 6 tokens: f/3, V AR0, g/2, V AR1, V AR0 and
V AR2, where each variable is represented as a distinct V ARi constant [8].

To increase performance, YapTab implements tables using two levels of tries:
one for subgoal calls; the other for computed answers. More specifically:

– each tabled predicate has a table entry data structure assigned to it, acting
as the entry point for the predicate’s subgoal trie.

– each different subgoal call is represented as a unique path in the subgoal trie,
starting at the predicate’s table entry and ending in a subgoal frame data
structure, with the argument terms being stored within the path’s nodes.
The subgoal frame data structure acts as an entry point to the answer trie.

– each different subgoal answer is represented as a unique path in the answer
trie. Contrary to subgoal tries, answer trie paths hold just the substitution
terms for the free variables which exist in the argument terms of the corre-
sponding subgoal call [2]. Repeated calls to tabled subgoals load answers by
traversing the answer trie nodes bottom-up.

An example for a tabled predicate t/2 is shown in Fig. 1. Initially, the subgoal
trie is empty. Then, the subgoal t(f(1),Y) is called and three trie nodes are
inserted: one for functor f/1, a second for constant 1 and one last for variable
Y (VAR0). The subgoal frame is inserted as a leaf, waiting for the answers. Next,
the subgoal t(X,Y) is also called. The two calls differ in the first argument, so
tries bring no benefit here. Two new trie nodes, for variables X (VAR0) and Y
(VAR1), and a new subgoal frame are inserted. At the end, the answers for each
subgoal are stored in the corresponding answer trie as their values are computed.
Subgoal t(f(1),Y) has two answers, Y=f(1) and Y=f(2), so we need three trie

subgoal frame for
t(f(1),VAR0)

1

VAR0

VAR1

subgoal
trie

:- table t/2.

t(X,Y) :- term(X),
          term(Y).

term(f(1)).
term(f(2)).

VAR0

table entry for t/2

answer
trie

f/1

12

subgoal frame for
t(VAR0,VAR1)

answer
trie

f/1

12

f/1

f/1

12

f/1

12

Fig. 1. Original table organization
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nodes to represent both: a common node for functor f/1 and two nodes for
constants 1 and 2. For subgoal t(X,Y) we have four answers, resulting from the
combination of the answers f(1) and f(2) for variables X and Y, which requires
nine trie nodes to represent them. Note that, for this particular example, the
completed answer trie for t(X,Y) includes in its representation the completed
answer trie for t(f(1),Y).

3 Common Global Trie

In this section, we describe YapTab’s new design for the table space organization.
Our new design can be seen as an extension of a previous approach [9], where
we first introduced the idea of using a common global trie. In what follows, we
will refer to our previous approach as the Global Trie for Calls and Answers
(GT-CA), and to our new design as the Global Trie for Terms (GT-T). Next,
we start by briefly introducing the GT-CA approach and then we discuss in more
detail how we have extended and optimized it to our new GT-T design.

3.1 Global Trie for Calls and Answers

In the GT-CA approach, all tabled subgoal calls and answers are stored in a
common global trie instead of being spread over several different trie data struc-
tures. The GT-CA still is a tree structure where each different path through the
trie nodes corresponds to a subgoal call and/or answer. However, here a path
can end at any internal trie node and not necessarily at a leaf trie node.

f/1

12

VAR0

VAR0

subgoal frame for
t(f(1),VAR0)

call1call2

subgoal trie

subgoal frame for
t(VAR0,VAR1)

answer trie

answer3answer4

answer trie

answer1answer2

global
trie

answer1answer2

f/1

12

f/1

12

VAR1

table entry for t/2

Fig. 2. GT-CA table organization
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The original subgoal trie and answer trie data structures are now represented
by a unique level of nodes that point to the corresponding paths in the GT-
CA (see Fig. 2 for details). For the subgoal tries, each node now represents a
different subgoal call where the node’s token is the pointer to the unique path
in the GT-CA that represents the argument terms for the subgoal call. For the
answer tries, each node now represents a different subgoal answer where the
node’s token is the pointer to the unique path in the GT-CA that represents the
substitution terms for the free variables which exist in the argument terms. With
this organization, answers are now loaded by following the pointer in the node’s
token and then by traversing bottom-up the corresponding GT-CA’s nodes.

Figure 2 uses again the example from Fig. 1 to illustrate how the GT-CA
design works. Initially, the subgoal trie and the GT-CA are empty. Then, the
first subgoal t(f(1),Y) is called and three nodes are inserted in the GT-CA:
one to represent the functor f/1, another for the constant 1 and a last one for
variable Y (VAR0). Next, a node representing the path inserted in the GT-CA
is stored in the subgoal trie (node labeled call1). For the second subgoal call,
t(X,Y), we start again by inserting the call in the GT-CA and then we store
a node in the subgoal trie (node labeled call2) to represent the path inserted
in the GT-CA. Each answer is also inserted first in the GT-CA and then we
store a node in the corresponding answer trie (nodes labeled answer1, answer2,
answer3 and answer4) to represent the path inserted in the GT-CA.

This example shows us that with the GT-CA we cannot share the representa-
tion of common terms appearing at different argument or substitution positions.
For example, the terms f(1), f(2) and VAR0 appear more than once represented
in the global trie. Moreover, with this example, we can see also that terms in
the GT-CA can end at any internal trie node and not necessarily at a leaf trie
node. This happens because tabled subgoals calls and answers are not always
necessarily pure terms. A subgoal call is, in fact, represented by a sequence of
argument terms and an answer is, in fact, represented by a sequence of substitu-
tion terms. Thus, when the number of argument or substitution terms is greater
than one, then we may have situations where a subgoal call or answer can end at
internal nodes of other subgoal calls and/or answers. This raises a problem when
supporting table abolish operations because the nodes representing an individ-
ual subgoal call or answer may not be removed if they belong to other different
paths. This problem can be solved by introducing an extra field in each trie
node to count the number of paths it belongs to and only allow deletion when it
reaches zero, but this solution is contradictory with our goal of saving memory.

Another problem with the GT-CA design is that, on completion of a subgoal,
a strategy exists that avoids answer recovery using bottom-up unification and
performs instead what is called a completed table optimization [2]. This optimiza-
tion implements answer recovery by top-down traversing the completed answer
trie and by executing specific WAM-like code from the answer trie nodes. With
the GT-CA design, the nodes in the global trie can belong to several different
subgoal/answer tries, and thus this optimization is no longer possible.
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We next discuss how we have extended and optimized this table organization
to the new GT-T design in order to solve these problems.

3.2 Global Trie for Terms

The GT-T was designed in order to maximize the sharing of tabled data that
is structurally equal. In the GT-T design, all argument and substitution terms
appearing in tabled subgoal calls and/or answers are represented only once in the
common global trie. The GT-T still is a tree structure where each different path
through the trie nodes represents a unique argument and/or substitution term,
therefore always ending at a leaf trie node. Each path in a subgoal or answer
trie is now composed of a fixed number of trie nodes representing the argument
or substitution terms in the corresponding tabled subgoal call or answer. For
the subgoal tries, each node now represents an argument term where the node’s
token is the pointer to the unique path in the GT-T representing the term. For
the answer tries, each node now represents a substitution term where the node’s
token is the pointer to the unique path in the GT-T representing the term.

Figure 3 uses again the example from Fig. 1 to illustrate how the GT-T design
works. Initially, the subgoal trie and the GT-T are empty. Next, the first subgoal
t(f(1),Y) is called and the two argument terms, f(1) and Y (VAR0), are first
inserted in the GT-T. Then, the argument terms are represented in the subgoal
trie by two nodes (nodes labeled arg1 and arg2), each one pointing to the leaf
node of the corresponding term inserted in the GT-T. For the second subgoal

subgoal trie

answer trie answer trie

f/1 global
trie

VAR1 VAR0

2 1

arg1 arg1

arg2arg2

subs1

subs2 subs2 subs2 subs2

subs1 subs1subs1

subgoal frame for
t(f(1),VAR0)

subgoal frame for
t(VAR0,VAR1)

table entry for t/2

Fig. 3. GT-T table organization
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call, t(X,Y), the argument terms VAR0 and VAR1 are also inserted first in the
GT-T and then we store also two nodes in the subgoal trie, each one pointing
to the corresponding representation in the GT-T.

For the answers, each substitution term is also inserted first in the GT-T
and then we store a node in the corresponding answer trie to represent its path
in the GT-T (nodes labeled subs1 and subs2). The substitution terms for the
complete set of answers for the two subgoal calls only include the terms f(1)
and f(2). Thus, as f(1) is already stored in the global trie, we only need to
insert f(2) in order to be able to represent the full set of answers. As we are
maximizing the sharing of common terms appearing at different argument or
substitution positions, for this particular example, this results in a very compact
representation of the global trie.

Regarding space reclamation, as each different path in the GT-T always ends
at a leaf node, we can use the child field (that is always NULL in a leaf node) to
count the number of references to the path it represents and only allow deletion
when it reaches zero. This solves the previous problem of supporting table abolish
operations without introducing extra memory overheads.

Regarding compiled tries, the idea is to keep the global trie only with the
term representation and store the WAM-like instructions in the answer tries,
as in the original design [2]. The difference is that for the GT-T approach, the
WAM-like instructions are more high-level, i.e., instead of working at the level
of atoms/terms/functors/lists as in [2], each instruction works at the level of
the substitution terms. For example, consider again the four answers for the call
t(X,Y). When loading these answers, we have two choices for X and, for each
X, we have two choices for Y. In the GT-T design, the answer trie nodes repre-
senting the choices for X and for Y (nodes labeled respectively subs1 and subs2)
are compiled with a WAM-like sequence such as try subs term (for the first
choices) and trust subs term (for the second/last choices). GT-T’s compiled
tries also include a retry subs term instruction (for intermediate choices) and
a do subs term instruction (for single choices).

4 Implementation Details

We then describe in more detail the data structures and algorithms for YapTab’s
new table design. We start with Fig. 4 showing in more detail the table organi-
zation previously presented in Fig. 3 for the subgoal call t(X,Y).

Internally, tries are represented by a top root node, acting as the entry point
for the corresponding subgoal, answer or global trie data structure. For the sub-
goal tries, the root node is stored in the corresponding table entry’s
subgoal trie root node data field. For the answer tries, the root node is stored
in the corresponding subgoal frame’s answer trie root node data field. For the
global trie, the root node is stored in the GT ROOT NODE global variable.

Regarding trie nodes, they are internally implemented as 4-field data struc-
tures. The first field (token) stores the token for the node and the second
(child), third (parent) and fourth (sibling) fields store pointers, respectively,
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subgoal trie
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Fig. 4. Implementation details for the GT-T table organization

to the first child node, to the parent node, and to the next sibling node. Re-
member that for the global trie, the leaf node’s child field is used to count
the number of references to the path it represents. For the answer tries, an
additional field (code) is used to support compiled tries. Traversing a trie to
check/insert for new calls or for new answers is implemented by repeatedly in-
voking a trie node check insert() procedure for each token that represents
the call/answer being checked. Given a trie node parent and a token t, the
trie node check insert() procedure returns the child node of parent that
represents the given token t. Figure 5 shows the pseudo-code for this procedure.

Initially, the procedure checks if the list of sibling nodes is empty. If this is the
case, a new trie node representing the given token t is initialized and inserted
as the first child of the given parent node. To initialize new trie nodes, we use a
new trie node() procedure with four arguments, each one corresponding to the
initial values to be stored respectively in the token, child, parent and sibling
fields of the new trie node. For answer trie nodes, the code field is computed
later when completion takes place.
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trie_node_check_insert(TRIE_NODE parent, TOKEN t) {
child = parent->child
if (child == NULL) { // the list of sibling nodes is empty

child = new_trie_node(t, NULL, parent, NULL)
parent->child = child

} else if (not_a_hash_table(child)) { // sibling nodes without hashing
sibling_nodes = 0 // to count the number of sibling nodes
do { // check if token t is already in the list of siblings
if (child->token == t) return child
sibling_nodes++
child = child->sibling

} while (child)
child = new_trie_node(t, NULL, parent, parent->child)
if (sibling_nodes > MAX_SIBLING_NODES_PER_LEVEL) { // alloc new hash
hash = new_hash_table(child)
parent->child = hash

} else
parent->child = child

} else { // sibling nodes with hashing
hash = child
bucket = hash_function(hash, t) // get the hash bucket for token t
child = bucket
sibling_nodes = 0
while (child) { // check if token t is already in the hash bucket
if (child->token == t) return child
sibling_nodes++
child = child->sibling

}
child = new_trie_node(t, NULL, parent, bucket)
if (sibling_nodes > MAX_SIBLING_NODES_PER_BUCKET) // expand hash
expand_hash_table(hash)

}
return child

}

Fig. 5. Pseudo-code for the trie node check insert() procedure

Otherwise, if the list of sibling nodes is not empty, the procedure checks
if they are being indexed through a hash table. Searching through a list of
sibling nodes is initially done sequentially. This could be too expensive if we
have hundreds of siblings. A threshold value (MAX SIBLING NODES PER LEVEL)
controls whether to dynamically index the nodes through a hash table, hence
providing direct node access and optimizing search. Further hash collisions are
reduced by dynamically expanding the hash tables when a second threshold value
(MAX SIBLING NODES PER BUCKET) is reached for a particular hash bucket.

If not using hashing, the procedure then traverses sequentially the list of
sibling nodes and checks for one representing the given token t. If such a node
is found then execution is stopped and the node returned. Otherwise, a new
trie node is initialized and inserted in the beginning of the list. If reaching the
threshold value MAX SIBLING NODES PER LEVEL, a new hash table is initialized
and inserted as the first child of the given parent node.

If using hashing, the procedure first calculates the hash bucket for the given
token t and then, it traverses sequentially the list of sibling nodes in the bucket
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checking for one representing t. Again, if such a node is found then execu-
tion is stopped and the node returned. Otherwise, a new trie node is initialized
and inserted in the beginning of the bucket list. If reaching the threshold value
MAX SIBLING NODES PER BUCKET, the current hash table is expanded.

To manipulate tries we use two interface procedures:

trie_load(TRIE_NODE leaf)
trie_check_insert(TRIE_NODE root, TERM t)

The trie load() is used to load a term from a trie back to the Prolog engine,
where leaf is the reference to the leaf node of the term to be loaded.

The trie check insert() is used for traversing a trie to check/insert for new
terms, where root is the root node of the trie to be used and t is the term to
be inserted. It invokes repeatedly the previous trie node check insert() pro-
cedure for each token that represents the given term t and returns the reference
to the leaf node representing its path. Note that inserting a term requires in the
worst case allocating as many nodes as necessary to represent its path. On the
other hand, inserting repeated terms requires traversing the trie structure until
reaching the corresponding leaf node, without allocating any new node.

When inserting terms in the table space we need to distinguish two situations:
(i) inserting tabled calls in a subgoal trie structure; and (ii) inserting answers
in a particular answer trie structure. The former situation is handled by the
subgoal check insert() procedure as shown in Fig. 6 and the latter situation
is handled by the answer check insert() procedure as shown in Fig. 7.

In the original table design, the subgoal check insert() procedure simply
uses the trie check insert() procedure to check/insert the given call in the
subgoal trie corresponding to the given table entry te. In the new GT-T de-
sign, for each argument term t, it first checks/inserts the term t in the GT-T
and, then, it uses the reference to the leaf node representing t in the GT-T
(leaf gt node in Fig. 6) as the token to be checked/inserted in the subgoal trie
corresponding to the given table entry te. Note that this is done by calling the
trie node check insert() procedure, thus if the list of sibling nodes in the

subgoal_check_insert(TABLE_ENTRY te, SUBGOAL_CALL call, ARGS_ARITY a) {
if (GT_ROOT_NODE) { // GT-T table design

st_node = te->subgoal_trie_root_node
for (i = 1; i <= a; i++) {
t = get_argument_term(call, i)
leaf_gt_node = trie_check_insert(GT_ROOT_NODE, t)
leaf_gt_node->child++ // increase number of paths it represents
st_node = trie_node_check_insert(st_node, leaf_gt_node)

}
leaf_st_node = st_node

} else // original table design
leaf_st_node = trie_check_insert(te->subgoal_trie_root_node, call)

return leaf_st_node
}

Fig. 6. Pseudo-code for the subgoal check insert() procedure
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answer_check_insert(SUBGOAL_FRAME sf, ANSWER answer, SUBS_ARITY a) {
if (GT_ROOT_NODE) { // GT-T table design

at_node = sf->answer_trie_root_node
for (i = 1; i <= a; i++) {
t = get_substitution_term(answer, i)
leaf_gt_node = trie_check_insert(GT_ROOT_NODE, t)
leaf_gt_node->child++ // increase number of paths it represents
at_node = trie_node_check_insert(at_node, leaf_gt_node)

}
leaf_at_node = at_node

} else // original table design
leaf_at_node = trie_check_insert(sf->answer_trie_root_node, answer)

return leaf_at_node
}

Fig. 7. Pseudo-code for the answer check insert() procedure

answer_load(ANSWER_TRIE_NODE leaf_at_node, SUBS_ARITY a) {
if (GT_ROOT_NODE) { // GT-T table design

at_node = leaf_at_node
for (i = a; i >= 1; i--) {
leaf_gt_node = at_node->token
t = trie_load(leaf_gt_node)
put_substitution_term(t, answer)
at_node = at_node->parent

}
} else // original table design

answer = trie_load(leaf_at_node)
return answer

}

Fig. 8. Pseudo-code for the answer load() procedure

subgoal trie exceeds the MAX SIBLING NODES PER LEVEL threshold value, then a
new hash table is initialized as described before.

The answer check insert() procedure works similarly. In the original table
design, it checks/inserts the given answer in the answer trie corresponding to
the given subgoal frame sf. In the new GT-T design, for each substitution term
t, it first checks/inserts the term t in the GT-T and, then, it uses the reference
to the leaf node representing t in the GT-T (leaf gt node in Fig. 7) as the
token to be checked/inserted in the answer trie corresponding to the given sub-
goal frame sf. Again, if the list of sibling nodes in the answer trie exceeds the
MAX SIBLING NODES PER LEVEL threshold value, a new hash table is initialized.

Finally, the answer load() procedure is used to consume answers. Figure 8
shows the pseudo-code for it. In the original table design, it simply uses the
trie load() procedure to load from the answer trie back to the Prolog engine
the answer given by the trie node leaf at node. In the new GT-T design, for
each answer trie node at node, now it uses the trie load() procedure to load
from the GT-T back to the Prolog engine the substitution term given by the
reference (leaf gt node in Fig. 8) stored in the corresponding token field.
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5 Experimental Results

We next present some experimental results comparing YapTab with and without
support for the common global trie data structure. The environment for our
experiments was an Intel(R) Core(TM)2 Quad 2.66GHz with 2 GBytes of main
memory and running the Linux kernel 2.6.24.23 with YapTab 5.1.4.

To put the performance results in perspective and have a well-defined starting
point comparing the GT-CA and GT-T approaches, first we have defined a tabled
predicate t/5 that simply stores in the table space terms defined by term/1
facts, and then we used a top query goal test/0 to recursively call t/5 with all
combinations of one and two free variables in the arguments. We experimented
the test/0 predicate with 10 different kinds of 1000 term/1 facts: integers,
atoms, compound (with arities 1, 2, 4 and 6) and list (with lengths 1, 2, 4 and
6) terms. An example of such code for compound terms of arity 1 is shown next.

:- table t/5.
t(A,B,C,D,E) :- term(A), term(B), term(C), term(D), term(E).

test :- t(A,f(1),f(1),f(1),f(1)), fail. term(f(1)).
... term(f(2)).
test :- t(f(1),f(1),f(1),f(1),A), fail. term(f(3)).
test :- t(A,B,f(1),f(1),f(1)), fail. ...
... term(f(998)).
test :- t(f(1),f(1),f(1),A,B), fail. term(f(999)).
test. term(f(1000)).

Table 1 shows the tablememoryusage (columnsMem), inMBytes, and the run-
ning times, in milliseconds, to store (columns Str) the tables (first execution) and
to load from the tables (second execution) the complete set of subgoals/answers
without (columns Load) and with (columns Cmp) compiled tries for YapTab us-
ing the original table organization (column YapTab), using the previous GT-CA
approach (column GT-CA/YapTab) and using the new GT-T design (column
GT-T/YapTab). For the GT-CA and GT-T approaches we only show the
memory and running time ratios over YapTab’s original table organization.

The results in Table 1 suggest that GT-T support is the best approach to
reduce memory usage and that this reduction increases proportionally to the
length and redundancy of the terms stored in the global trie. In particular,
for compound and list terms, the results show an increasing and very significant
reduction on memory usage, for both GT-CA and GT-T approaches. The results
for integer and atoms terms are also very interesting as they show that the cost
of representing only atomic terms in the global trie (around 8% for GT-CA
and 0% for GT-T in these experiments) can be manageable when we increase
redundancy. Note that integers and atoms terms are represented by a single node
in the original YapTab design, and by an extra node (therefore requiring two
nodes) if using a global trie.

Regarding running time, these results seem to indicate that memory reduction
comes at a price in storing time (around 25% for GT-CA and 7% for GT-T in
these experiments). Note that with GT-CA and GT-T support, we pay the cost
of navigating in two tries when checking/storing/loading a term. Moreover, in
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Table 1. Table memory usage (in MBytes) and store/load times (in milliseconds) for
YapTab with and without support for the common global trie data structure

Terms
YapTab GT-CA/YapTab GT-T/YapTab

Mem Str Load Cmp Mem Str Load Cmp Mem Str Load Cmp

1000 ints 191 1009 358 207 1.08 1.56 1.30 n.a. 1.00 1.32 1.18 1.69
1000 atoms 191 1040 337 231 1.08 1.54 1.41 n.a. 1.00 1.26 1.24 1.54
1000 f/1 191 1474 548 239 1.08 1.35 1.33 n.a. 1.00 1.28 1.11 1.88
1000 f/2 382 1840 632 353 0.58 1.25 1.37 n.a. 0.50 1.11 1.18 1.58
1000 f/4 764 2581 786 631 0.33 1.21 1.35 n.a. 0.25 1.07 1.16 1.14
1000 f/6 1146 3379 1032 765 0.25 1.12 1.29 n.a. 0.17 1.01 1.05 1.08
1000 [ ]/1 382 1727 466 365 0.58 1.32 1.44 n.a. 0.50 1.17 1.21 1.29
1000 [ ]/2 764 2663 648 459 0.33 1.06 1.55 n.a. 0.25 0.93 1.20 1.48
1000 [ ]/4 1528 4461 1064 720 0.20 1.10 1.57 n.a. 0.13 0.81 1.01 1.28
1000 [ ]/6 2293 6439 2386 1636 0.16 1.02 1.05 n.a. 0.08 0.71 0.58 0.68

Average 0.57 1.25 1.37 n.a. 0.49 1.07 1.09 1.36

some situations, the cost of storing a new term in an empty/small trie can be
less than the cost of navigating in the global trie, even when the term is already
stored in the global trie. However, our results seem to suggest that this cost
decreases proportionally to the length and redundancy of the terms stored in
the global trie. In particular, for list terms, GT-T support showed to outperform
the original YapTab design and, in particular, the reduction seems to decrease
also proportionally to the length of the list terms stored in the global trie.

The results obtained for loading terms also show a cost on running time
(around 37% for GT-CA and 9% and 36% for GT-T without and with compiled
tries in these experiments). We think that this cost is smaller for GT-T as a result
of a cache behaviour effect. With GT-T, as we need to navigate in the global trie
for each substitution term, we kept accessing the same global trie nodes, thus
reducing eventual cache misses. This seems also to be the reason why for list
terms of length 6, GT-T clearly outperforms the original YapTab design, both
without and with compiled tries. Note that, for this particular case, the GT-T
support only consumes 8% of the memory used in the original YapTab.

Next, we tested our approach with two well-known Inductive Logic Pro-
gramming (ILP) benchmarks: the carcinogenesis (Carc) and the mutagenesis
(Muta) data sets. We used these data sets in a Prolog program that simulates
the test phase of an ILP system. For that, first we ran the April ILP system [10]
for the two data sets, each with two different configurations, in order to collect
the set of clauses generated for each configuration. The simulator program then
uses the corresponding set of generated clauses to run the positive and negative
examples defined for each data set against them. To evaluate clauses, we used
two different strategies: Pred denotes the tabling of individual predicates and
Conj denotes the tabling of literal conjunctions (as described in [3]). By tabling
conjunctions, we only need to compute them once. The strategy is then recur-
sively applied as the ILP system generates more specific clauses, but this can
increase the table memory usage arbitrarily.
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Table 2. Table memory usage (in MBytes) and store/load times (in seconds) for
YapTab with and without support for the common global trie data structure

Data Sets
YapTab GT-CA/YapTab GT-T/YapTab

Mem Str Load Cmp Mem Str Load Cmp Mem Str Load Cmp

Pred
Carc P1 1.6 70.72 71.26 72.95 0.82 1.35 1.34 n.a. 0.62 1.07 1.05 1.03
Carc P2 2.1 51.19 50.44 55.97 0.87 1.42 1.44 n.a. 0.51 1.23 1.30 1.22
Muta P1 0.6 98.93 5.57 5.86 0.73 1.20 1.19 n.a. 0.63 0.91 1.00 0.94
Muta P2 0.6 93.01 2.01 2.40 0.73 1.26 1.47 n.a. 0.63 0.96 1.22 1.10
Average 0.79 1.31 1.36 n.a. 0.60 1.04 1.14 1.07

Conj
Carc C1 18.5 0.56 0.51 0.48 0.53 1.57 1.63 n.a. 0.39 1.20 1.22 1.08
Carc C2 2802.8 93.85 70.16 36.44 0.50 1.50 1.50 n.a. 0.14 1.11 1.09 0.82
Muta C1 84.7 97.02 7.36 6.14 0.66 1.30 1.65 n.a. 0.53 0.99 1.22 1.35
Muta C2 675.6 92.76 1.36 1.53 0.16 1.25 1.42 n.a. 0.16 0.98 1.10 0.78

Average 0.46 1.41 1.55 n.a. 0.31 1.07 1.16 1.01

Table 2 shows the table memory usage (columns Mem), in MBytes, and the
running times, in seconds, to store (columns Str) the tables (first execution) and
to load from the tables (second execution) the complete set of subgoals/answers
without (columns Load) and with (columns Cmp) compiled tries for YapTab us-
ing the original table organization (column YapTab), using the previous GT-CA
approach (column GT-CA/YapTab) and using the new GT-T design (column
GT-T/YapTab). Again, for the GT-CA and GT-T approaches we only show
the memory and running time ratios over YapTab’s original table organization.

In general, the results in Table 2 confirm the results obtained in Table 1
for memory usage. GT-T support clearly outperforms the original and GT-CA
designs for memory usage. In particular, for the Conj strategy, memory usage
showed to be significantly less with GT-T support. This happens because after
a certain time, the Conj strategy will not table new terms, but only answers
that are combinations of previous terms, therefore making the GT-T approach
more feasible as it can share the representation of common terms appearing at
different argument or substitution positions.

Regarding running time, the results in Table 2 also confirm and reinforce the
results obtained in Table 1. GT-T support clearly outperforms the GT-CA design
for storing and loading times and, for some configurations, it also outperforms
the original YapTab design. This is the case for configurations either without
or with compiled tries. These results suggest that, at least for some class of
applications, GT-T support has potential to achieve significant reductions in
memory usage without compromising running time.

6 Conclusions and Further Work

We have presented a new design for the table space organization where all argu-
ment and substitution terms appearing in tabled subgoal calls and/or answers
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are represented only once in a common global trie instead of being spread over
several different trie data structures. The goal is to reduce redundancy in term
representation by maximizing the sharing of tabled data that is structurally
equal. Our experiments using the YapTab tabling system showed that our ap-
proach has potential to achieve significant reductions on memory usage without
compromising running time.

Further work will include exploring the impact of applying our proposal to
other real-world applications that pose many subgoal queries, possibly with a
large number of redundant answers, seeking real-world experimental results al-
lowing us to improve and expand our current implementation. In particular,
we intend to study how alternative/complementary designs for the table space
organization can further reduce redundancy in term representation.
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Abstract. In this paper, we present a new approach to non-termination
analysis of logic programs, based on moded SLDNF-resolution. Moded
SLDNF-resolution is a symbolic execution for moded goals, developed
for termination prediction. To prove non-termination, we use a complete
loop checker to create a finite symbolic derivation tree of a logic program
for a moded query. Then, we check if this derivation tree contains an
infinite loop, using a new non-termination condition. We implemented
this approach and tested it on the benchmark from the Termination
Competition of 2007. The results are very satisfactory: our tool is able
to prove non-termination and construct non-terminating queries for all
non-terminating benchmark programs, and thus, significantly improves
on the results of the only other non-termination analyzer, NTI.

Keywords: non-termination analysis, program analysis.

1 Introduction

One of the central concerns of declarative programming, in particular of Logic
Programming, is that the use of a declarative programming style in a declarative
programming language leads to less error-prone, more understandable and better
maintainable programs. However, it is well-known that a declarative program-
ming style also results in less efficient computations, and in the extreme case,
in non-terminating computations. The latter problem has received considerable
attention within the community. Much research has been done on termination
analysis, loop detection and more recently, non-termination analysis.

Among these areas, termination analysis has by far received most attention.
Most of the more powerful approaches and techniques have been introduced
in the last decade: the constraint-based approach to termination analysis [6],
the local approaches [4], the use of types in termination analysis [2], powerful
transformational approaches [11], termination inference [8], and the porting of
TRS-techniques to the LP-context [9].

A rather recent concern in this research is the precision of the termination analy-
sis. Since termination is undecidable in general, only sufficient conditions for termi-
nation are verified. It is important to have a good understanding of the precision of
these techniques: do they actually capture most of the terminating computations?
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With respect to the other two approaches, loop detection and non-termination
analysis, there is often confusion concerning their relation. Because both
approaches use similar techniques, their distinguishing features and aims are not
always well understood. Loop detection is a run-time technique. It aims to cut in-
finite derivations for a concrete query at run-time. For an extensive overview and
comparison of different loop checking algorithms, we refer to [1]. Non-termination
analysis is a compile-time approach. It aims to prove that a certain class of queries
will result in non-terminating computations for at least some of the queries in the
considered class. Non-termination analysis is performed for classes of queries de-
scribed in terms of modes (or types). One of the key concerns of non-termination
analysis is to address the important issue of precision analysis of termination anal-
ysis. A termination analysis can be shown to be precise by proving that the class
of queries for which termination could not be proven is actually non-terminating.
This has been one of the main goals and achievements of the only non-termination
analyzer developed up till now, NTI[10].

Very recently, yet another, fourth approach to the problem has been intro-
duced: termination and non-termination prediction [12]. In this approach, tech-
niques developed in loop-detection are lifted to classes of moded queries to allow
for a prediction of the termination behavior of these queries. Although the pre-
dictions do not take the form of formal proofs, experiments show that they can be
extremely precise. Moreover, for non-termination prediction, it has been proven
that by increasing a parameter in the analysis, the repetition number, in the
limit, the prediction is always correct.

Our work has been inspired both by the work on termination/non-termination
prediction and by NTI. We propose a new non-termination analysis. It reuses the
analysis scheme proposed in [12] to produce a finite representation of the com-
putation for a moded query, given some logic program. We introduce a new non-
termination condition expressed in terms of this finite representation of the
computation. We prove its correctness and extend it to increase its applicability.

It turns out that our characterization of non-terminating computations is more
precise than that of NTI. We have implemented the technique and performed ex-
tensive experiments with it on the basis of the benchmark of the termination anal-
ysis competition of 20071. The experiments show that our technique has a 100%
success-rateonthisbenchmark,outperformingtheonlycompetingapproach,NTI.

The paper is organized as follows. In the next section we introduce some
preliminaries. In section 3, we present our conditions implying non-termination
and show that we are able to derive classes of non-terminating queries. In Section
4, we present our experimental evaluation and we compare our analyzer with the
non-termination inference tool NTI [10]. Finally, Section 5 concludes this paper.

2 Preliminaries

In this section, we introduce some preliminaries concerning the symbolic deriva-
tion trees used to prove non-termination. First, we introduce moded SLDNF-trees
1 http://www.lri.fr/˜marche/termination-competition/
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as defined in [12]. These trees represent the derivation trees of all concrete queries
corresponding to a moded query. Then, we introduce complete loop checks for
these SLDNF-trees and introduce LP-check [12], a loop check for moded SLDNF-
resolution introduced for termination prediction.

2.1 Moded Generalized SLDNF-Trees

We assume the reader is familiar with standard terminology of logic programs,
in particular with SLDNF-resolution and substitutions, as described in [7]. Vari-
ables are denoted by character strings beginning with a capital letter. Predicates,
functions and constant symbols are denoted by character strings beginning with
a lower case letter. A term is a constant, a variable, or a function of the form
f(t1, ..., tm) where f is a function symbol and each ti is a term. We denote the
set of terms constructible from a program P , by TermP . An atom is of the form
p(t1, ..., tm) where p is a predicate symbol. Two atoms are called variants if they
are equal up to variable renaming. An atom A is more general than an atom B,
if there exists a substitution θ, such that Aθ = B. A literal is an atom A or the
negation ¬A of A.

A general logic program P is a finite set of clauses of the form A ← L1, ..., Ln,
where A is an atom and each Li is a literal. A goal Gi is a headless clause
← L1, ..., Ln. A query, Q, is a conjunction of literals L1, . . . , Ln. Without loss of
generality, we assume that Q consists only of one atom.

Let P be a logic program and G0 a query. G0 is evaluated by building a gen-
eralized SLDNF-tree GTG0 as defined in [12], in which each node is represented
by Ni : Gi where Ni is the name of the node and Gi is a goal attached to the
node. We do not reproduce the definition of a generalized SLDNF-tree. Roughly
speaking, GTG0 is the set of standard SLDNF-trees for P ∪{G0} augmented with
an ancestor-descendant relation on their literals. Let Li and Lj be the selected
literals at two nodes Ni and Nj , respectively. Li is an ancestor of Lj, denoted
Li ≺anc Lj, if the proof of Li goes via the proof of Lj . Throughout the paper, we
choose to use the best-known depth-first, left-most control strategy, as is used
in Prolog, to select goals and literals. So by the selected literal in each node
Ni :← L1, ..., Ln, we refer to the left-most literal L1. For any node Ni : Gi, we
use L1

i to refer to the selected literal in Gi.
Recall that in SLDNF-resolution, let Li = ¬A be a ground negative literal se-

lected at Ni, then, by the negation-as-failure rule [7], a subsidiary child SLDNF-
tree will be built to solve A. In a generalized SLDNF-tree GTG0 , such parent
and child SLDNF-trees are connected from Ni to Ni+1 via a dotted edge “· · ·�”
,called a negation arc, and A at Ni+1 inherits all ancestors of Li at Ni. There-
fore, a path of a generalized SLDNF-tree may come across several SLDNF-trees
through dotted edges. Any such path starting at the root node N0 : G0 of GTG0

is called a generalized SLDNF-derivation.
We do not consider floundering queries; i.e., we assume that no non-ground

negative literals are selected at any node of a generalized SLDNF-tree (see [12]).
A derivation step is denoted by Ni : Gi ⇒C Ni+1 : Gi+1, meaning that

applying a clause C to Gi produces Ni+1 : Gi+1.
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As stated in the introduction, we want to prove non-termination for classes
of queries described using modes. An input mode stands for an arbitrary ground
term, i.e. it can be any variable-free term of TermP . An output mode stands
for a free variable. A query Q is a moded query if some arguments of Q are
input modes, otherwise, it is a concrete query. Because an input mode denotes
an arbitrary ground term, we may approximate the effect of an input mode, by
treating it as a special variable I, in such a way that in SLDNF-derivations I
can be substituted by a constant or function, but cannot be substituted by an
ordinary variable. Therefore, when unifying a special variable I and a variable
X , we always substitute I for X . In the remainder of the paper, we denote a
special variable by underlining the variable’s name.

Definition 1. Let P be a logic program and Q = p(I1, ..., Im, T1, ..., Tn) a moded
query. The moded generalized SLDNF-tree of P for Q, is defined to be the
generalized SLDNF-tree GTG0 for P ∪ {← p(I1, ..., Im, T1, ..., Tn)}, with each Ii

being a distinct special variable not occurring in any Tj. The special variables
I1, ..., Im are called input variables. �

In a moded generalized SLDNF-tree, an input variable I may be substituted by
either a constant or a function f(t1, . . . , tn). If I is substituted by f(t1, . . . , tn),
all variables in t1, . . . , tn are also called input variables and treated as special
variables. We refer to Figure 1(a) for an illustration of (part of) a moded gener-
alized SLDNF-tree. The figure also illustrates a loop check.

A moded atom A corresponds to a set of concrete atoms, called the denotation
of A. Let I1, ..., In be all input variables occurring in A. Let t1, . . . , tn ∈ TermP .
A(t1 → I1, . . . , tn → In) denotes the concrete atom obtained by replacing the
input variables I1, ..., In by the terms t1, . . . , tn.

Definition 2. Let A be an atom with I1, . . . , In as its input variables. The de-
notation of A is

Den(A) =
{
A(t1 → I1, . . . , tn → In) | ti ∈ TermP , ti is ground

}
. �

This concept can be adapted to moded goals in a straightforward way. Note that
the denotation of a concrete atom is a singleton containing the atom itself.

2.2 Loop Checking

A complete loop check for moded goals cuts all infinite branches in a moded
generalized SLDNF-tree.

Definition 3. A loop check L is complete w.r.t. moded SLDNF-resolution if
for every logic program P and moded query Q, every infinite derivation of P for
Q is cut by L. �
Many simple complete loop checks can be constructed, for example a bound on
the number of times a certain predicate occurs in a derivation. However, only one
loop check for moded SLDNF-resolution is discussed in the literature, LP-check
[12]. LP-check is a complete loop check developed for termination prediction.
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In [12], it is proven that every infinite derivation contains an infinite chain of
loop goals. These are goals satisfying some conditions on the selected literals. A
clause is cut by LP-check if a prefix of such a chain is encountered.

Definition 4. Let A be a moded atom, the symbol string of A, SA, is the
string obtained by reading all predicate symbols, function symbols, constants and
variables in A, from left to right, with the variables replaced by X .

A symbol string SA1 is a projection of SA2 , denoted SA1 &proj SA2 , if SA1

is obtained from SA2 by removing zero or more elements. �

Example 1. Let A1 = a and A2 = f(X, g(X, f(a, I))). Then, SA1 = a, SA2 =
fXgXfaX and SA1 &proj SA2 . �

Definition 5. Let Ni : Gi and Nj : Gj be two nodes in a derivation with
L1

i ≺anc L1
j and SL1

i
&proj SL1

j
. Then, Gj is called a loop goal of Gi. �

LP-check uses a repetition number defining how long the chain of loop goals can
become before it is cut by LP-check.

Definition 6. Given a repetition number r ≥ 2, LP-check is defined as follows:
Any derivation D in a generalized SLDNF-tree is cut at a node Ngr if D has a
prefix of the form

N0 : G0 ⇒C0 ... Ng1 : Gg1 ⇒Ck
... Ng2 : Gg2 ⇒Ck

... Ngr : Ggr ⇒Ck
(1)

such that (a) for any j < r, Ggj+1 is a loop goal of Ggj , and (b) for all j ≤ r,
the clause Ck applied to Ggj is the same. The prefix is called an LP-cut, the
nodes Ng1 , . . . , Ngr are called the nodes of the LP-cut. �
Because LP-check is a rather expensive loop check, a variant on LP-check is
defined in [12]: LP-check with pruning. This loop check reduces the amount of
redundant branches by pruning clauses if they are already applied to an ancestor
or descendant with a variant as a selected literal. We illustrate these loop checks
with the binary tree program.

Example 2. The following program succeeds if the argument of the query repre-
sents a binary tree.

bin(empty). bin(tree(L,_,R)):- bin(L), bin(R).

Figures 1(a) and 1(b) show moded SLDNF-trees constructed using LP-check and
LP-check with pruning, respectively, for the binary tree program with bin(I) as
a query and 3 as a repetition number.

In the SLDNF-tree constructed by LP-check, as shown in Figure 1(a), clause
2 is cut at node N5 because of LP-cut: N0 ⇒C2 . . .N3 ⇒C2 N5 ⇒C2 . Similarly,
LP-check cuts clause 2 at nodes: N6, N8, N9, N12 and N13.

The SLDNF-tree constructed by LP-check with pruning, depicted in Figure
1(b), is much smaller. Clause 1 is cut at nodes N2 and N3, because that clause is
applied to the selected literal of N0, which is both an ancestor and a variant of
the selected literals of nodes N2 and N3. At node N3, clause 2 is cut by LP-check
with pruning because of LP-cut: N0 ⇒C2 N2 ⇒C2 N3 ⇒C2 . �
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(a) LP-check (b) LP-check with pruning

Fig. 1. Two loop checks for moded SLDNF-resolution

3 A New Non-termination Condition

In this section, we present a new non-termination analysis technique for general
logic programs with moded queries. We consider a program non-terminating
w.r.t. a moded query, if the denotation of the query contains at least one concrete
query that has an infinite branch in its generalized SLDNF-tree.

3.1 The Moded More General Relation

To prove non-termination, we prove that a path between two nodes Nb and Ne

in a moded SLDNF-derivation can be repeated infinitely often. To find such a
path, we check three properties. Because the rules in the path must be applicable
independent of the values of the input variables, no substitutions on the input
variables may occur in the path from Nb to Ne. Because this path should be
a loop, L1

b must be an ancestor of L1
e. Finally, a special more general relation

for moded atoms must hold between L1
b and L1

e. We will show that these three
conditions imply non-termination.

A moded atom A is moded more general than a moded atom B, if any atom
in the denotation of A is more general than some atom in the denotation of B.

Definition 7. A moded atom A is moded more general than a moded atom
B w.r.t. a program P , A � B, iff:
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∀I ∈ Den(A), ∃I ′ ∈ Den(B) : I is more general than I ′ �
We illustrate this moded more general relation with some small examples.

Example 3. The following relations hold w.r.t. the binary tree program from
Example 2:

– bin(X) � bin(I)
The denotation of bin(X) only contains the atom itself, which is more
general than any atom in the denotation of bin(I), e.g. bin(empty).

– bin(tree(tree(In, Xn), Y )) � bin(tree(I, tree(X, empty)))
For example, if In = empty, then I = tree(empty, empty) yields an
atom in the denotation that satisfies the more general relation. �

Because the denotation of a moded atom is in general infinite, we cannot check
this property for every atom in the denotation. However, there is a syntactic
sufficient condition to check if the moded more general relation holds between
two given moded atoms A and B. The condition is based on a particular kind
of unifiability of the atoms.

We introduce the following notations. Let InV arP be the set of input variables
and V arP the set of normal variables. To every I ∈ InV arP we associate a fresh
normal variable I. Let Term+

P denote the set of all terms constructible in the
underlying language of P augmented with the variables {I | I ∈ InV arP }.

Proposition 1. Let A and B be two moded atoms. Let A1 and B1 be renamings
of these atoms such that they have no shared variables. Let A2 and B2 denote
variants of A1 and B1 in which every input variable I is replaced by I. Let
Na

1 , . . . , Na
n be a subset of the normal variables in A1 and Ib

1 , . . . , Ib
m be the fresh

variables associated to the input variables in B2.
If A2 and B2 are unifiable with a substitution γ = {Na

1 \ t1, . . . , N
a
n \ tn,

Ib
1 \ t+1 , . . . , Ib

m \ t+m} with t1, . . . , tn ∈ TermP and t+1 , . . . , t+m ∈ Term+
P , then A

is moded more general then B. �
Proof. Let α = {Na

1 \ t1, . . . , N
a
n \ tn} and β =

{
Ib
1 \ t+1 , . . . , Ib

m \ t+m
}
. Because

Ib
1 , . . . , I

b
m can not occur in t1, . . . , tn, γ = β ◦ α, and by unifiability, A2αβ =

B2αβ. Moreover, since B2 does not contain Na
1 , . . . , Na

n , B2αβ = B2β, and since
A2α does not contain Ib

1 , . . . , Ib
m, A2αβ = A2α. Thus, A2α = B2β.

Let Ac be an element of Den(A1). Then, there exists a substitution ψ =
{Ia

1 \ s1, . . . , I
a
k \ sk}, where Ia

1 , . . . , Ia
k are all input variables of A1, s1, . . . , sk ∈

TermP and s1, . . . , sk are ground, such that Ac = A2ψ.
Now consider the atom Bc = B2βψ. First, Bc ∈ Den(B1). This is because β

replaces all Ib
j of B2 by terms t+j . These terms t+j may contain variables Ia

l of
A2, but these are all substituted to ordinary ground terms sl ∈ TermP by ψ.

Finally, Acα = A2ψα = A2αψ = B2βψ = Bc. Note that A2ψα = A2αψ
because no si of ψ can contain a variable Na

j of α, nor can any ti of α contain
a variable Ia

j of ψ. Thus Ac is more general than an element of Den(B1). �
Example 4. The moded atoms of the last example are already variable disjunct.
To check if the moded more general relation holds, we have to check if the atoms
are unifiable with a substitution of the correct forms.
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– bin(X) = bin(I) with substitution: {I \X}
– bin(tree(tree(In, Xn), Y )) = bin(tree(I, tree(X, empty))) with substitution:
{I \ tree(In, Xn), Y \ tree(X, empty)} �

3.2 Non-termination of Moded More General Loops

If a moded SLDNF-derivation contains a path without substitutions on input
variables, such that the ancestor relation and the moded more general relation
hold between the first and last selected literal in that path, we call this path a
moded more general loop. We will show that a moded more general loop implies
non-termination.

Definition 8. In a moded SLDNF-derivation D, nodes Ni : Gi and Nj : Gj are
a moded more general loop, Ni : Gi

mmg→ Nj : Gj, iff:

– No substitutions on input variables occur in the path from Ni to Nj.
– L1

i ≺anc L1
j .

– L1
j � L1

i �

Note that when no confusion can occur, we may omit writing the goal in the
moded more general loop.

A moded more general loop, Ni : Gi
mmg→ Nj : Gj , corresponds to an infinite

loop for every concrete goal in the denotation of Gi.

Theorem 1 (Sufficiency of the moded more general loop). Let Ni :
Gi

mmg→ Nj : Gj be a moded more general loop in a moded SLDNF-derivation D
of a program P and a moded query I. The sequence of clauses from Ni to Nj,
〈C1, . . . , Cn〉, can be repeated infinitely often for any goal in Den(Gi). �

Proof. Because L1
i is an ancestor of L1

j , only the selected literal of Ni influences
if the sequence of clauses can be repeated infinitely often.

Because no substitutions on input variables occur in the path from Ni down
to Nj, 〈C1, . . . , Cn〉 is applicable to any atom in Den(L1

i ). Obviously, this path
is also applicable to any atom A, which is more general than some atom B in
Den(L1

i ). Furthermore, after applying 〈C1, . . . , Cn〉 to A, the resulting selected
literal is more general than the selected literal after applying 〈C1, . . . , Cn〉 to B.

As L1
j �L1

i , any atom in Den(L1
j) is more general than some atom in Den(L1

i ).
Therefore, let S be the union of Den(L1

i ) and all more general atoms. Then,
〈C1, . . . , Cn〉 is applicable to any atom of S, and after applying these clauses, the
selected literal of the resulting goal is again an atom of S. Thus, this sequence
of clauses is infinitely often applicable to elements of S. �

We illustrate this non-termination condition with our running example.

Example 5 (Non-termination proof of binary tree). Let us revisit Example 1
with a query bin(X). The SLDNF-tree constructed by LP-check for this program
and query is almost the same as in Figure 1(a). The only difference is that the
input variables are replaced by ordinary variables.
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The constructed SLDNF-tree satisfies the conditions of Definition 8, so N0
mmg→

N2 is a moded more general loop. Therefore, non-termination of this example is
proven by Theorem 1. �

Observe that Theorem 1 can straightforwardly be generalized to conclude non-
termination for any goal that is more general than an element of Den(Gi). In
particular, the analysis is not restricted to goals with ground inputs: Theorem 1
also holds for an ”extended” denotation of Gi, with non-ground inputs.

3.3 Input-Generalizations

Our experimental evaluation (see Section 4) shows that for many non-terminating
programs, non-termination can be provenusing the moded more general loop. But,
the next example shows that there is room for further improvement.

Example 6 (Termination behavior of flat).
flat(niltree, nil).
flat(tree(X, niltree, XS), cons(X, YS)) :- flat(XS, YS).
flat(tree(X, tree(Y, YS1, YS2), XS), ZS) :-

flat(tree(Y, YS1, tree(X, YS2, XS)), ZS).

This program, flat, flattens a binary tree into a list denoted with the cons
notation. To flatten the tree, the program repeatedly moves one element from
the left to the right subtree until the left subtree is empty. When the left subtree
is empty, we proceed by processing the right subtree. If the first argument of the
query is a variable, this program loops w.r.t. the third clause.

Figure 2 shows a part of the moded generalized SLDNF-tree constructed for
moded query flat(T, I) using LP-check with repetition number 3. No nodes in
the derivations satisfy Definition 8. The reason for this is that we replace a
variable by a compound term when applying the third clause. �

Fig. 2. Moded generalized SLDNF-tree with LP-check of flat (Example 6)
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To prove non-termination for programs such as flat, we define an input-
generalization. This input-generalization is such that proving non-termination
of an input-generalized goal implies non-termination of the original goal.

Definition 9. We say that Aα is an input-generalization of an atom A, if there
exist terms t1, . . . , tn in A and fresh input variables I1, . . . , In such that Aα =
A(I1 → t1, . . . , In → tn) and V ar(Aα) ∩ V ar((t1, . . . , tn)) = ∅. �

Example 7 (Input generalizations).
– bin(tree(I, I1)) is an input-generalization of bin(tree(I, tree(X, empty)))
– bin(I2) is an input-generalization of bin(tree(I, I1))
– bin(tree(I3, X)) is not an input generalization of bin(tree(tree(X, Y ), X))

This last example refers to the condition of the empty intersection of the
variable sets. We return to this condition in Example 8. �

To check if a path is non-terminating w.r.t. an input-generalized goal, we define
an input-generalized derivation. This derivation is constructed by applying a
path in a given derivation to the input-generalized selected literal of the first
node in the path.

Definition 10. Let D be a moded SLDNF-derivation Ni, . . . , Nj, such that
L1

i ≺anc L1
j . Let 〈C1, . . . , Cn〉 be the sequence of clauses applied from Ni to Nj

and let Aα be an input-generalization of L1
i .

The input-generalized derivation D′ for Aα, is constructed by applying
the sequence of clauses 〈C1, . . . , Cn〉 to Aα. The input-generalized nodes Nα

i

and Nα
j are the top and bottom nodes of D′, respectively. �

Next, we prove that non-termination of the input-generalized derivation implies
non-termination of the original goal. First we introduce two lemmas.

Lemma 1. Let Aα be an input generalization of A, then A � Aα. �

Proof. Let I1, . . . , In be the input variables of A and In+1, . . . , Im be the new in-
troduced input variables in Aα. For every concrete atom Ac in Den(A), I1, . . . , In

are replaced by ground terms. To construct an atom Aα
c of Den(Aα), for which

Ac is more general then Aα
c , one replaces I1, . . . , In by the same values as in

Ac and In+1, . . . , Im by instances of the corresponding terms, tn+1, . . . , tm, in
Ac. Due to the condition that V ar(Aα) ∩ V ar((tn+1, . . . , tm)) = ∅, Ac is more
general than Aα

c . �

Example 8. To explain the condition on the intersection of the variables in
Definition 9, consider the atom A = a(X, f(X)). If we omit the condition
on the variables, we could consider Aα = a(X, I) as an input generalization.
Den(A) = {a(X, f(X))} and a(X, f(X)) is not more general than any element
in Den(a(X, I)). So, the property that A � Aα would not hold. �

Lemma 2. Let A and B be atoms such that A�B and let every atom in Den(B)
be non-terminating w.r.t. a program P , then, every atom in Den(A) is non-
terminating w.r.t. P . �
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Proof. Every atom of Den(A) is more general than a non-terminating atom. �
Corollary 1 (Non-termination with input-generalization). Let Ni : Gi

and Nj : Gj be nodes in a derivation D of a program P for a moded query
I, such that L1

i ≺anc L1
j , and let Nα

i and Nα
j be input-generalized nodes in an

input-generalized derivation D′ of Ni and Nj for A.
If Nα

i
mmg→ Nα

j , then every concrete goal in the denotation of Gi is non-
terminating w.r.t. program P . �
Proof. Follows from Theorem 1 and the two previous lemmas. �
We illustrate these input-generalizations by revisiting the flat example.

Example 9 (Non-termination of flat). To prove non-termination, we generalize
node N6 to flat(tree(Y, Y l, In), I2), by changing the subterm tree(X, Y r, Xr)
to a new input variable In.

Fig. 3. Input-generalized SLDNF-derivation of flat

Figure 3, shows the input-generalized moded SLDNF-derivation for
flat(tree(Y, Y l, In), I2). This derivation is a moded more general loop: Nα

6
mmg→

Nα
8 . Therefore, non-termination of the program flat w.r.t. the concrete goals in

the denotation of the goal of N6 is proven by Corollary 1. �
Note that a concrete query in the denotation of a moded query might not reach
the moded more general loop. However, classes of non-terminating top level
queries can be obtained by applying all substitutions on the input variables
between the root and the first node of the moded more general loop. In the last
example, this class of top level queries is flat(T, cons(U, cons(X, I2))).

4 Experimental Evaluation

To evaluate our approach, we implemented a non-termination analyzer P2P ,
from Prediction to Proof , based on Corollary 1. We tested P2P on a bench-
mark of 48 non-terminating pure logic programs. First, we describe our ana-
lyzer and the benchmark. Then, we compare our tool with the non-termination
inference tool NTI [10].

4.1 P2P : From Prediction to Proof

We implemented P2P in SWI-prolog2. P2P is freely available3 and consists
of two components. First, the implementation of the termination prediction
2 Homepage of SWI-prolog: http://www.swi-prolog.org/
3 Available at http://www.cs.kuleuven.be/˜dean/p2p.html
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approach [12], TPoLP 4, constructs the moded SLDNF-derivation and predicts
the termination behavior. If TPoLP predicts a derivation to be non-terminating,
the second component tries to prove non-termination in the derivation.

To prove non-termination, P2P checks if the derivation contains a moded
more general loop or it uses a backtracking search to attempt to construct an
input generalized derivation that contains a moded more general loop. Although
many input generalizations can be constructed, proving non-termination in a
derivation can be done rather efficiently. This is because the LP-cuts made by
TPoLP correctly identify an infinite loop if the repetition number is sufficiently
high. Therefore, instead of checking the conditions of the moded more gen-
eral loop between all pairs of nodes in the derivation, it suffices to check these
conditions for the pairs of nodes of the LP-cut.

4.2 Benchmark of Termination Problems

Our benchmark consists of the non-terminating pure logic programs from the
termination competition of 2007. The benchmark and the results from the tools
that participated in the competition are available5. The benchmark of the ter-
mination competition contains around 300 logic programs and moded queries
representing different challenges in termination and non-termination analysis. A
few programs from the competition are omitted because they contain non-logical
operations such as arithmetics. The competition benchmark contains some dou-
bles. These were also omitted. The benchmark contains 48 non-terminating pro-
grams. All programs contain between 2 and 15 clauses, except for binary4, which
contains 41 clauses. The only other non-termination analyzer, NTI [10], proves
non-termination for 45 benchmark programs.

Table 1 shows our experimental evaluation on this benchmark using LP-check
with pruning, with 4 as a repetition number. The result of our tool is given in the
column P2P , V denotes that non-termination is proven while X denotes that
no non-termination proof was found. The result of NTI is given in the column
NTI. The columns Size and Time show the size in the number of nodes of the
SLDNF-tree and the analysis time in seconds, respectively.

The results are very satisfactory. For all programs in the benchmark, non-
termination is proven and a class of non-terminating queries can be constructed.
The analyzer is very fast. Any benchmark program is analyzed in less than a
second and the memory use never exceeds a few megabytes.

As stated, these experiments have been performed using 4 as a repetition
number. When we use 3 as a repetition number, our tool fails to prove non-
termination of programs pl7.6.2.a and pl7.6.2.b. These are two erroneous imple-
mentations of a path find algorithm. When using 2 as repetition number, proving
non-termination fails for about 25% of the benchmark programs.

4 Available at http://www.cs.kuleuven.be/˜dean/termination prediction.html
5 Available at http://www.lri.fr/˜marche/termination-competition/
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Table 1. Benchmark of non-terminating pure logic programs

Name program P2P Size Time NTI Name program P2P Size Time NTI
ackermann-ioi V 9 0.33 V permutation-fb V 22 0.26 V
bad sublist V 33 0.29 V pl1.1 V 8 0.25 V
binary4 V 12 0.27 V pl3.1.1 V 12 0.30 V
delete-bff V 13 0.31 V pl3.5.6 V 13 0.31 V
der-fb V 22 0.29 V pl4.0.1-oooi V 33 0.27 V
doublehalfpred V 38 0.28 V pl4.5.2 V 481 0.36 V
example4-2 V 4 0.23 V pl4.5.3a V 10 0.29 V
flatlength-fbf V 14 0.23 V pl4.5.3b V 10 0.24 V
flatlength-ffb V 19 0.23 V pl4.5.3c V 11 0.27 V
flat-oi V 9 0.26 X pl5.2.2 V 59 0.27 V
frontier-fb V 12 0.27 V pl7.6.2.a V 39 0.27 X
ifdiv V 19 0.29 V pl7.6.2.b V 45 0.33 X
in-bf V 18 0.29 V quicksort-fb V 72 0.26 V
inorder-fb V 4 0.27 V quicksort-oi V 74 0.26 V
insert-bff V 22 0.29 V reverse-fb V 9 0.32 V
log2a-oi V 35 0.25 V select-bff V 8 0.32 V
log2b-oi V 29 0.28 V slowsort-fb V 123 0.27 V
mapcolor V 23 0.31 V slowsort-oi V 26 0.26 V
member-bf V 8 0.27 V sublist-bf V 30 0.21 V
mergesort V 171 0.28 V subset-bf V 21 0.23 V
mergesort-oi V 54 0.28 V subset-fb V 14 0.26 V
mergesort variant V 15 0.23 V suffix-bf V 9 0.25 V
minimum-fb V 8 0.29 V transpose2 V 6 0.28 V
naive reverse-fb V 8 0.37 V tree member-bf V 12 0.28 V

4.3 Comparison with NTI

To infer non-terminating queries, NTI first transforms a given program into a
binary program using binary unfoldings. Then, it compares the head and body
of the clauses in the binary program with a special more general relation. If this
relation holds, non-termination is proven.

The binary unfolding of a program represent the calls made during program
execution. Thus, it corresponds to comparing the selected literals in our sym-
bolic computation. The binary unfolding of a program can be computed using a
fixpoint operator.

The special more general relation used by NTI, '-more general, is based on
the notion of derivation neutral (DN) filters. These filters are functions defin-
ing, for a clause and argument position, which terms have no influence on the
applicability of the clause. Furthermore, if the head atom satisfies the filter, the
body atom must satisfy the filter as well. We explain NTI’s non-termination
condition and compare it with our approach using some small examples.

Example 10 (Recursive clause of reverse-fb).
rev([H|T],Temp,Res):- rev(T,[H|Temp],Res).

In this clause, the second argument is not replaced by a more general one. There-
fore, NTI needs a DN filter to prove non-termination. The applicability of the
clause does not depend on the value of Temp, so we can use the trivial filter,
instance of X , for the second argument position. We can also use this filter for
the last argument position. Therefore, NTI concludes that this clause is non-
terminating for each goal where the first argument is more general than [H |T ]
and the second and third argument are instances of X . �
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These DN filters cannot depend on the names of the variables. Therefore, they
cannot express that two argument must contain a common subterm.

Example 11 (Variable independent filters).

a(X,X):- a(s(X),s(X)).

Both arguments are replaced by more specific ones and the applicability does
not depend on the value of X . However, since both arguments must be bound
to the same term, NTI fails to prove non-termination of this example. �

Instead of comparing all the arguments independently, our approach compares
the selected literals. Therefore, our condition does not have this restriction.

Because NTI requires that each argument is either replaced by a more gen-
eral one or satisfies a DN filter, NTI fails to prove non-termination if in one
argument, a subterm is replaced by a more general one while another subterm
is replaced by a more specific one. This is because of the requirement that if the
head atom satisfies the filter, the body atom needs to satisfy it as well.

Example 12 (Looping clause of flat-oi). In the third clause of flat-oi in Example
9, the first argument of this clause contains two such subterms. XS is replaced
by tree(X,YS2,XS) and tree(Y, YS1, YS2) is replaced by YS1. �

Because we allow arguments to contain both input and ordinary variables, our
condition does not have this restriction.

Table 1 shows that NTI fails to prove non-termination of 3 programs. These
3 programs are examples of the two classes of problems that are illustrated by
Examples 11 and 12. The actual results on the termination competition were
worse for NTI, as we have rewritten some programs that NTI could not parse.

5 Conclusion and Future Work

We introduced a new approach to non-termination analysis of logic programs
based on a finite, symbolic derivation tree for a moded query. This symbolic
tree represents the derivation trees of all concrete queries denoted by the moded
query. To prove non-termination we look for a loop in this symbolic derivation
tree. We implemented this approach and evaluated it on a benchmark of 48
non-terminating programs from the termination competition of 2007. Our tool,
P2P , proves non-termination of all benchmark programs. We have shown that
our technique improves on the results of the only other non-termination analyzer,
NTI, and that we can handle 2 new classes of programs.

A class of programs that we currently cannot handle, are programs that re-
quire types to describe the looping goals. These are programs of the following
form:

p(L):-list(L), p([a|L]).
list([]). list([H|T]):- list(T).
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We cannot prove that a query p(L) with L an input list is non-terminating,
because substitutions on the input variables occur between all selected literals
that satisfy the moded more general relation. To overcome this problem, we plan
to extend our technique with type analysis [3] and non-failure analysis [5]. For
this program and query, the type analysis would infer that all arguments are
lists and the non-failure analysis would infer that list(L) cannot fail if L is a
list. If we combine this information, it is clear that the first clause is a loop.

We also plan to extend our technique for programs containing arithmetic
expressions by using a finite domain solver to infer domains and initial values
such that the arithmetic conditions in the loop will always succeed.

Acknowledgments. We thank the reviewers for their feedback and helpful
comments.
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Constraint Answer Set Solving

Martin Gebser, Max Ostrowski, and Torsten Schaub�
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Abstract. We present a new approach to integrating Constraint Processing (CP)
techniques into Answer Set Programming (ASP). Based on an alternative seman-
tic approach, we develop an algorithmic framework for conflict-driven ASP solv-
ing that exploits CP solving capacities. A significant technical issue concerns the
combination of conflict information from different solver types. We have imple-
mented our approach, combining ASP solver clingo with the generic CP solver
gecode, and we empirically investigate its computational impact.

1 Introduction

Answer Set Programming (ASP;[1]) is a declarative problem solving approach, com-
bining a rich yet simple modeling language with high-performance solving capacities.
This has already resulted in various applications, among them decision support sys-
tems for NASA shuttle controllers [2,3] and various reasoning tools in systems biol-
ogy [4,5,6]. However, certain aspects of such applications are more naturally modeled
by additionally using non-Boolean constructs, accounting for resources, fine timings, or
functions over finite domains. Moreover, a dedicated treatment of large domains avoids
the grounding bottleneck inherent to all propositional solving approaches.

In Satisfiability checking (SAT;[7,8]), this led to the subarea of Satisfiability Mod-
ulo Theories (SMT;[9]), extending SAT solvers by theory-specific solvers. This allows
SMT problems to incorporate predicates from specialized theories into propositional
formulas. Solving an SMT problem then consists of finding a (hybrid) assignment to all
Boolean and theory-specific variables satisfying a given formula along with its theory-
specific constituents. Apart from a close solver integration, the key to efficient SMT
solving lies in elaborated conflict-driven learning techniques that are capable of com-
bining conflict information from different solver types (cf. [9]).

Groundbreaking work on enhancing ASP with Constraint Processing (CP;[10,11])
techniques was conducted in [12,13,14]. Based on firm semantic underpinnings, these
approaches provide a family of ASP languages parametrized by different constraint
classes. While [12] develops a high-level algorithm viewing both ASP and CP solvers as
black boxes, [14] embeds a CP solver into a traditional DPLL-style backtracking algo-
rithm, similar to the one underlying the ASP solver smodels [15]. Although [12,13,14]
resulted in two consecutive extensions of smodels with CP capacities, they do not match
the performance of state-of-the-art SMT solvers, simply because they do not support
advanced backjumping and conflict-driven learning techniques.
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We address this problem and propose an alternative way of combining ASP and
CP solving. To begin with, we pursue an alternative semantic approach that is based
on a propositional language rather than a multi-sorted, first-order language, as used
in [12,13,14]. Our approach follows the so-called lazy approach of advanced SMT
solvers by abstracting from the constraints in a specialized theory [9]. The idea is as
follows. The ASP solver passes the portion of its (partial) Boolean assignment asso-
ciated with constraints to a CP solver, which then checks these constraints against its
theory via constraint propagation. As a result, it either signals unsatisfiability or, if pos-
sible, extends the Boolean assignment by further constraint atoms. For conflict-driven
learning within the ASP solver, however, each assigned constraint atom must be justi-
fied by a set of (constraint) atoms providing a “reason” for the underlying inference.
Yet, to the best of our knowledge, this is not supported by off-the-shelf CP solvers.1 As
a consequence, we develop an algorithmic framework for conflict-driven ASP solving
that integrates CP solving capacities while overcoming the aforementioned difficulty.
We have implemented our approach in the new system clingcon [16], combining ASP
solver clingo [17] with the generic CP solver gecode [18], and provide an empirical
analysis demonstrating its computational impact.

2 Background

A (normal) logic program over an alphabetA is a finite set of rules of the form

a0 ← a1, . . . , am,not am+1, . . . ,not an , (1)

where ai ∈ A is an atom for 0 ≤ i ≤ n.2 A literal is an atom a or its (default)
negation not a. For a rule r as in (1), let head(r) = a0 be the head of r and
body(r) = {a1, . . . , am,not am+1, . . . ,not an} be the body of r. Given a set B of
literals, let B+ = {a ∈ A | a ∈ B} and B− = {a ∈ A | not a ∈ B}. Furthermore,
given some set B of atoms, define B|B = (B+ ∩ B) ∪ {not a | a ∈ B− ∩ B}. The
set of atoms occurring in a logic program P is denoted by atom(P ). A set X ⊆ A
is an answer set of a program P over A, if X is the ⊆-smallest model of the reduct
PX = {head(r) ← body(r)+ | r ∈ P, body(r)− ∩X = ∅}. An answer set can also be
seen as a Boolean assignment satisfying all conditions induced by program P (cf. [19]).

A constraint satisfaction problem (CSP) is a triple (V,D,C), where V is a set of
variables with respective domains D, and C is a set of constraints. Each variable v ∈ V
has an associated domain dom(v) ∈ D. Following [10], a constraint c is a pair (S,R)
consisting of a k-ary relation R defined on a vector S ⊆ V k of variables, called the
scope of R. That is, for S = (v1, . . . , vk), we have R ⊆ dom(v1) × · · · × dom(vk).
We use S (c) = S and R(c) = R to access the scope and the relation of c = (S,R). For
an assignment A : V →

⋃
v∈V dom(v) and a constraint (S,R) with S = (v1, . . . , vk),

define A(S) = (A(v1), . . . , A(vk)), and let satC(A) = {c ∈ C | A(S (c)) ∈ R(c)}.

1 Advanced SMT solvers, like [9], address this through handcrafted theory solvers.
2 The semantics of choice rules and integrity constraints is given through program transforma-

tions. For instance, {a} ← is a shorthand for a ← not a′ plus a′ ← not a and similarly← a
for a′ ← a,not a′, for a new atom a′.
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3 Constraint Logic Programs: Syntax and Semantics

For extending logic programs with constraint handling capacities, we consider an ex-
tended alphabet distinguishing regular and constraint atoms, denoted by A and C, re-
spectively. Then, constraint logic programs P are defined as regular logic programs
over an extended alphabetA ∪ C such that head(r) ∈ A for each r ∈ P .

We identify constraint atoms with constraints via a function γ : C → C; further-
more, γ(Y ) = {γ(c) | c ∈ Y } for any Y ⊆ C. The set of constraints comprised in a
constraint logic program P is given by C[P ] = γ(atom(P ) ∩ C). While the associated
variables V [P ] are obtained from the respective constraint scopes, we assume a default
domain D[P ] for each variable (e.g., provided by a declaration within P ).

For a constraint logic program P over A ∪ C and an assignment A : V [P ] → D[P ],
we define the constraint reduct as

PA = {head(r) ← body(r)|A | r ∈ P,

γ(body(r)|C+) ⊆ satC[P ](A), γ(body(r)|C−) ∩ satC[P ](A) = ∅} .

Then, a set X ⊆ A is a constraint answer set of P wrt A, if X is an answer set of PA.
Unlike with (standard) atoms in A, the unique names assumption cannot be applied

to constraint atoms in C, intentionally representing relations, in a meaningful way. For
instance, the same relation between integer variables x and y is described via syntacti-
cally different expressions x < y and ((−y − 1) ≤ −(x + 1)) ∧ (x �= y). To reflect
this, the definitions of the constraint reduct and constraint answer sets treat constraint
literals over C similar to negative body literals, and truth values are determined outside
the actual logic program. Hence, we also do not directly consider constraint atoms as
heads but view a rule r with head(r) ∈ C as standing for ← body(r),not head(r).

Although our semantics is propositional, the atoms inA and C are constructible from
a multi-sorted, first-order signature given by:

– a set PA ∪ PC of predicate symbols such that PA ∩ PC = ∅,
– a set FA ∪ FC of function symbols (including constant symbols),
– a set VA of regular variable symbols, and
– a set VC ⊆ T (FA) of constraint variable symbols, where T (FA) denotes the set of

all ground terms over FA.

As common in ASP, the atoms in A ∪ C are obtained by a grounding process, system-
atically substituting all occurrences of regular variables in VA by (ground) terms from
T (FA). Atoms in A are formed from predicate symbols in PA and terms in T (FA),
while the ones in C are formed from predicate symbols in PC and terms overFC and VC .
This definition tolerates occurrences of similar ground terms in atoms of bothA and C.

Our approach follows the one taken by SMT solvers in letting the ASP solver deal
with the atomic, that is, Boolean structure of the program, while a CP solver addresses
the “sub-atomic level” by dealing with the constraints associated with constraint atoms.
Whenever a constraint atom c ∈ C is assigned to true (T) or false (F) by the ASP solver,
the CP solver enforces the satisfaction or violation of the associated constraint γ(c).

For illustration, let us consider a constraint logic program consisting of the rules
in (2)–(12). This is an authentic program, processable by our solver; its syntax ex-
tends the input language of gringo [20] and thus allows for using integral ranges, as
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in (2), and cardinality rules, as in (4). For simplicity, we omit domain atoms bucket(B),
bucket(C), and time(T ), respectively, in rules (5)–(10):

time(0..tmax ) (2)

bucket(a) bucket(b) (3)

1 {pour(B, T ) : bucket(B)} 1 ← time(T ), T < tmax (4)

1 ≤$ amt(B, T ) ← pour(B, T ), T < tmax (5)

amt(B, T ) ≤$ 3 ← pour(B, T ), T < tmax (6)

amt(B, T ) =$ 0 ← not pour(B, T ), T < tmax (7)

vol(B, T+1) =$ vol(B, T ) + amt(B, T ) ← T < tmax (8)

down(B, T ) ← vol(C, T ) <$ vol(B, T ) (9)

up(B, T ) ← not down(B, T ) (10)

vol(a, 0) =$ 0 vol(b, 0) =$ 1 (11)

← up(a, tmax ) . (12)

This program describes a balance with two buckets, a and b, at each end. According
to (4), we must pour a certain amount of water into exactly one of the buckets at each
time point. The amount of added water may vary between 1 and 3. The balance is down
at one bucket’s side, if the bucket contains more water than the other; otherwise, it is
up. Initially, bucket a is empty while b contains 1 unit. The goal is to find sequences of
pour actions making the side of bucket a be down after tmax time steps (cf. (12)).

The above program has the following signature:

{B,C, T} ⊆ VA
{0, . . . , tmax ,+, a, b, amt, vol} ⊆ FA {0, 1, 3,+} ⊆ FC

{<, time, bucket , pour , up, down} ⊆ PA {=$, <$,≤$} ⊆ PC .

The contents of VC as well as of A and C becomes clear when looking at the ground
program obtained by instantiating all variables in VA with terms from T (FA). To see
this, let us look at the ground instantiation of rule (7) and (8) obtained from substitution
{B �→ b, T �→ 1} along with constant mapping tmax �→ 2, and evaluating 1 < 2 as
well as 1+1 (as done by grounders like gringo):

amt(b, 1) =$ 0 ← not pour(b, 1)
vol(b, 2) =$ vol(b, 1) + amt(b, 1) ← .

These two ground rules encompass three constraint variables and three atoms:

{amt(b, 1), vol(b, 1), vol(b, 2)} ⊆ VC
{pour(b, 1)} ⊆ A {amt(b, 1) =$ 0, vol(b, 2) =$ vol(b, 1) + amt(b, 1)} ⊆ C .

While the actual ASP solver assigns a Boolean value to the constraint atom
vol(b, 2) =$ vol (b, 1) + amt(b, 1), the CP solver deals with the associated con-
straint γ(vol(b, 2) =$ vol (b, 1) + amt(b, 1)), eventually assigning (integral) values to
constraint variables vol (b, 2), vol(b, 1), and amt(b, 1).
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For tmax �→ 2, the above program has eleven constraint answer sets, namely, four
different Boolean assignments associated with varying constraint assignments, summa-
rized by the following Boolean and constraint variable assignments:

up(a, 0) pour(a, 0) amt(a, 0) up(a, 1) pour(a, 1) amt(a, 1) up(a, 2)
T T 1 T T 1, 2, 3 F
T T 2, 3 F T 1, 2, 3 F
T T 3 F F 0 F
T F 0 T T 3 F

While the first two groups of answer sets “pour into bucket a” twice, the last two also
“pour into bucket b”, namely, one unit at either time point 0 or 1.

As a general remark, note that replacing 3 in rule (6) by a significantly larger num-
ber (e.g., 30000) does neither affect the size of the ground program nor the number of
different Boolean assignments. In fact, the size of the ground instantiation of a program
is completely independent of the domain size of its constraint variables. Given the sim-
plicity of the above example, larger domains do also not deteriorate the runtime of a CP
solver like gecode too much, while they would drastically increase runtime and space
required by ASP grounders and solvers.

4 Conflict-Driven Nogood Learning with Constraint Processing

We now develop an algorithm for computing constraint answer sets that extends a pre-
vious algorithm to compute standard answer sets [19] by a CP “oracle.” The basic al-
gorithm for finding standard answer sets is called Conflict-Driven Nogood Learning
(CDNL); it includes conflict-driven learning and backjumping according to the First-
UIP scheme [21,22,7]. That is, whenever a conflict happens, a conflict nogood contain-
ing a Unique Implication Point (UIP) is identified by iteratively resolving a violated
nogood against a second nogood that is a reason for some literal in it. In view of the
fact that CP solver gecode used in our implementation does not provide any reasons
(it only reports whether a conflict has occurred), the extended algorithm works under
the assumption that its CP oracle cannot be queried for reasons. Nonetheless, conflict
resolution requires some reason when resolving out a literal, and the major difficulty
we address is to identify sufficient yet non-trivial reasons outside the CP oracle.

As mentioned before, a standard answer set can be seen as an assignment satisfying
certain conditions induced by a program P . A (Boolean) assignment A over domain
atom(P ) ∪ {body(r) | r ∈ P} is a sequence (σ1, . . . , σm) of (signed) literals σi of
the form Tvi or Fvi, where vi ∈ atom(P ) ∪ {body(r) | r ∈ P} for 1≤ i≤m; Tvi

expresses that vi is true and Fvi that it is false. (We omit the attribute signed for literals
whenever clear from the context.) The complement of a literal σ is denoted by σ, that
is, Tv = Fv and Fv = Tv, and we let var(σ) = v. For A = (σ1, . . . , σi−1, σi, . . . ),
A[σi] = (σ1, . . . , σi−1) is the prefix of A up to σi. We sometimes abuse notation and
identify an assignment with the set of its contained literals. Given this, we access the
true and false variables in A via AT = {v | Tv ∈ A} and AF = {v | Fv ∈ A}. For
a canonical representation of (Boolean) constraints, we make use of nogoods [10,11].
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In our setting, a nogood is a finite set {σ1, . . . , σk} of literals, expressing a constraint
violated by any assignment A containing σ1, . . . , σk. The nogoods derived from the
completion of P are denoted by ΔP , and ΛP contains the ones that are implicitly given
by loop formulas (cf. [19]). An assignment A is a solution for P if AT ∩ AF = ∅,
AT ∪ AF = atom(P ) ∪ {body(r) | r ∈ P}, and δ �⊆ A for all δ ∈ ΔP ∪ ΛP . As
shown in [19], AT ∩ atom(P ) is an answer set of P iff A is a solution for ΔP ∪ ΛP .
We skip further details on ΔP and ΛP , as they are not affected by adding a CP oracle.3

Switching back to constraint logic programs P over A ∪ C, by A|C = {Tc ∈ A |
c ∈ C} ∪ {Fc ∈ A | c ∈ C}, we denote the projection of a Boolean assignment A to
literals over constraint atoms. Furthermore, we associate P with the CSP

CSP [P ] =
(
V [P ]∪atom(P )|C , D,

{(
(S (γ(c)), c), c ≡ R(γ(c))

)
| c ∈ atom(P )|C

})

where D contains dom(v) = D[P ] for every v ∈ V [P ] and dom(c) = {T,F} for
every c ∈ atom(P )|C .4 A constraint relation of the form c ≡ R(γ(c)) is called reified:
it associates the truth value of c ∈ atom(P )|C with the valuation of the corresponding
constraint γ(c). We below slightly abuse notation by identifying the scope S (γ(c)) =
(v1, . . . , vk) of γ(c) with the corresponding set {v1, . . . , vk}.

4.1 Main Algorithm

Our main algorithm for computing a constraint answer set of P is shown in Algorithm 1.
It shares with the one in [19] the assignment A, recorded nogoods ∇, and decision
level dl but adds a flag event (cf. Line 4 in Algorithm 1), whose admissible values are
assertion and decision . The purpose of this flag is to enable propagation, invoked in
Line 6, to mark derived literals such that blocks can be distinguished: all literals in the
same block are derived either by unit propagation on ΔP ∪ ΛP ∪ ∇ or by constraint
propagation on CSP [P ]. In order to retrieve such blocks in conflict analysis, invoked
in Line 9 and 23, each literal σ ∈ A is associated with a reason flag res(σ). A block
of literals derived by unit propagation starts with a literal σdc where res(σdc) = dc,
followed by arbitrarily many literals σup for which res(σup) = up. In turn, a block of
literals derived by constraint propagation is given by consecutive literals σcp such that
res(σcp) = cp.

After propagation in Line 6, we distinguish the cases of a conflict (Line 7–12), a
total assignment (Line 13–27), or a partial assignment (Line 29–33). In the latter case,
a heuristic decision needs to be made, and an undecided literal σd, whose reason is
by decision, is selected (Line 29–30). Furthermore, the decision level is incremented,
and σd is appended to A (Line 31–32). Finally, setting event to decision in Line 33
signals to the following propagation step that the last literal in A is a decision literal.
The case of a conflict is signaled via a status flag returned by propagation, if its value is
either cUP (conflict in unit propagation) or cCP (conflict in constraint propagation). A
conflict above decision level 0, i.e., at least one decision literal is involved in the conflict,

3 The only difference is that atoms of C are not subject to completion in ΔP and loop nogoods
in ΛP . That is, they can be assigned to T without requiring any justification from P .

4 We assume that {T,F}∩D[P ] = ∅. Moreover, we write literal Tc or Fc for c ∈ atom(P )|C
assigned to either T or F, respectively.
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Algorithm 1. CDNL-ASPMCSP
Input : A constraint logic program P .
Output : A constraint answer set of P .

A← ∅ // (Boolean) assignment1

∇ ← ∅ // set of (dynamic) nogoods2

dl ← 0 // decision level3

event ← assertion // propagation mode4

loop5

(A,∇, status)← PROPAGATION(P,∇,A, event )6

if status ∈ {cUP , cCP} then7

if dl = 0 then exit8

(δ, dl)← CONFLICTANALYSIS(P,∇,A, status )9

∇← ∇∪ {δ}10

A← A \ {σ ∈ A | dl(σ) > dl}11

event ← assertion12

else if AT ∪AF = atom(P ) ∪ {body(r) | r ∈ P} then13

(A, status)← LABELING(CSP [P ],A|C )14

if status = conflict then15

dl ← dl + 116

repeat17

dl ← max{dl(σ) | σ ∈ A|C, dl(σ) < dl}18

if dl = 0 then exit19

(A, status)← LABELING(CSP [P ], {σ ∈ A|C | dl(σ) < dl})20

until status �= conflict21

A← A \ {σ ∈ A | dl(σ) > dl}22

(δ, dl)← CONFLICTANALYSIS(P,∇,A, cAS )23

∇← ∇∪ {δ}24

A← A \ {σ ∈ A | dl(σ) > dl}25

event ← assertion26

else return (AT ∩A, {v �→ A(v) | v ∈ V [P ]})27

else28

σd ← SELECT(P,∇,A)29

res(σd)← dc30

dl ← dl + 131

A← A ◦ σd32

event ← decision33

is analyzed in Line 9. It results in a new nogood δ, recorded in Line 10, that implies
the complement of a UIP by unit propagation at a decision level to which backjumping
returns to in Line 11. (Note that dl (σ) provides the decision level at which σ has been
assigned.) Finally, by setting event to assertion in Line 12, we signal the following
propagation step that δ will be asserting.

The treatment of a total assignment is the main difference to the algorithm in [19].
Before also solving CSP [P ], we cannot be sure whether Boolean assignment A be-
longs to a constraint answer set of P . Thus, the CP oracle is queried whether there is a
solution A for CSP [P ] (Line 14), given the truth values assigned to atoms of C in A.
If such a solution A exists, we have found a constraint answer set that is returned in
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Line 27. Note that the additional check is necessary because the CP oracle is not per-
mitted to make choices during constraint propagation, which in general will not be able
to assign all variables in V [P ] or to detect unsatisfiability, given only the truth values
of Boolean variables shared with atom(P ). This is also the reason why, in case of un-
satisfiability detected now, we do not know from which decision level on CSP [P ] had
actually been unsatisfiable wrt the literals over C in A. Hence, the loop in Line 17–21
successively backtracks through A until hitting a decision level dl such that CSP [P ]
can be satisfied, given only the literals over C in A from decision levels smaller than dl .
Then, conflict analysis is invoked in Line 23 with cAS signaling a conflict on a pu-
tative constraint answer set. Conflict-driven learning, backjumping, and the following
assertion (Line 24–26) are similar to a conflict encountered by propagation.

4.2 Propagation Algorithm

The main idea of our propagation procedure, shown in Algorithm 2, is to iterate unit
propagation on ΔP ∪∇, unfounded set detection accompanied by selective recording of
nogoods from ΛP , and finally constraint propagation on CSP [P ]. Before this process
starts, we set a flag cp to true if constraint propagation should be performed initially
(Line 1) or in reaction to a decision literal over C (Line 2). Otherwise, cp is made false
(Line 3), given that A has not been extended by literals over constraint atoms since the
last constraint propagation step.

Conflicts during unit propagation are in Line 6 detected via some nogood from
ΔP ∪ ∇ violated by A, and they are signaled via return value cUP . If there is no con-
flict, we in Line 7 check whether there are nogoods δ that contain a single unassigned
literal, while all other literals belong to A. Then, unit propagation infers the comple-
ment σ of such a last unassigned literal σ in order to avoid the inclusion of δ in A. As
mentioned above, we use a flag res(σ) to later on identify a block of literals derived
by unit propagation. The value of event now determines whether a new block begins
(Line 10–11), which is marked by setting res(σ) to dc, or an existing one is extended
(Line 12). Finally, flag cp is set in Line 13 if σ is over an atom of C. After reaching a
fixpoint of unit propagation without any conflict, unfounded set handling (cf. [19]) is
performed for non-tight [23] programs in Line 17–19. Note that an already identified
nonempty unfounded set needs first to be falsified completely before a new (nonempty)
unfounded set U ⊆ atom(P )|A \ AF is determined in Line 18 (if no such U exists,
UNFOUNDEDSET returns ∅). Finally, atoms in a nonempty unfounded set U will be
falsified by unit propagation after adding a loop nogood from ΛP to ∇ in Line 19.

Finally, constraint propagation (Line 21–32) takes place only if unit propagation can-
not infer any further literal, checked via U = ∅ in Line 20. Furthermore, we are sure
that no new literals over atom(P )|C will be derived if none was recently added to A
(if cp = false), in which case the whole propagation terminates in Line 21. Otherwise,
constraint propagation in Line 22 may result either in a conflict (Line 23), signaled via
return value cCP , or in an assignment A over V [P ] ∪ atom(P )|C , whose possible ad-
ditions to A on the common constraint atoms are provided by B (Line 24). If additions
to A are possible (B = ∅ does not hold in Line 25), we do them in Line 26–30, and the
reason flags of the derived literals are set to cp (Line 28). Afterwards, flag cp is reset
to false in Line 31, so that another constraint propagation step will be performed only
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Algorithm 2. PROPAGATION

Input : A constraint logic program P , a set ∇ of nogoods, a (Boolean) assignment A,
and an event ∈ {decision , assertion}.

Output : A (Boolean) assignment, set of nogoods, and a status ∈ {cUP , cCP ,fix}.
if A = ∅ then cp ← true // do initial constraint propagation1

else if event = decision and var(σ) ∈ C where A = A′ ◦ σ then cp ← true2

else cp ← false3

U ← ∅ // unfounded set4

loop5

if δ ⊆ A for some δ ∈ ΔP ∪ ∇ then return (A,∇, cUP)6

Σ ← {δ ∈ ΔP ∪∇ | δ \A = {σ}, σ /∈ A}7

if Σ �= ∅ then let δ \A = {σ} for some δ ∈ Σ in8

if event = assertion then9

res(σ)← dc10

event ← decision11

else res(σ)← up12

if var(σ) ∈ C then cp ← true // redo constraint propagation13

A← A ◦ σ14

else15

if P is non-tight then16

U ← U \AF17

if U = ∅ then U ← UNFOUNDEDSET(P,A)18

if U �= ∅ then let a ∈ U in∇← ∇∪ {λ(a, U)}19

if U = ∅ then20

if cp = false then return (A,∇, fix)21

(A, status)← CONSTRAINTPROPAGATION(CSP [P ], A|C )22

if status = conflict then return (A,∇, cCP)23

B ← {Tc ∈ A | Tc /∈ A} ∪ {Fc ∈ A | Fc /∈ A}24

if B = ∅ then return (A,∇,fix )25

repeat26

B ← B \ {σ} for some σ ∈ B27

res(σ)← cp28

A← A ◦ σ29

until B = ∅30

cp ← false31

event ← assertion32

after inferring further literals over atom(P )|C by unit propagation. Finally, flag event
is set to assertion , which has the effect that the next literal σ inferred by unit propaga-
tion (if any is inferred) will be marked as the first one of a new block via dc for res(σ).
In view of the fact that constraint propagation may extend A with further literals, we
note that our propagation technique matches “theory propagation” [9] in SMT solvers.

4.3 Conflict Analysis Algorithm

On every conflict beyond decision level 0, our conflict analysis procedure in Algo-
rithm 3 identifies a new nogood according to the First-UIP scheme. While a literal
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Algorithm 3. CONFLICTANALYSIS

Input : A constraint logic program P , a set ∇ of nogoods, a (Boolean) assignment A,
and a status ∈ {cUP , cCP , cAS}.

Output : A derived nogood and a decision level.

if status = cAS then1

δ ← {σ ∈ A|C | dl(σ) = max{dl(σ′) | σ′ ∈ A}}2

repeat3

touched ← δ4

δ ← {σ ∈ A|C | S(γ(var(σ))) ∩⋃σ′∈δ S(γ(var(σ′))) �= ∅}5

until δ = touched6

else if status = cCP then7

let σ ∈ A such that res(σ) = dc and ∀σ′ ∈ A \ (A[σ] ∪ {σ}) : res(σ′) = up in8

δ ← A|C \A[σ]9

repeat10

touched ← δ11

δ ← {σ ∈ A|C | S(γ(var(σ))) ∩⋃σ′∈δ S(γ(var(σ′))) �= ∅}12

until δ = touched13

else14

δ ← ε for some ε ∈ ΔP ∪∇ such that ε ⊆ A15

touched ← ∅16

loop17

let σ ∈ δ such that δ \A[σ] = {σ} in18

k ← max{dl(σ′) | σ′ ∈ δ \ {σ}}19

if k = dl(σ) then20

if res(σ) = cp then21

A← A \ {σ′ ∈ A \A[σ] |
∃σ′′ ∈ (A[σ′] \A[σ]) ∪ {σ′} : res(σ′′) �= cp}22

ε ← {σ′ ∈ δ ∩A | ∀σ′′ ∈ A[σ] \A[σ′] : res(σ′′) = cp} \ touched23

while ε �⊆ touched do24

touched ← touched ∪ ε25

ε ← {σ′′ ∈ A|C | S(γ(var(σ′′))) ∩⋃σ′∈ε S(γ(var(σ′))) �= ∅}26

A← A \ {σ′ ∈ A | ∀σ′′ ∈ A \A[σ′] : res(σ′′) = cp}27

δ ← (δ ∪ ε) ∩A28

else let ε ∈ ΔP ∪∇ such that ε \A[σ] = {σ} in δ ← (δ \ {σ}) ∪ (ε \ {σ})29

else return (δ, k)30

derived by unit propagation has at least one reason in ΔP ∪∇, no such reasons exist for
literals derived by constraint propagation. Since we assume that the CP oracle does also
not provide us with reasons, we can merely try to reconstruct a non-trivial reason (one
that does not include all previously assigned literals over C) from structural properties of
CSP [P ]. Our approach for this is inspired by graph-based backjumping/learning [10]
where, for a variable in question, other variables it shares constraints with are con-
sidered as potential reasons. In fact, we identify a sufficient reason by considering all
literals over atom(P )|C assigned prior to a constraint atom c and connected to c via
their scopes, starting from literals σ with S (γ(var(σ))) ∩ S (γ(c)) �= ∅.
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The sketched strategy is applied when a conflict is due to a putative answer set (Line
1–6), where CSP [P ] is unsatisfiable under the current assignment A. Furthermore,
since the backtracking scheme in Algorithm 1 guarantees satisfiability when taking only
the literals in A at smaller decision levels than the current one, we also know that literals
over C at the maximum decision level are involved in the conflict. Hence, we take them
as initial reason δ for the conflict (Line 2), and iteratively add all literals in A over C
connected to some literal in δ via non-disjoint scopes (Line 3–6). The so obtained δ
provides a sufficient reason for the unsatisfiability of CSP [P ]; it is processed further
using the standard First-UIP scheme (described below). If the conflict at hand has been
encountered during constraint propagation (Line 7–13), we know that the literals over C
in the last block derived by unit propagation (determined in Line 8–9) are involved. In
Line 10–13, we then use the same technique as above to identify a sufficient reason δ for
the conflict. Finally, if the conflict has been detected during unit propagation (Line 15–
16), we can simply determine some violated nogood δ in ΔP ∪∇.

The loop in Line 17–30 eventually exploits the First-UIP scheme, eliminating literals
from δ until it contains exactly one literal σ from the current decision level. If this is not
yet the case (tested in Line 20), some σ in δ needs to be replaced with a reason why it
was included in A. Here, we distinguish the cases that σ has been derived by constraint
propagation (Line 21–28) or by unit propagation (Line 29). In the latter case, we can
simply resolve δ against a known nogood ε in ΔP ∪∇, as done in [19]. Otherwise, de-
termining an appropriate reason is more sophisticated. In fact, in Line 22, we eliminate
all successors of σ in A that do not belong to the same block as σ of literals derived by
constraint propagation. This reflects that the removed literals cannot have contributed
to the CP oracle deriving σ. In Line 23, we then determine in ε all literals (over C) of δ
that belong to the same block as σ in order to explore their constraint interdependencies,
where an optimization consists of ignoring literals in touched , given that they have been
explored already. In Line 24–26, we further extend ε with connected literals over C, like
in Line 3–6 and Line 10–13. Finally, we remove the whole block of σ from A and δ
(Line 27–28), as possible contributions to the conflict have been explored exhaustively,
while the remaining literals of ε are added to δ.

In comparison to [19], it is apparent that the accommodation of a CP oracle makes
the required computations more sophisticated, as extra information is needed to distin-
guish literals derived by constraint propagation from those inferred by unit propaga-
tion. The identification of appropriate reasons is a major bottleneck in a conflict-driven
learning ASP solver, in particular, if the CP oracle does not support it. In such a case,
workarounds are needed to approximate sufficient reasons. Their impact regarding com-
putational cost is empirically investigated in the next section.

5 Experiments

We implemented our approach to constraint answer set solving within the new solver
clingcon (0.1.0;[16]), extending ASP system clingo (2.0.2;[17]) with the generic CP
solver gecode (2.2.0;[18]). Our experiments consider clingcon using four different
approaches to incorporate constraint propagation: (a) lazy reason calculation during
conflict analysis exploiting constraint interdependencies, as shown in Algorithm 3; (b)
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Table 1. Comparing clingo, adsolver, and clingcon

immediate reason recording for literals derived by constraint propagation (discussed
in the context of SMT in [9, Section 5.1]) exploiting constraint interdependencies; (c)
lazy reason calculation during conflict analysis without using constraint interdependen-
cies, rather, taking all assigned literals over C as trivial reason; (d) immediate reason
recording for literals derived by constraint propagation without using constraint interde-
pendencies. We also include adsolver (1.55;[14]), combining an (extended) ASP solver
with a CP solver for difference constraints. Our experiments consider a benchmark suite
stemming from decision support systems for NASA shuttle controllers [2,3]5, which in-
volve mapping logical time steps on real-time. All experiments were run on a 3.4GHz
PC under Linux. We report results in seconds, taking the average of three runs, each
restricted to 600s time and 3GB RAM.6

Table 1 compares clingo, adsolver, and variant (c) of clingcon, which turned out to
be the best choice on the considered benchmarks (see below), on 12 randomly picked
sample instances and varying number of logical time steps. The instances stem from
the instances-monica folder, “3-0/025” means subfolder ins-3-0 instance instance 025.
Average runtimes over all instances are provided in the last row of Table 1, taking
timeouts as maximum time, viz., 600s. Using clingo (on direct ASP encodings), we can
solve the instances for 5 time steps, where the major effort is made in grounding; in fact,
we observed memory exhaustion on all instances for 7 time steps. With adsolver, such
space problems do not occur, but it runs into timeouts (indicated by —) for 11 and 13
time steps. Up to these time steps, clingcon still scales well and is an order of magnitude
faster than adsolver. The last column shows results for the greatest step number, 20, for
which clingcon solved all instances within 600s.

Table 2 compares the four different settings of clingcon with each other. We observed
that exploiting constraint interdependencies in variants (a) and (b) may decrease the

5 http://www.krlab.cs.ttu.edu/Software/Download/rcs
6 Much main memory is needed solely for grounding in clingo.

http://www.krlab.cs.ttu.edu/Software/Download/rcs
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Table 2. Comparing different strategies within clingcon

number of heuristic decisions made by clingcon. As regards runtime, it however turns
out that the additional effort does not pay off. For one, this is because the calculation
of constraint interdependencies is not yet fully optimized in clingcon, and the overhead
could possibly be reduced. This also explains why variant (b), more eagerly record-
ing reasons than (a), is faster: storing more reasons permits more inferences by unit
propagation, and thus, it reduces calculations of constraint interdependencies. How-
ever, variants (c) and (d) using simple-to-compute trivial reasons still seem to be supe-
rior. Interestingly, the lazy approach of (c) to calculate reasons during conflict analysis
performs better than (d) recording reasons during propagation, which is converse to the
relationship between (a) and (b). This shift of behaviors can be explained by the over-
head of reason calculation: while it is expensive with (a) so that recording more reasons
with (b) helps, it is cheap with (c), and exhaustive reason recording in (d) slows down
unit propagation more than additional inferences pay off.

6 Discussion

We introduced a novel approach to integrating CP capacities into modern ASP solvers
based on conflict-driven learning and backjumping. Our semantic approach relies
on a propositional language rather than a multi-sorted, first-order language, as used
in [12,13,14]. Also, we follow the lazy approach of advanced SMT solvers by abstract-
ing from the constraints in a specialized theory [9]. A major difficulty in this endeavor
was the current lack of CP solvers providing an interface supporting conflict-driven
learning. We addressed this problem by developing a new algorithmic framework for
incorporating a CP “oracle” into the approach to conflict-driven ASP solving intro-
duced in [19]. Apart from extending unit propagation through constraint propagation,
the major extension dealt with conflict analysis and the elaboration of reasons for atoms
derived by constraint propagation.
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Our approach differs in several ways from the ones developed in [12,13,14]. As
mentioned above, our semantic approach is propositional and abstracts from the con-
straints in a specialized theory. Unlike this, [12,13,14] start with a multi-sorted, first-
order language leading to a propositional program through grounding. As well, they rely
upon so-called mixed predicates for linking constants with constraint variables. Also,
[12,13,14] use traditional ASP solving algorithms, based on DPLL-style backtracking.
In fact, adsolver’s implementation relies on lparse and smodels. The implementation
described in [13] allows the usage of difference constraints of the form X−Y > k
for variables X,Y and constant k; at most one such constraint is allowed within an
integrity constraint. The underlying CP solver is handcrafted and thus supports incre-
mental solving and backtracking. Unlike this, we use with gecode an off-the-shelf CP
system. Although it is incremental, backtracking and reason generation must be dealt
with externally. In [24], “functional oracles” allow for computing instantiations of so-
called external predicates during grounding. Constraint atoms in our sense can also
be viewed as being external to some extent, given that the associated constraints are
evaluated by a CP engine. Importantly, the non-Boolean domains of variables in such
constraint are still present in the solving phase, while a functional oracle would have
to make the domains explicit for constructing a propositional program under standard
answer set semantics.

We have empirically evaluated adsolver and clingcon on the benchmark suite used
to appraise adsolver’s performance in [13,14]. First of all, we note that both systems
escape the grounding bottleneck faced by traditional ASP systems like clingo. All in
all, however, we observed that clingcon outperforms adsolver by up to two orders of
magnitude. Also, we investigated the effect of different variants of reason generation
on the performance of clingcon. As regards the current prototype, it turned out that
additional efforts into the elaboration of constraint interdependencies do not pay off.
However, this issue deserves further attention and is subject to future research.

