
Chapter 4
Collective Choice for Simple Preferences

Biung-Ghi Ju

4.1 Introduction

Individual preferences often take simple structures in some restricted environments.
The so-called universal domain assumption in the three impossibility results by
Arrow (1951), Sen (1970a,b), and Gibbard (1973) and Satterthwaite (1975) have
been scrutinized and (partially) abandoned in numerous later studies, which do not
intend to identify well-behaved social welfare functions that “would be universal
in the sense that it would be applicable to any community” (Arrow 1951, p. 24).
Important breakthroughs have been made in this line of research: Gaertner (2002)
provides a comprehensive survey of the literature on domain restrictions.

Of our central interest in this survey are simple preferences with few indifference
classes such as the so-called dichotomous or trichotomous preferences as studied by
Inada (1964, 1969, 1970)1. Later investigations on collective choice with dichoto-
mous preferences have been closely connected to studies of the normative and
strategic advantages of majority and approval voting systems and of their axiomatic
foundation: see Brams and Fishburn (2002) for an extensive survey of this literature
as well as Brams and Fishburn (1978) and Fishburn (1978a,b, 1979) among others.
This survey connects old and recent theoretical developments in this literature with
a single but comprehensive perspective.

The survey starts with a brief overview of the classical impossibility results.
Section 4.2 discusses some possibility results on several domains of dichotomous
preferences. Section 4.3 discusses axiomatic foundations for majority and approval
voting systems. We investigate the logical relationship among the existing axiomatic
characterizations. In the process, we discover ways of strengthening existing results
and we offer new characterization results. Readers are referred to Xu (2010) in this

1Dichotomous preferences are also considered by Bogomolnaia and Moulin (2004) and
Bogomolnaia et al. (2005) in their investigation of well-behaved randomization mechanisms.
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volume for a compact overview of the literature on axiomatic characterizations of
majority voting.2 Section 4.4 discusses strategic voting and the robustness of vot-
ing systems. Some results associated with the Condorcet principle and realizability
of Condorcet winners in strategic voting environments are included. Section 4.5
discusses some recent developments in unconstrained multi-issue problems with
separable preferences. The section deals with strategy-proof voting schemes and
shows the conflict between Pareto efficiency and strategy-proofness on the entire
domain of separable preferences and on restricted domains of “dichotomous” or
“trichotomous” preferences. Section 4.6 discusses dichotomous opinion aggrega-
tion problems that have drawn some attention recently among scholars interested in
group identification.

4.1.1 Preliminaries

Let X be the set of all alternatives. There are infinitely many “potential” agents,
identified with the natural numbers in N: Let X and N be the set of finite subsets
of X and of N respectively. Each agent i 2 N has a preference ordering Ri that
is a complete, reflexive, and transitive binary relation over X: Let R be the set of
all preference orderings over X:We sometimes consider binary relations that are not
necessarily transitive. Let R be the set of all complete and reflexive binary relations.
For each N 2 N and each X 2 X ; let RN be the set of profiles of preference
orderings of agents in N and let UN;X � RN � fXg: Let UN � S

X2X UN;X ;

UX � S
N 2N UN;X ; and U � S

N 2N ;X2X UN;X : Subsets of UN;X ; UN ; UX ; and
U are denoted respectively by DN;X ;DN ;DX ; and D: Elements of RN are denoted
byRN ; R

0
N ; R

00
N , etc., and also byR;R0; R00, etc., whenN is clear from the context.

Elements of R are denoted by R0; R
0
0; R

00
0 , etc., and also by Ri ; R

0
i ; R

00
i , etc., when

they belong to agent i .
A social decision function on DN;X is a function f W DN;X ! R associating

with each profile .R;X/ 2 DN;X a social preference relation f .R;X/ 2 R: A
social welfare function on DN;X is a function f W DN;X ! R associating with each
profile .R;X/ 2 DN;X a social preference ordering f .R;X/ 2 R:We often denote
a social preference relation by �, its strict counterpart by �, and its indifference
by �, in order to distinguish them from individual preference relations.

LetP.X/ be the set all subsets ofX and NP.X/ the set of all non-empty subsets of
X: A social preference relation � generates a choice rule C.�I �/ W P.X/ ! P.X/

as follows: for all Y � X;

C.Y I �/ � fx 2 Y W for all y 2 Y; x � yg: (4.1)

By finiteness ofX; if � is transitive, the choice rule is non-empty valued at each non-
empty Y � X: For non-empty valuedness, each of the following weaker conditions

2 Thomson (2001) offers an extensive survey and discussion on the axiomatic method in Social
Choice Theory and Game Theory.
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is also sufficient. Preference relation � is quasi-transitive if its strict counterpart �
is transitive, that is, for all x; y; z 2 X; x � y and y � z imply x � z. It is acyclic
if there is no sequence of finite alternatives, x1; : : : ; xT 2 X such that x1 � x2,
x2 � x3; : : : ; xT �1 � xT ; xT � x1. Clearly, transitivity implies quasi-transitivity,
which implies acyclicity. Quasi-transitivity is sufficient but not necessary for the
non-emptiness of the choice rule in (4.1) (so is transitivity). Acyclicity is necessary
and sufficient for the non-emptiness of the choice rule (Sen 1970a,b, Lemma 1*1).

A collective choice quasi-rule on DN;X is a function c W DN;X � NP.X/ ! P.X/

associating with each profile .R;X; Y / � DN;X � NP .X/ a subset of Y; that is,
c.R;X; Y / � Y: A collective choice rule on DN;X is a non-empty valued collective
choice quasi-rule, namely a function c W DN;X � NP .X/ ! NP.X/ associating with
each profile .R;X; Y / � DN;X � NP .X/ a nonempty subset of Y; that is, ; ¤
c.R;X; Y / � Y: We sometimes use notation cR;X .Y / � c.R;X; Y /:

Each choice rule C W NP .X/ ! NP .X/ generates a binary relation R.C/ as
follows:

xR.C /y if and only if x 2 C.fx; yg/:
Call R.C/ the base relation of C.�/ (as in Herzberger 1973). Choice rule C is
normal if C.�/ D C.�IR.C//: Unless specified otherwise, we consider collective
choice rules generating normal choice rules. Necessary and sufficient conditions for
a choice rule to be normal are summarized in Sen (1977, pp. 64–65, Propositions 8
and 9).3

4.1.2 Classical Impossibility Results

Consider social decision functions or collective choice rules over DN;X : Here are
some basic axioms for social decision functions considered in Arrow (1951), Sen
(1970a,b), Gibbard (1973) and Satterthwaite (1975). In defining the axioms, we will
only state the properties needed for a social decision function f . That is, instead of
stating “f is said to satisfy Axiom A if it satisfies property A,” we simply state
property A.

Unrestricted Domain: DN;X D UN;X :

Transitive Social Preferences, (briefly, Transitivity): For all R 2 DN;X ; the social
preference relation at R; f .R;X/; is transitive.

Replacing transitivity with quasi-transitivity or acyclicity, we define the axioms
of quasi-transitive social preferences (briefly, quasi-transitivity) and acyclic social
preferences (briefly, acyclicity), respectively.

Weak Pareto: For all x; y 2 X; if everyone strictly prefers x to y at R; then x is
strictly preferred to y under the social preference relation f .R;X/:

Non-dictatorship: There is no person i 2 N - such a person would be a dictator -
such that for all R 2 DN;X and all x; y 2 X; if i strictly prefers x to y, then x is
strictly preferred to y under the social preference relation f .R;X/:

3 One necessary and sufficient condition in citetSen77 (properties ˛2 and �2) is the following: for
all Y 2 NP.X/; x 2 C.Y / if and only if for all y 2 Y; x 2 C.fx; yg/.
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Note that if a collective choice rule c.�/ generates a dictatorial base relationR.c/;
then by normality, the dictator’s preferred choices constitute c.R;X; Y / for all Y 2
NP .X/:

Independence of Irrelevant Alternatives: For all R;R0 2 DN;X and all Y � X; if
individual preferences of both profiles R and R0 are identical over Y; then the two
social preference relations at the two profiles generate the same choice over Y; that
is, C.Y If .R;X// D C.Y If .R0; X//.4

Replacing f .R;X/ in the above axioms with the base relation R.c/ generated
from a collective choice rule c.�/, we define the corresponding axioms for collective
choice rules. The same names are used for these axioms.

4.1.2.1 Arrow’s Theorem

Arrow (1951) investigates the existence of social decision functions satisfying the
five basic axioms in the previous section. When there are at least three alternatives,
such a function does not exists.

Theorem 4.1.1 (Arrow’s Impossibility Theorem). If there are at least three alter-
natives, then no social decision function (or collective choice rule) satisfies unre-
stricted domain, transitive social preferences, weak Pareto, non-dictatorship, and
independence of irrelevant alternatives.5

When the axiom of transitive social preferences is weakened to quasi-transitivity,
there does exist a social decision function satisfying the other four axioms. For
example, “Pareto dominance” gives a quasi-transitive, but not necessarily transitive,
social preference relation. Later works in this direction (Gibbard 1969; Guha 1972;
Mas-Colell and Sonnenschein 1972) deliver a characterization of “oligarchic” social
decision functions where a group, namely oligarchy, is decisive and each member
of the group has veto power. Replacing quasi-transitivity with acyclicity leads to
a larger family of social decision functions that may not be oligarchic but close to
oligarchy, in the sense that all decisive groups share some core members as shown
by Brown (1975) and Banks (1995).

Further progress has been made in the line of research that focuses on restricted
preferences in some specialized environments. Gaertner (2002) provides a compre-
hensive survey of the literature on restricted domains. Sections 4.2–4.6 give an
overview of results pertaining to dichotomous preferences. Section 4.2 provides
some possibility results on dichotomous domains. We list several definitions of
dichotomous domains that admit some social decision functions satisfying Arrow’s
axioms except for the axiom of unrestricted domain. Moreover, as we will see in
Sect. 4.3, majority decision stands out among other decision functions as the unique
one satisfying Arrow’s axioms and other standard axioms in the literature.

4 See (4.1) for the definition of the choice rule generated by a social preference relation.
5 Note that normality assumption for collective choice rules allows us to state this result for both
social decision function and collective choice rule at once.
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4.1.2.2 Gibbard–Satterthwaite Theorem

Here we consider a domain DN;X � UN;X such that for some NR � R; DN;X D
NRN � fXg: Preferences are primitive variables for collective choice or social deci-

sion but they are often unobservable. Agents or voters seek their own private
interests and may vote untruthfully whenever advantageous. Collective choice pro-
cedures may not work properly unless they have a certain embedded property in
themselves preventing untruthful voting. An important line of research has been
devoted to the search for truthful collective choice procedures. The seminal work
of Gibbard (1973) and Satterthwaite (1975) show that when there are at least three
alternatives, there is no truthful procedure that also satisfies unrestricted domain,
non-dictatorship, and the full-range condition.

A collective choice rule c W DN;X � NP .X/ ! NP .X/ is resolute if it always picks a
single alternative, that is, for all .R;X/ 2 DN;X and all Y 2 NP .X/; c.R;X; Y / is a
singleton. For truthful procedures, Gibbard (1973) and Satterthwaite (1975) require
that for all possible reported preferences of others, each agent i 2 N always prefers
the outcome that results from the truthful announcement of his preferences to any
outcome that he could obtain by lying.

Strategy-Proofness: For all R 2 DN;X , all Y 2 NP .X/; all i 2 N; and all R0
i 2 NR;

c..Ri ; R�i /; X; Y /Ri c..R
0
i ; R�i /; X; Y /:

An extension of strategy-proofness for set-valued rules is discussed in Sect. 4.4.

Theorem 4.1.2 (Gibbard–Satterthwaite Theorem). If there are at least three
alternatives, no resolute collective choice rule satisfies unrestricted domain, non-
dictatorship, strategy-proofness and the full-range condition.

Important positive results are derived in later works pertaining to specialized envi-
ronments that accommodate some natural restrictions on preferences. We will
survey the results pertaining to dichotomous domains in Sects. 4.2 and 4.4 and the
domain of separable preferences in Sect. 4.5. Moulin (1980) characterizes a large
family of strategy-proof rules on the domain of single-peaked preferences over pub-
lic alternatives that are ordered on a line. Any such rule chooses a “generalized
Condorcet winner.” In the case of private good rationing model with single peaked
preferences, the family of strategy-proof rules is much more restricted as shown by
Sprumont (1991).

4.1.2.3 Sen’s Paretian Liberal Paradox

Sen (1970a,b) investigates the existence of a social decision function that satisfies
weak Pareto and a minimal form of liberalism, as well as the condition of acyclic
social preferences and unrestricted domain. Again the result is negative.

His minimal notion of liberalism requires that there should be at least two agents
who are decisive when making social comparison of a pair of alternatives. Formally,
we say that agent i is decisive for x and y with x ¤ y, if for all R 2 DN;X , xPiy

implies x �f .R;X/ y.
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Minimal Liberalism: There are at least two agents who are decisive for a pair of
alternatives.

His main result, known as the Paretian liberal paradox, is the following.

Theorem 4.1.3 (Sen’s Paradox). No social decision function (or collective choice
rule) satisfies unrestricted domain, acyclic social preferences, weak Pareto, and
minimal liberalism.

Gibbard (1974) pushes this negative result to the most extreme form by showing that
Sen’s liberalism, properly extended in the model of collective decision with personal
components, cannot be well-defined. He provides a simple preference profile for
which any choice of an alternative necessarily violates at least one liberal right: this
is known as Gibbard’s paradox.

We will ask whether Sen’s paradox holds on the dichotomous preferences domain
for the problems of unconstrained choice of multiple issues in Sects. 4.5 and 4.6.

4.2 Possibility Results on Some Dichotomous Domains

Consider DN;X � UN;X such that for some NR � R; DN;X D NRN � fXg:
Throughout this section, we consider several examples of “dichotomous” domains.
On these domains, there do exist some social decision functions satisfying Arrow’s
axioms (in Theorem 4.1.1) except for unrestricted domain. This is shown by some
existing results that we overview here. We also offer some characterizations impos-
ing Arrow’s axiom of independence of irrelevant alternatives together with other
standard axioms.

For allR 2 DN;X and all x; y 2 X; letNx;y.R/ � fi 2 N W x Pi yg be the set of
agents who prefer x to y (or vote for x against y) and nx;y.R/ � jfi 2 N W x Pi ygj
the number of agents who prefer x to y (or the number of votes x wins against y).
Independence of irrelevant alternatives can be restated as follows:

Independence of Irrelevant Alternatives: For all R;R0 2 DN;X and all x; y 2
X; if Nx;y.R/ D Nx;y.R

0/ and Ny;x.R
0/ D Ny;x.R/, then x �f .R/ y implies

x �f .R0/ y:

The next axiom is stronger and is crucial for strategy-proofness.

Monotonicity: For all R;R0 2 DN;X and all x; y 2 X; if Nx;y.R/ � Nx;y.R
0/ and

Ny;x.R
0/ � Ny;x.R/, then x �f .R/ y implies x �f .R0/ y:

Applying monotonicity when Nx;y.R/ D Nx;y.R
0/ and Ny;x.R

0/ D Ny;x.R/

yields independence of irrelevant alternatives.
The next axiom, considered by MaY (1952), plays a key role in his and other

axiomatic characterizations of majority decision.

Positive Response: For all R;R0 2 DN;X and all x; y 2 X; if Nx;y.R/ �
Nx;y.R

0/; Ny;x.R
0/ � Ny;x.R/, and at least one of the two inclusions is strict,

then x �f .R/ y implies x �f .R0/ y:
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Note that when there are only two alternatives, say x and y, positive response
implies monotonicity because then,Nx;y.R/ D Nx;y.R

0/ andNy;x.R
0/DNy;x.R/,

which is the case relevant not to positive response but to monotonicity, imply
R D R0 and so application of monotonicity in this case is trivial. However, with
more than two alternatives, this implication no longer holds, and there is no logical
relation between the two axioms.

The next two axioms require symmetric treatment of individuals and of alterna-
tives, respectively.

