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Preface

I am honored to write a preface to this remarkably broad and comprehensive volume
on approval voting (AV). It has been almost 35 years since Peter C. Fishburn and
I met in 1976 and began research on AV. Besides my 30-year collaboration with
Fishburn, I have collaborated with several other scholars — including D. Marc
Kilgour, Samuel Merrill, Jack H. Nagel, M. Remzi Sanver, and William S. Zwicker —
on AV-related research. Over these years there has been a profusion of articles and
books reporting on empirical and theoretical aspects of AV and their normative
implications. This volume touches on all aspects of this research and will be a very
helpful sourcebook to scholars who want to carry this research forward.

In Brams and Fishburn (1983/2007, p. 172), Fishburn and I were unabashed in
our support of AV:

Approval voting strikes at the heart of how political debate is resolved. It offers a new
approach to the realization of democratic principles by redefining what constitutes a demo-
cratic choice. Indeed, the foundation on which representative government is built is periodic
elections, and the central problem of elections today is how to translate voter preferences,
with as little distortion as possible, into consensus choices in multicandidate races. We
believe that approval voting is the best practical way for amalgamating these preferences,
fairly and impartially, to produce a winner and thereby ameliorate the multicandate problem.

We added that “more than intellectual issues are at stake,” pointing out that “there
are some 500,000 elected officials serving in approximately 80,000 governments in
the United States” (p. 171). Earlier I had brazenly predicted that AV “would be the
election reform of the twentieth century” (Brams 1980, p. 105).

This was not to be, for reasons described in Brams and Fishburn (2005; reprinted
in this volume); indeed, as we indicated, AV’s success has been decidedly mixed.
Consequently, I take this opportunity to move up the deadline for the widespread
adoption of AV to the twenty-first century!

Of course, not everyone believes this should come to pass; AV, to say the least,
remains controversial. In part, this is because AV is a radical reform — even if it does
not require a constitutional amendment to implement in most democracies of the
world - because the idea of judging each and every candidate as acceptable or not is
fundamentally different from either

vii



viii Preface

e Restricting a voter’s approval to just one candidate, as under plurality voting; or

e Allowing voters to rank candidates — as under preference systems like the Hare
system of single transferable vote (STV) or the Borda count — but not indicate
where they would draw the line between those who are acceptable and those who
are not

In my opinion, the advantages of AV over plurality voting, or plurality voting with
a runoff, are compelling: AV is as simple as the former and less burdensome and
costly than the latter, not to mention its appealing theoretical properties, such as
its propensity to elect Condorcet winners (when they exist), its robustness against
manipulation, and its monotonicity (STV fails this property). Less clear, however,
is whether AV’s merits extend to electing multiple winners to, say, a council or
legislature.

In several chapters of Brams (2008), I analyze alternative methods of aggregat-
ing approval ballots — a subject that Kilgour, and Laffond and Lainé, also discuss
in this volume — which would, among other things, facilitate the proportional repre-
sentation (PR) of different factions in an electorate. While almost all parliamentary
democracies seek to achieve PR, most limit the choice of voters to voting for parties,
not candidates, and only one party at that. More research is clearly needed to assess
the benefits of using AV ballots to elect representative committees.

Another direction that AV-related research has taken is to allow voters to rate
candidates or other alternatives in terms of more than two grades. Range voting,
which has been championed by Warren D. Smith (see http://rangevoting.org), lets
voters grade candidates on a scale that might include as few as 3 gradations or as
many as 100; the candidate with the highest overall rating, when all voters’ rat-
ings are summed up, is the winner. Under majority judgment voting, Balinski and
Laraki (2010) suggest a 6-tier scale, but they emphasize that the ratings should not
be numerical but verbal (e.g., from “excellent” to “poor”), provided that the voters
share a common language that enables them to make similar judgments. Under their
scheme, the winner is the candidate with the highest median ranking, not the highest
overall (or average) ranking, as range voting prescribes.

While range voting and majority-judgment voting enable voters to make more
nuanced judgments than does AV, they also have some less-than-desirable proper-
ties. Paradoxically, each voting system can elect a candidate preferred — based on
the ratings — by only one voter when all the other voters favor a different candidate.
Moreover, under range voting, voters may have a strategic incentive to dichotomize
their ratings, giving their highest ratings to favored candidates and their lowest to
nonfavored candidates, making it equivalent to AV. Under majority judgment vot-
ing, a voter can sometimes do better by not voting than by giving his or her favorite
candidate the highest possible rating (the so-called no-show paradox). In sum, these
more sophisticated variants of AV carry their own troublesome baggage (Brams
2009).

Besides these refinements of AV, an intellectual and practical challenge is to
extend AV to new situations, such as voting on bills in a legislature, wherein there
might be multiple alternatives to be voted upon (e.g., an original bill, amendments,
and substitute amendments, which are allowed under different parliamentary rules).
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Instead of voting on these alternatives serially, where the order of voting on these
alternatives can critically affect the outcome, it would seem sensible to use AV to
vote on these alternatives all at once.

As a case in point, there can be up to five alternatives on the floor in the US
Congress and the United Nations. If a majority of members considered, say, three of
five alternatives acceptable, one might declare this package to be the social choice -
assuming that the different alternatives are consistent (i.e., one alternative in the
package does not nullify another). I know of almost no research on this kind of AV
application.

To conclude, I believe that empirical and theoretical research on AV, and the
kinds of emendations and applications I have discussed, will continue apace and
may even accelerate. But, as I have ruefully discovered, it is hard to predict when
and where a new idea like AV will take hold and be implemented.

I have not lost hope and still feel that AV will be tried out in significant public
elections. If so, we will learn quickly of any overlooked flaws. But the research
over the past third of a century suggests, at least to me, that there are more likely
to be some pleasant surprises, resulting in the election of consensus candidates who
are better able to formulate and enact public policy. If so, then the contributors to
this volume can — as academics whose contributions are not always taken seriously
by policy makers — glow in the pride of making an intellectual contribution to an
important public good.

Steven J. Brams
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Chapter 1
Introduction to the Handbook on Approval
Voting

Jean-Francois Laslier and M. Remzi Sanver

... the elementary part of each science, which all men can access, becoming more and more
expanded, will in a more complete manner contain all that each man can be required to know
to be able to manage his life and exert his intelligence in total independence. Condorcet
(1793)

Since the publication, in 1983, of Steven Brams and Peter Fishburn’s seminal
work Approval Voting, a variety of theoretical and empirical studies have enhanced
our understanding of the various aspects of this voting system: its axiomatic proper-
ties have been analyzed; its ballot structure has been examined; its strategic aspects
have been scrutinized; the electoral competition structures it induces have been
explored; and the patterns of voter behavior entailed by it have been observed
both in the laboratory and the field. This research has also engendered various aca-
demic controversies, some of which will be mentioned in this introduction. In brief,
the merest glance at the literature since 1983 reveals a remarkable accumulation
of results, obtained through efforts in a remarkably diverse range of fields: social
choice theory, game theory, computer science, political science and experimental
economics. This book, then, presents a collection of essays intended to summarize
the current state of knowledge on this system of voting.

Under Approval Voting, each voter says either “yes” or “no” for each candidate.
The voter can thus approve as many candidates as she wishes, and, for single-winner
elections, the candidate elected is the one who is approved by the largest number of
voters. Initial arguments in favor of this voting system were based on considerations
both from the voter’s point of view and with respect to its consequences for political
parties (see for instance Brams and Fishburn 1978; Cox 1985).

1. Because the voter is given the opportunity to provide more information about
her opinion than with a single-name ballot, adoption of Approval Voting might
increase voter turnout in general elections. Given the generally accepted view
that the quality of a democracy is linked to the number of voters participating

J.-F. Laslier (<) ’
Laboratoire d” Econométrie, Ecole Polytechnique, 91128 Palaiseau, France
e-mail: jean-francois.laslier@polytechnique.edu

J.-F. Laslier and M.R. Sanver (eds.), Handbook on Approval Voting, Studies in Choice 1
and Welfare, DOI 10.1007/978-3-642-02839-7_1,
(© Springer-Verlag Berlin Heidelberg 2010


jean-francois.laslier@polytechnique.edu

2 J.-F. Laslier and M.R. Sanver

and their level of satisfaction with the electoral process, this suggests that
Approval Voting can contribute to strengthening democracy.

2. By eliminating the wasted-vote effect, Approval Voting might broaden the span
of candidates running for office, thereby contributing to the richness of the polit-
ical debate. This point is related to the standard observation that the one-round
Plurality system makes third parties nonviable, a critical point in U.S. politics.

3. By eliminating the squeezing effect, Approval Voting would encourage the elec-
tion of consensual candidates. The squeezing effect is typically observed in
multiparty elections with a runoff. The runoff tends to prevent extremist can-
didates from winning, but a centrist candidate who would win any pairwise
runoff (the “Condorcet winner”) is also often “squeezed” between the left-wing
and the right-wing candidates and so eliminated in the first round. This point is
critical in countries using two-round Plurality.

The validity of such claims would normally be demonstrated by appeal to empir-
ical and historical studies. Approval Voting and related systems have, indeed,
occasionally been used in the past. The complicated rules for the election of the
Dogi of Venice from 1268 to 1789, analyzed by Lines (1986), included the use of
Approval Voting. Aleskerov (2005) depicts the use of Approval Voting in the eigh-
teenth century, during the reign of Catherine the Great, for local elections. There,
instead of ballot papers, there was a double urn for each candidate, made up of two
compartments, “yes” and “no.” The voter was given a ball for each candidate, and
was required to place one ball in the “yes” or in the “no” compartment of each can-
didate’s urn, with his hand covered by a cloth. The same system — with urns, balls
and cloth — was used in Greece from the 1864 Constitution to the 1923 elections,
before the country turned to proportional representation (Pantelis 2007; Voloudakis
1977). The 1800 U.S. presidential election, in which a version of Approval Voting
was used, is discussed by Nagel (2007) and Brams (2008). For nineteenth century
England, Cox (1987) analyzes the effect of the possibility of casting two votes.
Closer to present day, the election procedure of the secretary-general of the United
Nations embodies a variant of Approval Voting. Unfortunately, our information
regarding instances of the use of Approval Voting in history remains based almost
entirely on anecdote: anecdotes that are, indeed, not numerous, not always very well
documented, and which do not give rise to reserves of empirical knowledge compa-
rable to our knowledge of one-round and two-round Plurality. Currently, Approval
Voting is not used in any large election.

Due to the lack of historical evidence, and despite the interesting data provided
by the adoption of Approval Voting in some academic societies, the subject has
essentially remained a matter for theoreticians. There is, indeed, a curious contrast
between the complexity of the academic and intellectual debate devoted to Approval
Voting, and the simplicity of the voting system itself. Except for the Plurality rule,
in which voters are asked to vote for a single candidate, Approval Voting is cer-
tainly simpler than all the systems which ask voters to rank the candidates, to grade
them, or to name a limited number of them. Nevertheless, among all the voting rules
discussed in the literature, Approval Voting would be ranked quite high — indeed,
arguably at the top — regarding the amount of academic attention it has received.
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We do not aim to explain this contrast, but, as is discussed in this volume, we note
that the meaning of Approval Voting as a voting rule affords of an unusually wide
variety of interpretations, due to the fact that its implementation in ballots blurs the
distinction between Approval Voting and the traditional Arrovian model of social
choice theory (Arrow 1952).

This blurriness is at the root of a scholarly controversy that arose in the 1980s. As
well as its obvious significance for our subject, this controversy is also interesting
for anyone curious about the advantages and disadvantages of using mathemati-
cal formalism in the social sciences. The two sides to the controversy can safely
be called pro-AV and anti-AV. The pro-AV scholars are Steven Brams, a political
scientist trained in formal methods, and Peter Fishburn and Sam Merrill, both math-
ematicians. The anti-AV scholars are Richard Niemi, also a political scientist trained
in formal methods, and Donald Saari, a mathematician.

Soon after Brams and Fishburn’s seminal publications (Brams and Fishburn
1978, 1983; Brams 1980), The American Political Science Review published a paper
by Niemi (1984) entitled “The problem of strategic behavior under Approval Vot-
ing.” The main thrust of the paper is a critique of the definition of “sincerity” used by
Brams and Fishburn. Niemi argues that this definition says nothing about whether a
voter “approves” of a candidate or not, but only about whether the voter is willing
to vote for that candidate.! He then goes on to study the possible strategic behavior
patterns that may be adopted by voters endowed with preferences in the usual sense
(which are complete rankings of candidates), together with opinions about each
candidate taking the form “approved” or “not approved.” Preferences and approval
opinions are related in the sense that a voter who approves some candidate x also
approves any candidate she prefers to x. This requirement is very similar to the defi-
nition of sincerity, except that Niemi now distinguishes “approving x” from “voting
for x under Approval Voting.” This framework is explored in Chap. 20 of this vol-
ume. To adopt, for a moment, the vocabulary of Chap. 20, “approving x” refers to
intrinsic approbation and “voting for x under Approval Voting” refers to the vote
cast by the voter. Given this distinction, there is no reason why strategic behavior
based on individual preferences should bear any relation to intrinsic approbations,
which leads Niemi (1984, p.958) to conclude regarding Approval Voting that “in
the general case it is neither honest, strategy proof, nor wise.” This negative con-
clusion is not specific to Approval Voting. Since intrinsic approbations are largely
disconnected from preferences, any behavior based on preferences (such as strategic
voting) may produce results largely unrelated to intrinsic approbations. The reason
why Niemi raised this point in connection to Approval Voting, rather than in full

! Niemi (1984, p.952) quotes the following definition of Sincere Approval Voting from Brams
(1982, p. 10): “A voter votes sincerely ‘if and only if whenever he votes for some candidate, he
votes for all candidates preferred to that candidate™ and writes “Note that this definition includes
nothing about approval as such; it does not require voting only for ‘approved’ alternatives.” See
also Brams and Fishburn (1985) and Niemi (1985).



4 J.-F. Laslier and M.R. Sanver

generality, seems to be related to Niemi’s conception of the link between the nature
of voters’ behavior and the form of the ballots.?

The controversy that arose from Niemi’s criticism turns on the following ques-
tion: Is it a good thing or a bad thing that the machinery of Approval Voting leaves
it open for the voter to approve any number of candidates? This question led to a
further step in the development of this controversy when, in 1988, Public Choice
published a paper by Saari and Van Newenhizen entitled “The problem of indeter-
minacy in approval, multiple and truncated voting systems”. The same issue of this
journal also published comments by Brams, Fishburn and Merrill on this paper, a
response by Saari and Van Newenhizen to these comments, and a further rejoin-
der by Brams, Fishburn and Merrill. Saari and Van Newenhizen (1988a, p. 101)
start from the idea that for voting rules such as Approval Voting “there are several
ways to tally each voter’s preferences.” The paper then deploys geometrical and
mathematical arguments based on Saari’s previous publications in order to derive
basically the same “indeterminacy” conclusion as did Niemi, namely that one can-
not infer much about the outcome of an Approval Voting election under the sole
hypothesis that voters use sincere approval strategies in the usual sense.’ Brams
et al. (1988a,b) respond to this argument by claiming that indeterminacy in Saari
and Van Newenhizen’s sense is the consequence of the existence of multiple sincere
strategies, which is a good thing because it reflects the freedom the voter has to
express further information she might find relevant.

A closer examination of this controversy suggests the conclusion that the matter
is not susceptible to answer purely through the application of formalism and mathe-
matics, as was attempted in the 1980s. It is noticeable that this discussion manifests
limited contact with the usual themes of research within Political Science; for
instance, it makes no connection with the then-contemporary work of Gary Cox
on Approval Voting (Cox 1984, 1985; Weber 1995). Moreover, the discussion is
unconstrained by reference to facts and observation; the relationship with reality
being exclusively through the prism of the scholar’s intuition. This is quite surpris-
ing, given that what is at stake is precisely the conception of the rule from the voter’s
point of view. Fortunately, we now have pieces of evidence that were not available
twenty years ago. Several academic societies have used this voting system and made
the corresponding data available, and various experiments have been conducted to
investigate voters’ understanding and use of the rule. It is now quite clear that voters
consider the possibility of giving an opinion about all candidates as a good thing,
and not as some embarrassing flaw in the system.

21In the abstract to the same paper he writes “the existence of multiple sincere strategies almost
begs the voter to behave strategically.”

3 The meaning of “indeterminacy” is very clearly defined by Saari and Van Newenhizen (1988b,
p. 135): “The omnipresent danger of indeterminacy: An Approval Voting election can be indeter-
minate. The essential idea is this. Suppose that we know each voter’s ranking of the candidates.
Armed with this information, we can compute the unique election outcome. We cannot do this with
Approval Voting.”
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This conclusion arises from the few pieces of empirical knowledge we have about
Approval Voting, some of which are presented in this book. But it should come as
no surprise to anyone familiar with the variety of voting rules which are actually
used in practice and considered satisfactory. Many voting systems currently in use
require much more from the voter than a single candidate’s name — or maybe one
should say rather that they allow the voter to provide more than a single name.
Small committees often reach a decision after several rounds of voting* but this is
hardly possible for political elections and, in such cases, a one-round, or at most
two-round, system is most common. A closer look at the systems actually in use
throughout the world (Lijphart 1994; Farrell 2001) reveals that a variety of election
procedures are actually in use for political elections. Most countries in the world
have direct presidential elections, and the most frequent direct rule is majority rule
with a runoff (Blais et al. 1997). To citizens (and scholars) familiar with single-
name, first-past-the-post elections, these rules may appear complicated. In fact, the
diversity of voting systems is reflected in the various form taken by the ballot papers.
The simplest and most common form is a small sheet of paper with a single can-
didate name. More complex ballot papers are used when several elections are held
simultaneously, which may give rise to huge sheets of paper, as occurs sometimes in
the U.S. In New Zealand and Australia, some elections are held under Transferable
Vote systems, and voters submit, as their vote, a ranking of candidates. This requires
complex ballots, and voters actually have the option to write simply that they adhere
to the ranking suggested by one party (Farrell and McAllister 2006).

In Germany, some elections require relatively complex ballots. See for instance
the ballot used in Heidelberg in June 2009 in Fig. 1.1.5 For the election of the 40
members of the municipal council, each voter has 40 votes. In June 2009, there
were 10 lists of 40 candidates. The voter can either give her or his votes to one list
only, in which case she or he returns only the ballot for this list. She or he can also
give votes to candidates of different lists. The voter has 40 votes but can give up to
three votes to a candidate; this is done by writing the number 2 or 3 in front of the
candidate’s name. The ballot is invalid if these conditions are not met (more than
40 votes in total or more than three votes for a candidate).® The existence of such
voting systems shows that the “simplicity”” argument in favor of single-name voting
is weak.

On the contrary, the evidence shows that the public is eager to understand the
consequences of using different voting rules, and is ready to switch rules — pro-
vided, of course, that it is done for sound reasons. The role of academic research

4 A famous instance of this phenomenon is the election of the Pope by the cardinals, where the
number of rounds is not limited. In 1271 the process was endless and the inhabitants of Vitorbo,
the city in the papal states where the election was taking place, had to lock the cardinals in, and
stop bringing them food until they reached a decision. Three days later, Gregory X was elected.

3 We thank Martina Bihn for providing this ballot.

6 The leaflet provided to the voters specifies this rule. Notice that it does not mention the fact that
the 40 elected candidates are those who receive the largest number of votes. The logic of adding
points or votes is obvious.



MERKBLATT

fiir die Wahl des Gemeinderats
in Heidelberg am 07.06.2009

WICHTIGE HINWEISE FUR DIE STIMMABGABE

Wie viele Stimmen haben Sie?

Zu wahlen sind 40 Mitglieder des Gemeinderats. Sie haben
somit 40 Stimmen.

‘Wem kénnen Sie lhre Stimmen geben?

AMTLICHER STIMMZETTEL

fiir die Wahl des Gemeinderats
in Heidelberg am 07.06.2009

Sie haben insgesamt 40 Stimmen.
Bitte-beachten Sie:

Keinfe Bewerber/in darf mehr als dred Stimmen erhalten.
Auch wenn Sie mehrere Stimmzettel verwenden, dirfen Sie

Ihnen verwendeten Stimmzettel ungditig!
Bitte lesen Sie vor der Stimmabgabe unbedingt das
Wichtige Hinweise fiir die Stimmabgabe”|

w Heidelberg Pflegen und Erhalten
% Kulturinitiative - Heidelberg Pflegen und Erhalten

1001 | Dr. Loukapoules,

1002 | Hedstrim, Alna

1003 | Dietz, Heinrich

1004 | Ambergor, Carnelius

1005 | Dr. Hilpert, Thilo

1006 | Dr.

1007 | Dr. Christorn, Brigitte

1008 | Dr. Otten, Kurt

1010 | Dr.Dr. Biihner, Rainer

Sie konnen
® nurd B bern/@ b die in einem
der Stlmmamel aufgeftlhrl sind, Stllnmen geben,
. aus versch
Stimmzetteln Stimmen geben.
‘Wie geben Sie Ihre Stimmen ab?
Sie knnen
= entweder
mnwl der Shmmette? ohne jede Art von ichnung
t) hen; dann erhalt j de in diesem
Sti aufgefihrte ( in eine Stimme;

dasselbe gilt, wenn Sie einen der Stimmzettel im Ganzen
kennzeichnen.

1015 | Frosch, Framz

Wichtig: Unterlassen Sie in diesen Fallen die Streichung :g:: e
innen, weil Ihr 5ti dann :
nicht mehr als unverandert, sondern als verandert gilt, s et
In einem veranderten Stlmmzenel zahlen nur die von lhnen 1021 | Or. Stange, Konrad
ausdriicklich for t 1022 | D, Eck, Eva
1023 | Morath, Andrea

Stimmen als glltige Stimmen,
= oder

auf einem oder mehreren Stimmzetteln die
Bewerber/Bewerberinnen ausdriicklich als gewdhit
kennzeichnen, denen Sie Stimmen geben wollen,
Diese Kennzeichnung erfolgt, indemn Sie in das Kastchen hinter
dem vorgedruckten Namen jeweils
® ein Kreuz oder die Zahl 1 setzen, wenn Sie dem Bewer-
berfder Bewerberin eine Stimme geben wollen, oder
 die Zahl 2 oder 3 setzen, wenn Sie ihmiihr zwei oder drei
Stimmen geben wollen.
i deren vorg kter Name von
Ihnen nicht ausdricklich gekennzeichnet ist, erhalten keine

1035 | Schmidt-Reants, Frieda
1036 | Zollenkopd, Gerhard

Stimme; es gendigt deshalb nicht, etwa nur die t
Bewerberinnen zu streichen, die keine Stimme erhalten sollen.

Sofern Sie nur slmm Stimmzettel benutzen und dabel auch
i aus and

1057 | Or. Watzlawik, Helga
1038 | Fehst, Rita

1039 | Frindl, Heidi

1040 | Sendler, Charlotte

Stimmen geben wollen, so tragen Sie deren Namen in die
freien Zeilen des Stimmzettels ein, den Sie fir thre
Stimmabgabe verwenden. Durch die Eintragung erhalt der
Bewerber/die Bewerberin eine Stimme; wollen Sie ihm/hr
zwei oder drei Stimmen geben, so setzen Sie in das Kdstchen
hinter dem eingetragenen Namen die Zahl 2 oder 3.

Wichtig: Kein Bewerber/keine Bewerberin darf mehr als drei
Stimmen erhalten!

Dieser Block enthalt 10 Stimmaettel.
~ Bitte pridfen Sie die Vollstandigeit. -

Bitte vergewissern Sie sich, dass Sie insgesamt nicht mehr als
40 Stimmen abgegeben haben! Zur Kontrolle kannen Sie die Summe
aller Stimmen in dis nebenstehende Kastchen

1.CDU, 2.5PD, 3. GAL, 4, DIE . 5 FDR 6. PN 7. hd,
B. GROME, 9. Burite Linke/TIE LINKE, 10. Heideiberg Pfiegen und Erhalten

eintragen; dies bedeutet keine Stimmabgabe und wird bei der

Stimmenzahlung nicht gewertet

Fig. 1.1 A ballot used in Germany. A voter can split his or her 40 votes between different such
lists, and give up to three votes to a candidate
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in this case is to understand what may be the consequences of choosing one voting
rule over another. This requires a type of research which is not only descriptive,
but which also attempts to imagine the world as it could be under the new circum-
stances. Accordingly, skills from different research fields are required. Voting rules
have peculiar contents which are not always captured by formal models. There are
peculiarities vis-a-vis the rule’s meaning to the voter and to the society in which
it is employed: different voting rules cause political systems to adjust differently,
and, together with other factors, shape thereby the actual political system as well as
the way citizens think about the act of voting (Myerson 1995). Ultimately, this may
influence the citizen’s conception of democracy itself.

Content of the Book

To better understand the diversity of voting rules, it is worth going beyond for-
mal models and studying the history of their application in various societies. The
first part of the volume (Part I, History of Approval Voting) is a modest attempt in
this direction. It comprises two chapters. Chapter 2 is a short reminder, by Charles
Girard, of how elections for the council of the elders were conducted in ancient
Sparta. There, the voting rule was not exactly by approbation but by shouting. Can-
didates came in one by one, in random order, and voters would shout more or less
loudly in favor of them. The candidate with the greatest and loudest acclamation
was elected. As Girard notes, this non-anonymous rule is a single-round plurinomi-
nal election in which the voter can support as many candidates as he wishes, hence
exhibiting the basic features of Approval Voting. Chapter 3, by Steven Brams and
Peter Fishburn, was originally published in the journal Social Choice and Welfare
in 2006. The authors describe the recent history of Approval Voting at work, in
particular its use, since the eighties, in academic and engineering societies. This
paper is also a reflection on reformism, exploring the paths leading from science to
application when the problem at stake is institutional design.

The second part of the volume (Part II, Axiomatic Theory) is devoted to axiomatic
approaches which conceive of Approval Voting as a method for aggregating judg-
ments provided by the voters about candidates. Chapter 4, written by Biung-Ghi Ju,
is a reasonably complete overview of the literature on the aggregation of dichoto-
mous and trichotomous preferences. In Chap.5, Yongsheng Xu focuses on the
dichotomous case — which is the basis for Approval Voting — and surveys the various
axiomatic characterizations of Approval Voting.

The third part of the volume (Part III, Committees) diverges from the general
direction of the book. Approval Voting, as generally studied, is essentially designed
to elect precisely one candidate among the existing ones or to choose precisely one
option among a given set of feasible options. By contrast, approval balloting — where
a ballot is a list of any number of approved candidates — can be used as a basis to
elect a committee made up of several candidates. Part III addresses the problem of
electing a committee through approval balloting. In Chap. 6, Marc Kilgour collects
and classifies the plethora of procedures than can be used for counting approval
ballots. In Chap. 7, Gilbert Laffond and Jean Lainé study the properties that one can
expect from these procedures. Their analysis is related to the structure of the voters’
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preferences and it also applies to the case of multiple, simultaneous or sequential
referenda.

The three chapters presented in the fourth part of the volume (Part 1V, Strategic
Voting) return to the case of electing a single candidate, and deal with voters’ strate-
gic behavior. In Chap. 8, Jean-Francois Laslier and Remzi Sanver survey the results
on Approval Voting obtained within the framework of classical noncooperative
game theory. Here, restricting the set of ballots to those which are undominated
strategies and sincere does not help in predicting the outcome of an election under
Approval Voting. Neither does using Nash equilibrium and its usual refinements. On
the other hand, Strong Nash equilibrium, if it exists, predicts the election of the Con-
dorcet winner, which means that, under Approval Voting, voters who can coordinate
will not miss the chance to select a Condorcet winner. The poor predictive power of
Nash equilibrium in most voting games with many voters has led scholars to propose
alternative models, which are presented in Chap. 9 by Matfas Nufiez. The works of
Myerson, Weber, Laslier and Nufiez himself help to understand why voters who
vote strategically in popular elections under Approval Voting would often vote sin-
cerely and elect the Condorcet winner, if one exists; and why this is not always true.
This approach allows for predictive models of voter behavior which can be tested
in the laboratory (see Part VI of this book) and serve as building blocks in models
of electoral competition (see Part VII and the further studies of voting under incom-
plete information by Bouton and Castanheira 2009 or Goertz and Maniquet 2009).
Chapter 10 also studies strategic issues for voters, but from another perspective.
Dorothea Baumeister, Gabor Erdélyi, Edith Hemaspaandra, Lane Hemaspaandra
and Jorg Rothe, all of whom work in the new field of Computational Social Choice,
apply the tools of complexity theory to study how hard it is to modify the outcome
of Approval Voting elections through manipulation, control, or bribery.

As general theory rarely can pretend to be able to predict the outcomes of
Approval Voting elections, scholars aiming for more precise conclusions have
resorted to specific assumptions about voters’ preferences and ballot choices. These
assumptions are usually of a probabilistic nature (Regenwetter and Tsetlin 2004;
Regenwetter et al. 2000). The fifth part of the volume (Part V, Probabilistic Exer-
cises) is devoted to this line of research. An often-used hypothesis is that voters’
preferences are independently and uniformly distributed. In Chap. 11, Mostapha
Diss, Vincent Merlin and Fabrice Valognes follow this tradition, a la Gehrlein
(2006), for studying the three-candidate case, assuming further that voters choose
at random how many candidates they approve. They compute analytically the Con-
dorcet efficiency (i.e., the probability that the Condorcet winner is chosen given
that one exists) of several voting rules. Analytical computations are only possible
for specific assumptions on preferences and behavior. The following two chapters go
beyond those cases by using computer simulations. In Chap. 12, Aki Lehtinen, again
with three candidates and utilities being randomly and independently chosen, con-
trasts what happens when all voters behave “sincerely” with the case in which some
of them behave “strategically”. Unlike the rest of the book, this chapter defines sin-
cere behavior as approving the most preferred candidate and approving the second
best if and only if his utility is larger than the average utility, and strategic behavior
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as voting for any candidate whose utility for the voter is larger than a specified
threshold. In Chap. 13, Jean-Frangois Laslier simulates different sorts of random
electorates: Rousseauist cultures model situations of common interest, impartial
cultures are often used in the social choice literature, and distributive cultures and
spatial cultures are often used in the political science literature. Several voting rules
are compared in these different situations, assuming various voting behaviors. The
study confirms that while voting rules that improve over the Plurality rule do exist,
voter behavior is of primary importance in assessing the quality of a voting rule. It is
also remarked that comparisons may be quite different from one culture to another:
the best rule to resolve a conflict of interest need not be the best rule to aggregate
information. In situations of moderate conflict, Approval Voting usually elects the
Condorcet winner, which represents a moderate candidate, and is relatively robust
to strategizing.

The sixth part of the volume (Part VI, Experiments) deals with empirical obser-
vations, and hence brings us closer to reality. In Chap. 14, Jean-Frangois Laslier
surveys laboratory experiments in which subjects vote and the experimenter (more
or less) controls their preferences through monetary incentives. This is usually
called the Experimental Economics methodology. These experiments all show that,
at least in the laboratory, Approval Voting makes it easier, compared to other voting
rules, to reach consensual voting outcomes. They also make clear that individual
approval decisions are well described by strategic theories, a point that highlights
the importance of information such as previous elections or preelection polls. The
next two chapters are devoted to the description of original experiments that were
performed on the occasion of real elections in France and in Germany. Chapter 15,
by Antoinette Baujard and Herrade Igersheim, deals with the French presidential
elections in 2002 and 2007, while Chap. 16, written by Carlos Alos-Ferrer and
Dura-Georg Granié, deals with a German state election in 2008. These experiments,
which are here called “field experiments”, took place on election day itself, and vot-
ers were asked to vote using Approval Voting (or some other rule) as if this was the
official system in operation. As votes are anonymous and any voter in the real elec-
tion could participate in the field experiment (excepting constraints imposed by the
location of the experimental polling stations), neither the set of candidates nor the
sample could be controlled. Several lessons can nevertheless be drawn: It is clear
that the idea of experimenting on voting rules, as well as the idea of Approval Vot-
ing, are welcomed by voters. Moreover, extrapolation of the results to the whole
country indicates that, in France, the use of Approval Voting would have changed
the relative position of several candidates and might even have changed the identity
of the elected candidate in favor of a more moderate one. In Germany, there would
have been four (rather than two) main parties of comparable size, and small parties
would have obtained parliamentary representation.

All the preceding supposes that the set of candidates and voters’ preferences
over the candidates are independent of the voting system. This neglects an important
issue: in practice, as noted by political scientists (Duverger 1951), the set of existing
candidates or political parties, and their policy positions, may depend on the formal-
ities of the electoral system and the voting rule in operation. A recurrent theme of
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the political science literature since Black (1958) is that first-past-the-post essen-
tially kills any third party and drives the only two serious parties to propose political
platforms close to the center of the political space. It is therefore important to try to
figure out what may be the outcome of electoral competition under Approval Voting.
This is the subject of Part VII (Electoral Competition), which is, obviously enough,
purely theoretical. The chapters in this part draw on what has been learned about
voters’ behavior from theory and experiments, and concentrate on the behavior of
candidates and parties. In Chap. 17, Jean-Francois Laslier and Frangois Maniquet
use the classical Downsian model of competition among office-motivated candi-
dates (Downs 1957). They show that if a Condorcet winner policy exists, then there
exists an electoral competition equilibrium supporting this policy. Moreover, if the
set of policies is one-dimensional and voters have single-peaked preferences, then
it is the only electoral competition equilibrium. In Chap. 18, Arnaud Dellis studies
an alternative model of electoral competition, in which each voter decides herself
whether to be a candidate or not, and has to weigh the cost of being a candidate with
the expected payoff from winning the election. In this so-called “citizen-candidate
model”, where the candidates have policy preferences, Dellis shows that Approval
Voting induces the choice of a moderate policy, provided that two conditions are
met: the first condition is that a candidate enters the race as soon as she anticipates
that she has some chance of winning the election, and the second condition is a
reasonable assumption about the voters’ strategic behavior. These two papers on
electoral competition provide arguments in favor of the claim that Approval Vot-
ing, compared to Plurality Voting, is immune to the squeezing and wasted-vote
effects.

The two last chapters of this book are gathered in Part VIII (Meaning for Indi-
vidual and Society). In Chap. 19, Jean-Francois Laslier recalls that the data obtained
from an election held under Approval Voting is much richer than the mere list of the
scores of candidates. Using Approval Voting, a society can obtain a richer descrip-
tion of itself than can be obtained with a Plurality rule or Plurality with a runoff.
The chapter argues that such data can and should be published as the “result” of
an AV election. In Chap. 20, Remzi Sanver considers Approval Voting within the
context of a widening of the standard ordinal non-comparable framework of Arro-
vian social choice. In the normative perspective, the informational basis of Approval
Voting embodies one element of inter-individual comparability: the alternatives
being intrinsically deemed “good” or “bad” by the individuals, and the notions of
“good” or “bad” are common to all individuals and can therefore used at the level
of the society. This allows us to revisit Approval Voting as well as to define and
study other interesting voting systems which combine preference and approval-type
inputs.

Throughout these 20 chapters, the book raises many different questions about
Approval Voting and proposes answers to most of them. For obvious reasons, the
societal questions can, for the moment, receive only theoretical answers; but these
answers are informed by the theoretical and empirical knowledge we have now
amassed about Approval Voting from the voter’s point of view.
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Part I
History of Approval Voting



Chapter 2
Acclamation Voting in Sparta: An Early
Use of Approval Voting

Charles Girard

An early form of approval voting was arguably used in Ancient Greece, as is
described in Plutarch’s account of the elections to the Gerousia, Sparta’s Council
of Elders.

In his Life of Illustrious Men, Plutarch credits the legendary lawgiver Lycurgus
with having fixed the rules for electing the Spartan Council’s members, the Gerontes.
The office of Elder was seen as a reward for virtue and as a high honor, since the
Gerontes were elected for life and the Gerousia was a powerful institution — it pre-
pared legislation for approval by the Assembly and acted as a high court in serious
cases such as those of homicide (Staveley 1972 p. 76). Plutarch recounts that, after
having filled the Council with men chosen among his followers, Lycurgus ordered
that the future vacancies “be supplied out of the best and most deserving men past
sixty years old”:

We need not wonder if there was much striving for it; for what more glorious competition
could there be amongst men, than one in which it was not contested who was swiftest among
the swift or strongest of the strong, but who of many wise and good was wisest and best, and
fittest to be entrusted for ever after, as the reward of his merits, with the supreme authority
of the commonwealth, and with power over the lives, franchises, and highest interests of all
his countrymen? (Plutarch 1876 p. 40)

Although it is likely that only aristocrats were entitled to put themselves forward
as candidates, the rules organizing the selection of the 28 Gerontes were designed
to favor merit, and not only birth or wealth. And while elections to the Gerousia
involved some form of lottery, it was not exactly an election by lot, as was often the
case in Greek democracies. Sparta resorted to a very specific form of election, in
which voting was conducted by shouting:

The manner of their election was as follows: The people being called together, some selected
persons were locked up in a room near the place of election, so contrived that they could
neither see nor be seen, but could only hear the noise of the assembly without; for they
decided this, as most other affairs of moment, by the shouts of the people. This done, the
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competitors were not brought in and presented all together, but one after another by lot, and
passed in order through the assembly without speaking a word. Those who were locked up
had writing-tables with them, in which they recorded and marked each shout by its loudness,
without knowing in favour of which candidate each of them was made, but merely that they
came first, second, third, and so forth. He who was found to have the most and loudest
acclamations was declared senator duly elected. (Plutarch 1876 p. 40)

Elections to the Gerousia thus involved “an early form of applaudometer” (Elster
1989 p. 85), in which whoever was judged to have received the loudest acclaim
was elected. Aristotle notoriously denounced this procedure as “childish” (Aristotle
1984), probably because he considered it a blatantly inappropriate way to select the
most competent among the citizens — he was also critical of the fact that individuals
had to put themselves forward as candidates to the Gerousia, a rule more suitable
for ambitious men than for virtuous ones.

Aristotle is not alone in judging the Spartan Shout harshly. Historians have
deemed the procedure “primitive” (Staveley 1972 p. 74), interpreting it as a sign
that Spartans had “no notion of ‘one man one vote” (Cartledge 2001 p. 51). Con-
temporary political theorists even invoke the “Spartan Shout” as a negative model,
contrasting it with the positive example of Athenian democracy. In Fishkin’s view
“missing in the Spartan method was the entire social context of careful debate and
deliberative argument fostered by the Athenian institutions. ... Yet if we ask which
model of ancient democracy we have come closer to realizing in our modern quest
for direct democracy, we must concede that there are ways in which the Spartan
model is closer than the Athenian to contemporary practices” (Fishkin 1997 p. 24).
Elections to the Gerousia are even seen as the precursors of today’s media “applau-
dometers,” in which citizens influence politicians in proportion to their loudness.
“The sting of an offensive sound bite arouses a populace that is only sound-bitten.
The ire of talk-show democracy has given us a mass electronic version of the Shout”
(Fishkin 1997 p. 25).

Critics of the Shout thus question the ability of the Spartan Assembly to select the
wisest and the best among the candidates on at least two counts: Because it required
citizens to shout as the candidates were presented in random order, it precluded
careful consideration and deliberation; and because it was based on the auditory
evaluation of a collective shout, it did not give an equal voice to each citizen but
favored the loudest and the most motivated among the Assembly’s members.

However, far from being inexplicably primitive, the Spartan way of proceed-
ing seems to have been designed to respond to specific concerns regarding the
impartiality of the election. The use of the lottery to decide the candidates’ order
of appearance was most likely meant to ensure the spontaneity of the procedure.
“The order in which the candidates appeared was the key to the whole proceed-
ings. Despite the opportunities which an allotment behind closed doors might have
presented for collusion, it is most unlikely that lots were drawn in the presence
of the Assembly itself, if only because foreknowledge of the order in which the
candidates would present themselves would inevitably have detracted from the ele-
ment of spontaneity in the shouting which was so necessary to the credibility of the
vote” (Staveley 1972 p. 74). Such precautions may not have been enough to prevent
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strategies of manipulation, especially by Sparta’s kings and their families (Birgalias
2007 p. 347), but spontaneity was not the Shout’s only upside.

Although Plutarch’s succinct account does not allow us to draw very precise
conclusions, it is clear that the Assembly’s members were free to acclaim several
candidates. To this extent, the shout appears as an early form of approval voting, in
which each elector either approves or disapproves each candidate, the winner being
the one that is approved by the greatest number of electors. In the absence of ballots,
the Spartan version of approval voting appears clearly imperfect: individual voices
may differ in loudness, and one can imagine the Assembly’s members adjusting the
intensity of their cheering to the intensity of their support for each of them. Further-
more, it involved a very approximate method of aggregation: clumping voices rather
than counting ballots. Nonetheless, the Shout roughly satisfies the formal requisites
of approval voting: it was a multi-candidate contest consisting in a single round of
voting that allowed each participant to support as many candidates as desired, lead-
ing to an — admittedly crude — summation of the support received by each candidate.
Looking to fill the Gerousia with men recognized by all as virtuous, Sparta’s law-
givers might have been aware of the advantages offered by such a form of election,
which favors the candidate with the greatest overall support.

If we are to trust Plutarch’s account of the way they celebrated the winner, the
Spartans themselves apparently believed that acclamation voting was a satisfying
form of election. “Upon [his election] he had a garland set upon his head, and went
in procession to all the temples to give thanks to the gods; a great number of young
men followed him with applauses, and women, also, singing verses in his honour,
and extolling the virtue and happiness of his life” (Plutarch 1876 p. 40).
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Chapter 3
Going from Theory to Practice: The Mixed
Success of Approval Voting*

Steven J. Brams and Peter C. Fishburn

3.1 Background

Approval voting (AV) is a voting procedure in which voters can vote for, or approve
of, as many candidates as they like in multicandidate elections (i.e., those with
more than two candidates). Each candidate approved of receives one vote, and the
candidate with the most votes wins.

Beginning in 1987, several scientific and engineering societies adopted AV,
including the

— Mathematical Association of America (MAA), with about 32,000 members;

— American Mathematical Society (AMS), with about 30,000 members;

— Institute for Operations Research and Management Sciences (INFORMS), with
about 12,000 members;

— American Statistical Association (ASA), with about 15,000 members;

— Institute of Electrical and Electronics Engineers (IEEE), with about 377,000
members.

Smaller societies that use AV include the Society for Judgment and Decision
Making, the Social Choice and Welfare Society, the International Joint Conference
on Artificial Intelligence, and the European Association for Logic, Language and
Information.

Additionally, the Econometric Society has used AV (with certain emendations)
to elect fellows since 1980 (Gordon 1981); likewise, since 1981 the selection of
members of the National Academy of Sciences (1981) at the final stage of balloting
has been based on AV. Coupled with many colleges and universities that now use
AV - from the departmental level to the school-wide level — it is no exaggeration to
say that several hundred thousand individuals have had direct experience with AV.

*Reprinted with permission from Brams and Fishburn (2005); see also Brams (2004), which
includes more recent studies on AV and other voting systems that use an AV ballot.
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Probably the best-known official elected by AV today is the secretary-general of
the United Nations (Brams and Fishburn 1983). AV has also been used in internal
elections by the political parties in some states, such as Pennsylvania, where a pres-
idential straw poll using AV was conducted by the Democratic State Committee in
1983 (Nagel 1984).

Bills to implement AV have been introduced in several state legislatures (see
Section 3.2). In 1987, a bill to enact AV in certain statewide elections passed the
Senate but not the House in North Dakota. In 1990, Oregon used AV in a statewide
advisory referendum on school financing, which presented voters with five different
options and allowed them to vote for as many as they wished (Wright 1990).

In the late 1980s, AV was used in some competitive elections in countries in
Eastern Europe and the Soviet Union, where it was effectively “disapproval vot-
ing,” because voters were permitted to cross off names on ballots but not to vote
for candidates (Shabad 1987; Keller 1987, 1988; White 1989; Federal Election
Commission 1989). But this procedure is logically equivalent to AV: candidates
not crossed off are, in effect, approved of, although psychologically there is almost
surely a difference between approving and disapproving of candidates.

With this information as background, we trace in Section 3.2 our early involve-
ment, and that of several associates, with AV. After outlining the arguments we and
others have made for AV, we discuss in Section 3.3 how AV came to be adopted by
the different societies.

In Section 3.4, we report on empirical analyses of ballot data of some profes-
sional societies that adopted AV; they help to answer the question of when AV
can make a difference in the outcome of an election. In Section 3.5, we investi-
gate the extent to which AV elects “lowest common denominators.” In Section 3.6,
we discuss whether voting is “ideological” under AV.

The confrontation between theory and practice offers some interesting lessons
on “selling” new ideas. The rhetoric of AV supporters has been opposed not only by
those supporting extant systems like plurality voting (PV) — including incumbents
elected under PV — but also by those with competing ideas, particularly propo-
nents of other voting systems like the Borda count and the Hare system of single
transferable vote.

We conclude that academics probably are not the best sales people for two rea-
sons: (1) they lack the skills and resources, including time, to market their ideas,
even when they are practicable; and (2) they squabble among themselves. Because
few if any ideas in the social sciences are certifiably “right” under all circumstances,
squabbles may well be grounded in serious intellectual differences. Sometimes,
however, they are not.

3.2 Early History and Rhetoric

In 1976, one of us (Brams) was attracted by the concept of “negative voting” (NV),
proposed in a brief essay by Boehm (1976) that was passed on to me by the late
Oskar Morgenstern. Under NV, voters can either vote for one candidate or against
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one candidate, but they cannot do both. Independently, Robert J. Weber had begun
working on AV (he was apparently the first to coin the term “approval voting”).

When Brams and Weber met in the summer of 1976 at a workshop at Cornell
University under the direction of William F. Lucas, it quickly became apparent that
NV and AV are equivalent when there are three candidates. Under both systems,
a voter can vote for just one candidate. Under NV, a voter who votes against one
candidate has the same effect as a voter who votes for the other two candidates under
AV. And voting for all three candidates under AV has the same effect as abstaining
under both systems.

When there are four candidates, however, AV enables a voter better to express
his or her preferences. While voting against one candidate under NV has the same
effect as voting for the other three candidates under AV, there is no equivalent under
NV for voting for two of the four candidates. More generally, everything that a voter
can do under NV he or she can do under AV, but not vice versa, so AV affords voters
more opportunity to express themselves.

Brams and Weber wrote up their results separately, as did three other analysts
who worked independently on AV in the 1970s (discussed in Brams and Fishburn
1983; see also Weber 1995). But the idea of AV did not spring forth full-blown
only about 25 years ago; its provenance is much earlier. Indeed, AV was actually
used, beginning in the 13th century, in Venice (Lines 1986) and in papal elections
(Colomer and McLean 1998); it was also used in elections in 19th-century England
(Cox 1987), among other places.

In the summer of 1977, after we met at a conference on Hilton Head Island,
SC, under the direction of James S. Coleman, we began a long collaboration, which
resulted in one book (Brams and Fishburn 1983) and many articles on AV and other
voting procedures (Brams and Fishburn 2002).

Our first article (Brams and Fishburn 1978) was a formal analysis of the prop-
erties of AV that included, as an illustration, its application to the 1968 U.S.
presidential election, in which there were three significant candidates (Richard M.
Nixon, Hubert H. Humphrey, and George Wallace). Our analysis of this election was
based on empirical research of Brams’s former Yale student, D. Roderick Kiewiet
(1979), who showed that Nixon’s popular-vote and electoral-vote victory in 1968
would have been much more substantial under AV than it was under PV.!

Even at this early stage AV generated academic controversy (Tullock 1979;
Brams and Fishburn 1979), which we will say more about later. Nevertheless, we
became convinced that AV is a simple and practicable election reform that could
ameliorate, if not solve, serious problems in multicandidate elections.

Brams began a “campaign” in 1979 to get it adopted in public elections, begin-
ning with New Hampshire’s first-in-the-nation presidential primaries in February
1980, which had multiple candidates running in both the Democratic and Repub-
lican primaries. Although his efforts received both national coverage (e.g., in the

! For other retrospective studies of elections, including the 1992 presidential election involving Bill
Clinton, George Bush, and Ross Perot, see the citations in Brams and Fishburn (2002).
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New York Times and Los Angeles Times) and in several New Hampshire newspapers
(e.g., the Manchester Union-Leader and Concord Monitor), he was not successful
in getting an AV bill out of committee, despite being a native of New Hampshire
(“prodigal son returns”), testifying before Senate and House committees in New
Hampshire’s General Court (legislature), and meeting with the governor. Later tes-
timony Brams gave before legislative committees in other states (e.g., New York
and Vermont) was similarly unavailing in effecting reform.

Arguments we and others have made for AV proved more persuasive in convinc-
ing professional societies to adopt AV. Our rhetoric has remained relatively constant
over the years and can be summarized by the following six propositions:

1. AV gives voters more flexible options. They can do everything they can under
PV — vote for a single favorite — but if they have no strong preference for
one candidate, they can express this fact by voting for all candidates they find
acceptable. In addition, if a voter’s most-preferred candidate has little chance
of winning, then that voter can vote for both a first choice and a more viable
candidate without worrying about wasting his or her vote on the less popular
candidate.

2. AV helps elect the strongest candidate. Under PV, the candidate supported by the
largest minority often wins, or at least makes the runoff if there is one. Under
AV, by contrast, the candidate with the greatest overall support will generally
win. In particular, Condorcet candidates, who can defeat every other candidate in
separate pairwise contests, almost always win under AV, whereas under PV they
often lose because they split the vote with one or more other centrist candidates.

3. AV will reduce negative campaigning. AV induces candidates to try to mir-
ror the views of a majority of voters, not just cater to minorities whose votes
could give them a slight edge in a crowded plurality contest. AV is therefore
likely to cut down on negative campaigning, because candidates will have an
incentive to broaden their appeals by reaching out for approval to voters who
might have a different first choice. Lambasting such a choice, rather than being
more expansive, risks alienating this candidate’s supporters, thereby losing their
approval.

4. AV will increase voter turnout. By being better able to express their preferences,
voters are more likely to vote in the first place. Voters who think they might
be wasting their votes, or who cannot decide which of several candidates best
represents their views, will not have to despair about making a choice.?> By not
being forced to make a single — perhaps arbitrary — choice, they will feel that the
election system allows them to be more honest, which will make voting more
meaningful and encourage greater participation in elections.

2 Perhaps the best recent example of voters who faced this dilemma were supporters of Ralph
Nader in the 2000 U.S. presidential election. Although Nader received less than 3% of the popular
vote in this election, polls show that if his supporters could have voted for a second choice, Al
Gore would have been the choice of most. Thereby Gore would have won Florida and its electoral
votes, making him rather than George W. Bush the winner.
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5. AV will give minority candidates their proper due. Minority candidates will not
suffer under AV: their supporters will not be torn away simply because there is
another candidate who, though less appealing to them, is generally considered a
stronger contender. Because AV allows these supporters to vote for both candi-
dates, they will not be tempted to desert the one who is weak in the polls, as under
PV. Hence, minority candidates will receive their true level of support under AV,
even if they cannot win. This will make election returns a better reflection of
the overall acceptability of candidates, relatively undistorted by strategic voting,
which is important information often denied to voters today.

6. AV is eminently practicable. Unlike more complicated ranking systems, which
suffer from a variety of theoretical as well as practical defects, AV is simple for
voters to understand and use. Although more votes must be tallied under AV
than under PV, AV can readily be implemented on existing voting machines.
Because AV does not violate any state constitutions in the United States (or, for
that matter, the constitutions of most countries in the world), it requires only an
ordinary statute to enact.

Voting systems that involve ranking candidates may appear, at first blush, to be
more appealing than AV. One, the Borda count or Borda voting (BV), awards points
to candidates according to their ranking. Another, the Hare system of single transfer-
able vote (STV; also called the “alternative vote” or “instant runoft”), progressively
eliminates candidates with the fewest first-choice votes and transfers their votes to
second choices — and lower choices if necessary — until one candidate emerges with
a majority.

Proponents of AV argue that these systems have serious drawbacks. BV fosters
“insincere voting” — when, for example, a voter moves a second choice down to last
place to minimize that candidate’s threat to his or her top choice — and is also vul-
nerable to “irrelevant candidates,” who cannot win but can affect the outcome. STV
may eliminate a centrist candidate early on and thereby elect one less acceptable to
a majority. In addition, STV suffers from ‘“nonmonotonicity,” in which voters, by
raising the ranking of a candidate, may actually cause that candidate to lose — just
the opposite of what one would want to happen.

PV is also vulnerable to insincere voting, whereby a voter may switch to a second
choice if his or her first choice appears to be a long shot, as indicated, for example,
by polls. While AV encourages sincere voting — voting for all candidates above the
lowest-ranked candidate one considers acceptable — it does not eliminate strategic
calculations altogether. Because approval of a less-preferred candidate can hurt a
more-preferred candidate, the voter still faces the decision under AV of where to
draw the line between acceptable and nonacceptable candidates.

The pros and cons of AV vs. other voting systems have been debated over the
last twenty years in numerous publications.? But this is not the subject of this paper,

3 For a sampling of this debate, see Arrington and Brenner (1984) and Brams and Fishburn (1984);
Niemi (1984, 1985) and Brams and Fishburn (1985); Saari and Van Newenhizen (1988), Brams
et al. (1988); Brams and Fishburn (2001) and Saari (2001a); and Brams and Herschbach (2001a,
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except insofar as the rhetoric has influenced the history of adoptions (and nonadop-
tions) of AV.* We next discuss the adoption decisions of the first societies to use AV
in the late 1980s.

3.3 The Adoption Decisions in the Societies®

Elections are not a burning issue in most scientific societies, with participation
rates often considerably below 50% of the membership and sometimes closer to
about 10%. For the candidates, on the other hand, who are often luminaries in
their disciplines, outcomes are usually more consequential and sometimes repre-
sent, especially if the office is president, recognition of professional achievements
over one’s career.

It is not surprising, then, that candidates are willing to make subdued versions
of what, in political life, would be called campaign statements. In the more rarefied
atmosphere of an academic or professional society, these statements, which usu-
ally accompany a mailed ballot, tend more to emphasize broad goals than specific
programs, although candidates often pledge to undertake new initiatives. Most can-
didates, while listing their past offices and qualifications for the new office, generally
do not seek to disparage the opposition.

Genteel as most of these campaigns are, candidates do, nonetheless, try to gar-
ner support by highlighting their qualifications, and proposing new approaches or
ideas, that differentiate them from their opponents. When AV was first proposed as a
reform in the four societies that adopted AV in the late 1980s, no candidates or fac-
tions, with one major exception, identified AV as a threat either to their candidacies
or points of view.

Of course, after AV’s use, there are winners and losers, and some losers, undoubt-
edly, see themselves as victims of this reform. In one society (The Institute of
Management Sciences, or TIMS, before it merged with the Operations Research
Society of America, or ORSA, to become INFORMS), this logic worked in reverse:

2001b) and Richie et al. (2001). Recent popular accounts of the controversy over voting systems by
science writers include MacKenzie (2000), Guterman (2002), Klarreich (2002), and Begley (2003).

4 Donald G. Saari has been a proponent of BV, most recently in Saari (2001b), but we know of
no recent adoptions of BV, though it and a variant have been used in two small Pacific Island
countries, beginning about 30 years ago (Reilly 2002). Proponents of instant runoff voting (IRV),
based on STV, recently succeeded in getting it enacted in elections in San Francisco; they formed
an organization, the Center for Voting and Democracy (CV&D), which now has a staff of about
ten people that includes the authors of Richie et al. (2001) and Hill (2002). As noted in Brams
and Herschbach (2001a), IRV supporters have done little serious analysis to back up their claims,
although other studies of STV (e.g., Dummett 1984) have been more probing. On the other hand,
CV&D does have human and monetary resources that few academics can claim.

5 This and the next two sections are based on Brams and Fishburn (1992a) as well as earlier and
later studies that we cite.
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the winner under PV, before AV was adopted, would almost certainly have lost under
AV — and this became an argument made for the adoption of AV!

We hasten to add that this argument against PV was not a personal argument
directed against the PV winner. Rather, the argument was that another candidate
commanded broader support and thereby “deserved” to win.

Next we briefly recount the adoption decisions of the first four societies to
use AV:

1. Mathematical Association of America (MAA). In 1985, the president of the
MAA, Lynn Arthur Steen, who was familiar with work on AV, asked the Board
of Governors of the MAA to consider adoption of AV in its biennial elections
for president-elect and other national offices. After “heated but not acrimonious”
debate (Steen 1985), AV was approved by the Board in 1985, passed by the
membership in 1986, and used for the first time in the 1987 MAA elections.

Steen earlier had written an article in Scientific American (Gardner 1980) on
the mathematics of elections, in which he discussed AV. Before the MAA’s con-
sideration of AV, he asked Brams to look into the use of STV by the American
Mathematical Society (AMS), the major research society of mathematicians.®
Brams (1982) demonstrated via two counterexamples that the “Instructions to
Voters” accompanying the 1981 ballot used by the AMS to elect a nominating
committee contained an erroneous statement about a property of STV, which led
to an exchange with Chandler Davis (1982), who had been a proponent of STV
when it was adopted by the AMS several years earlier. The erroneous statement
was deleted from future instructions, but AV was not adopted by the AMS until
19927

Both Steen’s knowledge and his position as president of the MAA made him
a crucial player in the MAA’s adoption of AV. So, also, was Steen’s successor
as president of the MAA, Leonard Gillman, who was a strong advocate of AV
and played an active role in its eventual implementation in the 1987 elections of
the Association. For example, he wrote a description of AV for mathematicians,
which included results of his own analysis (Gillman 1987).

2. The Institute of Management Sciences (TIMS), which is now part of INFORMS.
The use of AV by TIMS in 1988 was preceded by an experiment in which mem-
bers were sent a nonbinding AV ballot, along with the regular PV ballot, in the
1985 elections. Although the AV ballot did not count, 85% of the members who
voted in these elections returned the AV ballot. This permitted Fishburn and
Little (1988) to compare the results of voting under the two different systems.

6 The MAA is the more teaching-oriented of the two major American mathematical societies at the
college-university level.

71t was adopted in part because counting votes by hand under STV proved to be too onerous, and
computerizing the counting was not feasible at the time. Even so, AV was adopted only for those
offices of the AMS that did not require an amendment to the bylaws, which would have required
considerable effort to enact; voting for other offices is still by PV (Daverman 2002, and Fossum
2002). Patently, pragmatic considerations played a key role in the AMS’s choices.
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On the basis of their empirical analysis, which will be discussed later, Fish-
burn and Little (1988) concluded that AV did a better job of electing Condorcet
candidates than did PV. Not only was the experiment “remarkably successful”
(Little and Fishburn 1986), but the results also convinced TIMS Council to adopt
AV in 1987, leading to its later adoption by INFORMS when it formed in 1995.
In fact, an argument for conducting the experiment in the first place was that
management scientists should “practice what we preach” (Jarvis 1984): before
deciding on its usage, TIMS should collect the information necessary to make an
informed judgment about the applicability of the theoretical analysis of AV to its
own elections.