Acknowledgments. We are grateful to Michael Gelfond and Yuanlin Zhang for useful
discussions on the subject of this paper. This work was partially funded by DFG under
Grant SCHA 550/8-1 and by the GoFORSYS7 project under Grant 0313924.
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Abstract. We present the first comprehensive approach to integrating cardinal-
ity and weight rules into conflict-driven ASP solving. We begin with a uniform,
constraint-based characterization of answer sets in terms of nogoods. This pro-
vides the semantic underpinnings of our approach in fixing all necessary infer-
ences that must be supported by an appropriate implementation. We then provide
key algorithms detailing the salient features needed for implementing weight con-
straint rules. This involves a sophisticated unfounded set checker as well as an
extended propagation algorithm along with the underlying data structures. We
implemented our techniques within the ASP solver clasp and demonstrate their
effectiveness by an experimental evaluation.

1 Introduction

One of the most appealing features of Answer Set Programming (ASP; [1]) is its rich
declarative modeling language. Among the most popular language constructs are cardi-
nality and weight constraints [2] being particular forms of count and sum aggregates.

Existing techniques for implementing such aggregates fall into two categories. Tradi-
tional backtracking-oriented ASP solvers like smodels [2] use counter-based algorithms
based on [3]. On the other hand, SAT-based ASP solvers like cmodels [4] eliminate
such aggregates by transforming them into normal (or nested) logic programming rules.
While the former approach has proven its versatility, it does not carry over to modern
ASP solving technology based on backjumping and conflict-driven learning [5,6]. Al-
though this is accomplishable by the transformational approach, it fails to scale due to
a significant increase in space [7].

We address this problem and present the first comprehensive approach to integrating
weight constraint rules into conflict-driven ASP solving. To this end, we begin with
a uniform, constraint-based characterization of answer sets in terms of nogoods. This
provides the semantic underpinnings of our approach in fixing all necessary inferences
that must be supported by an appropriate implementation. We then provide key algo-
rithms detailing the salient features needed for implementing weight constraint rules.
This involves a sophisticated unfounded set checker as well as an extended propagation
algorithm along with the underlying data structures. Our techniques are implemented
within the ASP solver clasp [8]. We evaluate the performance of clasp relative to the
two existing approaches and thus demonstrate its effectiveness.
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2 Background

Following [2], we consider weight constraint programs over an alphabet A, consisting
of weight rules of the form

v {a0 = 1}← w {a1 =w1, . . . , am =wm,∼am+1 =wm+1, . . . ,∼an =wn} (1)

where v ∈ {0, 1}, w is a non-negative integer, wi are positive integers for 1≤ i≤n, and
ai are atoms in A for 0≤ i≤ n. Furthermore, we assume aj �= ak for 0< j < k≤m
and m < j < k ≤ n, respectively. The set of atoms occurring in a weight constraint
program Π is denoted by A(Π). A weight literal is of the form a=w or ∼a=w; a and
∼a are regular literals, where ∼ stands for default negation. For a set A of atoms, we
let ∼A = {∼a | a ∈ A}; for a set L of regular literals, let L+ = {a | a ∈ L ∩ A} and
L− = {a | a ∈ L∩∼A}. We define A(l=w) = a for the atom in a weight literal l = a
or l = ∼a, respectively, and W (l=w) = w for its weight. Accordingly, for a set L of
weight literals, A(L) = {A(
) | 
 ∈ L} and Σ[L] =

∑
�∈L W (
).

For a rule r as in (1), let H(r) = v {a0 = 1} be the head of r, B(r) = w {a1 =w1,
. . . , am =wm,∼am+1 =wm+1, . . . ,∼an =wn} the body of r, and lb(B(r)) = w the
lower bound of B(r). Such a body constitutes a weight constraint. We extend the above
projections to weight constraints as follows. GivenW = B(r) for r as in (1), we define
W+ = {a1 = w1, . . . , am = wm}, W− = {∼am+1 = wm+1, . . . ,∼an = wn}, and
A(W) = A(W+ ∪W−). A set X of atoms satisfies W , written X |= W , if

Σ[{p ∈ W+ | A(p) ∈ X} ∪ {n ∈ W− | A(n) /∈ X}] ≥ lb(W) .

That is, a weight constraint is satisfied if the sum of the weights of its satisfied literals
does not fall below the lower bound given by w. Accordingly, rule r is satisfied by X ,
written X |= r, if X |= B(r) implies X |= H(r); and X |= Π if X |= r for all r ∈ Π .

For a rule r as in (1) and a set X of atoms, the reduct of B(r) wrt X is defined as

B(r)X = w′ B(r)+ where w′ = max
{
0 , lb(B(r))−Σ[{n ∈ B(r)− | A(n) /∈ X}]

}
.

Given this, the reduct of a weight constraint program Π wrt X is

ΠX =
{

1 {a0 = 1}← B(r)X | r ∈ Π,A(H(r)) ∩X = {a0}
}

.

Finally, X is an answer set of Π if X |= Π and Y �|= ΠX for all Y ⊂ X .
As detailed in [2], weight constraint rules are expressive enough to (linearly) capture

normal rules, integrity constraints, cardinality rules, and general weight constraint rules
of the form W0 ←W1, . . . ,Wn, where Wi is a general weight constraint for 0≤ i≤n.

3 Inferences from Weight Constraint Programs

This section provides the logical fundament of the computational techniques detailed
in Section 4. To this end, we adapt the nogood-based characterization of answer sets
from [8] to accommodate weight constraints. As a result, we obtain a clear semantic
framework to specify (unit) propagation over weight rules.
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An assignment A over a domain, dom(A), is a sequence (σ1, . . . , σn) of (signed)
literals σi of the form Tvi or Fvi, where vi ∈ dom(A) for 1≤ i≤ n; Tvi expresses
that vi is true and Fvi that it is false. (We omit the attribute signed for literals whenever
clear from the context.) The complement of a literal σ is denoted by σ, that is, Tv = Fv
and Fv = Tv. We sometimes abuse notation and identify an assignment with the set
of its contained literals. Given this, we access the true and false variables in A via
AT = {v | Tv ∈ A} and AF = {v | Fv ∈ A}. For a canonical representation
of (Boolean) constraints, we make use of nogoods [9]. In our setting, a nogood is a
finite set {σ1, . . . , σm} of literals, expressing a constraint violated by any assignment A
containing σ1, . . . , σm. For a set Δ of nogoods, an assignment A is a solution for Δ if
AT∩AF = ∅, AT∪AF = dom(A), and δ �⊆ A for all δ ∈ Δ. Given a weight constraint
program Π , we adopt the convention that dom(A) = A(Π) ∪ {H(r), B(r) | r ∈ Π}.

For a weight constraint W , the following pair of sets of nogoods stipulates corre-
spondence between the truth value of W and the sum of true literals’ weights:

ω(W) =
{
{FW}∪ {TA(p) | p ∈ P} ∪ {FA(n) | n ∈ N} | (2)

P ⊆ W+, N ⊆ W−, Σ[P ∪N ] ≥ lb(W)
}

�(W) =
{
{TW}∪ {FA(p) | p ∈ P} ∪ {TA(n) | n ∈ N} | (3)

P ⊆ W+, N ⊆ W−, Σ[(W+ \ P ) ∪ (W− \N)] < lb(W)
}

.

Observe that the nogoods in ω(W) and �(W), respectively, capture the weakest con-
ditions under which W evaluates to true or false, respectively. In general, the number
of such weakest conditions is exponential in the number of literals in W . Hence, it is
impractical to explicitly construct ω(W) and �(W), and we below develop implemen-
tation techniques for unit propagation that work on W directly.

The correspondence between the truth of a weight constraint and its elements can be
formalized as follows.

Proposition 1. Let W be a weight constraint and A be an assignment such that AT ∩
AF = ∅ and AT ∪AF = A(W). Then, the following statements hold:

1. δ \A = {FW} for some δ ∈ ω(W) iff AT |= W;
2. δ \A = {TW} for some δ ∈ �(W) iff AT �|= W .

Proposition 1 shows that the weight constraints in a weight constraint program are fully
determined by their literals when collecting the nogoods for all heads and bodies:

Ω(Π) =
⋃

r∈Π

(
ω(H(r)) ∪�(H(r)) ∪ ω(B(r)) ∪�(B(r))

)
.

As an answer set X of a program Π is a minimal model of ΠX , we have that a corre-
sponding total assignment A, viz., AT ∩A(Π) = X , must be a model of Π , and each
atom in X needs to be supported by a rule r such that B(r) ∈ AT. When combined
with Ω(Π), the following set of nogoods formalizes these two requirements:

Δ(Π) =
{
{FH(r),TB(r)} | r ∈ Π

}
∪{

{Ta,FB(r) | r ∈ Π,A(H(r)) = {a}} | a ∈ A(Π)
}

.
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Proposition 2. Let Π be a weight constraint program and X ⊆ A(Π). Then, X |= Π
such that, for every a ∈ X , there is some r ∈ Π with A(H(r)) = {a} and X |= B(r)
iff there is a (unique) solution A for Ω(Π) ∪Δ(Π) such that AT ∩A(Π) = X .

The nogoods associated with weight constraint programs allow us to identify propaga-
tion operations along with their reasons. We say that a nogood δ is unit-resulting wrt
an assignment A if δ \ A = {σ} and σ /∈ A. In such a situation, σ is mandatory to
avoid the inclusion of δ in A; in other words, δ implies σ wrt A. The process of iter-
atively adding implied literals to A until violating some nogood or reaching a fixpoint
(without any further implied literals) is called unit propagation. The implementation
within clasp of unit propagation on nogoods in Ω(Π) is detailed in Section 4. Note that
Ω(Π) merely provides a logical specification, while clasp works on weight constraints
directly and determines nogoods in Ω(Π) only if needed as reasons.

In order to also capture minimality of an answer set X as a model of ΠX , for a
program Π and a (partial) assignment A, we define a set U ⊆ A(Π) as unfounded
for Π wrt A if, for every rule r ∈ Π , some of the following conditions holds:

1. A(H(r)) ∩ U = ∅,
2. B(r) ∈ AF, or
3. Σ[{p ∈ B(r)+ | A(p) /∈ AF ∪ U} ∪ {n ∈ B(r)− | A(n) /∈ AT}] < lb(B(r)).

If U is unfounded for Π wrt A, it means that none of its atoms belongs to any answer
set given by a total extension of A. In fact, the first condition expresses that r cannot
support U , while the second condition checks that r is not applicable under A. Finally,
the third condition detects cases where lb(B(r)) cannot be reached via (weight) literals
not false under A, thereby, disregarding positive literals that depend on U .

To describe unfounded set conditions in terms of nogoods, for a set U of atoms, we
define the external sets of literals for U in a weight rule r, extr(U), as:

{
A(P ) ∪ ∼A(N) | P ⊆ B(r)+, N ⊆ B(r)−, A(P ) ∩ U = ∅, Σ[P∪N ] ≥ lb(B(r))

}
.

Note that elements L of extr(U) are exactly the sets of literals such that the third un-
founded set condition does not apply to r as long as (L+ ∩ AF) ∪ (L− ∩ AT) = ∅,
that is, if no literal in L is falsified by A. Furthermore, for U ⊆ A(Π), we call a set
C ⊆

⋃
r∈Π,L∈extr(U) L of literals a cover set for U in Π , if C ∩ L �= ∅ for every

r ∈ Π and L ∈ extr(U). Note that, for any r ∈ Π , a cover set C for U in Π satisfies
Σ[{p ∈ B(r)+ | A(p) /∈ C ∪ U} ∪ {n ∈ B(r)− | ∼A(n) /∈ C}] < lb(B(r)); other-
wise, we would have L = {l | (l = w) ∈ B(r), l /∈ C ∪U} ∈ extr(U) and C ∩L = ∅,
so that C would not be a cover set for U in Π . Letting covΠ(U) denote the set of all
cover sets for U in Π , for some u ∈ U , the loop nogoods, λ(u, U), are:

⋃
Λ⊆{r∈Π|A(H(r))∩U =∅,extr(U) =∅,A(B(r)+)∩U =∅}

{
{Fa | a ∈ C+} ∪ {Tb | b ∈ C−} ∪

{Tu} ∪ {FB(r) | r ∈ Π \ Λ,A(H(r)) ∩ U �= ∅, extr(U) �= ∅} | C ∈ covΛ(U)
}

.

Note that, for all rules r ∈ Π such that A(H(r)) ∩ U �= ∅ and extr(U) �= ∅, nogoods
in λ(u, U) reflect the second (B(r) ∈ AF) and the third (via Λ) unfounded set con-
dition. Given the correspondence of the truth value of B(r) and those of its (weight)
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literals stipulated via Ω(Π), the third condition needs to be checked separately only if
A(B(r)+) ∩ U �= ∅, which explains the choice of Λ. As with ω(W) and �(W) in (2)
and (3), the size of λ(u, U) is exponential in the number of literals in rule bodies, and on
the implementation side, selected loop nogoods are determined on demand (see below).

For illustration, consider a program containing the following weight rules:

0 {a=1}← 2 {c=1, e=1,∼b=1} (4)

1 {a=1}← 3 {b=2,∼c=1,∼d=1} (5)

1{b=1}← 4 {a=3, c=2,∼d=1,∼e=3} . (6)

Taking U = {a, b}, we observe that the body of the rule in (4) does not positively
depend on U , while the external sets for U in (5) are empty. For the rule r in (6), we
get extr(U) =

{
{c,∼e}, {∼d,∼e}, {c,∼d,∼e}

}
and cov{r}(U) =

{
{∼e}, {c,∼d},

{c,∼e}, {∼d,∼e}, {c,∼d,∼e}
}

. Observe that {∼e} and {c,∼d} are the minimal
cover sets for U in {r}, while the other three are subsumed by {∼e}. We thus obtain
the following non-redundant loop nogoods in λ(u, U), where u = a or u = b:

{
Tu,F 2 {c=1, e=1,∼b=1},F 4 {a=3, c=2,∼d=1,∼e=3}

}
{
Tu,F 2 {c=1, e=1,∼b=1},Te

}
{
Tu,F 2 {c=1, e=1,∼b=1},Fc,Td

}
.

For a weight constraint program Π , we can now simply collect all loop nogoods:

Λ(Π) =
⋃

∅⊂U⊆A(Π),u∈U λ(u, U) .

These nogoods ultimately establish a one-to-one correspondence between answer sets
and solutions.

Theorem 1. Let Π be a weight constraint program and X ⊆ A(Π). Then, X is an
answer set of Π iff there is a (unique) solution A for Ω(Π) ∪Δ(Π) ∪Λ(Π) such that
AT ∩A(Π) = X .

The basic clasp algorithm, relying on conflict-driven learning [5,6], has been described
in [8], and its global structure remains unaffected if the nogoods to work with are ex-
changed. However, the identification of unfounded sets, described in [10] for disjunc-
tive offspring claspD, needs to be adapted to weight constraint programs. We thus pro-
vide the logics of a dedicated unfounded set checking algorithm in Algorithm 1; its
implementation in clasp will be described in Section 4. Given a program Π and an
assignment A, we assume that there is a predefined set Do ⊆ A(Π) of atoms to inves-
tigate. Furthermore, each atom a ∈

⋃
r∈Π A(H(r)) has a source pointer [2], denoted

by sp(a), to a weight constraint B(r) such that A(H(r)) = {a} for some r ∈ Π ;
a source pointer sp(a) has an associated set sp(a)# of atoms considered as not be-
longing to any unfounded set U ⊆ A(Π) \AF. Finally, for every a ∈ A(Π), number
c(a) denotes a strongly connected componentC of the positive atom dependency graph
of Π , defined by (A(Π), {(a, b) | r ∈ Π,A(H(r)) = {a}, b ∈ A(B(r)+)}); atoms a
of trivial strongly connected components (without edges) are identified by c(a) = 0.
As pointed out in [2], unfounded set checking can be localized to non-trivial strongly
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Algorithm 1. UNFOUNDEDSET

Input : A weight constraint program Π and an assignment A.
Output : An unfounded set for Π wrt A.

Do ← Do \AF1

Add ← {
a ∈ A(Π) \ (AF ∪Do) | c(a) �= 0, sp(a) ∈ AF

}
2

repeat3

Do ← Do ∪ Add4

foreach a ∈ A(Π) such that sp(a)# ∩ Add �= ∅ do sp(a)# ← sp(a)# \Add5

Add ← {
a ∈ A(Π) \ (AF ∪Do) | c(a) �= 0, Σ[{n ∈ sp(a)− | A(n) /∈ AT} ∪6

{p ∈ sp(a)+ | A(p) /∈ AF, c(A(p)) �= c(a) or A(p) ∈ sp(a)#}] < lb(sp(a))
}

until Add = ∅7

while Do �= ∅ do let a ∈ Do in8

U ← {a}9

repeat10

B ← {
B(r) | r ∈ Π, A(H(r))∩ U �= ∅, Σ[{n ∈ B(r)− | A(n) /∈ AT} ∪11

{p ∈ B(r)+ | A(p) /∈ AF ∪ U}] ≥ lb(B(r)),B(r) /∈ AF
}

if B = ∅ then return U12

else letW ∈ B in13

S ← {s ∈ A(W+) ∩Do | c(s) = c(a)}14

if Σ[{n ∈ W− | A(n) /∈ AT} ∪ {p ∈ W+ | A(p) /∈ AF ∪ S}] ≥ lb(W)15

then
if {s ∈ A(W+) | c(s) = c(a)} �= ∅ then16

W# ← {s ∈ A(W+) | c(s) = c(a), s /∈ AF ∪ S}17

foreach u∈U such that {r∈Π | A(H(r))={u},B(r)=W} �= ∅ do18

sp(u)←W19

U ← U \ {u}20

Do ← Do \ {u}21

else U ← U ∪ S22

until U = ∅23

return ∅24

connected components (SCCs) without sacrificing soundness. In turn, we require as an
invariant that (A(Π), {(a, b) | a ∈ A(Π), c(a) �= 0, b ∈ sp(a)#}) is an acyclic graph
(viz., all of its SCCs must be trivial). We then skip unfounded set checks for a as long
as sp(a) /∈ AF and Σ[{n ∈ sp(a)− | A(n) /∈ AT} ∪ {p ∈ sp(a)+ | A(p) /∈ AF,
c(A(p)) �= c(a) or A(p) ∈ sp(a)#}] ≥ lb(sp(a)), which means that some acyclic
justification exists for a so that it cannot be unfounded.

The main clasp algorithm [8] triggers propagation, which includes unfounded set
checks, after every heuristic decision. We assume that Do is empty when a heuristic
decision is made, and repeated calls to UNFOUNDEDSET may successively fill it with
atoms to check for unfoundedness. As a matter of fact, atoms falsified by unit propaga-
tion can be excluded and are thus eliminated in Line 1 of Algorithm 1. Non-false atoms
whose source pointers have been falsified are scheduled for an unfounded set check in
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Line 2 and 4; note that such atoms a must belong to non-trivial SCCs of the positive
atom dependency graph of Π (c(a) �= 0). The purpose of Line 6 is to iteratively identify
atoms a such that sp(a) /∈ AF, while the existence of an acyclic justification is still not
guaranteed. Iteration is needed because, in Line 5, possible occurrences of atoms that
got into the scope of unfounded checks are removed from sp(a)#, so that a previously
known acyclic justification for a may be put into question.

Having collected all non-false atoms that possibly are unfounded, the loop in Line 8–
23 tries to re-establish acyclic justifications for the atoms in Do, starting from one
atom a at a time and filling a potential unfounded set U . In Line 11, we determine all
non-false weight constraints whose lower bounds can be reached via non-false literals
outside U and that thus may be usable to justify an atom in U . Conversely, if no such
weight constraint exists, we have identified a nonempty unfounded set U and return
it in Line 12. The propagation routine [8] of clasp will then take care of falsifying
all atoms in U before the next call to UNFOUNDEDSET. If U is not (yet) unfounded,
in Line 13, we pick an arbitrary weight constraint W whose bound can be reached
without using U ; and in Line 14, we determine all possibly unfounded atoms in W
from the same (non-trivial) SCC as the initial atom a. The fact that only such atoms
may be used to extend U in Line 22 exhibits the localization of unfounded set checks to
SCCs. However, we only extend U if the addition makes the sum of non-false literals’
weights from outside U drop below the lower bound of W , as checked in Line 15. If
the latter is not the case, we are sure that some atoms in U have an acyclic justification
via W , and such atoms cannot belong to an unfounded set. Furthermore, the atoms in
A(W+) from the SCC of a that are already acyclicly justified can be memorized inW#

(Line 16–17). As long as the justifications or the source pointers, respectively, of these
atoms do not change, this helps to avoid further (unsuccessful) unfounded set checks
(cf. the condition in Line 6) for the atoms in U justified via W in Line 19. Finally, the
acyclicly justified atoms are removed from the unfounded set U to be computed as well
as from the scope Do of unfounded set checks (Line 20–21).

Notably, source pointers enable lazy unfounded set checking, performed only in re-
action to changes in assignment A. Beyond that, a second major benefit is backtrack-
freeness. In fact, source pointers are still valid after backtracking, even though they
might be set differently than in the state when A has previously been extended. How-
ever, only the existence of some acyclic justification for every non-false atom is impor-
tant, while it is unnecessary to pick or reconstruct a specific one. The implementation
of source pointers in clasp, described in the next section, follows this principle and does
not reset source pointers upon backtracking (or backjumping, respectively).

4 Implementation of Weight Constraints in clasp

This section is dedicated to the implementation of weight constraints within the conflict-
driven ASP solver clasp. Note that in clasp normal rules are not handled as described
above. Instead, unit propagation on normal rules is applied by means of the more ef-
ficient, backtrack-free Two-Watched-Literals algorithm [11]. However, the dedicated
treatment of weight constraints enables clasp to handle them natively, without relying
on any transformation (cf. the comparison in Section 5).
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Unit Propagation. The number of nogoods for a weight constraint W is in general
exponential in the size of A(W). Hence, it is impractical to explicitly construct ω(W)
and �(W). Rather, our idea is to take advantage of Proposition 1 and to capture ω(W)
and �(W) by two corresponding linear Pseudo-Boolean (PB) constraints (cf. [12]) that
must be satisfied by any solution. In terms of weight constraint notation, we have

(PBω) w′ {W = w′, ∼A(p) = W (p), A(n) = W (n) | p ∈ W+, n ∈ W−}
(PB	) lb(W) {∼W = lb(W), 
 | 
 ∈ W+ ∪W−}

where w′ = (Σ[W+ ∪W−]− lb(W)) + 1. The first PB constraint (PBω) is obtained
from Proposition 1.1; it is satisfied by an assignment iff all nogoods in ω(W) are satis-
fied. The same holds for (PB	), obtained from Proposition 1.2, and nogoods in �(W).
Note thatW can be assigned to false, while (PBω) and (PB	) must always be satisfied.

For a PB constraint W (a true weight constraint) and an assignment A, let T ,U ,F
denote the literals ofW+∪W− being true, unassigned, and false in A. Then,W is unit
when Σ[W+ ∪W−]−Σ[F ] < lb(W)+W (
) for W (
) = max{W (
′) | 
′ ∈ U} and

 ∈ U . In this case, W implies 
, and the implying assignment is F . Unit propagation
for PB constraints can be implemented using the following procedure:

1. Initialize a counter SW to Σ[W+ ∪W−].
2. Whenever a literal 
 in W+ ∪W− becomes false, set SW to SW −W (
).
3. If SW < lb(W) + max{W (
′) | 
′ ∈ U}, set each literal 
 ∈ U to true whose

weight W (
) satisfies the condition W (
) > SW − lb(W).

The clasp implementation allows for arbitrary Boolean constraints through an abstrac-
tion similar to the one in [13]. Each concrete constraint type must implement functions
for propagation and calculation of reasons. Also, functions for simplifying the con-
straint and for updating the constraint on backtracking can be specified but are not
mandatory. Another important abstraction used in clasp is that of a watch list. For each
literal l, a list is maintained storing constraints that need to be updated when l becomes
true. Each individual entry in a watch list stores (a reference to) a constraint and an in-
teger. A constraint can use the integer, passed as an argument to its propagate function,
to associate data with the watched literal, e.g., the literal’s position in the constraint.

Based on these abstractions, we implemented a constraint type WC, combining unit
propagation on (PBω) and (PB	) for a weight constraint W . Observe that one of the
two PB constraints is obsolete once W is assigned. Also, the literals of (PBω) and
(PB	) differ only in their signs. Their weights are identical, as one can simply set the
weight of W to max{w′, lb(W)} in both constraints without affecting satisfiability.

In the following algorithms, we use symbols true and false to refer to assigned truth
values. In addition to primitive types like int, we use the following abstract data types:

Lit The type of (signed Boolean) literals. A literal instance has three fields: a variable
index, a sign flag, and a watched flag. The variable index stores the underlying
variable of a literal. The sign flag indicates whether the variable is negated. The
operator ¬() returns the complement of a literal l and, given an integer i, the
expression l*i returns ¬l if i < 0 and l otherwise.

Vec<T> A dynamic array of type T. Given a Vec<T> v of size n, the element at
position 1 ≤ i ≤ n is accessed via v[i].
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Algorithm 2. WC::propagate(Lit p, int wd, Solver s)
Input : A watched literal that became true, the data

associated with the watch, and a solver object.
int ac = sign(wd) /* get affected constraint and */1

Lit W = lits[1]*ac /* associated constraint literal */2

if s.isTrue(W) || active+ac == 0 then3

return NO CONFLICT /* constraint is satisfied or other is active */4

int idx = abs(wd) /* index of ¬p */5

C(ac) = C(ac)-weight(idx)6

lits[idx].watched = false /* mark as processed */7

trail.push(wd) /* remember for backtracking */8

while umax ≤ lits.size() && weight(umax) > C(ac) do9

if lits[umax].watched then10

active = ac /* mark constraint as active */11

trail.push(umax*ac)12

Lit x = lits[umax]*ac13

if not s.force(x,this) then14

return CONFLICT15

++umax16

return NO CONFLICT17

The type WC has the following fields:

lits Stores the literals of (PB	) ordered by decreasing weight. The weight of ¬W
is set to max{w′, lb(W)}, and hence lits[1] stores ¬W .1 The literals of (PBω)
are accessed by multiplying the literals in lits with -1.

active An integer denoting whether both (PBω) and (PB	) are relevant (0), only
(PBω) is relevant (-1), or only (PB	) is relevant (1) under the current assignment.

Cω A counter initialized to Σ[lits]− lb(PBω).
C	 A counter initialized to Σ[lits]− lb(PB	).
umax The index of the literal with the greatest weight not yet (known to be) assigned.
trail A queue of assigned literals used for backtracking and computing reasons.

Initially, active is 0, umax is 1, and the trail is empty. Also, we add watches
(¬li, i) and (li,−i) for all literals li in lits and set the watched flags of the literal
instances to true. For example, consider W = 4 {a=3, c= 2,∼d=1,∼e=3}. In this
case, lits is [¬W=6, a=3,¬e=3, c=2,¬d=1]. Moreover, C	 is 11, Cω is 9, and
we add watches (W , 1), (¬a, 2), . . . , (d, 5) and (¬W ,−1), (a,−2), . . . , (¬d,−5).

Algorithm 2 shows the procedure for propagating a weight constraint, triggered when
one of the watched literals becomes true. Staying with the example, assume that a is
set to true. Then, Algorithm 2 is called with p = a and wd = −2. From the sign
of wd, we determine the affected PB constraint, i.e., (PB	) if wd > 0 and (PBω)
if wd < 0. Since W is not yet assigned and active is 0, (PBω) is relevant under

1 We assume that for all literals  in a weight constraint W , we have W () ≤ lb(W). Weights
greater than the lower bound are replaced with the bound in a preprocessing step.
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Algorithm 3. WC::reason(Lit p, Vec<Lit> out)
Input : A literal propagated by this constraint.
Output: A set of true literals implying p.

foreach int d ∈ trail do1

if sign(d) == active then2

int idx = abs(d)3

Lit x = lits[idx]*active4

if not lits[idx].watched then out.push(¬x)5

else if x == p then break6

the current assignment, and so we decrease Cω by 3 (the weight of a) in Line 6. We
then set the watched flag of the literal instance to false to indicate that the respective
counter was updated. Also, we push wd to the trail so that we can suitably increase
Cω again on backtracking and to compute reasons for assignments. Finally, given that
lits[umax]=¬W and weight(umax)=6 =Cω, the while loop in Line 9–16 is
skipped. Next, assume that c becomes false. Hence, wd = 4, and the affected constraint
is (PB	). Since (PB	) is also not yet unit, no new assignments are derived. Finally,
assume that d is assigned to false. From wd = −5, we again extract (PBω) as the
affected PB constraint, and after decreasing Cω to 5, we have weight(umax)>Cω.
That is, the constraint is now unit so that the while loop is entered in Line 9. The loop
considers only literal instances whose watched flags are true, while other literals were
already processed. Since lits[1] has its watched flag set, the condition in Line 10 is
satisfied, (PBω) is marked as active, and W is forced to true. Note that lits[1] is
¬W , but after multiplying with -1 (the active constraint), we correctly getW . As men-
tioned before, lits is ordered by decreasing weight. Thus, after umax is increased, it
points to a (the literal with the next greatest weight to consider), and as 3 ≤ 5 = Cω,
propagation stops. When Algorithm 2 is then called for W and wd = 1, the condition
in Line 3 is true (active is -1 and ac is 1), i.e., nothing needs to be done.

Conflict-Driven Nogood Learning. The CDNL algorithm [8] of clasp applies the com-
mon First-UIP scheme [5,6] for resolving conflicts. The procedure starts with a violated
nogood δ and resolves literals out of δ until only one literal assigned at the current de-
cision level remains. For this to work, each concrete constraint type must implement a
procedure, which, given a literal p implied by a constraint of that type, returns a set of
(true) literals implying p. Algorithm 3 shows this procedure for weight constraints.

The idea is to dynamically extract a nogood from either ω(W) or �(W), depending
on the currently active PB constraint. Reconsider the previous example and assume
that Algorithm 3 is called with p = W . The constraint’s trail is [−2, 4,−5,−1],
and the active constraint (-1) is (PBω). Then, element 4 is skipped because it was
not added by the active PB constraint (cf. Line 2). For the other elements, we check
whether the corresponding literal instances still have their watched flags set. If not, the
element corresponds to a literal that is false in the active constraint and thus belongs
to the implying assignment. Otherwise, the literal is true and was forced by the active
constraint. We also push such implied literals to the trail (cf. Line 12 in Algorithm 2)
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because a weight constraint can become unit multiple times, and in that case only the
false literals assigned earlier are part of the implying assignment. For the example, we
add a and ¬d to out, but not W , because the watched flag of lits[1] is still set.
Furthermore, since p = W , the condition in Line 6 is true, and the extracted nogood is
{FW ,Ta,Fd} ∈ ω(W). Accordingly, the fact that a is true and d is false provides a
reason for W being true.

When a conflict is resolved and one or more decision levels are removed, constraint
types implementing an undo function are notified. The corresponding procedure for
weight constraints pops entries corresponding to unassigned literals from the trail,
again using the sign of a stored integer to determine the affected PB constraint and
the watched flag to distinguish a processed from an implied literal. Counters are only
increased for the former, and the watched flag is then set back to true to indicate that
the corresponding literal contributes again to the respective counter value. If the literal
with the greatest weight, viz., ¬W , is unassigned, the constraint can no longer be unit,
and hence active is set back to 0. Otherwise, active is left unchanged, meaning
that the previously active PB constraint stays in effect. Finally, umax is set back to the
index of the unassigned literal with the greatest weight.

Unfounded Set Checking. A second set of data structures is used for representing
the atoms and rule bodies that need to be considered during unfounded set checking
(and extraction of loop nogoods). This is motivated by the fact that only the non-
trivial SCCs of a program’s positive atom dependency graph are relevant during un-
founded set checks. For a program Π , clasp’s unfounded set checker stores the set
{a ∈ A(Π) | c(a) �= 0} as Atom instances. For an atom a in that set, the correspond-
ing Atom instance contains:

scc the atom’s component number c(a),
ps its set of possible sources {B(r) | r ∈ Π,A(H(r)) = {a}},
pos the set of rule bodies {B(r) | r∈Π, a∈B(r)+

, A(H(r)) = {a′}, c(a′) = c(a)},
source (a pointer to) its current source sp(a) ∈ ps, and
vs a flag indicating whether source is currently valid. Initially, vs is set to false and

a is added to Do (cf. Algorithm 1).

The set of (distinct) weight constraints {B(r) | r ∈ Π,A(H(r)) = {a}, c(a) �= 0}
is represented by instances of type Body. For a weight constraint W in that set, the
corresponding Body instance stores:

scc the body’s component number, c(W), that is set to c(a) if there is some r ∈ Π
such that A(H(r)) = {a}, B(r) = W , and {b ∈ A(W+) | c(b) = c(a) �= 0} �= ∅,
or to 0 otherwise.2

extern its “external” literals {p ∈ W+, n ∈ W− | c(A(p))=0 or c(A(p)) �=c(W)},
intern its “internal” literals {p ∈ W+ | c(A(p)) = c(W) �= 0},
heads its “heads” {a | r ∈ Π,A(H(r)) = {a}, B(r) = W , c(a) �= 0}, and
C a counter initialized to lb(W)−Σ[extern].

2 Note that c(W) is unique. If r1, r2 ∈ Π with B(r1) = B(r2) = W , A(H(r1)) = {a1},
A(H(r2))={a2}, c(a1)=c(b1) �=0, c(a2)=c(b2) �=0 for b1, b2 ∈ W+, then c(a1)=c(a2).
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Algorithm 4. findSource(Atom a)

Set<Atom> T = {a}, U = ∅1

while T\U != ∅ do let Atom a ∈ T\U in2

U = U ∪ {a}3

foreach Body B ∈ a.ps do4

if B ∈ AF then continue5

else if B.scc != a.scc || B.C ≤ 0 || B.update() then6

a.source = B7

Set<Atom> S = {a}8

while S != ∅ do let Atom a ∈ S in9

S = S\{a}, T = T\{a}, U = U\{a},Do = Do\{a}10

foreach Body B ∈ a.pos do B.atomSourced(a,S)11

break12

else B.addUnsourced(T)13

return U14

Again, we use the watched flags of the literal instances in B.extern and B.intern,
for an instance B of Body, to distinguish the literals that currently contribute to the
value of B.C from the rest. That is, initially all literals in B.extern have their watched
flags set to true, while those in B.intern have them set to false. Logically, the literals
in B.intern whose watched flags are true correspond to the atoms in B#. Further-
more, B is a valid source for an atom a in B.heads if B is not false and B.C ≤ 0 or
B.scc �= a.scc. In order to efficiently detect when one of the first two conditions is
violated, we use watches for B as well as literals in B.extern and B.intern. Dur-
ing unit propagation, if a literal l in B.extern or B.intern whose watched flag is
set becomes false, B.C is increased by weight(l), and l’s watched flag is set to false.
In addition, invalidated sources are accumulated. Note that B.C is not updated during
backtracking, but only during unfounded set propagation (see below).

Once unfounded set propagation begins, invalidated sources are used to initialize
Add (cf. Algorithm 1). That is, we add all (non-false) atoms to Add whose sources are
invalid. If a.vs is true for an atom a included in Add , we set it to false and propagate
the removal of the source pointer by notifying all bodies in a.pos. Each affected body
B then checks whether a currently belongs to B#, i.e., whether a in B.intern has
its watched flag set. In this case, the watched flag is set to false, and B.C is increased
accordingly. Since this may invalidate B, the whole process is repeated until no more
atoms are added to Add (and Do).

Following the idea of Algorithm 1, we then try to re-establish acyclic justifications
for the atoms in Do, where Line 9–23 of Algorithm 1 are implemented as in Algo-
rithm 4. The abstract data type Set<Atom> refers to the mathematical concept of a set
(of Atom instances) along with operations on them. The atoms in T are considered in
turn. That is, in each iteration of the loop starting in Line 2, one atom a is selected and
added to a set U. Then, all non-false bodies B in a.ps are inspected. At this point, B is
updated only if it is currently not a valid source for a. That is, if B.scc= a.scc and
B.C > 0, B.update() checks for literals in B.extern and B.intern that are
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neither false nor have their watched flags set. If such a literal is found in B.extern,
its watch flag is set and B.C is decreased by the literal’s weight. For such a literal
in B.intern, the same is done only if the corresponding atom currently has a valid
source pointer. If even after updating B is not a valid source, T is extended with non-
false atoms in B.intern lacking a valid source (Line 13). This is similar to Line 22
of Algorithm 1. In particular, since at this point B.scc is always equal to a.scc,
the same localization to SCCs is achieved. On the other hand, if B is a valid source,
it is used as new source for a, and the new source pointer is propagated by notifying
all bodies in a.pos. Each affected body B that is currently not a valid source checks
whether adding a to B# turns it into a valid source. If so, non-false atoms in B.heads
currently lacking a source are added to S. Thus, source pointer propagation is iterated
until S is finally empty. Furthermore, atoms for which a new source pointer has been set
are removed from T, U, and Do. Note that both during updates and source pointer prop-
agation, B# is extended only if B is not (yet) a valid source. This way, it is guaranteed
that atoms added to B# are acyclicly justified independently of B. Finally, once T \U is
empty, all potential sources were inspected. Any remaining atoms in U are unfounded
wrt the current assignment and are returned in Line 14.

Note that, for bodies of normal rules and weight constraints W with c(W) =0, the
set of “external” literals is not relevant during unfounded set checking, and only the
truth values of such bodies or weight constraints, respectively, are considered. Also, for
bodies of normal rules, no (additional) watches are needed for body literals because unit
propagation already falsifies such a body whenever one of its literals becomes false.

5 Experiments

We implemented our approach within the ASP solver clasp (1.2.0). Our experiments
consider clasp (in its default configuration) using three different ways of treating weight
constraints: (a) standard setting, using the described approach; (b) with (quadratic)
transformation of weight constraints (cf. [7]); (c) with selective transformation of
weight constraints. Variant (c) applies strategy (b) to weight constraints with lower
bound 1 and whenever the number of resulting nogoods is smaller than 16, other-
wise it applies strategy (a). We also consider smodels (2.33 with option -restart3)
and cmodels (3.78) because of their distinct treatment of weight constraints. The full
experiments, additionally including pbmodels, smodelscc, as well as smodels with-
out lookahead, are given at [14] (see also below). We conducted experiments on
a variety of benchmarks taken from the SLparse category of the first ASP system
competition.4 Among them, BlockedNQueens, BoundedSpanningTree, and SocialGo-
lfer comprise choice and cardinality rules, while TravelingSalesperson, WeightedLatin-
Square, and WeightedSpanningTree contain also weight rules. In addition, we consider
a handcrafted benchmark, ExtHamPath, possessing non-trivial unfounded sets due to
recursive cardinality constraints. Each of the benchmark sets consists of five instances.5

3 This variant of smodels performed best on our benchmarks.
4 http://asparagus.cs.uni-potsdam.de/contest
5 All benchmarks are available at [14].
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Table 1. Benchmark results on a 3.4GHz PC under Linux, each run restricted to 600s and 1GB

Table 1 summarizes our results by giving the sum of runtimes obtained on the five
instances in each benchmark set; each instance is measured by taking the average over
three shuffles obtained with ASP tools from TU Helsinki.6 A timeout is accounted for
by the maximum time of 600s, and timeouts are also indicated in parentheses. We men-
tion that pbmodels with minisat+ and satzoo yields 6925.55(32) and 9954.02(36) in
total, respectively; smodels without lookahead takes 13141.25(61).

Looking at BlockedNQueens and TravelingSalesperson, we observe a drastic effect
through a dedicated treatment of cardinality and weight constraints. While instances
of the former contain many relatively large cardinality constraints, instances of the lat-
ter contain a single weight constraint with 600 literals. In clasp (b), this leads to an
extension of programs by over 600000 normal rules and more than 300000 auxiliary
atoms. As a consequence, both transformation-based approaches, clasp (b) and cmod-
els, are outperformed by orders of magnitude by clasp (a/c) and smodels. Unlike this,
BoundedSpanningTree and SocialGolfer include only a few small to midsize cardinal-
ity rules and so produce almost no overhead on transformation-based approaches. The
same applies to WeightedLatinSquare and WeightedSpanningTree as regards the trans-
formation of weight constraints. In contrast to the benchmarks from the SLparse cate-
gory, ExtHamPath contains many small yet recursive cardinality rules inducing a large
positive dependency graph and many non-trivial unfounded sets. We attribute smodels’
poor performance on this benchmark to exhaustive lookahead operations. Given that the
small size of cardinality constraints puts the remaining approaches on equal footing, the
customized unfounded set algorithm in clasp (a) shows a decent performance.

Our experiments demonstrate that the combination of conflict-driven learning with a
dedicated treatment of weight constraints has an edge over either singular approach.
Although the overhead of a dedicated treatment seems disadvantageous on small
weight constraints, the hybrid approach of clasp (c) does not improve on the overall
performance of the fully dedicated one, viz., clasp (a).

6 Discussion

We presented a comprehensive approach to integrating weight (and cardinality) rules
into conflict-driven ASP solving, utilizing a nogood-based characterization of answer

6 http://www.tcs.hut.fi/Software/asptools
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sets to specify (unit) propagation over weight rules. To be precise, we established a
one-to-one correspondence between the answer sets of a weight constraint program
and the solutions for the nogoods induced by the program. In view of the exponential
number of loop nogoods, we developed a dedicated, source-pointer-based unfounded
set checking algorithm that computes loop nogoods only on demand, while aiming at
lazy unfounded set checking and backtrack-freeness. Similarly, we are faced with an
exponential number of nogoods stemming from weight constraints, although language-
extending, quadratic representations exist. Unlike this, we advocate a dedicated
treatment of weight constraints, akin to the one used in smodels yet extended to conflict-
driven learning and backjumping. We developed our computational approach from the
semantic foundations laid in Section 3. Our design is guided by two Pseudo-Boolean
constraints that must be satisfied by any solution. In view of this, Section 4 provided a
rather detailed account of the key features of the weight constraint implementation in
clasp. Our experiments show that our dedicated approach to handling weight constraints
is competitive and does not seem to produce significant overhead on benchmarks with
only small constraints, putatively favoring transformation techniques.
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Abstract. We address how to write programs for distributed computing systems
in which the network topology can change dynamically. Examples of such sys-
tems, which we call ensembles, include programmable sensor networks (where
the network topology can change due to failures in the nodes or links) and modu-
lar robotics systems (whose physical configuration can be rearranged under pro-
gram control). We extend Meld [1], a logic programming language that allows an
ensemble to be viewed as a single computing system. In addition to proving some
key properties of the language, we have also implemented a complete compiler
for Meld. It generates code for TinyOS [14] and for a Claytronics simulator [12].
We have successfully written correct, efficient, and complex programs for ensem-
bles containing over one million nodes.

1 Introduction

Several types of distributed systems have the property that the network topology can
change dynamically. For example, in ad hoc sensor networks [6], it is common for the
network to change due to failures in both the nodes and network links. Modular robotic
systems [21] are another common example. Under software control, a modular robotic
system can rearrange how its modules are connected, which means that its network
topology changes, too. A third example is Claytronics [11], which can be viewed as a
type of modular robotic system containing, potentially, millions of unreliable modules.
We use the term ensemble to refer to any such network-varying distributed system.

How shall we write programs for ensembles? Writing software is hard; writing soft-
ware for distributed systems is even harder. Add to that the possibility of a dynamic
network topology, and it is easy to see that we are faced with a daunting programming
problem. Furthermore, real-world ensembles such as robots and sensor nets pose ad-
ditional challenges such as unreliable communications, imperfect or failing actuators,
and soft and hard compute errors. The complexity of writing code to recover from such
failures is magnified by the number of potential interactions within an ensemble.

Given these considerations, we have been extending the language Meld [1], that al-
lows ensembles to be programmed as a unified whole and then compiled automatically
into fully distributed code. This approach frees programmers from the need to under-
stand how or where in the system the program state is to be maintained or messages sent.
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Furthermore, Meld programs are written in the logic programming paradigm, leading to
clear and concise programs. And as our early experiments have thus far demonstrated,
Meld programs are inherently robust to changes in network topology and provide for
simple fault handling. The initial design of Meld was influenced heavily by Datalog [4]
and, like Datalog, programs in Meld lend themselves to proofs of correctness.

We have made substantial progress on the design, implementation, and application of
Meld [1]. We have adopted X-Y stratification from LDL++ [22] and adapted it to work
in a distributed environment. We have addressed problems with the deletion algorithm
used in prior work, such as P2 [15]. We have achieved what we believe to be a fully
practical language for a range of modular robotics and sensor network applications,
and have completed a thorough definition of the operational semantics, much of which
has been implemented in the Twelf [19] proof system. A complete compiler for Meld
has also been implemented, which generates code for TinyOS [14] and a Claytronics
simulator [12]. Using the compiler and simulator, we have written correct, efficient
programs for ensembles containing over one million nodes.

2 Related Work

The P2 [15] language and SNLog [5] language, which were designed for programming
overlay networks and sensor networks respectively, showed that a logic programming
approach could be used to allow an ensemble to be programmed as a unified whole.
Meld adds, among other things, support for robot actuation and sensing, and is based
on a well-defined formal semantics. In principle, even very large ensembles can be
reasoned about formally.

Several languages have been proposed for sensor nets. Hood [20], Tinydb [16], and
Regiment [18] provide excellent support for applications such as data collection and
aggregation, but do not directly address more dynamic scenarios involving physical re-
configuration. Pleiades [13], also designed for sensor networks, can be used in situations
with dynamic network topologies. It adopts a programming style similar to OpenMP,
for example allowing one to write parallel loops that run across multiple modules. Of
course, this requires the programmer to specify whether a variable is to be stored locally
or propagated about the ensemble as the program runs. Thus, the programmer’s focus
is on the individual modules instead of the whole ensemble.

Origami Shape Language [17] and Proto [3] are effective for programming dis-
tributed systems as a whole. They were originally targeted towards stationary wireless
modules, rather than ensembles. Recently, Proto has been extended to mobile robots [2].
LDP [7] was derived from a method for distributed debugging. Originally designed for
modular robotics, LDP sends condition-matchers around the ensemble. It is based on
a tick model, generating a new set of matchers throughout the ensemble on each tick.
While this works well in highly dynamic systems, it can lead to excessive messaging in
more static environments.

3 Meld: Language and Meaning

A running Meld program consists of a database of facts and a set of production rules
for operating on and generating new facts. A Meld fact is a predicate and a tuple of
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Known Facts Γ ::= · | Γ, f(t̂)
Accumulated Actions Ψ ::= · | Ψ, a(t̂)
Set of Rules Σ ::= · | Σ, R

Actions A ::= a(x̂)

Facts F ::= f(x̂)
Constraints C ::= c(x̂)
Expression E ::= E ∧E | F | ∀F.E | C

Rule R ::= E ⇒ F | E ⇒ A

| agg(F,g, y)⇒ F

Fig. 1. Abstract syntax for Meld programs

values; the predicate denotes a particular relation for which the tuple is an element.
Facts represent the state of the world based on observations and inputs (e.g., sensor
readings, connectivity or topology information, runtime parameters, etc.), or they re-
flect the internal state of the program. Starting from an initial set of axioms, new facts
are derived and added to the database as the program runs. In addition to facts, actions
are also generated. They are syntactically similar to facts but cause side effects that
change the state of the world rather than the derivations of new facts. In a robotics ap-
plication, for example, actions are used to initiate motion or control devices. Meld rules
can use a variety of arithmetic, logical, and set-based expressions, as well as aggrega-
tion operations.

3.1 Structure of a Meld Program

Fig. 1 shows the abstract syntax for states, rules, expressions, and constraints in Meld.
A Meld program consists of a set of production rules. A rule may contain variables,
the scope of which is the entire rule. Each rule has a head that specifies a fact to be
generated and a body of prerequisites to be satisfied. If all prerequisites are satisfied,
then the new fact is added to the database. Each prerequisite expression in the body
of the rule can either match a fact or specify a constraint. Matching is achieved by
finding a consistent substitution for the rule’s variables such that one or more facts in
the database are matched. A constraint is a boolean expression evaluated on facts in
the database; these can use arithmetic, logical, and set-based subexpressions. Finally,
forall statements iterate over all matching facts in the database and ensure that for
each one, a specified expression is satisfied.

Meld rules may also derive actions, rather than facts. Action rules have the same
syntax as rules, but have a different effect. When the body of this rule is proved true,
its head is not inserted into the database. Instead, it causes an action to be carried out in
the physical world. The action, much like a fact, has a predicate and a tuple, which can
be assigned values by the expressions in the rule.

An important concept in Meld is the aggregate. The purpose of an aggregate is to
define a type of predicate that combines the values in a collection of facts. As a sim-
ple example, consider the program shown in Fig. 2, for computing the maximum tem-
perature across all the nodes in an ensemble. The parent rules, (c) and (d), build a
spanning tree across the ensemble, and then the maxTemp rules, (e) and (f), use this
tree to compute the maximum temperature. Considering first the rules for calculating
the maximum, rule (e) sets the base case; rule (f) then propagates the maximum tem-
perature (T) of the subtree rooted at one node (A) to its parent (B). Applied across the
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(a) type logical neighbor parent(module, first module).
(b) type maxTemp(module, max float).

(c) parent(A, A) :- root(A).
(d) parent(A, B) :- neighbor(A, B), parent(B, ).
(e) maxTemp(A, T) :- temperature(A, T).
(f) maxTemp(B, T) :- parent(A, B), maxTemp(A, T).

(g) type globalMax(module, float).
(h) globalMax(A, T) :- maxTemp(A, T), root(A).
(i) globalMax(B, T) :- neighbor(A, B), globalMax(A, T).

(j) type localMax(module).
(k) localMax(A) :- temperature(A, T),

forall neighbor(A, B) temperature(B, T’) T > T’.

Fig. 2. A data aggregation example coded in Meld. A spanning tree is built across the ensemble
and used to aggregate the max temperatures of all nodes to the root. The result is flood broadcast
back to all nodes. Each node also determines whether it is a local maximum.

ensemble, this has the effect of producing the maximum temperature at the root of the
tree. To accomplish this, the rule prototype given in (b) specifies that when maxTemp is
matched, the max function should be used to aggregate all values in the second field for
those cases where the first field matches. In the case of the parent rules, the prototype
given in (a) indicates the use of the first aggregate, limiting each node to a single
parent. The first aggregate keeps only the first value encountered in any match on
the rest of the tuple. The meaning of logical neighbor is explained in §4.1.

In general, aggregates may use arbitrary functions to calculate the aggregate value. In
the abstract syntax, this is given as a function g that calculates the value of the aggregate
given all of the individual values. The result of applying g is then substituted for y in
F . In practice, as described by LDL++[22], the programmer implements this as three
functions: two to create an aggregate and one to retrieve the final value. The first two
functions consist of one to create an aggregate from a single value and a second to
update the value of an existing aggregate given another value. The third function, which
produces the final value of the aggregate, permits the aggregate to keep additional state
necessary to compute the aggregate. For example, an aggregate to compute the average
would keep around the sum of all values and the number of values seen. When the final
value of the aggregate is requested, the current value of sum is divided by the total
number of values seen to produce the requested average.

3.2 Meaning of a Meld Program

The state of an ensemble running a Meld program consists of two parts: derived facts
and derived actions. Γ is the set of facts that have been derived in the current world.
Γ is a list of facts that are known to be true. Initially, Γ is populated with observations
that modules make about the world. Ψ , is the set of actions derived in the current world.
These are much like the derived facts that make up Γ , except that they are intended to
have an effect upon the ensemble rather than be used to derive further facts.



A Language for Large Ensembles of Independently Executing Nodes 269

As a Meld program runs, new facts and actions are derived from existing facts which
are then added to Γ and Ψ . Once one or more actions have been derived, they can be
applied to bring about a change in the physical world. When the actions have been
applied to the world, all derived facts are discarded and replaced with a set of new
observations about the world. The program then restarts execution in the new world.

The evaluation rules for Meld allow for significant uncertainty with respect to ac-
tions and their effects. This underspecification has two purposes. First, it does not make
assumptions about the type of ensemble nor the kinds of actions which can be trig-
gered by a Meld program. Second, it admits the possibility of noisy sensors and faulty
actuators. In the case of modular robotics, for instance, a derived action may request
that a robot move to a particular location. External constraints, however, may prevent
the robot from moving to the desired location. It is, therefore, important that Γ end up
containing the actual position of the robot rather than the location it desired to reach.

This result is achieved by discarding Γ when an action is applied and starting fresh.
By doing this, we erase all history from the system, removing any dependencies on the
intended effect of the action. This interpretation also accounts for the fact that sensors
may fail, be noisy, and even in the best case that observations of the real world that are
known to the ensemble are only a subset of those that are available in the real world.
To account for changes that arise due to external forces we also allow the program to
restart even when Ψ is empty.

This interpretation permits us to give Meld programs a well-defined meaning even
when actuators fail, external forces change the ensemble, or sensors are noisy. In turn,
this imbues Meld with an inherent form of fault tolerance. The greatest limitation of
this approach, however, is in our ability to reason about programs. By allowing the
ensemble to enter a state other than the one intended by the action, we eliminate the
ability to directly reason about what a program does. To circumvent this, it is necessary
to make assumptions about how likely an action is to go awry and in what ways it’s
possible for it to go awry. This is discussed further in §5.2.

4 Distributed Implementation of Meld programs

In this section we describe how Meld programs can be run as forward-chaining logic
programs across an ensemble. We first explain the basic ideas that make this possible.
We then describe the additional techniques of deletion and X-Y stratification that are
required to make this feasible and efficient.

4.1 Basic Distribution/Implementation Approach

Meld is an ensemble programming language; efficient and scalable execution requires
Meld programs to be distributed across the nodes of the ensemble. To facilitate this, we
require the first variable of a fact, called the home variable, to refer to the node where
the fact will be stored. This convention permits the compiler to distribute the facts in
a Meld program to the correct nodes in the ensemble. It also permits the runtime to
introduce facts representing the state of the world at the right nodes, i.e., facts that
result from local observations are available at the corresponding module, e.g., A in the
temperature predicate of Fig. 2 refers to the temperature observed at node A.
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A

BB ...1 n

original rule from the temperature example:
localMax(A) :- temperature(A, T),

forall neighbor(A, B)
[temperature(B, T’),
T > T’].

send rule after splitting:
remote LM(A, B, T’) :- neighbor(B, A),

temperature(B, T’).

local rule after splitting:
localMax(A) :- temperature(A, T),

forall neighbor(A, B)
[ remote LM(A, B, T’),
T > T’].

Fig. 3. Example of splitting a rule into its local and send parts. On the left, the spanning tree for
home nodes is shown. On the right is a rule from the program in Fig. 2 along with the two rules
that result from localizing it.

Just as the data is distributed to nodes in the ensemble, the rules need to be trans-
formed to run on individual modules. Extending a technique from the P2 compiler, the
rules of a program are localized — split into rules with local bodies — such that two
kinds of rules exist. The first of these are local rules in which every fact in the body and
head of the rule share the same home node. The second kind of rule is a send rule for
which the entire body of the rule resides on one module while the head of the rule is
instantiated on another module.

To support communication for the send rules, the compiler requires a means of de-
termining what routes will be available at runtime. This is facilitated by special facts,
called logical neighbor facts, which indicate runtime connectivity between pairs of
modules, and potentially multi-hop routes between them. Among the axioms introduced
by the runtime system are logical neighbor facts called neighbor facts, which indicate
a node’s direct communication partners. Beyond an ability to communicate (assumed
to be symmetric), any meaning attributed to these facts are implementation-dependent
(e.g. for Claytronics, these indicate physically neighboring modules; for sensor net-
works, these indicate motes within wireless range). Additional logical neighbor facts
(e.g. parent) can be derived transitively from existing ones (e.g. two neighbor
facts) with the route automatically generated by concatenation. Symmetry is preserved
automatically by the creation of a new predicate to support the inverted version of the
fact (which contains the reverse route at runtime).

Using the connectivity relations guaranteed by logical neighbor facts, the compiler
is able to localize the rules and ensure that routes will be known for all send rules. The
compiler considers the graph of the home nodes for all facts involved in the a rule, using
the connectivity relations supplied by logical neighbor facts as edges. A spanning tree,
rooted at the home node of the head of the rule, is generated (as shown in Fig. 3).

For each leaf in the tree, the compiler generates a new predicate (e.g. remote LM),
which will reside on the parent node, and creates a send rule for deriving this predicate
based on all of the relevant facts that reside on the leaf node. The new predicate is added
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...

...

maxTemp(a, 50)

neighbor(a,b)root(a) neighbor(b,a)

globalMax(a,50) globalMax(b,50)

...

...

maxTemp(a, 50)

neighbor(a,b)root(a) neighbor(b,a)

globalMax(b,50[,2])

globalMax(a,50[,1])

globalMax(a,50[,3])

(a) (b)

Fig. 4. Partial derivation graph for the program in Fig. 2. The graph on the left shows the deriva-
tion graph for this program using the simple reference counting approach. Note the cycle in the
graph which prevents this approach from working correctly. The graph on the right shows how
the cycle is eliminated through the usage of the derivation counting approach.

as a requirement in the parent, replacing the facts from the leaf node, and the leaf node
is removed from the graph. This is repeated until only the root node remains at which
point we are left with a local rule. Note that this process may add dependencies on
symmetric versions of logical neighbor facts, such as neighbor(B, A) in Fig. 3.

Constraints from the original rule can be placed in the local rule’s body to produce
a correct implementation of the program. A better, more efficient alternative, however,
places the constraints in the send rules. This way, if a constraint does not hold, then a
message is not sent, effectively short-circuiting the original rule’s evaluation. To this
end, constraints are pushed as far down the spanning tree as possible to short-circut the
process as early as possible.

The techniques of assigning home nodes, generating logical neighbors for multi-
hop communications, and automaticly tranforming rules into local and send parts allow
Meld to execute a program on a distributed set of communicating nodes.

4.2 Triggered Derivations

A Meld program, as a bottom-up logic, executes by deriving new facts from existing
facts via application of rules. Efficient execution requires applying rules that are likely
to find new derivations. Meld accomplishes this by ensuring that a new fact is used in
every attempt at finding a derivation. Meld maintains a message queue which contains
all the new facts. As a Meld program executes, a fact is pulled out of the queue. Then,
all the rules that use the fact in their body are selected as candidates rules. For each
candidate, the rest of its rule body is matched against the database and, if the candidate
can be proven, the head of the rule is instantiated and added to the message queue. This
triggered activation of rules by newly derived facts is essential to make Meld efficient.

4.3 Deletion

One of the largest hurdles to efficiently implementing Meld is that whenever the world
changes we must discard all known facts and start the program over from the begin-
ning, as described in §3.2. Fortunately, we can more selectively handle such changes by
borrowing the notion of deletion from P2. P2 was designed for programming network
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(a) Initial facts with ref counts:
neighbor(a,b) (×1)
neighbor(b,a) (×1)

root(a) (×1)
maxTemp(a,50) (×1)

(b) Facts after application of rules with reference counts:
neighbor(a,b) (×1)
neighbor(b,a) (×1)

root(a) (×1)
maxTemp(a,50) (×1)

globalMax(b,50) (×1)
globalMax(a,50) (×2)

(c) Facts after deletion of maxTemp(a,50) using basic reference counts:
neighbor(a,b) (×1)
neighbor(b,a) (×1)

root(a) (×1)
globalMax(a,50) (×1)

globalMax(b,50) (×1)

(d) Facts after application of rules with reference counts with depths:
neighbor(a,b) (×1)
neighbor(b,a) (×1)

root(a) (×1)
globalMax(a,50) (×1@1;×1@3)

globalMax(b,50)(×1@2)

(e) Facts after deletion of maxTemp(a,50) using reference counts with depths:
neighbor(a,b) (×1) neighbor(b,a) (×1) root(a) (×1)

Fig. 5. Example of deletion with reference counts, and derivation counts with depth (counts
and depths shown in parentheses after each fact). Based on the program from Fig. 2, the
globalMax(a,50) fact can be cyclically derived from itself through globalMax(b,50).
Derivation counts that consider depth allow deletions to occur correctly, while simple reference
counts fail. Facts leading up to maxTemp(a,50) are omitted for brevity and clarity.

overlays and uses deletion to correctly handle occasional link failures. Although the
ensembles we consider may experience more frequent changes in their world, these can
be handled effectively with a local, efficient implementation of deletion.

Deletion avoids the problem of simultaneously discarding every fact at every node
and restarting the program by carefully removing only those facts from the system
which can no longer be derived. Deletion works by considering a deleted fact and
matching the rules in exactly the same way as derivations are done to determine which
other facts depend on the deleted one. Each of these facts is then, in turn, deleted.
Strictly following this approach will result in a “conservative” approach that deletes too
many facts, e.g., ones with alternative derivations that do not depend on the previously
deleted facts. This approach would be correct if at each step all possible derivations
were tried again, but produces a problem given our triggered application of rules. In
other words, a derivable fact that is “conservatively” deleted may never be re-derived,
even though an alternate derivation may exist. Therefore, it is necessary to have an exact
solution to deletion in order to use our triggered approach to derivation.

P2 addresses this issue by using reference counting techniques similar to those used
in garbage collection. Instead of keeping track of the number of objects that point to
an object, it keeps track of the number of derivations that can prove a particular fact.
When a fact is deleted, this count is decremented. If the count reaches zero, then the
fact is removed from the database and facts derived from it are recursively deleted.
This approach works for simple cases, but suffers from the cyclic “pointer” problem. In
Meld a fact is often used to derive another instance of itself, leading to cyclic derivation
graphs (shown in Fig. 4(a)). In this case, simple reference counting fails to properly
delete the fact, as illustrated in parts a–c of Fig. 5.
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In the case of Meld, and unlike a reference counting garbage collector, we can resolve
this problem by tracking the depth of each derivation. For facts that can be involved in
a cyclic derivation, we keep a reference count for each existing derivation depth. When
a fact with a simple reference count is deleted, we proceed as before. When a fact
with reference counts for each derivation depth is deleted, we decrement the reference
count for that derivation depth. If the smallest derivation depth is decremented to zero,
then we delete the fact and everything derived from it. If one or more derivations still
exist after this process completes, then we reinstantiate the fact with the new derivation
depth. This process serves to delete any other derivations of the fact that depended upon
the fact and eliminates the possibility of producing an infinite cyclic derivation with no
start. This solution is illustrated in Fig. 4(b) and parts d–e of Fig. 5.

4.4 Concerning Deletion and Actions

Since the message queue contains both newly derived facts and the deletion of facts, an
opportunity for optimization presents itself. If a new fact (F ) and the deletion of that
fact ( �F ) both exist in the message queue, one might think that both F and �F can be
silently removed from the queue as they cancel one another out. This would be true
if all derived rules had no side-effects. However, the possibility of deriving an action
requires caution.

The key difference between facts and actions is that for facts we need to know only
whether it is true or not, while for an action we must act each time it is derived. The
semantics of Meld require that deletions be completed “instantly,” taking priority over
any derivations of new facts. Thus, when F comes before �F , then silently removing
both from the queue is safe since �F undoes the derivation of any fact that might be
derived from F .

If, however, �F comes before F , then canceling them is not safe. In this case, process-
ing them in the order required by the semantics could result in deleting and rederiving
an action, causing it to be correctly performed. Had we silently deleted both F and �F ,
the action would not occur. Thus, this optimization breaks correctness when �F occurs
before F in the queue. As a result, we only cancel out facts in the queue when the fact
occurs before the deletion of the fact.

4.5 X-Y Stratification

A naı̈ve way to implement aggregates (and forall statements which require similar
considerations) is to assume that all values for the predicate are known, and calculate the
aggregate accordingly. If a new value arrives, one can delete the old value, recompute,
and instantiate the new one. At first glance, this appears to be a perfectly valid approach,
though somewhat inefficient due to the additional work to clean up and update aggregate
values that were based on partial data. Unfortunately, however, this is not the case, as
the additional work may be arbitrarily expensive. For example, an aggregate computed
with partial data early in the program may cause the entire program to execute with
the wrong value; an update to the aggregate effectively entails discarding and deleting
all facts produced, and rerunning the program. As this can happen multiple, times, this
is clearly neither efficient nor scalable, particularly for aggregates that depend on other
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aggregates. Finally, there is a potential for incorrect behavior—any actions based on the
wrong aggregate values may be incorrect and cannot be undone.

Rather than relying on deletion, we ensure the correctness and efficiency of aggre-
gates by using X-Y stratification. X-Y stratification, used by LDL++[22], is a method
for ensuring that all of the contributing values are known before calculating the value
of an aggregate. This is done by imposing a global ordering on the processing of facts
to ensure that all possible derivations for the relevant facts have been explored before
applying an aggregate. This guarantees that the correct value of an aggregate will be
calculated and eliminates the need for expensive or impossible corrections via deletion.

Unfortunately, ensuring a global ordering on facts for X-Y Stratification as described
for LDL++ requires global synchronization, an expensive, inefficient process for an
ensemble. We propose a safe relaxation of X-Y Stratification that requires only local
synchronization and leverages an understanding of the communications paths in Meld
programs. Because Meld has a notion of local rules and send rules (described in §4.1),
the compiler can determine whether a fact derivation depends on facts from only the
local module, the neighboring modules, or some module far away in the ensemble.
Aggregation of facts that originate locally can safely proceed once all such facts have
been derived locally. If a fact can come only from a neighboring module, then it is
sufficient to know that all of the neighboring modules have derived all such facts and
will produce no more. In these two cases, only local synchronization between a module
and its immediate neighbors is necessary to ensure stratification.

Therefore, locally on each node, we impose an ordering on fact derivations. This
is precisely the ordering that is provided via X-Y stratification, but it is only enforced
within a node’s neighborhood, i.e., between a single node and its direct neighbors. An
aggregation of facts that can only be derived locally on a single node is handled in the
usual way. Aggregation of facts that might come from a direct neighbor is deferred until
each neighbor has promised not to send any additional facts of that type. Thus, to ensure
that all the facts contributing to an aggregate are derived beforehand, some nodes are
allowed to idle, even though they may be able to produce new facts based on aggregates
of partial sets of facts. For the rare program that aggregates facts which can originate
from an arbitrary module in the ensemble, it may be necessary to synchronize the entire
ensemble. The compiler, therefore, disallows aggregates that depend upon such facts.
To date we have not needed such an aggregate, but intend to investigate this further in
the future.

5 Analysis and Discussion

In this section we discuss some of the advantages and disadvantages of writing pro-
grams in Meld. To facilitate this, we consider two real programs for modular robots that
have been implemented in Meld in addition to the temperature averaging program for
sensor networks shown in Fig. 2. These programs implement a shape change algorithm
as provided by Dewey et. al. [8] (a simplified version is shown in Fig. 6) and a localiza-
tion algorithm provided by Funiak et. al. [10]. The localization algorithm generates a
coordinate system for an ensemble by estimating node positions from local sensor data
and then iteratively refining the estimation.
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// Choose only best state:
// FINAL=0, PATH=1, NEUTRAL=2
type state(module, min int).
type parent(module, first module).
type notChild(module, module).

// generate PATH state next to FINAL
state(B, PATH) :-

neighbor(A, B),
state(A, FINAL),
position(B, Spot),
0 = inTargetShape(Spot).

// propagate PATH/FINAL state
state(B, PATH) :-

neighbor(A, B),
state(A, PATH).

state(B, FINAL) :-
neighbor(A, B),
state(A, FINAL),
position(B, Spot),
1 = inTargetShape(Spot).

// construct deletion tree from FINAL
parent(B, A) :-

neighbor(A, B),
state(B, PATH),
state(A, FINAL).

// extend deletion tree along PATH
parent(B, A) :-

neighbor(A, B),
state(B, PATH),
parent(A, ).

// B is not a child of A
notChild(A, B) :-

neighbor(A, B),
parent(B, C), A != C.

notChild(A, B) :-
neighbor(A, B),
state(B, FINAL).

// action to destroy A, give resources to B
// can apply if A is a leaf in deletion tree
destroy(A, B) :-

state(A, PATH),
neighbor(A, B),
resources(A, DESTROY),
resources(B, DESTROY),
forall neighbor(A, N)

notChild(A, N).

// action to transfer resource from A to B
give(A, B) :-

neighbor(A, B),
resources(A, CREATE),
resources(B, DESTROY),
parent(A, B).

// action to create new module
create(A, Spot) :-

state(A, FINAL),
vacant(A, Spot),
1 = inTargetShape(Spot),
resources(A, CREATE).

Fig. 6. A metamodule-based shape planner based on [8] implemented in Meld. It uses an abstrac-
tion that provides metamodule creation, destruction, and resource transfer as basic operations.
The code ensures the ensemble stays connected by forming trees and deleting only leaf nodes.
This code has been tested in simulations with up to 1 million metamodules, demonstrating the
scalability of the distributed Meld implementation.
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Fig. 7. The max temperature program (in Fig. 2) (a) creates a tree. When (b) a node fails, the Meld
runtime is able to (c) destroy the subtree rooted at the failed node via deletion and (d) reconnect
the tree.

The shape change algorithm is a motion planner for modular robots. Planning for
individual modules is plagued by non-holomonic constraints, however planning can
be done for groups, called metamodules, with only holonomic constraints. Dewey’s
algorithm runs on this metamodule abstraction rather than on individual modules. These
metamodules are not capable of motion themselves. Instead they can be absorbed into
(destroyed by) or extruded out of (created by) an adjacent metamodule. An absorbed
metamodule can be transfered from one metamodule to an adjacent one, allowing it
to travel throughout the ensemble as a resource. The planner makes local decisions on
where to create new metamodules, destroy existing ones, and how to move resources.

5.1 Fault Tolerance

As evident from the discussion in §4, Meld inherently provides a degree of fault toler-
ance to programs. The operational semantics of Meld allows for arbitrary changes in the
physical world; any visible change causes removal of facts that are no longer supported
by the derivation rules. In the event that a module ceases to function (fail-dead), every
fact that is derived from axioms about that module is deleted. New axioms, representing
the new state of the world, are introduced and affected portions of the algorithm are re-
run. This allows the program to run as though the failed module had never been present,
modulo actions that have already occurred. As long as the program has no special de-
pendence on this module, it continues to run and tolerates the failure. Other failures can
also be tolerated as long as the program can proceed without the lost functionality.

For the temperature averaging program, this feature of Meld is very effective. If, for
instance, a module fails then a break occurs in the constructed tree. In a naı̈ve imple-
mentation in another language, this could result in a failure to complete execution or
a failure to include observations from the subtree rooted at the failed node. An imple-
mentation that can tolerate such a fault and reconstruct the tree (assuming the ensemble
is still connected) requires significant additional code, foresight, and effort from the
programmer. The Meld implementation, however, requires nothing additional. When a
module fails, Meld automatically deletes the subtree rooted at the failed node and, if the
network is still connected, adds these modules back into the tree, as shown in Fig. 7.

5.2 Provability

As Meld is a logic programming language, Meld programs are generally well-suited
for use in correctness proofs. In particular, the structure and semantics let one directly
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reason about and apply proof methods to Meld program implementations, rather than
on just the specifications or translated pseudo-code representations. Furthermore, Meld
code is amenable to mechanized analysis via theorem checkers such as Twelf [19].
Twelf is designed for analyzing program logics, but can be used for analyzing logic
program implementations as well.

Proofs of correctness for programs involving actions, however, may need to make
assumptions about what happens when an action is attempted. For the planner example,
a proof of correctness has been carried out with the assumption that actions are always
performed exactly as specified. The planner has been proven to achieve a correct target
shape in finite time while maintaining the connectivity of the ensemble.1 These sim-
plifying assumptions, however, prevent any formal reasoning about fault tolerance, as
discussed in §5.1. Although empirical evidence shows that the Meld implementation is
indeed tolerant to some faults, a good fault model will be required to formally analyze
this aspect of the program.

5.3 Messaging Efficiency

The distributed implementation of Meld is effective at propagating just the information
needed for making forward progress on the program. As a result, a Meld program’s
message complexity can be competitive with hand-crafted messaging written in other
languages. This was demonstrated in [1] for small programs and our enhancements
carry this through for more complex programs that use aggregates. In particular, the use
of aggregates can cause high message complexity. Before adding X-Y stratification,
aggregates that depend on data received from neighbors, such as those used in the itera-
tive refinement steps of the localization algorithm, could cause multiple re-evaluations
of the aggregate as data trickled in. In the worst case, this could cause an avalanche of
facts with intermediate values to be sent throughout the ensemble, each of which is then
deleted and replaced with another partial result. For localization, this resulted in a lack
of progress due to an explosion of messages on all but trivially small examples in the
original implementation of Meld. Our addition of X-Y-stratification to Meld alleviates
this issue: the result of an aggregate is not generated or propagated until all supporting
facts have been seen, limiting both messaging and computation overheads. With X-Y
stratification, localization has been demonstrated on ensembles of up to 10,000 nodes,
with a message complexity logarithmic in the number of modules, exactly as one would
expect from a high level description of the algorithm.

5.4 Memory Efficiency

Although the Meld compiler is not fully optimized for memory, many Meld programs
have small memory footprints and can, therefore, fit into the limited memory available
on sensor network motes and on modular robots. To test this, we measure the maxi-
mum memory used among all the modules in an ensemble executing the example Meld
programs. Both the temperature aggregation program and the shape change algorithm

1 A sketch of the proofs is available in [8] and the full proofs on the Meld source code are
available in [9].
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prove to have very small memory footprints, requiring at most only 488 and 932 bytes
per module, respectively. The aggregation program is sensitive to neighborhood size;
this was assumed to be 6, and the memory required grows by 38 bytes for each ad-
ditional neighbor. Furthermore, these numbers assume 32-bit module identifiers and
temperature readings; 16-bit module identifiers and data would halve the maximum
memory footprint. Both of these programs fit comfortably into the memory available
on a mote or a modular robot.

The localization algorithm, on the other hand, requires tens to hundreds of kilobytes
of memory depending on the ensemble size. This is due to the lack of support within
Meld for dynamic state. Because of this limitation, the localization algorithm is written
such that it produces a new (static) estimated position fact for each step of iterative
refinement. Furthermore, as the old estimates are used in the derivation of the new ones,
these are not discarded and they quickly accumulate. As the ensemble grows, more steps
of iterative refinement are required, generating even larger quantities of outdated facts
that only serve to establish a long chain of derivation from the axioms. Thus, programs
that require dynamic state (such as algorithms involving iterative refinement) can not
currently be efficiently run in Meld.

6 Conclusions and Future Work

Meld has grown into a substantially more effective language for programming ensem-
bles of independently executing nodes. Our early experiments have shown that concise
and efficient programs involving very large numbers of nodes can be developed suc-
cessfully. Both of the example programs in this paper (for calculating max temperature
in a sensor network and for achieving a desired 3D shape in a modular robotics system)
were shown to be concise and efficient in our extended version of Meld.

The Meld programs we have written thus far are, to a surprising degree, tolerant of
node failure. Such robust behavior in the face of individual node failures is, we believe,
an important property, especially as ensemble size grows. We also showed that Meld
programs are amenable to formal analysis and proof. In particular, because of Meld’s
logic-programming roots, programs written in Meld can be used directly in proofs of
correctness, e.g., the shape-change planner has been proven correct in this manner.

We have extended Meld in ways that enable better efficiency on larger ensembles,
and believe that large ensembles are precisely where the advantages of Meld become
most valuable. We described results from simulations of Meld programs running on up
to 1 million nodes. For systems of this scale, we found Meld’s ability to generate all
of the needed messaging and distribution of state across the nodes to be a great aid in
helping the programmer to understand, control, and reason about the program.

Despite all of this progress, Meld is still not an ideal language language for certain
problem domains. For instance, problems requiring the maintenance of dynamic state,
as demonstrated via the iterative gradient decent in the localization algorithm, are not
efficiently executable in Meld. While such state can be encoded in Meld, the lack of
direct support leads to suboptimal behavior. In particular, such encodings can require
unbounded quantities of memory and may fall apart in the event of a fault. This issue of
dynamic state will need to be addressed for Meld to become an ideal language for writ-
ing a more general class of ensemble programs. In the meantime, Meld offers distinct
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advantages for implementing many classes of distributed algorithms for execution on a
variety of ensemble types.
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Abstract. We present a framework that unifies unit testing and run-
time verification (as well as static verification and static debugging).
A key contribution of our overall approach is that we preserve the use
of a unified assertion language for all of these tasks. We first describe a
method for compiling run-time checks for (parts of) assertions which can-
not be verified at compile-time via program transformation. This trans-
formation allows checking preconditions and postconditions, including
conditional postconditions, properties at arbitrary program points, and
certain computational properties. Most importantly, we propose a mini-
mal addition to the assertion language which allows defining unit tests to
be run in order to detect possible violations of the (partial) specifications
expressed by the assertions. We have implemented the framework within
the Ciao/CiaoPP system and effectively applied it to the verification of
ISO Prolog compliance and to the detection of different types of bugs
in the Ciao system source code. Experimental results are presented that
illustrate different trade-offs among program size, running time, or levels
of verbosity of the messages shown to the user.

Keywords: run-time verification, unit testing, static/dynamic debug-
ging, assertions, program verification.

1 Introduction

We present an approach that unifies unit testing with run-time verification
within an overall framework that also comprises static verification and static
debugging [3,7,8,11,12]. This novel framework for program development is aimed
at finding bugs in programs or validating them with respect to (partial) specifi-
cations given in terms of assertions (using the concept of abstractions as over-
/under-approximations of program semantics). A novel and expressive language
of assertions allows describing quite general program properties [2,4,10,13].

The previous work in this context cited above has concentrated mostly on the
static (i.e., compile-time) checking of such assertions as well as on techniques
for reducing at compile-time the number of checks that have to be performed
dynamically (i.e., at run time): any assertions present in the program are verified
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(or falsified) to the extent possible during the compilation phase, since compile-
time checking is always preferable to run-time checking –always incomplete as
a means of verification. However the existence in all practical programs of data
only known at run-time and the rich nature of the properties considered make
a certain degree of run-time checking inevitable –a reasonable price to pay in
return for property expressiveness.

In this paper we concentrate instead on the run-time portion of the model. Our
aim is to a) develop effective implementation techniques for run-time checking that
integrate seamlessly into our combined compile-time/run-time framework and b),
based on this, to also develop well-integrated facilities for unit testing. To this end,
we have first developed an implementation of run-time checks, as an evolution of
the approach sketched in [12], based on transforming the program into a new one
which preserves the semantics of the original program and at the same time checks
during its execution the assertions. Such transformation allows checking precon-
ditions and postconditions, including conditional postconditions, i.e., postcondi-
tions that must hold only when certain preconditions hold. It also allows checking
properties at arbitrary program points (i.e., in literal positions in clause bodies) as
well as certain computational properties (properties that are not specific to a pro-
gram point but rather to whole computations, such as, for example, determinism,
non-failure, or use of resources –steps, time, memory, etc.).

Our transformation also addresses to some extent one of the main drawbacks
of run-time checking (in addition to incompleteness): the overhead introduced
during execution of the program. The proposed transformation reduces run-time
overhead by avoiding meta-interpretation whenever possible and by using special
features of the low-level language when appropriate. Also, run-time checks can
be compiled inline as opposed to calling a library, saving (meta-)call overhead.
Another relevant issue addressed by our transformation is being able to provide
messages to the user which are as informative as possible when a violation of the
safety policy is found, i.e., when a run-time check fails. To this end, the trans-
formation saves appropriate information at source code level in the transformed
file. Depending on the level of code instrumentation selected, increasingly more
accurate information about the assertions is saved, and, thus, presented, offering
different trade-offs between information level and program size.

With respect to testing, we propose a minimal extension to the assertion lan-
guage in order to be able to define unit tests [5]. The resulting language can
express for example the input data for performing such unit tests, the expected
output, the number of times that the unit tests should be repeated, etc. In con-
trast to previous work in this area (e.g., [1], [17], or the unit test framework
recently included in SWI-Prolog [16]), a key contribution of our approach is that
these unit tests blend in with the assertion language and reuse the overall frame-
work. In particular, only test drivers need to be added because the assertions
and their run-time tests act as the checkers for the cases defined by the unit
tests. An advantage of our approach is that the unit test specifications can be
encapsulated in the same module that contains the predicates being tested, or
placed in a separate file containing the tests for the module or modules of the
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application. This contrasts with, e.g., the plunit unit testing of SWI-Prolog,
where unit test specifications are written in the source code of the module or in
a dedicated file with the same name as the module being tested.

Both the run-time check generation and the unit testing approaches proposed
have been implemented within the CiaoPP/Ciao system. We provide some ex-
perimental results which illustrate the implementation trade-offs involved. As
mentioned before, thanks to the CiaoPP/Ciao machinery only the (parts of)
assertions which cannot be verified at compile-time are converted into run-time
checks. Since in our approach unit tests are also assertions, static analysis can
also eliminate parts of or whole unit tests. At the same time, the tight integration
also allows using the unit test drivers to exercise run-time checks corresponding
to those parts of assertions that could not be checked at compile-time, even if
they were not conceived as tests.

2 The Ciao Assertion Language

Assertions are linguistic constructions which allow expressing properties of pro-
grams. They allow talking about preconditions, (conditional) postconditions,
whole executions, program points, etc. For space considerations, we will focus
on a subset of the Ciao assertion language: assertions referring to execution states
and computations (see [13,2] for a detailed description of the full language). Also,
although the assertion language incorporates significant syntactic sugar, we will
use only the (unfortunately more verbose) raw forms. An execution state 〈G θ〉
consists of the current goal G and the current constraint store θ which contains
information on the values of variables. By computation we mean the (sorted)
execution tree containing all possible sequences of reductions between execution
states of a goal from a calling state.

Predicate Assertions: They refer to properties of a particular predicate. In
the schemas below a concrete assertion will include concrete values in place of
Pred, Precond and Postcond. In all schemas Pred is a predicate descriptor, i.e.,
a predicate symbol applied to distinct free variables, and Precond and Postcond
are logic formulas about execution states, that we call state-formulae. An atomic
state-formula is constructed with a state property predicate (e.g., list(X) or X >
3) which expresses properties about (the values) of variables. A state-formula can
also be a conjunction or disjunction of state-formulae. Standard (C)LP syntax
is used, with comma representing conjunction (e.g., “( list(X), list(Y) )”)
and semicolon disjunction (e.g., “( list(X) ; int(X) )” ).
– Describing success states: :- success Pred [: Precond ] => Postcond.

Interpretation: in any call to Pred, if Precond succeeds in the calling state
and the computation of the call succeeds, then Postcond should also succeed
in the success state.
Example 1. The following assertion expresses that for any call to predicate
qsort/2 with the first argument bound to a list of numbers, if the call suc-
ceeds, then the second argument should also be bound to a list of numbers:
:- success qsort(A,B) : list(A,num) => list(B,num).
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If Precond is omitted, the assertion is equivalent to:
:- success Pred : true => Postcond.
and it is interpreted as “for any call to Pred which succeeds, Postcond should
succeed in the success state.”

– Describing admissible calls: :- calls Pred : Precond.
Interpretation: in all calls to Pred, the formula Precond should succeed in
the calling state.

Example 2. The following assertion expresses that in all calls to predicate
qsort/2, the first argument should be bound to a list of numbers:
:- calls qsort(L,R) : list(L,num).

The set of all call assertions is considered closed in the sense that they must
cover all valid calls.

– Describing properties of the computation:
:- comp Pred [: Precond ] + comp-formula.

Interpretation: for any call to Pred, if Precond succeeds in the calling state,
then comp-formula should also succeed for the computation of Pred.

Example 3. :- comp qsort(L,R) :(list(L,num), var(R))+ not_fails.
where the atom not fails is implicitly interpreted as not fails
(qsort(L,R)), i.e., it is as if it executed 〈qsort(L,R) θ〉 and checked that
it does not fail.

In addition, other assertion schemas such as entry and exit assertions can be
used to refer to external calls to the module.1

Program-point assertions: The program points considered are the places in a
program in which a new literal may be added, i.e., before the first literal (if any)
of a clause, between two literals, and after the last literal (if any) of a clause.
Program-point assertions are literals appearing at the corresponding program
point and which are of the form: check(state-formula ). The resulting assertion
should be interpreted as “whenever computation reaches a state originated at
the program point in which the assertion is, state-formula should succeed.”

Status: Independently of the schema used, each assertion has a flag (check,
trust, true, etc.), the assertion “status,” which determines whether the asser-
tion is to be checked, to be trusted, has already been proved correct by analysis,
etc. Again for simplicity we use only the check status herein (which is assumed
by default when no flag is present).

3 Run-Time Checking of Assertions

In this section we first focus on run-time checking of predicate assertions, and
then we comment on the approach for program-point assertions. Our run-time
1 Note that in CiaoPP the pred assertions of exported predicates can be used option-

ally instead of entry and exit assertions to define the module interface.
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step one step two

p :- entry-checks,
exit-preconditions-checks,
ext-comp-checks(p1),
exit-postconditions-checks.

% p renamed to p1 within module

p1 :- calls-checks,
success-preconditions-checks,
comp-checks(call stack(p2, locator)),
success-postconditions-checks.

p2 :- body0. . . .
p2 :- bodyn.

Fig. 1. The transforming procedure definitions scheme for run-time checking

checking system is composed of a set of transformations, to be performed by the
preprocessor, and a library containing a number of primitives that the trans-
formed programs will call.

Applying the transformation that we call transforming procedure definitions,2

the original predicate is rewritten so that it performs the run-time checks itself,
each time it is called, and calls to it are left unchanged. Figure 1 illustrates this
approach for a predicate p. In this transformation the original predicate p is
renamed to p2 and a new definition of p, which performs the run-time checks, is
added by following two steps. “Step one” (first column of the figure) is used to
add any run-time checks corresponding to, e.g., entry and exit assertions before
and after a call to a new predicate p1. The objective of this first transformation
is to separate external calls from internal ones. Then p1 is defined so that it
calls predicate p2 and performs all run-time checks corresponding to each type
of (kernel) predicate-level assertions, i.e., calls, success, or comp in the right
place. In this kind of transformation, calls to p are left unchanged.

Transforming Single Predicate Assertions: We first consider the case
where there is only one predicate assertion for a given predicate. We show
schemes for transforming assertions into run-time checks for each type of (kernel)
predicate assertion, i.e., calls, success, or comp. Other, higher-level assertions
(such as pred assertions) and all additional syntactic sugar (such as modes or
“star notation”) are translated by the compiler into the kernel assertions before
applying the transformation. These schemes express what run-time library pred-
icates are called and where such calls are placed. Figure 2 shows the schemes,
whereas the run-time library predicates are described below.3

checkc(C,F): checks condition C and sets F to true or false depending
on whether it succeeds or not. Defined as: (\+ C -> F = false ; F =
true).

rtcheck(C): checks if condition C succeeds or not. If C fails, an exception is
raised. This can be understood simply as \+\+C (so that bindings/constraints
produced by the condition succeeding are removed –an entailment check).

2 We refer the reader to [9] for a discussion of the trade-offs between the transformation
described and an alternative one where the run-time checks are placed before and
after any call to predicates affected by assertions.

3 The schemas for entry/exit assertions are the same as the corresponding to
calls/success assertions, and thus are not shown in the Figure.
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Assertion: The definition of Pred is transformed into:
:- calls Pred : Cond. Pred :- rtcheck(Cond), Pred’.

Pred’ :- ... .
:- success Pred : Precond => Postcond. Pred :- checkc(Precond,F), Pred’,

checkif(F,Postcond).
Pred’ :- ... .

:- comp Pred + Comp. Pred :- check comp(Comp(G),G,Pred’).
Pred’ :- ... .

:- comp Pred : Precond + Comp. Pred :- checkc(Precond,F),
checkif comp(F,Comp(G),G,Pred’).

Pred’ :- ... .

Fig. 2. Translation schemes for different kinds of predicate assertions

checkif(F,P): postcondition P is checked if F is true. If P fails, an exception
is raised. This can be defined as: (F == true -> rtcheck(P) ; true).

checkif comp(F,Comp(G),G,Pred′): checks a computational property if F
is true, for a given computational property Comp(G), and a predicate Pred’
to be checked. For example, if the property is not fails/1 and the predicate
qsort(A,B), then we call checkif comp(F,not fails(G),G,qsort2(A,B)).
In turn, Pred′ is used to pass the direct call to the predicate (i.e., qsort2(A,B)
in the example). If F is false then Pred′ is called, executing the procedure
directly. If F is true then G is unified with Pred′ and Comp(Pred′) is called.
This relies on the fact that comp properties are written assuming that the
goal to be called is passed as an argument and that they take care of both
running the procedure and checking whether the computational property
holds. Again, if the (in this case, computational) property does not hold, an
exception is raised. The predicate checkif comp/4 can be defined as:
checkif comp(fail, , , Pred): − call(Pred).
checkif comp(true, CompCall, Pred, Pred): − call(CompCall).

check comp(Comp(G),G,Pred′): a specialized version of checkif comp(true,
Comp(G), G, Pred′), where the first parameter is assumed to be true.

call stack(C, L): adds the current source code locator L to the locator stack
S allowing to show the call stack on run-time errors. This can be understood
as: intercept(C, rtc error(S, T), throw(rtc error([L|S], T))).

The previous library predicates are implemented in such a way that they
perform the checks without modifying the program state, introducing side effects,
errors, etc. In other words, if all run-time errors are intercepted, the semantics
of the program must be preserved.

Combining Several Predicate Assertions: We now consider the case where
there are several assertions for a given predicate. Translating several calls or
success assertions is relatively straightforward: the corresponding rtcheck/1
and checkc/2 are placed before the call to Pred’, and any calls to checkif/2
are gathered after it. In the case of calls assertions run-time check exceptions
for the unsatisfied assertions are thrown only if all such checks fail.
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Combining computational properties is somewhat more involved. First we
consider the case of a single comp assertion with several properties, such as, e.g.:

:- comp qsort(A,B) : (list(A, int), var(B)) + ( is_det, not_fails ).

In this case the properties will simply be nested in the Comp field as follows:
prop1(prop2( ... propN (Pred’) ... )) (the Pred’ field stays obviously the same).
For example, for the assertion above the Comp field will be
not fails(is det(qsort2(A,B))). If the comp property has a precondition, it
will be checked only once and then either the Comp field or Pred′ will be called.

The situation is more complex when several comp assertions have to be com-
bined. Consider for example the following two comp assertions:
:- comp qsort(A,B) : (ground(A), var(B)) + is_det.
:- comp qsort(A,B) : (list(A,int), var(B)) + not_fails.

Assuming that F1 and F2 are the flags resulting from checking the conditions
ground(A), var(B) and list(A,int), var(B) respectively, the composition
of the two assertions above would be:
checkif_comp(F2, not_fails(G2), G2,

checkif_comp(F1,is_det(G1), G1, qsort2(A,B))).

After all the transformations explained above have been made, an invocation
of call stack/2 is instrumented in order to save the locator in the stack.

Program-Point Assertions: This is a comparatively simpler task than trans-
forming predicate-level assertions: only one program point needs to be trans-
formed for each assertion; only the rtcheck/1 and check comp/1 primitives are
required; and in the case of computational properties; their definitions are called
directly. Clauses are transformed as follows:

Program-point assertion: The clause is transformed into:
Pred :- ..., check(Cond), ... Pred :- ..., rtcheck(Cond), ...
Pred :- ..., check(CompProp(Goal)), ... Pred :- ..., check comp(CompProp(Goal)), ...

4 Defining Unit Tests

In order to define a unit test we have to express on one hand what to execute
and on the other hand what to check (at run-time). A key characteristic of
our approach is that we use the assertion language described in Section 2 for
expressing what to check. This way, the same properties that can be expressed for
static or run-time checking can also be checked in unit testing. However, we have
added a minimal number of elements to the assertion language for expressing
what to execute. In particular, we have added a new assertion schema:

:- texec Pred [: Precond ] [+Exec-Formula].

which states that we want to execute (as a test) a call to Pred with its variables
instantiated to values that satisfy Precond. Exec-Formula is a conjunction of
properties describing how to drive this execution. In our approach many of the
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properties usable in Precond (e.g., types) can be run as value generators for
these variables, so that input data can be automatically generated for the unit
tests (see the technique described in [6]). However, we have defined some specific
properties, such as random value generators.
Example 4. The assertion:
:- texec append(A, B, C) : (A=[1,2],B=[3],var(C)).
expresses that a call to append/3 with the first and second arguments bound to
[1,2] and [3] respectively and the third one unbound should be executed.

Example 5. We can define a unit test using the assertion in Example 4 together
with the following two assertions expressing what to check at run-time:
:- check success append(A,B,C):(A=[1,2],B=[3],var(C)) => C=[1,2,3].
:- check comp append(A,B,C):(A=[1,2],B=[3],var(C)) + not_fails.

The success assertion states that if a call to append/3 with the first and second
arguments bound to [1,2] and [3] respectively and the third one unbound
terminates with success, then the third argument should be bound to [1,2,3].
The comp assertion says that such a call will not fail. �

The advantage of the integrated framework that we propose is that the execu-
tion expressed by a texec assertion for unit testing can also be used for checking
parts of other assertions that could not have been checked at compile-time and
thus remain as run-time checks. This way, a single set of run-time checking ma-
chinery is used for both run-time checks and unit testing. In addition, static
checking of assertions can safely avoid (possibly parts of) unit test execution.

We now introduce another predicate assertion schema, the test schema, which
can be seen as syntactic sugar for a set of predicate assertions:

:- test Pred [: Precond ] [=> Postcond ] [+ Comp-Exec-Props ].
This assertion is interpreted as the combination of three assertions:4

:- texec Pred [: Precond ] [+ Exec-Props ].
:- check success Pred [: Precond ] [=> Postcond ].
:- check comp Pred [: Precond ] [+Comp-Props ].

For example, the assertion:
:- test append(A,B,C) : (A=[1,2],B=[3],var(C)) => C=[1,2,3]

+ not_fails.

is conceptually equivalent to that in Example 4, plus the two in Example 5.
These are examples of predefined properties that can be used in Exec-Formula:

try sols(N): Expresses an upper bound N on the number of solutions to be
checked. For example, the assertion:
:- texec append(A, B, C): (A=X, B=Y, C=Z) + try_sols(7).

expresses that the call to append(X, Y, Z) should be executed to get at
most the first 7 solutions through backtracking.

times(N): Expresses that the execution should be repeated N times. For exam-
ple, while checking ISO prolog compliance, a test for the retract/1 predicate
failed rarely, so that the test was modified adding the primitive times/1:

4 In fact, a completeness assertion –using “<=”, see [13]– could also be generated.
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:- test retract_test7(A) + times(50).
retract_test7(A) :- retract((foo(A) :- A,call(A))).

in order to repeat the test fifty times to increase the chances of test failure.
exception(Excep): Expresses that a test execution should throw the exception

Excep. For example, consider the predicate p/1 defined as follows:

p(a).
p(b) :- fail.
p(c) :- throw(error(c, "error c")).

The following tests succeed:

:- test p(A) : (A = a) + not_fails.
:- test p(A) : (A = b) + fails.
:- test p(A) : (A = c) + exception(error(c,_)).

The first one states that the call p(a) should not fail, the second one that
p(b) should fail, and the third one that p(c) should raise an exception.

user output(String): Expresses that a predicate should write the string String
into the current output stream. For example, the following test involving the
library predicate display/ 1 succeeds:
:- test display(A) : (A = hello) + user_output("hello").

However, the following tests report an error:
:- test display(A) : (A = hello) + user_output("bye").
:- test display(A) : (A = hello) + user_output("hello!").

Other properties are provided for example to express that a predicate should
write the string Str into the current error stream (user error(Str)), to express
a time-out T for a test execution (resource(ub, time, T)), or to generate
random input data with a given probability distribution (e.g., for floating point
numbers, including special cases like infinite, not-a-number or zero with sign).

5 Generating User-Friendly Messages

Whenever a run-time check fails, an exception is raised. An exception handler
will then catch the exception and report the error. However, with the transfor-
mations presented so far little information can be provided to the user beyond
the precondition or postcondition that is producing the violation, since this is
the only parameter passed to most of the checking predicates. In contrast, dur-
ing compile-time checking, when an assertion is proved not to hold, both the
assertion and the program point where the assertion was violated are reported,
in a format designed so that the graphical program development environment
can locate these points in the source code and highlight them automatically.

In order to also provide precise information when reporting violated asser-
tions when performing run-time checks, we have added an extra argument to
the checking predicates through which certain information is passed, such as
the location of the corresponding assertion(s) and the calling program point in
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the source code. This information can then be passed to the exception handler
when the exception occurs, which prints it in a format that is compatible with
that used when reporting compile-time checking errors. Thus, run-time errors
can also be easily traced back to the sources automatically by the development
environment. The transformation instruments the transformed code to include
the necessary information.

There is a clear trade-off between the size of and the overhead introduced
in the instrumented program and the quality of the messages issued. Different
levels of information may be appropriate for different contexts. The current
implementation of the run-time check transformations offers several optional
levels of instrumentation. For brevity we report on two levels in our experiments,
explained below:

Low: information is saved to report the actual assertion being violated and the
property or properties that caused such violation.

High: in addition, predicates with assertions are further instrumented so that
when a run-time check fails a call stack dump is also shown up to the exact
program point where the violation occurs, showing for each predicate the
literal in its body that caused such violation.5

To illustrate these levels, consider the following assertion and property defini-
tions, in addition to a definition of qsort/2 such as that of Figure 3:
:- success qsort(A,B) => (ground(B),sorted_num_list(B)).

:- prop sorted_num_list/1.

sorted_num_list([]).

sorted_num_list([X]):- num(X).

sorted_num_list([X,Y|Z]):- num(X),num(Y),X=<Y,sorted_num_list([Y|Z]).

which ensures that qsort/2 always returns a ground, sorted list. Assume also
that the program has been written in a buggy way (to be discovered later). With
low instrumentation level the output during execution would be similar to:

?- qsort([1,2],X).

{In /tmp/qsort.pl

ERROR: (lns 8-9) Run-time check failure in assertion for:

qsort:qsort([1,2],[2,1]).

In *success*, unsatisfied property:

sorted_num_list([2,1]).

ERROR: (lns 16-21) Check failed in qsort:qsort/2.}

Two errors are reported for a single run-time check failure: the first error
shows the actual assertion being violated and the second marks the first clause
of the predicate which violates the assertion. However, not enough information
is provided to determine which literal made the erroneous call. For the high
instrumentation level transformation the output is:

?- call_rtc(qsort([3,1,2],B)).

{In /tmp/qsort.pl

5 This can also be done at a lower level, via engine primitives, but we are interested
herein in measuring only the cost of source level transformations.
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:- calls qsort(A,B) : list(A,num).

:- success qsort(A,B) : list(A,num) => list(B,num).

:- comp qsort(A,B) : (list(A,num), var(B)) + not_fails.

qsort([X|L],R) :- partition(L,X,L1,L2), qsort(L2,R2), qsort(L1,R1),

append(R2,[X|R1],R).

qsort([],[]).