Anonymity: For all permutations on N; � W N ! N; and all R 2 DN;X ; f .R/ D
f .R� /; where R� 2 DN;X is such that for all i 2 N; R�i D R�.i/:

Neutrality: For all R 2 DN;X and all x; y; x0; y0 2 X; if R0 2 DN;X is the
preferences profile obtained after relabeling x and y in profile R with x0 and y0
respectively, then x �f .R/ y if and only if x0 �f .R0/ y

0.
The best known decision function satisfying the above axioms is majority deci-

sion function fMAJ.�/, which maps each R 2 DN;X into a social preference relation
�fMAJ.R/ defined as follows: for all x; y 2 X ,

x �fMAJ.R/ y if and only if nx;y.R/ 	 ny;x.; R/:

In fact, there is a large family of monotonic decision functions, of which the special
example is majority decision. In order to define this family, we need the following
notation and concepts. Let d� � f.L1; L2/ W L1; L2 2 P.N/;L1 \ L2 D ;g be
the set of all pairs of disjoint subsets of N: A decisive structure for a pair x; y 2 X;
dx;y is a non-empty subset of d�such that for all .L1; L2/; .L

0
1; L

0
2/ 2 d�;

if .L1; L2/ 2 dx;y ; L1 � L0
1; and L0

2 � L2; then .L0
1; L

0
2/ 2 dx;y : (4.2)

Call this property d-monotonicity. A decisive structure d � .dx;y/x;y2X is a profile
of decisive structures for pairs of alternatives such that for all x; y 2 X and all
.L1; L2/ 2 d�;

if .L1; L2/ … dx;y ; then .L2; L1/ 2 dy;x : (4.3)

Call this property d-completeness. A decisive structure d represents the social
decision function f d defined as follows: for all R 2 DN;X and all x; y 2 X;

x �f d.R/ y if and only if .Nx;y.R/;Ny;x.R// 2 dx;y :

Note that by (4.2), f d is monotonic and that by (4.3), the social preference rela-
tions chosen by f d are complete. It is easy to show that neutrality of f d requires
dx;y D dx0;y0 for all x; y; x0; y0 2 X: Conversely, any monotonic social decision
function f generates a decisive structure df and is represented by it. To show this,
define d

f
x;y as follows: for all .L1; L2/ 2 d�; .L1; L2/ 2 d

f
x;y if and only if for

some R 2 DN;X ; x �f .R/ y; Nx;y.R/ � L1; and L2 � Ny;x.R/: To prove (4.3),

suppose .L1; L2/ 2 d�nd
f
x;y : Consider R 2 DN;X such that Nx;y.R/ D L1 and
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Ny;x.R/ D L2.6 Then not x �f .R/ y and by completeness of f .R/, y �f .R/ x:

This shows .L2; L1/ 2 d
f
y;x : Monotonicity of f directly implies (4.2). Therefore

we obtain:

Proposition 4.2.1. A social decision function satisfies monotonicity if and only if it
is represented by a decisive structure.

For anonymous and neutral decision functions, decisive structures representing them
take a simple form. Let n� � f.n1; n2/ W n1; n2 2 f0; 1; : : : ; ng; and n1 C n2 
 ng:
A decisive index structure for a pair x; y; nx;y is a non-empty subset of n� such
that for all .n1; n2/; .n

0
1; n

0
2/ 2 n�;

if .n1; n2/ 2 nx;y; n1 
 n0
1; and n0

2 
 n2; then .n0
1; n

0
2/ 2 nx;y : (4.4)

Call this n-monotonicity. A decisive index structure n � .nx;y/x;y2X is a profile of
decisive index structures for pairs of alternatives such that for all x; y 2 X and all
.n1; n2/ 2 n�;

if .n1; n2/ … nx;y; then .n2; n1/ 2 ny;x : (4.5)

Call this n-completeness Note that for neutral social decision functions represented
by a decisive index structure n, neutrality and n-completeness imply the following:
for all k 2 f0; 1; : : : ; Œn=2�g and all x; y; x0; y0 2 X with x ¤ y and x0 ¤ y0,

nx;y D nx0;y0 and .k; k/ 2 nx;y; (4.6)

where Œn=2� is the greatest integer that is less than or equal to n=2. Call this
n-neutrality. This property and n-monotonicity together imply that for all k 2
f0; 1; : : : ; Œ.n � 1/=2�g and all x; y; x0; y0 2 X with x ¤ y and x0 ¤ y0,
.k C 1; k/ 2 nx;y D nx0;y0 . Combining this with (4.6), we get: for all .n1; n2/ 2 n�
and all x; y; x0; y0 2 X with x ¤ y and x0 ¤ y0,

nx;y D nx0;y0 , and if n1 	 n2; then .n1; n2/ 2 nx;y : (4.7)

Therefore we obtain:

Proposition 4.2.2. A social decision function satisfies monotonicity and anonymity
if and only if it is represented by a decisive index structure. Adding neutrality, we
characterize the subfamily of social decision functions represented by an n-neutral
decisive index structure. Moreover, these n-neutral index structures satisfy (4.7).

When preferences are linear (no indifference), Propositions 4.2.1 and 4.2.2 give
characterizations of what are known as “monotonic simple games.” Since we will
mostly focus on dichotomous domains where indifference is prevalent, decisive
structures are more relevant to our later discussion.

6 Existence of such R is the basic richness assumption for DN;X that we need in order to obtain
Proposition 4.2.1.
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4.2.1 Two Alternatives

The simplest example of dichotomous domains is of course when there are only
two alternatives, say a; b (that is, X D fa; bg). Then any social decision function
satisfies transitive social preferences trivially. There are numerous social decision
functions satisfying all other axioms in Arrow’s theorem. For example, the social
decision functions represented by a monotonic and non-dictatorial decisive structure
satisfy all of Arrow’s axioms. There are also numerous strategy-proof and non-
dictatorial collective choice functions. An important property for strategy-proofness
in this binary choice framework is monotonicity. Since there are only two alter-
natives, Sen’s minimal liberalism is hardly satisfied unless the set of admissible
preferences is extremely restricted.

Majority decision function stands out among other well-behaved social decision
functions, as shown by MaY (1952). The key axiom in his axiomatic characteriza-
tion of majority decision is positive response.

Now, to find out the implication of positive response, consider a function f rep-
resented by decisive structure d: Let R;R0 be the two profiles in the premise of the
axiom of positive response. Assume x �f .R/ y; that is, .Nx;y.R/;Ny;x.R// 2
dx;y : Positive response, then requires x �f .R0/ y; which implies .Ny;x.R

0/;
Nx;y.R

0// … dy;x : Thus positive response implies the following extra condition
on decisive structures: for all x; y 2 X and all .L1; L2/; .L

0
1; L

0
2/ 2 d� with x ¤ y

and .L1; L2/ ¤ .L0
1; L

0
2/,

if .L1; L2/ 2 dx;y ; L1 � L0
1; and L0

2 � L2; then .L0
2; L

0
1/ … dy;x : (4.8)

For decisive index structures, this condition can be written as: for all x; y 2 X and
all .n1; n2/; .n

0
1; n

0
2/ 2 n� with x ¤ y and .n1; n2/ ¤ .n0

1; n
0
2/,

if .n1; n2/ 2 nx;y ; n1 
 n0
1; and n0

2 
 n2; then .n0
2; n

0
1/ … ny;x : (4.9)

For a neutral social decision function represented by a decisive index structure n;
if there is .n1; n2/ 2 n� such that n1 < n2 and .n1; n2/ 2 nx;y , then by (4.9),
.Œn1Cn2

2
�C 1; Œn1Cn2

2
�/ … ny;x , which contradicts to (4.7). Therefore, neutrality and

positive response together imply the following: for all x; y2X and all .n1; n2/2n�;

if n1 < n2; then .n1; n2/ … nx;y: (4.10)

Combining (4.7) and (4.10), we obtain:

Theorem 4.2.1 (MaY 1952). When there are two alternatives, a social decision
function on UN;X satisfies anonymity, neutrality, and positive response if and only if
it is majority decision function.

An extended version of this result with more than two alternatives is provided in
Theorem 4.3.1. Aşan and Sanver (2002) replaces positive response with the com-
bination of “path independence” and Pareto (if no voter prefers b to a and some
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voter prefers a to b, then a should be socially preferred to b). In the same frame-
work, Sanver (2009) imposes weak Pareto, anonymity, neutrality, and monotonic-
ity, together with some additional axioms, and characterizes variants of majority
decision function.

4.2.2 Two Fixed Indifference Classes

In this section, we assume that there are two types of alternatives and all alternatives
of a type are indifferent. This assumption is formulated by the following domain
property.

Definition 4.2.1. A domain D2f ic
N;X � UN;X has the property of two-fixed-

indifference-class if alternatives are partitioned into two fixed classes and for all
R 2 D2f ic

N;X and all i 2 N; the two classes constitute the two indifference sets of
Ri : Let a; b 2 X be two representative alternatives and the two fixed classes are
denoted by Xa and Xb :

On such a domain, majority decision function do satisfy transitivity (as is implied
by Theorem 4.2.2). Hence there does exist a social decision function satisfying
all of Arrow’s axioms. A characterization of a family of transitive social decision
functions is provided in the next proposition.

Let f W D2f ic
N;X ! R be a social decision function satisfying monotonicity and

transitivity. Let d be a decisive structure representing f: Suppose that for some
x; y 2 Xa and some R 2 D2f ic

N;X ; x �f .R/ y: Then by monotonicity, the strict

social ranking holds at all other preference profiles, that is, for all R0 2 D2f ic
N;X ;

x �f .R0/ y: This is because Nx;y.R/ D Nx;y.R
0/ D Ny;x.R/ D Ny;x.R

0/ D ;:
Then the ranking between x and y can be decided by dx;y and dy;x such that

.;;;/ 2 dx;y and .;;;/ … dy;x : Similarly, if for some R 2 D2f ic
N;X ; x �f .R/ y;

then this social indifference holds at all other preference profiles and .;;;/ 2 dx;y

and .;;;/ 2 dy;x : Therefore, there is a fixed social preference relation over alterna-

tives in Xa and over alternatives in Xb , which holds at all R 2 D2f ic
N;X : Since social

decision function f satisfies transitivity, we may order elements in the two sets Xa

and Xb in the same order of their fixed social rankings; that is, elements of Xa are
a1 � a2 � � � � � aq and elements of Xb are b1 � b2 � � � � � br : Strict ranking
among a1; : : : ; aq or among b1; : : : ; br is excluded when we require the following
mild axiom:

Indifference Unanimity: For all R and all x; y 2 X; if for all i 2 N; x Ii y; then
x �f .R/ y:

The next result characterizes a family of functions satisfying transitivity, mono-
tonicity, and indifference unanimity.

Proposition 4.2.3. Consider a domain with the property of two-fixed-indifference-
class. Denote two representative alternatives in the two fixed classes by a and b and
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the two fixed classes by Xa and Xb . A social decision function satisfies transitivity,
monotonicity, and indifference unanimity if and only if it is represented by a decisive
structure d � .dx;y/x;y2X such that for all x; x0 2 Xa and all y; y0 2 Xb; .;;;/ 2
dx;x0 D dy;y0 and for all x 2 Xa and all y 2 Xb; dx;y D da;b and dy;x D db;a:

Proof. By indifference unanimity, for all R 2 D2f ic
N;X ; alternatives in Xa are all

socially indifferent and similarly for Xb : Define dx;y as follows: for all .L1; L2/ 2
d�; .L1; L2/ 2 dx;y if and only if for some R 2 D2f ic

N;X ; x �f .R/ y; Nx;y.R/ �
L1; and L2 � Ny;x.R/: By indifference unanimity, for all x; x0 2 Xa and all
y; y0 2 Xb; .;;;/ 2 dx;x0 D dy;y0 : Now let x 2 Xa and y 2 Xb : For all R 2
D2f ic

N;X ; since x �f .R/ a and y �f .R/ b; then by transitivity, x �f .R/ yit if
and only if a�f .R/b: This and the construction of d imply dx;y D da;b : Similarly,
dy;x D db;a: ut

4.2.3 Two Indifference Classes

We now consider domains where individual preferences can have at most two
indifference classes.

Definition 4.2.2. A domain D2ic
N;X � UN;X has the property of two-indifference-

class if for all R 2 D2ic
N;X , all triples x; y; z 2 X and all i 2 N; Ri partitions

fx; y; zg into at most two indifference classes.

Clearly any domain with the property of two-fixed-indifference-class has this prop-
erty, but not vice versa. On such domains, majority decision function always
generates a transitive social preference relation.

Theorem 4.2.2 (Inada 1964). On any domain with the property of two-
indifference-class, majority decision function satisfies transitivity.

Proof. Let x; y; z 2 X be three distinct alternatives. If R 2 D2ic
N;X ; then for all

i 2 N; Ri is one of the following seven “dichotomous” preference orderings:
(1) xIiyIi z; (2) xIiyPi z; (3) xPiyIi z; (4) xIi zPiy; (5) yPixIi z; (6) yIi zPix;

(7) zPixIiy: Let n1; : : : ; n7 be the numbers of agents of each type. Note that
nx;y.R/ D n3 C n4; ny;x.R/ D n5 C n6; ny;z.R/ D n2 C n5; nz;y.R/ D n4 C n7;

nx;z.R/ D n2 C n3; and nz;x D n6 C n7: To show transitivity of social preference
relation, suppose x �fMAJ.R/ y and y �fMAJ.R/ z: Then

n3 C n4 	 n5 C n6 and n2 C n5 	 n4 C n7: (4.11)

Combining the two inequalities, we obtain n2 Cn3 Cn4 Cn5 	 n4 Cn5 Cn6 Cn7;

that is,
n2 C n3 	 n6 C n7: (4.12)

This implies nx;z.R/ 	 nz;x.R/: Therefore, x �fMAJ.R/ z: ut
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In fact, majority decision is the only transitive social decision function satisfying
monotonicity, anonymity, and neutrality, except for degenerate indifference function
that is the constant social decision function taking the complete indifference as its
value (alternatives are all indifferent).

Theorem 4.2.3 (Ju 2009b). Consider a domain with the property of two-
indifference-class.7 A social decision function satisfies monotonicity, anonymity,
neutrality and transitivity if and only if it is either majority decision function or
degenerate indifference function.

Proof. By Theorem 4.2.2, majority decision function is transitive. It also satisfies
the other axioms by Proposition 4.2.2. In order to prove the converse, let f be
a social decision function on D2ic

N;X satisfying monotonicity, anonymity, neutrality
and transitivity. By Proposition 4.2.2, f is represented by an n-neutral index struc-
ture n � .nx;y/x;y2X and the index structure satisfies (4.7). Let n0 � nx;y for all
x; y 2 X with x ¤ y. Throughout the proof, we follow the same classification
of dichotomous preferences over fx; y; zg as in the proof of Theorem 4.2.2. For all
k D 1; : : : ; 7; let nk the number of persons with the dichotomous preferences of
type k. Recall nx;y.R/ D n3 C n4; ny;x.R/ D n5 C n6; ny;z.R/ D n2 C n5;

nz;y.R/ D n4 C n7; nx;z.R/ D n2 C n3; and nz;x.R/ D n6 C n7:

Step 1: If .p; q/ 2 n0 and p; q 	 1, then .p � 1; q � 1/ 2 n0.

Let .p; q/ 2 n0 be such that p; q 	 1. Consider a profile R consisting of p � 1

agents of type 3, q�1 agents of type 6, 1 agent of type 4 and type 5, and n�.pCq/
agents of type 1 (thus there is no type 1 agent if p C q D n). That is, at R, n1 D
n � .p C q/, n2 D 0, n3 D p � 1, n4 D 1, n5 D 1, n6 D q � 1, and n7 D 0.
Then nx;y.R/ D p, ny;x.R/ D q, ny;z.R/ D 1, nz;y.R/ D 1, nx;z.R/ D p � 1,
and nz;x.R/ D q � 1. Since .p; q/ 2 n0, x �f .R/ y. By (4.7), .1; 1/ 2 n0 and so
y �f .R/ z. Then by transitivity, x �f .R/ z, which means .p � 1; q � 1/ 2 n0.

Step 2: maxfq � p W .p; q/ 2 n0g D n or 0.

Let .p�; q�/ 2 n0 be such that

q� � p� D maxfq � p W .p; q/ 2 n0g: (4.13)

Suppose q� �p� ¤ 0. Then applying Step 1 repeatedly p�-times, we show .0; q� �
p�/ 2 n0. Then since q� � p� 	 1, by n-monotonicity, .0; 1/ 2 n0.

Suppose by contradiction q� � p� ¤ n. Then evidently q� 
 n � 1. Thus there
is a profile R consisting of q� � p� agents of type 6, 1 agent of type 7, and the rest
of n � .q� � p� C 1/ agents of type 1 (note that q� � p� C 1 
 q� C 1 
 n and
so the number of agents of type 1 is a non-negative integer and the total number of
agents is n). Then at R, n1 D n � .q� � p� C 1/, n2 D n3 D n4 D n5 D 0,
n6 D q� � p�, and n7 D 1. Thus nx;y.R/ D 0, ny;x.R/ D q� � p�, ny;z.R/ D 0,

7 A stronger property, adding a domain richness to the property of two-indifference-class, is needed
to prove this result. See Ju (2009b) for details.



4 Collective Choice for Simple Preferences 53

nz;y.R/ D 1, nx;z.R/ D 0, and nz;x.R/ D q� �p� C1. Since .0; q� �p�/; .0; 1/ 2
n0, then x �f .R/ y and y �f .R/ z. By transitivity, x �f .R/ z, which implies
.0; q� � p� C 1/ 2 n0, contradicting (4.13).

Step 3: f is either majority decision function or degenerate indifference function.