Both the consideration and adoption of AV by TIMS were certainly helped by
the fact that the president of TIMS in 1984-1985, John D. C. Little, was inter-
ested in AV and collaborated with Fishburn on the experiment and its analysis.
Before undertaking the experiment, inquiries were made of the candidates to ask
their permission to participate in it. Because of its research potential, all agreed,
prefiguring AV’s eventual adoption.

. American Statistical Association (ASA). The former chair of the ASA’s Com-

mittee on Elections, Richard F. Potthoff, had read about AV and brought it
to the attention of his committee. This committee recommended its adoption
first in “internal” ASA elections; the ASA Board of Directors approved this
recommendation.

After AV’s successful use in 1986 in three elections for Council governors, the

election of two editors to serve on the Board, and the election of a Board member
to serve on the Executive Committee, the Committee on Elections recommended
that AV be used in Association-wide elections, which was approved by the Board
(Amendment to ASA By-Laws 1987) and ratified as an amendment in 1987.
Unlike the other societies, the ASA has had no Association-wide multicandidate
elections since the adoption of AV, though some internal elections and single-
winner section elections have had more than two candidates.
Institute of Electrical and Electronics Engineers (IEEE). The adoption of AV by
the IEEE has a politically charged history (Brams and Nagel 1991). Beginning
in 1984, AV was considered, along with other voting systems, for possible use
in multicandidate elections. But not until the 1986 elections — when a petition
candidate, Irwin Feerst, ran against two candidates for president-elect who were
nominated by the Board of Directors — did the issue of election reform take
center stage. The reason is that Feerst, with 35% of the vote, defeated one of
the two Board-nominated candidates and came within 242 votes (of 52,405 cast)
of defeating the other candidate. This result starkly illustrated to the Board how
vulnerable their nominees, who together might win a substantial majority in an
election, are to a minority candidate if these nominees should split the majority
vote more or less evenly.

In 1987 the Board reverted to nominating only one candidate for president-
elect, breaking a tradition of nominating two candidates that it had begun in
1982. Feerst was instrumental in bringing the question of how many nominees
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the Board must nominate to a vote of the entire membership in the 1987 elec-
tion, in which he did not run and there were no other petition candidates. By a
57-percent majority, members supported a constitutional amendment requiring
that the Board nominate at least two candidates, but this fell short of the 2/3’s
majority needed to amend the IEEE’s constitution.

Nevertheless, it was clear that there was strong member support for making
IEEE elections more competitive, which renewed interest in AV should the Board
return to nominating two candidates and have petition candidates run as well. In
1987, Brams was invited by the then president of the IEEE, Henry L. Bachman,
to attend an Executive Council meeting to discuss AV.

Unable to do so, he suggested that Jack H. Nagel of the University of Penn-
sylvania, who had done extensive research on AV, take his place. Nagel did; he
also attended a later meeting of the full Board of Directors, which adopted AV
in November 1987. (AV had previously been used in internal IEEE elections,
sometimes in modified form.) With its adoption, the Board voted to nominate at
least two candidates for each office.

When the IEEE’s adoption of AV was announced at a December 1987 IEEE
press conference in New York City that Brams and Nagel attended, Feerst
objected strenuously to its use, arguing that it was a deliberate move to under-
mine his candidacy and the interests of “working engineers,” whom he claimed
to represent. When Feerst ran in 1988 for president-elect under AV, he came in
fourth in a field of four candidates.

To recapitulate, the paths to adoption of AV in the different societies have been
diverse. Only in the MAA did full-scale use of AV begin before it was first tried out
in an experiment (TIMS) or in internal elections (ASA and IEEE).

The presidents of the MAA, TIMS, and the IEEE played active roles in AV’s
adoption in their societies, and each received assistance from an advocate of AV.
In the ASA, on the other hand, it was writings on AV that sparked initial interest,
which turned into adoption without much controversy.

Controversy was the hallmark of the IEEE deliberations. While the IEEE’s adop-
tion of AV was in part a response to a perceived threat to its established leadership,
it is important to realize that the IEEE did not view it as its only alternative.

In fact, several other election systems had been considered before AV was
selected. For example, a runoff election between the two top contenders, if neither
received a majority in the initial balloting under PV, was also seriously considered,
but it was viewed as too costly to have a second round of voting and also would
have required a constitutional change. Ultimately, a majority of Board members
concluded that AV better fit the needs of the organization than any other voting
system, and that is why it was adopted.®

8 By no means do we suggest that AV is a panacea in all elections, especially those involving
multiple winners; for such elections, see the AV-related reforms in Brams (1990), Fishburn and
Brams (1991), Brams and Fishburn (1992b), and Potthoff and Brams (1998).
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This quick overview does not do justice to the serious debates that occurred over
the merits of AV, particularly in the MAA and the IEEE. Indeed, although there has
been dissent over AV’s use in some societies (Kiely 1991), no society that adopted
AV ever rescinded its decision, with one notable exception (the IEEE).? Looking
at what has AV wrought in them may offer some explanation of why it has been
generally, but not universally, accepted.

3.4 Does Approval Voting Make a Difference?

Clearly, a new voting procedure makes a difference if it leads to the selection of a
different winner. The best evidence we have that AV would have elected a different
winner is from the 1985 TIMS experiment, in which ballot data for both the PV
official elections and the AV nonbinding elections were compared (Fishburn and
Little 1988).

In one of the three 1985 elections, the official PV and actual AV ballot totals
are shown in Table 3.1 for candidates A, B, and C. Also shown are the AV totals
extrapolated from the 85-percent sample of members who returned their AV non-
binding ballots, which is a very high figure. The extrapolation is a straightforward
one: approval votes are added to the actual AV totals for each candidate based on
the propensity of the sample respondents who voted for one particular candidate on
the PV ballot to vote for each of the other candidates on the AV ballot. This extrapo-
lation is justified by the finding that there are no major differences in voting patterns
on the official PV ballot between AV respondents and nonrespondents.

Observe that candidate C wins the official PV election by a bare eight votes
(0.4%), but B would have won under AV by a substantial 170 votes (6.1%). By
itself, the fact that C wins more plurality votes and B wins more approval votes
does not single out one candidate as the manifestly preferred choice. But on the
experimental ballot, voters were asked one piece of additional information: to rank
the candidates from best to worst by marking next to their names 1) for their first
choice, 2) for their second choice, and so on.

These data can be used to reconstruct who would defeat whom in hypothetical
pairwise contests, which is not evident from the PV totals. For example, the fact that
C edges out B in presumed first choices, based on the PV totals, does not mean that
C would hold his or her lead when the preferences of the 166 A voters are taken into
account. In fact, the experimental ballots of these 166 voters show that

9 According to the IEEE Executive Director, Daniel J. Senese, AV was abandoned in 2002 because
“few of our members were using it and it was felt that it was no longer needed.” Brams responded
in an e-mail exchange (June 2, 2002) that since “candidates now can get on the ballot with ‘relative
ease’ [according to former IEEE president Henry L. Bachman in the same e-mail exchange] ...
the problem of multiple candidates [in the late 1980s] might actually be exacerbated . .. and come
back to haunt you [IEEE] some day.”
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Table 3.1 PV and AV vote totals in 1985 TIMS election

Candidates Official PV Actual AV Extrapolated AV
A 166 417 486
B 827 1,038 1,224
C 835 908 1,054
Total 1,828 2,363 2,764
No. of voters 1,828 1,567 1,828

1. 70 provided rankings in the order ABC;

2. 66 provided rankings in the order ACB;

3. 3 provided no rankings but approved both A and B;

4. 27 made no distinction between B and C by rankings or approval.

In the B-vs.-C comparison, it is reasonable to credit (1) and (3) to B (73 votes),
(2) to C (66 votes), and (4) to neither candidate. When added to the PV totals,
these credits give C (901 votes) exactly one more vote than B (900 votes). However,
assuming the 27 voters in (4) split their votes between B and C in the pattern of
the 139 voters (70 + 66 + 3) who ranked A first and also expressed a preference
between B and C, B would pick up an additional vote (rounded to the nearest vote),
resulting in a 914-914 tie.

This extrapolation indicates that there is not a single Condorcet candidate.'”
While surprising, the lack of a single Condorcet candidate should not obscure the
fact that 170 more voters approved of B rather than C in the extrapolated AV returns,
albeit C won the PV contest by eight votes.

The reason for this discrepancy between the AV and PV results is that whereas C
has slightly more stalwart supporters (i.e., those who vote only for one candidate)
than B, supporters of the third candidate, A, more approve of B than C (36% to
23%). Furthermore, because more of C’s supporters approve of B than B’s do of C,
B would have won handily under AV.

Is this desirable? In the absence of a Condorcet candidate, Fishburn and Little
(1988, pp. 559-560) concluded that approval voting picks a clear winner on the basis
of second choices. These show that B has a broader acceptance in the electorate than
C. Therefore, the approval process, by eliciting more information from the voters,
leads to the election of the candidate with the widest support.

107t is worth noting that the usual reason for the nonexistence of a Condorcet candidate is because
of a Condorcet paradox, whereby majorities cycle. In this election, however, it is a projected tie
that precludes one candidate from defeating the others in pairwise contests. That there is no cycle,
and that A in fact would lose to both B and C, is shown by ranking data in Fishburn and Little
(1988).
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Although it is theoretically possible in close elections that the Condorcet candi-
date will not be the most approved candidate, it has almost never occurred.!' But
the legitimacy of the AV winner may be questioned on other grounds.

3.5 Does Approval Voting Elect the Lowest Common
Denominator?

One fear that has been expressed about the use of AV is that while it may help
elect candidates more broadly representative than PV, these candidates could turn
out to be rather bland and uninspiring. They may win simply because they offend
the fewest voters, not because they excite the passions of many.

It is difficult to say whether, in principle, a compromise candidate is a better or
worse social choice than a more extreme candidate who is the darling of some vot-
ers but the bane of others. In practice, fortunately, this dichotomous choice seems
rarely to arise, as the data from the AV elections of the four societies demonstrate.
Specifically, the winners under AV were candidates who were generally popular
among all voters, however many candidates they voted for in the different elec-
tions. Thus, a divergence between forceful minority candidates, approved of by
few, and “wishy-washy” majority candidates, approved of by many, is probably an
infrequent event.

There are, however, examples of elections in which the winner was not strong
among all classes of voters. Consider the 1987 MAA election shown in Table 3.2
(Brams et al. 1988), wherein the votes received by the five candidates in this election
are broken down by the votes each of the candidates received from voters’ casting
exactly one vote (1-voters), voters’ casting exactly two votes (2-voters), and so on.
Excluded from these totals are nine voters who voted for all the candidates, whose
undifferentiated support obviously has no effect on the outcome.

"I'The 1999 election for president of the Social Choice and Welfare Society, which was decided
by two approval votes among 76 cast, is the only exception we know of: the second-place AV
candidate in this election would have defeated the AV winner by four votes in a head-to-head
contest, based on the hypothetical use of BV, for which voters ranked candidates. Brams and Fish-
burn (2001) deem this “nail-biting” election essentially a toss-up, whereas Saari (2001a) argues
that most positional methods would have chosen the Condorcet candidate (including BC, wherein
the Condorcet winner would have defeated the AV winner 60-59); see Laslier (2003a) for more
details on voting patterns in this election. Regenwetter and Grofman (1998), using a random-utility
model to reconstruct voter preferences in several elections — including some discussed here — show
that AV, BV, and Condorcet winners generally coincide. Laslier (2003b) and Laslier and Van der
Straeten (2003) analyze data from a field experiment with AV in the 2002 French presidential
election, which involved over 5,000 voters in two French towns, and conclude that AV was easily
understood, readily accepted, and provided a more complete picture of the “political space.” Ear-
lier theoretical analyses as well as computer simulations (Brams and Fishburn 1983; Lijphart and
Grofman 1984; Nurmi 1987; Merrill 1988) demonstrate that AV almost always elects a Condorcet
winner if there is one. If there is not one, as in the 1985 TIMS election experiment, then proponents
of AV argue that AV provides a compelling way to break either a cycle or a tie.
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Table 3.2 AV vote totals in 1987 MAA election

Candidates 1-Voters 2-Voters 3-Voters 4-Voters Total
A 848 276 122 21 1,267
B 618 275 127 32 1,052
C 652 264 134 34 1,084
D 660 273 118 31 1,082
E 303 132 87 30 552
Total 3,081 1,220 588 148 5,037
No. of voters 3,081 610 196 37 3,924

In this election, 3,081 of the 3,924 voters (79%) were 1-voters, while the remain-
ing 843 voters cast 1,956 votes, or an average of 2.3 votes each. Thus, the multiple
voters cast 39% of the votes, though they constituted only 21% of the electorate.

Did the multiple voters make a difference? It would appear not, because the win-
ner (A) received 28% more votes from 1-voters than the 1-voters’ runner-up (D) did,
just edged out B among 2-voters, but lost to several candidates among 3-voters and
among 4-voters. A’s victory, then, is largely attributable to the substantial margin
received from 1-voters, not from the presumably more lukewarm support received
from multiple voters.

Define a candidate who wins among all classes of voters — those who cast
few votes (narrow voters) and those who cast many votes (wide voters) — as AV-
dominant. In the MAA election, we assume narrow voters are those who cast one or
two votes, and wide voters are those who cast three or four votes.

It turns out that A is not AV-dominant, because he or she wins among narrow
but not among wide voters. Does this vitiate A’s winning status? In winning so
decisively among 1-voters, whose preference intensities would seem to be greatest,
it would be hard to argue that A is any kind of lowest common denominator. It
should be noted, however, that some of the 37 voters who voted for four of the five
candidates probably also had intense preferences — but against the one candidate
they chose to leave off their approved lists.

In 12 of the 16 multicandidate AV elections analyzed in the four societies, the
winners were AV-dominant. In the four elections in which there was not an AV-
dominant winner, the pattern is similar to that in the 1987 MAA election shown
in Table 3.2: the winner won by virtue of receiving greater support among narrow
voters than among wide voters. These AV-nondominant winners, therefore, do not
fit the mold of lowest common denominators — the choice of many wide voters but
few narrow voters — but rather the opposite, which reinforces, not undermines, their
legitimacy as winners.

The fact that the winners in three-quarters of the elections were AV-dominant is
perhaps not surprising, because one would expect such candidates would do better
than losers across different types of voters. A little reflection, however, shows that
this need not be the case. Paradoxically, a candidate may lose among every possible
class of voters — that is, be AV-dominated — and still be the AV winner. For example,
A might be the victor over C among narrow voters, and B might be the victor over
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C among wide voters. But C could emerge as the AV winner if A did badly among
wide voters, B did badly among narrow voters, but C was a close second among
both types.

No winners in the 16 elections were AV-dominated. As already noted, even the
support of the four AV-nondominant winners appeared to be more intense and heart-
felt (i.e., from narrow voters) than that of the losers, so AV does not appear to elect
lowest common denominators.

3.6 Is Voting Ideological?

Consider again the 1987 MAA election. As can be calculated from Table 3.2,
2-voters gave the candidates 22-26% of all their votes, 3-voters 10-16%, and 4-
voters 2-5%. Venn diagrams (not shown here) indicate the shared support among
the 10 subsets of two candidates, 10 subsets of three candidates, five subsets of four
candidates, and one of all five candidates. Examination of the sources of this sup-
port, as shown in the Venn diagrams, does not reveal any particular pairs, triples,
or quadruples that received unusually great support, indicating that there was not
obvious coalitional voting.

On the contrary, multiple votes are spread about as one would expect according to
the null hypothesis that votes are distributed in proportion to the candidates’ totals.
In the case of A, for example, there were 82 shared votes with just B, 91 with just C,
80 with just D, and 23 with just E, which is roughly in accord with the candidates’
overall totals. Indeed, every one of the 32 subsets in this election — including the
2.6% who abstained — got at least three votes.

The story is very different for the 1988 IEEE election shown in Table 3.3 (Brams
and Nagel 1991), wherein the approval vote totals are shown for all 16 subsets of the
four candidates in this race. Consider first the 3-voters, and note that nearly everyone
in this category voted for ABD — 5,605 voters, to be precise. By contrast, only 148,
143, and 89 voters, respectively, supported the other 3-subsets of ABC, ACD, and
BCD that contain C.

Evidently, the numerous supporters of ABD voted against C by voting for every-
body except C. This essentially negative kind of voting against C can also be seen in

Table 3.3 Numbers of voters who voted for 16 different subsets in 1988 IEEE election and AV
totals

Subsets

None = 1,100

A = 10,738 B = 6,561 C =17,626 D = 8,521

AB = 3,578 AC = 659 AD =6,679 BC=1,425 BD=1,824 CD = 608
ABC = 148 ABD = 5,605 ACD = 143 BCD = 89

All = 523

Totals

A = 28,073 B = 19,753 C=11,221 D = 23,992
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voting for the six 2-subsets. The three 2-subsets that do not include C (AB, AD, and
BD) had an average of 4,027 voters each, whereas the three that included C (AC,
BC, and CD) had an average of only 897 voters each.

In addition to the predominant clustering of support around A, B, and D, there
are some subtle differences in the sharing of support. For each pair of candidates,
Brams and Nagel (1991) computed an index of shared support by taking the ratio of
ballots approving both candidates by 2-voters and 3-voters to total ballots, excluding
abstentions and votes for all four candidates. By this measure, A and D have the most
affinity, with 22.9% shared support. They are followed by A and B, with 17.2%; and
then by B and D, with 13.9%. Although A, B, and D share much less support with
C, B at 3.1% shares slightly more with C than do A (1.8%) and D (1.5%).

From these results, one might infer an underlying dimension on which D and C
occupy opposite extremes, whereas A and B are located at intermediate positions.
A is somewhat closer than B to D, but both B and A are much closer to D than to C,
as shown in the following hypothetical continuum:

I I
D A B C

This representation corresponds to certain facts about the candidates. D and A
were both Board nominees, whereas C was a vociferous critic of IEEE officers,
Board, and staff. B, though like C a petition candidate, was in other ways close to
the IEEE establishment, having previously served on the Board. As for the slight
distinction between D and A, judging from the candidates’ biographies and state-
ments it may reflect D’s emphasis on technical research, which perhaps made him
seem most distant from C, who sought to champion the working engineer.

Of the 54,204 ballots analyzed in this election, only 3,323 (6.1%) are “incon-
sistent” with the assumption that voters’ preferences are based on the foregoing
DABC ordering of candidates. Inconsistent ballots include approval of two nonad-
jacent candidates without including the adjacent candidate(s) between them, notably
DC (608), AC (659), DAC (143), and DBC (89). Accounting for more than half the
inconsistencies is the relatively minor inconsistency — in terms of perceived dif-
ferences — represented by the pattern DB (1,824). Of the multiple voters, 17,435
(84.0%) cast ballots consistent with the hypothetical ordering.

Thus, candidates with obvious affinities tended disproportionately to share
approval from multiple voters. In this sense voting was ideological: it reflected a
pattern consistent with an underlying ordering of the candidates. Only in this elec-
tion, however, was such a pattern found; far more typically, voting in the societies is
nonideological, which is consistent with the null hypothesis alluded to earlier. But
if AV is used in public elections, their more political character could well lead to the
kind of ideological cleavages observed in the IEEE election.

It is important to note, however, that nonideological voting may mirror regular-
ities not evident in the AV data themselves. As a case in point, the winner in the
1987 MAA election (Table 3.2) was a woman, and this pattern was repeated in the
next MAA election in 1989. We have not analyzed data from the latter election, but
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the 1987 winner’s victory, as shown earlier, cannot be impeached on grounds that
she won mostly because of lukewarm support from wide voters. Nonetheless, as the
only women in each of the two races, it may be the case that they were helped by
their uniqueness: by some they were perceived as the single best choice; by others
they were seen as broadly acceptable.

3.7 Summary and Conclusions

AV has proved to be a practical and viable election reform in the four scientific
and engineering societies that used it for the first time in 1987 and 1988. While AV
supporters played a role in its adoption in three of the four societies (TIMS, MAA,
and IEEE), none of its proponents was even aware of its consideration in the fourth
society (ASA) until its adoption was imminent.

In all these societies, AV’s adoption rested principally on the arguments — sum-
marized earlier — that it is preferable to PV in multicandidate races. In the IEEE,
a petition candidate’s near-win with vocal but only minority support certainly gave
urgency to these arguments, accelerating AV’s adoption after the Board’s attempt to
limit the number of Board-nominated candidates to one person met with the mem-
bership’s disapprobation. Only in the case of the AMS’s 1992 adoption of AV did
practical considerations give it an edge over STV, and then only in some elections
that were relatively easy to change.

The empirical analyses of election returns from the different societies indicate
that AV may make a difference. So far it seems not to have elected candidates who
can be characterized as lowest common denominators but instead candidates who
either enjoyed support among all classes of voters, or who did particularly well
among narrow voters whose support is presumed to be more intense. Although
voting seems generally nonideological in most society elections, a clear ordering
of positions was identified in the IEEE election, and voting tended to be only for
adjacent candidates in this ordering.

Condorcet candidates almost always win under AV, with the only known excep-
tion being the 1999 Social Choice and Welfare election, which was a near-tie under
both AV (the official procedure) and BV (the hypothetical procedure). If there is
no single Condorcet candidate, as was illustrated in the 1985 TIMS election exper-
iment, then AV provides a way of determining which candidate receives the most
support from all voters, not just those who rank this person first.

Not all societies that have been approached about adopting AV, including three
that Brams belongs to — the American Political Science Association (APSA), the
International Studies Association (ISA), and the Public Choice Society (PCS) —
have been amenable to election reform, much less the adoption of AV. Significantly,
these societies are dominated, or heavily populated by, academic political scientists;
none holds competitive elections unless a petition candidate challenges the official
slate (this has never happened in the ISA or PCS; in the APSA, the last challenges
occurred more than 25 years ago).
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Among the lessons we draw from our experience is that the adoption of AV,
and probably any election reform, requires key support from within an organiza-
tion. We never received this kind of support from politicians or political parties in
our attempts to get AV adopted in public elections. By contrast, the society adop-
tions would not have occurred without influential members of each society favoring
reform, sometimes for practical or political reasons. Of course, they also needed to
make their cases with arguments based on democratic principles; we like to believe
that both the rhetoric of AV supporters as well as their analyses helped in this regard.
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Axiomatic Theory



Chapter 4
Collective Choice for Simple Preferences

Biung-Ghi Ju

4.1 Introduction

Individual preferences often take simple structures in some restricted environments.
The so-called universal domain assumption in the three impossibility results by
Arrow (1951), Sen (1970a,b), and Gibbard (1973) and Satterthwaite (1975) have
been scrutinized and (partially) abandoned in numerous later studies, which do not
intend to identify well-behaved social welfare functions that “would be universal
in the sense that it would be applicable to any community” (Arrow 1951, p.24).
Important breakthroughs have been made in this line of research: Gaertner (2002)
provides a comprehensive survey of the literature on domain restrictions.

Of our central interest in this survey are simple preferences with few indifference
classes such as the so-called dichotomous or trichotomous preferences as studied by
Inada (1964, 1969, 1970)!. Later investigations on collective choice with dichoto-
mous preferences have been closely connected to studies of the normative and
strategic advantages of majority and approval voting systems and of their axiomatic
foundation: see Brams and Fishburn (2002) for an extensive survey of this literature
as well as Brams and Fishburn (1978) and Fishburn (1978a,b, 1979) among others.
This survey connects old and recent theoretical developments in this literature with
a single but comprehensive perspective.

The survey starts with a brief overview of the classical impossibility results.
Section 4.2 discusses some possibility results on several domains of dichotomous
preferences. Section 4.3 discusses axiomatic foundations for majority and approval
voting systems. We investigate the logical relationship among the existing axiomatic
characterizations. In the process, we discover ways of strengthening existing results
and we offer new characterization results. Readers are referred to Xu (2010) in this

'Dichotomous preferences are also considered by Bogomolnaia and Moulin (2004) and
Bogomolnaia et al. (2005) in their investigation of well-behaved randomization mechanisms.
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volume for a compact overview of the literature on axiomatic characterizations of
majority voting.? Section 4.4 discusses strategic voting and the robustness of vot-
ing systems. Some results associated with the Condorcet principle and realizability
of Condorcet winners in strategic voting environments are included. Section 4.5
discusses some recent developments in unconstrained multi-issue problems with
separable preferences. The section deals with strategy-proof voting schemes and
shows the conflict between Pareto efficiency and strategy-proofness on the entire
domain of separable preferences and on restricted domains of “dichotomous” or
“trichotomous” preferences. Section 4.6 discusses dichotomous opinion aggrega-
tion problems that have drawn some attention recently among scholars interested in
group identification.

4.1.1 Preliminaries

Let X be the set of all alternatives. There are infinitely many “potential” agents,
identified with the natural numbers in N. Let X and A be the set of finite subsets
of X and of N respectively. Each agent i € N has a preference ordering R; that
is a complete, reflexive, and transitive binary relation over X. Let R be the set of
all preference orderings over X. We sometimes consider binary relations that are not
necessarily transitive. Let R be the set of all complete and reflexive binary relations.
For each N € N and each X € X, let R¥ be the set of profiles of preference
orderings of agents in N and let Uy, x = RN x {X}. Let Uy = Uxer Unx,
Ux = UyenUnx, andU = Uyepr xex Un,x- Subsets of Uy, x, Uy, Ux, and
U are denoted respectively by Dy, x, Dy, Dx, and D. Elements of RY are denoted
by Ry . Ry, R, etc.,and also by R, R", R”, etc., when N is clear from the context.
Elements of R are denoted by Ry, Ry, R{, etc., and also by R;, R, R, etc., when
they belong to agent i.

A social decision function on Dy x is a function f: Dy x — R associating
with each profile (R, X) € Dn,x a social preference relation f(R,X) € R. A
social welfare function on Dy x is a function f: Dy x — R associating with each
profile (R, X) € Dy, x asocial preference ordering f(R, X) € R. We often denote
a social preference relation by >, its strict counterpart by >, and its indifference
by ~, in order to distinguish them from individual preference relations.

Let P(X) be the set all subsets of X and P (X) the set of all non-empty subsets of
X. A social preference relation > generates a choice rule C(+; >): P(X) — P(X)
as follows: forall Y C X,

CY;>)={xeY: forallyeY, x > y}. 4.1)

By finiteness of X, if > is transitive, the choice rule is non-empty valued at each non-
empty ¥ C X. For non-empty valuedness, each of the following weaker conditions

2 Thomson (2001) offers an extensive survey and discussion on the axiomatic method in Social
Choice Theory and Game Theory.
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is also sufficient. Preference relation > is quasi-transitive if its strict counterpart >
is transitive, that is, for all x, y,z € X, x > y and y > z imply x > z. [tis acyclic
if there is no sequence of finite alternatives, x1,...,xr € X such that x; > xp,
X2 > X3,...,XT—1 > X1, XT > X1. Clearly, transitivity implies quasi-transitivity,
which implies acyclicity. Quasi-transitivity is sufficient but not necessary for the
non-emptiness of the choice rule in (4.1) (so is transitivity). Acyclicity is necessary
and sufficient for the non-emptiness of the choice rule (Sen 1970a,b, Lemma 1*1).

A collective choice quasi-rule on Dy x is a function c: Dy, x x P(X) — P(X)
associating with each profile (R, X,Y) € Dy x x [_’(X) a subset of Y, that is,
c(R,X,Y) C Y. A collective choice rule on Dy x is a non-empty valued collective
choice quasi-rule, namely a function c¢: Dy, x % P(X) — P(X) associating with
each profile (R, X,Y) € Dy.x x P(X) a nonempty subset of Y, that is, @ #
c¢(R,X,Y) C Y. We sometimes use notation cg,x(¥) = c¢(R, X,Y).

Each choice rule C : P(X) — P(X) generates a binary relation R(C) as
follows:

XR(C)y if and only if x € C({x, y}).

Call R(C) the base relation of C(-) (as in Herzberger 1973). Choice rule C is
normal if C(-) = C(-; R(C)). Unless specified otherwise, we consider collective
choice rules generating normal choice rules. Necessary and sufficient conditions for
a choice rule to be normal are summarized in Sen (1977, pp. 64—65, Propositions 8
and 9).3

4.1.2 Classical Impossibility Results

Consider social decision functions or collective choice rules over Dy, x. Here are
some basic axioms for social decision functions considered in Arrow (1951), Sen
(1970a,b), Gibbard (1973) and Satterthwaite (1975). In defining the axioms, we will
only state the properties needed for a social decision function f'. That is, instead of
stating “ f is said to satisfy Axiom A if it satisfies property A,” we simply state
property A.

Unrestricted Domain: Dy xy = Un,x -

Transitive Social Preferences, (briefly, Transitivity): For all R € Dy, x, the social
preference relation at R, f(R, X), is transitive.

Replacing transitivity with quasi-transitivity or acyclicity, we define the axioms
of quasi-transitive social preferences (briefly, quasi-transitivity) and acyclic social
preferences (briefly, acyclicity), respectively.

Weak Pareto: For all x, y € X, if everyone strictly prefers x to y at R, then x is
strictly preferred to y under the social preference relation f(R, X).
Non-dictatorship: There is no personi € N - such a person would be a dictator -
such that for all R € Dy, x and all x,y € X, if i strictly prefers x to y, then x is
strictly preferred to y under the social preference relation f(R, X).

3 One necessary and sufficient condition in citetSen77 (properties a2 and y2) is the following: for
allY € P(X),x € C(Y)ifand only if forall y € ¥, x € C({x, y}).
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Note that if a collective choice rule c(-) generates a dictatorial base relation R(c),

then by normality, the dictator’s preferred choices constitute c(R, X, Y) forall Y €
P(X).
Independence of Irrelevant Alternatives: For all R, R’ € Dy x andall Y C X, if
individual preferences of both profiles R and R’ are identical over Y, then the two
social preference relations at the two profiles generate the same choice over Y, that
is, C(Y: f(R. X)) = C(Y: f(R", X)).}

Replacing f(R, X) in the above axioms with the base relation R(c) generated
from a collective choice rule ¢(-), we define the corresponding axioms for collective
choice rules. The same names are used for these axioms.

4.1.2.1 Arrow’s Theorem

Arrow (1951) investigates the existence of social decision functions satisfying the
five basic axioms in the previous section. When there are at least three alternatives,
such a function does not exists.

Theorem 4.1.1 (Arrow’s Impossibility Theorem). If there are at least three alter-
natives, then no social decision function (or collective choice rule) satisfies unre-
stricted domain, transitive social preferences, weak Pareto, non-dictatorship, and
independence of irrelevant alternatives.’

When the axiom of transitive social preferences is weakened to quasi-transitivity,
there does exist a social decision function satisfying the other four axioms. For
example, “Pareto dominance” gives a quasi-transitive, but not necessarily transitive,
social preference relation. Later works in this direction (Gibbard 1969; Guha 1972;
Mas-Colell and Sonnenschein 1972) deliver a characterization of “oligarchic” social
decision functions where a group, namely oligarchy, is decisive and each member
of the group has veto power. Replacing quasi-transitivity with acyclicity leads to
a larger family of social decision functions that may not be oligarchic but close to
oligarchy, in the sense that all decisive groups share some core members as shown
by Brown (1975) and Banks (1995).

Further progress has been made in the line of research that focuses on restricted
preferences in some specialized environments. Gaertner (2002) provides a compre-
hensive survey of the literature on restricted domains. Sections 4.2-4.6 give an
overview of results pertaining to dichotomous preferences. Section 4.2 provides
some possibility results on dichotomous domains. We list several definitions of
dichotomous domains that admit some social decision functions satisfying Arrow’s
axioms except for the axiom of unrestricted domain. Moreover, as we will see in
Sect. 4.3, majority decision stands out among other decision functions as the unique
one satisfying Arrow’s axioms and other standard axioms in the literature.

4 See (4.1) for the definition of the choice rule generated by a social preference relation.

3 Note that normality assumption for collective choice rules allows us to state this result for both
social decision function and collective choice rule at once.
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4.1.2.2 Gibbard-Satterthwaite Theorem

Here we consider a domain Dy, x € Up,x such that for some R C R, Dnx =
RN x {X}. Preferences are primitive variables for collective choice or social deci-
sion but they are often unobservable. Agents or voters seek their own private
interests and may vote untruthfully whenever advantageous. Collective choice pro-
cedures may not work properly unless they have a certain embedded property in
themselves preventing untruthful voting. An important line of research has been
devoted to the search for truthful collective choice procedures. The seminal work
of Gibbard (1973) and Satterthwaite (1975) show that when there are at least three
alternatives, there is no truthful procedure that also satisfies unrestricted domain,
non-dictatorship, and the full-range condition.

A collective choice rule ¢ : Dy, x x P(X) — P(X) is resolute if it always picks a
single alternative, that is, for all (R, X) € Dy x andall Y € [_’(X), c(R,X,Y)isa
singleton. For truthful procedures, Gibbard (1973) and Satterthwaite (1975) require
that for all possible reported preferences of others, each agenti € N always prefers
the outcome that results from the truthful announcement of his preferences to any
outcome that he could obtain by lying.

Strategy-Proofness: For all R € Dy x,allY € I3(X), alli € N, and all le eR,
c((Ri,R-),X.Y)R;c((R;,R-;).X.,Y).
An extension of strategy-proofness for set-valued rules is discussed in Sect. 4.4.

Theorem 4.1.2 (Gibbard-Satterthwaite Theorem). If there are at least three
alternatives, no resolute collective choice rule satisfies unrestricted domain, non-
dictatorship, strategy-proofness and the full-range condition.

Important positive results are derived in later works pertaining to specialized envi-
ronments that accommodate some natural restrictions on preferences. We will
survey the results pertaining to dichotomous domains in Sects. 4.2 and 4.4 and the
domain of separable preferences in Sect.4.5. Moulin (1980) characterizes a large
family of strategy-proof rules on the domain of single-peaked preferences over pub-
lic alternatives that are ordered on a line. Any such rule chooses a “generalized
Condorcet winner.” In the case of private good rationing model with single peaked
preferences, the family of strategy-proof rules is much more restricted as shown by
Sprumont (1991).

4.1.2.3 Sen’s Paretian Liberal Paradox

Sen (1970a,b) investigates the existence of a social decision function that satisfies
weak Pareto and a minimal form of liberalism, as well as the condition of acyclic
social preferences and unrestricted domain. Again the result is negative.

His minimal notion of liberalism requires that there should be at least two agents
who are decisive when making social comparison of a pair of alternatives. Formally,
we say that agent i is decisive for x and y with x # y, if forall R € Dy x, xPiy
implies x > r(r,x) ¥-
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Minimal Liberalism: There are at least two agents who are decisive for a pair of
alternatives.

His main result, known as the Paretian liberal paradox, is the following.

Theorem 4.1.3 (Sen’s Paradox). No social decision function (or collective choice
rule) satisfies unrestricted domain, acyclic social preferences, weak Pareto, and
minimal liberalism.

Gibbard (1974) pushes this negative result to the most extreme form by showing that
Sen’s liberalism, properly extended in the model of collective decision with personal
components, cannot be well-defined. He provides a simple preference profile for
which any choice of an alternative necessarily violates at least one liberal right: this
is known as Gibbard’s paradox.

We will ask whether Sen’s paradox holds on the dichotomous preferences domain
for the problems of unconstrained choice of multiple issues in Sects. 4.5 and 4.6.

4.2 Possibility Results on Some Dichotomous Domains

Consider Dy, x < Upn,x such that for some R C R, Dnx = RN x {X}.
Throughout this section, we consider several examples of “dichotomous” domains.
On these domains, there do exist some social decision functions satisfying Arrow’s
axioms (in Theorem 4.1.1) except for unrestricted domain. This is shown by some
existing results that we overview here. We also offer some characterizations impos-
ing Arrow’s axiom of independence of irrelevant alternatives together with other
standard axioms.

Forall R € Dy,x andallx,y € X,let Ny y(R) ={i € N : x P; y} be the set of
agents who prefer x to y (or vote for x against y) and ny ,(R) = |[{i € N : x P; y}|
the number of agents who prefer x to y (or the number of votes x wins against y).
Independence of irrelevant alternatives can be restated as follows:

Independence of Irrelevant Alternatives: For all R, R’ € Dy x and all x,y €
X, if Nx,y(R) = Nxy(R') and N, x(R') = Ny x(R), then x > r(g) y implies
X Zf(R) Y-

The next axiom is stronger and is crucial for strategy-proofness.

Monotonicity: Forall R, R € Dy x and all x, y € X, if Nx ,(R) € Ny, ,(R’) and
Ny x(R') € Ny x(R), then x > s(gy y implies x > gy ¥.

Applying monotonicity when Ny ,(R) = N y(R’) and Ny x(R’) = Ny x(R)

yields independence of irrelevant alternatives.

The next axiom, considered by MaY (1952), plays a key role in his and other
axiomatic characterizations of majority decision.

Positive Response: For all R,R’ € Dy x and all x,y € X, if Ny ,(R) C
Ny,y(R), Ny x(R") € N, x(R), and at least one of the two inclusions is strict,
then x > gry y implies x > r(g) .
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Note that when there are only two alternatives, say x and y, positive response
implies monotonicity because then, Ny, (R) = Nx y(R') and N, x(R') = N, x(R),
which is the case relevant not to positive response but to monotonicity, imply
R = R’ and so application of monotonicity in this case is trivial. However, with
more than two alternatives, this implication no longer holds, and there is no logical
relation between the two axioms.

The next two axioms require symmetric treatment of individuals and of alterna-
tives, respectively.

Anonymity: For all permutationson N, 7w : N — N,and all R € Dy x, f(R) =
f(Ryz), where R; € Dy, x issuchthatforalli € N, Ry = Ry).

Neutrality: For all R € Dy x and all x,y,x',y" € X, if R* € Dyx is the
preferences profile obtained after relabeling x and y in profile R with x” and y’
respectively, then x > r(g) y if and only if X" > r(g) »'.

The best known decision function satisfying the above axioms is majority deci-
sion function fya,(-), which maps each R € Dy, x into a social preference relation
> fuas(R) defined as follows: forall x,y € X,

X > f.0@® yifandonly if ny , (R) > ny . (, R).

In fact, there is a large family of monotonic decision functions, of which the special
example is majority decision. In order to define this family, we need the following
notation and concepts. Let 0* = {(Ly,L>) : L1,L, € P(N),L; N Ly = @} be
the set of all pairs of disjoint subsets of N. A decisive structure for a pair x,y € X,
0y, is a non-empty subset of 9*such that for all (L1, L»), (L}, L}) € ?*,

if (L1, L) € 05y, Ly € L), and L, C Ly, then (L), L)) €05,.  (4.2)

Call this property d-monotonicity. A decisive structure ® = (0x,y)x,yex is a profile
of decisive structures for pairs of alternatives such that for all x,y € X and all
(Ll N Lz) (S 0*,

if (L1, L) ¢ 0y, then (Lp, L1) €0y «. (4.3)

Call this property 0-completeness. A decisive structure 9 represents the social
decision function f° defined as follows: for all R € Dy,x and all x,y € X,
X > yrocry yifandonly if (Ny y(R), Ny x(R)) € 0y y.

Note that by (4.2), f° is monotonic and that by (4.3), the social preference rela-
tions chosen by f? are complete. It is easy to show that neutrality of f° requires
Ox,y = Oy, forall x,y,x’,y" € X. Conversely, any monotonic social decision
function f generates a decisive structure 9/ and is represented by it. To show this,
define D){,y as follows: for all (L1, L) € 0%, (L1, L>) € D,{,y if and only if for
some R € Dy, x, X = rR) V> Nx,y(R) € L1, and Ly € N, x(R). To prove (4.3),

suppose (L1, L,) € 0*\D£,y. Consider R € Dy, x such that Ny ,(R) = L; and
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Ny x(R) = L».% Then not x > #(r) ¥ and by completeness of f(R), y > r(r) X.

This shows (Lz, L) € D;, x. Monotonicity of f directly implies (4.2). Therefore
we obtain:

Proposition 4.2.1. A social decision function satisfies monotonicity if and only if it
is represented by a decisive structure.

For anonymous and neutral decision functions, decisive structures representing them
take a simple form. Let n* = {(ny,nz) : ny,np € {0,1,...,n}, and n; + ny < n}.
A decisive index structure for a pair x,y, ny y is a non-empty subset of n* such
that for all (ny,n2), (n},n}) € n*,

if (n1,n2) € nyy, n1 < nl, and ny < ny, then (n},n}) € ny . 4.4)

Call this n-monotonicity. A decisive index structure n = (nx, y)x,yex is a profile of
decisive index structures for pairs of alternatives such that for all x, y € X and all
(n1,n2) € n*,

if (n1,n2) ¢ ny,,, then (ny,n1) € ny 4. 4.5)

Call this n-completeness Note that for neutral social decision functions represented
by a decisive index structure n, neutrality and n-completeness imply the following:
forallk € {0,1,...,[n/2]} and all x, y,x’, ¥’ € X with x # y and x’ # y’,

Ny,y = Ny, and (k, k) € ny y, (4.6)

where [n/2] is the greatest integer that is less than or equal to n/2. Call this
n-neutrality. This property and n-monotonicity together imply that for all k €
{0,1,...,[(n — 1)/2]} and all x,y,x’,y’ € X with x # y and x' # Y/,
(k 4+ 1,k) € ny,, = ny . Combining this with (4.6), we get: for all (ny,n2) € n*
and all x, y, x’, y’ € X withx # y and x’ # y/,

Ny,y = Ny y,andif ny > ny, then (ny,n2) € ny ). 4.7

Therefore we obtain:

Proposition 4.2.2. A social decision function satisfies monotonicity and anonymity
if and only if it is represented by a decisive index structure. Adding neutrality, we
characterize the subfamily of social decision functions represented by an n-neutral
decisive index structure. Moreover, these n-neutral index structures satisfy (4.7).

When preferences are linear (no indifference), Propositions 4.2.1 and 4.2.2 give
characterizations of what are known as “monotonic simple games.” Since we will
mostly focus on dichotomous domains where indifference is prevalent, decisive
structures are more relevant to our later discussion.

6 Existence of such R is the basic richness assumption for Dy x that we need in order to obtain
Proposition 4.2.1.
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4.2.1 Two Alternatives

The simplest example of dichotomous domains is of course when there are only
two alternatives, say a, b (that is, X = {a, b}). Then any social decision function
satisfies transitive social preferences trivially. There are numerous social decision
functions satisfying all other axioms in Arrow’s theorem. For example, the social
decision functions represented by a monotonic and non-dictatorial decisive structure
satisfy all of Arrow’s axioms. There are also numerous strategy-proof and non-
dictatorial collective choice functions. An important property for strategy-proofness
in this binary choice framework is monotonicity. Since there are only two alter-
natives, Sen’s minimal liberalism is hardly satisfied unless the set of admissible
preferences is extremely restricted.

Majority decision function stands out among other well-behaved social decision
functions, as shown by MaY (1952). The key axiom in his axiomatic characteriza-
tion of majority decision is positive response.

Now, to find out the implication of positive response, consider a function f rep-
resented by decisive structure 0. Let R, R’ be the two profiles in the premise of the
axiom of positive response. Assume x > r(g) y, thatis, (N ,(R), Ny x(R)) €
Ox,y. Positive response, then requires x > rg/) », which implies (N, «(R'),
Ny,y(R")) ¢ 0, x. Thus positive response implies the following extra condition
on decisive structures: for all x,y € X and all (L1, L), (L}, L) € 9* withx # y
and (L], Lz) 75 (L/ s L/z),

if (L1,L2) € 0x,y, L1 € L, and L), C L, then (L}, L)) ¢ 0y x. (4.8)

For decisive index structures, this condition can be written as: for all x,y € X and
all (nq,n2), (n,n,) € n* with x # y and (n1,n2) # (n'},nj),

if (n1,n2) € nyy, n1 <n', andn), < ny, then (ny,n}) ¢ ny . (4.9)

For a neutral social decision function represented by a decisive index structure n,
if there is (n1,n2) € n* such that ny < ny and (n1,n2) € ny ,, then by (4.9),
((M£22] + 1, [2£22]) ¢ n,y,, which contradicts to (4.7). Therefore, neutrality and
positive response together imply the following: for all x, ye X and all (n, np)en*,

if n; < ny, then (n1,nz) ¢ ny,y. (4.10)

Combining (4.7) and (4.10), we obtain:

Theorem 4.2.1 (MaY 1952). When there are two alternatives, a social decision
Sfunction on Uy, x satisfies anonymity, neutrality, and positive response if and only if
it is majority decision function.

An extended version of this result with more than two alternatives is provided in
Theorem 4.3.1. Asan and Sanver (2002) replaces positive response with the com-
bination of “path independence” and Pareto (if no voter prefers b to a and some
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voter prefers a to b, then a should be socially preferred to b). In the same frame-
work, Sanver (2009) imposes weak Pareto, anonymity, neutrality, and monotonic-
ity, together with some additional axioms, and characterizes variants of majority
decision function.

4.2.2 Two Fixed Indifference Classes

In this section, we assume that there are two types of alternatives and all alternatives
of a type are indifferent. This assumption is formulated by the following domain

property.

Definition 4.2.1. A domain D}zvf ¥ C Unx has the property of two-fixed-
indifference-class if alternatives are partitioned into two fixed classes and for all
R e DI )’(c and all i € N, the two classes constitute the two indifference sets of

R;. Let a,b € X be two representative alternatives and the two fixed classes are
denoted by X, and Xp.

On such a domain, majority decision function do satisfy transitivity (as is implied
by Theorem 4.2.2). Hence there does exist a social decision function satisfying
all of Arrow’s axioms. A characterization of a family of transitive social decision
functions is provided in the next proposition.

Let f: sz . — R be a social decision function satisfying monotonicity and
transitivity. Let 0 be a decisive structure representing f. Suppose that for some
x,y € X, and some R € D}zvf )’(C, X > f(r) Y. Then by monotonicity, the strict

social ranking holds at all other preference profiles, that is, for all R’ € Di,f v

X > ) . Thisis because Ny y(R) = Nx y(R') = N, x(R) = N, x(R') = 0.
Then the ranking between x and y can be decided by 0y, and 9, such that
(0,9) € ok, and (9,0) ¢ 0, . Similarly, if for some R € DNf;(c, X ~fR) Vs
then this social indifference holds at all other preference profiles and (9,0) € 0y,
and (@, @) € 9y x. Therefore, there is a fixed social preference relation over alterna-
tives in X, and over alternatives in X}, which holds at all R € Djzvf X - Since social
decision function f satisfies transitivity, we may order elements in the two sets X,

and Xp in the same order of their fixed social rankings; that is, elements of X, are

ay > ap > --- > ag and elements of X}, are by > b, > --- > b,. Strict ranking
among ai,...,dq or among by, ..., b, is excluded when we require the following
mild axiom:

Indifference Unanimity: For all R and all x,y € X, if foralli € N, x I; y, then
X ~fwRy V-

The next result characterizes a family of functions satisfying transitivity, mono-
tonicity, and indifference unanimity.

Proposition 4.2.3. Consider a domain with the property of two-fixed-indifference-
class. Denote two representative alternatives in the two fixed classes by a and b and
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the two fixed classes by X, and Xp. A social decision function satisfies transitivity,
monotonicity, and indifference unanimity if and only if it is represented by a decisive
structure = (Vx,y)x,yex such that forall x,x’ € Xq and all y, y’ € Xp,, (8,90) €
Ox,xr = 0y,yr andforall x € Xgandall y € Xp, 0x,y = 0gp and 0y x = 0p 4.

Proof. By indifference unanimity, for all R € Djzvf )l(c, alternatives in X, are all
socially indifferent and similarly for Xj. Define 0, as follows: for all (L, L;) €
0%, (L1, Ly) € 0y, if and only if for some R € DN,X , X > f@R) ¥ Nx,y(R) C
L1, and L, € Ny x(R). By indifference unanimity, for all x,x’ € X, and all
.Y € Xp., (8,0) € 0x v = 0y,7. Nowlet x € X, and y € Xp. Forall R €
DIZV{;(C, since x ~zrr) a and y ~y(g) b, then by transitivity, x > s(g) yit if
and only if a> ¢(gyb. This and the construction of ? imply 0,,, = 9. Similarly,
0y x = Opq. O

4.2.3 Two Indifference Classes

We now consider domains where individual preferences can have at most two
indifference classes.

Definition 4.2.2. A domain DJZV";( C Up,x has the property of two-indifference-
class if for all R € DJZV";( all triples x,y,z € X and all i € N, R; partitions
{x, y, z} into at most two indifference classes.

Clearly any domain with the property of two-fixed-indifference-class has this prop-
erty, but not vice versa. On such domains, majority decision function always
generates a transitive social preference relation.

Theorem 4.2.2 (Inada 1964). On any domain with the property of two-
indifference-class, majority decision function satisfies transitivity.

Proof. Let x,y,z € X be three distinct alternatives. If R € D%cx, then for all
i € N, R; is one of the following seven “dichotomous” preference orderings:
(1) xIjyLiz, () xIiyPiz, 3) xPiyliz, &) xizP;y, (5) yPixliz, (6) yIizP;x,
(7) zPixI;y. Let ny,...,n7 be the numbers of agents of each type. Note that
nx,y(R) = n3 +ng, ny x(R) = ns +ne, ny(R) =ny +ns, n;y(R) = ng +nzy,
nx(R) = ny + n3, and n,x = ng + ny. To show transitivity of social preference
relation, suppose x > 7. (r) ¥ and y > . (r) z. Then

n3 +n4 >ns+ngandny, +ns > ng +ny. 4.11)

Combining the two inequalities, we obtain n, +ns +ng4 +ns > ng +ns +ne +nz,
that is,
ny +n3 =>ne+ny. 4.12)

This implies nx . (R) > n.x(R). Therefore, x > £,,.,(r) 2 O
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In fact, majority decision is the only transitive social decision function satisfying
monotonicity, anonymity, and neutrality, except for degenerate indifference function
that is the constant social decision function taking the complete indifference as its
value (alternatives are all indifferent).

Theorem 4.2.3 (Ju 2009b). Consider a domain with the property of two-
indifference-class.” A social decision function satisfies monotonicity, anonymity,
neutrality and transitivity if and only if it is either majority decision function or
degenerate indifference function.

Proof. By Theorem 4.2.2, majority decision function is transitive. It also satisfies
the other axioms by Proposition 4.2.2. In order to prove the converse, let f be
a social decision function on Dﬁcx satisfying monotonicity, anonymity, neutrality
and transitivity. By Proposition 4.2.2, f" is represented by an n-neutral index struc-
ture n = (Ny,y)x,yex and the index structure satisfies (4.7). Let ng = ny,, for all
x,y € X with x # y. Throughout the proof, we follow the same classification
of dichotomous preferences over {x, y, z} as in the proof of Theorem 4.2.2. For all
k = 1,...,7, let ng the number of persons with the dichotomous preferences of
type k. Recall ny y(R) = n3 + n4, ny x(R) = ns + ne, ny,;(R) = ny + ns,
n.y(R) =na +n7,nx.(R) =nz + nz, and n . x(R) = ne + ny.

Step 1: If (p,q) € wogand p,q > 1, then (p — 1,g — 1) € ny.

Let (p,q) € ng be such that p,g > 1. Consider a profile R consisting of p — 1
agents of type 3, ¢ — 1 agents of type 6, 1 agent of type 4 and type 5, and n—(p +¢q)
agents of type 1 (thus there is no type 1 agentif p + ¢ = n). Thatis, at R, n; =
n—(p+gq),n,=0,n3=p—1,n4=1,ns =1,n6 =¢qg—1,and n; = 0.
Then ny,,(R) = p,nyx(R) = g, ny(R) = 1,n,y(R) = 1, nx.(R) = p— 1,
and n;x(R) = q — 1. Since (p,q) € no, x > sr) y. By (4.7), (1,1) € 1o and so
¥ = r(R) z- Then by transitivity, x > r(gr) z, which means (p —1,q — 1) € n,.

Step 2: max{q — p : (p,q) € ng} =norO.

Let (p*,q*) € ng be such that

q* —p* =max{g — p: (p.q) € no}. (4.13)

Suppose g* — p* # 0. Then applying Step 1 repeatedly p*-times, we show (0, ¢* —
p*) € ng. Then since ¢* — p* > 1, by n-monotonicity, (0, 1) € ny.

Suppose by contradiction ¢* — p* # n. Then evidently ¢* < n — 1. Thus there
is a profile R consisting of ¢* — p* agents of type 6, 1 agent of type 7, and the rest
of n — (¢* — p* + 1) agents of type 1 (note that ¢* — p* + 1 < ¢* 4+ 1 < n and
so the number of agents of type 1 is a non-negative integer and the total number of
agents is n). Then at R, ny = n — (¢* — p* + 1), ny = n3 = ng = ns = 0,
ne =q* — p*,andny = 1. Thus ny ,(R) = 0,n, x(R) = ¢* — p*,n, .(R) =0,

7 A stronger property, adding a domain richness to the property of two-indifference-class, is needed
to prove this result. See Ju (2009b) for details.
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ny,y(R) = 1,nx(R) =0,and n_x(R) = q¢*— p* + 1. Since (0,¢* — p*),(0,1) €
no, then x > r(g) y and y > r(g) z. By transitivity, x > r(g) z, which implies
(0,¢* — p* + 1) € ny, contradicting (4.13).
Step 3: f is either majority decision function or degenerate indifference function.
When ¢* — p* = 0, this and (4.7) imply that f is majority decision function.
When ¢g* — p* = n, (p*,q*) = (0,n). Thus by n-monotonicity, no = n*. Hence
forall R € D%}CX andall x,y € X, (nx,y(R),nyx(R)), (nyx(R),nx,y(R)) € ng;
so x ~ s(r) ¥. Therefore, f is degenerate indifference function. O

Remark 4.2.1. Maskin (1995) proved that on the domain of linear preference pro-
files with an odd number of voters, majority decision function is “most transitive”
among social decision functions satisfying monotonicity, anonymity, and neutral-
ity (in fact, he considers independence of irrelevant alternatives and weak Pareto
instead of monotonicity). A similar result without the odd-number-assumption is
obtained by Campbell and Kelly (2000). These results rely on some domain rich-
ness properties that our dichotomous domain does not have; e.g., Campbell and
Kelly’s characterization relies on the availability of single-peaked preferences in the
domain. In addition, dichotomous preferences do not have linearity assumed in the
above two papers. Moreover, our result is with transitivity on the “entire domain
under consideration” and for both odd or even numbers of voters.

Other social decision functions satisfying monotonicity, anonymity, and neutrality
violate transitivity. However, all these functions satisfy acyclicity.

Theorem 4.2.4 (Ju 2009b). On any domain with the property of two-indifference-
class, all social decision functions with monotonicity, anonymity, and neutrality
satisfy acyclicity.

Proof. Let f be a social decision function on Dﬁcx satisfying the three axioms. By
Proposition 4.2.2, f is represented by an n-neutral index structure n = (ny,,)x,yex
which satisfies (4.7). Forall x, y € X with x # y, letng = ny ).

Step 1:Forall x,y € X andall R € D%}CX if x > pry ¥, thenny , (R) > ny x(R).
This follows directly from (4.7).

Step 2: Forall x,y,z € X andall R € D?\}CX ifny y(R) > nyx(R)and ny (R) >
ngy(R), thenny ,(R) > n,x(R).

The proof of this step uses a similar argument as in the proof of Theorem 4.2.2.
Letny,y(R) > nyx(R) and ny ;(R) > n,,y(R). Then the two inequalities in (4.11)
hold with strict inequality and from them, (4.12) is obtained as a strict inequality,
which means nx ;(R) > n,x(R).

Step 3: If R € D%}CX and a sequence of finite alternatives, x1,...,xr € X are such
that x; > r(r) X2, X2 > f(R) X3.....XT—1 > f(R) XT, then x1 > r(g) xr; thus
XT > 7(R) X1 does not hold.

If x1 > r(r) x2 and x2 > p(ry X3, then by Step 1, 1y, x, (R) > nyx, x, (R) and
Nxy x5 (R) > Ny x, (R), which imply by Step 2, 1y, x;(R) > nx;,x, (R). Applying
this argument iteratively, we obtain, ny, x,(R) > nx, x, (R), which implies, by
@4.7), x1 = f(r) XT- O
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4.2.4 Two Fixed Classes Separated by Strict Preferences

Now we consider a domain where alternatives are separated into two fixed sub-
sets and any alternative in one is always preferred to any alternative in the other.
Formally:

Definition 4.2.3. A domain Di,f ;,s C Un,x has the property of two-fixed-class-
separation if for all distinct triples x, y,z € X, there is a nonempty proper subset
A C {x,y,z} such that for all R € Di,f ;S and all i € N, either [foralla € A and
allb € {x,y,z}\A, aP;b]or [foralla € Aand all b € {x, y, z}\A4, bP;all

Theorem 4.2.5 (Inada 1964). On any domain with the property of two-fixed-class-
separation, if the number of agents is odd, majority decision function satisfies
transitivity.

Proof. Let x,y,z € X be three distinct alternatives. Without loss of generality,
assume that the two fixed classes are A = {x} and B = {y,z}. Let R € DIZV{?.
To prove transitivity, we need to consider the following six cases: (1) x >z, .(r)
yandy =5, % 2) X =g, zand 2 =5,,@R) ¥, B) Y =R 2 and
2Z fuu®) X D2 = pyry yand y =g, Ry X, (5) Y = fy0,(R) X and X = g (R)
2, (6) 2> 5,,(R) X and x >z, (r) ¥. Arguments for (1) and (2) are similar and also
the arguments for (3) and (4) and for (5) and (6) are similar. Thus we only consider
(1), (3), and (5) below.

Note that by the property of two-fixed-class-separation, Ny, (R) = N (R) and
Ny x(R) = N_x(R). Thus by independence of irrelevant alternatives and neutrality
of fuas,

X Zfun(R) Y = X Z fi,(R) Z- (4.14)

Case I: x > 7, ,(r) y and y = 5,.,(R) 2.

By (4.14), x > #,..,(r) y implies x > £, (R) 2.
Case2: y >z, (r) zand 2 = 1, (R) X.

By (4.14), z > #,,.,(r) X implies y > 7. (r) X.
Case3:y > f,,R) X and X > 7. (R) 2.

By (4.14), y > f,,r) X implies z >y, (r) X. Hence z ~,,,(r) x, which
implies . x(R) = nx ;(R). By the property of two-fixed-class-separation, n; x (R)+
nx(R) = n. Therefore n is an even number, contradicting the initial assumption.
Therefore, Case 3 does not occur on the domain. O

With a stronger condition on the domain, we can show that except for degen-
erate indifference function, majority decision function is the only transitive social
decision function satisfying the three standard axioms.