:- calls partition(A,B,C,D) : (list(A), num(B)).

:- success partition(A,B,C,D) : (list(A), num(B)) => (list(C), list(D)).

:- comp partition(A,B,C,D) : (list(A), num(B)) + (not_fails,is_det).

partition([],B,[],[]).

partition([E|R],C,[E|Left1],Right):- E < C, !, partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]):- partition(R,C,Left,Right1).

Fig. 3. A quick-sort program with assertions

ERROR: (lns 8-9) Run-time check failure in assertion for:

qsort:qsort([1,2],[2,1]).

In *success*, unsatisfied property:

sorted_num_list([2,1]).

ERROR: (lns 16-21) Check failed in qosrt:qsort/2.

ERROR: (lns 16-21) Check failed when invocation of

qsort:qsort([3,1,2],_1)

called qsort:qsort([1,2],_2) in its body.}

{In /tmp/qsort.pl

ERROR: (lns 8-9) Run-time check failure in assertion for:

qsort:qsort([3,1,2],[3,2,1]).

In *success*, unsatisfied property:

sorted_num_list([3,2,1]).

ERROR: (lns 16-21) Check failed in qsort:qsort/2.}

This example uses the call rtc/1 meta-predicate to intercept the run-time
error, show the related message, and continue execution as if the program where
not being checked. The output makes it easier to locate the error since the call
stack dump provides the list of calling predicates being checked.

Note that the first part of the assertion is not violated, since B is ground. How-
ever, on success the output of qsort/2 is a sorted list but in reverse order, which
gives us a hint: the arguments in the call to append/3 are mistakenly swapped.

6 Experimental Results

We now report on some experimental results from our implementation within the
Ciao/CiaoPP system of the testing and run-time checking approach proposed.
Both have been integrated fully into the development environment allowing easy
execution of tests and run-time checking of assertions present in modules. The sys-
tem is available in the latest Ciao betas (1.13.x) at http://www.ciaohome.org.
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Table 1. Qsort size increment with several configurations of run-time checks

Qsort Low High

Obj Size: Inline Library Inline Library
7467 (bytes) M T M+T M T M+T M T M+T M T M+T

Entry 1.41 1.69 1.77 1.34 1.38 1.44 1.66 1.94 2.02 1.57 1.61 1.68
Exit 1.55 1.82 1.97 1.28 1.33 1.44 1.78 2.06 2.21 1.50 1.55 1.65
Comp* 1.67 1.89 1.93 5.46 5.49 5.54 2.05 2.28 2.31 5.64 5.68 5.73
E/E/C 2.32 2.67 2.88 5.88 5.95 6.11 2.88 3.23 3.44 6.25 6.31 6.48

Calls 1.42 1.64 1.75 1.32 1.33 1.43 1.62 1.84 1.95 1.50 1.51 1.61
Success 1.55 1.77 1.92 1.26 1.29 1.39 1.74 1.97 2.12 1.42 1.44 1.55
Comp 1.63 1.85 1.88 5.38 5.41 5.46 2.01 2.24 2.28 5.57 5.60 5.65
C/S/C 2.10 2.46 2.65 5.66 5.73 5.88 2.63 3.00 3.20 5.98 6.11 6.26

Table 2. Slowdown of qsort/2 with several configurations of run-time checks

Qsort Low High

exec time: Inline Library Inline Library
675 (us) M T M+T M T M+T M T M+T M T M+T

Entry 1.00 1.86 1.87 1.05 1.89 1.90 1.01 1.89 1.87 1.03 1.91 1.91
Exit 1.02 2.73 2.73 1.03 2.76 2.78 1.02 2.74 2.75 1.03 2.79 2.80
Comp* 1.01 1.87 1.87 1.02 1.93 1.92 1.02 1.88 1.90 1.05 1.91 1.92
E/E/C 1.01 3.60 3.60 1.04 3.67 3.68 1.02 3.62 3.65 1.05 3.69 3.69

Calls 3.52 165 162 76 243 321 42 207 205 135 301 382
Success 5.62 329 333 164 515 667 42 380 383 229 595 746
Comp 6.39 166 167 106 272 343 82 254 254 264 447 512
C/S/C 9.77 352 353 194 578 761 91 450 453 379 776 948

The experiments measure both program size and time overhead due to run-time
checks. We first used the qsort program in Figure 3, with an input list of size 600
to run several experiments for different settings:

– Library or inlined run-time checks: we have implemented the transfor-
mation first as described in the previous sections, where the check predicates
are assumed to be in a library (columns labeled Library). Ratios shown are
w.r.t. the execution time of the program with no run-time checks. In addi-
tion, an alternative approach has been implemented in which the definitions
of the run-time check library predicates are actually inlined in the calling
program. This often achieves better performance but sometimes at the cost
of increased code size. Note, however, that code size does not increase in all
cases because such inlining is, in fact, a restricted kind of partial evaluation
that tries to solve as many unifications as possible at compilation time, and
sometimes terms become smaller after such optimization.

– Use of types or modes properties: since checking complex types, such
as in the list(int) check, which needs to traverse lists of integers over and
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over again,6 is more expensive than checking modes (which in our case is
handled through a call to the var/1 ISO Prolog builtin) we have separated
these cases in the experiments. In columns labeled T and M only types or
modes are checked respectively, whereas in columns labeled M+T both types
and modes are checked.

– Low or high instrumentation: as defined in Section 5.
– Using several kinds of assertions: several combinations of different kinds

of assertions have been tested (first column).

Tables 1 and 2 present the overhead, in size and time respectively, for the exper-
iments expressed as a ratio w.r.t. the execution of the program with run-time
checks disabled. Execution was on a MacBook Pro, Intel Core 2 Duo at 2.4Ghz,
2GB of RAM, Ubuntu Linux 8.10 and Ciao version 1.13. The columns in the
tables present combinations of the configurations explained above. The rows
show results for different kinds of assertions. For comp assertions we have that
in Comp* the check is performed only at the entry point of the module, but
not for the internal calls that occur inside.

The results show that the high level of instrumentation is quite expensive
while the overhead implied by the low level is better, specially in the case of
inlining. This confirms our expectations. The high overhead implied by the high
level of instrumentation is due in part to the simplistic way in which this type of
instrumentation is implemented for these experiments. Note also that the values
of the Library column are quite large when compared with the ones of the
Inline column because the inline transformation avoids metacalls.

Table 3 shows experimental results for larger programs, namely, the Ciao,
CiaoPP, and LPdoc systems (including the libraries they use), all of which con-
tain numerous assertions in their code. It shows the size (in kilobytes) of binary
and object files using several instrumentation levels of run-time checks. The bi-
nary refers to the statically-linked executable of the main module of such systems
which corresponds to the command-line executable. The object files include all
the libraries used by such systems. Note that in all cases the sizes of the files
depend on the number of assertions instrumented for run-time checking. Inter-
estingly, the impact of run-time tests on execution time in these much larger
benchmarks is much smaller than for qsort. For example, the overhead intro-
duced in the execution of LPdoc, which includes a good number of assertions in
its source, is in practice below the measurement noise level.

Regarding unit tests, we have added at the time of writing 220 unit tests
to the Ciao/CiaoPP system (in addition to the other traditional system tests
which did not use the unit test framework). These tests have been effective in
detecting some errors introduced in those modules during later code changes.
The execution time of such tests is approximately 90 seconds in the computer
described before. We also have applied the implemented framework to the veri-
fication of ISO Prolog compliance of Ciao. We have coded 976 unit tests for this
6 This overhead can be significantly reduced via multiple specialization [15,14]. How-

ever, that optimization has not been applied in this case in order to measure the
overhead of fully checking the assertion.
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Table 3. Size (in kilobytes) of binary and object files using several instrumentation
levels of run-time checks, for large benchmarks

App Source Metrics Compiled Run-Time Checked (ratio)
Name Size Assertions Binary Low High

Lines Modules Object Inline Library Inline Library

Ciao S 4340 A 3230 B 2970 1.22 1.22 1.25 1.24
L 131392 M 634 O 16312 1.21 1.19 1.24 1.22

CiaoPP S 4831 A 1199 B 13026 1.21 1.21 1.23 1.23
L 152365 M 517 O 14562 1.21 1.20 1.23 1.22

LPdoc S 438 A 153 B 1929 1.10 1.07 1.11 1.07
L 12750 M 21 O 1167 1.13 1.08 1.14 1.09

purpose. These allowed the detection of a large number of previously unknown
limitations and errors: 262 issues related to non-compliance with the standard,
90 related to missing predicates or functionality, and 39 related to bugs in the
functionality. While a large number of these were repetitions of a few individual
errors they have been nevertheless very useful. These tests currently run in under
15 seconds. This time is much less than the other tests for Ciao because they
are concentrated in only one file and the driver does not need to scan all the
source code. Note that in these experiments we are not doing any compile-time
checking, which would in fact eliminate many of the unit tests.

7 Conclusions

We have described our design and implementation of a framework that unifies
unit testing and run-time verification (as well as static verification and static
debugging). A key contribution of our approach is that a unified assertion lan-
guage is used for all of these tasks. We have proposed methods for compiling
run-time checks for (parts of) assertions which cannot be verified at compile-time
via program transformation. We have also proposed a minimal addition to the
assertion language which allows defining unit tests to be run in order to detect
possible violations of the (partial) specifications expressed by the assertions. We
have implemented the framework within the Ciao/CiaoPP system and presented
some experimental results to illustrate different trade-offs among program size,
running time, or levels of verbosity of the messages shown to the user. The ex-
perimental results confirm our expectations regarding these trade-offs: run-time
checks do not pose an excessive amount of overhead when low levels of instru-
mentation are introduced and the calls to library predicates are inlined. The
tests and run-time checks are proving quite useful in practice for detecting bugs.
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Abstract. Due to the development of efficient solvers, declarative prob-
lem solving frameworks based on model generation are becoming more
and more applicable in practice. However, there are almost no tools
to support debugging in these frameworks. For several reasons, current
solvers are not suitable for debugging by tracing. In this paper, we pro-
pose a new solver algorithm for one of these frameworks, namely Model
Expansion, that allows for debugging by tracing. We explain how to
explore the trace of this solver in order to quickly locate a bug and
we compare our debugging method with existing ones for Answer Set
Programming and the Alloy system.

1 Introduction

In many real-life problems, one searches for objects of complex nature such as
plans, schedules and assignments. Such objects are often naturally represented
as finite structures satisfying a theory in a formal logic. This observation led
to the development of several declarative problem solving frameworks based on
the computational task of finite model generation. Prominent examples of such
frameworks are Answer Set Programming (ASP), Propositional Satisfiability
(SAT) and Constraint Programming (CP). Although much progress is being
made in the development of efficient solving algorithms, debugging methods for
these frameworks are still in their infancy.

In this paper, we propose a novel debugging method for model expansion
(MX), a convenient extension of model generation. An MX problem for a logic
L is the problem of finding models of a given L-theory T that expand a given
finite interpretation Iσ for a subset σ of the symbols in T . Every problem in
NP can be cast as an MX problem for (extensions of) classical first-order logic
(FO). E.g., to cast the well-known graph colouring problem as an MX problem
for sorted FO, let T be the following theory:

∀v ∃c Col(v, c). (1)
∀v, c1, c2 (Col(v, c1) ∧Col(v, c2) ⊃ c1 = c2). (2)
∀v1, v2, c1, c2 (Col(v1, c1) ∧Col(v2, c2) ∧ Edge(v1, v2) ⊃ c1 �= c2) (3)

Here, Col(v, c) means that vertex v has colour c, and Edge(v1, v2) means that
there is an edge between vertices v1 and v2. The given structure Iσ specifies the
� Johan Wittocx is research assistant of the Fund for Scientific Research Flanders
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available colours, the vertices of the input graph and the edges of that graph,
i.e., an interpretation for the predicate Edge/2. A solution to this MX problem
is an expansion M of Iσ with an interpretation of the predicate Col such that
M |= T . Such an interpretation describes a proper colouring of the input graph,
using the colours listed in Iσ.

Typically, the theory of an MX problem is more compact and readable than
a program to solve the same problem in a standard programming language.
Nevertheless, bugs are made when writing MX specifications. Such bugs manifest
themselves in two different ways, which require a different sort of debugging
support. A bug causes a solver to either produce an unintended model, or to
omit an intended one. To illustrate the former type of bug, assume that a user
makes a typo in the above graph colouring example and writes the tautology

∀v, c1, c2 (Col(v, c1) ∧ Col(v, c2) ⊃ c1 = c1) (4)

instead of sentence (2). This will cause a solver to produce models where some
nodes have more than one colour. By inspecting these models, a user can deduce
that the bug is located in sentence (4), since this is the constraint that should
express that a vertex has at most one colour. The second type of bug is often
more difficult to locate. E.g., if a user makes the typical mistake of assuming that
variables with different names take different values [19], and therefore writes

∀v, c1, c2 ¬(Col(v, c1) ∧ Col(v, c2)). (5)

instead of (2), then a solver will answer that the problem has no solution. Indeed,
(5) forces that Col(v, c) is false for every v and c, which contradicts (1). Observe
that a user has no clue of where to search for a bug now. In this paper, we focus
on debugging support for the second type of bugs.

The most used approach to debug programs in a standard programming lan-
guage is by analyzing the trace, i.e., the sequence of steps performed while run-
ning the program. Also, debugging by analyzing a trace has proven to be useful
in many declarative programming contexts such as Prolog [18,4], Haskell [16],
ILP [21], constraint programming [14] and deductive databases [10]. This sug-
gests to debug MX theories by analyzing the trace of an MX solver. However,
to make such an approach work, the solver should satisfy the following two
requirements:

1. All reasoning steps should be as simple as possible. At least, they should be
clear for someone who knows the informal semantics of the used logic.

2. All reasoning should be shown on the original theory as provided by the user.
If the solver relies on a (preprocessing) phase where the theory is brought
into some normal form, it should be possible to translate its reasoning back
into reasoning on the original theory. Indeed, reasoning on a transformed
theory is not transparent for a user.

Current MX solvers satisfy neither the first nor the second requirement.
In this paper, we propose a new MX solver algorithm for FO that satisfies the

two requirements above. Hence, it allows for debugging by analyzing the trace.
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The solver is based on formal proof system for MX, which is called the MX-
calculus and is introduced in Section 3. If an MX problem has no solutions, the
trace of the solver corresponds to an MX-calculus proof for the inconsistency. If
the solver finds a model, this model can easily be extracted from the trace. In
Section 4, we present two techniques to further facilitate debugging. The first
one allows a user to describe (part of) expected models that were omitted by
a solver. This yields smaller, and hence more comprehensive, proofs. The other
technique consists of an interactive sessions that guides the user to relevant parts
of a proof. To show that our debugging approach can be used for richer logics
than FO, we extend in Section 5 the MX-calculus to FO(ID), an extension of
FO with inductive definitions. Finally, we compare our debugging approach with
the (very different) approaches proposed for ASP and the Alloy language.

2 Preliminaries

2.1 First-Order Logic

We assume the reader is familiar with first-order logic (FO). We introduce the
conventions and notations used throughout this paper.

A vocabulary Σ consists of variables, predicate and function symbols. Vari-
ables are denoted by lowercase letters, predicate and function symbols by upper-
case letters. Tuples of variables are denoted by x, y, etc. Abusing notation, we
also use x to denote the set of variables occurring in the tuple x. For a formula
ϕ, we often write ϕ[x] to indicate that x are the free variables of ϕ.

The truth values true and false are denoted by t and f. A Σ-interpretation I
consists of a domain D and an assignment of appropriate values to each of the
symbols in Σ, i.e.:

– an element xI ∈ D to every variable x ∈ Σ;
– a relation P I ⊆ Dn to every n-ary predicate symbol P ∈ Σ;
– a function F I : Dn → D to every n-ary function symbol F ∈ Σ.

An interpretation for only the predicate and function symbols of Σ is called a
Σ-structure. For a variable x and an element d ∈ D, I[x/d] is the interpretation
that assigns d to x and corresponds to I on all other symbols. This notation is
extended to tuples of variables and domain elements of the same length. The
truth value I(ϕ) of a formula ϕ in I and the satisfaction relation |= are defined as
usual. The restriction of I to a vocabulary σ ⊆ Σ is denoted by I|σ. If I|σ = J ,
then I is called an expansion of J to Σ.

The result of replacing all free occurrences of a variable x in a formula ϕ[x, y]
by a domain element d is denoted by ϕ[d, y]. The result ϕ[d] of replacing all
free variables x of a formula ϕ[x] by domain elements d is called an instance of
ϕ[x]. If ϕ is an atom, then an instance of ϕ is also called a domain atom. The
truth value of ϕ[d] in an interpretation I is defined by I(ϕ[d]) := I[x/d](ϕ[x]).
If I(ϕ[d]) = t, then we also write I |= ϕ[d].
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2.2 Model Expansion

We now formally define model expansion for FO.

Definition 1. Let T be an FO theory over a vocabulary Σ, σ a subvocabulary of
Σ and Iσ a finite σ-structure. The model expansion (MX(FO)) search problem
for input 〈Σ, T, σ, Iσ〉 is the problem of finding models M of T that expand Iσ.
The corresponding MX(FO) decision problem is the problem of deciding whether
such a model exists.

The MX(FO) decision problem is in NP. As shown in [15], it follows from Fagin’s
theorem on ∃SO that MX(FO) captures NP: for each NP decision problem P
over finite σ-structures, there exists a vocabulary Σ ⊇ σ and a theory T over Σ
such that for any σ-structure Iσ, the answer to P is the answer to the MX(FO)
decision problem with input 〈Σ, T, σ, Iσ〉. Moreover, it is often the case that T
is a natural modelling of the problem P .

2.3 Three-Valued Interpretations

Besides the normal (two-valued) interpretations, we will also use three-valued
ones. We denote the truth value unknown by u. A three-valued Σ-interpretation
Ĩ consists of a domain D and an assignment of

– an element xĨ ∈ D to every variable x ∈ Σ;
– a function P Ĩ : Dn → {t, f,u} to every n-ary predicate symbol P ∈ Σ;
– a function F Ĩ : Dn → (P(D) \ ∅) to every n-ary function symbol P ∈ Σ.

If for every tuple d of domain elements, predicate P and function F , it holds
that P Ĩ(d) �= u and F Ĩ(d) is a singleton, then Ĩ is two-valued: it corresponds to
the interpretation I defined by d ∈ P I iff P Ĩ = t and F I(d) = d iff F Ĩ = {d}.

The precision order <p on the set of truth values is induced by u <p f and
u <p t. This order is extended to three-valued Σ-structures: if Ĩ and J̃ have
the same domain D, then we define Ĩ ≤p J̃ iff P Ĩ(d) ≤p P J̃ and F Ĩ(d) ⊇
F J̃(d) for every d, P and F . Observe that two-valued structures are maximally
precise three-valued structures. On the other hand, the least precise three-valued
structure assigns P Ĩ(d) = u and F Ĩ(d) = D for every d, P and F .

Using the above concepts, we define a generalization of the MX problem.

Definition 2. Let Σ be a vocabulary, T an FO theory over Σ and Ĩ a three-
valued Σ-structure with finite domain D. A two-valued Σ-structure M is a so-
lution to the MX(FO) search problem with input 〈T, Ĩ〉 if M |= T and M ≥p Ĩ.

The MX(FO) problem with input 〈Σ, T, σ, Iσ〉 as defined in definition 1 corre-
sponds to the MX(FO) problem with input 〈T, Ĩ〉 where Ĩ|σ = Iσ and Ĩ|Σ\σ is
the least precise (Σ\σ)-structure. In the rest of this paper, we use the generalized
definition. We denote the set of solutions of the MX search problem with input
〈T, Ĩ〉 by MXT (Ĩ). If MXT (Ĩ) = ∅, we say that the MX problem is unsatisfiable.
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3 The Model Expansion Calculus

As mentioned in the introduction, the debugging method we propose in this
paper relies on an MX-solver that outputs a proof of inconsistency in case its
input is an unsatisfiable MX problem. In this section, we present a formal proof
system, called the MX-calculus to represent such a proof.

3.1 MX-Trees

For the rest of this paper, fix a theory T and a finite three-valued structure Ĩ.
Proofs for 〈T, Ĩ〉 in the MX-calculus are built using rules of the form

I1, . . . , In

J1 | . . . | Jm
(6)

where I1, . . . , In,J1, . . . ,Jm are signed instances : pairs of an instance ϕ[d] and a
positive (⊕) or negative (!) sign. Signed instances are denoted by ϕ[d]

⊕
or ϕ[d]

�
.

We call I1, . . . , In the premises of the rule, and J1, . . . ,Jm its consequences.
Intuitively, the rule means that if all its positive, respectively negative, premises
are true, respectively false, then at least one of its consequences is positive and
true or negative and false. A rule is sound if its intuitive meaning is indeed a
sound reasoning. More precisely:

Definition 3. If I is the signed instance ϕ[d]
⊕
, respectively ϕ[d]

�
, then denote

by S(I) the instance ϕ[d], respectively ¬ϕ[d]. A rule of the form (6) is sound
with respect to 〈T, Ĩ〉 if for every M ∈ MXT (Ĩ) such that M |=

∧
1≤i≤n S(Ii),

it holds that M |=
∨

1≤i≤m S(Ji).

We distinguish between three types of rules in the MX-calculus: initialization,
propagation and cut rules. All of them are sound with respect to 〈T, Ĩ〉.

Initialization Rules. The following are the seven initialization rules for 〈T, Ĩ〉.
None of them has premises.

(I+↓)

ϕ⊕

(I+↑)

d = d⊕

(I-↑)

d = d′
�

(I+↑)

P (d)
⊕

(I-↑)

Q(d)
�

(I+↑)

F (d) = d
⊕

(I-↑)

G(d) = d
�

Here, ϕ is a sentence of T , d and d′ two different domain elements, P (d) an
atom such that Ĩ(P (d)) = t, Q(d) an atom such that Ĩ(Q(d)) = f, F a function
such that F Ĩ(d) = {d} and G a function such that d �∈ GĨ(d). Intuitively, rule
(I+↓) expresses that a sentence of T is necessarily true. The other rules assert
the truth value in Ĩ of an atom that is not unknown in Ĩ.

Propagation Rules. If the domain D of Ĩ is given by D = {d1, . . . , dn}, the
following are all propagation rules for 〈T, Ĩ〉.
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– negation rules:

¬ϕ⊕
(¬-↓)

ϕ�
¬ϕ�

(¬+↓)

ϕ⊕
ϕ⊕

(¬-↑)

¬ϕ�
ϕ�

(¬+↑)

¬ϕ⊕

– conjunction rules (where j ∈ [1,m]):

ϕ1
⊕, . . . , ϕm

⊕
(∧+↑) ∧

i∈[1,m] ϕi
⊕

ϕj
�

(∧-↑) ∧
i∈[1,m] ϕi

�

∧
i∈[1,m] ϕi

⊕

(∧+↓)

ϕj
⊕

∧
i∈[1,m] ϕi

�
, ϕ1

⊕, . . . , ϕj−1
⊕, ϕj+1

⊕, . . . , ϕj
⊕

(∧-↓)

ϕj
�

– disjunction rules (where j ∈ [1,m]):

ϕ1
�, . . . , ϕm

�
(∨-↑) ∨

i∈[1,m] ϕi
�

ϕj
⊕

(∨+↑) ∨
i∈[1,m] ϕi

⊕

∨
i∈[1,m] ϕi

�

(∨-↓)

ϕj
�

∨
i∈[1,m] ϕi

⊕
, ϕ1

�, . . . , ϕj−1
�, ϕj+1

�, . . . , ϕj
�

(∨+↓)

ϕj
⊕

– universal rules:

ϕ[d1]
⊕
, . . . , ϕ[dn]⊕

(∀+↑)

∀x ϕ[x]⊕

ϕ[di]
�

(∀-↑)

∀x ϕ[x]�
∀x ϕ[x]⊕

(∀+↓)

ϕ[di]
⊕

∀x ϕ[x]�, ϕ[d1]
⊕
, . . . , ϕ[di−1]

⊕
, ϕ[di+1]

⊕
, . . . , ϕ[dn]⊕

(∀-↓)

ϕ[di]
�

– existential rules:

ϕ[d1]
�
, . . . , ϕ[dn]�

(∃-↑)

∃x ϕ[x]�

ϕ[di]
⊕

(∃+↑)

∃x ϕ[x]⊕
∃x ϕ[x]�

(∃-↓)

ϕ[di]
�

∃x ϕ[x]⊕, ϕ[d1]
�
, . . . , ϕ[di−1]

�
, ϕ[di+1]

�
, . . . , ϕ[dn]�

(∃+↓)

ϕ[di]
⊕

– equality rules:

I, t1 = t2
⊕

(=±
)

I ′

where I ′ is the result of replacing in I an occurrence of t1 by t2, or an
occurrence of t2 by t1.
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– function rules (where dj �= dk):

F (d) = dj
⊕

(F-
)

F (d) = dk
�

F (d) = d1
�
, . . . , F (d) = di−1

�
, F (d) = di+1

�
, . . . , F (d) = dn

�
(F+
)

F (d) = di
⊕

We stress that each of these rules is easy to understand. E.g., disjunction rule
(∨+↑) says that a disjunction is true if one of its disjuncts is true. Universal rule
(∀-↓) says that if a formula ∀x ϕ[x] is false, but for all domain elements d except
di, the instance ϕ[d] is true, then ϕ[di] is false. Indeed, if ϕ[di] would be true,
then also ∀x ϕ[x] would be true.

Cut Rule. The cut rule for 〈T, Ĩ〉 is given by ϕ[d]
⊕ | ϕ[d]

�

3.2 Soundness and Completeness

An MX-calculus proof for the inconsistency of MXT (Ĩ) is a tree, built using
the rules defined above, such that each of its branches contains a contradiction.
Formally, it is defined as follows.

Definition 4. An MX-rule is an initialization, propagation or cut rule. An MX-
tree for 〈T, Ĩ〉 is inductively defined by

– the empty tree is an MX-tree for 〈T, Ĩ〉;
– if T is an MX-tree for 〈T, Ĩ〉, B a branch of T and

I1, . . . , In

J1 | . . . | Jm

an MX-

rule for 〈T, Ĩ〉 such that all Ii occur in B, then the result of adding in T all
J1 . . .Jm as children to the leaf of B is an MX-tree for 〈T, Ĩ〉.

Example 1. Let T1 be the theory consisting of sentence (1), (3) and (5) of the
introduction, and let Ĩ1 be a three-valued structure with domain D1 contain-
ing precisely the two colours red and blue, and at least one node d. Assume
ColĨ1(d,blue) = f. Figure 1 shows an MX-tree for 〈T1, Ĩ1〉. The used MX-rules
and premises are indicated next to each node.

We say that a branch of an MX-tree is closed if for some instance ϕ[d], it contains
both ϕ[d]

⊕
and ϕ[d]

�
. We call ϕ[d]

⊕
and ϕ[d]

�
conflicting instances of that

branch. E.g., the left branch of the tree in Figure 1 is closed because it contains
the conflicting instances Col(red,d)⊕ and Col(red,d)�. We indicate a closed
branch with the symbol ×. An MX-tree is closed if all its branches are closed.
An MX-proof for 〈T, Ĩ〉 is a closed MX-tree for 〈T, Ĩ〉. The next theorem states
the soundness and completeness of the MX-calculus.

Theorem 1. There exists an MX-proof for 〈T, Ĩ〉 iff MXT (Ĩ) is unsatisfiable.
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1. (I+↓) ∀v ∃c Col(v, c)⊕

2. (∀+↓) on 1 ∃c Col(d, c)⊕

3. (I+↓) ∀v, c1, c2 ¬(Col(v, c1) ∧ Col(v, c2))⊕

5. (cut) Col(d, red)⊕

6. (∀+↓) on 4 ∀c2 ¬(Col(d, red) ∧ Col(d, c2))⊕

7. (∀+↓) on 6 ¬(Col(d, red) ∧ Col(d, red))⊕

8. (¬-↓) on 7 Col(d, red) ∧ Col(d, red)�

9. (∧-↓) on 8,5 Col(d, red)�

10. close on 5,9 ×

Col(d, red)� 11. (cut)

Col(d,blue)⊕ 12. (∃+↓) on 2,11

Col(d,blue)� 13. (I-↑)

× 14. close on 12,13

Fig. 1. An MX-tree for Example 1

3.3 Saturated Branches

Although Theorem 1 guarantees the existence of an MX-proof for 〈T, Ĩ〉 if
MXT (Ĩ) = ∅, a naive implementation of the MX-calculus could never find such a
proof. This is even the case if a same formula is never added twice to a branch. An
implementation could, e.g., endlessly apply the cut rule for different instances.
However, as we will show below, we can restrict the instances that may occur in
an MX-tree in such a way that termination is guaranteed. Moreover, if such a
restricted MX-tree T is not closed and cannot be extended, a model of MXT (Ĩ)
can easily be extracted from T .

For a theory T over Σ, we call an instance a T -instance if it is either an
instance of a subformula of T , or an atom of the form P (d), F (d) = d or d = d.
A rule of the form (6) is T -restricted if all Ji are signed T -instances. We call
a branch B of an MX-tree T -saturated if for every T -restricted MX-rule of the
form (6) that can be applied to B, at least one of the Ji already occurs in B.

Definition 5. Let B be a non-closed branch of an MX-tree for 〈T, Ĩ〉. The im-
plicit structure of B is the three-valued structure B̃ with the same domain as Ĩ
and defined by

B̃(P (d)) =

⎧⎪⎨
⎪⎩

t if P (d)
⊕ ∈ B

f if P (d)
� ∈ B

u otherwise

and B̃(F (d)) = {d′ | F (d) = d′
� �∈ B} for every predicate P , function F and

domain elements d, d′.

Lemma 1. Let B be a non-closed T -saturated branch, and B̃ its implicit struc-
ture. Then for any two-valued structure M ≥p B̃, it holds that M |= T .
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According to this lemma, theorem 1 can be refined as follows.

Theorem 2. There exists an MX-proof for 〈T, Ĩ〉 containing only signed T -
instances iff MXT (Ĩ) is unsatisfiable.

Since there are only finitely many signed T -instances, this theorem guarantees
termination of an algorithm that constructs restricted MX-proofs. Moreover,
if such an algorithm terminates with a non-closed tree T for 〈T, Ĩ〉, then the
implicit structure of each of T ’s non-closed branches is more precise than Ĩ.
According to Lemma 1, we can easily extract solutions for MXT (Ĩ) from such
a branch. This result suggests the following procedure to solve the MX-search
problem for input 〈T, Ĩ〉.

1. Let T be the empty tree.
2. As long as T contains a non-closed, non-saturated branch B, enlarge T by

applying a T -restricted MX-rule to B.
3. If T is closed, return “unsatisfiable”. Else, return a two-valued structure

that is more precise than the implicit structure of one of the T -saturated
branches of T .

Observe that this solver algorithm meets the requirements mentioned in the
introduction. Indeed, all MX-rules are simple, and since only T -restricted rules
are used, all reasoning is performed on the original theory T .

We made a prototype native implementation of the solver algorithm where bi-
nary decision diagrams are used to represent large sets of instances in a compact
way. Since no heuristics were implemented to guide the search, the implementa-
tion turns out to be a lot slower than other MX-solvers. On problems with bugs
however, it is efficient enough to be useful in practice.

A non-native approach to construct MX-proofs consists of translating the
trace of an efficient MX-solver M into an MX-proof. This approach would yield
a system that is close in efficiency to M.

4 Debugging

As mentioned in the introduction, we propose a debugging system for locating
and explaining bugs that cause a solver to omit a number of expected models.
In the extreme case, such a bug makes MXT (Ĩ) unsatisfiable. Basically, the
approach to locate and explain a bug in an input 〈T, Ĩ〉 is as follows:

1. The user specifies a structure J̃ ≥p Ĩ describing a class of expected models
and such that MXT (J̃) is unsatisfiable.

2. Construct a T -restricted MX-proof for 〈T, J̃〉.
3. Explore the proof to find the reason for MXT (J̃) being unsatisfiable.

The first step serves three different purposes. From a technical point of view, it
ensures that a proof can be constructed in the second step, since MXT (J̃) = ∅.
If MXT (Ĩ) itself is unsatisfiable, one could take J̃ equal to Ĩ. From a user point
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of view, J̃ can describe a specific class of models that is missing. E.g., in the
graph colouring problem, a user can specify that he expects a solution where
node d is red by assigning ColJ̃ (d, red) = t. Observe that if the user supplies a
structure J̃ such that MXT (J̃) �= ∅, then instead of generating a proof, a model
M ∈ MXT (J̃) can be returned to indicate that there exists a solution that is in
the class of structures described by J̃ . Finally, the more precise J̃ is, the more
concise proofs can be constructed for MXT (J̃). Evidently, more concise proofs
are more comprehensive.

We now elaborate on the third step of the debugging method, which is based
on earlier work by Shapiro [18]. Since the proofs can be quite large, even for
simple problems, it is necessary that only parts that are relevant for the user
are shown. In particular, if a user understands that a certain instance ϕ[d] is
necessarily true in all models in MXT (J̃), then it is not needed to show him how
the truth ϕ[d] was actually derived. Also, all shown proof steps must be stated in
natural language, so that they are comprehensible for a user who is not familiar
with the MX-calculus.

Concretely, the method we propose is an interactive session where the system
provides a set S of signed instances that were derived (i.e., occur in the proof)
to the user. Initially, the user is told that his input yields a conflict, and S =
{ϕ⊕, ϕ�}, where ϕ⊕ and ϕ� are conflicting instances of one of the branches of
the proof. The user can then ask for an instance I ∈ S the reason why it was
derived. Depending on I, there are three possibilities:

– If a propagation rule was used to add I to the proof, the system’s reply
consists of (in natural language) that rule and its premises. The premises
are added to the set S.

– If an initialization rule was used, the system replies that I was provided as
input.

– If the cut rule was used and I is of the form ϕ[d]
⊕

, the system replies that
there is a conflict if ϕ[d] is assumed to be false. Conflicting instances of a
branch below ϕ[d]

�
are added to the set S. For instances J in S whose

derivation depends on ϕ[d]
�

, the system indicates that J is derived under
the assumption that ϕ[d]

�
is false. Similarly if I is of the form ϕ[d]

�
.

We illustrate the method on the graph colouring example.

Example 1 (Continued). Assume we want to detect the bug in theory T1 and
therefore explore the proof shown in Figure 1 for 〈T1, Ĩ1〉. Figure 2 shows a
possible exploration this proof. By the time the user asks question (3), he has
most probably detected the bug. Since the derivation of (12) only holds when
(11) is assumed, this is explicitly stated. Observe that (13), although it occurs
below (11), does not use (11) in its derivation.

Choices and Proof Size. If the cut rule is often applied to construct a proof,
or a proof is very large, it can be the case that — even with the exploration
method outlined above — a user loses the overview. However, for several reasons
we expect that this can often be avoided in practice:
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(S is the debugging system, U the user, the numbers refer to the nodes in the proof)

S: Your input implies that Col(d, red) must be true (5) and false (9) at the same
time. S = {(5), (9)}.

U: (9) (i.e., the question: “Why must Col(d, red) be false?”)
S: Because Col(d, red) must be true and Col(d, red)∧Col(d, red) must be false (8).

S = {(5), (8)}.
U: (8)
S: Because ¬(Col(d, red) ∧ Col(d, red)) must be true (7). S = {(5), (7)}.
U: (7)
S: Because ∀c2 ¬(Col(d, red) ∧ Col(d, c2)) must be true, and we can take c2 = red.
...
U: (3)
S: Because this is a sentence of the input theory. S = {(5)}.
U: (5)
S: If Col(d, red) is assumed to be false, then there is a conflict: Col(d,blue) must be

true (12) and false (13). S = {(12) if (11) is assumed, (13)}.
...

Fig. 2. Interactively exploring a proof

– The small scope hypothesis [7] claims that a bug typically occurs already
in the context of structures Ĩ with a small domain. For such a structure, a
proof for 〈T, Ĩ〉 will be small too.

– A good solver based on the MX-calculus should minimize the use of the cut
rule by only applying it when no other rule can be applied.

– If the description J̃ of the expected models is sufficiently precise, it is not
needed to often apply the cut rule. In the extreme case where J̃ is two-valued,
using the cut rule can be avoided altogether.

Nevertheless, in a worst case scenario, a bug is due to a combination of partially
correct formulas and only shows up in large instances. Such bugs may be very
hard to find and correct. This problem is inherent to debugging in all declarative
languages.

5 Inductive Definitions

Although all NP problems can be cast as MX(FO) problems, the modelling is
not always easy. In a finite context, inductive definitions such as the definition
of reachability in a graph, can be encoded in FO, but this is far from straightfor-
ward. The logic FO(ID) extends FO with a native construct to represent defini-
tions. Hence, this logic simplifies the modelling task. Also, MX(FO(ID)) solvers
that natively support FO(ID) tend to be faster than systems that rely on a trans-
formation to FO for problems involving recursion [13]. Modelling methodology in
MX(FO(ID)) and ASP are very similar [12]. There exists a simple transformation
from MX(FO(ID)) to ASP specifications [11] and vice versa [5].
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5.1 Preliminaries

To facilitate the rest of the presentation, we assume from now on that a vocab-
ulary contains no function symbols. We define the truth value of a formula ϕ
in a three-valued interpretation Ĩ by the standard Kleene semantics and denote
it by Ĩ(ϕ). For a truth value v and atom P (d), we denote by Ĩ[P (d)/v] the
interpretation that assigns v to P (d) and corresponds to Ĩ on all other symbols.
This notation is extended to sets of atoms.

In FO(ID), a definition Δ is a finite set of rules of the form

∀x (P (x) ← ϕ),

where P is a predicate and ϕ an FO formula. The free variables of ϕ should
be among x. P (t) is called the head of the rule, ϕ the body. Predicates that
occur in the head of a rule of Δ are called defined predicates of Δ. All other
symbols are called open with respect to Δ. The set of open symbols of Δ is
denoted by Open(Δ). The semantics of definitions is given by their well-founded
model [22]. As argued in [2], the well-founded semantics correctly formalizes the
semantics of monotone and non-monotone inductive definitions. We present this
semantics according to [3]. Let Δ be a definition and Ĩ a three-valued structure.
A well-founded induction for Δ above Ĩ is a sequence 〈J̃ξ〉0≤ξ≤α such that

1. J̃0 assigns P J̃0(d) = u, if P is a defined predicate and corresponds to Ĩ on
the open symbols;

2. For each limit ordinal λ ≤ α, J̃λ = lub≤p({J̃ξ | ξ ≤ λ})
3. For every ordinal ξ, J̃ξ+1 relates to J̃ξ in one of the following ways:

(a) J̃ξ+1 = J̃ξ[P (d)/t] for some domain atom P (d) such that J̃ξ(P (d)) = u
and for some rule ∀x (P (x) ← ϕ) in Δ, J̃ξ[x/d](ϕ) = t.

(b) J̃ξ+1 = J̃ξ[P (d)/f] for some domain atom P (d) such that J̃ξ(P (d)) = u
and for every rule ∀x (P (x) ← ϕ) in Δ, J̃ξ[x/d](ϕ) = f.

(c) J̃ξ+1 = J̃ξ[U/f], where U is a set of domain atoms, such that for each
P (d) ∈ U , J̃ξ(P (d)) = u and all ∀x (P (x) ← ϕ) in Δ, J̃ξ+1[x/d](ϕ) = f.

Intuitively, (a) says that a domain atom P (d) can be made true if there is a
rule with P (x) as head and body ϕ[x] such that ϕ[d] is already true. If, on the
other hand, for all rules P (x) ← ϕ[d], ϕ[d] is false, then (b) expresses that P (d)
can be made false. Finally, (c) explains that P (d) can be made false if there is
no possibility to make a corresponding body true, except by circular reasoning.
The set U , commonly called an unfounded set, is a witness to this: making all
atoms in U false also makes all corresponding bodies false.

A well-founded induction is called terminal if it cannot be extended anymore.
The limit of a terminal well-founded induction is its last element. In [3], it is
shown that each terminal well-founded induction for Δ above Ĩ has the same
limit, which corresponds to the well-founded model of Δ extending Ĩ|Open(Δ),
and is denoted by wfmΔ(Ĩ). The well-founded model is three-valued in general.

A two-valued interpretation I satisfies a definition Δ if I = wfmΔ(I). An
FO(ID) theory T is a set of FO sentences and definitions. I satisfies T if it
satisfies all definitions and sentences in T .
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5.2 Extending the MX-calculus to FO(ID)

To handle definitions in the MX-calculus, we extend it with two new classes of
rules: completion and unfounded set rules. Rules of the former class handle case
(a) and (b) of the well-founded inductions, the rule in the latter class handles
case (c).

Completion Rules. If Δ is a definition in the FO(ID) theory T , P a defined
predicate of Δ and ∀x P (x) ← ϕ1[x], . . . , ∀x P (x) ← ϕn[x] all rules in Δ with
head P , then the following are the four completion rules for 〈T, Ĩ〉.

ϕi[d]
⊕

P (d)
⊕

ϕ1[d]
�
, . . . , ϕn[d]

�

P (d)
�

P (d)
�

ϕi[d]
�

P (d)
⊕
, ϕ1[d]

�
, . . . , ϕi−1[d]

�
, ϕi+1[d]

�
, . . . , ϕn[d]

�

ϕi[d]
⊕

Unfounded Set Rule. Let K̃ be a three-valued structure with the same domain
as Ĩ, {Q1(d1), . . . , Qn(dn)} the set of all domain atoms that are true in K̃ and
{Qn+1(dn+1), . . . , Qm(dm)} the set of all domain atoms that are false in K̃. Let
Δ be a definition of T and U a set of domain atoms, defined with respect to
Δ and unknown in K̃. If for R(d) ∈ U and any rule ∀x R(x) ← ϕ[x] in Δ,
K̃[U/f](ϕ[d]) = f, then

Q1(d1)
⊕
, . . . , Qn(dn)

⊕
, Qn+1(dn+1)

�
, . . . , Qm(dm)

�

P (d)
�

where P (d) ∈ U , is an unfounded set rule for 〈T, Ĩ〉.

Soundness and Completeness. The MXID-calculus for FO(ID) is the MX-
calculus for FO, extended with the completion and unfounded set rules. The
results of sections 3.2 and 3.3 carry over to this extension of the MX-calculus.
In particular, we have the following theorem.

Theorem 3. There exists an MXID-proof for 〈T, Ĩ〉 containing only signed T -
instances iff MXT (Ĩ) is unsatisfiable.

5.3 Debugging for FO(ID)

The debugging method for MX(FO) can be extended to a debugging method
MX(FO(ID)), by constructing MXID-proofs instead of MX-proofs. There is no
problem communicating the use of a completion rule to the user. For the un-
founded set rule however, this is not entirely straightforward. A possible expla-
nation to a user who asks why P (d) is false, where this atom was derived by
an application of the unfounded set rule is (using the same notations as in the
section where we introduced the unfounded set rule)
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Since Q1(d1), . . . , Qn(dn) must be true and Qn+1(dn+1), . . . , Qm(dm)
must be false, P (d) belongs to a set U of defined atoms of Δ that can
only become true because of circular reasoning.

If the user asks why the atoms in U can only become true because of circular
reasoning, the system could let him explore a proof for the inconsistency of〈∨

ϕ[d]∈B ϕ[d], K̃[U/f]
〉
, where the B = {ϕ[d] | ∀x R(x) ← ϕ[x] ∈ Δ and R[d] ∈

U}. I.e., a proof for the fact that K̃[U/f](ϕ[d]) is false for any ϕ[d] ∈ B.

6 Related Work

Much work in debugging for declarative programming systems focusses on a
specific procedural semantics (e.g., on a particular execution model for Prolog).
See, e.g., [8,9]. The trace of a solver is then a sequence of steps according to
the procedural semantics, rather than a formal proof. Details are given on how
to obtain and store the trace efficiently. [21] addresses these issues in a context
where the small scope hypothesis does not hold.

Existing approaches for debugging an input for a model generator can be
divided into two classes: the approaches that aim at locating a bug, and those
that aim at explaining derivations made by a model generator. Clearly, these
classes are complementary. A system of the first class can extract a part of the
theory where the bug is located. Then, a system of the second class can explain
why this part contains a bug. As far as we know, our debugging method is the
first one for (extended) FO model generation that belongs to the second class.

The alloy system [1] is a model expansion system for a syntactic variant
of FO. In [19], a debugging method for overconstrained (hence unsatisfiable)
instances was presented. It consists of extracting an unsatisfiable core, i.e., a
small inconsistent subset, from the theory and presenting it to the user. Hence,
it belongs to the first class. If the unsatisfiable core is small, the user can quickly
locate the bug. If it is somewhat larger, it can still be difficult to detect the bug.
In this case, our system could be used with the unsatisfiable core as input to
further guide the search for a bug. This has the side benefit of speeding up our
approach: a proof of inconsistency for the small unsatisfiable core is smaller and
can be constructed faster than a proof for the inconsistency of the whole theory.

In the context of ASP, several approaches to debugging have been presented.
A recent overview can be found in [6]. Most ASP debugging methods belong to
the first class mentioned above. E.g., the method described in [6] returns for an
input 〈T, Ĩ〉 a two-valued interpretation M ≥p Ĩ and a number of constraints,
rules and/or unfounded sets that are violated by M . The method of [20] returns
a minimal set of rules such that the theory without these rules is satisfiable. An
advantage of these two methods is that they can be implemented in ASP itself.

A debugging method of the second class for ASP was presented in [17]. It
allows a user to interrupt the computation of an ASP solver and to ask an
explanation for any atom that is not unknown at that moment. Explanations
are given in the form of graphs, called justifications.
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7 Conclusions and Future Work

In this paper, we presented the MX-calculus as a proof system for FO(ID). We
showed how to explore proofs in the MX-calculus to debug input for MX(FO(ID))
model generators. Future work consists of extending the MX-calculus to support
other extensions of FO, such as aggregates, and building a debugging system that
can handle the full input language of model generators such as idp and mxg.
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13. Mariën, M., Wittocx, J., Denecker, M., Maurice, B.: SAT(ID): Satisfiability of
propositional logic extended with inductive definitions. In: Kleine Büning, H., Zhao,
X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 211–224. Springer, Heidelberg (2008)

14. Meier, M.: Debugging constraint programs. In: Montanari, U., Rossi, F. (eds.) CP
1995. LNCS, vol. 976, pp. 204–221. Springer, Heidelberg (1995)

15. Mitchell, D., Ternovska, E.: A framework for representing and solving NP search
problems. In: AAAI 2005, pp. 430–435. AAAI Press/MIT Press (2005)

16. Nilsson, H.: Tracing piece by piece: Affordable debugging for lazy functional lan-
guages. In: ICFP, pp. 36–47 (1999)

17. Pontelli, E., Son, T.C.: Justifications for logic programs under answer set semantics.
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Abstract. We propose a qualitative approach to elaborating the biosynthetic ca-
pacities of metabolic networks. In fact, large-scale metabolic networks as well
as measured datasets suffer from substantial incompleteness. Moreover, tradi-
tional formal approaches to biosynthesis require kinetic information, which is
rarely available. Our approach builds upon a formal method for analyzing large-
scale metabolic networks. Mapping its principles into Answer Set Programming
(ASP) allows us to address various biologically relevant problems. In particular,
our approach benefits from the intrinsic incompleteness-tolerating capacities of
ASP. Our approach is endorsed by recent complexity results, showing that the
reconstruction of metabolic networks and related problems are NP-hard.

1 Introduction

The availability of high-throughput methods in molecular biology has resulted in a
rapid growth of biological knowledge, gathered in web databases such as KEGG
(http://www.genome.jp/kegg) or MetaCyc (http://metacyc.org). Of
particular interest are biosynthetic capacities of metabolic networks in view of the de-
sign of bioprocesses. However, large-scale metabolic networks as well as measured
datasets suffer from substantial incompleteness. Many networks are only partially de-
fined and only few metabolites can be identified without ambiguity. Moreover, tradi-
tional formal approaches to biosynthesis (cf. [1,2,3,4,5]) require kinetic information,
which is rarely available.

We address this problem and propose a qualitative approach based on Answer Set
Programming (ASP;[6]). This approach benefits from the intrinsic incompleteness-
tolerating capacities of ASP and allows us to take advantage of its rich modelling
language and highly efficient implementations. Our approach is endorsed by recent
complexity results, showing that the reconstruction of metabolic networks and related
problems are NP-hard [7,8].

Our approach builds upon a formal method for analyzing large-scale metabolic net-
works developed in [9,10]. The basic idea is that a reaction operates only if its reactants
are either available as nutrients or can be provided by other metabolic reactions. Starting
from some nutrients, referred to as seeds, this allows for expanding a metabolic network
by successively adding operable reactions and their products. The set of metabolites in
the resulting network is called the scope of the seeds and represents all metabolites that
can principally be synthesized from the seeds by the analyzed metabolic network.
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Mapping the principles of this approach into ASP allows us to address various
biologically relevant problems. A primary problem deals with the comple-
tion of genome-scale metabolic networks. When building a metabolic net-
work, as for the recently sequenced green alga Chlamydomonas reinhardtii
(http://www.goforsys.de), the initial core draft is done by appeal to genomic
information. Then, experimental data, in particular, measured metabolites, are taken to
define the functionality of the overall network. The above methodology can then be
used to check whether a drafted network provides the synthesis routes to comply with
the required functionality. If this fails, the draft network can be completed by import-
ing reactions from metabolic reference network stemming from other organisms until
the obtained network provides the measured functionality (cf. [11]). Another important
problem concerns the determination of seed compounds needed for the synthesis of cer-
tain other compounds. As demonstrated in [12], solving this problem is important for
indicating (minimal) nutritional requirements for sustaining maintenance or growth of
an organism.

Both problems have a combinatorial nature and thus give rise to a multitude of so-
lutions. We address this problem by taking advantage of the various reasoning modes
provided by ASP. On the one hand, we use ASP’s optimization techniques for find-
ing cardinality or subset minimal solutions, respectively. On the other hand, we exploit
consequence aggregation for finding metabolites common to all (optimal) solutions or
at least one of them, respectively. Moreover, the aforementioned problems are often
subject to additional constraint, aiming at the avoidance of side products or producing
target products by staying clear from certain seeds, respectively. Finally, the elaboration
tolerance of ASP greatly supports the process of drafting metabolic networks involving
continuous validation and increasing functionalities stemming from measured data.

2 Background

Biological problem definition. Following [8], a metabolic network is commonly rep-
resented as a directed bipartite graph G = (R ∪ M,E), where R and M are sets
of nodes standing for reactions and metabolites, respectively. Given a such metabolic
network G, we sometimes refer to its components by R(G), M(G), and E(G). When-
ever (m, r) ∈ E for m ∈ M and r ∈ R, the metabolite m is called a reactant of
reaction r; for (r,m) ∈ E, metabolite m is called a product of r. More formally,
for (R ∪ M,E) and r ∈ R define reac(r) = {m ∈ M | (m, r) ∈ E} and
prod(r) = {m ∈M | (r,m) ∈ E}.

The aforementioned biological concept of a scope can be expressed in terms of reach-
ability. Given a metabolic network (R∪M,E) and a set M ′ ⊆M of seed metabolites,
a reaction r ∈ R is reachable from M ′, if reac(r) ⊆ M ′, that is, if all its reactants are
reachable. Moreover, a metabolite m ∈ M is reachable from M ′, either if m ∈ M ′ or
if m ∈ prod(r) for some reaction r ∈ R being reachable from M ′. Finally, the scope of
M ′, written Σ(R∪M,E)(M ′) or simply Σ(M ′), is the closure of M ′ under reachability
from M ′. Note that the scope of a set of metabolites can be computed in polynomial
time.

http://www.goforsys.de
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Now, we can make precise the aforementioned biological problems. In the metabolic
network completion, we are given a metabolic network (R∪M,E) along with two sets
S, T ⊆M of (seed and target) metabolites, and a reference network (R′∪M ′, E′). The
goal is to find a set of reactions R′′ ⊆ R′ \R such that T ⊆ ΣG(S) where

G = ((R ∪R′′) ∪ (M ∪M ′′), E ∪ E′′) ,
M ′′ = {m ∈M ′ | r ∈ R′′,m ∈ reac(r) ∪ prod(r)} , and

E′′ = {(m, r) ∈ E′ | r ∈ R′′,m ∈ reac(r)} ∪ {(r,m) ∈ E′ | r ∈ R′′,m ∈ prod(r)} .

We call R′′ the completion of (R∪M,E) from (R′∪M ′, E′) wrt (S, T ). Two optimiza-
tion variants of this problem are obtained by finding a cardinality or subset minimal set
of reactions. Further refinements may also optimize on the distance between seeds and
targets or minimize forbidden side products.

Three variants of the inverse scope problem can be distinguished [8]. In the basic one,
we are given a metabolic network (R∪M,E) and a set T ⊆M of (target) metabolites.
The goal is to find a set of (seed) metabolites S ⊆ M such that T ⊆ Σ(S). The two
optimization variants of this problem aim at finding a cardinality or subset minimal
solution. The second problem restricts the domain of the available seed metabolites. In
addition to (R ∪ M,E) and T ⊆ M , we are given a set of (forbidden) metabolites
F ⊆ M . Then, the goal is to find a set of (seed) metabolites S ⊆ (M \ F ) such
that T ⊆ Σ(S). Apart from optimizing the required seed metabolites, one may also
minimize undesired metabolites rather then excluding them. The third problem adds
an additional constraint on the avoidance of side products. In addition to (R ∪M,E)
and T, F ⊆ M , we are given another set of (forbidden) metabolites E ⊆ M . Then,
the goal is to find a set of (seed) metabolites S ⊆ (M \ F ) such that T ⊆ Σ(S) and
Σ(S) ∩ E = ∅. As above, the optimization variants can also take side products into
account.

Answer Set Programming. We refer the reader to [6] for a formal introduction to ASP
and concentrate in what follows on aspects relevant to our application. A logic program
is a finite set of rules of the form

a ← b1, . . . , bm,not cm+1, . . . ,not cn , (1)

where a, bi, cj are atoms for 0< i≤m< j ≤ n. A literal is an atom a or its (default)
negation not a. A rule r as in (1) is called a fact, if l=n=1, and an integrity constraint,
if l = 0. We denote predicate and constant symbols by lowercase letters and variables
by uppercase letters. A logic program with variables is regarded as the set of all its
ground-instantiated rules. Moreover, we take advantage of choice rules and conditional
literals [13]; both of which can be regarded as macros. In a choice rule, the head a in (1)
is replaced by a set {a1, . . . , al}; it allows us to derive any subset provided the rule’s
body is satisfied. A conditional literal is of form a : b where a and b are literals (con-
taining common variables); informally, it stands for the sequence of all instantiations
of a obtained by restricting the substitution of variables common to a and b to those
of b (cf. [13] for details). For instance, given m(1), m(2), and r(a), the choice rule
{p(R,M) : m(M)}← r(R) stands for {p(a, 1), p(a, 2)}← r(a).

The answer sets of a programP are models ofP satisfying a certain stability criterion
(cf. [6] for details). An answer set is represented by the set of atoms that are true in
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it. Apart from testing the existence of an answer set of a program or enumerating all
its answers, the following reasoning modes are supported. For this, define AS (P ) as
the set of all answer sets of Program P . Then, the cautious and brave consequence of
P are defined as

⋂
X∈AS(P ) X and

⋃
X∈AS(P ) X . Notably, both sets are computable

through linear many computations of one answer set, rather than computing possibly
exponential number of answer sets in AS(P ). Another mode of interest is solution
projection [14], which computes only the projections of all answer sets on a set P of
atoms, that is, {X ∩P | X ∈ AS(P )}, thereby greatly reducing computational efforts.

Cardinality based optimization is provided in ASP through minimize (or maximize)
statements of the form

minimize{b1=w1, . . . , bm =wm,not cm+1 =wm+1, . . . ,not cn =wn}

enforcing that only answer sets with minimum value of
∑

bi∈X,1≤i≤m wi +∑
cj /∈X,m+1≤j≤n wj are computed, where w1, . . . , wn are integers. There can be sev-

eral minimize and/or maximize statements which order the stable models lexicograph-
ically. Subset based minimization and/or maximization is more complex and left for
future work.

3 Logic Program Representations

3.1 Metabolic Network Completion

We start by representing a metabolic network Gn as a set of facts.

G(Gn) = {reaction(r, n) | r ∈ R(Gn)}
∪ {reactant(m, r) | r ∈ R(Gn),m ∈ reac(r)}
∪ {product(m, r) | r ∈ R(Gn),m ∈ prod(r)}

While our draft network provides an incomplete biological model, the seed and target
metabolites are obtained from experimental data. The seed metabolites are provided as
nutrients in an experiment, the target metabolites are measured as its final outcome. A
metabolic draft network Gd along with two sets S ,T ⊆ M of seed and target metabo-
lites, and a reference network Gr results in the following set of facts, C(Gd, Gr, S, T ).

G(Gd) ∪ G(Gr) ∪ {draft(d)} ∪ {seed(s) | s ∈ S} ∪ {target(t) | t ∈ T} (2)

The current draft network is identified by the fact draft(d).

Draft Scope. The scope of the seed metabolites in the draft network Gd can be deter-
mined by the following rules.

dscope(M) ← seed(M)
dscope(M) ← product(M,R), reaction(R,N), draft(N),

dscope(M ′) : reactant(M ′, R)
(3)

The first rule declares all seed metabolites M ∈ S as producible. The second rule
defines recursively that a product M of a reaction R is producible, whenever all reac-
tants M ′ of R are available. Together with the encoding of Gd and S in (2), the set of
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rules in (3) results in a single answer set X such that dscope(m) ∈ X iff m ∈ ΣGd
(S )

for m ∈M(Gd).

Potential Scope. While drafting a metabolic network of an organism biologists are reg-
ularly confronted with experiments that show that a certain metabolite can be measured,
although it is not producible by the current draft network. To this end, they incorporate
metabolic reactions known from metabolic networks of other organisms.

In analogy to the rules in (3), the (potential) scope of the seed metabolites in the draft
network Gd augmented by the reference network Gr can be determined as follows.

pscope(M) ← seed(M)
pscope(M) ← product(M,R), reaction(R,N),

pscope(M ′) : reactant(M ′, R)
(4)

Note that dropping the qualification draft(N) from (3) makes us use all available reac-
tions. As before, given the encoding in (2), the set of rules in (4) induces a single answer
set X such that pscope(m) ∈ X iff m ∈ ΣGd∪Gr(S ) for m ∈M where Gd∪Gr stands
for the pairwise union of Gd and Gr.

While the scope of the draft network in (3) gives a lower limit on the metabolites
producible from the seeds by the draft network, the potential scope obtained from
the augmented network in (4) constitutes an upper limit. Note that targets outside the
potential scope cannot be explained.

Metabolic Network Completion. The goal of metabolic network completion is to extend
the draft network with reactions from the reference network, so that the target metabo-
lites can be synthesized by the augmented network from the seeds. The reactions of
interest belong to the reference network but not the draft network. The following choice
rule captures all candidate reactions.

{xreaction(R) : not reaction(R,N) : draft(N)} (5)

The condition not reaction(R,N) : draft(N) guarantees that all chosen reactions
belong to R(Gr)\R(Gd). In fact, the encoding in (2) and the choice rule in (5) give a set
of answer sets being in a one-to-one correspondence to the subsets of R(Gr) \R(Gd).

The (extended) scope of the seed metabolites in the draft network Gd extended by
reactions from Gr is defined as follows.

xscope(M) ← seed(M)
xscope(M) ← product(M,R), reaction(R,N), draft(N),

xscope(M ′) : reactant(M ′, R)
xscope(M) ← product(M,R), xreaction(R),

xscope(M ′) : reactant(M ′, R)

(6)

Finally, we have to make sure that an extended scope is able to produce all target
metabolites. This is addressed by the following integrity constraint.1

← target(M),not xscope(M) (7)

1 In practice, this constraint is extended by pscope(M) to ignore non-producible targets.
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Given the above rules, each of its answer set corresponds to a completion of the draft
network and vice versa.

Proposition 1. Let Gd and Gr be metabolic networks and let S and T be sets of
metabolites.

If X is an answer set of logic program2 C(Gd, Gr, S, T ) ∪ {(5), (6), (7)}, then
{r | xreaction(r) ∈ X} is a completion of Gd from Gr wrt (S, T ) and vice versa.

Refined Metabolic Network Completion. Although the above encoding is formally ad-
equate, it suffers from too many uninteresting completions that makes it fail to scale
on large metabolic networks comprising several thousand metabolites. We address this
problem by some refinements reducing the set of candidate reactions.

At first, we restrict the choice in (5) to “interesting” reactions.

← xreaction(R),not ireaction(R) (8)

The qualification expressed by ireaction(R) requires that a reaction of interest must
lead to some target metabolites.

ireaction(R) ← interesting(M),
product(M,R), reaction(R,N)

interesting(M) ← target(M),not dscope(M)
interesting(M) ← reactant(M,R), ireaction(R),

not dscope(M)

(9)

With the first rule we declare a reaction as interesting if it produces interesting metabolites.
The second rule defines all target metabolites that cannot be produced by the draft network
as interesting, and the third rule states that metabolites needed by interesting reactions and
not producible by the draft network are interesting. This concept provides a significant
reduction of the set of candidate reactions in view of the given target metabolites.

Second, we further restrict the choice in (5) to “operable” reactions.

← xreaction(R),not oreaction(R)
oreaction(R) ← xscope(M) : reactant(M ′, R),

reaction(R,N),not draft(N)
(10)

The integrity constraint enforces that each extending reaction is operable, that is, satis-
fies oreaction(R). The following rule defines a (candidate) reaction as operable, if all
its reactants are producible by the current network extension.

The next result shows that the above refinements preserve soundness.

Proposition 2. Let Gd and Gr be metabolic networks and let S and T be sets of
metabolites.

If X is an answer set of C(Gd, Gr, S, T ) ∪ {(5), (6), (7), (8), (9), (10)}, then
{r | xreaction(r) ∈ X} is a completion of Gd from Gr wrt (S, T ).

2 Recall that a rule with variables stands for the set of all its ground instantiations.
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Optimal Completions. A further natural way to reduce the number of solutions is to
concentrate on network completions containing the fewest number of reactions. In ASP,
this can be accomplished by the following minimize statement.

minimize {xreaction(R) : ireaction(R) : not reaction(R,N)} (11)

Interestingly, our refinements are satisfied by such minimal completions, so that we get
a soundness and completeness result under optimization.

Proposition 3. Let Gd and Gr be metabolic networks and let S and T be sets of
metabolites.

If X is an answer set of C(Gd, Gr, S, T ) ∪ {(5), (6), (7), (8), (9), (10)} ∪ {(11)},
then {r | xreaction(r) ∈ X} is a minimum completion of Gd from Gr wrt (S, T ) and
vice versa.

Sometimes reactions can be associated with confidence levels, for instance, obtained
from the proximity of their host organism to the organism addressed by the draft net-
work. This allows us to prefer among the minimum completions those composed of
reactions with higher confidence levels; this is accomplished by adding the following
statement.

maximize{xreaction(R)=L : ireaction(R) :not reaction(R,N) :confidence(R,L)}

Reasoning Modes. Given the above ensemble of rules, the reasoning modes of ASP
solvers allow us to answer a variety of additional biologically relevant questions. What
target metabolites are producible by the draft network? What new metabolites can be
produced by adding reactions from other pathways? What is the minimal number of
reactions that must be added to explain a target metabolite? What are the minimum or
minimal extended scopes? Which reactions belong to all extended scopes, or even all
minimum extended scopes? The latter are accomplished by a combination of optimiza-
tion and cautious reasoning. We return to these question in Section 4 and show how
they are realized. The next section also shows how certain seeds or side-products can
either be avoided or minimized.

3.2 Inverse Scope Problem

Given a metabolic network and a set of target metabolites, we are interested in sets of
seed metabolites that allow for producing the target metabolites from the network.

Basic Setting. Reactions, targets, and seeds are represented as in Section 3. That is,
given a network Gn and sets S, T of metabolites, the inverse scope problem is based on
the following set of facts.

I(Gn,S ,T ) = G(Gn) ∪ {seed(s) | s ∈ S} ∪ {target(t) | t ∈ T} (12)

By appeal to the encoding of the basic scope in (3), we can then express our task similar
to the completion problem by exchanging the roles of reactions and seed metabolites.

{seed(M) : not target(M)} (13)

← target(M),not dscope(M) (14)
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Similar to (5), the choice construct in (13) captures the seed candidates, while the in-
tegrity constraint in (14) makes sure that all target metabolites can by synthesized from
the seeds chosen in (13).

The next proposition shows that our encoding is sound and complete.

Proposition 4. Let Gn be a metabolic network and let S and T be sets of metabolites.
If X is an answer set of logic program I(Gn, S, T )∪{(3), (13), (14)}∪{draft(n)},

then T ⊆ Σ({m | seed(m) ∈ X}) and vice versa.

The fact draft(n) is merely added for compatibility with (3).

Refined Setting. As above, some refinements lend themselves for reducing the putative
seed metabolites.

← seed(M),not imetabolite(M) (15)

A metabolite of interest, viz imetabolite(M), must lead to at least one target metabolite.

imetabolite(M) ← target(M)
imetabolite(M) ← reactant(M,R), ireaction(R)

ireaction(R) ← imetabolite(M), product(M,R), reaction(R,N)
(16)

The first rule defines target metabolites as interesting. The second one extends this to
metabolites being reactants of interesting reactions. Similar to (9), the last rule states
that interesting reactions are those that produce interesting metabolites.

Although the last refinement eliminates (uninteresting) solutions, it preserves mini-
mum ones. Hence, cardinality minimum solutions to the inverse seed problem are ob-
tained by simply adding the following optimization statement.

minimize{seed(M) : not target(M)}

Avoiding Side or Seed Metabolites. The elaboration biosynthetic capacities of often
subject to further restrictions, for instance, avoiding seed metabolites or certain side
products. This has led to the definition of the two variants of the inverse scope problem
defined in Section 2.

Both problems are easily addressed in ASP, once a metabolite, m, is declared as
being forbidden, viz. forbidden(m):

← seed(M), forbidden(M)
← dscope(M), forbidden(M)

While the first constraint eliminates forbidden metabolites from the seeds, the second
rules out unwanted side products.

The complete exclusion of certain metabolites is sometimes to restrictive. To this
end, one may replace one or both of the previous integrity constraint by appropriate
minimization statements:

minimize{seed(M) : forbidden(M)}
minimize{dscope(M) : forbidden(M)}

Recall that the order of the two statements determines their precedence.
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Reasoning Modes. The inverse scope problem usually leads to numerous solutions.
Cautious reasoning allows us to compute the ultimately essential seeds belonging to all
solutions. Also, brave reasoning is of interest because often solutions are similar, so that
the union of all seeds in a solution form a pool of potentially relevant nutrients. Finally,
in view of the numerous, often unrelated combinatorial sources, an important role is
played by projective solution enumeration for eliminating redundant solutions.

4 Experiments

For validating our approach, we investigate the metabolic network of Escherichia coli
(E.coli). This choice is motivated by the fact that E.coli is a well studied organism,
whose metabolic network is of moderate size, consisting of 3645 reactions and 1556
metabolites. Our experiments consider furthermore 94 seed metabolites and 28 target
metabolites. The targets and seeds were chosen by our biological partners in view of
the fact that E.coli is able to grow when glucose is the only carbon source. Hence, its
metabolic network must be able to synthesize all necessary precursors for high-level
processes, from glucose and inorganic material [15]. That is why the targets contain
all 20 amino acids, the nucleotide phosphates ATP, CTP, GTP and UTP as well as
the deoxy forms dATP, dGTP, dUTP and dTTP; and the seeds are only glucose and
inorganic metabolites. In fact, all considered targets could be produced by the original
E.coli network. This setup allows us to control and vary our experiments by producing
draft networks through eliminating reactions from E.coli’s original network.

All experiments3 were run with ASP grounder gringo (2.0.2) and ASP solver clasp
(1.2.0) on a Linux PC with a Core2DuoE6400 processor and 2GB memory. The com-
putation time was limited to 600 seconds, timeouts are shown throughout as “-”.

4.1 Metabolic Network Completion

For our experiments on network completion, biologist provided us with draft networks.
The draft networks have been created with biological background knowledge, by re-
moving 50, 100 and 200 reactions from the original E.coli network. Also, derived reac-
tions have been removed by the biologists. This means, for example, that for reversible
reactions also the inverse reactions were removed, and for reactions that are generaliza-
tions, all subsumed special cases were removed as well. The resulting networks failed
to produce 7, 10, and 20 targets, respectively. As reference network, we have chosen
the entire MetaCyc database (http://metacyc.org) containing 13882 reactions.
This set of reactions spans the search space specified in (5) for metabolic network
completion.

In the first set of experiments, we proceed in two steps. First, we compute for each
draft network and each target, the minimum number of reactions that need to be added
to complete the network. Then, we compute all solutions satisfying this optimality cri-
terion. In fact, in view of the large set of candidate reactions in the reference network,
this approach turned out to be superior to a single step approach, enumerating all opti-
mal solution through clasp’s branch and bound algorithm. Rather, we invoke clasp with

3 Instances and encodings are available at: http://www.cs.unipotsdam.de/bioasp

http://metacyc.org
http://www.cs.unipotsdam.de/bioasp
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Table 1. computing optimal completions for E. coli networks

E.coli-50 E.coli-100 E.coli-200
T topt opt tall #opt topt opt tall #opt topt opt tall #opt
1 0.14 0 0.17 1 0.19 0 0.16 1 368.72 1 2.17 7
2 0.18 0 0.17 1 0.18 0 0.16 1 368.52 1 2.22 7
3 0.16 0 0.16 1 0.17 0 0.18 1 195.34 7 304.35 135
4 0.20 0 0.17 1 0.21 0 0.18 1 42.89 3 20.40 35
5 0.18 0 0.16 1 0.18 0 0.14 1 0.15 0 0.15 1
6 0.16 0 0.16 1 159.07 2 2.53 6 226.41 7 - -
7 0.16 0 0.18 1 0.21 0 0.16 1 - - - -
8 0.15 0 0.14 1 0.17 0 0.15 1 46.39 3 29.59 35
9 0.16 0 0.19 1 0.14 0 0.15 1 0.15 0 0.14 1
10 0.18 0 0.17 1 0.14 0 0.16 1 0.14 0 0.17 1
11 0.18 0 0.18 1 0.15 0 0.15 1 26.58 1 2.18 7
12 0.14 0 0.16 1 0.15 0 0.16 1 - - - -
13 - - - - 105.15 4 12.35 1 - - - -
14 0.17 0 0.18 1 0.15 0 0.17 1 0.16 0 0.14 1
15 0.13 0 0.19 1 0.16 0 0.17 1 0.18 0 0.16 1
16 0.15 0 0.16 1 0.16 0 0.18 1 367.10 1 2.20 7
17 0.20 0 0.16 1 - - - - - - - -
18 - - - - - - - - - - - -
19 - - - - 80.63 2 5.18 3 - - - -
20 - - - - - - - - - - - -
21 0.18 0 0.17 1 0.15 0 0.15 1 0.16 0 0.15 1
22 0.16 0 0.17 1 0.19 0 0.16 1 0.14 0 0.15 1
23 0.17 0 0.14 1 0.16 0 0.15 1 353.70 1 2.17 1
24 37.87 3 21.28 4 3.92 6 29.78 5 - - - -
25 - - - - - - - - - - - -
26 - - - - - - - - - - - -
27 0.15 0 0.17 1 0.14 0 0.18 1 46.07 3 37.08 35
28 0.16 0 0.19 1 - - - - 0.16 0 0.13 1

the option --restart-on-model that restarts after each minimum solution. This
makes clasp converge much faster to an optimum solution. Once this is found, clasp is
invoked again for enumerating all solutions satisfying the optimality criterion.

Table 1 summarizes our first set of experiments. The columns headed by E.coli-50,
E.coli-100, and E.coli-200, respectively, provide results obtained on the aforementioned
draft networks obtained by removing 50, 100 and 200, respectively, reactions from the
original E.coli network. The first column identifies the chosen target metabolite. Then,
for each draft network, the columns labeled topt show the time in seconds for computing
the minimum number of reactions that need to be added to produce the target. The
columns labeled opt provide the minimum number of reactions. The columns tall show
the time in seconds for computing all optimal solutions and the column #opt gives the
number of optimal solutions.

For targets that could not be produced by the draft network, the results are either
shown in boldface or are timeouts. For target metabolites whose production pathways
are not disturbed, the computation time is insignificant. We observe six timeouts, while
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searching for an optimal completion on the E.coli-50 network. These six target metabo-
lites could not be produced by the draft network in general. Interestingly, those metabo-
lites cannot be produced by all three draft networks, giving us the hint that the pathways
for this metabolites are very fragile. Comparing the results for E.coli-50 and E.coli-100,
we see that for two targets, the experiments on E.coli-50 timeout, while they could be
solved in time on E.coli-100. For E.coli-200, we see 10 experiments timeout, 10 com-
puting the optimal value in time, and for 9 experiments clasp finishes computing all
optimal solutions in time. This suggests that pathways, which can be disturbed by
removing few reactions, are very fragile and hard to reconstruct, while more robust
pathways, which are only disturbed when removing lots of reactions, are more eas-
ily repaired. For target metabolites whose production pathways are not disturbed, the
computation time is insignificant.

In our second experiment, we investigate the scalability of our approach in view of
the size of the reference network, taking into account the entire set of target metabo-
lites. We created subsets of the MetaCyc network, choosing 10 random samples of
5000, 6000, 7000, 8000, and 9000 reactions. We fixed the draft network by removing
200 reactions from the E.coli network and tried to complete its completion relative to
the differently large reference networks. Note that the joint explanation of all 28 targets
is much more difficult than just explaining a single target. This is because the restric-
tions to interesting reactions introduced in Section 3 become less effective when aiming
at multiple targets. On the other hand, the identification of a minimum completion pro-
ducing a maximum set of target is a highly significant question in synthetic biology.

As above, our experiments use a multi-step process. In a first step, we use clasp
to compute for each reference network the minimum number of reactions needed to
complete the network. Once we have computed the optimal value, we continue by com-
puting the reactions essential to all 28 targets, that is, the reactions contained in every
answer set satisfying the optimality criterion. This is accomplished by computing the
cautious consequences using the option --cautious of clasp. These reactions are es-
sential for the joint production of all target metabolites. Finally, we use clasp as before
to enumerate all optimal solutions.

The first line gives the size of the investigated reference network. The columns la-
beled with i identify the instance of the reference network. The column topt gives the
computation time for computing the minimum number of reactions needed for a com-
pletion. Column tc shows the time needed to compute the essential reactions, that is,
all reactions that are in all minimum completion. The columns labeled with tall show
the time needed to compute all optimal solutions. The columns labeled with #opt show
how many optimal solution have been found. All times are given in seconds.

We observe that the problem is easily handled up to a size of 6000 reactions; all such
problems can be solved under a second. Starting with 7000 reactions, we start to obtain
computational more demanding problems, and finally a lot of timeouts at size 9000.
Notably, our experiments are restricted by a timeout of 10 minutes; existing approaches
to network completion usually run simulations over the period of a day. Of course, we
have to extend the timeout in a production mode as well. Interestingly, the successful
runs show that finding the optimal number of solutions takes most of the computation
time; an issue we want to address in the future by biological domain-specific heuristics.
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Table 2. Completion with 5000,. . . ,9000 reactions

5000
i topt opt tc tall #opt
1 0.25 5 0.19 0.21 72
2 0.23 8 0.16 0.19 36
3 0.20 5 0.16 0.20 3
4 0.14 11 0.20 0.17 12
5 0.18 3 0.16 0.14 24
6 0.39 11 0.26 0.26 24
7 0.18 4 0.18 0.15 2
8 0.18 9 0.22 0.23 60
9 0.27 15 0.19 0.20 16

10 0.15 3 0.16 0.14 6

6000
i topt opt tc tall #opt
1 0.24 4 0.20 0.20 6
2 0.28 4 0.23 0.19 3
3 3.46 16 0.46 0.43 50
4 0.17 7 0.21 0.22 6
5 0.19 2 0.21 0.23 4
6 0.54 17 0.26 0.28 28
7 0.23 5 0.21 0.21 8
8 0.29 19 0.18 0.26 55
9 0.43 9 0.23 0.27 24

10 0.18 3 0.16 0.18 30

7000
i topt opt tc tall #opt
1 105.16 27 3.24 3.33 160
2 -
3 10.82 19 2.15 1.86 48
4 0.38 5 0.36 0.38 168
5 0.83 14 0.46 0.44 27
6 0.58 7 0.42 1.15 10
7 0.30 2 0.27 0.23 3
8 16.12 14 0.38 0.54 88
9 58.00 17 1.39 0.89 300
10 11.20 18 9.40 8.28 80

8000
i topt opt tc tall #opt
1 265.14 15 274.56 251.34 672
2 1.07 7 0.25 0.30 5
3 5.16 13 1.23 1.13 4
4 1.50 8 0.36 0.35 10
5 0.68 13 0.87 0.98 12
6 78.49 20 48.91 49.67 288
7 195.66 8 1.77 1.58 40
8 5.98 15 3.44 3.63 24
9 9.08 11 0.53 0.59 8
10 0.89 11 0.48 0.42 12

9000
i topt opt tc tall #opt
1 12.34 17 7.45 8.95 18
2 -
3 28.05 12 11.32 13.99 88
4 -
5 -
6 410.76 30 3.88 3.79 14
7 271.02 16 11.13 28.61 2976
8 -
9 -
10 -

4.2 Inverse Scope Problem

Last but not least, let us evaluate our approach to the inverse scope problem. As above,
we consider the complete E.coli network and try to compute for every target the min-
imum number of seeds needed to produce it. Once accomplished, we enumerate all
minimum sets of seeds.

Again, we first solve the optimality problem and use clasp to compute the mini-
mum number of seeds needed to produce the target metabolite; and in a second step we
relaunch clasp to compute all optimal solutions.

The first column denotes the target metabolite for whose production the seeds are
computed. The second column shows the time in seconds for computing the minimum
number of seeds. The third one gives the minimum number of seeds. The fourth column
shows the time in seconds for computing all optimal solutions, and the fifth one shows
the number of optimal solutions.

The results show that most of the targets can be produced by providing one or two
seeds only. Interestingly, we found that only groups of three seeds are needed to produce
all 28 targets. We also checked with the cautious reasoning mode for essential seeds,
belonging to all minimum solution but none were found. We further used clasp with
option --brave to compute the union of all reactions occurring in optimal solutions
and found a set of 136 different metabolites, from which all minimum sets of seeds are
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Table 3. Computing minimal seeds for E.coli targets

T topt opt tall #opt
1 2.40 1 14.82 6
2 0.45 1 35.76 12
3 0.38 1 16.02 6
4 28.21 1 25.42 4
5 19.41 2 - -
6 4.30 2 187.06 50
7 1.29 2 166.73 63
8 15.79 1 17.24 4
9 13.45 1 13.98 4
10 0.89 1 17.00 5
11 0.53 1 25.92 9
12 7.28 1 14.78 4
13 4.78 1 9.88 4
14 13.23 1 7.67 4

T topt opt tall #opt
15 0.32 1 29.58 11
16 0.32 1 31.16 11
17 14.05 1 24.46 1
18 0.28 1 19.66 3
19 10.44 2 - -
20 23.33 1 27.58 5
21 14.23 1 6.90 4
22 0.37 1 49.79 11
23 - - - -
24 - - - -
25 17.19 1 21.36 4
26 0.55 1 33.24 5
27 19.85 1 15.22 4
28 - - - -

taken. Since we are only discriminating the targets among the seeds in (13), we were
surprised to find many seeds among the reactants of the reactions producing the targets.
However, for more meaningful results, we need more biological knowledge, to exclude
more metabolites as seeds.

5 Discussion

The easy characterization of reachability is one of the key features of ASP. We have
exploited this to provide a simple yet powerful account of metabolic network synthesis,
a crucial application in the elaboration and design of bioprocesses. The distinguishing
feature of our ASP-based approach lies in the unique combination of ease of modelling
and powerful reasoning modes, supported by efficient solver technology. In fact, ex-
isting qualitative approaches to network synthesis are based on stochastic simulations
based on hidden Markov models (cf. [11]), taking several hours to obtain results from
the relative frequencies of compounds in the simulations. Unlike this, our approach is
complete and thus allows for proving rather than estimating the production of metabo-
lites. Moreover, the various reasoning modes, including the enumeration of optimal
solutions as well as cautious and brave reasoning with respect to all or optimal solu-
tions only, respectively, are indispensable in a biological application due to the large
number of possible solutions. For instance, cautious reasoning relative to optimal solu-
tions makes us discover the essential nutritions for producing a target metabolite. These
reasoning modes together with the high-level specification of metabolic networks make
our approach attractive to biologists, given that they can easily elaborate and explore
their model “in silico” by means of ASP.

From the perspective of ASP, our application fostered the development of new rea-
soning modes that were implemented within the ASP solver clasp (1.2.0).4 For one

4 http://potassco.sourceforge.net

http://potassco.sourceforge.net
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thing, clasp allows for optimization techniques not available in any other ASP solver.
Of particular interest is the --restart-on-model option that restarts after find-
ing a solution (instead of backtracking). This led to a significant increase in converg-
ing to an optimal solution. To a turn, we then exploit the options --opt-all and
--opt-value for enumerating all optimal models. Even though the latter can also
be addressed by adding an appropriate constraint to the underlying ASP program, the
options allow us to leave the underlying program untouched. For another thing, clasp
allows for computing all brave and cautious consequences5 by means of a linear6 num-
ber of calls to a solver (internally computing one answer set) rather then enumerating
the entire set of answer sets. This is accomplished by consecutive refinements of an
internal constraint by appeal to the incremental solving techniques introduced in [16].
This feature is also unique to clasp, although a-priori given brave and cautious queries
can be decided by other ASP solvers, like dlv [17], as well.

Although, to the best of our knowledge, our application is novel in the field of ASP in
particular and declarative programming in general, there has been an increasing interest
in using ASP and/or LP technology for addressing biological problems over the last
years. Among them, we find [18,19,20,21] as well as [22] building upon abductive
logic programming.

Future work will mainly deal with the elaboration of biological domain knowledge
for a better narrowing of the solution space and the application of our methodology in
the construction of the metabolic network of the recently sequenced green alga Chlamy-
domonas reinhardtii (http://www.goforsys.de). To hint biologists to missing
reactions, we currently explore only the space of known chemical reactions, but in fu-
ture one could also envisage abducing yet unknown chemical reactions, similar to [22].

Acknowledgements. This work was funded by the Federal Ministry of Education and
Research within the GoFORSYS project (http://www.goforsys.org/; grant 0313924).

References

1. Savageau, M.: Biochemical system analysis: a study of function and design in molecular
biology. Addison-Wesley, Reading (1976)

2. Kompala, D., Ramkrishna, D., Jansen, N., Tsao, G.: Investigation of bacterial-growth on
mixed substrates. Biotechnology and Bioengineering 28(7), 1044–1055 (1986)

3. Bonarius, H., Schmid, G., Tramper, J.: Flux analysis of underdetermined metabolic networks:
The quest for the missing constraints. Trends Biotechnology 15, 308–314 (1997)

4. Schilling, C., Schuster, S., Palsson, B., Heinrich, R.: Metabolic pathway analysis: Basic con-
cepts and scientific applications in the post-genomic era. Biotechnology progress 15, 296–
303 (1999)

5. Wildermuth, M.: Metabolic control analysis: biological applications and insights. Genome
Biology 1(6), 1031.1–1031.5 (2000)

6. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2003)

5 This is accomplished with options --brave and --cautious.
6 That is, linear in the number of atoms.

http://www.goforsys.de


326 T. Schaub and S. Thiele

7. Nikoloski, Z., Grimbs, S., May, P., Selbig, J.: Metabolic networks are np-hard to reconstruct.
Journal of Theoretical Biology 254, 807–816 (2008)

8. Nikoloski, Z., Grimbs, S., Selbig, J., Ebenhöh, O.: Hardness and approximability of the in-
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Abstract. As a novel, grand AI challenge, General Game Playing is
concerned with the development of systems that understand the rules of
unknown games and play these games well without human intervention.
In this paper, we show how Answer Set Programming can assist a general
game player with the special class of single-player games. To this end,
we present a translation from the general Game Description Language
(GDL) into answer set programs (ASP). Correctness of this mapping
is established by proving that the stable models of the resulting ASP
coincide with the possible developments of the original GDL game. We
report on experiments with single-player games from past AAAI General
Game Playing Competitions which substantiate the claim that Answer
Set Programming can provide valuable support to general game playing
systems for this type of games.

1 Introduction

General Game Playing is concerned with the development of systems that under-
stand the rules of previously unknown games and play these games well without
human intervention. Identified as a new grand AI challenge, this endeavor re-
quires to combine methods from a variety of a sub-disciplines, such as Knowledge
Representation and Reasoning, Search, Game Playing, Planning, and Learning
[1,2,3,4,5]. The annual AAAI General Game Playing contest has been established
in 2005 to foster research in this area and to evaluate general game playing sys-
tems in a competitive setting [6]. During the competition, participating systems
receive the rules of hitherto unknown games. The contestants get some time to
“contemplate” about the game (typically 5 to 20 minutes) and then start playing
against each other with a further time limit for each move (typically 20 to 60
seconds). All this takes place without human interference.

General game playing requires to formalize the rules of arbitrary games in
such a way that they can be processed by machines. The Game Description
Language (GDL) [7] serves this purpose by allowing one to describe any finite
and information-symmetric n-player game. GDL uses the syntax of normal logic
programs, and its semantics is given by a formal game model [8] on the basis of
the standard model of stratified programs as defined in [9]. Due to the closeness

P.M. Hill and D.S. Warren (Eds.): ICLP 2009, LNCS 5649, pp. 327–341, 2009.
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of GDL rules to Answer Set Programs, in both syntax and semantics, the ques-
tion naturally arises whether this programming paradigm can provide valuable
support to a general game playing system.

In this paper, we give a positive answer to this question by showing that
Answer Set Programming can assist general game players with the special class
of single-player games. This type of games provides for an indirect competition:
independent of the others, each player tries to achieve the best possible outcome
according to the rules. Examples from previous AAAI competitions are the well-
known game of Peg Jumping, where the goal is to end up with as few pegs as
possible on a given board, or Knight’s Tour, where the goal is to visit as many
squares as possible on a checkerboard of a given size.

Successful general game playing systems, such as [2,3,4], use automatically
generated heuristics in combination with search. A well-known technique in game
playing is endgame search (see, e.g., [10]), which means to perform a depth-
restricted, complete forward search from the current position in order to see
whether a winning position has been reached. In this paper, we show how An-
swer Set Programming can be used for this purpose in General Game Playing.
Inspired by existing approaches of using satisfiability techniques for planning
problems [11,12,13], we first map any (single- or multi-player) GDL specification
onto an ASP in such a way that the stable models coincide with the possible
developments of the original game. We then show how Answer Set Programming
can be used to perform a complete, depth-restricted forward search during game
play in case of single-player games. Experiments with a variety of single-player
games from past AAAI General Game Playing Competitions [6] show that for
most games, Answer Set Programming clearly outperforms the techniques for
complete forward search that are built into the currently best general game
players and thus provides a valuable addition to any such system.

The rest of the paper is organized as follows. In the next section, we recapitu-
late the basic syntax and semantics of GDL. In the section that follows, we map
GDL descriptions onto “temporally extended” answer set programs and prove
that the stable models for the resulting program coincides with the possible
developments of the original game. In Section 4, we present a provably correct
method of applying this result to perform endgame search in single-player games
using Answer Set Programming. In Section 5, we give an overview of successful
experiments with an off-the-shelf ASP system [14] for a variety of single-player
games taken from the past AAAI General Game Playing Competitions. We con-
clude in Section 6. For the rest of the paper, we assume that the reader is familiar
with the basic concepts of answer sets, as can be found, e.g., in [15].

2 Game Description Language

The Game Description Language (GDL) has been developed to formalize the
rules of any finite game with complete information in such a way that the de-
scription can be automatically processed by a general game player. Due to lack
of space, we can give just a very brief introduction to GDL and have to refer
to [7] for details.
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Table 1. The GDL keywords

role(R) R is a player
init(F) F holds in the initial position
true(F) F holds in the current position

legal(R,M) player R has legal move M

does(R,M) player R does move M

next(F) F holds in the next position
terminal the current position is terminal
goal(R,N) player R gets goal value N

GDL is based on the standard syntax of normal logic programs. We adopt
the Prolog convention according to which variables are denoted by uppercase
letters and predicate and function symbols start with a lowercase letter. As a
tailor-made specification language, GDL uses a few pre-defined predicate sym-
bols shown in Table 1. A further standard predicate is distinct(X,Y), which
means syntactic inequality of the two arguments.

GDL imposes the following restrictions on the use of these keywords in a set
of clauses describing a game.

– role only appears in facts;
– init and next only appear as head of clauses, and init is not connected

(in the dependency graph for the set of clauses) to any of true, legal,
does, next, terminal, or goal;

– true and does only appear in clause bodies, and does is not connected
to any of legal, terminal, or goal.

As an example, Figure 1 shows a complete set of GDL rules for the following,
simple single-player game. Starting with eight coins in a row,

• • • • • • • •
a b c d e f g h

jump with any coin forming a singleton stack over two coins onto another single
coin. Repeat until you end up with as few as possible (ideally, zero) single coins.1

GDL imposes some further, general restrictions on a set of clauses with the
intention to ensure finiteness of the set of derivable predicate instances. Specif-
ically, the program must be stratified [9,16] and allowed [17]. Stratified logic
programs are known to admit a specific standard model as defined in [9]. Based
on this concept of a standard model, a set of GDL rules can be understood as a
description of a formal game model—a state transition system—as follows [8].

To begin with, any valid game description G in GDL contains a finite set
of function symbols, including constants, which implicitly determines a set of
1 For instance, you may first jump with the coin in a over the coins in b and c onto

the coin in d. Next, you can take the single coin in c and jump over the two coins
which are now in position d, landing on the coin in e. But then no further move
will be possible, which according to the rules in Figure 1 means goal value 0.
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role(player).

succ(a,b).

. . .
succ(g,h).

init(cell(a,single)).

init(cell(Y,single)) :- succ(X,Y).

legal(P,jump(X,Y)) :- true(cell(X,single)), true(cell(Y,single)),

twobetween(X,Y).

legal(P,jump(X,Y)) :- true(cell(X,single)), true(cell(Y,single)),

twobetween(Y,X).

next(cell(X,nocoin)) :- does(player,jump(X,Y)).

next(cell(X,double)) :- does(player,jump(Y,X)).

next(cell(X,Number)) :- true(cell(X,Number)), does(player,jump(Y,Z)),

distinct(X,Y), distinct(X,Z).

terminal :- not continuable

continuable :- legal(player,Move).

goal(player,100) :- not lonelycoin.

goal(player, 50) :- lonelycoin, not threelonelycoins.

goal(player, 0) :- threelonelycoins.

lonelycoin :- true(cell(X,single)).

threelonelycoins :- true(cell(X,single)), true(cell(Y,single)),

true(cell(Z,single)), distinct(X,Y),

distinct(X,Z), distinct(Y,Z).

twobetween(X,Y) :- succ(X,Z), true(cell(Z,nocoin)), twobetween(Z,Y).

twobetween(X,Y) :- succ(X,Z), true(cell(Z,single)), onebetween(Z,Y).

twobetween(X,Y) :- succ(X,Z), true(cell(Z,double)), nilbetween(Z,Y).

onebetween(X,Y) :- succ(X,Z), true(cell(Z,nocoin)), onebetween(Z,Y).

onebetween(X,Y) :- succ(X,Z), true(cell(Z,single)), nilbetween(Z,Y).

nilbetween(X,Y) :- succ(X,Z), true(cell(Z,nocoin)), nilbetween(Z,Y).

nilbetween(X,Y) :- succ(X,Y).

Fig. 1. A complete GDL description for the coin game. The positions are encoded using
the feature cell(X, Y ), where X ∈ {a, . . . , h} and Y ∈ {nocoin , single, double}.

ground terms Σ . This set constitutes the symbol base Σ in the formal semantics
for G. The players and the initial position of a game can be directly determined
from the clauses for, respectively, role and init in G. In order to determine
the legal moves, update, termination, and goalhood for any given position, this
position has to be encoded first, using the keyword true. To this end, for any
finite subset S = {f1, . . . , fn} ⊆ Σ of a set of ground terms, the following set
of logic program facts encodes S as the current position.

Strue def= {true(f1)., . . . , true(fn).}

The legal moves for each player r in position S can then be determined as
the derivable instances of legal(r, M). Similarly, the fact whether S is terminal
is determined by whether terminal is derivable, in which case the derivable
instances of goal(r, N) determine the goal values for the individual players.
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Finally, for any function A : {r1, . . . , rn} �→ Σ that assigns a move to each
player r1 ∈ Σ, . . . , rn ∈ Σ , let the following set of facts encode A as joint move.

Adoes def= {does(r1, A(r1))., . . . , does(rn, A(rn)).}

The derivable instances of next(F) then determine the position resulting from
joint move A in the current position encoded by Strue. All this is summarized
in the following definition.

Definition 1. [8] Let G be a GDL specification whose signature determines
the set of ground terms Σ . The semantics of G is the state transition sys-
tem (R,S1, T, l, u, g) where 2

– R = {r ∈ Σ : G |= role(r)} (the players);
– S1 = {f ∈ Σ : G |= init(f)} (the initial position);
– T = {S ∈ 2Σ : G ∪ Strue |= terminal} (the terminal positions);
– l = {(r, a, S) : G ∪ Strue |= legal(r, a)}, where r ∈ R, a ∈ Σ , and S ∈ 2Σ

(the legality relation);
– u(A,S) = {f ∈ Σ : G ∪ Strue ∪Adoes |= next(f)}, for all A : (R �→ Σ) and

S ∈ 2Σ (the update function);
– g = {(r, n, S) : G ∪ Strue |= goal(r, n)}, where r ∈ R, n ∈ N, and S ∈ 2Σ

(the goal relation).

For example, given the game rules in Figure 1 it is easy to see that the initial
state is

S1 = {cell(a, single), . . . , cell(d, single), . . . , cell(h, single)}

The addition of Strue
1 to the game rules shows that (player , jump(a, d), S1) ∈ l,

and the resulting position (with A = {player �→ jump(a, d)}) is

u(A,S1) = {cell(a,nocoin), . . . , cell(d, double), . . . , cell(h, single)}

Definition 1 provides a formal semantics by which a GDL description is inter-
preted as an abstract n-player game: in every position S , starting with S1 , each
player r chooses a move a that satisfies l(r, a, S). As a consequence the game
state changes to u(A,S), where A is the joint move. We introduce the following
notation for possible developments in a game. Consider two finite sequences of,
respectively, joint moves A1, . . . , Ak and states S2, . . . , Sk+1 (k ≥ 0). Then

S1
A1−→ S2

A2−→ . . .
Ak−1−→ Sk

Ak−→ Sk+1 (1)

if for each i = 1, . . . , k we have

– Si �∈ T ,
– (r, Ai(r), Si) ∈ l for each r ∈ R, and
– Si+1 = u(Ai, Si).

2 Below, entailment |= is via the aforementioned standard mode as defined in [9], and
2Σ denotes the finite subsets of Σ .
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The game ends when a position in T is reached, and then g determines the
outcome for each player. The syntactic restrictions in GDL (see [7] for details)
ensure that entailment wrt. the standard model is decidable and that only finitely
many instances of each predicate are entailed. This guarantees that the definition
of the semantics is effective.

3 Mapping GDL to a Logic Program with Time

The semantics for GDL according to Definition 1 shows that the plain game rules
need to be repeatedly applied when determining the legal moves and their effects
for different positions. Therefore, in order to be able apply logic programming
techniques to directly reason about the evolution of a game position, the rules
need to be “temporalized” in a way that is common for encodings of temporal
domains as logic programs (see, e.g., [11,12,18]). In the following, we use the new
predicate holds(F,T) to denote that feature F holds in the game position at
time T. Time shall be encoded by natural numbers starting with 1.

Definition 2. Let G be a set of GDL rules, then the temporal extension of G,
written ext(G), is the set of logic program clauses obtained from G as follows.

1. Each occurrence of init(ϕ) is replaced by holds(ϕ,1), and each atom
p(t1, . . . , tn) in the body of a clause for init is replaced by p(t1, . . . , tn, 1),
provided that p �= distinct.

2. Each occurrence of true(ϕ) is replaced by holds(ϕ,T), and each next(ϕ)
by holds(ϕ,T+1).

3. Each occurrence of each atom p(t1, . . . , tn) is replaced by p(t1, . . . , tn, T),
provided that p �∈ {init, true, next, role, distinct} , and distinct(t1, t2)
is replaced by not t1=t2.

As an example, consider the temporal extension of the game rules in Figure 1.

role(player).
succ(a,b,T).
...
succ(g,h,T).
holds(cell(a,single),1).
holds(cell(Y,single),1) :- succ(X,Y,1).

legal(P,jump(X,Y),T) :- holds(cell(X,single),T),
holds(cell(Y,single),T),
twobetween(X,Y,T).

legal(P,jump(X,Y),T) :- holds(cell(X,single),T),
holds(cell(Y,single),T),
twobetween(Y,X,T).

holds(cell(X,nocoin),T+1) :- does(player,jump(X,Y),T).
holds(cell(X,double),T+1) :- does(player,jump(Y,X),T).
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holds(cell(X,Number),T+1) :- holds(cell(X,Number),T),
does(player,jump(Y,Z),T),
not X=Y, not X=Z.

terminal(T) :- not continuable(T).
continuable(T) :- legal(player,Move,T).
goal(player,100,T) :- not lonelycoin(T).
goal(player, 50,T) :- lonelycoin(T), not threelonelycoins(T).
goal(player, 0,T) :- threelonelycoins(T).
lonelycoin(T) :- holds(cell(X,single),T).
threelonelycoins(T) :- holds(cell(X,single),T),

holds(cell(Y,single),T),
holds(cell(Z,single),T),
not X=Y, not X=Z, not Y=Z.

twobetween(X,Y,T) :- succ(X,Z,T), true(cell(Z,nocoin),T),
twobetween(Z,Y,T).

twobetween(X,Y,T) :- succ(X,Z,T), true(cell(Z,single),T),
onebetween(Z,Y,T).

twobetween(X,Y,T) :- succ(X,Z,T), true(cell(Z,double),T),
nilbetween(Z,Y,T).

onebetween(X,Y,T) :- succ(X,Z,T), true(cell(Z,nocoin),T),
onebetween(Z,Y,T).

onebetween(X,Y,T) :- succ(X,Z,T), true(cell(Z,single),T),
nilbetween(Z,Y,T).

nilbetween(X,Y,T) :- succ(X,Z,T), true(cell(Z,nocoin),T),
nilbetween(Z,Y,T).

nilbetween(X,Y,T) :- succ(X,Y,T).