When q� � p� D 0, this and (4.7) imply that f is majority decision function.
When q� � p� D n, .p�; q�/ D .0; n/. Thus by n-monotonicity, n0 D n�. Hence
for all R 2 D2ic

N;X and all x; y 2 X , .nx;y.R/; ny;x.R//; .ny;x.R/; nx;y.R// 2 n0;
so x �f .R/ y. Therefore, f is degenerate indifference function. ut
Remark 4.2.1. Maskin (1995) proved that on the domain of linear preference pro-
files with an odd number of voters, majority decision function is “most transitive”
among social decision functions satisfying monotonicity, anonymity, and neutral-
ity (in fact, he considers independence of irrelevant alternatives and weak Pareto
instead of monotonicity). A similar result without the odd-number-assumption is
obtained by Campbell and Kelly (2000). These results rely on some domain rich-
ness properties that our dichotomous domain does not have; e.g., Campbell and
Kelly’s characterization relies on the availability of single-peaked preferences in the
domain. In addition, dichotomous preferences do not have linearity assumed in the
above two papers. Moreover, our result is with transitivity on the “entire domain
under consideration” and for both odd or even numbers of voters.

Other social decision functions satisfying monotonicity, anonymity, and neutrality
violate transitivity. However, all these functions satisfy acyclicity.

Theorem 4.2.4 (Ju 2009b). On any domain with the property of two-indifference-
class, all social decision functions with monotonicity, anonymity, and neutrality
satisfy acyclicity.

Proof. Let f be a social decision function on D2ic
N;X satisfying the three axioms. By

Proposition 4.2.2, f is represented by an n-neutral index structure n � .nx;y/x;y2X

which satisfies (4.7). For all x; y 2 X with x ¤ y, let n0 � nx;y .

Step 1: For all x; y 2 X and all R 2 D2ic
N;X ; if x �f .R/ y, then nx;y.R/ > ny;x.R/:

This follows directly from (4.7).

Step 2: For all x; y; z 2 X and all R 2 D2ic
N;X , if nx;y.R/ > ny;x.R/ and ny;z.R/ >

nz;y.R/; then nx;z.R/ > nz;x.R/.
The proof of this step uses a similar argument as in the proof of Theorem 4.2.2.

Let nx;y.R/ > ny;x.R/ and ny;z.R/ > nz;y.R/: Then the two inequalities in (4.11)
hold with strict inequality and from them, (4.12) is obtained as a strict inequality,
which means nx;z.R/ > nz;x.R/:

Step 3: If R 2 D2ic
N;X and a sequence of finite alternatives, x1; : : : ; xT 2 X are such

that x1 �f .R/ x2, x2 �f .R/ x3; : : : ; xT �1 �f .R/ xT , then x1 �f .R/ xT ; thus
xT �f .R/ x1 does not hold.

If x1 �f .R/ x2 and x2 �f .R/ x3; then by Step 1, nx1;x2
.R/ > nx2;x1

.R/ and
nx2;x3

.R/ > nx3;x2
.R/, which imply by Step 2, nx1;x3

.R/ > nx3;x1
.R/. Applying

this argument iteratively, we obtain, nx1;xT
.R/ > nxT ;x1

.R/; which implies, by
(4.7), x1 �f .R/ xT . ut
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4.2.4 Two Fixed Classes Separated by Strict Preferences

Now we consider a domain where alternatives are separated into two fixed sub-
sets and any alternative in one is always preferred to any alternative in the other.
Formally:

Definition 4.2.3. A domain D2fcs
N;X � UN;X has the property of two-fixed-class-

separation if for all distinct triples x; y; z 2 X; there is a nonempty proper subset
A � fx; y; zg such that for all R 2 D2fcs

N;X and all i 2 N; either [for all a 2 A and
all b 2 fx; y; zgnA; aPib] or [for all a 2 A and all b 2 fx; y; zgnA; bPia].8

Theorem 4.2.5 (Inada 1964). On any domain with the property of two-fixed-class-
separation, if the number of agents is odd, majority decision function satisfies
transitivity.

Proof. Let x; y; z 2 X be three distinct alternatives. Without loss of generality,
assume that the two fixed classes are A � fxg and B � fy; zg: Let R 2 D2fcs

N;X .
To prove transitivity, we need to consider the following six cases: (1) x �fMAJ.R/

y and y �fMAJ.R/ z, (2) x �fMAJ.R/ z and z �fMAJ.R/ y; (3) y �fMAJ.R/ z and
z �fMAJ.R/ x; (4) z �fMAJ.R/ y and y �fMAJ.R/ x; (5) y �fMAJ.R/ x and x �fMAJ.R/

z; (6) z �fMAJ.R/ x and x �fMAJ.R/ y: Arguments for (1) and (2) are similar and also
the arguments for (3) and (4) and for (5) and (6) are similar. Thus we only consider
(1), (3), and (5) below.

Note that by the property of two-fixed-class-separation,Nx;y.R/ D Nx;z.R/ and
Ny;x.R/ D Nz;x.R/. Thus by independence of irrelevant alternatives and neutrality
of fMAJ,

x �fMAJ.R/ y () x �fMAJ.R/ z: (4.14)

Case 1: x �fMAJ.R/ y and y �fMAJ.R/ z.
By (4.14), x �fMAJ.R/ y implies x �fMAJ.R/ z:

Case 2: y �fMAJ.R/ z and z �fMAJ.R/ x:

By (4.14), z �fMAJ.R/ x implies y �fMAJ.R/ x:

Case 3: y �fMAJ.R/ x and x �fMAJ.R/ z:
By (4.14), y �fMAJ.R/ x implies z �fMAJ.R/ x: Hence z �fMAJ.R/ x; which

implies nz;x.R/ D nx;z.R/:By the property of two-fixed-class-separation,nz;x.R/C
nx;z.R/ D n: Therefore n is an even number, contradicting the initial assumption.
Therefore, Case 3 does not occur on the domain. ut

With a stronger condition on the domain, we can show that except for degen-
erate indifference function, majority decision function is the only transitive social
decision function satisfying the three standard axioms.

8 Sakai and Shimoji (2006) study “dichotomous domains” that are close to domains with two-fixed-
class-separation. Assuming that the domain of individual preferences can be either dichotomous or
universal, they find some domain conditions for the existence of Arrovian social welfare function.
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Theorem 4.2.6 (Ju 2009b). Consider a domain with the property of two-fixed-
class-separation.9 Assume that all preferences in this domain are linear and that
there is an odd number of agents. Then a social decision function satisfies mono-
tonicity, anonymity, neutrality, and transitivity if and only if it is either majority
decision function or degenerate indifference function.

Proof. Let f be a social decision function on DN;X satisfying the four axioms.
By Proposition 4.2.2, f is represented by a decisive structure n � .nx;y/x;y2X

satisfying (4.7). Let n0 � nx;y for all distinct x; y 2 X . By (4.7) and the assumption
that all preference orderings on domain DN;X are linear, in order to show that f is
majority decision function, we only have to show that for all .n1; n2/ 2 n� with
n1 C n2 D n, if n1 < n2, then .n1; n2/ … n0. Suppose that f is not majority
function and so for some .n1; n2/ 2 n�, n1 C n2 D n, n1 < n2, and .n1; n2/ 2 n0.
Let x; y; z 2 X be three distinct alternatives. Without loss of generality, assume that
the two fixed classes are A � fxg and B � fy; zg: Let R 2 DN;X be such that
nx;y.R/ D n2, ny;x.R/ D n1, and for all i 2 N , yPi z. Then by the property of
two-fixed-class-separation, nx;z.R/ D n2 and nz;x.R/ D n1. Since .n1; n2/ 2 n0,
y �f .R/ x and z �f .R/ x. By (4.7), the reverse relations also hold and therefore
y �f .R/ x and z �f .R/ x. Finally by transitivity, y �f .R/ z. Since every agent
prefers y to z at R by construction, this implies that .0; n/ 2 n0, which means that
f is degenerate indifference function. ut

When there are even number of agents, the result does not hold, as shown by
the following example due to Inada (1964). There are four agents with xPiyPi z and
four agents with yIi zPix: Then majority decision gives x �fMAJ.R/ y; y �fMAJ.R/ z;
and x �fMAJ.R/ z, violating transitivity. However, note that this social preference
relation is quasi-transitive. In fact, for quasi-transitivity, we do not need the odd
number assumption. Moreover, any social decision function satisfying monotonicity
and neutrality is quasi-transitive.

Theorem 4.2.7 (Ju 2009b). On any domain with the property of two-fixed-class-
separation, all social decision functions with monotonicity and neutrality satisfy
quasi-transitivity.

Proof. The proof is similar to the proof of the above theorem with the replacement
of weak majority preference relation with the strict one. Note that the arguments
used for Cases 1–2 in the above proof do not depend on the fact that the social
decision function is majority decision function. The same arguments go through for
any social decision function as long as it is represented by a decisive structure and
is neutral. Case 3 will not occur now because y �f .R/ x implies z �f .R/ x; which
contradicts x �f .R/ z: ut

Note that monotonicity in Theorem 4.2.7 can be weakened to independence of
irrelevant alternatives.

9 A stronger property, adding a domain richness to two-fixed-class-separation, is needed to prove
this result. See Ju (2009b) for details.
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4.3 Axiomatic Foundations for Majority Decision
and Approval Voting

Throughout this section, assume that the set of alternatives X is fixed. Assume fur-
ther that as in Sect. 4.2.3, preferences can have at most two indifference classes.
These preferences are called dichotomous preferences. Each dichotomous prefer-
ence is characterized by the set of best, or preferred alternatives. Thus we use
B0 2 NP .X/ to denote the dichotomous preference of which the set of preferred
alternatives is B0 and use D � NP.X/ to denote the set of dichotomous preferences.
In what follows, we fix the feasibility set to be equal to X and focus on character-
istics of collective choice rules on the set of admissible preference profiles. Thus
given a domain of dichotomous preferences D � D, a collective choice rule in this
section is a non-empty valued correspondence c W SN 2N DN ! NP.X/. Similarly
a collective choice quasi-rule is a correspondence c W SN 2N DN ! P.X/ that
may take the empty set as its value.

Rule c.�/ is anonymous if the identities of persons are inessential, that is, for
all N;N 0 2 N with jN j D jN 0j and all one-to-one functions � W N ! N 0;
c..Bi /i2N / D c..B�.i//i2N /. A profile of dichotomous preferences may be reduced
to a function � W D ! f0; 1; 2; : : :g mapping each dichotomous preference in the
domain to the number of agents who have this preference. Let ….D/ be the set of
all such functions. With a slight abuse, we refer to elements in ….D/ preference
profiles. We often denote an anonymous rule (or quasi-rule) c W ….D/ ! P.X/ as
a function on ….D/ instead of its original domain

S
N 2N DN :

A voting system is a pair of a set of valid ballots B � P.X/ and a non-empty
valued correspondence � W SN 2N BN ! NP .X/ on the set of all possible ballot
profiles. We call �.�/ a ballot aggregator. Voting system .B; �/ is anonymous if
for all N;N 0 2 N with jN j D jN 0j and all one-to-one functions � W N ! N 0;
�..Bi /i2N / D �..B�.i//i2N /: For an anonymous voting system, the identities of
voters are inessential. Reducing this information, a ballot response profile � W B !
f0; 1; 2; : : :g maps each valid ballot into the number of voters casting this ballot. Let
….B/ be the set of all ballot response profiles. For an anonymous voting system
.B; �/; for all pairs N;N 0 2 N , if .Bi /i2N and .B 0

i /i2N 0 generate the same ballot
response profile, then �..Bi /i2N / D �..B 0

i /i2N 0/: Therefore we may define a ballot
aggregator� as a function ' on the set of ballot response profiles….B/. Conversely,
any such function ' W ….B/ ! NP .X/ defines an anonymous ballot aggregator. We
call ' W ….B/ ! NP .X/ a voting rule. When voters have dichotomous preferences
and reveal their true preferences using ballot response profiles in ….B/, a voting
system .B; '/ gives the collective choice rule identical to the voting rule '.

Throughout Sects. 4.3 and 4.4, we assume that ballot space B satisfies the basic
richness, consisting of the following two properties: for all distinct pairs x; y 2 X

and all permutations � W X ! X ,

There is B0 2 B such that x 2 B0 and y … B0: (4.15)

For all B0 2 B; �.B0/ 2 B: (4.16)
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Given a profile � 2 ….D/; for all x 2 X; let n.x; �/ � P
B02DWx2B0

�.B0/ be
the number of votes x wins at � . Majority rule on D, cMAJ W ….D/ ! NP .X/; maps
each profile � 2 ….D/ into cMAJ.�/ � fx 2 X W for all y 2 X; n.x; �/ 	 n.y; �/g.
In the case of voting systems, majority rule is denoted by �MAJ or 'MAJ. Note that
for dichotomous preferences, there always exists a Condorcet winner since major-
ity decision function is transitive (Theorem 4.2.2). Thus the Condorcet rule CW.�/
mapping each preference profile into the set of Condorcet winners is well-defined,
and it coincides with majority rule. In general, any transitive social decision func-
tion f W DN ! R on the restricted domain of dichotomous preferences D � P.X/

generates a collective choice rule as in (4.1). Since we fix the set of alternatives
X in our definition of collective choice rules, not all social decision functions can
be generated by collective choice rules. A collective choice rule can be consid-
ered as generating a social decision function of which the social preferences are
dichotomous.

In the following two subsections, we overview some important axiomatic char-
acterizations for majority rule and approval voting. A more focused overview of
the literature considering the ballot space B D NP.X/ and approval voting is pro-
vided in Xu (2010) in this volume. Most of the characterizations we overview are
accompanied by some conditions on ballot space B that are sufficient for the char-
acterization. Thus, we will clarify to what ballot spaces (or voting procedures) each
characterization of majority rule applies, which was not all clear in the literature.
We will find that some of the results apply to a very wide variety of ballot spaces
(voting procedures) and others apply only to the ballot space for approval voting.

Throughout this section, our discussion is focused on voting systems. However,
most results on voting systems also apply to collective choice rules after the straight-
forward extension of axioms and conditions we state for voting systems. When there
is no need of distinguishing ballot space B and the same domain of dichotomous
preferences, we use B to denote both the ballot space and the preference domain.

4.3.1 Characterizations of Majority Voting Systems

4.3.1.1 Basic Axioms in the Fixed Population Model

In this section, we define basic axioms for voting systems in a fixed population
framework. Let N � f1; 2; : : : ; ng be the set of voters.

The first axiom says that alternatives should be treated equally. In other words,
changing their labels should not make any essential change in the voting outcome.

Neutrality: For all B 2 BN and all permutations � W X ! X; �.�.B// D
�.�.B//:

The next axiom introduced by Baigent and Xu (1991) has the flavor of anonymity.
It embodies the condition that each vote for an alternative by a voter has the same
weight independently of what other alternatives are in his ballot.
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Independence of Vote Exchange: For all B 2 BN and all i; j 2 N; if x 2 Bi nBj

and y 2 Bj nBi ; then letting B 0
i � ŒBi nfxg� [ fyg and B 0

j � ŒBj nfyg� [ fxg;10

�.B 0
i ; B

0
j ; B�fi;j g/ D �.B/.11

When only singleton ballots are available, this axiom coincides with anonymity.
The next axiom pertains to even more drastic vote reallocations than vote exchange.

Independence of Vote Reallocation: For all B;B 0 2 BN ; if for all x 2 X;

n.x;B/ D n.x;B 0/; then �.B/ D �.B 0/:
Clearly, independence of vote reallocation implies independence of vote

exchange.
The next axiom says that when two alternatives win the same number of votes,

they should be treated equally.

Equal Treatment of Equal Votes: For all B 2 BN and all x; y 2 X; if n.x;B/ D
n.y;B/; then x 2 �.B/ if and only if y 2 �.B/.12

This axiom is an implication of neutrality and independence of vote exchange as
shown by the next lemma. Baigent and Xu (1991) obtain this implication in a richer
setting with choice aggregation procedures.

Lemma 4.3.1. Neutrality and independence of vote exchange together imply equal
treatment of equal votes.

Proof. Let B 2 BN and x; y 2 X be such that n.x;B/ D n.y;B/: Since
n.x;B/ D n.y;B/; then N.x;B/nN.y;B/ and N.y;B/nN.x;B/ have the same
cardinality. Thus it is possible to exchange one x-vote and one y-vote between
agents in the former set and agents in the latter set one by one. Let B 0 2 BN be
the profile obtained after these vote exchanges. Applying the reverse iterative vote
exchanges at B 0, we return to B .

It is clear that B 0 can also be obtained after the transposition of x and y at B ,
that is, letting � W X ! X be such that �.x/ D y; �.y/ D x; and �.z/ D z for all
z 2 Xnfx; yg; we have B 0 D �B � .�.Bi //i2N : Clearly, �B 0 D B .

By neutrality, x 2 �.B/ if and only if �.x/ D y 2 �.�B/ D �.B 0/. By indepen-
dence of vote exchange, y 2 �.B 0/ if and only if y 2 �.B/: Therefore, x 2 �.B/
if and only if y 2 �.B/: ut

Baigent and Xu (1991) reformulate May’s (1952) positive response for social
decision function in the current framework as follows.