8 Sakai and Shimoji (2006) study “dichotomous domains” that are close to domains with two-fixed-
class-separation. Assuming that the domain of individual preferences can be either dichotomous or
universal, they find some domain conditions for the existence of Arrovian social welfare function.
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Theorem 4.2.6 (Ju 2009b). Consider a domain with the property of two-fixed-
class-separation.’ Assume that all preferences in this domain are linear and that
there is an odd number of agents. Then a social decision function satisfies mono-
tonicity, anonymity, neutrality, and transitivity if and only if it is either majority
decision function or degenerate indifference function.

Proof. Let f be a social decision function on Dy, x satisfying the four axioms.
By Proposition 4.2.2, f is represented by a decisive structure n = (ny,))x,yex
satisfying (4.7). Letng = ny ) forall distinct x, y € X. By (4.7) and the assumption
that all preference orderings on domain Dy, x are linear, in order to show that f is
majority decision function, we only have to show that for all (n1,n2) € n* with
ny + np = n,if ny < ny, then (n1,n3) ¢ ng. Suppose that f is not majority
function and so for some (n1,nz) € n*, ny +n, = n,n; < np, and (n1,n,) € ng.
Let x, y,z € X be three distinct alternatives. Without loss of generality, assume that
the two fixed classes are A = {x} and B = {y,z}. Let R € Dy x be such that
nx,y(R) = ny, ny x(R) = ny, and for all i € N, yP;z. Then by the property of
two-fixed-class-separation, nx .(R) = ny and n,x(R) = ny. Since (n1,n2) € no,
Y > s X and z > g(g) Xx. By (4.7), the reverse relations also hold and therefore
Y ~f@® X and z ~ gy x. Finally by transitivity, y ~ r(g) z. Since every agent
prefers y to z at R by construction, this implies that (0, n) € ng, which means that
f is degenerate indifference function. O

When there are even number of agents, the result does not hold, as shown by
the following example due to Inada (1964). There are four agents with xP; yP;z and
four agents with yI;zP; x. Then majority decision gives x ~ £, (R) V> ¥ > fyus(R) Z»
and x ~ . (R) 2 violating transitivity. However, note that this social preference
relation is quasi-transitive. In fact, for quasi-transitivity, we do not need the odd
number assumption. Moreover, any social decision function satisfying monotonicity
and neutrality is quasi-transitive.

Theorem 4.2.7 (Ju 2009b). On any domain with the property of two-fixed-class-
separation, all social decision functions with monotonicity and neutrality satisfy
quasi-transitivity.

Proof. The proof is similar to the proof of the above theorem with the replacement
of weak majority preference relation with the strict one. Note that the arguments
used for Cases 1-2 in the above proof do not depend on the fact that the social
decision function is majority decision function. The same arguments go through for
any social decision function as long as it is represented by a decisive structure and
is neutral. Case 3 will not occur now because y > r(g) X implies z > r(g) X, which
contradicts x > r(g) z. O

Note that monotonicity in Theorem 4.2.7 can be weakened to independence of
irrelevant alternatives.

9 A stronger property, adding a domain richness to two-fixed-class-separation, is needed to prove
this result. See Ju (2009b) for details.
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4.3 Axiomatic Foundations for Majority Decision
and Approval Voting

Throughout this section, assume that the set of alternatives X is fixed. Assume fur-
ther that as in Sect.4.2.3, preferences can have at most two indifference classes.
These preferences are called dichotomous preferences. Each dichotomous prefer-
ence is characterized by the set of best, or preferred alternatives. Thus we use
By € P(X) to denote the dichotomous preference of which the set of preferred
alternatives is B and use ® = P (X) to denote the set of dichotomous preferences.
In what follows, we fix the feasibility set to be equal to X and focus on character-
istics of collective choice rules on the set of admissible preference profiles. Thus
given a domain of dichotomous preferences D C ©, a collective choice rule in this
section is a non-empty valued correspondence ¢: |Jyen PV — P(X). Similarly
a collective choice quasi-rule is a correspondence ¢: |Jyen DN — P(X) that
may take the empty set as its value.

Rule ¢ () is anonymous if the identities of persons are inessential, that is, for
all NN’ € N with |[N| = |N’| and all one-to-one functions A: N — N’,
c¢((Bi)ien) = c((Ba@))ien)- A profile of dichotomous preferences may be reduced
to a function 7: D — {0, 1,2,...} mapping each dichotomous preference in the
domain to the number of agents who have this preference. Let I1(D) be the set of
all such functions. With a slight abuse, we refer to elements in I1(D) preference
profiles. We often denote an anonymous rule (or quasi-rule) c: I1(D) — P(X) as
a function on T1(D) instead of its original domain |y ¢, PV .

A voting system is a pair of a set of valid ballots 8 € P(X) and a non-empty
valued correspondence ¢: | Jyen BN — P(X) on the set of all possible ballot
profiles. We call ¢(-) a ballot aggregator. Voting system (28, ¢) is anonymous if
for all NN’ € N with |[N| = |N’| and all one-to-one functions A: N — N’,
¢((Bi)ien) = ¢((Bar))ien). For an anonymous voting system, the identities of
voters are inessential. Reducing this information, a ballot response profile w : B —
{0, 1,2, ...} maps each valid ballot into the number of voters casting this ballot. Let
I1(*B) be the set of all ballot response profiles. For an anonymous voting system
(B, ¢), for all pairs N, N' € N, if (B;);en and (B]);en’ generate the same ballot
response profile, then ¢ ((B;)ien) = ¢ ((B])ien’). Therefore we may define a ballot
aggregator ¢ as a function ¢ on the set of ballot response profiles I1(28). Conversely,
any such function ¢ : T1(B) — P (X) defines an anonymous ballot aggregator. We
call ¢: TI(B) — P(X) a voting rule. When voters have dichotomous preferences
and reveal their true preferences using ballot response profiles in I1($8), a voting
system (8, ) gives the collective choice rule identical to the voting rule ¢.

Throughout Sects. 4.3 and 4.4, we assume that ballot space B satisfies the basic
richness, consisting of the following two properties: for all distinct pairs x,y € X
and all permutations A: X — X,

There is By € B such that x € By and y ¢ By. (4.15)

Forall By € B, A(Bo) € B. (4.16)
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Given a profile & € TI(D), forall x € X, letn(x,n) = ZBOGD:xEBO 7w (Bo) be
the number of votes x wins at 7. Majority rule on D, cyay: T1(D) — P(X), maps
each profile 7 € TI(D) into cyay(wr) = {x € X :forally € X,n(x,7) > n(y,n)}.
In the case of voting systems, majority rule is denoted by ¢4y or pp4;. Note that
for dichotomous preferences, there always exists a Condorcet winner since major-
ity decision function is transitive (Theorem 4.2.2). Thus the Condorcet rule C W(-)
mapping each preference profile into the set of Condorcet winners is well-defined,
and it coincides with majority rule. In general, any transitive social decision func-
tion f: DN — R on the restricted domain of dichotomous preferences D C P(X)
generates a collective choice rule as in (4.1). Since we fix the set of alternatives
X in our definition of collective choice rules, not all social decision functions can
be generated by collective choice rules. A collective choice rule can be consid-
ered as generating a social decision function of which the social preferences are
dichotomous.

In the following two subsections, we overview some important axiomatic char-
acterizations for majority rule and approval voting. A more focused overview of
the literature considering the ballot space B = P (X) and approval voting is pro-
vided in Xu (2010) in this volume. Most of the characterizations we overview are
accompanied by some conditions on ballot space B that are sufficient for the char-
acterization. Thus, we will clarify to what ballot spaces (or voting procedures) each
characterization of majority rule applies, which was not all clear in the literature.
We will find that some of the results apply to a very wide variety of ballot spaces
(voting procedures) and others apply only to the ballot space for approval voting.

Throughout this section, our discussion is focused on voting systems. However,
most results on voting systems also apply to collective choice rules after the straight-
forward extension of axioms and conditions we state for voting systems. When there
is no need of distinguishing ballot space 28 and the same domain of dichotomous
preferences, we use B to denote both the ballot space and the preference domain.

4.3.1 Characterizations of Majority Voting Systems

4.3.1.1 Basic Axioms in the Fixed Population Model

In this section, we define basic axioms for voting systems in a fixed population
framework. Let N = {1,2,...,n} be the set of voters.

The first axiom says that alternatives should be treated equally. In other words,
changing their labels should not make any essential change in the voting outcome.

Neutrality: For all B € B% and all permutations A: X — X, A(¢(B)) =
$(A(B)).
The next axiom introduced by Baigent and Xu (1991) has the flavor of anonymity.

It embodies the condition that each vote for an alternative by a voter has the same
weight independently of what other alternatives are in his ballot.
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Independence of Vote Exchange: For all B € BY andalli,j € N,if x € B;\B f;
and y € B;\B;, then letting B = [B;\{x}] U {y} and B} = [B;\{y}] U {x},"
¢ (B, B}, B_ii.j) = ¢(B)."

When only singleton ballots are available, this axiom coincides with anonymity.
The next axiom pertains to even more drastic vote reallocations than vote exchange.

Independence of Vote Reallocation: For all B, B’ € BN if for all x € X,
n(x, B) = n(x, B’), then ¢(B) = ¢ (B’).

Clearly, independence of vote reallocation implies independence of vote
exchange.

The next axiom says that when two alternatives win the same number of votes,
they should be treated equally.

Equal Treatment of Equal Votes: For all B € 8" and all x, y € X, if n(x, B) =
n(y, B), then x € ¢(B) if and only if y € ¢(B)."?

This axiom is an implication of neutrality and independence of vote exchange as
shown by the next lemma. Baigent and Xu (1991) obtain this implication in a richer
setting with choice aggregation procedures.

Lemma 4.3.1. Neutrality and independence of vote exchange together imply equal
treatment of equal votes.

Proof Let B € BY and x,y € X be such that n(x, B) = n(y,B). Since
n(x, B) = n(y, B), then N(x, B)\N(y, B) and N(y, B)\N(x, B) have the same
cardinality. Thus it is possible to exchange one x-vote and one y-vote between
agents in the former set and agents in the latter set one by one. Let B’ € B be
the profile obtained after these vote exchanges. Applying the reverse iterative vote
exchanges at B’, we return to B.

It is clear that B’ can also be obtained after the transposition of x and y at B,
that is, letting 7: X — X be such that 7(x) = y, 1(y) = x, and 7(z) = z for all
z€ X\{x,y}, wehave B' = tB = (1(B;))ien. Clearly, tB’ = B.

By neutrality, x € ¢(B) ifand onlyif t(x) = y € ¢(tB) = ¢ (B’). By indepen-
dence of vote exchange, y € ¢(B’) if and only if y € ¢(B). Therefore, x € ¢(B)
if and only if y € ¢(B). O

Baigent and Xu (1991) reformulate May’s (1952) positive response for social
decision function in the current framework as follows.
Positive Response to Vote Addition: For all B € 8" andalli € N, if x ¢ B; and
B! = B; U {x} € B, then x € ¢(B) implies ¢(B/, B_;) = {x}.

Note that this axiom has bite when the ballot space ‘B is closed under the addition
of an alternative (vote) to any ballot. For example, if B = {{x} : x € X}, any ballot

10 The two ballots B/, Bj’. are admissible in B because of assumption (4.16).
1 Xu (2010) in this volume and Baigent and Xu (1991) call this axiom “independence of symmetric
substitution.”

12 The same axiom is called as “equal treatment” in Xu (2010) in this volume.
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aggregator satisfies this axiom trivially. The next axiom is an alternative formulation
that has a wider applicability.

Positive Response* to Vote Addition: For all B € BN alli € N,and all x, y € X,
if x ¢ Bi, x € Bl € B,and B; N {y} = B/ N {y}, then x € ¢(B) implies
¢(B;, B-i) N {x,y} = {x}.

The next axiom says that any additional vote for another alternative does not do
any good for alternative x.

Negative Response to Competing Vote Addition: For all B € B, alli € N, and
allx,y € X,if y ¢ B; and B; U {y} € B, then [x ¢ ¢(B) or y € ¢(B)] implies
x ¢ ¢(B;i Uiy}, B_;) (ie., x € ¢(B; U{y}, B_;) implies x € ¢(B) and y ¢
$(B)).

Equivalently, for all B € 8", alli € N, and all x,y € X,if y € B; and
Bi\{y} € B, then x ¢ ¢(B;\{y}, B-i) ory € ¢(Bi\{y}. B—;) implies x ¢ ¢(B)
(i.e., x € ¢(B) implies x € ¢(B;\{y}, B—i) and y ¢ ¢(B;\{y}, B—;)). Like posi-
tive response, this axiom has bite when the ballot space is closed under the addition
of an alternative. Here is an alternative formulation with wider applicability.

Negative Response* to Competing Vote Addition: For all B € BV alli € N,
all Bj € B,andallx,y € X,if y ¢ B;, y € B/, and B; N {x} = B/ N {x}, then
[x € ¢(B)ory € ¢(B)] implies x ¢ ¢(B], B_;) (equivalently, x € ¢ (B}, B—;)
implies x € ¢(B) and y ¢ ¢(B)).

4.3.1.2 Characterization Results: Voting Systems

We first show that May’s Theorem (Theorem 4.2.1) for the binary choice framework
can be extended in the current framework in a fairly straightforward manner. This
result is based on Propositions 4.2.1 and 4.2.2. Since there can be more than two
alternatives, we need independence of irrelevant alternatives in addition to May’s
three axioms.

Theorem 4.3.1. A social decision function on B satisfies independence of irrel-
evant alternatives, anonymity, neutrality, and positive response if and only if it
is majority decision function on BN. Moreover, majority decision function on
BN satisfies transitivity and generates majority voting system (B, ¢pay) as its
choice rule.

Proof. By Theorem 4.2.2, majority decision function satisfies transitivity on
dichotomous domain ®8 as well as the other three axioms. To prove the converse, let
f be a social decision function on B satisfying the four stated axioms. Indepen-
dence of irrelevant alternatives and positive response together imply monotonicity.
Due to the richness of ballot space B stated in (4.15) and (4.16), Proposition 4.2.2
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holds, and f can be represented by a decisive structure. By anonymity, neutrality,
and Proposition 4.2.2, f can be represented by a decisive index structure satisfy-
ing (4.7). Following the same argument as is given before Theorem 4.2.1, we show
(4.10). |

As a corollary, we obtain:

Corollary 4.3.1. A voting system (28, ¢) is generated by a social decision function
on BN satisfying independence of irrelevant alternatives, anonymity, neutrality, and
positive response if and only if it is a majority voting system, that is, ¢ = ¢pay. Thus
when B = P (X)), it is approval voting system.

In the framework of collective aggregation procedures, Baigent and Xu (1991)
obtain a similar axiomatic characterization of approval voting imposing positive
response to vote addition. In the current framework, their result can be stated as
follows:

Theorem 4.3.2 (Baigent and Xu 1991). Assume that ballot space B is closed
under the addition of a single vote, that is, for all By € B and all x € X,
Bo U {x} € B.'3 Then the following are equivalent:

(1) Voting system (B, ¢) satisfies neutrality, independence of vote exchange, and
positive response to vote addition.'*
(ii) Voting system (B, @) satisfies equal treatment of equal votes and positive
response to vote addition.
(iii) Voting system (B, ¢) is a majority voting system, ¢ = pyay-

Proof. Lemma 4.3.1 shows that (i) implies (ii). It is easy to show (iii) implies (i).
We only prove (ii) implies (iii) below. Let 28 be the ballot space with the stated
property.

Let ¢ be the ballot aggregator in part (ii). Let B € B . We need to show that
x € ¢(B) if and only if for all y € X, n(x, B) > n(y, B). By equal treatment of
equal votes, we only have to show the “only if ” part. Suppose to the contrary that
x € ¢(B) and forsome y € X,n(y, B) > n(x, B). Then N(y, B)\N(x, B)#@ and
there are at least [n(y, B)—n(x, B)] agents in this set. Change ballots of these agents
from B; to B/ = B; U {x}. For all other i’s, let B/ = B;. Thus by construction,
n(x, B") = n(y, B’). By positive response to vote addition, ¢(B’) = {x}. On the
other hand, since n(x, B’) = n(y, B’), then by equal treatment of equal votes,
y € ¢(B’) = {x}, which is a contradiction. |

Unlike Theorem 4.3.1, this result uses the assumption that the ballot space is
closed under vote addition.

13 Thus we need to allow X € 9. The assumption is needed to prove that (ii) implies (iii). It is not
needed for other implications.

14 Universal domain axiom is added in Baigent and Xu (1991).
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Remark 4.3.1. Instead of the assumption on ‘B in the above theorem, require that
for all distinct pairs x,y € X, there is By € B such that x,y € By. Then the
same result holds if positive response in parts (i) and (ii) is replaced with positive
response*. To prove this, we only replace B; in the proof with B/ € B such that
X,y € B/ and replace ¢ (B’) in the proof with ¢(B’) N {x, y}. The rest of the proof
is the same.

The equivalence between (i) and (iii) is also stated in Theorem 5 of Xu (2010) in
this volume, focusing on B = P(X)\{@}. In fact, as stated in Theorem 4.3.2, the
equivalence holds for a broader set of ballot spaces. The equivalence between (ii)
and (iii) is somewhat close to Theorem 4 of Xu (2010) in this volume, focusing on

B = P(X)\{9}.

An alternative characterization with negative response to competing vote addition is
obtained with a different assumption on 8.

Theorem 4.3.3. Assume that ballot space *B is closed under the deletion of a single
vote, that is, for all By € B and all x € By, Bo\{x} € B."> Then the following are
equivalent:

(1) Voting system (B, ¢) satisfies neutrality, independence of vote exchange, and
negative response to competing vote addition.
(ii) Voting system (B, ¢) satisfies equal treatment of equal votes and negative
response to competing vote addition.
(iii) Voting system (B, ¢) is a majority voting system, ¢ = ¢uay.

Proof. By Lemma 4.3.1, (i) implies (ii). We only prove that (ii) implies (iii). Let B
be given as stated above.

Let ¢ be the ballot aggregator in part (ii). Let B € B~ . We need to show that
x € ¢(B) if and only if for all y € X, n(x, B) > n(y, B). By equal treatment of
equal votes, we only have to show the “only if part.” Suppose to the contrary that
x € ¢(B) and for some y € X, n(y, B) > n(x, B). Then N(y, B)\N(x,B) # 0
and there are at least [n(y, B) — n(x, B)] agents in this set. Change ballots of these
agents from B; to B/ = B;\{y} (this is possible by the assumption on B). For
all other i’s, let B] = B;. Thus by construction, n(x, B’) = n(y, B"). Applying
negative response to competing vote addition repeatedly, we show x € ¢(B’) and
vy ¢ ¢(B’), contradicting equal treatment of equal votes for n(x, B’) = n(y, B). 0

Remark 4.3.2. Assume instead that for all distinct pairs x, y € X, there is By € ‘B
such that Byo N {x, y} = @. Then the same result holds if negative response in parts
(i) and (ii) is replaced with negative response*. To prove this, we only replace B; in
the proof with B/ € 98 such that B/ N {x, y} = @. The rest of the proof is the same.

4.3.1.3 Extension in the Variable Population Framework

We now consider voting systems on a variable population domain. All the axioms
defined in the fixed population framework can be extended to that framework by

15 Thus we need to allow @ € B.
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simply adding the quantifier “for all N € N.” All results in the previous section
can be extended in the variable population framework. In particular, Theorem 4.3.2
can be so extended. Moreover, the result applies to more variety of ballot spaces by
adding the extra, but mild condition that the empty ballot is allowed (4 € B), and
the following natural axiom pertaining to the effect of the empty ballot. It says that
adding an empty (abstention) vote does not affect the voting outcome.

Null Consistency: For all N € N and all B € BN if i ¢ N and B; = @, then
¢(B) = ¢(B, B;).

The next two results extend Theorem 4.3.2 in the variable population framework.

Theorem 4.3.4. Assume that @ € B and for all x € X, {x} € B. Then on the
domain |y ¢ BN | the following are equivalent:

(1) Voting system (B, ¢) satisfies null consistency, neutrality, independence of vote
exchange, and positive response to vote addition.
(ii) Voting system (B, ¢) satisfies null consistency, equal treatment of equal votes,
and positive response to vote addition.
(iii) Voting system (B, ¢) is a majority voting system, ¢ = Ppya;.

Proof. The proof is similar to the proof of Theorem 4.3.2. To prove that (ii) implies
(iii), suppose to the contrary that x € ¢(B) and for some y € X, n(y,B) >
n(x, B). Let N’ be a set of [n(y, B) — n(x, B)] agents such that N' N N = @. Let
B® = (0,...,0) € BV and B’ € BV’ be such that foreachi € N’, B/ = {x}. By
construction, n(x, (B, B’)) = n(y, (B, B)) and by null consistency, ¢ (B, B®) =
¢(B) and so x € ¢(B, B®). Applying positive response to vote addition repeatedly
at (B, B%), we get ¢(B, B') = {x}. On the other hand, by equal treatment of equal
votes, y € ¢(B, B’) = {x}, which is a contradiction. O

Replacing positive response with positive response* to vote addition, we obtain
a similar result. Unlike in Theorem 4.3.4, we do not need any assumption on the
ballot space except for the availability of the empty ballot.

Theorem 4.3.5. Assume that @ € B. On the domain |y ¢ \r BN | the following are
equivalent:

(1) Voting system (B, ¢) satisfies null consistency, neutrality, independence of vote
exchange, and positive response* to vote addition.
(ii) Voting system (B, ¢) satisfies null consistency, equal treatment of equal votes,
and positive response™ to vote addition.
(iii) Voting system (B, ¢) is a majority voting system, ¢ = ¢uay.

Proof. To prove this, we only have to replace B/ = {x} in the proof of Theo-
rem 4.3.4 with B/ € B such that x € B/ and y ¢ B (such B; exists by (4.15)) and
replace ¢ (B, B') with ¢ (B, B’) N {x, y}. The rest of the proof is the same. O
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4.3.2 Characterizations of Majority Voting in the Variable
Population Framework

In this section, we consider anonymous voting systems in the variable population
framework. Recall that such a voting system can be described by a pair of a ballot
space 9B and a voting rule (an anonymous ballot aggregator) ¢: T1(B) — P (X).
We will use the following concept and notation.

A null response profile is a profile = where no alternative is supported by anyone,
that is, for all A € P(X), 7 (A) = 0. The empty response profile 7% is the null
response profile with no vote, that is, for all A € P(X), n?(4) = 0. Forall 4 €
P(X), let w4 be such that 74(A) = 1 and for all other ballots B € P(X)\{A4},
74(B) = 0.Forallw € TI(B) andall x € X, letn(x,7) = ) 4.,.cq 7(A) and
n(m) =) exnx,m).

4.3.2.1 Basic Axioms of Voting Rules

Let m = |X| be the number of alternatives. The following axioms have been
considered by numerous authors in the literature on approval voting.

First, if there is only one voter, that voter’s ballot should be fully respected.
Faithfulness: For all A € B\{0}, p(4) = A.

Neutrality can be defined in the same way in the current framework as in earlier
sections. A much weaker axiom requires that decisions at a null response profile
should be neutral.

Null-Neutrality: For all null response profiles 7 € T1($8), ¢ (7) = X.

The next axiom plays a key role in some characterizations of approval voting to
be presented later. It pertains to a merger of two groups of voters. If a rule has
a common recommendation for the two groups before the merger, the common
recommendation should be the recommendation after the merger.

Consistency: For all 7,7’ € TI(B), if () N o(x’) # @, then p(x + ') =
o(7) Ng(r').1°

The next one is a weaker version of consistency considered by Sertel (1988).
Weak Consistency: For all 7 € T1(8) and all A € B, if ¢ (r) N ¢ (w4) # O, then
¢ (m+ma) =9 @@ Ne(a).

The next axiom says that when there are two voters casting disjoint ballots, a
voting rule should recommend the union of the two ballots.

Disjoint Equality: Forall A, B € B\{@},if ANB = @, then (w4 +7p) = AUB.

The next axiom proposed by Sertel (1988) captures a similar idea but in a much
stronger form.

16 This axiom and other axioms of consistency were studied also by Ching (1996) and Yeh (2006)
for characterizations of plurality voting rule on the standard domain of preferences.
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Sertel Disjoint Equality: For all 7 € T1(28) andall A € B if o () Ny (w4) = 0,
then x € ¢ (7 + my) if and only if x € ¢ () or [x € ¢ (74) and Maxyeqp(r)
n(y,m) =0]or[x € ¢ (mq)and n (x, 7) = MaxXyeux) n (¥, m) — 1 > 0].

The next axiom pertains to a special case of ballot responses where all alterna-
tives receive the same number of votes. It requires in this case that a voting rule
should treat all alternatives equally by recommending all of them.

Cancellation: For all & € TI(®B), if all alternatives receive the same number of
votes at 7, that is, for all x, y € X, n(x,w) = n(y, ), then () = X.
Cancellation implies that the choice at any null response profile should be X as
in approval voting.
The next axiom requires that a voting rule should make the same decision when
two voters merge their ballots and cast the merged ballot as a single voter.

Independence of Pairwise Vote Merge: For all 7 € I1(*8) and all A, B € B, if
ANB=0and AU B € B, then ¢(r + w4 + wp) = ¢(w + m4UB).

Vote merge is a type of vote reallocation. The next independence axiom pertains
to more drastic vote reallocations.

Independence of Vote Reallocation: For all 7,7’ € TI(B), if for all x € X,
n(x,m) = n(x,x’), then ¢(7) = p(x’).

Note that independence of pairwise vote merge together with faithfulness and
consistency imply cancellation.!”

4.3.2.2 Scoring Rules

Majority rule is an example in the large family of voting rules based on scoring
methods. Characterization of this family is quite useful for our later discussion of
majority or approval voting.

A score function s: {1,...,m} — R maps each natural number of a ballot size
into a real number (the score of the ballot). For all 7 € T1(*8) and all x € X, let

plx.misy= Y s(BPpr(B)=>_ > s(k)m(B)
BeB:xeB k=1 Belgl:iZB,

be the total points x wins at 7 under score function s. A voting rule ¢ is a scoring
rule if there is a score function s: {1,...,m} — R such that for all = € T1(8),

17 To show this let = € T1(2B) be such that for all x, y € X, n(x, w) = n(y, 7). Note that by inde-
pendence of pairwise vote merge (when B = (), we may assume that 7 (@) = 0. Letn = n(x, )
for all x € X. Applying this axiom again repeatedly, we obtain ¢(7) = ¢(X ey n7gy) =
0(nY . ex Txy) = @(nmy). By faithfulness and consistency, p(nry) = X.
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p(r)={xe X :plx,m;s)> p(y,m;s) forall y € X}.

Note that when ¢ is represented by score function s, ¢ is also represented by a X s
for all @ > 0. Majority rule is the scoring rule represented by a positive and constant
score function s such as s(k) = 1 forallk = 1,...,m. When 8 = P(X) or
P(X)\{0} or P(X)\{0, X}, majority rule on TT(28) is called as approval voting
rule.'®

Given a finite sequence of score functions st sT, forall x, y € X and all
n € II, (p(y,JT;s’))tT:1 lexicographically dominates (p(x,ﬂ;s’))tT:1 if there is
fo € {1,...,T} such that p(y,m;5") > p(x,m;s")andforallt = 1,...,70 — 1,
p(y,m;s") > p(x,m;s’). A voting rule ¢ is a lexicographic scoring rule if there
are T > 1 score functions s', ..., s7 such that for all w € TI(B), x € ¢(x) if and
only if there is no y € X such that (p(y, r; s’))tT=l lexicographically dominates
(p(x. 75N,

Young (1975) characterizes (lexicographic) scoring rules in the framework of
ranked voting procedures, where voters can express their preferences in their bal-
lots. The key axioms in his result are neutrality and consistency. In the current
“non-ranked” voting procedures, the next two results are counterparts of Young’s
characterization.

Theorem 4.3.6 (Fishburn 1979). Given a ballot space %6 C P(X)\{0, X}, a vot-
ing rule satisfies neutrality and consistency if and only if it is a lexicographic scoring
rule. Moreover, the number of score functions representing the rule is at most the
number of possible sizes of ballots, namely, |{|B| : B € B}|.

Due to the nature of lexicographic comparison, “overwhelming majority” may not
be enough to influence the voting outcome under lexicographic scoring rules. In
order to avoid this unnatural feature, we impose the next axiom.'

Continuity: For all 7,7’ € TI(%8) and all x € X, if x ¢ ¢(7), then there is an
integer K > 0 such that forall k > K, x ¢ ¢(knx + n’).

It is clear that scoring rules satisfy continuity since increasing k, the difference
between the score of x and the score of another winning alternative at 7 gets arbi-
trarily larger. No other lexicographic scoring rules can satisfy continuity and we
obtain:

Theorem 4.3.7 (Fishburn 1979). Given a ballot space 6 < P(X)\{0, X}, a
voting rule satisfies neutrality, consistency, and continuity if and only if it is a
scoring rule.

Suppose that a lexicographic scoring rule is represented by score functions s', ...,

sT andforsomek € {|B|: B € Blandt € {1,..., T}, s'(k)=--- =s""1(k)=0

18 Admissibility of @ or X in the ballot space does not make any essential difference in the choices
made by majority rule.
19 Myerson (1995) calls it “overwhelming majority.”
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and s”(k) < 0. Then for any B € B with |B| = k and any b € B, p(b,7p;

s = - = p(b,mp;s"™") = 0 and p(b, wp;s") = s'(k) < 0. Then b is not
chosen by this lexicographic scoring rule, violating faithfulness. Thus faithfulness
implies that the first non-zero component in (s'(k),...,sT (k)) is positive. Con-

sequently, a scoring rule satisfies faithfulness if and only if it is represented by a
positive score function.

Corollary 4.3.2. Assume thatB € P(X)\{0, X}. Then:

(i) A voting rule satisfies neutrality, consistency, and faithfulness if and only if it is
a lexicographic scoring rule represented by a finite sequence of score functions
st sTsuch that for all k € {1,...,m}, thereist € {1,...,T} such that
slk)y =---=5"1k) =0 < s (k).

(ii) A voting rule satisfies neutrality, consistency, continuity, and faithfulness if and
only if it is a scoring rule represented by a positive score function.

4.3.2.3 Characterizations of Majority Voting

If a positive score function s gives different score points for different ballot sizes,
then there is w € II such that all alternatives win the same number of votes but
the alternatives winning a ballot with a higher score point have the greatest total
score point. These alternatives are chosen and other alternatives are not chosen. For
example, when s(1) > s(2), let & be such that 7 ({a, b}) = 1, for all x € X\{a, b},
w({x}) = 1, and for all other ballots ¥, 7 (Y) = 0. Then the scoring rule will choose
X\{a, b}, which is a violation of cancellation. Thus, in order to satisfy cancellation,
score function s must be constant. Therefore, the scoring rule represented by s is
majority rule. The next result is similar to Young’s characterization of the Borda
rule for linear preferences.

Theorem 4.3.8 (Fishburn 1979). Given a ballot space B C P(X)\{¥, X}, a vot-
ing rule satisfies neutrality, consistency, faithfulness, and cancellation if and only if
it is majority rule.

Note that this result holds for any arbitrary ballot space satisfying the richness con-
ditions (4.15) and (4.16). For example, the ballot space consisting of only singleton
ballots is rich. When the ballot space has no restriction on ballot sizes, the theorem
yields a characterization of approval voting. The proof of Theorem 4.3.8 is relatively
long. A much simpler proof is provided by Alos-Ferrer (2006) for unrestricted bal-
lot space B = P(X). Moreover, he shows that neutrality in Fishburn’s result can
be dropped. The next theorem is based on the main results in Alos-Ferrer (2006).

Theorem 4.3.9. Assume B = P(X). Consider a voting rule ¢ on T1(B)\{n?}.
The following are equivalent:

(1) Voting rule ¢ satisfies faithfulness, consistency, and cancellation.
(ii) Voting rule ¢ satisfies faithfulness, consistency, and independence of pairwise
vote merge.
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(iii) Voting rule ¢ satisfies faithfulness, consistency, and independence of vote
reallocation.
(iv) Voting rule ¢ is a majority rule, ¢ = @Quay.
Proof. Itis easy to show (iv) = (i). In what follows, show (i) = (ii) = (iii) = (iv).
Step 1: (1) = (ii)
We only have to show that the three axioms in (i) imply independence of pairwise
vote merge. Let A, B € P(X) be such that A N B = @. By cancellation,

@(rauB + mx\(auB)) = X = @(7w4 + 7B + Tx\(4UB))- 4.17)

Hence,

o +mg+mp) =@ +7ma+ 7B) N@(TauB + Tx\(4auB)); (4.18)
@o( + mwauB) = (T + m4uB) N @(T4 + 7B + Tx\(4UB))-

Then by consistency,

@(r + 74+ 7B) N @(TauB + Tx\(4UB))

=@ + 74 + 7B + TAUB + TX\(AUB)): (4.19)
@(r + mauB) N@(wa + B + Tx\(4UB))

= @( + mauB + T4 + B + Tx\(4UB))-

Finally, since 7 +74+7p +TauB+7Tx\(4UB) = T+TAUB+TA+TB+TX\(4UB)>
then (4.18) and (4.19) give ¢(w + w4 + wB) = @(w + w4UB).
Step 2: (i) = (iii)

We only have to show that the three axioms in (ii) imply independence of

vote reallocation. Let &= € II. By independence of pairwise vote merge, we may
assume that w(@) = 0. Iterative application of independence of pairwise vote

merge gives 9() = 9(3_ 4ep(x) T(A) Dyea Tixy)- Since 3 4epx) T(A) Y orea
Tixy = D oxex N(X, )iy,

o(m) = 9( ) n(x. m)mexy).

xeX
Thus ¢(7r) depends only on n(x, 7). Therefore, when 7 and 7’ satisfy n(x, 7) =
n(x,7’) forall x € X, ¢(xw) = (x').
Step 3: (iii) = (iv)

Let 7 € TI(B) and K = maxyexn(x, ). Since @ ¢ B and 7? is assumed
to be out of the domain, K > 0.2 Foreach k € {1,...,K},let X; = {x € X :

201f 79 is in the domain, neither independence of pairwise vote merge nor independence of vote
reallocation implies @(7?) = @uuy(r?) = X, while cancellation does. Thus the equivalence
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n(x,mw) = k}. Then Xy, X1, ..., Xk partition X. Now construct a non-decreasing
sequence of subsets as follows:

Yk = Xk
Y1 = Xk U Xk_1
Yk o = Xk UXg_1UXg_»

Y] EXKUXK_1UXK_2U'“UX1

Notethat Yg NYx—1 = Xg,YxgNYgr_1NYr—H = Xg,--- , Yk NYg_1NYg_2N
---NY; = Xg. By faithfulness,

¢(yg) = Y. ¢(yg_) = Yk—1.....0(7y,) = Y1.
Applying consistency,

P(yg + 7y + o+ 7v) = @7y ) Ny ) NN @(y,)
=YrkNYgk_1Nn---NY;
= Xg.

Finally, since w and ny, + my,_, + -+ + my, give the same number of votes for
each alternative, by independence of vote reallocation, ¢() = Xg = @pas(r). O

The proof relies heavily on the richness of the ballot space B = P (X). In partic-
ular, the ballot space is closed under union.?' Therefore the result cannot be applied
to restricted ballot spaces such as the space of singleton ballots. The equivalence
between (i) and (iv) is also stated in Theorem 1 in Xu (2010) of this volume.

The next characterization of approval voting rule uses disjoint equality. Unlike
Theorem 4.3.8, the result applies only to the ballot space P(X)\{d, X}.

Theorem 4.3.10 (Fishburn 1978a, 1979). Assume that B = P(X)\{0, X} and
consider voting rules over T1(B)\{x?}.

(i) Assume |X| = 2. Then a voting rule satisfies neutrality, consistency, and
faithfulness if and only if it is majority rule.

(i1) Assume |X| > 3. Then a voting rule satisfies neutrality, consistency, and
disjoint equality if and only if it is majority rule.

cannot be established. If 77 is in the domain, the result may be changed by replacing cancellation
with a slightly weaker version by requiring 7 # 7% in the definition of the axiom and weakening
(iv) by allowing for any arbitrary choice at 7*.

21 Alos-Ferrer (2006) assumes X ¢ 9B. But then Y, in the above proof may not be an admissible
ballot (the ballot space is not closed under union) and the proof does not go through. This is why
we assume X € ‘B.
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Sertel (1988) replaces disjoint equality with a stronger axiom, Sertel disjoint equal-
ity, and characterizes the rule that coincides with majority rule except when the
empty set is the only ballot response. In this case, the rule selects the empty set
(taking the empty value is allowed in his definition of voting rules). Although Sertel
disjoint equality is less primitive and harder to motivate than disjoint equality, his
proof is remarkably simpler than the proof of Theorem 4.3.10. Here we present his
result in a different way in order to give a more clear comparison. Unlike Theo-
rem 4.3.10, Sertel’s characterization holds with an arbitrary ballot space B and with
null-neutrality, which is much weaker than neutrality.

Theorem 4.3.11. Given any ballot space *B, a voting rule ¢ satisfies null-neutrality,
faithfulness, weak consistency, and Sertel disjoint equality if and only if ¢ = @pay.

Remark 4.3.3. Sertel’s faithfulness says that when there is only one ballot response
A that is possibly the empty set, voting rule must choose A (recall that in our def-
inition, faithfulness pertains to non-empty A). Clearly ¢u4; does not satisfy this
axiom. Sertel (1988) shows that his approval voting rule (identical to the standard
approval voting rule except at null response profiles) is the only quasi-rule satisfying
his faithfulness together with neutrality, weak consistency, and Sertel disjoint equal-
ity. In fact, dropping the requirement of non-empty valuedness in the definition of
voting rule (thus among quasi-rules) and replacing null-neutrality in Theorem 4.3.11
either with neutrality or with “p(r) = @ or X at all null response profiles 7,” we
obtain a joint characterization of the two rules, Sertel’s approval voting rule and the
standard approval voting rule. The proof is essentially the same.

Proof. Let B be a ballot space and ¢ a rule on IT(28) satisfying the four axioms.
In what follows, for all k € N, we prove the claim that for all 7 € TI(28) with
n(m) < k, ¢(r) = @uas(). The proof is by induction on k. The claim with
k = 1 follows directly from null-neutrality and faithfulness. Let k > 2. Suppose by
induction that for all 7 € T1(B) with n(w) < k, p(w) = @pyas(m). Let w € TI(B)
be such that n(r) = k + 1. We prove that ¢(7) = @pas(r). Note that there are
7’ € TI(™) and A € B such that n(z’) = k and # = 7’ + m4. Then by the
induction hypothesis, (") = @pas(7r’) and @(4) = Qyas(m4).

Case 1: (") N p(mwy) # B. Then gyas(’) N opas(wq) # 9. Since both ¢
and )45 satisfy weak consistency, p(n’ + mw4) = @(7') N @(w4) and gy, (7’ +
74) = @mas(') N omas(a). Since (') = @uas(n’), (wa) = @uas(7a), and
7w =7+ w4, then ¢(7w) = @pas(m).

Case 2: (') N @(wq) = @. Then @uyas(w') N epas(wa) = @. By Sertel
disjoint equality of ¢, x € (' + 7w4) if and only if (i) x € ¢@(x’) or (ii)
x € @(mq) and maxyepnn (v, w') = 0 or (ili) x € @(wy) and n (x,7') =
maxyepzHn (v, 7') —1 > 0. Note that since (') = @pas(’) and ¢(7r4) =
omas(wa), then (i), (ii), and (iii) are equivalent respectively to (i") x € @yas(r’),
(i) x € ppas(wa) and maxyey,,,yn (y,7') = 0, and (iii’) x € @uyas(74) and
n(x, ') = maxyep,,, yn (¥, ') —1 > 0. Therefore since both ¢ and @uay sat-
isfy Sertel disjoint equality, x € @(x’ + m4) if and only if x € @pas(’ + 74).
Since # = 7’ + 74, we obtain ¢(7) = @pas(7). O
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4.4 Strategic Voting and Condorcet Principle

In this section, we overview important supports for approval voting from the point of
view of robustness to strategic voting as well as satisfying the Condorcet principle.

Consider a ballot space 8. For all profiles of dichotomous preferences = €
I1(8), the Condorcet set CW () = {x : n(x, ) > n(y,n), forall y € X} is the
set of Condorcet winners at 7. By Theorem 4.2.2, the Condorcet set is non-empty
and it coincides with the choice made by majority voting rule, gpa;(7r) = C W(x).
The Condorcet principle requires that a voting rule should select the Condorcet set.

Condorcet: For all & € T1(®B), ¢(w) = CW(x).

Evidently, a voting rule on ‘B satisfies Condorcet if and only if it is the majority
rule on B. A weaker requirement is that a voting rule should select some Condorcet
winners.

Weak Condorcet: For all 7 € TI(28), ¢(r) N CW(x) # 0.

A voting rule ¢ on B is minimally selective if for some w € I1(B), ¢(w)#X.
Clearly, any non-constant voting rule is minimally selective. Fishburn (1979) obtains
the following characterization of majority voting rule.

Theorem 4.4.1 (Fishburn 1979). A voting rule on ‘B satisfies neutrality, consis-
tency, continuity, minimal selectiveness, and weak Condorcet if and only if it is
majority voting rule.

In the strategic voting environment, Condorcet, not to speak of weak Condorcet,
does not guarantee a Condorcet winner to be a final voting outcome. To investigate
strategic voting behavior under a voting rule that sometimes produces tied outcomes,
understanding how voters evaluate subsets of alternatives is needed. For a dichoto-
mous preference relation B € ® of voter i there are five natural assumptions about
its extension over subsets of alternatives. Denote the extended preference relation of
B by RiB. The five assumptions are as follows: for all x, y € X,

PI1. {x}Pl.B{y} ifand only if x € B and y ¢ B;

P2. {x}PB{x,y}and {x,y} PB{y}ifx € Band y ¢ B;

P3. ARBA'if AC Bor A’ € X\Bor[A\A' C Band A\A C X\B],

P4. AU {a}IiBA U{ad'}ifa,a’ ¢ AU Bora,a’ € B\A,

P5. APBX\B if AN B # 0; BPB Aif AN[X\B] # 0, where P is the strict
counterpart of R5.

The first three assumptions, P1-P3, are considered by Fishburn (1979). Two addi-
tional assumptions, P4-P5, are needed to extend his result on the unrestricted ballot
space to general ballot spaces.

4.4.1 Strategic Voting Under Anonymous Voting Systems

Given a ballot space ‘B and an agent with dichotomous preference B € O, a
ballot response A € B is dominated by ballot response A’ € B if for all
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7 e TI(B) U {n?), o( + na)RBo( + m4) with strict relation for at least one
7 € TI(B) U {xn?}. Let B (B, ¢) be the set of all undominated ballots in %B. Since
B is a finite set, there exists at least one undominated ballot and 8¢ (B, ¢) # @.
For each dichotomous preference profile 7 € TI(®), let T1“4(3B) (i, ¢) be the
set of all ballot response profiles consisting of undominated ballots of all agents.
A voting system (8, ¢) and the correspondence of undominated ballot response
profiles 1“4 (5B)(-, ¢) generate a collective choice rule for dichotomous prefer-
ences in D C D, ¢: II(D) — P(X)\{@} defined as follows: for all # € TI(D),
c(r) = U{or) : # € T“4(B)(xr,p)}. It is natural to assume that each voter
will not cast a dominated ballot and that the outcomes from strategic voting will be
within the set of outcomes from undominated ballot profiles, that is, ¢ (7). Strategic
voting is not an issue for agents who have complete indifference over all outcomes,
namely agents with unconcerned dichotomous preference X because any two bal-
lots will be indifferent independently of others’ ballots. In what follows, we will
focus on concerned agents who have dichotomous preferences with a preferred set
B #X.

The set of undominated outcomes c(7r) may be quite different from the set of
outcomes from truthful voting, ¢ () and so the voting system (8, ¢) may lead to too
different an outcome from the truthful outcome. Particular attention has been paid
to voting systems that do not have this problem. A voting rule ¢ (or an anonymous
collective choice rule ¢) on domain I1(D) is realizable in undominated strategies by
voting system (B, ¢) if for all profiles of concerned preferences 7 € TI(D\{X}),
@(7) C @(r) for all undominated ballot response profiles 7 € I1(B) at 7. Voting
rule ¢(-) on I1(D) is strategy-proof if for all profiles of concerned preferences = €
II(D\{X}), it is realizable in undominated strategies by voting system (8, ¢) and
there is a unique undominated ballot response profile at 7. We say that voting system
(B, @) is strategy-proof on D if it always has a unique undominated profile at all
7 € II(D\{X}). Formally:

Strategy-Proofness on D: For all 7 € TI(D\{X}), 1“4 (B)(n,¢) = {n'} and
p(r') € ().

The next lemma shows that if a neutral and faithful voting system is strategy-
proof on D, then there should be no constraint on expressing one’s concerned
preferences in D. That is,

No Ballot Constraint on D: D\{X} C ‘8.

Now we are ready to state the lemma.

Lemma 4.4.1. If a voting system (B, ) satisfies neutrality, faithfulness, and
strategy-proofness on D, then it has no ballot constraint and for all B € D\{X}, B
is the unique undominated strategy for dichotomous preference B.

Proof. Let B’ be the undominated strategy for a concerned preference B and B’ ¢
{B,X\B,®, X}. Then there exist ¢c,d € X such that (i) ¢ € B’ N [X\B] and
d € [X\B]\B’ or(ii)c € B'N B andd € B\B’. Consider the first case (i) (similar
argument applies to case (ii)). Let A : X — X be such that A(¢) = d, A(d) = ¢,
and for all other x € X\{c,d}, A(x) = x. Then since B’ is the only undominated
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strategy for B, for some 7, p(7wp’ + n)Png(n[B/\{c}]U{d} + ). Note that mp/ A =
T[B\{c}lu{d} and p: = m[p\(cyju(a3A- Hence o((mpr +m)A) = @(7[B\(ehuta} +
) and 90((77[3/\{c}]u{d} 4+ 7)A) = (g’ + wA). By neutrality, gD(JT[B/\{c}]U{d} +
A) = AMe(rp + ) and @(np + 7wd) = A@(np\{cjuid} + 7)) By P4,
Mg +m) 1P o(rpr + ) and AMe(apnienutay + o)1 P o(apprenugay + 7).
Hence ¢(n(p\(cjutay + TA) PBo(mp + 7A), which shows that [B'\{c}] U {d}
is not dominated by B’, contradicting that B’ is the unique undominated strategy
for B.

If X'\ B is the unique undominated strategy for B, ¢(7x\p + TAYRBo(n g +7?)
forany A € B with A N B # @. If ¢ is faithful, then X\ BR® A, contradicting P5.

Therefore, if a neutral and faithful voting system (8, ¢) is strategy-proof on D,
then for all concerned preference B € D\{X}, B should be the unique undomi-
nated strategy; so B € 8. Hence there should be no constraint in expressing one’s
concerned preferences in D. O

Brams and Fishburn (1978, Theorems 2 and 6) offer a necessary and sufficient
conditions for undominated ballots under majority voting systems. For dichotomous
preferences, their condition roughly says that undominated ballots for each dichoto-
mous preference B are the ballots that best approximate B either from above or
from below in the ballot space 8. Formally:

Lemma 4.4.2 (Brams and Fishburn 1978). Given a majority voting system
(B gumay), for each dichotomous preference B € P(X)\{0, X}, a ballot B eB
is undominated if and only if (1) B C B and there isno A € %\{B} such that
B CACBor(i)B C B and there is no A € ‘B\{B}suchthatB CAC B.

Thus if dichotomous preference B is in ballot space B, then B is the only undomi-
nated strategy, B¢ (B, pyay) = {B}. Similarly, if 7 € TI(B), 1“4 (B)(r, ppay) =
{r}. Thus if D C B, majority voting system (B, ¢uas) is strategy-proof on D.
Conversely, if D ¢ 9B, then by Lemma 4.4.2, majority voting system (B, ¢yay)
has more than one undominated ballot response profiles at a profile & consisting of
some B in D\B. Therefore, we obtain:

Theorem 4.4.2. Majority voting system (B, guay) is strategy-proof on a subdomain
of dichotomous preferences D C © if and only if there is no ballot constraint, i.e.,
D C $B. Thus approval voting is the only strategy-proof majority voting system on
the entire domain of dichotomous preferences, ®.

Note that Condorcet winners at 7 coincide with the alternatives selected by major-
ity voting rule at . Thus when 7 is in the space of ballot response profiles, by
Lemma 4.4.2, 7 is the only undominated ballot response profile and thus any
undominated ballot response profile at = gives the set of Condorcet winners. How-
ever, if a voter has a dichotomous preference that is not in the ballot space, then
this equivalence between the set of Condorcet winners and the set of alternatives
obtained by an undominated strategy profile in the majority voting system fails.
Moreover, the failure can be so drastic that some undominated ballot response
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profile does not give any Condorcet winner. A stronger version of this claim is
established for voting systems satisfying neutrality and the following basic axiom.

Strong Pareto: For all 7 € TI(®8) and all x, y € X, ifforall A € 9 with w(A4) > 0,
x € Aorx,y € X\A, and there is A € B with 7(A) > 0 such that x € A and
y € X\A, then y ¢ ¢().??

Lemma 4.4.3 (Fishburn 1979, Theorem 9). Consider a voting system (B, ¢) sat-
isfying neutrality and strong Pareto. Assume that for a dichotomous preference,
B € P(X)\{9, X}, there is an undominated ballot A different from B (i.e.,
A € B"(p,B)and A # B), then there is a profile of dichotomous preferences
7 € I such that for some undominated ballot response profile 7 € T1"4 (B)(r, ¢),
e(@)NCW(x) =0.

Proof. Consider a voting system (8, ¢) satisfying neutrality and strong Pareto, and
a dichotomous preference B € P(X)\{@, X }. Suppose A € B“¢ (¢, B) and A#B.

Case I: Thereis b € B\ A.

Let 7 be such that for all B’ € P(X) withb € B’ and |B’| = |B|, #(B’) =1
and for all other C € P(X), n(C) = 0. Since A € B4 (¢, B), then for all B’ €
P(X)\{9, X} with b € B" and |B’| = | B|, by neutrality, there is A(B’) € B such
that A(B') € B“(f, B’) and b € B’\A(B’). Let & be such that for all B’ with
b € B and |B’| = |B|, A(A(B’)) = 1 and for all other C € B, 7(C) = 0. Then
by construction of r, C W(ir) = {b}. Also by construction, 7 € I1“¢(3B)(¢, ) and
by strong Pareto, b ¢ ¢(7). Therefore, () N CW(x) = 0.

Case 2: There is a € A\B.

Let 7r be such that for all A’ € B witha € A" and |A'| = |A|, 7 (A’) = 1 and
for all other ballots B’ € 9B, m(B’) = 0. Since A € B4 (¢, B), then by neutrality,
for all A’ € B witha € A" and |A’| = |A|, there is B(A") € P(X)\{@, X} such
that A’ € B“4(p, B(A")) and a € A’\B(A’). Let # be such that for all A’ with
w(A’) > 0, 7(B(A’)) = 1 and for all other ballots C € P(X), #(C) = 0. Then
by strong Pareto, ¢(rr) = {a}. Also by construction of 7, 7 € I1*4(B)(p, #) and
a ¢ CW(x). Therefore, () N CW (%) = 0. |

We now return to the Condorcet principle in the strategic voting environment.
Condorcet realizability on D: For all 7 € TI(D) and all 7 € T1“(B)(x, ¢),
o) = CW(m).

The next axiom is weaker and corresponds to weak Condorcet.

Weak Condorcet realizability on D: For all 7 € IT1(D) and all # € 1“4 (B)(x, ¢),
(@) N CW(x) #£ 0.

The next lemma is important for establishing the next characterization of major-

ity voting.

221f for all A € B with(A) > 0, y ¢ A, then using any x € A for some A € B with (A4) > 0,
we can show that the premise of strong Pareto is met. Thus in this case y ¢ ¢(7).
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Lemma 4.4.4. If voting system (B, @) satisfies neutrality, strong Pareto, and weak
Condorcet realizability on D, then the system has no ballot constraint on D (that is,
D C B), strategy-proofness on D and weak Condorcet. Replacing weak Condorcet
realizability with Condorcet realizability, we obtain ¢ = @pay. Thus when D =
P(X)\{9, X}, it is approval voting.

Proof. For any voting system (B, ¢) satisfying neutrality and strong Pareto, if there
is an undominated strategy A that differs from the voter’s dichotomous prefer-
ence B € D, by Lemma 4.4.3, voting system (B, ¢) violates weak Condorcet
realizability. Note that there can be such an undominated strategy A # B if
B € D\B or the voting system is not strategy-proof. Hence, neutrality, strong
Pareto, and weak Condorcet realizability together imply both no ballot constraint,
D C ‘B, and strategy-proofness. Moreover, the unique undominated strategy for
B € D is B itself. Therefore, at all dichotomous preference profiles 7 € I1(D),
1“4 (B) (1, ) = {x} and weak Condorcet realizability implies ¢ (1) NC W () #8,
that is, the voting system satisfies weak Condorcet. If (2B, ¢) satisfies Condorcet
realizability, then the last conclusion is strengthened to ¢(;r) = C W(rr), that is the
voting system satisfies Condorcet; it is majority voting. O

We now obtain the following characterization of majority voting based on Con-
dorcet realizability and strategy-proofness.

Theorem 4.4.3. Consider a subdomain of dichotomous preferences D C O and a
ballot space B C D. The following are equivalent.

(1) Voting system (B, @) satisfies neutrality, strong Pareto, and Condorcet realiz-
ability on D.
(ii) Voting system (B, @) satisfies neutrality, consistency, continuity, minimal selec-
tiveness, and weak Condorcet realizability on D.
(iii) Voting system (2B, ) satisfies neutrality, consistency, faithfulness, and strategy-
proofness on D.
(iv) Voting system (B, @) is majority voting without ballot constraint on D.

Proof. The proof of the equivalence between (i) and (iv) is established using Theo-
rem 4.4.2 and Lemma 4.4.4. The equivalence between (ii) and (iv) is obtained from
Lemma 4.4.4 and Theorem 4.4.1. Finally, the next lemma states that (iii) implies
(iv), and the converse follows from Theorem 4.4.2. O

The next lemma is an extension of a result_ in Fishburn (1979, Theorem 10,
pp-216-217), which is for the ballot space P(X)\{X}. Our result is for any
arbitrary ballot space satisfying the richness conditions, (4.15) and (4.16).

Lemma 4.4.5. Consider a subdomain of dichotomous preferences D C 2 and
a ballot space B C D. If voting system (B, ¢) satisfies neutrality, consistency,
faithfulness, and strategy-proofness on D, then it is majority voting without ballot
constraint on D.

Proof. By Theorem 4.3.6, there are scoring functions s!,...,s” that represent ¢

as the lexicographic scoring rule. The case where all scoring functions are zero
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functions can be treated easily.”? Excluding this case, without loss of generality,
assume that no s’ is uniformly zero.

By Lemma 4.4.1, the voting system has no ballot constraint (D\{X} = B\{X})
and for all B € D\{X}, B is the unique undominated strategy for dichotomous
preference B.

Suppose that for some B € D\{@, X}, s'(|B|) < 0. Then ¢(p) = X\ B (since
B # 0, X and so X\ B # 0, X), contradicting faithfulness.

Suppose that for some 4, B € D\{@, X}, 0 < s'(JA]) < s'(|B|). Without loss
of generality, assume there exist a € A\B and b € B\A. Consider dichotomous
preference A. Construct a ballot response profile 7 such that for all C € B, if
w(C) > 0, then |C| = |B|,and n(b, ) = n(a,n) + 1 and n(x, ) < n(a,n) —1
for all x € X\{a,hb}.** Existence of such a profile is guaranteed by (4.15) and
(4.16) because D < *B. Since s'(|A4]) < s'(|B]), ¢(r + m4) = {b}. On the other
hand, ¢(r + 7w [p\(p}juta}) = 1a.b}, which is preferred to {b} by the agent with
preferences A. Therefore, A does not dominate [B\{b}] U {a}, which implies that
A is not the only undominated ballot, contradicting Lemma 4.4.1.

The above argument shows that s!(-) is a constant and positive valued function
over {|B| : B € D\{@, X}}. The same argument can be used to show that the
remaining score functions s2(-), ..., s’ (-) are constant functions over {|B| : B €
D\{9, X }}, which is sufficient to conclude that ¢ = @ay. |

It follows from Theorem 4.4.3 and Lemma 4.4.5 that:

Corollary 4.4.1. Consider the domain of all dichotomous preferences, ®. Then the
following are equivalent.

(1) Voting system (B, @) satisfies neutrality, strong Pareto, and Condorcet realiz-
ability on ®.
(ii) Voting system (B, @) satisfies neutrality, consistency, continuity, minimal selec-
tiveness, and weak Condorcet realizability on ®.
(iii) Voting system (2B, ) satisfies neutrality, consistency, faithfulness, and strategy-
proofness on ®.
(iv) Voting system (°B, @) is approval voting.

4.5 Unconstrained Multi-issue Problems and Voting
by Committees

In this section, we consider a collective decision model where there are multiple
issues and for each issue, a binary decision needs to be made. This model is studied

231f all scoring functions are zero functions, then ¢ will always choose X, in which case no ballot
is dominated and all ballots are undominated.

24 Consider a ballot response profile 7 such that 7(B) = 1, n([B\{x}] U {a}) = 2 for each
x € B\{b}, and w(B’) = 0 for all other ballots B”. Then n(b, r) = 2(|B|—1)+1 = n(a, 7r)+1,
and for each x € B\{b}, n(x,n) =2(|B| —2)+ 1 =n(a,w) — 1.
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by Barbera et al. (1991, 1997), etc., and an extended model by Barbera et al. (1993),
Le Breton and Sen (1999), etc.
Let M = {1,...,m} be the set of issues. A collective decision is a vector of 1
or —1, that is,
X =(x1,...,%Xm) € {—1, 1}M,

where 1 in the kth component means accepting the kth issue and —1 means reject-
ing it. Thus Sy = {k € M : x; = 1} is the set of accepted issues at x. Let
X = {—1, 1} be the set of all possible decisions. There is no constraint on the
set of accepted issues in this model and any number or none of the issues can be
accepted.?

On the unrestricted domain of preferences, the three impossibility results, The-
orems 4.1.1-4.1.3, apply. Moreover, an even more disturbing paradox, known as
Gibbard’s paradox, holds (Gibbard 1974): the mere assignment of Sen’s liberal
rights to each person cannot be made coherently under any collective choice func-
tion. Sen (1983, p.14) points out that Gibbard’s paradox does not hold on the
restricted domain of preferences for which each issue affects a person’s welfare
separately from other issues, the so-called separable preferences. Moreover, on the
restricted domain of separable and linear preferences, Gibbard—Satterthwaite theo-
rem does not hold and there do exist non-dictatorial and well-behaved strategy-proof
rules (Barbera et al. 1991).