It is easy to see that the resulting program can be made more efficient by omitting
the time argument in any predicate that

1. is not among the GDL keywords, and
2. does not depend on true in the original game description.

Thus, for instance, predicate succ(x, y) in our example need not carry the time
argument because its extension does not depend on the current game position.
This independence can be easily computed from the dependency graph for a set
of GDL rules.

The ease with which GDL descriptions can be mapped onto a logic program
with explicit time is the major reason for the expectation that Answer Set Pro-
gramming can be a valuable addition to a general game playing system. The
temporalized GDL rules allow us to encode the fact that at time t the players
choose a joint legal move A : R �→ Σ (where R = {r1, . . . , rn} are the roles in
the game and Σ the symbol base) by the following additional facts.
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Adoes(t) def= {does(r1, A(r1), t)., . . . , does(rn, A(rn), t).}

With this, the mapping of a GDL description to a logic program with time can
be proved correct with regard to the semantics of GDL according to Definition 1.

Theorem 1. Let G be a valid GDL description and (R,S1, T, l, u, g) its se-
mantics. For any finite sequence of legal joint moves and states, we have that

S1
A1−→ S2

A2−→ . . .Sk
Ak−→ Sk+1

if and only if the standard model M of ext(G)∪Adoes
1 (1)∪. . .∪Adoes

k (k) satisfies
the following.

– Si = {f ∈ Σ : M |= holds(f, i)} for each 1 ≤ i ≤ k + 1 and
– M |= legal(r, Ai(r), i) for each r ∈ R and each 1 ≤ i ≤ k.

Proof. By induction. For k = 1 the claim follows from

– the replacement of init(ϕ) by holds(ϕ, 1) in ext(G), and by the construc-
tion of S1 in Definition 1;

– the replacement of legal(�, α) and true(ϕ) by, respectively, legal(�, α, T)
and holds(ϕ, T) in ext(G), and by the construction of l in Definition 1.

The induction step follows from

– the replacement of next(ϕ), true(ϕ), and does(�, α) by holds(ϕ, T+ 1),
holds(ϕ, T), and does(�, α, T), respectively, in ext(G), and by the construc-
tion of u in Definition 1;

– the replacement of legal(�, α) and true(ϕ) by, respectively, legal(�, α, T)
and holds(ϕ, T) in ext(G), and by the construction of l in Definition 1.

This result shows that the temporally extended logic program can be used to
infer the evolution of the game position given a sequence of joint moves. As an
example, consider the addition of the sequence of moves (cf. Footnote 1)

does(player,jump(a,d),1).
does(player,jump(c,e),2).

to the temporalized extension of the game description in Figure 1. It is easy to
verify that the standard model for the resulting logic program includes each of
the following.

legal(player,jump(a,d),1) legal(player,jump(c,e),2)
holds(cell(a,nocoin),3) holds(cell(b,single),3)
holds(cell(c,nocoin),3) holds(cell(d,double),3)
holds(cell(e,double),3) holds(cell(f,single),3)
holds(cell(g,single),3) holds(cell(h,single),3)
terminal(3) goal(player,0,3)



Answer Set Programming for Single-Player Games in General Game Playing 335

4 Using ASP for Single-Player Games

Theorem 1 lays the foundation for the use of Answer Set Programming to
perform endgame search for single-player games, that is, a complete, depth-
restricted search starting in the current game position with the aim to find a
winning sequence of moves within the given horizon. Because the standard model
of a stratified program coincides with its only answer set (see, e.g., [15]), ASP
can be used directly to determine the legality of a sequence of moves and the
result from any current position. The basic idea, then, is to take the temporal
extension of the GDL rules for a single-player game and to search for a sequence
of moves that satisfies the following conditions.

1. Exactly one move is made at every point in time unless a terminal position
has been reached.

2. Each move is legal when being played.
3. A terminal position is eventually reached.
4. The terminal position determines the intended goal value.

Any answer set that satisfies these constraints provides a solution to the game,
that is, a sequence of moves that leads from the current position to a terminal
position with the intended goal value.

In order to implement this search in a general game player, we need two
common additions that have been defined for ASP [19]: a weight atom

m { p : d } n

means that an answer set contains at least m and at most n different instances
of atom p for which condition d holds (in the answer set). A constraint is a rule
of the form :- b1, . . . , bk and excludes any answer set that satisfies all literals
b1, . . . , bk .

With the help of weight atoms and constraints, endgame search is performed
by augmenting a temporally extended GDL specification for a single-player game
by the clauses

1: 1 {does(r,M,T) : move domain(M)} 1 :- not terminated(T).
terminated(T) :- terminal(T).
terminated(T+1) :- terminated(T).

2 : :- does(r,M,T), not legal(r,M,T).
3: :- 0 {terminated(T) : time domain(T)} 0.
4 : :- terminated(T), not terminated(T-1), not goal(r,gmax,T).

:- terminated(1), not goal(r,gmax,1).

(2)

Here, r is assumed to be the (only) constant for which the game rules include
the clause role(r), and natural number gmax stands for the goal value the
game player is aiming for. These additional clauses provide a formal encoding of
the four aforementioned conditions on the answer sets to provide a solution to
the single-player game.
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1: Predicate terminated(t) is used to indicate that a terminal position has been
reached at (or before) time t. This auxiliary predicate is used to restrict the
requirement for a legal move to every position before reaching a terminal
one.

2: No answer set can stipulate a move that is not legal.
3: No answer set can have zero instances of terminated(t).
4: The state at the exact time of termination must have the desired goal value.

(The last clause deals with the very special case that the game is already
terminated at time 1.)

The ASP clauses in (2) require the definition of the domain of moves (using
the predicate move domain) according to the underlying game description. A
suitable definition can be easily computed on the basis of the dependency graph
for the given game description; see Section 5 for details. A similar definition is
required for the domain of time, which is assumed to be given as {1, . . . , n+ 1}
where n is the intended horizon for the endgame search.

If clauses (2) are added to the temporal extension of a GDL game according to
Definition 2, then this amounts to a complete, depth-restricted search right from
the initial position. Aiming instead at endgame search from the current position
during game play, this can be easily achieved by substituting the collection of
holds(f, 1) facts, which result from the given init(f) clauses, by a collection
of similar facts using the features that constitute the current position.

As an example, recall from the preceding section the temporal extension of
the GDL rules of Figure 1. Let these be augmented by

coordinate(a).
...
coordinate(h).
move_domain(jump(X,Y)) :- coordinate(X), coordinate(Y).

1 { does(player,M,T) : move_domain(M) } 1 :- not terminated(T).
terminated(T) :- terminal(T).
terminated(T+1) :- terminated(T).
:- does(player,M,T), not legal(player,M,T).
:- 0 { terminated(T) : time_domain(T) } 0.
:- terminated(T), not terminated(T-1), not goal(player,100,T).
:- terminated(1), not goal(player,100,1).

The answer sets for this program coincide with the solutions to the original
game; an example is the answer that includes the following atoms.

does(player,jump(d,g),1) does(player,jump(f,b),2)
does(player,jump(c,a),3) does(player,jump(e,h),4)
terminal(5) goal(player,100,5)

The correctness of the method to solve single-player games with the help of
Answer Set Programming is given by the following two theorems.
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Theorem 2. Consider a GDL description G with semantics (R,S1, T, l, u, g)
such that R = {r} for some r. Let α1, . . . , αn and S2, . . . , Sn+1 be two se-
quences (n ≥ 0) such that

– S1
{α1}−→ . . .

{αn}−→ Sn+1,
– Sn+1 ∈ T , and
– (r, gmax , Sn+1) ∈ g.

Then ext(G) ∪ (2) admits an answer set in which

does(r, α1, 1) . . . does(r, αn, n) (3)

are exactly the positive instances of predicate does.

Proof. From Theorem 1 and the fact that the only answer set for ext(G) coin-
cides with its standard model, and given that none of S1, . . . , Sn is terminal,3

it follows that there is an answer set for ext(G) augmented by the first three
clauses in (2) that includes (3) as the only instances of predicate does. This is
also an answer set for the entire program ext(G) ∪ (2) since

– (r, αi, Si) ∈ l for each i = 1, . . . , n,
– Sn+1 ∈ T , and
– (r, gmax , Sn+1) ∈ g and either Sn �∈ T or n = 0.

Theorem 3. Consider a GDL description G with semantics (R,S1, T, l, u, g)
such that R = {r} for some r. If A is an answer set for ext(G) ∪ (2), then
there exists n ≥ 0 such that

does(r, α1, 1) . . . does(r, αn, n) (4)

are exactly the positive instances of predicate does in A, and there are states
S2, . . . , Sn+1 such that

– S1
{α1}−→ . . .

{αn}−→ Sn+1,
– Sn+1 ∈ T , and
– (r, gmax , Sn+1) ∈ g.

Proof. Since ext(G) ∪ (2) contains only one clause with does in the head,
the clauses labeled ‘1:’ and ‘3:’ in (2) ensure the existence of a finite sequence
α1, . . . , αn (where n ≥ 0) such that (4) are the only positive instances of does
in A. From Theorem 1 and the clauses labeled ‘2:’ and ‘3:’ in (2) it follows that
there are states S2, . . . , Sn+1 such that

S1
{α1}−→ . . .

{αn}−→ Sn+1 and Sn+1 ∈ T

Finally, the constraints labeled ‘4:’ in (2) ensure that (r, gmax , Sn+1) ∈ g.

3 Which follows from S1
{α1}−→ . . . Sn

{αn}−→ Sn+1 ; cf. the conditions stated below (1).
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5 Experimental Results

We have implemented the ASP-based endgame search for single-player games
using Clingo [14] as an off-the-shelf answer set solver in combination with the
general game playing system described in [4]. The answer set programs are au-
tomatically generated from the game description. This requires to first compute
the domain of moves as used in predicate move domain(M) in clauses (2). The
domains, or more precisely supersets thereof, of predicates and functions in a
given game description can, in general, be computed by generating a dependency
graph from the rules. The graph contains one node for every argument position
of every function and predicate symbol, and one node for each function symbol
itself (including each constant). An edge is added between an argument node
and a function symbol node if the latter appears in the respective argument of
a function or predicate in a rule of the game. An edge between two argument
position nodes is added if there is a rule in the game in which the same variable
appears in both arguments. Argument positions in each connected component
of the graph share a domain, and the constants and function symbols in the con-
nected components are the domain elements. Specifically, we take as the overall
domain of the moves that of the second argument of legal.

Figure 2 shows a small excerpt of the dependency graph for our running
example game. The first argument of jump and the first argument of cell are
connected because they share variable X in the game rule

next(cell(X,nocoin)) :- does(player,jump(X,Y)).

Similarly, the second argument of jump and the first argument of cell are
connected because they share variable X in the game rule

next(cell(X,double)) :- does(player,jump(Y,X)).

The init rules along with the succ facts then imply that the first and sec-
ond argument of jump and the first argument of cell all share the domain
{a, . . . , h} . The dependency graph also contains a link from the second argu-
ment of legal to function jump . This is a consequence of the clause

jump,1

jump,2

cell,1

succ,2

a

b

h

legal,2 jump

Fig. 2. An excerpt of a dependency graph for calculating domains of functions and
predicates. Ellipses denote argument positions of functions or predicates, respectively,
while rectangles denote function symbols themselves (including constants).
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Table 2. Results of a complete search for a variety of single-player games, with times
given in seconds. Experiments were run on a 1.66GHz processor. Symbol ∗ indicates
that the ASP system was aborted because it used more than 1 GB RAM, while Flux-
player was aborted after not finding a complete solution within 30 minutes. (We en-
forced these rather strict limits in view of practical play, as endgame search is only one
of several tasks during the contemplation phase or when deciding on the next move.)

Game ASP search time Fluxplayer Solution length
asteroids 0.11 2.60 10

asteroidsparallel 0.72 97.19 10
blocksworldparallel 9.78 1.80 3
duplicatestatelarge 0.16 17.54 14

eightpuzzle 77.11 ∗ 30
factoringaperturescience 0.28 3.86 4

factoringdeterminate 0.05 2.14 5
knightmove (8×8-board) ∗ ∗ (64)
knightstour (6×5-board) 7.33 117.70 30

peg ∗ 9.53 31
ruledepthlinear 0.19 9.60 49

ruledepthquadratic ∗ 12.70 44
statespacelarge 0.27 343.38 14

wargame01 ∗ 39.53 48

legal(P,jump(X,Y)) :- true(cell(X,single)), ... .

Hence, the domain of moves in this game contains every possible instance of
jump(X,Y ) with X,Y ∈ {a, . . . , h}.

In addition to the domain of moves, the intended maximal depth for an
endgame search defines the domain for the additional time variable which is
used in the temporally extended program as well as in the clauses (2). Given do-
main restrictions for all variables, any existing answer set programming system
can be employed to carry out the endgame search for single-player games.

We conducted experiments with all single-player games that were available at
the time of publication through the online repository games.stanford.edu.Most
of these games were used in past AAAI General Game Playing Competitions [6].
For the sake of reproducibility, we only report on the experiments where ASP
search was applied straight away to the initial position. The results are shown in
Table 2. It turns out that most of the games can actually be solved completely in
reasonable, often very short, time that would have allowed a general game player
to pre-compute a winning strategy during the “contemplation” phase. The re-
sults also show that in most cases the ASP search clearly outperforms the previ-
ously used forward search in our Fluxplayer—which over the past competitions
proved to be the overall best performing system on single-player games [4].

6 Conclusion

We have shown how any game specified in the general Game Description Lan-
guage can be mapped onto a normal logic program with time, and we have proved
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the correctness of this mapping against the formal game semantics for GDL. On
this basis, we have illustrated how Answer Set Programming can be successfully
deployed as a search method to assist general game players with tackling single-
player games. Due to the closeness between GDL and ASP—in both syntax and
semantics—the latter is ideally suited for performing blind search as part of a
general strategy to solve single-player games.

We have substantiated this claim by reporting on experimenting with single-
player games from past AAAI General Game Playing Competitions. The results
show that actually most of these games could have been solved right from the
start by an off-the-shelf ASP system. As games become more complex, they
cannot be expected to be tackled by blind search alone, but still an ASP-based
component constitutes a valuable addition to any general game playing system
when it comes to performing depth-limited endgame search during game play.

The main limitation for the deployment of current ASP systems is the required
grounding of the program, which easily becomes too large to be of practical use.
Fortunately, a general game playing system can use the sizes of the domains for
each variable to give an estimate of the size of the fully grounded, temporally
extended game rules. On this basis, the system can easily decide on the fly
whether or not it should execute the ASP-based endgame search in the current
position.

For future work, we intend to investigate ways to use ASP for endgame search
in multi-player games on the basis of Theorem 1. This will not be a straightfor-
ward extension of the method presented in this paper, because a single answer
set determines a winning joint strategy for all players rather than a winning
strategy against one or more opponents. Another direction of future work con-
sists in investigating whether the very recently developed method of first-order
Answer Set Programming [20] can be used to help a general game playing system
perform endgame search in cases where grounding is too expensive.
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Abstract. We study finding similar or diverse solutions of a given computational
problem, in answer set programming, and introduce offline methods and online
methods to compute them using answer set solvers. We analyze the computational
complexity of some problems that are related to finding similar or diverse solu-
tions, and show the applicability and effectiveness of our methods in phylogeny
reconstruction.

Keywords: similar/diverse solutions, answer set programming, phylogenies.

1 Introduction

Although, for many computational problems, the main concern is to find a best solu-
tion (e.g., a most preferred product configuration, a shortest plan, a most parsimonious
phylogeny), for some problems, computing a subset of good solutions that are diverse
or similar may be desirable. For instance, in product configuration, one could be inter-
ested in obtaining several diverse configurations of a product instead of checking all
possible configurations, to pick one. In planning, it may be desirable to compute a set
of plans that are similar to each other, so that, when the plan that is being executed fails,
one can switch to a most similar one. Motivated by such applications, we study the
problem of computing similar or diverse solutions in answer set programming (ASP),
and then show the applicability of our approach to another interesting problem: phy-
logeny reconstruction (i.e., computing leaf-labeled trees, called phylogenies, to model
the evolutionary history of a set of species).

Problems related to computing similar or diverse solutions have been studied in
the context of propositional logic [2], and constraint programming [12,13]. On the
other hand, although there are many appealing ASP applications (e.g., product con-
figuration [22], planning [15], phylogeny reconstruction [4]), for which finding simi-
lar/diverse solutions could be useful, such problems have not been studied in ASP. The
methods we develop in this paper fulfill this need in ASP.

Phylogeny reconstruction is important for research areas as disparate as genetics,
historical linguistics, zoology, anthropology, archaeology. For example, a phylogeny

� This work has been supported by TUBITAK Grant 107E229 and the Wolfgang Pauli Institute,
Vienna.

P.M. Hill and D.S. Warren (Eds.): ICLP 2009, LNCS 5649, pp. 342–356, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Finding Similar or Diverse Solutions in Answer Set Programming 343

of parasites may help zoologists to understand the evolution of human diseases [6]; a
phylogeny of languages may help scientists to better understand human migrations [23].
For a given set of taxonomic units, some existing phylogenetic systems, like that of
[5,4], generate more than one phylogeny that explains the evolutionary relationships
between the given taxonomic units. There are phylogenetic systems that compute a
summary of these phylogenies (a consensus tree [1] or a supertree [21]). However, in
such cases, especially when there are too many phylogenies computed by a system, an
expert needs to compare these phylogenies in detail, by analyzing the similar/diverse
ones with respect to some distance measure, to pick the most plausible ones. Although
there are precisely defined measures to find the distance between them [17,3,20,14],
there is no phylogenetic system that helps experts to analyze phylogenies by comparing
them. The methods we develop in this paper fulfill this need in phylogenetics.

In particular, the main contributions of this paper are as follows.

– We describe two kinds of computational problems related to finding similar/diverse
solutions of a given problem, in the context of ASP (Section 2). Both kinds of
problems take as input an ASP program P that describes a problem, a distance
measure Δ that maps a set of solutions of the problem to a nonnegative integer,
and two nonnegative integers n and k. One problem asks for a set S of size n that
contains k-similar (resp. k-diverse) solutions, i.e., Δ(S) ≤ k (resp. Δ(S) ≥ k); the
other problem asks, given a set S of n solutions, for a k-close (k-distant) solution
s (s �∈ S), i.e., Δ(S ∪ {s}) ≤ k (resp. Δ(S ∪ {s}) ≥ k).

– We study the computational complexity of these problems establishing complete-
ness results under reasonable assumptions for the problem parameters (Section 3).

– We introduce an offline method to compute a set of n k-similar (or k-diverse) so-
lutions to a given problem, by computing all solutions in advance and then using
some clustering methods to find the similar (diverse) solutions (Section 4).

– We introduce three online methods to compute a set of n k-similar (or k-diverse)
solutions to a given problem (Section 5). Online Method 1 reformulates the given
program to compute n-distinct solutions and formulates the distance function as an
ASP program, so that all n k-similar (k-diverse) solutions can be extracted from
an answer set for the union of these ASP programs. Online Method 2 does not
modify the given ASP program, but formulates the distance function as an ASP
program, so that a k-close (or k-distant) solution can be extracted from an answer
set for the union of these ASP programs and a previously computed solution; by
iteratively computing k-close (k-distant) solutions, we can compute online a set of
n k-similar (or k-diverse) solutions. Online Method 3 does not modify the given
program, and does not formulate the distance function as an ASP program, but it
modifies the ASP solver, in our case CLASP [10], to compute all n k-similar (or
k-diverse) solutions at once.

– We illustrate the applicability of these approaches on the phylogeny reconstruction
problem, by defining new distance measures for a set of phylogenies (Section 6),
by describing how the offline method and the online methods are applied to find
similar/diverse phylogenies (Section 7). After that, we compare the efficiency and
effectiveness of these methods on the family of Indo-European languages studied
in [4] (Section 8).
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ASP programs mentioned below are presented in an extended version
http://people.sabanciuniv.edu/esraerdem/papers/
iclp09-extended.pdf.

2 Computational Problems

We are interested in the following two sorts of problems related to computation of a
diverse/similar collection of solutions:

n k-SIMILAR SOLUTIONS (resp.n k-DIVERSE SOLUTIONS)
Given an ASP program P that formulates a computational problem P , a distance
measure Δ that maps a set of solutions for P to a nonnegative integer, and two
nonnegative integers n and k, decide whether a set S of n solutions for P exists
such that Δ(S) ≤ k (resp. Δ(S) ≥ k).

k-CLOSE SOLUTION (resp.k-DISTANT SOLUTION)
Given an ASP program P that formulates a computational problem P , a distance
measure Δ that maps a set of solutions for P to a nonnegative integer, a set S of
solutions for P , and a nonnegative integer k, decide whether a solution s (s �∈ S)
for P exists such that Δ(S ∪ {s}) ≤ k (resp. Δ(S ∪ {s}) ≥ k).

For instance, suppose that P describes the phylogeny reconstruction problem for Indo-
European languages. Then finding three diverse phylogenies is an instance of the former
problem. On the other hand, if we already have picked two phylogenies, then finding
another phylogeny that differs from these two is an instance of the latter.

The first kind of problems above has two parameters, n and k, so we can fix one and
try to minimize (resp. maximize) the distance between solutions to find the most similar
(resp. diverse) solutions.

MAXIMAL k-SIMILAR SOLUTIONS (resp.MAXIMAL k-DIVERSE SOLUTIONS)
Given an ASP program P that formulates a computational problem P , a distance
measure Δ that maps a set of solutions for P to a nonnegative integer, and a non-
negative integer k, find a maximal set S of solutions for P such that Δ(S) ≤ k
(resp. Δ(S) ≥ k) exists.

n MOST SIMILAR SOLUTIONS (resp.n MOST DIVERSE SOLUTIONS)
Given an ASP program P that formulates a computational problem P , a distance
measureΔ that maps a set of solutions for P to a nonnegative integer, and a nonneg-
ative integer n, find a set S of n solutions for P with the minimum (resp. maximum)
distance Δ(S).

Similarly, in the second class of problems, we can try to minimize (resp. maximize) the
distance k between a solution and a set of solutions, to find the most close (resp. distant)
solution.

MOST CLOSE SOLUTION (resp.MOST DISTANT SOLUTION)
Given an ASP program P that formulates a computational problem P , a distance
measure Δ that maps a set of solutions for P to a nonnegative integer, and a set S of
solutions for P , find a solution s (s �∈ S) for P with the minimum (resp. maximum)
distance Δ(S ∪ {s}).
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Table 1. Complexity results for computing similar solutions.

# Problem Complexity
1 n k-SIMILAR SOLUTIONS NP
2 k-CLOSE SOLUTION NP
3 MAXIMAL k-SIMILAR SOLUTIONS FNP//log
4 n MOST SIMILAR SOLUTIONS FPNP (FNP//log)
5 MOST CLOSE SOLUTION FPNP (FNP//log)
6 k-CLOSE SET NP

We can generalize k-CLOSE SOLUTION (resp.k-DISTANT SOLUTION) problems to sets
of solutions:

k-CLOSE SET (resp.k-DISTANT SET)
Given an ASP program P that formulates a computational problem P , a distance
measure Δ that maps a set of solutions for P to a nonnegative integer, a set S of
solutions for P , and a nonnegative integer k, decide whether a set S′ of solutions
for P exists such that |Δ(S)−Δ(S′)| ≤ k (resp. |Δ(S)−Δ(S′)| ≥ k).

3 Complexity Results

In this section, we turn our attention to the computational complexity of the problems
presented in Section 2. In order to do so, we first have to make some reasonable as-
sumptions on some of the problem parameters.

For the remainder of this section, let the ASP programP that formulates a computa-
tional problem P , be a propositional normal logic program. We assume that the given
number n of different solutions to consider (respectively the size of the set S) in in-
stances of the problems n k-SIMILAR SOLUTIONS and n MOST SIMILAR SOLUTIONS

is polynomial in the size of the input.
Furthermore, we consider distance measures Δ that map a set of solutions for P

to a nonnegative integer (which is usually implicitly done when real values have to
be represented for computation). As for computing Δ(S) for a set of solutions S, in
general we assume that deciding whether Δ(S) ≤ k for a given k is in NP. Moreover,
we assume that the value of Δ(S) is bounded by an exponential in the size of S (and
thus has polynomially many bits in the size of S).

Under these assumptions, the computational complexity (cf. [18] for a background
on the subject) of the problems concerning the computation of similar or diverse solu-
tions we are interested in, is given in Table 1. All entries are completeness results (under
usual reductions) and hardness holds even if Δ(S) is computable in polynomial time.
Moreover, the results are the same for the ‘symmetric’ problems, i.e., when SIMILAR is
replaced with DIVERSE, and CLOSE is replaced with DISTANT, respectively.

Membership for problem n k-SIMILAR SOLUTIONS (resp. n k-DIVERSE SOLU-
TIONS) follows from the fact that we can guess not only a candidate set S (since S
is polynomially bounded) but also a witness for Δ(S) ≤ k (resp. Δ(S) ≥ k), and
check in polynomial time whether every s ∈ S is a solution and that Δ(S) ≤ k (resp.
Δ(S) ≥ k). For hardness, one simply reduces answer-set existence for normal, proposi-
tional programs to this problem, which is an NP-complete problem. However, hardness
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holds also for nodal distance of trees (a distance measure introduced in Section 6 for
comparing phylogenies) encoded in a program (which naturally uses auxiliary atoms).

Theorem 1. Problem n k-SIMILAR SOLUTIONS (resp. n k-DIVERSE SOLUTIONS) is
NP-complete. Hardness holds even if Δ(S) is computable in polynomial time.

For a hardness result resorting to partial Hamming distance confer [2]. By similar argu-
ments we obtain NP-completeness for problem k-CLOSE SOLUTION (resp. k-DISTANT

SOLUTION).

Theorem 2. Problem k-CLOSE SOLUTION (resp. k-DISTANT SOLUTION) is NP-
complete. Hardness holds even if Δ(S) is computable in polynomial time.

When looking for maximal (wrt. subset inclusion) solutions, we face a function prob-
lem; here we assume that any S of size larger than n is clipped to any subset S′ of S of
size n. In particular, MAXIMAL k-SIMILAR SOLUTIONS (resp. MAXIMAL k-DIVERSE

SOLUTIONS) is solvable in FNP//log. Intuitively, FNP//log is the class of function
problems solvable in polynomial time using a nondeterministic Turing Machine with
output tape that may consult once an oracle that computes the optimal value of an opti-
mization problem solvable in NP. A requirement is that this value has logarithmically
many bits in the size of the input (see, e.g., [7,9] for more information on FNP//log
and other function classes used in this section).

Membership can be shown by computing the cardinality of a maximal set of solutions
S using the oracle. Note that since |S| is polynomially bounded in the size of the input, it
has logarithmically many bits as required. Then, one can nondeterministically compute
a set S of respective size together with a witness for Δ(S) ≤ k, and check in polynomial
time that this is indeed the case.

Hardness can be shown, e.g., for Δ(S) that takes the maximal (resp. minimal) Ham-
ming distance between answer sets in S on a subset of the atoms; note that such a partial
Hamming distance is a natural measure for problem encodings, where the disagreement
on output atoms is measured. This measure is not unrelated to the ones introduced for
comparing phylogenies in Section 6; one can polynomially reduce nodal distance to par-
tial Hamming distance, and vice versa also partial Hamming distance to nodal distance
of trees (allowing auxiliary atoms in the LP encoding).

Theorem 3. Problem MAXIMAL k-SIMILAR SOLUTIONS (resp. MAXIMAL k-DIVERSE

SOLUTIONS) is FNP//log-complete. Hardness holds even if Δ(S) is computable in
polynomial time.

FPNP-membership of n MOST SIMILAR SOLUTIONS (resp. n MOST DIVERSE SOLU-
TIONS) is obtained by first using the NP-oracle to compute the minimum distance us-
ing binary search (deciding polynomially many n k-SIMILAR SOLUTIONS problems).
Then, the oracle is used to compute S in polynomial time. Hardness follows from a
reduction of the Traveling Salesman Problem (TSP). Notably, if the distances are poly-
nomial in the size of the input, i.e., if the value of Δ(S) is polynomially bounded in the
size of S, then the problem is FNP//log-complete.

Theorem 4. Problem n MOST SIMILAR SOLUTIONS (resp. n MOST DIVERSE SOLU-
TIONS) is FPNP-complete, and FNP//log-complete if the value of Δ(S) is polynomial
in the size of S. Hardness holds even if Δ(S) is computable in polynomial time.
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Proceeding similarly as before, completeness for FPNP(resp. FNP//log if Δ(S) is
small) is obtained for MOST CLOSE SOLUTION (and for MOST DISTANT SOLUTION).

Theorem 5. Problem MOST CLOSE SOLUTION (resp. MOST DISTANT SOLUTION) is
FPNP-complete, and FNP//log-complete if the value of Δ(S) is polynomial in the size
of S. Hardness holds even if Δ(S) is computable in polynomial time.

For the generalization of k-CLOSE SOLUTION (resp. of k-DISTANT SOLUTION) to sets,
namely k-CLOSE SET (resp. k-DISTANT SET), NP-completeness holds by similar argu-
ments as for the former problem(s).

Theorem 6. Problem k-CLOSE SET (resp. k-DISTANT SET) is NP-complete. Hardness
holds even if Δ(S) is computable in polynomial time.

4 Offline Methods

We introduce an offline method to compute a set of n k-similar (resp. k-diverse) solu-
tions to a given problem, by computing all solutions in advance and then using some
clustering methods to find the similar (diverse) solutions. The idea is to make clusters
of n solutions, measure the distance of the set of solutions in each cluster, and pick the
cluster whose distance is less (resp. greater) than k.

We can solve this problem by means of a graph problem: build a complete graph G
whose nodes correspond to solutions and edges are labeled by distances between the
corresponding solutions; and decide whether there is a clique C of size n in G whose
weight (i.e., the distance of the set of solutions denoted by the clique) is less than k
(resp. greater than k). The set of vertices in the clique represents n k-similar phyloge-
nies. Such a clique can be computed using ASP, or one of the existing exact/approximate
algorithms.

5 Online Methods

We introduce three online methods to compute a set of n k-similar (or k-diverse) solu-
tions to a given problem P , given an ASP program P that represents P and a distance
function Δ that maps a set of solutions of P to a nonnegative integer.

Online Method 1 (Fig. 1) reformulates the given program P to compute n-distinct
solutions, formulates the distance function Δ as an ASP program D, and formulates
constraints on the distance function as an ASP program C, so that all n k-similar (k-
diverse) solutions can be extracted from an answer set for the union of these ASP pro-
grams, P ∪ D ∪ C. Such a reformulation of P can be obtained in two stages. First, we
copy every rule of the program n times: the i’th copy of the rule is obtained from r by
replacing every atom p(t1, t2, ..., tm) in r with p(i, t1, t2, ..., tm). Now we have a pro-
gram that computes n solutions to the problem P . Then, we add a constraint to ensure
that no two solutions are same.

Online Method 2 (Fig. 2) does not modify the given ASP program P , but formulates
the distance Δ(S) of a given set S of solutions as an ASP program D, and constraints
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Fig. 1. Computing n k-similar solutions, with Online Method 1

Fig. 2. Computing n k-similar solutions, with Online Method 2. Initially S = ∅. In each run, a
solution is computed and added to S, until |S| = n. The distance function and the constraints in
the program ensures that when we add the computed solution to S, the set stays k-similar.

Fig. 3. Computing n k-similar solutions, with Online Method 3. We implement the distance func-
tion into the ASP reasoner, so that the ASP reasoner becomes biased to compute similar solutions.
Each computed solution is stored by the reasoner until a set of n k-similar solutions is computed.
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on the distance function as an ASP program C, so that a k-close (or k-distant) solution
can be extracted from an answer set for P ∪ D ∪ C. By iteratively computing a k-close
(k-distant) solution, we can compute online a set of n k-similar (or k-diverse) solutions.

Online Method 3 (Fig. 3) does not modify the given program, and does not formulate
the distance function as an ASP program, but it modifies the ASP solver CLASP to
compute all n k-similar (or k-diverse) solutions at once.

6 Distance Measures for Similar or Diverse Phylogenies

A phylogenetic tree (phylogeny) for a set of taxonomic units is a finite rooted leaf-
labeled binary tree. To compare a set of phylogenies, and analyze the similar or diverse
ones in this set, we can measure the distance of a set of phylogenies by some functionΔ.
In the following, we introduce a distance function to measure the similarity/diversity of
a set of phylogenies, in terms of a distance function for two phylogenies. We present
the trees in the Newick format, where the sister subtrees are enclosed by parentheses.

Two distance functions for two phylogenies Among the existing functions for measur-
ing the distance between two trees [17,3,20,14], we consider the distance function of
[3] based on the nodal distances in trees. The nodal distance NDT (x, y) between two
leaves x and y in a tree T is the number of edges contained in the shortest path from one
leaf to the other. For example, consider the tree (a, (b, c)); the nodal distance between
a and b is 3, whereas the nodal distance between b and c is 2. Intuitively, the nodal
distance between two leaves in a tree represents the degree of their relationship in that
tree. After defining the nodal distance, [3] measures the distance Dn(T, T ′) between
two leaf-labeled trees T and T ′, both with the same set L of leaves, as follows:

Dn(T, T ′) =
∑

(x,y)∈L

|NDT (x, y)− NDT ′(x, y)|.

The difference of the nodal distances of two leaves in two trees represents the con-
tribution of these leaves to the distance between the trees. Let T1 = (a, (b, c)) and
T2 = (c, (a, b)) be two trees. In order to compute the distance between T1 and T2, we
compute the nodal distances of the pairs {a, b}, {a, c} and {b, c} for both trees and take
the sum of the differences. In this case the distance between T1 and T2 is 2.

The second distance function we consider is introduced specifically for languages,
based on our discussions with the historical linguist Don Ringe. For each vertex x of a
tree 〈V,E〉, let desc(x) denote its descendants and depth(x) its depth. To define the sim-
ilarity of two phylogenies 〈V,E〉 and 〈V ′, E′〉, let us first define the similarity of two
vertices v ∈ V and v′ ∈ V ′: f(v, v′) = 1 if desc(v) �= desc(v′); and f(v, v′) = 0 oth-
erwise. Let weight be a function mapping every depth to a nonnegative integer. Then we
can define the similarity of two trees T = 〈V,E〉 and T ′ = 〈V ′, E′〉, with the roots R
and R′ respectively, at depth i (0 ≤ i ≤ min{maxv∈V depth(v),maxv′∈V ′ depth(v′)}),
by the following measure:

g(0, T, T ′) = weight(0)× f(R,R′)
g(i + 1, T, T ′)=g(i, T, T ′)+weight(i + 1)×

∑
x∈V,y∈V ′,depth(x)=depth(y)=i+1 f(x, y)

and the similarity of two trees as follows:
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Dl(T, T ′) = g(min{max
v∈V

depth(v), max
v′∈V ′

depth(v′)}, T, T ′).

For instance, for T1 = (a, (b, (c, (d, e)))) and T2 = (a, (d, (c, (b, e)))), considering that
weight(i) = 4−i, Dl(T1, T2) = 3×2+2×4+1×3 = 17. The idea is to assign bigger
weights to smaller depths so that two phylogenies are more similar if the diversifications
closer to the root are more similar. This is motivated by that reconstructing the evolution
of languages closer to the root is more important for historical linguists.

A distance function for a set of phylogenies We define a distance function for mea-
suring the distance of a set S of phylogenies, based on a distance function D for two
phylogenies: for similarity (resp. diversity) we take the maximum (resp. minimum) of
the distances between pairs of phylogenies in S

ΔD(S) = max{D(T1, T2) | T1, T2 ∈ S}

In the following, we show the applicability of the offline methods and online methods,
with the distance functions ΔDn and ΔDl

.

7 Computation of Similar or Diverse Phylogenies

We can find n k-similar (resp. k-diverse) phylogenies for a set of taxonomic units,
with an offline method as described in Section 4. Consider, for instance, a family of
languages as the taxonomic units. With the approach of [4], we can compute all the
phylogenies for a given set of languages. Then we build a complete graph G whose
nodes denote these phylogenies, and the edges are labeled by the distances between
phylogenies. Then we can find a clique of size n in G, such that the distance of the set
of phylogenies denoted by this clique is less than or equal to k, as follows: remove each
edge in G whose label is greater than k; and, ignoring the weights of the edges in the
resulting graph, find a clique of size n. The set of vertices in the clique represents n
k-similar phylogenies for the given set of taxonomic units.

In the online methods, we consider the ASP program phylogeny-improved.lp

described in [4], to reconstruct phylogenies.
Online Method 1 suggests findingn k-similar (resp. k-diverse) phylogenies, by refor-

mulating the given ASP program for phylogeny reconstruction, and using an answer set
solver to compute all these solutions. A reformulation of phylogeny-improved.lp,
as suggested by the first online method, can be obtained as follows:

1. We specify the number of solutions: solution(1..n).
2. In each rule of the program, we replace each atom p(T1,T2,...,Tm) (except the

ones specifying the input, like atoms describing the leaves, the labels of the leaves,
characters, and states of characters) with p(N,T1,T2...,Tm), and add to the body
solution(N).

3. Now we have a program that computes n phylogenies. To ensure that they are
distinct, for each atom specifying a solution, in this case atoms describing the edges
of a phylogeny, we add the rules
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Algorithm 1. CLASP
Input: An ASP program Π
Output: An answer set A for Π

A ← ∅ // current assignment of literals
�← ∅ // set of conflicts
while no answer set found do

UNIT-PROPAGATION(Π,A,�) // propagate according to the current assignment and con-
flicts, and update the current assignment
if there is a conflict in the current assignment then

RESOLVE-CONFLICT(Π,A,�) // learn and update the conflict set and do backtracking
else

if current assignment does not yield an answer set then
SELECT(Π,A,�) // select a literal to continue search

else
return A

end if
end if

end while

different(S1,S2) :- edge(S1,X1,Y), edge(S2,X2,Y),
vertex(X2;X1;Y), solution(S1;S2), S1 != S2, X1 != X2.

:- not different(S1,S2), solution(S1;S2), S1 != S2.

Online Method 2 suggests finding n k-similar (resp. k-diverse) phylogenies, by it-
eratively computing a k-close (resp. k-distant) phylogeny. Here we implement a perl
script that calls the ASP solver repeatedly, with the phylogeny reconstruction program
phylogeny-improved.lp and a distance function program, until we compute all n
k-similar solutions.

Online Method 3 suggests finding n k-similar (resp. k-diverse) phylogenies, by mod-
ifying the ASP solver. Consider for instance the answer set solver CLASP [10]. CLASP

does a conflict-driven DPLL-like [8,16] Branch & Bound search to find an answer set
(solution) of the program: at each level, it does propagation followed by backtracking
or selection of new literals according to the current conflicts. A rough working princi-
ple of CLASP is shown in Algorithm 1. As can be seen, CLASP goes through three main
steps to find an answer set. In the UNIT-PROPAGATION step, it decides the literals that
have to be included in the answer set due to the current assignment and conflicts. In the
RESOLVE-CONFLICT step, it tries to resolve the conflicts encountered in the previous
step. If there is a conflict, then CLASP learns it and does backtracking to an appropriate
level. If there is no conflict and the currently selected literals do not represent an answer
set, then, in SELECT, CLASP selects a new literal (based on BERKMIN’s heuristic [11])
to continue search.

We can modify CLASP as in Algorithm 2, to compute n k-similar phylogenies.
The modified solver, CLASP-NK, has some additional procedures: DISTANCE-ANALYZE

identifies the partial phylogeny formed by the currently selected literals, and then com-
putes a lower bound for the distance between a phylogeny that contains this partial
phylogeny and the previously computed full phylogenies. Computing an exact lower
bound requires enumerating all possible completions of the partial phylogeny, so we
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Algorithm 2. CLASP-NK
Input: An ASP program Π , nonnegative integers n, and k, and a set C of atoms considered in

computation of the distance function
Output: A set X of n phylogenies that are k similar (n k-similar phylogenies)

X ← ∅ // computed phylogenies
A ← ∅ // current assignment of literals
�← ∅ // set of conflicts
while |X| < n do

PartialSolution ← CurSelCon(A, C) // the atoms that are marked as considered and that
are currently selected constitute a partial solution
d ← DISTANCE-ANALYZE(X,PartialSolution) // compute a lower bound for the distance
between partial solution and previously computed phylogenies
if d > k then

RESOLVE-CONFLICT(Π,A,�)
end if
UNIT-PROPAGATION(Π,A,�)
if there is a conflict in the current assignment then

RESOLVE-CONFLICT(Π,A,�)
else

if current assignment does not yield an answer set then
SELECT(Π,A,�)

else
X ← X ∪A
A ← ∅ // start searching for a new solution

end if
end if

end while
return X

compute an approximate lower bound by a heuristic function LB(T, T ′) that estimates
the distance (from below) between a complete phylogeny T and a complete phylogeny
that contains a partial phylogeny T ′ with leaves L′:

LB(T, T ′) =
∑

(x,y)∈L′

|NDT (x, y)− NDT ′(x, y)|.

Since this heuristic function is admissible (i.e., its value is always less than or equal to
the exact lower bound), CLASP-NK does not miss a solution (n k-similar phylogenies) if
one exists. This function is also monotonic in the number of leaves in partial phylogeny:
if the partial phylogeny grows, then the distance increases also. If the lower bound
LB(T, T ′) is greater than k, then there is no need for CLASP-NK to search for a solution.
In such a case, CLASP-NK marks the currently selected literals as a conflict, learns this
conflict, and does the necessary backtracking. The rest of the algorithm is the same as
that of CLASP except that CLASP-NK searches until it finds n solutions.

We can use other distance functions for CLASP-NK or we can compute similar/diverse
solutions to other problems (e.g., planning, product configuration). For that, we need to
modify CLASP-NK: we need to implement a suitable admissible distance measure, and
change the DISTANCE-ANALYZE function of CLASP-NK.
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8 Experimental Results

We applied the computational methods described above (i.e., the offline method, and
the three online methods) to reconstruct similar/diverse phylogenies for Indo-European
languages. We used the dataset assembled by Don Ringe and Ann Taylor [19]. As in [4],
to compute such phylogenies, we considered the language groups Balto-Slavic (BS),
Italo-Celtic (IC), Greco-Armenian (GA), Anatolian (AN), Tocharian (TO), Indo-Iranian
(IIR), Germanic (GE), and the language Albanian (AL). While computing phylogenies,
we also took into account some domain-specific information about these languages.

Let us first examine the results of experiments, considering the distance measures
ΔDn , based on the nodal distance (Table 2). We present the results for the following
computations: 2 most similar solutions, 2 most diverse solutions, 3 most similar solu-
tions, 3 most diverse solutions, 6 most similar solutions. We solve these
optimization problems by iteratively solving the corresponding decision problems (n
k-SIMILAR/DIVERSE SOLUTION). For each method, we present the computation time,1

the size of the memory used in computation, and the optimal value of k.
Let us first compare the online methods. In terms of both computation time and

memory size, Online Method 3 performs the best, and Online Method 2 performs
better than Online Method 1. These results conforms with our expectations: Online
Method 1 requires an ASP representation of computing n k-similar/diverse phyloge-
nies, and such a program may be too large for an answer set solver to compute an
answer set for. Online Method 2 relaxes this requirement a little bit so that the answer
set solver can compute the solutions more efficiently: it requires an ASP representa-
tion of phylogeny reconstruction, and an ASP representation of the distance measure,
and then computes similar/diverse solutions one at a time. However, since the answer
set solver needs to compute the distances between every two solutions, the computa-
tion time and the size of memory do not decrease much, compared to those for Online
Method 1. Online Method 3 deals with the time consuming computation of distances
between solutions, not at the representation level but at the search level; so it does not
require an ASP representation of the distance function but requires a modification of
the solver.

The offline method takes into account the previously computed 8 phylogenies for
Indo-European languages (with at most 17 incompatible characters), and computes sim-
ilar/diverse solutions using ASP as explained in Section 7. The offline method is more
efficient, in terms of both computation time and memory, than Online Methods 1 and 2
since it does not compute phylogenies. On the other hand, the offline method is less
efficient, in terms of both computation time and memory, than Online Method 3, since
it requires both representation and computation of distances between solutions.

Here both the offline method and Online Method 1 guarantee to find an optimal so-
lution, by iteratively solving the corresponding decision problems. On the other hand,
Online Methods 2 and 3 compute similar/diverse solutions with respect to the first
computed solution, and thus may not find the optimal value for k, as observed in the
computation of 3 most similar phylogenies.

1 All CPU times are in seconds, for a workstation with a 1.5GHz Xeon processor and 4x512MB
RAM, running Red Hat Enterprise Linux (Version 4.3).
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Table 2. Results of experiments, using the distance ΔDn based on the nodal distance

Problem Offline Method Online Method 1 Online Method 2 Online Method 3
2 most similar 12.39 sec. 26.23 sec. 19.00 sec. 1.46 sec.

32MB 430MB 410MB 12MB
k = 12 k = 12 k = 12 k = 12

2 most diverse 11.81 sec. 21.75 sec. 18.41 sec. 1.01 sec.
32MB 430MB 410MB 15MB
k = 32 k = 32 k = 24 k = 32

3 most similar 11.59 sec. 60.20 sec. 43.56 sec. 1.56 sec.
32MB 730MB 626MB 15MB
k = 15 k = 15 k = 15 k = 16

3 most diverse 11.91sec. 46.32 sec. 44.67 sec. 0.96 sec.
32MB 730MB 626MB 15MB
k = 26 k = 26 k = 21 k = 26

6 most similar 11.66sec. 327.28 sec. 178.96 sec. 1.96 sec.
32MB 1.8GB 1.2GB 15MB
k = 25 k = 25 k = 29 k = 25

Table 3. Results of experiments, using the distance ΔDl based on preferred diversifications

Problem Offline Method Online Method 1 Online Method 2

2 most similar 365.16 sec. (4.2GB) 16.11 sec. (236MB) 16.23 sec. (212MB)

3 most diverse 368.59 sec. (4.2GB) 46.11 sec. (659MB) 44.21 sec. (430MB)

6 most similar 368.45 sec. (4.2GB) 137.31 sec. (1.8GB) 212.59 sec. (1.1GB)

Now, let us consider the distance measures ΔDl
, based on preference over diversifi-

cations (Table 3): two phylogenies are more similar if the diversifications closer to the
root are more similar. Here we consider the similarities of diversifications until depth 3
(inclusive). We present the results for the following computations: 2 most similar solu-
tions, 3 most diverse solutions, 6 most similar solutions. In Table 3, for each method,
we present the computation time, the size of the memory used in computation, and the
optimal value of k. Unlike what we have observed in Table 2, the offline method takes
more time/space to compute similar/diverse solutions; this is due to the computation
of distances with respect to ΔDl

which requires summations, and representing sum-
mations in the language of LPARSE is not trivial. Other results are similar to the ones
presented in Table 2.

In [4], after computing all 34 plausible phylogenies, the authors examine them man-
ually and come up with three forms of tree structures, and then “filter” the phylogenies
with respect to these tree structures. For instance, in Group 1, the trees are of the form
(AN, (TO, (AL, (IC, (a tree formed for GE, GA, BS, IIR))))); in Group 2, the trees are
of the form (AN, (TO, (IC, (a tree formed for GE, GA, BS, IIR, AL)))); in Group 3, the
trees are of the form (AN, (TO, ((AL, IC), (a tree formed for GE, GA, BS, IIR)))). The
results of our experiments with the distance measure ΔDl

comply with these group-
ings. For instance, the 2 most similar phylogenies computed by Online Method 1 are in
Group 1; the 3 most diverse phylogenies computed by Online Method 2 are in different
groups. Likewise, the 6 similar phylogenies computed by our methods fall into Group 2.
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9 Related Work

Finding similar or diverse solutions has been studied in propositional logic [2], and in
constraint programming [13,12].

In [2], the authors propose two algorithms, DPdistance and DPdistance+lasso, to solve
DISTANCE-SAT—determining that a propositional CNF formula has a model that dis-
agrees with a given partial interpretation on at most d variables. Our modification of
CLASP’s algorithm is similar to the first algorithm in that both algorithms check whether
a partial interpretation computed in the DPLL-like search obeys the given distance con-
straints. On the other hand, unlike DPdistance, CLASP also uses conflict-driven learning:
when it learns a conflicting set of literals, it will never try to select them in the later
stages of the search. DPdistance+lasso offers manipulations while selecting a new variable:
it creates a set of candidate variables with respect to the distance function, computes
weights of these variables relative to the distance function, and selects one with the
maximum weight. On the other hand, in SELECT, CLASP creates a set of candidate
variables, and selects one of the candidates to continue the search. Using the idea of
DPdistance+lasso, we can modify CLASP further to manipulate the selection of variables
with respect to the distance function. However, in the phylogeny reconstruction prob-
lem, since the domain of the distance function consists of the edge atoms which are far
outnumbered by many auxiliary atoms, in SELECT the set of candidate variables gen-
erally consists of only auxiliary variables; due to these cases, the manipulation of the
selection of variables is not expected to improve the computational efficiency.

[13,12] study various computational problems related to finding similar/diverse
solutions, considering Hamming distance as in [2]. They present an offline method
(similar to our method) that applies clustering methods, and two online methods: one
based on reformulation (similar to Online Method 1), the other based on a greedy al-
gorithm (similar to Online Method 2) that iteratively computes a solution that maxi-
mizes similarity to previous solutions. The computation of a k-close solution is due to
a Branch & Bound algorithm (similar to the idea behind Online Method 3) that propa-
gates some similarity/diversity constraints specific to the given distance function. Our
offline/online methods are inspired by these methods of [13,12], but are not confined to
only polynomial-time distance functions with polynomial range.

10 Conclusion

We have studied two kinds of computational problems related to finding similar/diverse
solutions of a given problem, in the context of ASP: one problem asks for a set of
n solutions that are k-similar (resp. k-diverse); the other one asks for a solution that
is k-close (k-distant) to a given set of solutions. We have analyzed the computational
complexity of these problems, and introduced offline/online methods to solve them.
We have applied these methods to the phylogeny reconstruction problem, and observed
their effectiveness in comparing many phylogenies for Indo-European languages.

There are many appealing ASP applications (e.g., product configuration, planning)
for which finding similar/diverse solutions could be useful; on the other hand, no exist-
ing phylogenetic system can analyze phylogenies by comparing them. In this sense, our
methods are useful both for ASP and for phylogenetics.
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Abstract. The overhead of matching CHR rules is alleviated by con-
straint store indexing. Attributed variables provide an efficient means
of indexing on logical variables. Existing indexing strategies for ground
terms, based on hash tables, incur considerable performance overhead,
especially when frequently computing hash values for large terms.

In this paper we (1) propose attributed data, a new data represen-
tation for ground terms inspired by attributed variables, that avoids
the overhead of hash-table indexing, (2) describe program analysis and
transformation techniques that make attributed data more effective, and
(3) provide experimental results that establish the usefulness of our
approach.

Keywords: Constraint Handling Rules, indexing, program transforma-
tion, term representation, attributed variables.

1 Introduction

Constraint Handling Rules (CHR) [3] is a high-level rule-based declarative pro-
gramming language, usually embedded in a host language such as Prolog or
Haskell. CHR features multi-headed rules, i.e., rules with multiple predicates on
the left-hand side (the head), which sets it apart from conventional declarative
languages, where a rule’s head admits only one predicate or function.

Multi-headed rules afford much of CHR’s expressive power by allowing to eas-
ily combine information from distinct constraints via matching. However, as the
matching procedure significantly affects the complexity of rule evaluation [13],
this source of expressiveness often leads to performance bottlenecks. Aware of
this problem, CHR developers have built data structures to support efficient in-
dexing on variables (attributed variables [6]) and ground data (search trees [7]).
With [11] came the realization that O(1) indexing is essential to implement CHR
algorithms with optimal complexity, leading to the use of hash tables for index-
ing ground data, and the general result that the complexity of CHR systems
equals that of RAM machines [13].

In this paper we advance the research on CHR indexing with the following
contributions. We present attributed data, an alternative to hash tables for in-
dexing ground data that does not suffer from as much overhead (Section 3); we
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describe a sequence of program post-processing steps that reduce the overhead
incurred by the indexing transformations (Section 4); we propose an analysis to
decide when to use the attributed data (Section 5); and we provide the experi-
mental measurements that demonstrate the performance gain and the practical
usefulness of our approach in K.U.Leuven CHR (Section 6).

Parts of this work described in Sections 3 and 4 have previously appeared at
the CICLOPS 2008 symposium [8]. The implementation of the presented trans-
formation is available at http://www.cs.kuleuven.be/~toms/CHR/Indexing/.

2 Motivation

A CHR rule is applicable when there exists a constraint substitution that matches
the rule’s head. Our experience has shown that the efficiency of CHR evaluation
is significantly affected by the procedure of selecting such matching head substi-
tutions for multi-headed rules. Indeed, in Frühwirth’s analysis [13] the number of
heads appears in the exponent of the worst-case time complexity formula.

CHR’s on-demand approach builds head substitutions incrementally, by first
matching the active constraint, and then adding stored constraints one at a time.
The purpose of indexing is to bring relief to the matching bottleneck. While the
naive approach considers all stored constraints as candidates for the substitution,
indexing aims to considerably narrow down the number of candidates to consider.

2.1 Attributed Variables

Efficient (constant-time) constraint store indexing has been traditionally imple-
mented by means of attributed variables [5]. Attributed variables [4] provide a
way to associate Prolog variables with mutable data represented as arbitrary
terms. In the context of CHR, a variable’s attribute corresponds to those stored
constraints, in which the variable is involved. The attribute term has the form:
attr(Index 1, . . . ,Indexn), where each Index i is a data structure, typically a
list, that contains all constraints on the variable with a particular constraint sym-
bol. The presence of all variable’s constraints in its attribute expedites matching
when the variable is shared among the constraints in the heads of the rules.

Example 1. Consider the rule:

a(X), b(X,Y) ==> write(Y). (2.1)

Assuming that a/1 and b/2 are the only declared constraints, the attribute
term of a constrained variable X has the form attr(Indexa,Index b), where
Indexa represents all stored constraints a(X) and Index b represents all stored
constraints b(X,Y). Figure 1(a) depicts a constraint store containing the con-
straints a(X) and b(X,Y). The single-compartment boxes denote constraints,
whereas the double-compartment boxes denote variables with attributes. The
dashed arrows and ovals represent the index lists Indexa and Index b. Using such
representation of the constraint store, given the constraint a(X) we can quickly
find the matching constraint b(X,Y) by consulting the Index b list of variable X.

http://www.cs.kuleuven.be/~toms/CHR/Indexing/
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a(  )

attr( , )

b( , )

X

attr( , )

Y

(a) Attributed Variables

a(  )

adata(f(g,h),  , )

b( , )

adata(i,  , )

(b) Attributed Data

Fig. 1. Constraints a(X) and b(X,Y) with two types of indexing

Hashtable b/2 1st arg

f(g,h)
b(f(g,h),i)

Fig. 2. Constraint b(f(g,h),i) with hash-table indexing

2.2 Ground Term Pattern Matching

Clearly, attributed variables are useful only when constraints involve Prolog
variables. They cannot represent ground constraints, i.e. constraints in which all
arguments are ground terms.

Example 2. The constraints a(f(g,h)) and b(f(g,h),i) match the head of
rule (2.1) under the substitution {f(g,h)/X, i/Y}. However, as these two con-
straints do not share any variables, attributed variable indexing cannot be ex-
ploited to extend the partial match a(f(g,h)). Note that even if the atom i
was a variable, attributed variable indexing could not be used.

To account for cases such as that described in Example 2, early implementations
of CHR accumulated constraints in global, unordered lists. This representation
supported O(1)-time insertion of the constraints, however, constraint lookup and
deletion were—in the worst case—linear in the size of the store. The introduction
of hash tables [11] facilitated indexing on ground data with amortized constant-
time complexity for all operations.

Example 3. Figure 2 depicts the hash-table index on the first argument of the
constraint b/2. When an active constraint a(f(g,h)) is looking for a partner
constraint to apply rule (2.1), it consults this hash table; A hash value computed
for the term f(g,h) yields (modulo the array size) a position in the array; The
bucket list at this position is traversed until detection of the bucket for f(g,h),
which contains a linked list of all b/2 constraints with the first argument having
the form f(g,h) (i.e., b(f(g,h),i) in our example).

The hash table is initialized to a small size, and dynamically expanded whenever
the number of constraints exceeds a given threshold. The expansion involves
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replacing the current array with an array of doubled size, and re-evaluating
the hash function for all elements. Frequent evaluation of the hash function,
the traversal of the bucket lists, and the resizing operation incur constant, but
potentially large, overhead on processing the hash tables, which makes them, as
the means for constraint indexing, considerably slower than attributed variables:
for a benchmark with tight loops involving no more than two constraints, we have
measured a relative slow-down of about 50%.

Solution: Attributed Data In order to facilitate ground-term indexing with per-
formance characteristics of attributed variables, we propose a representation
which associates ground terms directly with their constraint store indexes. We
call this term representation attributed data. Our approach considers only vari-
able patterns; we have addressed indexing structure patterns in prior work [9].
Also, in the rest of the presentation we assume that our approach applies to only
one constraint argument at a time.

Example 4. Figure 1(b) shows attributed data indexing applied to Example 2.
Note how little it differs from the attributed variable indexing of Figure 1(a).

Even though based on the same idea as attributed variables, attributed data
cannot be implemented by a simple adaptation of the attributed variable infras-
tructure to the domain of ground terms because of the different ways ground
terms and variables are represented by Prolog systems. Every logic variable is
created exactly once, and systems, such as WAM [1], maintain its single physical
representation and update it in place. As a consequence, all occurrences of the
same variable observe the effects of any updates—in particular, changing it into
an attributed variable—through the shared representation. On the other hand,
a ground term may have multiple physical representations, created at different
times, and hence changing such a term into its attributed data representation in
place has no effect on its copies. This difference imposes the need to implement
a new way of supporting attributed data updates. Our answer to this need—a
conversion function turning any copy of a ground term into the canonical, shared
attributed data representation—is described in Section 3.2.

3 Attributed Data

The key insight underlying our new approach to pattern matching ground terms
is that the externally provided ground terms can be transformed into the internal,
attributed-variable–like representation by the CHR run time.

3.1 Attributed Data Representation

The internal representation I of a ground term E resembles an attributed variable
in that it contains the ground term itself and its associated data:

I = adata(E,Index 1, . . .,Indexn)
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where each Index i is a constraint store index on an argument position of the
term E in a head constraint of some program rule.

The number and form of attributed data indexes is orthogonal to the use of
attributed data, and is determined by the CHR compiler based on the form of
the rule heads and the set of constraints available when looking for a matching
partner. A detailed discussion of this issue can be found in Section 3.2 of [7].

In this paper, we assume that each Index i is a flat list of constraint suspen-
sions, with predefined operations for constraint addition and removal. The list
can be updated (e.g., to replace an old index with a new one) by the destructive
argument update predicate setarg/3 implemented in most Prolog systems.

3.2 Conversion Functions

As discussed in Section 2.2, in order to support transforming ground terms into
their attributed-data representations, we require an operation that is more in-
volved than the built-in predicate put attr/3 used to turn ordinary logic vari-
ables into attributed variables. Hence, we use a conversion function φ which
turns any copy of a ground term into the canonical, shared attributed-data rep-
resentation.

Definition 1 (Conversion Functions). The injective conversion function φ
maps a ground term tE of t onto its attributed-data representation tI:

φ(tE) =

⎧⎪⎪⎨
⎪⎪⎩

h[tE ] if h[tE ] is defined
tI otherwise

such that tI = adata(tE,∅1, . . .,∅n)

and h := h[tE → tI]

where h is a global hash table relating the ground terms to their known attributed-
data representations. Each ∅i is an empty set of constraints, one for each ar-
gument position j of each constraint symbol c that is represented by attributed
data. The injective conversion function ψ = φ−1 maps the attributed-data rep-
resentations tI back to a copy of the ground term tE :

ψ(adata(tE,Index 1, . . . ,Indexn)) = tE

Note that φ has an impure implementation, but a pure interface.

3.3 Source-to-Source Transformation

Apart from the performance aspect, the use of attributed data should be fully
transparent to the programmer. Hence, to relieve the programmers from the
need to explicitly call the conversion functions of Section 3.2, we provide a
fully-automatable program transformation that introduces the conversions at
well-chosen points in the program. The transformation serves two purposes: it
(1) makes the programmers oblivious of the attributed-data representation, and
(2) makes the attributed-data representation available for indexing to the CHR
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compiler. The first purpose implies that a CHR constraint c/n should be callable
with ground terms as arguments, e.g. from the interactive Prolog shell. However,
this conflicts with the second purpose, which requires the arguments of c/n to
have the attributed-data form for indexing.

Our solution is to split the constraint c/n into two forms. The first form, c/n,
is used externally by the programmers, and its arguments are ground terms. The
second form, c′/n, is used internally when applying CHR rules, and its arguments
are attributed data. The external form is defined in terms of the internal form
by means of the conversion CHR rule, that applies the conversion function φ:

Definition 2 (Conversion Rule). The conversion rule Φ replaces ground term
argument ti in constraint term c/n with attributed-data representation t′i = φ(ti):

c(t1,. . .,ti,. . .,tn) <=> t′i = φ(ti), c′(t1,. . .,t
′
i,. . .,tn).

Example 5. Consider the constraint arrow/2, which in Thom Frühwirth’s merge-
sort program represents the numbers subject to the sort. The second argument
of arrow/2 is always ground. Thus, the conversion rule for this constraint has
the form:

arrow(X,Ne) <=> Ni = φ(Ne), arrow’(X,Ni).

The original CHR rules should operate on the internal constraint form c′/n
rather than c/n. For this purpose, we transform each rule into a converted rule.

Example 6. Consider the following rule on the arrow/2 constraint:

arrow(X,A) \ arrow(X,B) <=> A < B | arrow(A,B). (3.2)

In order to benefit from attributed data indexing, the rule head should be ex-
pressed in terms of the internal constraint form arrow’/2:

arrow’(X,A) \ arrow’(X,B) <=> A < B | arrow(A,B).

However, the rule as formulated above does not work: both the guard A < B and
the body arrow(A,B) expect A and B to be ground terms rather than attributed
data. Hence, we need to introduce the conversion functions:

arrow’(XI,AI) \ arrow’(XI,BI) <=> A=ψ(AI), B=ψ(BI),
A < B | arrow(A,B).

More systematically:

Definition 3 (Converted Rule). The converted CHR rule is defined as:

φ(H {<=>==>} G | B) = H ′ {<=>==>} G′, G | B

where

– H ′ differs from H in that any constraint c(t1, . . . , ti, . . . , tn) is replaced by
its converted form c′(t1, . . . , xi, . . . , tn), where xi is a fresh variable.
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Fig. 3. Transitions between the original and converted constraints

– the new guard G′ relates the original arguments of each constraint to the new
ones: G′ contains one ti = ψ(xi) for each converted argument.

Putting everything together:

Definition 4 (Converted Program). The converted CHR program φ(P ) is
defined as the set of converted rules R comprising the original program, the
functions φ and ψ, and the encoding of Φ:

φ(P ) = φ(R) ∪ φ ∪ ψ ∪ Φ

4 Post-processing

A converted program involves repeated application of the conversion functions
to alternate between the external and internal representations of the constraints,
which may be a major source of overhead. We now describe a four-step rewriting
procedure, which statically eliminates most of this overhead. The procedure is
based on the approach taken in our prior work on partial structure indexing [9].

In a typical execution scenario (Figure 3(a)), an external value is converted
into the internal representation and matched in a head of a rule, then converted
back in the rule’s body for calling a new constraint, converted again to match
another rule, and so on. Ideally (Figure 3(b)), converted rules should operate
solely on the internal representation of the arguments, whereas the external val-
ues should be used only by the queries from outside the programs. Our rewriting
procedure aims to trigger this ideal scenario. Rewritten programs execute in two
phases: (1) conversion of arguments’ external value to the internal representa-
tions, and (2) processing of the internal representations. For all but the most
trivial programs, we expect the run-time cost of (1) to be marginal with respect
to the cost of (2). This conjecture is born out by the benchmarks in Section 6.

We outline the rewriting steps by applying them to an example rule.

Example 7. Consider normalized version of Rule (3.2), which after conversion
has the form:
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arrow’(I1,AI) \ arrow’(I2,BI) <=> X = ψ(I1), X = ψ(I2),
A = ψ(AI), B = ψ(BI),
A < B | arrow(A,B).

Step 1: Make conversion explicit unfolds constraint calls according to the
conversion rules:

arrow’(I1,AI) \ arrow’(I2,BI) <=> X = ψ(I1), X = ψ(I2),
A = ψ(AI), B = ψ(BI),
A < B | arrow’(φ(A),φ(B)).

Step 2: Eliminate identity conversion applies, from left to right, the equiv-
alence ∀t : φ ◦ ψ(t) = t:

arrow’(I1,AI) \ arrow’(I2,BI) <=> X = ψ(I1), X = ψ(I2),
A = ψ(AI), B = ψ(BI),
A < B | arrow’(AI,BI).

Step 3: Convert external matching values to the internal representations
applies from left to right the equivalence ∀t1, t2 : ψ(t1) = ψ(t2) ⇔ t1 = t2:

arrow’(I,AI) \ arrow’(I,BI) <=> X = ψ(I), A = ψ(AI), B = ψ(BI),
A < B | arrow’(AI,BI).

Step 4: Clean up drops unused conversion guards:

arrow’(I,AI) \ arrow’(I,BI) <=> A = ψ(AI), B = ψ(BI),
A < B | arrow’(AI,BI).

The proposed rewriting steps are not sufficient to enforce the ideal scenario of
Figure 3(b). However, as shown in Section 6, they have good practical effects.

5 Analysis

The attributed data framework offers an attractive alternative to hash tables.
Should our approach replace hash-table indexing for ground programs? It turns
out that the overhead of setting up attributed data—with the help of a hash
table—may be larger than the resulting run-time gain. Our experimental evalu-
ation1 indicates that, for overall performance improvement, each attributed data
index should be used more than once. In this section we consider two strategies
for deciding when to represent constraint arguments as attributed data.

1 See the fib and fib2 benchmarks in Section 6.
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5.1 Manual Attributed Data Declaration

For some programs, the best decision as to when to use attributed data can
be made by the programmer. Thus, we introduce the attr data modifier to
annotate individual arguments of a constraint in the constraint’s declaration.
The modifier is used in combination with a ground mode declaration +, and,
optionally, a type declaration such as int.

Example 8. We indicate that attributed data shall be used for both integer-typed
arguments of the merge-sort constraint arrow/2 by means of the declaration:
:- chr constraint arrow(+int attr data,+int attr data).

5.2 Automatic Attributed Data Index Selection

Although easy to implement, selecting the attributed data indices by hand may
be challenging, and hence is prone to performance errors. Preferably, this task
should be delegated to the CHR system, which has the advantage over the pro-
grammer in that it determines on which constraint arguments to index during
matching. We propose an analysis that facilitates automatic selection of index-
ing arguments. The analysis, based on the abstract interpretation framework for
CHR [12], approximates the number of times an argument is used for indexing.
Based on our experimentally determined heuristic, we then select the arguments
found to be used for indexing more than once.

In order to capture argument lookup information, we need to extend CHR’s
operational semantics. We assume that the built-in store is of the form

∧
Xi =

ti/li and the constraints in the queries are of the form c(X1, . . . , Xn). Here Xi

are possibly identical variables, ti are ground terms, and li are lookup counts.
Informally, a lookup count for a term t is a natural number denoting how often t
has been used to look up partner constraints. We omit the formal definition due
to lack of space. Additionally, we assume that all stored constraints are ground.

Our analysis framework comprises an abstract domain of execution states, a
function defining the conversion between the concrete and abstract execution
states, and the abstraction of CHR’s operational semantics.

Abstract Domain Σa. An abstract execution state has two components: (1) the
program point information present in the goal in order to determine applica-
ble abstract semantic step, and (2) the abstraction of the lookup counts li. A
concrete state is reduced to the corresponding abstract state by the abstraction
function αad :

Definition 5 (Abstraction Function)

αad (〈A,S,B, T 〉n) = 〈αad−c(A), αad−b(B)〉

where the auxiliary functions αad−c and αad−b respectively determine the
abstract goal and abstract indexing count components.

The abstraction functions for the two components are defined as:
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αad−c(c(Xi, . . . , Xn)) = c(Xi, . . . , Xn)
αad−c(c#i :o) = αad−c(c) :o

αad−c(c) = builtin (c built-in)
αad−c([c1, . . . , cn]) = [αad−c(c1), . . . , αad−c(cn)]

and αad−b(∧iXi = ti/li) = {Xi : αl(li)} where the abstraction of lookups is

defined as αl(n) =
{
n if n ≤ 1
∗ if n > 1

That is, we reduce the lookup counts to 0, 1 or many (denoted by ∗).
The partial order ≺ and least upper bound operator � for abstract states

both assume that the program point component is identical. They are defined
in terms of the point-wise application of the natural abstractions of < and max
over the lookup counts.

Definition 6 (Partial Ordering)

〈A1, B1〉 ) 〈A2, B2〉 = A1 ≡ A2 ∧B1 ) B2

where B1 ) B2 = ∀(X : l1) ∈ B1∃(X : l2) ∈ B2 : l1 ) l2, and 0 ≺ 1 ≺ ∗.

Definition 7 (Least Upper Bound)

〈A,B1〉 � 〈A,B2〉 = 〈A,B1 �B2〉

where B1 �B2 = {(X : l1 � l2) | (X : l1) ∈ B1, (X : l2) ∈ B2},

and l1 � l2 =
{
l2 if l1 ≺ l2
l1 otherwise

Abstract Semantic Function. The abstract semantic function AS[[P ]] is the ab-
straction of the operational semantics of CHR. The abstract semantic function
exploits two pieces of information derived during the program analysis phase by
the CHR compiler: which arguments of a constraint are used for indexing, and
which occurrences of a constraint are passive.

The latter datum—passiveness of an occurrence o of a constraint c/n—means
that the occurrence o does not fire a rule. We denote the conservative approxi-
mation derived by the CHR compiler as passive(c/n, o). Since the CHR compiler
does not generate code for passive occurrences, it is not necessary to increase
lookup counts in this case, as no lookups are performed.

The former datum—which constraint arguments are used for indexing—is
determined based on the rule head patterns and active occurrences of the con-
straints. We capture this information as B′ = indexing(c, B, j, r) meaning that,
after the attempt to fire rule r with active abstract constraint c at occurrence j,
the abstract lookup counts change from B to B′.

Definition 8 (Abstract Semantic Function)

1. AbstractSolve

AS[[P ]](〈builtin, B〉) = 〈�, B〉
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As we have assumed that all constraints are ground, this transition does not
reactivate any CHR constraints, and does not affect lookup counts.

2/3. AbstractActivate Let c be a CHR constraint.

AS[[P ]](〈c, B〉) = AS[[P ]](〈c :1, B〉)

This transition stores the new constraint. It does not affect lookup counts.

4. AbstractDrop Let c be a CHR constraint with no occurrence c :j

AS[[P ]](〈c :j, B〉) = 〈�, B〉

This transition deactivates the active constraint. It does not affect lookup counts.

5a. AbstractSimplify Let d be the jth occurrence of c in a (renamed apart)
rule r ∈ P with ¬passive(c, j):

r @ H ′
1 \ H ′

2, d[j], H
′
3 ⇐⇒ g | C

then AS[[P ]](〈c :j, B〉) = AS[[P ]](s1) � AS[[P ]](s2)

where ⎧⎨
⎩

B′ = indexing(c, B, j, r)
s1 = 〈αad−c(C), B′〉
s2 = 〈c :j + 1, B′〉

6a. AbstractPropagate Let d be the jth occurrence of c in a (renamed
apart) rule r ∈ P with ¬passive(c, j):

r @ H ′
1, d[j], H

′
2 \ H ′

3 ⇐⇒ g | C

then AS[[P ]](〈c :j, B〉) = AS[[P ]](〈c :j + 1, B′〉)
where B′ = lfp(f, 〈B〉).

The auxiliary function f is defined as:

f(B0) = B2

where {
B1 = indexing(c, B0, j, r)

〈�, B2〉 = AS[[P ]](〈αad−c(C), B1〉)

5b/6b. AbstractPassive Let d be the jth occurrence of c in a (renamed
apart) rule r ∈ P with passive(c, j), then

AS[[P ]](〈c :j, B〉) = AS[[P ]](〈c :j + 1, B〉)
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f(N) \ f(N) <=> true. f(N), f(N) <=> f(N).

f(0) <=> true. f(0) <=> true.

f(N) ==> M is N - 1, f(M). f(N) ==> M is N - 1, f(M).

(a) (b)

Fig. 4. Programs showing worse (a) and better (b) performance with attributed data

7. AbstractGoal

AS[[P ]](〈[c1, . . . , cn], B0〉) = 〈�, Bn〉

where for i ∈ 1..n
AS[[P ]](〈ci, proj (Bi−1, ci)〉) = 〈�, B′

i〉

and
proj (B, c(X1, . . . , Xn)) = {(Xi : li) ∈ B | i ∈ 1..n}

ext(Bx, By) = Bx ∪ {(X : l) ∈ By | ¬∃l′ : (X � l′) ∈ Bx}
Bi = ext(B′

i, Bi−1) (i ∈ 1..n)

This transition sequences a list (conjunction) of goals.

Example Consider the two programs in Fig. 4. The use of attributed data slows
down the program in Fig. 4(a), but improves the performance of the program
in Fig 4(b). The reason for this difference is that in the program in Fig. 4(a)
each argument is used for indexed lookup only once, whereas in the program in
Fig. 4(b) some arguments are used multiple times.

Consider now the analysis for the program in Fig. 4(a):

AS[[P ]](〈f(N), {N : 0}〉)
= AS[[P ]](〈f(N) : 1, {N : 0}〉)
= AS[[P ]](〈f(N) : 2, {N : 1}〉) � AS[[P ]](〈builtin, {N : 1}〉)
= 〈�, {N : 1}〉 � 〈�, {N : 1}〉
= 〈�, {N : 1}

where (since the second occurrence is passive)

AS[[P ]](〈f(N) : 2, {N : 1}〉)
= AS[[P ]](〈f(N) : 3, {N : 1}〉)
= AS[[P ]](〈f(N) : 4, {N : 1}〉) � AS[[P ]](〈builtin, {N : 1}〉)
= 〈�, {N : 1}〉 � 〈�, {N : 1}〉
= 〈�, {N : 1}

and

AS[[P ]](〈f(N) : 4, {N : 1}〉)
= AS[[P ]](〈f(N) : 5, {N : 1}〉) � AS[[P ]](〈[builtin, f(M)], {N : 1}〉)
= 〈�, {N : 1}〉 � 〈�, {N : 1}〉
= 〈�, {N : 1}
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Hence, the lookup count never exceeds 1, and thus our heuristic indicates that
attributed data should not be used. If, instead, we consider the program in
Fig. 4(b), the main derivation becomes:

AS[[P ]](〈f(N), {N : 0}〉)
= AS[[P ]](〈f(N) : 1, {N : 0}〉)
= AS[[P ]](〈f(N) : 2, {N : 1}〉) � AS[[P ]](〈f(N), {N : 1}〉)
= 〈�, {N : 1}〉 � 〈�, {N : ∗}〉
= 〈�, {N : ∗}

because the first rule now involves a recursive call. Now the lookup count is ∗
and using attributed data is recommended.

6 Evaluation

We implemented our approach in K.U.Leuven CHR [10] on SWI-Prolog [14],
and tested it on several benchmarks2. All run times, given in seconds, as well as
relative to the original for the transformed versions, were measured on an Intel
Pentium 4, 2.00 GHz, with 512 MB RAM.

Our implementation of attributed data consists of two components: (1) a
pre-processor, which transforms a CHR program with key annotations into its
converted form, and (2) the actual code generator of the CHR compiler, which
generates attributed data indexing instructions and emits definitions for the
conversion functions. The function φ is implemented in terms of the hash tables
used for hash-table indexing. The function ψ is always called as B = ψ(A); we
inline it as A = adata(B, ,..., ) at each call site.

Table 1 lists the run-time results of exploiting attributed data in K.U.Leuven
CHR, measured for plain hash tables, plain attributed data instead of the hash
table indexes, and attributed data with post-processed rule bodies.

Table 1. K.U.Leuven CHR run times (in sec.) for attributed data benchmarks

index representation
benchmark hash table attr. data relative post-processed relative

chrg 2.17 2.10 96.8% 1.58 72.8 %
flat ram 4.69 4.31 91.9% 2.50 53.3%
mergesort 3.33 4.89 146.8% 1.85 55.6 %
reverse 2.55 3.25 127.4% 1.92 75.3%
uf opt 0.34 0.38 111.8% 0.25 73.5%
turing 1.50 1.31 87.3% 1.19 79.3%
wfs 1.32 0.88 66.7% 0.85 64.4%
fib 1.24 1.53 123.4% 1.52 122.6%
fib2 1.61 1.30 80.7% 1.05 65.2%

dijkstra 2.26 4.52 200.0% 3.53 156.2%
dijkstra2 1.54 2.20 142.9% 1.25 81.2 %

2 Available at http://www.cs.kuleuven.ac.be/~toms/CHR/Indexing/

http://www.cs.kuleuven.ac.be/~toms/CHR/Indexing/
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The block of the first seven benchmarks clearly demonstrates the positive
effects of our approach. Although, the attributed data used on its own causes
a slow-down (up to almost 50% for mergesort), when augmented with post-
processing, it improves the run time by 20% to 50%.

The block of the last four benchmarks shows two programs for which the use
of attributed data impairs the performance. The first program, fib, involves one
hash-table lookup per new constraint. Hence, the attributed data manipulation
is pure overhead (25%). For this reason, our analysis from Section 5 flags the
program as unsuitable for attributed data; it does not flag any of the other
benchmarks.

The second benchmark, fib2, replaces the simpagation rule of fib:

fib(N,F1) \ fib(N,F2) <=> F1 = F2.

with the simplification rule:

fib(N,F1), fib(N,F2) <=> F1 = F2, fib(N,F1).

This modification causes the parameter N to be reused in the new call in the
rule’s body3. As a consequence, attributed data requires only one hash-table
lookup for every two new constraints, which results in a noticable speed-up.

The second slow-down, in dijkstra, results form a limitation of our cur-
rent implementation, which does not allow multi-argument indices involving at-
tributed data arguments. Thus, we were required to replace a two-argument
hash table index by a single-argument attributed data index. For this bench-
mark, the two-argument index turns out to be more selective and more efficient.
However, the use of symbol specialization [9] allowed to entirely eliminate the
second matching argument from this benchmark, and thus obtain a speed-up in
the resulting program dijkstra2.

7 Discussion and Related Work

We have presented attributed data—a new term representation that improves the
efficiency of CHR indexing at a high level—and a complementary post-processing
procedure that reduces the overhead of conversions between the new representa-
tion and the standard representation of Prolog terms. We have implemented our
approach for the K.U.Leuven CHR system on SWI-Prolog. The evaluation on a
set of benchmarks shows that attributed data enables performance improvement,
and that post-processing is critical to fully realize this potential.

Several programming languages define features that resemble the concept of
attributed data. The conversion function φ relates to hash consing—a technique,
originated in Lisp, for mapping terms to, and representing them by, unique
(hash) values. Although the main aim of hash consing is to reduce memory
consumption by increased sharing, it is also used to speed up equality tests.

3 Note that fib and fib2 implement different algorithms for computing fibonacci num-
bers, and should be only compared w.r.t the relative impact of our transformation.
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Like attributed data, Mercury’s solver types [2] impose a dual view of con-
straint arguments. The internal representation type is defined by the library
programmer, rather than generated automatically. Externally, the solver type is
abstract, but coercion functions should be provided for external representations.
Finally, a folklore4 optimization technique in C/C++ adds (pointer) fields to
structures to concisely represent lists (and other data types) that contain them.

Acknowledgements. The authors thank the ICLP reviewers, Leslie De Kon-
inck, Bart Demoen and Jon Sneyers for their helpful comments on the paper.
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Abstract. Logic programming provides an ideal framework for tackling
complex data, such as the multi-dimensional vector-based data used to
represent spatial databases. Unfortunately, the usefulness of logic pro-
gramming systems if often hampered by the fact that most of these
systems have to rely on a single unification-based mechanism as the only
way to search in the database. While unification can usually take effective
advantage of hash-based indexing, it is often the case that queries over
more complex and structured data, such as the vectorial terms stored in
spatial databases, cannot.

We propose a new extension to Prolog indexing: User Defined Indexing
(UDI). In this mechanism, the programmer may add extra information
to Prolog indices so that only interesting fragments of the database will
be selected. UDI provides a general extension of indexing, and can be
used for both instantiated and constrained variables. As a test case,
we demonstrate how UDI can be combined with a constraint system
to provide an elegant and efficient mechanism to generate and execute
range queries and spatial queries. Experimental evaluation shows that
this mechanism can achieve orders of magnitude speedups on non-trivial
datasets.

1 Introduction

Logic programming provides an ideal framework for tackling complex data, using
a single and universal representation of pieces of such data as logic terms. A logic
term can represent things such as an unbound variable, a constant or an integer,
or more complex and structured entities such an interval over reals or a vectorial
polygon. The universality of this representation is a key feature for the declara-
tive flavor of logic programs. In particular, it is the basis for the generic handling
of data through the single mechanism of unification. While this unification and
the term-based representation of the world are fundamental flagships of the logic
programming paradigm, they can also entangle the usefulness and effectiveness
of logic programming for data-intensive applications. Performing search through
unification can be terribly ineffective because of the match-based process asso-
ciated with it. Indexing tries to overcome this inefficiency, and has been coupled
to the earliest Prolog implementations [1], in order to narrow the number of
clauses to try. Indexing is however based on the representation of data, which is
universally term-based, and is very much designed in Prolog systems around the

P.M. Hill and D.S. Warren (Eds.): ICLP 2009, LNCS 5649, pp. 372–386, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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lexical or syntactic form of such terms, rather than its semantic. A conspicuous
example of that is the position-based indexing proposed in the WAM [2]. The
divergence from semantic is contrary to the Prolog’s focus on the what, instead
of the how, but is rooted on the fact that indexing is an implementation issue,
rather than a programmer’s concern.

Lexical indexing is usually well performed through hashing techniques, which
cope naturally with the match-based mechanism of unification. Efficient execu-
tion of Prolog queries requires the programmer to be aware of this close relation-
ship between hash-based indexing and unification. The following two queries:

?- p(A), q(B), A=B.
?- p(A), q(A).

are semantically equivalent, but have very different performances, as the indexing
over goal q/1 is only effective when unification is pulled to the argument of the
call. This is an important difference between Prolog and relational databases
querying, where the execution of the later is preceded by an optimizer that is
able to look globally to the query and define an execution plan that maximizes
efficiency. Systems incorporating global analysis in the compilation of Prolog,
such as Ciao [3], are also able to perform some goal reordering that would use
the constraint over variable B on q/1 goal [4]. However, hash-based indexing of
Prolog predicates is not able to take advantage of constraints over arguments
that are not based on unification. The following query:

?- p(A), q(B), A>B.

has no possible rewriting in Prolog that would make it efficient, even if we could
pull the constraint to the call of goal q/1. This is due to the fact that the
lexical, hash-based, indexing of predicate q/1 is not able to take advantage of
the semantic constraint of order, either defined in a term-based representation
domain of numbers or strings, between variables A and B. In the same way, if the
argument of predicates p/1 and q/1 are terms representing a vectorial polygon,
then a query such as:

?- p(A), q(B), overlaps(A,B).

is also unable to improve efficiency based on a hash-based index over the ar-
gument of predicate q/1. Efficient indexing over spatial terms is particularly
important, not only because of the usual mammoth size of such predicates, but
also because of the computationally expensive execution of spatial operators.

In this paper we propose and implement a semantic-oriented indexing of Pro-
log predicates, where the programmer is able to define the indexing mechanism
based on what the terms in the arguments of a predicate are meant to represent.
This User Defined Indexing (UDI) allows users to provide an indexing function
that selects a subset of the clauses of a predicate, given a set of constrained vari-
ables or bound Prolog terms. This function implements the type of indexing the
user deems appropriate for the predicate, from specialized hash-based functions
to multi-dimensional indexing suited for spatial terms. We propose a constraint



374 D. Vaz, V.S. Costa, and M. Ferreira

based syntax over the logic variables that can affect the efficiency of indexing,
retaining the declarative style of Prolog querying.

The remainder of this paper is organized as follows: Section 2 presents the
current state-of-the-art of Prolog indexing; Section 3 explains the indexing mech-
anisms used to efficiently access data structured in ranges and multi-dimensional
objects; Section 4 presents our proposal of User Defined Indexing and addresses
the engine modifications to implement it in Yap; Section 5 gives some examples
of user defined indexers and Section 6 performs a complete evaluation over very
large datasets; Section 7 concludes the paper.

2 Indexing Prolog Programs

Indexing is a key feature in Prolog implementations and has been supported
since Warren’s DEC-10 Prolog system [1]. Both DEC-10 Prolog and Warren’s
WAM [2] implement indexing on the first argument, and this has become stan-
dard in Prolog systems. Figure 1(a) shows the WAM code for a small database
shown next:

has property(d1, salmonella, p).
has property(d1, salmonella n, p).
has property(d2, salmonella, p).
has property(d2, cytogen ca, n).
has property(d3, cytogen ca, p).

Figure 1(a) shows WAM indexing code as a tree, with switch nodes, that
implement clause selection, and clause chain nodes, that either jump to clauses
or support backtracking through a set of clauses. There are two different switch
nodes in the WAM. The first, switch on type, selects according whether the first
argument, A1, is unbound, constant, pair or structure. The second type, say
switch on constant selects clauses that match a value. Given a large enough
number of different values, the WAM will implement this operation as a lookup
in the hash table. Looking up an hash table takes constant time in average,
hence indexing can in the best case improve query execution from linear in the
number of clauses to constant-time, with only a small overhead.

A natural step from the WAM is to index on multiple arguments. Systems
such as Prolog by BIM [5] and SWI-Prolog [6] do so in an user-specified fashion.

3

A1 Type

A1 Value
d1 d2 d3

1 2

1 2

F F

53

4 5

4

(a)

A1 Type

A1 Value
d1 d2 d3

F F

5A2 A2

A3 A3

A2

1 2 3 4

(b)

Fig. 1. WAM and JITI Code for has property/3
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This approach requires prior knowledge on which modes of usage are going to
be used in the program, though. Just In Time Indexing (JITI) [7] addresses this
problem by generating indexing code only when needed. For example:

?- has property(d1, , ).

would result on the JITI code shown in Figure 1(b): notice that the code is very
similar to the original WAM code, but it includes “wait nodes”, shown as filled
ovals. Imagine next the queries:

?- has property(d1, salmonella, ).
?- has property( , salmonella , ).

The JITI has the ability to expand the tree in Figure 1(b) with hashes on the
first two arguments first, and then later building an alternative index that hashes
on the second argument. This is implemented by generating new trees rooted at
the wait nodes. The JITI seems to address well the cases where one wants to
lookup a value in a database. This is an important application of Prolog, but
not the only one.

3 Indexing Ranges and Spatial Data in RDMs

Indices based on exact matching of values are useful when searching for the value
that matches some constraints, and they are usually implemented with hash
tables. On the other hand, quite often users are interested in different styles of
queries. One typical example is finding all values that are larger than some X ;
another are “ranges queries”, that is, finding all values that are between two
predefined boundaries. Such queries can be naturally written as logic programs,
but are difficult to implement effectively with hash tables. More recently, there
has been wide interest in storing and manipulating geographical data. These
problems have motivated a large body of research in the Relational Database
Management Systems (RDMs) community, which has proposed a number of
indexing structures, such as B+-Trees [8] and R-Trees [9]. We briefly review
these data structures next.

A B+-Tree is a self-balanced tree based on a B-Tree: it is often used in RDMs
because it allows for logarithmic time selections, insertions and deletions. In
B+-Trees data is stored in leaf nodes and only keys are stored in inner nodes
(index nodes). Leaves in B+-Trees are linked to one another in a linked list. The
main advantage of B+-Trees versus Hash Tables is that data is kept in order,
making range queries (inequalities) possible and efficient. Figure 2(a) shows an
example of a B+-Tree. The inner node separates the tree into three ranges X < 3,
3 < X ≤ 5 and X > 5. Given a key, search executes by going down from root of
the tree and taking the branch covering the key, as shown in Figure 2(b).

B+-Trees are useful when addressing ordered values, but are not sufficient
to index complex multi-dimensional data, such as spatial data. In this case an
important operation is to compute whether two geographical objects intersect.
Quite often, an object’s Minimum Bounding Rectangle (MBR) or Bounding Box,
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3 5

1 2 3 4 5 6 7

(a) Example

search (node, key)
if (node is leaf)

find key in node
else

find branch in node
search (branch, key)

(b) Search

Fig. 2. B+Tree
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(a) R-Tree Structure
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(b) MBR Containment

Fig. 3. R-Tree of European Countries

is used towards this goal. Namely, MBRs are used to implement the R-Tree, a
major datastructure used in databases such as PostGIS [10] to quickly find all
objects in a given area, e.g., “find all lakes in Switzerland”.

R-Trees are inspired on B+-Trees. The key idea is that R-Trees use MBRs to
index data. Each leaf nodes stores an object, and is keyed by the object’s MBR.
Inner nodes are keyed by an MBR that is the union of all MBRs below. Notice,
that in contrast to B+-Trees, keys cannot be sorted as there is no order. On
the other hand, searches in R-Tree are similar to searches in B+-Tree, except
that several MBRs in the same node may overlap with the searched MBR. As
a result we can have several valid branches at each node, and it is not possible
to guarantee good worst-case performance. Indeed, in the worst case scenario, a
query MBR can contain the whole dataset; in this case the complete indexing
structure will need to be searched. Nevertheless, on most datasets the tree will
maintain a shape that allows the search algorithm to quickly discard irrelevant
regions.

Figure 3 shows an example R-Tree designed to store the boundaries of Euro-
pean countries. Figure 3(a) details part of the index structure, and Figure 3(b)
graphically depicts the actual boundaries and MBRs that define the R-Tree.
Notice that although European countries do not overlap, their MBRs do. The
tree has three levels. The root node (Level 3) contains two MBRs, R1 and R2,
shown as the wider lines. Notice that there is some overlap, as we cannot find a
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disjoint balanced union of MBRs that covers the whole of Europe. The overlap
is even more evident on Level 2, Also observe that whereas Iceland, Greece and
Portugal belong to a single box for each level, the central Alps region in Europe
is covered by a large number of overlapping MBRs at all levels.

4 User Defined Indexing

In this work we are motivated by our desire to query complex databases declar-
atively and efficiently. Say, in Prolog in order to find all cities with more than 5
million people, we would state the query:

?- city(X,Pop), Pop > 5000000.

Execution of this query visits every city, returning only the ones with population
over 5 million. This is arguably the most inefficient execution one can follow, es-
pecially if only a few cities have population above 5 million. In order to constrain
the search we need to know that Pop must be over 5 million people first. This is
not possible in Prolog, but it is possible in the framework of constraints:

?- Pop #> 5000000, city(X,Pop).

Notice that stating this constraint is not sufficient to improve performance: we
must use it to narrow search over city/2. In this work, we propose to do so
through indexing. This requires addressing two challenges:

1. We must be able to index on this constraint.
2. Because constraints provide a powerful and flexible language, it is not pos-

sible beforehand to implement an abstract machine that will address all
possible constraints: we need a generic framework for indexing on unknown
terms.

We address the latter problem first through our UDI mechanism, that allows
programmers to define a function that selects a subset of clauses, given a class
of attributed variables or Prolog terms. Next, we discuss the UDI in more detail.

4.1 Principles

Given a program P and a procedure Q defined as a set of clauses {c1, . . . , cn},
Q’s indexing code IP is a function defined as follows: given a goal Gπ and a
matching procedure Q, where π is a set of constraints, then IP : (Q,Gπ) → Q′

selects a set of clauses Q′ ⊂ Q such that if reducing Gπ against c ∈ Q succeeds
then c ∈ Q′.

Clearly, the most trivial indexing function is the identity function: Q′ = Q.
In general, as IP incurs an overhead, one has to make sure that the benefits
of computing IP outweigh this overhead. One way to do so is to restrict how
indexers are constructed. Typically, Prolog systems restrict Ip as follows:

1. IP is known at compile-time; that is, the function IP must be explicit before
querying the program.
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2. IP (Q,Gπ) is local, that is it depends on Q only and not on P −Q.
3. Indexing uses Herbrand constraints, that is, IP (Q,Gπ) = IP (Q,Gσ), where

σ ⊂ π are the Herbrand constraints in π.

Work on indexing has proceed by relaxing these constraints. YAP’s JITI, for
example, relaxes the first constraint: essentially the JITI implements an inter-
esting subset of an “ideal” indexing function by only coding the cases shown to
be useful. The second constraint is relaxed in systems such as Ciao [3] that can
look at the whole program P to understand the possible queries and improve
the quality of indexing code.

To the best of our knowledge, there is little work on indexing non-Herbrand
constraints in the context of logic programming. We are interested in doing so
through an user defined indexer, UP . Our first observation is that we would not
expect UP to be the only indexer in the system: in general, it must be able to
work with a default, system indexer. A simple approach would be to choose one
indexing per procedure or query. But, ideally, we would want to have different
indexers working together over the same query.

We can now state the properties of the user indexer UP
i : (i) it must be correct;

(ii) it must not perform arbitrarily worse than the default indexer; and (iii) it
must work together with other indexers.

4.2 Pragmatics

User indexer are constructed and used as a three step process:

1. The programmer declares a predicate Q that will benefit from UDI, at this
point the engine will initialize the respective UDI through udi init(Q);

2. The engine consults a new clause C for an user indexed procedure, the engine
will call udi extend(C);

3. A call to an user-indexed goal, the engine will call udi exec(G).

Next, we use the pop/2 example to show our implementation. We shall assume
there are two UP : one for B+-Trees and one for R-Trees.

Declarations. We use declarations to inform which UP will be used by a proce-
dure Q. Each declaration specifies which program-dependent interpretations we
will give to the arguments of a procedure. A declaration is as follows:

:- udi pop(-,btree(int)).

First, the Prolog engine tags the procedure as user indexed. Next, for both
UP s the engine calls udi init(pop(-,btree(int))). In the example, the btree
indexer will (i) initialize a new, empty, B+-Tree of integers for pop/2; (ii) declare
that the key to the tree will be the second argument; and (iii) store a pointer to
the new tree in a record. This B+-Tree record will be returned to the engine as
an opaque handle. The engine stores the handle in a table towards fast lookup
of all UDI indexers for a procedure.

The rtree indexer will also be called. It will simply consult the declaration,
and return NULL.
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Asserting. Every time a clause for a user indexed predicate has been asserted,
and after it has been compiled, the Prolog engine searches for UDI records. For
each record, it calls udi extend() with a pointer to the term describing the
clause, a pointer to the compiled code, and the handle. In our example, the
btree code would (i) recover the tree from the handle; (ii) fetch the key from
the second argument, given the clause’s source; (iii) insert a new record new key
in the B+-Tree; (iv) associate the new record with the clause code. The UDI
code then returns control to the engine.

The engine is not informed of what the indexing code does but it does assume
the clause code will be respected.

Execution. Currently, we assume that each predicate has at most one user
indexer. UDI code is supported by the following YAP instruction:

yamop *new = Yap_udi_search(P->u.lp.p);
if (!new) P = PREG->u.lp.l;
else P = new;
JMPNext();

The function Yap udi search receives a pointer to the procedure descriptor and
fetches the handle matching the procedure table. It then calls call udi using
the handle as argument. If call udi returns a NULL pointer YAP will fall back
the default indexing code. Otherwise, YAP will execute the code returned by
the UDI, which can be:

– a pointer to code, usually clause code;
– a pointer to a set of clauses;
– NULL, as explained above;
– FAIL: execution just fails.

From the engine point of view, the non-trivial case is when the engine must
process a set of clauses. It must construct instructions that can enumerate every
clause. In our case, we decided that the constructed object should be discardable
on backtracking (or we will risk filling up memory). The current YAP implemen-
tation relies on “blobs”, or opaque terms, to implement this functionality. Es-
sentially, YAP creates an “opaque term” which just contains WAM code of the
form try-retry-trust. These objects can be easily stack shifted, but choice-
points may point to instructions within the blob, making garbage collection
difficult.

5 User Defined Indexers

Next, we propose two constraint systems that rely on the UDI for efficient exe-
cution. We will use the following methodology:

– Data will be represented as a standard Prolog database.
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– Constraints will be used to represent our queries. Thus we shall follow Dat-
alog with constraints style [11]. Other styles such as HiLog would be possi-
ble [12], but we chose Datalog because it has a natural application to our
indexing algorithms.

– We shall use UDI code to associate semantics to special procedures.

As explained above a typical query will be as follow:

?- Pop #> 5000000, city(X,Pop).

set queries can be written in Prolog style:

?- setof(Pop, (Pop #> 5000000, city(X,Pop)), Cities).

Notice that In this work we are interested in reasonably simple queries executed on
large databases : indexing, and not constraint propagation, will be fundamental.

In the above example, the first step is to implement the constraint #>. YAP
supports Demoen’s implementation of attributed variables [13]. In this case, the
constraint could be set by the following (simplified) code:

A ’#>’ B :-
attributes:put_att_term(A,range(_,gt(B))),
attributes:put_att_term(B,range(_,lt(A))).

The calls to the put att term built-in associate variable A and B with the
constraint. Following Demoen, the constraint is represented as a compound term.
The functor represents the constraint module, or package: in this case, B+-Trees
are used to to verify satisfiability of range constraints. The first argument chains
constraints for different modules on the same variable. The N − 1 remaining
arguments correspond to the constraints for the same module: in this case, and
towards readability, we represent them explicitly.

Notice that the code is simplified: the definition should be symmetric and
cumulative and it should handle the cases where either A or B are instantiated.

The second step of execution is city(X,Pop). The UDI code for udi exec is
then called and access the arguments of the predicate through the C-interface.
The indexer executes as follows:

– Fetch the second argument A2
– Verify whether A2 is an attributed variable: if not, return NULL.
– Verify whether A2 contains a term with main functor range: if not, return

NULL.
– Translate the constraint(s) into a query on B+-trees.
– If the query returns no matching clauses, return FAIL
– If the query returns a matching clauses C , return C
– If the query returns several matching clauses, call the C-interface to construct

a “blob” that will allow backtracking through the code.

Next we will discuss how to use UDI in our two examples: ranges and vec-
torial data. They both use trees as indexing structures, and therefore most of



User Defined Indexing 381

their definitions are similar. In both cases, udi init and udi extend are very
similar: udi init stores which arguments are indexed and initializes the tree;
udi extend will insert the indexed arguments in the trees, saving the clause
pointer to use as return value in searches. Each UDI example works in a specific
domain so the tree structure and set of constraints will be shown next.