Positive Response to Vote Addition: For all B 2 BN and all i 2 N; if x … Bi and
B 0

i � Bi [ fxg 2 B; then x 2 �.B/ implies �.B 0
i ; B�i / D fxg:

Note that this axiom has bite when the ballot space B is closed under the addition
of an alternative (vote) to any ballot. For example, if B � ffxg W x 2 Xg; any ballot

10 The two ballots B 0

i ; B
0

j are admissible in B because of assumption (4.16).
11 Xu (2010) in this volume and Baigent and Xu (1991) call this axiom “independence of symmetric
substitution.”
12 The same axiom is called as “equal treatment” in Xu (2010) in this volume.
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aggregator satisfies this axiom trivially. The next axiom is an alternative formulation
that has a wider applicability.

Positive Response* to Vote Addition: For allB 2 BN ; all i 2 N; and all x; y 2 X;
if x … Bi ; x 2 B 0

i 2 B; and Bi \ fyg D B 0
i \ fyg; then x 2 �.B/ implies

�.B 0
i ; B�i /\ fx; yg D fxg:

The next axiom says that any additional vote for another alternative does not do
any good for alternative x.

Negative Response to Competing Vote Addition: For all B 2 BN ; all i 2 N; and
all x; y 2 X; if y … Bi and Bi [ fyg 2 B; then [x … �.B/ or y 2 �.B/] implies
x … �.Bi [ fyg; B�i / (i.e., x 2 �.Bi [ fyg; B�i / implies x 2 �.B/ and y …
�.B/).

Equivalently, for all B 2 BN ; all i 2 N; and all x; y 2 X; if y 2 Bi and
Bi nfyg 2 B; then x … �.Bi nfyg; B�i / or y 2 �.Binfyg; B�i / implies x … �.B/
(i.e., x 2 �.B/ implies x 2 �.Binfyg; B�i / and y … �.Binfyg; B�i /). Like posi-
tive response, this axiom has bite when the ballot space is closed under the addition
of an alternative. Here is an alternative formulation with wider applicability.

Negative Response* to Competing Vote Addition: For all B 2 BN ; all i 2 N;

all B 0
i 2 B; and all x; y 2 X; if y … Bi ; y 2 B 0

i ; and Bi \ fxg D B 0
i \ fxg; then

[x … �.B/ or y 2 �.B/] implies x … �.B 0
i ; B�i / (equivalently, x 2 �.B 0

i ; B�i /

implies x 2 �.B/ and y … �.B/).

4.3.1.2 Characterization Results: Voting Systems

We first show that May’s Theorem (Theorem 4.2.1) for the binary choice framework
can be extended in the current framework in a fairly straightforward manner. This
result is based on Propositions 4.2.1 and 4.2.2. Since there can be more than two
alternatives, we need independence of irrelevant alternatives in addition to May’s
three axioms.

Theorem 4.3.1. A social decision function on BN satisfies independence of irrel-
evant alternatives, anonymity, neutrality, and positive response if and only if it
is majority decision function on BN . Moreover, majority decision function on
BN satisfies transitivity and generates majority voting system .B; �MAJ/ as its
choice rule.

Proof. By Theorem 4.2.2, majority decision function satisfies transitivity on
dichotomous domain B as well as the other three axioms. To prove the converse, let
f be a social decision function on BN satisfying the four stated axioms. Indepen-
dence of irrelevant alternatives and positive response together imply monotonicity.
Due to the richness of ballot space B stated in (4.15) and (4.16), Proposition 4.2.2
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holds, and f can be represented by a decisive structure. By anonymity, neutrality,
and Proposition 4.2.2, f can be represented by a decisive index structure satisfy-
ing (4.7). Following the same argument as is given before Theorem 4.2.1, we show
(4.10). ut

As a corollary, we obtain:

Corollary 4.3.1. A voting system .B; �/ is generated by a social decision function
on BN satisfying independence of irrelevant alternatives, anonymity, neutrality, and
positive response if and only if it is a majority voting system, that is, � D �MAJ: Thus
when B D NP .X/; it is approval voting system.

In the framework of collective aggregation procedures, Baigent and Xu (1991)
obtain a similar axiomatic characterization of approval voting imposing positive
response to vote addition. In the current framework, their result can be stated as
follows:

Theorem 4.3.2 (Baigent and Xu 1991). Assume that ballot space B is closed
under the addition of a single vote, that is, for all B0 2 B and all x 2 X;

B0 [ fxg 2 B.13 Then the following are equivalent:

(i) Voting system .B; �/ satisfies neutrality, independence of vote exchange, and
positive response to vote addition.14

(ii) Voting system .B; �/ satisfies equal treatment of equal votes and positive
response to vote addition.

(iii) Voting system .B; �/ is a majority voting system, � D �MAJ.

Proof. Lemma 4.3.1 shows that (i) implies (ii). It is easy to show (iii) implies (i).
We only prove (ii) implies (iii) below. Let B be the ballot space with the stated
property.

Let � be the ballot aggregator in part (ii). Let B 2 BN : We need to show that
x 2 �.B/ if and only if for all y 2 X; n.x;B/ 	 n.y;B/. By equal treatment of
equal votes, we only have to show the “only if ” part. Suppose to the contrary that
x 2 �.B/ and for some y 2 X; n.y;B/ > n.x;B/: ThenN.y;B/nN.x;B/¤; and
there are at least Œn.y; B/�n.x;B/� agents in this set. Change ballots of these agents
from Bi to B 0

i � Bi [ fxg: For all other i ’s, let B 0
i � Bi : Thus by construction,

n.x;B 0/ D n.y;B 0/: By positive response to vote addition, �.B 0/ D fxg: On the
other hand, since n.x;B 0/ D n.y;B 0/; then by equal treatment of equal votes,
y 2 �.B 0/ D fxg; which is a contradiction. ut

Unlike Theorem 4.3.1, this result uses the assumption that the ballot space is
closed under vote addition.

13 Thus we need to allow X 2 B. The assumption is needed to prove that (ii) implies (iii). It is not
needed for other implications.
14 Universal domain axiom is added in Baigent and Xu (1991).
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Remark 4.3.1. Instead of the assumption on B in the above theorem, require that
for all distinct pairs x; y 2 X; there is B0 2 B such that x; y 2 B0: Then the
same result holds if positive response in parts (i) and (ii) is replaced with positive
response*. To prove this, we only replace B 0

i in the proof with B 0
i 2 B such that

x; y 2 B 0
i and replace �.B 0/ in the proof with �.B 0/\ fx; yg: The rest of the proof

is the same.
The equivalence between (i) and (iii) is also stated in Theorem 5 of Xu (2010) in

this volume, focusing on B D P.X/nf;g. In fact, as stated in Theorem 4.3.2, the
equivalence holds for a broader set of ballot spaces. The equivalence between (ii)
and (iii) is somewhat close to Theorem 4 of Xu (2010) in this volume, focusing on
B D P.X/nf;g.

An alternative characterization with negative response to competing vote addition is
obtained with a different assumption on B.

Theorem 4.3.3. Assume that ballot space B is closed under the deletion of a single
vote, that is, for all B0 2 B and all x 2 B0; B0nfxg 2 B.15 Then the following are
equivalent:

(i) Voting system .B; �/ satisfies neutrality, independence of vote exchange, and
negative response to competing vote addition.

(ii) Voting system .B; �/ satisfies equal treatment of equal votes and negative
response to competing vote addition.

(iii) Voting system .B; �/ is a majority voting system, � D �MAJ:

Proof. By Lemma 4.3.1, (i) implies (ii). We only prove that (ii) implies (iii). Let B
be given as stated above.

Let � be the ballot aggregator in part (ii). Let B 2 BN : We need to show that
x 2 �.B/ if and only if for all y 2 X; n.x;B/ 	 n.y;B/: By equal treatment of
equal votes, we only have to show the “only if part.” Suppose to the contrary that
x 2 �.B/ and for some y 2 X; n.y;B/ > n.x;B/: Then N.y;B/nN.x;B/ ¤ ;
and there are at least Œn.y; B/ � n.x;B/� agents in this set. Change ballots of these
agents from Bi to B 0

i � Binfyg (this is possible by the assumption on B). For
all other i ’s, let B 0

i � Bi : Thus by construction, n.x;B 0/ D n.y;B 0/: Applying
negative response to competing vote addition repeatedly, we show x 2 �.B 0/ and
y … �.B 0/; contradicting equal treatment of equal votes for n.x;B 0/ D n.y;B 0/. ut
Remark 4.3.2. Assume instead that for all distinct pairs x; y 2 X; there is B0 2 B
such that B0 \ fx; yg D ;: Then the same result holds if negative response in parts
(i) and (ii) is replaced with negative response*. To prove this, we only replace B 0

i in
the proof with B 0

i 2 B such that B 0
i \ fx; yg D ;: The rest of the proof is the same.

4.3.1.3 Extension in the Variable Population Framework

We now consider voting systems on a variable population domain. All the axioms
defined in the fixed population framework can be extended to that framework by

15 Thus we need to allow ; 2 B.
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simply adding the quantifier “for all N 2 N .” All results in the previous section
can be extended in the variable population framework. In particular, Theorem 4.3.2
can be so extended. Moreover, the result applies to more variety of ballot spaces by
adding the extra, but mild condition that the empty ballot is allowed (; 2 B), and
the following natural axiom pertaining to the effect of the empty ballot. It says that
adding an empty (abstention) vote does not affect the voting outcome.

Null Consistency: For all N 2 N and all B 2 BN ; if i … N and Bi D ;; then
�.B/ D �.B;Bi /.

The next two results extend Theorem 4.3.2 in the variable population framework.

Theorem 4.3.4. Assume that ; 2 B and for all x 2 X; fxg 2 B: Then on the
domain

S
N 2N BN ; the following are equivalent:

(i) Voting system .B; �/ satisfies null consistency, neutrality, independence of vote
exchange, and positive response to vote addition.

(ii) Voting system .B; �/ satisfies null consistency, equal treatment of equal votes,
and positive response to vote addition.

(iii) Voting system .B; �/ is a majority voting system, � D �MAJ:

Proof. The proof is similar to the proof of Theorem 4.3.2. To prove that (ii) implies
(iii), suppose to the contrary that x 2 �.B/ and for some y 2 X; n.y;B/ >

n.x;B/: Let N 0 be a set of Œn.y; B/ � n.x;B/� agents such that N 0 \ N D ;. Let
B0 � .;; : : : ;;/ 2 BN 0

and B 0 2 BN 0

be such that for each i 2 N 0, B 0
i D fxg: By

construction, n.x; .B;B 0// D n.y; .B;B 0// and by null consistency, �.B;B0/ D
�.B/ and so x 2 �.B;B0/. Applying positive response to vote addition repeatedly
at .B;B0/; we get �.B;B 0/ D fxg: On the other hand, by equal treatment of equal
votes, y 2 �.B;B 0/ D fxg; which is a contradiction. ut

Replacing positive response with positive response* to vote addition, we obtain
a similar result. Unlike in Theorem 4.3.4, we do not need any assumption on the
ballot space except for the availability of the empty ballot.

Theorem 4.3.5. Assume that ; 2 B. On the domain
S

N 2N BN ; the following are
equivalent:

(i) Voting system .B; �/ satisfies null consistency, neutrality, independence of vote
exchange, and positive response* to vote addition.

(ii) Voting system .B; �/ satisfies null consistency, equal treatment of equal votes,
and positive response* to vote addition.

(iii) Voting system .B; �/ is a majority voting system, � D �MAJ:

Proof. To prove this, we only have to replace B 0
i D fxg in the proof of Theo-

rem 4.3.4 with B 0
i 2 B such that x 2 B 0

i and y … B 0
i (such B 0

i exists by (4.15)) and
replace �.B;B 0/ with �.B;B 0/\ fx; yg: The rest of the proof is the same. ut
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4.3.2 Characterizations of Majority Voting in the Variable
Population Framework

In this section, we consider anonymous voting systems in the variable population
framework. Recall that such a voting system can be described by a pair of a ballot
space B and a voting rule (an anonymous ballot aggregator) ' W ….B/ ! NP .X/:
We will use the following concept and notation.

A null response profile is a profile � where no alternative is supported by anyone,
that is, for all A 2 NP .X/; � .A/ D 0: The empty response profile �; is the null
response profile with no vote, that is, for all A 2 P.X/, �;.A/ D 0: For all A 2
P.X/; let �A be such that �A.A/ D 1 and for all other ballots B 2 P.X/nfAg;
�A.B/ D 0: For all � 2 ….B/ and all x 2 X , let n.x; �/ � P

AWx2A �.A/ and
n.�/ � P

x2X n.x; �/:

4.3.2.1 Basic Axioms of Voting Rules

Let m � jX j be the number of alternatives. The following axioms have been
considered by numerous authors in the literature on approval voting.

First, if there is only one voter, that voter’s ballot should be fully respected.

Faithfulness: For all A 2 Bnf;g; '.�A/ D A:

Neutrality can be defined in the same way in the current framework as in earlier
sections. A much weaker axiom requires that decisions at a null response profile
should be neutral.

Null-Neutrality: For all null response profiles � 2 ….B/, ' .�/ D X .

The next axiom plays a key role in some characterizations of approval voting to
be presented later. It pertains to a merger of two groups of voters. If a rule has
a common recommendation for the two groups before the merger, the common
recommendation should be the recommendation after the merger.

Consistency: For all �; � 0 2 ….B/; if '.�/ \ '.� 0/ ¤ ;; then '.� C � 0/ D
'.�/ \ '.� 0/.16

The next one is a weaker version of consistency considered by Sertel (1988).

Weak Consistency: For all � 2 ….B/ and all A 2 B; if ' .�/\ ' .�A/ ¤ ;; then
' .� C �A/ D ' .�/ \ ' .�A/ :

The next axiom says that when there are two voters casting disjoint ballots, a
voting rule should recommend the union of the two ballots.

Disjoint Equality: For allA;B 2 Bnf;g; ifA\B D ;; then '.�AC�B / D A[B:
The next axiom proposed by Sertel (1988) captures a similar idea but in a much

stronger form.

16 This axiom and other axioms of consistency were studied also by Ching (1996) and Yeh (2006)
for characterizations of plurality voting rule on the standard domain of preferences.
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Sertel Disjoint Equality: For all � 2 ….B/ and all A 2 B if ' .�/\ ' .�A/ D ;;
then x 2 ' .� C �A/ if and only if x 2 ' .�/ or [x 2 ' .�A/ and maxy2'.�/

n .y; �/ D 0] or [x 2 ' .�A/ and n .x; �/ D maxy2'.�/ n .y; �/ � 1 	 0].

The next axiom pertains to a special case of ballot responses where all alterna-
tives receive the same number of votes. It requires in this case that a voting rule
should treat all alternatives equally by recommending all of them.

Cancellation: For all � 2 ….B/; if all alternatives receive the same number of
votes at � , that is, for all x; y 2 X; n.x; �/ D n.y; �/; then '.�/ D X:

Cancellation implies that the choice at any null response profile should be X as
in approval voting.

The next axiom requires that a voting rule should make the same decision when
two voters merge their ballots and cast the merged ballot as a single voter.

Independence of Pairwise Vote Merge: For all � 2 ….B/ and all A;B 2 B; if
A \ B D ; and A[ B 2 B, then '.� C �A C �B / D '.� C �A[B /:

Vote merge is a type of vote reallocation. The next independence axiom pertains
to more drastic vote reallocations.

Independence of Vote Reallocation: For all �; � 0 2 ….B/; if for all x 2 X;

n.x; �/ D n.x; � 0/; then '.�/ D '.� 0/.
Note that independence of pairwise vote merge together with faithfulness and

consistency imply cancellation.17

4.3.2.2 Scoring Rules

Majority rule is an example in the large family of voting rules based on scoring
methods. Characterization of this family is quite useful for our later discussion of
majority or approval voting.