Formally, a preference Rg is separable if for all x,x’ € X and all k € M,
(k> X—k ) Ro(—xk, x—x) if and only if (x, x" ;) Ro(—xk,x" ). Anissue k € M is
a good (resp. a bad or a null) if for all x € X with x; = 1, (1, x_g)Po(—1, x_g)
(resp. (—1, x—g) Po(1,x_) or (1, x_x)Io(—1, x_g)). Let G(Rp) be the set of goods
for Ro and B(Rp) the set of bads. Let S be the set of separable preferences and
81 the set of linear separable preferences. Given a domain of separable preference
profiles, D C SN . a collective choice function ¢c: D — X associates with each
preference profile a single collective decision.

Collective choice functions that can be practiced through a simple non-ranked
voting procedure have been of central interest in the literature. A voting scheme is a
collective choice function that only uses information about which issues are good or
bad and so can be applied through a voting procedure under which voters express,
in their ballots, which issues are goods and which are bads. That is, a voting scheme
is a collective choice function satisfying:

Votes-Only: For all R, R’ € SV ifforalli € N, G(R;) = G(R)) and B(R;) =
B(R!), then ¢(R) = c(R’).

On the domain of linear separable preferences S, this property is known as
the “tops-only” property because G(R;) is the top alternative for R; € Sr. When
there are nulls, adding some or all nulls to G(R;) makes no difference from G(R;)

25 Barbera et al. (2005) consider a similar model with some constraints on the number of issues to
be accepted.
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and makes another top alternative for R;. Thus there are multiple top alternatives
consisting of all goods, some or all nulls, and no bads.

The following two additional axioms pin down an important family of voting
schemes. The first axiom says that if for each agent, there are more goods and less
bads, then more issues should be accepted.

Issues Monotonicity: For all R, R’ € SV if foralli € N, G(R;) € G(R!) and
B(R;) 2 B(R}), then c¢(R) < c(R').

The next axiom says that decisions on each issue should be made independently
from the other issues, relying on who is in favor of the issue and who is against it.
Forall R € S¥ and all k € M, let NkG (R) be the set of agents for whom issue k is
a good, and NkB (R) the set of agents for whom issue k is a bad.

Issues Independence: For all R, R’ € SN and all k € M, if NkG(R) = NkG(R/)
and N2 (R) = NB(R'), then cx(R) = ¢ (R').

Note that each of the above two axioms implies votes-only. The family of collec-
tive choice functions satisfying the two axioms can be represented by an issue-wise
decisive structure, similar to the decisive structures in Sect. 4.2, defined as follows.

For all k € M, a decisive structure for issue k is a nonempty subset of 0*, 0 C 0*
satisfying: for all (L1, L»), (L}, L)) € 0¥,

if (Ll, L2) € 0k, L, C L/l and L, D L/Z’ then (L/ ,L/z) € 0.

Call this property 0-monotonicity, as in Sect.4.2. An issue-wise decisive structure
is a list of decisive structures for all issues, 9 = (0x)xenm . An issue-wise decisive
structure 0 = (0 )xem represents the function c¢(-) defined as follows: for all R €
SV andallk € M, ¢x(R) = 1 if and only if (NF(R), NE(R)) € o.

Proposition 4.5.1 (Ju 2003). A collective choice function on SN (or on S iv ) satis-
fies issues monotonicity and issues independence if and only if it is represented by
an issue-wise decisive structure.

The proof is similar to the proof of Proposition 4.2.1, and it holds on numerous
subdomains of S¥ (Ju 2003). On the domain of linear separable preferences S¥
voting schemes represented by an issue-wise decisive structure consisting of proper
subsets 0 of 0* for all k € M are called schemes of voting-by-committees (Barbera
et al. 1991). Note that because for all k € M, 0 is a proper subset of 0*, schemes
of voting-by-committees have full-range. Issue-wise majority voting scheme is the
voting scheme represented by 0 = (0x)xear such that forall k € M, (Lq, L) € g
if and only if |L1| > |L3|. An axiomatization of issue-wise majority voting scheme
can be established with the combination of issues monotonicity, issues indepen-
dence, anonymity, neutrality, and a duality-type axiom, on the domain of separable
linear preferences with an odd number of agents.
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4.5.1 Strategy-Proofness and Separable Preferences

Barbera et al. (1991) show that on the domain of linear separable preferences ¥,
all strategy-proof collective choice functions with full-range satisfy the votes-only
property, and so they are voting schemes. Based on this result, they also show
that strategy-proofness and the full-range condition together imply issues indepen-
dence as well as issues monotonicity. This leads to the following characterization of
voting-by-committees.

Theorem 4.5.1 (Barbera et al. 1991). A collective choice function on the domain
of linear separable preferences satisfies the full-range condition and strategy-
proofness if and only if it is a scheme of voting-by-committees.

Barbera et al. (1993) and Le Breton and Sen (1999) generalize this result in the
extended model of multi-issue problems where more than two alternatives are avail-
able on each issue. In particular, Le Breton and Sen (1999) identify a general domain
condition under which their characterization holds. The key argument is to prove
an extended version of issues independence, called “decomposability,” of strategy-
proof collective choice functions. All these works assume linearity of preferences,
which plays a crucial role.

When preferences are not linear, as shown by Le Breton and Sen (1995), issues
independence of a strategy-proof collective choice function is not guaranteed, which
makes it hard to obtain a result like Theorem 4.5.1 on the domain of separable
“weak” orderings SN . In fact, we need an additional axiom to characterize voting
schemes represented by an issue-wise decisive structure.

Null-Independence: For all i € N, all k € M, all R;, R; € S,and all R_; €
SN\ if k is a null issue for both R; and le, then ¢ (R;, R—;) = 1 if and only if
Ck(R;,R_i) =1.

Among voting schemes, the combination of strategy-proofness and null-
independence is equivalent to the combination of issues monotonicity and issues
independence (Ju 2003, Proposition 4, p.485). Thus it follows from Proposi-
tion 4.5.1 that:

Theorem 4.5.2 (Ju 2003). A voting scheme on the domain of separable preferences
satisfies strategy-proofness and null-independence if and only if it is represented by
an issue-wise decisive structure.

After identifying a domain D where well-behaved strategy-proof functions exist, it
is important to understand whether this existence result may be extended to a larger
domain. In fact, as shown by Barbera et al. (1991, Theorem 3), the domain of sepa-
rable linear preferences is the unique maximal “rich” domain (of linear preferences)
where well-behaved strategy-proof functions exist. Dropping the linearity assump-
tion, yet focusing on voting schemes, Ju (2003, Theorem 3) shows that the domain of
separable preferences (weak orderings) is the unique maximal “rich” domain where
well-behaved strategy-proof voting schemes exist. Maximal domain results are also
established in the extended model of multi-issue problems by Serizawa (1995) and
Le Breton and Sen (1999).



4 Collective Choice for Simple Preferences 79

4.5.2 Strategy-Proofness Versus Efficiency and Domain
Restrictions

Although strategy-proof collective choice functions on the domain of separable
preferences are numerous, only dictatorial ones are efficient.

Theorem 4.5.3 (Barbera et al. 1991). When there are at least three issues, a
collective choice function on the domain of linear separable preferences is strategy-
proof and efficient if and only if it is dictatorial.

Le Breton and Sen (1999) obtain this result in their extended model of multi-issue
problems. Shimomura (1996) weakens efficiency by requiring it on the subdomain
where agents’ preferences bear some degrees of resemblance and pins down a small
family of schemes of voting by committees, which includes non-dictatorial voting
schemes. When the set of alternatives is variable, Ju (2005b) requires efficiency only
for problems with at most two alternatives. He shows that only those voting schemes
that are quite close to the issue-wise majority function satisfy this restricted notion
of efficiency as well as strategy-proofness, anonymity, and two additional axioms
pertaining to agenda variation.

Ju (2005a) further restricts the domain of separable preferences to domains of
“dichotomous” preferences. An additive preference is a separable preference rep-
resented by a utility vector u = (u1,...,u,) € R™ as follows: for all x,x’ €
{—1, MM xRox’ if and only if u-x > u-x’. An additive preference is trichotomous if
all goods are indifferent and all bads are indifferent. A trichotomous additive prefer-
ence is dichotomous if all issues are either goods or bads. Although we use the same
term as in the earlier sections, dichotomous preferences here are not dichotomous in
the sense we use in Sect. 4.3. Dichotomous preferences in this section have at most
two indifference sets of issues but may have more than two indifference sets in the
alternative space {—1, 1} Considering some examples of restricted domains con-
sisting of dichotomous or trichotomous additive preferences, Ju (2005a) proves that
only those voting schemes that are very close to issue-wise majority voting scheme
satisfy efficiency as well as issues independence, anonymity, and neutrality (neutral-
ity is needed only in the case of dichotomous preferences). Whether this result or
a similar result holds for other simple domains such as the domain of dichotomous
separable preferences that are not necessarily additive is open for future research.

4.6 Simple Opinion Aggregation and Decision by Powers
and Consent

In this section, we consider the problem of aggregating dichotomous or trichoto-
mous opinions, introduced by Wilson (1975) and further studied by Rubinstein and
Fishburn (1986), Aleskerov et al. (2007), and Ju (2005a, 2008, 2010). The model
is similar to the unconstrained multi-issue problems except that here, we deal with
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opinions rather than preferences. For separable linear preferences, issues are either
goods or bads. Thus opinions can be interpreted as restricted preference revelations.

A special example of opinion aggregation is the problem of group identifi-
cation. A finite number of potential members have to decide who among them-
selves belong to a certain collective through aggregating their dichotomous or
trichotomous opinions. This problem is introduced by Kasher and Rubinstein (1997)
and further studied by Samet and Schmeidler (2003), Sung and Dimitrov (2003),
Dimitrov et al. (2007), Cengelci and Sanver (2010), Miller (2008), and Ju (2008,
2009a, 2010).

We continue using the same notation as in Sect.4.5. Each person i € N has
his opinion on issues in M, represented by an 1 x m row vector V; consisting
of 1, 0, or —1. A problem is an n x m opinion matrix V' consisting of n row vec-
tors V1,..., V,. Let Vi be the set of all opinion matrices, called, the trichotomous
(opinion) domain. An alternative is a vector of 1 and —1, x = (x1,...,Xy) €
{—1,1}™ where 1 (resp. —1) in the kth component means accepting the kth issue
(resp. rejecting the kth issue). For all V € Vp; and all k € M, V¥ denotes the kth
column vector of V. Let

WVEl= Y. Vi VA= Y. —Va, and ||V _[l = [I[VE[I+IVE.
ieEN:Vir=1 ieEN:Vig=—1

For example, in the group identification model, M = N and an alternative describes
who belongs to the collective and who does not.

Let Vp; be the subset of Vryj, consisting of the opinion matrices whose entries are
either 1 or —1, called the dichotomous (opinion) domain. Let D be either one of the
two domains. Samet and Schmeidler (2003) consider the dichotomous domain of the
group identification model.2® A collective choice functiononD, ¢: D — {—1, 1}M s
associates with each problem in the domain a single alternative. A collective choice
function satisfies non-degeneracy if for each i € N, there exist V, V' € D such that
ci(V)y=1land¢; (V') = —1.

Section 4.5 provides the definition of a collective choice function represented
by an issue-wise decisive structure. The same definition applies here, treating all
issues k with V;x = 1 as goods for person i and all issues [/ with V;; = —1 as
bads, and all other issues as nulls. In the same way, we can extend the definitions
of issues monotonicity and issues independence, which together characterize the
family of collective choice functions represented by an issue-wise decisive structure
(Proposition 4.5.1).

A subfamily of these collective choice functions plays an important role in the
literature on opinion aggregation. In particular, an issue-wise dictatorial function
c(-) is represented by an issue-wise decisive structure conferring on a person the
full decision power over an issue: that is, for each k € M, there isi € N such that

26 Dichotomous opinions in Samet and Schmeidler (2003) are described by vectors of 1 and 0,
where 0 has the same meaning as —1 in our model.
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for all V € D with Vi € {—1,1}, cx (V) = Vji. In group identification problems
with dichotomous opinions, the issue-wise dictatorial function where person i has
the decision power on his own qualification is called as the liberal function. A milder
notion of decision powers is discussed in the next subsection.

4.6.1 Social Decision by Powers and Consent for Dichotomous
or Trichotomous Opinion Aggregation

Here we define a milder notion of decision powers. We first focus on dichotomous
opinions. After this, we give the general definition.

Given a collective choice function ¢ defined on the dichotomous domain Vp;,
person i € N has the “power to influence the social decision on the kth issue”,
briefly, the power on the k-th issue if the decision on the kth issue is made follow-
ing person i’s opinion whenever person i’s opinion obtains sufficient consent from
society: formally, there exist ¢+, q— € {1,...,n + 1} such that for all V' € Vp;,

(@) when Vi = 1, e (V) =1 & |[VE]| = g4 : 4.20)
(i) when Vig = —1, ¢ (V) = —1 & ||[VK|| = ¢_. '
The two numbers ¢+ and g_ are called consent-quotas. The greater g4 or q— is, the
higher degree of social consent is required for the exercise of the power. There are
three extreme cases. When g4+ = g— = 1, i’s opinion determines social decision
independently of social consent. Thus the power is decisive. When g+ = n + 1 and
qg— = n + 1, the power is anti-decisive because i’s opinion is reflected reversely
in the social decision. When g4+ + g— = n + 1, the two parts in (4.20) coincide
and all persons can have the same powers as person i (changing i with any j in
(4.20) makes no difference). In this case, all persons have the equal power on the
same issue; so such a power is said to be non-exclusive (formal definition will be
provided later).?’

The total number of positive or negative votes, denoted by v, always equals n on
the dichotomous domain. However, on the trichotomous domain, it is variable. We
allow consent-quotas to vary relative to the total number of votes. Given a collective
choice function ¢ defined on Vr, a person i € N has the power on the k-th issue
if there exist three functions g+: N U {0} — N U {0,n + 1}, go: N U {0} —
NU{0,n+1},andg—: N U{0} - N U{0,n + 1} such that forallv € N U {0},
and all V € Vrg with |[VE _|| = v,

(@) when Vig =1, cx (V) =1 & |[VE]| = g4 (v):
(i) when Vig = 0, cx (V) =1 & [|[VE]| = qo (v): (4.21)
(iii) when Vi = —1, cx (V) = =1 & [[VF[| = ¢— (v).

27 Consent quotas are closely related with the power index by Shapley and Shubik (1954) as
discussed in Ju (2010).
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We call the list of the three functions g (-) = (¢+ (*),qo (-),g— (-)) the consent-
quotas function. The power is decisive if for all v € N, both ¢+ (v) and g— (v) take
the value of 1. The power is anti-decisive if for all v, both g+ (v) and g— (v) take the
value of v + 1. To avoid unnecessary complication, we assume that for all v € N,

g+ (), g—(v) € {1,...,v+ 1}, go(v) € {0,1,...,v + 1}, and g¢(0) € {0, 1},

and
q+(0) = g+(1), ¢—(0) = g—(1), and go(n) = qo(n —1).

Let Q be the family of consent-quota functions satisfying these assumptions.

Definition 4.6.1 (System of Powers). A system of powers representing a collec-
tive choice function ¢ on Vry is a function W: M — N x Q mapping each issue
k € M into a pair of the person, W; (k), who has the power on the kth issue, and
the consent-quotas function, W5 (k) = (g+ (-),qo (-), g (-)), associated with the
power. That is, when Wj (k) = i, forallv € {0,1,...,n} and all V € Vr; with
||V_{f_|| = v, the social decision on the kth issue is made as described in (4.21).

The power on the kth issue is (fully) exclusive if there is a person i who has the
power on the kth issue and no one else does. It is (fully) non-exclusive if all persons
have the “equal” power on the kth issue associated with a single consent-quotas
function (or, on the dichotomous domain, a list of consent-quotas). The power on an
issue is either exclusive or non-exclusive (Remark 1 of Ju (2010)). Thus either only
one person has the power or all persons have equal power. Two systems of powers W
and W’ are equivalent, denoted by W ~ W', if for all k with W (k) # W/ (k), the
power on the kth issue is non-exclusive (so, W» (k) = W, (k)); otherwise, Wa (k) =
W, (k). If a collective choice function is represented by a system of powers, the
system of powers is unique up to this equivalence relation (Ju 2010, Proposition 2).
The following two extreme systems are notable. Under a non-exclusive system of
powers, everyone has non-exclusive power on every issue. Under a monocentric
system of powers, one person has exclusive power on every issue.

A necessary and sufficient condition for issues monotonicity is composed of the
following two properties of consent-quotas functions (Ju 2010, Proposition 3). A
consent-quotas function ¢ (-) = (¢+ (), qo (*) ,g— (-)) has the component ladder
property if forall v € {1,...,n}, the following three inequalities hold:

Dg+v-—D=g+v) =g+ v-DH+1;
(i)go(v—=1)=<qgo(v) <qgo(v—1)+1; (4.22)
(ii)g-(v—-1) =<g-(v)<g-(v-1D+ 1L

When this property fails, the decision may not respond monotonically after other
persons’ opinions become more favorable. The function has the intercomponent
ladder property if forallv € {1,...,n},

g+ (W) <go(wv—-1D+1=<v—g_(v)+2. (4.23)
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When this property fails, the issue, initially accepted, may be rejected after the per-
son who has the power on the issue becomes more favorable. For example, any
anti-decisive power which has g4 (v) = g—(v) = v + 1 for all v violates intercom-
ponent ladder property. On the dichotomous domain, component ladder property
has no bite and intercomponent ladder property reduces to g+ + g— < n + 2. The
ladder property refers to the conjugation of the two ladder properties.

In the Arrovian framework, Sen (1970a,b, 1976, 1983) and many of his critics
formulate individual rights based on (1) the existence of the so-called recognized
personal spheres and (2) ‘how the recognition of the personal spheres of different
individuals should be reflected in the choices made by the society’ (Gaertner et al.
1992, p. 162). Here, to formulate such recognized personal spheres, we use a func-
tion mapping each issue into a person, A : M — N, called a linkage. The next axiom
requires the existence of recognized personal spheres. However, it does not impose
any specific condition regarding what form the recognition should take, except for a
minimal “symmetry” condition, which says that collective choice functions should
treat person i and i’s issues (constituting i ’s personal sphere) symmetrically to any
other person j and j’s issues. Technically, when names of person i and all i ’s issues
are switched simultaneously to names of person j and all j’s issues, social decision
should also be switched accordingly. Given a linkage A € A, foralli € N, let us
call elements in A~! (i) person i’s issues. Let 7: N — N and §: M — M are
permutations on N and on M such that for all i € N, § maps the set of person i’s
issues onto the set of person 7 (i)’s issues. Let f,P be the matrix such that for all
i e Nandallk € M, f,Pik = Pr(;)s(k)- Then person i and his issue k play the
same role in f,P as person 7 (i) and his issue 6 (k) doin P.

Symmetric Linkage There is a linkage A: M — N such that for all permutations
w: N — N and all permutations §: M — M, if for all i € N, § maps the set
of i’s issues A~ (i) onto the set of 7 (i)’s issues A ™! (77 (i)), then for all k € M,
fe (oP) = fosa (P).

Symmetry holds in the model of group identification if the collective choice
function satisfies symmetric linkage and the linkage is the identity function, which
means that the qualification of 7 is recognized as i ’s personal sphere, as is natural in
this model.

A condition on systems of powers that is necessary and sufficient for symmet-
ric linkage is horizontal equality: for all pair of persons i and j € N with the
same number of issues under Wy, thatis, [W; ! (i) | = |W; ! (j) |, their powers are
associated with the same consent-quotas function, that is, for all k € Wl_1 (i) and
all ] € W1 (j), Wa (k) = W (l) (Ju 2010, Proposition 4).® When i = j, this

28 A linkage creates primitive differences among persons and among issues in this setting; except
for this, all other aspects of the model give equal standing to all persons (they share the same set of
potential opinion vectors) and to all issues. A linkage differentiates persons vertically depending
on the number of issues one is associated with. Horizontal equality allows us to incorporate this
vertical differentiation in systems of powers not harming equality too much among persons.
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property says that person i ’s powers on two different issues are associated with the
same consent-quotas function.

Adding symmetric linkage to issues monotonicity and issues independence pro-
vides a characterization of collective choice functions represented by a system of
powers.

Theorem 4.6.1 (Ju 2010). Let D € {Vp;, Vpi}- A collective choice function on D
satisfies issues monotonicity, issues independence, and symmetric linkage if and
only if it is represented by a system of powers satisfying the ladder property and
horizontal equality. Moreover, the system is unique up to the equivalence relation ~.

4.6.2 Group Identification

We now consider group identification problems, where M = N. Several recent
studies on group identification introduced by Kasher and Rubinstein (1997) formu-
late principles of liberalism in this specific model and establish axiomatic charac-
terizations of “liberal” collective choice function.

4.6.2.1 Liberalism and Axiomatic Characterizations

A system of powers W on the domain of dichotomous problems Vp; is liberal if
Wi(i) =i foralli € N and all powers are decisive. The liberal collective choice
function on Vp; is represented by the liberal system of powers.

The next axiom incorporates the minimal sense of liberalism by requiring only
that if someone qualifies (disqualifies) herself, then not everyone should be disqual-
ified (qualified), in other words, there should be someone, possibly the same person,
who is qualified (disqualified).

Semi-Liberal Principle: For all V' € Vp;, if for some i € N, V;; = 1, then for
some j € N,c;(V) = l;if forsomei € N, V;; = —1, then for some j € N,
Cj(V) =—1.

Sung and Dimitrov (2003) establish the following characterization of the liberal
collective choice function.

Theorem 4.6.2 (Sung and Dimitrov 2003). Assume M = N. A collective choice
function on Vp; satisfies independence, symmetry, and semi-liberal principle if and
only if it is the liberal function.

This is a strengthening of the characterization by Kasher and Rubinstein (1997)
where they impose monotonicity and unanimity as well as the three axioms above.
Sung and Dimitrov (2003) show that these two additional axioms are redundant and
that the three remaining axioms are logically independent.
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Samet and Schmeidler (2003) propose the following two interesting axioms.?

The first axiom says, in their words, that non-Hobbits’ opinions about Hobbits do
not matter in determining who are Hobbits.

Exclusive Self-Determination: If V, V' € D are such that foralli, j € N, V;; #
Vi onlyifci(V) = —landc;(V) =1, thenc(V) = c(V').

The next axiom says that the two groups, of Hobbits and of qualifiers of Hobbits,
should coincide.

Affirmative Self-Determination: For all V € D, ¢(V) = ¢(V?), where V' is the
transpose of V.

Imposing either one of the two self-determination axioms together with other
axioms defined earlier, we have the following characterization of liberal choice
function:

Theorem 4.6.3 (Samet and Schmeidler 2003). Assume M = N. A collective
choice function on Vp; satisfies monotonicity, independence, non-degeneracy and
exclusive self-determination (or affirmative self-determination) if and only if it is the
liberal function.

Ju (2010) extends this result on the domain of trichotomous opinions Vr;.
Cengelci and Sanver (2010) introduces the axiom of positive weak equal treat-
ment property requiring that all persons should be qualified when everyone qualifies
himself. Based on this axiom or a variant, they establish a characterization of the
liberal choice function. Ju (2009a) weakens monotonicity and non-degeneracy in
Theorem 4.6.3 and obtains an alternative characterization result.

For all x,x" € {—1,1}",let x A X' = (min{x;, x/})ieny and x V x" = (max
{xi,x/})ien. Similarly, for all V, V' € Vp;,let VA V' = (min{V};, Vl.;.})ieN,jeN
and VvV’ = (max{Vi;, V/;})ien,jen. Miller (2008) considers an extended frame-
work where a collective choice function is used to identify more than one groups.
The key axiom in Miller (2008) pertains to the two methods of identifying a collec-
tive consisting of persons with feature a and feature . One method is to identify
the collective with feature a and the collective with feature b separately and take the
intersection of the two groups. The other method is to identify the collective with
feature a and feature b at once. The next axiom requires that both methods should
yield the same group.

Meet Separability: Forall V. V' € D, c(V) Ac(V') = c(V A V).

The same requirement for identifying a collective consisting of persons with
feature a or feature b is as follows.
Join Separability: Forall V, V' € D,c(V)ve(V') =c(V v V).

Miller (2008) shows that the liberal function is the only collective choice function
satisfying the two separability axioms as well as non-degeneracy and anonymity.

29 See Samet and Schmeidler (2003, pp. 222-224), for detailed discussion and motivation for the
two axioms.



86 B.-G.Ju

Theorem 4.6.4 (Miller 2008). Assume M = N. A collective choice function on
Vpi satisfies meet separability, join separability, non-degeneracy, and symmetry if
and only if it is the liberal function.

Miller (2008, Theorem 2.5) shows that collective choice functions satisfying the
first three axioms depend only on a single vote and call them one-vote rules. From
this result, Theorem 4.6.4 directly follows because only the liberal function among
these one-vote rules can satisfy symmetry. Note that independence is not needed in
this characterization result and in fact, it is implied by the four axioms.

4.6.2.2 Consent-Based Choice Functions

Samet and Schmeidler (2003) introduce a spectrum of choice functions connecting
issue-wise majority function and the liberal function as two extreme functions of
the family. A consent-based choice function on the domain of dichotomous opinions
Vpi is represented by a system of powers W such that foralli € N, W;(i) = i and
g+ +q— <n+2,where (q+,q—) = War(k) forallk € N.

Theorem 4.6.5 (Samet and Schmeidler 2003). Assume M = N. A collective
choice function on Vp; satisfies monotonicity, independence, and symmetry if and
only if it is a consent-based choice function.

A collective choice function ¢ on Vp; satisfies self-duality if for all V € Vp;,
c(=V) = —c(V). Adding self-duality to the three axioms above, Samet and
Schmeidler (2003, Theorem 2) characterize the subfamily of consent-based choice
functions of which the consent quotas functions satisfy the following property: for
alli,j € N, Wai) = Wa(j) = (¢+.9-) and g4 = q_.

Note that self-dual consent-based choice functions have the same consent quo-
tas for all persons. Allowing for different consent quotas across persons, a slightly
larger family can be defined. This family is characterized by Cengelci and Sanver
(2010, Theorem 4.1) with the set of four axioms, monotonicity, independence, self-
duality and a weaker version of anonymity axiom. It should be noted that in this
characterization, they do not impose symmetry, which plays a crucial role in Samet
and Schmeidler (2003).

When g+ 4+ g— = n + 1, parts (i) and (ii) of (4.20) are identical to the single
condition that for all V' € Vp; and alli € N, ¢;(V) = 1 if and only if ||Vj'r|| >
q+. Thus social decisions are made anonymously. Conversely, anonymous consent-

based choice functions have consent quotas with g+ +g— =n + 1.
When there is an odd number of persons, the two conditions g+ = ¢g— and
g+ + q— = n + 1 are satisfied only by the issue-wise majority function. There-

fore, the issue-wise majority function is characterized by adding anonymity to the
four axioms of monotonicity, independence, symmetry, and self-duality (Samet and
Schmeidler 2003, p. 225). Replacing anonymity with neutrality, gives an alternative
characterization of the issue-wise majority function.
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4.6.3 Simple Preferences and the Paradox of Paretian Liberal

Compatibility of Pareto efficiency and existence of the so-called libertarian rights
(decisive powers) is widely studied by a number of authors after Sen (1970a,b). We
investigate Sen’s paradox of Paretian liberal (Sen 1970a,b) in the current opinion
aggregation framework by considering separable preference relations. We formulate
Sen’s liberal rights as a person’s decisive power on a certain issue (Gibbard 1974).
Note that each separable preference Ry is associated with an opinion vector Vp, each
positive (resp. negative or zero) component of Vy representing the corresponding
issue as a good (resp. a bad or a null). Obviously, there are a number of separable
preference relations corresponding to a single opinion vector.

Sen’s paradox holds on the separable preferences domain.*® Sen’s (1970a,b)
minimal liberalism postulates that there should be at least two persons who have
decisive powers. Assume that persons 1 and 2 are given the decisive powers on the
first issue and the second issue respectively. Consider the following preference rela-
tions of the two persons. For person 1, the first issue is a bad and the second issue
is a good. But person 1 cares so much about the second issue (person 2’s issue) that
he prefers the positive decision on this issue to the negative decision no matter what
decisions are made on the other issues. For person 2, the second issue is a bad and
the first issue is a good. But person 2 cares so much about the first issue (person 1’s
issue) that he prefers the positive decision on this issue to the negative decision no
matter what decisions are made on the other issues. Then by the decisive powers of
the two persons, decisions on the first and the second issues are both negative. But
the two persons will be better off at any decision with positive components for both
issues. This confirms that minimal liberalism and Pareto efficiency are incompatible
on the separable preferences domain.

Preference relations in the above example are “meddlesome”’ (Blau 1975). One
may hope that without such relations, the paradox of Paretian liberal will not occur.
Unfortunately, the paradox holds even in a substantially restricted environment
where only trichotomous or dichotomous preference relations are admissible. Con-
sider a trichotomous preference relation Ry that is a separable preference relation
represented by a function Up: {—1, 1} — R such that for each x € {—1,1}M,
Uo (X) = D kemx,=1 Yok, Where Vo € {~1,0, 13M is the opinion vector cor-
responding to Ry.3! Let AZ,; be the family of all such trichotomous preference
relations. Let A7,; be the subfamily of dichotomous preferences in A7, ..
Proposition 4.6.1 (Ju 2008). When there are at least three persons, no Pareto
efficient collective choice function on A},; or A%, satisfies minimal liberalism.

Proof. Suppose that persons 1 and 2 have the decisive powers respectively on
issue 1 and issue 2. Consider the profile of dichotomous preference relations

30 This was originally proven by Gibbard (1974, Theorem 2).
3 Bquivalently, Uy (x) = [{k € M : x; = land Py = 1} — |{k € M : x; = 1 and
Por = —1}].



88 B.-G.Ju

(Ri);en given by the following opinion vectors: V7 = (1,—1,—1,...,—1), Vo =
(—1,1,—1,...,—1), and for all i € N\{1,2}, V; = (—1,...,—1). Then by the
decisive powers of persons 1 and 2, ¢; (R) = ¢ (R) = 1. If ¢(*) is Pareto efficient,
forallk € M\{1,2},cx (R) = —1.Thusc (R) = (1,1,—1,...,—1). Note that this
alternative is indifferent to x = (—1, ..., —1) for both person 1 and person 2 and x
is preferred to ¢ (R) by all others. This contradicts Pareto efficiency. O

Note that unlike the previous paradox on the separable preferences domain, we
need the assumption n > 3. The case with two persons ruled out by this assumption
is very limited. In fact, the paradox does not apply in the two-person case (deci-
siveness is quite close to majority principle since one person’s opinion accounts for
50%).

Collective choice functions that are represented by a system of powers do not
satisfy minimal liberalism if no power is decisive. However they capture a some-
what weak sense of liberalism because they allow limited powers to individuals.
Ju (2008) shows among these collective choice functions, there do exist Pareto effi-
cient ones on A7.,;. Issue-wise majority function is an example and all other Pareto
efficient functions are very close to the issue-wise majority function. The only dif-
ference is when the number of voters in favor of an issue is the same as the number
of voters against the issue, in which case the person who has the power on the issue
dictates the social decision. Thus the exercise of a person’s power is most limited.
To be compatible with Pareto efficiency, exclusive powers that can be assigned to
individuals should be limited so extremely that the resulting collective choices are
very close to the issue-wise majority function where no individual has an exclusive
power.
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Chapter 5
Axiomatizations of Approval Voting

Yongsheng Xu

5.1 Introduction

There has been a number of axiomatic studies of approval voting since its intro-
duction by Brams and Fishburn (1978). The axiomatic characterizations of approval
voting have given researchers a better understanding of the structure of approval
voting, and have made the pros and cons of approval voting much sharper. In this
article, we present a survey of various axiomatic characterizations of approval voting
that are there in the literature.

Approval voting discussed in this article is referred to the way that ballots are
aggregated, and is therefore a particular example of a broad class of methods that
aggregate individual ballots. An individual ballot can be regarded as consisting of
those candidates or options that are acceptable to a particular voter. Interpreted
in this way, a voter can be viewed as expressing a dichotomous preference over
all relevant candidates or options by dividing them into acceptable and unaccept-
able ones. The problem of aggregating ballots is therefore naturally linked with
the classical social choice problem of aggregating individual preferences under the
domain restriction of dichotomous preferences (interested readers should consult
Chap. 20). In this article, however, we shall focus on approval voting as a method of
aggregating ballots.

The existing axiomatic characterizations of approval voting based on ballot
aggregation can be categorized into three groups. In the first place, Fishburn
(1978a,b) develops a framework with variable electorate to analyze approval voting.
The essence of the framework is that it assumes electorates consist of all non-empty
and finite collections of voters, and voters cast their ballots for their approved can-
didates. Within this framework, Fishburn (1978a) characterizes approval voting by
using three axioms: neutrality, consistency and disjoint equality (see Sect.5.3 for
formal definitions). Sertel (1988) uses similar axioms to the ones used in Fishburn
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(1978a) to characterize a slightly different version of approval voting: in Fishburn
(1978a), approval voting picks up every candidate as a winning candidate when none
is approved by any voter; while in Sertel (1988), when every voter approves no can-
didate, approval voting picks none as well. Within the same framework, Fishburn
(1978b) presents another axiomatization of approval voting by using four axioms:
neutrality, consistency, faithfulness and cancellation (see Sect. 5.3 for formal def-
initions). As shown by Alds-Ferrer (2006), neutrality in this characterization is
redundant: approval voting is characterized by consistency, faithfulness and can-
cellation. Within this framework, a slightly different characterization of approval
voting is presented: approval voting is characterized by consistency, faithfulness
and disjoint equality. The second group of axiomatizations of approval voting is
developed in Baigent and Xu (1991) where they work with a fixed electorate. The
set of voters is assumed to be given and fixed. In this framework, they characterize
approval voting by neutrality, independence of symmetric substitutions and positive
responsiveness (see Sect. 5.4 for formal definitions). Based on the work by Baigent
and Xu (1991), we present a variant of their characterization by using neutrality,
equal treatment (a stronger version of independence of symmetric substitutions; see
Sect. 5.4 for a formal definition) and monotonicity. The third group of axiomatiza-
tion of approval voting has been developed in Xu (2008) for variable electorates that
are drawn from a fixed set of voters. He works in a single profile of voters’ ballots
and axiomatically characterizes approval voting by four axioms: faithfulness, weak
consistency, disjoint inclusion and dual consistency.

It may be noted that approval voting has been studied from various other
perspectives in the literature. For example, in the framework of aggregating dichoto-
mous preferences, Brams and Fishburn (1978) examine whether approval voting
is strategy-proof (defined on the domain of dichotomous preferences), and more
recently, Vorsatz (2007) shows that approval voting can be characterized by strategy-
proofness together with some other well-known axioms characterizing approval
voting. In our approach, ballots are aggregated into a set of winning candidates. One
could also consider the possibility of aggregating ballots into probability distribu-
tions over candidates. This is the approach adopted by Bogomolnaia et al. (2005)
where, among other things, they present an axiomatic characterization of approval
voting in the framework of aggregating dichotomous preferences: approval voting
is characterized by anonymity, neutrality, strategy-proofness, and efficiency (under
the domain restriction of dichotomous preferences). Lastly, it may be noted that
approval voting is a member of scoring rules in the classical social choice approach
of aggregating individual preferences and has been studied along this line as well.
For a summary of the results along this approach, see Chebotarev and Shamis
(1998).

The structure of the remaining article is as follows. In Sect. 5.2, we present the
basic notion and definitions. Section 5.3 is devoted to axiomatizations of approval
voting with variable electorate developed in Fishburn (1978a,b). Section 5.4 focuses
on axiomatizations with fixed electorate considered in Baigent and Xu (1991), and
Sect. 5.5 presents a characterization result based on variable electorate developed in
Xu (2008).
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5.2 Notation and Definitions

Let X be a finite set of alternatives. It is assumed that X contains at least two alter-
natives. Alternatives in X in our context may be interpreted as candidates in an
election. The set of all non-empty subsets of X will be denoted by IC. An element
A of K is called a ballot.

An electorate is understood as a collection of voters with at least one but a finite
number of them. Each voter in an electorate is assumed to cast one and only one
ballot. It is assumed that a ballot is non-empty so that abstention is represented by
the full ballot X in the present context.

Let N be the set of all non-negative integers. A ballot response profile is a func-
tion 7 : K — N. For any A € K, w(A) is the number of voters who cast ballot A.

The number of voters who participated in the election is Z 7 (A). The set of all

AeK
ballot response profiles is denoted by I1. For any 7, 7’ € I1, = + 7’ is to denote the

following profile: for all A € K, (w + 7")(A) = n(A) + 7' (A).

Example 5.2.1. An example would be helpful to illustrate the above concepts. Let
X ={x,y,z}. Then K={{x,y, 2}, {x, y}, {x. 2}, {y. 2}, {x}, {y}. {z}}. Faced with
the set X of the three candidates and when a voter approves both x and y,
the voter casts the ballot {x, y}. Consider the following ballot response profile:
7({x,y.zp) = 0.7({x.y}) = 3.7({x.z)) = 5.7({y.2z}) = 2.7({x}) = 4,
7({y}) =2,7({z}) =0. In this example, there are no voters casting the ballot
{x, v, z}, 3 voters casting the ballot {x, y}, 5 voters casting the ballot {x, 7}, 2 casting
{y,z}, 4 casting {x}, 2 casting {y}, and O casting {z}. The number of participating
votersis:0+3+5+24+4+2+0=16.

Let D(IT) be a non-empty subset of I1. A ballot aggregation function is a func-
tion f : D(IT) — K such that, for every ballot response profile # € D(II),
f(mr) € K is the (winning) ballot. Candidates in f(;r) are often called winning
candidates under . Note that a ballot response profile 7w does not retain voters’
identities. It is therefore clear that a ballot aggregation function f is necessarily
anonymous by definition: the names of voters have no impact on the aggregation
result.

Forany x € X and w € D(II), let n(x, ) = Z 7w (A). Thus, n(x, ) is

A€k, xeA
the number of voters who approve of x when a ballot response profile is . f is said
to be approval voting if, for all x € 1, f(w) ={x € X : n(x,w) > n(y, 7) for all
y e X}

Example 5.2.2. In Example 5.2.1, for the given X and ballot response profile 7, we
haven(x,m)=34+54+4=12,n(y,n)=34+2+2=7,andn(z,mt)=5+2="17.
Then, {x} is the outcome of approval voting.
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5.3 Variable Electorate

In this section, we present a summary of axiomatizations of approval voting with
a variable electorate for a given, fixed set of candidates X based on Fishburn
(1978a,b). It is further assumed that electorates consist of all non-empty and finite
collections of voters who cast their ballots for their approved candidates. The
domain of a ballot aggregation function is taken to be the set of all ballot response
profiles; that is, D(IT) = I1. We start by defining several axioms to be imposed on
a ballot aggregation function f.
A ballot aggregation function satisfies:

e Fuaithfulness if and only if, for all A € K and all # € II, if #(4)=1 and
w(B)=0forall B € (X —{A}), then f()= A.

e Consistency if and only if, for all #,7n’ € I, if f(zx) N f(x’) # @ then
flr+a)y=fm)n f@').

e Cancellation if and only if, for all & € I1, if [n(x, 7) = n(y, ) forall x, y € X]
then f(mr)=X.

e Disjoint equality if and only if, for all A, B € K with AN B =0, and all = € II,
if 1(A)=n(B)=1,and n(C) =0forall C € (K—{A, B}), then f(r) = AUB.

e Neutrality if and only if, for all 7, 7" € II, if ' is such that 7'(A4) = 7 (0 (A))
for all A € K, where o is a permutation on X, then f (') = o (f()).

The above axioms are introduced in Fishburn (1978a,b). Faithfulness requires that,
if an electorate has just one voter who casts a ballot A4, then every candidate in A
must be a winning candidate. Consistency says that if there are overlapping winning
candidates under ballot response profiles 7 and 7/, then the winning candidates
for a ballot response profile that joins the two original ballot response profiles are
exactly those who overlap. Cancellation stipulates that if all the candidates get the
same number of votes from participating voters, then every candidate is a winning
candidate. Disjoint equality requires that, if an electorate has two voters who cast
two disjoint ballots A and B, then every candidate approved by either of the two
voters is a winning candidate. Neutrality basically says that the names of candidates
should not play any role in determining winning candidates.

Theorem 5.3.1 (Fishburn 1978b, Alés-Ferrer 2006). A ballot aggregation func-
tion f is approval voting if and only if f satisfies Faithfulness, Consistency and
Cancellation.

Proof. Tt can be checked that if f is approval voting, then f satisfies Faithful-
ness, Consistency and Cancellation. We next show that, if f satisfies Faithfulness,
Consistency and Cancellation, then f must be approval voting.

Let f be a ballot aggregation function satisfying Faithfulness, Consistency and
Cancellation. We first show that, for any 71, 75, w13 € I1 and any A, B € K with
AN B=0,if [m2(A)=1and 7,(C)=0forall C € (K — {A4})] and [73(B) =1
and 713(C) =0 for all C € (K — {B})], then

[ + 72 + m3) = f(m1 + (712 + 73)) (5.1
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Consider 7 € ITsuchthat (X —(AUB))=1land n(C)=0forallC € K—{X —
(AU B)}. If AU B = X, then, by Faithfulness, f((;r2 + 73)) = X. Otherwise, by
Cancellation, f((r + 73) + 7) = X. By Consistency and noting that f(r1 + 7 +
w3) N f((mp + m3) + ) # 0, it follows that

S+ 4+ 73) = f(m + 72 + 73 + (w2 + 73) + 70) (5.2)

Similarly, by Cancellation, f (7, + 73 + ) = X. By Consistency and noting that
f(ry + (2 + 7w3)) N f(m2 + 73 + 7) # @, it follows that

S+ (m2 + 7m3)) = f(m1 + (2 + 73) + 12 + 713 + 7) (5.3)

Note that f (71 + (72 + 73) + 712 + 73 + ) = f (701 + 702 + 703 + (702 + 73) + 7).
Thus,
Sy + (w2 + m3)) = f(m + 72 + 73 + (w2 + 73) + 1) 5.4

Therefore, (5.1) follows from (5.2) and (5.4) immediately. In particular, we note
that,

Sf(m2 + 73) = f((m2 + 73)) (5.5)

Take any ballot response profile & € IT and consider 7’ € II such that [7'(A) >
0 = |A|=1forall A € K] and [n(x, ) =n(x,x’) for all x € X]. Starting with
(5.5) and by the repeated use of (5.1), it then follows that f(7) = f(x’).

To show that f(m)={x € X : n(x,7) > n(y,n) forall y € X}, we
first define m* = maxyey n(x, 7). Since X is finite, m* is well-defined. For each
m=0,1,...,m*, we define

Xm={xeX nkx,n)=m}

Define
Ao = X+, A1 = Xomx U Xonr—1, ooy Amr—1 = Xppr U Xppr—1 U ... U X,
Consider 7°,..., 7"~ € D(II) defined as follows: for each m =0,1,...,m*,

Tm(Am)=1 and 7, (B) =0 for all B € K — {A4,,}. By Faithfulness, for each
m=0,...,m* f(x™)=A,. By Consistency, f(7° + 7!) = Xp*,..., f(#° +
oo 4+ 7™M") = X,p«. Note that n(x, 7'y =n(x,7° + --- + 7™") for all x € X.
Therefore, f(7° + --- + 7™ ) = f(n’). Consequently, f(7r) = X+ O

The proof of Theorem 5.3.1 is based on Alds-Ferrer (2006). It may be noted
that, in Fishburn (1978b), Neutrality is also used on top of the other three properties
figured in the theorem. Alés-Ferrer (2006) shows that Neutrality is redundant.

Note that, in the proof of Theorem 5.3.1, Cancellation can be replaced by Disjoint
equality in deriving (5.1). It is clear that approval voting satisfies Disjoint equality.
Therefore, the following result follows immediately.
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Theorem 5.3.2. A ballot aggregation function f is approval voting if and only if
f satisfies Consistency, Disjoint equality and Faithfulness.

Next, we present a characterization of approval voting due to Fishburn (1978a)
without giving a proof. Interested readers can consult Fishburn (1978a) for a proof.

Theorem 5.3.3 (Fishburn 1978a). A ballot aggregation function f is approval
voting if and only if f satisfies Consistency, Disjoint equality and Neutrality.

The independence of the axioms used in each of the above results can be checked.
For example, in Theorem 5.3.1, we can check that the three axioms, faithfulness,
consistency and cancellation, used there are independent. For this purpose, consider
first the following two ballot aggregation functions, f1 and f>, defined below: for
all w € 11,

fi(m) =X
fo(r)={x e X :n(x,m) >0}

f1 selects every candidate in X for any ballot response profile. f> selects every
candidate that is chosen by at least one voter. Note that f; satisfies both consis-
tency and cancellation, but fails faithfulness thus showing that faithfulness is not
implied by the combination of consistency and cancellation. f, satisfies faithful-
ness and cancellation, but fails consistency showing that consistency is not implied
by faithfulness and cancellation. Finally, to see that cancellation is not implied by
faithfulness and consistency, we consider the following ballot aggregation function
fa: let x € X be fixed, for all # € I, f3(n)={x} if [n(a,n)=n(b, ) > 1
for all a,b € X and 7 (X)=0] and f3(rr) is given by approval voting other-
wise. f3 fails cancellation. It can also be checked that f3 satisfies faithfulness and
consistency.

The independence of the axioms figured in the other two results can be checked
as well and we leave this as an exercise for interested readers.

It may be noted that, in our approach, since we do not allow the empty ballot to
be casted by any voter, the abstention is represented by the full ballot X . In Fishburn
(1978a), the abstention is captured by both the empty ballot and the full ballot. As a
consequence, in Fishburn (1978a), the empty ballot and the full ballot X are treated
equivalently by a ballot aggregation function, so that for both cases, a ballot aggre-
gation function yields every candidate in X as a winning candidate. Sertel (1988)
makes an argument that the empty ballot and the full ballot are different ways of han-
dling abstention. When the empty ballot and the full ballot are treated differently,
Sertel (1988) defines a slightly modified approval voting in which it is approval
voting except when every voter casts the empty ballot, the ballot aggregation func-
tion picks no candidate as a winning candidate. In this framework, Sertel (1988)
presents an axiomatization of this modified approval voting by similar axioms used
in Theorem 5.3.2.
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5.4 Fixed Electorate

In this section, we present an alternative axiomatization of approval voting with a
fixed electorate for a given and fixed set of candidates X. It is therefore assumed
that, for some positive integer n, for any ballot response profile 7 in the domain,

Z 7(A) =n and the set of participating voters is fixed. Let D¥ (IT) denote this

AeK
domain of ballot response profiles.

For the purpose of axiomatization, we introduce two further axioms that are
based on Baigent and Xu (1991). A ballot aggregation function f satisfies:

e FEqual treatment if and only if, for all 7, " € D(IT), if n(x, w) = n(x, n’) for all
x € X, then f () = f(').

e Monotonicity if and only if, for all 7,7' € D(I1), all A € K and all x € X, if
nx,7’y=n(x,7) + 1l and n(y,n’)=n(y,7) forall y € X — {x}, then x €
f(m) = {x} = f(x).

Equal treatment is a variant and stronger version of Independence of symmet-
ric substitutions introduced in Baigent and Xu (1991). It says that, for two ballot
response profiles 7 and 7/, if, for each candidate x € X, the number of voters who
approve x under 7 is the same as the number of voters who approve x under 7,
then f(w)= f(x') — the sets of winning candidates under 7 and 7', respectively,
must be identical. It essentially requires that the information about “who approves
whom” should not play a significant role in figuring out winning candidates. Mono-
tonicity requires that, if a candidate x is a winning candidate under , and if some
voter does not approve x under 7 but approves x under " while all other candi-
dates get exactly the same number of approved voters under 7 and under 7/, then x
becomes the sole winning candidate under 7r’. Monotonicity is a stronger version of
a similar property proposed in Baigent and Xu (1991) where it was called Positive
responsiveness.

Theorem 5.4.1. A ballot aggregation function f on D¥ (I1) is approval voting if
and only if f satisfies Neutrality, Equal treatment and Monotonicity.

Proof. We note that approval voting satisfies Neutrality, Equal treatment and Mono-
tonicity. The remainder of the proof is to show that, if a ballot aggregation function
f satisfies Neutrality, Equal treatment and Monotonicity, then f must be approval
voting.

Let f be a ballot aggregation function satisfying Neutrality, Equal treatment and
Monotonicity. We first show that, for any 7 € D¥ (IT) and any x, y € X,

n(x,m) =n(y,n) = [x € f(n) &y € f(n)] (5.6)

To see (5.6) is true, consider 7 € D¥ (IT) and any x, y € X withn(x, 7) =n(y, n),
and x € f(x). Consider the following permutation o on X: o(x) =y,0(y) = x,
o(z)=zforall z € X —{x,y}. Foreach A € K, let 6(A) ={o(a) : a € A}.
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Consider 7’ such that 7/ (0(4)) = 7 (A) for all A € K. Note that 7’ € D (IT):
whoever casted a ballot A under 7 casts the ballot 0 (A) under 7’. Note that, by
Neutrality, y € f(x') since x € f(x) and o(x)=y. Since n(x, ) =n(y, ),
from the definition of the permutation o, it follows that n(z, w) = n(z, 7’) for all
z € X. By Equal treatment, we must have f(x) = f(7’). Note that y € f(x’).
Therefore, y € f(;r). This completes the proof of (5.6).

Next, we show that, for any 7 € D (IT) and any x € X,

x € f(r) = [n(x,m) > n(y,n) forall y € X] 5.7

Suppose, to the contrary that x € f(;r) and there exists z € X such that n(x, ) <
n(z, ). To begin with, suppose n(x, ) + 1 =n(z, 7). Since n(x,w) < n(z,7),
there must be a voter who does not approve x under 7 and who casts a ballot A
(x ¢ A). Consider 7/ € DF (IT) such that the voter who casts the ballot A now casts
the ballot A U {x} and all other voters cast the same ballot under 7 and n’. Clearly,
7’ € DF(IT). It is also clear that n(x, ') =n(x,7) + 1 and n(y, n’) =n(y, x)
for all y € X — {x}. By Monotonicity, from x € f (), we must have {x} = f (7).
However, from (5.6), given that n(x, ') = n(z, ©’), we must have x,z € f(7'), a
contradiction. This completes (5.7).

To complete the proof of the theorem, we establish the following: For all & €
DF(IT) and any x € X,

[n(x,7) > n(y,n) forall y € X] = x € f(n). (5.8)

To prove (5.8), we need only to show that x ¢ f(x) implies that there exists
z € X such that n(x,7) < n(z,7). It must be the case that either n(x, ) =0
or n(x, ) > 0.If n(x, ) =0, then we consider any y € A such that 7(A4) > 0.
Clearly, n(x,7) < n(y,n). If n(x,7) > 0, then we consider any y € f(x). It
follows from (5.7) that n(y, w) > n(x, ). If n(y, 7) =n(x, 7), then, from (5.6),
x € f(m), a contradiction. Therefore, n(y, 7) > n(x, 7). This completes (5.8).
Equation (5.7), together with (5.8), completes the proof of the theorem. O

It may be checked that the axioms used in Theorem 5.4.1 are independent. The
ballot aggregation function f; defined in the last section satisfies neutrality and
equal treatment, but fails to satisfy monotonicity proving that monotonicity is not
implied by neutrality and equal treatment together. To see that neutrality is not
implied by the combination of equal treatment and monotonicity, let us consider
the following ballot aggregation function f4 which is due to Alds-Ferrer (2006):
let X ={x,y,z} and let fa(mw)={x} if t({x})=7n({y}) > 0 and 7 (B) =0 for
all B # {x},{y} and f4(r) coincide with approval voting otherwise; then f4 sat-
isfies equal treatment and monotonicity, but fails neutrality. And finally, consider
the following ballot aggregation function fs: let i be a fixed voter who is a partic-
ipating voter under any ballot response profile and let X* be the ballot casted by
voter i under 7; define f5(r) as approval voting applied over X7 ; then f5 satisfies
neutrality and monotonicity, but fails to satisfy equal treatment.
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To complete this section, we introduce two axioms used by Baigent and Xu
(1991) in their characterization of approval voting in the current context.
A ballot aggregation function f satisfies:

1. Independence of symmetric substitutions if and only if, for all 7,7’ € DF (IT),
all A,B,C,D € Kandall x € A,y € B with C=(4 — {x}) U {y},
D=(B-{yhUixhygAx¢B,ifn(d)=n"(4) -1, 7(B)=n"(B) -1,
7' (C)=n(C) + 1 and 7' (D)=7n(D) + 1, and 7(E) =7n'(E) for all E €
(K—{A,B,C, D}), then f(x)= f(x).

2. Positive responsiveness if and only if, for all , 7’ € DF (IT), all A € K, and all
x€eX—A,ifn/(C)=n(C)forallC € K—{A, AU{x}}, 7' (A) =n(A)—1 >
Oand /(AU {x})=m (AU {x}) + 1, thenx € f(7) = {x} = f(z').

It may be noted that, in Baigent and Xu (1991), the axioms are formulated in
terms of choice functions. Independence of symmetric substitutions is a weaker
property than equal treatment. The basic idea underlying this axiom is that it does
not matter “who votes for whom.” For further discussions of these two axioms, see
Baigent and Xu (1991).

We now present the result which closely resembles the characterization of
approval voting by Baigent and Xu (1991). Its proof is similar to the proof of
Theorem 5.4.1 and we omit it.

Theorem 5.4.2. A ballot aggregation function f is approval voting if and only if
it satisfies Neutrality, Independence of symmetric substitution and Positive respon-
siveness.

For the independence of the axioms figured in the above theorem, interested
readers are referred to Baigent and Xu (1991).

5.5 Variable Electorate with a Single Ballot Response Profile

In this section, we consider an axiomatization of approval voting with variable elec-
torates that are drawn from a given and fixed set N = {1, ..., m} of finite number
of voters and with a single ballot response profile. The approach in this section is
closely related to the classical framework of aggregating a single profile of individ-
ual preferences developed in the literature of social choice theory. For this purpose
and throughout this section, we assume that (1) each voter i € N casts a non-empty
ballot A; € KC; (2) the profile of ballots (A1, ..., Ayx,) casted by voters in N is fixed;
and (3) any voter i in an electorate E € N casts the ballot A;. These assumptions
will put a restriction on the domain of a ballot aggregation function f. We shall
denote this domain by DV (IT) which is given by

{mell:n(A) >0= [forsome E C N,#E =k, A = A; forsome i € E]}



100 Y. Xu

It may be noted that, for any 7 € DVS(II), Z n(A)=k for some E C N

AeK
with #F = k.

Example 5.5.1. An example will be helpful in understanding the above restrictions
on the domain. Let X = {x, y, z} and a fixed electorate be given by {1, 2, 3}. There
are seven ballots: X, {x, y},{y,z},{x,z}, {x},{y},{z}. Suppose voter 1 casts the
ballot {x, y}, voter 2 casts {y} and voter 3 casts {z}. Then, DVS(IT) contains the
following 7 ballot response profiles:

Lif A e {{x, y}, iy} iz}

0 if A € {X,{y,z},{x.2}, {x}}
1if A e {{x,y}.{y}}

0 if A e{X, {y 2} {x, 2} {x}. {z}}
L if A e {{x, y},{z}}

0 if A e{X,{y 2} {x. 2}, {x}, {y}}

1 if A e {{y}. {z}}

0 if A € {X,{y, 2} {x, 2} {x}. {x, y}}
1 ifAe{{x,y}}
0
1
0

m i (A) = {
7y e (A) =

w3 1 w3(A) =

s s(A) = if A e{X,{y,z},{x,2},{x}, {»}}

if A e {{y}}

if A e{X {y,z},{x,z},{x, y}. {z}}
1 ifAe{{z}}
0 if A e{X {y.z}. {x, 2. {x. ¥y}, {y})

We now introduce three further axioms to be imposed on a ballot aggregation
function f (see Xu 2008).
A ballot aggregation function f on D5 (IT) satisfies:

7e : we(A) =

|
|
4 a(A) = {
|
|

7 - JT7(A) = {

e Disjoint inclusion if and only if, for all 7,7’ € DVS(H) and all 4 € K,
if #/(B)=n(B) for all B € K—{A}, n(A)=0 and n'(A)=1, then A N
f)=0= f(x) < f(x').

o Weak consistency if and only if, for all 7,7’ € DVS(IT) and all 4 € K, if
7' (A)=1, 7/(B)=0 for all B € K — {A}, and (7 + /) € DVS(II), then
f@)N f(7) # 0= f(x+x')=f(r)N f(x').

e Dual consistency if and only if, for all 7,7’ € DVS (IT) and all x € X, if
x ¢ f(m),n(x,n’) =0,and (m + ') € DVS(II), then x & f(xw + 7').

Disjoint inclusion requires that, if a ballot response profile 7" is enlarged from a
ballot response profile & by adding a voter who is not a participant under 7 and who
casts a ballot 4, and if none of the candidates in A is a winning candidate under =,
then all the winning candidates under 7 continue to be winning candidates under
7’. Weak consistency is similar to consistency, but a bit weaker than consistency.
Dual consistency stipulates that, if a candidate is not a winning candidate under &
and is not approved by any voter under 5/, then it cannot be a winning candidate
when the two ballot response profiles are joined.
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Theorem 5.5.1 (Xu 2008). A ballot aggregation function f on DVS(II) is app-
roval voting if and only if [ satisfies Faithfulness, Disjoint inclusion, Weak consis-
tency and Dual consistency.