5.1 Ranges

We propose two UDIs for range data: one for integers and one for floating point
numbers. We will discuss them together, given the obvious similarity. We support
seven constraints, two unary and five binary constraints:

max A min A A #> B A #>= B A #< B A #=< B A #= B

In our simplified implementation each constraint term has 6 arguments. One
represents a constraint max, min, and the other four the maximum and minimum
limits, and whether we can match that limit. For example, a range query of the
form:

?- Pop #> 100, Pop #< 1000, city(X,Pop).

will result in setting the following range constraint on Pop:

range(_,false,100,false,1000,false)

The UDI code searches for this range structure and translates it into a range
query returning all values in the database such that their second argument is
between 100 and 1000 (if any). If the second argument was set to max it would
return the maximum value in this range: other queries such as average or mode
can easily be implemented.

5.2 Vectorial Terms

The original motivation to this work was our interest in using vectorial terms
or spatial terms as defined in previous work [14]. These are simple geometry
types based on 2D points. Notice that the simplicity of the primitives does not
mean that the terms themselves are simple. For example, the European countries
boundaries in Figure 3(b) are represented in Prolog as multipolygons with several
hundred points each (and this is a low resolution sample).

Here we use R-Trees as the indexing structure, following the ideas in Section 3.
In this work, we will use overlaps binary constraint &&, the key operator on
the Postgis spatial RMS [10]: A && B constraint is satisfied if A’s bounding box
overlaps B’s bounding box. A query is shown next:

?- country(spain,P1), P2 && P1, country(Country,P2).

Here as P1 is instantiated by the time P2 && P1 is reached P2 will be attributed
by overlap( ,P1), thus second call of country will search the tree succeeding
only with Countries that have overlapping boundaries MBR with spain.
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Notice that the && only approximates overlapping the actual intersection must
be performed after. For example:

?- country(spain,P1), P2 && P1, country(C,P2),
intersection(P1,P2,P3).

The query searches for countries that intersect with Spain. The overlapping
constraint prunes the results to Portugal, France and Andorra, but only the
latter will eventually succeed. Notice that the same result would be achieved
without the use of UDI, but with a high penalization in time:

?- country(spain,P1), country(C,P2), overlap(P1,P2),
intersection(P1,P2,P3).

6 Experiments

In this section we discuss the performance of our two UDI indexers. We compare
against the default JITI indexing in YAP.

6.1 Experimental Setup

We performed our experiments on a Core 2 Duo P9500 @ 2.53GHz machine with
4GB of memory running Linux 2.6.27 in 64 bit mode.

Our goal in evaluating range queries was to compare Prolog and UDI as we
vary selectivity and database size. As a first step, we created four datasets,
with sizes between 512K and 10M tuples. Each dataset was filled in with a
uniform distribution of random integers in the interval [1, 100000000]. Next, we
experimented with simple queries, as shown in Figure 4. The first two queries
select all values above or below a certain threshold, the third query selects a
range in the database. We control how many tuples should be selected: values
are 10%, 20%, 50% and 100% of all tuples. Figure 4 shows the execution time
in all cases. Notice that we only show the constraint queries, the Prolog queries
must be written with the tests after the database call.

Regarding the evaluation of vectorial data, we are interested in performance
on common spatial queries such as: “Find road intersections”, “Find railway
crosses”, “Find road bridges over streams”; in all cases the queries are about
overlapping objects. Our methodology was as follows: (i) we select two sources of
geographical objects S1 and S2; (ii) for every object O in S1, we query how many
objects in S2 O overlaps. Figures 5(a) and 5(b) displays the actual Prolog code
used in both cases. Notice that we only compare if the object’s MBRs overlap
in these tests. We use datasets of Germany and California geographical data
in these experiments, obtained at http://www.rtreeportal.org. Figure 5(c)
shows the results; in Germany we overlap roads with utilities and level lines,
and in California we compare roads and streams. Notice that the California
roads dataset is over 2.1 million objects whereas Germany largest dataset only
have 36k objects: we include the size of each dataset in brackets.

http://www.rtreeportal.org
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(a) A #> 100000000*(1-P), a(A,X). (b) A #< 100000000*P, a(A,X).

(c) A #> 100000000*(0.5-P/2),

A #< 100000000*(0.5+P/2), a(A,X).

Fig. 4. B+-Tree UDI testing. Times in seconds (Y axis) of UDI versus no UDI, varying
the result percentage over dataset size (X axis). Times are given in log scale.

6.2 Results and Discussion

Figure 4 shows that, as expected, in all cases performance of the UDI code
varies linearly with the size of the output and with database size. Prolog does
not benefit from tuple selection: as a result, performance tends to be independent
of output size, although it still varies linearly with dataset size.

If the output size is close to the database size, there is no benefit in using the
UDI. In this case, pure Prolog is faster than the UDI code, as it can use static data
structures; the UDI has been designed to construct answer lists dynamically. The
UDI starts to performs better as the output size decreases, and is up to 10 times
faster for 10% output size. Notice that 10% of, say, 10MB is still quite large, so
the UDI is doing very well although it is constructing very large data structures,
and results will be even better for queries that have very small output sizes.

Figure 5(c) shows even better results for R-Trees. Notice that we just compute
overlap, we do not execute spatial operators. In this case, Prolog uses an O(n×m)
algorithm versus the RTrees average O(n×(log(m))), easily justifying two orders
of magnitude speedups. The performance of the R-Tree UDI results is of same
order of the magnitude as the results obtained by Postgis, an extension to the
well known RDMs PostgreSQL, and the main Open Source RDMs solution in
Geographical Information Systems.
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:- [data1].
:- [data2].

overlap([(X1,Y1),(X2,Y2)],[(X3,Y3),(X4,Y4)]):-
X1 =< X4, X3 =< X2, Y1 =< Y4, Y3 =< Y4.

:- time((data1(A,B),data2(C,D),
overlap(B,D),fail)).

(a) Native Indexing.

:- udi data1(-,rtree).
:- [data1].
:- udi data2(-,rtree).
:- [data2].

:- time((data1(A,B), D && B,
data2(C,D),fail)).

(b) UDI Indexing.

data1 data2 native (a) UDI (b) ratio
Germany

road (30k) road (30k) 334.165s 0.170s 1965x
utility (17k) road (30k) 219.259s 0.067s 3272x
road (30k) utility (17k) 194.000s 0.090s 2155x
rrline (36k) road (30k) 402.150s 0.106s 3793x
road (30k) rrline (36k) 416.943s 0.095s 4388x

California
streams (96k) roads (2.1m) 81665.457s 13.543s 6030x
roads (2.1m) roads (2.1m) n.a. 80.989s

(c) Results

Fig. 5. R-Tree UDI testing

(a)

:- udi roads(-,rtree).
:- [roads].
:- [earthquakes].

in_danger(ID,Count) :-
earthquakes(ID,Epicenter),
e_area(Epicenter,D),
findall(ID2,

(R && D, roads(R,ID2)),
L),

length(L,Count).

Earthquake 20km 40km 60km
1933 41.038 123.956 236.430
1971 12.799 75.223 173.749
1987 75.797 202.980 343.914
1994 45.816 117.734 206.294
2008 46.604 154.739 268.228

(b)

Fig. 6. Los Angeles five major earthquakes

6.3 Example Application

Our work in the UDI has been motivated by previous work [14] in the geograph-
ical viewer simplegraphics, where as the user zooms-in we need to display
fewer objects or might display the objects in view in greater detail. In general,
the ability to quickly prune spatial objects is fundamental for performance in
these applications. Next, we show an example of how a straightforward logic
program can be at the heart of a geographical querying system.

Los Angeles is subject to earthquakes on a daily basis, due to its location in
the Pacific Ring of Fire. We have gathered the location of the last five major
earthquakes, shown in Figure 6. By using a roads database and different ranges
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of action we can estimate how many roads could be affected by a new earthquake.
The predicate in danger specifies the problem and we use a simple graphical
interface based on the site http://maps.google.com to depict the results, as
shown in Figure 6. The UDI execution mechanism takes less than a second to run
these queries, hence allowing us to quickly experiment with different epicenters
and with different ranges. Moreover, this small program can be easily adapted
as other sources of information, such as population counts, become available.

7 Conclusions

The use of Prolog as a general-purpose language, solving a wide variety of different
problems, is clearly not limited by the expressiveness of logic terms. Declarative
and intuitive representations of entities such as range intervals over reals or vec-
torial representations of spatial objects are easily expressed as logic terms. Such
conceptual efficiency is naturally expected in a language built around the motto
of the “what”. The “how”’s efficiency, however, is almost completely left, in Pro-
log, to sophisticated compilation techniques, where indexing fits. We argued, in
this paper, that the current state-of-the-art of this Prolog indexing, disconnected
from what a term represents, can entangle the general use of the language with
data-intensive problems from novel domains, such as vectorial spatial databases.
Our results provide unequivocal evidence of the advantages of UDI, showing real-
world queries that take hours to execute based on hash-based indexing, and are
completed within tenths of a second when suitable indexing is used.

Our proposal of UDI, coupled to a declarative constraining of logic variables,
is able to allow the user to redefine how indexing is to be done for a particular
predicate, based on what the arguments of the predicate represent, from scalar
values to multi-dimensional objects. It is clear that UDI provides the user some
explicit control over the procedural execution of Prolog code, which is very much
justifiable when such explicit control is able to improve the efficiency of Prolog
programs by several orders of magnitude, allowing an efficient handling of data
in novel areas of application.
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Abstract. Abductive Logic Programming (ALP) and Constraint Logic Program-
ming (CLP) share the feature to constrain the set of possible solutions to a pro-
gram via integrity or CLP constraints. These two frameworks have been merged
in works by various authors, who developed efficient abductive proof-procedures
empowered with constraint satisfaction techniques. However, while almost all
CLP languages provide algorithms for finding an optimal solution with respect to
some objective function (and not just any solution), the issue has received little
attention in ALP.

In this paper we show how optimisation meta-predicates can be included in
abductive proof-procedures, achieving in this way a significant improvement to
research and practical applications of abductive reasoning.

In the paper, we give the declarative and operational semantics of an ab-
ductive proof-procedure that encloses constraint optimization meta-predicates,
and we prove soundness in the three-valued completion semantics. In the proof-
procedure, the abductive logic program can invoke optimisation meta-predicates,
which can invoke abductive predicates, in a recursive way.

1 Introduction

Abductive Logic Programming (ALP) [1] is a set of programming languages deriving
from Logic Programming. In an abductive logic program, a distinguished set of predi-
cates, called abducibles, do not have a definition, but their truth value can be assumed.
A set of formulae, called Integrity Constraints (IC, often in the form of implications)
restrict the set of hypotheses that can be made, in order to avoid unrealistic hypotheses.

ALP is interesting as it supports hypothetical reasoning, and in the context of logic
programming it supports a simple, sound implementation of negation by failure [2] (also
called, in the context of ALP, negation by default), that is useful in many applications,
such as planning [3]. Operationally, various abductive proof-procedures have been pro-
posed in the past, and they have recently gained significant efficiency [4,5,6,7,8,9,10].

Many abductive proof-procedures are integrated with Constraint Logic Program-
ming (CLP) [6,8,10]. However, while most CLP languages have optimisation meta-
predicates, the issue has received little attention in the ALP community. Notably, van
Nuffelen and Denecker [11] performed interesting experiments with ALP and aggre-
gates (optimization is, in fact, an instance of aggregate meta-predicate), but, to the best
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of our knowledge, there is no proof of correctness for their procedure with aggregates.
On the other hand the importance of aggregates in ALP is well motivated in [11], as
the ALP solution is compared with a pure CLP solution: “the CLP solution is a long
program (400 lines) developed in some weeks of time [. . . ], where as the above repre-
sentation is a simple declarative representation of 11 logical formulae, written down
after some hours of discussion.” The possibility of reducing the development time from
weeks to hours is very attractive. On the other hand, a logic programming language
without a convincing declarative semantics and a proof of soundness is incomplete.

In this paper, we show some subtleties of a naive declarative semantics for abduc-
tion with optimization, and propose a new declarative semantics, that overcomes those
problems. Some of the subtleties have already been identified in CLP [12,13], others are
particular of the ALP framework. We propose an operational semantics, that extends the
SCIFF proof-procedure [14], and that recalls the branch-and-bound procedure used by
CLP solvers. Thanks to the new declarative semantics, we are able to show that the new
proof-procedure, called SCIFFopt, is sound with respect to the three-valued completion
semantics, in practical cases (those without floundering). In particular, we are able to
deal with recursion through the optimization predicates: the abductive proof-procedure
can invoke optimization predicates, which in turn can perform abductive reasoning. Re-
cursion through optimization lets us deal with problems of games, that are typically in
PSPACE, as we showed in a short version of this paper [15].

Finally, we show that the implementation of SCIFF does not need to be extended
to deal with optimization. This result comes from the choice of implementing SCIFF
in Constraint Handling Rules (CHR) [16], and we believe that the results proved here
could be directly applicable to other CHR-based abductive proof-procedures [17,18].

2 The SCIFF Proof-Procedure

SCIFF is an abductive proof-procedure that follows the classical semantics of ALP
with constraints. An ALP with constraints [6] is formally defined as a triple P ≡
〈KB,A, IC〉, where KB is the knowledge base (a logic program),A is a distinguished
set of predicates, called abducibles, and IC is a set of implications, called Integrity Con-
straints. With abuse of notation, we will use A also for the set of ground atoms built on
the abducible predicates. Given a goal G, the aim of abduction is to find an abductive
answer, i.e., a pair (Δ, θ), where Δ is a set Δ ⊆ A and θ is a substitution, such that

KB ∪Δ ∪ T |= Gθ ∧ IC (1)

where T is the theory of constraints [19], and will be omitted for simplicity in the
following. Although most of the results are general, in the examples we will use a
constraint sort on finite domains (CLP(FD)). Abducibles are in bold.

3 Syntax and Preliminaries

The optimization meta-predicates are the main objective of this work. The following
syntax will represent an atom with three arguments:

min(X : G) = V



Integration of Abductive Reasoning and Constraint Optimization in SCIFF 389

meaning that we are looking for the solution to the goal G that gives the minimal value
to variable X ; such value is V . When the value of the optimal solution is not of interest,
we adopt the simplified syntax min(X : G) (one can think of this simplified syntax
as if adding an unnamed variable, as in Prolog: min(X : G) = ). Of course, we
have a symmetric meta-predicate max. We will use upper-case letters for variables and
lower-case for predicates and constants (as in Prolog).

4 A Naive Declarative Semantics

The first intuition of a declarative semantics for abduction with optimization is to start
from the declarative semantics of abduction itself (Eq 1) which states that, given an
abductive program P ≡ 〈KB,A, IC〉, one’s goal is to find a set Δ ⊆ A of abducibles
that (together with the knowledge base KB) entails both the goal G and the integrity
constraints IC. I.e., we ask ourselves if there exists such a set Δ.

In the simplest possible situation, the optimization meta-predicate occurs only in the
goal, e.g., G ≡ min(X : p(X)) = V , meaning that we want to find the minimal
value V for variable X such that predicate p(X) is true. The temptation is to adopt the
same idea used to give semantics to optimization predicates in CLP, namely to rewrite
min(X : p(X)) = V as p(V )∧not(∃Y p(Y )∧Y < V ), i.e., V is indeed the minimum
if p is true and there is no smaller value Y that makes p true.

Now, combining abduction and optimization we would obtain:

KB ∪Δ |= p(V ) ∧ not(p(Y ) ∧ Y < V ) ∧ IC (2)

This formalisation is very intuitive, but it does not provide a semantics usable in prac-
tical situations. The meaning of equation 2 is “Do there exist a set Δ and a value V
such that p(V ) is true and no other value Y smaller than V makes p true?” Let us now
consider a very simple abductive program:

p(X) ← a(X) ∧ 1 ≤ X ≤ 2. (3)

without integrity constraints. In this case, the declarative semantics in Eq. 2 would pro-
vide the following answers to the goal min(X : p(X)) = V :

Δ1 = {a(1)} V = 1
Δ2 = {a(2)} V = 2
Δ3 = {a(1), a(2)} V = 1.

We find such an answer counter intuitive, in particular Δ2, and not in the direction of
real-life applications. In the semantics of Eq. 2, for each set Δ that supports p(X) we
have a positive answer; the value V is simply the minimum value amongst the abduced
literals. Classical applications of ALP are diagnosis, and planning; by combining ab-
ductive reasoning with optimization, one would expect to be able to answer to questions
like “What is the plan of minimal cost?” or “What is the explanation of maximal like-
lihood?”, which means that the user wants to find the optimal set Δ, not that she wants
to find any explanation Δ, and then take the minimal value that makes true a predicate
with such assumptions. More formally, the intended meaning is not

(∃Δ,V ) KB ∪Δ |= p(V ) ∧ not(∃Y.p(Y ) ∧ Y < V ) ∧ IC
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which means that given a set Δ that satisfies p and IC, V is the optimal value in that
particular Δ, but that the set Δ should be in the scope of optimization, as in:

(∃V,Δ∗) [ KB ∪Δ∗ |= p(V ) ∧ IC
∧ not(∃Y,Δ′.Y < V ∧KB ∪Δ′ |= p(Y ) ∧ IC)] (4)

Of course, Eq 4 is meaningful only for optimization atoms that occur in the goal, but it
does not give a semantics to general ALPs that contain optimization atoms in the KB
or in the IC.

Starting from the practical need to combine abduction and constraint optimization,
we propose a new declarative semantics for ALP with optimization. We ground our
semantics on the SCIFF language and proof-procedure [14], but we believe that our
results could be easily extended to other proof-procedures.

5 Declarative Semantics

The declarative semantics is given, as usual, with respect to the ground program. When
there are optimization literals, defining the grounding of a program is not immediate;
we adopt the same definitions by Faber et al. [20], adapted to the SCIFF syntax.

Definition 1. A Set Term is either a symbolic or a ground set. A Symbolic Set is a pair
{V : Conj}, where V is a variable and Conj is a conjunction of atoms. A Ground
Set is a set of pairs 〈t : Conj〉, where t is a numeric constant and Conj is a ground
conjunction of atoms.

Definition 2. An Optimization Atom is either of the form min(S) = V or max(S) =
V , where S is a set term.

We will suppose for simplicity that optimization atoms occur only in the body of
clauses, and not in Integrity Constraints.

Definition 3. Given a clause, a local variable is a variable that occurs only in an opti-
mization atom. All other variables are global.

Definition 4. Given a symbolic set without global variables S = {V : Conj}, the
instantiation of S is a ground set of pairs {〈γ(V ) : γ(Conj)〉|γ is a substitution for the
local variables in S}.

A Ground Instance of a clause r is obtained in two steps:

1. all global variables are grounded
2. every symbolic set is replaced by its instantiation

After defining the grounding of a program, we can give it semantics. We will restrict
ourselves to locally stratified programs. Note that local stratification does not prevent
the user to use recursion through optimization.

Definition 5. A ground program is locally stratified with respect to optimization if there
exists a level mapping || · || : H �→ N (where H is the Herbrand Base) such that for
each pair of ground atoms h and b occurring, respectively, in the head and in the body
of a clause:
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– if b occurs in the clause in an optimization atom, then ||b|| < ||h||
– otherwise, ||b|| ≤ ||h||.

If such a mapping exists, then the set of ground atoms in the Herbrand base is partitioned
into levels. Suppose for simplicity that the levels take the values of the first natural
numbers (so the first level takes value 0).

5.1 3-Valued Completion for Non-abductive Programs

We extend the 3-valued completion semantics [21,22] to the case with optimization
meta-predicates. A (partial) interpretation I is a set of literals considered true. A literal
p is false in I iff ¬p ∈ I . If {p,¬p} ∩ I = ∅, then p’s truth value is unknown (⊥).

We report the extension of the TP operator to the three-valued case:

Definition 6. Consider an atom p of a defined predicate

– p ∈ TP (I) iff there is some instantiated clause R ∈ P such that R has head p, and
each subgoal literal in the body of R is true in I .

– p ∈ UP (I) iff for all clauses R ∈ P that have head p, the body of the clause is
false in I .

– WP (I) = TP (I) ∪ ¬ ·UP (I), where ¬ · UP (I) means the negation of all atoms in
UP (I) (i.e., if atom a ∈ UP (I), then ¬a ∈WP (I)).

Notice that Definition 6 gives a truth value only to literals defined in KB, other literals
(abducibles, optimization atoms) have still unknown⊥ truth value.

TP , UP and WP are monotonic transformations (i.e., TP (I) ⊆ TP (J) whenever
I ⊆ J), so considering the limit makes sense. For a transformation Φ, let [21]

– Φ ↑0 (S) = S,
– Φ ↑α+1 (S) = Φ(Φ ↑α (S))
– for limit ordinals λ, Φ ↑λ (S) =

⋃
α<λ Φ ↑α (S)

Let I0 = ∅, Iα = WP ↑α (∅), I∞ = WP ↑ω (∅), where ω is the first limit ordinal.

5.2 3-Valued Completion Semantics for Abductive Programs

Since P is an ALP, the truth of an atom depends on the assumed hypotheses. We con-
sider, in the declarative semantics, all the possible groundings of abducible literals that
satisfy the integrity constraints. Let I0(Δ) the 3-valued interpretation corresponding to
the set of abduced atoms Δ, i.e., ∀a ∈ Δ, a ∈ I0(Δ) and ∀a ∈ A \Δ, ¬a ∈ I0(Δ).

Let I∞(Δ) = WP ↑ω (I0(Δ)). As stated earlier, I∞(Δ) assigns value ⊥ to all
optimization atoms. Let us suppose that the program is stratified also with respect to
negation [23]; in such a case, the three-valued completion semantics gives values true-
false to each atom (never unknown), so the only unknown atoms are the optimization
atoms and the atoms that depend on them.

If the program is locally stratified with respect to optimization, there will be an op-
timization atom min(S) = Vm such that ∀〈V : C〉 ∈ S, C is not ⊥ (i.e., there will be
an optimization atom of minimum level).

We now define a new operator that gives semantics to the optimization atoms.
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5.3 Extension of 3-Valued TP for Optimization Atoms

Before defining the extension of the TP operator to the optimization atoms, consider
the following example, in CLP (without abduction):

min(X : max(Y : p(X,Y ))) = V

Intuitively, this problem can be thought as a two player game: given that the possible
solutions are those that satisfy predicate p(X,Y ), the first player tries to minimize X
while the second maximizes Y . The point here is that the first player has control over the
variableX , while the second instantiates variable Y : player 2 cannot choose the value of
variable X . This means that we need to exclude some variables from the maximization;
for this reason, various authors [12,13] proposed to extend the syntax, in order to let the
user choose which variables are subject to optimization and which are not, by providing
protected variables [13] to the optimization meta-predicate.

In ALP, we have the same issue, and a further one: which of the two nested atoms
is responsible for grounding the set Δ? We would like both invocations to be able to
abduce literals, otherwise the expressivity of our language would be strongly compro-
mised: in fact, we would boil down to a two step procedure, and lose the possibility of
recursion through optimization predicates. We decided to explicitly communicate to the
optimization atom those literals it is responsible to abduce. We show in the following
of this section that there is a precise declarative semantics.

We extend the syntax of the optimization meta predicate:

minAm(X : p(X)) = V (5)

the intuitive meaning is that we are looking for the minimum value forX such that p(X)
is true, knowing that in such minimization we are entitled to abduce only the literals oc-
curring in the set Am ⊆ A. Since the set Am could be infinite, we sometimes represent
its content with non-ground atoms, meaning that all possible groundings belong to Am.

We can now define precisely the declarative semantics of the optimization meta-
predicate in the 3-valued completion semantics, by extending the TP operator:

Definition 7. A non-optimization literal l ∈MP (I) iff l ∈ WP (I).
Otherwise, consider the set of all the possible groundings of the abducible literals

that satisfy the integrity constraints: Cons = {Δ ∈ 2A|KB ∪ Δ |= IC}. Consider
one specific set Δ∗ (intuitively, the candidate set of abduced literals).

The atom minAm(S) = Vm is true, i.e., minAm(S) = Vm ∈ MP (I(Δ∗)), iff all
the following conditions hold:

1. ∀Δ ∈ Cons, ∀〈V : C〉 ∈ S, either I(Δ) |= C or I(Δ) |= ¬C (intuitively, C is
not ⊥ in all the possible Δ)

2. there exists some 〈V : C〉 ∈ S such that V = Vm and
(a) I(Δ∗) |= C
(b) � ∃〈V ′ : C′〉 ∈ S s.t. I(Δ∗) |= C′ and V ′ < V
(c) � ∃(〈V ′′ : C′′〉 ∈ S and Δ′′ ∈ Cons) such that

i. Δ′′ ∩ (A \Δ∗) ⊆ Am

ii. Δ′′ ∩ (A \ Am) = Δ∗ ∩ (A \ Am)
iii. I(Δ′′) |= C′′ and V ′′ < V
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Fig. 1. Relation of sets in Definition 7

The atom minAm(S) = Vm is false, i.e., ¬(minAm(S) = Vm) ∈ MP (I(Δ∗)) iff
condition 1 holds, but at least one of the other conditions does not hold.

Intuitively, condition 2b imposes that no better solution exists in the same Δ∗, while
condition 2c requires that a better solution does not exist in a different set Δ′′. Such
set Δ′′ cannot be completely different from Δ∗, as in this specific optimization we are
supposed to optimize only with respect to Am, and not with respect to the whole set
of abduciblesA. In the current optimization, we will only abduce literals in Am, while
the other literals (in A \ Am) can be abduced externally. For this reason, Δ′′ coincides
with Δ∗ for the part in A \ Am, and differs only for the part in Am (Figure 1).

The operator MP is monotonic, and gives a truth value to optimization predicates
that contain only conditions whose truth value is known. In other words, if one knows
the truth value of the argument of min, he can define the truth of min through the
MP operator. Otherwise, the min literal remains unknown.1 Note that we require such
knowledge for all the possible Δ that satisfy the integrity constraints (set Cons).

Given a set Δ, we can apply the operator MP up to its fix-point; if a ground literal
a ∈MP ↑ω (I0(Δ)), we write

P |=opt
Δ a.

6 SCIFFopt Operational Semantics

The SCIFF proof-procedure consists of a set of transitions that rewrite a node into one
or more children nodes. It encloses the transitions of the IFF proof-procedure [7], and
extends it in various directions. We recall the basics of SCIFF; a complete description
is in [14], with proofs of soundness, completeness, and termination.

Each node of the proof is a tuple T ≡ 〈R,CS, PSIC,Δ〉, where R is the resolvent,
CS is the CLP constraint store, PSIC is a set of implications derived from propagation
of integrity constraints, and Δ is the current set of abduced literals. The main transitions,
inherited from the IFF are:

Unfolding replaces a (non abducible) atom with its definitions;
Propagation if an abduced atom a(X) occurs in the condition of an IC (e.g., a(Y ) →

p), the atom is removed from the condition (generating X = Y → p);

1 This condition could be relaxed; e.g., min(〈1, p〉) = 2 is obviously false even if we do not
know the truth of atom p.
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Case Analysis given an implication containing an equality in the condition (e.g., X =
Y → p), generates two children in logical or (in the example, either X = Y and p,
or X �= Y );

Equality rewriting rewrites equalities as in the Clark’s equality theory;
Logic simplifications other simplifications like true → A ⇔ A, etc.

SCIFF includes also the transitions of CLP [19] for constraint solving.
We introduce a new transition to process optimisation meta-predicates.
In order to simplify the exposition, we assume that the goal argument of min con-

strains the value of the objective function to become ground in each leaf node, as in
many practical implementations of CLP (see, e.g., SICStus manual). We plan to remove
such assumption in future work, by considering bounds as in the operational semantics
of optimization in CLP [13].

Definition 8 (Transition Optimize). Given a node

T ′ ≡ 〈R′, CS′, PSIC′, Δ′〉,

such that the resolvent R′ contains exactly an optimization literal, i.e.,

R′ = {minAm(F : G) = V },

transition Optimize opens a new SCIFF derivation tree with starting node

T opt ≡ 〈G,CS′, PSIC′, Δ′〉.

We call the derivations spawning from node T opt sub-derivations. If all sub-derivations
finitely fail, then the successor of T ′ is the special node false .

Otherwise, let S the set of leaf nodes of the sub-derivations starting from node T opt.
For each leaf node Nj ∈ S (Figure 2) one can compute the value of F for the node.
As in CLP, we can call F the objective function and write, with an abuse of notation,
F (Nj) to indicate its value in a node.

If there exists a node Nk ∈ S in which the set of abduced literals Δk contains new
literals not included in Am (i.e., Δk �⊆ Am ∪Δ′), the derivation flounders.

Ni

N1 . . . Ni Nj . . .

��������D1
���� Di

����Dj

�������

T opt ≡ 〈G, CS′, PSIC′, Δ′〉

T ′ ≡ 〈minAm(F : G) = V, CS′, PSIC′, Δ′〉
D′

T 0

Fig. 2. SCIFFopt derivation
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Note also that transition Optimize is not applicable if R′ contains more than one lit-
eral. In case no transitions are applicable and in the last node the resolvent is not empty,
the derivation flounders (this can happen, e.g., in case the goal contains a conjunction
of minimization literals).

If there is a successful sub-derivation Di starting from node T opt with final node
Ni ∈ S, and value F ∗ ≡ F (Ni), then to the constraint store of each node Nj ∈ S
a new constraint F (Nj) ≤ F ∗ is added. To such nodes, constraint propagation is
applied, and it can possibly fail. In case of success in some node Nk, again the new
value F ∗

2 ≡ F (Nk) is computed, and the new constraint F (Nl) ≤ F ∗
2 is added to the

store of all the remaining nodes Nl. This process continues until the fix point. The final
nodes of the successful sub-derivations are then generated as children of the node T ′.

If the SCIFFopt operational semantics (including transition Optimize) has a successful
(non floundering) derivation with abductive answer (Δ,σ) for a goal G and a program
P we write

P �opt
Δσ Gσ.

Example 1. Consider the program in Eq. 3, with the goal min{a( )}(X : p(X)) = V .
The only applicable transition is Optimize, which opens a new derivation for the goal
p(X). The SCIFF proof-procedure has two possible derivations, with nodes (we report
for simplicity only the sets of abduced literals): Δ1 = {a(1)}, Δ2 = {a(2)}. Optimize
chooses one of them: suppose Δ2. F (Δ2) = 2, so the new constraint X ≤ 2 is added to
all nodes; constraint propagation does not exclude any value nor causes failure. Another
node is selected: Δ1. F (Δ1) = 1, and the constraint X ≤ 1 is added to all nodes. This
causes a failure in Δ2, since 2 � 1, so the only viable solution is the node containing
Δ1. Such node is reported as child of the initial goal, with V = 1. No other transition
is applicable, so we have success with V = 1

The optimization predicates are postponed after the others, because they can be safely
applied at the end of a derivation. This is not an issue in many practical applications:
for example, when solving constrained optimization problems in CLP, one first imposes
constraints and then performs a search. Of course, in some cases postponing the opti-
mization goal can lower efficiency. Another way to deal with such problem is using
protected variables [13]; in this paper we do not use them to simplify the exposition,
and leave for future work the integration of protected variables into our syntax and
semantics.

Note that this limitation does not prevent recursion through optimization: when tran-
sition Optimize is applied, a new derivation starts, and optimisation can be applied
inside it (it is a different derivation).

Example 2. Consider the goal G1 ≡ min{a( )}
(
X : min{a( )}(Y : p(X,Y ))

)
, with:

p(X,Y ) ← 0 < X < Y,a(X,Y ).

Start D1: Transition Optimize is applicable, and a new derivation tree is generated,
rooted in G2 ≡ min{a( )}(Y : p(X,Y )).
Start D2: Optimize is applicable in the new derivation, and generates a new tree

rooted in G3 ≡ p(X,Y ).
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Start D3: G3 is solved with the SCIFF transitions, that in particular abduce
a(X,Y ). The best solution in this subtree is node Y = 1, X = 0, a(0, 1).

End D3: Derivation D3 terminates, so there is no floundering in it.
End D2: No transitions after Optimize, so no floundering.

End D1: no floundering.

We are not currently dealing with the case in which there is an optimisation sub-goal
in the condition of an integrity constraint. We leave this issue for future research; if
at the end of a derivation there is an implication with a minimization sub-goal in the
condition, the derivation flounders.

7 Soundness

We will rely on the following theorems, proved in [14]:

Theorem 1 (Soundness of SCIFF). Given an abductive logic program P , if P �Δ G
with abductive answer (Δ,σ), then P |=Δσ Gσ

Theorem 2 (Completeness of SCIFF). Given an abductive logic program P , a
(ground) goal G, for any ground set Δ such that P |=Δ G then ∃Δ′ such that P �Δ′ G
with an abductive answer (Δ′, σ) such that Δ′σ ⊆ Δ.

We can now give the main result:

Theorem 3 (Soundness of SCIFFopt). Given an abductive logic program P with op-
timization predicates, that is locally stratified both with respect to negation and to
optimization, the following results hold:

1. (Soundness of success) if
P �opt

Δ G
with abductive answer (Δ,σ), then

P |=opt
Δσ Gσ

2. (Soundness of failure) if the SCIFFopt derivation for a goal G finitely fails, then

P �|=opt G

Proof. Suppose that the derivation does not contain applications of the Optimize transi-
tion. In this case, the thesis follows immediately from the soundness and completeness
of the SCIFF proof-procedure (Theorems 1 and 2).

Note that a non-floundering SCIFFopt derivation contains at most one application
of the Optimize transition, otherwise the second application would make the derivation
flounder. However, each SCIFFopt derivation can generate new sub-derivations (each
possibly containing an application of Optimize). We call full derivation the forest of
derivations triggered by a goal, including all sub-derivations for optimisation sub-goals.

By induction, suppose that all SCIFFopt full derivations of depth n (i.e., we have
n levels of application of the Optimize transition) are sound (satisfy conditions 1 and
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2). Consider a SCIFFopt derivation D that generates sub-derivations of depth up to n.
The sub-derivations are sound by inductive hypothesis. The derivation D consists of a
SCIFF derivation D′ followed by the application of the Optimize transition (Figure 2).
Derivation D′ is a SCIFF derivation, that is sound and complete [14]. The Optimize
transition is applied only to a node with a min goal, that must be the only element
in the resolvent (otherwise other transitions would be applicable after Optimize). Let
T ′ ≡ 〈minAm(F : G) = V,CS′, PSIC′, Δ′〉 the final node of D′ (Figure 2).

Consider a sub-derivation Di (with goal G); let Ni the final node of Di. Di is sound
by inductive hypothesis.

Suppose that transition Optimize generates node Ni as successor of T ′; we prove that
all the conditions in Definition 7 hold.

Condition 1 holds because the program is stratified with respect to both negation and
optimization. Since the program is stratified with respect to negation, the tree-valued
completion semantics has a unique model, and no literal has unknown truth value.

Condition 2a requires the derivation Di to be sound: this holds because of the induc-
tive hypothesis.

Condition 2b requires that there is no other substitution θ′ that, together with the
same set of hypotheses Δ∗, provides a better value for V . In fact, if there existed a
substitution θ′ supporting a value V ′ < V , then (Δ∗, θ′) would be an abductive answer
to the goal G ∧ F < V (i.e., P |=Δ∗ θ′ (G ∧ F < V )θ′). But the goal G ∧ F ≤ V
is the initial node of another sub-derivation, call it Dj . If Dj succeeded with a value
V ′ < V , then transition Optimize would have added the constraint F (Ni) ≤ V ′ to the
node Ni, which would have failed (contradicting the hypothesis that Ni is the successor
of T ′). If Dj failed, then, since for inductive hypothesis the soundness of failure holds
for the sub-derivations, there is no abductive answer that supports the goal G∧F ≤ V .
Otherwise, D′ may succeed with V ′ = V , but this does not contradict the assumption
that V is one of the optima.

Condition 2c holds again due to the soundness of failure. It requires that there is
no other substitution θ′′ that, together with a different set of hypotheses Δ′′ provides a
better value V ′′. Moreover, the candidate set Δ′′ can differ from Δ∗ only for the literals
in Am (see Definition 7).

Suppose, by contradiction, that there is a set Δ′′ satisfying the conditions 2c (i−iii).
Since V ′′ < V , (Δ′′, θ′′) is an abductive answer to the goal G ∧ F ≤ V , that is the
initial node of another derivation Dover . If Dover succeeds with a value V ′′ < V ,
then transition Optimize would not return the value V : it would impose the constraint
F (Ni) ≤ V ′′ to the node Ni, which would obviously fail (contradicting a previous
hypothesis). If Dover fails, this failure would be unsound, contradicting the inductive
hypothesis. IfDover succeeds with V ′′ = V , it contradicts the assumption that V ′′ < V .

8 Implementation

Constraint Handling Rules (CHR) [16] is a rule-based language useful to define new
constraint solvers; here we cannot go into details for space reasons.

In the SCIFF proof-procedure, abducible literals are mapped to CHR constraints;
a general abducible a(X,Y ) is represented as the constraint abd(a(X, Y)). Differently
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from other proof-procedures implemented in CHR [24,25,17,26], we do not map in-
tegrity constraints to CHR rules, but to other CHR constraints. For example, the IC

a(X,Y ), p(Y ) → r(X) ∧ q(Y ) ∨ q(X)

is mapped to the CHR constraint: ic([abd(a(X, Y)), p(Y)], [[r(X), q(Y)], [q(X)]]).
The operational semantics is defined by a set of transitions, some inherited from the

IFF [7], some devoted to constraint processing, and others specific for SCIFF. The tran-
sitions are then easily implemented into CHR rules; for example, transition propagation
(with case analysis) [7] propagates an abducible with an implication2:

abd(P), ic([P1|Rest], Head) =⇒
rename(ic([P1|Rest], Head), ic([RenP1|RenRest], RenHead)),
reif unify(RenP1, P, B), (B = 1, ic(Rest, Head); B = 0)

rename computes a renaming that also considers the quantification of the variables, and
reif unify is our CHR implementation of reified unification: it is a ternary constraint
relating two terms and a Boolean variable. Declaratively, if the two first arguments
unify, then B = 1, otherwise, the two arguments do not unify and B = 0.

Another example is logical equivalence [(true → D1∨ . . .Dn) ⇔ (D1∨· · ·∨Dn)]:

ic([], Head) ⇐⇒ member(Disjunct, Head), call(Disjunct)

that, given an IC with empty body, imposes that at least one of the disjuncts in the head
holds. Notice that the chosen disjunct is executed as a Prolog goal: one of the features
of the CHR implementation is that the abductive program written by the user is directly
executed by the Prolog engine, and the resolvent of the proof-procedure coincides with
the Prolog resolvent. Besides the efficiency gain of avoiding meta-interpretation, this
means that every Prolog predicate can be invoked. In particular, we can invoke optimi-
sation meta-predicates: in some cases, it is not enough to find one abductive solution,
but the best solution with respect to some criteria is requested. In SCIFFopt, we use the
same optimisation meta-predicates provided by the CLP solver, that efficiently imple-
ments a variant of the branch-and-bound algorithm.

9 Example

Consider a two player game, where each of the players A and B can play one move.
The result of the two moves is a configuration with an associated value: one player’s
aim is to maximize the value, the other player’s is to minimize it. Player A’s move
is represented by the abducible a(Ma, X), where Ma is the possible move and X is
the obtained value. Analogously, player B abduces b(Mb, X). The obtained value is
defined with a predicate f(Ma,Mb, X) that gives the obtained value X corresponding
to movesMa and Mb. It can be defined (Figure 3) as a set of facts f(0, 0, 5), f(0, 1, 10),
f(1, 0, 4), f(1, 1, 3). To compute the obtained value, we can define a predicate or an IC
as the following:

2 This is a sketch of the actual implementation, which is more optimized and, in particular, has
a better exploitation of CHR indexing capabilities.
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a(0) a(1)

5

b(0)

10

b(1)

4

b(0)

3

b(1)

Fig. 3. min-max

a(Ma, Xa),b(Mb, Xb) → Xa = Xb, f(Ma,Mb, Xa). (6)

As player A moves first, and wants to maximize the value X , while player B moves
next and his goal is to minimize X , the SCIFFopt goal will be

max{a( , ),b( , )}(Vb : a(Ma, Xa) ∧ (Ma = 0 ∨Ma = 1)∧
min{b( , )}(Xb : b(Mb, Xb) ∧ (Mb = 0 ∨Mb = 1)) = Vb)

We have four possible sets Δ satisfying the integrity constraint: Δ0
0={a(0, 5),b(0, 5)},

Δ0
1 = {a(0, 10),b(1, 10)}, Δ1

0 = {a(1, 4),b(0, 4)}, and Δ1
1 = {a(1, 3),b(1, 3)}.

Declaratively, the internal goal min{b( , )} is true in Δ0
0 and Δ1

1: Δ1
0 is ruled out by Δ0

0
(see condition 2c in Definition 7) and Δ0

1 by Δ1
1. The external max{a( , ),b( , )} goal,

thus, chooses from these two sets the Δ with maximum value of Xb, namely Δ0
0; this

output is the same as a min-max algorithm.
From an operational viewpoint, transition Optimize generates two nodes: one in

which abduces a(0, Xa), and one with a(1, Xa).

Ma = 0 Transition Optimize is applied to min: it opens two nodes, one abducing
b(0, Xb), the other with b(1, Xb).

Mb = 0 In the first, propagation of the integrity constraint (Eq. 6) imposes Xa = Xb =
5. Now transition Optimize of the internal min imposes the constraint Xb ≤ 5
to all the open nodes in its scope, i.e., the node with value 10 in Figure 3

Mb = 1 In the second node, the propagation of the IC imposes Xa = Xb = 10, which
conflicts with the constraint Xb ≤ 5; CLP propagation results in a failure.
Now Optimize applied to min provides value 5 as optimum, and generates the
node with Δ0

0 as successor. The external Optimize (applied to max) adds the
new constraintXa ≥ 5 to all open nodes, in particular to the open choice point.

Ma = 1 In this node, the external Optimize has imposed Vb ≥ 5. Again, transition
Optimize is applied to the min literal, and it opens two nodes. The minimum
value computed for Vb is 3, and it does not satisfy Vb ≥ 5, so the result is
indeed Xa = Xb = 5.

This example shows how min-max problems can be easily encoded in SCIFFopt.
In this simple example, we impose the optimization directly in the goal for ease of
presentation, but it can be simply extended to other examples with recursion through
minimization, to solve problems in PSPACE. In [15] we showed one such example.



400 M. Gavanelli, M. Alberti, and E. Lamma

10 Conclusions

Integration of abductive reasoning and constraint satisfaction has been vastly investi-
gated in the recent years, and efficient proof-procedures have been developed [6,8,10].
Surprisingly, constraint optimization, one of the main topics in Constraint Program-
ming, has been often left out of abductive proof-procedures, except for the interesting
experiments reported (without proofs) in [11].

We extended the declarative and operational semantics of the SCIFF proof-pro-
cedure to support this type of reasoning, resulting in the SCIFFopt framework. For
SCIFFopt we proved a soundness result, that, to the best of our knowledge, is the
first in the literature on abductive logic programming with constraint optimization. The
soundness result holds when there is no floundering, a common issue in many logic
programming languages. In future work, we plan to study the floundering issue in more
detail, and extend the applicability of SCIFFopt to other problems, like those in which
a conjunction of optimization atoms is required.
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Abstract. We present an implementation of table constraints in
CLP(FD). For binary constraints, the supports of each value are repre-
sented as a finite-domain variable, and action rules are used to propagate
value exclusions. The bit-vector representation of finite domains facili-
tates constant-time removal of unsupported values. For n-ary constraints,
we propose pair-wise arc consistency (AC), which ensures that each value
has a support in the domain of every related variable. Pair-wise AC does
not require introducing new problem variables as done in binarization
methods and allows for compact representation of constraints. Never-
theless, pair-wise AC is weaker than general arc consistency (GAC) in
terms of pruning power and requires a final check when a constraint
becomes ground. To remedy this weakness, we propose adopting early
checks when constraints are sufficiently instantiated. Our experimenta-
tion shows that pair-wise AC with early checking is as effective as GAC
for positive constraints.

1 Introduction

A table constraint, or extensional constraint, over a tuple of variables specifies
a set of tuples that are allowed (called positive) or disallowed (called negative)
for the variables. Recently there has been a growing interest in this format of
constraints. This format is well suited to problems where relations are more
easily given in extension than in intension such as configuration problems in-
volving datasets (e.g., crossword puzzles). Another reason for the popularity
of this format is that certain intensional constraints, especially nonlinear and
global constraints, can be more cheaply maintained when tabulated. The table
format has been used in the CSP solver competitions and a good collection of
problem instances are available. Arc consistency has been generalized for table
constraints [5,12] (called GAC) and several data structures have been proposed
for maintaining GAC for table constraints [2,3,6,7,9,10].

No previous work has been reported on introducing table constraints into
CLP(FD). Because of the lack of sophisticated data structures such as multi-
dimensional arrays and the necessity of manipulation of tagged data in CLP(FD),
an efficient data structure designed for a low-level language may not be suited
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to CLP(FD). In this paper, we propose an encoding for table constraints in
B-Prolog, a CLP(FD) system.

For a binary table constraint, the supports of each value are represented as a
finite-domain variable. When either variable in the constraint is bound to a value,
the other variable is unified with the finite-domain variable that represents the
supports of the value. Whenever a value is excluded from the domain of a variable
in the constraint, the supports of the value in the domain of the other variable
are examined and those values that are no longer supported are excluded. As
bit vectors are used to represent finite domains, the basic operations required in
propagation can be performed efficiently [11].

For an n-ary table constraint, we propose pair-wise arc consistency (AC),
which ensures that each value has a support in the domain of every related
variable. As for binary constraints, supports of each value are also represented as
a finite-domain variable. One of the advantages of pair-wise AC is that it, unlike
binarization methods [1], does not introduce new problem variables. The newly
introduced finite-domain variables are solely used as bit vectors to represent
supports of values. Since supports are not updated during search, no events can
occur in these new domain variables. This representation fits CLP(FD) since
bits are not tagged individually. Another advantage of pair-wise AC is that
constraints can be represented very compactly. Let n be the arity of an n-ary
contraint and d be the size of the maximum domain. Supports of values can be
represented with O(n2 × d2) space.

Nevertheless, pair-wise AC is weaker than GAC in terms of pruning power
because, understandably, it is impossible to use O(n2×d2) space to represent as
many as dn tuples. To remedy this weakness, we propose adopting early checks
to enforce GAC when constraints are sufficiently instantiated. Early checking
extends forward checking [8] because the number of variables contained in a
constraint can be more than one when the constraint is checked.

For each variable X in a table constraint, a propagator is used to watch the
ins(X) event which is posted when X is instantiated, and another propagator
is used to respond to the dom any(X,E) event which is posted whenever any
element E is excluded from the domain of X . Propagators are described using
action rules [16]. Our implementation propagates values like the AC-4 algorithm
[13], and hence can be classified as fine-grained.

The contribution of this paper is twofold. First, this paper presents an encod-
ing for table constraints which is suited to any CLP(FD) system that represents
finite-domains as bit vectors and handles domain value exclusions as events. Sec-
ond, this paper proposes pair-wise AC, which is a natural extension of AC but
has never received much attention before, and proposes to remedy the weakness
of pair-wise AC with early checking. We experimented with two different settings
for early checking and our experimental results showed that pair-wise AC with
early checking is as effective as GAC.
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This paper is organized as follows: Section 2 overviews table constraints, consis-
tency algorithms, CLP(FD), and action rules; Section 3 describes an encoding for
binary constraints and gives the propagators as action rules; Section 4 gives the
propagators for maintaining pair-wise AC; Section 5 proposes several improve-
ments on the propagators; Section 6 describes early checking; Section 7 presents
the experimental results; Section 8 discusses the related and future work.

2 Preliminaries

2.1 Table Constraints and Consistency

A table constraint is either positive or negative. A positive constraint takes the
form X in R and a negative constraint takes the form X notin R where X is
a tuple of variables (X1, . . . , Xn) and R is a table defined as a list of tuples of
integers where each tuple takes the form (a1, . . . , an). In order to allow multiple
constraints to share a table, we allow X to be a list of tuples of variables. In
theory, a negative constraint can always be represented as a positive constraint
by complementing the table, but in practice this is not always viable since the
resulting table can be prohibitively large.

A table constraint is said to be binary if each tuple has only two compo-
nents, and n-ary if each tuple has more than two components. A table constraint
degenerates into a domain constraint in CLP(FD) if each tuple has only one
component.

Let (X1, X2) in R be a binary table constraint. A value x1 in the domain
of X1 is said to be supported in the constraint if there exists a value x2 in the
domain of X2 such that (x1, x2) is included in R. The constraint is said to be
AC (arc consistent) on X1 if every value in the domain of X1 is supported. The
constraint is said to be AC if it is AC on both X1 and X2.

Let (X1, . . . , Xn) in R be an n-ary table constraint. Let Rij denote the pro-
jection of the table R over the ith and jth columns (i < j). The binary projection
of the constraint over Xi and Xj (i < j) is the binary constraint (Xi, Xj) in
Rij . The n-ary constraint is said to be pair-wise AC if all of its binary projections
are AC.

Consider the n-ary constraint (X1, . . . , Xn) in R again. A value xi in the
domain of variable Xi is gac-supported in the constraint if there exists a tuple
in R whose ith component is equal to xi. The constraint is said to be GAC if
every value in the domain of every variable is gac-supported. This condition can
be given more formally as:

∀i∈{1..n}∀xi∈Xi∃x1∈X1,...,xi−1∈Xi−1,xi+1∈Xi+1,...,xn∈Xn(x1, x2, . . . , xn) ∈ R

where variables are used to denote their domains.
In general, pair-wise AC is a weaker condition than GAC. For example, con-

sider the following constraint:
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(X,Y,Z) in [(0,1,1),
(1,0,1),
(1,1,0)]

After the assignment X=1, Y=1, and Z=1, the constraint is not GAC but it is still
pair-wise AC.

When a table constraint is generated, tuples of variables and values in the
form (X1, . . . , Xn) are all transformed into the form t(X1, . . . , Xn) that takes
less memory to store and is easier to manipulate.

2.2 CLP(FD)

CLP(FD) [8] is a constraint language that enhances Prolog with built-ins for
specifying domain variables, constraints, and strategies for assigning values to
variables (called labeling). The unification operator is enhanced to deal with
domain variables. For two domain variables X and Y , after unification X = Y

the elements that are not in both domains are removed and the two variables
become aliases.

The following built-ins are used in the implementation of table constraints:

– X in D: restricts X to take on a value from D, where D is a set of integers.
– X notin D: forbids X to take on any value from D.
– fd dom(X,D): D is the list of integers in the domain of X .
– fd disjoint(X,Y): The domains of X and Y are disjoint.
– fd set false(X,E): excludes integer E from the domain of X . It is equiv-

alent to X#\=E but more efficient.

These built-ins are available in B-Prolog. Similar built-ins are also available in
other CLP(FD) systems or can be implemented using other primitives.

2.3 Action Rules and Events

The AR (Action Rules) language is designed to facilitate the specification of
event-driven functionality needed by applications such as constraint propagators
and graphical user interfaces where interactions of multiple entities are essential
[16]. It was originally implemented in B-Prolog and now has been introduced
into other Prolog systems [4].

An action rule takes the following form:

Agent, Condition, {Event} => Action

where Agent is an atomic formula that represents a pattern for agents, Condition
is a conjunction of conditions on the agents, Event is a non-empty disjunction
of patterns for events that can activate the agents, and Action is a sequence of
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arbitrary subgoals. An action rule degenerates into a commitment rule if Event
together with the enclosing braces are missing. In general, a predicate can be
defined with multiple action rules. For the sake of simplicity, we assume in this
paper that each predicate is defined with only one action rule possibly followed
by a sequence of commitment rules.

A subgoal is called an agent if it can be suspended and activated by events.
For an agent α, a rule “H, C, {E} => B” is applicable to the agent if there exists
a matching substitution θ such that Hθ = α and the condition Cθ is satisfied.
The reader is referred to [16] for a detailed description of the language and its
operational semantics.

The following event patterns are supported for programming constraint
propagators:

– generated: After an agent is generated but before it is suspended for the
first time. The sole purpose of this pattern is to make it possible to specify
preprocessing and constraint propagation actions in one rule.

– ins(X): when the variable X is instantiated.
– bound(X): when a bound of the domain of X is updated. There is no dis-

tinction between lower and upper bounds changes.
– dom(X ,E): when an inner value E is excluded from the domain of X . Since

E is used to reference the excluded value, it must be the first occurrence of
the variable in the rule.

– dom(X): same as dom(X ,E) but the excluded value is ignored.
– dom any(X ,E): when an arbitrary value E is excluded from the domain of

X . Unlike in dom(X ,E), the excluded value E here can be a bound of the
domain of X .

– dom any(X): equivalent to the disjunction of dom(X) and bound(X).

Note that when a variable is instantiated, no bound or dom event is posted.
Consider the following example:

p(X),{dom(X,E)} => write(dom(E)).
q(X),{dom any(X,E)} => write(dom any(E)).
r(X),{bound(X)} => write(bound).
go:-X :: 1..4, p(X), q(X), r(X), X #\= 2, X #\= 4, X #\= 1.

The query go gives the following outputs: dom(2), dom any(2), dom any(4) and
bound.1 The outputs dom(2) and dom any(2) are caused by X #\= 2, and the
outputs dom any(4) and bound are caused by X #\= 4. After the constraint
X #\= 1 is posted, X is instantiated to 3, which posts an ins(X) event but not
a bound or dom event.

1 In the current implementation of AR, when more than one agent is activated the one
that was generated first is executed first. This explains why dom(2) occurs before
dom any(2) and also why dom any(4) occurs before bound.
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3 Binary Constraints

Given a binary table constraint (X,Y) in R, we build a hashtable Hxy for sup-
ports of values of X.2 For each value Ex in the domain of X, there exists an entry
(Ex,Sx) in Hxy where Sx is a finite-domain variable that represents Ex’s set of
supports in the domain of Y. If Ex has only one support, then Sx is the support
itself. Similarly, we also build a hashtable Hyx for supports of values of Y. After
(X,Y) in R is posted, it is made AC by excluding all unsupported values from
the domains of X and Y. In the following, Hxy and Hyx are called support tables.

Consider, for example, the following constraint:

(X,Y) in [(1,2),(2,1),(3,4),(3,5),(4,4)]

The hashtable Hxy contains

(1,2),(2,1),(3,S3:[4,5]),(4,4)

and the hashtable Hyx contains

(1,2),(2,1),(4,S4:[3,4]),(5,3)

whereS3:[4,5]andS4:[3,4]are twofinite-domain variables.After the constraint
is posted, X’s domain becomes [1,2,3,4] and Y’s domain becomes [1,2,4,5].

The two hashtables Hxy and Hyx are essentially two tries [6]. Each trie requires,
in the worst case, O(|X|×|Y|) space. This representation is compact because of
the indexing effect and the use of bit vectors for domain variables. As will be
shown below, supports are never updated during search. Therefore, the domain
variables used to represent supports never post any event.

For a binary constraint over (X,Y), we generate propagators to watch ins
and dom any events on X and Y. The propagation is very straightforward. When
X is bound to an integer, Y’s domain is reduced to retain only those elements
that are supported by X. Whenever a value is excluded from the domain of X,
the supports of the value in the domain of Y are examined and those values that
are no longer supported by X are excluded from the domain of Y.

The propagator watch ins(X,Y,Hxy), defined below, watches ins(X) events.

watch_ins(X,Y,Hxy),var(X),{ins(X)} => true.
watch_ins(X,Y,Hxy) =>

hashtable_get(Hxy,X,Sx),
Y=Sx

The propagator is suspended as long as X is a variable. The second rule is applied
after X becomes ground, which unifies Y with the set of supports of X.
2 Hashtables are not available in ISO-Prolog. The built-in hashtable get(H,K,Val)

in B-Prolog retrieves from the table H the value Val with the key K. In the real
implementation, a hashtable talored to tuples is used when the table is sparse or
contain negative integers, and a structure is used otherwise.
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watch_dom(X,Y,Hxy,Hyx),var(X),{dom_any(X,Ex)} =>

hashtable_get(Hxy,Ex,Sx), % Sx supports Ex

fd_dom(Sx,Eys),

find_support(X,Eys,Y,Hyx).

watch_dom(X,Y,Hxy,Hyx) => true.

find_support(X,[],Y,Hyx).

find_support(X,[Ey|Eys],Y,Hyx):-

hashtable_get(Hyx,Ey,Sy), % Sy supports Ey

(fd_disjoint(X,Sy)->fd_set_false(Y,Ey);true),

find_support(X,Eys,Y,Hyx).

Fig. 1. The propagator that watches dom any events

The propagator watch dom(X,Y,Hxy,Hyx), defined in Figure 1, watches
dom any events on X.

Whenever a value Ex is excluded from the domain of X, Ex’s set of supports
Sx is retrieved from Hxy. The predicate find support examines every element
in Sx, and excludes it from the domain of Y if it is no longer supported by X.
In the real implementation, find support is encoded in C which uses bit-wise
operations to iterate through the elements of Sx.

4 Pair-Wise AC for n-Ary Constraints

Given an n-ary table constraint Vars in R, we build two hashtables Hxy and Hyx
for each pair of variables X and Y in Vars, and generate propagators to watch
ins and dom any events. In this way, pair-wise AC is maintained.

Since pair-wise AC does not guarantee GAC, an n-ary constraint needs to be
checked after it becomes ground. Let HashR be the hashtable representation of
the table R. This final check is described as follows:

final_check(HashR,Vars),n_vars_gt(1,0),{ins(Vars)} => true.
final_check(HashR,Vars) => hashtable_get(HashR,Vars,_).

The condition n vars gt(1,0) means that the last argument (namely Vars)
has more than 0 variables.3 The subgoal is suspended while at least one of the
variables in Vars is free. After all the variables are instantiated, hashtable get
checks if the tuple Vars is included in HashR.

3 In general the built-in n vars gt(m,n) in B-Prolog means that the number of vari-
ables in the last m arguments of the head is greater than n, where both m and n

are integer constants. Notice that the arguments are not passed to the built-in. The
system always fetches those arguments from the current frame. This built-in is well
used in constraint propagators to change the action when the number of variables
in the constraint reaches a certain threshold.
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register_pair(X,Term):- % Term=pair(Y,Hxy,Hyx)

get_attr(X,pairs,L),!,

attach(Term,L). % attach Term to the end of L

register_pair(X,Term):-

L=[Term|_], % create an open-ended list

put_attr_no_hook(X,pairs,L), % no default hook on X

watch_ins(X,L),

watch_dom(X,L).

watch_ins(X,L),var(X),{ins(X)} => true.

watch_ins(X,L) =>

... % for each term bin(Y,Hxy,Hyx) in L, enforce AC on Y

... % after X is instantiated.

watch_ins(X,L),var(X),{dom_any(X,Ex)} =>

... % for each term bin(Y,Hxy,Hyx) in L, enforece AC on Y

% after Ex is excluded from the domain of X.

watch_ins(X,L) => true.

Fig. 2. The registration procedure

5 Improvements

In the encoding described above, two propagators are used for each variable in a
pair of variables, one watching ins and the other watching dom any events on the
variable. When a variable is involved in n pairs, 2×n propagators are generated.
One implementation technique for speeding-up propagation in CLP(FD) is to
combine the propagators that watch the same event and take similar actions.4

This technique can be used to speed-up propagation for table constraints too.
For a pair of variables (X,Y), let Hxy and Hyx be the two support tables.

The term pair(Y,Hxy,Hyx) is created and registered onto X under the attribute
name pairs. If the attribute pairs does not exist yet, the attribute is created
and two propagators are generated; if the attribute already exists, then the term
is attached to the end of the attribute value, which is an incomplete list with an
open end. Figure 2 gives part of the registration procedure. Similarly, the term
bin(X,Hyx,Hxy) needs to be registered onto Y.

The registration procedure is further improved as follows. For a pair (X,Y), if
the support tables Hxy and Hyx represent the Cartesian product of the domains
of the variables, it is unnecessary to do the registration at all because every value
is guaranteed a support no matter how the variables are instantiated.

Moreover, if a pair has been registered already, we merge the old support
tables with the new ones. Let pair(Y,Hxy,Hyx) be the term to be registered
onto X, and pair(Y,OldHxy,OldHyx) be a term that has been already registered
4 This technique is implemented in B-Prolog for constraints such as disequality con-

straints over two variables.
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on X. We construct two new support tables NewHxy and NewHyx where NewHxy
is the intersection of OldHxy and Hxy, and NewHyx is the intersection of OldHyx
and Hyx. Then we use the built-in setarg/3 to replace OldHxy with NewHxy and
OldHyx with NewHyx. This improvement allows inter-constraints sharing.

6 Early Checking

As shown above, pair-wise AC is weaker than GAC in terms of pruning power.
The propagators for maintaining pair-wise AC resort to a final check to ensure
that a constraint is indeed supported when it becomes ground. To remedy the
weak pruning power of pair-wise AC, we can advance this final check to a point
when the constraint still contain variables. An early check ensures that every
value in the domain of every variable has a supporting tuple. We consider early
checking for positive constraints, and similar ideas can be applied to negative
constraints too.

There are two possible approaches to checking a constraint: One is to iterate
through the values of the domains of the remaining variables in the constraint
and, for each combination, we check if it is included in the table; the other is
to iterate through the tuples in the table. Since the number of tuples in a given
table is normally significantly smaller than the possible combinations of domain
values when the number of variables is large, we follow the later approach.

To make it fast to iterate through the tuples in a table, we convert the table to
a trie such that common prefixes of the tuples need not be examined more than
once for each traversal. We only use one trie per table. The tuples are indexed
on the first argument first, then second, and so on. The following defines a
propagator that maintains GAC when variables are instantiated.

early_check(Trie,Vars),
{generated,ins(Vars)}

=>
enforce_gac(Trie,Vars).

The predicate enforce gac(Trie,Vars) is also called when the propagator is
first created. It first walks through the trie to record all the values that are
supported, and then it examines each value in the domain of each variable in
Vars and excludes it from the domain if it has no supporting tuple.

Since enforce gac does not respond to domain value exclusions, pair-wise
AC is still weaker than GAC even with this early checking. To always enforce
GAC, we could call ensure gac whenever a change occurs to the domain of any
variable.

early_check_gac(Trie,Vars),
{generated,ins(Vars),bound(Vars),dom(Vars)}

=>
enforce_gac(Trie,Vars).
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In addition to the generated and ins(Vars) events, this rule also watches
bound(Vars) and dom(Vars) events. Recall that bound(Vars) is posted when-
ever a bound of the domain of any variable in Vars is changed and dom(Vars)
is posted whenever an inner value is excluded from the domain of any variable.
The two events bound(Vars) and dom(Vars) can be equivalently encoded as
dom any(Vars).

Since ensure gac is expensive, calling it on every change may not pay off.
One compromise is to enforce GAC on domain value exclusions only when the
constraint contains a certain number of variables. The following gives the refined
propagator for early checking.

early_check_compromise(Trie,Vars),
n_vars_gt(1,2),
{generated,ins(Vars)}

=>
enforce_gac(Trie,Vars).

early_check_compromise(Trie,Vars) =>
early_check_bin(Trie,Vars).

early_check_bin(Trie,Vars),
{generated,ins(Vars),bound(Vars),dom(Vars)}

=>
enforce_gac(Trie,Vars).

Once the number of variables contained in the constraint is 2 or less (the con-
dition n vars gt(1,2) fails), the propagator is replaced with early check bin
which watches all changes to the domains of the variables.

Recall that the propagators for maintaining pair-wise AC already watch
dom any events. One may ask why we need to create a propagator to watch dom
events here when the constraint becomes binary. The answer is that the support
tables used in maintaining pair-wise AC are binary projections and they are
never reduced while variables are instantiated. Consider the following example:

(X,Y,Z) in [(0,1,1),
(0,2,2),
(0,3,3),
(1,1,2),
(1,2,3),
(1,3,1)]

The support table Hyz from Y to Z contains the following entries: (1,S1:[1,2]),
(2,S2:[2,3]), and (3,S3:[1,3]). When X is bound to 0, the support table should
be reduced to contain (1,1), (2,2), and (3,3). After that, when a value, say
2, is excluded from the domain of Y, the support 2 should be excluded from the
domain of Z. Nevertheless, because our solver does not reduce support tables,
this effect couldn’t be achieved without calling enforce gac(Trie,Vars).



412 N.-F. Zhou

Table 1. Comparison on CPU time (seconds)

Problem instance MAX-ARITY PAC PAC+ET1 PAC+ET2 GAC
bdd 21 133 18 78 10 18 1.50 2.70 2.82 2.67
bdd 21 133 18 78 11 18 9.25 31.00 31.00 31.00
bdd 21 133 18 78 12 18 7.85 24.00 24.00 23.00
bdd 21 133 18 78 13 18 9.32 69.00 69.00 69.00
bdd 21 133 18 78 14 18 11.00 33.00 33.00 33.00

crossword m1c lex vg10 11 11 >500 2.96 2.96 12.00
crossword m1c lex vg10 12 12 >500 0.61 0.59 2.61
crossword m1c lex vg11 12 12 >500 0.32 0.32 0.89
crossword m1c lex vg11 13 13 >500 0.12 0.12 0.25
crossword m1c lex vg11 15 15 0.31 0.47 0.47 0.12

jnh01 14 0.15 0.15 0.15 0.15
jnh02 10 0.16 0.16 0.16 0.15
jnh04 11 0.20 0.20 0.20 0.20
jnh05 11 0.15 0.15 0.15 0.15
jnh06 11 0.11 0.11 0.11 0.94

rand 10 20 10 5 10000 0 10 >500 1.42 1.42 1.43
rand 10 20 10 5 10000 10 10 >500 1.29 1.28 1.29
rand 10 20 10 5 10000 11 10 >500 1.87 1.82 2.46
rand 10 20 10 5 10000 12 10 >500 1.31 1.31 1.87
rand 10 20 10 5 10000 13 10 >500 1.37 1.37 1.92

renault mgd 10 2.50 2.57 2.54 2.57
renault mod 0 10 >500 >500 >500 >500
renault mod 10 10 >500 >500 >500 >500
renault mod 11 10 >500 >500 >500 >500
renault mod 12 10 >500 >500 >500 >500
ssa 0432 003 5 1.21 0.14 0.14 0.15
ssa 2670 130 5 >500 >500 >500 >500
ssa 2670 141 4 0.000 0.000 0.000 0.000
ssa 6288 047 6 0.40 0.40 0.40 0.40
ssa 7552 038 6 0.47 0.47 0.31 0.31
tsp 20 142 3 >500 >500 81.00 81.00
tsp 20 190 3 >500 286.00 11.00 11.00
tsp 20 193 3 >500 >500 36.00 36.00
tsp 20 1 3 >500 57.00 0.95 0.95
tsp 20 29 3 >500 2.31 0.29 0.29

7 Experimental Results

The two built-ins, in/2 and notin/2, in B-Prolog have been extended to al-
low positive and negative table constraints.5 For positive constraints, pair-wise
AC is used with early checking, which maintains GAC when constraints become
ternary. For negative constraints, pair-wise AC is used with forward checking,
which maintains GAC only when constraints become unary. For negative con-
straints, support tables are constructed without complementing given relations.

Thanks to the availability of action rules, the extension was implemented with
relative ease. The extension contains about 300 lines of code in Prolog (and action
rules) and 1000 lines of code in C, most of which are for preprocessing tables.

We compared pair-wise AC with and without early checking on a selected set
of benchmarks used for the N-ARY-EXT category in the CSP solver competi-
tions.6 The problem instances were translated from XML into Prolog format.

5 Table constraints are supported in version 7.3 and up.
6 http://www.cril.univ-artois.fr/∼lecoutre/research/benchmarks/benchmarks.html
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Table 2. Comparison on backtracks

Problem instance PAC PAC+ET1 PAC+ET2 GAC
bdd 21 133 18 78 10 0 0 0 0
bdd 21 133 18 78 11 532563 9734 9734 9734
bdd 21 133 18 78 12 321883 13438 13438 13438
bdd 21 133 18 78 13 535481 11154 11154 11154
bdd 21 133 18 78 14 552313 10235 10235 10235

crossword m1c lex vg10 11 91408432 675 675 193
crossword m1c lex vg10 12 11401605 140 140 57
crossword m1c lex vg11 12 10616917 61 61 22
crossword m1c lex vg11 13 2100191 19 19 12
crossword m1c lex vg11 15 0 0 0 0

jnh01 50 50 50 50
jnh02 8 8 8 8
jnh04 1611 1611 1611 1611
jnh05 41 41 41 41
jnh06 826 826 826 826

rand 10 20 10 5 10000 0 >268435455 1010 1010 999
rand 10 20 10 5 10000 10 >268435455 1000 1000 999
rand 10 20 10 5 10000 11 263869300 1003 1003 999
rand 10 20 10 5 10000 12 >268435455 1002 1002 997
rand 10 20 10 5 10000 13 >268435455 1882 1882 998

renault mgd 13 0 0 0
renault mod 0 >268435455 17614672 13761572 20704205
renault mod 10 80724776 9859177 4931019 2200586
renault mod 11 >268435455 8099239 3215349 1818967
renault mod 12 251771657 9082875 6301406 2128999
ssa 0432 003 318288 10126 10126 10126
ssa 2670 130 72698460 23508987 23994708 24034014
ssa 2670 141 7 0 0 0
ssa 6288 047 23 23 23 23
ssa 7552 038 476 38 38 38
tsp 20 142 17326326 207966 15036 15036
tsp 20 190 25459227 366646 5750 5750
tsp 20 193 17622012 207826 2814 2814
tsp 20 1 21302231 65937 229 229
tsp 20 29 29304024 2723 31 31

The first 5 instances in each of seven selected problem classes were chosen. Each
of the problem instances contains at least one positive constraint. Each instance
was given a time limit of 500 seconds and no memory limit was imposed. The
labeling strategy ffc (first-fail, breaking tie by selecting a most constrained vari-
able) was used in all the runs. The machine used was a Pentium 3.0GHz with
1GB of RAM running Windows XP.

Table 1 shows the CPU times. In each row, the first column gives the name of a
problem instance, the second column gives the maximum arity of the constraints
in the instance, and each of the remaining columns gives the CPU time taken
by each of the four different settings: PAC maintains pair-wise AC without early
checking; PAC+ET1 triggers early checking after constraints become binary;
PAC+ET2 triggers early checking after constraints become ternary; and GAC
maintains GAC all the time as is done in early check gac shown above. Both
PAC+ET1 and PAC+ET2 trigger early checking on ins events. PAC solved
only 16 instances, PAC+ET1 solved 28 instances, and PAC+ET2 and GAC
each solved 30 instances. In general, PAC alone is too weak, but it turned out to
be the fastest on the bdd benchmarks. There is no remarkable difference between
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PAC+ET2 and GAC for most of the instances, and PAC+ET2 is faster than
GAC on some for the instances such as crossword m1c lex vg10 11. Four of
the five instances of renault were not solved. Profiling the runs indicated that
these instances were very memory demanding and most of the execution time
was spent on garbage collection.

Table 2 shows the number of backtracks in each run. For those runs that were
terminated by time-out events, the numbers were also recorded. For instances
that contain only Boolean variables (bdd and jnh), there is no difference among
different settings for early checking since no dom or dom any event can occur on
Boolean variables. For instances that contain no constraint with more than 3
variables (tsp), there is no difference between PAC+ET2 and GAC.

We didn’t directly compare our solver with other solvers for table constraints.
The top ranked solvers, such as mddc, MDG, Mistral, and Abscon solved all
the selected instances under a time limit of 1800 seconds.7 We have to mention
that the Windows-XP PC we used is probably slower than the Linux server used
in the competition and our solver does not employ any restart strategy. Even
under the same condition, it would be unfair to compare a CLP(FD) solver with a
solver implemented directly in C or C++ because operations such dereferencing,
tagging, and untagging incur measurable overhead in CLP(FD).

8 Related and Further Work

The key operation used in GAC algorithms is to find a support tuple for a value y
in the domain of a variable Y after a value x has been excluded from the domain
of a related variable X (X �= Y ) [2]. Significant efforts have been made to speed-
up this operation by skipping irrelevant tuples that can never been supports for
a value [3,6,10]. Indexing is an effective technique. The trie data structure [6]
indexes tuples such that tuples that have the same prefix share nodes in the
trie. In order to facilitate propagating changes originated at every variable in an
n-ary constraint, the solver reported in [6] needs to build n tries, one for each
variable. An MDD (multi-valued decision diagram) [3] is more effective than a
trie in the sense that tuples that have the same suffix also share nodes. The
solver mddc-solv based on MDD was ranked top in the N-ARY-EXT category
in the third CSP solver competition.

Our encoding of binary constraints is similar to the trie encoding. The dif-
ference is that the children (leaves) of each interior node are represented as a
finite-domain variable rather than a list or an array. This representation fits
CLP(FD) since bit-vectors are used in the representation of finite domains and
bits in bit vectors are not tagged individually. Any data structure that requires
tagging and untagging would incur considerable overhead.

It is well known that any n-ary constraint can be binarized by using a dual
representation (i.e., treating each constraint as a variable) or introducing hidden
7 http://www.cril.univ-artois.fr/CPAI08/results/results.php?idev=15
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variables for constraints [1]. Experiments have been done to compare various
binarization schemes [14]. Our previous solver [17], like the early version of the
Mistral solver [7]), introduces a new finite-domain variable for each n-ary con-
straint and encodes each tuple in the table as an integer. The main problem with
that solver was that newly introduced variables could have very bigger domains
and the solver could be flooded with events from these domains.

No previous work has been reported on introducing table constraints into
CLP(FD). The case constraint in SICStus Prolog is used to implement the
built-in table/2. Similar built-ins such as fd relation/2 in GNU-Prolog and
tuples in/2 in SWI-Prolog have been implemented, but no detail of the im-
plementation is published. None of these CLP(FD) systems directly supports
negative table constraints.

In our solver, supports of values are not updated during search. This makes
it possible for constraints to share tables and also renders it unnecessary to trail
or copy supports of values. The drawback is that the support tables created
for maintaining pair-wise AC for an n-ary constraint cannot be used to enforce
AC when the constraint becomes binary. The early-checking propagators in our
solver need to use the trie from the original table to enforce AC. Also the op-
eration fd disjoint does not become as cheap as it is supposed to be because
the domain that represents supports of a value never shrinks. Recently, a new
approach has been proposed that solves n-ary CSPs by reducing tables [10,15]. It
is worthwhile to investigate if this approach can be integrated into our approach.

Further work needs to be done to investigate when and how early checking
should be performed. Our solver does not do any early checking on negative
constraints. Further investigation should cover negative constraints as well.

9 Conclusion

We have presented an encoding for table constraints in CLP(FD) based on pair-
wise AC. In the encoding, the supports of each value are represented as a finite-
domain variable, and action rules are used to propagate value exclusions. The
encoding is compact and requires no new problem variables. To remedy the weak
pruning power of pair-wise AC, we proposed integrating pair-wise AC with early
checking. Our experimental results showed that such an integration is effective.
Our approach differs from the major GAC algorithms in that it is based on pair-
wise AC and is fine grained. More work remains to be done concerning when
and how early checking should be performed.
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IT University of Copenhagen
Programming, Logic and Semantics Group

Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark
{hilde,lopez}@itu.dk

Abstract. The fundamental primitives of Concurrent Constraint Programming
(CCP), tell and ask, respectively adds knowledge to and infers knowledge from a
shared constraint store. These features, and the elegant use of the constraint sys-
tem to represent the abilities of attackers, make concurrent constraint program-
ming and timed CCP (tcc) interesting candidates for modeling and reasoning
about security protocols. However, they lack primitives for the communication
of secrets (or local names as in the π -calculus) between agents. The recently
proposed universal tcc (utcc) introduces a universally quantified ask operation
that makes it possible to infer knowledge which is local to other agents. However,
it allows agents to guess knowledge even if it is encrypted or communicated on
secret channels, simply by quantifying over both the encryption key (or channel)
and the message simultaneously. We present a secure utcc (utccs) based on: (i)
a simple type system for constraints allowing to distinguish between restricted
(secure) and non-restricted (universally quantifiable) variables in constraints, and
(ii) a generalization of the universally quantified ask operation to allow the as-
sumption of local knowledge. We illustrate the use of the utccs calculus with
examples on communication of local names (as in the π -calculus) and for giving
semantics to secure pattern matching in a prototypical security language.

Keywords: Concurrent Constraint Programming, Process Calculi, Type systems,
Mobility, Security.

1 Introduction

A number of variants of process calculi and logical approaches have been proposed for
the analysis of security protocols, including [2,6,5,8,3,11,4,14]. The approaches have
generally two features in common: The first is the use of some kind of logical infer-
ence/pattern matching/unification to represent the ability of attackers and principals to
infer what has been communicated, and from that knowledge construct new messages.
The second is a way of representing and communicating local knowledge (such as keys
or nonces in security protocols).

The combination of these two features calls for some means to control the ability to
infer knowledge which is supposed to be inaccessible, e.g. a message encrypted by a key
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unknown to the attacker or the key itself. Typically, this takes the form of a restriction
on the rules for inference of knowledge/pattern matching, designed particularly for the
considered setting of security protocols. Sometimes the restriction is enforced by the
language, as e.g. in [4], however in many cases the restriction must be maintained in
the specification of the attacker and the protocol under analysis.

In the present paper we propose a more general solution to representing this kind
of restriction. Even though we believe that the solution is broadly applicable, in this
paper we focus on the setting of concurrent constraint programming (CCP). This is due
to the fact that our work was directly triggered by the interesting recent proposal of
the calculus of universal timed concurrent constraint programming (utcc)[14], which
extends timed concurrent constraint programming [16] to include a universally quanti-
fied abstraction (ask) operation. Intuitively, the new operation added in utcc, written
(λ �x; c) P , spans a copy of the residual process P [�t/�x] for all possible inferences of
c[�t/�x]. This adds the ability to extend the scope of local knowledge which is not pos-
sible in CCP [9]. In particular it was illustrated in [14] how to model a notion of link
mobility as found in the pi-calculus and to use the universal abstraction operator for
communication of messages in security protocols.

However, the universal quantification in utcc is completely unrestricted. This means
that in the proposed representations of link mobility and security protocols in utcc,
every agent may guess channel names and encrypted values by universal quantification.
It is thus necessary to enforce a restriction on the allowed processes to make sure that
this is not possible.

As a general solution for making exactly such restrictions, we propose a simple type
system for constraints used as patterns in abstractions, which essentially allow to dis-
tinguish between universally abstractable and secure variables in predicates. We also
propose a novel notion of abstraction under local knowledge, which gives a general
way to model that a process (principal) knows a key and can use it to decrypt a message
encrypted with this key without revealing the key.

We exemplify the type system on π calculus-like mobility of local names and for
giving semantics to a novel security protocol language called Security Protocol Con-
current Constraint Programming language (SPCCP), combining the best features of the
Security CCP (SCCP) language proposed by Olarte and Valencia [14] and the Security
Protocol Language (SPL) by Crazzolara and Winskel [6].

The foregoing document is divided as follows: Section 2 provides preliminary infor-
mation and necessary definitions about constraint systems and the concurrent constraint
family of programming languages. Section 3 introduces the type system for utcc the
new abstraction rule over local knowledge, as well as termination and subject-reduction
results over the type system proposed. In Section 4 we give more details on the use
of the utcc with secure patterns. Finally, concluding remarks and future work are
described in Section 5.

2 Preliminaries

This section provides the interested reader the main concepts of Temporal Concur-
rent Constraint Programming (tcc) and its universal extension (utcc), following the
presentation of [14].
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In CCP-based calculi all the (partial) information is monotonically accumulated in a
so-called store. The store keeps the knowledge about the system in terms of constraints,
or statements defining the possible values a variable can take (e.g., x + y ≥ 42). Con-
current agents (i.e., processes) that are part of the system interact with each other using
the store as a shared communication medium. They have two basic capabilities over the
store, represented by tell and ask operations. While the former adds a piece of infor-
mation about the system, the latter queries the store to determine if some piece of in-
formation can be inferred from its current content. Tell operations can act concurrently
refining the information in the store while asks can serve as a general synchronization
mechanism, that will be blocked if there is not enough information into the store to
answer its query.

A fundamental notion in CCP-based calculi is that of a constraint system. Basically,
a constraint system provides a signature from which syntactically denotable objects
in the language called constraints can be constructed, and an entailment relation (�)
specifying interdependencies among such constraints. More precisely,

Definition 1 (Constraint System). A constraint system is a pair CS = (Σ,Δ) where
Σ is a signature of function (F) and predicate (P) symbols, and Δ is a decidable theory
over Σ (i.e., a decidable set of sentences over Σ with at least one model). The under-
lying languageL of (Σ,Δ) contains the symbols ¬,∧,⇒, ∃ denoting logical negation,
conjunction, implication, existential quantification. Constants, such as true and false
denote the usual always true and always false values, respectively. Constraints, denoted
by c, d, . . . are first-order formulae over L. We say that c entails d in Δ, written c �Δ d
(or just c � d when no confusion arises), if c ⇒ d is true in all models of Δ. For
operational reasons we shall require � to be decidable.

tcc arises as the extension of CCP for timed-systems: Including the notion of discrete
time intervals (time units), a computation can be described as the interaction of a tcc
process with the environment: At the instant i a tcc process P receives the store c as
an initial stimulus, and when it reaches a quiescent point, it outputs d as the resulting
constraint store with a residual process Q that will be executed in the instant i+1. Here
it is where one of the most important differences between ccp and tcc resides, as whilst
the refinement of c during the execution of P at i is monotonic, d is not necessarily a
refinement of c (that is, constraints can be forgotten).

Definition 2 (tcc process syntax). Processes P,Q, . . . ∈ Proc are built from con-
straints c ∈ C and variables x ∈ V in the underlying constraint system by the following
syntax.

P,Q . . . ::= skip | tell (c) | when cdoP | P ‖ Q | (local�x; c)P |
next (P ) | unless c next (P ) | !P

Intuitively, the process skip does nothing, tell (c) adds a new constraint c into the
store, while when cdoP asks if c is present into the store in order to execute P .
(local �x; c)P binds a set of variables �x in P by defining their existence under the con-
straint c. The operators associated with time allow the process to go one time unit in the
future (next (P )) or to define time-outs: if at the current time unit it is not possible to
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RT 〈tell (d), c〉 −→ 〈skip, c ∧ d〉 RS
γ′
1 −→ γ′

2

γ1 −→ γ2
ifγ1 ≡ γ′

1 and γ2 ≡ γ′
2

RP
〈P, c〉 −→ 〈P ′, c′〉

〈P ‖ Q, c〉 −→ 〈P ′ ‖ Q, c′〉 RU
d � c

〈unless cnextP, d〉 −→ 〈skip, d〉

RR 〈!P, c〉 −→ 〈P ‖ next (!P ), c〉 RL
〈P, (∃x̃d) ∧ c〉 −→ 〈P ′, (∃x̃d) ∧ c′〉

〈(local �x; c) P, d〉 −→ 〈(local �x; c′) P ′, (∃x̃c′) ∧ d〉

RA
d � c[�t/�x] |�t| = |�x|

〈(λ �x; c) P, d〉 −→ 〈P [�t/�x] ‖ (λ �x; c ∧ (x̃ �= t̃)) P, d〉

RO
〈P, c〉 −→∗ 〈Q, d〉 �−→

P
(c,d)
======⇒ F (Q)

Where F (Q) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

skip if Q = skip
F (Q1) ‖ F (Q2) if Q = Q1 ‖ Q2

R if Q = next (R)
skip if Q = (λ �x; c) R
(local �x) F (R) if Q = (local �x; c) R
R if Q = unless cnextR

Fig. 1. Transition System for utcc: Internal and Observable transitions

entail the constraint c then the process unless cnextP will execute P at the next time
unit. We will often use nextn (P ) as a shorter version of next (next (. . .next (P )))
n-times. Finally, P ‖ Q denotes the usual parallel execution and !P denotes timed repli-
cation; that is, !P = P ‖ next (!P ) executes P at the current time and replicates its
behaviour over the next time period.

utcc [14] is an extension of the tcc calculus with a general ask defining a model of
synchronization. While in tcc an ask when cdoP is blocked if there is not enough
information to entail c from the store, utcc inspires its synchronization mechanism on
the notion of abstraction in functional programming languages. (λ �x; c) P can be seen
as the dual version of (local �x; c) P in which the variables are abstracted with respect
to the constraint c and the process P . The operational semantics provides the intuitions
on how utcc processes interact. In principle, a configuration is represented by the tuple
〈P, c〉 where P denotes a set of processes and c a constraint store. P can evolve to
a further process P ′ during an internal transition (→) where the constraint store c is
monotonically refined, or can execute an observable transition (=⇒), producing the
result of the future function of P and the constraint store d. The set of operational rules
is presented in Figure 1, where 〈P, c〉 denotes a configuration, and F (P ) denotes the
future function of P .

Definition 3 (Structural Congruence). Structural congruence (denoted by ≡) is de-
fined for utcc by the axioms: (i) P ≡ Q if they are α-equivalent. (ii) P ‖ skip ≡ P .
(iii) P ‖ Q ≡ Q ‖ P . (iv) P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R. (v) (local �x; c) skip ≡ skip.
(vi) P ‖ (local �x; c) Q ≡ (local �x; c) (P ‖ Q) if �x �∈ fv(P ). (vii) 〈P, c〉 ≡ 〈Q, c〉 iff
P ≡ Q.
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Intuitively, the operational rules of utcc behaves almost in the same way as its counter-
part in tcc, excepting by the general treatment of asks in utcc. Here we will describe
the operational consequence of this change, we refer to [14] for further details on the
operational semantics. Rule RA describes the behavior of the abstraction (λ �x; c) P : a
configuration here considers two stores, being c and d local and global stores respec-
tively. If d entails c[̃t/x̃] then P [�t/�x] is executed. Moreover, the abstraction persists in
time, allowing any other process to match with �x in P while no other replacements of �x
with �t will occur, as d is augmented with a constraint disallowing this. The notion of lo-
cal information can be evidenced in RL, considering a process P = (local �x; c) Q, we
have to consider: (i) that the information about �x locally for P subsumes any other in-
formation present for the same set of variables in the global store; therefore, �x is hidden
by the use of an existential quantifier over x̃ in d. (ii) that the information about �x that P
can produce after the reduction is still local, so we hide it by existentially quantifying �x
in c′ before publishing it to the global store. After the reduction, c′ will be the new local
store of the evolution of internal processes. Finally, observable behaviour is described
by Ro: after having used the internal transitions in a process P to evolve to a process
Q with a quiescent-point (in which no more information can be added/inferred), the re-
duction will continue by executing the future function of Q with the resulting constraint
store.

3 utcc and Secure Pattern Matching

As described in Sec. 2, one of the main advantages of utcc with respect to tcc is that
the universal abstraction operator allows for substitution of constraints for variables in
processes. The extension has been proposed for the treatment of mobile links as present
in the π -calculus [12] and pattern matching in modeling of security protocols. Below
we will give two motivating examples for why a more refined abstraction operator is
needed for modeling mobile local links and secret keys.

3.1 Motivating a Refined Universal Abstraction in utcc

Our first example refers to the π calculus-like mobility of local links. Consider the com-
mon scenario where a process P sends a request to a service offered by a process Q and
includes in the request a local link on which it expects the reply. This can be modeled
in utcc using a constraint system CS = (Σ,Δ) where Σ includes the predicates req,
rep, and res, and the constant 0. The processes P and Q are defined as

P = (local z)
(
tell (req(z)) ‖ (λ y; rep(z, y)) next (tell (res(y)))

)

and
Q = (λ x; req(x)) tell (rep(x, 0))

The predicates req and rep are used for the request and reply respectively, and the
predicate res is used to report the result (and successful termination of P ). The local
operator is used to create a local variable z representing the local link.
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The intention is that only the processes P and Q can synchronize via the local link
z. However, the generality of abstraction in utcc makes it possible to violate this in-
tention: Another process E = (λ x, y; rep(x, y)) skip in parallel with the processes P
and Q given above would be able to guess the link z (as well as the result) from the
reply.

It is instructive to see how this could be avoided using the π-calculus, where the two
processes could be modeled by

P = (νz)
(
req〈z〉 ‖ z〈y〉.res〈y〉

)
and Q = req(x).x〈0〉

In this case, the z and y are used differently in receiving the reply: The z is used as the
communication channel and y is the binder for the received name. Another process in
parallel would not be able to guess the channel z. As we will see below, our proposed
type system for patterns allows to introduce this kind of distinction between the uses of
variables in predicates.

Our second motivating example is from modeling of security protocols, where as
pointed out in [4] it it should be impossible for an agent to abstract variables if a one-
way function has been applied to it. Consider a unary predicate o (used for output of
messages to the network) and an encryption function enc(m, k) which represents the en-
cryption of the variable m with the key k. A process P that sends out a local message n
encrypted by a local key k can be represented by P = (local k, n) tell (o(enc(n, k))).
However, in utcc a spy process defined as S = (λ x, z; o(enc(x, z))) tell (o(x) ∧ o(z)),
will succeed in retrieving and publishing both the key and the encrypted message.

As for the π-like channels, our proposed type system for patterns will allow us to rule
out universal abstraction of variables to which a one-way function has been applied.
Further, to be able to allow abstraction of the message when the key is locally known,
we propose a novel kind of abstraction assuming local knowledge, which generalizes
the universal abstraction of utcc.

3.2 Types for Secure Abstraction Patterns in utcc

Based on the two motivating examples above, we argue that there are basically two sorts
of arguments in functions and predicates: the ones that can be universally quantifiable,
which means that one would be able to use the abstraction operator for a variable in that
argument in order to find a possible matching, and the ones that are not.

We will thus divide the arguments of predicates and functions in two sorts and write
P(̃t; t̃′) and f (̃t; t̃′) for respectively the predicate P and function f where both�t and �t′ are
tuples of terms over the function signature F, and �t denotes the restricted arguments and
�t′ the unrestricted ones. We assume that both arguments of the equality predicate are
restricted. If a predicate or function has either only restricted or unrestricted parameters
and the sort is clear from the context, we will simply write P(̃t) and f (̃t).

The sorted predicates allow us to use a binary predicate piout(x; y) representing the
π-like communication of y (the object) on the channel x (the subject). By defining that
the subject is a restricted argument and the object an unrestricted argument we obtain
the required asymmetry in the roles of the variables. The type rules for patterns should
then forbid the abstraction (λ x; piout(x, y)) P , as it would allow us to identify all
channels (also channels not known to us) containing a particular message y. However,
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they should allow the abstraction (λ y; piout(x, y)) P , reflecting that we can compute
the possible messages on a channel x known to us. That is, we want to capture that if
we know the values of the restricted variables, then we may abstract (i.e. compute all
possible matches for) the unrestricted variables.

Similarly, sorted functions allow us to represent semantically that some functions
are one-way functions such as the function enc(k,m) described above for encrypting
the message m by the key k. Sorting both arguments as restricted will ensure that e.g.
the abstractions (λ �x; o(enc(k,m))) P will be forbidden for any non-empty �x ⊆ {k,m}
Thus, even if the single argument of the o predicate is unrestricted (i.e. we can abstract
all messages available on the network) then we can not compute the inverse of the
encryption function. We may have functions for which an inverse is assumed to exist,
such as a function tup2(x, y) for making a pair of x and y. In that case it makes sense to
allow abstractions over the two arguments by sorting them as unrestricted.

In general, patterns may be a conjunction of several predicates and thus variables
may occur both restricted and unrestricted in the same pattern. An example of this is the
abstraction (λ y, z; c) P , where c = piout(y, z) ∧ piout(x, y). We argue that this pattern
should be allowed, since it is possible first to match the unrestricted y in piout(x, y) and
then subsequently, for the given y, match the unrestricted z in piout(y, z). Note that it is
not enough simply to require the abstracted variables to occur unrestricted: Both vari-
ables x and y appear unrestricted in the abstraction (λ x, y; piout(x, y) ∧ piout(y, x)) P ,
but neither of the two basic constraints can be matched without abstracting a restricted
variable. As solution we define a set of type rules for constraints used as patterns in
abstractions which capture that there exists an order of the basic constraints in which
the first occurrence of each variable is unrestricted.

To allow abstractions in cases where the inverse key of the encryption is known we
add a new rule RA→ given in Equation 1 in addition to the SOS rules pictured in Figure
1. RA→ allows for abstractions using constraints of the form c ⇒ c′, that is, assuming
local knowledge c and a global store d, one can infer c′. The idea is to infer c′ using c but
without publishing it permanently to the store, as captured by the following operational
rule:

RA→
d ∧ c � c′ [̃t/x̃] |̃t| = |x̃| d ∧ c � false ⇒ d � false

〈(λ �x; c ⇒ c′) P, d〉 −→ 〈P [�t/�x] ‖ (λ �x; c ⇒ (c′ ∧ (x̃ �= t̃)) P, d〉
(1)

The condition d ∧ c � false ⇒ d � false ensures that local assumptions do not make
the store inconsistent when combining with the constraint store.

The typing rules for secure patterns and processes are defined in Figure 2. For sim-
plicity we assume patterns are simply conjunction of predicates applied to terms over
the function signature. The typing rules use an environment Γ = ΓR;ΓU , where ΓR

is the set of names used restricted and ΓU is the set of names used unrestricted. When
the distinction does not matter we simply write Γ . We employ three inductively defined
functions on terms over the function signature: unr(t), res(t), and var(t) yielding re-
spectively the variables appearing unrestricted in t according to the sorting, the variables
appearing restricted in t, and all variables appearing in t. We extend the functions to vec-
tors of terms by unr(�t) = ∪1≤i≤|�t|unr(ti) (and similarly for res and var). Formally,
the functions are given by unr(x) = res(x) = var(x) = {x} for any variable x, and
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Tpred
Γ R; Γ U � P(�t;�t′) : pat

Γ R = var(�t) ∪ res(�t′) and Γ U = unr(�t′)\Γ R

Tassoc
Γ � c1 ∧ (c2 ∧ c3) : pat

Γ � (c1 ∧ c2) ∧ c3 : pat
Tcommute

Γ � c1 ∧ c2 : pat

Γ � c2 ∧ c1 : pat

Tcomb
Γ R

1 ; Γ U
1 � c1 : pat Γ R

2 ; Γ U
2 � c2 : pat

Γ R; Γ U � c1 ∧ c2 : pat
Γ R = (Γ R

1 ∪ Γ R
2 )\Γ U

1 and Γ U = (Γ U
1 ∪ Γ U

2 )\Γ R
1

Tskip � skip : sec
Ttell � tell (c) : sec

Tpar
� P : sec � Q : sec

� P ‖ Q : sec
Tnext

� P : sec

� next (P ) : sec

Tbang
� P : sec

� !P : sec
Tunls

� P : sec

� unless cnextP : sec

Tabs
� P : sec Γ R; Γ U � c : pat

� (λ �x; d =⇒ c) P : sec
�x ⊆ dom(Γ U )\fv(d) Tloc

� P : sec

� (local �x; c) P : sec

Fig. 2. Typing rules for secure patterns and processes

unr(f(�t;�t′)) = unr(�t′), res(f(�t;�t′)) = res(�t), and var(f(�t;�t′)) = var(�t) ∪ var(�t′).
Note that obviously var(t) = res(t) ∪ unr(t) but also that res(t) ∩ unr(t) may be
non-empty, i.e. a variable may appear both restricted and non-restricted.

The rule TPred captures that all variables in �t as well as the variables occurring re-
stricted in �t′ in the predicate P(�t;�t′) are restricted. The rest of the variables are un-
restricted. The rules Tasoc and Tcommute allow us to change the ordering of the basic
constraints. Finally, the rule Tcomb identifies the restricted and unrestricted variables in
the joint pattern c1 ∧ c2 assuming that c1 is matched first. That is, a variable is restricted
if it appears restricted in either of the sub patterns c1 and c2 and not unrestricted in c1.
(If it appears unrestricted in c1 it will be instantiated if c1 is matched first, and thus it is
allowed to appear restricted in c2). Dually, the unrestricted variables in the joint pattern
c1 ∧ c2 are the variables that appear unrestricted in either of the sub patterns c1 and c2,
and do not appear restricted in c1.

The objective of the type system is to determine the secure patterns, therefore typing
rules over processes are rather simple. The only non-trivial rule is the rule Tabs for
abstractions, which ensure that c is a valid pattern such that the abstracted variables are
unrestricted, and no variables in the local d are abstracted.

Theorem 1 (Termination of type checking). For any process P the type-checking
process terminates.

Proof. (Sketch) Follows from the fact that there are only finitely many permutations of
basic constraints (predicates) in a pattern.



Types for Secure Pattern Matching with Local Knowledge in Universal CCP 425

The following lemmas are used to prove subject reduction.

Lemma 1 (Constraint substitution does not affect pattern typing). Given
ΓR;ΓU � c : pat and t and x, then ΓR′

;ΓU ′ � c[t/x] : pat and ΓU\ (fv(t) ∪ {x}) ⊆
ΓU ′\ (fv(t) ∪ {x}).

Proof. (Outline) The proof proceeds by induction on the type inference of ΓR;ΓU �
c : pat.

Lemma 2 (Constraint substitution does not affect process typing). Given a typing
judgment � P ′ : sec then � P ′[t/x] : sec.

Proof. (Outline) The proof proceeds by induction on the type inference of � P ′ : sec

Lemma 3 (Structural equivalence preserves typing). Given P,Q processes, if P ≡
Q and � P : sec , then � Q : sec.

Proof. The proof proceeds by trivial case analysis over the structural congruence rules
in Definition 3.

Next we check that secure processes can not be made insecure during an internal tran-
sition step.

Lemma 4. If 〈P, c〉 −→ 〈Q, d〉 and � P : sec , then � Q : sec.

Proof. (Outline) The proof proceeds by induction on the depth of the inference
〈P, c〉 −→ 〈Q, d〉 and using the definition of � P : sec.

Finally, we show that if a process P is well-typed, it can not perform any internal steps,
and its future is defined then the future of P is also well-typed.

Lemma 5. For all � P : sec, if F (P ) is defined and ∃d.〈P, d〉 �−→ then � F (P ) : sec.

Proof. (Outline) The proof proceed by induction in the definition of F (P ).

We now have all the ingredients to prove subject reduction.

Theorem 2 (Subject-reduction). If P
(c,d)
======⇒ Q and � P : sec , then � Q : sec .

Proof. Assume P
(c,d)
======⇒ Q and � P : sec, then by rule Ro we get that 〈P, c〉 −→n

〈Q′, d〉 �−→ and Q = F (Q′). We proceed by induction in n.
In the base case where n = 0, we have that Q′ = P and c = d. It follows from

lemma 5 that � F (Q′) : sec.
For the induction step, assume 〈P, c〉 −→1 〈P ′, c′〉 −→n 〈Q′, d〉 �−→. Then � P ′ :

sec by lemma 4 and thus we get by induction that � F (Q′) : sec.