A score function s W f1; : : : ; mg ! R maps each natural number of a ballot size
into a real number (the score of the ballot). For all � 2 ….B/ and all x 2 X; let

p.x; �I s/ �
X

B2BWx2B

s.jBj/�.B/ D
mX

kD1

X

B2BWx2B;
jBjDk

s.k/�.B/

be the total points x wins at � under score function s. A voting rule ' is a scoring
rule if there is a score function s W f1; : : : ; mg ! R such that for all � 2 ….B/;

17 To show this let � 2 ….B/ be such that for all x; y 2 X; n.x; �/ D n.y; �/: Note that by inde-
pendence of pairwise vote merge (when B D ;), we may assume that �.;/ D 0: Let n � n.x; �/

for all x 2 X: Applying this axiom again repeatedly, we obtain '.�/ D '.
P

x2X n�fxg/ D
'.n

P
x2X �fxg/ D '.n�X/: By faithfulness and consistency, '.n�X/ D X .
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'.�/ � fx 2 X W p.x; �I s/ 	 p.y; �I s/ for all y 2 Xg:

Note that when ' is represented by score function s; ' is also represented by a � s
for all a > 0:Majority rule is the scoring rule represented by a positive and constant
score function s such as s.k/ D 1 for all k D 1; : : : ; m: When B D P.X/ or
P.X/nf;g or P.X/nf;; Xg, majority rule on ….B/ is called as approval voting
rule.18

Given a finite sequence of score functions s1; : : : ; sT ; for all x; y 2 X and all
� 2 …; .p.y; �I st //TtD1 lexicographically dominates .p.x; �I st //TtD1 if there is
t0 2 f1; : : : ; T g such that p.y; �I st0/ > p.x; �I st0/ and for all t D 1; : : : ; t0 � 1;

p.y; �I st / 	 p.x; �I st /: A voting rule ' is a lexicographic scoring rule if there
are T 	 1 score functions s1; : : : ; sT such that for all � 2 ….B/; x 2 '.�/ if and
only if there is no y 2 X such that .p.y; �I st //TtD1 lexicographically dominates
.p.x; �I st //TtD1.

Young (1975) characterizes (lexicographic) scoring rules in the framework of
ranked voting procedures, where voters can express their preferences in their bal-
lots. The key axioms in his result are neutrality and consistency. In the current
“non-ranked” voting procedures, the next two results are counterparts of Young’s
characterization.

Theorem 4.3.6 (Fishburn 1979). Given a ballot space B � P.X/nf;; Xg; a vot-
ing rule satisfies neutrality and consistency if and only if it is a lexicographic scoring
rule. Moreover, the number of score functions representing the rule is at most the
number of possible sizes of ballots, namely, jfjBj W B 2 Bgj:
Due to the nature of lexicographic comparison, “overwhelming majority” may not
be enough to influence the voting outcome under lexicographic scoring rules. In
order to avoid this unnatural feature, we impose the next axiom.19

Continuity: For all �; � 0 2 ….B/ and all x 2 X; if x … '.�/; then there is an
integerK > 0 such that for all k 	 K; x … '.k� C � 0/:

It is clear that scoring rules satisfy continuity since increasing k, the difference
between the score of x and the score of another winning alternative at � gets arbi-
trarily larger. No other lexicographic scoring rules can satisfy continuity and we
obtain:

Theorem 4.3.7 (Fishburn 1979). Given a ballot space B � P.X/nf;; Xg, a
voting rule satisfies neutrality, consistency, and continuity if and only if it is a
scoring rule.

Suppose that a lexicographic scoring rule is represented by score functions s1; : : : ;

sT , and for some k 2 fjBj W B 2 Bg and t 2 f1; : : : ; T g; s1.k/D � � � D st�1.k/D 0

18 Admissibility of ; or X in the ballot space does not make any essential difference in the choices
made by majority rule.
19 Myerson (1995) calls it “overwhelming majority.”
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and st .k/ < 0: Then for any B 2 B with jBj D k and any b 2 B; p.b; �B I
s1/ D � � � D p.b; �B I st�1/ D 0 and p.b; �B I st / D st .k/ < 0: Then b is not
chosen by this lexicographic scoring rule, violating faithfulness. Thus faithfulness
implies that the first non-zero component in .s1.k/; : : : ; sT .k// is positive. Con-
sequently, a scoring rule satisfies faithfulness if and only if it is represented by a
positive score function.

Corollary 4.3.2. Assume that B � P.X/nf;; Xg. Then:

(i) A voting rule satisfies neutrality, consistency, and faithfulness if and only if it is
a lexicographic scoring rule represented by a finite sequence of score functions
s1; : : : ; sT such that for all k 2 f1; : : : ; mg; there is t 2 f1; : : : ; T g such that
s1.k/ D � � � D st�1.k/ D 0 < st .k/:

(ii) A voting rule satisfies neutrality, consistency, continuity, and faithfulness if and
only if it is a scoring rule represented by a positive score function.

4.3.2.3 Characterizations of Majority Voting

If a positive score function s gives different score points for different ballot sizes,
then there is � 2 … such that all alternatives win the same number of votes but
the alternatives winning a ballot with a higher score point have the greatest total
score point. These alternatives are chosen and other alternatives are not chosen. For
example, when s.1/ > s.2/, let � be such that �.fa; bg/ D 1; for all x 2 Xnfa; bg;
�.fxg/ D 1; and for all other ballots Y; �.Y / D 0: Then the scoring rule will choose
Xnfa; bg;which is a violation of cancellation. Thus, in order to satisfy cancellation,
score function s must be constant. Therefore, the scoring rule represented by s is
majority rule. The next result is similar to Young’s characterization of the Borda
rule for linear preferences.

Theorem 4.3.8 (Fishburn 1979). Given a ballot space B � P.X/nf;; Xg, a vot-
ing rule satisfies neutrality, consistency, faithfulness, and cancellation if and only if
it is majority rule.

Note that this result holds for any arbitrary ballot space satisfying the richness con-
ditions (4.15) and (4.16). For example, the ballot space consisting of only singleton
ballots is rich. When the ballot space has no restriction on ballot sizes, the theorem
yields a characterization of approval voting. The proof of Theorem 4.3.8 is relatively
long. A much simpler proof is provided by Alos-Ferrer (2006) for unrestricted bal-
lot space B D NP.X/: Moreover, he shows that neutrality in Fishburn’s result can
be dropped. The next theorem is based on the main results in Alos-Ferrer (2006).

Theorem 4.3.9. Assume B � NP .X/: Consider a voting rule ' on ….B/nf�;g:
The following are equivalent:

(i) Voting rule ' satisfies faithfulness, consistency, and cancellation.
(ii) Voting rule ' satisfies faithfulness, consistency, and independence of pairwise

vote merge.
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(iii) Voting rule ' satisfies faithfulness, consistency, and independence of vote
reallocation.

(iv) Voting rule ' is a majority rule, ' D 'MAJ:

Proof. It is easy to show (iv) )(i). In what follows, show (i) ) (ii) ) (iii) ) (iv).

Step 1: (i) ) (ii)

We only have to show that the three axioms in (i) imply independence of pairwise
vote merge. Let A;B 2 P.X/ be such that A\ B D ;: By cancellation,

'.�A[B C �Xn.A[B// D X D '.�A C �B C �Xn.A[B//: (4.17)

Hence,

'.� C �A C �B/ D '.� C �A C �B /\ '.�A[B C �Xn.A[B//I (4.18)

'.� C �A[B/ D '.� C �A[B /\ '.�A C �B C �Xn.A[B//:

Then by consistency,

'.� C �A C �B /\ '.�A[B C �Xn.A[B//

D '.� C �A C �B C �A[B C �Xn.A[B//I (4.19)

'.� C �A[B /\ '.�A C �B C �Xn.A[B//

D '.� C �A[B C �A C �B C �Xn.A[B//:

Finally, since�C�AC�B C�A[B C�Xn.A[B/ D �C�A[B C�AC�B C�Xn.A[B/;

then (4.18) and (4.19) give '.� C �A C �B / D '.� C �A[B /:

Step 2: (ii) ) (iii)

We only have to show that the three axioms in (ii) imply independence of
vote reallocation. Let � 2 …: By independence of pairwise vote merge, we may
assume that �.;/ D 0: Iterative application of independence of pairwise vote
merge gives '.�/ D '.

P
A2 NP .X/ �.A/

P
x2A �fxg/: Since

P
A2 NP .X/ �.A/

P
x2A

�fxg D P
x2X n.x; �/�fxg;

'.�/ D '.
X

x2X

n.x; �/�fxg/:

Thus '.�/ depends only on n.x; �/: Therefore, when � and � 0 satisfy n.x; �/ D
n.x; � 0/ for all x 2 X; '.�/ D '.� 0/:
Step 3: (iii) ) (iv)

Let � 2 ….B/ and K � maxx2Xn.x; �/: Since ; … B and �; is assumed
to be out of the domain, K > 0.20 For each k 2 f1; : : : ; Kg; let Xk � fx 2 X W

20 If �; is in the domain, neither independence of pairwise vote merge nor independence of vote
reallocation implies '.�;/ D 'MAJ.�

;/ D X; while cancellation does. Thus the equivalence
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n.x; �/ D kg: Then X0; X1; : : : ; XK partition X . Now construct a non-decreasing
sequence of subsets as follows:

YK �
YK�1 �
YK�2 �
:::

:::

Y1 �

XK

XK [XK�1

XK [XK�1 [ XK�2

:::

XK [XK�1 [ XK�2 [ � � � [ X1

Note that YK \YK�1 D XK ;YK \YK�1 \YK�2 D XK ; � � � ; YK \YK�1 \YK�2 \
� � � \ Y1 D XK : By faithfulness,

'.�YK
/ D YK ; '.�YK�1

/ D YK�1; : : : ; '.�Y1
/ D Y1:

Applying consistency,

'.�YK
C �YK�1

C � � � C �Y1
/ D '.�YK

/\ '.�YK�1
/\ � � � \ '.�Y1

/

D YK \ YK�1 \ � � � \ Y1

D XK :

Finally, since � and �YK
C �YK�1

C � � � C �Y1
give the same number of votes for

each alternative, by independence of vote reallocation, '.�/ D XK D 'MAJ.�/: ut
The proof relies heavily on the richness of the ballot space B � NP .X/: In partic-

ular, the ballot space is closed under union.21 Therefore the result cannot be applied
to restricted ballot spaces such as the space of singleton ballots. The equivalence
between (i) and (iv) is also stated in Theorem 1 in Xu (2010) of this volume.

The next characterization of approval voting rule uses disjoint equality. Unlike
Theorem 4.3.8, the result applies only to the ballot space P.X/nf;; Xg:
Theorem 4.3.10 (Fishburn 1978a, 1979). Assume that B D P.X/nf;; Xg and
consider voting rules over….B/nf�;g:
(i) Assume jX j D 2: Then a voting rule satisfies neutrality, consistency, and

faithfulness if and only if it is majority rule.
(ii) Assume jX j 	 3: Then a voting rule satisfies neutrality, consistency, and

disjoint equality if and only if it is majority rule.

cannot be established. If �; is in the domain, the result may be changed by replacing cancellation
with a slightly weaker version by requiring � ¤ �; in the definition of the axiom and weakening
(iv) by allowing for any arbitrary choice at �;.
21 Alos-Ferrer (2006) assumes X … B: But then Y1 in the above proof may not be an admissible
ballot (the ballot space is not closed under union) and the proof does not go through. This is why
we assume X 2 B.
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Sertel (1988) replaces disjoint equality with a stronger axiom, Sertel disjoint equal-
ity, and characterizes the rule that coincides with majority rule except when the
empty set is the only ballot response. In this case, the rule selects the empty set
(taking the empty value is allowed in his definition of voting rules). Although Sertel
disjoint equality is less primitive and harder to motivate than disjoint equality, his
proof is remarkably simpler than the proof of Theorem 4.3.10. Here we present his
result in a different way in order to give a more clear comparison. Unlike Theo-
rem 4.3.10, Sertel’s characterization holds with an arbitrary ballot space B and with
null-neutrality, which is much weaker than neutrality.

Theorem 4.3.11. Given any ballot space B; a voting rule ' satisfies null-neutrality,
faithfulness, weak consistency, and Sertel disjoint equality if and only if ' D 'MAJ.

Remark 4.3.3. Sertel’s faithfulness says that when there is only one ballot response
A that is possibly the empty set, voting rule must choose A (recall that in our def-
inition, faithfulness pertains to non-empty A). Clearly 'MAJ does not satisfy this
axiom. Sertel (1988) shows that his approval voting rule (identical to the standard
approval voting rule except at null response profiles) is the only quasi-rule satisfying
his faithfulness together with neutrality, weak consistency, and Sertel disjoint equal-
ity. In fact, dropping the requirement of non-empty valuedness in the definition of
voting rule (thus among quasi-rules) and replacing null-neutrality in Theorem 4.3.11
either with neutrality or with “'.�/ D ; or X at all null response profiles � ,” we
obtain a joint characterization of the two rules, Sertel’s approval voting rule and the
standard approval voting rule. The proof is essentially the same.

Proof. Let B be a ballot space and ' a rule on ….B/ satisfying the four axioms.
In what follows, for all k 2 N; we prove the claim that for all � 2 ….B/ with
n.�/ 
 k; '.�/ D 'MAJ.�/. The proof is by induction on k: The claim with
k D 1 follows directly from null-neutrality and faithfulness. Let k 	 2: Suppose by
induction that for all � 2 ….B/ with n.�/ 
 k; '.�/ D 'MAJ.�/. Let � 2 ….B/
be such that n.�/ D k C 1: We prove that '.�/ D 'MAJ.�/: Note that there are
� 0 2 ….B/ and A 2 B such that n.� 0/ D k and � D � 0 C �A: Then by the
induction hypothesis, '.� 0/ D 'MAJ.�

0/ and '.�A/ D 'MAJ.�A/:

Case 1: '.� 0/ \ '.�A/ ¤ ;: Then 'MAJ.�
0/ \ 'MAJ.�A/ ¤ ;: Since both '

and 'MAJ satisfy weak consistency, '.� 0 C �A/ D '.� 0/ \ '.�A/ and 'MAJ.�
0 C

�A/ D 'MAJ.�
0/ \ 'MAJ.�A/: Since '.� 0/ D 'MAJ.�

0/; '.�A/ D 'MAJ.�A/; and
� D � 0 C �A; then '.�/ D 'MAJ.�/:

Case 2: '.� 0/ \ '.�A/ D ;: Then 'MAJ.�
0/ \ 'MAJ.�A/ D ;: By Sertel

disjoint equality of ', x 2 '.� 0 C �A/ if and only if (i) x 2 '.� 0/ or (ii)
x 2 '.�A/ and maxy2'.� 0/n .y; �

0/ D 0 or (iii) x 2 '.�A/ and n .x; � 0/ D
maxy2'.� 0/n .y; �

0/ � 1 	 0: Note that since '.� 0/ D 'MAJ.�
0/ and '.�A/ D

'MAJ.�A/; then (i), (ii), and (iii) are equivalent respectively to (i0) x 2 'MAJ.�
0/,

(ii0) x 2 'MAJ.�A/ and maxy2'MAJ.� 0/n .y; �
0/ D 0; and (iii0) x 2 'MAJ.�A/ and

n .x; � 0/ D maxy2'MAJ.� 0/n .y; �
0/ � 1 	 0: Therefore since both ' and 'MAJ sat-

isfy Sertel disjoint equality, x 2 '.� 0 C �A/ if and only if x 2 'MAJ.�
0 C �A/:

Since � D � 0 C �A, we obtain '.�/ D 'MAJ.�/: ut
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4.4 Strategic Voting and Condorcet Principle

In this section, we overview important supports for approval voting from the point of
view of robustness to strategic voting as well as satisfying the Condorcet principle.

Consider a ballot space B. For all profiles of dichotomous preferences � 2
….B/, the Condorcet set CW.�/ � fx W n.x; �/ 	 n.y; �/; for all y 2 Xg is the
set of Condorcet winners at � . By Theorem 4.2.2, the Condorcet set is non-empty
and it coincides with the choice made by majority voting rule, 'MAJ.�/ D CW.�/.
The Condorcet principle requires that a voting rule should select the Condorcet set.

Condorcet: For all � 2 ….B/; '.�/ D CW.�/.

Evidently, a voting rule on B satisfies Condorcet if and only if it is the majority
rule on B. A weaker requirement is that a voting rule should select some Condorcet
winners.

Weak Condorcet: For all � 2 ….B/; '.�/ \ CW.�/ ¤ ;.

A voting rule ' on B is minimally selective if for some � 2 ….B/; '.�/¤X .
Clearly, any non-constant voting rule is minimally selective. Fishburn (1979) obtains
the following characterization of majority voting rule.

Theorem 4.4.1 (Fishburn 1979). A voting rule on B satisfies neutrality, consis-
tency, continuity, minimal selectiveness, and weak Condorcet if and only if it is
majority voting rule.

In the strategic voting environment, Condorcet, not to speak of weak Condorcet,
does not guarantee a Condorcet winner to be a final voting outcome. To investigate
strategic voting behavior under a voting rule that sometimes produces tied outcomes,
understanding how voters evaluate subsets of alternatives is needed. For a dichoto-
mous preference relation B 2 D of voter i there are five natural assumptions about
its extension over subsets of alternatives. Denote the extended preference relation of
B by RB

i : The five assumptions are as follows: for all x; y 2 X;
P1. fxgPB

i fyg if and only if x 2 B and y … BI
P2. fxgPB

i fx; yg and fx; ygPB
i fyg if x 2 B and y … BI

P3. ARB
i A

0 if A � B or A0 � XnB or [AnA0 � B and A0nA � XnB],
P4. A[ fagIB

i A[ fa0g if a; a0 … A[ B or a; a0 2 BnA,
P5. APB

i XnB if A\ B ¤ ;; BPB
i A if A\ ŒXnB� ¤ ;, where PB

i is the strict
counterpart of RB

i :

The first three assumptions, P1–P3, are considered by Fishburn (1979). Two addi-
tional assumptions, P4–P5, are needed to extend his result on the unrestricted ballot
space to general ballot spaces.