Proof. Tt can be checked that approval voting defined on D" (IT) satisfies Faith-
fulness, Disjoint inclusion, Weak consistency and Dual consistency. It remains to be
shown if a ballot aggregation function f on D" (IT) satisfies Faithfulness, Disjoint
inclusion, Weak consistency and Dual consistency, then f must be approval voting.
Let f on DVS(IT) satisfy Faithfulness, Disjoint inclusion, Weak consistency
and Dual consistency. Let 7 € DVS(IT). We shall prove the result by induction on
Z w(A) =k. Clearly, 1 <k < m. By Faithfulness,
AeK

f(r) = Aif m(A) = 1 and 7(B) = O forall B € K — {A} (5.9)

Suppose f'(x) is approval voting for any 7 such that Z w(A) < k. We now
AeK
show that f () is approval voting for any s such that Z w(A)=k + 1. Let
AeK

7w € DVS(II) be such that there are k 4 1 voters who cast ballots. We denote
these ballots by Ay,..., Agy1. Foreach p=1,....k + 1,letw_, € DVS(H) be
such that 7_, is generated by an electorate consisting of all the participating vot-
ers under 7 except the voter who casts 4 ,, and let 7, € DVS(IT) be such that it
is generated by a single voter who casts the ballot 4,. Note that, by Faithfulness,
f(rp)=Ap, foreach p=1,...,k + 1. Note also that ¥ =x, + 7n_, for every
p=1,...,k+ 1.If forsome p=1,....k + 1, f(zwp) N f(n—p) # @, then by
Weak consistency, f(w) = f(wp) N f(w—p). Since f(mw—p) and f(p) are given
by approval voting, it is immediately clear that f(;r) is given by approval voting as
well If, forall p=1,....k + 1, f(;p) N f(—p) =9, then, by Disjoint inclusion,
f(—p) € f(m). Thatis, Up—1, x+1f(m—p) € f(m). It is easy to check that,
in this case, forany x € U, -1, k41 f(m—p), n(x,m) = n(y,n) forall y € X.
If we can show f(7)= Up—1, k+1 f(r—p), then we are done. Consider any
€ X~(Upe 1,k f(T-p)).2 € f(x). Sincez ¢ f(r—p) forall p=1.....k+1
and each f(w_,) is given by approval voting, it must be the case that, for some
p=1,....k +1,z¢ Ap. Then, by Dual consistency, z ¢ f(n, + n—p) = f (7).
Therefore, in this case, f(7)= Up—1 . k+1 f(7—p), which shows that f(x) is
given by approval voting.

From our induction hypothesis and by (5.9), it then follows that f is approval
voting. O

.....

Interested readers may want to check whether the axioms used in Theorem 5.5.1
are independent.
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Chapter 6
Approval Balloting for Multi-winner Elections

D. Marc Kilgour

6.1 Introduction

Approval voting is a well-known voting procedure for single-winner elections. Vot-
ers approve of as many candidates as they like, and the candidate with the most
approvals wins (Brams and Fishburn 1978, 1983, 2005). But Merrill and Nagel
(1987) point out that there are many ways to aggregate approval votes to determine
a winner, justifying a distinction between approval balloting, in which each voter
submits a ballot that identifies the candidates the voter approves of, and approval
voting, the procedure of ranking the candidates according to their total numbers of
approvals.

Approval balloting can also be used in a multi-winner election, where the objec-
tive is to identify a “best” subset of candidates using the ballots, i.e., the voters’
approvals, as input. We discuss several different procedures for determining a subset
of candidates based on a profile of approval ballots. In practice, the subset selected
could be anything from a standing committee of, say, university faculty, to a con-
stitutional convention, to an all-star team. Nonetheless, we will refer to subsets of
the candidates, including the subset selected by the voters, as committees. We con-
sider only systems in which every voter has an equal role; in particular, every voter
must receive an identical ballot, and must have the opportunity to vote for any and
all approved-of candidates. Note that these conditions rule out some multi-winner
elections, such as those for national legislatures in many countries. But many elec-
tions do fit this description and, as will be seen, there are many ways to determine a
winning committee in such elections.

Filling out an approval ballot is equivalent, of course, to selecting a subset of
the candidates — the voter’s approved subset. Thus there is a natural correspondence
between a committee and an approval ballot, in that both are subsets of the set of
candidates. This fundamental link is exploited by some procedures for combining
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the voters’ preferences, as registered in a profile of approval ballots, to produce a
“best” committee.

It is usual to assess voting systems by identifying and comparing their prop-
erties (Arrow et al. 2002; Brams and Fishburn 2002). Some voting systems for
electing committees are studied in this way by Ratliff (2003, 2006). Though the
main objective of this chapter is to collect and classify procedures that use approval
balloting to elect committees, we will compare some of them according to prop-
erties that are obvious or well-established. It should be noted that all procedures
mentioned here are anonymous (treat all voters fairly) and neutral (treat all can-
didates fairly). Nonetheless, the presentation of properties below is no doubt far
from complete. This article will simply present procedures in a format suitable for
comparison; some conclusions are drawn about which systems are appropriate for
particular purposes, but many open questions remain.

6.2 The Setting

We assume throughout that there are n > 1 voters and m > 1 candidates. Let [m] =
{1,2,...,m}. We will survey procedures to select a committee based on n approval
votes with candidate set [m]; thus, we are conducting a multi-winner election in the
sense that every member of the elected committee wins. However, we allow for ties,
so there may be several winning committees. (Most of our notation and terminology
is drawn from Kilgour et al. (2006) and Fishburn and Pekec¢ (2004).)

The set of all subsets of the set of candidates is 2[’"], and in general there are
2™ possible committees, namely the members of 2lml I practice, however, multi-
winner elections are often conducted under a priori restrictions on the possible
winning subsets. In other words, it is typical that many of the 2™ subsets of candi-
dates cannot win. For example, the size of a committee is often decided in advance
of the election, for example by a constitution. Rarely is it meaningful to select the
entire set of candidates, [m]. (Why hold the election, if not to reject at least one
candidate?) As well, there are often “representativeness” restrictions; the winning
subset must contain at least one woman, or equal numbers of men and women, or
at least one member of a predefined subset of the candidates, or representation from
each of several defined subgroups. For example, a basketball all-star team requires
one center, two forwards, and two guards; similarly, university committees are often
required to include members from various subdivisions.

Another condition, often implicit, is that some candidate(s) must win; i.e., the
winning set cannot be @. This condition might not be appropriate for some elections,
such as for members of a “hall of fame,” which must allow for the collective deci-
sion that no candidates are suitable for enshrinement. (For example, in the National
Baseball Hall of Fame, ballots have about 25 candidates, of whom only a handful
are elected in a typical year. Voting is by approval balloting except that voters are
permitted to vote for at most 10 candidates. See National Baseball Hall of Fame
[BBHOF] (2009) for details.)



6 Approval Balloting for Multi-winner Elections 107

For any multi-winner election, we call the allowable winning committees the
admissible committees, denoted A. We assume throughout that A C 2lml ig a fixed
non-empty collection of subsets of the set of all candidates, and consider it to be
a “parameter” of the election, like n and m. For instance, it is common for the
admissible committees to be all subsets containing exactly k candidates, where k is
fixed and satisfies 1 < k < m. This set of committees is denoted Ay ; if the election
is to choose such a committee, we say that A = Ay. In another useful example, all
non-empty committees are admissible; in this case, we say that A = Ap = 2lml_g.

Leti = 1,2,...,n. Then voter i’s ballot is V; < [m]; note that a voter
is allowed to vote for no candidates, so V; may be empty. The ballot profile is
V = (V1,Va,..., V), and the set of all possible ballot profiles is V = (2[’”])n.
Any voting procedure is then a function, possibly multi-valued, from V to A.

We now introduce several examples that will be useful to illustrate the distinc-
tions among the procedures. The first is from Kilgour et al. (2006), and the second
from Fishburn and Peke¢ (2004).

Example 6.2.1. There are n = 4 voters named 1, 2, 3, and 4; m = 3 candidates
named 1, 2, and 3; and all non-empty committees are admissible (A = AF).

Voter 1 2 3 4
Ballot 1 12 13 13

Example 6.2.2. n = 9 voters; m = § candidates; any three-member committee
admissible (A = A3).

Voter 1 2 3 45 6 7 8 9
Ballot 2 12 12 13 37 45 46 47 48

Example 6.2.3. n = 6 voters; m = 4 candidates; any two-member committee
admissible (A = A»).

Voter 1 2 3 4 5 6
Ballot 12 12 24 34 13 13

Example 6.2.4. n = 6 voters; m = 6 candidates; any two-member committee
admissible (A = A,).

Voter 12 3 4 5 6
Ballot 1 1 234 24 235 356

Suppose that voter i’s approval ballot is V; C [m] and that S < [m]. Then
the set of candidates in S approved by voter i is V; N S, and the number of such
candidates is App(V;, S) = App;(S) = |V; N S|. To illustrate, let S = {2, 3},
which we will write S = 23. In Example 6.2.1, for instance, App;(23) =
0,1,1,1 fori = 1,2,3,4, respectively. Similarly, in Example 6.2.2, the nine val-
ues of App;(23) are, in sequence, 1, 1, 1, 1, 1, 0, 0, 0, 0. In Example 6.2.3, the
sequence is App; (23) = 1,1,1,1, 1, 1; every voter approves of either candidate 2
or candidate 3, but never both.
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6.3 Scoring Procedures

A “score” for a committee election conducted with approval balloting is a measure
of the ability of a possible committee to represent the voters. A score defines a scor-
ing procedure: an admissible committee with maximum score is elected. Multiple
winning committees arise if, and only if, two or more admissible committees tie for
the highest score. There are many ways to define a score using a profile of approval
ballots, but before introducing them, we discuss one important property that scores
may or may not possess.

Consider a multi-winner election conducted with approval ballots, in which there
are m candidates, n voters, the admissible set is A, and the ballot profile is V.
A score is a function f : A — R; f(S) is usually interpreted as a measure of
the appropriateness of S to win the election. In fact, we will usually assume that the
score is defined on all subsets, so that f : olml R, which is often convenient.
As well, it is usually required that f (@) = 0.

A score f(-) is additive iff, whenever S1, S, € 2" S, NS, = @, then f(S; U
S2) = f(S1) + f(S2). In words, the score of a union of disjoint subsets is the
sum of the scores of the subsets. It follows that, for an additive score, the score of
a subset is equal to the sum of the scores of the members of that subset. In other
words, once the scores of individual candidates are known, then the score of any
possible committee can be obtained by summation.

The property of additivity makes a score easier to work with, provided that the
admissible set has suitable structure, for then inspection of the scores of individual
candidates can make the winning committee obvious. For example, if 4 = Ay, a
committee is winning if and only if it contains k top-scoring candidates. In particu-
lar, there is a tie for winning committee if and only if, when the candidates are listed
in decreasing order of score, there is a tie between the kth and (k + 1)st candidates.
Similarly, if A = 2], a committee is winning if and only if it includes all positive-
scoring candidates and excludes all negative-scoring candidates. In particular, the
unique winning committee is @ if and only if all candidates’ scores are negative.
In these cases, and others, additivity of the scoring rule reduces the computational
requirements substantially.

6.3.1 (Simple) Approval

The natural way to use approval ballots to score a committee is simply to count the
total number of approvals received by the committee’s members. The total number
of approvals for committee S is

App(S) =Y App(Vi.S) =Y Appi(S).

and the (Simple) Approval rule is to select any S € A that maximizes the score
App(S). The Approval rule is an obvious generalization of approval voting: If
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A = A;, then the Approval procedure reproduces a conventional (Single-Winner)
approval-voting election.

It is easy to see that the score App(-) is additive. Let S, S» C 2[’”], S1NS, = 0.
Then

App(S1U 82) = ViN(S1US) [ =[(ViNSHU(I:iNSy)|
= Vi N S1| + Vi N S2| = App(S1) + App(S2),

since S7 and S, are disjoint. It follows that, for any S € A, App(S) =

> jes App (J)-
For instance, in Example 6.2.2 it is easy to verify that App(j) = 3, 3,2, 4, 1, 1,
2,1for j = 1,2,...,8. The Approval Committee, the three-member committee

S that maximizes App(S), is therefore 124. It is easy to verify that, in Exam-
ple 6.2.3, the Approval Committee is {12, 13}, i.e., the two committees 12 and 13
tie. Similarly, in Example 6.2.1, the approval committee is clearly 123, the set of
all candidates. In fact, it is obvious that the Approval rule tends to select the larger
committees, since the scores of individuals, App(i), are never negative. In particular,
Approval will select 2] whenever it is admissible. This property explains why the
Approval procedure is not recommended except when admissible committees are of
fixed size, i.e., A C Ay for some k satisfying 1 <k < m.

Fishburn and Pekec¢ (2004, p.6) noted that the Approval procedure is addi-
tive, and discussed the implications for efficiency. The procedure is easy to apply
when there are relatively few candidates, but it is not efficient in the sense of NP-
completeness (Garey and Johnson 1979). In fact, the natural algorithm based on
additivity of the Approval score, App(-), is polynomial in mn+|.A|. Since | A| < 2™,
then if the number of candidates, m, is relatively small, computational effort is
reasonable even if the number of voters, n, is large.

6.3.2 Net Approval

The Approval rule works well, and is easy to implement, especially if the number of
candidates is not large. But because of its natural bias toward larger committees, it
can be recommended only in situations where the committee size is fixed in advance.
A related rule that lacks this bias can be found by taking a “two-way” (or self-dual)
approach to approval voting: If the score of a committee increases with the addition
of an approved candidate, then it should decrease with the addition of a disapproved
candidate. A natural measure of the score that voter i, whose vote was V;, would
assign to committee S C [m] is its Net Approval score,

NApp;(S) =1V;nS|— |V NS,

where V¢ is the complement of V; in [m]. The Net Approval procedure is to select
any S € A that maximizes NApp(S) = Y ; NApp;(S).
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It is easy to see that, if we define App*(S) = App(S) = Y ; |V; N S| and
App~(S) = X; [V N S|, then NApp(S) = App™ (S) — App™(S). In other words,
the Net Approval score of S is the Approval score of S calculated on the basis
of V.= (V1,Va,...,V,), minus the Approval score of S calculated on the basis
of V¢ = (VF,Vy,...,VS). Thus, the Net Approval score of a subset equals its
Approval score (candidates in S voted for) minus its Disapproval score (candidates
in S voted against).

Because the Approval score, App(S) = App™(S) is additive, it is immediate
that the Disapproval score, App™ (S), is also additive. Also, it is easy to check that
the sum or difference of two additive functions is additive, which implies that the
Net Approval score, NApp(-), is additive. This can also be demonstrated directly. It
follows that, forany S € A, NApp(S) = 3_ ;e NApp(j).

If, for example, A = AF, i.e., any committee with at least one member may
win, then additivity makes the Net Approval procedure easy to apply if at least
one candidate has non-negative score. The winning committees are precisely those
committees containing all candidates with positive score and no candidates with
negative score. For Example 6.2.1, it is easy to check that NApp(j) = 4, —2,0 for
Jj = 1,2,3, so under Net Approval there is a tie between the committees 1 and
13. This result might be criticized for being indecisive, but it does establish that
committees of different sizes can be competitive under Net Approval, which directly
contrasts with the tendency of (Simple) Approval to select the largest admissible
committee.

When A C A, the two scores App; (S) and NApp;(S) are related. Because
(VinS)u (VN S)=S,itis easy to show that

NApp;(S) = 2App;(S) — k,

whenever |S| = k. Thus, when admissible committees are all the same size,
the variation in NApp;(S) reflects only variation in App;(S), and similarly for
NApp(S) and App(S). Net Approval scoring is valuable only when committees of
different sizes are to be compared. To illustrate, consider Example 6.2.3, where the
candidate approval scores are App(j) = 4,3,3,2 for j = 1,2, 3,4, respectively,
and the corresponding candidate net approval scores are NApp(j) = 2,0,0,—2.
So if, as in Example 6.2.3, the admissible sets are A, then the winning commit-
tees are 12 and 13 under the Net Approval procedure, exactly the same as under the
Approval procedure.

One benefit of a score like Net Approval is that it can provide an absolute thresh-
old for assessment of voter support. In particular, it gives the voters complete control
over the size of the committee, which may be appropriate for some elections, such as
enshrinement in a hall of fame. (In a hall of fame — see, for instance, BBHOF, 2009 —
supermajority threshold approval is typically required for election.) If all candidates’
scores fall below the threshold — in the majority case, if they are negative — then the
best committee, if it is admissible, is @. If A = 2[’”], i.e., all committees are admis-
sible, then the Net Approval procedure is equivalent to Candidate-by-Candidate
Majority Voting — any candidate with more approvals than disapprovals is elected,
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any candidate with more disapprovals than approvals is defeated. There is a tie if
and only if there are candidates with equally many approvals and disapprovals, in
which case a subset is winning if and only if it contains no candidates with more
disapprovals than approvals. Example 6.2.1 illustrates such a tie.

If every candidate’s Net Approval score is negative and @ is not admissible —
for example, if A = Af — then the winner is any non-empty admissible subset
of candidates tied for the maximum score. For instance, in Example 6.2.2 the can-
didates’ Net Approval scores are NApp(j) = —3,-3,-5,—1,—7,—7,—-5,—7 for
j =1,...,8, so the winning committee would be @ if it were admissible. But it is
not, and the winning committee is 124.

6.3.3 Satisfaction

Brams and Kilgour (2010) proposed another method for using approval ballots in
multi-winner elections, called Satisfaction (Approval) Voting. This procedure is a
scoring rule based on selection of the admissible committee, .S, that maximizes the

Satisfaction score SVl
Sat(S) = =
$)=2. 7y,

(By convention, the fraction in the summation equals zero if voter i voted for no
candidates, i.e., if V; = @. Such voters have no effect on the outcome of the election
using the Satisfaction procedure.) The definition of the score Saz(.S) reflects another
view of what distinguishes a good committee. Voter i’s “satisfaction” with commit-
tee S equals the proportion of candidates supported by i who belong to S. As Brams
and Kilgour (2010) point out, under the Satisfaction procedure a voter pays a high
price for approving of two or more candidates, so it seems likely that voters would
bullet vote unless they were indifferent, or nearly so, among several candidates.

The score Sar(-) is additive, for if V; # @ and if S1,S8, € 2", S, N S, = 0,
then

Vin(S1US)|  [(VinS)UV;NSy)|

V] B V]
_inSi+VinS|  VinsSi| | |VinS,
a Vil |l Vil
= Sat(Sy) + Sat(S>),

Sat(S1 U Ss)

since S7 and S, are disjoint. It follows that, for any § € A, Sat(S) =
> jes Sat(j).

The Satisfaction procedure can be recommended only for elections in which
A C Ay for some k, since it tends to favor larger committees over smaller. (After
all, Sar(S) is never negative.) For Example 6.2.4, the individual Satisfaction scores
are Sat(j) = 2,1.17,1,0.83,0.67,0.33for j = 1,..., 6, so the winning committee
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under the Satisfaction procedure is 12. (In contrast, under Approval, the winner is
23.) For Example 6.2.1, the candidates’ Satisfaction scores are S(j) = 2.5,0.5,1
for j = 1,2,3, so the winning committee is 123 illustrating that, as for with
Approval, the Satisfaction procedure is biased toward larger committees.

6.3.4 Net Satisfaction

Just as the Net Approval score can be developed from the Approval score by taking
a “two-way” (or self-dual) approach, a Net Satisfaction score can be developed from
the Satisfaction score. If satisfaction with a committee increases with the addition of
an approved candidate, then it should decrease with the addition of an unapproved
candidate. The Net Satisfaction score captures this idea; a measure of the satisfaction
that voter i, whose vote was V;, would assign to committee S C [m] is

vins| _[vens]|
Vil Ve

NSat;(S) =

)

where V¢ is the complement of V; in [m]. (By convention, any fraction with denom-
inator 0 is taken to equal 0.) The Net Satisfaction procedure is to select any S € A
that maximizes NSat(S) = ) ; NSat;(S).

Again, it is easy to see that if we define Sar™(S) = Sat(S) = Y |V|1'I2|S|
and Sar~(S) = Y, % then NSat(S) = Sar™(S) — Sar(S). As with Net
Approval, the Net Satisfaction score of S is the Satisfaction score of S calculated on
the basis of V7, V>, ..., V,, minus the Satisfaction score of S calculated on the basis
of V£, Vs, ..., V,f. We can say that the Net Satisfaction score of a subset equals its
Satisfaction score (based on elected candidates voted for) minus its Dissatisfaction
score (based on elected candidates voted against).

Because the Satisfaction score, Sat(S) = Sart(S) is additive, it is again imme-
diate that the Dissatisfaction score, Sar™ (), is also additive. Because the difference
of additive functions is additive, the Net Satisfaction score, N Sat(-), is additive. It
follows that, for any S € A, NSat(S) = }_ ;c5 NSat(j).

For Example 6.2.1, it is easy to check that NSar(j) =2.5—-0=2.5,05—-2.5=
—-2,1.0—-1.5 = —-0.5for j = 1,2,3, so applying the Net Satisfaction procedure
rule to Example 6.2.1 produces uniquely the committee 1. (Recall that Net Approval
produced a tie between 1 and 13 for this example.)

Like Net Approval, Net Satisfaction can be interpreted as providing an abso-
lute threshold for assessment of voter support. If A = 2] then there can be no
problem applying the Net Satisfaction with threshold zero. However, admissibility
restrictions may increase the complexity of the procedure.
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6.3.5 Representativeness

Monroe (1995) proposed a design principle for electoral systems: maximize propor-
tional representation by minimizing “misrepresentation.” Potthoff and Brams (1998)
showed how to implement such systems using integer programming, and suggested
that approval ballots made misrepresentation easy to measure. Below we show that,
under approval balloting, a maximally representative subset can be determined by
implementing a scoring procedure.

The fundamental idea of Monroe (1995) is that a procedure should assign a spe-
cific elected candidate to each voter; the voter is then “represented” by the assigned
candidate. A condition of the assignment is that, as nearly as possible, each elected
candidate should be assigned to an equal number of voters.

In the approval balloting context, it is natural to say that a candidate can represent
a voter if and only if the voter approved of the candidate. Therefore, minimizing
misrepresentation is equivalent to maximizing the number of voters assigned elected
candidates they voted for. Based on this idea, and provided that a fixed number, £,
of candidates is to be elected, i.e., that A C Ay, the integer program of Potthoff and
Brams (1998) can be implemented as a Representativeness score,

Rep(S) = Z Zx,-jlnd(j, Vi)

jeSi=1

where Ind(j,V;) = 1if j € V; and Ind(j,V;) = 0 otherwise. (To see that this
score measures representation, note that x;; = 1 if elected candidate j is assigned
to voter i, and x;; = O otherwise. If the candidates in S are elected, Rep(S) is thus
equal to the number of times that a voter is assigned to an elected candidate that the
voter approved of.)

Forany S € Ag,definex;,j =1,2,....mbyx; =1if j € Sandx; =0
otherwise. The 0-1 variables x;;,i = 1,2,...,n,j = 1,2,...,m must be chosen
in accordance with the following conditions:

Zx,-j = 1foreachi =1,2,...,n
J

n
—Lx; +Zx,~j >0foreachj =1,2,...,m
i=1

n
—Ux; +le'j <Oforeachj =1,2,...,m
i=1

where L = |z ] and U = [7]. Note that if £ is an integer, then L = U and the last
two conditions can be replaced by

n
nx; :kaU foreach j =1,2,...,m.

i=1
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To interpret the constraints, note that x; = 1 indicates that candidate j is elected,
and x;; = 1 indicates that candidate j is assigned to voter i. (Each voter, i, is
assigned exactly one elected candidate.) If x; = 0, then x;; = Oforalli.If x; = 1,
then there are at least L and at most U voters, i, for whom x;; = 1, i.e., who
are assigned to candidate j. Note that L = U if ¢ is an integerand L = U — 1
otherwise.

To summarize, the Representativeness score of candidate j is O if j is not elected;
if j is elected, it equals the number of voters assigned to j who approved of j. The
representativeness score of an elected candidate therefore cannot exceed the number
of voters assigned to that candidate, either L or U. If there exists an admissible
committee such that every voter can be assigned to a member of that committee of
whom the voter approved, subject to all constraints, then every voter is represented,
and that committee achieves the maximum representativeness score, 7.

To see the role of the constraints, consider Example 6.2.3. Since % = 3, each
elected candidate must be assigned to represent three voters. Candidate 1 could
represent voters 1, 2, 5, or 6, but not voters 3 or 4. The only candidate who
could represent both voters 3 and 4 is Candidate 4. But Candidate 4 received
only two approval votes and can therefore contribute a maximum of two to the
Representativeness score of any committee. Therefore Rep(14) = 5, and simi-
larly Rep(12) = Rep(13) = 5, whereas Rep(23) = 6, the maximum score. It is
easy to check that no other committees achieve Representativeness score 6, so that
according to the Representativeness procedure the unique winning committee in
Example 6.2.3 is 23. In contrast, most other procedures find winning committees
that include Candidate 1, who received the most approval votes.

It is obvious that Rep(.S) is an additive score. However, the need to assign elected
candidates to voters seems to cancel out any computational advantages conferred by
additivity. See Potthoff and Brams (1998) or Brams (2008, Chap. 6), for a discussion
of the implications of relaxing the integrality constraint, i.e., allowing two or more
candidates to be assigned, fractionally, to represent a voter.

6.3.6 Proportional Approval

Another idea for scoring approval ballots for committees was suggested by
Simmons (2001). Under the (Simple) Approval rule, each member of a committee
voted for by a voter contributes equally to the committee’s score, so that a commit-
tee that includes two of voter 1’s candidates and none of voter 2’s scores just as well
as a committee that includes one candidate supported by each voter. The motiva-
tion for the Proportional Approval rule is that it is more important for a committee
to represent more voters than to give extra representation to a voter who is already
represented.

For a general presentation, set r(0) = 0 and let r(1),r(2),...,r(m) be any
increasing sequence of positive numbers. The specific sequence suggested by
Simmons (2001) was
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1 1 &
rky=14+-4+---4+-= — (6.1)
2 k — j
Jj=1
for k 1,2,...,m, which matches the Hamilton method of apportionment. For

any S C [m], define
PApp(S) =Y _r(ISn Vi)

1

The Proportional Approval procedure is to select any S € 4 that maximizes
PApp(S).

For example, using the sequence (6.1), the score of a subset S is increased by 1
for each voter who votes for one member of S, by 1 + % = % for each voter who
votes for two members of S, by 1 + % + % = %1 for each voter who votes for three
members of S, etc.

A difficulty with the Proportional Approval score is that in general it is not
additive. For example, using the standard scoring sequence (6.1) in Example 6.2.3
produces PApp(1) = 4 and PApp(2) = 3 but PApp(12) = 6. Computation with
Proportional Approval is therefore more difficult. It can be shown that a Proportional
Approval sequence (1), r(2), ..., r(m) produces an additive score if and only if it
satisfies r (k) = Ak for some positive A. Of course, the Approval score is captured
by the score sequence r(k) = k. We have shown that the “diminishing marginal
value of representation” property, achieved iff the sequence r (k) is increasing at a
decreasing rate, is incompatible with additivity.

Of course, the proportional approval score of a subset S increases as S gets
larger, because the sequence r (k) is increasing, and a bigger S cannot have fewer
intersections with V; (for each i). A consequence, of course, is that the Propor-
tional Approval rule does not work well unless the size of the committee to be
elected is restricted, and it is usually applied only when A C A for some
k =1,2,...,m—1. A related rule that might be appropriate if committees of dif-
ferent sizes are admissible could be based on a Net Proportional Approval score,
which would have the form

NPApp(S) =Y [r*(S N Vi) —r=(S N VeD]

i

where 7 (k) and r (k) are increasing sequences of positive numbers, possibly equal
to each other, and possibly both given by (6.1).

6.3.7 Sequential Proportional Approval

Another computationally difficult system is the Sequential Proportional Approval
procedure, proposed by Thiele (c. 1890). As noted above, the (Simple) Approval
rule in an election with A € A; produces the usual approval voting winner.
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To express the Sequential Proportional Approval procedure as a scoring rule, the
single-winner Approval procedure must be executed iteratively, but with weighted
voters. Suppose that voter i has weight w; > 0. Then in a single-winner election
(i.e., a committee of size k = 1 is to be elected), the Weighted Approval score of
candidate j € [m] can be taken to be

WApp(j) =Y wilnd(j, V), (6.2)

where Ind(j, V;) = |j NV;|. The winning candidate would be any j that maximizes
WApp(j).

If k > 1, the Sequential Proportional Approval procedure to elect a k-member
committee (i.e., with A C Ay) is an iterative procedure:

e Begin by setting Cop = [m] and letting w} = 1 for all voters i. Apply (6.2)
to obtain scores WApp'(j) for all j € Co. The first candidate seated on the
committee is then any candidate j; € Co that maximizes WApp'(j). Now set
C1=Co—ji1.

e Suppose that 1 < k& < k and that candidates j;, j», ..., jo—1 have been seated
on the committee, and that the subset of remaining candidates is Cj,—;. Reweight
the voters so that the weight of voter i is

B 1
Wl —_— . . . *
L+ Vin{ji, 2o a1}l

Apply (6.2) to obtain scores WApp"(j) for all j € Cj_,. The hth candidate
seated on the committee is any candidate j; € Cj—; that maximizes WApph ().
If h = k, stop. Otherwise set C, = C,—1 — j and repeat.

Examples show that the Sequential Proportional Approval procedure is differ-
ent from the Proportional Approval procedure. For instance, in Example 6.2.3,
Sequential Proportional Approval produces a tie among 12, 13, and 14, whereas
Proportional Approval produces a four-way tie: these three committees, as well
as 23.

Like the Approval score, the Weighted Approval score (6.2) is additive. But the
facts that candidates are elected to the committee one at a time, and that after every
election each voter’s weight must be recalculated, make the efficiency of the Sequen-
tial Proportional Approval procedure low, and closer to the Proportional Approval
procedure than the Simple Approval or Satisfaction procedures.

6.4 Threshold Procedures

Each scoring rule is characterized by a score function that measures the “appropri-
ateness” of each admissible subset; then any subset with maximum score wins the
election. The score of a possible committee should increase as the subset becomes
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more similar to the voters’ ballots; in general, scores reflect that overlap is good and
more overlap is better, presumably because it means better representation.

Threshold methods, developed by Fishburn and Peke¢ (2004), are characterized
by binary (Yes or No) judgements about representativeness: either a subset has suf-
ficient overlap with a voter’s ballot to represent that voter, or it does not. The best
committee is then the one that represents the most voters. In particular, insufficient
overlap with a voter’s ballot counts for nothing, and if the overlap exceeds a thresh-
old, then any extra preference for that committee because of the additional overlap
also counts for nothing. Thus, two subsets that meet the same thresholds for repre-
sentation have the same argument for selection, even if one exceeds all thresholds
while the other merely meets them.

To develop an array of threshold methods, Fishburn and Peke¢ (2004) define a
threshold function to be a function ¢ : A — R™T, which maps every admissible
set to a positive real number. The interpretation is that #(S) is the threshold for
a possible committee S to be representative: S represents any voter { for whom
[Vi N S| > t(S). The Threshold Approval procedure ¢ is to select S € A if and
only if

i Vin S| = t(S)H = |4 : |ViNT| > t(T)}| forall T € A.

In other words, select S to maximize |{i : |V; N S| > 1(S)}|, the number of voters
represented by S, according to the threshold embodied in 7 (-).

Note that the criterion of representativeness of a voter by a subset may depend
on the subset, but it does not depend on the voter. Once the votes are in, i.e., given
that V' € V is fixed, then whether voter i; is counted as represented by S € A
depends on 7(S), but it is determined in exactly the same way as whether voter i, is
represented by S.

Note that many threshold rules are possible, depending on the choice of the
threshold function ¢(-). Fishburn and Peke¢ (2004) suggest many possibilities. If
A C A, so that any committee elected must have exactly X members, then a con-
stant threshold, 1 (S) = £, for 1 < £ < k is a natural choice. Thus, a committee S is
counted as representing a voter i iff |V; N S| > £, i.e., voter i has voted for at least £
members of S. For Example 6.2.2, the Constant Threshold Approval rule with ¢ = 1
produces the committee 234, which is approved by all voters (at this threshold). In
the same example, the Constant Threshold Approval rule with ¢ = 2 produces the
committee 123, which is approved by three voters at this threshold, while no other
committee is approved by more than two.

Since only neutral voting rules are considered here, thresholds must be cardi-
nal, i.e., for all 1, 8> € A, if |S1| = |52/, then £(S;) = #(S3). Clearly, constant
thresholds are cardinal. For situations in which committees of different sizes are
admissible, constant threshold rules tend to select larger committees — exactly the
same phenomenon as for scoring rules like Approval and Satisfaction. To avoid
nonsensical results, Fishburn and Pekec¢ (2004) suggest that thresholds should be
non-decreasing; cardinal thresholds that are non-decreasing have the property that
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if |S1] < |S2], then ¢(S1) < t(S2) forall Sy, S> € A. With a non-decreasing thresh-
old, when a larger committee represents a voter, its overlap with the voter’s ballot is
not less than would be required for a smaller committee to represent the voter.

Two non-decreasing thresholds suggested by Fishburn and Pekec (2004) are the
majority threshold, 1(S) = 5l and the strict majority threshold, 7(§) = (5LED,
In Example 6.2.1, for instance, 1, 12, and 13 tie for majority threshold committee,
whereas the unique strict majority threshold committee is 1.

Finally, Fishburn and Pekec¢ (2004) point out that threshold methods are all NP-
hard; for instance, they prove that in the special case that |V;| = 2 for all voters
i, the problem of determining whether there exists an S € Ay that is approved by
all voters is equivalent to finding a vertex cover of a graph with vertex set [m], a
problem known to be NP-complete (Garey and Johnson 1979). Nonetheless, if the
number of candidates is relatively small, computational effort is not excessive even

as the number of voters becomes large.

6.5 Centralization Procedures

Centralization procedures for committee elections with approval balloting are adap-
tations of an approach used in many problems: Each voter’s ballot can be considered
to propose a committee, so the most representative committee is the one that is “clos-
est” to the ballots. These voting procedures can be traced to a study (Brams et al.
2004) of ways to identify a good outcome in a multi-party negotiation over many
binary (Yes—No) issues. If there are m issues, a party’s position can be represented
as the subset of issues on which it supports the Yes side, which can be thought of as
a vertex of an m-dimensional hypercube. The principle of negotiating by conduct-
ing a majority vote of the parties on each issue was demonstrated to be equivalent
to finding all vertices of the hypercube — i.e., Yes—No sequences — that minimize
the total distance (or average distance) to the vertices representing the positions of
all negotiators. Brams et al. (2004) also adapted the Fallback procedure of Brams
and Kilgour (2001) to the bargaining problem, showing that it is equivalent to find-
ing all vertices of the hypercube that minimize the maximum distance to any vertex
representing the position of a party.

These ideas were adapted to voting in multi-winner elections by Kilgour et al.
(2006) and Brams et al. (2007), who also raised the possibility of forming a com-
mittee member-by-member, using majority voting. As shown below, this procedure
can be expressed as a scoring rule, except that it allows no natural way to account
for admissibility. A candidate whom more voters support than oppose must join
the committee, and a candidate with more opponents than supporters cannot. The
decision on each candidate is based on the balance of votes for that candidate
only. For instance, the empty committee cannot be excluded a priori. Thus, this
correspondence relies on A = 2['"], i.e., any subset, including the empty set, is
admissible.

The representation of distance between subsets used by Kilgour et al. (2006) can,
however, account for admissibility in a natural way. Let S, T C [m], and measure
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the distance between S and T as the Hamming distance, d(S, T'), defined by
dS. T)=|SAT|=|S-T|U|IT-=S|=|(SNTHUS°NT)]|.

Thus, the distance between S and 7" equals the number of points (candidates) in one
of S and T but not the other.

Recall that the ballot profile is called V. For any S € 2" define d(S,V) =
> d(S,V;). Then d(S,V) represents the total distance from S to the collec-
tion of all ballots. Brams et al. (2004) proved that any committee S € 2" that
minimizes d(S, V') must contain every candidate who is supported on more than
half the ballots, and cannot contain any candidate who is supported on fewer
than half the ballots. Thus, the Candidate-by-Candidate Majority Voting rule men-
tioned above can be implemented using the total distance minimization criterion,
which was christened “Minisum.” But choosing the admissible committee, S,
that minimizes d (S, V') does allow inadmissible committees to be excluded, so —
unlike Candidate-by-Candidate Majority Voting — the Minisum procedure respects
admissibility.

In fact, we have already identified a scoring procedure that is equivalent to the
Minisum procedure. When all subsets are admissible, the Net Approval procedure
elects any subset that contains all candidates with more approvals than disapprovals
and no candidates with fewer approvals than disapprovals. Thus, the Net Approval
scoring procedure, Candidate-by-Candidate Majority voting, and the Minisum pro-
cedure are all equivalent when A = 2P Tt is not hard to see that the equivalence
of Net Approval and Minisum continues when some subsets are inadmissible.

We illustrate the Minisum procedure to select any S € A that minimizes
d(S,V)=73;d(S,V;), using Example 6.2.1. The admissible committees are S =
1,2, 3,12, 13, 23, and 123, and the respective values of d(S, V) are 3,9, 7,5, 3,9,
and 5. Thus for Example 6.2.1, the Minisum procedure produces a tie between com-
mittee 1 and committee 13. As noted above, the Net Approval procedure produces
exactly the same result.

Clearly, then, the Minisum centralization procedure is a scoring procedure. But
a second centralization procedure is not. The Minimax procedure also originated
in the study of multi-party negotiation over binary issues, where the Fallback Bar-
gaining idea was shown to result in a subset of issues that minimizes the maximum
distance to the subset supported by any bargainer. The analogue for approval bal-
loting is the Minimax procedure, a centralization system suggested by Brams et al.
(2007) and presented formally in Kilgour et al. (2006). Minimax selects

argmin g¢ 4 {maxd(S, V,-)} .
1

That is, the winning committee under Minimax is any admissible committee .S with
the property that the maximum distance from S to any V; is a minimum. For Exam-
ple 6.2.1, the admissible committees are S = 1, 2, 3, 12, 13, 23, and 123, and the
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respective values of max; d(S, V;) are 1, 3, 3, 2, 2, 3, and 2, so that the Minimax
rule selects committee 1 (uniquely).

A study of examples, and of the specific properties of the Minimax procedure, led
to some suggested modifications. In Brams et al. (2007), the principle of applying
Minimax followed by Minisum was applied to data from a large-scale election. In
Kilgour et al. (2006), the observation that the Minimax procedure ignores clones
completely — so that the Results for Example 6.2.1 would be unchanged by the
addition of 100 new voters, all of whom voted for 13 — led to a weighting principle.
In order to make the voting system responsive to “enough” voters, weights were
proposed that allow the minimax calculation to register a preponderance of voting
support.

The weighted minimax system had to be applied to ballots, as opposed to voters.
Now let W = {Wy, Wa, ..., W;} denote the set of distinct ballots cast by the voters,
and note that |W| = £. Moreover, if h = 1,2,...,¢, let nj, denote the number of
voters who cast the ballot Wj,. Suppose that some weight vector (wi,wa, ..., wg)
is given, where wy, is the weight assigned to ballot W},. Then the weighted distance
from a subset S € 20"l to Wy, is wyd(S, W;). A Weighted Minimax procedure
is to select the admissible subset S that minimizes Zfz=l wpd (S, Wy). Note that
weights are required to be non-negative, but there is no “normalization” condition;
the sum of the weights may be any positive number. As Kilgour et al. (2006) note,
weights provide only relative information, so a set of weights can be multiplied by
any positive number without changing the information it contains.

The distance from a given committee to a ballot can be considered to be a
weighted distance if a weight has been assigned to a ballot. (This is a benefit of
working with distinct ballots rather than distinct voters; thus, the distance, d (S, V;),
is replaced by the weighted distance wy,d (S, W},).) This idea extends both the Min-
isum and Minimax systems. Moreover, it is clear that the results of the Weighted
Minisum Rule and Weighted Minimax Rule depend on the particular weights used.

One natural set of weights is count weights, which assign to each ballot a weight
equal to the number of voters who cast it. Thus, count weights are defined by
wp = ny for h = 1,2,...,£. The results are conveniently displayed, for both
Weighted Minisum and Weighted Minimax, in a table (Kilgour et al., 2006), which
for Example 6.2.1 using count weights is as follows:

Ballot: 1 12 13

Weight: 1 1 2 Y max
Subsets: 10 1 2 3* 2*
221 6 9 6

323 2 7 3

1210 4 5 4

131 2 0 3* 2*
2332 4 9 4
12321 2 5 2*
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The winning subsets for Minisum (3 ) and Minimax (max) are indicated by
asterisks. As Kilgour et al. (2006) showed, if count weights are used, the Minisum
procedure is exactly as described above using voters rather than weighted ballots. In
general, the Minisum Count procedure is equivalent to Net Approval and, provided
all subsets are admissible, to Candidate-by-Candidate Majority Voting. In Exam-
ple 6.2.1, for instance, the Minisum outcomes using count weights remain 1 and
13. But while the direct Minisum procedure is identical to the Weighted Minisum
procedure with count weights, the Minimax procedure gives different results when
count weights are applied; now, the committees selected are 1, 13, 123 (tied).

Quite different results are obtained using proximity weights, which are defined by

np
Y ned(Wy, Wy)

wp =

Proximity weights were proposed by Kilgour et al. (2006) to give less weight to bal-
lots cast by extreme or isolated voters, thereby reducing their influence on the final
decision. To elaborate on the definition systematically, the numerator shows that wy,
is proportional to ny, the number of voters who voted for Wj,. The denominator of
the expression for wy, is the sum of the distances from W, to all other ballots. (Of
course, d(Wy, Wy) = 0, so the distance from W}, to itself does not contribute to this
sum.) Thus wy,, the weight of W}, is small when few voters approve of exactly W},
or any subset close to it. As a ballot moves closer to other ballots, it receives greater
weight, either because the distances are smaller so the denominator is reduced or
because the numerator is increased because it duplicates an existing ballot.

For Example 6.2.1, there are £ = 3 ballots, Wy =1, W, =12, and W3 = 13, with
countsnn; = 1,n, = 1,and n3 = 2. Thus, count weights are (wy, wz, w3) = (1, 1,2),

1 —
while pr0x1r2nlty Welghts are wy = m 3. W2 = 11+10+22 s, and

W3 = {i712730 = Mu1t1p1y1ng by 15 to clear fractions gives (wy, wa, w3) =
(5, 3, 10). For the seven admissible subsets, these proximity weights give the fol-
lowing table:

Ballot: 1 1213
Weight: 5 3 10 ) max
Subsets: 1 0 3 10 13 10
210 3 30 43 30
310 9 10 29 10
125 020 25 20
135 6 011" 6*
2315 6 20 41 20
12310 3 10 23 10

Thus, in Example 6.2.1 with proximity weights, both the Minisum and Minimax
procedures produce (uniquely) the subset 13.
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6.6 Conclusions

This chapter has surveyed methods of using approval ballots in multi-winner elec-
tions, where both the ballot cast by a voter and the election result can be considered
to be subsets of the candidates. Consideration has been restricted to voting proce-
dures that are anonymous (treat voters equally), neutral (treat candidates equally)
and that permit the class of admissible, or potentially winning, subsets to be spec-
ified independent of the procedure. The systems studied here were classified into
scoring procedures, in which the admissible subset with the highest total score wins,
threshold procedures, in which the maximally representative admissible subset is
selected, and centralization procedures, in which the admissible subset that is most
central among the ballots is selected.

The table below compares the procedures discussed here in the context of the
four examples. As noted above, two procedures, Net Approval and Minisum Count
are identical. The table itself is proof that, except for those two, all procedures are
different, since any two of them differ on at least one example. Note that two pro-
cedures, Representativeness and Sequential Proportional Approval, are defined only
for some admissible sets. Specifically, Representativeness requires that A C Ay,
and Sequential Proportional Approval that A = A. Therefore, neither procedure
can be applied to Example 6.2.1, where A = AF.

Example: 1 2 3 4
Simple Approval 123 124 12,13 23
Net Approval 1,13 124 12,13 23
Satisfaction 123 124 12,13 12
Net Satisfaction 1 124 12,13 12
Representativeness - 147,234, 247 23 12,13
Proportional Approval 123 124, 234 12,13, 14, 23 12, 13,23
Sequential Prop. App. - 124, 234 12,13, 14 12, 13,23
Threshold — Majority 1,12, 13 123 14,23 12,13
Threshold — Str. Maj. 1 123 12,13 23,24, 35
Minisum Count 1,13 124 12,13 23
Minisum Proximity 13 124 12,13 23
Minimax Count 1, 13,123 123,124,125 12,13,14,23 13,23,25,26
126,127, 128 34, 35, 36, 45
Minimax Proximity 13 124 12,13,14,23 12

There are many ways that voting systems can be compared, and much work
remains to be done to compare these systems on grounds of theoretical properties,
computational complexity, and practical utility. One large-scale comparison of pro-
cedures is reported by Brams et al. (2007) and Brams and Kilgour (2010), based on
ballot data from the 2003 election by the Game Theory Society of 12 new members
of council from a list of 24 candidates. The Approval, Satisfaction, Minimax and
Minisum councils were compared, both when only 12-member committees were
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admissible, and without this restriction. None of the 12-member councils was rep-
resentative, in the sense of including at least one candidate supported by each voter,
even though there are subsets containing only eight candidates that represent every
voter. But Brams and Kilgour (2010) also point out that, given a representative sub-
set, there are no natural procedures for expanding or contracting it to construct a
committee of predetermined size.
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Chapter 7

Does Choosing Committees from Approval
Balloting Fulfill the Electorate’s Will?

Gilbert Laffond and Jean Lainé

7.1 Introduction

An approval ballot is a voting ballot where voters indicate the candidates they
approve among finitely many ones running for elections. We review below some
recent studies of procedures that select groups of candidates, or committees, from
approval ballots. Many examples can be found of collective decision-making situa-
tions where a committee, rather than a single candidate, has to be chosen: deciding
about who among a class of students are the ones to be awarded, selecting a board
of trustees, appointing new members of an academy, or new professors in a faculty
department are all cases where a group of candidates has to be chosen by an elec-
torate. Another example is provided by multiple referendum, where several issues
are presented to the voters, who are asked issue-wise to answer by either yes or no.

We address the following question: how faithfully does the outcome of a voting
rule designed from approval ballots represent the actual preferences of the voters?
Approval ballots ex ante provide little information about how voters compare com-
mittees. As long as they sincerely vote, their ballot describes their most preferred
outcome, and there is no obvious way to deduce from the observed votes the way
they compare any two committees. Thus, some assumptions are to be made about
underlined preferences. Special attention has been paid to the case of separable pref-
erences, where the voters’ position regarding each of the candidates is preferentially
independent from the decision regarding any other candidate. Separability naturally
calls for candidate-wise voting rules, through which the selected committee results
from separate decisions, each regarding one candidate. A special candidate-wise
voting rule is the (parallel) majority rule, which is typically used in multiple refer-
endum: are elected all those candidates who are approved by a majority of voters.
When preferential dependencies exist between candidates, there is little hope for a
candidate-wise voting rule to perform well, since ballots provide no information
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about the dependencies, and also since the voting rule itself ignores them. A
theoretical answer consists of asking voters to report their preferences about all pos-
sible committees. However, since the number of committees exponentially grows
with the number of candidates, such a solution cannot be implemented in practice.
We discuss below several proposals that have been made to overcome the difficulty.

We focus on three different notions of representativeness for a voting rule. Pareto
efficiency relates to choosing consistently with a unanimous will: a voting rule is
Pareto efficient if it never selects a committee that is unanimously less preferred
than another one. Condorcet efficiency pertains to the majority will: a voting rule
is consistent with the Condorcet winner (resp. loser) if it always selects, when it
exists, the committee that is more preferred than any other one (resp. never selects
a committee that is less preferred than any other one) by a majority of voters.
Finally, we consider two notions of compromise, both based on the idea that vot-
ers may accept to lose in satisfaction in order to favor a large consensus on some
committee.

These three approaches are investigated under the assumption of separable pref-
erences. That a candidate-wise voting rule may fail at satisfying one of them may be
considered as a voting paradox. Indeed, under sincere voting, separable preferences
provide the most favorable situation for such a rule to well represent the electorate’s
will. We show in Sect. 7.3 that almost all these paradoxes hold, and furthermore, we
study the (strong) conditions that allow for avoiding them. Finally, we briefly review
in Sect. 7.4 how bad candidate-wise voting rules may behave under non-separable
preferences. This calls for the design of alternative procedures of preference elici-
tation through ballots, such as sequential voting (where voters successively approve
or disapprove a candidate knowing the result about the previous ones), or set-wise
voting (where several candidates are packaged into bundles, or where the number of
possible committees presented to the voters is limited). Section 7.2 is devoted to the
formal presentation of voting rules from approval ballots.

7.2 Voting from Approval Ballots

We adopt the following notation: IN stands for the set of non-zero integers, N' =
{1,...,n,..., N} stands for the set of voters, and C = {I1,...,c,...,C} for the
set of candidates, where both N, C belong to IN. Each candidate applies to a posi-
tion in a committee, which can be either of a given fixed size k < C, or of any
possible size.

A committee is a subset of C. A committee involving kK members can equivalently
be described as an element x = (x!,...,x%) € {0,1}¢, where k =| {c¢ € C :
x¢ = 1} |. We denote by 1(x) the set of candidates who are appointed in x: 1(x) =
{¢ 1 x¢ = 1}. The set of all such committees is denoted by Q¢cy, and Q¢ =
Uk<cSck, and £ = UcenS2c is the set of possible committees for a variable
number of candidates and all possible committee sizes. For any subset D of C of size
D and any committee x € {0, 1}¢, we denote by x/D € {0, 1} the restriction of
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Table 7.1 1 2 3
X1 0 1 1
X2 1 1 0
X3 1 0 0

x to D, which is defined by: V¢ € D, (x/D)¢ = x°. Moreover, if {D1,D,}
is a partition of C into two non-empty sets, then we equivalently write x and
(x/D1.,x/D»).

Each voter n casts an approval ballot, by which she approves as many can-
didates as she wishes. Formally, an approval ballot is defined as a vector x,, =
(x)e=1,...c € 10, 1}C, where x; =1 (resp. x; = 0) means that n approves
(resp. disapproves) candidate c¢. For any x € {0,1}€, (—x) is defined by Ve,
(—x)¢ =14 x¢ =0.Aballotsetisaset X = {x1,...,xn5} € {0, 1}C.We denote
by 1x(c) (resp. Ox(c)) the number of approvals (resp. disapprovals) ¢ receives in
X (thatis 1x(c) =) , x5, and Ox(c) = N — 1x(c)). A ballot set can equiva-
lently be written as a matrix X = [xfl]flzllzcv where row n corresponds to voter
n’ s approval ballot x,, and each column is associated with one specific candidate.
Table 7.1 describes a ballot set involving three voters and three candidates.

A ballot set X is said to be rich if whenever x € X, then (—x) € X: for any
cast ballot, one finds at least once its opposite in the ballot box. We denote by X'€
the set of all ballot sets involving C candidates, and by X = UcenXCthe set of all
ballot sets for any possible number of candidates.

7.2.1 Candidate-Wise Voting Rules

A voting rule describes how one or several committees are selected from a ballot
set. We restrict the presentation to the case where a unique committee is always
chosen. Formally, a voting rule is an application V' from Xy to €2, such that, for any
ballot set X € X€ and any C, V(X) C Qc, where Xy is the subset of profiles
that are admissible for V, that is such that V' is well-defined. A voting rule is said
to be simple when the special case C = 1 holds: the decision is whether to elect or
not one candidate. A voting rule is anonymous if its outcome is non-sensitive to the
voters’ names. '

Furthermore, a voting rule V is candidate-wise if, for any X € Xy, one can write

V(X) = 01(X), ..., ve(X),...,ve(X))

where vy, ..., vc are simple voting rules: the collective choice is defined as a set of
separate decisions, each regarding one single candidate.

! Formally, for any X = {x|,...,xy} € Xy, for any permutation o of {1,..., N}, V(X) =
V(X7), where X = {x{,...,x%} is defined by: Vi, xJ = X,~1(y).
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We focus below on two specific classes of candidate-wise voting rules (CWVR),
namely the parallel and the sequential rules.
A CWVR V is parallel if one can write for any X € Xy,

V(X) = ni(X/{1}).....ve(X/{c)),....ve (X/{C}))

where vy, ..., vc are simple, and where X /{c} is the restriction of X to candidate ¢
(that is the cth column of X). A parallel rule is a referendum-type rule, where the
decision to appoint a candidate only depends on the voters’ positions about this can-
didate. Hence, a parallel rule decomposes the election into simultaneous mutually
independent choices, each dealing with one single candidate.

If V is parallel and anonymous, then at any admissible ballot set X and for any
candidate ¢, one can write vo(X/{c}) = fc(1x(c),0x(c)): the collective position
regarding ¢ only depends on the number of approvals and disapprovals given to c.

An example of parallel and anonymous voting rule is the candidate-wise sim-
ple majority rule Maj, under which candidates are appointed if they gather more
approvals than disapprovals: for any ballot set X involving an odd number of vot-
ers, Maj(X) = (m(X/{1}),...,m(X/{C})), where, forall ¢, m(X/{c}) = 1ifand
only if 1x(c) > 0x(c).

Maj is a particular example of a threshold rule: a candidate is elected if she
receives a given minimum percentage of approvals.

When the committee size is restricted, a threshold rule may fail to select a com-
mittee having the relevant size k (even if there are exactly k approvals per ballot). A
natural adaptation of Maj is the k-plurality rule Plury, which selects the k best can-
didates in terms of number of approvals. Since several different committees can be
chosen through Plury, we adopt a simple tie-breaking rule which ensures a unique
choice. Formally, Plury is the CWVR that is defined as follows. For k < C, for
X € XC, the linear order >y of C is defined by: for any two ¢, ¢’ € C, ¢ >x ¢’ if
either [1x(c) > 1x(c")] or [Ix(c) = 1x(c’) and ¢ < ¢']. Then Plury(X) selects
the first k£ best elements of C for >x.

Instead of decomposing the election in parallel, a sequential CW VR sequentially
composes simple voting rules according to an exogenous order p of candidates.
Denote by p(r) the candidate having rank r in p. Then successive elections take
place, through which the social decision v,(1)(X!) is made upon candidate p(1)
from a ballot set X! e {0, 1}V, and then upon p(2) from X2 € {0, 1}V with com-
mon knowledge of v,(1)(X!) € {0, 1}, and so on, the choice about candidate p(r)
being made given the preceding choices about candidates p(1), ..., p(r — 1). Orga-
nizing successive elections through approval balloting generates a sequence of ballot

sets {X",r =1,...,C}, where in each X", voters indicate their position regarding
the candidate having rank r in p, knowing the results of all successive past votes
vp(l)(Xl), .. .,vp(,_l)(X’_l). Given a set of C simple rules vq,...,v¢c and an

order p of C, this defines the sequential rule Seq(p, v1,...,vc). A typical example
is given by the sequential majority rule SeqgMaj, where the successive simple rules
v1i,...,vc all coincide with the simple majority rule m.
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7.2.2 Preferences Over Committees

In order to evaluate how well the outcome of alternative CWVR depicts the will of
the electorate, we have to make assumptions about how voters compare committees.
Since approval ballots are the only observed data, preferences over committees have
to be elicited from the ballots, through some consistency properties which relate the
voting behavior and the underlined preferences over possible choices.

Ignoring for a while any committee size constraint, we assume that voters’ pref-
erences over committees are complete preorders of {0, 1}€. A preference profile is
a N-tuple of complete preorders 7 = (Ry, ..., Ry).2 We denote by TT€ the set of
all profiles with C candidates, and IT = UCENHC is the set of all possible profiles
when C varies.

The construction of preferences is made by mapping ballot sets to preference
profiles, using a preference extension rule ¢, defined as an application from X
to IT, which maps each ballot set X = {x;,...,x5} € X€toa profile 7(X) =
(Ry....,Ry)in II€.

A specific preference extension rule is the Hamming rule, through which voters
compare committees according to the symmetric distance to their ballot. The Ham-
ming distance between any two vectors x = (x!,...,x%)and y = (y',...,y)
in {0, 1}€ is defined by d(x, y) =| {c : x¢ # y¢} |. The Hamming extension rule
ef is then defined by: VX € X€, eH(X) = (RH, ..., R;,I), where for all n and
y,2€ Qc,d(xn,y) <d(xn,2) &y PH zandd(x,y) =d(x,2) & y IH 2.

Consider the ballot set described in Table 7.1. The Hamming extension rule
produces the preference profile on {0, 1}€ (Table 7.2).3

The Hamming extension rule shares several interesting properties. First, it is top-
consistent: every voter’s ballot is her unique most preferred committee. In other
words, each vote is assumed to be sincere. In addition, e shares the property of
separability: each candidate c is preferentially independent from C—{c}, in the sense
that a voter’s position about a candidate does not depend on the choice to be made
about other candidates. Put differently, preferences over committees produce a clear
ranking of individual candidates. Separability is formally defined as follows: for any
candidate ¢ and any two committees x = (x!,...,x%), y = (y!,...,y%) €
{0, 13C, let (y_¢.x€) = (p',...,y7 L x¢, yetl ..., y©); the preference R, of

Table 7.2
Voter 1 Voter 2 Voter 3
0,1, 1) (1,1,0) (1,0,0)

(1,1,1),(0,0,1),(0,1,0)  (1,1,1),(0,1,0),(1,0,0)  (1,1,0),(0,0,0),(1,0,1)
(1,0,1),(1,1,0),(0,0,0)  (0,0,1),(0,1,1),(1,0,1)  (0,1,0),(0,0,1),(1,1,1)
(1,0,0) 0,0, 1) 0,1,1)

2 The asymmetric counterpart of R, is denoted by P,, while I, stands for its indifference part.

3 Decreasing preference is to be read downwards in each column, and several committees figuring
in the same cell are indifferent.
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Table 7.3 1 2 3 4 5

X1 0 1 1 1
X2 1 1 1 1 1

voter n is separable if, for any three committees x, y, z, any candidate ¢, (y_c, x¢)
Py (y—c,—x¢) implies (z—c,x) Pn (z—c,—x¢), and (y—c,x) In (y—c,—x)
implies (z—¢, x¢) I (z—¢, —x°).

Top-consistency is not problematic as long as separability prevails too. Indeed, it
is already known (Lacy and Niou 2000) that, when Maj (or SeqMaj) is the prevailing
rule, each voter with separable preferences casts a ballot which is her most preferred
committee.

When there is a size constraint k, the Hamming extension rule obviously pro-
vides a complete preorder of the k-member committees. However, since ballots may
contain more than k approvals, the Hamming rule is no longer top-consistent. For
instance, in Table 7.2, voter 3 has two most preferred 2-member committees. This
motivates the following top-k-consistency property: when a voter approves at most
k candidates, she prefers any committee that includes those candidates than any
other one, and if, when she approves more than k candidates, she would prefer any
committee all members of which she approves than any other one.*

Let us suppose that a two-member committee has to be chosen from the ballot
set depicted in Table 7.3.