4 Applications

This section illustrates the use of the type system with some examples in mobility and
security. First, let us return to the π calculus example.
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We assume the syntactic sugar x〈y〉 stands for the binary predicate piout(x; y) and
represents the use of the (restricted) channel x with the (unrestricted) message y. The
following type inference show that we can quantify over either x or y for the pattern
y〈x〉 ∧ x〈y〉:

x; y � x〈y〉 : pat
Tpred

y;x � y〈x〉 : pat
Tpred

x; y � x〈y〉 ∧ y〈x〉 : pat
Tcomb

The way to read the first inference is that we can abstract y if we know x. Conversely,
a second inference from the same pattern can lead to a typing of the form y;x � y〈x〉 ∧
x〈y〉 : pat, capturing the fact that one can abstract x if we know y. However, note
that we can not infer ε;x, y � x〈y〉 ∧ y〈x〉 : pat, and thus we are not allowed to
simultaneously quantify over x and y.

To illustrate the application of utccs in the security domain, we follow the lines
of the Security Protocol Language (SPL) [6] and SCCP [13] to define a specification
language for security protocols that we have called the Security Protocol Concurrent
Constraint Programming (SPCCP) language. The SPCCP embeds utccs in a syntax
suitable for defining security protocols, capturing process specifications with respect
to input and output events over a global network. The SPCCP language combines the
best ideas from SPL and SCCP by having a simple notion of pattern matching as in
SPL and using the constraint system to model the attackers ability to combine and split
messages as in SCCP. Hereto we add the new concept of pattern matching under local
knowledge, which allow us to syntactically guarantee that only message parts inferable
from the available keys are extracted, which can not be guaranteed in SPL nor in SCCP.

Definition 4 (SPCCP ). The Secure Concurrent Constraint Programming language
SCCP [13] is redefined by the following grammar:

Values v,v’ = x | k
Keys k = pub(x) | priv(x) | sym(x)
Messages and patterns M,N = v | (M1, . . . , Mn) | {M}k

Processes R = nil | local(x) inR | out(M) .R
| in∀�x[N ]
k .R | !R | R ‖ R

,

where x range over a set of variables and the subscript �k in in∀�x[N ]�k.R is a set
of keys.

We define the semantics of SPCCP by giving a translation into utccs with a security
constraint system given by the signature Σ with a single (unrestricted) unary predicate
o(t) used for message output, and function symbols F = {enc, pub, priv, sym, tupn},
and entailment relation given in Fig. 3 inspired on the requirements stated by Dolev and
Yao in [7].

The binary function enc takes two unrestricted arguments: a key and a message.
The key is intended to be either a symmetric, private, or public key generated by
the (restricted) unary functions sym(x), priv(x), or pub(x) respectively. Letting k ∈
{pub, priv, sym} and defining sym−1 = sym, and pub−1 = priv, the entailment rule
scheme Ek−dec for decryption expresses how enc acts as symmetric or asymmetric en-
cryption. The n-ary (unrestricted) tupling functions tupn allow to create n-ary tuples,
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Ek−dec
c � o(k−1(x)) c � o(enc(k(x), m))

c � o(m)
, for k ∈ {sym, pub}, sym−1 = sym,

and pub−1 = priv

Eenc
c � o(x) c � o(y)

c � o(enc(x, y))
Ek−key

c � o(x)
c � o(k(x))

, for k ∈ {sym, pub, priv}

Etupn

c � o(i1) . . . c � o(in)
c � o(tupn(i1, . . . , in))

Eproj
c � o(tupn(i1, . . . , in))

c � o(ij)
j ∈ {1, . . . , n}

Fig. 3. Entailment relation for a security constraint system

from which the individual elements can be projected as expressed by the entailment rule
Eproj. As usual, the rules Eenc,Ek−key, and Etupn express that the output of any function
of known output values can be inferred.

The messages/patterns of SPCCP are mapped to the terms generated by the cor-
responding function symbols and variables in the security constraint system, using
the usual notation (M1, . . . ,Mn) for n-tuples and {M}k for enc(k,M). For a mes-
sage M of SPCCP let v(M) denote the set of variables in M . For a set of values
�v = {v1, v2, . . . , vi} let o(�v) be short for o(v1) ∧ o(v2) ∧ . . . ∧ o(vi), and in particular
o(∅) = true.

We are now ready to define the encoding of SPCCP in utccs .

Definition 5 (SPCCP encoding)

[[R]] :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

skip if R = nil
(local x) [[R′]]utcc if R = local(x) inR′

tell (o(M)) ‖ next ([[R′]]utcc) if R = out(M) .R′

(λ �x; o(k̃)⇒ o(N) ∧ o(x̃)) next ([[R′]]utcc) if R = in∀�x[N ]
k.R′

![[R′]]utcc if R =!R′

[[R′]]utcc ‖ [[R′′]]utcc if R = R′ ‖ R′′

We will focus on outlining process constructions for pattern matching and network
output. The remaining process constructions are mapped directly to the corresponding
construct in utccs .

out(M).R adds the constraint o(M) to the constraint store and subsequently in the
next time period behaves as (the encoding of) R.

SPCCP differs from SCCP in the treatment of keys and the input operation: priv(x),
pub(x), and sym(x) yields respectively the private, public and symmetric key from gen-
erator x. The input operator written as in∀�x[N ]�k.P should be read as “for all possible

messages �m (available under the assumption of knowing the keys �k) such that N [�m/�x]
is available as message at the network evolve into P [�m/�x]”. Intuitively, the idea is to
check if �m is available as knowledge assuming locally that the keys in �k are available
as knowledge, and if so, bind the variables in P occurring in the pattern N with the
corresponding values in �m. The pattern matching resembles the pattern matching con-
struct in SPL. The key difference is that it proceed for all possible matches, and that we
employ the new rule for for universal abstraction under local knowledge introduced in
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the previous section to allow the use of private keys as local information to perform the
decryption of messages. Note that we also require that all the abstracted values can be
inferred as output. This guarantees that secret values are not abstracted, and result in
well-typedness of the encoding.

Proposition 1 (SPCCPmapstowell-typedutccs processes).For any SPCCP process
P , � [[P ]] : sec.

4.1 Protocols

In Fig. 4 below we recall the protocol steps of the Needham-Schröeder-Lowe protocol
[10] (herewith referred as NSL) used as example in [6].

(1) A → B : {m, A}pub(B)

(2) B → A : {m, n, B}pub(A)

(3) A → B : {n}pub(B)

Fig. 4. Needham-Schröeder-Lowe protocol with public-key encryption

The NSL protocol describes the interaction between agents A and B. First A sends
to B a nonce along its agent name, encrypted with B’s public key. Then B decrypts the
message with his own private key extracting A’s nonce. Next, B sends a message to A
containing the proof of reception along with a fresh name encrypted under A’s public
key. Finally, A decrypts B’s message and sends to B the name challenge received in the
previous message encrypted with B’s public key. The SPCCP version of the protocol
is given in Fig. 5.

SPCCP share some similarities with the approaches in LYSANS [4], SCCP , and
the SPL calculus. Particularly, observe that there is no need to explicitly define the
communication channels in which agents are transmitting messages. The underlying
model acts as an open network in which every actor can access all the messages posted
provided that he has the proper keys to decrypt its the message. We assume a disclosure
of public keys for every agent, while the private keys are kept secret for each principal.
The key difference between the approach in SPCCP to the approaches in SPL and
SCCP is that the abstraction of the contents of a message encrypted with a key is only

Init(A,B, kA, pB) = new(m)out({m, A}pB ).
in∀x[{m, x, B}pub(kA)]priv(kA).
out({x}pB ).nil

Resp(A,B, kB, pA) = in∀y[{y, A}pub(kB)]priv(kB).
new(n)out({y, n, B}pA).
in∀[{n}pub(kB)]priv(kB).nil

System(A,B) = new(kA)new(kB) (Init(A,B, kA, pub(kB))
‖ Resp(A,B, kB, pub(kA)))

Fig. 5. NSL protocol in SPCCP
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allowed if one possesses the corresponding key for decryption. This is similar to the
approach in the LYSANS calculus [4], except that we employ the constraint system and
local knowledge instead of tailoring the pattern matching with a notion of key pairs.

The following specification exemplifies the translation into utccs :

Init(A,B, kA, pB) = (local m) tell (o({〈m, A〉}pB )
‖ next (((λ x; o(priv(kA))⇒ (o({m, x, B}pub(kA)) ∧ o(x))) )
‖next (tell (o({x}pubB )) ‖ next (skip)))

Resp(A,B, kB , pA) = (λ y; o(priv(kB))⇒ (o({y, A}pub(kB)) ∧ o(y)))
‖ next (((local n) tell (o({y, n, B}pA )))
‖next ((λ ∅; o(priv(kB))⇒ (o({n}pub(kB)))) ‖ next (skip)))

System(A,B) = (local kA) (local kB) Init(A, B, kA, pub(kB))
‖ Resp(A,B, kB, pub(kA))

5 Conclusions and Future Work

We have illustrated that the introduction of universal quantification to CCP for modeling
mobile communication and security protocols introduce the problem that information
which should be local can be obtained by universal quantification. As a way to remedy
the problems we have proposed a simple type system for constraints used as patterns
in abstractions which allows us to guarantee semantically that e.g. channel names and
encrypted values are only extracted by agents that are able to infer the channel or non-
encrypted value from the store. Furthermore, we proposed a novel kind of abstraction
allowing abstraction under the assumption of local knowledge. The latter can be applied
to infer the plain text of encrypted messages under the assumption of knowledge of the
key, without adding the key permanently to the global store. We exemplified the type
system by examples of mobility of local links (in the context of the π -calculus) and
provided a new language for security protocols combining the key features of the Secu-
rity CCP (SCCP) language and the SPL calculus, but adding the ability to syntactically
constraining the ability to decrypting secret values inspired by the LYSANS calculus.

The present work is only in its first stage. However, we believe that the proposed
distinction between variables that can be universally quantified and variables that can
not is an elegant way to remedy the problems we have illustrated connected to the
universal quantification to CCP. A next step will be to perform a detailed investigation
of the proposed new variant of the SCCP calculus and applications to model security
protocols. In particular, we plan to investigate the application of the analysis techniques
for SCCP , SPL and LYSANS to the SPCCP language.

It is important to remark the importance of the current proposal with respect to other
analysis techniques for security protocols. In [3], a framework for the analysis of se-
crecy properties is proposed with logic programming as its underlying mechanism. The
specification language follows the line of the equational theory presented in the Applied
π -calculus [1], encoding constructor and destructor functions by means of deduction
rules in the framework. Here, pattern-matching is being used to encode the abilities
of an attacker to abstract away information from the facts present in the store. Given
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that the attacker can apply the set of rules in a given specification, the correctness of
the analysis relies on the power we give on the inference system. For instance, a rule
attaker(sign(m, sk)) → attacker(sk) could be specified and the attacker would be able
to extract away the secret key from a signature. We believe that a type system similar to
the one proposed in this paper can be applied here to limit the extra expressive power
of the rule-based approach by allowing only to abstract only variables over unrestricted
parts of the predicates, ruling out the example given above by declaring sk a restricted
variable over sign(m, sk). Similar considerations can be applied to other systems that
base their analysis on pattern-matching techniques, like the extended strand-space
approach in [5] and Miller’s linear logic approach for security protocols [11].

As also pointed out in the text the local operator of utcc does not really correspond
to the generation of new names in nominal calculi. This has already been noticed by
Palamidessi et al. [15], where a logical characterization of name restriction using the
existential quantifier does not ensure uniqueness in the fragment of the π -calculus with
mismatch. The same occurs in utcc: a process (local x) (local y) P can hide both x
and y from the store, but the current logical formulation does not ensure the uniqueness
of x and y, as one may wish when dealing with nonces for security protocols. We leave
for future work to study variants of the local operator ensuring uniqueness.
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Abstract. We define logic programs with defaults and argumentation
theories, a new framework that unifies most of the earlier proposals for
defeasible reasoning in logic programming. We present a model-theoretic
semantics and study its reducibility and well-behavior properties. We use
the framework as an elegant and flexible foundation to extend and im-
prove upon Generalized Courteous Logic Programs (GCLP) [19]—one of
the popular forms of defeasible reasoning. The extensions include higher-
order and object-oriented features of Hilog and F-Logic [7,21]. The im-
provements include much simpler, incremental reasoning algorithms and
more intuitive behavior. The framework and its Courteous family instan-
tiation were implemented as an extension to the FLORA-2 system.

Keywords: Defeasible reasoning, argumentation theory, well-founded
models.

1 Introduction

Common-sense reasoning is one of the most important applications of logic pro-
gramming. Surprisingly, the ability to do such reasoning within logic program-
ming comes from a single, relatively simple device: default negation [8,15,16].
While this parsimony is convenient for theoretical studies, it is a major stum-
bling block for practical use of logic programming in common-sense reasoning:
default negation is too low-level a concept to be safely entrusted to a knowledge
engineer who is not a trained logician. Anecdotal evidence suggests that logicians
are also not doing much better when it comes to modeling concrete application
domains using default negation as a sole tool. These problems have been stimu-
lating search for higher-abstraction forms of logic programing, which equip the
knowledge engineer with frameworks and tools that are closer to the way humans
tend to think of and describe the various application domains. These frameworks
include object-oriented and higher-order concepts [21,7], inheritance and excep-
tions [32,22,34], and defeasible reasoning [3,5,6,10,11,12,17,19,25,27,31,33,35].

Defeasible reasoning in logic programming (LP) has been successfully used to
model a broad range of application domains and tasks, including: policies, reg-
ulations, and law; actions, change, and process causality; Web services; aspects
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of inductive/scientific learning and natural language understanding. However,
there has been a bewildering multitude of formal approaches to defeasibility
based on a wide variety of intuitions about desired behavior and conceptualiza-
tion. The difficulties in agreeing on what is the “right” intuition are discussed
in [17,6] among others. On top of this, the formal machinery employed by the
different approaches is so diverse that there is little hope that more than a tiny
subset of the approaches could be directly integrated in a practical, scalable rea-
soning system. It is also often unclear how to extend most of these approaches
to include other popular LP frameworks, such as HiLog [7] and F-logic [21].

The present paper addresses these issues. First, we introduce a new general
framework for defeasible reasoning that abstracts the intuitions about defea-
sibility into what we call argumentation theories. Then we develop a simple
semantics for this framework and study its properties. The semantics is based
on well-founded models [15]; due to space limitations, stable models [16] will be
defined in an extended version of this paper. The relationship of this framework
to other proposals is discussed in Section 5. The short story is that, based on
our analysis, almost all approaches to defeasible reasoning in LP that we are
aware of can be simulated in our framework with a suitable choice of an argu-
mentation theory. This makes it possible to use different such theories in one
reasoning system. Second, we develop a family of useful argumentation theo-
ries one of which captures the essence of Generalized Courteous Logic Programs
(GCLP) [19]. This formulation provides a foundation to straightforwardly ex-
tend GCLP from predicate calculus-based LP to HiLog [7] and F-Logic [21], and
also to improve upon GCLP’s behavior and algorithms in several other signif-
icant ways, as detailed in Section 4. The usefulness of the HiLog and F-Logic
features is well recognized in the literature and industry, e.g., for meta-reasoning;
knowledge base translation and integration; modeling of agent’s beliefs, context,
and modality; knowledge provenance and navigational meta-data; and Seman-
tic Web data models. Third, we have implemented our framework and several
GCLP-style argumentation theories as an extension to FLORA-2.1 Adding other
such theories is straightforward.2

The rest of this paper is organized as follows. Section 2 illustrates GCLP-style
defeasible reasoning with an example. Section 3 introduces our framework for
defeasible reasoning with argumentation theories. Section 4 presents a family of
argumentation theories, which extend and improve GCLP in several significant
ways. Section 5 discusses related work, and Section 6 concludes the paper.

2 Motivating Example

The following example illustrates the basic ideas of defeasible reasoning. It uses
a stripped-down syntax of FLORA-2 and models part of a game, complete with
frame axioms, where blocks are moved from square to square on a board.

1 http://flora.sourceforge.net
2 FLORA-2 supports only argumentation theories with the well-founded semantics.

http://flora.sourceforge.net
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// moving blk from ->to , if to is free; from becomes free

@move loc(?s+1,?blk,?to) ∧ neg loc(?s+1,?blk,?from) :-

move(?s,?blk,?from,?to), loc(?s,?blk,?from), not loc(?s,?,?to).

@frax1 loc(?s+1,?blk,?pos) :- loc(?s,?blk,?pos). // frame axiom 1

@frax2 neg loc(?s+1,?blk,?pos) :- neg loc(?s,?blk,?pos). // frame axiom 2

@dloc neg loc(?s,?blk,?pos). // each location is free, by default

@state loc(0,block4,square7). // initial state

// no block can be in two places at once

opposes(loc(?s,?blk,?y),loc(?s,?blk,?z)) :- posn(?y), posn(?z), ?y != ?z.

// move-action beats frame axioms; move & init state beats default location

overrides(move,frax1). overrides(move,dloc).
overrides(move,frax2). overrides(frax1,dloc). overrides(state,dloc).
// facts

move(2,block4,square7,square3). // State 2: block4 moves square7->square3

posn(square1). posn(square2). ... ... ... posn(square16).

The example illustrates the Courteous flavor [19] of defeasible reasoning. Here,
some rules are labeled (e.g., @move, @frax1), and the predicate overrides speci-
fies that some rules (e.g., the ones labeled @move) defeat others (e.g., the ones la-
beled @frax1 and @frax2). We distinguish between the classical-logic-like explicit
negation, neg , and default negation not . Literals L and negL are incompatible
and cannot both appear in a consistent model. The predicate opposes specifies
additional incompatibilities. In our example, opposes says that no block can be
present in two different positions on the board in the same state.

We can now see how defeasible reasoning works. The rule labeled @dloc
is a “catch-case” low-priority default that says that all locations on the
board are free. Contrary to this default, the fact labeled @state says that
block4 is at square7 in state 0. This “defeats” the @dloc rule (due to
overrides(state,dloc)), so block4 is indeed at square7. Other squares are
free unless the “catch-all” default @dloc is overridden. Such overriding can oc-
cur due to the @move rule, which specifies the effects of the move action. The
@move rule also defeats the frame persistence axioms, @frax1 and @frax2, which
simply state that block locations persist from one state to another. Thus, in
states 1 and 2 our block is still at square7 and other squares are free. However,
at state 2 a move occurs, and the @move rule derives that block4 must be at
square3 in state 3. Due to the priorities specified via the predicate overrides,
this latter derivation defeats the derivations produced by the frame axioms and
the default location fact @dloc.

3 Defeasible Reasoning with Argumentation Theories

Let L be a logic language with the usual connectives ∧ for conjunction and :-
for rule implication; and two negation operators: neg , for explicit negation, and
not for default negation. The alphabet of the language consists of: an infinite set
of variables, which are shown in the examples as alphanumeric symbols prefixed
with the question mark ?; and a set of constant symbols, which can appear
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as individuals, function symbols, and predicates. Constants will be shown as
alphanumeric symbols that are not prefixed with a “?”.

We use the standard notion of terms in logic programming. Atomic formu-
las, also called atoms, are quite general in form: they can be the atoms used in
ordinary logic programming; or the higher-order expressions of HiLog [7]; or the
frames of F-logic [21]. A literal has one of the following forms:

– An atomic formula.
– negA, where A is an atomic formula.
– notA, where A is an atom.
– not negA, where A is an atom.
– not notL and negnegL, where L is a literal; these are identified with L.

Let A denote an atom. Literals of the form A or negA (or literals that reduce to
these forms after elimination of double negation) are called not -free literals;
literals that reduce to the form notA are called not -literals.

Definition 1. A plain rule in a logic language L is an expression of the form

L :-Body (1)

where L, called the head of the rule, is a not -free literal in L, and Body, called
the body of the rule, is a conjunction of literals in L.3 As is common in logic
programming, we will often write A,B to represent the conjunction A ∧B.
A labeled rule in L is an expression of the form @r ρ, where ρ is a plain rule
and r is a term, called the label of the rule. Thus, labeled rules have the form

@r L :-Body (2)

A rule label is not a rule identifier: several rules can have the same label. A
formula is a literal, a conjunction of literals, or a rule. Given a rule of the
form (2), the term

handle(r, L) (3)

is called the handle for that rule. Here handle is a binary function symbol
specifically reserved for representing rule handles. However, we do not make
further assumptions about this symbol. �

A logic program with defaults and argumentation theories (an lpda,
for short) in a logic language L is a set of labeled and plain rules in L.

In our theory, plain rules are considered to be definite statements about the
real world. In contrast, labeled rules are defeasible defaults : some (or even all)
instances of such rules can be “defeated” by other labeled rules in which case
inferences produced by the defeated rules might be “overridden” or “canceled.”

We will be often using variable-free expressions, which we call ground. Thus,
a ground term is a term that contains no variables, a ground literal is a
variable-free literal, and a ground rule is a rule that has no variables.
3 This is easy to generalize to allow Lloyd-Topor extensions [23].
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Lpda s are used in conjunction with argumentation theories. An argumentation
theory is a set of rules that defines conditions under which some rule instances
may be defeated or canceled by other rules.

Definition 2. Let L be a logic language. An argumentation theory is a set,
AT, of plain rules in L of the form (1). We also assume that the language
L includes a unary predicate, $defeatedAT, which may appear in the heads of
some rules in AT.4 When confusion does not arise, we will omit the subscript
AT.

An lpda P is said to be compatible with AT if $defeatedAT does not appear
in the rule heads in P. It is often useful to consider stronger compatibility re-
quirements, which impose additional syntactic restrictions on P. If CAT is such
a compatibility requirement then we will speak of CAT-compatible lpdas, i.e.,
lpdas that are compatible with AT and satisfy the condition CAT. �

Thus, an argumentation theory is an ordinary logic program whose rules are
not labeled. The rules AT will normally contain other predicates, besides
$defeatedAT, that are used to specify how the rules in P get defeated. For
instance, the argumentation theories described in Section 4 include the binary
predicates opposes and overrides. In our FLORA-2-based implementation, ar-
gumentation theories are meta-programs, as in Section 4, encoded using HiLog
[7]; we anticipate this would be common for other implementations of lpda s
as well. For the purpose of defining the semantics, we assume that the argu-
mentation theories are ground. A grounded version of AT with respect to a
compatible lpda P is obtained by appropriately instantiating the variables and
meta-predicates in AT. For instance, for the theories in Section 4 this means (i)
replacing the variables ?R with ground rule handles (see Definition 1) followed
by (ii) replacing the meta-statement body(?R, ?B), call(?B) in rule (12) with
bodies of the rules in P that have ?R as the handle (P may have more than one
rule with the same handle).

Note that the definitions and the subsequent theory permit different subsets
of the overall lpda to have different argumentation theories AT with different
$defeatedAT predicates.5

Definition 3. Let P be an lpda and AT an argumentation theory over
language L.

– The Herbrand Universe of P, denoted UL, is the set of all ground terms
built using the constants and function symbols that appear in L. When con-
fusion does not arise, we will simply write U .

– The Herbrand Base of P, denoted BL (or simply B, when no ambiguity
arises), is the set of all ground not -free literals that can be constructed using
the predicates in L. �

4 We say “may” for the sake of generality. If $defeated does not occur in the head of
any rule then the semantics of lpda s reduce to ordinary logic programming.

5 Our FLORA-2 extension also supports multiple argumentation theories.
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3.1 The Well-Founded Semantics

In this section, we extend the well-founded semantics for default negation [15]
to lpda s. Our development follows the general outline in [29]. The full version
of this paper also provides the stable model semantics [16].

The following definition of partial interpretations is essentially from [15,29].
First, we assume that the language includes three special propositional constants,
t, f, and u, which stand for true, false, and undefined, respectively. We also
assume the existence of the following total order on these propositions: f < u < t.

Definition 4. A partial Herbrand interpretation, I, is simply a set of
ground literals. In addition: I must contain both t and not f; it may contain
neither u nor notu; and L, notL cannot both be in I, for any literal L.

An interpretation is inconsistent relative to an atom A if both A and
negA belong to I. Otherwise, I is consistent relative to A. An interpretation
is consistent if it is consistent relative to every atom and inconsistent if it
is inconsistent relative to some atom. An interpretation is total if, for every
ground not -free literal L (except u), either L or notL belongs to I.

We also define I+ = {L | L ∈ I is a not -free literal} and I− = {L | L ∈
I is a not -literal}. Thus, I = I+ ∪ I−. �
Models. Next we define satisfaction for ground formulas and lpda s.

Definition 5. Let I be a partial Herbrand interpretation, L a ground not -free
literal, and F , G ground formulas. Then I maps formulas to {t,f,u} as follows:

– If L is a not -free literal then I(L) = t iff L ∈ I, I(L) = f iff notL ∈ I,
and I(L) = u, otherwise.

– I(notL) =∼ I(L), where ∼ t = f, ∼ f = t, and ∼ u = u.
Note that the above two items together with Definition 4 imply that I(t) = t,
I(not t) = f; I(f) = f, I(not f) = t; and I(u) = I(notu) = u.

– I(F ∧G) = min(I(F ), I(G)).
– For a plain rule F :-G, define I(F :-G) = t if and only if I(F ) ≥ I(G).
– For a labeled rule @r F :-G, we define I(@r F :-G) = t if and only if

I(F ) ≥ min(I(G), I(not $defeated(handle(r, F )))).
Here handle(r, F ) is the handle (Definition 1) for the rule @r F :-G. �

Definition 6. If I(F ) = t, where I is an interpretation, then we write I |= F
and say that I is a model of F (or that satisfies F ). An interpretation I is a
model of an lpda P if I |= R for every R ∈ P. �

Definition 7. Given an lpda P, an argumentation theory AT, and an inter-
pretation M, we say that M is a model of P with respect to the argumentation
theory AT, written as M |= (P ,AT), if M |= P and M |= AT. �

Definition 8. Suppose that M1, and M2 are interpretations. We define M1 )
M2 if M+

1 ⊆ M+
2 and M−

1 ⊇ M−
2 . The minimal models with respect to ) are

called the least models of (P ,AT). �
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Well-Founded Models. We now define a special kind of models for lpda s,
called the well-founded models. These models are first defined as limits of trans-
finite sequences of partial interpretations and then we show that they correspond
to the ordinary well-founded models of certain normal logic programs that are
obtained by a transformation from lpda s.

The quotient operator is defined analogously to [29], but with changes to
adapt this concept to logic programs with defaults and argumentation theories.

Definition 9. Let Q be a set of rules, which can include labeled as well as plain
rules, and let J be a partial Herbrand interpretation for Q. We define the lpda

quotient of Q by J, written as
Q
J

, by the following sequence of steps:

1. Replace every not -literal in the body of Q by its truth value in J.
2. Replace every labeled rule of the form @r L :-Body in Q, such that

J($defeated(handle(r, L))) = t with the rule L :-Body, f.
(Rule handles were introduced in Definition 1.)

3. Replace every labeled rule (@r L :-Body) ∈ Q such that
J($defeated(handle(r, L))) = u with the rule L :-Body, u.

4. Remove all labels from the remaining labeled rules.

The resulting set of rules is the lpda quotient
Q
J

. �

In the next definition, LPM(Q) denotes the least partial model of a not -free
lpda Q. As in [29], LPM(Q) is computed iteratively, by making all possible
derivations using the rules in Q starting with the empty partial interpretation.

Definition 10. The well-founded model of an lpda P with respect to the
argumentation theory AT, written as WFM(P ,AT), is defined as the limit of
the following transfinite induction. Initially, I0 is the empty set. Suppose Im has
already been defined for every m < k, where k is an ordinal. Then:

– Ik = LPM(
P ∪ AT
Ik−1

), if k is a non-limit ordinal.

– Ik = ∪i<kIi, if k is a limit ordinal. �

According to the next theorem, this limit exists. The theorem also shows that
lpda s reduce to and can be implemented using ordinary logic programming
systems that support the well-founded semantics (e.g., XSB).

Theorem 1 (Reduction). The transfinite sequence 〈I0, I1, . . .〉 of interpre-
tations in Definition 10 has a (unique) limit. It is reached for some (possibly
transfinite) ordinal, α, such that Iα = Iα+1. This limit, WFM(P ,AT), is a
least model of (P ,AT). Furthermore, WFM(P ,AT) coincides with the well-
founded model of the ordinary logic program P ′ ∪ AT, where P ′ is obtained
from P by changing every labeled rule (@r L :- Body) ∈ P to the plain rule
L :- Body, not$defeated(handle(r, L)). �
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3.2 Well-Behaved Argumentation Theories

So far, argumentation theories were defined in a very general way. However,
not all such theories are practically useful. This section introduces a number
of well-behavior properties that are useful for argumentation theories to abide.
These conditions involve both the argumentation theories themselves and their
associated compatibility requirements (see Definition 2).

Definition 11. An argumentation theory AT with a compatibility requirement
CAT ensures consistency relative to an atom A if for every CAT-compatible
lpda P, the well-founded model of (P,AT) is consistent relative to A (see Defi-
nition 4). We say that (AT,CAT) ensures consistency, if it ensures consistency
for all atoms. �

Definition 12. Consider an argumentation theory AT with a compatibility re-
quirement CAT. Let us further assume that AT uses a binary predicate opposes,
which is defined on rule handles. Literals L1 and L2 are said to oppose each
other in a partial interpretation I of an lpda P iff opposes(handle(r1, L1),
handle(r2, L2)) is true in I for all pairs of rules of the form @r1 L1 :- · · · and
@r2 L2 :- · · · in P (i.e., rules having L1 and L2 in the head).

We say that AT ensures strong consistency if, for every CAT-compatible
lpda P, the well-founded model M of (P,AT) has the following property:

If any pair of literals, L1 and L2, oppose each other in M, then L1 and
L2 cannot both be true in M.

�
Definition 13. Consider an argumentation theory AT with a compatibility con-
dition CAT. Let us further assume that AT uses two binary predicates, overrides
and opposes, whose arguments are rule handles. We say that AT has the over-
riding property if, for every CAT-compatible lpda P, the following rule is true
in the well-founded model of (P ,AT):

$defeated(handle(r2, L2)) :- Body1 ∧ Body2
∧overrides(handle(r1, L1), handle(r2, L2))
∧opposes(handle(r1, L1), handle(r2, L2))
∧ not $defeated(handle(r1, L1))

(4)

for all pairs of rules of the form (@ri Li :-Bodyi) ∈ P, i = 1, 2. �

Next we develop a family of argumentation theories that obeys these properties.

4 Courteous Argumentation Theories

We now develop a family of particularly interesting argumentation theories, de-
noted AT C , which subsumes generalized courteous logic programs (GCLP) [19].
Some members of this family correspond to different earlier versions of courteous
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logic programs [18,19]; others improve upon these previous versions by eliminat-
ing certain cases of controversial behavior. The properties of these argumentation
theories are discussed at the end of this section.

Apart from the standard predicate $defeated, the argumentation theories
in the AT C family use two other predicates: opposes and overrides, which
are normally defined by the user. Argumentation theories might include addi-
tional axioms, such as symmetry for opposes or transitivity for overrides. The
opposes and overrides predicates are expected to be specified over rule han-
dles; they may occur as facts and in the heads of rules. Other predicates in AT C

represent concepts used to argue that certain rules must or must not be defeated.
The variables ?R and ?S are expected to range over rule handles.
Definition of defeasibility. These rules define what it means for a rule to be
defeated or to defeat another rule. A rule is defeated if it is refuted or rebutted
by some other rule, provided that the latter rule is not compromised. A rule can
also be defeated if it is disqualified for some other reason.

$defeated(?R) :- $defeats(?S, ?R), not $compromised(?S).
$defeated(?R) :- $disqualified(?R).
$defeats(?R, ?S) :- $refutes(?R, ?S) or $rebuts(?R, ?S).

(5)

The predicates $refutes and $rebuts will be defined shortly. The predicates
$compromised and $disqualified can mean different things depending on the
intended theory of argumentation. Here are some of the possibilities:

– No rule is compromised or disqualified. Lpdas with this argumentation theory
are equivalent to the original courteous logic programs (GCLP).

$compromised(?X) :- false.
$disqualified(?X) :- false.

(6)

– A rule is compromised if it is defeated, and it is disqualified if it transitively
defeats itself.6 This choice has been the main one we have experimented with
recently for practical use cases using our FLORA-2 extension.

$compromised(?R) :- $refuted(?R), $defeated(?R).
$disqualified(?X) :- $defeats∗(?X, ?X). (7)

Here $defeats∗ denotes the transitive closure of $defeats.
– Another reasonable choice is

$compromised(?R) :- $defeated(?R).
$disqualified(?X) :- $defeats∗(?X, ?X). (8)

Definitions for $refutes and $rebuts. Refutation of a rule, r, means that a
higher-priority rule implies a conclusion that is incompatible with the conclusion
implied by r. It is defined as follows:

$refutes(?R, ?S) :- $conflict(?R, ?S), overrides(?R, ?S).
$refuted(?R) :- $refutes(?R2, ?R). (9)

6 Note that we do not require that the predicate $defeats is transitively closed.
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Rebuttal means that a pair of rules assert conflicting conclusions, but neither
derivation can be discarded or considered “more important” than the other. This
intuition can be expressed in several different (not necessarily equivalent) ways.
We have been experimenting with the following definitions (where (11) together
with (6) defines the original GCLP):

$rebuts(?R, ?S) :- $conflict(?R, ?S), not $compromised(?R). (10)
$rebuts(?R, ?S) :- $conflict(?R, ?S), not $compromised(?R), (11)

not $refuted(?R), not$refuted(?S).

Definition of candidacy and conflict. A candidate rule-instance is one whose
body is true in the knowledge base:

$candidate(?R) :- body(?R, ?B), call(?B). (12)

Here body is a meta-predicate that binds ?B to the body of a rule with handle
?R. The call meta-predicate takes the body of a rule and poses it as a query to
the knowledge base. We note that these meta-predicates can be represented as
object-level predicates in HiLog [7]. We omit reviewing here the main aspects of
HiLog for reasons of space and focus.

Conflicting rules are now defined as follows: two rule handles are in conflict
if they are both candidates and are in opposition to each other.

$conflict(?R, ?S):- $candidate(?R), $candidate(?S),opposes(?R, ?S). (13)

Background theory for mutual exclusion. The predicate opposes is normally
defined within the user knowledge base by a set of facts and rules. In addition,
our argumentation theories require opposes to be symmetric and such that
every literal must oppose its explicit negation (neg ):

opposes(?R, ?S) :- opposes(?S, ?R).
opposes(handle(?L1, ?H), handle(?L2, neg ?H)). (14)

We say that an argumentation theory belongs to the AT C family if it includes
the rules (5), (9), and (12)–(14); plus either (6) or (7) or (8); and either (10)
or (11). Let AT be an argumentation theory in AT C and let the compatibility
requirement be as follows. An lpda P is compatible with AT iff:

– The set of the atoms that appear in the heads of plain (non-defeasible) rules
and in the heads of labeled (defeasible) rules in P are disjoint.

– The $-predicates defined by AT C ($defeated, $compromised, $refuted,
etc.) do not occur in the heads of the program rules (i.e., they are defined
only by the rules in AT ).

Theorem 2 (Well-behavior). Let AT be an argumentation theory in AT C

with the above compatibility requirement. Then AT satisfies the properties of
well-behaved theories of Section 3.2; namely:
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1. AT ensures consistency for the atoms that occur in the heads of labeled rules.
2. Suppose there is no literal A for which both A and negA appear in the heads

of plain rules in P. Then AT ensures consistency (for all atoms).
3. If opposes(handle(..., L1), handle(..., L2)) is true only when neither L1 nor

L2 occurs in the heads of plain rules, then AT ensures strong consistency.
4. AT has the overriding property. �

Consider an argumentation theory, denoted ATGCLP , that consists of the rules
(5) – (6), (9), (11) – (14) and the following compatibility requirement. An lpda

P is compatible with ATGCLP iff:

– P contains only labeled rules.
– The $-predicates defined by ATGCLP ($defeated, $refuted, etc.) do not

occur in the heads of the program rules.

Theorem 3 (GCLP as LPDA). Consider ATGCLP and a compatible lpda
P. Let P ′ be the program obtained from P using the GCLP transformation of
[19].7 Then the restrictions of the well-founded models of (P , ATGCLP ) and of
P ′ to the predicates mentioned in P coincide. �

This result says that the original GCLP is essentially equivalent to LPDA with
the argumentation theory ATGCLP . The new formulation of GCLP has many
benefits. First, it is not limited to ordinary logic programs: it extends straight-
forwardly to HiLog [7], F-logic [21], and other forms of logic programming. Sec-
ond, lpda s are inherently incremental: adding new knowledge does not require
changes to the already existing knowledge. In contrast, in the original approach,
adding new rules or facts meant that the GCLP transformation had to be re-
applied from scratch. It was substantial effort to find an equivalent incremental
transformation [13]. Third, the new formulation generalizes GCLP by allowing
non-defeasible rules.

Also, importantly, the new framework lets us use different argumentation
theories, while the original approach had one or two built into fairly complex
transformations, often making it hard to see through the complexity and to
experiment. In contrast, the new approach separates the argumentation theory
from program transformation, makes it much easier to see the rationale behind
the different parts of the argumentation theories, greatly simplifies the imple-
mentation, and enables various optimizations and improvements.

A case in point is the following example of controversial behavior exhibited
by the original GCLP in an “edge case.”

@a p. @b q. @c s.

overrides(handle(a,?),handle(c,?)). opposes(handle(?,p),handle(?,s)).
overrides(handle(c,?),handle(b,?)). opposes(handle(?,q),handle(?,s)).

Here GCLP sanctions the model {p, not q, not s}. However, one might feel
that the intended model should instead be {p, q, not s} because c is defeated
7 We are glossing over the minor detail that the syntax of lpda s is slightly different

from the syntax of GCLP used in [19].
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and thus should not defeat b. Modifying the argumentation theory ATGCLP is
much easier than examining and modifying the complex transformation of the
original GCLP. The alternative intuition about desired defeasibility behavior in
the above “edge case” example can be expressed by replacing the rules (6) with
(7) in the argumentation theory ATGCLP .

As further illustration, we show how GCLP can be used in conjunction with
HiLog’s higher-order syntax and F-logic’s object-oriented syntax. The example
also illustrates the use of rule labels with variables.

@perm(?t) ?p(?usr):- ?adm[states(?t)->?p(?usr)],?adm[controls->?p].
overrides(handle(perm(?t1),?),handle(perm(?t2),?)) :- ?t1 > ?t2.
Bob[states(2008)->neg print(Al)]. Bob[states(2009)->print(Al)].
Bob[controls->{print(?), neg print(?)}].
Here the first rule says that if an administrator, ?adm, has stated at time ?t that
the user ?usr has a privilege, ?p, and if that administrator controls this type of
privileges, then the privilege is granted. Privileges can be positive (e.g., print) or
negative (e.g., neg print). This rule is defeasible and its label is non-ground. The
head of the rule is a HiLog literal, because of the higher-order variable ?p, while
the body has a combination of F-logic and HiLog features. The second rule is
non-defeasible. It says that later pronouncements override earlier ones. The facts
on line 3 say that the administrator Bob has issued conflicting statements about
whether the user Al is allowed to print or not. The last fact says that Bob controls
the printing privilege as well as its revocation. With the ATGCLP argumentation
theory, the above lpda sanctions the conclusion print(Al), as expected. It is
worth pointing out here that modifying the original GCLP transformation [19]
to handle this kind of programs is not a trivial matter.

5 Comparison with Other Work

The last two decades saw a great number of approaches to defeasible reasoning
in logic programming. Most of these are based on Reiter’s Default Logic [30],
stable models [16], and only a few [19,24] use the well-founded semantics [15].
None of the works surveyed here uses the notion of argumentation theories, but
[17,10,12] have goals similar to ours. Due to the sheer size of the literature on
defeasible reasoning, it is not feasible to do justice to all prior work in this
section. Therefore, we will focus on the more closely related work and refer the
reader to a recent survey [9] for a broader discussion of the literature, including
the works that we were unable to mention.

General frameworks [17,10,12]. The closest, in spirit, to our work are the logic of
prioritized defaults by Gelfond and Son [17], the meta-interpretation approach
of [12], and ordered logic programs of Delgrande, Schaub, and Tompits [10].

The logic of prioritized defaults [17] does not use the notion of argumentation
theories, but it is made clear that the meaning of the various theories of defaults
may differ from one application domain to another. This is analogous to allow-
ing argumentation theories to vary. However, Gelfond and Son developed their
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language as a meta-theory, whose semantics is given by meta-interpreters. What
we call an “argumentation theory” is built into meta-interpreters in [17], and
no independent model theory is given. In contrast, our approach distills all the
differences between the different default theories to the notion of an argumen-
tation theory with a simple interface to the user-provided domain description,
the predicate $defeated. This allows us to define model-theoretic semantics,
including the well-founded and stable models, to unify the theories of Courteous
Logic Programming, Defeasible Logic, Prioritized Defaults, and more. This also
allows us to focus on the development of powerful argumentation theories, which
have the expected behavior on all known “benchmarks” that we are aware of
from the literature. The following is one such example.

@d1 neg flies :- penguin. overrides(d1,d2). bird.
@d2 flies :- bird. overrides(d2,d3). swims.
@d3 penguin :- bird, swims. overrides(d1,d3).

This example was discussed in [5,17] as a case where a seemingly correct domain
description yields the unintended model {swims, bird, penguin, flies} in-
stead of the expected model {swims, bird, penguin, neg flies}. Gelfond
and Son [17] argue that this happens because the above domain descrip-
tion is “unclear” and requires a clarification in the form of the statement
opposes(d2, d3). In our opinion, however, requiring such additional domain-
specific particulars is undue engineering burden. Like [5], we believe that the
above domain description is sufficient by itself and, together with any of the
argumentation theories of Section 4, this lpda has the expected behavior in our
framework.

Like Gelfond and Son’s work, Leone et. al. [12] set out to unify approaches
to defeasible reasoning. Specifically, they present an adaptable meta-interpreter,
which can be made to simulate the approaches described in [6,33] among others.

Delgrande et. al. [10] propose a framework of ordered logic programming,
which can use a variety of preference handling strategies. For each strategy, this
approach devises a transformation from ordered logic programs to ordinary logic
programs. Each transformation is custom-made for the particular preference-
handling strategy, and the approach was illustrated by showing transformations
for several strategies, including two described in earlier works [33,12].

Unlike our approach, Delgrande’s framework does not come with a unifying
model-theoretic semantics. Instead, the definition of preferred answer sets differs
from one preference-handling strategy to another. One of the more important
conceptual differences between our work and [10] has to do with the nature of
the variable parts of the two approaches. In our case, the variable part is the
argumentation theory, which is a set of definitions for concepts that a human
reasoner might use to argue why certain conclusions are to be defeated. In case
of [10], the variable part is the transformation, which encodes a fairly low-level
mechanism: the order of rule applications required to generate the preferred
answer set.8 Finally, we note that each program transformation in [10] needs a
8 Note that argumentation theories can also encode rule application orderings.



Logic Programming with Defaults and Argumentation Theories 445

compiler that contains hundreds of lines of Prolog code. Our approach requires
no new software, and each argumentation theory typically contains 20-30 rules.

Defeasible Logic [25]. Defeasible Logic is related to lpda s in a number of ways.
On one hand, [1] shows that a not -free subset of GCLP (which is a special case
of lpda s) can be represented as a defeasible logic theory. On the other hand,
it can be shown that Defeasible Logic programs with non-contradictory strict
rules can be represented as lpda s with suitable argumentation theories both
under the well-founded semantics [24] and under the stable model semantics
[2].9 Apart from the ability to choose argumentation theories, lpda s generalize
Defeasible Logic in other ways. For instance, Defeasible Logic does not deal with
general conflicts, i.e., situations where the opposing rules have heads that are
not negations of each other. In addition, lpda s can use the full power of rules
to define the prioritization ordering, while Defeasible Logic requires that this
ordering is specified in advance.

Other logics of prioritized defaults. Many other formalizations of prioritized
defaults, including [3,5,6,11,31,33,34,35], have been developed over the years.
In these formalisms, priorities can be assigned either to atoms (e.g., [31]) or
to rules ([3,5,6] and others), and the details vary widely. For example, most
proposals specify priorities explicitly, but some (e.g., [11]) assign them implicitly,
via the notion of specificity (rule r1 is more specific than r2 if the body of r1
entails the body of r2). For yet others, the mechanism for implicit prioritization
is instead derived from the structure of class hierarchies [34]. In most cases,
these proposals use stable models instead of the well-founded models used in
the present work. However, as mentioned earlier, stable models for lpdas can
be defined and, based on our analysis, most of the above approaches can be
simulated within our framework by choosing suitable argumentation theories.
Only Sakama and Inoue’s approach [31] bucks the trend. The key difficulty in
capturing this formalism is the way in which it defines preferences over answer
sets: in [31], preferences are derived from a priority relation over atoms, while
all other approaches define priorities over rules only.

Argumentation theories. A significant body of work is dedicated to development
of argumentation theories. These include papers like [4,14,26], which use this
term in a different sense than we do and are not closely related,10 as well as more
closely related works [27,28,20]. The focus of the latter works is development of
the actual concepts that argumentation theories operate with. For instance, [27]
uses Default Logic [30] to formalize the notions of defeat, defensible arguments,
etc. Our work is more general in the sense that we do not stick to a particular
argumentation theory and our FLORA-2-based implementation makes it easy
9 Stable models for lpda s will be defined in the full version of this paper.

10 By arguments these works mean proofs or sets of supporting statements, not rules
that define the notion of defeasibility. The focus of [4] is non-monotonic logic in
general, while [14] is a procedural approach to defeasible rules. It is unclear whether
this approach can be captured as an argumentation theory in our framework.
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to use different such theories. However, concrete argumentation theories used in
our framework might embody notions analogous to those in [27]. For instance,
the theory of Section 4 uses the notions of defeated and defensible (rebutted, in
our terminology) arguments, although those notions are not exactly the ones
developed in [27].

6 Conclusions

We presented a novel approach that unifies most of the earlier work on defeasible
reasoning in logic programming (LP). The primary advantages of the approach
are:

– Generalization of Courteous and other previous defeasible LP approaches to
include HiLog-style higher-order and F-logic style object-oriented features.

– Much simpler implementation for Courteous and other previous defeasible
LP approaches. Such an implementation is easy in a system with sufficient
degree of introspection, like FLORA-2: contrast 20-30 rules per argumenta-
tion theory (e.g., Section 4) versus thousands of lines of code (e.g., [19,10]).

– Unification of almost all previous defeasible LP approaches within one theory
and the ability to combine multiple such in one system.

– Improvements on original GCLP, including a direct model theory, simpler
and faster incremental updating, and better control over edge case behavior.
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Abstract. Qualification has been recently introduced as a generaliza-
tion of uncertainty in the field of Logic Programming. In this paper we
investigate a more expressive language for First-Order Functional Logic
Programming with Constraints and Qualification. We present a Rewrit-
ing Logic which characterizes the intended semantics of programs, and
a prototype implementation based on a semantically correct program
transformation. Potential applications of the resulting language include
flexible information retrieval. As a concrete illustration, we show how to
write program rules to compute qualified answers for user queries con-
cerning the books available in a given library.

Keywords: Constraints, Functional Logic Programming, Program Trans-
formation, Qualification, Rewriting Logic.

1 Introduction

Various extensions of Logic Programming with uncertain reasoning capabilities
have been widely investigated during the last 25 years. The recent recollection
[16] reviews the evolution of the subject from the viewpoint of a committed
researcher. All the proposals in the field replace classical two-valued logic by
some kind of many-valued logic with more than two truth values, which are
attached to computed answers and interpreted as truth degrees.

In a recent paper [14] we have presented a Qualified Logic Programming
scheme QLP(D) parameterized by a qualification domain D, a lattice of so-called
qualification values that are attached to computed answers and interpreted as
a measure of the satisfaction of certain user’s expectations. QLP(D)-programs
are sets of clauses of the form A

α←− B, where the head A is an atom, the body
B is a conjunction of atoms, and α ∈ D is called attenuation factor. Intuitively,
α measures the maximum confidence placed on an inference performed by the
clause. More precisely, any successful application of the clause attaches to the
head a qualification value which cannot exceed the infimum of α◦βi ∈ D, where
βi are the qualification values computed for the body atoms and ◦ is a so-called
attenuation operator, provided by D.
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Uncertain Logic Programming can be expressed by particular instances of
QLP(D), where the user’s expectation is understood as a lower bound for the
truth degree of the computed answer and D is chosen to formalize a lattice of
non-classical truth values. Other choices of D can be designed to model other
kinds of user expectations, as e.g. an upper bound for the size of the logical proof
underlying the computed answer. As shown in [3], the QLP(D) scheme is also well
suited to deal with Uncertain Logic Programming based on similarity relations
in the line of [15]. Therefore, Qualified Logic Programming has a potential for
flexible information retrieval applications, where the answers computed for user’s
queries may match the user’s expectations only to some degree. As shown in [14],
several useful instances of QLP(D) can be conveniently implemented by using
constraint solving techniques.

In this paper we investigate an extension of QLP(D) to a more expres-
sive scheme, supporting computation with first-order lazy functions and con-
straints. More precisely, we consider the first-order fragment of CFLP(C), a
generic scheme for functional logic programming with constraints over a para-
metrically given domain C presented in [9]. We propose an extended scheme
QCFLP(D, C) where the additional parameter D stands for a qualification do-
main. QCFLP(D, C)-programs are sets of conditional rewrite rules of the form
f(tn) α−→ r ⇐ Δ, where the condition Δ is a conjunction of C-constraints that
may involve user defined functions, and α ∈ D is an attenuation factor. As in
the logic programming case, α measures the maximum confidence placed on an
inference performed by the rule: any successful application of the rule attaches
to the computed result a qualification value which cannot exceed the infimum
of α ◦ βi ∈ D, where βi are the qualification values computed for r and Δ, and ◦
is D’s attenuation operator. QLP(D) program clauses can be easily formulated
as a particular case of QCFLP(D, C) program rules.

As far as we know, no related work covers the expressivity of our approach.
Guadarrama et al. [6] have proposed to use real arithmetic constraints as an
implementation tool for a Fuzzy Prolog, but their language does not support
constraint programming as such. Starting from the field of natural language pro-
cessing, Riezler [11,12] has developed quantitative and probabilistic extensions
of the classical CLP(C) scheme with the aim of computing good parse trees for
constraint logic grammars, but his work bears no relation to functional program-
ming. Moreno and Pascual [10] have investigated similarity-based unification in
the context of needed narrowing [1], a narrowing strategy using so-called defini-
tional trees that underlies the operational semantics of functional logic languages
such as Curry [7] and T OY [2], but they use neither constraints nor attenuation
factors and they provide no declarative semantics.

Figure 1 below shows a small set of QCFLP(U ,R) program rules, called the
library program in the rest of the paper. The concrete syntax is inspired by the
functional logic language T OY, but the ideas and results of this paper could
be applied also to Curry and other similar languages. In this example, U stands
for a particular qualification domain which supports uncertain truth values in
the real interval [0, 1], while R stands for a particular constraint domain which
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%% Data types:
type pages, id = int
type title, author, language, genre = [char]
data vocabularyLevel = easy | medium | difficult
data readerLevel = basic | intermediate | upper | proficiency
data book = book(id, title, author, language, genre, vocabularyLevel, pages)

%% Simple library, represented as list of books:
library :: [book]
library --> [ book(1, "Tintin", "Herge", "French", "Comic", easy, 65),

book(2, "Dune", "F. P. Herbert", "English", "SciFi", medium, 345),
book(3, "Kritik der reinen Vernunft", "Immanuel Kant", "German",

"Philosophy", difficult, 1011),
book(4, "Beim Hauten der Zwiebel", "Gunter Grass", "German",

"Biography", medium, 432) ]

%% Auxiliary function for computing list membership:
member(B,[]) --> false
member(B,H:_T) --> true <== B == H
member(B,H:T) --> member(B,T) <== B /= H

%% Functions for getting the explicit attributes of a given book:
getId(book(Id,_Title,_Author,_Lang,_Genre,_VocLvl,_Pages)) --> Id
getTitle(book(_Id,Title,_Author,_Lang,_Genre,_VocLvl,_Pages)) --> Title
getAuthor(book(_Id,_Title,Author,_Lang,_Genre,_VocLvl,_Pages)) --> Author
getLanguage(book(_Id,_Title,_Author,Lang,_Genre,_VocLvl,_Pages)) --> Lang
getGenre(book(_Id,_Title,_Author,_Lang,Genre,_VocLvl,_Pages)) --> Genre
getVocabularyLevel(book(_Id,_Title,_Author,_Lang,_Genre,VocLvl,_Pages)) --> VocLvl
getPages(book(_Id,_Title,_Author,_Lang,_Genre,_VocLvl,Pages)) --> Pages

%% Function for guessing the genre of a given book:
guessGenre(B) --> getGenre(B)
guessGenre(B) -0.9-> "Fantasy" <== guessGenre(B) == "SciFi"
guessGenre(B) -0.8-> "Essay" <== guessGenre(B) == "Philosophy"
guessGenre(B) -0.7-> "Essay" <== guessGenre(B) == "Biography"
guessGenre(B) -0.7-> "Adventure" <== guessGenre(B) == "Fantasy"

%% Function for guessing the reader level of a given book:
guessReaderLevel(B) --> basic <== getVocabularyLevel(B) == easy, getPages(B) < 50
guessReaderLevel(B) -0.8-> intermediate <== getVocabularyLevel(B) == easy, getPages(B) >= 50
guessReaderLevel(B) -0.9-> basic <== guessGenre(B) == "Children"
guessReaderLevel(B) -0.9-> proficiency <== getVocabularyLevel(B) == difficult,

getPages(B) >= 200
guessReaderLevel(B) -0.8-> upper <== getVocabularyLevel(B) == difficult, getPages(B) < 200
guessReaderLevel(B) -0.8-> intermediate <== getVocabularyLevel(B) == medium
guessReaderLevel(B) -0.7-> upper <== getVocabularyLevel(B) == medium

%% Function for answering a particular kind of user’s query:
search(Language,Genre,Level) --> getId(B) <== member(B,library),

getLanguage(B) == Language,
guessReaderLevel(B) == Level,
guessGenre(B) == Genre

Fig. 1. Library with books in different languages

supports arithmetic constraints over the real numbers; see Section 2 for more
details.

The program rules are intended to encode expert knowledge for computing
qualified answers to user’s queries concerning the books available in a simplified
library, represented as a list of objects of type book. The various get func-
tions extract the explicit values of book attributes. Functions guessGenre and
guessReaderLevelperform qualified inferences relying on analogies between dif-
ferent genres and heuristic rules to estimate reader levels on the basis of other
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features of a given book, respectively. For instance, the second rule for guessGenre
infers the genre "Fantasy" with attenuation 0.9 for a book B whose genre is
already known to be "SciFi". Some program rules, as e.g. those of the auxiliary
function member, have attached no explicit attenuation factor. By convention,
this is understood as the implicit attachment of the attenuation factor 1.0, the
top value of U . For any instance of the QCFLP(D, C) scheme, a similar con-
vention allows to view CFLP(C)-program rules as QCFLP(D, C)-program rules
whose attached qualification is optimal.

The last rule for function search encodes a method for computing qualified
answers to a particular kind of user’s queries. Therefore, the queries can be
formulated as goals to be solved by the program fragment. For instance, answer-
ing the query of a user who wants to find a book of genre "Essay", language
"German" and user level intermediate with a certainty degree of at least 0.65
can be formulated as the goal:

(search("German","Essay",intermediate) == R) # W | W >= 0.65

The techniques presented in Section 4 can be used to translate the QCFLP(U ,R)
program rules and goal into the CFLP(R) language, which is implemented in
the T OY system. Solving the translated goal in T OY computes the answer
{R �→ 4}{0.65 ≤W,W ≤ 0.7}, ensuring that the library book with id 4 satisfies
the query’s requirements with any certainty degree in the interval [0.65,0.7], in
particular 0.7. The computation uses the 4th program rule of guessGenre to
obtain "Essay" as the book’s genre with qualification 0.7, and the 6th program
rule of guessReaderLevel to obtain intermediate as the reader level with
qualification 0.8.

The rest of the paper is organized as follows. In Section 2 we recall known
proposals concerning qualification and constraint domains, and we introduce a
technical notion needed to relate both kinds of domains for the purposes of this
paper. In Section 3 we present the generic scheme QCFLP(D, C) announced in
this introduction, and we formalize a special Rewriting Logic which characterizes
the declarative semantics of QCFLP(D, C)-programs. In Section 4 we present a
semantically correct program transformation converting QCFLP(D, C) programs
and goals into the qualification-free CFLP(C) programming scheme, which is
supported by existing systems such as T OY . Section 5 concludes and points to
some lines of planned future work. The Technical Report [4] includes full proofs
of the main results in this paper, as well as some additional results concerning
alternative characterizations of program semantics.

2 Qualification and Constraint Domains

A Qualification Domain is any algebraic structure D = 〈D,�,b, t, ◦〉 such that
D is a set of elements called qualification values, 〈D,�,b, t〉 is a lattice with
extreme points b and t w.r.t. the partial ordering � and ◦ : D × D → D
is a so-called attenuation operation satisfying the axioms stated in [14]. When
convenient, D will be also noted as DD.
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The intended use of qualification domains has been explained in the intro-
duction. The examples in this paper will use a particular qualification domain
U whose values represent certainty degrees in the sense of fuzzy logic. Formally,
U = 〈U,≤, 0, 1,×〉, where U = [0, 1] = {d ∈ R | 0 ≤ d ≤ 1}, ≤ is the usual
numerical ordering, and × is the multiplication operation. In this domain, the
bottom and top elements are b = 0 and t = 1, and the infimum of a finite S ⊆ U
is the minimum value min(S), understood as 1 if S = ∅. The reader is referred
to [14] for other useful instances of qualification domains.

Constraint domains are used in Constraint Logic Programming and its ex-
tensions as a tool to provide data values, primitive operations and constraints
tailored to domain-oriented applications. Various formalizations of this notion
are known. In this paper, constraint domains are related to signatures of the
form Σ = 〈DC,PF,DF 〉 where DC =

⋃
n∈N

DCn, PF =
⋃

n∈N
PFn and

DF =
⋃

n∈N
DFn are mutually disjoint sets of data constructor symbols, primi-

tive function symbols and defined function symbols, respectively, ranked by ari-
ties. Given a signature Σ, a symbol ⊥ to note the undefined value, a set B of basic
values u and a countably infinite set Var of variables X , we define the notions
listed below, where on abbreviates the n-tuple of syntactic objects o1, . . . , on.

– Expressions e ∈ Exp⊥(Σ,B,Var) have the syntax e ::= ⊥|X |u|h(en), where
h ∈ DCn ∪ PFn ∪DFn. In the case n = 0, h(en) is written simply as h.

– Constructor Terms t ∈ Term⊥(Σ,B,Var) have the syntax e ::= ⊥|X |u|c(tn),
where c ∈ DCn. They will be called just terms in the sequel.

– Total Expressions e ∈ Exp(Σ,B,Var) and Total Terms t ∈ Term(Σ,B,Var)
have a similar syntax, with the ⊥ case omitted.

– An expression or term (total or not) is called ground iff it includes no
occurrences of variables. Exp⊥(Σ,B) stands for the set of all ground ex-
pressions. The notations Term⊥(Σ,B), Exp(Σ,B) and Term(Σ,B) have a
similar meaning.

– We note as & the information ordering, defined as the least partial ordering
over Exp⊥(Σ,B,Var) compatible with contexts and verifying ⊥ & e for all
e ∈ Exp⊥(Σ,B,Var).

– Substitutions are defined as mappings σ : Var → Term⊥(Σ,B,Var) assigning
not necessarily total terms to variables. They can be represented as sets of
bindings X �→ t and extended to act over other syntactic objects o. The
domain dom(σ) and variable range vran(σ) are defined in the usual way. We
will write oσ for the result of applying σ to o. The composition σσ′ of two
substitutions is such that o(σσ′) equals (oσ)σ′.

By adapting the definition found in Section 2.2 of [9] to a first-order setting, we
formalize a constraint domain of signature Σ as any algebraic structure of the
form C = 〈C, {pC | p ∈ PF}〉 such that:

1. The carrier set C is Term⊥(Σ,B) for a certain set B of basic values. When
convenient, we note B and C as BC and CC , respectively.

2. pC ⊆ Cn × C, written simply as pC ⊆ C in the case n = 0, is called the
interpretation of p in C. We will write pC(tn) → t (or simply pC → t if n = 0)
to indicate that (tn, t) ∈ pC .
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3. Each primitive interpretation pC has monotonic and radical behavior w.r.t.
the information ordering &, in the technical sense defined in [4].

Note that symbols h ∈ DC ∪ DF are given no interpretation in C. As we will
see in Section 3, symbols in c ∈ DC are interpreted as free constructors, and the
interpretation of symbols f ∈ DF is program-dependent. We assume that any
signature Σ includes two nullary constructors true and false for the boolean
values, and a binary symbol == ∈ PF 2 used in infix notation and interpreted
as strict equality; see [9] for details. For the examples in this paper we will use a
constraint domainR whose set of basic elements is CR = R and whose primitives
functions correspond to the usual arithmetic operations +,×, . . . and the usual
boolean-valued comparison operations ≤, <, . . . over R. Other useful instances
of constraint domains can be found in [9].

Atomic constraints over C have the form p(en) == v with p ∈ PFn, ei ∈
Exp⊥(Σ,B,Var) and v ∈ Var ∪ DC0 ∪ BC . Atomic constraints of the form
p(en) == true are abbreviated as p(en). In particular, (e1 == e2) == true is
abbreviated as e1 == e2. Atomic constraints of the form (e1 == e2) == false
are abbreviated as e1 /= e2.

Compound constraints are built from atomic constraints using logical con-
junction, existential quantification, and sometimes other logical operations. Con-
straints without occurrences of symbols f ∈ DF are called primitive. We will
note atomic constraints as δ, sets of atomic constraints as Δ, atomic primitive
constraints as π, and sets of atomic primitive constraints as Π . When interpret-
ing sets of constraints, we will treat them as the conjunction of their members.

Ground substitutions η such that Xη ∈ Term⊥(Σ,B) for all X ∈ dom(η) are
called variable valuations over C. The set of all possible variable valuations is
noted ValC . The solution set SolC(Π) ⊆ ValC includes as members those valua-
tions η such that πη is true in C for all π ∈ Π ; see [9] for a formal definition. In
case that SolC(Π) = ∅ we say that Π is unsatisfiable and we write UnsatC(Π).
In case that SolC(Π) ⊆ SolC(π) we say that π is entailed by Π in C and we write
Π |=C π. Note that the notions defined in this paragraph only make sense for
primitive constraints.

In this paper we are interested in pairs consisting of a qualification domain
and a constraint domain that are related in the following technical sense:

Definition 1 (Expressing D in C). A qualification domain D with carrier set
DD is expressible in a constraint domain C with carrier set CC if DD \{b} ⊆ CC
and the two following requirements are satisfied:

1. There is a primitive C-constraint qVal(X) depending on the variable X, such
that SolC(qVal(X)) = {η ∈ ValC | η(X) ∈ DD \ {b}}.

2. There is a primitive C-constraint qBound(X,Y, Z) depending on the variables
X, Y , Z, such that any η ∈ ValC such that η(X), η(Y ), η(Z) ∈ DD \ {b}
verifies η ∈ SolC(qBound(X,Y, Z)) ⇐⇒ η(X) � η(Y ) ◦ η(Z).  �

Intuitively, qBound(X,Y, Z) encodes theD-statement X � Y ◦Z as a C-constraint.
As convenient notations, we will write �X � Y ◦Z�, �X � Y � and �X � Y � in
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place of qBound(X,Y, Z), qBound(X, t, Y ) and qBound(Y, t, X), respectively. In
the sequel, C-constraints of the form �κ� are called qualification constraints, and
Ω is used as notation for sets of qualification constraints. We also write ValD
for the set of all μ ∈ ValC such that Xμ ∈ DD \ {b} for all X ∈ dom(μ), called
D-valuations.

Note that U can be expressed in R, because DU \ {0} = (0, 1] ⊆ R ⊆ CR,
qVal(X) can be built as the R-constraint 0 < X ∧ X ≤ 1 and �X � Y ◦ Z�
can be built as the R-constraint X ≤ Y × Z. Other instances of qualification
domains presented in [14] are also expressible in R.

3 A Qualified Declarative Programming Scheme

In this section we present the scheme QCFLP(D, C) announced in the Introduc-
tion and its declarative semantics. The parameters D and C stand for a qualifi-
cation domain and a constraint domain with certain signature Σ, respectively.
By convention, we only allow those instances of the scheme verifying that D is
expressible in C in the sense of Definition 1. For example, QCFLP(U ,R) is an
allowed instance.

A QCFLP(D, C)-program is a set P of program rules. A program rule has
the form f(tn) α−→ r ⇐ Δ where f ∈ DFn, tn is a linear sequence of Σ-terms
(where each variable occurs just once), α ∈ DD \ {b} is an attenuation factor, r
is a Σ-expression and Δ is a sequence of atomic C-constraints δj (1 ≤ j ≤ m),
interpreted as conjunction. The undefined symbol ⊥ is not allowed to occur in
program rules. The library program shown in Figure 1 serves as an example
of QCFLP(U ,R)-program. Leaving aside the attenuation factors, this is clearly
not a confluent conditional term rewriting system. Certain program rules, as e.g.
those for guessGenre, are intended to specify the behavior of non-deterministic
functions. As argued elsewhere [13], the semantics of non-deterministic functions
for the purposes of Functional Logic Programming is not suitably described by
ordinary rewriting. We overcome this difficulty by designing a formal inference
system noted QCRWL(D, C) and called Qualified Constrained Rewriting Logic.
First, we define the kind of statements that can be inferred in this logic:

Definition 2 (qc-Statements). Assume a partial Σ-expression e, partial Σ-
terms t, t′, tn, a qualification value d ∈ DD \{b}, an atomic C-constraint δ and a
finite set of atomic primitive C-constraints Π. A qualified constrained statement
(briefly, qc-statement) ϕ must have one of the following two forms:

1. qc-production (e → t)#d ⇐ Π. Such a qc-statement is called trivial iff either
t is ⊥ or else UnsatC(Π). Its intuitive meaning is that a rewrite sequence
e →∗ t′ using program rules and with attached qualification value d is allowed
in our intended semantics for some t′ + t, under the assumption that Π
holds. By convention, qc-productions of the form (f(tn) → t)#d ⇐ Π with
f ∈ DFn are called qc-facts.

2. qc-atom δ#d ⇐ Π. Such a qc-statement is called trivial iff UnsatC(Π). Its
intuitive meaning is that δ is entailed by the program rules with attached
qualification value d, under the assumption that Π holds.  �



456 R. Caballero, M. Rodŕıguez-Artalejo, and C.A. Romero-Dı́az

QTI
ϕ

if ϕ is a trivial qc-statement.

QRR
(v → v)�d ⇐ Π

if v ∈ Var ∪ BC and d ∈ DD \ {b}.

QDC
( (ei → ti)�di ⇐ Π )i=1...n

(c(en)→ c(tn))�d ⇐ Π

if c ∈ DCn and d ∈ DD \ {b}
verifies d � di (1 ≤ i ≤ n).

QDFP
( (ei → ti)�di ⇐ Π )i=1...n (r → t)�d′

0 ⇐ Π (δj�d
′
j ⇐ Π)j=1...m

(f(en) → t)�d⇐ Π

if f ∈ DF n and (f(tn) α−→ r ⇐ δ1, . . . , δm) ∈ [P ]⊥ where [P ]⊥ = {Rlθ |
Rl is a rule in P and θ is a substitution} is the set of program rule instances,
and d ∈ DD \ {b} verifies d � di (1 ≤ i ≤ n), d � α ◦ d′

j (0 ≤ j ≤ m).

QPF
( (ei → ti)�di ⇐ Π )i=1...n

(p(en)→ v)�d ⇐ Π
if p ∈ PF n, v ∈ Var ∪DC0 ∪ BC,

Π |=C p(tn) → v and d ∈ DD \ {b} verifies d � di (1 ≤ i ≤ n).

QAC
( (ei → ti)�di ⇐ Π )i=1...n

(p(en) == v)�d ⇐ Π
if p ∈ PF n, v ∈ Var ∪DC0 ∪BC,

Π |=C p(tn) == v and d ∈ DD \ {b} verifies d � di (1 ≤ i ≤ n).

Fig. 2. Qualified Constrained Rewriting Logic

Next, we define QCRWL(D, C) as the formal system consisting of the six in-
ference rules displayed in Fig. 2. They are based on the first-order fragment of
the Constrained Rewriting Logic presented in [9], suitably extended to man-
age attached qualification values. These inference rules formalize provability of
qc-statements according to their intuitive meanings. In particular, QDFP for-
malizes the applications of a program rule instance to infer that f(en) returns
a result t with qualification d. Note that d is bounded by the qualifications di

corresponding to the evaluation of ei, and also by α ◦ d′j corresponding to the
evaluation of the right hand side and the conditions of the rule attenuated by α.

In the sequel we use the notation P �D,C ϕ to indicate that ϕ can be inferred
from P in QCRWL(D, C). By convention, we agree that no other inference rule
is used whenever QTI is applicable. Therefore, trivial qc-statements can only
be inferred by rule QTI. As usual in formal inference systems, QCRWL(D, C)
proofs can be represented as trees whose nodes correspond to inference steps.
For example, if P is the library program, Π is empty, and ψ is

(guessGenre(book(4,"Beim Hauten der Zwiebel","Gunter Grass",
"German","Biography", medium, 432)) --> "Essay")#0.7
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then P �U ,R ψ ⇐ Π with a proof tree whose root inference can be chosen as
QDFP using a suitable instance of the 4th program rule for guessGenre.

Extending ideas from [9], it is possible to define qc-interpretations as sets I
of qc-facts that verify certain closure conditions. Moreover, models of P can be
defined to be those interpretations that satisfy the program rules in a suitable
sense. The following result can be proved:

Theorem 1 (Least Program Model). For any QCFLP(D, C)-program P,
SP = {ϕ | ϕ is a qc-fact and P �D,C ϕ} is the least model of P w.r.t. set inclu-
sion. An alternative characterization of SP as least fixpoint is also possible.  �

Assume now a QCFLP(D, C)-program P and a countable set War of so-called
qualification variables, disjoint from Var and C’s signature Σ. Then:

Definition 3 (Goals and their Solutions).

1. A goal G for P has the form δ1#W1, . . . , δm#Wm � W1 � β1, . . . ,Wm � βm,
abbreviated as ( δi#Wi, Wi �βi )i=1...m, where δi#Wi (1 ≤ i ≤ m) are atomic
C-constraints annotated with different qualification variables Wi, and Wi �

βi are so-called threshold conditions, with βi ∈ DD \ {b} (1 ≤ i ≤ m).
2. A solution for G is any triple 〈σ, μ,Π〉 such that σ is a substitution, μ is

a D-valuation, Π is a finite set of atomic primitive C-constraints, and the
following two conditions hold for all 1 ≤ i ≤ m: Wiμ = di � βi, and
P �D,C (δiσ)#di ⇐ Π. The set of all solutions for G is noted SolP(G).  �

Thanks to Theorem 1, solutions of P are valid in the least model SP and hence
in all models of P . A goal for the library program and one solution for it have
been presented in the Introduction. In this particular example, Π = ∅ and the
QCRWL(U ,R) proof needed to check the solution according to Definition 3 can
be formalized by following the intuitive ideas sketched in the Introduction.

4 Implementation by Program Transformation

Goal solving in instances of the CFLP(C) scheme from [9] has been formalized
by means of constrained narrowing procedures as e.g. [8,5], and is supported by
systems such as Curry [7] and T OY [2]. In this section we present a semanti-
cally correct transformation from QCFLP(D, C) into the first-order fragment of
CFLP(C) which can be used for implementing goal solving in QCFLP(D, C).

By abuse of notation, the first-order fragment of the CFLP(C) scheme will
be noted simply as CFLP(C) in the sequel. A formal description of CFLP(C) is
easily derived from the previous Section 3 by simply omitting everything related
to qualification domains and values. Programs P are sets of program rules of the
form f(tn) → r ⇐ Δ, with no attenuation factors attached. Program semantics is
characterized by a Constrained Rewriting Logic CRWL(C) where c-statements
can be derived from a given program. A c-statement may be a c-production
e → t ⇐ Π or a c-atom δ ⇐ Π . The six inference rules RL of CRWL(C) are
easy to derive from the corresponding rules QRL of QCRWL(D, C). For instance,
the CRWL(C) rule derived from QAC by forgetting qualifications is:



458 R. Caballero, M. Rodŕıguez-Artalejo, and C.A. Romero-Dı́az

AC
( ei → ti ⇐ Π )i=1...n

p(en) == v ⇐ Π

if p ∈ PF n, v ∈ Var ∪DC0 ∪BC
and Π |=C p(tn) == v.

The notation P �C ϕ indicates that ϕ can be inferred from P in CRWL(C).
In analogy to Theorem 1, it is possible to prove that the least model of P w.r.t.
set inclusion can be characterized as SP = {ϕ | ϕ is a c-fact and P �C ϕ}.
In analogy to Definition 3, goals G for a CFLP(C)-program P have the form
δ1, . . . , δm where δj are atomic C-constraints, and SolP(G) is defined as the set
of all the pairs 〈σ,Π〉 such that σ is a substitution, Π is a finite set of atomic
primitive C-constraints, and P �C δjσ ⇐ Π holds for 1 ≤ j ≤ m.

The transformation goes from a source signature Σ into a target signature
Σ′ such that each f ∈ DFn in Σ becomes f ′ ∈ DFn+1 in Σ′, and all the other
symbols in Σ remain the same in Σ′. It works by introducing fresh variables W
to represent the qualification values attached to the results of calls to defined
functions, as well as qualification constraints to be imposed on such variables.
There are four groups of transformation rules displayed in Figure 3. Let us
comment them in order.

Transforming an expression e yields a triple eT = (e′, Ω,W), where Ω is a set
of qualification constraints and W is the set of qualification variables occurring
in e′ at outermost positions. The qualification value attached to e cannot exceed
the infimum in D of the values of the variables W ∈ W , and eT is computed by
recursion on e’s syntactic structure as specified by the transformation rules TAE,
TCE1 and TCE2. Note that TCE2 introduces a new qualification variable W
for each call to a defined function f ∈ DFn and builds a set Ω′ of qualification
constraints ensuring that W must be interpreted as a qualification value not
greater than the qualification values attached to f ’s arguments. TCE1 deals
with calls to constructors and primitive functions just by collecting information
from the arguments, and TAE is self-explanatory.

Unconditional productions and atomic constraints are transformed by means
of TP and TA, respectively, relying on the transformation of expressions in the
obvious way. Relying on TP and TA, TCS transforms a qc-statement of the
form ψ#d ⇐ Π into a c-statement whose conditional part includes, in addition
to Π , the qualification constraints Ω coming from ψT and extra qualification
constraints ensuring that d is not greater than allowed by ψ’s qualification.

Program rules are transformed by TPR. Transforming the left-hand side f(tn)
introduces a fresh symbol f ′ ∈ DFn+1 and a fresh qualification variable W . The
transformed right-hand side r′ comes from rT , and the transformed conditions
are obtained from the constraints coming from rT and δi

T (1 ≤ i ≤ m) by
adding extra qualification constraints to be imposed on W , namely qVal(W ) and
(�W � α◦W ′�)W ′∈W′ , for W ′ = Wr and W ′ = Wi (1 ≤ i ≤ m). By convention,
(�W � α◦W ′�)W ′∈W′ is understood as �W � α� in case that W ′ = ∅. The idea
is that W ’s value cannot exceed the infimum in D of all the values α ◦ β, for the
different β coming from the qualifications of r and δi (1 ≤ i ≤ m). The result of
applying TPR to all the program rules of a program P will be noted as PT .
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Transforming Expressions

TAE
vT = (v, ∅, ∅) if v ∈ Var ∪BC

TCE1
( ei

T = (e′i, Ωi,Wi) )i=1...n

h(en)T = (h(e′n),
⋃n

i=1 Ωi,
⋃n

i=1Wi)
if h ∈ DCn ∪ PF n

TCE2
( ei

T = (e′i, Ωi,Wi) )i=1...n

f(en)T = (f ′(e′n, W ),Ω′, {W})

if f ∈ DF n and W is a fresh variable,
where Ω′ = (

⋃n
i=1 Ωi) ∪ {qVal(W )} ∪ {�W � W ′� | W ′ ∈ ⋃n

i=1Wi}.

Transforming qc-Statements

TP
eT = (e′, Ω, W)

(e → t)T = (e′ → t, Ω,W)

TA
( ei

T = (e′i, Ωi,Wi) )i=1...n

(p(en) == v)T = ( p(e′n) == v,
⋃n

i=1 Ωi,
⋃n

i=1Wi )

if p ∈ PF n, v ∈ Var ∪DC0 ∪BC .

TCS
ψT = (ψ′, Ω,W)

(ψ�d⇐ Π)T = (ψ′ ⇐ Π,Ω ∪ {�d � W � | W ∈ W}))

if ψ is of the form e → t or p(en) == v and d ∈ DD.

Transforming Program Rules

TPR
rT = (r′, Ωr,Wr) ( δi

T = (δ′i, Ωi,Wi) )i=1...m

(f(tn) α−→ r ⇐ δ1, . . . , δm)
T

=
f ′(tn, W )→ r′ ⇐ qVal(W ), Ωr, (�W � α ◦W ′�)W ′∈Wr ,

( Ωi, (�W � α ◦W ′�)W ′∈Wi
, δ′i )i=1...m

where W is a fresh variable.

Transforming Goals

TG
( δi

T = (δ′i, Ωi,Wi) )i=1...m

(( δi�Wi, Wi � βi )i=1...m)T =
( Ωi, qVal(Wi), (�Wi � W �)W∈Wi , �Wi � βi�, δ′i )i=1...m

Fig. 3. Transformation rules
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Finally, TG transforms a goal ( δi#Wi,Wi � βi )i=1...m by transforming each
atomic constraint δi and adding qVal(Wi), (�Wi � W ′�)W ′∈W′

i
and �Wi � βi�

(1 ≤ i ≤ m) to ensure that each Wi is interpreted as a qualification value
not bigger than the qualification computed for δi and satisfying the threshold
condition Wi � βi. In case that W ′

i = ∅, (�Wi � W ′�)W ′∈W′
i

is understood as
�Wi � t�.

Program semantics in QCFLP(D, C) and CFLP(C) is characterized by deriv-
ability in QCRWL(D, C) and CRWL(C), respectively. Therefore, the following
theorem proves the semantic correctness of the program transformation:

Theorem 2. Let P be a QCFLP(D, C)-program and ψ#d ⇐ Π a qc-statement
such that (ψ#d ⇐ Π)T = (ψ′ ⇐ Π,Ω′). Then the two following statements are
equivalent:

1. P �D,C ψ#d ⇐ Π.
2. PT �C ψ′ρ ⇐ Π for some ρ ∈ SolC(Ω′) such that dom(ρ) = var(Ω′).

Proof. (Sketch; a full proof can be found in [4] as Proof of Theorem 3).
[1. ⇒ 2.] (Transformation completeness). Assume P �D,C ψ#d ⇐ Π by means
of a QCRWL(D, C) proof tree T with k nodes. By induction on k we show the
existence of a CRWL(C) proof tree T ′ witnessing PT �C ψ′ρ ⇐ Π for some
ρ ∈ SolC(Ω) such that dom(ρ) = var(Ω′). In the base case k = 1, T contains
just one root node inferred by a QCRWL(D, C) inference rule QRL other than
QDFP and with no premises. Then T ′ can be easily built as a proof tree which
also contains just one root node inferred by the QCRWL(D, C) inference rule
RL with no premises. In the inductive case k > 1 the QCRWL(D, C) inference
rule QRL applied at T ’s root can be neither QTI nor QRR. Here we argue
only for the case where QRL is QAC. In this case ψ has the form p(en) == v
and according to Figure 2 the inference step at T ’s root has the form:

( (ei → ti)#di ⇐ Π )i=1...n

(p(en) == v)#d ⇐ Π

where v ∈ Var ∪ DC0 ∪ BC , Π |=C p(tn) == v and d ∈ DD \ {b} verifies
d � di (1 ≤ i ≤ n). Assume ( ei

T = (e′i, Ωi,Wi) )i=1...n, using different fresh
variables W in each case. Then the transformation rules TA and TCS yield
((p(en) == v)#d ⇐ Π)T = p(e′n) == v ⇐ Π,Ω′ and ((ei → ti)#d ⇐ Π)T =
e′i → ti ⇐ Π,Ω′

i, where Ω′ =
⋃n

i=1 Ωi ∪ {�d � W� | W ∈
⋃n

i=1Wi} and
Ω′

i = Ωi ∪ {�di � W� |W ∈ Wi}. For each 1 ≤ i ≤ n, P �D,C (ei → ti)#di ⇐ Π
is witnessed by a QCRWL(D, C) proof tree Ti which is subtree of T and has less
than k nodes. Therefore, by induction hypothesis we get CRWL(C) proof trees
T ′

i (1 ≤ i ≤ n) witnessing PT �C (e′i → ti)ρi ⇐ Π for certain ρi ∈ SolC(Ωi)
such that dom(ρi) = var(Ω′

i). Consider ρ =
⊎n

i=1 ρi ∈ ValD, which is is well
defined because the sets var(Ω′

i), 1 ≤ i ≤ n, are pairwise disjoint. Note that
dom(ρ) =

⋃n
i=1 dom(ρi) =

⋃n
i=1 var(Ω′

i) = war(Ω′). Moreover, ρ ∈ SolC(Ω′).
In fact, for each 1 ≤ i ≤ n, ρ ∈ SolC(Ωi) follows from ρi ∈ SolC(Ωi); and for
each 1 ≤ i ≤ n and each W ∈ Wi, ρ ∈ SolC(�d � W�) follows from d � di
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(ensured by the QAC inference at T ’s root) and ρ ∈ SolC(�di � W�) (ensured
by ρi ∈ SolC(Ω′

i) and �di � W� ∈ Ω′
i). Finally, PT �C ((p(e′n) == v)ρ ⇐ Π is

witnessed by a proof tree T ′ whose root inference using AC has the form

(( e′i → ti)ρ ⇐ Π )i=1...n

(p(e′n) == v)ρ ⇐ Π

and where each premise (e′i → ti)ρ ⇐ Π is identical to (e′i → ti)ρi ⇐ Π and
therefore proved by the CRWL(C) proof tree T ′

i .

[2. ⇒ 1.] (Transformation soundness). Assume ρ ∈ SolC(Ω′) such that dom(ρ) =
var(Ω′) and PT �C ψ′ρ ⇐ Π by means of a CRWL(C) proof tree T ′ with k nodes.
Reasoning by induction on k we show the existence of a QCRWL(D, C) proof
tree T witnessing P �D,C ψ#d ⇐ Π . The base case k = 1 is easy. For the
inductive case k > 1 we distinguish cases according to the CRWL(C) inference
rule RL applied at the root of T ′. Here we argue only for the case where RL is
AC. In this case ψ, ψ′, Ω′, the proof tree T ′ and the subtrees T ′

i of T ′ proving
the premises of the AC inference at the root of T ′ have the forms described in
the first part of the proof. For each 1 ≤ i ≤ n, let di = d and ρi = ρ�var(Ω′

i).
Then ρi ∈ SolC(Ω′

i) follows from ρ ∈ SolC(Ω′). Moreover, (e′i → ti)ρi ⇐ Π is
identical to the i-th premise of the AC inference at the root of T ′, and therefore
PT �C (e′i → ti)ρi ⇐ Π is witnessed by T ′

i , which has less than k nodes. By
induction hypothesis we can obtain QCRWL(D, C) proof trees Ti witnessing
P �D,C (ei → ti)#di ⇐ Π . Since d = di, the conditions d � di (1 ≤ i ≤ n)
hold trivially, and T can be built as a QCRWL(D, C) proof tree having the form
described in the beginning, with the inference rule QAC applied at the root and
the proof trees Ti witnessing the premisses.  �

Using Theorem 2 we can prove that the transformation of goals specified in
Figure 3 preserves solutions in the sense of the following result.

Theorem 3. Let G be a goal for a given QCFLP(D, C)-program P. Then, the
two following statements are equivalent:

1. 〈σ, μ,Π〉 ∈ SolP(G).
2. 〈σ , μ , ρ,Π〉 ∈ SolPT (GT ) for some ρ ∈ ValD such that dom(ρ) is the set

of new variables W introduced by the transformation of G.

Proof. Let G = ( δi#Wi,Wi � βi )i=1...m, σ and μ be given. For i = 1 . . .m,
consider δi

T = (δ′i, Ωi,Wi) and Ω′
i = Ωi ∪ {�Wi � W� | W ∈ Wi}. According to

Fig. 3, GT = (Ω′
i, qVal(Wi), �Wi � βi�, δ′i)i=1...m. Then, because of Def. 3(2)

and the analogous notion of solution for CFLP(C) goals explained in Sect. 3, the
two statements of the theorem can be reformulated as follows:

(a) Wiμ � βi and P �D,C δiσ#Wiμ ⇐ Π hold for i = 1 . . .m.
(b) There exists ρ ∈ ValD with dom(ρ) =

⋃m
i=1 var(Ωi) such that ρ ∈ SolC(Ω′

iμ),
Wiμ � βi and PT �C (δ′iσ)ρ ⇐ Π hold for i = 1 . . .m.
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[(a) ⇒ (b)] Assume (a). Note that δiσ#Wiμ ⇐ ΠT is δ′iσ ⇐ Π,Ω′
iμ. Applying

Theorem 2 (with ψ = δiσ, d = Wiμ and Π) we obtain PT �C (δ′iσ)ρi ⇐ Π for
some ρi ∈ SolC(Ω′

iμ) with dom(ρi) = var(Ω′
iμ) = var(Ωi). Then (b) holds for

ρ =
⊎m

i=1 ρi.
[(b) ⇒ (a)] Assume (b). Let ρi = ρ�var(Ωi), i = 1 . . .m. Note that (b) ensures
PT �C (δ′iσ)ρi ⇐ Π and ρ ∈ SolC(Ω′

iμ). Then Theorem 2 can be applied (again
with ψ = δiσ, d = Wiμ and Π) to obtain P �D,C δiσ#Wiμ ⇐ Π . Therefore, (a)
holds.  �
As an example of goal solving via the transformation, we consider again the
library program P and the goal G discussed in the Introduction. Both belong
to the instance QCFLP(U ,R) of our scheme. Their translation into CFLP(R)
can be executed in the T OY system [2] after loading the Real Domain Con-
straints library (cflpr). The source and translated code are publicly available
at gpd.sip.ucm.es/cromdia/qlp. Solving the transformed goal in T OY com-
putes the answer announced in the Introduction as follows:

Toy(R)> qVal([W]), W>=0.65, search("German","Essay",intermediate,W) == R

{ R -> 4 }

{ W=<0.7, W>=0.65 }

sol.1, more solutions (y/n/d/a) [y]? no

The best qualification value for W provided by the answer constraints is 0.7.

5 Conclusions and Future Work

The work in this paper is based on the scheme CFLP(C) for functional logic pro-
gramming with constraints presented in [9]. Our main results are: a new program-
ming scheme QCFLP(D, C) extending the first-order fragment of CFLP(C) with
qualified computation capabilities; a rewriting logic QCRWL(D, C) character-
izing QCFLP(D, C)-program semantics; and a transformation of QCFLP(D, C)
into CFLP(C) preserving program semantics and goal solutions, that can be used
as a correct implementation technique. Existing CFLP(C) systems such as T OY
[2] and Curry [7] that use definitional trees as an efficient implementation tool
can easily adopt the implementation, since the structure of definitional trees is
quite obviously preserved by the transformation.

As argued in the Introduction, our scheme is more expressive than the main
related approaches we are aware of. By means of an example dealing with a
simplified library, we have shown that instances of QCFLP(D, C) can serve as a
declarative language for flexible information retrieval problems, where qualified
(rather than exact) answers to user’s queries can be helpful.

As future work we plan to extend QCFLP(D, C) and the program transfor-
mation in order to provide explicit support for similarity-based reasoning, as
well as the higher-order programming features available in CFLP(C). We also
plan to analyze the complexity of the program transformation and to embed
it as part of an enhanced version of the T OY system. Finally, we plan further
research on flexible information retrieval applications, using different instances
of our scheme.
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Abstract. If logic programs are interpreted over a three-valued logic, then often
Kleene’s strong three-valued logic with complete equivalence and Fitting’s as-
sociated immediate consequence operator is used. However, in such a logic the
least fixed point of the Fitting operator is not necessarily a model for the program
under consideration. Moreover, the model intersection property does not hold. In
this paper, we consider the three-valued Łukasiewicz semantics and show that
fixed points of the Fitting operator are also models for the program under con-
sideration and that the model intersection property holds. Moreover, we review
a slightly different immediate consequence operator first introduced by Sten-
ning and van Lambalgen and relate it to the Fitting operator under Łukasiewicz
semantics. Some examples are discussed to support the claim that Łukasiewicz
semantics and the Stenning and van Lambalgen operator is better suited to model
commonsense and human reasoning.

Keywords: Three Valued Logic Programs, Łukasiewicz Semantics.

1 Introduction

When interpreting logic programs (with negation) under a three-valued semantics, then
it appears that with some exceptions (see e.g. [10]) mainly the semantics defined by
Fitting in [7] is considered (see e.g. [1]) in the logic programming literature up to now.
This semantics combines Kleene’s strong three-valued logic for negation, conjunction,
disjunction and implication with complete equivalence, which was also introduced by
Kleene (see [13]). Complete equivalence was used by Fitting to ensure that a formula of
the formF ↔ F is mapped to true under an interpretation, which maps F to neither true
nor false (see [7], p.300). Under the Fitting semantics, the law of equivalence (F ↔ G
is semantically equivalent to (F ← G) ∧ (G ← F )) does not hold anymore. This is
somewhat surprising as Fitting suggests a completion-based approach ([5]), where the
if-halves of the definitions in a logic program are completed by adding their correspond-
ing only-if-halves. Under the Fitting semantics, a completed definition p ↔ q may be
mapped to true under an interpretation, which maps neither p ← q nor q ← p to true.

P.M. Hill and D.S. Warren (Eds.): ICLP 2009, LNCS 5649, pp. 464–478, 2009.
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The Fitting semantics was also considered in a recent book by Stenning and van
Lambalgen [18], where they argue in favor of a completion-based logic-programming
approach to model human reasoning. Stenning and van Lambalgen introduce an imme-
diate consequence operator, which is slightly different from the one defined by Fitting
in [7], and claim that for a given propositional logic program the least fixed point of this
operator is the minimal model of the program (Lemma 4(1.) in [18]). Looking into this
result we found that the least fixed point may not even be a model for the program (see
[12]) and that this stems from the fact that the Fitting semantics does not admit the law
of equivalence.

From these observations two questions arose: Why did Fitting combine Kleene’s
strong three-valued logic with complete equivalence? Is there an alternative semantics
under which the results proven in [7] hold and which admits also the law of equivalence?

We can answer the former question only partially: questions of computability1 and,
in particular, termination2 may have been the driving force. As for the latter, we believe
that the Łukasiewicz semantics [15] may be a good candidate.

After reviewing three-valued logics in Section 2 and stating some preliminaries in
Section 3 we investigate Fitting’s immediate consequence operator in Section 4. In par-
ticular, we show that under the Łukasiewicz semantics, a fixed point of the Fitting op-
erator is not only a model for the completion of a given program, but for the program
itself. Moreover, we show that the model intersection property holds for logic programs
(with negation) under the Łukasiewicz semantics.

In Section 5 we review Stenning and van Lambalgen’s immediate consequence op-
erator under Łukasiewicz semantics. The main difference between the Fitting and the
Stenning and van Lambalgen operator is the observation that whereas Fitting assumes
all undefined predicates to be false within the completion process, Stenning and van
Lambalgen allow the user to control which otherwise undefined predicates shall be
mapped to false. In order to do so, they introduce so-called negative facts and mod-
ify the notion of completion accordingly. In Section 6 we present two examples from
commonsense and human reasoning to support the claim that the Stenning and van
Lambalgen operator may be better suited for these reasoning tasks than the Fitting op-
erator. In the final Section 7 we summarize our findings and point to some future and
related work.

2 Three-Valued Logics

In 1920, the Polish philosopher Łukasiewicz introduced the first three-valued logic [15].
The truth values are not only true or false, but there exists a third, intermediate value. A
formula is allowed to be neither true nor false. We can interpret the intermediate truth
value as possibility: the truth value is not decided yet but possibly decided at some later
time. In this paper, we symbolize truth- and falsehood by " and ⊥, respectively. We
call the third truth value undecided and use the symbol u to denote it.

Łukasiewicz used the following principles and definitions to assign values to
formulas, where ≡ denotes semantic equivalence:

1 Personal communication with Melvin Fitting.
2 Personal communication with Pascal Hitzler.
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Table 1. A truth table for three-valued logics. The indices K and Ł refer to Kleene’s and
Łukasiewicz’s logic, respectively.↔C denotes the complete equivalence used by Fitting.

F G ¬F F ∧G F ∨G F ←K G F ↔K G F ↔C G F ←Ł G F ↔Ł G

  ⊥        
 ⊥ ⊥ ⊥   ⊥ ⊥  ⊥
 u ⊥ u   u ⊥  u
⊥   ⊥  ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥  ⊥ ⊥      
⊥ u  ⊥ u u u ⊥ u u
u  u u  u u ⊥ u u
u ⊥ u ⊥ u  u ⊥  u
u u u u u u u    

Table 2. Some common laws under Łukasiewicz, Kleene and Fitting semantics

Laws Łukasiewicz Kleene Fitting
Equivalence F ↔ G ≡ (F → G) ∧ (G→ F ) Yes Yes No
Implication F → G ≡ ¬F ∨G No Yes Yes
Syllogism (F → G) ∧ (G→ H) ≡ F → H No Yes Yes
Excluded Middle F ∨ ¬F ≡  No No No
Contradiction F ∧ ¬F ≡ ⊥ No No No

1. The principles of identity and non-identity: (⊥ ↔ ⊥) ≡ (" ↔ ") ≡ ", (" ↔
⊥) ≡ (⊥↔ ") ≡ ⊥,
(⊥↔ u) ≡ (u ↔ ⊥) ≡ ("↔ u) ≡ (u ↔ ") ≡ u, (u ↔ u) ≡ ".

2. The principles of implication:
(⊥← ⊥) ≡ ("← ⊥) ≡ ("← ") ≡ ", (⊥← ") ≡ ⊥,
(u ← ⊥) ≡ ("← u) ≡ (u ← u) ≡ ", (⊥← u) ≡ (u ← ") ≡ u.

3. The definitions of negation, disjunction and conjunction:
¬A ≡ (⊥← A), A ∨B ≡ (B ← (B ← A)), A ∧B ≡ ¬(¬A ∨ ¬B).

Later, in 1952, Kleene proposed an alternative three-valued logic with the truth val-
ues true, false, and undefined. He distinguishes between weak and strong three-valued
logics. For our paper only the latter is of interest. It is similar to the Łukasiewicz logic,
but differs in the semantics of implication and equivalence, viz., u ↔ u ≡ u and
u ← u ≡ u. Kleene also introduced a complete equivalence where (F ↔ G) ≡ " if
and only if both F and G have the same logical value, else (F ↔ G) ≡ ⊥.

The semantics of the connectives is summarized in Table 1. In the Łukasiewicz logic
[15] the set of connectives is {¬, ∧, ∨, ←Ł, ↔Ł}, in Kleene’s strong three-valued
logic [13] the set of connectives is {¬, ∧, ∨, ←K , ↔K}, and in the Fitting logic
[7] the set of connectives is {¬, ∧, ∨, ←K , ↔C}. Table 2 gives an overview over
some common laws which do not always hold with respect to the Łukasiewicz, Kleene
and Fitting logics considered in this paper. Other laws like impotency, commutativity,
associativity, absorption, distributivity, double negation, de Morgan and contraposition
hold under Kleene, Łukasiewicz and Fitting logics.
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3 Preliminaries

In this section we recall some notations and terminologies based on [14].

3.1 First-Order Language

We consider an alphabet consisting of (finite or countably infinite) disjoint sets of vari-
ables, constants, function symbols, predicate symbols, connectives {¬, ∨, ∧,
←, ↔}, quantifiers {∀, ∃}, and punctuation symbols {“(“, “, “, “)“}. In this pa-
per we will use upper case letters to denote variables and lower case letters to denote
constants, function- and predicate symbols. Terms, atoms, literals and formulas are de-
fined as usual. To avoid having formulas cluttered with brackets, we adopt the following
precedence hierarchy to order the connectives:¬ > {∨, ∧} >←>↔. The language
given by an alphabet consists of the set of all formulas constructed from the symbols
occurring in the alphabet. A sentence is a formula without free variables. Finally, we
extend our language by the symbols " and ⊥ denoting a valid and an unsatisfiable
formula, respectively.

3.2 Logic Programs

A (program) clause is an expression of the form A ← B1 ∧ · · · ∧Bn, where n ≥ 1, A
is an atom, and each Bi, 1 ≤ i ≤ n, is either a literal (i.e., atom or negated atom) or".
A is called head and B1 ∧ · · · ∧ Bn body of the clause. One should note that the body
of a clause must not be empty. A clause of the form A ← " is called a positive fact.

A (logic) program is a finite set of clauses. ground(P) denotes the set of all ground
instances of the program P . In many cases, ground(P) is infinite, but for propositional
or datalog programs ground(P) is finite. In the sequel we will consider ground(P) as a
substitute for P , thus ignoring unification issues.

We assume that each non-propositional program contains at least one constant sym-
bol. Moreover, the language L underlying a program P shall contain precisely the
relation, function and constant symbols occurring in P , and no others.

3.3 Interpretations and Models

The declarative semantics of a logic program is given by a model-theoretic semantics of
formulas in the underlying language. We represent interpretations by pairs

〈
I�, I⊥

〉
,

where the set I� contains all atoms which are mapped to ", the set I⊥ contains all
atoms which are mapped to ⊥, and I� ∩ I⊥ = ∅. All atoms which occur neither in I�

nor I⊥ are mapped to u. The logical value of formulas can be derived from Table 1 as
usual. We use IŁ, IK and IF to denote that an interpretation I uses the Łukasiewicz,
Kleene or Fitting semantics, respectively. let I denote the set of all interpretations. One
should observe that (I,⊆) is a complete semi-lattice (see [7]).

Let I be an interpretation of a language L and let F be a sentence of L. I is a model
for F if F is true with respect to I (i.e., I(F ) = "). Let S be a set of sentences of a
languageL and let I be an interpretation of L. We say I is a model for S if I is a model
for each sentence of S. Two sentences F and G are said to be semantically equivalent
if and only if both have same truth value under all interpretations.
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3.4 Program Completion

Let ground(P) be a logic program. Consider the following transformation:

1. All clauses with the same head (ground atom) A ← Body1, A ← Body2, . . . are
replaced by the single expression A ← Body1 ∨ Body2 ∨ . . ..