4.4.1 Strategic Voting Under Anonymous Voting Systems

Given a ballot space B and an agent with dichotomous preference B 2 D, a
ballot response A 2 B is dominated by ballot response A0 2 B if for all
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� 2 ….B/ [ f�;g; '.� C �A0/RB'.� C �A/ with strict relation for at least one
� 2 ….B/[ f�;g: Let Bud .B; '/ be the set of all undominated ballots in B: Since
B is a finite set, there exists at least one undominated ballot and Bud .B; '/ ¤ ;:
For each dichotomous preference profile � 2 ….D/, let …ud .B/.�; '/ be the
set of all ballot response profiles consisting of undominated ballots of all agents.
A voting system .B; '/ and the correspondence of undominated ballot response
profiles …ud .B/.�; '/ generate a collective choice rule for dichotomous prefer-
ences in D � D, c W ….D/ ! P.X/nf;g defined as follows: for all � 2 ….D/;
c.�/ � Sf'. O�/ W O� 2 …ud .B/.�; '/g: It is natural to assume that each voter
will not cast a dominated ballot and that the outcomes from strategic voting will be
within the set of outcomes from undominated ballot profiles, that is, c.�/: Strategic
voting is not an issue for agents who have complete indifference over all outcomes,
namely agents with unconcerned dichotomous preference X because any two bal-
lots will be indifferent independently of others’ ballots. In what follows, we will
focus on concerned agents who have dichotomous preferences with a preferred set
B ¤ X .

The set of undominated outcomes c.�/ may be quite different from the set of
outcomes from truthful voting, '.�/ and so the voting system .B; '/may lead to too
different an outcome from the truthful outcome. Particular attention has been paid
to voting systems that do not have this problem. A voting rule ' (or an anonymous
collective choice rule c) on domain….D/ is realizable in undominated strategies by
voting system .B; '/ if for all profiles of concerned preferences � 2 ….DnfXg/;
O'. O�/ � '.�/ for all undominated ballot response profiles O� 2 ….B/ at � . Voting
rule '.�/ on ….D/ is strategy-proof if for all profiles of concerned preferences � 2
….DnfXg/; it is realizable in undominated strategies by voting system .B; '/ and
there is a unique undominated ballot response profile at � . We say that voting system
.B; '/ is strategy-proof on D if it always has a unique undominated profile at all
� 2 ….DnfXg/. Formally:

Strategy-Proofness on D: For all � 2 ….DnfXg/; …ud .B/.�; '/ D f� 0g and
'.� 0/ � '.�/:

The next lemma shows that if a neutral and faithful voting system is strategy-
proof on D, then there should be no constraint on expressing one’s concerned
preferences in D. That is,

No Ballot Constraint on D: DnfXg � B.

Now we are ready to state the lemma.

Lemma 4.4.1. If a voting system .B; '/ satisfies neutrality, faithfulness, and
strategy-proofness on D, then it has no ballot constraint and for all B 2 DnfXg, B
is the unique undominated strategy for dichotomous preference B .

Proof. Let B 0 be the undominated strategy for a concerned preference B and B 0 …
fB;XnB;;; Xg. Then there exist c; d 2 X such that (i) c 2 B 0 \ ŒXnB� and
d 2 ŒXnB�nB 0 or (ii) c 2 B 0 \B and d 2 BnB 0. Consider the first case (i) (similar
argument applies to case (ii)). Let � W X ! X be such that �.c/ D d , �.d/ D c,
and for all other x 2 Xnfc; d g, �.x/ D x. Then since B 0 is the only undominated
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strategy for B , for some � , '.�B0 C�/PB'.�ŒB0nfcg�[fdg C�/. Note that �B0� D
�ŒB0nfcg�[fdg and �B0 D �ŒB0nfcg�[fdg�. Hence '..�B0 C�/�/ D '.�ŒB0nfcg�[fdg C
��/ and '..�ŒB0nfcg�[fdg C �/�/ D '.�B0 C ��/. By neutrality, '.�ŒB0nfcg�[fdg C
��/ D �.'.�B0 C �// and '.�B0 C ��/ D �.'.�ŒB0nfcg�[fdg C �//. By P4,
�.'.�B0 C�//IB'.�B0 C�/ and �.'.�ŒB0nfcg�[fdg C�//IB'.�ŒB0nfcg�[fdg C�/.
Hence '.�ŒB0nfcg�[fdg C ��/PB'.�B0 C ��/, which shows that ŒB 0nfcg� [ fd g
is not dominated by B 0, contradicting that B 0 is the unique undominated strategy
for B .

IfXnB is the unique undominated strategy forB , '.�XnB C�;/RB'.�A C�;/
for any A 2 B with A\ B ¤ ;. If ' is faithful, then XnBRBA, contradicting P5.

Therefore, if a neutral and faithful voting system .B; '/ is strategy-proof on D,
then for all concerned preference B 2 DnfXg, B should be the unique undomi-
nated strategy; so B 2 B. Hence there should be no constraint in expressing one’s
concerned preferences in D. ut

Brams and Fishburn (1978, Theorems 2 and 6) offer a necessary and sufficient
conditions for undominated ballots under majority voting systems. For dichotomous
preferences, their condition roughly says that undominated ballots for each dichoto-
mous preference B are the ballots that best approximate B either from above or
from below in the ballot space B. Formally:

Lemma 4.4.2 (Brams and Fishburn 1978). Given a majority voting system
.B; 'MAJ/, for each dichotomous preference B 2 P.X/nf;; Xg; a ballot OB 2 B
is undominated if and only if (i) OB � B and there is no A 2 Bnf OBg such that
OB � A � B or (ii) B � OB and there is no A 2 Bnf OBg such that B � A � OB:

Thus if dichotomous preference B is in ballot space B; then B is the only undomi-
nated strategy, Bud .B; 'MAJ/ D fBg: Similarly, if � 2 ….B/; …ud .B/.�; 'MAJ/ D
f�g: Thus if D � B; majority voting system .B; 'MAJ/ is strategy-proof on D.
Conversely, if D � B, then by Lemma 4.4.2, majority voting system .B; 'MAJ/

has more than one undominated ballot response profiles at a profile � consisting of
some B in DnB: Therefore, we obtain:

Theorem 4.4.2. Majority voting system .B; 'MAJ/ is strategy-proof on a subdomain
of dichotomous preferences D � D if and only if there is no ballot constraint, i.e.,
D � B. Thus approval voting is the only strategy-proof majority voting system on
the entire domain of dichotomous preferences, D.

Note that Condorcet winners at � coincide with the alternatives selected by major-
ity voting rule at � . Thus when � is in the space of ballot response profiles, by
Lemma 4.4.2, � is the only undominated ballot response profile and thus any
undominated ballot response profile at � gives the set of Condorcet winners. How-
ever, if a voter has a dichotomous preference that is not in the ballot space, then
this equivalence between the set of Condorcet winners and the set of alternatives
obtained by an undominated strategy profile in the majority voting system fails.
Moreover, the failure can be so drastic that some undominated ballot response
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profile does not give any Condorcet winner. A stronger version of this claim is
established for voting systems satisfying neutrality and the following basic axiom.

Strong Pareto: For all � 2 ….B/ and all x; y 2 X , if for allA 2 B with �.A/ > 0,
x 2 A or x; y 2 XnA, and there is A 2 B with �.A/ > 0 such that x 2 A and
y 2 XnA; then y … '.�/:22

Lemma 4.4.3 (Fishburn 1979, Theorem 9). Consider a voting system .B; '/ sat-
isfying neutrality and strong Pareto. Assume that for a dichotomous preference,
B 2 P.X/nf;; Xg; there is an undominated ballot A different from B (i.e.,
A 2 Bud .'; B/ and A ¤ B), then there is a profile of dichotomous preferences
� 2 … such that for some undominated ballot response profile O� 2 …ud .B/.�; '/;
'. O�/\ CW.�/ D ;:
Proof. Consider a voting system .B; '/ satisfying neutrality and strong Pareto, and
a dichotomous preference B 2 P.X/nf;; Xg. Suppose A 2 Bud .'; B/ and A¤B .

Case 1: There is b 2 BnA:
Let � be such that for all B 0 2 P.X/ with b 2 B 0 and jB 0j D jBj; �.B 0/ D 1

and for all other C 2 P.X/; �.C / D 0: Since A 2 Bud .'; B/, then for all B 0 2
P.X/nf;; Xg with b 2 B 0 and jB 0j D jBj; by neutrality, there is A.B 0/ 2 B such
that A.B 0/ 2 Bud .f; B 0/ and b 2 B 0nA.B 0/: Let O� be such that for all B 0 with
b 2 B 0 and jB 0j D jBj; O�.A.B 0// D 1 and for all other C 2 B; O�.C / D 0: Then
by construction of �; CW.�/ D fbg:Also by construction, O� 2 …ud .B/.'; �/ and
by strong Pareto, b … '. O�/: Therefore, '. O�/ \ CW.�/ D ;:

Case 2: There is a 2 AnB:
Let � be such that for all A0 2 B with a 2 A0 and jA0j D jAj; �.A0/ D 1 and

for all other ballots B 0 2 B; �.B 0/ D 0: Since A 2 Bud .'; B/, then by neutrality,
for all A0 2 B with a 2 A0 and jA0j D jAj, there is B.A0/ 2 P.X/nf;; Xg such
that A0 2 Bud .'; B.A0// and a 2 A0nB.A0/: Let O� be such that for all A0 with
�.A0/ > 0; O�.B.A0// D 1 and for all other ballots C 2 P.X/, O�.C / D 0: Then
by strong Pareto, '.�/ D fag: Also by construction of O� , � 2 …ud .B/.'; O�/ and
a … CW. O�/: Therefore, '.�/\ CW. O�/ D ;: ut

We now return to the Condorcet principle in the strategic voting environment.

Condorcet realizability on D: For all � 2 ….D/ and all O� 2 …ud .B/.�; '/;
'. O�/ D CW.�/:

The next axiom is weaker and corresponds to weak Condorcet.

Weak Condorcet realizability on D: For all � 2 ….D/ and all O� 2 …ud .B/.�; '/;
'. O�/\ CW.�/ ¤ ;:

The next lemma is important for establishing the next characterization of major-
ity voting.

22 If for all A 2 B with �.A/ > 0; y … A; then using any x 2 A for some A 2 B with �.A/ > 0;
we can show that the premise of strong Pareto is met. Thus in this case y … '.�/.
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Lemma 4.4.4. If voting system .B; '/ satisfies neutrality, strong Pareto, and weak
Condorcet realizability on D, then the system has no ballot constraint on D (that is,
D � B), strategy-proofness on D and weak Condorcet. Replacing weak Condorcet
realizability with Condorcet realizability, we obtain ' D 'MAJ. Thus when D D
P.X/nf;; Xg, it is approval voting.

Proof. For any voting system .B; '/ satisfying neutrality and strong Pareto, if there
is an undominated strategy A that differs from the voter’s dichotomous prefer-
ence B 2 D, by Lemma 4.4.3, voting system .B; '/ violates weak Condorcet
realizability. Note that there can be such an undominated strategy A ¤ B if
B 2 DnB or the voting system is not strategy-proof. Hence, neutrality, strong
Pareto, and weak Condorcet realizability together imply both no ballot constraint,
D � B, and strategy-proofness. Moreover, the unique undominated strategy for
B 2 D is B itself. Therefore, at all dichotomous preference profiles � 2 ….D/,
…ud .B/.�; '/ D f�g and weak Condorcet realizability implies '.�/\CW.�/¤;;
that is, the voting system satisfies weak Condorcet. If .B; '/ satisfies Condorcet
realizability, then the last conclusion is strengthened to '.�/ D CW.�/, that is the
voting system satisfies Condorcet; it is majority voting. ut

We now obtain the following characterization of majority voting based on Con-
dorcet realizability and strategy-proofness.

Theorem 4.4.3. Consider a subdomain of dichotomous preferences D � D and a
ballot space B � D: The following are equivalent.

(i) Voting system .B; '/ satisfies neutrality, strong Pareto, and Condorcet realiz-
ability on D.

(ii) Voting system .B; '/ satisfies neutrality, consistency, continuity, minimal selec-
tiveness, and weak Condorcet realizability on D.

(iii) Voting system .B; '/ satisfies neutrality, consistency, faithfulness, and strategy-
proofness on D.

(iv) Voting system .B; '/ is majority voting without ballot constraint on D.

Proof. The proof of the equivalence between (i) and (iv) is established using Theo-
rem 4.4.2 and Lemma 4.4.4. The equivalence between (ii) and (iv) is obtained from
Lemma 4.4.4 and Theorem 4.4.1. Finally, the next lemma states that (iii) implies
(iv), and the converse follows from Theorem 4.4.2. ut

The next lemma is an extension of a result in Fishburn (1979, Theorem 10,
pp. 216–217), which is for the ballot space NP .X/nfXg. Our result is for any
arbitrary ballot space satisfying the richness conditions, (4.15) and (4.16).

Lemma 4.4.5. Consider a subdomain of dichotomous preferences D � D and
a ballot space B � D: If voting system .B; '/ satisfies neutrality, consistency,
faithfulness, and strategy-proofness on D, then it is majority voting without ballot
constraint on D.

Proof. By Theorem 4.3.6, there are scoring functions s1; : : : ; sT that represent '
as the lexicographic scoring rule. The case where all scoring functions are zero
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functions can be treated easily.23 Excluding this case, without loss of generality,
assume that no st is uniformly zero.

By Lemma 4.4.1, the voting system has no ballot constraint (DnfXg D BnfXg)
and for all B 2 DnfXg, B is the unique undominated strategy for dichotomous
preference B .

Suppose that for some B 2 Dnf;; Xg, s1.jBj/ < 0: Then '.�B / D XnB (since
B ¤ ;; X and so XnB ¤ ;; X ), contradicting faithfulness.

Suppose that for some A;B 2 Dnf;; Xg, 0 
 s1.jAj/ < s1.jBj/: Without loss
of generality, assume there exist a 2 AnB and b 2 BnA. Consider dichotomous
preference A. Construct a ballot response profile � such that for all C 2 B; if
�.C / > 0; then jC j D jBj, and n.b; �/ D n.a; �/C 1 and n.x; �/ 
 n.a; �/ � 1

for all x 2 Xnfa; bg:24 Existence of such a profile is guaranteed by (4.15) and
(4.16) because D � B. Since s1.jAj/ < s1.jBj/; '.� C �A/ D fbg. On the other
hand, '.� C �ŒBnfbg�[fag/ D fa; bg; which is preferred to fbg by the agent with
preferences A: Therefore, A does not dominate ŒBnfbg� [ fag, which implies that
A is not the only undominated ballot, contradicting Lemma 4.4.1.

The above argument shows that s1.�/ is a constant and positive valued function
over fjBj W B 2 Dnf;; Xgg. The same argument can be used to show that the
remaining score functions s2.�/; : : : ; sT .�/ are constant functions over fjBj W B 2
Dnf;; Xgg, which is sufficient to conclude that ' D 'MAJ. ut

It follows from Theorem 4.4.3 and Lemma 4.4.5 that:

Corollary 4.4.1. Consider the domain of all dichotomous preferences, D. Then the
following are equivalent.

(i) Voting system .B; '/ satisfies neutrality, strong Pareto, and Condorcet realiz-
ability on D.

(ii) Voting system .B; '/ satisfies neutrality, consistency, continuity, minimal selec-
tiveness, and weak Condorcet realizability on D.

(iii) Voting system .B; '/ satisfies neutrality, consistency, faithfulness, and strategy-
proofness on D.

(iv) Voting system .B; '/ is approval voting.

4.5 Unconstrained Multi-issue Problems and Voting
by Committees

In this section, we consider a collective decision model where there are multiple
issues and for each issue, a binary decision needs to be made. This model is studied

23 If all scoring functions are zero functions, then ' will always choose X; in which case no ballot
is dominated and all ballots are undominated.
24 Consider a ballot response profile � such that �.B/ D 1, �.ŒBnfxg� [ fag/ D 2 for each
x 2 Bnfbg, and �.B 0/ D 0 for all other ballotsB 0: Then n.b; �/ D 2.jBj�1/C1 D n.a; �/C1;
and for each x 2 Bnfbg; n.x; �/ D 2.jBj � 2/C 1 D n.a; �/� 1.
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by Barberà et al. (1991, 1997), etc., and an extended model by Barberà et al. (1993),
Le Breton and Sen (1999), etc.