Consider the two-member committees x = (0,0,1,1,0) and y = (0,1, 1,0, 0).
The Hamming extension rule makes both voters indifferent between x and y. The
reason is that voters’ positions regarding candidates who are appointed neither in
x nor in y do not matter when comparing x and y. This leads to the following k-
independence property. The extension rule ¢ is k-independent if, for any C > k,
for any ballot set X in X, for any two k-member committees y and z, for any two
ballots x; and x, who coincide on 1(y) U 1(z), one has [y I z] < [y I» 7] and
yPig & [y P22

Many further properties can be retained for preference extension rules. In fact,
comparing committees in this setting is equivalent to extending dichotomous pref-
erences over individuals to preferences over sets of individuals.

Among the properties described above, the most controversial is certainly sepa-
rability. Indeed, many examples can be found where complementarities or spill-over
effects prevail in the comparison of committees. Among them is the case of sport
teams: some player might be judged worthwhile to get appointed under the condi-
tion she plays with another specific one. Similarly, voters may be reluctant to face
an elected assembly which over-represents a party.

4 Formally, ¢ is top-k-consistent if, for any C > k, for any ballot set X = {x;,...,xy} € X €. for
any 7, one has (1) [| 1(x,) |< k = y P, ] forall y,z € Q; with 1(x,) € 1() and 1(x,) & 1(2),
and (2)

[l 1(x) |> k= y P, g forall y,z € Q with 1(y) € 1(x,) and 1(z) G 1(x,).
5 The reader can refer to Barbera et al. (2001) for reviewing how to design preferences over
sets.
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A way to relax separability is suggested in (Lang and Xia 2009), consisting on
inducing linear orders of committees from conditional preference networks, or CP-
net preferences. It appears that this preference domain allows for a well-defined
sequential voting behavior. Consider a case where there are C candidates. Write
{0, l}c = Dy x...x D¢, where D, = {0, 1} for all ¢ is called a dimension.®
Furthermore, let > be a linear order of the dimensions, say D1 > D, > ... > Dc.
Moreover, suppose that a voter n has preferences over committees represented
by the linear order P, such that, for any two z,7 € Dy x ... x D¢, one has
(1,z) P,(0,2) < (1,7)P,(0,7) and (0,2)P,(1,z) < (0,7)P,(1,7). Thus, n's
position about candidate 1 does not depend on the decisions to be taken about
the other candidates. Similarly, we assume that for any ¢ € {0, 1} and any two
7.7 € D3 x...x D¢, one has (a,1,2)Pu(a,0,z) & (a,1,7)P,(a,0,7) and
(@,0,2)Py(a,1,z) & (a,0,7)Py(a,1,7). More generally, there is a preferen-
tial independence between any candidate ¢ (or dimension D.) and the choice
made about the subsequent candidates ¢ + 1,..., C, that is the choice made in
D.41x...x Dc. Note however that preferences within each dimension D, depend
on the previous choices in D1 x...x D._;. Itis obviously seen that sincere voting in
a sequential CWVR is well-defined in that case, since the best decision about a can-
didate is independent from the future decisions to be made. In fact, Lang and Xia
(2009) show that this is still the case when > is replaced with any acyclic binary
relation over the dimensions. Formally, one defines a directed graph G = (C, E)
having C as set of vertices, and E as set of edges, where, for a candidate c, the set
of edges E(c) to c is the set of all candidates the position about ¢ is preferentially
dependent from. Given the graph G, one also defines a set CP(G) of conditional
preferences, that describes how the preferred position regarding each of the candi-
dates ¢ depends from the decision taken about her ‘parents’ E(c). It is easily shown
that CP(G) generates a partial preference relation on committees, which is finally
extended to a linear order. Consider the next example: C = {1,2,3}, G =
{(1,2),(2,3),(1,3)},and CP(G) is given in Table 7.4.7

Table 7.4

c=1 c=2 c=3
>0 x'=1=1>0 LAH=0,1D)=>1>0
x'=0=>0>1 G'x)=(1,0=>1>0

xLx)=01)=>1>0
(x1,x2) = (0,00 = 0> 1

6 Lang and Xia (2009) consider the more general case where each dimension is a finite set. The
interpretation is then that a committee is defined as a set of seats, each seat receiving a finite number
of candidates. This leads to seat-wise instead of candidate-wise voting rules. We focus here on the
case of approval ballots, which is equivalent to seat-wise designation by voters of the best among
exactly two candidates.

7 Table 7.4 is to be read as follows: in column 3, approving is better than disapproving candidate
3, if both candidates 1 and 2 are elected, but the reverse holds if neither 1 nor 2 is elected.
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CP(G) induces the following partial preference relation >*on {0, 1}3:

o (I,1,1)>=*(0,1,1),(1,1,0) =* (0,1,0), (1,0,1) =* (0,0, 1), (1,0,0) >=* (0,0, 0)
e (1,1,1)>=*(1,0,1),(1,1,0) =* (1,0,0), (0,0,1) =* (0,1, 1), (0,0,0) =* (0, 1,0)
e (1,1,1)=*(1,1,0), (1,0, 1) =* (1,0,0), (0,1,1) =* (0, 1,0), (0,0,0) =* (0,0, 1)

The transitive closure > of >* is defined by: (1,1,1) =7 (1,0,1),(1,1,0) =T
(1,0,0) =T (0,0,0) =T (0,0,1) =T (0,1,1) =T (0,1,0). which finally allows
for two possible linear orders that are consistent with >7 .

Lang and Xia (2009) show that, as long as all voters agree on the same acyclic
graph G, then sequential voting behavior is well-defined. That all voters must follow
the same preferential dependencies among candidates is a strong assumption, which

is still weaker than separability.

7.3 Representativeness of Voting Rules Under Separable
Preferences

Do both parallel and sequential CWVR select a committee that can be assessed as
a ‘satisfactory representative’ of voters’ preferences? Since approval ballots offer a
very incomplete information about the latter, we may anticipate a rather negative
answer, unless strong assumptions are made about the way ballots depict prefer-
ences. In particular, CWVR ignore complementarities in preferences. Hence, ruling
out these complementarities, by assuming separability, brings the most favorable
situation for CWVR to perform well. Moreover, assuming that votes are sincere,
parallel and sequential CWVR always select the same committee.

We distinguish two broad types of representativeness properties. The first relates
to the size of the largest fraction of voters who prefer at least one non-chosen
committee instead of the chosen one. More precisely, we focus on the Pareto effi-
ciency and several Condorcet-consistency properties of voting rules. A voting rule
V' is Pareto-efficient if it always selects a committee which is not less preferred
than another one by all voters. Moreover, V' is Condorcet-winner (resp. Condorcet-
loser) consistent if it always selects the Condorcet winner whenever it exists, that
is a committee which is more preferred than any other one by a majority of voters
(resp. never selects a Condorcet loser, that is a committee which is less preferred
than any other one by a majority of voters).® The second type of representativeness
property rests on the idea that the elected committee should appear as a compro-
mise which would arise when voters directly bargain over the outcome. Examples
of compromises are the majoritarian compromise, and the majority approval.

Situations where a parallel CWVR fails at satisfying each of these properties
are generally presented as voting paradoxes, since the assumption of separable

8 For alternative definitions of Condorcet winning committees in settings where approval ballots
are not the premises, see Fishburn (1981), Gehrlein (1985), Ratliff (2003), and Kaymak and Sanver
(2003).
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preferences naturally calls for separate candidate-wise voting. We briefly review
below recent results obtained on these voting paradoxes.

7.3.1 Pareto Efficiency

It is already known that candidate-wise majority voting is Pareto-efficient under
Hamming preferences, both in the variable and restricted committee size cases
(see Brams et al. 1997; Brams et al. 2004, 2007). Indeed, for any ballot set X =
{x1,...,xn}, Maj always selects the committee which minimizes the total Ham-
ming distance ), .\ d(xpn, x) in the set of all possible committees with variable
size. Since the total Hamming distance can be interpreted as the sum of dis-utilities,
then Maj selects the committee which fulfills the utilitarian criterion.’

However, it is worth mentioning that Maj can produce a committee that is
almost Pareto dominated. More precisely, for o €]0, 1], say that the CWVR V
is a-efficient for the extension rule ¢ if, at any ballot set, no fraction representing
a proportion strictly more than o of the electorate can agree on another commit-
tee. Note that weak Pareto efficiency is equivalent to the 1-efficiency limit case.
Then, Cuhadaroglu and Lainé (2009) describe a ballot set X such that Maj(X) is
not a-efficient for any o €]0, 1].

More importantly, Maj is no longer Pareto efficient when the Hamming rule is
replaced with another separable one (Kadane 1972). For instance, consider the ballot
set X depicted in Table 7.5.

Then Maj(X) = (1,1, 1). Let ¢ be the extension rule leading to the preference
profile (Table 7.6).

It is easily checked that ¢ is separable, while voters unanimously prefer (0, 0, 0)
than Maj(X).

However, separability ensures that Maj never selects a universally Pareto domi-
nated committee, that is less preferred than any other committee by all voters (Lacy
and Niou 2000).

This example illustrates the following general result by Benoit and Kornhauser
(2006).'° Define dictatorship as the voting rule which identifies the collective deci-
sion with a specific voter’s ballot (formally, the dictatorship Dict,* for voter n* is
defined by: VY, € {0, 1}, VX = {x1,...,Xp*,...,xn} € XC, Dicty«(X) =
Xp*).

Proposition 7.3.1 (Benoit and Kornhauser 2006). If one allows for any separable
preference extension rule that leads to a profile of linear orders over committees,

¥ With C candidates, £/ produces from any ballot set X = {x;,...,xy} a profiles (Pi,..., Py)
of preorders where each P, is represented by the utility function U, defined on {0, 1}€ by U, (x) =
(C—=>.Ixt—=x|)=C—d(x,,x).Hence, ), d(x,,x) = NC =, U,(x).

10We state here a specific version of the result consistent with approval balloting. In fact, the result
is more general, since it deals with seat-wise voting rules when finitely many candidates apply for
each seat in a committee.
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Table 7.5

c 1 2 3
X1 1 1 0
X2 0 1 1
X3 1 0 1
Table 7.6 Rl Rz R3

(1,1,00 (. 1,1)  (1,0,1)
0,1,0)  (0.1,0)  (1,0,0)
(1,0,0)  (0,0,1)  (0,0,1)
0,0,0)  (0,0,0)  (0,0,0)
(LLD)  (L1L1) (11,1
0, 1,1)  (1,1,0)  (1,1,0)
(1,0,1)  (1,o,1)  (0,1,1)
0,0,1)  (1,0,0)  (0,1,0)

and if there are at least three candidates, dictatorship is the unique Pareto-efficient
candidate-wise voting rule."!

In the two-candidate case, Ozkal-Sanver and Sanver (2006) have proven that Maj
is the unique anonymous Pareto efficient CWVR if any separable extension rule is
allowed. In fact, Maj is Pareto efficient for any top-consistent extension rule. To see
why, consider the next four possible ballots x = (1,1), y = (1,0),z = (0,1), and
w = (0,0). Denote by N; the number of ballots ¢ = x, y, z, w in the ballot set X.
Now suppose that Maj(X) = w (this entails no loss of generality, since a relevant
relabelling of ballots can be done to ensure it), and that w is Pareto-dominated. Top-
consistency ensures that N,, = 0. Moreover, one must have N, > N, + N,,. Hence,
Maj(X) = z, a contradiction.

Since Maj is Pareto-efficient with Hamming preferences extension, Proposi-
tion 7.3.1 raises the following question: what is the largest domain (for inclusion) of
separable extension rules for which Maj is Pareto efficient? It is already known from
Benoit and Kornhauser (1994) that if any separable and top-lexicographic extension
rule is allowed, then Maj is Pareto-efficient. Top-lexicographic means that all vot-
ers agree on the order of importance of candidates. For instance, if this order is
1 > --- > C, then what should matter the most for all voters is whether the choice
regarding candidate 1 fulfills their wish. Note that the extension rule that brings the
profile in Table 7.7 is not lexicographic: R, calls for ranking the candidates in the
order 1 > 2 > 3, but R; disagrees with such an order.

' This proposition extends a result by Ozkal-Sanver and Sanver (2006), which states that, as long
as there are at least three candidates and any top-consistent and separable extension rule is allowed,
then there is no anonymous Pareto-efficient CWVR. Note however that Ozkal-Sanver and San-
ver allow for indifference between committees. Moreover, Lang and Xia (2009) have shown that
Proposition 7.3.1 remains true for voting correspondences.
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Table 7.7 c 1 2 3
X 1 1 1
X2 1 1 0
X3 1 0 1
X4 0 1 1
X5, Xg, X7 1 0 0
X8, X9, X10 0 1 0
X11, X12, X13 0 0 1

A partial answer is given in Cuhadaroglu and Lainé (2009), where attention is
restricted to neutral domains of separable extension rules.

Proposition 7.3.2 (Cuhadaroglu and Lainé 2009). The largest neutral domain of
top-consistent and separable preference extension rules for which candidate-wise
majority voting is Pareto-efficient is the domain of Hamming-consistent extension
rules.

A domain of preference extension rules £ is neutral if neither the names of
the candidates, nor the labelling of the ballots provide valuable information about
preferences. Formally, the two following properties must hold:

(1) Consider a ballot set X where ballots x; and x, contain the same number
of approvals. Then, x, can be deduced from x; by means of a permutation o of
the candidates. Let R;(¢) the preference obtained from x;, where ¢ = 1,2, through
some extension rule & € £, and suppose that yR1 (¢)z. Then, there exists &’ € £ for
which yR;(¢)z and y? R»(¢")z°, where y° and z° are obtained from y and z by
running o.

(2) Moreover, suppose now that x, = (x1/D1,—x1/D3), where {D1, D5} is
a partition of C into two non-empty sets, and suppose that yR;(e)z for some
¢ € . Then, there exists & € & for which yR;(¢')z and (y/D1,—y/D2)R1(¢')
(z/D1.—2/D2).

Furthermore, we say that a preference extension rule is Hamming-consistent if it
extends the Hamming preferences to the case where indifference may be cut within
its indifference classes.'?

In the case where the committee size is fixed to k, then k-plurality also mini-
mizes the total Hamming distance in the set of all committees with size k (Brams
et al. 2007).'3 Furthermore, k-plurality voting shares an even stronger property: the
Hamming preference extension rule is the unique strongly neutral and top-consistent
rule for which k-plurality voting is Pareto-efficient for any non-zero integer k,
where strong neutrality essentially means that committees are compared by only
considering their respective numbers of approved members (Cuhadaroglu and Lainé
(2009)).

12 Formally, ¢ is Hamming-consistent if for any X = {x,...,xy} € X €. for any voter n and any
two committees y and z, d(x,, y) < d(x,,2) = y P, z.

13 Note that, similarly to the case of unrestricted size, Plur; may select a a-inefficient committee
for any o €]0, 1[.
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As long as votes are assumed to be sincere, a stronger requirement than Pareto-
efficiency is that the chosen committee is the one which is the ideal outcome of the
highest number of voters. The paradox of multiple elections occurs whenever the
committee chosen by Maj receive the fewest votes. Brams et al. (1998) show that
this paradox generalizes the paradox of voting, and provide an extensive study of the
three-candidate case. Consider the ballot set depicted in Table 7.7 involving three
candidates and 13 voters.

Then, Maj(X) = (0,0,0) does not belong to X, hence the paradox. Scarsini
(1998) introduced a stronger version of the paradox, where not only Maj(X) but
also all the committees sufficiently close to it, receive zero votes. Sufficiently close
means at a Hamming distance strictly less than the smaller integer larger than %

Avoiding this strong paradox clearly ensures that, under top consistency, Maj
is Pareto-efficient. A property of ballot sets that provides a sufficient condition for
avoiding the strong paradox is stated below. Let B C {0, 1}€ be a set of at least
three different ballots. Say that B is stable if Maj(X) € B for any ballot set X such

that x,, € B for all n.

Proposition 7.3.3 (Laffond and Lainé 2009d). Ler B C {0, 1}€ be a set of at
least three different ballots. Then B is stable if and only if Maj({x, y,z}) € B for
any triple {x, y, 7} of different ballots in B.'*

It follows that if B is stable, and if all ballots in B are cast in X, then Maj(X) is
a Pareto efficient committee.

7.3.2 Condorcet Properties

7.3.2.1 Voting Paradoxes

A Pareto efficient voting rule never chooses a committee against a unanimous
will. More demanding is not to choose against a majority will. Kadane (1972)
proved that Maj is Condorcet-winner consistent for any separable extension rule
(see also Schwartz 1977). Moreover, it is easy to show that separability ensures the
Condorcet-loser consistency of Maj.

However, a Condorcet winner may not exist, even under Hamming preferences.
Equivalently, under separable preferences, Maj may produce a committee that is
majority defeated. Consider the ballot set X depicted in Table 7.8.

Then Maj(X) = (0,0, 0), while the majority formed by the first 3 voters less pre-
fer Maj(X) than its opposite. It is easily checked that every committee is defeated by
another one under the majority rule. Benoit and Kornhauser (1994) prove that Maj
selects the Condorcet winner if voters’ preferences share a very demanding lexi-
cographic property, which in particular implies that all voters agree on the relative
importance of each of the candidates.

14 Furthermore, Maj is the unique Pareto-efficient, neutral and anonymous CWVR for which this
property holds.
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Table 7.8 1 2 3
X1 1 0 1
X7 1 1 0
X3 0 1 1
X4, X5 0 0 0

Hence, the possibility for Maj(X) to be majority defeated relates to the well-
known Condorcet paradox adapted to a specific setting. There is a close relationship
between such a possibility and the Ostrogorski paradox (Rae and Daudt 1976;
Bezembinder and Van Acker 1985; Deb and Kelsey 1987; Nurmi 1998, 1999),
although they are not equivalent. The Ostrogorski paradox occurs when, interpret-
ing 0 and 1 as two competing political parties having opposite views on issues
¢ = 1,...,C, and assuming that voters vote for the party they agree with on a
majority of issues, the winning party get issue-wise a minority of supports.'

Another related compound-majority voting paradox is the Anscombe paradox
(Anscombe 1976), which refers to ballot sets X where a majority of voters disagree
with Maj(X) on a majority of candidates. Table 7.8 also illustrates this paradox:
three voters among five disagree with Maj(X) on two among the three candidates.
In fact, the Anscombe paradox is equivalent to Maj(X ) being majority defeated by
its opposite (see Laffond and Lainé 2009c).

For a set X involving an odd number of ballots, and for the preference extension
rule &, the majority tournament 7' (X, ¢) is the complete and reflexive binary relation
defined on {0, 1}¢ x {0, 1}€ by (y,z) € T(X,e¢) if the number of voters in &(X)
who prefer y than z is strictly larger than the number of those who prefer z than y.!¢

We say that a ballot set X faces the (resp. strict) majoritarian paradox for ¢
if there exists a committee y such that (y, Maj(X)) € T(X,¢) (resp. (—Maj(X),
Maj(X)) € T(X,e¢)). Note that under Hamming preferences, a committee is non-
defeated in 7 (X, ) if and only if it is the Condorcet winner of X (Laffond and
Lainé 2009a).!” Since Maj(X) is the Condorcet winner of X whenever it exists,
then the majoritarian paradox prevails if X has no Condorcet winner.

A paradox stronger than the majoritarian paradox has been introduced in
Laffond and Lainé (2009a). A tournament solution S is a correspondence from

15 Table 7.8 depicts an Ostrogorski paradox, but the following ballot set also depicts

X3

1
X1, X2 0
1
1

=[O —= [
el B2 E=2 %

X4, X5

an Ostrogorski paradox where Maj elects a Condorcet winner.

16 Under Hamming preferences, (y,z) € T(X,e)if | {n : d(x,,y) < d(x,,2)} |>] {n :
d(xy.2) < d(xy. )} |-

17 Recall that we assume an odd number of voters. When the number of voters is even, this equiv-
alence disappears: add up one voter to the set in Table 7.7, with ballot Maj(X). One get that
Maj(XHU {Maj(X)}) = Maj(X). However, both Maj(X) and —Maj(X) are non-defeated in
T(X,e").
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the set of all complete and reflexive binary relations on {0, 1}¢ x {0, 1}€ to the
set of non-empty subsets of {0, 1}€, such that, for any set X and any extension
rule e, S(T(X,¢)) = {x*} whenever the Condorcet winner x* of X exists.!® Hence,
S either selects from 7' (X, ¢) the unique Condorcet winner if it exists, or a sub-
set of committees otherwise. The S-paradox for e occurs at the ballot set X if
Maj(X) ¢ S(T(X,¢)).

The Top-Cycle TC (Schwartz 1972) and the Uncovered Set UC (Miller 1977)
are well-known tournament solutions. A committee x belongs to TC(T' (X, ¢)) if x
defeats either directly or indirectly all other committees: formally, x € TC(T (X, ¢€))
if, for any y € {0, 1}€, there exists a sequence {y; }o<n<z Of committees such that
yo =x,yg = y,and (yp, yh+1) € T(X,¢) forallh =0, ..., H— 1. Furthermore,
x belongs to UC(T' (X, ¢)) if x defeats either directly or indirectly in two steps all
other committees. An equivalent definition is: x € UC(T (X, ¢)) if there is no other
committee y such that (y, x) € T (X, ¢) and for any committee z, (x,z) € T(X,¢)
implies (y,z) € T(X, ¢).

The next example proves that the outcome of Maj(X) may not belong to the
Uncovered Set, when ¢ = ¢ . Since most tournament solutions are refinements of
UC, then the UC-paradox essentially states that Maj is inconsistent with Condorcet-
type choice from Hamming profiles.

In the case of five candidates, consider the ballot set X containing N = « + 108
ballots, where o voters cast (0, 0, 0, 0, 0), and where each ballot with three approvals
is cast by B voters. Denoting by €2, the subset of ballots with ¢ approvals, one
get that:

(=Maj(X),Maj(X)) € T(X,ef)ifa < 108
(Maj(X),x) € T(X,ef) where x € Q; UQ, ifa > 28
(Maj(X),x) € T(X,ef) where x € Q3 UQqifa > 48
(—Maj(X),x) € T(X,e") where x € Q, U Q, ifa < 48
(=Maj(X),x) € T(X,ef) where x € Q3 U Qqifa <28
Thus, if 2 < % < 4, then (—Maj(X),x) € T(X, &™) whenever (Maj(X), x) €
T(X, M), which implies that Maj(X) ¢ UC(T (X, ™).
However, for separable preference extension rules, Maj always selects within the
Top-Cycle (Laffond and Lainé (2009a)).

7.3.2.2 Avoiding Paradoxes

Which restrictions upon ballot sets are sufficient to avoid the majoritarian and S-
paradoxes? A possible route deals with the level of the candidate-wise majority
size. First, under the Hamming extension rule, the majoritarian paradox cannot

18 Since Hamming preferences allow for indifference, 7' (X) is a weak tournament. See Peris and
Subiza (1999) for an analysis of weak tournament solutions, and Laslier (1997) for a complete
review of tournament solutions.
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occur when all such sizes are greater that 75% (see Wagner 1983, 1984 about the
Anscombe paradox). Furthermore, this ‘three-fourth’ rule draws also a benchmark
for the UC-paradox. For the ballot set X and candidate ¢, we denote by m(c) the
candidate ¢’s size, thatis m(c, X) = w

Proposition 7.3.4 (Laffond and Lainé 2009a). Let X be a ballot set with N ballots
such that m(c, X) > % for all candidates c. Then, under the Hamming extension
rule, Maj(X) is a Condorcet winner of X. Moreover, for any a > 0, there exists a
ballot set X such that m(c, X) > (3 — a) for all ¢ and Maj(X) ¢ UC(T (X, ef)).

Another approach, proposed in Laffond and Lainé (2009b), is to relate the exis-
tence of a paradox to the level of proximity between ballots. The underlying intuition
is that the mutually closer are the ballots, the more unlikely is the possibility of a
paradox. One measure of proximity is the maximal Hamming distance one can find
between two cast ballots. For a ballot set X = {x1,...,xy} with C candidates, the
proximity level of X is defined by §(X) = Max{w, Xn,Xm € X}, that is the
maximal fraction of candidates whom two ballots disagree on.

Proposition 7.3.5 (Laffond and Lainé 2009b). If the electorate is large enough,
then the strict majoritarian (or Anscombe) paradox never prevails at X if §(X) <
V2—=1. Moreover, for any o > 0, there exists a ballot set X with §(X) < a++/2—1
at which the paradox holds.

Proposition 7.3.5 can be generalized. Let 8(X) denote the proportion of voters
who prefer Maj(X) than its opposite. Hence, the Anscombe paradox holds at X
whenever §(X) < 3.

Proposition 7.3.6 (Laffond and Lainé 2009b). Let n € [0, 1]. Let ry, be the mini-
mal number in [0, 1] for which there exists a ballot set X such that §(X) = ry and

0(X) = n. If the electorate is large enough, then r = I_T".(, / ﬁ —1).

Proposition 7.3.6 is to be read as follows. Suppose that one aims at Maj(X ) being
supported by 75% of the electorate against —Maj(X). Thus, n = % and rg.75 = %
This means that we reach the target for any ballot set where if any two ballots differ
on less than a third of the candidates, and also that, for any r > %, there exists a
ballot set X’ such that the maximal distance between two ballots is  and more than
a fourth of the electorate less prefer Maj(X') than its opposite.

Laffond and Lainé (2006) note that a ballot set with at most three different ballots
never faces the majoritarian paradox. They also establish a necessary and suffi-
cient condition for avoiding the majoritarian paradox. We first proceed with several
preliminary definitions.

A ballot set Y C {0, 1}€ is said to be simple if all its elements are mutually
different. Given a ballot set X, we call range of X the simple ballot set Y (X') whose
all elements are ballots in X. For any subset D C C of candidates, a D-relabelling
of the simple voting set Y is obtained by reversing in each ballot approvals and
disapprovals regarding all the candidates in D. Furthermore, for any permutation o
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of C, a o-permutation of Y is the simple ballot set obtained by reshuffling the set
of candidates (i.e., columns of Y') without modifying the voters’ positions regarding
each of them."”

Two simple ballot sets Y and Y’ are equivalent if there exist a subset D C C
of candidates and a permutation o of C such that Y’ is obtained from Y through a
D-relabelling together with a o-permutation.

A simple ballot set ¥ = {y1,..., yn} has a single-switch representation if in
each ballot y,, there exists at most one candidate 1 < c¢(n) < C — 1 such that
yeM £ e Noreover, Y is said to be single-switch if it is equivalent to a
ballot set having a single-switch representation.?’

The single-switchness property characterizes the rich ballot sets that are not
exposed to the majoritarian paradox.?!

Proposition 7.3.7 (Laffond and Lainé 2006). If there are at least three voters, a
rich ballot set with at least three different pairs of opposite ballots cannot face the
majoritarian paradox if and only if its range is single-switch.

Single-switchness is a strong restriction which rules out a large number of bal-
lots. It relates to some consistency across ballots: indeed, a simple ballot set is
single-switch if and only if, for any two voters n and m, the set of voters approved
by n either contains the set of those approved by m, or contains the set of those
disapproved by m.

7.3.3 Compromising Through Majority Voting

We now define the representativeness of a CWVR as its ability to reach a com-
promise. A compromise relates to the outcome of some non-specified negotiation
among voters through which some (hopefully large) fraction of them agree on a

19 The D—relabelling of Y = [y];Z} " is the ballot set VP = [y/]¢ defined by: Ve € D,

Vn,yi =1<% y¢ =0,and Ve ¢ D, VYn, y5 = y;°. The o-permutation of ¥ is a ballot set
Y7 = [x;°]; defined by: V¢, Vi, xJ¢ = x7_, .

3[4

20 For instance, the simple ballot set |x, is single switch. To see why, the {1}-relabelling
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of Y gives |x; , while | x, has a single-switch representation.
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21 Remember that a ballot set is rich if it contains only pairs of opposite ballots.
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single outcome. Compromising refers to the acceptance by individuals of some
decrease in their satisfaction in order to reach an agreement. We categorize below
two types of compromise solutions from preference profiles over committees.

For a top-consistent preference extension rule &, a committee x is a Fallback
a-bargaining committee in the ballot set X if it fulfills three conditions: (1) it is
supported by a fraction o of the voters at some maximal loss of /& ranks in their
preference given in £(X), (2) no other committee can be supported by a fraction
o of the electorate whose members suffer from a lower loss in satisfaction, and
(3) no other committee get a larger support under the maximal loss 4. Fallback a-
bargaining is thus a negotiation procedure under which voters begin by indicating
their preference ranking over all committees. They then fall back, in lockstep, to
less and less preferred committees - starting with first choices, then adding second
choices, and so on - until one is found on which a fraction « of the voters agree.

Attention has been paid to the cases where either ¢ = % or « = 1. The former
is known as the Majoritarian Compromise, or MC (Sertel 1987; Sertel and Yilmaz
1998; Giritligil Kara and Sertel 2005), while the latter is the Fallback Bargaining
solution, or FB (Brams and Kilgour 2001; Brams et al. 2004, 2007; Kilgour et al.
2006).2> We respectively denote by M C(X) and FB(X) the set of majoritarian and
fallback bargaining committees at X given the extension rule ¢7.

Assuming Hamming preferences, we will use the following notations and defini-
tions: for a committee x, a ballot set X with N voters, and k € IN, the k—support
of x in X is the integer Supp; (x, X) equal to the number of voters who place
x at worst at the kth rank in their preferences. Moreover, for « € [0, 1], let
k*(X,a) = Min{k € N : 3x € {0,1}< such that Supp; (x, X) > a.N}, that is
the minimal loss in satisfaction to be accepted for a fraction « of the voters to agree
on some committee. A committee x is a Fallback «-bargaining committee at X if,
for any other committee y, Suppyx(x,q) (X, X) > Suppy«(x,4)(y, X). It is obviously
checked that there always exist one or maybe several «-bargaining committees for
any value of .

Consider the ballot set X depicted in Table 7.9.

Under the Hamming extension rule, one get the following profile over commit-
tees (Table 7.10).

The reader will check that k* (X, %) = 2, which leads to MC(X) = {(0, 0,0, 0),
(1,0,0,0)}. Furthermore, k*(X,1) = 3, and one get FB(X) = {(1,1,0,0),
(1,0,1,0),(1,0,0, 1)}.

Table 7.9 1 2 3 4
X1 1 1 1 1
X2 1 0 0 0
X3 0 0 0 0

22 Brams et al. (2007) introduce two notions of weighted FB we will not discuss here.
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Table 7.10

Voter 1 Voter 2 Voter 3

1111 1000 0000

1110,1101,1011,0111 1100,1010,1001,0000 1000,0100,0010,0001

0011,0101,0110,1001,1010,1100 0100,0010,0001,1110,1101,1011 1100,1010,1001,0110,0101,0011

1000,0100,0010,0001 0110,0101,0011,1111 1110,1101,1011,0111

0000 0111 1111

Table 7.11 X 1 1 1 0
X2 1 1 0 1
X3 1 0 1 1
X4 0 1 1 1
X5, X6, X7 0 0 0 0

The second type of compromise solution rests upon a dual approach. Given a
ballot set X and the extension rule £, the number of indifference classes generated
by £ in the profile (X) is equal to C + 1. Say that a committee x is S-acceptable
for voter n if the rank given to x in R, is less than 8.(C + 1). The B-compromise
of X is the set of all committees that are S-acceptable for a maximal number of
voters. We focus here on the case § = %: a committee x is %—acceptable for voter
n if n agrees with x on more than half of the candidates. We denote by C(X) the
%—compromise at X. It is easily checked that C(X) = M C(X) when X is defined
in Table 7.9 (hence C(X)N FB(X) = @). But it is easy to find cases where C(X)N
MC(X) =o.

Consider again Table 7.9. Since Maj(X) = (1,0,0,0), then Maj(X) € MC(X)
while Maj(X) ¢ FB(X). How well does Maj perform as a way to reach the
Majoritarian, the Fallback Bargaining and the %—compromise is examined in Brams
et al. (2004, 2007) and in Laffond and Lainé (2009¢c). Since Maj minimizes the sum
of distances, while F'B minimizes the maximal distance to the preference profile, it
is not a surprise that Maj may not select a Fallback Bargaining committee, unless
restrictions are made about ballot sets.

Table 7.11 gives a case where the outcome of Maj is not a majoritarian compro-
mise, while its opposite is.

One get Maj(X) = xs5. Since no ballot gathers a majority of votes, then
k*(X, %) > 1. Moreover, note that Supp, (—x5, X) = 4 > % Suppose that (—x5) ¢
MC(X). Let y € MC(X). Then it must be true that the majority supporting y
involves 5,6 and 7. Hence y must contains at least three disapprovals. But this
implies that, forn = 1,2,3,4, d(y,xp) > 1, so that 5,6 and 7 must represent
more than half of the voters, a contradiction. Thus, (—x5) € M C(X), which clearly
implies that x5 ¢ M C(X).

Table 7.12 illustrates the same problem with the %-compromise.

Maj(X) = w = (0,0,0,0,0) and the 45 voters from 51 to 95 find that w is %-

acceptable, while —w is %—acceptable for the first 50 voters. Moreover, no voter
1

among the last 45 ones find 7-acceptable any three-member or four-member
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Table 7.12

Xlyenns X10 1 1 1 0 0
X1lsewnes X20 0 1 1 1 0
X1y enny X30 0 0 1 1 1
X3y eens X40 1 0 0 1 1
X4lsewns X50 1 1 0 0 1
X571y eeny X59 1 0 0 0 0
X605+« - s Xe68 0 1 0 0 0
X69y « v vy X77 0 0 1 0 0
X78s v vy X86 0 0 0 1 0
X875+ vy X95 0 0 0 0 1

committee. One also check that each one-member committee is found %—acceptable
by 48 voters, and that each two-member committee is found %-acceptable by 38
voters. Thus, C(X) = {—w?}, so that Maj(X) ¢ C(X).*?

The three propositions below summarize conditions for Maj to select within each
of the three compromise concepts. The first points out that the three-fourth rule is
of little help.

Proposition 7.3.8 (Laffond and Lainé 2009c¢). Let X be a ballot set with at most
three different ballots such that m(c, X) > %for all candidates c. Then, Maj(X)
belongs to M C(X). However, there exists a ballot set X with six different ballots
such that m(c, X) > % and Maj(X) ¢ M C(X). Finally, there is no ballot set X
such that m(c, X) > 2 and —Maj(X) € MC(X).

Actually, no condition dealing with the level candidate-wise majority size can
secure a compromise through Maj: indeed, Maj may choose a committee that is
not a majoritarian compromise (or a %-compromise, or a Fallback bargaining) even
when voters are almost unanimous candidate-wise.

Proposition 7.3.9 (Laffond and Lainé 2009c). For any a > 0, there exist three
ballot sets X, X', X" with respectively N, N', N" voters such that m(c, X) > (1 —
a) and Maj(X) ¢ MC(X), m(c,X’) > (1 — «) and Maj(X') ¢ C(X’), and
m(c, X") > (1 — ) and Maj(X") ¢ FB(X").

Furthermore, looking for the equivalent of the single-switch condition leads to
an almost impossibility result.

Proposition 7.3.10 (Laffond and Lainé 2009c). A rich ballot set X cannot be
such that Maj(X) ¢ MC(X) if and only if its range contains either one unique
pair of opposite ballots, or two pairs {x,—x} and {y,—y} of opposite ballots such
that d(x,y) < 1. Moreover, for any two distinct pairs of opposite ballots {x,—x}
and {y,—y}, there exists a ballot set X with range {{x,—x},{y,—y}} such that
Maj(X) ¢ C(X).

23Tt is shown in Laffond and Lainé (2009¢) that having —Maj(X) € M C(X) requires at least four
candidates, whereas having —Maj(X) € C(X) requires at least five candidates. Finally, having
[Maj(X) ¢ MC(X)] or Maj(X) ¢ C(X)] requires at least three candidates.
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Since Maj always selects the Condorcet winner when it exists, a by-product of
Proposition 7.3.10 is that no Condorcet choice voting rule always selects either
in the Majoritarian Compromise or in the approval %—compromise. To conclude,
it is obvious that both Propositions 7.3.8 and 7.3.9 remain valid if any separa-
ble preference rule is allowed beyond the Hamming rule. And Proposition 7.3.10
becomes even more negative: there is no set of potential ballots where Maj selects
a majoritarian compromise committees whatever the distribution of votes among
ballots.

Finally, most results dealing with Condorcet properties and Compromise solu-
tions still hold when the size of committee is restricted.

7.4 Non-separable Preferences

We have shown that candidate-wise voting, and in particular Maj, may poorly rep-
resent the voters’ preferences about committees, even when these preferences are
assumed to be separable. We also showed that only strong restrictions, beyond
separability, upon either preferences or ballot sets, can overcome this lack of repre-
sentativeness. Not surprisingly, allowing for non-separable preferences exposes Maj
to even worst difficulties, and referring to a voting paradox is no longer appropriate.

Preferential dependencies are likely in many real-life elections, and this has been
demonstrated in several studies: among them, Lacy and Niou (2000) use data from
elections via the Internet, and Ratliff (2006) analyzes the ballots of two elections at
Wheaton College in Massachusetts. Hodge and Schwallier (2006) study, by means
of randomly generated preference profiles, how non-separability influences the rep-
resentativeness of multiple referendum, where the measure of representativeness is
based on the Borda score.

Under non-separable preferences, Maj is no longer Condorcet-loser consistent,
and its outcome may even be Pareto-dominated by all other committees (Lacy and
Niou 2000). Consider the two ballot sets depicted in Table 7.13.

If preferences over committees are not separable, then nothing precludes that
both voters 1 and 2 uniquely rank Maj(X) = (0,0) last in (X ), and that all three
voters uniquely rank Maj(X’) = (1,1, 1) lastin e(X").*

By construction, CWVR like Maj ignore some essential features which drive the
preferences behind the ballots. So, separating the overall profile of preferences into
a set of candidate-wise (binary) profiles, and designing vote from the latter, exposes
the choice procedure to a (maybe strong) lack of representativeness.”

24 Lacy and Niou (2000) prove that, when preferences are separable, Maj selects a committee that
cannot be unanimously less preferred than any other one.

25 This simple argument is also put ahead in Saari and Sieberg (2001), “these paradoxical behaviors
arise because the separation of inputs into disconnected parts can cause a concomitant loss of
available and crucial information.”
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Table 7.13 1 2 1 2 3
X1 1 0 X1 1 1 0
X2 0 1 X2 1 0 1
X3 0 0 X3 0 1 1
Table 7.14 1 2
X1 0 1
X2 1 0
X3 0 0
Table 7.15 Voter 1 Voter 2 Voter 3
©0.1) (1,0 0,0
(1, 1) 1,1 1,1
0,0) 0,0 0,1

(1,0) 0,1) (1,0)

There is another important consequence of non-separability: votes may not be
sincere. For instance, by casting the ballot (0, 1) in Table 7.13, voter 1 ensures the
election of the candidate 2 only, and hence may increase her level ofs satisfaction.
More generally, since candidate-wise positions are not clear when preferences are
non-separable, it may somehow be difficult to forecast the voters’ behavior when
facing either a parallel or a sequential CWVR: how would voter 1 decide about
candidate 1 in a three-candidate case if willing 1 to get elected also depend on the
decision to be taken, either simultaneously, or in the future, about another candidate?
Another way to look at strategic voting is to expect it could help at escaping from the
major problems met by Maj. For instance, we already know that, under separability,
strategic voting leads to sincere votes, and Maj always select the Condorcet winner
when it exists.?® Unfortunately, this is no longer true when some voter has non-
separable preferences. Consider the ballot set X defined in Lacy and Niou (2000)
by (Table 7.14) and suppose that the extension rule ¢ defines the following profile
e(X) = (P1, P2, P3) of orders (Table 7.15).

Suppose that Maj is used. Both voters 1 and 2 having separable preferences, a
dominant strategy is for them to vote sincerely. It follows that voter 3 is pivotal on
each candidate, so that his best response to the other strategies is voting also sincere.
It follows that Maj(X) = (0, 0). Finally, (1, 1) is the Condorcet winner of 7'(X, ¢).
Hence, strategic voting cannot secure the choice of the Condorcet winner when it
exists.

We are left with the following statement: when voters are asked to cast approval
ballots, and when a parallel CWVR is used, there is little hope to always avoid
choosing a committee that is poorly considered by a significant fraction of the

26 See Kramer (1972) for the same result in a more general setting.
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voters. Even under the most favorable case, namely separable preferences, strong
additional assumptions are required in order to escape from the different voting para-
doxes. And when preferential dependencies among candidates prevail, the best route
to be followed is to design voting procedures which better elicit voters’ preferences
than CWVR do.

Asking voters to report their entire preference relation has only a theoretical
value, and must be ruled out from any practically implementable voting procedure,
unless the number of candidates is very small. Indeed the exponential number of
possible committees should preclude to defend this option. We are left with three
alternative methods:?’

e Choosing among a subset of possible committees (Kilgour and Bradley 1998;
Brams et al. 1997)

e Designing procedures based on partial reports of preferences (Brams et al. 1997;
Ratliff 2006)

e Sequential voting (Lacy and Niou 2000; Lang and Xia 2009)

As argued in Lang and Xia (2007, 2009), and already recognized in Brams et al.
(1997), the first option, that is ‘packaging the candidates’ in order to reduce the
number of committees to be compared, is hardly feasible in a systematic way, and
might be an actual option in very specific contexts. The second option consists of
asking voters either to report their first k best committees (where k is given a rea-
sonably small value), and to apply a choice function on this restricted profile, or to
indicate which committees they approve and select the plurality winner(s). In both
methods, voters cast several instead of a single approval ballot.?® To our knowledge,
a complete analysis of the representativeness properties of both options 1 and 2
remain to be done.

While options 1 and 2 follow the ‘global” way (voters vote for bundles of candi-
dates), sequential voting follows the ‘local’ way of candidate-wise choice, although
non-separability does not naturally call for it. The intuition is that successive votes
may help at taking into account at least part of the preferential dependencies.
Still, the actual voting behavior cannot be specified without assumptions on vot-
ers’ expectations about the future candidates. Lacy and Niou (2000) assume that
voters are optimistic, in the sense that they always vote for the candidate according
to their most preferred committee given the past decisions. Under this assumption,
the sequential majority voting is Condorcet-loser consistent. However, as illustrated
by the next example (Table 7.16) with three candidates (Lang and Xia 2009), the
selected committee may be a ‘nearly’ Condorcet loser:

27 The list is not exhaustive. An alternative method has been proposed by Bock et al. (1998), in
which the size of the committee is determined from votes cast on single candidates.

28 Brams et al. (1997) describe two refinements of approval voting on committees which deal with
the possibility to abstain over certain candidates, and compare them with approval voting using
the data of a specific multiple referendum election. Ratliff (2006) shows how voting from partially
reported preferences may help in a specific real-life election.
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Table 7.16 voter 1 voter 2 voter 3
(1,1,00  (1,0,1)  (0,1,1)

0,0,00  (0,0,0)  (0,0,0)

(0,1,0)

(0,0,1)

(1,1,1)

. . (1,1,0)

(1,0o,1)  (L1,1)  (1,0,0)

(1,1,1) (11,00 (1,0,1)

Table 7.17 voter 1 voter 2 voter 3
(1L, D (1,0 0, 1)

0,1) (1, 1) (0,0)

(1,0) 0,1) (1,0)
(0,0) (0,0) (1,1)

Suppose that the decisions are made first about candidate 1, then candidate 2,
then 3. Then 1 is elected, leading voters 1 and 3 to elect candidate 2, and finally
voters 2 and 3 approve candidate 3. The resulting committee (1, 1, 1) is majority
defeated by all committees but (1, 1, 0).

Another positive property of sequential majority voting is that it never selects a
universally Pareto dominated committee, although it can be Pareto dominated (Lacy
and Niou 2000).

We argue that optimistic voting behavior is unlikely to prevail. Indeed, SeqMaj is
manipulable, while optimistic voting is equivalent to sincere voting. In the example
with two candidates given in Table 7.17, we suppose that candidate 1 is chosen
first. If voter 1 is sincere at the first vote, then (1, 0) is chosen, while disapproving
candidate 1 leads to the preferred committee (0, 1).

However, Lacy and Niou (2000) show that sophisticated voting?® always results
in a Condorcet winner whenever it exists.3° The example in Table 7.16 illustrates
the result: (0,0, 0) is the Condorcet winner. At the last vote, if (0, 0) is the current
situation, then clearly (0, 0, 0) will be elected against (0, 0, 1). Consider backwards
the vote about candidate 2. Then (0, 0) will be elected against (0, 1) since voters
anticipate the last vote, Similarly, candidate 1 will be not elected, voters anticipating
the subsequent sequence of results. Hence, strategic voting preserves Condorcet-
winning consistency with non-separable preferences.

Finally, Lang and Xia (2007, 2009) offer a general study of sequential voting
when voters have CP-net preferences. We summarize below the properties dealing
with representativeness:3!

29 Sophisticated voting prevails when voters rule our their dominated strategies, and vote candidate-
wise according to the most preferred outcome their choice is likely to produce.

30 This extends a result by Farquharson (1969) to multiple referendum. See also Kramer (1972).

3 Lang and Xia (2007, 2009) essentially study whether the sequential composition of simple
voting rules inherits a given property satisfied by all the simple rules. They also address the



148 G. Laffond and J. Lainé

Proposition 7.4.1 (Lang and Xia 2009). Suppose that all voters have CP-net
preferences. Then,

(1) SeqMaj is Condorcet-winner consistent.>

(2) SeqMaj is Condorcet-loser consistent.

The main interest of Proposition 7.4.1 is to generalize the Condorcet consistency
properties established for separable preferences (Kadane 1972) to a strictly larger
domain. However, since Pareto efficiency is violated under separable preferences, it
remains so in this larger domain.

As a conclusion, how to design committee choice procedures from approval bal-
loting remains a widely unsolved question. Both parallel majority voting Maj with
separable preferences, and sequential majority voting SeqMaj with CP-net prefer-
ences are Condorcet (winner and loser) consistent. However, Maj (and thus SeqgMaj)
does not share other appealing representativeness properties, unless very strong
restrictions are made on separable preferences. And there is no hope to move out
this dead end when preferential dependencies are allowed. Several suggestions, like
driving a richer information about preferences through the provision of more than
one ballot, or presenting bundles of candidates, seem to allow for some promising
benefits in specific real-life elections. Their general formalization is a challenging
question of economic design.
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Part IV
Strategic Voting



Chapter 8
The Basic Approval Voting Game

Jean-Francois Laslier and M. Remzi Sanver

8.1 Introduction

There is a vast literature which conceives Approval Voting as a mechanism where
the approval of voters is a mere strategic action with no intrinsic meaning. As usual,
a group of voters who have preferences over a set candidates is considered. Every
voter announces the list of candidates which he approves of and the winners are
the candidates which receive the highest number of approvals. Assuming that voters
take simultaneous and strategic actions, we are confronted to a normal form game
whose analysis dates back to Brams and Fishburn (1983). This chapter surveys the
main results of this literature.

The problem with this approach is that the main conceptual tool of game theory —
Nash equilibrium — is of little help for understanding Approval Voting and most
voting rules. By definition, an equilibrium is a vote profile in which no voter can, by
changing her vote only, change the outcome of the game in such a way that the new
outcome is strictly better for her. In a world where voters are only interested in who
wins the election (instrumental and consequentialist voting, opposed to expressive
voting), the outcome of the game is just the identity of the elected candidate, or
candidates in case of a tie. Then it is almost always the case that no voter can, by
changing her vote only, change the outcome of the game. With Approval Voting, as
well as with most voting rules, this will happen as soon as one candidate is winning
the election with a margin of more than two votes. Therefore, apart cases where
several candidates tie or almost tie, almost everything is a Nash equilibrium. In
particular, except in some very degenerated cases, any candidate is winning at some
Nash equilibrium.

The game-theoretical literature on voting, and in particular on Approval Voting,
has therefore focused on the possibility of using more powerful tools than Nash
equilibrium in order either to predict the outcome of a voting game or at least to
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narrow down the set of possible outcomes. To this aim, several routes have been
followed.

The first route is to restrict the set of voting strategies that a voter is supposed to
possibly use. The natural idea, from the game theoretic perspective, is to suppose
that voters do not use dominated strategies. Although this idea reveals very pow-
erful in solving sequential voting games (Farquharson 1969; Moulin 1979; Moulin
1983; Banks 1985; Bag et al. 2009) this is not the case for simultaneous voting
games defined by the usual voting rules (Dhillon and Lockwood 2004; Buenrostro
and Dhillon 2003; Dellis and Oak Dellis and Oak). For Approval Voting, undomi-
nated strategies are often called “admissible strategies” and can be characterized: If
the voter’s preference is strict, she approves her preferred candidate, she does not
approve her worse candidate, and no constraint is imposed as to the other, inter-
mediate candidates (for a precise statement, see Proposition 8.3.1). For Approval
Voting, another meaningful restriction on the set of strategies is the sincerity require-
ment, which imposes that when the voter approves a candidate, she also approves
all the candidates she strictly to prefers to this one. Brams and Sanver (2006) have
described the set of possible outcomes when voters use only undominated (“admis-
sible””) and sincere strategies. It turns out that, except in some degenerated situations,
all candidates pass this test (see Sect. 8.4.1).

The second route is to come back to a notion of equilibrium and to refine the
notion of Nash equilibrium according to the usual concepts of game theory. (See
Myerson 1991 or Van Damme 1991 for the general theory and De Sinopoli 2000
for an application to plurality voting.) In comparison with the previous approach,
this amounts to give up the idea that the voter’s behavior can be restricted a pri-
ori and to instead consider that each voter is reacting to what she believes are the
voting intentions of the other voters. Remark that among the plethora of Nash equi-
libria of the voting games, most of them are degenerated from the strategic point
of view in the sense that no player has any incentive not to deviate. In fact, unless
she is “pivotal,” the voter’s choice has indeed no consequence at all on the out-
come. This is a clear case for the refinement of equilibrium. One could hope that
statements of the kind “A Condorcet loser cannot be elected at equilibrium under
Approval Voting” or “Voters vote sincerely at equilibrium under Approval Voting”
could be demonstrated when the notion of equilibrium is properly defined. This
hope is justified if one allows not only for individual deviations but also for group
deviations — hence considers strong equilibrium as the game-theoretic solution con-
cept. (See Proposition 8.4.2 about Condorcet-consistency.) But the notion of strong
equilibrium has a major drawback as a predictive tool since, in many cases, there
is no such equilibrium. On the other hand, for different refinements of Nash equi-
librium that yield non-empty predictions in finite normal-form games, De Sinopoli
et al. (2006) have provided counter-examples (reproduced in Sect. 8.4.2) that kill
the hope to make these statements true for any of the classical refinements of Nash
equilibrium through concepts such as “perfection,” “properness” or “stability.”

The third route is to refine the concept of equilibrium following non-standard
ideas that would be specific to the voting context. In politics, voting situations often
involves large number of players, a fact that raises new difficulties but also new
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possibilities. This avenue, pioneered by Myerson and Weber (1993) and Myerson
(2002) is the object of the survey of Nunez (2010) in this book and is out of the
scope of the present chapter.

Section 8.2 presents the basic notation and concepts. Section 8.3 deals with
undominated and sincere individual strategies. Section 8.4 deals with the aggregate
outcome of the vote. Section 8.5 concludes.

8.2 The Normal Form Game

We denote by I the finite set voters (sometime called individuals or players) and by
X the finite set of candidates (sometimes called alternatives). We assume #I > 2
and #X > 2. Every voter i has a preference over X, expressed by a utility function
u; : X —> IR. So given two candidates x, y € X, voter i finds x at least as good as
v iff u;j (x) > wu;(y). A candidate x is high in u; iff u; (x) > u;(y) forall y € X.
We say that x is low in u; iff u; (y) > u; (x) for all y € X. We call u; null whenever
i is indifferent among all alternatives, i.e., u; (x) > u;(y) for every x,y € X. If
u; is null then every candidate is both low and high in u;. If u; is not null then the
candidates which are high in u; and those which are low in u; form disjoint sets.

A ballot is any subset of the set of candidates; we denote by 2X the set of bal-
lots. When voter i casts ballot B;, we say that i approves the candidates in B;.
We let B = (B;)ics € (2")I stand for a ballot profile and write B = (B;, B—;)
with B_; = (B j)j cn\giy Whenever we wish to highlight the dependency of B with

respect to i’s ballot. We refer to B_; as a ballot profile without i .
Given a ballot profile B, the score of candidate x is

s(x;B)=#{i el:x € B;}
and the (non-empty) set of winning candidates (under Approval Voting) is
W(B)={xeX:s(x;B) >s(y; B)Vy € X}.

Similarly, we write s(x; B_;) = #{j e I\{i} : x € B;}.

We suppose that voters vote simultaneously by casting a ballot which is some
set of candidates while Approval Voting is used as the outcome function. So we
consider a normal form game where the strategy set for any voter i is the set 2% of
possible ballots. Hence a ballot profile B is also a strategy profile and the outcome
is the set of winning candidates W(B).

As W(B) may contain more than one candidate, our strategic analysis requires
the knowledge of voters’ preferences over non-empty subsets of X. We assume that
ties over outcomes are broken by fair lotteries and that voters evaluate outcomes by
expected Von-Neumann Morgenstern utilities. So the utility that voter i attaches to
a set S of winning candidates is
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i(S) = 4o Yo

x€eS

Note that we abuse notation and allow u; to have arguments which are both elements
and non-empty subsets of X.

8.3 Admissibility and Sincerity
8.3.1 Admissible Strategies

Following the game-theoretical vocabulary, for any voter i with preference u;,
we say that the ballot B; (weakly) dominates the ballot B; if and only if
ui(W(Bi, B=i)) > u; (W(B;,B_i)) for all B—; and u;(W(B;, B—;)) > u;
(W(B], B—;)) for some B_;. A ballot is undominated if and only if it is dominated
by no ballot. Following Brams and Fishburn (1983), we qualify undominated bal-
lots as admissible and use either words. The following proposition characterizes
admissible ballots.

Proposition 8.3.1.

(i) If u; is null then all ballots are admissible for voteri.

(ii) Let the number of voters be at least three. If u; is not null then the ballot B; is
admissible for voter i if and only if B; contains every candidate who is high in
u; and no candidate who is low in u;.

Proof. (i) directly follows from the definitions. To show the “only if” part of (ii),
consider a ballot B; which fails to contain a candidate y who is high in u;. Let
B! = B; U {y}. We will prove that B/ dominates B;.

Given any B_;, all candidates except y have the same score at (B;; B—;) and
(B/; B_;) while the score of y is raised by one unit at the latter ballot pro-
file. Therefore, regarding the sets of winning candidates ¥ = W(B;; B_;) and
Y = W(Bl.’ ; B_;), the following three cases are exhaustive:

l.y¢YandY =Y.
2. y¢YandY' =Y U{y}
3.yeYandY' = {y}.

In all three cases, u; (Y') > u;(Y). Now fix some k € I\{i} and consider B—;
where B; = @ for all j € I\{i,k} and By = {z} for some candidate z who
is not high in u;. If z ¢ B; then W(B;; B_;) = B; U {z} and W(B/; B_;) =
Bi/ U{z} = B; U{y,z}, hence u,'(W(Bi/;B_i)) > u;(W(B;; B—;)). If z € B;,
then W(B;; B_;) = {z}, W(B/; B_;) = {y.z} and we have u;(W(B/; B_;)) >
u; (W(B;: B—;)). This proves that B/ dominates B;, and we conclude that an undom-
inated ballot must contain all candidates who are high in u;. Similar arguments show
that an undominated ballot cannot contain a candidate who is low in ;.
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We now show the “if” part of (i /). Consider a ballot B; that contains every candi-
date high in #; and no candidate low in ;. In order to show that B; is undominated,
we consider any distinct ballot B/ and establish the existence of some B_; where
uj(W(Bi; B—;)) > ui(W(B;; B-;)).

First let B/ contain a candidate y low in u;. Let B_; be such that B; = {y} for
some voter j € I\{i} and By = @ for every voter k € I\{i, j}. So W(B;; B—;) =
Bi U {y}. W(BJ: B_i) = {y} and u:(W(B;: B_y)) > us W(Bf: B_p).

Now let B; fail to contain all candidates high in u;. So the set Y of candidates in
B;\ B/ who are high in u; is non-empty. Let L be the set of candidates who are low
in u;. Let B_; be such that B; = Y U L for some voter j € I\{i} and By = 0 for
every voter k € I\{7, j}. So W(B;; B_;) =Y and at (B/; B_;), the score of every
candidate who is high in u; is at most one and the score of some candidates who
are low in u; is one. Thus, W(Bi’; B_;) contains candidates who are not high in u;.
Hence u; (W(B;; B—;)) > u;(W(B]; B_;)).

Finally let B] contain every candidate high in u; and no candidate low in ;.
First consider the case where there exists a candidate y in B; not in Bl-/ .Let B_; be
such that for two (distinct) voters j, k € I\{i} we have B; = By = {y,z} where
zis low in u; and B; = @ for every voter [ € I\{i, j, k}. So W(B;; B_;) = {y},
W(B/; B_;) = {y.z} and u;(W(B;; B_;)) > u;(W(B/; B_;)). Now consider the
case where B; is a proper subset of B]. Take some y € B]\ B;. Note that y is
not high in u;. Take some candidate z high in &; and let B_; be such that for two
(distinct) voters j, k € I\{i} we have B; = By = {y,z} and B; = ¢ for every voter
le \{i, j.k}.So W(Bi: B—i) = {y.z}, W(B[: Bi) = {y}andu; (W(B;: B_;)) >
ui (W(BJ: B_))).

8.3.2 Sincerity

Following Brams and Fishburn (1983), a strategy (or ballot) B; of voter i with
preference P; is said to be sincere iff for all candidates x, y € X,

y € Bj and u; (x) > u; (y) = x € B;.

So under a sincere strategy B;, if i approves of a candidate y then she also approves
of any candidate x which she strictly prefers to y. With K candidates, if voter i
is never indifferent between two distinct candidates, she has at her disposal K + 1
sincere strategies, including the full ballot B; = X which consists of approving of
all candidates, and the empty ballot B; = @ which consists of approving of none.
Proposition 8.3.1 does not make any statement about candidates who are nei-
ther high nor low. In fact, for a voter i with preference u;, every non-sincere ballot
that contains every candidate high in #; and no candidate which is low in ;. is an
undominated strategy for i. So admissible ballots need not be sincere, nor sincere
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ballots have to be admissible.! On the other hand, sincere and non-sincere ballots
can be discriminated through the fact that every ballot profile B_; without i admits
at least one sincere ballot B; as a best-response of i. In other words, the set of best
responses of i to B_; cannot consist of insincere ballots only.

Proposition 8.3.2. Given any voter i with preference u; and any ballot profile
B_; without i, there exists a sincere ballot B; € 2% such that u;(W(B;; B_;)) >
uj (W(B}; B_;)) for every ballot B] € 2X.