2. If a ground atom A is not the head of any clause in ground(P) then add A ← ⊥,
where ⊥ denotes an unsatisfiable formula.

3. All occurrences of ← are replaced by ↔.

The resulting set of formulas is called completion of ground(P) and is denoted by
comp(ground(P)). One should observe that in step 1 there may be infinitely many
clauses with the same head resulting in a countable disjunction. However, its seman-
tic behavior is unproblematic.

4 The Fitting Operator

In this section we will discuss Fitting’s immediate consequence operator [7] under the
Łukasiewicz semantics. We will show that replacing the Fitting semantics with the
Łukasiewicz semantics does not change the behaviors of the Fitting operator. But in
addition each model of the completion of a program coincides with a model of the
program itself.

Let I be an interpretation and P a program. Fitting’s immediate consequence opera-
tor is defined as follows: ΦF,P(I) =

〈
J�, J⊥〉, where

J� = {A | there exists A ← Body ∈ ground(P) with I(Body) = "} and
J⊥ = {A | for all A ← Body ∈ ground(P) we find I(Body) = ⊥}.

Please recall that the body of the program is a conjunction of literals and, hence,
IŁ(Body) = IK(Body) = IF (Body) according to Table 1.

Fitting shows in [7] that ΦF,P is monotone on (I,⊆). Moreover, from [19] and
[16] follows that for finite ground(P) the operator ΦF,P is also continuous. We call a
program P F-acceptable if ΦF,P is continuous.

Given a program P . An interpretation I is said to be fixed point of ΦF,P iff I =
ΦF,P(I). If ΦF,P is continuous, then it admits a least fixed point denoted by lfp(ΦF,P ).
It can be computed by iterating ΦF,P starting with the empty interpretation as follows,
where ω is an arbitrary limit ordinal:

ΦF,P ↑0 = 〈∅, ∅〉 ,
ΦF,P ↑(α+1) = ΦF,P(ΦF,P ↑α),
ΦF,P ↑ω =

⋃
{ΦF,P ↑α| α < ω}.

As examples consider the programs P1 = ground(P1) = {p ← q} and P2 =
ground(P2) = {p ← q, q ← p}. Their completions are comp(ground(P1)) = {p ↔
q, q ↔ ⊥} and comp(ground(P2)) = {p ↔ q, q ↔ p}. In both cases, the Fitting
operator is continuous and we obtain the least fixed points lfp(ΦF,P1) = 〈∅, {p, q}〉 and
lfp(ΦF,P2) = 〈∅, ∅〉. It is easy to verify that the least fixed points are models of the
completions under the Fitting semantics, which is no coincidence as formally proven in
[7]. This property holds also under the Łukasiewicz semantics.
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Proposition 1. Let P be a program.
1. IŁ is a fixed point of ΦF,P iff IŁ is a model of comp(ground(P)).
2. If IŁ = lfp(ΦF,P ) then IŁ is the least model of comp(ground(P)).

Proof. 1. To show the if-part, suppose I is a fixed point of ΦF,P . As shown in [7],
in this case I is a model of comp(ground(P)) under the Fitting semantics. Com-
paring the columns labeled F ↔C G and F ↔Ł G in Table 1 we observe that
if I(F ↔C G) = " then I(F ↔Ł G) = ". Consequently, I is also model for
comp(ground(P)) under the Łukasiewicz semantics.
To show the only-if-part, suppose IŁ(comp(ground(P))) = ". In this case we
have to show that IŁ =

〈
I�, I⊥

〉
is a fixed point of ΦF,P , i.e., ΦF,P(IŁ) = IŁ. Let

ΦF,P(IŁ) = J =
〈
J�, J⊥〉. J = I if and only if J� = I� and J⊥ = I⊥. We

distinguish four cases:
(a) Suppose A ∈ I�, i.e., IŁ(A) = ". Because IŁ(comp(ground(P))) = " we

find A ↔ Body1 ∨ Body2 ∨ . . . ∈ comp(ground(P)) such that IŁ(Body1 ∨
Body2 ∨ . . .) = ". Hence, there exists A ← Bodyi ∈ ground(P), i ≥ 1, such
that IŁ(Bodyi) = ". Therefore, A ∈ J�.

(b) SupposeA ∈ J�. By the definition ofΦF,P , we find A ← Bodyi ∈ ground(P),
i ≥ 1, such that IŁ(Bodyi) = ". Hence, we find A ↔ Body1 ∨ Body2 ∨ . . . ∈
comp(ground(P)) and IŁ(Body1 ∨ Body2 ∨ . . .) = ". Because
IŁ(comp(ground(P))) = ", we find IŁ(A) = ". Hence, A ∈ I�.

(c) Suppose A ∈ I⊥, i.e., IŁ(A) = ⊥. Because IŁ(comp(ground(P))) = " we
find A ↔ F ∈ comp(ground(P)) such that IŁ(F ) = ⊥. In this case either
F = ⊥ or F = Body1 ∨ Body2 ∨ . . . and for all i ≥ 1 we find IŁ(Bodyi) = ⊥.
By definition of ΦF,P we find A ∈ J⊥ in either case.

(d) Suppose A ∈ J⊥. By the definition of ΦF,P we find for all A ← Bodyi ∈
ground(P), i ≥ 1, that IŁ(Bodyi) = ⊥. Hence, with F = ⊥ ∨ Body1 ∨
Body2 ∨ . . . we find IŁ(F ) = ⊥. Because IŁ(comp(ground(P))) = " and
A ↔ F ∈ comp(ground(P)) we conclude IŁ(A) = ⊥. Consequently,A ∈ I⊥.

2. Suppose IŁ = lfp(ΦF,P) and IŁ is not the least model of comp(ground(P)). Then
we find an interpretation JŁ such that JŁ(comp(ground(P))) = " and JŁ ⊂ IŁ.
By 1., JŁ will be a fixed point of ΦF,P , which contradicts the assumption that IŁ is
the least fixed point of ΦF,P . �

A fixed point of the Fitting operator under the Fitting semantics is a model of the com-
pletion of the program, but it is not necessarily a model of the program itself. Reconsider
P2 = {p ← q, q ← p}. lfp(ΦF,P2) = 〈∅, ∅〉 is not a model for P2. This is because
under Fitting semantics, if p and q are mapped to u, then both implications are mapped
to u as well. However, under the Łukasiewicz semantics, if p and q are mapped to u,
then both implications are mapped to ". Hence, lfp(ΦF,P2) = 〈∅, ∅〉 is a model for P2
under the Łukasiewicz semantics.

Proposition 2. Let P be a program.
If IŁ(comp(ground(P))) = ", then IŁ(ground(P)) = ".

Proof. If IŁ(comp(ground(P))) = ", then for all A ↔ F ∈ comp(ground(P)) we
find IŁ(A ↔ F ) = ". By the law of equivalence we conclude IŁ((A ← F ) ∧ (F ←
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A)) = " and, consequently, IŁ(A ← F ) = ". If F = ⊥ then ground(P) does not
contain a clause with head A. Otherwise, F = Body1 ∨ Body2 ∨ . . . and we distinguish
three cases:

1. If IŁ(A) = ", then we find IŁ(A ← Bodyi) = " for all A ← Bodyi ∈ ground(P ).
2. If IŁ(A) = ⊥, then for all i ≥ 1 we find IŁ(Bodyi) = ⊥ and, consequently,

IŁ(A ← Bodyi) = " for all A ← Bodyi ∈ ground(P ).
3. If IŁ(A) = u then either IŁ(F ) = ⊥ or IŁ(F ) = u. The former possibility being

similar to case 2. we concentrate on the latter. If IŁ(F ) = u then for at least one i
we find IŁ(Bodyi) = u and for all i ≥ 1 either IŁ(Bodyi) = u or IŁ(Bodyi) = ⊥.
In any case, we find IŁ(A ← Bodyi) = " for all A ← Bodyi ∈ ground(P). �

Corollary 1. Let P be a program.
If IŁ is a fixed point of ΦF,P then IŁ(ground(P)) = ".

Proof. The corollary follows immediately from Propositions 1 and 2. �

Although a fixed point of the Fitting operator is not always a model of the given pro-
gram under the Fitting semantics, the program itself may have models. Returning to
the example P2 = {p ← q, q ← p}, its minimal models under the Fitting semantics
are 〈∅, {p, q}〉 and 〈{p, q}, ∅〉. Their intersection 〈∅, ∅〉 is no model of P2 under the Fit-
ting semantics. In other words, the model intersection property does not hold under the
Fitting semantics. Under the Łukasiewicz semantics, however, 〈∅, ∅〉 is a model for P2
and, as we will show in the following, the model intersection property does hold under
the Łukasiewicz semantics.

Proposition 3. Let P be a program. If IŁ =
〈
I�, I⊥

〉
is a model of ground(P), then

I ′Ł =
〈
I�, ∅

〉
is also a model of ground(P).

Proof. Let P be a program. Suppose IŁ =
〈
I�, I⊥

〉
is a model of ground(P). Let

A ← Body be a clause in ground(P). In order to show I ′Ł(A ← Body) = " we
distinguish three cases:

1. If A ∈ I�, then I ′Ł(A ← Body) = ".
2. If A ∈ I⊥, then IŁ(A) = ⊥ and I ′Ł(A) = u. Because IŁ(A ← Body) = " we

conclude that IŁ(Body) = ⊥. Hence, we find a literal C in Body with IŁ(C) = ⊥.
For each literal B occurring in Body we find:
(a) if B is an atom and B ∈ I�, then IŁ(B) = " and I ′Ł(B) = ",
(b) if B is an atom and B ∈ I⊥, then IŁ(B) = ⊥ and I ′Ł(B) = u,
(c) if B is an atom and B �∈ I� ∪ I⊥, then I ′Ł(B) = IŁ(B) = u,
(d) if B is of the form ¬B′ and B′ ∈ I�, then IŁ(B) = ⊥ and I ′Ł(B) = ⊥,
(e) if B is of the form ¬B′ and B′ ∈ I⊥, then IŁ(B) = " and I ′Ł(B) = u,
(f) if B is of the from ¬B′ and B′ �∈ I� ∪ I⊥, then I ′Ł(B) = IŁ(B) = u,
Because C must belong to either case (b) or (d) and, hence, I ′Ł(C) is either u or
⊥, we conclude that I ′Ł(Body) is either ⊥ or u as well. Because I ′Ł(A) = u we
conclude that I ′Ł(A ← Body) = ".

3. If A /∈ I� ∪ I⊥, then IŁ(A) = I ′Ł(A) = u. Because IŁ(A ← Body) = " we
distinguish two cases:
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(a) If IŁ(Body) = ⊥, then we conclude as in case 2. that I ′Ł(Body) is either ⊥ or u
and, consequently, I ′Ł(A ← Body) = ".

(b) If IŁ(Body) = u, then Body must contain a literal B with IŁ(B) = u. In this
case, I ′Ł(B) = u as well and, consequently, I ′Ł(Body) is either ⊥ or u. As in
the previous sub-case we conclude that I ′Ł(A ← Body) = ". �

As an example consider the program P3 = {p ← q ∧ ¬r}. In the remainder of this
paragraph all models are considered under the Łukasiewicz semantics. 〈{p, q}, {r}〉
is a model for P3, and so is 〈{p, q}, ∅〉. 〈{p, r}, {q}〉 is a model for P3, and so is
〈{p, r}, ∅〉. 〈{r}, {q}〉 is a model for P3, and so is 〈{r}, ∅〉. 〈∅, ∅〉 is the least model
of P3.

Proposition 4. Let IŁ1 =
〈
I�1 , ∅

〉
and IŁ2 =

〈
I�2 , ∅

〉
be two models for a program P .

Then IŁ3 =
〈
I�1 ∩ I�2 , ∅

〉
is a model for P as well.

Proof. Suppose IŁ3 =
〈
I�3 , I⊥3

〉
=
〈
I�1 ∩ I�2 , ∅

〉
is not a model for P . Then we find

A ← Body ∈ P such that IŁ3(A ← Body) �= ". According to Table 1 one of the
following cases must hold:

1. IŁ3(A) = ⊥ and IŁ3(Body) = ".
2. IŁ3(A) = ⊥ and IŁ3(Body) = u.
3. IŁ3(A) = u and IŁ3(Body) = ".

Because I⊥3 = ∅ we find IŁ3(A) �= ⊥ and, consequently, cases 1. and 2. cannot apply.
Therefore, we turn our attention to case 3. If IŁ3(A) = u then there must exist j ∈
{1, 2} such that IŁj(A) = u. Because IŁj is a model forP we find IŁj(A ← Body) = "
and, thus, IŁj(Body) is either u or⊥. In this case, Body �= ". Let Body = B1∧ . . .∧Bn

with n ≥ 1.
Because IŁ3(Body) = " and I⊥3 = ∅ we find for all 1 ≤ i ≤ n that Bi is an atom

with IŁ3(Bi) = ". Hence, {B1, . . . , Bn} ⊆ I�3 and, consequently, {B1, . . . , Bn} ⊆
I�j , which contradicts the assumption that IŁj(Body) is either u or ⊥. �

Proposition 4 does not hold for arbitrary models of P . For instance, suppose P4 =
{p ← q1 ∧ r1, p ← q2 ∧ r2}, IŁ1 = 〈∅, {p, q1, r2}〉 and IŁ2 = 〈∅, {p, q2, r1}〉. We can
easily show that IŁ1 and IŁ2 are models for P4. Their intersection 〈∅, {p}〉, however, is
not a model for P4.

Proposition 5. Let MŁ be the set of all models of a program P under the Łukasiewicz
semantics. Then,

⋂
MŁ is a model for P as well.

Proof. The result follows immediately from Propositions 3 and 4. �

The least model of P4 under the Łukasiewicz semantics is 〈∅, ∅〉, whereas the least
model of P5 = {p ← ", q ← p, r ← q ∧ ¬s} under the Łukasiewicz seman-
tics is 〈{p, q}, ∅〉. The last example also exhibits that the least fixed point of the Fit-
ting operator is not necessarily the least model of the underlying program because
lfp(ΦF,P4) = 〈{p, q, r}, {s}〉.
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5 The Stenning and van Lambalgen Operator

In their quest for models of human reasoning Stenning and van Lambalgen [18] have in-
troduced an immediate consequence operator for propositional programs, which differs
slightly from the Fitting operator. Here, we extend the operator to first-order programs.
Let I be an interpretation and P be a program. Stenning and van Lambalgen’s immedi-
ate consequence operator is defined as follows: ΦSvL,P(I) =

〈
J�, J⊥〉, where

J� = {A | there exists A ← Body ∈ ground(P) with I(Body) = "} and

J⊥ = {A | there exists A ← Body ∈ ground(P) and
for all A ← Body ∈ ground(P) we find I(Body) = ⊥}

and the difference to the Fitting operator has been highlighted. Stenning and van Lam-
balgen consider programs under the Fitting semantics. In addition, Stenning and van
Lambalgen allow so-called negative facts of the form A ← ⊥ as program clauses. An
extended (logic) program is a finite set of clauses and negative facts.

Stenning and van Lambalgen show in [18] that ΦSvL,P is monotone on (I,⊆). More-
over, from [19] and [16] follows that for finite ground(P) the operator ΦSvL,P is also
continuous. We call a program P SvL-acceptable if ΦSvL,P is continuous.

If ΦSvL,P is continuous then we can compute the least fixed point of ΦSvL,P by
iterating ΦSvL,P starting from empty interpretation. Let I be the least fixed point of
ΦSvL,P and let

I0 = 〈∅, ∅〉 (1)

Iα = ΦSvL,P(Iα−1) for every non-limit ordinal α > 0 (2)

Iα =
⋃

β<α

Iβ for every limit ordinal α (3)

Then for some ordinal ω we find I = Iω .
Before discussing further properties of the new operator we reconsider P1 = {p ←

q}. Its completion is comp(ground(P1)) = {p ↔ q, q ↔ ⊥}. ΦSvL,P admits a least
fixed point for P1 and we obtain lfp(ΦSvL,P1) = 〈∅, ∅〉. One should note that this
result differs from lfp(ΦF,P1) = 〈∅, {p, q}〉. Now consider P ′

1 = {p ← q, q ← ⊥}.
Its completion is comp(ground(P ′

1)) = {p ↔ q, q ↔ ⊥} = comp(ground(P1)) and
lfp(ΦSvL,P′

1
) = lfp(ΦF,P1) = 〈∅, {p, q}〉. Thus, by adding negative facts, Stenning and

van Lambalgen’s operator can simulate Fitting’s operator. But it is more liberal in that
if there is no clause with head A in the extended program, then its meaning remains
undefined.

Obviously, completion as defined in Section 3.4 is unsuitable for extended programs
P . If we omit step 2. in the completion transformation, then the resulting set of formulas
is called weak completion of ground(P) and is denoted by wcomp(ground(P)). Return-
ing to the examples, we find wcomp(ground(P1)) = {p ↔ q} and wcomp(ground(P ′

1))
= {p ↔ q, q ↔ ⊥}.

In the following we relate the Stenning and van Lambalgen operator and weak com-
pletion under the Łukasiewicz semantics.
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Lemma 1. Let IŁ be the least fixed point of ΦSvL,P and JŁ be a model of
wcomp(ground(P)) then IŁ ⊆ JŁ.

Proof. Let IŁ =
〈
I�, I⊥

〉
be the least fixed point of ΦSvL,P and JŁ =

〈
J�, J⊥〉 be

a model of wcomp(ground(P)). IŁ ⊆ JŁ iff I� ⊆ J� and I⊥ ⊆ J⊥ iff the following
propositions hold: (i) if IŁ(A) = ", then JŁ(A) = " and (ii) if IŁ(A) = ⊥, then
JŁ(A) = ⊥. By transfinite induction it can be shown that for every ordinal α and every
atom A we find: (iii) if Iα(A) = ", then JŁ(A) = " and (iv) if Iα(A) = ⊥, then
JŁ(A) = ⊥. The claim follows immediately by the definition of least fixed point of
ΦSvL,P because it implies that there is an ordinal ω such that IŁ = Iω. �

Proposition 6. Let P be an extended program. If IŁ is the least fixed point of ΦSvL,P ,
then IŁ is a minimal model of wcomp(ground(P)).

Proof. First we will show that IŁ is a model of wcomp(ground(P)). Let’s pick an arbi-
trary formula (A ↔ F ) ∈ wcomp(ground(P)). In order to show that IŁ(A ↔ F ) = "
we consider three cases according to the truth value of A in IŁ:

a) If IŁ(A) = ", then according to the definition of ΦSvL,P , there exists a clause
(A ← Bodyi) ∈ ground(P) such that IŁ(Bodyi) = ". Because Bodyi is one of the
disjuncts of F , this implies IŁ(F ) = " and hence IŁ(A ↔ F ) = ".

b) If IŁ(A) = ⊥, then according to the definition of ΦSvL,P , there is a clause (A ←
Bodyi) ∈ ground(P) and for every clause (A ← Bodyi) ∈ ground(P) we have
IŁ(Bodyi) = ⊥ for all i. Consequently, all disjuncts in F are false under IŁ and,
therefore, IŁ(F ) = ⊥. Hence, IŁ(A ↔ F ) = ".

c) If IŁ(A) = u, then according to the definition of ΦSvL,P there is no clause (A ←
Bodyi) ∈ ground(P) with IŁ(Bodyi) = " and there are some clauses (A ←
Bodyj) ∈ ground(P) with IŁ(Bodyj) �= ⊥. So none of the disjuncts in F is true,
but it is also not the case that all of them are false. Therefore IŁ(F ) = u and
IŁ(A ↔ F ) = ".

To prove that IŁ is a minimal model of wcomp(ground(P)), let IŁ =
〈
I�Ł , I⊥Ł

〉
. By

Lemma 1 we learn that any model JŁ =
〈
J�

Ł , J⊥
Ł

〉
of wcomp(ground(P)) will be

such that I�Ł ⊆ J�
Ł and I⊥Ł ⊆ J⊥

Ł . Hence, no proper subset of IŁ can be a model of
wcomp(ground(P)). Consequently, IŁ is a minimal model of wcomp(ground(P)). �

Proposition 7. Let P be an extended program. If IŁ is a minimal model of
wcomp(ground(P)), then IŁ is the least fixed point of ΦSvL,P .

Proof. Let IŁ =
〈
I�Ł , I⊥Ł

〉
be a minimal model of wcomp(ground(P)) and let JŁ =〈

J�
Ł , J⊥

Ł

〉
be the least fixed point of ΦSvL,P . By Lemma 1 we know that J�

Ł ⊆ I�Ł
and J⊥

Ł ⊆ I⊥Ł . Further, by Proposition 6 we have that JŁ is a minimal model of
wcomp(ground(P)). But then it must be the case that IŁ = JŁ because otherwise we
have a conflict with the minimality of IŁ. �

Corollary 2. Let P be an extended program. IŁ is the least fixed point of ΦSvL,P iff IŁ

is the least model of wcomp(ground(P)).



474 S. Hölldobler and C.D.P. Kencana Ramli

Proof. Follows from Propositions 6 and 7 and the fact that the least fixed point of
ΦSvL,P is unique. �

One should observe, that Corollary 2 does not hold if we consider comp(ground(P))
and the Fitting semantics instead of the Łukasiewicz semantics. As an example con-
sider again P1 = {p ← q} and let I = 〈∅, {p, q}〉. IF is a model for comp(P1), but
ΦSvL,P1(I) = 〈∅, {p}〉 �= I . This is counter example for Lemma 4(3) in [18].

Proposition 8. Let P be an extended program.
If IŁ(wcomp(ground(P))) = ", then IŁ(ground(P)) = ".

Proof. If IŁ(wcomp(ground(P))) = ", then for all A ↔ F ∈ wcomp(ground(P)) we
find IŁ(A ↔ F ) = ". By the law of equivalence we conclude IŁ((A ← F ) ∧ (F ←
A)) = " and, consequently, IŁ(A ← F ) = ". Let F = Body1 ∨ Body2 ∨ . . .. We
distinguish three cases:

1. If IŁ(A) = ", then we find IŁ(A ← Bodyi) = " for all A ← Bodyi ∈ ground(P ).
2. If IŁ(A) = ⊥, then for all i ≥ 1 we find IŁ(Bodyi) = ⊥ and, consequently,

IŁ(A ← Bodyi) = " for all A ← Bodyi ∈ ground(P ).
3. If IŁ(A) = u then either IŁ(F ) = ⊥ or IŁ(F ) = u. The former possibility being

similar to case 2. we concentrate on the latter. If IŁ(F ) = u then we find an i with
IŁ(Body1) = u and for all i ≥ 1 either IŁ(Bodyi) = u or IŁ(Bodyi) = ⊥. In any
case, we find IŁ(A ← Bodyi) = " for all A ← Bodyi ∈ ground(P). �

From Proposition 6 and Proposition 8 we can derive Corollary 3 for the Stenning and
Lambalgen operator.

Corollary 3. Let P be an extended program.
If IŁ is the least fixed point of ΦSvL,P then IŁ(ground(P)) = ".

Proof. The corollary follows immediately from Propositions 6 and 8. �

One should observe that contrary to Lemma 4(1.) of [18] this corollary does not hold
under the Fitting semantics. Reconsider P1 = {p ← q}, then lfp(ΦSvL,P1) = 〈∅, ∅〉
and, thus, both p and q are mapped to u. Under this interpretation P1 is mapped to u as
well. One should also note that the least fixed point of the Stenning and van Lambalgen
operator for a given program P is not necessarily the least model of P under the Fitting
semantics. Reconsidering P ′

1 = {p ← q, q ← ⊥} we find lfp(ΦSvL,P′
1
) = 〈∅, {p, q}〉

whereas the least model of P ′
1 under the Łukasiewicz semantics is 〈∅, ∅〉.

6 Two Examples

In this section we present two examples to illustrate the difference between the Fitting
and the Stenning and van Lambalgen operator. Suppose we want to model an agent
driving a car. One rule would be that he may cross an intersection if the traffic light
shows green and there is no unusual situation:

cross ← green ,¬unusual_situation.
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An unusual situation occurs if an ambulance wants to cross the intersection from a
different direction:

unusual_situation ← ambulance_crossing .

In addition, suppose that the green light is indeed on:

green ← ".

Let P6 be the set of these clauses. It is easy to see that

lfp(ΦF,P6) = 〈{green, cross}, {unusual_situation , ambulance_crossing}〉 .

Hence, not knowing anything about an ambulance, our agent will assume that no
ambulance is present, hit the accelerator, and speed into the intersection. One should
observe that not knowing anything about an ambulance may be caused by the fact that
the agent’s camera is blurred or the agent’s microphone is damaged. His assumption
that no ambulance is present is made by default. On the other hand,

lfp(ΦSvL,P6) = 〈{green}, ∅}〉 .

In this case, the agent doesn’t know whether he may cross the intersection. Inspecting
his rules he may find that in order to satisfy the conditions for the first rule, he must
verify that no ambulance is crossing. In doing so, he may extend P6 to P ′

6 = P6 ∪
{ambulance_crossing ← ⊥} yielding

lfp(ΦSvL,P6′ ) = 〈{green, cross}, {unusual_situation, ambulance_crossing}〉 .

Now, the agent can safely cross the intersection.
The second example is taken from [4]. Byrne has confronted individuals with sen-

tences like If Marian has an essay to write, she will study late in the library. She does
not have an essay to write. If she has textbooks to read, she will study late in the library.
The individuals are then asked to draw conclusions. In this example, only 4% of the
individuals conclude that Marian will not study late in the library. Although Byrne uses
these and similar examples to conclude that (classical) logic is inadequate for human
reasoning, Stenning and van Lambalgen have argued in [18] that the use of three-valued
logic programs under completion semantics is indeed adequate for human reasoning.
They represent the scenario by

P7 = {l ← e ∧ ¬ab1, e ← ⊥, ab1 ← ⊥, l ← t ∧ ¬ab2, ab2 ← ⊥},

where l denotes that Marian will study late in the library, e denotes that she has an
essay to write, t denotes that she has a textbook to read, and ab denotes abnormality. In
this case, we find lfp(ΦSvL,P7) = 〈∅, {ab1, ab2, e}〉, from which we conclude that it is
unknown whether Marian will study late in the library. On the other hand, lfp(ΦF,P7) =
〈∅, {ab1, ab2, e, t, l}〉. Using the Fitting operator one would conclude that Marian will
not study late in the library. Thus, this operator leads to a wrong answer with respect to
the discussed scenario from human reasoning, whereas the Stenning and van Lambalgen
operator does not.



476 S. Hölldobler and C.D.P. Kencana Ramli

Table 3. A comparison between the Fitting and the Łukasiewicz semantics for logic programs.
We have highlighted the results which were obtained by formal proofs or by counter examples in
this paper. The result marked by † was formally proven in [7]. The result marked by ∗ was not
proven formally in [18] nor in this paper, but we conjecture that it holds.

Property Fitting Łukasiewicz
Model Intersection No Yes
Fixed points of ΦF,P are models of comp(ground(P)) Yes† Yes
Fixed points of ΦF,P are models of P No Yes
The least fixed point of ΦSvL,P is the least model of wcomp(ground(P)) Yes∗ Yes
The least fixed point of ΦSvL,P is a model of P No Yes

7 Conclusion

Table 3 compares the Fitting and Łukasiewicz semantics for logic programs as dis-
cussed in this paper. In [18] many more examples are given to support the claim that
human reasoning can be adequately modelled using completion-based propositional
logic programs and the Stenning and van Lambalgen operator. Here, we have extended
this approach to first-order programs and have given rigorous proofs of some of the
properties of the operator under Łukasiewicz semantics.

Naish in [17] considers yet another three-valued semantics, which differs from the
Fitting and Łukasiewics semantics studied in this paper as far as the truth table for the
implication is concerned. Although Naish shows several model intersection results for
his logic, these results do not subsume our model intersection result nor is our result an
immediate consequence of Naish’s results. Likewise, Naish introduces new immediate
consequence operators, but they differ from the Stenning and van Lambalgen operator
studied in this paper and, again, the results by Naish do not subsume our results nor are
our results immediate consequences of Naish’s results. There is an underlying reason
for the differences: Naish focuses on programming and debugging, whereas the work by
Stenning and van Lambalgen, which underlies this paper, focuses on human reasoning.

In recent years, the Fitting semantics for logic programs has not been used much.
It has been overtaken in interest by the well-founded semantics [20] and stable model
semantics [9]. The latter extends the former in a well-understood manner, and pro-
vides a two-valued semantics for logic programs. Both capture transitive closure and
other recursive rule behavior and, thus, are useful for programming. However, there
are trade-offs between the Fitting semantics and well-founded semantics. The ability
of well-founded semantics to capture properties like graph reachability means that it
cannot be modelled by a finite first-order theory such as completion. Well-founded se-
mantics also has a higher complexity than the Fitting semantics. The relationship of
the Fitting semantics and the well-founded semantics is brought forward in [11] using
level mappings. These are mappings from Herbrand bases to ordinals, i.e., they induce
orderings on the set of ground atoms while disallowing infinite descending chains. The
result shows that well-founded semantics is a stratified version of the Fitting semantics.

It has been argued recently in [18] that a completion-based approach captures many
aspects of commonsense reasoning. Unlike most approaches to logically modelling
commonsense reasoning which rely on introspection to characterize common sense,
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Stenning and van Lambalgan base their model on the large corpus of cognitive science.
The result is already helping logic programming to be re-examined in fields such as
medical decision-making.

In [18] and [12] connectionist implementations of the Stenning and van Lambalgen
operator are given. The latter is based on the core method (connectionist model gen-
eration using recurrent networks with feed-forward core, see e.g. [2]), which has been
applied to propositional, first-order, multi-valued as well as modal logic programs (see
e.g. [3,6]).

The role of negative facts in extended logic programs needs to be discussed. The
name negative fact is considered only with respect to the (weak) completion of a pro-
gram as, otherwise, a negative fact like A ← ⊥ is also mapped to true by interpretations
which map A to u or ". If in addition a program contains a clause with head A, then
negative facts can be eliminated without changing the semantics of the program. This
is hardly the intention of a negative fact in human reasoning, where an individual may
gather some support for a fact as well as its negation. An alternative idea would be to
add ⊥← A to a program and treat this as a constraint, but this needs to be investigated
in the future.

We would like to find a syntactic characterization of SvL-acceptability and relate it
to corresponding characterizations of F-acceptability. Likewise, we would like to find
conditions under which the Stenning and van Lambalgen operator is a contraction and
relate it to corresponding findings with respect to the Fitting operator (see [8]).

Last but not least it remains to be seen which semantics is better suited for logic pro-
gramming, common sense as well as human reasoning. It appears that the Łukasiewicz
semantics has nicer theoretical properties, but we still have to investigate how this se-
mantics relates to questions concerning computability and termination. It also appears
that the Łukasiewicz semantics gives more flexibility than the Fitting semantics con-
cerning common sense reasoning problems. As far as human reasoning is concerned
we would like to find out how individuals treat implications where the premise as well
as the conclusion are undefined as this is the distinctive feature between the Łukasiewicz
and the Fitting semantics.
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Abstract. This is a summary of the PhD of the author [1], which deals
with the topic of execution control for Constraint Handling Rules.

1 Introduction

Constraint Handling Rules (CHR) [2] is a rule-based language, designed for the
implementation of solvers for special-purpose constraints in terms of general-
purpose constraints for which solvers are readily available. CHRs are rules that
operate on a (multi-)set of user-defined constraints and either simplify them
into more basic, built-in constraints, or propagate implied constraints. CHRs
can be multi-headed, that is, they may apply to a combination of user-defined
constraints, and have an optional guard which may prevent a rule instance from
firing. A classic example CHR program is given next.

Example 1 (leq). The CHR program given below, called leq, implements a
solver for the ≤ constraint in terms of the built-in equality constraint (=). Our
version is slightly different from the usual description in that we assume that
CHR constraints are kept in a set rather than a multi-set, and as a consequence,
the idempotence rule is no longer needed.

reflexivity @ X ≤ X <=> true.

antisymmetry @ X ≤ Y, Y ≤ X <=> X = Y.

transitivity @ X ≤ Y, Y ≤ Z ==> X ≤ Z.

The first rule has as name reflexivity (before @) and is a simplification rule
that states that any user-defined constraint of the form a ≤ a can be ‘simpli-
fied’ to (i.e. replaced by) true. The second rule, antisymmetry, states that two
constraints a ≤ b and b ≤ a can be replaced with the built-in constrain a = b,
constraining the arguments to be equal. Finally, rule transitivity is a prop-
agation rule, which says given constraints a ≤ b and b ≤ c we can add a new
constraint a ≤ c without removing anything. The constraints before the arrow
are called the heads of the rule; those after the arrow the rule body.  �

CHR is very flexible for specifying a constraint solvers’ logic using language
concepts such as multi-headed rules, guards and multi-set semantics. However,
� Research funded by a PhD grant of the Institute for the Promotion of Innovation
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as will be shown next, flexible execution control is almost completely lacking. In
Sect. 2, we extend CHR with rule priorities into CHRrp to deal with this problem.
Sect. 3 relates CHRrp with the Logical Algorithms formalism by Ganzinger and
McAllester [3]. In Sect. 4, we add search to CHRrp. Sect. 5 concludes.

2 CHR with Rule Priorities

In general, given a set of constraints to be solved, multiple rule instances may
apply. For example, given the constraints {a ≤ b, b ≤ a} we can apply either the
antisymmetry rule which replaces both constraints by a = b, or we could apply
the transitivity rule which adds the constraint a ≤ a. We can also observe
that some choices of rule instances lead to a solution, i.e. a state in which no
more rules apply, faster than others. Therefore, it is essential to be able to control
which rule instance is applied next in every state of the execution.

Most current implementations of CHR follow the refined operational seman-
tics of CHR [4], which is based on the concept of an active constraint. The active
constraint is a user-defined constraint that traverses all occurrences of its con-
straint symbol (e.g. ≤ /2) in the program in textual order, and tries to find a
rule instance in which it matches the occurrence under consideration. This may
require looking up partner constraints that match with the remaining heads of
the rule at hand. After applying a rule, the active constraint may be removed
and other constraints may be activated.

By cleverly formulating the logic of a CHR solver, one can obtain a desired
execution strategy by relying on the refined operational semantics. However, it
is neither flexible nor desirable to encode the execution control in the program
logic. Therefore, we propose a more high-level approach to execution control that
clearly separates the logic and control aspects of a CHR solver. In particular,
we extend CHR with rule priorities into CHRrp [5]. In CHRrp a rule instance is
applicable if it is in regular CHR and no higher priority rule instance is.

Example 2 (Dijkstra’s Shortest Path). A CHRrp implementation of Dijkstra’s
single-source shortest path algorithm is given below.

1 :: source(V) ==> dist(V,0).

1 :: dist(V,D1) \ dist(V,D2) <=> D1 =< D2 | true.

D+2 :: dist(V,D), edge(V,C,U) ==> dist(U,D+C).

The input consists of a set of directed weighted edges, represented as edge/3
constraints where the first and last arguments respectively denote the begin
and end nodes, and the middle argument represents the weight. The source
node is given by the source/1 constraint. The algorithm keeps track of upper-
bounds on the shortest path distances to the different nodes, represented by
dist/2 constraint whose arguments are respectively the node in question and
the distance. Eventually, the distance upper-bounds become tight.

The first rule initiates the algorithm by creating a zero distance upper-bound
to the source node. The second rule removes redundant distance bounds. Both
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these rules have a static priority of 1 (before the ::). Finally, the last rule has a
dynamic priority, that is, it depends on the actual constraints that form an in-
stance of the rule. It generates new distance upper-bounds. The priorities ensure
these upper-bounds are created in the order required by Dijkstra’s algorithm.

In [6], we presented an optimized implementation of CHRrp. The basic compi-
lation schema is based on that for the refined semantics of CHR, extended with
support for priorities. Many optimizations that apply to regular CHR are still
possible in CHRrp. For instance, we applied to CHRrp the important late storage
optimization of CHR which postpones the storage of a constraint, and refined
it further. In our experience, many of the analyses required for the optimiza-
tions were considerably simpler in CHRrp because rule priorities are more global
than rule order in the refined operational semantics, which is only obeyed by the
active constraint.

3 Logical Algorithms: A CHRrp Meta-complexity Result

Logical Algorithms [3] is a formalism proposed by Ganzinger and McAllester for
the purpose of facilitating the derivation of the complexity of algorithms stated
in a high-level logical language. The formalism consists of a theoretical bottom-
up LP language (LA), accompanied by a meta-complexity theorem. In [7], we
investigated the differences and correspondences between the Logical Algorithms
language and CHRrp: LA operates on a set of ground facts, whereas CHR op-
erates on a multi-set of possibly non-ground constraints; LA supports a form of
monotonic negation with negative heads and negated facts; CHR(rp) makes use
of a built-in constraint theory, whereas LA has no such thing. Apart from the
latter, these differences can easily be overcome by program transformations.

Of more interest is the meta-complexity result for LA. It gives the time com-
plexity of a LA program in terms of the number of (partial) rule instances
and some related measures. The result is supported by an implementation pro-
posal that gives strong complexity guarantees. We have presented a new meta-
complexity result for CHRrp, inspired by the one for LA and based on a similar
implementation proposal. It states that the time complexity of a CHRrp program
is assymptotically bounded by

Cask · (As + Ps + (Ad + Pd) · logN) + B · Ctell · (K + Cask · S)

Here, the left-most summand represents the cost of finding an applicable rule
instance and applying it. Among others, it takes into account the number of par-
tial rule instances (Ps and Pd for static and dynamic priority rules respectively)
and the number of distinct dynamic priorities (N). The right-most summand
represents the cost of dealing with built-in constraints. The result is more gen-
erally applicable and more accurate than previous approaches. In particular, in
comparison with [8], our approach supports propagation rules and is based on
an optimized implementation. We generalize on the Logical Algorithms result
by supporting a built-in constraint theory.
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4 Adding Search, and Branch Priorities

Regular CHR does not support search as rules are applied in a committed-choice
way. However, there exists a language extension for CHR, called CHR∨, which
extends CHR with disjunction in the rule bodies [9]. An example CHR∨ rule is

domain(X,[V|Vs]) <=> X = V ∨ domain(X,Vs).

which can be used as a labeling procedure for a finite-domain constraint solver.
When a CHR∨ rule with disjunction in the rule body is applied to an execution
state, it is replaced by a number of alternative execution states (as many as there
are disjuncts in the body). Each of these may lead to an alternative solution to
the constraint problem.

The execution of a CHR∨ program can be represented as a search tree. By
adding rule priorities to CHR∨, we can shape the search tree, that is, we can
determine where and how branches are formed. What is missing is a way to
state the exploration strategy, i.e., the order in which different alternatives are
processed. Therefore, we have proposed CHRbrp

∨ : CHR∨ with branch and rule
priorities. The rule priorities are as in CHRrp. The branch priorities determine
which alternative is processed next: at every branching point in the search tree,
each of the newly created branches is assigned a branch priority and rules are
applied only to states of the highest priority branch.

Example 3 (Depth-first and breadth-first). We extend the labeling rule given ear-
lier with branch and rule priorities:

(D,N) :: domain(X,[V|Vs],N) <=> D+1 :: X = V ∨ D :: domain(X,Vs,N-1).

Here we extended the domain constraint with an extra argument (N) that denotes
the number of elements in the domain. The syntax is as follows: the priority
expression (D,N) consists of two parts, namely, the branch priority D and the
rule priority N. Here, D is actually matched with the branch priority of the current
branch, which allows us to use this priority when creating new branches in the
body. The rule priority is such that domains with fewer elements are labeled first.
In the body, we assign new branch priorities to the different disjuncts (before
the ::). In this case, the branch priority of the alternative formed by adding X =
V to the constraints to be solved, is one more than that of the state that created
this alternative. The branch priority of the other alternative remains unchanged.

Now if a smaller number indicates a higher branch priority, then the above
code implements a breadth-first exploration strategy. If on the other hand a
smaller number indicates a lower branch priority, it implements a depth-first
strategy. In CHRbrp

∨ , the order between branch priorities is user-defined. Note
that in the above code, all alternative values of a domain appear at the same
depth as far as the branch priorities are concerned.  �
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5 Conclusion

Constraint Handling Rules are a flexible means to implement application-specific
constraint solvers on top of existing solvers. However, the language lacks facilities
for specifying the execution control. In the thesis, we extended CHR with such
facilities in such a way that the logic and control aspects of a CHR solver can
be clearly separated. In particular, we made the following contributions:

– We extended CHR with rule priorities into CHRrp. An optimized implemen-
tation of CHRrp was presented, that is able to compete with the state-of-
the-art in regular CHR.

– We investigated the relationship between CHRrp and the Logical Algorithms
framework by Ganzinger and McAllester. We have shown that the LA lan-
guage is subsubmed by CHRrp and proved a new meta-complexity result
for CHRrp that is more widely applicable and more accurate than previous
results.

– We combined CHRrp with CHR∨ and added branch priorities to allow for the
specification of an exploration strategy. We also showed how to add support
for conflict-directed backjumping on top of the resulting framework.

Apart from these topics, the thesis also discusses a fourth topic, namely join
ordering for CHR, which is left out of this summary for space reasons.
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Abstract. ACD Term Rewriting (ACDTR) is term rewriting modulo
associativity, commutativity, and a limited form of distributivity called
conjunctive context. Previous work presented an implementation for
ACDTR based on bottom-up eager normalisation, extended to support
the conjunctive context. This paper investigates the possibility of using a
demand-driven normalisation strategy for ACDTR. Again, dealing with
the conjunctive context proves to be challenging. The alternative normal-
isation strategy is compared with the current form of eager normalisation
and potential further improvements on the strategy are investigated.

1 Introduction

ACD Term rewriting (ACDTR) [1] is term rewriting modulo the equational
theory E consisting of the following equivalences:

(associativity ) (X ◦ Y ) ◦ Z ≈E X ◦ (Y ◦ Z)
(commutativity) X ◦ Y ≈E Y ◦X
(distributivity) P ∧ f(Q1, . . . , Qi, . . . , Qn) ≈E P ∧ f(Q1, . . . , P ∧Qi, . . . , Qn)

for any associative commutative (AC) operator ◦, functor f/n and i ∈ [1..n].
ACDTR simplification rules are of the form “H ⇐⇒ B” where H and B are
terms. These rules rewrite terms matching H into B. In [1], rules may have
guards; these are not considered in this paper to simplify the presentation. The
distributivity property is used by simpagation rules of the form “C \H ⇐⇒ B”
in which C is matched with terms in the conjunctive context (CC) of H , that is,
the terms that appear conjoined with a superterm of H .

ACDTR is implemented in the Cadmium system [2] which is used in the G12
project [3] to map high-level constraint models onto low-level executable ones.
ACDTR subsumes Constraint Handling Rules (CHR) [4] and so it inherits the
latter’s applications. The Cadmium system uses bottom-up eager normalisation,
which is common for (AC) term rewriting, but incomplete because of the con-
junctive context. Indeed, when normalising from the bottom up, the CC of a
term may not be in normal form. In [2], this problem is dealt with by an event
mechanism that causes conjuncts to be renormalised in case their CC changes
in a relevant way. This event mechanism is an improvement over an earlier naive
renormalisation policy described in [1]. This paper presents a top-down, demand-
driven (lazy) normalisation strategy for ACDTR. First, an example:
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Example 1. Consider the rule “f(X) ⇐⇒ a” and goal term f(a(complex, term)).
The argument of the f/1 term is not relevant for the above rule. However, when
using eager bottom-up normalisation, this argument is first normalised, but finds
itself being discarded later on. Lazy normalisation avoids this.  �

When compared to the Cadmium system [2], the present work differs as follows:
(1) normalisation proceeds from the top down and in a demand-driven way;
(2) rules that rewrite AC terms are considered as multi-headed rules that apply
to any term matching one of the heads, provided terms matching the remaining
heads can be found amongst its siblings. E.g. the rule “a + b ⇐⇒ c” is
considered to apply to a/0 and b/0 terms rather than to + terms; (3) we use
an active conjunctive context as an alternative for the events of [2]. The idea is
that the active term (i.e. the term being normalised) looks for terms that can
be rewritten given that it is part of their conjunctive context.

While the implementation in [2] is based on techniques common in (AC) term
rewriting, extended to support the conjunctive context, the principles behind the
implementation presented in this paper are largely inspired by implementation
techniques for CHR. In particular, the active CC and active AC operands are
inspired by how applicable rule instances are found in CHR by means of an active
constraint. The main contribution of this paper is that it shows the feasibility of
a demand-driven normalisation policy for ACD term rewriting, with a discussion
of the challenges such a policy introduces, in particular w.r.t. the CC.

2 Preliminaries

We assume some familiarity with term rewriting, see [5]. We consider AC terms
to be flattened, e.g. A◦(B◦C) with ◦ an AC operator, is represented as ◦(A,B,C)
and similar for any nesting of AC terms. We say that a rule “H1 ∧ . . . ∧Hm \
Hm+1 ◦ . . . ◦Hn ⇐⇒ B” applies to a term S, subterm of the goal term T , if
S matches with one of the heads H1, . . . , Hn (modulo AC) and terms matching
the remaining heads can be found among the subterms of T , such that the
following conditions hold: (1) all terms matching the heads are different, (2)
if m + 1 < n, the terms that match the heads Hm+1, . . . , Hn have a common
parent which is a ◦ term, and (3) the terms matching the heads H1 . . . , Hm

appear in conjunction with Hm+1, . . . , Hn or one of their ancestors. We define
that a rule rewrites a term S if the above conditions hold, and S matches one
of the heads Hm+1, . . . , Hn. In analogy with CHR terminology, we refer to the
heads H1, . . . , Hm as the kept heads, and to Hm+1, . . . , Hn as the removed heads.

A term S, subterm of the goal term T , may depend on this goal term in that
some rules only apply to S or its subterms because it is part of T . The conjunctive
context of a term T is the set of all terms that appear in conjunction with (a
superterm of) T . The relevant context of a term T is its conjunctive context,
plus its siblings if T ’s parent is an AC term. For example, given the goal term
f(a ∧ g(b+ c) ∧ d), the conjective context of subterm b is {a, d} and the relevant
context is {a, c, d}. The relevant context contains exactly those terms that are
relevant for enabling rule applications. In [2], only the CC of a term is important.
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Here, we consider rules of the form “H1 ∧ . . . ∧Hm \Hm+1 ◦ . . . ◦Hn ⇐⇒ B”
with ◦ an AC operator to rewrite any term matching one of the heads Hm+1, . . . ,
Hn. In contrast, in [2], such a rule is considered to rewrite a ◦ term. The view
we take here allows for more fine-grained on-demand rewrites during matching.
Finally, we define the inverse conjunctive context of a term T as the set of terms
whose conjunctive context contains T .

3 Demand-Driven Normalisation

Now we define what it means for a term to be in normal form and toplevel
normal form. The toplevel normal form roughly corresponds to the (weak) head
normal form in the lambda calculus and is less restrictive than the normal form.

Definition 1 (Normal form). A term S, subterm of the goal term T , is in
normal form if no rule rewrites S or its subterms.

Definition 2 (Toplevel normal form). A term T = f(T1, . . . , Tn) has toplevel
functor f/n. A term is in toplevel normal form if further normalisation of the
term does not change its toplevel functor.

The status of a term is either normalised, toplevel normalised or unnormalised. If
a term’s relevant context changes, its status may also change. E.g. given the rules
“f(X) ∧ u ⇐⇒ X” and “t \ a ⇐⇒ b” then term f(a) has status normalised
as part of the goal term f(a) ∧ n whereas it has status unnormalised as part of
the goal term f(a) ∧ u and status toplevel normalised as part of the goal term
f(a) ∧ t. We use the normalisation status of a term to decide if a rule can apply
to a given term without having to normalise it completely. For example, a rule
“f(X) ⇐⇒ a” cannot be applied to a term g(b) if this term is in toplevel
normal form. In particular, we do not need to normalise its argument (b).

We now propose a rewrite strategy that ensures a term is in toplevel nor-
mal form. After applying it (sequentially) to all operands of an AC term, these
operands are all in toplevel normal form. This is non-trivial as rewriting an AC
operand changes the relevant context of its siblings, and so a term that was in
toplevel normal form before, may no longer be so after such a context change.

We first describe how a given subject term is matched with a pattern term.
We distinguish between the case that the pattern is a linear variable, a nonlinear
variable, and a non-variable term. Variables are linear if they appear only once in
the rule heads. In case of a linear variable, a match is trivially found and we assert
a binding between the variable and the term with which it is matched. In case of
a nonlinear variable, we first check if we already have a binding for this variable.
If so, we match the term in question with the term bound to the variable (modulo
AC). Otherwise, we normalise the term because at that point, it is not yet known
which terms the variable need to be matched with further on. Therefore, we take
a safe approach and normalise the term. While this deviates from lazy matching,
there is no unique lazy way in general to match with nonlinear variables anyway:
we can apply rewrites to any of the terms being matched in case they are not
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equal. Finally, in case of matching with a non-variable term, we check whether
the functors of subject and pattern correspond. If so, we continue by matching
the arguments of subject and pattern. Otherwise, we try to rewrite the subject
term and if this succeeds, we try to match it with the pattern again.

To normalise a term, we first ensure it is in toplevel normal form by ex-
haustively applying rules to it. Next, we traverse all the term’s arguments and
recursively normalise them. A rule application starts with a matching phase,
followed by a rewrite step if successful. First, we match the active term with a
rule head, applying rules to its subterms if necessary. If the rule head is a kept
head, we continue by looking for terms matching the rule’s removed heads, and
then for terms matching the remaining kept heads. The latter are in the CC
of the terms matching the removed heads. Otherwise, we first match with the
remaining removed heads, and then with the kept heads. During matching, no
rules are applied to any term other than the subterms of the active term.

4 Optimisation

We have a prototype implementation of the described ideas, consisting of a
Prolog front-end responsible for program analysis and preprocessing, and a Java
back-end that interprets an internal representation of the program rules. We now
present some optimisations that have been implemented.

Variables in a rule’s body that also appear in its head, are bound to terms dur-
ing matching. After a rule firing, these terms may appear in a new context which
affects their normalisation status. Sometimes we can keep the normalisation sta-
tus, namely if no terms are added to their relevant context. This optimisation is
a generalisation of the conjunction collector optimisation of [2].

When terms are duplicated, we can either copy their representation, or use
a shared representation for the duplicates. In standard term rewriting using a
bottom-up normalisation strategy, the duplicates are already in normal form, and
so we can easily share their representation as we do not need to perform rewrites
on them. The Cadmium system [2] also uses a form of sharing, but rewrites are
not performed on multiple occurrences of a shared term simultaneously.

Sharing causes some problems. Firstly, a rule may only apply to a term because
of its context and different occurrences of a term may have a different context.
Also, because we use a flattened representation for AC terms, the result of a rule
application may be context dependent. We support sharing with simultaneous
rewrites of all occurrences of a shared term. However, if a rewrite depends on
a shared term’s context, its representation is copied first, and the rewrite takes
place on this non-shared copy. We allow AC terms to be in a non-flattened form
temporarily, and flatten such terms on demand while matching.

Example 2. As an example of sharing, let there be given the following program:

f(X) ⇐⇒ g(X,X)
g(a ∧X,Y ) ⇐⇒ h(X,Y )

c \ b ⇐⇒ a
a \ c ⇐⇒ d
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and goal term f(b ∧ c), which is first rewritten into g(b ∧ c, b ∧ c) using a shared
representation for the ∧ term. While matching this term with the rule for g/2,
we rewrite b into a, which results in g(a ∧ c, a ∧ c). Since b is only shared via its
parent, we can perform this rewrite for all occurrences of b simultaneously. Next,
we rewrite the goal term into h(c, a ∧ c) where the c terms are shared. Finally,
we rewrite the second occurrence of c into d. This rewrite depends on a shared
term’s context, so we copy its representation first. The result is h(c, a ∧ d).  �

A final optimisation concerns inverse conjunctive context lookups. The inverse
conjunctive context of a term T is computed in a demand-driven way and from
the top down, i.e. a term is always considered before its subterms. We use index-
ing on the functor symbols appearing in a term to reduce the number of terms
that are considered. We further optimise our approach by only indexing those
terms that have already been considered while matching.

5 Conclusion

This work is strongly related to work on lazy evaluation in functional languages.
It is known that lazy evaluation leads to better termination behaviour. It may
also reduce the number of rule applications if subterms of a term being rewritten
are discarded. In [1], it was shown that a bottom-up eager normalisation strategy
for ACD term rewriting is incomplete because a term’s conjunctive context might
not be in normal form. In the approach we take here, it holds that if a conjunction
term is in toplevel normal form, then so are all of its conjuncts. This means that
often, terms in the conjunctive context are (at least) in toplevel normal form.
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Abstract. When a logic program is processed by an answer set solver,
the first task is to generate its instantiation. In a recent paper, Calimeri
et el. made the idea of efficient instantiation precise for the case of
disjunctive programs with function symbols, and introduced the class
of “finitely ground” programs that can be efficiently instantiated. Since
that class is undecidable, it is important to find its large decidable
subsets. In this paper, we introduce such a subset—the class of argument-
restricted programs. It includes, in particular, all finite domain programs,
ω-restricted programs, and λ-restricted programs.

1 Introduction

When an answer set solver, such as Smodels
1 or dlv

2, starts processing
a logic program Π , the first task is to generate an instantiation of Π—a
program without variables that has the same answer sets as Π . In the course of
instantiation, the rules of Π are grounded and simplified. Efficient instantiation
algorithms expect that each rule of the input program is safe, in the sense that
every variable occurring in the rule occurs in the positive part of its body. Some
solvers impose stronger restrictions and expect that the given program is ω-
restricted [1] or, more generally, λ-restricted [2].

For a program containing function symbols, however, even safety does not
guarantee the possibility of instantiating the program efficiently. In fact, a safe
program with functions can have infinite answer sets as, for instance, the program

p(0)
p(f(X)) ← p(X). (1)

Such a program cannot be instantiated in a computationally meaningful way.
In [3], the idea of efficient (or “intelligent”) instantiation is made precise
for disjunctive programs with function symbols. Efficient instantiation, as
understood in that paper, is applicable to the logic programs that the authors
call finitely ground. A program without function symbols is finitely ground if
and only if it is safe. The program

1
lparse+smodels: http://www.tcs.hut.fi/Software/smodels/

2
dlv: http://www.dbai.tuwien.ac.at/proj/dlv/

P.M. Hill and D.S. Warren (Eds.): ICLP 2009, LNCS 5649, pp. 489–493, 2009.
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p(0)
q(f(X)) ← p(X) (2)

is finitely ground, but program (1) is not. Every finitely ground program has
finitely many answer sets, and each of them is finite [3, Corollary 1]. Furthermore,
there exists an algorithm for computing the answer sets of an arbitrary finitely
ground program [3, Theorem 2].

It appears then that “finitely ground” is a property that a reasonable answer
set solver can expect of its input. Unfortunately, the class of finitely ground
programs is not decidable [3, Theorem 5]. This fact led the authors to the
problem of describing large decidable subclasses of that class. As a step in this
direction, they defined a decidable class of “finite domain” programs, and showed
that every finite domain program is finitely ground [3, Theorems 6, 7].

In this paper, we introduce another decidable class of finitely ground
programs, argument-restricted programs, which is a proper superset of the class
of finite domain programs. For instance, the program

p(f(X)) ← q(X)
q(X) ← p(X), r(X) (3)

is argument-restricted, but not finite domain program. The new class is also a
superset of λ-restricted programs (and consequently of ω-restricted programs, in
view of Theorem 1 from [2]). For instance, the program

p(X) ← q(X)
q(X) ← p(X) (4)

is argument-restricted (as any safe program without function symbols), but not
λ-restricted.

Figure 1 illustrates the relationships between the classes of logic programs
mentioned above. The broken line shows the boundary of the important,
but undecidable, class of finitely ground programs. In the picture, the class
of finite domain programs and the class of λ-restricted programs partially
overlap: the former contains program (4), but not (3); the latter contains (3), but
not (4).

Finitely ground 
    Argument−restricted 

−restricted λFinite domain 

Safe disjunctive programs with function symbols

Fig. 1. Classes of logic programs
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2 Argument Rankings

We consider disjunctive logic programs—finite sets of rules of the form

A1; . . . ;Al ← Al+1, . . . , Am, not Am+1, . . . , not An (5)

(n ≥ m ≥ l ≥ 0), where each Ai is an atom, possibly containing function
symbols. The positive body of a rule (5) is the list Al+1, . . . , Am. A program Π
is safe if every variable occurring in a rule of Π occurs also in the positive body
of that rule. Recall that grounding a logic program replaces each rule with all
its instances obtained by substituting ground terms, formed from the object and
function symbols occurring in the program, for all variables. The answer sets of
a program are answer sets of the result of its grounding [4].

The definition of an argument ranking below, which is the main definition
introduced in this paper, uses the following terminology and notation. For any
atom p(t1, . . . , tn), by p(t1, . . . , tn)0 we denote its predicate symbol p, and by
p(t1, . . . , tn)i, where 1 ≤ i ≤ n, we denote its argument term ti. As in [3], an
argument is an expression of the form p[i], where i is one of the argument
positions 1, . . . , n. Finally, the depth of a variable X in a term t that contains X ,
denoted by d(X, t), is defined recursively, as follows:

d(X, t) =

{
0, if t is X,

1 + max
i : ti contains X

d(X, ti), if t is f(t1, . . . , tn).

An argument ranking for a program Π is a function α from arguments to integers
such that, for every rule R of Π , every atom A occurring in the head of R, and
every variable X occurring in an argument term Ai, the positive body of R
contains an atom B such that X occurs in an argument term Bj satisfying the
condition

α
(
A0[i]

)
− α

(
B0[j]

)
≥ d(X,Ai)− d(X,Bj). (6)

A safe program is argument-restricted if it has an argument ranking.

Example 1. If a safe program Π does not contain function symbols in the
heads of rules then it is argument-restricted, because its argument ranking can
be defined by α(p[i]) = 0 for all arguments p[i]. Indeed, the right-hand side of (6)
for such a program is nonpositive, because d(X,Ai) = 0.

Example 2. Program (1) is not argument-restricted. In fact, any program
containing the second rule of (1) is not argument-restricted, because for that
rule condition (6) turns into α(p[1])− α(p[1]) ≥ 1− 0.

Example 3. Program (2) is argument-restricted: take α(p[1]) = 0, α(q[1]) = 1.

Example 4. Program (3) is argument-restricted: take α(p[1]) = 1, α(q[1]) =
α(r[1]) = 0.

Example 5. The one-rule program p(X, f(X)) ← p(X,X) is argument-
restricted: take α(p[1]) = 0, α(p[2]) = 1.
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It is clear that adding the same number to all values of an argument ranking
produces another argument ranking for the same program. It follows that any
argument-restricted program has an argument ranking with nonnegative values.

3 Properties of Argument-Restricted Programs

Theorem 1. The set of argument-restricted programs is decidable.

The easiest proof refers to the fact that the definition of an argument ranking,
viewed as a condition on the values of α(p[i]), can be encoded in difference
logic [5]. A polynomial-time decision method for the set of argument-restricted
programs is described in the next section.

The concept of a finitely ground program is defined in [3, Section 3].

Theorem 2. Every argument-restricted program is finitely ground.

The concept of a finite domain program is defined in [3, Section 5].

Theorem 3. Every finite domain program is argument-restricted.

As mentioned in the introduction, program (3) is a counterexample showing that
the converse does not hold. The one-rule program p(f(X)) ← p(g(X)) and the
program from Example 5 provide counterexamples as well: they are not finite
domain programs, but they are argument-restricted.

The concept of a λ-restricted program is defined in [2, Section 2].

Theorem 4. Every λ-restricted program is argument-restricted.

As mentioned in the introduction, program (4) is a counterexample showing that
the converse does not hold. The argument-restricted program from Example 5
is not λ-restricted either.

The definition of a λ-restricted program and the definition of an argument-
restricted program are similar to each other in the sense that each of them
refers to the existence of a number-valued function with certain properties. The
difference is that the function is defined on predicate symbols p in the first case,
and on arguments p[i] in the second case. We know from Example 5 that the
possibility of assigning different values to p[1] and p[2] is essential. Furthermore,
the definition of a λ-restricted program does not take into account the depth
of nesting of function symbols within a term. If we replace an occurrence of a
term—say, f(X)— in a λ-restricted program with another term containing the
same variables—say, X or f(f(X))—the result will be λ-restricted as well.

4 Checking Whether a Program Is Argument-Restricted

Recall that the definition of an argument ranking (Section 2) involves a condition
on every
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(i) rule R of the given program,
(ii) atom A occurring in the head of R,
(iii) argument position i of A, and
(iv) variable X occurring in Ai.

The inequality (6) in that condition can be rewritten as

α
(
A0[i]

)
≥ α

(
B0[j]

)
+ d(X,Ai)− d(X,Bj). (7)

For any R, A, i, X satisfying (i)–(iv), by DR,A,i,X(α) we denote the list of the
right-hand sides of inequalities (7) for all atoms B in the positive body of R and
the argument positions j such that X occurs in Bj . Define the operator Ω on
the set U of functions from arguments to nonnegative integers by the formula

Ω(α)(p[i]) = max
(

max
R,A,X : A0=p

(minDR,A,i,X(α)) , 0
)

.

A function α ∈ U is an argument ranking for Π iff α ≥ Ω(α).
The operator Ω is monotone. It follows that if Π is argument-restricted then

the set of its nonnegative argument rankings has the least element αmin, and
that αmin = Ωi(0) for the smallest i such that Ωi+1(0) = Ωi(0).

On the other hand, we can show that, for any argument-restricted Π , all
values of αmin do not exceed the number M defined as the product of the total
number of arguments and the largest of the numbers d(X, t) for the terms t
occurring in the heads of rules and for the variables X occurring in t.

It follows that we can determine whether Π is argument-restricted by
iterating Ω on 0 until

– Ωi+1(0) = Ωi(0) —then αmin is found, or
– one of the values of Ωi(0) exceeds M —then Π is not argument-restricted.
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1 Introduction

Constraint Handling Rules [1,2] is a high-level programming language extension
based on multi-headed committed-choice multiset rewrite rules. It can be used
as a stand-alone language or as an extension to an existing host language. CHR
systems have been implemented for nearly every Prolog system, and there are
also CHR systems for Haskell, Java and C.

In the past few years there has been quite some research interest in improving
the performance of CHR systems. This has lead to the introduction of several
novel compiler optimizations aimed at improving the computational complexity
(mostly time complexity) of CHR programs. Recently at least four Ph.D. theses
focussed on this topic: Tom Schrijvers [3] and Gregory Duck [4] worked mainly on
optimizing compilation, while Leslie De Koninck1 [5] worked on computational
complexity and compilation techniques for variants of CHR that deviate from
the de facto standard refined operational semantics ωr [6]. This paper gives a
brief overview of the main results of the Ph.D. thesis of Jon Sneyers [7].

2 Optimizing Compilation

The first part of the thesis [7] introduces CHR and gives an overview of the
state-of-the-art in optimizing CHR compilation. In the second part, a number
of novel compiler optimizations are introduced. They are briefly discussed in
this section. Most of these optimizations are necessary for achieving the main
complexity results (discussed in part three of the thesis and Section 3 of this
summary). They are implemented in the Leuven CHR system [3] in hProlog [8].

Guard reasoning. The abstract operational semantics ωt of CHR is very nonde-
terministic. For example, the order in which rules are applied is not specified
at all. Instantiations of the abstract operational semantics — for example the
refined operational semantics — remove sources of nondeterminism and in that
sense they give more execution control to the programmer. Rule guards may
be redundant under a more instantiated semantics while being necessary in the
1 A summary of Leslie’s Ph.D. thesis can be found elsewhere in this volume.
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abstract semantics. Expert CHR programmers tend to remove such redundant
guards. Although this improves performance, it also destroys the local character
of the logical reading of CHR rules: in order to understand the meaning of a rule,
the entire program and the details of the instantiated operational semantics have
to be taken into account. As a solution, we propose compiler optimizations that
automatically detect and remove redundant guards.

Memory reuse. Repeatedly replacing a constraint with a new one is a typical
pattern that, in current CHR implementations, does not have the space com-
plexity one might expect. The extra space can be reclaimed using (host language)
garbage collection, but this comes at a cost in execution time. Indeed, CHR pro-
grammers often see that more than half of the total runtime is spent on garbage
collection. We therefore introduce two compiler optimizations, in-place update
and suspension reuse, that drastically reduce the memory footprint of CHR pro-
grams. Both optimizations reuse suspension terms, the internal representation of
CHR constraints, and avoid redundant indexing operations. The optimizations
are defined formally and their correctness is proved. They were implemented and
significant memory savings and speedups were measured.

Join ordering. A crucial aspect of CHR compilation is finding matching rules ef-
ficiently. Given an active constraint, searching for matching partner constraints
corresponds to joining relations—a well-studied topic in the context of databases.
The performance of join methods is determined by the efficiency of the index-
ing techniques and by join ordering. In the refined operational semantics ωr, a
different join ordering can be used for each active occurrence in a rule. Given
a CHR program P and one of its active occurrences a, a join ordering strategy
≺ imposes a total order ≺P

a on the partner constraints of a. We formulate a
generic cost model to evaluate join orderings and we propose static and dynamic
heuristics to implement a join ordering strategy.

3 Computational Complexity

As a stand-alone programming language CHR is Turing-complete. In fact, several
subclasses of CHR are already Turing-complete. These computability properties
of CHR are discussed in the beginning of part three of the thesis [7]. The rest of
part three is mostly devoted to the computational complexity of CHR [9].

In order to investigate the computational complexity of CHR, we have intro-
duced abstract CHR machines. These machines essentially execute one CHR rule
(or more exactly, one ωt transition) in every step. We define the time complexity
of a CHR machine to be the number of steps it takes. This is unrealistic since
finding an applicable CHR rule takes more than constant time in general. We
thus have to investigate the relation between CHR machines and more realistic
models of computation, in particular the RAM machine.

We now state the main results. Because of space limitations we have to re-
fer to [7] for the underlying definitions, lemmas, and proofs. We just give the
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definitions of determined partner constraints and the dependency rank of a con-
straint occurrence, because they are central to the formulation of the theorems.

Definition 1 (determined partner). Given a join ordering strategy ≺, a
CHR program P, and a set of valid goals VG, we say an occurrence c is de-
termined by the j-th occurrence of constraint a iff for all execution states σ that
occur in a derivation d ∈ ΔH

ωr
|G for some valid goal G ∈ VG, the following holds:

if σ is of the form 〈[a#i :j|A], S,B,T〉n (that is, the occurrence subprocedure for
the j-th occurrence of constraint a is about to be executed), then a set semantic
functional dependency for c holds in state σ, where the key arguments of c are
fixed by a and all partners x for which x ≺P

a c.

In other words, a partner constraint c is determined by a given (active) constraint
occurrence of a if the following holds: whenever the partner constraint c is looked
up, there is at most one match that needs to be considered.

Definition 2 (dependency rank). The dependency rank of an (active) occur-
rence a is the number of non-determined partner constraints of a.

Complexity meta-theorem. The dependency rank of an occurrence corresponds
to the “real” nesting depth of the lookup iterations. Given a constraint store of
size S, the worst-case complexity of searching for matching partner constraints
of an occurrence with dependency rank d is O(Sd). This observation leads to the
following complexity meta-theorems, which improve upon earlier results [10]:

Theorem 1. Given a CHR program P and a ωt derivation d of length T which
has a corresponding ωr derivation, for which the maximal store size is S, m is the
maximum dependency rank of the active occurrences in P, and p is the number of
propagation rule applications in d; assuming the host language constraints used
in the guards and bodies of the rules of P can be evaluated in constant time;
the Leuven CHR system compiles P to hProlog code which has, for the given
derivation d, a time complexity O(TSm+1) and a space complexity O(S + p).

Theorem 2. If in the previous theorem, the CHR program is ground (i.e. all
constraint arguments are ground), then O(TSm) time complexity can be achieved.

Complexity-wise completeness. Now we show that “everything can be done in
CHR with the right complexity”. Given an arbitrary RAM machine program,
we can simulate it in CHR using the simulator program RAMSIMUL (Fig. 1).
The program takes O(T +S) rule applications to simulate a RAM-machine with
time complexity T and space complexity S. Using the above complexity meta-
theorem we then show the following theorem:

Theorem 3. An ωt derivation for the program RAMSIMUL, with T steps and
maximal store size S, can be executed in O(T ) time and O(S) space.

Proof. Follows from Theorem 2: the program RAMSIMUL is ground, it has no
propagation rules so p = 0, and there is a join ordering strategy such that the
maximal dependency rank m = 0.
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i(L,init,A), m(A,B), maxm(M) \ c(L) <=> initm(M+1,B,L).

initm(A,B,L) <=> A =< B | m(A,0), initm(A+1,B,L).

initm(A,B,L), m(B,X) <=> A > B | m(B,0), maxm(B), c(L+1).

i(L,cnst,B,A) \ m(A,X), c(L) <=> m(A,B), c(L+1).

i(L,add,B,A), m(B,Y) \ m(A,X), c(L) <=> m(A,X+Y), c(L+1).

i(L,sub,B,A), m(B,Y) \ m(A,X), c(L) <=> m(A,X-Y), c(L+1).

i(L,mul,B,A), m(B,Y) \ m(A,X), c(L) <=> m(A,X*Y), c(L+1).

i(L,div,B,A), m(B,Y) \ m(A,X), c(L) <=> m(A,X//Y), c(L+1).

i(L,mov,B,A), m(B,Y) \ m(A,_), c(L) <=> m(A,Y), c(L+1).

i(L,imv,B,A), m(B,C), m(C,Y) \ m(A,_), c(L) <=> m(A,Y), c(L+1).

i(L,mvi,B,A), m(B,Y), m(A,C) \ m(C,_), c(L) <=> m(C,Y), c(L+1).

i(L,jmp,A) \ c(L) <=> c(A).

i(L,cjmp,A,J), m(A,0) \ c(L) <=> c(J).

i(L,cjmp,A,J), m(A,X) \ c(L) <=> X =\= 0 | c(L+1).

i(L,halt) \ c(L) <=> true.

Fig. 1. RAMSIMUL: Simulator of standard RAM machines

Fig. 2. Time complexity relationships between Turing, RAM, and CHR machines

Figure 2 gives an overview. We conclude that “everything can be done in CHR”:

Corollary 1. For every (RAM machine) algorithm which uses at least as much
time as it uses space, a CHR program exists which can be executed in the Leuven
CHR system in hProlog, with time and space complexity within a constant from
the original complexities.

4 Discussion and Conclusion

One may expect to pay some performance penalty for using a very high-level
language like CHR. Therefore, it is good to have a complexity-wise completeness
result, which essentially proves that one can always get the asymptotic time and
space complexity right in CHR. Of course the constant factors are also important
in practice. These have also been investigated in [7]. The general construction
described above (using a RAM machine simulator) predictably yields very large
constant factors — about four orders of magnitude between CHR(hProlog) and
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assembler code. However, using more elegant high-level CHR programs to im-
plement an algorithm, a much more acceptable performance was measured: the
CHR(hProlog) programs (for Union-find and Dijkstra’s algorithm with Fibonacci
heaps) were ‘only’ about one order of magnitude slower than direct implemen-
tations in C, and they used about 3 to 10 times as much space.

For other declarative programming languages, it remains a challenge to prove
a similarly strong complexity-wise completeness result. In [7], a first attempt
was made to “port” the result to some other declarative languages. For Prolog,
Haskell, and Maude [11] we could not find a way to achieve complexity-wise
completeness within the pure fragment of the language. In Jess [12] we did get
complexity-wise completeness, but with a much worse constant factor (about 30
times slower than CHR). Other languages still have to be investigated.
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Abstract. We propose a new constraint-based approach to termina-
tion analysis, applicable to Logic Programming (LP) and Constraint
Handling Rules (CHR). Our approach further extends the existing
constraint-based approaches for LP based on polynomial interpretations
and introduces a whole new level of expressivity. We can handle problems
such as bounded increase and integer arithmetic, elegantly. Furthermore,
we are able to prove termination of programs that only terminate for sub-
sets of the considered queries. Examples are algorithms that manipulate
graphs and that only terminate if the graph in the input is cycle-free.
This information cannot be represented, using the existing techniques in
termination analysis. Therefore, we introduce invariance relations, rep-
resenting relations among terms that hold on atoms during calls to the
program. These relations can also be derived in a constraint-based man-
ner and they can be used as a basis for a more expressive interpretation
of the atoms of the program. We discuss our technique in the context of
CHR, solving an important class of open problems containing transitiv-
ity rules. We also demonstrate the technique in an LP context and show
that it is more powerful than existing constraint-based approaches.

The following CHR program [3,7], computes the transitive closure of a graph.

transitivity @ arc(X,Y ), arc(Y, Z) ⇒ arc(X,Z).

This program is representative for a large class of practical programs in CHR
that cannot be handled using any existing automated technique. For it to be
proven terminating, the query graph may not contain cycles. Consider for exam-
ple a query of two constraints, arc(a, b) and arc(b, c), representing a cycle-free
graph, consisting of three nodes: a, b and c. The transitivity rule is applica-
ble to these constraints, adding the constraint arc(a, c). Since a fire-once policy
prevents multiple applications of a propagation rule on the same combination
of constraints, the program terminates. If on the other hand, the query graph
contains a cycle, then arcs are added progressively along that cycle, ad infinitum.

To tackle the problem of programs that only terminate for some subset of the
consideredqueries,wepresent in thenextparagraphs anewapproach to constraint-
based termination analysis. The technique is based on polynomial interpretations
[5],however,weallowmore expressivepolynomials than theonesused in [5].Ourap-
proach is applicable to both LP and CHR programs. First, we discuss our approach
for CHR programs containing a transitivity rule. Then, we show the technique’s
applicability to LP and argue that it is more powerful than existing approaches.
� Supported by I.W.T. Flanders - Belgium.

P.M. Hill and D.S. Warren (Eds.): ICLP 2009, LNCS 5649, pp. 499–503, 2009.
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To prove termination automatically, we develop verifiable sufficient conditions
[2, 6]. To express such conditions, we require information on possible calls to a
program. Such information comes in the form of a call set. In LP, this corresponds
to the set of atoms, selected in some derivation of the program, for some query.
In CHR, it corresponds to the atoms used to fire a rule in some computation of
the program for some query. To specify the intended use of a program, we use
a query set, finitely represented using query patterns. From it, we select atoms
to compose queries. Then, by application of abstract interpretation, we derive
from query patterns, call patterns [4,7] as a representation of the call set.

In [5], termination is proven using a polynomial interpretation. There, the in-
terpretation maps atoms and terms to N-closed polynomials, using a polynomial
level mapping, |.|, for atoms and a polynomial norm, ‖.‖, for terms. The call
set has to be rigid w.r.t. this interpretation, meaning that only polynomials can
be constructed using the instantiated parts of atoms and terms. To verify this,
syntactic conditions are constructed, based on call patterns [1].

In [5], the N-closed polynomials that are used, are constructed from positive
monomials. For example, a polynomial a0 + a1.X1 + · · · + an.Xn. However, for
programs such as our running example, we require negative monomials to prove
termination. We allow therefore polynomials that are the difference of two (lin-
ear) positive polynomials: a1

0+a1
1.X1+· · ·+a1

n.Xn−(a2
0+a2

1.X1+· · ·+a2
n.Xn). For

such polynomials, N-closedness is not trivial: there is obviously a positive integer
assignment to variables and coefficients, resulting in a negative integer outcome.
To guarantee that such polynomials are N-closed, a1

0 + a1
1.X1 + · · · + a1

n.Xn ≥
a2
0 + a2

1.X1 + · · ·+ a2
n.Xn must hold during the execution of the program. In the

next paragraph, we derive this information, using invariance relations.

To prove termination of a CHR program containing a transitivity rule, we need
to be able to represent more restricted kinds of queries. Call patterns [4] provide
information on the instantiated parts of atoms in the call set, however, do not
represent relations that hold among these parts. To represent this information,
we introduce invariance relations, holding on atoms in the query or the call set.

To prove termination of our running example, we must guarantee the use of a
cycle-free query graph. In such a graph, one can always find an ordering on nodes,
such that every arc points from a strictly smaller sized node to a bigger sized
node. Thus, the queries we can use are in {

∧
i=1,...,n arc(t′i, t

′′
i ) | ∀i : t′′i . t′i}.

Using an invariance relation Iquery
arc/2 = {(t1, t2) | t1, t2 ∈ TermP , tmax . t2 .

t1 . tmin}, we can formulate cycle-freeness on the level of individual query
atoms. The constants, tmax and tmin, fix the domain of terms that can be used
as nodes. The ordering on terms in arcs is expressed on individual atoms. In
contrast to the invariant formulated on the query, the latter invariance relation
therefore represents a relation holding on atoms that can be used in a query,
while the former invariant represents actual queries.

Given the invariance relation Iquery
arc/2 on query atoms, we aim to derive an

invariance relation Icallset
arc/2 on the atoms used in calls. For that purpose, we will

now assume that Iquery
arc/2 is not just an invariance relation, but actually specifies
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the query atoms of interest. Since we also assume that the query atoms are a
subset of the call atoms, the invariance relation Icallset

arc/2 on the call atoms must
hold on the query atoms. Thus, Iquery

arc/2 ⊆ Icallset
arc/2 . More explicitly, we get the

condition ∀t1, t2 ∈ TermP : (t1, t2) ∈ Iquery
arc/2 → (t1, t2) ∈ Icallset

arc/2 , meaning that
the invariance relation on query atoms must be more restrictive than the one on
atoms in the call set. On the basis of CHR rules, we derive rule conditions. For the
transitivity rule, we get that ∀t1, t2, t3 ∈ TermP : (t1, t2) ∈ Icallset

arc/2 ∧ (t2, t3) ∈
Icallset
arc/2 → (t1, t3) ∈ Icallset

arc/2 , meaning that the invariance relation holding on
arc/2 atoms, has to remain valid under transitivity.

We derive invariance relations on call atoms in a constraint-based manner, using
a polynomial interpretation. That is, we reformulate the conditions by using a
symbolic polynomial form for invariance relations in the same way as this is done
for interargument relations in [5]. The invariance relation in polynomial form for
the query is Iquery

arc/2 = {(t1, t2) | ‖tmax‖ > ‖t2‖ ∧ ‖t2‖ > ‖t1‖ ∧ ‖t1‖ > ‖tmin‖}.
For the invariance relation on the atoms used in calls, we provide the same

level of expressivity as for the query. Thus for the arc/2 constraints, we express
their invariance relation using three symbolic polynomial inequalities: Icallset

arc/2 =
{(t1, t2) | ii10 + ii11.‖t1‖ + ii12.‖t2‖ ≥ io1

0 + io1
1.‖t1‖ + io1

2.‖t2‖ ∧ ii20 + ii21.‖t1‖ +
ii22.‖t2‖ ≥ io2

0 + io2
1.‖t1‖ + io2

2.‖t2‖ ∧ ii30 + ii31.‖t1‖ + ii32.‖t2‖ ≥ io3
0 + io3

1.‖t1‖ +
io3

2.‖t2‖}. To find values for the symbolic coefficients, we formulate the invariance
conditions in terms of these symbolic polynomials. Thus, ∀t1, t2 ∈ TermP :

‖tmax‖ > ‖t2‖∧‖t2‖ > ‖t1‖∧‖t1‖ > ‖tmin‖ → ii10 +ii11.‖t1‖+ii12.‖t2‖ ≥ io1
0 +io1

1.‖t1‖+io1
2.‖t2‖∧

ii20+ii21.‖t1‖+ii22.‖t2‖ ≥ io2
0+io2

1.‖t1‖+io2
2.‖t2‖∧ii30+ii31.‖t1‖+ii32 .‖t2‖ ≥ io3

0+io3
1.‖t1‖+io3

2.‖t2‖

For the condition related to the transitivity rule, we get that ∀t1, t2, t3 ∈ TermP :

ii10 + ii11.‖t1‖ + ii12.‖t2‖ ≥ io1
0 + io1

1.‖t1‖ + io1
2.‖t2‖ ∧ ii20 + ii21.‖t1‖ + ii22.‖t2‖ ≥

io2
0+io2

1.‖t1‖+io2
2.‖t2‖∧ii30+ii31.‖t1‖+ii32.‖t2‖ ≥ io3

0+io3
1.‖t1‖+io3

2.‖t2‖∧ii10+ii11.‖t2‖+ii12.‖t3‖ ≥
io1

0+io1
1.‖t2‖+io1

2.‖t3‖∧ii20+ii21.‖t2‖+ii22.‖t3‖ ≥ io2
0+io2

1.‖t2‖+io2
2.‖t3‖∧ii30+ii31.‖t2‖+ii32.‖t3‖ ≥

io3
0 + io3

1.‖t2‖ + io3
2.‖t3‖ → ii10 + ii11.‖t1‖ + ii12.‖t3‖ ≥ io1

0 + io1
1.‖t1‖ + io1

2.‖t3‖ ∧ ii20 + ii21.‖t1‖ +

ii22.‖t3‖ ≥ io2
0 + io2

1.‖t1‖ + io2
2.‖t3‖ ∧ ii30 + ii31.‖t1‖ + ii32.‖t3‖ ≥ io3

0 + io3
1.‖t1‖ + io3

2.‖t3‖

These conditions are similar to the ones obtained in [5] and thus can be solved
in a similar way. That is, by transforming them to a system of Diophantine
constraints on the symbolic coefficients and solving the resulting system by an
existing constraint solver. One possible solution, results in an invariance relation,

Icallset
arc/2 = {(t1, t2) | ‖tmax‖+ 0.‖t1‖+ 0.‖t2‖ ≥ 0 + 0.‖t1‖+ 1.‖t2‖ ∧ 0 + 0.‖t1‖+
1.‖t2‖ ≥ 0 + 1.‖t1‖+ 0.‖t2‖ ∧ 0 + 1.‖t1‖+ 0.‖t2‖ ≥ ‖tmin‖+ 0.‖t1‖+ 0.‖t2‖}

Thus, the invariance relation on the query is preserved under transitivity. That
is, the bounds, tmax and tmin, remain to be bounds for the added arcs and these
arcs keep pointing from strictly smaller sized nodes to bigger sized nodes.



502 P. Pilozzi and D. De Schreye

To prove the transitivity program terminating, we obtain the following termina-
tion conditions, according to [6]. The scope of the decrease conditions is restricted
by invariance relations holding on the atoms used in the head.

∀t1, t2, t3 : (t1, t2) ∈ Icallset
arc/2 ∧ (t2, t3) ∈ Icallset

arc/2 → arc(t1, t2) . arc(t1, t3)
∀t1, t2, t3 : (t1, t2) ∈ Icallset

arc/2 ∧ (t2, t3) ∈ Icallset
arc/2 → arc(t2, t3) . arc(t1, t3)

To prove validity of these conditions, we require an interpretation, mapping
arc/2 atoms to a polynomial of the form |arc(t1, t2)| = (‖tmax‖ − ‖tmin‖) −
(‖t2‖− ‖t1‖). Since, (‖tmax‖− ‖tmin‖)− (‖t2‖− ‖t1‖) ≥ 0 is implied by Icallset

arc/2 ,
we map all arc/2 atoms in the call set, to N-closed polynomials.

To obtain an integrated approach, incorporating invariance and termination con-
ditions, we introduce a symbolic form for level mappings, parameterizable by
invariance relations. For arc/2 atoms, we have |arc(t1, t2)| = ii0 + ii1.‖t1‖ +
ii2.‖t2‖−(io0+io1.‖t1‖+io2.‖t2‖) as its symbolic form, which depends on the in-
variance relation holding on arc/2 atoms in the call set. Thus, ∀t1, t2 ∈ TermP :

ii10 + ii11.‖t1‖ + ii12.‖t2‖ ≥ io1
0 + io1

1.‖t1‖ + io1
2.‖t2‖ ∧ ii20 + ii21.‖t1‖ + ii22.‖t2‖ ≥

io2
0 + io2

1.‖t1‖ + io2
2.‖t2‖ ∧ ii30 + ii31.‖t1‖ + ii32.‖t2‖ ≥ io3

0 + io3
1.‖t1‖ + io3

2.‖t2‖ →
ii0 + ii1.‖t1‖ + ii2.‖t3‖ ≥ io0 + io1.‖t1‖ + io2.‖t3‖

Notice that the symbolic form, used in existing constraint-based approaches [5],
is implied by default. After all, ii0 + ii1.‖t1‖ + ii2.‖t2‖ ≥ 0 is trivially implied,
since only polynomials are constructed with positive integer coefficients. There-
fore, if termination can be proven by existing systems, we can prove it as well.

As termination conditions, we obtain now:

∀t1, t2, t3 : (t1, t2) ∈ Icallset
arc/2 ∧ (t2, t3) ∈ Icallset

arc/2 →
ii0+ii1.‖t1‖+ii2 .‖t2‖−(io0+io1.‖t1‖+io2.‖t2‖) ≥ ii0+ii1.‖t1‖+ii2.‖t3‖−(io0+io1.‖t1‖+io2.‖t3‖)

∀t1, t2, t3 : (t1, t2) ∈ Icallset
arc/2 ∧ (t2, t3) ∈ Icallset

arc/2 →
ii0+ii1.‖t2‖+ii2 .‖t3‖−(io0+io1.‖t2‖+io2.‖t3‖) ≥ ii0+ii1.‖t1‖+ii2.‖t3‖−(io0+io1.‖t1‖+io2.‖t3‖)

Solving these conditions using the techniques in [5], provides us with the afore-
mentioned interpretation for arc/2 constraints, proving termination.

Our technique is also applicable to LP. Similarly, invariance relations for atoms
used in calls, can be derived on the basis of an invariance relation for the query
atoms. We demonstrate this on the following LP program.

a(Max,Max). a(N,Max) : − neq(N,Max), a(s(N),Max).

Currently, no technique for termination analysis of LP can handle such programs.
Since a call to neq/2 also succeeds whenever the first term of an a/2 atom is
bigger than the second, the program will run forever, as for such queries the first
argument has no upper bound. Thus, in order to prove termination, we have
to consider that a query consists of a(t1, t2) atoms, where t1 ≺ t2, represented
using an invariance relation, Iquery

a/2 = {(t1, t2) | t1, t2 ∈ TermP , ‖t2‖ > ‖t1‖}.
Consequently, to derive Icallset

a/2 , we initially set it to a general symbolic form,
{(t1, t2) | t1, t2 ∈ TermP ∧ ii10 + ii11.‖t1‖ + ii12.‖t2‖ ≥ io1

0 + io1
1.‖t1‖ + io1

2.‖t2‖}
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and then, we formulate invariance conditions. To express Iquery
a/2 ⊆ Icallset

a/2 , we
get that ∀t1, t2 ∈ TermP : ‖t2‖ > ‖t1‖ → ii10 + ii11.‖t1‖ + ii12.‖t2‖ ≥ io1

0 +
io1

1.‖t1‖+io1
2.‖t2‖. For the clause, we obtain that ∀t1, t2 ∈ TermP : ii10+ii11.‖t1‖+

ii12.‖t2‖ ≥ io1
0 + io1

1.‖t1‖ + io1
2.‖t2‖ ∧ (‖t1‖ > ‖t2‖ ∨ ‖t2‖ > ‖t1‖) → ii10 +

ii11.‖s(t1)‖ + ii12.‖t2‖ ≥ io1
0 + io1

1.‖s(t1)‖ + io1
2.‖t2‖. Here, Rneq/2 = {(t1, t2) |

‖t1‖ > ‖t2‖∨‖t2‖ > ‖t1‖} estimates the effect of a call to neq/2. Then, a suitable
polynomial level mapping for a/2 atoms is derived on the basis of Icallset

a/2 . That
is, ∀t1, t2 ∈ TermP : ii10 + ii11.‖t1‖ + ii12.‖t2‖ ≥ io1

0 + io1
1.‖t1‖ + io1

2.‖t2‖ →
ii0 + ii1.‖t1‖+ ii2.‖t2‖ ≥ io0 + io1.‖t1‖+ io2.‖t2‖.

To prove termination, we must show that all recursive body atoms are smaller
than the atom used in the head [2]. This results for the LP program, in the
following condition: ∀t1, t2 ∈ TermP : ii10 + ii11.‖t1‖+ ii12.‖t2‖ ≥ io1

0 + io1
1.‖t1‖+

io1
2.‖t2‖∧(‖t1‖ > ‖t2‖∨‖t2‖ > ‖t1‖) → ii0+ii1.‖t1‖+ii2.‖t2‖−(io0+io1.‖t1‖+

io2.‖t2‖) ≥ ii0+ii1.‖s(t1)‖+ii2.‖t2‖−(io0+io1.‖s(t1)‖+io2.‖t2‖). When solving
the termination, invariance and interargument conditions, we obtain |a(t1, t2)| =
‖t2‖ − ‖t1‖ as one possible level mapping for a/2 atoms, proving termination.

To conclude, we proposed a new constraint-based approach, more powerful than
existing approaches in LP. Our approach can handle both LP and CHR programs
containing bounded increase, integer arithmetic or programs that only terminate
for subsets of considered queries. We overcame these problems by introducing
invariance relations, resulting in a useful specification for relations holding among
the instantiated parts of call atoms and thus complementing call types. As such,
we are able to represent more restricted kinds of queries, related to the use of
domains or even global properties of queries, such as cycle-freeness of a query
graph. In the continuation of this work, we will formalize this technique and
further evaluate it, in the context of CHR and LP.
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Abstract. We propose a constraint-based approach towards automated
termination analysis of Constraint Handling Rules (CHR). Similar to
such approaches for Logic Programming (LP), we define a symbolic level
mapping on atoms of the program and express termination conditions
using these. Then, we search for an assignment to the symbolic coef-
ficients, validating the termination conditions. However, different from
the approaches developed for LP, termination of CHR programs is con-
cerned with multi-headed rules, while the existing constraint-based ap-
proaches in LP are developed for definite programs. These cannot be
adapted directly to a multi-headed context. In the following we discuss
a constraint-based approach for CHR programs and show how such an
approach can be obtained by an elegant reuse of existing techniques in
LP. We evaluate the approach, using our implementation, CHRisTA.

A CHR program is a finite set of rules, syntactically named by “rulename @”.
There are essentially two kinds of rules in a CHR program: simplification and
propagation rules [2]. Both are discussed in the next example.

Example 1 (Constraint Handling Rules). The program below is a simple genetic
algorithm. The CHR constraints α/2, β/2 and f/2 are first-order relations on
terms and represent respectively, alpha-males, beta-males and females. Their
first arguments represent their generation and their second arguments, genes.

r1 @ α(N1, G1), f(s(N2), G2) ⇒ less(N2, N1) | recombine(G1, G2, G), β(N2, G).
r2 @ α(N1, G1), f(s(N2), G2) ⇒ less(N2, N1) | recombine(G1, G2, G), f(N2, G).
s @ α(N1, G1), β(s(N2), G2) ⇔ less(N2, N1), f itter(G2, G1) | α(s(N2), G2).

The reproduction rules, r1 and r2, are propagation rules and the selection rule, s,
is a simplification rule. In general, a simplification rule takes the form Hk \Hr ⇔
G | B,C or Hr ⇔ G | B,C if no kept head is present. A propagation rule takes
the form Hk ⇒ G | B,C. Here, Hk, Hr and C are conjunctions of kept, removed
and added CHR constraints and G and B conjunctions of built-ins.

The reproduction rules guarantee that only alpha-males can reproduce with
younger females, producing as such new beta-males or females of an even younger
generation. The third rule performs selection and thus replaces alpha-males
by fitter and younger beta-males. This behavior is accomplished through the
use of built-ins provided in the host-language, Prolog. The built-in less/2 suc-
ceeds if term-size of its first argument is smaller than term-size of its second,
� Supported by I.W.T. Flanders - Belgium.
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recombine/3 defines mutations and crossover of genes and fitter/2 succeeds if
its first argument contains a fitter gene than its second.

For a given query, different computations may exist. This is due to the non-
deterministic choice of mates in the reproduction rules and the non-deterministic
removal of alpha-males in the selection rule. Alpha-males will therefore mate
with a non-deterministic subset of the female population to produce offspring. To
prove termination, we require finiteness of all computations from a given query. If
this query is composed of males and females with given generations, thus ground
first arguments, termination is guaranteed due to a limited number of children
produced. That is, every generation can only produce younger generations and
since generations have a lower bound, this process dies out. �

Until recently, two complementary techniques existed to prove termination of
CHR programs: A technique for CHR without propagation [1] and a technique
for CHR with propagation [7]. These techniques were generalized in [6], resulting
in a single approach, able to prove new classes of CHR programs terminating.
However, [6] only describes the theory of the termination analysis. In the current
paper, we discuss how the technique in [6] can be automated. Also, we evaluate
the approach and discuss extensions.

To prove termination of CHR programs, separate conditions exist for propa-
gation rules and simplification rules [6]. In these conditions, built-ins are left
unconsidered. We assume them to terminate on their own and not to introduce
new CHR constraints. However, built-ins may impose interargument relations.
These relations are assumed to be given and represent the success set of a built-
in, according to its specification in the host-language. An interargument relation
therefore estimates the effect of answer substitutions of built-ins in a rule.

To express these relations, we resort to reduction pairs (/,.) [5], consisting
of a quasi-order /: a reflexive (s / s) and transitive (s / u / v → s / v)
binary relation; and a well-founded order .: a transitive relation without infinite
chains (s0 . s1 . . . . ); that are compatible (s . u / v → s . v). We define
the associated equivalence relation s ≈ t ↔ s / t ∧ t / s. Thus, for the less/2
predicate, we can define its interargument relation as Rless/2 = {(t1, t2) | t1, t2 ∈
TermP∧t1 ≺ t2}. The interargument relations of the other built-ins, recombine/3
and fitter/2, are not discussed. They are not required to prove termination.

As mentioned, separate conditions exists for propagation and simplification
rules. For propagation rules, the level value of any head constraint must be
strictly larger than the level value of any added body CHR constraint. Thus the
conditions for the propagation rules in the running example, take the form:

∀X̄ : (N2, N1) ∈ Rless/2 → α(N1, G1) . β(N2, G) ∧ f(s(N2), G2) . β(N2, G)
∀X̄ : (N2, N1) ∈ Rless/2 → α(N1, G1) . f(N2, G) ∧ f(s(N2), G2) . f(N2, G)

Notice that by ∀X̄, we mean all assignments of terms constructible from the pro-
gram, to the variables occurring in the conditions. The scope of these
assignments is restricted by interargument relations in the pre-condition. To
prove termination, we have to find a reduction pair, validating these conditions.
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For simplification rules, the condition is more complex. The condition requires
a multi-set decrease between removed heads and added body CHR constraints.
Such an ordering is induced on a reduction pair. Let (/,.) be a reduction pair
for the elements of two multi-sets X and Y . Let nX

r be the number of elements in
X that are equivalent to some term r, given the reduction pair (/,.). Then, X
has a strictly larger multi-set size than Y , denoted X .m Y , if there exists an r
such that nX

r > nY
r and such that for any q . r : nX

q = nY
q . We call r and q ranks

and represent them using a term or a constraint. These denote an equivalence
class of terms or constraints, given (/,.). In the context of a multi-set decrease,
we call r the decreasing rank. Thus we obtain for the selection rule, the decrease
condition:

∀X̄ : (N2, N1) ∈ Rless/2 → {α(N1, G1), β(s(N2), G2)} .m {α(s(N2), G2)}
The condition on simplification rules has a second requirement. No CHR con-
straint, added by propagation on the added CHR constraints of a simplification
rule, may undo the multi-set decrease. Thus for every match of an added CHR
constraint with a head of a propagation rule, we add to the pre-condition, the
match and the built-ins of a renamed variant of the propagation rule. Then, in
the conclusion, we express decrease conditions, using r as a representation for
the decreasing rank, associated to the multi-set decrease. We get:

∀X̄ : (N2, N1) ∈ Rless/2 ∧ α(s(N2), G2) ≈ α(N ′
1, G

′
1) ∧ (N ′

2, N
′
1) ∈

Rless/2 ∧ α(s(N2), G2) ≈ α(N ′′
1 , G

′′
1 ) ∧ (N ′′

2 , N
′′
1 ) ∈ Rless/2 →

{α(N1, G1), β(s(N2), G2)} .m {α(s(N2), G2)} ∧ r . β(N ′
2, G

′) ∧ r . f(N ′′
2 , G

′′)

To express the conditions for simplification rules using the reduction pair, multi-
ple disjunctive conditions turn up, all implying the multi-set decrease of the orig-
inal condition. Consider for example the multi-set decrease between {A,B} .m

{C,D}, given a reduction pair (/,.). Then, A . B ∧ A . C ∧ A . D →
{A,B} .m {C,D}, but also B . A∧B . C ∧B . D → {A,B} .m {C,D} and
others. For every such instance, a different decreasing rank can be determined.
So if we represent the instances of the condition on the selection rule of our
running example, then we get after filling in the decreasing rank:

∀X̄ : (N2, N1) ∈ Rless/2 ∧ α(s(N2), G2) ≈ α(N ′
1, G

′
1) ∧ (N ′

2, N
′
1) ∈

Rless/2 ∧ α(s(N2), G2) ≈ α(N ′′
1 , G

′′
1 ) ∧ (N ′′

2 , N
′′
1 ) ∈ Rless/2 → α(N1, G1) /

β(s(N2), G2) ∧ α(N1, G1) / α(s(N2), G2) ∧ α(N1, G1) .
β(N ′

2, G
′) ∧ α(N1, G1) . f(N ′′

2 , G
′′)

∀X̄ : (N2, N1) ∈ Rless/2 ∧ α(s(N2), G2) ≈ α(N ′
1, G

′
1) ∧ (N ′

2, N
′
1) ∈

Rless/2 ∧ α(s(N2), G2) ≈ α(N ′′
1 , G

′′
1 ) ∧ (N ′′

2 , N
′′
1 ) ∈ Rless/2 →

β(s(N2), G2) / α(N1, G1) ∧ β(s(N2), G2) / α(s(N2), G2) ∧ β(s(N2), G2) .
β(N ′

2, G
′) ∧ β(s(N2), G2) . f(N ′′

2 , G
′′)

Validity of one of these conditions is sufficient to prove validity of the original
condition containing the multi-set decrease. Notice that if multiple simplification
rules are present in a CHR program, that for each of these rules a decrease condi-
tion is formulated containing a multi-set decrease. For every one of these condi-
tions, several instances may exist. Therefore, for every combination of instances,
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Table 1. Results in seconds of CHRisTA on terminating CHR programs

ackermann − constr02 1.43 constr15 7.85 fib 1.53 pathc −
average 1.40 constr03 1.52 constr16 3.47 gcd 1.43 power 1.64
binlog 1.34 constr04 3.22 constr17 4.32 genint1 1.47 primes1 1.51
booland 0.16 constr05 3.21 constr18 4.39 genint2 − primes2 2.74
boolcard 1.52 constr06 3.15 constr19 5.35 genint3 − revlist 1.58
compl1 1.49 constr07 2.44 constr20 8.48 joinlists 6.79 sum 3.98
compl2 18.56 constr08 2.47 constr21 4.90 linpoleq 1.42 succadd 1.95
compl3 20.44 constr09 2.55 constr22 3.79 max 0.35 tak 5.74
compl4 5.04 constr10 2.58 convert 1.45 mean 21.26 toyama 0.15
compl5 3.67 constr11 7.59 dfsearch 1.44 mergesort 4.25 weight 1.56
compl6 6.77 constr12 5.11 diff 1.51 modulo 1.48 zebra 1.66
concat − constr13 4.93 even 2.67 nqueen 6.00 ztoa −
constr01 1.54 constr14 7.97 factorial 1.50 oddeven 1.45

together with the conditions on propagation rules, we obtain a disjunctive sys-
tem of conditions, each one of them implying validity of the original system. The
resulting systems of conditions take a similar form as the system of conditions
derived for a logic program and thus can be solved by techniques developed in
termination analysis for LP. For example by a constraint-based approach using
polynomial interpretations [5].