Let M � f1; : : : ; mg be the set of issues. A collective decision is a vector of 1
or �1, that is,

x � .x1; : : : ; xm/ 2 f�1; 1gM ;

where 1 in the kth component means accepting the kth issue and �1 means reject-
ing it. Thus Sx � fk 2 M W xk D 1g is the set of accepted issues at x. Let
X � f�1; 1gM be the set of all possible decisions. There is no constraint on the
set of accepted issues in this model and any number or none of the issues can be
accepted.25

On the unrestricted domain of preferences, the three impossibility results, The-
orems 4.1.1–4.1.3, apply. Moreover, an even more disturbing paradox, known as
Gibbard’s paradox, holds (Gibbard 1974): the mere assignment of Sen’s liberal
rights to each person cannot be made coherently under any collective choice func-
tion. Sen (1983, p. 14) points out that Gibbard’s paradox does not hold on the
restricted domain of preferences for which each issue affects a person’s welfare
separately from other issues, the so-called separable preferences. Moreover, on the
restricted domain of separable and linear preferences, Gibbard–Satterthwaite theo-
rem does not hold and there do exist non-dictatorial and well-behaved strategy-proof
rules (Barberà et al. 1991).

Formally, a preference R0 is separable if for all x; x0 2 X and all k 2 M ,
.xk ; x�k/R0.�xk ; x�k/ if and only if .xk ; x

0
�k
/R0.�xk ; x

0
�k
/. An issue k 2 M is

a good (resp. a bad or a null) if for all x 2 X with xk D 1; .1; x�k/P0.�1; x�k/

(resp. .�1; x�k/P0.1; x�k/ or .1; x�k/I0.�1; x�k/). LetG.R0/ be the set of goods
for R0 and B.R0/ the set of bads. Let S be the set of separable preferences and
SL the set of linear separable preferences. Given a domain of separable preference
profiles, D � SN , a collective choice function c W D ! X associates with each
preference profile a single collective decision.

Collective choice functions that can be practiced through a simple non-ranked
voting procedure have been of central interest in the literature. A voting scheme is a
collective choice function that only uses information about which issues are good or
bad and so can be applied through a voting procedure under which voters express,
in their ballots, which issues are goods and which are bads. That is, a voting scheme
is a collective choice function satisfying:

Votes-Only: For all R;R0 2 SN , if for all i 2 N; G.Ri / D G.R0
i / and B.Ri / D

B.R0
i /; then c.R/ D c.R0/.

On the domain of linear separable preferences SN
L , this property is known as

the “tops-only” property because G.Ri / is the top alternative for Ri 2 SL. When
there are nulls, adding some or all nulls to G.Ri / makes no difference from G.Ri /

25 Barberà et al. (2005) consider a similar model with some constraints on the number of issues to
be accepted.
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and makes another top alternative for Ri . Thus there are multiple top alternatives
consisting of all goods, some or all nulls, and no bads.

The following two additional axioms pin down an important family of voting
schemes. The first axiom says that if for each agent, there are more goods and less
bads, then more issues should be accepted.

Issues Monotonicity: For all R;R0 2 SN ; if for all i 2 N; G.Ri / � G.R0
i / and

B.Ri / � B.R0
i /, then c.R/ 
 c.R0/:

The next axiom says that decisions on each issue should be made independently
from the other issues, relying on who is in favor of the issue and who is against it.
For all R 2 SN and all k 2 M , let NG

k
.R/ be the set of agents for whom issue k is

a good, and NB
k
.R/ the set of agents for whom issue k is a bad.

Issues Independence: For all R;R0 2 SN and all k 2 M; if NG
k
.R/ D NG

k
.R0/

and NB
k
.R/ D NB

k
.R0/, then ck.R/ D ck.R

0/:
Note that each of the above two axioms implies votes-only. The family of collec-

tive choice functions satisfying the two axioms can be represented by an issue-wise
decisive structure, similar to the decisive structures in Sect. 4.2, defined as follows.
For all k 2 M; a decisive structure for issue k is a nonempty subset of d�, dk � d�
satisfying: for all .L1; L2/; .L

0
1; L

0
2/ 2 d�;

if .L1; L2/ 2 dk ; L1 � L0
1 and L2 � L0

2; then .L0
1; L

0
2/ 2 dk :

Call this property d-monotonicity, as in Sect. 4.2. An issue-wise decisive structure
is a list of decisive structures for all issues, d D .dk/k2M . An issue-wise decisive
structure d D .dk/k2M represents the function c.�/ defined as follows: for all R 2
SN and all k 2 M; ck.R/ D 1 if and only if .NG

k
.R/;NB

k
.R// 2 dk .

Proposition 4.5.1 (Ju 2003). A collective choice function on SN (or on SN
L ) satis-

fies issues monotonicity and issues independence if and only if it is represented by
an issue-wise decisive structure.

The proof is similar to the proof of Proposition 4.2.1, and it holds on numerous
subdomains of SN (Ju 2003). On the domain of linear separable preferences SN

L ,
voting schemes represented by an issue-wise decisive structure consisting of proper
subsets dk of d� for all k 2 M are called schemes of voting-by-committees (Barberà
et al. 1991). Note that because for all k 2 M , dk is a proper subset of d�, schemes
of voting-by-committees have full-range. Issue-wise majority voting scheme is the
voting scheme represented by d � .dk/k2M such that for all k 2 M; .L1; L2/ 2 dk

if and only if jL1j > jL2j. An axiomatization of issue-wise majority voting scheme
can be established with the combination of issues monotonicity, issues indepen-
dence, anonymity, neutrality, and a duality-type axiom, on the domain of separable
linear preferences with an odd number of agents.
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4.5.1 Strategy-Proofness and Separable Preferences

Barberà et al. (1991) show that on the domain of linear separable preferences SN
L ,

all strategy-proof collective choice functions with full-range satisfy the votes-only
property, and so they are voting schemes. Based on this result, they also show
that strategy-proofness and the full-range condition together imply issues indepen-
dence as well as issues monotonicity. This leads to the following characterization of
voting-by-committees.

Theorem 4.5.1 (Barberà et al. 1991). A collective choice function on the domain
of linear separable preferences satisfies the full-range condition and strategy-
proofness if and only if it is a scheme of voting-by-committees.

Barberà et al. (1993) and Le Breton and Sen (1999) generalize this result in the
extended model of multi-issue problems where more than two alternatives are avail-
able on each issue. In particular, Le Breton and Sen (1999) identify a general domain
condition under which their characterization holds. The key argument is to prove
an extended version of issues independence, called “decomposability,” of strategy-
proof collective choice functions. All these works assume linearity of preferences,
which plays a crucial role.

When preferences are not linear, as shown by Le Breton and Sen (1995), issues
independence of a strategy-proof collective choice function is not guaranteed, which
makes it hard to obtain a result like Theorem 4.5.1 on the domain of separable
“weak” orderings SN . In fact, we need an additional axiom to characterize voting
schemes represented by an issue-wise decisive structure.

Null-Independence: For all i 2 N; all k 2 M , all Ri ; R
0
i 2 S; and all R�i 2

SN nfig, if k is a null issue for both Ri and R0
i ; then ck.Ri ; R�i / D 1 if and only if

ck.R
0
i ; R�i / D 1.

Among voting schemes, the combination of strategy-proofness and null-
independence is equivalent to the combination of issues monotonicity and issues
independence (Ju 2003, Proposition 4, p. 485). Thus it follows from Proposi-
tion 4.5.1 that:

Theorem 4.5.2 (Ju 2003). A voting scheme on the domain of separable preferences
satisfies strategy-proofness and null-independence if and only if it is represented by
an issue-wise decisive structure.

After identifying a domain D where well-behaved strategy-proof functions exist, it
is important to understand whether this existence result may be extended to a larger
domain. In fact, as shown by Barberà et al. (1991, Theorem 3), the domain of sepa-
rable linear preferences is the unique maximal “rich” domain (of linear preferences)
where well-behaved strategy-proof functions exist. Dropping the linearity assump-
tion, yet focusing on voting schemes, Ju (2003, Theorem 3) shows that the domain of
separable preferences (weak orderings) is the unique maximal “rich” domain where
well-behaved strategy-proof voting schemes exist. Maximal domain results are also
established in the extended model of multi-issue problems by Serizawa (1995) and
Le Breton and Sen (1999).
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4.5.2 Strategy-Proofness Versus Efficiency and Domain
Restrictions

Although strategy-proof collective choice functions on the domain of separable
preferences are numerous, only dictatorial ones are efficient.

Theorem 4.5.3 (Barberà et al. 1991). When there are at least three issues, a
collective choice function on the domain of linear separable preferences is strategy-
proof and efficient if and only if it is dictatorial.

Le Breton and Sen (1999) obtain this result in their extended model of multi-issue
problems. Shimomura (1996) weakens efficiency by requiring it on the subdomain
where agents’ preferences bear some degrees of resemblance and pins down a small
family of schemes of voting by committees, which includes non-dictatorial voting
schemes. When the set of alternatives is variable, Ju (2005b) requires efficiency only
for problems with at most two alternatives. He shows that only those voting schemes
that are quite close to the issue-wise majority function satisfy this restricted notion
of efficiency as well as strategy-proofness, anonymity, and two additional axioms
pertaining to agenda variation.

Ju (2005a) further restricts the domain of separable preferences to domains of
“dichotomous” preferences. An additive preference is a separable preference rep-
resented by a utility vector u � .u1; : : : ; um/ 2 R

m as follows: for all x; x0 2
f�1; 1gM ; xR0x

0 if and only if u�x 	 u�x0:An additive preference is trichotomous if
all goods are indifferent and all bads are indifferent. A trichotomous additive prefer-
ence is dichotomous if all issues are either goods or bads. Although we use the same
term as in the earlier sections, dichotomous preferences here are not dichotomous in
the sense we use in Sect. 4.3. Dichotomous preferences in this section have at most
two indifference sets of issues but may have more than two indifference sets in the
alternative space f�1; 1gM . Considering some examples of restricted domains con-
sisting of dichotomous or trichotomous additive preferences, Ju (2005a) proves that
only those voting schemes that are very close to issue-wise majority voting scheme
satisfy efficiency as well as issues independence, anonymity, and neutrality (neutral-
ity is needed only in the case of dichotomous preferences). Whether this result or
a similar result holds for other simple domains such as the domain of dichotomous
separable preferences that are not necessarily additive is open for future research.

4.6 Simple Opinion Aggregation and Decision by Powers
and Consent

In this section, we consider the problem of aggregating dichotomous or trichoto-
mous opinions, introduced by Wilson (1975) and further studied by Rubinstein and
Fishburn (1986), Aleskerov et al. (2007), and Ju (2005a, 2008, 2010). The model
is similar to the unconstrained multi-issue problems except that here, we deal with
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opinions rather than preferences. For separable linear preferences, issues are either
goods or bads. Thus opinions can be interpreted as restricted preference revelations.

A special example of opinion aggregation is the problem of group identifi-
cation. A finite number of potential members have to decide who among them-
selves belong to a certain collective through aggregating their dichotomous or
trichotomous opinions. This problem is introduced by Kasher and Rubinstein (1997)
and further studied by Samet and Schmeidler (2003), Sung and Dimitrov (2003),
Dimitrov et al. (2007), Çengelci and Sanver (2010), Miller (2008), and Ju (2008,
2009a, 2010).

We continue using the same notation as in Sect. 4.5. Each person i 2 N has
his opinion on issues in M , represented by an 1 � m row vector Vi consisting
of 1, 0, or �1. A problem is an n � m opinion matrix V consisting of n row vec-
tors V1; : : : ; Vn. Let VTri be the set of all opinion matrices, called, the trichotomous
(opinion) domain. An alternative is a vector of 1 and �1, x � .x1; : : : ; xm/ 2
f�1; 1gM , where 1 (resp. �1) in the kth component means accepting the kth issue
(resp. rejecting the kth issue). For all V 2 VTri and all k 2 M , V k denotes the kth
column vector of V . Let

jjV kC jj�
X

i2N WVikD1

Vik; jjV k� jj�
X

i2N WVikD�1

�Vik; and jjV kC;�jj � jjV kCjjCjjV k� jj.

For example, in the group identification model,M D N and an alternative describes
who belongs to the collective and who does not.

Let VDi be the subset of VTri, consisting of the opinion matrices whose entries are
either 1 or �1, called the dichotomous (opinion) domain. Let D be either one of the
two domains. Samet and Schmeidler (2003) consider the dichotomous domain of the
group identification model.26 A collective choice function on D, c W D ! f�1; 1gM ,
associates with each problem in the domain a single alternative. A collective choice
function satisfies non-degeneracy if for each i 2 N , there exist V; V 0 2 D such that
ci .V / D 1 and ci .V

0/ D �1.
Section 4.5 provides the definition of a collective choice function represented

by an issue-wise decisive structure. The same definition applies here, treating all
issues k with Vik D 1 as goods for person i and all issues l with Vi l D �1 as
bads, and all other issues as nulls. In the same way, we can extend the definitions
of issues monotonicity and issues independence, which together characterize the
family of collective choice functions represented by an issue-wise decisive structure
(Proposition 4.5.1).

A subfamily of these collective choice functions plays an important role in the
literature on opinion aggregation. In particular, an issue-wise dictatorial function
c.�/ is represented by an issue-wise decisive structure conferring on a person the
full decision power over an issue: that is, for each k 2 M , there is i 2 N such that

26 Dichotomous opinions in Samet and Schmeidler (2003) are described by vectors of 1 and 0,
where 0 has the same meaning as �1 in our model.
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for all V 2 D with Vik 2 f�1; 1g; ck.V / D Vik: In group identification problems
with dichotomous opinions, the issue-wise dictatorial function where person i has
the decision power on his own qualification is called as the liberal function. A milder
notion of decision powers is discussed in the next subsection.

4.6.1 Social Decision by Powers and Consent for Dichotomous
or Trichotomous Opinion Aggregation

Here we define a milder notion of decision powers. We first focus on dichotomous
opinions. After this, we give the general definition.

Given a collective choice function c defined on the dichotomous domain VDi,
person i 2 N has the “power to influence the social decision on the kth issue”,
briefly, the power on the k-th issue if the decision on the kth issue is made follow-
ing person i ’s opinion whenever person i ’s opinion obtains sufficient consent from
society: formally, there exist qC; q� 2 f1; : : : ; nC 1g such that for all V 2 VDi,

(i) when Vik D 1, ck .V / D 1 , jjV kC jj 	 qC I
(ii) when Vik D �1, ck .V / D �1 , jjV k� jj 	 q� :

(4.20)

The two numbers qC and q� are called consent-quotas. The greater qC or q� is, the
higher degree of social consent is required for the exercise of the power. There are
three extreme cases. When qC D q� D 1, i ’s opinion determines social decision
independently of social consent. Thus the power is decisive. When qC D nC 1 and
q� D n C 1, the power is anti-decisive because i ’s opinion is reflected reversely
in the social decision. When qC C q� D n C 1; the two parts in (4.20) coincide
and all persons can have the same powers as person i (changing i with any j in
(4.20) makes no difference). In this case, all persons have the equal power on the
same issue; so such a power is said to be non-exclusive (formal definition will be
provided later).27

The total number of positive or negative votes, denoted by �, always equals n on
the dichotomous domain. However, on the trichotomous domain, it is variable. We
allow consent-quotas to vary relative to the total number of votes. Given a collective
choice function c defined on VTri, a person i 2 N has the power on the k-th issue
if there exist three functions qC W N [ f0g ! N [ f0; n C 1g, q0 W N [ f0g !
N [ f0; nC 1g, and q� W N [ f0g ! N [ f0; nC 1g such that for all � 2 N [ f0g,
and all V 2 VTri with jjV kC;�jj D �,

(i) when Vik D 1, ck .V / D 1 , jjV kCjj 	 qC .�/ I
(ii) when Vik D 0, ck .V / D 1 , jjV kCjj 	 q0 .�/ I
(iii) when Vik D �1, ck .V / D �1 , jjV k� jj 	 q� .�/ :

(4.21)

27 Consent quotas are closely related with the power index by Shapley and Shubik (1954) as
discussed in Ju (2010).
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We call the list of the three functions q .�/ � .qC .�/ ; q0 .�/ ; q� .�// the consent-
quotas function. The power is decisive if for all � 2 N , both qC .�/ and q� .�/ take
the value of 1. The power is anti-decisive if for all �, both qC .�/ and q� .�/ take the
value of � C 1. To avoid unnecessary complication, we assume that for all � 2 N;

qC.�/; q�.�/ 2 f1; : : : ; � C 1g; q0.�/ 2 f0; 1; : : : ; � C 1g; and q0.0/ 2 f0; 1g;

and
qC.0/ D qC.1/; q�.0/ D q�.1/; and q0.n/ D q0.n � 1/:

Let Q be the family of consent-quota functions satisfying these assumptions.

Definition 4.6.1 (System of Powers). A system of powers representing a collec-
tive choice function c on VTri is a function W W M ! N � Q mapping each issue
k 2 M into a pair of the person, W1 .k/, who has the power on the kth issue, and
the consent-quotas function, W2 .k/ D .qC .�/ ; q0 .�/ ; q� .�//, associated with the
power. That is, when W1 .k/ D i , for all � 2 f0; 1; : : : ; ng and all V 2 VTri with
jjV kC;�jj D �, the social decision on the kth issue is made as described in (4.21).