Proof. Take any voter i with preference u; and any ballot profile B_; without i. Let
Y be the (non-empty) set of candidates who receive the highest number of approvals
at B_;. Let Z be the (possibly empty) set of candidates who receive at B_; pre-
cisely one approval less than the highest number of approvals. The outcome set
W(B;, B_;) when B; vary can take two forms: if B; N'Y # @, then W(B;, B_;) =
B;NY,andif B, NY = @, then W(B;,B_;)) = Y UZ' , forZ = B, N Z.
Denote by u; the maximum utility obtained by i. Then u’ > max,ey u;(y), and
uf > maxz.cz u; (Y UZ’), with one of these two inequalities being an equality. Let
y* € Y besuchthatu; (y*) = maxyey u;(y). Let B} = {x € X 1 u;(x) > u; (y*)}.
This is a sincere ballot, so if Bl-lis a best response, we are done.

Notice that Bl.1 brings at least the level of utility u; (y*); so if Bl-lis a not best
response, it must be the case that u; (y*) < u} and that u¥ = maxz/cz u; (Y U Z’).
In that case, let Z* = {z € Z : u;(z) > u;(Y)}. Recall that the utility for a
subset is the average utility of its elements; as one can easily check, it follows that
wi(YUZ*) =maxziczui(YUZ'). Let B} = {x € X :u;(x) > u; (Y UZ*)} This
is again a sincere ballot. Moreover, in that case, Bl.2 N Y = 0 so that the ballot Bl-2
brings the utility u; (Y U (Bl.2 N Z)). Here, Bl-2 NZ =4{z€Z:ui(z) >u;(YUZ*)}
and u; (z) > u; (Y U Z*) if and only if u; (z) > u;(Y), so that B* N Z = Z*, and
Bi2 brings the maximal utility «;". We again found a sincere best response.

Proposition 8.3.1 slightly differs from the existing results of the literature regard-
ing the way preferences over sets are handled. In fact, it makes the same statement
as Corollary 2.1 in Brams and Fishburn (2007) which is shown under more gen-
eral assumptions for extending preferences over sets. On the other hand, the result
announced by Proposition 8.3.2 has no analogous in Brams and Fishburn (1983,
2007), as it fails to hold under these more general assumptions.?

! Nevertheless, if there are precisely three candidates, then every admissible ballot is sincere.

2To see this, let voter i have the preference u; (x1) > u;(x2) > u;j(x3) > u;(x4) > ui(x)
Vx € X\{xi,x2,x3, x4} and let B_; be such that s(x2; B—;) = s(x4; B—;) > s(x;; B—;) =
s(x3; B—;) > s(x; B—j)Vx € X\{x1, x2, X3, x4} while s(x2; B_;) — s(x1; B—;) = 1. The ballot
B; = {x1, x3} which yields {x|, x,, X3, x4} can be a best-response under the Brams and Fishburn
(1983, 2007) assumptions while there is no sincere ballot for voter i which yields the same out-
come. Endriss (2009) identifies the assumptions on preferences over sets which rule out incentives
to vote insincerely.
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Proposition 8.3.2 has no analogous for insincere ballots. In other words, the best
response of i to B_; can consist of sincere ballots only.? As a result, one may be
tempted to assume — as we do in Sect. 8.4.1 — that voters restrict their strategies to
those which are admissible and insincere. On the other hand, in Sect. 8.4.2, we see
that such an assumption is not totally innocuous.

8.4 Approval Voting Outcomes

8.4.1 Admissible and Sincere Outcomes

Brams and Sanver (2006) study the set of candidates which are chosen under
Approval Voting at a given preference profile, assuming that voters use admissi-
ble and sincere strategies. For a formal expression of their findings, let u = (u;);ex
be a preference profile. Write

a(u) = {B € (ZX)I : Vi €1, B;isadmissible and sincere with respect to u;} )
We define

AV(u) = {x € X : x € W(B) for some B € a(u)}

as the set of (admissible and sincere) Approval Voting outcomes at u. So candidate
x is an Approval Voting outcome at u if and only if there exists a profile of sincere
and admissible strategies B where x is a (possibly tied) winning candidate under

Approval Voting.
Note that a voter who strictly ranks K candidates has exactly K — 1 admissi-
ble and sincere strategies which consist of approving her first k € {1,..., K — 1}

best candidates. This is a drastic reduction of a voter’s strategy space which origi-
nally contained 2K strategies. Nevertheless, this does not restrict much the size of
AV (u) which Brams and Sanver (2006) characterize, assuming that voters are never
indifferent between any two candidates, i.e., u; (x) # u; (y) Vi € I, Vx, ye X.

Proposition 8.4.1. Given a preference profile u with no indifferences, a candidate
x is not in AV (u) if and only if there exists a candidate y € X\{x} such that
according to u, the number of voters who rank y as the best and x as the worst
candidate exceeds the number of voters who prefer x to y.

Based on Proposition 8.4.1, AV (u) may contain Pareto dominated alternatives*
as well as Condorcet losers. Moreover, at every preference profile u#, a Condorcet

3 Consider four voters and four candidates where each of voters 2, 3 and 4 approve of precisely one
candidate; say x, y and z respectively. Let the fourth candidate w be ranked last in the preference of
voter 1 whose unique admissible best response is to approve of the candidate he prefers the most.
“In the environment we consider, if a Pareto dominates b and b € AV (u), then a € AV (u) as
well.
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winner (whenever it exists); all scoring rule outcomes; the Majoritarian Compro-
mise winner; the Single Transferable Vote winner are always in AV (u). We refer
the reader to Brams and Sanver (2006) for a more detailed and formal expression of
these results. Nevertheless, we can right away conclude that, in our game theoretic
framework, assuming that voters restrict their strategies to those which are admissi-
ble and sincere does not suffice to have a fine prediction of the election result under
Approval Voting.

8.4.2 Equilibrium Outcomes

The model can be more predictive, when admissible and sincere strategy profiles are
required to pass certain stability tests. A profile of sincere and admissible strategies
B is strongly stable at preference profile u iff given any other profile of admissible
and sincere strategies B’, there exists a voter i with B; # B while u;(W(B)) >
u; (W(B’)). So B is strongly stable at u iff there exists no coalition of voters whose
members can all be better-off by switching their strategies to another admissible and
sincere one (which may differ among the members of the coalition). Let AV ™*(u) =
{x € X : x € W(B) for some B € «(u) which is strongly stable} be the set of
strongly stable AV outcomes at u. Clearly, AV™* (u) refines AV (1) and the reduction
is indeed dramatic:

Proposition 8.4.2. Given a preference profile u, a candidate x is strongly stable at
u if and only if x is a weak Condorcet winner at u.

Note that the definition of a Condorcet winner is a weak one: x is a weak Con-
dorcet winner at u iff given any other candidate y, the number of voters who prefer
X to y is at least as much as the number of voters who prefer y to x. So, in some
cases, # may admit more than one weak Condorcet winner. Of course, # may admit
no weak Condorcet winner, hence no strongly stable profile of admissible and sin-
cere strategies. This last observation is not surprising, as strong stability — which
corresponds to strong Nash equilibrium — is a rather demanding condition. The inter-
ested reader can see Sertel and Sanver (2004) for a more general treatment of strong
equilibrium outcomes of voting games.

The complete proof of Proposition 8.4.2 can be found in Brams and Sanver
(2006). However, we wish to give a simple and instructive description of the proof.
If an outcome x is not a weak Condorcet winner, it means that there exists another
outcome y which is preferred to x by some majoritarian coalition of voters which
can block any strategy profile which yields x as the Approval Voting outcome. If x
is a weak Condorcet winner, then no coalition can block the strategy profile where
voters for whom Xx is not low approve x but do not approve anything below x and
voters for whom x is low approve only their high candidate.’

5 We take the occasion to claim that Proposition 8.4.2 remains valid when strong stability is further
strengthened so as to allow non-admissible and non-sincere strategies.
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We now present two results from De Sinopoli et al. (2006) which advise caution
in interpreting Propositions 8.4.2 and 8.3.2:

1. There may exist non-trivial equilibria where a Condorcet winner obtains no vote.
2. There may exist non-trivial equilibria with some voters voting non-sincerely.

Example 8.4.1 (Condorcet in-consistency). There are four candidates, X = {a, b,
¢, d} and three voters {1, 2, 3} with utility:

ur(a) =10, ur (b) = 0, wa(c) = 1, us(d) = 3,
Ltz(a) =0, Mz(b) =10, M2(C) =1, Mz(d) =3,
u3(a) =1, M3(b) =0, M3(C) =10, M3(d) = 3.

Candidate d is the Condorcet winner of this utility profile. Consider the following
strategy profile:

e Voter 1 votes {a}.
e Voter 2 votes {b}.
e Voter 3 votes {c}.

In such a situation there is a tie among the candidates a, b, and ¢, so that the
payoff to each player is 11/3. Starting from this situation each player is playing a
unique best response: any other choice would lead to a strictly lower payoff. In this
strict equilibrium, the Condorcet winner receives no vote.

The question of sincerity is raised by considering the possibility that players
use mixed strategies. A mixed strategy is a probability distribution over the set of
pure strategies. Here the set of mixed strategies is thus the simplex A(2%) with 2K
vertices, that is an affine space of dimension 2X — 1. We denote by

oi € A@¥)

a mixed strategy of voter i and by o_; a profile of mixed strategies for the other
voters. Payoffs are defined in the usual ways as expected values. For a mixed strategy
profile o, o (B) is the probability of the pure-strategy profile B under o. Players are
supposed to randomize independently the ones from the others so that;

o(B) =] ]oi(B)

i€l

and

wo)= Y wBo@B) = Y oo Y uto(®)
Be(2X)' Be(2X)! xeW(B)

Example 8.4.2 (A non-sincere equilibrium). There are four candidates, X = {a, b,
¢, d} and three voters {1, 2, 3} with utility:
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ul(a) = 1000, u; (b) = 867, u; (C) = 866, Lt](d) =0,
Mz(a) =115, Mz(b) = 1000, uz(C) =0, uz(d) = 35,
u3(a) =0, u3(b) = 35, u3(c) =115, M3(d) = 1000.

Candidate d is the Condorcet winner of this utility profile. Consider the following
strategy profile:

e Voter 1 votes {a, c}.
e Voter 2 votes {b} with probability 1/4 and {a, b} with probability 3/4.
e Voter 3 votes {d } with probability 1/4 and {c, d } with probability 3/4.

Note that voter 1 is not voting sincerely. Nevertheless, this strategy profile is an
equilibrium and De Sinopoli et al. (2006) show that it forms a singleton-stable set,
an important refinement of Nash equilibrium.

8.5 Conclusion

The analysis above raises three issues:

e An a priori restriction of voters’ strategies based on a reasonable intuition such
as undominated and sincere voting is not sufficient to restrict the set of possible
outcomes of an Approval Voting election.

e Many refinements of Nash equilibrium, when applied to Approval Voting games,
ensure the existence of equilibrium but the outcome of these equilibria do not
seem to behave particularly well with respect to social choice requirements.

e Strong Nash equilibrium predicts Condorcet winners as the only Approval Voting
outcomes but equilibrium fails to exist when there is no Condorcet winner.

These essentially negative theoretical results call for developing a finer under-
standing of how a voter chooses a ballot under Approval Voting. This analysis could
rely on some general, game-theoretic principles such as the ones just described,
but should probably also embody some elements specific to real voting situations
such as the large size of the electorate, the specific structures of Approval Voting
strategies, or the specificities of political information.
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Chapter 9
Approval Voting in Large Electorates

Matias Nuiiez

9.1 Introduction

The strategic analysis of voting rules has given some insight into the understand-
ing of their properties. However, one can assert that these analyses are “too rich”
in the sense that they show that a plethora of equilibria can arise under most vot-
ing rules. In particular, there is a controversy over Approval voting or AV, a voting
rule which has been called “the electoral reform of the twentieth century.” This
voting rule allows the voter to vote for as many candidates as he wishes and the
candidate who gets the most votes wins the election. Its detractors claim that this
kind of method enhances strategic voting when compared for instance to Plural-
ity voting (henceforth P V'), whereas its proponents consider that it has several
advantages as far as strategic voting is concerned. For an extensive discussion
on this controversy over AV, the reader can refer to Brams (2008) and Weber
(1995).

One important feature of AV was characterized by Brams and Fishburn (1981).
They show that if a Condorcet Winner exists then the AV game has a Nash equilib-
rium in undominated strategies that selects the Condorcet Winner. The Condorcet
Winner — the candidate who beats all other candidates on pairwise contests — has
often been considered to be a good equilibrium solution in voting games. The robust-
ness of the previous result has been weakened by De Sinopoli et al. (2006). To do so,
they apply Nash equilibrium refinements such as the perfect equilibrium solution to
Approval games. Using these techniques, they prove that there may exist equilibria
in which the Condorcet Loser and Condorcet Winner are selected with the same
probability or even in which the Condorcet Winner gets no vote at all. Therefore,
AV does not guarantee what is called Condorcet consistency: the Winner of the
election does not always coincide with the Condorcet Winner.

M. Nifiez
CNRS, THEMA, Université Cergy-Pontoise, 95011 Cergy-Pontoise, France
e-mail: matias.nunez @polytechnique.edu

J.-F. Laslier and M.R. Sanver (eds.), Handbook on Approval Voting, Studies in Choice 165
and Welfare, DOI 10.1007/978-3-642-02839-7_9,
(© Springer-Verlag Berlin Heidelberg 2010


matias.nunez@polytechnique.edu

166 M. Nifiez

However, the previous works were performed in a basic game theoretical frame-
work.! Such a framework faces some criticisms when dealing with elections with a
large number of voters. Indeed, it is no longer realistic to assume that voters have
no uncertainty over the scores of the candidates.” The existence of candidates with
almost no chance of winning the election might affect voters’ behavior as a voter
might not vote for such a candidate. The introduction of commonly shared prior
beliefs over the outcome of the election is the main objective of models with large
electorates. To our knowledge, there exists three main models dealing with elections
with a large number of strategic voters: the Myerson—Weber framework (Myerson
and Weber 1993), the Score Uncertainty model (Laslier 2009) and the Population
Uncertainty model (Myerson 1998, 2000, 2002).

The so-called Myerson—Weber framework (Myerson and Weber 1993) intro-
duces the idea that in a voting equilibrium, voters behave in accordance to their
preferences and with respect to their anticipations regarding the relative chances of
different pairs of candidates of being in contention for victory. The Myerson—Weber
framework skips the main technical difficulties and introduces in an exogenous man-
ner the pivot probabilities, i.e., of changing the winner of the election from one
candidate to another. To keep things simple, it is assumed that these pivot probabili-
ties will be common knowledge for voters in the election and that they respect some
ordering condition (in some sense, candidates’ expected scores and pivot probabil-
ities will be correlated in an intuitive way). The authors draw a positive conclusion
over the properties of AV when compared with PV and the Borda Count.

The remaining models (Score and Population Uncertainty model) set up for-
mal game-theory models in which the pivot probabilities are neither exogenously
introduced nor assumed to be common knowledge for all voters.

Laslier’s (2009) Score Uncertainty model is performed in a standard game the-
oretical framework where uncertainty is introduced by assuming that there is some
small but strictly positive probability that each vote is erased. Under this approach,
Laslier (2009) shows that AV leads to equilibria with desirable properties such
as Condorcet Consistency and sincerity of voters’ best responses. These positive
results are a consequence of the properties of pivot probabilities in such a setting. In
the Score Uncertainty model, pivot probabilities are ordered in such a manner that
voters’ unique best responses satisfy a simple rule. If we let a denote the candidate
who is considered to be the most likely winner, a voter will approve of any candidate
he prefers to candidate a. Besides, he will never approve of a candidate he prefers

! See the chapter on this book (Laslier and Sanver 2010a) that presents a detailed account of the
main results concerning strategic approval voting in the classic framework.

2 Whereas in a Nash equilibrium, voters perfectly know candidates’ scores, this is not the case
in a trembling-hand perfect equilibrium. Indeed, such an equilibrium concept is the limit of a
sequence of completely mixed strategies equilibria, in which a mixed strategy represents voters’
mistakes (voters have a trembling hand). Within each of these mixed strategy equilibria, voters are
uncertain about candidates’ scores. However, as will be shown the advantage of the models with
large electorates, is that all voters share the same prior probability distribution over their probability
of affecting the outcome of the election. Hence, these models provide a simpler way of computing
voters’ best responses.
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candidate a to. Finally, to decide whether to vote for candidate a, the voter compares
a to the second most likely winner. This simple rule will not be satisfied in the last
model addressed within this work, the Population Uncertainty model. As far as the
information is concerned, pivot probabilities will not be equally shared by voters in
the Score Uncertainty model as assumed in the Myerson—Weber framework. How-
ever, as the electorate becomes large the differences between the pivot probabilities
are greatly reduced so that voters’ best responses are not affected.

The third model with a large number of strategic voters is Myerson’s Popula-
tion Uncertainty framework, also known as Large Poisson Games.? Myerson (1998,
2000, 2002) introduces an uncertainty over the total number of voters in the election.
To do so, it is assumed that the total number of voters in the game is not constant
and is drawn from a Poisson distribution of a given parameter 7, the expected size
of the population. Due to the Poisson uncertainty, Myerson (1998) shows that pivot
probabilities are common knowledge in any Poisson game (independently of the
size of the electorate). Besides, Myerson (2002) draws a positive conclusion over
the properties of AV when compared to other voting rules by analyzing some sim-
ple voting situations. This conclusion is drawn by showing that AV does not have
the undesirable properties of other one-shot voting rules such as PV or the Borda
Count. However, Myerson (2002) does not provide a full characterization of the vot-
ing equilibria that remain under AV . In order to address such an issue, Nufiez (2009,
2010) shows that AV need not correctly aggregate preferences. Nuifiez (2010) con-
structs a simple voting situation where a candidate who is ranked first by more than
half of the population (and thus the Condorcet Winner) is not the Winner of the
election in equilibrium. In equilibrium, voters anticipate that the Condorcet Winner
is not included in the most probable pivot outcome. This information concerning
the probability of affecting the outcome of the election makes the majority of the
voters vote for their preferred and for their second preferred candidate and this leads
to the election of the latter. The existence of such an equilibrium is a consequence
of the non-intuitive ordering of pivot probabilities that arise in Poisson games. This
example shows that the refinement of the set of Nash equilibria on Large Poisson
Games is limited.

However, in the previously mentioned situation, there also exist equilibria where
the Condorcet Winner wins the election. As argued by Schelling (1960) and Myer-
son and Weber (1993) the multiplicity of equilibria has a political significance. A
large set of equilibria in an electoral situation implies that informational issues have
a great influence when determining the result of the election. In order to address
this multiplicity of equilibria, Nufiez (2009) shows that it can be the case that, with
three candidates, the Condorcet Winner is not the winner of the election in any of
the equilibria of the game. Hence, AV can lead to worse preference aggregation
than PV in Large Poisson Games. In addition to the Condorcet Consistency of AV,
Nuiiez (2009) investigates whether this voting rule leads to sincere best responses.

3 Large Poisson Games are a novel field of research. Among the few works dealing with these
games, the reader can refer to Bouton and Castanheira (2008), Goertz and Maniquet (2008),
Krishna and Morgan (2008), Nuiiez (2009, 2010), and De Sinopoli and Gonzalez Pimienta (ming).
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Indeed, the proponents of AV often suggest that this voting rule enhances sincere
voting as voters are allowed to vote for as many candidates as they wish. As Nufiez
(2009) shows, this is not the case on Large Poisson Games. Indeed, Nuifiez (2009)
provides an example in which voters’ best responses are not sincere and such that
the Condorcet Winner gets no vote under AV in equilibrium.

The present work is structured as follows. Section 9.2 introduces the Myerson—
Weber framework, Sect. 9.3 presents the Score Uncertainty model and Sect. 9.4
describes in detail Large Poisson Games. Section 9.5 concludes.

9.2 The Myerson—Weber Framework

There are n voters in the election. Each voter has a type ¢ that determines his pref-
erences over the set of candidates K = {k,!,...}. The preferences of a voter with
atype t is denoted by u; = (u;(k))reg. Thus, for a given ¢, u; () > u; (k) implies
that z-voters strictly prefer candidate / to candidate k. Each type ¢ belongs to the
finite set of types 7.

Each voter’s type is drawn from 7T according to the distribution of types denoted
by r = (r(¢))ser.* In other words, r(t) represents the probability that a voter
randomly drawn from the population has type ¢.

For any pair of candidates k,/ € K,let Ty; = {t € T | us(k) > u;(l)} be the
set of preference types where candidate k is strictly preferred to candidate /. The
Condorcet Winner (C.W.) of the election is defined as:

Definition 9.2.1. A candidate k is called the Condorcet Winner of the election if

S r) > 12V eK I #k

l‘ETk’l

Similarly, the Condorcet Loser of the election is a candidate k such that ZteTk ;

rt)<1/2V1eK,1+k. ’
Each voter i must choose a ballot ¢ from a finite set of possible ballots denoted

by C. Within this work, we stick to the comparison of Plurality and Approval

voting.

Definition 9.2.2 (One Man, One Vote). A Plurality voting ballot (PV) specifies the

candidate the voter approves of.

Definition 9.2.3 (One Man, Many Votes). An Approval voting ballot (AV) speci-
fies the subset of candidates the voter approves of.

Formally, an AV ballot consists of a vector of length K that lists whether a
candidate has been approved or not (whenever candidate k is approved there is a
one in the k** coordinate, whereas the lack of approval is represented by a zero). A

# The distribution of types satisfies r(t) >0 V¢ € T and Y, r(¢) = 1.
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PV ballotis a vector of length K in which every coordinate equals zero but the one
corresponding to the approved candidate that is denoted by one. Hence, in order to
unify both notations we refer generally to the set of available ballots as C.

We assume that each voter maximizes his expected utility to determine which
ballot in the set C he will cast. In this model, his vote has an impact in his payoff
if it changes the winner of the election. Therefore, a voter needs to estimate the
probability of these situations: the pivot outcomes.

We say that two candidates are tied if their vote totals are equal. Furthermore,
let H denote the set of all unordered pairs of distinct candidates. We denote a pair
{k,l}in H as kl with k] = k.

For each pair of candidates k and [, the k[-pivot probability py; is the probability
of the outcome perceived by the voters that candidates k and / will be tied for first
place in the election. Furthermore, we assume that the probability of candidates k
and / being tied for first place is the same than the probability of candidate k being
in first place one vote ahead candidate / (and both candidates above the rest of the
candidates), which is in turn the same one than the probability of candidate / being
in first place one vote ahead candidate k.

A vector that lists the pivot probabilities for all pairs of candidates is denoted by
P = (pr1)kieq- This vector p is assumed to be the same one for all voters in the
election. A voter with k/-pivot probability py; anticipates that submitting the ballot
¢ has the impact Py; on his expected utility with

pr;  if he approves candidate k& and does not approve candidate /
Pr; = { —px; if he approves candidate / and does not approve candidate k
0 elsewhere

Let EU;[c] denote the expected utility by a voter of type ¢ from casting ballot ¢
when p is the common vector of pivot probabilities. It follows that

EUel = ) Prlus (k) — ue (1)),

kleH

A strategy function is a probability distribution o over the set C that summarizes
the voting behavior of voters of each type. Forany ¢ € C andanyt € T, a(c | t) is
the probability that a voter with type ¢ casts ballot ¢. Therefore,

w(c) =Y _r(to(c ),

teT

5 Myerson and Weber (1993) justify this assumption by arguing that it seems reasonable when the
electorate is large enough. However, Large Poisson Games (Myerson 1998, 2000, 2002) do not
respect this intuition. It can be the case that the probability of candidates k and / being tied for first
place becomes infinitely more likely than the probability of candidate k being in first place one
vote ahead candidate / as the electorate becomes large enough. For an example of these divergent
probabilities, see the voting game analyzed by Sect. 9.4.5 within this chapter.
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is the share of the electorate who cast ballot ¢. Given a vote distribution 7, the
expected score of candidate k is

plk)y =Y (),

ceCy

in which Cy consists of the subset of ballots in which candidate k is approved. A
Winner of the election is a candidate whose expected score is maximal.

9.2.1 Voting Equilibrium in the Myerson—Weber Framework

One substantive assumption of the Myerson—Weber framework is what we will refer
to as the ordering condition. As will be shown throughout, the main differences
between three models with a large number of voters lie on this type of conditions
over the pivot probabilities. Myerson and Weber (1993) assumes that voters expect
candidates with lower expected scores are less likely serious contenders for first
place than candidates with higher expected scores. In other words, if the expected
score for some candidate k is strictly less than the expected score for some candi-
date /, then the voters would perceive that candidate k’s being tied with any third
candidate m is much less likely than candidate /’s being tied for first place with
candidate m.

Definition 9.2.4 (Ordering condition). Given a strategy function o and any 0 <
& < 1, a pivot probability vector p satisfies the ordering condition for & (with respect
to o) if, for every three distinct candidates k, [ and m, if p(k) < p(I), then pg,, <
EDIm-

Besides, Myerson and Weber (1993) assumes that the probability of three (or more)
candidates being tied for first place is infinitesimal in comparison to the probability
of two-candidate tie.

Definition 9.2.5 (Equilibrium in the Myerson—-Weber framework). We refer to
o as an equilibrium of the game if and only if, for every positive number &,
there exists some vector p of positive pivot probabilities that satisfies the ordering
condition and such that, for each ¢ € C and foreacht € T,

o(c|t) >0 = c € argmax EU,[d].
deC

It can be shown that the set of voting equilibria is non-empty given the existence
of the ordering condition.® In order to ensure the existence of equilibrium, Myer-
son and Weber (1993) assume that the pivot probability vector is a probability
distribution over the set H of unordered pairs of candidates so that ) ";;c g pks = 1.

6 See Theorem 1, p. 105 in Myerson and Weber (1993).
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9.2.2 Comparison of AV and PV in the Myerson—Weber
Framework

Given the previous simple framework, Myerson and Weber (1993) draws a positive
conclusion over the properties of AV when compared with P V. The current sub-
section presents a brief outline of their results. Let us consider a Myerson—Weber
voting game where there are three candidates K = {a, b, c} and three different types
T = {t1,1t,,t3} such that:

11 1h 13

abc

baa

cchb

in which the utility of the voters satisfies u;, (a) = 10 > u;, (b) = 9 > us, (c) = 0;
utz(b) =10 > utz(a) =9> Mtz(c) = 0and ut3(c) =10 > ut3(a) = Mtg(b) =0.
Besides, the distribution of types satisfies

r(ty) = 0.3, r(t2) =0.3 and r(t3) = 0.4.

Given this distribution, candidate ¢ is the Condorcet Loser as r(t3) < r(t1) + r(t2).

Proposition 9.2.1. In the previous example, PV can implement the Condorcet loser
as the unique Winner of the election.

Proposition 9.2.2. In the previous example, AV does not implement the Condorcet
loser as the unique Winner of the election.

Proof. The present situation is the typical case of a divided majority election.” There
is a majority of the electorate that prefers candidates a and b to candidate ¢. How-
ever, this majority is divided in two symmetric groups: one of which strictly prefers
candidate a to candidate b and the other that prefers candidate b to candidate a.

Under PV, there are three voting equilibria: two equilibria on which voters on
the majority coordinate and make either candidate @ or candidate b to be elected
and a third equilibrium on which voters with type ¢; and f, split their votes and
candidate c is the expected Winner. The latter equilibrium is such that

olalt) =0b|n)=o0(l|n)=1,
which implies that

pla) = 0.3, p(b) =0.3, p(c) =04,

7 See the chapter on this book (Laslier and Sanver 2010b) that presents a detailed account on voting
experiments dealing with the classical case of a divided majority election.
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so that candidate c is the Winner of the election. This equilibrium exists whenever
the pivot probability vector p satisfies p,p = 0, 9/19 < pae < 10/19 and pp. =
1 — pgac. Since candidates a and b have similar probabilities of being in contention
for victory with candidate ¢, voters with type ¢; and £, fail to coordinate.

Under AV, there are also three voting equilibria. In two of them, voters on the
majority coordinate and make either candidate a or b to be elected in a similar man-
ner to the one with P V. However there does not exist an equilibrium under which
candidate ¢ has the strictly highest expected score. In the third equilibrium is such
that the three candidates get the same expected score. Indeed, such an equilibrium
satisfies

o(a|t1)=2/3, o(a,b|ty) =1/3,
ob|tr)=2/3, ol(a,b|tz) =1/3, and o(c|t3) =1,

which implies that
pla) = V(ll)(U(a |t1) +o0(a,b| t1)) +r(t2)o(a,b| 1) = 0.4,

and similarly p(b) = p(c) = 0.4, so that the three candidates get the same
expected score. This equilibrium exists whenever the pivot probability vector p
satisfies pap = 9/11, pac = ppe = 1/11. In this equilibrium, none of the pivot
probabilities is negligible with respect to the others but the probability of a pivot
between candidates ¢ and b is nine times probable than the other two candidate
pivot outcomes.

A Change on the Type Distribution

In order to prove that the positive conclusion over AV drawn on the previous exam-
ple lies on the particular distribution of types, Myerson and Weber (1993) modify
the distribution of types so that

r(t1) =049, r(tz) =0.49 and r(t3) = 0.02.

In this modified version of the example, AV uniquely leads to a unique equilibrium
in which everyone for his most preferred candidate. Such an equilibrium satisfies

o(a|n)=o0b|n)=0(|n)=1
which implies that
pla) = p(b) = 0.49, p(c) = 0.02,

so that both candidates @ and b get the same expected score. To have such an equi-
librium, it suffices to specify a pivot probability vector p such that p,p = 1 and
Pac = Pbe = 0. The set of voting equilibria under PV is much larger in this
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example and can lead voters from both types #; and f#, to vote for candidate a
(whenever the pivot probability vector p satisfies p,c = 1 and p,p = pp. = 0).

The results of the Myerson—Weber framework suggest that AV leads to a better
preference aggregation than other simple one-shot voting rules such as P V. How-
ever the previous analysis is performed in a setting in which strong assumptions are
made over the information available to voters. The remaining models in this work
try to escape from these assumptions and analyse elections building on the intro-
duction of trembles, in a similar spirit to the trembling-hand perfect equilibrium of
Selten (1975).

9.3 The Score Uncertainty Model

The Score Uncertainty model introduced by Laslier (2009) is based on the intro-
duction on some strictly positive probability that every vote is erased. This erasing
probability creates the uncertainty faced by voters and generates the pivot probabil-
ity vectors, that were exogenously introduced on the previously described Myerson—
Weber setting. Therefore, all the notations will remain the same unless otherwise
specified.

There are n voters in the election. Each voter has a type ¢ that determines his
preferences over the set of candidates K = {k,[,...}. The preferences of a voter
with a type ¢ is denoted by u; = (us(k))xex. Thus, for a given ¢, u;(j) > us (k)
implies that ¢-voters strictly prefer candidate j to candidate k. Each type ¢ belongs
to the finite set of types T'.

Each voter’s type is drawn from T according to the distribution of types denoted
by r = (r(t))ser- Each voter i must choose a ballot ¢ from a finite set of possible
ballots denoted by C. The possible set of ballots we focus on (AV and PV') have
already been defined in the previous section

We assume that each voter maximizes his expected utility to determine which
ballot in the set C he will cast. Similarly to the previous model, his vote has an
impact in his payoff if it changes the winner of the election. Therefore, a voter needs
to estimate the probability of these situations: the pivot outcomes. The main dif-
ference between the Myerson—Weber framework and the Score uncertainty model
is the way of introducing uncertainty in the model. Whereas Myerson and Weber
(1993) introduces it in a exogenous way, Laslier (2009) introduces a small proba-
bility q that each vote for each candidate is erased. Voters have some uncertainty
over the total scores of candidates which comes from this small but strictly positive
probability that their vote is erased.

Formally, Laslier (2009) considers a large electorate. To do so, the electorate
with n voters is replicated v times as follows. By assumption, we know that r(¢)
stands for the share of the electorate with type ¢ with ) ", 7(¢) = 1. In the v-fold
replicate economy the number of type-¢ voters is nvr(¢) and the total number of
voters is equal to nv.
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Furthermore, we assume that for any voter and each candidate approved by this
voter there is a probability q > 0 that this vote is not recorded. This probability is
supposed to be small, with q < 1/n (independently of v). These mistakes occur
independently of the voter, of the candidate, and of the voter approving or not other
candidates.

For any ¢ € C and any t € T, the strategy function o(c | t) stands for the
probability that a voter with type ¢ casts the ballot ¢. Therefore,

(c) =Y _r()o(c| ),

teT

is the share of the electorate who cast ballot ¢. The maximal score of candidate k is

plky =Y (),

ieCx

in which Cj consists of the subset of ballots in which candidate k is approved.
However, given the erasing probability the realized score of candidate k differs from
the maximal one. For any candidate k and any voter i, let 7;  denote the random
variable such that
~_ | 1 with probability q
ik = { 0 with probability 1 — q.

When the maximal number of votes for candidate k equals nvp(k), the realized
number of votes for candidate k is a random variable s(k). If we let AV (k) denote
the set of voters who approve candidate k, the random variable s(k) satisfies

sty ="y (I=nip).

i€AV (k)

The score profile s = (s(k))re k is a vector that describes the realized number of
votes each candidate gets. There are at most nvp(k) voters who approve of candidate
k so that the score s(k) of candidate k is a binomial random variable with expected
value and variance:

E[s(k)] = (1 — @nvp(k)
Vis(k)] = q(1 — q)nvp(k).

A Winner of the election is a candidate k whose score p(k) satisfies p(k) =
max;cg p(/). It is important to emphasize that given the score distribution p(k),
the scores of candidates s(k) are independent random variables whereas this will
not be the case in Large Poisson Games.

Given the score profile s, an outcome of the election is a pivot between a non-
empty subset of candidates Y if and only if:
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Vy €Y s(y) = maxgek s(k) —1
VydY, s(y) <maxgeg s(k) — 2.

A pivot between the pair of candidates k and / will be denoted by pivot(k,l) and
its probability will be represented by py;. These pivot probabilities for all pairs of
candidates are summarized by a vector p = (pg;)kich, in which H stands for
the set of unordered pair of candidates. This vector is not anymore assumed to be
common for all voters: it is indeed generated by the erasing probability. A voter with
kl-pivot probability pg; anticipates that submitting the ballot ¢ has the impact Py;
on his expected utility with

pr1  if he approves candidate k and does not approve candidate /
Py = § —pr; if he approves candidate / and does not approve candidate k
0 elsewhere

Let EUy[c] denote the expected utility by a voter of type ¢ from casting ballot ¢
when p is the common vector of pivot probabilities. It follows that

EUlcl = ) Prrlu(k) — ue(D)].

kleH

in which Pg; is defined as previously. Indeed, the Score Uncertainty model, as
the Myerson—Weber setting, assumes that the probability of three (or more) can-
didates being tied for first place is infinitesimal in comparison to the probability of
two-candidate tie which allows us to write the previous simple expression for the
expected utility of voters.

9.3.1 Voting Equilibrium in the Score Uncertainty Model

Laslier (2009) does not assume the ordering condition which was an important prop-
erty of the Myerson—Weber framework. Given the erasing probability q, it is shown
that any pivot probability vector satisfies the limit ordering condition.

Definition 9.3.1 (Limit Ordering condition). Given a strategy function o, a pivot
probability vector p satisfies the limit ordering condition if, for every three distinct
candidates k, [ and m, if p(k) < p(l), then

lim 2k — o

V—>00 plm

Proposition 9.3.1. Given that there are no ties in the score distribution, any pivot
probability vector satisfies the limit ordering condition in the Score Uncertainty
model.
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Proposition 9.3.2. The pivot probability vectors are not equal for all the vot-
ers. However, whenever the electorate is large, the differences between the pivot
probability vectors do not affect voters’ best responses.

Definition 9.3.2 (Equilibrium in the Score Uncertainty Model). We refer to o as
an equilibrium of the game if and only if for each ballot c € C andeach? € T,

o(c|t)>0 = c € argmax EU,[d].
deC

9.3.2 Approval Voting on the Score Uncertainty Model

Once we have properly defined the Score Uncertainty model and the equilibrium
of the voting game, we introduce the two results that summarize Laslier’s (2009)
conclusions over AV. These results are very positive for AV in a large elec-
torate. Indeed, both sincerity and Condorcet Consistency are satisfied by AV at
equilibrium.

Definition 9.3.3 (Sincerity). An AV ballot is sincere if, given the lowest-preferred
candidate k that a voter approves of, he also approves of all candidates he prefers
to k.

Theorem 9.3.1. For a large electorate, in the absence of a tie in the score distribu-
tion, best responses are sincere under AV .

Theorem 9.3.2. For a large electorate, in the absence of a tie in the score distribu-
tion, AV uniquely selects the Condorcet Winner (whenever it exists) as the Winner
of the election. If the preference profile admits a Condorcet Winner and the Con-
dorcet Winner has a unique best contender then the game has a unique equilibrium.
In this equilibrium, the Condorcet Winner is elected.

The underlying rationale for both theorems is the limit ordering condition. Under
the limit ordering condition, we can say that pivot probabilities are “well ordered.”
For instance, let us pick three candidates a, b and ¢ such that p(a) > p(b) > p(c)
(the expected score of candidate a is higher than the expected score of candidate
b and so on). Whenever the electorate is large, we know that every voter in the
election anticipates that the pivot between candidates a and b is the most probable
one and that as the size of the electorate becomes larger, the pivot probabilities p,.
and pp. become negligible when compared with the pivot probability p,p. This, in
turn, implies that voters vote according to the following rule: for every voter with
type ¢, the unique best-response ballot R; is such that

a voter with type ¢ s.t.u;(a) > us(b) = R, =tk € K : w(k) > u(a)},
a voter with type ¢ s.t. us(a) <u;(b) = Ry =tk € K : us(k) > u(a)},
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Indeed, given that voters are expected-utility maximizers, every voter will voter for
either candidate @ or candidate b and no voter will vote for both. When a voter
has voted for either candidate a or candidate b, he still needs to decide whether
he will give his approval to candidate c. However, this decision is quite easy given
the limit ordering condition. Let us suppose that a voter has approved of candidate
a. Whenever he prefers candidate ¢ to candidate a, he will approve of candidate ¢
as the most probable pivot in which candidate ¢ is involved is against candidate a
(due to the limit ordering condition). In such an outcome, the expected utility of the
voter increases by approving of candidate c. Similarly, if the voter prefers candidate
a to candidate ¢, he will not approve of candidate ¢ as the most probable pivot in
which candidate c is included is against candidate a. Similar arguments show that
the unique best-response ballot satisfies the previous claim for a finite number of
candidates.

The fact that the limit ordering condition implies a unique best response ballot
has different consequences. First of all, it is simple to see that Theorem 9.3.1 is a
direct consequence. Indeed, a sincere ballot under AV is a ballot such that whenever
you give your approval to some given candidate a, you approve any candidate that
you prefer to candidate a. The best response ballot R; satisfies this definition and
thus every voter is sincere at equilibrium.

The second implication of the limit ordering condition is that the score of the
first-ranked candidate in equilibrium equals the share of the electorate who prefers
the first-ranked candidate to the second-ranked candidate. And the score of any other
candidate equals the share of the electorate who prefers such a candidate to the first-
ranked candidate. Therefore, the Condorcet Winner is the only possible Winner of
the election in equilibrium as the Condorcet Winner is the candidate who is preferred
in pairwise comparisons to the rest of the candidates in the election.

As will be shown in the remaining chapter, the limit ordering condition is not
satisfied by Large Poisson Games and this will be the source of the failure of pref-
erence aggregation under AV in such a setting. Indeed, given three candidates a, b
and ¢ such that p(a) > p(b) > p(c), it could be the case that the pivot probabil-
ity pac becomes infinitely larger than any other pivot probability as the size of the
electorate becomes large.

9.4 Large Poisson Games

A Poisson random variable P(n) is a discrete probability distribution that depends
on a unique parameter which represents its mean. The probability that a Poisson
random variable of parameter n takes the value v, being v a nonnegative integer is

equal to

an’

e " —.
v!

A Poisson voting Game of expected size n is a game such that the actual number
of voters taking part in the election is a random variable drawn from a Poisson
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distribution with mean n. This assumption represents the uncertainty faced by voters
w.r.t. the number of voters that show up the day of the election. The probability
distribution and its parameter n are common knowledge.

Each voter’s type is independently drawn from 7" according to the distribution of
types denoted by r = (r(t))ser-

A Poisson game of expected size n is then represented by (K, T, n,r,u). The
expression “large Poisson game” is used to describe the asymptotic behavior of a
sequence of Poisson games of expected size n when n is large enough.

In order to completely determine an election in a Poisson voting game, the vot-
ing rule remains to be specified. A Poisson voting game will be represented by
(K,T,C,n,r,u) in which C stands for the set of available ballots. The set of bal-
lots we focus on (AV and P V') have already been defined in the description of the
Myerson—Weber framework (Sect. 9.2).

As shown by Myerson (1998), assuming a Poisson population has two main
advantages: common public information and independence of actions.

As usual, voters’ actions depend on their type (private information) and on the
actions of other voters. In such a probabilistic framework, there exists a probabil-
ity distribution over the different possible outcomes that might arise in the election.
When we refer to common public information, we mean that this probability dis-
tribution does not depend on the type ¢. Indeed, each voter in the election fully
knows the probability distribution over the different outcomes independently of ¢.
This is not the case when using solution concepts such as the perfect equilibrium
of Selten (1975). In a perfect equilibrium, strategic voters have some prior beliefs
over the expected scores of the candidates. However, in such an equilibrium, there
is an asymmetry of information that makes more difficult the analysis of the game.
This common public information property of Poisson Games entails that voters’
actions uniquely depend on their private information ¢ on this type of games in
equilibrium.

The second main advantage is usually referred as the independence of actions.
Indeed, the number of voters who choose a given ballot is independent from the
number of voters who choose another ballot. This is not the case if we assume for
instance a binomial distribution. Let us assume that a binomial random variable rep-
resents the number of voters in the election. A binomial distribution is characterized
by two parameters n and p. Whereas p represents the probability of taking part in
the election, the parameter n stands for the maximal size of the population. This
upper-bound for the number of voters implies that voters’ actions are correlated.’
This is not the case in a Poisson voting game as there is not an upper-bound for
the number of voters in the election. These two properties substantially simplify
the analysis of the voting game and are unique to the Poisson games as shown by
Myerson (1998).

8 To see this correlation, it suffices to understand that under the binomial assumption, whenever a
voter does not vote for a candidate, there is a most n — 1 voters that can do it.
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We represent voters’ actions by the strategy function o(c| t)° which is a function
from T into A(C) the set of probability distributions over C. Formally, we write

_{T—)A(C)
Ntr—o(|0).

A voter with type ¢ chooses ballot ¢ with probability o(c | ¢). Then, taking
into account the distribution of types r and the strategy function o (. | t), the vote
distribution T = (t(c))cec can be determined as follows. For each ¢ € C, we
define

7(c) = Zr(t)o(c | 1).
teT

The vote distribution t represents the share of votes each ballot gets. We denote
by x(c) the Poisson random variable with parameter n7(c) that describes the num-
ber of voters x (c) who choose ballot c¢. Furthermore the vote profile x = (x(¢))cec
is a vector of length C of independent random variables (due to the independent
actions property).

We denote by b a vector of length C of non-negative integer numbers. Each
component b(c) of vector b accounts for the number of voters who vote for ballot
c. The set of electoral outcomes'® given ballot set C is denoted by %, where

% ={b e RC | b(c) is a non-negative integer for all ¢ € C}
The subsets of % will be denoted by capital letters B C A.

Given the vote profile x, the (common knowledge) probability that the outcome
is equal to a vector b € A is such that

Plx =b|nt] = P[[ ) x(c) = b(c) | n7]
ceC
=[] Plx(c) = b(e) | n7]
ceC
_ e—nr(c)(n.[(c))b(c)
-I(55)

For ease of notation, we referto P[x = b | nt] by P[x = b]. We will be mainly
interested in computing the probabilities of subsets of Z rather than probabilities of
vectors themselves, as for instance the probability of two given candidates getting
the same number of votes. Given the vote profile x, we write that the probability of

° The strategy function satisfies o(c |[1) >0 Vc € Cand Y  ec0(d | 1) = 1.

10Tn probabilistic terminology, an electoral outcome is usually referred as an event or realization
of a random variable, i.e., the value that is actually observed (what actually happened). For ease of
notation, we will refer to them simply as outcomes.
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the outcome B C & is equal to

PlxeBl=)_ Plx =5l

beB

Let Cx denote the set of ballots in which candidate k is approved. Given the vote
profile x, the score distribution p = (p(k))rek describes the share of votes that
each candidate gets. For each k € K,

plk) =) (o).

ce€Cy

It follows that the number of voters that vote for a candidate k is drawn from a
Poisson random variable with mean np(k). Given the score distribution, we define
the score profile s = (s(k))re x describes the number of voters who vote for each
candidate k with

sk) =) x(c) ~ Pup(k)).

ceCy

Given that under AV voters can vote for several candidates, it is not true in
general that the score profile s is a vector of independent random variables. As
will be shown this lack of independence is an important property of AV on Poisson
games. Indeed, due to this correlation between the candidate scores, counterintuitive
situations might arise.

Given an outcome B C %, let M(B) = argmax ek p(j) denote the set of can-
didates with the most points. We say that candidate a is the Winner of the election
whenever candidate a is the unique candidate in the set M(B). Assuming a fair
toss of a coin, the probability of candidate k¥ winning the election given the vector
B C #is
1/#(M(B)) ifk € M(B)

QI Bl =1 ifk & M(B).

9.4.1 Voting Equilibrium on Large Poisson Games

For any outcome B C % and any ballot ¢ € C, we let B + {c} denote the outcome
such that one ballot ¢ is added. That is, we write that the outcome D C £ is such
that

D=B+{c}={deD|d=b+cforanyb € B,c € C}.

in which the sum of vectors b and ¢ is componentwise. Thus, given the vote profile
x, a voter with type ¢ casts the ballot ¢ that maximizes his expected utility

EUilc|nt)= ) Plx € B] Y O[k|B + {c}]us (k).

BCc# keK

Again, for ease of notation, we write E Uy[c] for EU;[c | nt].
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Definition 9.4.1 (Equilibrium of a Poisson game). We refer to o as an equilibrium
of the Poisson voting game (K, T, C, n, r, u) if foreach ¢ € C andeacht € T, given
the vote distribution t,

o(c|t) > 0= c € argmax EU,[d].
deC

As the focus of this work is on elections with a large number of voters, one shall look
at the limits of equilibria as the expected number of voters n tends to infinity. Thus,
we refer to a large equilibrium sequence of (K, T, C, r,u) to denote any equilibria
sequence {0, 5>, of the voting games (K, T, C,n,r,u) such that the vectors o,
are convergent to some limit o as n — oo in the sequence. We refer to this limit
o as a large equilibrium of (K, T, C,r,u). Furthermore, we refer to a sequence of
outcomes in & by {B,}52 ;. The limit B of a sequence of outcomes { B, },2, in #
is an outcome and so it is a subset of Z.

9.4.2 The Decision Process

As previously stated, we assume that each voter determines which ballot he casts by
maximizing his expected utility. As voters are instrumentally motivated, they care
only about the influence of their own vote in determining the Winner’s identity. As
usual in voting environments with a large number of voters, a voter’s action has a
negligible impact on the outcome of the election. Indeed, it has some impact only
if there is some set of candidates involved in a close race for first place where one
ballot could pivotally change the result of the election: a pivot.

Definition 9.4.2. Given the score profile s and a subset Y of the set of candidates
K, an outcome B C A is a pivot(Y') if and only if:

VyeY, s(y) > maxs(k)—1
keK
VkY, s(k) <maxs(k)—2.
keK
The set of all pivot outcomes is denoted by X (C) C 4, where
Y(C)={BCA|3IY CK, B = pivor(Y)}.

Besides, the set of all pivot outcomes in which candidate k is involved is denoted
by 2(C,k) C X(C), where

Y(C,k)={BeX(C)|3Y CK stkeY and B = pivot(Y)}.
The vector p = (pki1)kieg Summarizes the pivot probabilities for all pairs of candi-

dates in which H stands for the set of unordered pairs of candidates. Similarly to the
previous models, the vector p deserves special attention. However, in Large Poisson
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Games, there are no restrictions over the probabilities of pivot outcomes involving
three (or more) candidates.

Thus, given the vote profile t, the expected utility for a voter with type ¢ of
casting ballot ¢ is such that

EUi|c]

Y PlxeB] Y Olk|x+{c}]u (k)

BC# keK

Y. PlxeB] Y Olk|x+{clluk).

BCx(C) keK

The probability of any pivot outcome generally tends to zero as the expected
population n becomes large. However, we can still compare their likelihood by
comparing the rates at which their probabilities tend to zero. These rates can be
measured by a concept of magnitude, defined as follows.

Given a large equilibrium sequence {0, }, ,, the magnitude w[B] of the limit B
of a sequence of outcomes {B, }72; C £ is such that

1 1
w[B] = lim —log P[x € B|nt]= lim —log P[x € B].
n—>oo n n—>0 n

Notice that the magnitude of an outcome must be inferior or equal to zero, since
the logarithm of a probability is never positive. The main advantage of using mag-
nitudes is to have an analytical way to compare likelihoods of outcomes rather than
estimations, as the following example shows.

Example 9.4.1. Probabilities and Magnitudes in a Poisson voting game.

Let (K, T,C,n,r,u) be a Poisson voting game. The vote profile x describes the
number of voters who cast a given ballot. For two given ballots ¢ and ¢/, we write

x(c) ~P(nt(c)) and x(c/) ~ P(nr(c/)).

Given the independent actions property, both x(c) and x(c’) are independent ran-
dom variables. Let us denote by {B,}52; C % the sequence of outcomes in which
there is the same number of voters that choose ballot ¢ and ballot ¢  for each
expected size of the electorate n. We denote the limit of the sequence of outcomes
{Bn}52, by B. For a given n, each outcome By, is formally defined by

By ={b e RB|b(c)=b(c)},

The definition of the probability of an outcome implies

Plxe B, )= ) Plx=bh]= iP[x(c) =kn x(c) =k

beB), k=0
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Therefore, the independence of actions property entails that P[x(c) = kN x(¢') =
k] = P[x(c) = k]P[x(c") = k] so that

oo ’
P[x € B,] = o T©+1(c) Z (n*z(e)z(c)F

far! (k1)?

_ e—n(r(C)+f(C/))]0 (2;1 ‘l:(c)l’(c/)) ;

where I, is a modified Bessel function.!! Hence, the magnitude of the limit outcome
B C 4 is such that:

.1
u[B] = lim —log P[x € B,]
n—oo n

1 ’
= lim —loge @+t g (211 r(c)r(c/))

n—>oo n
= 2/7(c)t(c)) = (z(¢) + 7(c))
= —(v1(c) — y/T(c")?,

which gives an explicit rate of convergence towards zero.

If one can show that a pivot between one pair of candidates has a magnitude that
is strictly greater than the magnitude of a pivot between another pair of candidates,
then the latter becomes infinitely less likely as the expected number of voters goes
to infinity. That is to say, given two subsets ¥ and Y " of the set of candidates K, for
any pair of outcomes pivor(Y) and pivot(Y') C 2, if

plpivot(Y)] > ulpivor (Y],

then we know that the pivot outcome between candidates in Y is infinitely more
. . . . 7.
likely than the pivot outcome between candidates in ¥, i.e.

Plx € pivot(Y)']
im
n—oo P[x € pivot(Y)]

We now move to the description of the decision process of voters. Let k be a
candidate. Let ¢ and ¢’ be two ballots that only differ by an extra candidate k:
¢’ = c¢ U k.In order to evaluate which of the ballots the type-t voter casts, he
computes the sign of the following expression

1 See Formula (9.6.10) in Abramowitz and Stegun (1965). A modified Bessel function I satisfies

lim, — oo %log Iy(na) = a.
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A = EU{[c'] — EUyc]
= Y PlxeB]Y [Qlk|xeB+{c'}] - Ok | xeB + {c}] Jus (k).

BC x(C) keK

The sum A simply represents the effect of adding candidate k to his ballot in his
expected utility. However, adding this extra candidate to his ballot can only have an
impact in the cases where this candidate is involved in a pivot. Therefore, A can be
rewritten as follows:

> PlxeB]Y [Qk|xeB+{'}]—Qlk|xeB+{c}] ulk).

BC X(C,k) keK

Then, if there exists a pivot(Y) C X (C, k) where candidate k is involved which
probability becomes infinitely more likely as n tends towards infinity than every
other pivot B C X(C, k), one can factor out by this pivot. Indeed, let us assume
that every pivot B where candidate k is involved becomes infinitely less likely than
pivot(Y) as the expected number of voters n tends towards infinity,

PlxeB
lim # =0 forall B € X(C,k).
n—oo P[x € pivot(Y)]
Given this focalisation of voters’ attention on the outcome pivot(Y'), a voter’s deci-
sion (the sign of A) is reduced to evaluating which ballot maximizes his expected
utility in case of a pivot(Y),

sign(A) = sign(z [ O[k | xepivot(Y) + {c’}] — O[k | x € pivot(Y) + {c}] ] u, (k)).

kekK

Repeating the previous procedure, one can deduce the best response for every
voter in the election. Therefore, if given the vote profile x, there exists a strict order-
ing of the magnitudes of the pivot outcomes, we can ensure the existence of a unique
best response, in a similar manner to the best response sets R; described for the
Score Uncertainty model.

9.4.3 Computing Magnitudes

This section introduces the main technical tools for the computation of the magni-
tudes in Poisson games. A reader mainly interested in the strategic properties of the
voting rules can skip this section.

As previously defined, the magnitude of an outcome represents the speed of
convergence towards zero of the probability of such an outcome. The magnitude
theorem (Myerson 2000) states that a magnitude can be computed as the solu-
tion of a maximization problem with a concave and smooth objective function.
The dual magnitude theorem or DM T (Myerson 2002) gives a method to compute
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magnitudes of outcomes that can be defined by linear inequalities involving the vote
profile x = (x(c))cec- Finally, as a pivot outcome cannot be defined with such
linear inequalities, the Magnitude equivalence theorem or M ET (Nuifiez 2010) sets
up a method of computing magnitudes of pivot outcomes by using the DM T'.

In order to formally introduce the results, we first give the definition of offset
ratio of an outcome that will be necessary throughout.

For any outcome B C 4 and any ballot ¢ € C, the ratio B(c)/nt(c) is called
the c-offset ratio of B when nt is the vote distribution. That is, the c-offset is a ratio
which describes the number of players who vote for ballot ¢ as a fraction of the
expected number of voters who were supposed to cast ballot c.

For any ballot ¢ € C, we say that «(c) is the limit of c-offsets in the sequence
of outcomes {B,}7>, iff {B,},>, has a finite magnitude and, for every major
sequence'? of points {b, }22 , in {B 192 |, we have

a(c) = lim ba(©) _ ()

= with t(c) = lim t,(c) and b(c) = lim b,(c).
n—00 n1,(c) nt(c) n—oo n—oo

Theorem 9.4.1 (Magnitude Theorem, Myerson 2000). Let {B,}.2, be a
sequence of outcomes in B. Then

lim log P[x € B,]/n = lim max log P[x = by]/n
n—>o00 n—>o0 p, €B,,
bu(c)

= Jim  max ; w(@OY ()
in which ¥ (x) = x(1 —log(x)) — 1 whenever x > 0 and ¥ (0) = —

Theorem 9.4.2 (Dual Magnitude Theorem, Myerson 2002). Let B C % be an
outcome defined by

Y ar(e)x(c) =0V kel
ceC

in which J is a finite set and parameters ay (c) are given for everyk € J andc € C.
Suppose that A € RE is an optimal solution to the problem

mln Z r(c)(exp(z Arag(c))—1) st Ay >0,Vke J. (F)
ceC

12 A sequence {b, }$2, is a major sequence of points in the sequence of outcomes {B, }$2 | iff each
b, is a point in B, and the sequence of points {b, }7=, has a magnitude that is equal to the greatest
magnitude of any sequence that can be selected from the outcomes B,,. Formally, b, € B, ¥ n and
lim, 00 log(P[x = by])/n = lim, oo max,, cp, log(P[x = y,])/n. See Sect. 3 in Myerson
(2000) for a more detailed account of sequences of outcomes in Large Poisson Games.
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Then the optimal value of the objective function (F') coincides with the magnitude
W[B] of the outcome B C % and the limits of the c-offset ratios associated are such
that
afc) = exp(z Arar(c)), forall c € C.
k

This theorem states a simple technique to compute magnitudes of outcomes are
defined w.r.t. to a finite series of inequalities.
Example 9.4.1 (continued). Probabilities and Magnitudes in a Poisson voting game.
Let us apply the DM T to compute the probability of two ballots ¢ and ¢ getting
the same number of votes. Indeed, we can represent the limit outcome B C & as

B = {[x(c) —x(@)= 01N [x(c) = x(c) > 01} .
Then, by the DM T, the magnitude p[B] of B C 4 is such that
u[B] = nain (c)exp(A1 — A2) + r(c/) exp(—A1 + A2) —t(c) — r(c/),

s.t. A; > 0V i. Solving this minimization problem yields to

T and a(c') = exp(=A; + Az) = *(©)

a(c) =exp(A; — ) = 0 m,

and to

IB] = 2\/1(0)T(¢") = t(c) — () = =(v/7(c) — y/2(c")*.

which coincides with the magnitude of the limit outcome B previously computed.
The Magnitude Equivalence Theorem or MET (Nufiez 2010) substantially
reduces the computations of the magnitude of a pivot outcome: it allows us to use
directly the DMT to compute magnitudes of pivot outcomes.
The DMT is conceived to compute the magnitude of outcomes defined by a
series of inequalities involving the vote profile x = (x(c¢))cec. Formally, using the
DM T we compute the magnitude of an outcome B C 4 defined by

B=1> ax(c)x(c)=0VkelJp.
ceC

However, a pivot outcome does not have this geometrical structure, i.e., for some
Y C K, an outcome pivot(Y') is defined by

Vy €Y, s(y) = maxgek s(k) — 1
Vk &Y, stk) <maxgeg s(k) —2.
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Given that the components s(k) of the score profile s are sums of the components
x(c) of the vote profile x, i.e., s(k) = Zceck x(c), we cannot express a pivot
outcome only using linear inequalities involving x.

The M ET shows that the magnitude of a pivot outcome coincides with the mag-
nitude of an outcome than can be defined uniquely using this type of inequalities.

Theorem 9.4.3 (Magnitude Equivalence Theorem, Nuiiez 2010). Let Y be a sub-
set of the set of candidates K and pivot(Y') be its associated pivot outcome. Given
a large equilibrium sequence {0y, } e, we can write

plpivot(Y)] = p[D],

for some outcome D C A defined by
D={stk)=s()Vk,leY}Nn{stk)>s(I)VkeYand ] € K\ Y}.