We implemented a constraint-based approach with polynomial interpretations for
CHR on top of Prolog. We called the system CHRisTA (CHR Termination
Analyzer) and implemented it in CHR(SWI-Prolog)1. The system lacks a call
set analyzer, to be a fully-automated termination analyzer. Thus, to handle
non-ground queries, we provide the system with call types, such as the ones
derived by call set analyzers for LP [3]. We obtain promising results with our
analyzer, being able to prove termination of the entire benchmark of [1] and [7].
Furthermore, we can handle the programs, compli, not in the scope of [1] or [7].

The constructed programs, constri, are included to demonstrate the impact
of increasing numbers of heads and bodies. constr1 contains a single-headed
simplification rule with one body CHR constraint. The second and third program
contain two body CHR constraints. constr4 until constr11 contain two heads and
one body CHR constraint and the remaining programs, two heads and two body
CHR constraints. The impact of an increasing number of heads is bigger than
the impact of an increasing number of bodies. This is because the number of
multi-set instances is mainly determined by the number of heads. The differences
between programs containing the same numbers of heads and bodies is because
termination is proven using different underlying multi-set instances.

The order in which these instances are tried is pre-defined. In our case, we
first try the instances corresponding to the condition on simplification rules
formulated in [7]. It expresses a more restricted form of a multi-set decrease,
corresponding to a strict subset of the multi-set instances that we obtain. Since

1 http://www.cs.kuleuven.be/∼paolo/CHRisTA/index.html
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the set of instances from [7] is much smaller and has proven its applicability on
many practical problems in CHR, we try these instances first.

In the table, containing our evaluation results, there are still some classes of
CHR programs that cannot be handled using CHRisTA. These are marked with
‘–’. A first important class of problems are non-primitive recursive programs,
such as the ackermann program. Such programs require a lexicographical inter-
pretation for atoms, which CHRisTA cannot handle as yet. However, similar to
how the problem is solved in LP, it can be solved in CHR by application of the
underlying ideas of the Dependency Pair Approach [4].

To prove problems such as concat terminating, we require more expressive
polynomial interpretations, e.g. a mixed polynomial form. In CHRisTA we pro-
vide only the linear form. However, as in [5], more expressive forms can easily
be incorporated. Another limitation is that simplification rules cannot contain
more than a total number of five head and body constraints. Multi-set instances
for bigger rules were not pre-computed, but can be added to the list of multi-set
instances. This is why we cannot handle genint3.

Problems regarding bounded increase, such as genint2, cannot be handled. Even
in LP, such programs cause problems for analyzers. For programs that only ter-
minate for a subset of the considered class of queries, such as pathc, no solutions
exist. Finally, there are programs such as ztoa that cannot be proven terminating
due to no clear concept of a success set in CHR.

To conclude, we have shown how termination for CHR programs can be proved
automatically, using a constraint-based approach. We have implemented the ap-
proach in a system called CHRisTA and obtained good results when evaluating
it. Since solutions exist for many of the considered problem classes, we will direct
future work towards solving these issues first and further extending our analyzer.
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Abstract. The FORCES project aims at providing robust and declarative for-
malisms for analyzing systems in the emerging areas of Security Protocols, Bio-
logical Systems and Multimedia Semantic Interaction. This short paper describes
FORCES’s motivations, results and future research directions.

Introduction. FORCES (FORmalisms from Concurrency for Emergent Systems) is
an ongoing project funded by the Equipes Associées programme of INRIA. It is car-
ried by the INRIA team COMETE (France), the IRCAM Music Representation Team
(France) and the team AVISPA (Colombia). The main goal of FORCES is to provide
robust declarative formalisms for modeling systems from emergent application areas of
computer science in which our teams have been working during recent years: Namely,
Security Protocols, Biological Systems and Multimedia Semantic Interaction.

Process calculi are formalisms that treat communicating processes much like the
λ-calculus treats computable functions: The structure of terms reflects the structure
of processes and process evolution is represented by term reduction. Concurrent Con-
straint Programming (CCP) based calculi [1] are computational models that combine
the operational view of process calculi with a declarative one based upon logic.

Some of the members of FORCES developed and used ntcc [2], a timed CCP cal-
culus, to predict the behavior of systems from Security Protocols [3], Systems Biology
[4] and Multimedia Semantic Interaction [5]. Although these areas differ significantly
from one another, there is a crucial commonality in the analysis we wanted to perform
in them: Reachability i.e., whether a system reaches a particular state. The ntcc calcu-
lus provides several reasoning tools for reachability analysis. These include a temporal
logic, a proof system, verification techniques, and a denotational semantics.

Nevertheless, we have learned from our modeling experience and theoretical studies
that ntcc is not sufficiently robust for these applications. E.g., some security proto-
cols use a mechanism to allow communication of nonces (i.e., uniquely generated ran-
dom number). The ntcc calculus can at best express this mechanism indirectly [6].
Also, ntcc lacks constructs for quantitative information, which are essential for bio-
logical systems. Furthermore, we have identified musical settings exhibiting complex
non-regular timed behavior that cannot be expressed in ntcc.

Our research strategy in FORCES has been, with the benefit of hindsight, to de-
velop declarative formalisms for modeling systems from the above-mentioned areas as

P.M. Hill and D.S. Warren (Eds.): ICLP 2009, LNCS 5649, pp. 509–513, 2009.
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suitable extensions or specializations of ntcc. Our expertise in ntcc as well as our
modeling experience have been fundamental for guiding our research.

This short paper provides an overview of FORCES. Further information can be found
at http://www.lix.polytechnique.fr/comete/Forces.

Declarative Models of Security Protocols. A fundamental ability for security proto-
cols is that of generating and communicating private nonces; process calculi for secu-
rity therefore include mechanisms for creating and communicating local names. Neither
ntcc nor its predecessor tcc [7] features such mechanisms.

As a remedy to this, in [3] we introduced the Universal Timed CCP process calculus
(utcc): a generalization of tcc that allows for the communication of local names (or
links). This additional expressiveness paves the way for the declarative modeling of a
wider class of systems, most notably dynamic ones.

We have endowed utcc with a number of reasoning techniques for reachability
analysis. A symbolic semantics was defined to deal with problematic operational as-
pects involving infinitely many substitutions which often arise when modeling security
protocols. The semantics uses temporal constraints to finitely represent infinitely-many
substitutions; it has been used to exhibit secrecy flaws in some security protocols [3].
The utcc calculus also enjoys a declarative view of processes as First-Order Temporal
Logic (FLTL) formulae [8]. This allows for reachability analysis of utcc processes
using FLTL techniques. For instance, in [3] we used the FLTL formulae representing
the model of a protocol to know if it reaches a state where the attacker knows a secret.

We also defined a denotational semantics for utcc [9]. This way, processes can be
represented as partial closure operators. As an application of the semantics, we identi-
fied a language for security protocols that can be represented as closure operators over
a cryptographic constraint system. We showed that the least fixed point of such an op-
erator may then be used to check a secrecy property in a protocol. To our knowledge,
this is the first denotational account in the context of calculi for security protocols.

This way, our work has brought new semantic insights into the verification of se-
curity protocols, and is related to the research in security protocols from areas closely
related to CCP. Namely, Constraint Programming (e.g. [10]) and Logic Programming
(e.g. [11,12]). To our knowledge there is no work on Security Protocols that takes ad-
vantage of the reasoning techniques of CCP.

Declarative Models of Biological Systems. Quantitative information is fundamental
for biological systems. For example, behavior in most biochemical reactions is highly
dependent on the presence of a certain amount of the substances involved. Very often,
information is partial as obtaining exact values for parameterizing models is difficult.
Unpredictable behavior is thus an inherent condition of the biologic phenomena, and
one counts with partial behavioral information for describing system interactions. This
partial information not only ignores elements on how reactions occur (e.g. what com-
ponents actually interact), but also on when such reactions commonly happen (e.g. the
relative speeds of the interacting components).

While the notion of partial quantitative information is central to CCP via constraints,
partial behavioral information is actually the novelty of ntcc via non-deterministic and

http://www.lix.polytechnique.fr/comete/Forces
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asynchronous operators. Our teams have already explored these advantages by analyz-
ing mechanisms for cellular transport and genetic regulatory networks [4,13].

A drawback of these models is their lack of explicit quantitative information. As
hinted at above, a fundamental feature of any model of biological systems is the capa-
bility of exploiting any available quantitative information. In biological systems this is
often represented as stochastic behavior. One then has a set of reactions each endowed
with a rate representing their propensity or speed. When considering their execution, a
race between them takes place and the fastest action is executed.

We have taken initial steps on the inclusion of stochastic information into an explic-
itly timed concurrent constraint process language [14]. We defined stochastic events in
terms of the time units defined by the language: this provides great flexibility for mod-
eling and allows for a clean semantics. Most importantly, by considering stochastic in-
formation and adhering to explicit discrete time, it is possible to reason about processes
using quantitative logics (both discrete and continuous), while retaining the simplicity
of calculi such as ntcc for deriving qualitative reasoning techniques (such as denota-
tional semantics and proof systems). We plan to consolidate the framework outlined in
[14], and to apply it to study systems such as the modeled in [15].

Declarative Models of Multimedia Semantic Interaction. Interactivity in multimedia
systems has become increasingly important. The aim is to devise ways for the machine
to be an effective and active partner in a collective behavior constructed dynamically
by many actors. In complex forms of multimedia interaction the machine is always
adapting its behavior according to the information derived from the activity of the other
partners who, in turn, adapt theirs according to the computer actions.

Constructing multimedia systems is thus a challenging task. Their core depends on
powerful and consistent concurrent agents architectures. In this setting, ntcc has much
to offer. Complex dynamic agent synchronization scenarios can be modeled cleanly
and compositionally based on the synchronization mechanism provided by blocking
ask constructs. Also, interactions on which little information is available can be conve-
niently represented using non-determinism. Most importantly, safety properties of the
model, crucial in performance settings, can be formally proved to hold.

Quantitative information is also important in musical settings. In [16], we pro-
posed pntcc, the first ntcc extension featuring probabilistic and non-deterministic
choices. pntcc advocates the specification of probabilistic, reactive systems within
non-deterministic environments. The calculus is equipped with an operational seman-
tics that ensures consistent interactions between both kinds of choices. The semantics
is also crucial in the definition of logic-based verification capabilities over system spec-
ifications. We have used pntcc for analyzing a scenario of interactive music improvi-
sation (see the extended version of [16]). Probabilitistic information was shown to be
useful to obtain a quantitative measure of the quality of an improvised sequence and to
enhance the control the modeler has over the whole process.

Interactive scores [17] are models for reactive music systems where weakly defined
temporal relations between components specify a hierarchy of loosely coupled music
processes. Although the hierarchical structure has been treated as static in previous
works, there is no reason it should be so. In [18], we propose a model for dynamic
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interactive scores where interactive points can be defined to adapt the score depending
on the information inferred from the environment (say, a set of performers). We then
broaden the interaction mechanisms available for the composer.

In [19] we proposed rtcc, a model of real-time concurrent constraint programming
which adds to ntcc the means for specifying and modeling real-time behavior. This
calculus has constructs for modeling strong preemption and for defining delays within
the same time unit. The operational semantics of rtcc supports resources, limited time
and true concurrency. We showed the applicability of the rtcc calculus by giving more
faithful models of various musical situations previously modeled in other CCP calculi.

In multimedia interaction settings the real-time execution of models is central. We
have implemented a first prototype of an interpreter for ntcc specifications providing
real-time interaction with the models developed in the calculus. The tool, called NtccRT
[20], also allows for the integration with music composition environments such as
OpenMusic (OM, [21]). NtccRT provides a means to write a ntcc specification graph-
ically (using OM) and then to compile it as an standalone program interacting with
Midishare [22]. The tool is available at http://ntccrt.sourceforge.net.

Future Directions: Automatic Verification. Presently there are no automatic, nor
machine-assisted, tools for the simulation and verification of concurrent systems spec-
ified in ntcc. Since we deal with complex and large systems, these tools are essential
to our intended applications. In fact, the issue of automatic support has received lit-
tle attention in the case of CCP formalisms. To our knowledge only Villanueva et al
(e.g. [23,24]) have addressed automatic verification but in the context of finite-state
CCP systems. Several applications of ntcc are, however, inherently infinite-state. Au-
tomatic verification of large systems, not to mention infinite systems, is challenging
because of the state explosion problem it poses—i.e., the number of states a system has
is exponential in the number of processes.

We will take up this challenge by identifyingntcc fragments amenable to automatic
verification and by developing techniques and tools to machine assist the verification of
system properties in ntcc. We envisage two main complementary approaches for our
purposes: (1) Automaton-based and symbolic techniques, and (2) Static and abstract
interpretation techniques. We plan to use the automaton representations of processes
used to prove the the decidability of the verification problem for ntcc [6], together
with the symbolic approach in [3] to ameliorate the state explosion problem. Finally, we
expect to develop static and abstract interpretation techniques to extract representative
information from system specifications. Such information can be used to reason about
essential properties of systems behavior.

We plan to use Security Protocols to test the above-mentioned techniques and tools.
In fact, the analysis of Security Protocols is typically carried out using symbolic verifi-
cation techniques thus making them ideal application candidates. It is also worth notic-
ing that computer simulation plays a fundamental role for Biological Systems because
of their inherent complexity. We also plan to develop an ntcc simulation tool and use
it as a test bench for (abstractions of) biological systems. We expect that the declar-
ative and parametric nature of ntcc should provide bench biologists with a tool for
computing with and analyzing these systems that is intuitive.

http://ntccrt.sourceforge.net
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Abstract. The seemingly simple choice of whether to use call variance or call
subsumption in a tabled evaluation deeply affects an evaluation’s properties. Most
tabling implementations have supported only call variance or, in the case of XSB
Prolog, supported call subsumption only for stratified programs. However, call
subsumption has proven critical for (sub-)model generation as required for some
kinds of program analysis (e.g. type analysis) and for semantic web applications
such as RDF inference. At the same time, the lack of well-founded negation has
prevented the use of call subsumption in producing residual programs, and has
limited its use in semantic web applications that require negation (e.g. evaluation
of OWL ontologies). This paper describes an engine for evaluating normal pro-
grams under the well-founded semantics (WFS) in which the evaluation method
can be based on a mixture of call subsumption and call variance, chosen at the
predicate level. The implementation has been thoroughly tested for both local and
batched evaluation and is available in version 3.2 of XSB.

Keywords: Tabling, WAM.

Tabled evaluations can differ in their subgoal reuse strategy. Given a selected tabled
subgoal G, answers may be resolved when there is a subgoal in the table that subsumes
G, in which case call subsumption is used, or only when a variant of G is in the table,
where call variance is used. Call variance preserves the instantiation patterns of selected
subgoals in an evaluation, making it efficient for query-oriented applications and suit-
able for tabling meta-interpreters. Call subsumption, on the other hand, often evaluates
only the most general subgoals, giving it a more bottom-up flavor. Call subsumption is
therefore suitable for (sub-)model generation as required for stable model generation,
for certain type analyses, or for some semantic web applications. Call subsumption
is harder to implement than call variance and is usually not supported in tabling im-
plementations. Previous versions of XSB implemented call subsumption for stratified
programs [3], and allowed the strategy of subsumption or variance to be declared on a
predicate basis. This paper describes how XSB’s implementation of call subsumption
is extended to support full well-founded semantics The extended implementation has
been thoroughly tested, and is available in XSB version 3.2.

A Motivating Example. Computing A-box entailment from a standard OWL wine on-
tology (www.w3.org/TR/2003/CR-owl-guide-20030818/wine) provides a
striking example of a use of call subsumption for a semantic web application. When
translated into datalog by KAON2 (http://kaon2.semanticweb.org) the on-
tology is a highly recursive datalog program. Computing a query using call subsump-
tion in XSB terminated correctly in 10 seconds, while call variance terminated with
memory errors after 100+ seconds. The difference was due to the lack of relevancy in

P.M. Hill and D.S. Warren (Eds.): ICLP 2009, LNCS 5649, pp. 514–518, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



An Engine for Computing Well-Founded Models 515

query evaluation: essentially the entire (sub-)model of the wine program needed to be
constructed. Because call subsumption avoided recomputing subsumed calls, it saved
space and time, and is quite competitive with special-purpose ontology tools [4]. While
this is a single example, two conclusions are clear. Call subsumption can be critical for
“bottom-up” computations that do not benefit from relevancy. Also, since ontologies in
general require negation when they are translated into datalog, evaluating WFS using
call subsumption is an important problem.

1 Implementation

We briefly describe the main ideas of the engine as implemented in the SLG-WAM of
XSB. Because of space limitations, we must assume a general knowledge of tabling
and its implementation. As background, [3] describes call subsumption in the SLG-
WAM, while [5] describes the overall SLG-WAM architecture for WFS and [2] the
data structures used for well-founded residual programs.

We begin by describing actions of the SLG-WAM on definite programs. When call
variance is used, if a tabled subgoal G is new to an evaluation, it is associated with
a generator choice point to backtrack through program clauses. If G was previously
selected and completed, the engine simply backtracks through answers in an answer
trie. If G was previouslyselected but is not completed a consumer choice point is created
that will backtrack through answers using an answer return list forG. The answer return
list is needed to backtrack efficiently through the dynamically changing answer trie.

Call subsumption extends the cases an implementation must support. Let subgoal
G subsume a subgoal Gθ. If Gθ is selected before G no special action is taken – Gθ
and G are evaluated just as with call variance, However if Gθ is selected after G, two
subcases arise. If G is completed, Gθ simply backtracks through answers for G failing
on those that do not unify with Gθ. If G is not completed, then a consumer choice point
is created for Gθ (as with call variance) along with a subsumed subgoal frame in the
table. In addition, a special answer return list is created for Gθ pointing to each answer
in the answer trie for G that unifies with Gθ. When Gθ consumes the final answer in its
answer return list, the engine traverses the answer trie for G to generate a new answer
return list for Gθ, consisting of answers that unify with Gθ and were added after the
previous list was generated for Gθ. Figure 1 schematically illustrates the relation of
G and Gθ. [3] described an important optimization where nodes in an answer trie are
associated with time stamps, and the time stamps manipulated to avoid unnecessary
search through the trie when regenerating answer lists for subsumed subgoals. Note that
this mechanism supports those stratified programs where no ground negative subgoal
Gθ occurs in the same SCC as G (i.e. the same set of mutually dependent subgoals).

To evaluate WFS, situations must be handled that arise when G and not(Gθ) are
mutually dependent (and neither is completed). The program

:- table win/1 as subsumptive.
win(X):- move(X,Y),tnot(win(Y)).

and query win(X) under varying extensions of move/2 serves as a running example.
(tnot/1 is XSB’s predicate for tabled negation).
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Changes to DELAYING. Consider the extensionmove(a,b)move(b,a). Evaluation
of the goal win(X) creates the goals win(a) and win(b). The two subsumed goals
are created after win(X) is called and before it is completed, so for each subsumed sub-
goal a consumer choice point is created along with a subsumed subgoal frame which is
inserted in a consumer subgoal chain in the subgoal frame for win(X). However, since
the program is non-stratified, both win(a) and win(b) are undefined in WFS and are
treated as conditional answers, denotedwin(a):-tnot(win(b))| andwin(b):-
tnot(win(a))| — where the “|” symbol indicates that the preceding literal is de-
layed. To represent delay lists when call subsumption is used, tnot/1must be changed
to determine whether a negated goal is subsumed by another goal, so that the delay list will
properly contain a ground literal, rather than the subsuming literal tnot(win(X)). To
effect this, the goal tnot(G) determines whether there is a subsuming goal for G, and if not
associates the delay element with G’s (producer) subgoal frame. Otherwise, tnot(G) de-
termines whether the subsuming goal is completed or not, creates the subsumed subgoal
frame if necessary, and associates the delay element with the subsumed subgoal frame
for G – in this case win(a) or win(b).

Changes to SIMPLIFICATION. Next, consider the extension move(a,b)
move(b,a) move(b,c) and the evaluation of the query win(a). In this
case, no delaying is necessary for either call variance or call subsumption: win(a)
does not subsume win(b) or win(c). win(c) is determined to be false, and this
false value causes win(b) to be determined to be true and win(a) false before any
conditional answers are created. However, if call subsumption were used for the goal
win(X), all goals would be in the same mutually dependent SCC, so that DELAYING

and SIMPLIFICATION must both occur.
SIMPLIFICATION operations are initiated in two cases [5]. When a subgoal G is

completed with no answers (fails), any answers conditional on G must be deleted; and
any answers conditional on tnot(G) must have tnot(G) removed from their delay lists.
Similarly, when an unconditional answer A is derived, any answers conditional on A
must be simplified. Each case can initiate a chain of SIMPLIFICATION operations, since
removing an answer can cause a goal to fail; while removing a literal from a delay list
can cause an answer (or a ground subgoal) to become unconditionally true. Figure 1
shows the supporting data structures. A subgoal G has an answer Ans in its answer trie
along with a subsumed goal Gθ. Ans contains tnot(Gdep) in its delay list. To perform
simplification, the subgoal Gdep contains a list of backpointers to each answer (such
as Ans) containing tnot(Gdep) in its delay list (conditional answers have backpointers
similar to those for subgoals). In addition, pointers from delay lists to answers (through
Delayinfo structures) and from answers to (producing) subgoals are used to traverse
table space and propagate SIMPLIFICATION operations.

Both cases in which SIMPLIFICATION is initiated are affected by call subsumption.
To handle the case initiated by a failing subgoal G, the engine checks the subgoal
frame to see whether G has been declared to use call subsumption. If so, the engine
must check whether there are any subgoals subsumed by G that now fail. The chain
of subsumed subgoals is traversed, and each subsumed subgoal frame checked for a
non-null backpointers cell. The subsumed subgoal is checked for backpointers, and a
SIMPLIFICATION operation executed aif the subgoal fails. In our running example,
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Fig. 1. Schematic Table Space for Call Subsumption with Conditional Answers

when the subsumed subgoal win(c) fails, a SIMPLIFICATION operation is performed
using backpointers of win(c) to remove the answer win(b):- tnot(win(c))|,
in turn propagating a SIMPLIFICATION operation to make the answer win(a):-
tnot(win(b)| unconditional. Consider the case of the second simplification where
an unconditional answer A is derived, other answers having either A or tnot(A) in their
delay lists need to be simplified. Answers having A in their delay lists are obtained
through the backpointers list off of the answer A itself, and so are not affected by call
subsumption. On the other hand, obtaining answers having tnot(A) in their delay list
is more difficult using call subsumption, as they depend on the subgoal A which may
be subsumed. As shown in Figure 1, there is a pointer from an answer to its producer
(or variant) subgoal frame, but not to frames of any subsumed subgoals. However while
A may not need to initiate simplification through its producing call, it may need to ini-
tiate simplification through a subsumed call. Again using our running example, when
win(b) becomes true, the answer win(a) :- tnot(win(b))|must be deleted.
This occurs through the backpointers of the subgoal win(b), but as mentioned there
is no pointer from the answer win(b) (for win(X)) to the subsumed subgoal frame
for win(b). Fortunately, the trie data structures make the check for possible subsumed
subgoals efficient. Tabled subgoals are stored in a trie just as answers are, with subgoal
frames (including those for subsumed subgoals) as leaves of the subgoal trie. A term
is constructed from the answer substitution A, and trie indexing is used to determine
whether A is also a subsumed subgoal frame: if so, simplification will be performed.

Performance. Tests of win/1 provide information about the speed of basic operations.
The table below illustrates CPU times in seconds and table space in bytes for win/1
using call variance and call subsumption. When move/2 is a chain, call subsumption is
significantly slower than call variance. For the goal win(1) this is due to the fact that
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tnot/1, currently written largely in Prolog, is more complicated for call subsumption.
In addition, call subsumption for the goal win(X) treats all subgoals as if they were
in the same SCC, and must delay and simplify each answer. When move/2 is a cycle,
the time to add conditional answers dominates all strategies. For the goal win(X),
call subsumption must perform the same amount of delaying for the chain and for the
cycle (and the same amount of delaying as call variance for the cycle). However, note
that for the chain, 50,000 extra simplifications are performed in a negligible amount of
time. Also, call subsumption requires slightly more table space than call variance, when
there is no actual subsumption to exploit. With win(X) goals, call subsumption saves
some table space, but unlike the wine example, the savings are limited in this example
as there is at most a single answer per subsumed goal.

call variance win(1) call subsump. win(1) call subsump. win(X)
50000 chain 0.19 / 5,582,396 0.53 / 5,982,596 1.0 / 3,653,620
50000 cycle 1.14 / 9,985,548 0.72 / 10,585,940 0.98 / 7,654,660

2 Discussion

In terms of related work, a global answer table has been implemented in YAP for def-
inite programs [1], and allows the sharing of answers between different subgoals of a
tabled predicate. Global tables and call subsumption can both reduce the size of tables,
but each has advantages that the other does not. A global table can allow sharing of
answers between subgoals that unify, even if neither subsumes the other. Call subsump-
tion, on the other hand can reduce computation time as well as space.

The implementation described is intended to be robust. Accordingly, before distribut-
ing the described implementation in XSB, it was run on a suite of programs testing
WFS, residual programs, and tabled constraints. The test suite contained over 12,000
lines of code, and was run on various platforms under local and batched evaluation
for 32-bit and 64-bit compilations. The implementation described here makes minor
changes to scheduling, relatively straightforward changes to table data structures and
access routines, and more complex changes to simplification instructions. It is impor-
tant to note that call subsumption does not affect a tabling system’s mechanisms for
suspending and resuming a computation – the aspect of tabling that is most intimately
connected with the WAM data structures. This means that the approach described here
is (in principle) applicable to systems such as Ciao, Mercury, B-Prolog and ALS that
support tabling outside of the SLG-WAM.
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Abstract. The SLG-WAM of XSB Prolog soundly implements the Well-Founded
Semantics (WFS) for logic programs, but in a few pathological cases its engine
treats atoms as undefined that are true or false in WFS. The reason for this is
that the XSB does not implement the SLG ANSWER COMPLETION operation in
its engine, the SLG-WAM – rather ANSWER COMPLETION must be performed
by post-processing the table. This engine-level omission has not proven signifi-
cant for applications so far, but the need for ANSWER COMPLETION is becoming
important as XSB is more often used to produce well-founded residues of highly
non-stratified programs. However, due to its complexity, care must be taken when
adding ANSWER COMPLETION to an engine. In the worst case, the cost of each
ANSWER COMPLETION operation is proportional to the size of a program P ,
so that the operation must be invoked as rarely as possible, and when invoked
the operation must traverse as small a fragment as possible of P . We examine
the complexity of ANSWER COMPLETION; and then describe its implementation
and performance in XSB’s SLG-WAM such that the invocations of the operation
are restricted, and which is limited in scope to Strongly Connected Components
within a tabled evaluation’s Subgoal Dependency Graph.

Designers of logic programming engines must weigh the usefulness of operations
against the burden of complexity they require. Perhaps the best known example is
the occurs check in unification. Prologs derived from the WAM do not perform oc-
curs check between two terms, since its cost may be exponential in the size of the
terms. Rather, the occurs check must be explicitly invoked through the ISO predicate
unify with occurs check/2 or a similar mechanism. For evaluating normal pro-
grams using tabling, checking for certain positive loops involves similar considerations.
While most positive loops can be efficiently checked, positive subloops within larger
negative loops are more difficult to detect, and account for the complexity of evaluating
a program P according to WFS, which is atoms(P ) × size(P ), where atoms(P ) is
the number of atoms of P and size(P ) is the number of rules of P .

As implemented in XSB, the SLG-WAM detects positive loops between tabled sub-
goals so that answers are not added to a table unless they are true, or are involved in a
loop through negation and so are undefined at the time of their addition (termed condi-
tional answers). As shown in Theorem 1 below, this sort of evaluation can be done in
time linear in size(P ). However, a situation can arise where certain conditional answers
are later determined to be true or false. This determination may break a negative loop,
which uncovers a positive loop and makes the answers false. Within SLG, this situa-
tion is addressed by the ANSWER COMPLETION operation, which is not implemented
within the currently available version of the SLG-WAM. So far, the lack of ANSWER

COMPLETION has not proven a problem for most programs. However, the SLG-WAM
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is increasingly being used to produce well-founded residues for highly non-stratified
programs for applications involving intelligent agents (e.g. [2]), where the need for
ANSWER COMPLETION is greater.

This paper examines issues involved in adding ANSWER COMPLETION to the SLG-
WAM. We illustrate the situation of a positive loop begin uncovered when a negative
loop is resolved through a concrete example, and then we provide a formal result on the
contribution ANSWER COMPLETION makes to the complexity of computing WFS. We
introduce an algorithm for efficiently performing ANSWER COMPLETION (subject to its
complexity), and discuss performance results obtained by implementing it in the SLG-
WAM. Due to space requirements, we must assume knowledge of tabled evaluation of
WFS through SLG resolution [1] as well as certain data structures of the SLG-WAM [3].

Example 1. The following program is soundly, but not completely, evaluated by the
SLG-WAM, where tnot/1 indicates that tabled negation is used:

:- table p/1,r/0,s/0.
p(X):- tnot(s). p(X):- p(X).

s:- tnot(r). s:- p(X). r:- tnot(s),r.

The well founded model for this program has true atoms {s} and false atoms {r, p(X)}.
Recall that literals that do not have a proof and that are involved in loops over default
negation are considered undefined in WFS. Unproved literals involved only in positive
loops, i.e., without negations, are unsupported and, hence, false in WFS. Accordingly,
p(X), whose second clause fails, is false; however, a query to p(X) in XSB indicates
that p(X) is undefined. The reason is that during evaluation the engine detects a strongly
connected component (SCC) of mutually dependent goals containing p(X), r and s,
along with negative dependencies, and no answers for any of these goals. In such a situ-
ation, the SLG-WAM delays negative literals and continues execution. Here, the literal
tnot(s) in the rule p(X):- tnot(s) is delayed, producing an answer p(X):-
tnot(s)|, indicating that p(X) is conditional on a delay list, here tnot(s). That
answer is returned to the goal p(X) in the clause p(X):- p(X) and a conditional
answer p(X):- p(X)| is derived. Later, a positive loop is detected for r, causing its
truth value to become false. The failure of r causes s to become true, and SIMPLIFI-
CATION removes the answer p(X):- tnot(s)|. At this stage, however, no further
simplification is possible for p(X) :- p(X)|, which is now unsupported.

The ANSWER COMPLETION operation addresses such cases by detecting positive loops
in dependencies among conditional answers. More precisely, ANSWER COMPLETION

marks false sets of answers that are not supported: i.e. conditional answers for com-
pleted subgoals that contain only positive, and no negative dependencies in their delay
lists. The creation of unsupported answers are uncommon in the SLG-WAM because its
evaluation is delay minimal – that is, the engine performs no unnecessary DELAYING

operations [4]. Delay minimality reduces the need for simplification of dependencies
among answers, and thereby the chances of uncovering positive loops among answers,
as with the answer p(X):- p(X)| above.
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1 Complexity

We begin by showing that queries to programs that do not need ANSWER COMPLETION

can be evaluated in O(size(P )). Such programs include stratified ones, and also non-
stratified programs that contain no positive loops within negative SCCs in their dynamic
dependency graphs 1.

Theorem 1. Let Q be a query to a finite ground normal programP . Under a cost model
with constant time access to all subgoals, nodes, and delay elements of each SLG forest
in an evaluation, and constant time access to each clause in P , a partial SLG evaluation
that does not perform ANSWER COMPLETION can be constructed that is linear in the
size of P .

The algorithm ITERATE ANSWER COMPLETION below iteratively applies ANSWER

COMPLETION operations, calling Check Supported Answers() to perform a check
for positive loops. Check Supported Answers() is an adaptation of Tarjan’s algo-
rithm for SCC detection (cf. http://en.wikipedia.org/wiki/Tarjan’s_
strongly_connected_components_algorithm), which is linear in size(P ).
Note that in the worst case, ANSWER COMPLETION operations iteratively need to be
applied, and that each time it is applied, a single atom would be found false. In that case,
program evaluation would have a cost proportional to atoms(P ) × size(P ), which is
equivalent to the known complexity for WFS.

2 Implementation of ANSWER COMPLETION

Within an SLG evaluation, a tabled subgoal can be marked as complete, which indicates
that all possible answers have been produced for the subgoal, although SIMPLIFICA-
TION and ANSWER COMPLETION operations may remain to simplify or delete con-
ditional answers. Completed subgoals do not require execution stack space, but only
table space, so that completing subgoals as early as possible is a critical step for en-
gine efficiency. Accordingly the SLG-WAM performs incremental completion via a
completion instruction, which maintains information about mutually dependent sets of
subgoals (SCCs), and completes each SCC when all applicable operations have been
performed. In addition to marking each subgoal S in an SCC as complete, if S failed
(has no answers) the completion instruction may initiate SIMPLIFICATION for con-
ditional answers that depend negatively on S. In terms of ANSWER COMPLETION,
observe that any positive loop among the delayed literals of conditional answers must
be contained within the SCC being completed, as each delayed literal was a selected
literal before it was delayed. This incremental approach has several benefits. Perform-
ing ANSWER COMPLETION operation within the completion instruction restricts the
space that any such operation needs to search. In addition, performing ANSWER COM-
PLETION after all other SIMPLIFICATION operations have been performed on answers
within the SCC similarly reduces search space. As a final optimization, ANSWER COM-
PLETION is not required unless delaying has been performed within the SCC, a fact that

1 The proof of Theorem 1 is contained in an appendix of a fuller version of this paper available
on request.

http://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm
http://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm
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is easily maintained using data structures in the SLG-WAM’s Completion Stack, which
maintains information about SCCs. The pseudo code for Iterate Answer Comple-
tion(), which traverses all subgoals in the SCC using the Completion Stack, and checks
each answer for support, deleting unsupported answers from the table and invoking
SIMPLIFICATION operations, is presented in Figure 1. SIMPLIFICATION may remove
further negative loops, and uncover new unsupported other answers as a side-effect. In
such case, the ANSWER COMPLETION procedure should be executed once more, and
this is guaranteed by the use of the reached fixed point flag. A fixed-point is reached
when all answers within the scope of the SCC are known to be supported.

Algorithm Iterate Answer Completion(CompletionStack)

reached fixed point = FALSE;
while not reached fixed point

reached fixed point = TRUE;
foreach subgoal S in the Completion Stack

foreach answer A for subgoal S
if not Check Supported Answer(A) /* A is unsupported */

reached fixed point = FALSE;
delete A;
propagate A’s deletion’s simplifications;

Fig. 1. Algorithm Iterate Answer Completion

Check Supported Answer. This procedure (Figure 2) does the actual check of whether
a (positive) answer is unsupported. It detects positive loops whenever it encounters an
answer that has already been visited and which is in the SCC. In this case, the algorithm
terminates returning FALSE to indicate the answer is unsupported. On the other hand,
if the answer has been visited but is not part of the SCC, it means such answer has
been produced during some other branch of query-solving and was therefore, rightfully
supported and stored in the table: the algorithm terminates returning TRUE. Checking
a non-visited answer consists of 1) marking it as visited; 2) adding it to the state of
the search (stored in the Completion Stack); and then 3) traversing all the Delay
Elements (literals) of the Delay Lists for the answer recursively checking each in turn
for supportedness. Whenever an answer is determined to be unsupported, all Delay
Lists containing (Delay Elements that reference) it are deleted, which may cause further
simplification and iterations of ANSWER COMPLETION.

The above algorithm has been implemented within the completion instruction of
XSB. Full performance analysis is still underway. Preliminary results indicate advan-
tages of our heuristics: traditional benchmarks like win/1 either do not use SIMPLI-
FICATION or use it seldom so that there is no overhead for ANSWER COMPLETION. A
stress test that performs a large number of repetitions of Example 1 shows an overhead
of at most 18%. Example 1 is actually representative of the typical situation where AN-
SWER COMPLETION is needed. This is so because it contains (at least) two rules for
some literal (in this case p(X)) where the first one depends on a loop through nega-
tion (rendering p(X) undefined) and the second one depend on a positive loop, which
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Algorithm Check Supported Answer(Answer)

if Answer has already been visited
if Answer is in the SupportCheckStack return FALSE;
else return TRUE;

else
mark Answer as visited;
push Answer onto the SupportCheckStack;
mark Answer as supported unknown;
foreach Delay List DL for Answer

if Answer is supported true exit loop;
mark DL as supported true;
foreach Delay Element DE in the Delay List DL

if DL is not supported true exit loop;
if DE is positive and it is in the SupportCheckStack

recursively call Check Supported Answer(Answer of DE)
if Answer of DE is not supported true

mark DL as supported false;
if DL is supported false

remove DL from Answer’s DLs list
if Answer’s DLs list is now empty

delete Answer node;
simplify away unsupported positives of Answer;

else mark Answer as supported true;
if the Answer node was deleted return TRUE;
else return FALSE;

Fig. 2. Algorithm Check Supported Answer

is unsupported. The “undefinedness” coming from the first clause is passed on to the
p(X) in the body of the second one. Only ANSWER COMPLETION can then be used to
clean away the delay list with p(X) from the answer coming from the second clause
for p(X). The “pathological” nature of this example follows from the, until now, XSB’s
SLG-WAM inability to rightfully detect and simplify away unsupported literals such as
p(X).

3 Conclusions

WFS is used in an increasing number of applications, from intelligent agents, to inher-
itance in object logics, to supply-chain analysis. However, the abstract complexity of
WFS is a concern when embedding into the semantic core of a programming language
like Prolog. Theorem 1 shows that the non-linearity of WFS can be separated from other
parts of an engine for WFS; and the optimizations of the algorithm presented here, to-
gether with the preliminary performance results, underscore the suitability of WFS for
general-purpose programming.
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1 Introduction

In my thesis, I present problems and techniques in tabling Transaction Logic (T R). T R
is an extension of classical logic programming with backtrackable state updates and it
has a top-down evaluation algorithm similar to Prolog’s SLD derivation extended with
execution paths of states instead of a single global state. This backward chaining algo-
rithm can be very inefficient by re-computing the same transactional queries more than
once, or can enter into infinite loops by visiting the same paths of states an infinite num-
ber of times when computing answers to recursive programs. We solve these problems
by memoizing (caching) the calls, call initial states, unifications (answers) and return
states in a searchable structure for the Sequential Transaction Logic, respective building
a graph for the query and tabling the nodes ready for current execution for the Concur-
rent Transaction Logic. Important problems of tabling T R are to store, index, update,
query and resume states into memory. I implemented and measured the efficiency of
multiple data structures used in tabling programs with backtrackable updates in XSB
Prolog. My thesis studies the data structures and their performance for various appli-
cations of TR, such as, artificial intelligence planning, NP-complete graph algorithms
(Hamiltonian cycle, clique, shortest consuming paths, connected components) and ac-
tive databases. One of the most promising techniques was storing logs (i.e., inserts and
deletes relative to a materialized state) into individual tries (optimized for querying),
while keeping a global page trie as a common index for restarting.

2 Tabling Transaction Logic

Logic programming tabling is notoriously inefficient when working with lists and other
structured terms. Most of the time, such complex terms are non-discriminate arguments
or terms not used for the tabling, i.e., large states represented as lists and accumulating
results. An intuitive and simple solution for this problem is to use the program database
for such large arguments, and backtrackable updates to change them. T R [1,2,3] is
a general logic designed specifically for the rule-based paradigm intended to provide
a declarative account for state-changing actions. The elementary backtrackable transi-
tions ins/1 and del/1 specify basic updates of the current state of the database executed
by an oracle that takes the database into a new state by inserting or deleting an atom in
the extended database.

Complex formulas are built out of atomic formulas and elementary transitions using
connectives and quantifiers (similar to those in logic programming, with the exception
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of the concurrent conjunction operator ”|”. The truth of T R formulas is determined
over paths, where a path is a finite sequence of states. A formula π is true over a path
<s1, ..., sn > if it can be executed starting with state s1 changing the database into
states s2, s3,.. and finally terminate at the state sn.

Tabling for logic programming [4,5] is a technique to reuse branches of the com-
putation for all the calls of equivalent queries (variant or subsumtive equivalence). For
the tabling of transaction logic we pair calls and answer unifications with their initial
and returning states. This call-answer table is consulted whenever a new call to a tabled
predicate is issued. If the call issued in an initial database state is similar to a tabled call
issued in the same initial state, then the set of answers and returning states may be used
to satisfy the call. If there is no entry in the call table for the call, then it is entered into
the table and is resolved against program clauses using the SLD-like resolution. As each
answer is derived during this process, is inserted into the table entry associated with the
call. After the answer is added to this set, it is scheduled to be returned to all equivalent
previous calls stored in a lookup table. If no answer was found, then the evaluation fails
and the execution backtracks.

Common issues in tabling of transaction logic are: querying facts in the current state,
checking if the current state was encountered before followed by insertion, resuming
suspended calls by also changing the current state with a return state from the an-
swer tables, tabling logs. vs. materialized states and optimizations. We implemented
and measured the performance of various data structures for storing states: from states
as ordered lists, materialized states stored on a trie with explicit state identifiers, index-
ing states with hash incremental functions, to logs as tries and global state trie.

Our experiments on applications of T R in planning and Hamiltonian paths showed
that the performance of the system evolved from infeasible for states stored as lists, to
a few seconds for logs represented as tries. Space is still a very important issue because
tries are not the most optimal representation for sets of states. Selective materialization
might increase the sharing, but it imposes a heavy toll on computation (for instance,
checking for existence of a state <inslog1, dellog1, relativeState1> in the pool of pre-
viously seen states requires materialization and comparison of multiple states in time
liniar with the size of the state.

The T R tabling technique can be extended to tabling of Concurrent Transaction
Logic programs by building a graph for the program and the query, and memoizing the
”hot” vertices (e.g., vertices possible to execute). We currently developed this technique
only for the propositional logic programs, remaining to extend it to the predicative case.
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1 Introduction and Problem Description

My research focuses on finding a better way to program massively distributed
systems. Programming these systems is crucial as we move into a world where
they are increasingly necessary. Unforunately, existing concurrency models in
modern languages are very difficult for programmers to understand and to reason
about. Many programmers have an extremely hard time writing and debugging
concurrent programs, let alone massively distributed ones. Race conditions, in
particular, are among the most challenging bugs to find, understand, and resolve.

I am currently looking at this problem in the context of Claytronics [5], a sys-
tem of modular robots intended to create a programmable material. These robots
form ensembles, network-varying massively distributed systems, with the added
complexities of moving nodes and real world uncertainties. These ensembles are
expected to eventually contain millions of nodes.

2 Background and Overview of the Existing Literature

Some work on using logic programming for distributed systems has come out of
Berkeley in recent years. In particular, P2 [6] and SNLog [2] use a logic program-
ming approach for overlay networks and sensor networks, respectively. These sys-
tems are not designed to handle the frequent network topology changes present
in ensembles. Furthermore, they lack the formal semantics necessary to prove
things about their programs. Other approachs, outside of logic programming,
also exist and have similar short-comings.

3 Current Status of the Research

I am exploring alternative programming models through the development of
new programming languages and paradigms designed around concurrency. I have
created a Datalog-like programming language called Meld [1], designed to run on
ensembles. Meld is based upon the idea that a programmer should program an
ensemble as a single entity and not need to worry about implementation details
such as where various parts of the program should execute or what messages need
to be sent between nodes. Instead, the programmer focuses on the logic of the
program, expressing this as a set of rules for changing the state of the ensemble
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based upon the current state. The programmer is able to implicitly specify which
nodes the state is stored on, leaving Meld to collect state from various nodes
when rules apply and to update the state across nodes accordingly. Additionally,
when the state of the ensemble changes, Meld automatically updates the program
state by determining which rules no longer apply and reverting the state changes
they caused. Among other features, this provides a basic fault-tolerant behavior
to any Meld program.

4 Preliminary Results

Meld has been successful in the Claytronics project. It was used to implement a
number of complex applications, including an ensemble localization program [4],
which builds a shared coordinate system, and a shape change program [3]. The
Meld implementation of the shape change program has been proven correct and
has been demonstated running on one million simulated nodes.

5 Open Issues and Expected Achievements

Unfortunately, Meld still has many shortcomings, particularly revolving around
expressivity. Meld lacks any linear or temporal components, inhibiting the abil-
ity to write programs with dynamic state. It is not clear how to implement a
temporal component in Meld given that modules may move at any time, possibly
preventing the derivation of some facts at a given time, with no obvious way to
derive them later. Adding a linear component is equally challenging, given how
Meld automatically maintains state. Meld automatically derives and underives
facts as the observed state of the physical world changes. How this would extend
to linear facts is unclear.

I am interested in exploring approaches for supporting these sorts of features
in Meld. I have experience trying to implement algorithms with dynamic state
in them and have found Meld to be an impractical way of doing this. Finding
a solution would greatly increase the utility of Meld in programming ensembles
as it would permit common types of algorithms, such as gradient decent, to
be efficiently implemented. In addition to solving these problems, I am also
interested in other ways of enhancing Meld.
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1 Introduction and Problem Description

Binary constraint is an important constraint class that has been studied in both
Constraint (Logic) Programming community [5] and Mathematical Programming
community [3,4]. In [6] we studied Functional Constraints in Binary Constraint
Satisfaction Problems (BCSPs) and developed efficient variable elimination algo-
rithms based on variable substitutions (For details please refer to [6]). On the basis
of our variable elimination algorithms for Functional Constraints, we further ex-
plored a special case of BCSPs that consisted of only Bi-Functional Constraints,
which were called I Constraints in our experiments. Afterward we extended our
elimination algorithms to solve integer programswith two variables per inequality.
These problems are known as TVPIs 1 that have been studied in [3,4].

To solve TVPI systems with our elimination algorithms, we have to do fol-
lowing mappings between TVPIs and I Constraints: 1) We need to establish
the one-to-one corresponding relationship between a TVPI and an I Constraint.
This can be done by using the corresponding binary equation (which is an I
Constraint) of the TVPI to represent the boundary of its solution space for each
TVPI. 2) We need to find an effective way to map the Infinite Domain of the
TVPI systems to the F inite Domain of BCSPs without loosing solutions. By
investigating properties of TVPIs, we observed a regular pattern repeat of do-
mains of the two variables involved in any TVPIs. Based on this characteristic,
we proposed a new representation form for linear inequalities — segments. Un-
der this representation, we employed novel operations for segments and further
developed our new elimination algorithms based on Motzkin Elimination over
real variables.

2 Research Goals and Current Status

The purpose of this research is to develop a system of efficient variable elimina-
tion algorithms for a specific class of binary constraints, in particular to obtain
1 A TVPI is a binary linear inequality that can be written in the form ax ≤ by+c where

a, b, c ∈ Q x, y ∈ Z.
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fast elimination algorithms to improve the state-of-the-art problem solving tech-
niques. In addition, we hope to apply our new elimination algorithms to different
scientific fields. Our short goal is to compare the performance of our algorithms
with ILOG CPLEX 9.1 optimizer. We anticipate that our elimination algorithms
can perform better than CPLEX under certain conditions.

As there are no benchmarks on TVPIs, we need to design our own problem
generator. By now we have implemented a TVPI system generator to generate
random TVPIs with given parameters. In the ILOG CPLEX 9.1, we have tested
the random TVPI systems. In terms of our algorithms, we have implemented the
main part of our elimination algorithms. After implementing all the algorithms,
we will carry out empirical studies on the new algorithms.

3 Preliminary Results and Open Issues

For BCSPs that consist of only I Constraints, we had obtained preliminary
results on DELL PowerEdge 1850 (two 3.6GHz Intel Xeon CPUs) in Linux. From
experimental results, we first confirmed the conclusion that I Constraints were
polynomially solvable made by P. David in [2] and the worst case time complexity
was O(ed) proposed by P. V. Hentenryck etc. in [5]. Moreover, we concluded that
our algorithms were much faster that the general solver implemented based on
AC2001/3.1 [1].

On the tests on random generated TVPI systems, although we observe ILOG
CPLEX 9.1 can solve the problems pretty fast, we expect our algorithms are able
to perform better than CPLEX. However, an apparent problem of our algorithms
is the representations of TVPIs, which may be extremely large especially when a
TVPI system has n variables with more than n ∗ (n − 1)/2 constraints. Further-
more, very large coefficients can result in out of memory for the system. How to
represent TVPIs with more efficiency is of great importance when we intend to
solve any TVPI systems, which means coefficients can be as large as possible.
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1 Introduction

Service robot is one of the most promising directions of Robotics and full of
challenges. Most of current work in Robotics concentrate on low-level functions,
while in AI there are notable achievements on high-level functions. It would be
interesting to integrate state of the art AI (particularly, KR) techniques and
test if they are sufficient for developing a “good enough” service robot. New
challenges will be identified and attacked on the basis of this investigation.

After more than twenty years of research, Answer Set Programming (ASP) has
become a popular tool for knowledge representation and reasoning. Gelfond [1]
suggested to use ASP for the design and implementation of deliberative agents.
Following the perspective, we propose a cognitive architecture for our home
service robot [2] in Fig. 1.

Fig. 1. An architecture for a home robot

Task Planning is a key part of the architecture, which is used to (1) access
various kinds of information provided by users from Natural Language Process-
ing; (2) compute a plan to fulfill the command with the help of information
proved by the user; (3) pass sequences of atomic actions to Motion Planning.
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We implemented it by ASP, thus providing us a versatile and robust platform
for integrating modern KR techniques. Another benefit is that, both connections
of Task Planning are close and smooth, as logical formulas generated from Nat-
ural Language Processing can be easily imported to it, and sequences of atomic
actions can be easily understood by Motion Planning, which helps the robot
work more automatically and makes the design of the robot more easily. To the
best of our knowledge, we are the first one in this kind, and the only team that
constructs the architecture based on ASP.

We have implemented basic components of the architecture. Currently, the
robot can accomplish the command with the help of information proved by users
in the form of natural language. For example, the user said “The book is on the
table. Give Jim the book.”. From Natural Language Processing, we can get
i on(book, table) and g give(agent, Jim, book). Task Planning is implemented as
a answer set program with a KB for classical planning, the command is translated
to the corresponding goal state, if we have location(table, 5, 0) in KB, then we
can derive location(book, 5, 0). cmodels is used to compute the answer set, which
will contain a plan: move(5, 0), catch(book, 1),move(0, 2), putdown(3). Then we
pass this sequence of actions to Motion Planning to accomplish the task.

We have successfully qualified for a participation in the @home competition
of RoboCup091. The aim of RoboCup@Home is to foster mobile autonomous
service robotics and natural human-robot interaction. There is no standard sce-
nario, but something that people encounter in daily life. The competition is a
series of tests, which will steadily increase in complexity. We can test the idea
and compare with other work in the competition.

So far the work is preliminary, but as a versatile and robust platform, we can
integrate many modern KR techniques to solve problems for service robot.

Diagnosis [3] is one of our next goals. There are many uncertainties (external
events and actions may fail) during the execution, diagnosis can explain the
discrepancy between abnormal observations and correct system behavior, which
helps the robot fix the problem. Another important work is to extract ASP rules
from tradition knowledge bases automatically, which can ease the design of the
robot and make it more flexible.
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1 Problem Description

Constraint Handling Rules (CHR) [7] is a high-level programming language,
designed for the easy implementation of custom constraint solvers. CHR is a
language-extension, built on top of Java, C and half a dozen Prolog-variants.
The language is currently used in many projects [7].

In contrast to earlier approaches, CHR has a “no box”-approach and thus can
implement any sort of solvers. Of course this affects the efficiency of the obtained
solver. In order to obtain the same level of efficiency, we need analysis tools to
detect the properties of a CHR program that lead to optimizations [7].

In CHR, termination is one of the most important properties of a program.
Other important properties, such as confluence can be decided [7] given termi-
nation. But also for the programmer this is an important property. CHR is a
multi-headed language in which loops are often much more difficult to detect
than in single-headed languages such as Prolog.

2 Goal of the Research

Central to my research is the development of new, scalable techniques for auto-
mated termination analysis of CHR programs. Until recently, for CHR, only one
approach existed [1], applicable only to CHR programs without propagation. I
will therefore search for new conditions applicable to general CHR programs.

Usually for declarative languages, one designs necessary and sufficient condi-
tions to characterize the termination behavior. Since such conditions are usually
difficult to automate, one then develops from these conditions, sufficient condi-
tions that are suitable for automation. The current approaches in LP use poly-
nomial interpretations [2]. Since the atoms and termination conditions of a CHR
program are similar to those of an LP program, we want to apply this technique
as well. To find an interpretation validating the conditions, I intend to use a
constraint-based approach [2]. In a next phase I want to refine our approach
with the dependency pair approach from [3]. To obtain a scalable approach, I
want to consider loops. In LP, these are detected using a strongly connected
component (SCC) analysis. Such an approach seems also feasible for CHR.

Still many practical programs are likely to be out of scope of the aforemen-
tioned techniques. Examples of such programs are programs with bounded in-
crease and programs which terminate for subsets of the considered queries. We
intend to solve these issues by developing new techniques.
� Supported by I.W.T. Flanders - Belgium.
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3 Current Status

By now, we studied the theoretical aspects regarding termination of CHR, thor-
oughly [4, 8]. This lead to conditions discussed in [4] proving large classes of
practical programs terminating. On the basis of these conditions, we derived ver-
ifiable conditions, implemented in a system called CHRisTA [5]. Our approach
already scales to large(r) programs by using a SCC analysis.

4 Recent Advances and Expected Achievements

When using a more expressive polynomial form [2], we can improve our analysis
considerably. By integration of the underlying principles of the Dependency Pair
approach [3], we hope to be able to handle an important class of problems,
implementing non-primitive recursion. In that way we will obtain a state of the
art termination analyzer for CHR, such as these exist for LP today.

To be able to handle programs with bounded increase or that terminate only
for subsets of the considered queries, we have developed a new approach [6]. Using
this approach, we are developing an automated analysis for CHR on top of LP,
to obtain as such the most powerful integrated termination tool for CHR(LP).

References
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1 Summary

My research path started with my master thesis (supervisor Prof. Stefania
Costantini) about a neurobiologically-inspired proposal in the field of natu-
ral language processing. In more detail, we proposed the “Semantic Enhanced
DCGs” (for short SE-DCGs) extension to the well-known DCGs to allow for
parallel syntactic and semantic analysis, and generate semantically-based de-
scription of the sentence at hand. The analysis carried out through SE-DCG’s
was called “syntactic-semantic fully informed analysis”, and it was designed to
be as close as possible (at least in principle) to the results in the context of neu-
roscience that I had revised and studied. As proof-of-concept, I implemented the
prototype of semantic search engine, the Mnemosine system. Mnemosine is able
to interact with a user in natural language and to provide contextual answer at
different levels of detail. Mnemosine has been applied to a practical case-study,
i.e., to the WikiPedia Web pages. A brief overview of this work was presented
during CICL 08 [1].

With the admission to the Ph.D track (again under the supervision of Prof.
Stefania Costantini), the research path was redefined so as to consider the many
interesting topics that emerged from previous experience and from open prob-
lems in the field. In fact, many intelligent systems have to deal with knowledge
expressed in natural language, either extracted from books, web pages and doc-
uments in general, or expressed by human users. Knowledge acquisition from
these sources is a challenging matter, and many attempts are presently under
way towards automatically translating natural language sentences into an ap-
propriate knowledge representation formalism [2]. The selection of a suitable
formalism plays an important role but first-order logic, that would under many
respects represent a natural choice, is actually not appropriate for expressing
various kinds of knowledge, i.e., for dealing with default statements, normative
statements with exceptions, etc. Recent work has investigated the usability of
non-monotonic logics, like Answer Set Programming (ASP)[3].

Translating natural language sentences into a logic knowledge representation
is a key point on the applications side as well. In fact, designing applications such
as semantic search engines implies obtaining a machine-processable form of the
extracted knowledge that makes it possible to perform reasoning on the data so
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as to suitably answer (possibly in natural language) to the user’s queries, as such
an engine should interact with the user like a personal agent. We have practically
demonstrated in previous work [1] that for extracting semantic information from
a large dataset like wikipedia, a reasoning process on the data is needed, e.g.,
for semantic disambiguation of concepts.

A central aspect of knowledge acquisition is related to the automation of the
process. Recent work in this direction has been presented in [2] [4] and [3].

At this point (first year of Ph.D), the present goal of my research is to inves-
tigate the automatization of the translation from natural language sentences to
answer set theories.

To this aim, I am considering to use and enhance SE-DCG grammars, with
some advantages: efficient parsing, ‘on the flight’ semantic analysis of sentences
(that performs significant disambiguation in many cases), and automatic gener-
ation of lambda-calculus expressions from template ones, thus improving the ef-
fectiveness and generality of the translation process. Adopting SE-DCG’s results
in a fully logical framework, though as future work we envisage an integration of
positive aspects of CCG’s and SE- DCG’s. My recent works outlines a method
for translating natural language sentences into ASP, so as to be able to rea-
son on the extracted knowledge. In particular, I have extended the [3] approach
by adopting a semantically enhanced efficient context-free parser and by intro-
ducing a new more abstract intermediate representation to be instantiated on
practical cases. Also, I have outlined a fully automated translation methodology
based upon our previous work [1].

The main expected achievement is for now the development of a solid theoret-
ical and practical framework to cope with the translation from natural language
sentences to ASP theory in a fully automatized way.
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1. Problem Description and Motivation. There is a constant need to reason about di-
verse cultures all over the world. For example, a health care organization anxious about
the spread of diarrhea (or any other disease) in Kenya might wish to understand socio-
economic-cultural-environmental aspects of Kenyan society that cause the diseases to
spread extensively in some parts of the country and not in others. In most cases, the
spread of diseases is not due to biological factors alone, but to social behaviors, envi-
ronmental factors, and economic and educational aspects of the disease-stricken com-
munity. The problem we are tackling is that of how to best reason about actions using
models of the behaviors of such agents (where “agent” means any entity).
2. Progress Made to Date.
(a) Initial research on Action Probabilistic Logic Programs (APLPs): In [7] we pre-
sented APLPs, the basic language for expressing behavioral models based on rules that
express that certain actions will be taken by an agent with a given probability interval
depending on the current state of the world. We proposed a linear programming based
approach for expressing the constraints on sets of action atoms that are expressed by
an APLP, as well as the statement of the fundamental problem to be solved in order
to be able to make predictions using this framework, i.e., computing the most prob-
able set of actions (or worlds) given a program and a current state (the MPW prob-
lem). (b) Research on efficiently and accurately finding an MPW in APLPs: In [2]
we focused on effectively solving the MPW problem; we investigated ways of reduc-
ing the number of variables in the set of linear constraints, introducing two provably
correct algorithms for finding an equivalence class of worlds that are solutions to the
problem (classes subsume all worlds that are in them). Furthermore, we investigated
the application of a heuristic for further reducing the number of variables in the com-
putation, this time surrendering accuracy in favor of greater scalability. The heuristic
algorithm was shown to be both scalable and reasonably accurate by a set of prelimi-
nary empirical evaluations. Finally, we have developed algorithms for MPW that lever-
age the fact that users are not always interested in discerning the entire set of possible
actions [6]. Both exact and approximation algorithms are provided, as well as empiri-
cal evaluations of how they perform. (c) Evaluating Behavior of Agents with Respect
to Promises Made: In [5], we develop a formal theory to quantitatively evaluate how
well an agent has fulfilled its past promises and use that as a predictor of whether it
will keep its current (as yet unfulfilled promises), taking into account three important
factors not considered before: partial fulfillment, late fulfillment, and fulfillment of a
promise that is “similar” to the promise that was made. The goal of this line of work is
to integrate evaluation of promises in the type of rules like the ones discussed above.
(d) Applications: Our work has found application in real-world behavior modeling ef-
forts. In [8], we describe how the APLP framework can be applied to model the behav-
iors of various stake-holders in the Afghan drug economy, deriving probabilistic rules
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much in the same way as an expert in any domain could do. In [9], we describe how our
work fits in the “big picture” of modeling agent behavior within the CARA architecture.
3. Proposed Plan of Research. Research towards obtaining a PhD is expected to
be complete by the end of the 2009-2010 academic year. The work described in the
Progress section will be integrated into a thesis describing tractable methods for build-
ing models of agent behavior, where agents can be any entity whose behavior is of
interest (real-world individuals and groups, as well as software agents).
4. Related Work. Past work on adversarial reasoning in AI has focused primarily on
games such as Chess, Bridge, Clue, and Poker, where the rules of the game are well
articulated. Reasoning about real world adversaries can be viewed as a complex game-
tree search problem, but it is difficult to know the “rules” of the game and, often, even
the variables constituting the state are unclear, let alone their values. Past adversarial
reasoning work in AI can be a great asset even in real-world cultural reasoning, but
a major problem is to identify the adversary’s objectives and payoffs as well as the
rules that the adversary adheres to, and determine how best to “play” the adversary
given our knowledge of his behavioral rules. Probabilistic logic programming, which
is the basis of our rule-based models, was introduced in [4] and later studied by many
authors such as [3]. All works to date on this topic have addressed a problem different
from MPW: checking whether a given annotated formula is entailed by a PLP, which
usually boils down to finding out if all interpretations that satisfy the PLP assign a
probability in accordance with the annotation. Finally, the closest work to solving large
linear programs is that of [1], who use column generation methods to solve probabilistic
satisfiability (PSAT); however, PSAT is easier computationally than MPW, since MPW
computations require solving the linear program once for each world.
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1 Motivation

Constraint Handling Rules (CHR) [1] has become a general-purpose rule-based
programming language throughout the last decade. The relations to many other
formalisms have been investigated [2] and often results could be transferred from
CHR to other formalisms, or vice versa.

Graph Transformation Systems (GTS) [3], which have been developed in the
60ies and have become increasingly popular, have not been compared to CHR
before. GTS and CHR appear to be very similar on a cursory glance, as they are
both non-deterministic rule-based state transition systems. However, the fact
that confluence is decidable in CHR [1] and undecidable in GTS [4] warrants
a closer investigation of the two formalisms. Hence, I want to apply analysis
methods of CHR to GTS, concentrating on confluence analysis.

2 Existing Work

A solid mathematical basis for algebraic graph transformation systems is given in
[3] that is based on category theory. CHR has been compared with several other
formalisms [2], but to the best of my knowledge, there either was no comparison
of confluence, or confluence of terminating systems was decidable in both. A
direct comparison of GTS with CHR has not appeared in the literature before.

3 Goals

Through this thesis I want to gain further insights into the relation between
these two important rule-based formalisms. I want to embed GTS in CHR and
compare the approaches to deciding confluence. I also want to find out which
elements of CHR are responsible for the decidability of confluence. Furthermore,
I want to investigate similar analysis methods, like operational equivalence, that
have been developed for CHR and transfer them to GTS.
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4 Preliminary Results

I have succeeded in embedding GTS in CHR [5]. I also managed to give a char-
acterization of the sufficient criterion for confluence of GTS in CHR using the
notion of observable confluence [6]. The embedding also proved viable to transfer
the notion of operational equivalence to GTS [7].

Confluence analysis requires to test CHR states for equivalence. The compari-
son of GTS confluence with that in CHR, together with results on the linear logic
semantics of CHR gave further insights into state equivalence in CHR. Recently, I
have succeeded in providing an axiomatic definition for it [8] with two significant
results for CHR research: firstly, the correspondence between state equivalence
and rule application, that has been taken for granted for over a decade, could
be proved for the first time. And secondly, this work provides the foundation for
a new view on CHR’s operational semantics as a state transition system over
equivalence states. Thus, the investigation of state equivalence in the context of
confluence gave rise to results relevant to the operational semantics.

5 Open Issues and Expected Achievements

An open issue is to extend the notion of operational equivalence to get a stronger
characterization of equivalence of terminating GTS, similar to my confluence
characterization. Furthermore, using my observations on confluence I intend to
determine if a subclass of GTS exists that more closely resembles CHR such that
confluence in this subclass becomes decidable.
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1. Introduction and Problem Description
The field of knowledge representation experienced substantial progress in repre-
senting dynamic domains during the last decades. Action languages were created
to describe transition diagrams in a mathematically accurate and concise man-
ner. Solutions for the frame, ramification and qualification problems were dis-
covered. We now have a good understanding of how to describe effects of actions
and action executability conditions. However, the issue of describing objects of
dynamic domains, including actions and fluents, remains almost unaddressed.
The traditional approach, in which such objects are represented as constants
or terms, doesn’t allow for an elaboration tolerant and scalable represention of
action properties. In previous action languages it is impossible to describe ob-
jects of the domain in terms of other, already defined, objects. This and similar
features can be achieved by adding modularity to action languages. This would
enable programmers to create libraries of knowledge about dynamic domains.

2. Background and Overview of Existing Literature
In the last 5 years, several attempts have been made towards the introduction
of modularity in logic programming. Lifschitz and Ren [1] used the concept of
renaming to add modularity to C+, an action language based on the causality
principle stating that “Everything true in the world must be caused”. Gustaffson
and Kvarnström [2] used an object-oriented framework to describe dynamic do-
mains. Gelfond [3] added modularity to logic programming language CR-Prolog.
Other ideas for applying modularity to logic programming were the introduction
of templates [4] or macros [5].

3. Goal of the Research
Our goal is to develop methodology and tools for representing a large body of
knowledge about dynamic domains. In particular, we intend to create a sim-
ple yet powerful modular action language, ALM, and use it to create libraries
of knowledge about a number of recurrent dynamic domains. We will test the
generality of our approach by using our ALM libraries to represent several well-
known problems and novel scenarios, and perform reasoning using the obtained
representations. ALM will be based on an extension ALd that will add defined
fluents to action language AL. AL incorporates the inertia axiom stating that
“Things tend to stay as they are”, and is closely connected to ASP. Our method-
ology will use AL’s connection to ASP for reasoning, planning, and diagnosis.
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4. Current Status of the Research
So far, we have a good understanding of the conceptual design of the language.
The syntax of ALM is intuitively defined via a number of examples. We define
reusable modules of knowledge about dynamic domains as collections of classes
describing sorts, fluents and actions of the domain. A class of objects describes
properties of those objects and axioms about them. Modules can be refined by
adding new classes or refining existing classes. The definition of a dynamic sys-
tem consists of class declarations imported from modules, the system’s sorted
universe, and its collection of concrete actions. The semantics of a system de-
scription in ALM is given by mapping it into a system description in ALd.

5. Preliminary Results Accomplished
Our first efforts focused on illustrating ALM by representing primitive domains.
For example, we created module Basic Move to represent the movement of things
from one area to another. We then showed how this module could be refined by
adding new sorts (cities, countries). Another refinement allowed us to repre-
sent movements in both the vertical and horizontal coordinate systems. We also
showed how action class carry can be defined as a special case of class move.
These basic modules were used to represent various simple scenarios, including
Blocks World.

6. Open Issues and Expected Achievements
The syntax and semantics of ALM remain to be finalized. More dynamic do-
mains should be represented in our language. The representation of well-known
problems in ALM should be compared to their representation in other modular
action languages, to check that ALM is indeed a simpler and more powerful lan-
guage. The generality and elaboration tolerance of our language should be tested
by verifying the applicability of our libraries to novel problems. An implementa-
tion of ALM should be provided as well. Finally, we will consider extending our
language by adding other important abstractions such as activities or intentions.
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Introduction and Problem Description. The topic of this research is the
development of methodology for building computer systems capable of answer-
ing questions from natural language (NL) texts. Existing methodologies take
the NL text and question as an input, transform it to a logical form, and use
reasoning systems to obtain the answer. Sometimes little or no commonsense
knowledge is added to the original input. However, we believe that most answers
are commonsense answers and we want to investigate how additional knowledge
can be used to produce them.

Background and Overview of the Existing Literature. Several question
answering systems (QAS) have been proposed in the past. Some of them use
rigorous approaches, but some are satisfied with a sloppier and more procedural
methods of knowledge representation and reasoning. We want a rigorous ap-
proach that uses commonsense and other background knowledge and one that is
based on nonmonotonic reasoning techniques. The following are examples of the
state of the art of QAS. LCC QA system [1] is hybrid, not always well defined,
but powerful. Nutcracker [2] uses first-order logic (FOL) reasoning tools and
expresses different NL phenomena. However, since FOL is monotonic formal-
ism, it does not allow commonsense default reasoning. Mueller’s system [3] uses
Event Calculus and scripts. DD system and ASU QA system [4] perform com-
monsense reasoning. Their language of choice is A-Prolog. This is a language
for knowledge representation, nonmonotonic reasoning, and declarative problem
solving [5]. It is suitable for representing knowledge and for reasoning in so called
dynamic domains.

Goal of the Research. Our main goal is to develop a methodology for build-
ing a reliable QA system with commonsense knowledge and test it on simple
domains expanding those of the DD and the ASU QA systems. Both of them
are only applicable to very limited linguistic and knowledge domain. Two tasks
are required: (1) build logic forms and (2) build knowledge bases for common-
sense domains and test them. First, we select a non-trivial motion domain, which
expands the previous work by adding a difficult task of reasoning about cardinal-
ity. More domains will be considered later. Second, we test if natural language
processing can be enhanced by the use of A-Prolog reasoning methods.
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Current Status of the Research. To get from English text to its logic form,
people normally use existing Natural Language Processing (NLP) systems. How-
ever, such systems produce incorrect analysis. Therefore, we decided to develop
a simple controlled natural language, A-CL. It has a restricted grammar and a
limited vocabulary for expressing motion scenarios. Next, we translate the A-CL
texts and questions into our input language. We use the tool Boxer [6], which
parses our A-CL sentences and generates semantic representations of them. The
vocabulary of A-CL includes Verbs of Motion [7]. We further classify them into
two types of motion verbs: enter verbs and leave verbs. We combine those verbs
with prepositions, such as into, to, and from. Thus, we allow phrasal verbs, such
as come in and come out.

Preliminary Results Accomplished. We started the development of a QA
system, called A-QAS. It uses knowledge represented in A-Prolog to answer
questions from natural language formulated in A-CL. Our preliminary results
are the development of language A-CL; some improvement of Boxer’s logic form;
the translation from improved Boxer’s logic form to A-Prolog input; and some
axiomatization of reasoning about motion.

Open Issues and Expected Achievements. Our next steps are, first, to
expand the vocabulary and the grammar rules of A-CL and to see what linguis-
tic phenomena appear as a result. Second, to translate larger input texts and
questions into A-Prolog and to observe if anaphora resolution can be handled
the same way as with smaller inputs. There are two open issues that remain.
First, can we leverage existing NLP systems by adding A-Prolog knowledge to
produce high quality logic forms for our language and its extensions? Second,
can we formalize relevant commonsense knowledge in A-Prolog in a reusable
and elaboration tolerant way? This work is the first step towards answering
these questions. Finally, our expected achievements are to develop a QA system
with high reliability and to extend our controlled language with other related
domains.

Acknowledgments. The author would like to thank Michael Gelfond for his
help.
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Various forms of quantitative logic programming have been widely used for deal-
ing with uncertainty and inconsistency in knowledge representation. A less ex-
plored issue in quantitative logic programming is combining correlated pieces of
information. Most works disregard correlation or assume that all sources are in-
dependent. Others make an effort to take some forms of correlation into account,
but in an ad hoc manner.

Probability is widely used to model uncertainty, but some problems arise
when several information sources disagree. For example, one source might claim
that the probability of a bullish stock market is in the interval [0.5, 0.6], while
the other might suggest that it is in the interval [0.2, 0.3]. What should one
conclude? Some approaches [3] compute the intersection, yielding ∅. Others
[10] combine the uncertainty ranges, e.g., [min(0.5, 0.2), max(0.6, 0.3)]. However,
such combination methods cannot be explained probabilistically. Another well-
established way of dealing with uncertainty is Fuzzy Logic [14]. It has been
successfully applied in many domains, but it remains controversial due to some
of its properties [5,6].

Dempster-Shafer theory of evidence [4,12] has also been central to many ap-
proaches to quantitative logic programming [1,2,8,11,13]. This theory is based
on belief functions [12] which represents degrees of belief in various statements.
The belief functions from different sources must be combined in order to obtain
more accurate information. The difficulty is that the contributing sources are
sometimes not independent, so correlation of evidence is necessary.

To the best of our knowledge, almost all existing works avoid correlating
structural information contained in rules, which often leads to counter-intuitive
behavior when such correlation is essential for correctness. A few notable excep-
tions include Baldwin’s [1,2], Lakshmanan’s [9] and Kersting’s [7] approaches.
Kersting et al. provide a very general, albeit impractical, framework, which could,
in principle, be used to handle correlation. However, combination of two incon-
sistent conclusions is hard to explain in probability theory. Both Baldwin’s and
Lakshmanan’s methods assume that every pair of rules with the same head have
the same correlation. Consequently their methods are inadequate when the cor-
relation between two sources changes from case to case. Most other approaches
simply restrict logic dependencies to avoid combining sources that are not in-
dependent [8,13]. Those that do not, might yield incorrect or inaccurate results
when combining sources that are correlated due to overlapping belief derivation
paths. For example, consider two rules A :- B ∧ C and A :- B ∧ D, each
asserting its conclusion with certainty 0.5. The approach in [10] would directly

P.M. Hill and D.S. Warren (Eds.): ICLP 2009, LNCS 5649, pp. 547–548, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



548 H. Wan

combine the certainty factors for A derived from the two rules as if they are
independent, assigning A a combined certainty, which is likely going to be too
high. Clearly, the independence assumption does not hold here, as both rules
rely on the same fact B.

The goal of my dissertation research is to enable correlation of evidence in com-
bining multiple information sources. We have proposed a novel form of quantita-
tive reasoning, called Belief Logic Programming (BLP), which is able to account
for correlation of evidence obtained from non-independent and possibly contradic-
tory information sources. The semantics of BLP is based on belief functions and
Dempster-Shafer theory [4,12], but it is not tied to any particular rule for combin-
ing evidence: any natural rule for combining evidence can be used. Along with the
semantics, we developed a query evaluation algorithm, which utilizes information
supplied in the query to speed up computation.

The plan for future work is to extend BLP to programs with cyclic logic de-
pendency among atoms. Another possible direction is to extend the algorithms to
deal with non-ground rules and queries, and try to make them optimized based
on belief factors given in the query.
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1 Introduction and Problem Description

This project aims to investigate biologically inspired, logic-statistic models with
constraints. The complexity and expressiveness of models with different kinds of
constraints will be examined and algorithms to efficiently cope with inference in
and training of such models will be explored. The models will be evaluated with
regards to their applicability to biological sequence analysis.

Statistical models for biological sequence analysis are usually based on vari-
ants of HMMs and occasionally more expressive models like PCFGs. The size of
the data often prohibits the more expressive models, so careful choice of good in-
dependence assumptions is paramount. Realistic biological models may include
complicated interactions between different aspects such as codon frequencies,
RNA structure and phylogenetic information. Constraints can be a way of ex-
plicitly combining aspects of such models in a more intuitive and modular way
and at a higher abstraction level. The declarative nature of constraints permits
a degree of freedom of implementation, allowing for potential optimizations.

Constraints are usually embedded in the model either as structure, parameters
(soft, data-driven) or a combination, but can also be applied in inferencing.
Consider as example a generic genefinder model, where we would like to infer
the most likely sequence of hidden states, representing the genes and non-genes,
that best explains a given observable sequence of nucleotides. It might be that
we know that the DNA sequence for a particular organism contains at least
8000 genes, but the proposed most likely sequence has less than 8000 genes. In
this case, the constraint could be used to guide the inference procedure. It has
recently been suggested that this can be formulated as constraint satisfaction
problem [1].

2 Background and Overview of the Existing Literature

This project is part the larger project LOgic-STatistic Modeling and Analysis
of Biological Sequence Data (LoSt). Logic-statistic models can be expressed as
stochastic logic programs using the PRISM language [2], which is an extension
of Prolog where values of special variables are determined by random switches
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rather than usual unification. PRISM includes efficient procedures for inference
and parameter estimation. Stochastic logic programs can have constraints, usu-
ally in the form of equality between unified logic variables. Stochastic selection
of values for such variables may lead to unification failure and resulting failed
derivations must be taken into account in parameter estimation. PRISM does
this using an adaptation of Cussen’s FAM algorithm [3].

3 Goal of the Research

The goal is to investigate the applicability of logic-statistic models with con-
straints with regard to their ability to express and efficiently deal with the prob-
lems of biological sequence analysis.

4 Current Status of the Research

The research is at a very early stage where the ideas are currently being refined.

5 Preliminary Results Accomplished

A context-sensitive grammar formalism, “Stochastic Definite Clause Grammars”,
was implemented using PRISM and utilizing its facilities for handling failures.

6 Open Issues and Expected Achievements

I hope to find that logic-statistic models with constraints will make it easier to
express complex biological models and that the achieved compositional problem
structure will allow certain optimizations. I think that statistical inference and
constraint solving can complement each other and that interesting techniques
may be found in their intersection. Different logic-statistic frameworks may have
distinct features with regard to different kinds of constraints and these features
should be investigated further.

Soft constraints seems to be a nice fit to statistical models since probabilities
are much like preferences or weights. In the example in section 1 we might be
only 80% certain that the constraint holds. If the probability of tagging at least
8000 genes is sufficiently low, then it might be preferable to break the constraint.
Using soft constraints in the context of both inference and parameter learning
seems like a very interesting direction to pursue.
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Overview. Broadly, our research concerns the fusion of Logic Programming (LP)
and Description Logics (DLs), two solid knowledge representation paradigms with
largelydual properties. The two feature different semantics and orthogonal expres-
sivity, and they apply different reasoning techniques. Finding ways to exploit the
positive features of both has become an important research topic, which has also
been fueled by the prospect of applications in the Semantic Web [10]. In the lat-
ter context, ontologies written in expressive DLs are to be used to provide a com-
mon conceptualization of web resources, which can then be accessed by LP-based
automated agents providing services to end-users.

We are concentrating on two ways of integrating LP and DLs. The first one
is through the identification of expressive but still decidable fragments of logic
programs with features that allow to capture some important DLs. In other
words, we aim at obtaining a common host language for both the rules and
expressive DLs. The second way concerns knowledge representation languages
where the two paradigms are loosely integrated. In such formalisms, knowledge
bases consist of two separate but interacting components: a DL ontology and a
logic program, see, e.g., [8,5,11,4]. Integration in both cases is highly nontrivial.
Naive approaches quickly lead to undecidability, and for the second approach, it
is not always apparent how to give an intuitive semantics that would integrate
the closed- and open-world assumptions of the two paradigms.

Contributions. The focus until now has been mostly on the first approach,
leading to the identification of FDNC and bidirectional logic programs [7,6].
Both are decidable families of logic programs allowing for function symbols,
disjunction, and negation under the answer set semantics.

Function symbols play a crucial role in these languages. They allow to simulate
existential quantification, a fundamental feature of expressive DLs, enabling us,
for example, to capture SHI, the DL closely related to the Semantic Web ontology
language OWL-lite. The availability of function symbols is also helpful when mod-
eling indefinite time, reasoning about actions and change, and supports a generic
representation of recursive data structures (see [1,2] for related approaches). How-
ever, allowing function symbols in answer set programming poses major technical
challenges, as their unrestricted presence causes high undecidability. Overcoming
this is not trivial, and requires carefully crafted restrictions and novel reasoning
methods that had not been explored in this setting.

To show decidability and complexity results for the introduced languages
we have used the knot and automata techniques. The former approach was
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introduced in [7] and is closely related to the mosaic technique previously ap-
plied in Modal Logics, while the latter is well known in the context of Modal
and Dynamic Logics. Both approaches are novel in the context of logic programs,
and transferring them to this field is not straightforward.

In line with the second approach to combining LP and DLs, we have con-
tributed with knot-based algorithms and complexity results for conjunctive query
answering over DL knowledge bases [9,3]. While query answering is a topic of
interest on its own in DLs, it is also of major importance for integrating DLs
and LP because many important approaches make use of conjunctive queries in
their semantics [8,11,4]. Hence, new complexity results and reasoning methods
for query answering provide new insights for the existing integration approaches.

Future work. There are several issues for the future work. Indeed, the pre-
liminary investigations of FDNC and bidirectional programs concentrated on
decidability and complexity issues. However, a thorough investigation of the
knowledge representation aspects of the two languages still remains to be done.
This involves exploring their expressive power, finding new encoding of DLs,
identifying new applications, and comparing them with existing languages. We
will also try to extend these languages, and to find expressive fragments exhibit-
ing lower complexity. Finally, we intend to consider translations from the two
languages to function-free logic programs for which efficient reasoners exist.
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3. Eiter, T., Gottlob, G., Ortiz, M., Šimkus, M.: Query answering in the description
logic Horn-SHIQ. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008.
LNCS, vol. 5293, pp. 166–179. Springer, Heidelberg (2008)

4. Eiter, T., Ianni, G., Krennwallner, T., Schindlauer, R.: Exploiting conjunctive
queries in description logic programs. In: Annals of Mathematics and Artificial
Intelligence (2009) (Published online: 27 January 2009)

5. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set pro-
grammingwithdescriptionlogicsforthesemanticweb.In:KR2004,pp.141–151(2004)
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1 Introduction and Related Work

An important advantage of Logic Programming (LP) is that a declarative pro-
gramming style leads to more understandable and less error-prone computations.
However, a declarative programming style also leads to less efficient, and in the
extreme case, in non-terminating computations. Therefore, an important aspect
of proving correctness of a program, is the analysis of the termination behavior
of the program for a class of queries.

Termination analysis is a well studied field in LP. [4] presents an extensive
overview of the work up till 1994. However, many powerful techniques have been
developed in the last decade (e.g. [2]).

Non-termination analysis is a much less studied problem. In [3], a non-
termination analyzer, NTI, is introduced. The main motivation for this work, is
checking the precision of the termination analysis techniques. As far as we know,
this is the only automated technique for proving non-termination in LP.

Very recently, another technique to analyze the termination behavior was in-
troduced in [5]. This approach does not produce a termination or non-termination
proof, but predicts the termination behavior based on a symbolic derivation tree.
Experiments show that these predictions are extremely precise.

2 Goal of the Research

The goal of my research is to develop a new non-termination analyzer, based
on the symbolic derivation trees introduced for termination prediction. A first
version of this non-termination analyzer is already developed and implemented
by me. The analyzer proves non-termination of pure logic programs and classes
of queries described using modes. I want to extend this technique in several ways,
so that it is applicable to more realistic Prolog programs.

Because many programs have input arguments that also contain variables,
using modes to describe classes of queries is too restricted. Therefore, I want to
extend this technique so that types can be used to describe these queries.

Another issue is the restriction to pure logic programs. Although most termi-
nation and non-termination analysis techniques are restricted to such programs,
an analyzer must handle some non-logical features to analyze more realistic
programs. The most important extension of our technique, is an extension for
programs containing arithmetics.
� Supported by the Fund for Scientific Research - FWO-project G0561-08.
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In order to apply this analysis on larger Prolog programs, it is important to
apply some kind of modular approach. Many modular approaches have been
discussed in the literature (e.g. [2]). I want to adapt one of these techniques so
that it fits our non-termination analyzer.

3 Current Status of the Research

In [6], I introduced a new non-termination condition for logic programs and
classes of moded queries. Non-termination is proven by showing that a path in
the symbolic derivation tree can be applied infinitely often. Such a path can
be identified by checking three basic properties. This approach has been imple-
mented in the analyzer P2P 1.

P2P first constructs the symbolic derivation tree. Then, it checks if this tree
contains a path that satisfies the three properties implying non-termiation.

I tested P2P on a benchmark of 48 small to medium sized programs. These
programs are the non-terminating pure logic programs from a benchmark2 rep-
resenting different challenges in both termination and non-termination analysis.
Our tool provesnon-termination of all benchmark programsand thus, significantly
improves on the results of the only other non-termination analyzer NTI.

4 Open Issues and Expected Achievements

The open issues I want to solve are discussed in the second section.
The first priority is the extension for programs with arithmetics. The idea is

to rewrite the arithmetic expressions in the path, so that existing finite domain
solvers can be used to infer domains for which the path loops. Both the theory
and the implementation of this extension are in a preliminary phase.

The extension for types could be done by applying ideas similar to the ones
used in abstract interpretation [1].
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1 Introduction

The aim of this research is to generate random logic programs and study their
properties such as the occurrence of an easy-hard-easy pattern and the prob-
ability of existence of stable models for these programs. The primary focus is
on generating random logic programs that can be classified to be hard for ASP
solvers based on the time taken and the number of choice points generated by
them in finding a stable model. Our study and generation of random logic pro-
grams have been motivated by two key reasons: hard random logic programs
can be used as benchmarks for evaluating the algorithms used in existing ASP
solvers, and experimental analysis as well as theoretical studies of the properties
of these random logic programs can provide us with insights for improving the
design of the heuristics/algorithms in these solvers.

2 Background and Overview of the Existing Literature

The main inspiration to generate random logic programs comes from the exten-
sive experimental and theoretical studies done in the area of random satisfiability
(SAT). They include the study of the properties of random SAT instances such
as phase transition, the easy-hard-easy pattern and the correlation of the hard
region with the point at which the probability of generating a satisfiable random
SAT theory is 0.5. These studies have led the path to significant advances in
building efficient programs for solving SAT theories.

Random logic programs were initially studied by Yuting Zhao and Fangzhen
Lin[3]. However, random logic programs were introduced earlier on by Wong,
Schilpf and Truszczyński [1] as well as Yuting Zhao [2]. Fangzhen Lin and Yut-
ing Zhao proposed two models for generating random logic programs based on
if every rule in the program has the same fixed length (i.e., number of liter-
als) or have varying mixed lengths. The fixed length programs were generated
with the following three parameters: number of atoms N , rule density α that
specifies that each program has α times N rules, and the length of each rule
K. The probability distribution λ that specifies the probability of occurrence
of a rule with a fixed number of literals in its body is a parameter used in the
mixed length programs in addition to the other parameters N and α. Fangzhen
Lin and Yuting Zhao generated fixed and mixed length random logic programs
with an increasing number of rules and with all other parameters being equal.
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The solvers demonstrate an easy-hard-easy pattern on these randomly generated
logic programs by being able to solve logic programs that are generated with a
certain α (i.e., say αS) relatively slow when compared to those programs that
are generated with α << αS or α >> αS .

3 Current Status of the Research

Our work is related to that done by Yuting Zhao and Fangzhen Lin [3] on
generating and studying random logic programs. However, we generate random
logic programs using a different methodology and a different set of parameters.

We focus on generating random logic programs with rules of same length.
We generate rules of lengths 2 and 3 since combinatorial problems in the class
NP can be modeled as logic programs that primarily consists of rules having at
most 2 literals each. We experimentally compute the probability of the existence
of a stable model, the average time as well as the average number of choice
points taken by ASP solvers, and the average number of stable models for logic
programs that we randomly generate using the same parameters. An easy-hard-
easy pattern is observed by randomly generating programs with an increasing
number of rules and with all other parameters being the same. We generate tight
random logic programs having rules of length 2 of the form a ← not(b) where
a and b are atoms, and produce a Clark’s completion of these programs. Since,
models of these completion theories are stable models of the corresponding tight
logic programs, we use SAT solvers to find stable models of these logic programs.
We observe a similar easy-hard-easy pattern for SAT solvers.

We also observe that random logic programs that are generated with certain
parameters are harder for ASP solvers when compared to those generated with
certain others parameters. We currently have identified properties of the random
logic programs that are generated by us, and have been able to relate some of
these properties to the occurrence of the easy-hard-easy pattern.

4 Open Issues and Expected Achievements

We would like to provide theoretical analysis to support the existence of the
properties identified in the random logic programs generated by us. In the future
we would like to be able design heuristics or modify existing heuristics to further
aid the existing solvers in solving hard randomly generated logic programs.
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1 Introduction

The rise of high-performance computing and internet-scale applications has
spurred a renewed interest in distributed computing. Such distributed appli-
cations can range from multi-hop routing algorithms used in wireless mesh net-
works [1] to volunteer-driven parallel data analysis efforts [2][3]. The property
of distributed systems that makes them both powerful and challenging is that
they are composed of multiple autonomous, interconnected entities. Managing
the interactions between these entities is the primary challenge of distributed
application development.

Distributed programming is inherently more difficult than single-threaded ap-
plications, due to two complicating factors. The first of these is the need for an
executing thread of a distributed program located at one computational node to
access state located at a different node. Accessing remote state information is
quantitatively different than accessing local memory, in that latency and failure
rates are much higher in the remote case. What makes accessing remote state
qualitatively different is that remote state can be modified by another component
of the distributed system, raising issues of consistent data state. This is further
complicated by the second factor, asynchronicity. As multiple distributed com-
ponents may operate independently, there is no guarantee that state obtained
from multiple nodes represents a consistent view of the distributed process, as
varying rates of computation and message latency can result in the reception of
out-of-date information.

To overcome these difficulties, a set of general techniques for inspecting the
state of a distributed system have been developed. The most widely used tech-
nique is that of a distributed snapshot [4], in which the state of the entire sys-
tem is captured in a consistent snapshot, which reflects a possible serialization
of the parallel event stream of the distributed nodes. Distributed snapshots are
a useful tool, but they require a centralized aggregation point, and are typically
quite heavy-weight. In many cases, the complete state of a distributed system
is unnecessary; rather it is some property of the state that one wishes to test.
Development of techniques for evaluating these tests produced global predicate
evaluation [5], which allows a program to evaluate a single predicate over the
entire distributed system.

While global predicates allow a programmer to encode queries over the state
of an entire distributed system, in distributed systems with a sparse, multihop
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communications topology there exists another class of distributed predicates,
which we call locally distributed predicates. These are predicates over the local
neighborhood of a particular node, bounded to a finite number of communication
hops. These locally distributed predicates allow a programmer to describe the
state configuration of a bounded subgraph of a distributed system. Locally dis-
tributed predicates differ from global predicates in two important respects. An
important difference is that, as locally distributed predicates do not encompass
the entire distributed system, there may be multiple matching subgraphs for a
particular predicate. Another difference is that a locally distributed property
can describe not only the logical state of the entities in a distributed system,
but also their topological configuration, a property that is inherently ignored
by global predicates. This prevents global predicates from efficiently detecting
predicates that rely on the state and topology of a small number of nodes. Such
locally distributed predicates are important in a variety of applications, including
distributed debugging, multi-entity coordination, and resource discovery.

I have developed an initial set of algorithms to represent and detect locally
distributed predicates in the context of debugging large ensembles of modular
robots [6]. These predicates allow programmers to describe the distributed state
subsets that signify an error. I have developed a simple representation language
that can express logical, topological, and temporal relationships between multi-
ple communicating robots.

My thesis research centers on the development of a concise language for rep-
resenting locally distributed predicates, and the use of this language in a variety
of application domains. As part of this work, I plan to fully characterize both
the formal semantics and performance properties of the language.
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Introduction and Problem Description. This paper contains an extension of the
Concurrent Constraint language (CC) in order to guarantee a fair criterion of
selection among parallel agents and to restrict or remove the possible unwanted
behavior of a program.

Background and Overview of the Existing Literature. - Fairness in programming
languages: the most common notions of fairness are given by Nissim Francez in
[1]; weak fairness requires that if an agent is continuously enabled then it must
eventually proceed, while strong fairness requires that if an agent can proceed
infinitely often then it must eventually proceed (be executed).
- Concurrent Constraint Programming [3] is a programming paradigm that con-
cerns the behavior of a set of concurrent agents with a shared store (σ), which
is a conjunction of constraints (relations among a specified set of variables).The
concurrent agents communicate with the store, by either checking if it entails
a given constraint (ask operation) or adding a new constraint to it (tell opera-
tion). The behavior of the agents in a parallel execution is given by the following
transition rule:

〈A1,σ〉→〈A
′
1,σ

′
〉

〈A1‖A2,σ〉→〈A′
1‖A2,σ′ 〉

〈A1,σ〉→〈A
′
1,σ

′
〉

〈A2‖A1,σ〉→〈A2‖A
′
1,σ′ 〉 parallelism (1)

〈A1,σ〉→〈success,σ
′ 〉

〈A1‖A2,σ〉→〈A2,σ′ 〉
〈A1,σ〉→〈success,σ

′ 〉
〈A2‖A1,σ〉→〈A2,σ′〉 parallelism (2)

Goal of the Research. The parallelism operator in Concurrent Constraint per-
forms a selection among the concurrent agents. We aim to define a new transition
rule in order to provide a fair criterion of selection among a finite number of
parallel agents.

Current Status of the Research. We develop an extension of the CC language
with fairness properties for finite computations by modifying the parallel opera-
tor ‖ to use quantitative metrics that provides a more accurate way to establish
which of the agents can succeed.The metric we use is based on a Fair carpooling
scheduling algorithm [2]. Carpooling consists in sharing a car among a driver
and one or more passengers to divide the costs of the trip in a fair way. Let U
the total cost of the trip. We define m as the largest number of people who ever
ride together at a time in the carpool and n as the number of participants in a
� Supervisor.
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given day (n ∈ [1 . . .m]). Each day we calculate the member’s scores. In the first
day each member has score zero; in the following days the driver will increase
his score of U(m− 1)/m , while the remaining m− 1 passengers decrease their
score of U/m. As proved by [2] this algorithm is fair, because at the end of the
carpooling, each member meet the same cost.

Since we need to associate a value to more than two agents, we extend the
semantic with the new operator ‖m (where m is a finite number of agents. We
include an array k[] that permits to keep track of the actions performed by each
agent. We represent the driver with the agent Ai, while the passengers are the
remaining (m− 1) agents. We define α = U(m− 1)/m and β = U/m. We add α
to the previous value of (k[i]) of the agent Ai and we subtract β to the previous
value (k[j]) of the other agents Aj ∀j ∈ [1, . . . ,m], j �= i.

We also insert in the precondition of the rule a guard (ki ≤ kj) to establish
which of the agents can succeed (that is, the one with a lower score). Notice that
in ‖m(A1 . . .Am) we consider only the n enabled agents (n ≤ m).

In the initial phase, the enabled agent Ai succeed in A
′

i with value α. The
other agents instead assume the value −β. In next steps we sum the new values
with that of the array k[]. We obtain the new transition rule:

ki ≤ kj ∀ j = 1, .., m, i = j 〈Ai, σ〉 → 〈A
′
i
, σ

′
〉

〈‖m (A1, .., Ai, .., Am), [k1, .., ki, .., km ], σ〉 → 〈‖m (A1, .., A
′
i
, .., Am), [k1 − β, ..ki + α, .., km − β], σ

′ 〉

Since ‖m is an associative and commutative operator, we can omit the rewrit-
ing of the second rule of Parallelism (1). We use the same criterion also for the
Parallelism (2) rule:

ki ≤ kj ∀ j = 1, . . . , m, i = j 〈Ai, σ〉 → 〈success, σ
′
〉

〈‖m (A1..Ai..Am), [k1, .., ki, .., km], σ〉 → 〈‖m−1 (A1, .., Ai−1, Ai+1, .., Am), [k1, .., ki−1, ki+1, .., km], σ
′ 〉

The new rules respect strong fairness and weak fairness because the continu-
ously enabled agents will eventually succeed.

Open Issues and Expected Achievements. The aim of our research is to guarantee
equitable computations also in the current extensions of Concurrent Constraint.
Moreover we plan to provide quantitative valuations by using soft constraints and
to consider fairness for web services applications as a level of preference; we’ll use
a semiring structure to measure how much the service is fair. To do this we plan to
use the same indexes that are used to measure the inequality in economics.
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Introduction and Problem Description. In this paper, we describe two tech-
niques based on Concurrent Constraint Programming, to model biological sys-
tems: timed process calculus (ntcc) and stochastic Concurrent Constraint Pro-
gramming (sCCP). We build a simple biochemical reaction, from an enzymatic
reaction and we write it be using the different models.

Background and Overview of the Existing Literature. Systems biology are a
new science integrating experimental activity and mathematical modeling, which
studies the dynamical behaviors of biological systems.

The most important features that we model are the basic time operators in
the two languages: tellλ and askλ.

Biochemical reactions are chemical reactions involving mainly proteins. In a
cell, there are many different proteins, hence, the number of reactions that can
take place, can be very high. All the interactions that take place in a cell, can
be used to create a diagram, obtaining a biochemical reaction network (BRN).

We will examine in the following, one of the thirteen enzymatic reaction of
the blood coagulation, in the generic form:

XI + XIIa ⇀↽k1
k−1

XI : XIIa ⇀k2 XI + XIa (1)

where XI is the enzyme (E) that binds substrate (S) = XIIa, to form an
enzyme-substrate complex (ES) = XI : XIIa. After that we have the formation
of product (P ) = XIa and the release of the unchanged enzyme (E) = XI, ready
for a new reaction.

In literature there are any programs to model these features; we considered
the followings:

– sCCP[2] is obtained by adding a stochastic duration to the instruction in-
teracting with the constraint store C, i.e. ask and tell. The most important
features added in the sCCP is the continuous random variable T , associ-
ated with each instruction. It represents the time needed to perform the
corresponding operations in the store. T is exponentially distributed, and
its probability density function is f(τ) = λe−λτ where λ is a positive real
number (rate of the exponential random variable) representing the expected

� Student.
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frequency per unit of time. The duration of an ask or a tell can depend on
the state of the store at the moment of the execution.

– In ntcc[1], time is conceptually divided into discrete intervals. In a time
unit, a process P gets an input c (a constraint) from the environment; it
executes with this input as the initial store, and it outputs the resulting
store d to the environment, when it reaches its resting point. The resting
point determines a residual process Q, which is then executed in the next
time unit. Information is not automatically transferred from one time unit
to the following but by using the “next” operator.

Goal of the Research. We want to model biochemical reactions with the three
cited languages, based on Concurrent Constraint programming, in order to ex-
plain the differences of the models and the features that we plan to implement,
to have the programs as similar as possible to the real behaviuour.

Current Status of the Research. In our research we plan to modify and enrich the
syntax of the previous programs, by extending different operators, that enable
us to model the different relations among various kinds of biological entities.
The most important are new temporal variables, to organize ask and tell in the
store, and a way to model the collaborative procedures in one unique execution,
i.e. several executions at the same exact time.

Open Issues and Expected Achievements. We are also interested in studying an-
other language based on CCP, i.e. the Hybrid CC[5], and the differences between
this language and the others [2][1], that we have already examined.
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