The power on the kth issue is (fully) exclusive if there is a person i who has the
power on the kth issue and no one else does. It is (fully) non-exclusive if all persons
have the “equal” power on the kth issue associated with a single consent-quotas
function (or, on the dichotomous domain, a list of consent-quotas). The power on an
issue is either exclusive or non-exclusive (Remark 1 of Ju (2010)). Thus either only
one person has the power or all persons have equal power. Two systems of powersW
andW 0 are equivalent, denoted byW � W 0, if for all k with W1 .k/ ¤ W 0

1 .k/, the
power on the kth issue is non-exclusive (so,W2 .k/ D W 0

2 .k/); otherwise,W2.k/ D
W 0

2.k/: If a collective choice function is represented by a system of powers, the
system of powers is unique up to this equivalence relation (Ju 2010, Proposition 2).
The following two extreme systems are notable. Under a non-exclusive system of
powers, everyone has non-exclusive power on every issue. Under a monocentric
system of powers, one person has exclusive power on every issue.

A necessary and sufficient condition for issues monotonicity is composed of the
following two properties of consent-quotas functions (Ju 2010, Proposition 3). A
consent-quotas function q .�/ � .qC .�/ ; q0 .�/ ; q� .�// has the component ladder
property if for all � 2 f1; : : : ; ng, the following three inequalities hold:

(i) qC .� � 1/ 
 qC .�/ 
 qC .� � 1/C 1I
(ii) q0 .� � 1/ 
 q0 .�/ 
 q0 .� � 1/C 1I
(iii) q� .� � 1/ 
 q� .�/ 
 q� .� � 1/C 1:

(4.22)

When this property fails, the decision may not respond monotonically after other
persons’ opinions become more favorable. The function has the intercomponent
ladder property if for all � 2 f1; : : : ; ng,

qC .�/ 
 q0 .� � 1/C 1 
 � � q� .�/C 2: (4.23)
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When this property fails, the issue, initially accepted, may be rejected after the per-
son who has the power on the issue becomes more favorable. For example, any
anti-decisive power which has qC.�/ D q�.�/ D � C 1 for all � violates intercom-
ponent ladder property. On the dichotomous domain, component ladder property
has no bite and intercomponent ladder property reduces to qC C q� 
 n C 2. The
ladder property refers to the conjugation of the two ladder properties.

In the Arrovian framework, Sen (1970a,b, 1976, 1983) and many of his critics
formulate individual rights based on (1) the existence of the so-called recognized
personal spheres and (2) ‘how the recognition of the personal spheres of different
individuals should be reflected in the choices made by the society’ (Gaertner et al.
1992, p. 162). Here, to formulate such recognized personal spheres, we use a func-
tion mapping each issue into a person, � W M ! N , called a linkage. The next axiom
requires the existence of recognized personal spheres. However, it does not impose
any specific condition regarding what form the recognition should take, except for a
minimal “symmetry” condition, which says that collective choice functions should
treat person i and i ’s issues (constituting i ’s personal sphere) symmetrically to any
other person j and j ’s issues. Technically, when names of person i and all i ’s issues
are switched simultaneously to names of person j and all j ’s issues, social decision
should also be switched accordingly. Given a linkage � 2 ƒ, for all i 2 N , let us
call elements in ��1 .i/ person i ’s issues. Let � W N ! N and ı W M ! M are
permutations on N and on M such that for all i 2 N , ı maps the set of person i ’s
issues onto the set of person � .i/’s issues. Let ı

�P be the matrix such that for all
i 2 N and all k 2 M , ı

�Pik � P�.i/ı.k/. Then person i and his issue k play the
same role in ı

�P as person � .i/ and his issue ı .k/ do in P .

Symmetric Linkage There is a linkage � W M ! N such that for all permutations
� W N ! N and all permutations ı W M ! M , if for all i 2 N , ı maps the set
of i ’s issues ��1 .i/ onto the set of � .i/’s issues ��1 .� .i//, then for all k 2 M ,
fk

�
ı
�P

� D fı.k/ .P /.

Symmetry holds in the model of group identification if the collective choice
function satisfies symmetric linkage and the linkage is the identity function, which
means that the qualification of i is recognized as i ’s personal sphere, as is natural in
this model.

A condition on systems of powers that is necessary and sufficient for symmet-
ric linkage is horizontal equality: for all pair of persons i and j 2 N with the
same number of issues underW1, that is, jW �1

1 .i/ j D jW �1
1 .j / j, their powers are

associated with the same consent-quotas function, that is, for all k 2 W �1
1 .i/ and

all l 2 W �1
1 .j /, W2 .k/ D W2 .l/ (Ju 2010, Proposition 4).28 When i D j , this

28 A linkage creates primitive differences among persons and among issues in this setting; except
for this, all other aspects of the model give equal standing to all persons (they share the same set of
potential opinion vectors) and to all issues. A linkage differentiates persons vertically depending
on the number of issues one is associated with. Horizontal equality allows us to incorporate this
vertical differentiation in systems of powers not harming equality too much among persons.
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property says that person i ’s powers on two different issues are associated with the
same consent-quotas function.

Adding symmetric linkage to issues monotonicity and issues independence pro-
vides a characterization of collective choice functions represented by a system of
powers.

Theorem 4.6.1 (Ju 2010). Let D 2 fVDi;VTrig. A collective choice function on D
satisfies issues monotonicity, issues independence, and symmetric linkage if and
only if it is represented by a system of powers satisfying the ladder property and
horizontal equality. Moreover, the system is unique up to the equivalence relation �.

4.6.2 Group Identification

We now consider group identification problems, where M D N . Several recent
studies on group identification introduced by Kasher and Rubinstein (1997) formu-
late principles of liberalism in this specific model and establish axiomatic charac-
terizations of “liberal” collective choice function.

4.6.2.1 Liberalism and Axiomatic Characterizations

A system of powers W on the domain of dichotomous problems VDi is liberal if
W1.i/ D i for all i 2 N and all powers are decisive. The liberal collective choice
function on VDi is represented by the liberal system of powers.

The next axiom incorporates the minimal sense of liberalism by requiring only
that if someone qualifies (disqualifies) herself, then not everyone should be disqual-
ified (qualified), in other words, there should be someone, possibly the same person,
who is qualified (disqualified).

Semi-Liberal Principle: For all V 2 VDi , if for some i 2 N; Vi i D 1, then for
some j 2 N , cj .V / D 1; if for some i 2 N , Vi i D �1, then for some j 2 N ,
cj .V / D �1.

Sung and Dimitrov (2003) establish the following characterization of the liberal
collective choice function.

Theorem 4.6.2 (Sung and Dimitrov 2003). Assume M D N . A collective choice
function on VDi satisfies independence, symmetry, and semi-liberal principle if and
only if it is the liberal function.

This is a strengthening of the characterization by Kasher and Rubinstein (1997)
where they impose monotonicity and unanimity as well as the three axioms above.
Sung and Dimitrov (2003) show that these two additional axioms are redundant and
that the three remaining axioms are logically independent.
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Samet and Schmeidler (2003) propose the following two interesting axioms.29

The first axiom says, in their words, that non-Hobbits’ opinions about Hobbits do
not matter in determining who are Hobbits.

Exclusive Self-Determination: If V; V 0 2 D are such that for all i; j 2 N; Vij ¤
V 0

ij only if ci .V / D �1 and cj .V / D 1; then c.V / D c.V 0/:
The next axiom says that the two groups, of Hobbits and of qualifiers of Hobbits,

should coincide.

Affirmative Self-Determination: For all V 2 D, c.V / D c.V t /, where V t is the
transpose of V:

Imposing either one of the two self-determination axioms together with other
axioms defined earlier, we have the following characterization of liberal choice
function:

Theorem 4.6.3 (Samet and Schmeidler 2003). Assume M D N . A collective
choice function on VDi satisfies monotonicity, independence, non-degeneracy and
exclusive self-determination (or affirmative self-determination) if and only if it is the
liberal function.

Ju (2010) extends this result on the domain of trichotomous opinions VT ri .
Çengelci and Sanver (2010) introduces the axiom of positive weak equal treat-
ment property requiring that all persons should be qualified when everyone qualifies
himself. Based on this axiom or a variant, they establish a characterization of the
liberal choice function. Ju (2009a) weakens monotonicity and non-degeneracy in
Theorem 4.6.3 and obtains an alternative characterization result.

For all x; x0 2 f�1; 1gN , let x ^ x0 � .minfxi ; x
0
i g/i2N and x _ x0 � .max

fxi ; x
0
i g/i2N . Similarly, for all V; V 0 2 VDi , let V ^ V 0 � .minfVij ; V

0
ij g/i2N;j 2N

and V _V 0 � .maxfVij ; V
0

ij g/i2N;j 2N . Miller (2008) considers an extended frame-
work where a collective choice function is used to identify more than one groups.
The key axiom in Miller (2008) pertains to the two methods of identifying a collec-
tive consisting of persons with feature a and feature b. One method is to identify
the collective with feature a and the collective with feature b separately and take the
intersection of the two groups. The other method is to identify the collective with
feature a and feature b at once. The next axiom requires that both methods should
yield the same group.

Meet Separability: For all V; V 0 2 D, c.V / ^ c.V 0/ D c.V ^ V 0/.
The same requirement for identifying a collective consisting of persons with

feature a or feature b is as follows.

Join Separability: For all V; V 0 2 D, c.V / _ c.V 0/ D c.V _ V 0/.
Miller (2008) shows that the liberal function is the only collective choice function

satisfying the two separability axioms as well as non-degeneracy and anonymity.

29 See Samet and Schmeidler (2003, pp. 222–224), for detailed discussion and motivation for the
two axioms.
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Theorem 4.6.4 (Miller 2008). Assume M D N . A collective choice function on
VDi satisfies meet separability, join separability, non-degeneracy, and symmetry if
and only if it is the liberal function.

Miller (2008, Theorem 2.5) shows that collective choice functions satisfying the
first three axioms depend only on a single vote and call them one-vote rules. From
this result, Theorem 4.6.4 directly follows because only the liberal function among
these one-vote rules can satisfy symmetry. Note that independence is not needed in
this characterization result and in fact, it is implied by the four axioms.

4.6.2.2 Consent-Based Choice Functions

Samet and Schmeidler (2003) introduce a spectrum of choice functions connecting
issue-wise majority function and the liberal function as two extreme functions of
the family. A consent-based choice function on the domain of dichotomous opinions
VDi is represented by a system of powersW such that for all i 2 N ,W1.i/ D i and
qC C q� 
 nC 2, where .qC; q�/ D W2.k/ for all k 2 N .

Theorem 4.6.5 (Samet and Schmeidler 2003). Assume M D N . A collective
choice function on VDi satisfies monotonicity, independence, and symmetry if and
only if it is a consent-based choice function.

A collective choice function c on VDi satisfies self-duality if for all V 2 VDi ,
c.�V / D �c.V /. Adding self-duality to the three axioms above, Samet and
Schmeidler (2003, Theorem 2) characterize the subfamily of consent-based choice
functions of which the consent quotas functions satisfy the following property: for
all i; j 2 N , W2.i/ D W2.j / D .qC; q�/ and qC D q�.

Note that self-dual consent-based choice functions have the same consent quo-
tas for all persons. Allowing for different consent quotas across persons, a slightly
larger family can be defined. This family is characterized by Çengelci and Sanver
(2010, Theorem 4.1) with the set of four axioms, monotonicity, independence, self-
duality and a weaker version of anonymity axiom. It should be noted that in this
characterization, they do not impose symmetry, which plays a crucial role in Samet
and Schmeidler (2003).

When qC C q� D n C 1, parts (i) and (ii) of (4.20) are identical to the single
condition that for all V 2 VDi and all i 2 N , ci .V / D 1 if and only if jjV iCjj 	
qC. Thus social decisions are made anonymously. Conversely, anonymous consent-
based choice functions have consent quotas with qC C q� D nC 1.

When there is an odd number of persons, the two conditions qC D q� and
qC C q� D n C 1 are satisfied only by the issue-wise majority function. There-
fore, the issue-wise majority function is characterized by adding anonymity to the
four axioms of monotonicity, independence, symmetry, and self-duality (Samet and
Schmeidler 2003, p. 225). Replacing anonymity with neutrality, gives an alternative
characterization of the issue-wise majority function.



4 Collective Choice for Simple Preferences 87

4.6.3 Simple Preferences and the Paradox of Paretian Liberal

Compatibility of Pareto efficiency and existence of the so-called libertarian rights
(decisive powers) is widely studied by a number of authors after Sen (1970a,b). We
investigate Sen’s paradox of Paretian liberal (Sen 1970a,b) in the current opinion
aggregation framework by considering separable preference relations. We formulate
Sen’s liberal rights as a person’s decisive power on a certain issue (Gibbard 1974).
Note that each separable preferenceR0 is associated with an opinion vector V0, each
positive (resp. negative or zero) component of V0 representing the corresponding
issue as a good (resp. a bad or a null). Obviously, there are a number of separable
preference relations corresponding to a single opinion vector.

Sen’s paradox holds on the separable preferences domain.30 Sen’s (1970a,b)
minimal liberalism postulates that there should be at least two persons who have
decisive powers. Assume that persons 1 and 2 are given the decisive powers on the
first issue and the second issue respectively. Consider the following preference rela-
tions of the two persons. For person 1, the first issue is a bad and the second issue
is a good. But person 1 cares so much about the second issue (person 2’s issue) that
he prefers the positive decision on this issue to the negative decision no matter what
decisions are made on the other issues. For person 2, the second issue is a bad and
the first issue is a good. But person 2 cares so much about the first issue (person 1’s
issue) that he prefers the positive decision on this issue to the negative decision no
matter what decisions are made on the other issues. Then by the decisive powers of
the two persons, decisions on the first and the second issues are both negative. But
the two persons will be better off at any decision with positive components for both
issues. This confirms that minimal liberalism and Pareto efficiency are incompatible
on the separable preferences domain.

Preference relations in the above example are “meddlesome”’ (Blau 1975). One
may hope that without such relations, the paradox of Paretian liberal will not occur.
Unfortunately, the paradox holds even in a substantially restricted environment
where only trichotomous or dichotomous preference relations are admissible. Con-
sider a trichotomous preference relation R0 that is a separable preference relation
represented by a function U0 W f�1; 1gM ! R such that for each x 2 f�1; 1gM ,
U0 .x/ D P

k2M WxkD1 V0k; where V0 2 f�1; 0; 1gM is the opinion vector cor-
responding to R0.31 Let A�

T ri be the family of all such trichotomous preference
relations. Let A�

Di be the subfamily of dichotomous preferences in A�
T ri .

Proposition 4.6.1 (Ju 2008). When there are at least three persons, no Pareto
efficient collective choice function on A�

Di or A�
T ri satisfies minimal liberalism.

Proof. Suppose that persons 1 and 2 have the decisive powers respectively on
issue 1 and issue 2. Consider the profile of dichotomous preference relations

30 This was originally proven by Gibbard (1974, Theorem 2).
31 Equivalently, U0 .x/ D jfk 2 M W xk D 1 and P0k D 1gj � jfk 2 M W xk D 1 and
P0k D �1gj.
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.Ri /i2N given by the following opinion vectors: V1 � .1;�1;�1; : : : ;�1/, V2 �

.�1; 1;�1; : : : ;�1/, and for all i 2 Nnf1; 2g, Vi � .�1; : : : ;�1/. Then by the
decisive powers of persons 1 and 2, c1 .R/ D c2 .R/ D 1. If c.�/ is Pareto efficient,
for all k 2 Mnf1; 2g, ck .R/ D �1. Thus c .R/ D .1; 1;�1; : : : ;�1/. Note that this
alternative is indifferent to x � .�1; : : : ;�1/ for both person 1 and person 2 and x
is preferred to c .R/ by all others. This contradicts Pareto efficiency. ut

Note that unlike the previous paradox on the separable preferences domain, we
need the assumption n 	 3. The case with two persons ruled out by this assumption
is very limited. In fact, the paradox does not apply in the two-person case (deci-
siveness is quite close to majority principle since one person’s opinion accounts for
50%).

Collective choice functions that are represented by a system of powers do not
satisfy minimal liberalism if no power is decisive. However they capture a some-
what weak sense of liberalism because they allow limited powers to individuals.
Ju (2008) shows among these collective choice functions, there do exist Pareto effi-
cient ones on A�

T ri . Issue-wise majority function is an example and all other Pareto
efficient functions are very close to the issue-wise majority function. The only dif-
ference is when the number of voters in favor of an issue is the same as the number
of voters against the issue, in which case the person who has the power on the issue
dictates the social decision. Thus the exercise of a person’s power is most limited.
To be compatible with Pareto efficiency, exclusive powers that can be assigned to
individuals should be limited so extremely that the resulting collective choices are
very close to the issue-wise majority function where no individual has an exclusive
power.
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