This result shows that there exists an outcome, defined by a series of inequalities
depending on the vote profile x, which magnitude coincides with the magnitude of
the pivot outcome. Indeed, the outcome D defined by Theorem 9.4.3 can be written
down as:

D=3 ar(c)x(c)=0VkelJp,
ceC

for some parameters ay as, by definition,

s(k) = Z x(c).

ceCx

Thus, one can directly the DM T to compute the magnitude of pivot outcomes,
solving a simple constrained maximization problem.

9.4.4 Approval Voting and Plurality Voting on Large Poisson
Games

This section presents an example, due to Myerson (2002), where in equilibrium AV
leads to better preference aggregation than P V. There are two types of voters and
three candidates, one of which is unanimously preferred. Due to the flexibility of
AV, every voter votes the unanimously preferred candidate in the unique equilib-
rium of game. However, this is not the case under PV, which is one of the major
flaws of PV in this framework. Indeed, whenever voters anticipate that a pair of
candidates is the most likely one to be in contention for victory, then one of the
candidates included in the pair is the Winner of the election at equilibrium. Hence,
PV is too vulnerable to the information manipulation (information concerning the
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expected scores of the candidates) whereas AV is more robust as it allows voters
more flexibility.

Let us consider a Large Poisson voting game where there are three candidates
K = {a, b, c} and three different types T = {t1, t2} such that:

in which the utility of #;-voters satisfies u;, (@) > uz, (b) > uz, (c) and so on. This
example does not lie on the utility levels but rather on the preference orderings.
Besides, the distribution of types satisfies

r(t7) = p and r(t) =1 —p forsome 0 < p < 1.

Proposition 9.4.1. On Large Poisson Games, a unanimously preferred candidate is
the unique Winner of the election under AV .

Proposition 9.4.2. On Large Poisson Games, a unanimously preferred candidate
need not be the Winner of the election under PV .

Proof. We claim that there is a large equilibrium o of the game (K, T, C,r, u)
in which candidate a is not the Winner of the election under P V. In this large
equilibrium, the strategy function satisfies
o) =a(c|tr) =1,

and the vote distribution is such that

©(b) = r(t1) and t(c) = r(t2).
Given the vote distribution, the vote profile x = (x(c¢))cec is the following vector

x(b) ~P(pn) and x(c) ~P((1— p)n).

In such an equilibrium, the score distribution p = (p(k))rek is such that

p(b) = p and p(c) =1—p.
Given this score distribution, the Winner of the election is either candidate b or
candidate c. Finally, given the score distribution, the score profile s = (s(k))xe x 1S

such that

s(b) = x(b) ~P(pn), and s(c) = x(c) ~P((1 = p)n).
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Let us now show why ¢ is indeed a large equilibrium of this Poisson Approval vot-
ing game. The aim is to prove that the pair o induces a probability distribution over
the set of pivot outcomes such that o is still a best response. The solved minimiza-
tion problems are included in the appendix. In this example, there are three possible
pivot outcomes involving two candidates pivot(a, b), pivot(a, ¢) and pivot(b, ¢) and
one pivot outcome in which the three candidates are involved.

Given the strategy function o, the M ET implies that the magnitude of the out-
come pivot(b, ¢) is equal to the magnitude of the outcome {s(b) = s(c) > s(a)}.
Formally, we write

plpivor(b, o)l = pl{s(b) = s(c) = s(a)j].
The outcome {s(b) = s(c) > s(a)} can be defined as
{[x(®) = x(0)]N[x(c) = x(B)] N [x(b) = 0]} <= {[x(b) = x(c)]N[x(D) = O]}.

According to the DMT, we know that the magnitude of pivot(b, c) is equal to the
solution of the following optimisation problem.

(b) exp[A1 — A2] + t(c) exp[—A1 + A2] — ©(b) — (c),

such that A; > 0V i. Thus, the magnitude of this pivot outcome is such that

plpivor(b, )] = 2t (b)t(c) — t(b) — t(c) = (vt (b) = V1(c)),
which implies that u[pivot(b,c)] > —las0 < p < 1.

Similarly, combining the M ET and the DM T, the magnitude of a pivot between
candidates a and b is equal to

plpivor(a,b)] = pl{s(a) = s(c) = s(b)}] = u[{x(b) = 0} N {x(c) = 0j] = -1,
and the magnitude of a pivot between candidates a and c is equal to
plpivor(b, c)] = pl{s(b) = s(c) = s(a)}] = —1.

Moreover, the magnitude of the pivot between candidates a, b and ¢ is equal to the
magnitude of the pivot between candidates b and c, i.e.

ulpivot(a, b, c)] = —1.

Therefore, the magnitudes of the pivot outcomes are ordered as follows:

wlpivot(b, c)] > ulpivot(a, b)] = ulpivot(a,c)] = ulpivot(a, b, c)] (A).
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Inequality (A) can be rewritten in terms of the pivot probabilities px; as follows

lim 2K

n—>oo pr

=0 Vk, Il ek,

which implies that in this equilibrium the limit ordering condition is satisfied (as
both candidates b and ¢ have a strictly higher expected score than candidate c).
Taking into account the ordering of the magnitudes (A), one can determine the
ballot that each voter of a given type chooses. Under PV, it is clear that voter’s best
responses are such that
o) =a(c|tr) =1,

showing that o is an equilibrium. This equilibrium simply represents the wasted-
vote effect in a Large Poisson game: that is, no voting for a candidate you prefer as
you anticipate he has no chance of winning the election.

However, this is not the case under AV . Indeed, even if any of the pivot outcomes
in which candidate a is involved is far less probable than the pivot outcome between
candidates b and c, the pivot outcomes involving candidate b arise with strictly
positive probability. Then, as with AV a voter can approve as many candidates as
he wishes, approving candidate a strictly increases his expected utility. Therefore
given inequality (A), the strategy function satisfies under AV

o(a,b|t) =ol(a,clt) =1,

showing that o is not a large equilibrium of the game (K, T, C, r, u).

Similar claims show that the unique Winner in equilibrium is candidate a. Indeed,
as there is always a strictly positive alone of no voter showing up the day of the
election, a voter always approves of his preferred candidate under AV . Therefore, a
unanimously preferred candidate must the Winner of the election under AV'.

It is clear through the arguments presented in this proof that the properties hold
independently of the example. In other words, a unanimously preferred candidate
will always be the Winner of the election under AV whereas this need not be the
case under PV.

9.4.5 AV Does Not Satisfy Condorcet Consistency on Large
Poisson Games

In this section, an example from Nuiiez (2010) is provided where, in equilibrium, the
Winner of the election does not coincide with the Condorcet Winner. Moreover, in
this equilibrium a candidate preferred by more than half of the voters is not elected.
The majority of voters (#»-voters) would prefer to vote just for their preferred can-
didate, candidate . However, they vote for their second preferred candidate a to
prevent candidate ¢ from winning the election, as the most probable pivot outcome
in which candidate a is involved is against candidate c. It is a pure coordination
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problem which the Poisson uncertainty does not remove. This equilibrium is char-
acterized by a failure in preference aggregation: it is due to the correlation between
the scores of the candidates that naturally arise in Large Poisson Games when a
voting rule allows to vote for several candidates.

Let us consider a Large Poisson Approval voting game where there are three
candidates K = {a, b, ¢} and three different types T = {¢1, t2, 3} such that:

11213
abc
baa
ccbh

in which the utility of #;-voters satisfies u;, (@) > u, (b) > us, (c) and so on. This
example does not lie on the utility levels but rather on the preference orderings.
Besides, the distribution of types satisfies

r(t1) = 0.1, r(t2) =0.6 and r(t3) = 0.3.
Given this distribution, candidate b is the C.W. as

r(tz) > r(ty) +r(t3)
r(ll) + r(lz) > l’(l3),

Furthermore, candidate b is more than simply a Condorcet Winner. There is more
than the expected half of voters that rank him first.

Proposition 9.4.3. On Large Poisson Games, a candidate who is ranked first by
more than the expected half of voters need not be the Winner of the election under
AV.

Proof. We claim that there is a large equilibrium o of the game (K, T, C,r,u) in

which candidate b is not the Winner of the election. In this large equilibrium, the
strategy function satisfies

o(alt1) =o(a, bl ) =0ol(cltz) =1,
and the vote distribution is such that
(@) =r(t1), t(a,b) =r(tr), t(c)=r(t3).
Given the vote distribution, the vote profile x = (x(c))cec is the following vector

x(a) ~P(0.1n), x(a,b) ~P(0.6n) and x(c) ~ P(0.3n).
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In such an equilibrium, the score distribution p = (p(k))rek is such that

p(a) = t(a) + t(a,b) = 0.7, p(b) = 1(a,b) = 0.6 and p(c) = 0.3,
Given this score distribution, the Winner of the election is candidate a which there-
fore implies that AV is not Condorcet Consistent in Poisson Games. Finally, given
the score distribution, the score profile s = (s(k))xe g is such that

s(a) = x(a) +x(a,b) ~P(0.7n), s(b) = x(b) ~P(0.6n) and s(c) = x(c) ~ P(0.3n).

Let us now show why ¢ is indeed a large equilibrium of this Poisson Approval vot-
ing game. The aim is to prove that ¢ induces a probability distribution over the set of
pivot outcomes such that o is still a best response for voters. The solved minimiza-
tion problems are included in the appendix. In this example, there are three possible
pivot outcomes involving two candidates pivot(a, b), pivot(a, ¢) and pivot(b, ¢) and
one pivot outcome in which the three candidates are involved.

Given the strategy function o, the M ET implies that the magnitude of the out-
come pivot(a, b) is equal to the magnitude of the outcome {s(a) = s(b) > s(c)}.
Formally, we write

wlpivot(a, b)] = plis(a) = s(b) = s(c)}].
The outcome {s(a) = s(b) > s(c)} can be defined as
{[x(@) = 0] N [-x(a) = 0] N [x(a) + x(a,b) —x(c) = 0]}.

According to the DMT, we know that the magnitude of pivot(a, b) is equal to the
solution of the following optimisation problem.

T(a) exp[A1 — A2 + A3] + ©(a, b) exp[A3] + t(c) exp[—A3] — 1,
such that A; > 0V i. Thus, the magnitude of this pivot outcome is such that
ulpivot(a, b)] = —0.1.

Similarly, combining the M ET and the DM T , the magnitude of a pivot between
candidates a and c is equal to

wlpivot(a, )] = ul[{s(a) = s(c) > s(b)}] = —0.0834849,
and the magnitude of a pivot between candidates b and c is equal to

wlpivot(b, c)] = u[{s(d) = s(c) = s(a)}] = —0.151472.
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Moreover, the magnitude of the pivot between candidates a, b and c is equal to the
magnitude of the pivot between candidates b and c, i.e.

wlpivot(a, b, c)] = —0.151472 = p[pivot(b, c)].
Therefore, the magnitudes of the pivot outcomes are ordered as follows:

ulpivot(a, ¢)] > ulpivot(a, b)] > ulpivot(b, c)] = wu[pivot(a,b,c)] (B).

Taking into account inequality (B), one can determine the ballot that each voter
of a given type chooses. As previously argued, a voter votes for a candidate k iff
the pivot outcome with the highest magnitude involving candidate k is against a less
preferred candidate. In this case, the magnitudes of the pivot outcomes are strictly
ordered so that voters’ best responses immediately follow. Therefore, the strategy
function satisfies

o(alt1) =o(a, bl ) =0ol(cltz) =1,

and the vote distribution is such that

t(a) =r(t1), t(a,b) =r(t2), t(c)=r(t3),

showing that ¢ is a large equilibrium of the game (K, T, C, r, u).

On the Limit Ordering Condition

It is important to emphasize that in the previous example the limit ordering condition
is violated. Indeed, candidates a and b have the highest expected scores but the most
probable pivot outcome in which candidate a is involved is pivot(a, ¢). In terms of
the pivot probabilities pg; that only involve pairs of candidates we can write this
violation of the limit ordering condition as follows. The expected scores of candi-
dates b and c satisfy p(c) < p(b) so that the limit ordering condition would imply
that the pivot probability p,; becomes far more likely than p,. as the expected
number of voters becomes large. However, given inequality (B), we can write that

li Pab
m
n—00 paC

=0 with p(c) < p(b).

This lack of ordering is the source of the bad preference aggregation that arises in
equilibrium, preventing the arguments presented by Laslier (2009) from remaining
valid in Large Poisson Games.

Single-Peaked Preferences

One cannot escape from this type of bad equilibria by artificially restraining vot-
ers’ preferences. This example can be extended to a situation in which preferences
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are single-peaked. Let us we assume that there are four different types T =
{to, 11,12, t3} such that

lo 11 12 13

aabc

cbaa

bcchb

in which the distribution of types r satisfies
r(ty) =¢e, r(t2)=0.1—¢, r(t3) =0.6and r(z4) = 0.3.

for some small ¢ > 0. With such a slight alteration, the large equilibrium in which
candidate a is the Winner of the election still exists and the preference profile
satisfies single-peakedness.

The Equilibrium Is Not Unique

It is important to emphasize that in this game there is another large equilibrium
in which the C.W. coincides with the Winner of the election. In such a large
equilibrium, the strategy function o (. | ¢) satisfies

o(al|ty)) =o0(b|tz) =0(a,c|t3) =1,
and the vote distribution is such that
t(a) =0.1, () =0.6, 1(a,c)=0.3.

In this alternative equilibrium, the Winner of the election is candidate b. Indeed, in
such an equilibrium, the outcome pivot(a, b) becomes infinitely more probable than
any other pivot outcome B C X(C) as n tends towards infinity. Voters with type
t1 and t, vote for their preferred candidate and the #3-voters vote for candidate a to
prevent candidate b in the event of an outcome pivot(a, b).

Nevertheless, AV can uniquely lead to equilibria in which Condorcet Consis-
tency is violated. Indeed, Nufiez (2009) constructs an example with three candidates
in the Condorcet Winner is not the Winner of the election at any of the equilibria of
the game.

9.5 Conclusion

This work analyses the properties of AV on models with a large number of vot-
ers. The Myerson—Weber framework (Myerson and Weber 1993) has the virtue of
being simple and at the same time setting up some simple comparisons between
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one-shot voting rules. In such a framework, AV leads to better preference aggre-
gation than PV in some situations. However, its simplicity is due to the lack of
a formal game-theory model that raises questions about the assumptions concern-
ing pivot probabilities. Both Score Uncertainty model and Large Poisson Games
address these technical problems and give positive answers: it is indeed possible by
means of a formal model to obtain that pivot probabilities are common knowledge
(as far as voters’ best responses are concerned, this is true for both models) and that
pivot probabilities are “well ordered” (this is only correct in the Score Uncertainty
model).

Large Poisson Games possess several advantages such as the independent actions
or the environmental equivalence property that simplify the analysis of the voting
equilibria. Using these games, Myerson (2002) shows that AV is more robust to
information manipulation than other one-shot voting rules such as PV in some
simple voting games. However, AV does not preclude paradoxical situations from
arising as a consequence of the independent actions property as shown by Nuifiez
(2009, 2010). When the voting rule allows to vote for more than one candidate, the
fact that the number of voters who cast a given ballot is independent of the number
of voters who cast another one (independent actions property) naturally implies that
the scores of the candidates are correlated. This correlation implies that the limit
ordering condition of the pivot probabilities is violated. As a consequence of this
non-intuitive ordering, the Winner of the election does not always coincide with
the Condorcet Winner. Whenever the voters anticipate that the Condorcet Winner is
not included in the most probable pivot outcome, he need not be the Winner of the
election in equilibrium. This fact limits the reduction of Nash equilibria that arises
in Large Poisson Games.

In the Score Uncertainty model (Laslier 2009) candidates’ scores are independent
random variables. With such an independence, the pivot probabilities satisfy the
limit ordering condition. Hence, AV ensures that voters’ best responses are sincere
and the Condorcet Winner wins the election whenever it exists, provided that every
candidate gets a strictly positive share of votes.

Appendix

This appendix provides the constrained minimization problems used to compute the
magnitudes of the pivot outcomes in Sect.9.4.5, in the large equilibrium in which
the Condorcet Winner does not coincide with the Winner of the election.
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Magnitude of a Pivot Between Candidates a and b
plis(a) = s(b) = s(c)}] = min 7(a) expds — A2 + A3]
+1(a,b)exp[As] + t(c) exp[—A3] — 1,
such that A; > 0V i. The solution to this problem yields

plis@@) = s(b) = s(c)j] = pl{x(a) = 0}] = —r(t1) asr(12) > r(13).

Magnitude of a Pivot Between Candidates a and ¢
plis@) = s(c) 2 s(b)}] = min 7(a) exp[A1 — A2 + s3]
+71(a,b)exp[rA1—Az] + t(c) exp[—A1 + A2]—1,
such that A; > 0V i. Therefore,

mlpivor(a, c)] = plis(a) = s(c) = s(b)}]
= —(/r(t) +r(t2) = Vr(6:))*> = plx(@) + x(a,b) = x(c)].

Magnitude of a Pivot Between Candidates » and ¢

ulis(b) = s(c) = s(a)}] =fr§n 7(a) exp[—A3]
+ t(a,b) exp[A1 — A2] + t(c) exp[—A1 + A2] — 1,
such that A; > 0V i. Therefore,

—r(t1) — (Vr(t2) — Vr(t3))?
—r(t1) + pfx(a,b) = x(c)]
ulpivot(a, b, c)].

plpivot(b. c)] = pl{s(b) = s(c) = s(a)}]
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Chapter 10
Computational Aspects of Approval Voting

Dorothea Baumeister, Gabor Erdélyi, Edith Hemaspaandra,
Lane A. Hemaspaandra, and Jorg Rothe

10.1 Introduction

“Yes, we can!” — Barack Obama’s campaign slogan inspired enough of his support-
ers to go to the polls and give him their “yes” votes that he won the 2008 U.S.
presidential election. And this happened notwithstanding the fact that many other
voters said “no” when pollsters asked if they viewed Barack Obama as qualified
for the office. “Yes” and “no” are perhaps the most basic ways for us, as voters,
to express our preferences about candidates, and “yes” and “no” are what approval
voting is all about.

In approval voting, every voter either approves or disapproves of each candidate.
At the end of the day, all approvals are counted and whoever is approved of by
the most voters wins. Since Brams and Fishburn (1978) proposed this system three
decades ago, it has been studied intensely in social choice theory (see, e.g., Brams
1980; Brams and Fishburn 1981, 1983, 2002, 2005; Brams et al. 2004, 2007a; Brams
and Sanver 2006, 2009; Dutta et al. 2006; Kilgour et al. 2006), it has been adopted
by numerous scientific and engineering societies (such as the IEEE),' and it has even
been dubbed “the electoral reform of the twentieth century” by its proponents (see
Dutta et al. 2006). This chapter focuses on the computational aspects of approval
voting.

Why should one bother to study the computational aspects of approval voting?
Isn’t this just a matter of summing up the approvals each candidate receives and

'Notwithstanding the success of approval voting in many such societies, Brams and Fishburn
(2005) also note that approval voting “is not currently used in any public elections, despite efforts
to institute it, so its success should be judged as mixed.” For example, the U.S. presidential election,
which involves the U.S. electoral college and has aspects of both plurality and majority voting, is
not held under approval voting.
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comparing the resulting approval scores? Sure enough, adding and comparing are
quite easy computational tasks, and this is one important point in favor of approval
voting: It is easy to determine the winners of an approval election. However, “com-
putational aspects” here is meant in a much broader and deeper sense than with
regard to mere winner determination. In particular, for approval voting (AV, for
short) and one of its variants (SP-AV), this chapter discusses computational issues
that model attempts to tamper with the outcome of an election in various ways,
and we will pay particular attention to the complexity results known for these
computational problems.

For example, the issue of voters tampering with election outcomes by reporting
insincere preferences, commonly referred to as strategic voting, has been studied
intensely in the social choice literature since the seminal work of Gibbard (1973)
and Satterthwaite (1975) (see also Duggan and Schwartz 2000; Everaere et al. 2007).
The celebrated Gibbard—Satterthwaite Theorem states that essentially all natural
voting systems are in some sense manipulable by a strategic voter.

This is bad news. But there is hope! Imagine a voting system that, though manip-
ulable in principle, has the property that it would confront a strategic voter with
a really hard problem to solve when attempting to find a successful manipulative
preference to reveal — or even to tell if in the given election such a manipulation is
possible. Such a voting system would still be susceptible to manipulation in theory,
but one could reasonably hope that due to the complexity of the associated problem
no manipulation attempts would ever occur in real elections (or, if they did occur,
that they wouldn’t be successful).

Employing computational complexity as a means to protect voting systems from
manipulation and other attacks known as “control” attacks was first proposed by
Bartholdi et al. (1989a, 1992) and Bartholdi and Orlin (1991) and has since been
studied for a wide range of concrete systems (see, e.g., Conitzer and Sandholm 2003,
2006; Elkind and Lipmaa 2005; Faliszewski et al. 2006, 2009a; Faliszewski et al.
2008b; Conitzer et al. 2007; Hemaspaandra and Hemaspaandra 2007; Procaccia and
Rosenschein 2007; Meir et al. 2008; Zuckerman et al. 2008; Brelsford et al. 2008
for results on manipulation, and see Sect. 10.3 for the literature regarding control
attacks). Some systems have been shown to be “resistant” to manipulation (i.e.,
informally speaking, their manipulation problem is computationally hard) and some
systems have turned out to be “vulnerable” to manipulation (i.e., their manipulation
problem is easy to solve).

What does it mean for a problem to be “computationally hard” or “easy” to solve?
Complexity theory provides the notions and techniques needed to answer these
questions. Two important tasks in complexity theory are to classify problems in
terms of their algorithmic complexity and to compare the complexities of two given
problems via reductions. This chapter will present numerous concrete reductions
that establish the computational hardness of problems related to approval voting.
For more background on complexity theory, we refer to the textbooks Papadimitriou
(1994), Hemaspaandra and Ogihara (2002), and Rothe (2005).
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For approval voting and manipulation, however, the bad news persists: Approval
voting is vulnerable to manipulation, even if we allow voters to have “weights” (for
example, one approval of a voter of weight five counts as much as five weight-one
approvals) and even if we allow a coalition of strategic voters to coordinate their
manipulative efforts (as opposed to having a single strategic voter). That is, even
in such more general settings, there is a polynomial-time algorithm that solves the
manipulation problem for AV. Let us state this problem in the form that will be used
for representing computational problems throughout this chapter:

Name:  AV-MANIPULATION.

Given: A set C of candidates, a list V' of ballots over C (that already have been
cast by the nonstrategic voters, where each ballot gives that voter’s approvals/
disapprovals for each ¢ € C') along with these voters’ weights, a list S with
the weights of the strategic voters (whose ballots haven’t been cast yet), and a
distinguished candidate p € C.

Question: Is it possible for the strategic weighted voters to cast their ballots in
such a way that p becomes an approval winner of the resulting election?

As noted by Faliszewski et al. (2006, 2009a),> one can use the following simple
greedy strategy to solve this problem in polynomial time: The strategic voters simply
approve of their favorite candidate p and disapprove of all other candidates. If this
manipulation makes p an approval winner, they have reached their goal (and the
polynomial-time algorithm can check whether this happens because, as mentioned
earlier, winner determination is easy for AV, and so the algorithm accepts its input
in this case). But if p still is not an approval winner after this manipulation, then
no strategy whatsoever can turn p into an approval winner (and so, in this case, the
algorithm can safely reject its input).

So, as there is no hope for approval voting to computationally resist manipula-
tion, it’s time for a change! Let’s change what is being changed in the tampering
attempts and how it is being changed — that is, let’s change the tampering scenario
from manipulation to either bribery or control. And let’s also change who performs
these changes in the election: Both these scenarios differ from manipulation in that
they model situations where external actors do seek to affect the outcome.

The model for the complexity-theoretic study of bribery was introduced by
Faliszewski et al. (2006, 2009a). In bribery settings, the “briber” seeks to influ-
ence the outcome of an election via bribing certain voters to make them change
their preferences, without exceeding the briber’s budget. The specific bribery scenar-
ios we will consider involve, for example, weighted and unweighted voters, voters
with and without price tags, changing one complete ballot (dubbed “bribery”) as
opposed to changing just one approval/disapproval in a ballot at unit cost (dubbed
“microbribery”), and we will present the associated computational problems and
their complexities.

21In a different, slightly more flexible scenario, Meir et al. (2008) showed that approval voting is
vulnerable to manipulation by a single strategic voter.
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The model for the complexity-theoretic study of control was introduced by
Bartholdi et al. (1992). In control settings, the election’s “chair” seeks to influ-
ence the outcome of an election via modifying its structure, namely, via actions
such as adding/deleting/partitioning either candidates or voters. These scenarios
loosely model activities that we often encounter in political elections, such as get-
out-the-vote drives (“adding voters”), disenfranchisement and other means of voter
suppression (“deleting voters”), introducing new “spoiler” candidates into an elec-
tion (“adding candidates”), and so on. This chapter will present the complexity of
AV and SP-AV in each of the common 22 control scenarios, which results in a total
of 44 complexity results in this section.

Unfortunately, there is again bad news for AV: Approval voting is vulnera-
ble to many (and is computationally resistant to only four) of these 22 control
attacks. However, it will also turn out that SP-AV, which stands for “sincere-strategy
preference-based approval voting,” displays broad resistance to control: SP-AV is
resistant to 19 of the 22 control attacks. That is, among natural voting systems with
a polynomial-time winner-determination procedure, SP-AV possesses the broadest
resistance to control currently known to hold (see Sect. 10.3 for a more detailed dis-
cussion that compares SP-AV with other systems displaying an exceptionally broad
resistance to control — voting systems that belong to the Copeland/Llull complex of
systems, Faliszewski et al. 2007, 2008a, 2009b).

Unlike many natural and widely used voting systems that are defined in terms
of rankings (i.e., strict linear orderings) of the candidates, approval voting merely
distinguishes between each voter’s acceptable and unacceptable candidates, yet
completely ignores the preference rankings that voters may have about the can-
didates. To overcome this shortcoming, Brams and Sanver (2006) proposed SP-AV
as a voting system that combines preference-based voting with approval voting. In
their definition, they require each voter to have an approval strategy® that is both
“sincere” and “admissible.” An approval strategy of a voter is simply a partition of
the candidates into approved and disapproved candidates. It is sincere if there are
no “gaps” (with respect to this voter’s preference ranking of the candidates), i.e., if
this voter approves of some candidate then he or she also approves of each candi-
date ranked higher. A voter’s approval strategy is said to be admissible if the voter
approves of his or her top candidate and disapproves of his or her bottom candi-
date. Note that in a one-candidate election no voter can have an admissible approval
strategy.

Sincerity and admissibility are quite natural notions to require. For example,
sincerity makes sure that there is no conflict between a voter’s preference rank-
ing and approval strategy. Admissibility in particular prevents approval strategies
from being trivial: It is not admissible for a voter to either approve or disapprove of
every candidate in an election. Brams and Sanver (2006) point out that an admis-
sible approval strategy is not dominated in a game-theoretic sense (see Brams and

3 To avoid confusion, we stress that the “strategy” in “approval strategy” or “AV strategy” is not
meant in the sense of strategic voting, but rather simply refers to which candidates are approved of
and which are disapproved of by a voter.
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Fishburn 1978 and also, e.g., Dutta et al. 2006). Obviously, if voters are not allowed
to either approve or disapprove of everybody then sincere approval strategies are
always admissible. Following Erdélyi et al. (2008b,c), we require that all voters
must cast only sincere votes and, when there are at least two candidates, voters must
cast only sincere, admissible votes (we will call this Convention I).

Within AV, ballots are given as 0—1 (or, equivalently no—yes) approval vectors,
where “1” represents approval and “0” disapproval. Within SP-AV, ballots contain
more information than this, as they also provide a preference ranking of the can-
didates. We represent such rankings from left to right (so the leftmost candidate
is the most preferred one), and we additionally indicate the approvals/disapprovals
by inserting an “approval line” into the ranking, where all candidates to the left of
this line are approved and all candidates to the right of this line are disapproved.
For example, “a b ¢ | d” means that this voter approves of a, b, and ¢, but disap-
proves of d. Since we require approval strategies (with at least two candidates) to be
admissible, the approval line will never be to the left or to the right of all candidates.

There is a central point regarding admissibility that we need to discuss with
respect to our control scenarios. In cases of control by deleting candidates or by
partition of candidates or voters (the formal definitions of which will be presented
in Sect. 10.3), it may happen that admissibility will be lost due to the control action.
That is, an originally admissible approval strategy might be changed into an inad-
missible one by, for example, deletion of candidates. To prevent this from happening
(and to obey our convention), we handle such cases by applying the following rule
(that we will call Rule I): “If during or after a control action an election with at least
two candidates is obtained such that some voter approves of either all candidates or
no candidates, then the approval line in each such voter’s ballot is moved so as to
respectively disapprove of that voter’s bottom candidate or approve of that voter’s
top candidate.” This rule was introduced by Erdélyi et al. (2008c, see also Erdélyi
et al. 2008b) in order to preserve (or re-enforce) admissibility under such control
actions. So, for example, if candidate d has been deleted from an election contain-
ing the ballot @ b ¢ | d then, according to this rule, this ballot is being changed

intoa b | c.

Now, coming back to our original question of why one should bother to study
the computational aspects of approval voting, it is important to note that this study
is motivated not just from the social choice and political science point of view.
Indeed, decision-making and preference aggregation are central tasks in many areas
of computer science, and voting procedures are far from being confined to political
elections in human societies. They have many applications in computer science,
ranging from multiagent systems within artificial intelligence (see, e.g., Ephrati
and Rosenschein 1997) to the development of recommender systems (see Ghosh
et al. 1999) to aggregating the web-page rankings from various search engines (see
Dwork et al. 2001), to name just a few. These are topics at the heart of the emerging
area of computational social choice, which is at the interface of social choice theory
and computer science and is developing rapidly (see Endriss and Lang 2006 and
Endriss and Goldberg 2008).
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Of course, the computational aspects of voting systems and their associated
problems comprise more than just proving these problems hard or easy to solve.
Certainly, if some problem has been shown to be computationally hard, the actors
involved (be it strategic voters, the chair, or the briber) will seek to find ways to
circumvent this obstacle. Fortunately, computer scientists have developed many
approaches for how to cope with the computational hardness of problems in prac-
tical applications, and some of these apply here. In particular, we will present an
approximation algorithm and some local search heuristics for “minimax approval
voting,” an interesting variant of approval voting that was proposed by Brams et al.
(2004, see also Brams et al. 2007a,b) for the purpose of electing a committee of
fixed size.

This chapter is organized as follows. Section 10.2 is a detailed discussion of wor-
ries about the model, and presents what we feel is the ideal framing. In Sect. 10.3,
we will present the 44 control results for AV and SP-AV mentioned above. We will
also describe the needed complexity-theoretic notions in a way accessible to readers
not familiar with complexity theory. In particular, for each of the reductions con-
structed, we will give comprehensible examples, and also the problems from which
we reduce will be illustrated via examples. Section 10.4 presents the complexity
results for bribery. Finally, in Sect. 10.5, we will present local search heuristics for
minimax approval voting. (Since this is a survey chapter, by “present” we do not
mean that the results are due to this chapter, and in each case we will point the
reader to the source papers in the technical literature.)

10.2 Discussion of Models for Control of Domain-Sensitive
Rules

We now come to a particularly important discussion — of the model and approach to
SP-AV under control. The previous section describes the “rule,” Rule 1, that Erdélyi
et al. (2008c see also Erdélyi et al. 2008b) creates to handle the fact that unlike
any other election system whose control properties have been studied, SP-AV has a
domain restriction that has the property that some (in fact, six) of the 22 common
control types can turn legal (i.e., in the domain of SP-AV) inputs into inputs that are
not in the domain of SP-AV. On its surface, thus, control analysis simply conflicts
with SP-AV elections.

Erdélyi et al. (2008c, see also Erdélyi et al. 2008b) approaches this with a rule,
Rule 1, that within the control framework readjusts preferences, plus keep in mind
also Erdélyi et al.’s (2008c) Convention 1, which itself blocks certain votes from
even being legal to cast at all. However, this approach is arguably unsatisfying and
may lead readers to think, incorrectly, that they are seeing control results about
SP-AV. Treating a preference rewrite rule as if it is part of control is unconvinc-
ing since control itself is not about doing anything other than what its definition
embraces, and in various settings various rewrite rules could be proposed, all in
ways whose justification is not about control but hinges on one’s own subjective
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notion of what the “natural” correction is to move one back onto the domain of the
election systems. After all, the Erdélyi et al. (2008b,c) idea that (no, no, no, no) and
(yes, yes, yes, yes), each of which show complete equality among the candidates,
should be rewritten to, respectively, (yes, no, no, no) and (yes, yes, yes, no), is a
matter of taste and this rewrite is not a part of the notion of SP-AV as Brams and
Sanver defined it — (no, no, yes, yes) is for example another possible rewrite.

In fact, the Brams and Sanver notion of admissibility was not designed with
control in mind and in the context of control has restrictive, grotesque effects. In
control by adding candidates, if one dislikes the two initial candidates but loves all
the spoiler candidates, this approach would force one to cast a vote that approved
one of the two disliked candidates, and one would be bound under control to have
that approval of a disliked candidate remain — along with new approvals of liked
candidates — after spoiler candidates were added.* Again, we stress that Brams and
Sanver were not anticipating control to be spliced on top of their system, so in
mentioning this we are not criticizing their system. However, we will soon give a
system, SP-AV-CTA, that we suggest is the natural way to merge control with the
general flavor of SP-AV, and we mention now that our approach will remove the
effect just noted above; one will be able to cast a vote that says “I will approve my
favorite candidate from among those that end up as active candidates in this control
by adding candidates election.”

Of course, returning to the Erdélyi et al. (2008b,c) preference rewrite rule, if
the preference rewrite rule is of minor importance to the control results one might
think there is no issue here. But in fact, the broadened resistance that Erdélyi et al.
(2008b,¢) prove for “SP-AV” is due not at all to SP-AV itself, but rather is com-
pletely due to the preference rewrite rule Erdélyi et al. (2008b,c) introduce. For this
entire chapter, for consistency with their work, we will echo their view that modi-
fies control with the preference rewrite rule/convention and speaks of the results as
if they were about SP-AV.

However, for posterity, we point out what we feel is a more natural approach. In
particular, if our process is going to rewrite preferences by some ad hoc rule, the
most intellectually frank way to do that is to openly admit that one’s election system
is not SP-AV. Rather, consider the following election system, SP-AV-CTA (Coerce
To Admissible). The system’s domain will be the same as that of SP-AV except

“ This assumes that regarding Convention 1 one’s notion of the “initial election” in control by
adding candidates is the basic candidate set C with no spoiler candidates yet added. This is the
natural approach and is consistent with how most papers define this control type: Voters indeed
have preferences over C U S, with S the potential spoiler set, but the base election is with C and
then one adds in some candidates (call this view of addition of candidates the Base-Is-C view).
Read absolutely literally, Erdélyi et al. (2008b,c), by diverging from the standard definition, seem
to hint at the approach that the initial election in terms of Convention 1 is over C U S, and after
enforcing Convention 1 on that, one deletes some of S. Call this view of addition of candidates
the Base-Is-(C U §) view. We mention that this unusual view would avoid the issue mentioned
above, but at the cost of taking a quite counterintuitive view of what the original (“before control”)
election is in the addition of candidates case.
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it allows inadmissible votes. And its action on any in-domain input is to treat the
admissible votes as themselves, to coerce each inadmissible vote into an admissible
vote using precisely the preference rewrite rule of Erdélyi et al. (2008b,c), and to
then act precisely as SP-AV would on that input.

SP-AV-CTA is in effect precisely what Erdélyi et al. (2008b,c) are feeding their
post-control votes into. We suggest one bring SP-AV-CTA out of the closet, and
simply directly study it and its control properties. (Of course, SP-AV-CTA may
lose some of the nice game-theoretic or other properties of SP-AV. But if so, that
too should be openly faced.) Note that SP-AV-CTA sidesteps the control by adding
candidates “two disliked candidates initially”” example mentioned earlier, as in SP-
AV-CTA, a vote of (no, no, ..., no) plus one’s preference order over all initial and
spoiler candidates has the effect of approving precisely one’s favorite candidate (if
there are at least two candidates left in, of course).

As a final comment, we mention that control of SP-AV-CTA is not precisely what
the Erdélyi et al. (2008b,c) results formally speak to. There is a very subtle differ-
ence in that in SP-AV-CTA the initial votes can be inadmissible (but after control all
then-inadmissible votes are interpreted as admissible votes). In contrast, in the Erdé-
lyi et al. (2008b,c) model, the initial votes must already be admissible (because our
system is SP-AV and admissibility is part of its domain requirement),’ plus after the
control action they in effect feed the post-control election to the SP-AV-CTA system.
However, this subtle distinction in this particular case seems unlikely to remove any
resistances, and so we believe SP-AV-CTA is almost certain to retain 19 resistances.
But, in any case, as a model, directly studying SP-AV-CTA, with no restrictions,
seems cleaner and crisper than claiming to study the known system SP-AV while
in effect really studying effects related precisely to SP-AV-CTA’s departures from
SP-AV. Indeed, the attractiveness of our SP-AV-CTA approach is sufficiently com-
pelling that Erdélyi, Nowak, and Rothe, in light of the present chapter, adopted the
SP-AV-CTA model in their final version Erdélyi et al. 2009c.

3 Even this doesn’t mean as much as it seems. Since, for example, control by adding candidates
always takes as its input preferences over the union of the initial and the spoiler candidate set,
and Erdélyi et al. (2008b,c) diverge from most papers in that they explicitly state that the input
election is (C U S, V) seems to actually in that control case allow, under what we earlier called
the Base-is-(C U ) view, inputs that are inadmissible with respect to the original election’s can-
didate set. Presumably, their rule would coerce the ballots that didn’t via the addition of candidates
end up admissible. Under the base-is-(C U §) view, their approach would be extremely close or
quite possibly even semantically identical to looking at — with no special rules or conventions —
control for SP-AV-CTA. However, if one really wants to enforce Convention 1, it seems to us
that the Base-is-C view is far more compelling. However, our suggestion is that Convention 1
and Rule 1 be discarded — along with the convoluted structure they form — and one simply define
stand-alone election systems, such as SP-AV-CTA, that can be analyzed under the utterly standard,
long-studied notion of control. In particular, preference coercions should be internalized into the
election system.
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10.3 The Control Complexity of Approval Voting
and Sincere-Strategy Preference-Based Approval Voting

10.3.1 Introduction, Background, and Discussion

In this section, we will present the control complexity of AV and SP-AV for each of
the ten classic types of procedural control, and also for an 11th type that has recently
been suggested as the “right” version of one of those ten types. Remarkably, each of
these complexities — and there are 44 problems involved here — is known. Our goal
here is not to prove each of these 44 results, but rather to make clear what each of
the results means, and to provide representative proofs that give the flavor of how
one obtains such results.

Recall from the Introduction that by studying control, we are asking how hard it
is to determine whether a favored candidate can be made the unique winner (or, in
the destructive cases, whether a despised candidate can be precluded from being a
unique winner) via a given type of alteration of the structure of the election by the
election’s “chair.” The 11 types of control are abstracting many types of actions that
occur in the real world, such as voter suppression, get-out-the-vote efforts, candidate
recruitment, etc. Ideally, we would hope that our election systems block all such
attacks — that each such attack either never succeeds (so-called immunity) or that
it is computationally intractable for the chair to find such a successful alteration
(indeed, even to tell if one exists — so-called resistance). The case we want to avoid —
so-called vulnerability — is that the chair’s task is easy: The chair in polynomial time
can determine whether he/she can make a successful alteration.

One might worry that such ideal hardness cannot possibly be achieved. For
example, perhaps there is an Arrow-like “impossibility” theorem showing that
no election system satisfying some natural, attractive, broadly-satisfied-by-typical-
election-systems axioms is, for each of our 11 control attacks, resistant or immune
to the attack. The existence of such an impossibility theorem is, on its face, at
least plausible. However, recently it was shown that for control such an impos-
sibility claim is itself impossible to obtain — because it is untrue. In particular,
Hemaspaandra et al. (2007b, 2009, see also Faliszewski et al. 2009b regarding
how to include also the 11th control type) proved that there is an election system —
indeed, an election system whose winner-determination problem is computationally
feasible — that is resistant to all of our control types.

Given that result, one might naturally ask why the results of this section — on AV
and SP-AV - are even worth doing. After all, Hemaspaandra et al. (2009) provides
a “perfect” election system. But one must think about that in context. That election
system indeed is “perfect” in terms of avoiding our control manipulations. But that
election system is not AV or SP-AV, and in the real world, approval voting is very
attractive and often used, and so the properties of approval voting are richly worth
studying — thus, this book! In fact, the election system of Hemaspaandra et al. (2009)
not only is not AV or SP-AV but indeed is a quite complicated, unnatural construct.
What that paper does is to show how to hybridize election systems together in such



208 D. Baumeister et al.

a way that if any one of the constituent systems is immune or resistant to a given
control type, then the hybridized system is immune or resistant to that type. Simply
put, the process unions the advantages of all the constituent systems. But the price
of doing this is a bulky, complicated election system that — while sufficient to prove
the impossibility of obtaining an impossibility theorem — would not be attractive for
everyday use.

For this reason, it is natural to study already existing, attractive election systems
to determine whether they are highly resistant to control. Our hope, of course, is that
the systems we study will be highly resistant (or immune) to control. What we will
see in this section, however, is that approval voting is vulnerable to many types of
control, as shown by Hemaspaandra et al. (2007a). This is disappointing, and is one
weakness of approval voting. On the other hand, approval voting is quite attractive
in many ways, and so we certainly are not suggesting that AV’s vulnerability to
control means AV should never be used. Rather, in selecting an election system, one
must weigh the strengths and weaknesses of the systems one is considering, and
then must choose the one that is most appropriate for the use to which one will be
putting the election system.

However, if one is a fan both of approval voting and of resistance to control, one
will find good news in this section. SP-AV, which itself combines aspects of approval
voting with aspects of plurality voting, has been shown by Erdélyi et al. (2008c, see
also Erdélyi et al. 2008b) to have precisely those resistances possessed by either
of those systems. As such, it has a higher number of control resistances than any
previously studied natural system. The natural systems that previously had the most
proven control resistances were from the Copeland/Llull election system complex
(Faliszewski et al. 2008a, 2007). (Those systems remain the natural systems with
the most proven resistances among voting systems in which, unlike AV and SP-AV,
votes are simply a strict ordering over the candidates.)

The rest of this section is organized as follows. Section 10.3.2 quickly presents
the election model, the needed notions from complexity theory, and the notions used
to classify the hardness of control. Section 10.3.3, for each control type, describes
the motivation for that control type and the results that hold for that control type for
AV and SP-AV elections. Section 10.3.4 gives some conclusions for control issues
related to AV and SP-AV.

10.3.2 Notions: Elections and Complexity

Our elections will have finite numbers of candidates and voters, but the numbers can
vary from input to input. So an election is a pair (C, V), where C is the candidate
set and V is a list of ballots (votes) expressing preferences over C. For AV, each
ballot will be a length || C|| bit-vector, expressing approval or disapproval for each
candidate. For SP-AV, as discussed in the Introduction, a ballot will be such a vector
along with a strict ordering over C. We will use the terms ballot, vote, and voter
relatively interchangeably. Within both AV and SP-AV, for each election (C, V) and
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for each candidate ¢ € C, we use score(c,y)(c) to denote the number of approvals
¢ receives from voters in V. In the case of weighted voters, each approval of a voter
of weight k counts as k weight-one approvals.

In this section, we’ll be discussing the complexity of control problems. The con-
trol types will be presented in Sect. 10.3.3, but for now it will suffice to say that for
each control-type problem we study, the input to the problem will be an election,
(C, V), aspecified candidate, p, and in some cases some information specific to the
control problem.

For each control type, we will study two different problems, the constructive
problem (trying to make p the unique winner) and the destructive problem (trying
to ensure that p ends up not being a unique winner).

To make this a bit more concrete, we now define explicitly two of our prob-
lems: Constructive Control by Adding (a Limited Number of ) Candidates (CCAC,
for short) and Destructive Control by Adding (a Limited Number of ) Candidates
(DCAC, for short). For these and all other control types, we will in order to ensure
cross-comparability with earlier work take the control-type definitions essentially
word-for-word from Faliszewski et al. (2009b), which itself for historical consis-
tency is in general following even earlier papers (except Faliszewski et al. 2009b
studies both the model in which we seek to make/preclude a winner and in which
we seek to make/preclude a unique winner, but in this chapter, like the papers we
are most focused on Hemaspaandra et al. 2007a, Erdélyi et al. 2008c,b, we focus on
the unique-winner model). “£” denotes the election system’s name (AV or SP-AV
in our case).

Control by Adding a Limited Number of Candidates

Name: E-CCAC and £-DCAC.

Given: Disjoint sets C and D of candidates, a collection V' of voters represented
via their ballots over the candidates in the set C U D, a distinguished candidate
p € C, and a nonnegative integer k.

Question (E-CCAC): Is there a subset E of D such that ||E| < k and p is the
unique winner of the £ election (C U E, V)?

Question (E-DCAC): Is there a subset E of D such that |E| < k and p is nota
unique winner of the £ election (C U E, V)?

Now, we are ready to define the notions that are used to describe the difficulty
(and possibility) of a given type of control for a given election system. If for a
given control type and election system the “chair” — the actor exerting the given
type of control — can never, on any input, change p from not being a unique winner
to being the unique winner (or, for the destructive case, change p from being the
unique winner to not being a unique winner), we say the system is immune to the
given type of control. One might think that immunity never occurs, but in fact it
does. For example, in AV, if p already is losing to (or tieing for winner with) some
other candidate ¢, then adding additional candidates certainly won’t make p become
the unique winner. Thus we have our first theorem: AV is immune to constructive
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control by adding candidates (Hemaspaandra et al. 2007a). If immunity does not
hold for a given control type, we say the election system is susceptible to this type
of control.

Regarding election systems susceptible to a type of control, there are two cases
that will particularly interest us. If the given problem has a polynomial-time algo-
rithm to tell whether on a given input there exists a control action of the problem’s
sort that achieves the chair’s goal for p, we say the election system is vulnerable
to the given type of control. (In each case in this chapter where vulnerability is
asserted, something even stronger in fact holds, as noted by the original papers,
namely, there is a polynomial-time algorithm that tells whether a successful control
action by the chair exists, and if so produces such an action.) However, if a given
control problem is NP-hard (a central notion in complexity theory to be defined in
the next paragraph), we say that the election system is resistant to the given type
of control. Informally put, resistance to some control type means that the corre-
sponding control problem is impracticable (although potentially not impossible) to
solve.

Some readers of this chapter may not be familiar with the notion of being “NP-
hard,” so we briefly discuss the concept. NP, nondeterministic polynomial time, is
the class of all problems that can be solved in polynomial time on a nondetermin-
istic Turing machine. However, an elegant way to describe the class without having
to introduce nondeterminism or Turing machines is that NP is the class of all lan-
guages L for which there exist a polynomial g and a polynomial-time computable
boolean predicate R such that L = {x | (3y)[|y| < ¢(|x|) and R(x, y)]}. NP is a
tremendously important class — it captures the complexity of thousands of crucial
problems, ranging from satisfiability of boolean formulas to the traveling salesper-
son problem. Of course, some NP problems are computationally simple, e.g., the
empty set is in NP. The problems that have the property that each NP problem can
be rephrased in terms of them are called the NP-hard problems. Formally, a prob-
lem A is NP-hard if (VB € NP)[B <%, A]. B <, A (B many-one polynomial-time
reduces to A) by definition means there exists a polynomial-time computable func-
tion f such that (Vx)[x € B <= f(x) € A]. A problem is called NP-complete
exactly if it is in NP and is NP-hard. Each of the problems stated in this chapter as
being resistant in fact is not only NP-hard, but also happens to be NP-complete.

The concepts of immunity, susceptibility, vulnerability, and resistance for con-
trol were introduced by Bartholdi et al. (1992), and the above definitions are theirs
except we follow the more logical, now more common approach, introduced in
Hemaspaandra et al. (2007b, 2009), of defining resistant as being “susceptible,
NP-hard” problems (Bartholdi et al. 1992 defined it as “susceptible, NP-complete”
problems).

10.3.3 44 Control Results

In this section, for each of the 11 commonly discussed types of control, and for each
of the constructive and destructive cases, we present what results hold for AV and



10 Computational Aspects of Approval Voting 211

Table 10.1 Overview of results. Key: I means immune, R means resistant, V means vulnerable,
TE means ties-eliminate, and TP means ties-promote. Results for SP-AV are due to Erdélyi et al.
(2008c); their proofs are either due to Erdélyi et al. (2008c) or draw on proofs from Hemaspaandra
et al. (2007a). Results for AV are due to Hemaspaandra et al. (2007a). (The results for control by
adding a limited number of candidates for AV, though not stated explicitly in Hemaspaandra et al.
2007a, follow immediately from the proofs of the corresponding results for the “unlimited” variant
of the problem.)

SP-AV AV

Control by Constructive | Destructive || Constructive | Destructiv
Adding an unlimited number of candidates [|R R I v
Adding a limited number of candidates R R I v
Deleting candidates R R v I
Partition of candidates TE: R TE: R TE:V TE:1

TP: R TP: R TP: 1 TP: 1
Run-off partition of candidates TE: R TE: R TE: V TE: 1

TP: R TP: R TP: 1 TP: 1
Adding voters R v R v
Deleting voters R v R A%
Partition of voters TE: R TE: V TE: R TE: V

TP: R TP: R TP: R TP: V

SP-AV — 44 results in all. We’ll do so by going right through the types (sometimes in
groups), mentioning the intuition/motivation for the type (when doing so we will —
unless we explicitly mention otherwise — be giving the intuition for the constructive
case, but from that one can naturally see the intuition for the destructive case), and
then will state what results hold. For a handful of cases — enough to give the reader
the flavor of how immunity, susceptibility, vulnerability, and resistance are proven —
we will include proofs. (Readers not interested in how such results are proven will
want to skip over such proofs.)

To collect and have the results all in one place, Table 10.1 presents all 44 results.

10.3.3.1 Adding and Deleting Candidates

We already defined control by adding a limited number of candidates. We now
define the remaining two types of control by candidate addition/deletion.

Control by Adding an Unlimited Number of Candidates

Name: E-CCAC, and £-DCAC,.

Given: Disjoint sets C and D of candidates, a collection V' of voters repre-

sented via their ballots over the candidates in the set C U D, and a distinguished
candidate p € C.
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Question (E-CCAC,): Is there a subset E of D such that p is the unique winner
of the £ election (C U E, V)?

Question (E-DCAC,): Isthereasubset E of D such that p is not a unique winner
of the £ election (C U E, V)?

Control by Deleting Candidates

Name: E-CCDC and £-DCDC.

Given: A set C of candidates, a collection V' of voters represented via their ballots
over C, a distinguished candidate p € C, and a nonnegative integer k.

Question (£-CCDC): Isit possible to by deleting at most k candidates ensure that
p is the unique winner of the resulting £ election?

Question (E-DCDC): Is it possible to by deleting at most k candidates other than
p ensure that p is not a unique winner of the resulting £ election?

Following Faliszewski et al. (2009b), we consider “limited” candidate addition
the more natural addition notion, but we mention that “unlimited” candidate addi-
tion is what (along with the same other nine notions we will present here — except
for the handling of ties in the subelections of the control-by-partition cases, see
Sect. 10.3.3.2) was used by Bartholdi et al. (1992).

The three add/delete candidate control types model candidate recruitment and
forcing candidates out of the race. For example, Ralph Nader joining the U.S. pres-
idential contest may have helped George W. Bush in his race against Al Gore.
Similarly, if once in the race Ralph Nader could have been persuaded to drop out,
that might have been helpful to Al Gore.

The results that hold for these control types are as follows. AV is immune to
constructive control by both limited and unlimited addition of candidates, and the
argument we gave about this earlier in this chapter suffices to prove both those
cases. Essentially the same reasoning shows that AV is immune to destructive con-
trol by deletion of candidates — if p is already the unique winner under AV, and
so is approved by more voters than is any other candidate, then deleting candidates
(other than p) will clearly leave p still the unique winner, since p still will have
more approvals. So, we have shown the following.

Theorem 10.3.1 (Hemaspaandra et al. 2007a). AV is immune to constructive con-
trol both by adding a limited and by adding an unlimited number of candidates, and
to destructive control by deleting candidates.

Howeyver, if one considers the same control cases as in Theorem 10.3.1 but with
“constructive” and “destructive” being swapped, one obtains vulnerability rather
than immunity results.

Theorem 10.3.2 (Hemaspaandra et al. 2007a). AV is vulnerable to destructive
control both by adding a limited and by adding an unlimited number of candidates,
and to constructive control by deleting candidates.
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In contrast, SP-AV is resistant to control in these six cases. As an example of
proving susceptibility and indeed resistance, we give a proof of the result of Erdélyi
et al. (2008c) that SP-AV is resistant to constructive control by deleting candidates.

Theorem 10.3.3 (Erdélyi et al. 2008c). SP-AV is resistant to constructive control
by deleting candidates.

Proof. The reason why SP-AV is susceptible to constructive control by deleting
candidates is quite simple: SP-AV is a “voiced” voting system (i.e., SP-AV has
the property that in each single-candidate election, this candidate — even with zero
approvals — wins), and it is known that every voiced voting system is susceptible
to constructive control by deleting candidates (Hemaspaandra et al. 2007a). Indeed,
consider an election with exactly two candidates, p and ¢, in which p and ¢ tie for
winner, i.e., they have the same number of approvals. So p is not a unique winner
in this election, but deleting ¢ from it makes p the unique SP-AV winner of the
resulting election.

To prove that SP-AV is resistant to constructive control by deleting candi-
dates, we need to show that the corresponding control problem, SP-AV-CCDC,
is NP-hard (which, as mentioned in Sect. 10.3.2, means that each NP problem is
<# _reducible to SP-AV-CCDC). Fortunately, we do not have to give a <b.
reduction from every single NP problem to this problem; rather, it is enough to
reduce just one NP-complete problem to SP-AV-CCDC.°

We choose HITTING SET as our NP-complete problem (see, e.g., Garey and
Johnson 1979) from which to reduce. Before we formally define this problem, we
give an illustrative explanation from everyday life. Consider a set, B, of m students.
Each student has chosen to sign up for some subset of 7 courses, where we assume
that courses for which no students signed up have already been cancelled. So, the
ith course, | < i < n, is attended by some nonempty subset of the students, say
Si € B. Of course, students may have signed up for different courses and some lazy
students may have chosen to sign up for no course at all. The professors who teach
these courses are exceedingly busy doing research, which is why they want to pay a
student in each of the n courses to help them produce a course report for that course
(to be given to the Dean). However, since the departmental budget is limited, they
can afford to pay only k < m students. Also, the limit on the departmental budget
is the reason why students will get one and the same amount of money for their
help, no matter how many course reports they help to write. We further assume that
the students in B (except the lazy ones, of course, who haven’t signed up for any
course) are so eager to help that they would volunteer to do the job even if they had
to write all n course reports. The task the professors face is to determine whether
there is some set of at most k students in B such that each course is attended by at
least one of them — in other words, they need to determine whether there exists a

© This follows by transitivity of the <},-reducibility: Each NP problem can be <} -reduced to
any NP-complete problem, so if we find a <},-reduction from some NP-complete problem to
SP-AV-CCDC, then each NP problem sﬁ—reduces to SP-AV-CCDC.
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hitting set of size at most k for S = {S1, 5>, ..., Sy}. A bit more formally phrased,
this problem is defined as follows:

Name: HITTING SET.

Given: A set B=1{b1,bs,...,bn}, a collection S ={S1, S2,...,S,} of non-
empty subsets S; of B, and a positive integer k < m.

Question: Does there exist a hitting set of size at most k for S, i.e., does there
exist a subset B’ C B such that ||B’|| <k and for each i, 1 <i <n, we have
S; N B’ #@?

Let (B, S, k) be a given instance of HITTING SET, where B = {by1, b3, ..., bn},
S={851,82,..., 8y} with@#S; C Bforeachi,1 <i <n,and k < m is a pos-
itive integer.7 To prove HITTING SET <P SP-AV-CCDC, we now define a reduc-
tion that in polynomial time transforms (B, S, k) into an instance (C, V, p,m — k)
of SP-AV-CCDC such that the HITTING SET question for (B, S, k) is answered
“yes” if and only if the SP-AV-CCDC question for (C, V, p,m — k) is answered
“yes.”

Our instance (C, V, p,m — k) of SP-AV-CCDC is constructed from the given
HITTING SET instance (B, S, k) as follows. The candidate set is C = B U {p}.
There are 4n(k + 1) +4m —2k + 3 voters in IV whose ballots belong to the following
five groups:

1. The first group contains, for each i with 1 < i < n, 2(k + 1) ballots of the
following type (this notation will be explained more clearly below):

Si | (B=3Si) p.

2. The second group contains, for each i with 1 <i <n, 2(k + 1) ballots of the
following type:
(B=Si) p | Si.

3. The third group contains, for each j with 1 < j <m, two ballots of the following
type:
bj | p (B—{b;}).

4. The fourth group contains 2(m — k) ballots of the following type:
B | p.
5. The fifth group contains three ballots of the following type:

p | B.

7THITTING SET is sometimes defined with “k < m” instead of “k < m.” However, since B is
always a hitting set of size k if m = k (due to S containing no empty sets), we may require k < m
in the problem instance.
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In the above notation, each time a set is written in a ballot it is a shorthand for hav-
ing its elements listed in the same order that they occur in the list (b1, b2, ..., by).
For example, if B = {b1, b, ..., be} contains six members and S3 = {b;, b3, bs}
contains three, then “S3|(B — S3)p” means that each of the 2(k + 1) ballots
corresponding to S3 has the form: b, b3 bs | by by bg p.

It is obvious that (C, V, p,m — k) can be computed from (B, S, k) in polyno-
mial time.

Note that, regardless of whether (B,S,k) is a “yes” or a “no” instance of
HITTING SET, p is not the unique SP-AV winner (and not even an SP-AV win-
ner) of the election (C, V') constructed. In particular, note that p is approved by
2n(k + 1) 4+ 3 votersin (C, V), but every b; € B has 2n(k + 1) +2 4+ 2(m — k)
approvals, and since k < m, every b; € B is better off than p.

On the other hand, we will show that if S has a size-k hitting set then p can be
made the unique SP-AV winner by deleting at most m — k candidates, and if S does
not have a hitting set of size k then this is not possible. But before we proceed with
the proof, let us first look at an illustrative example of the construction.

Example 10.3.1. Suppose we are given the HITTING SET instance (B, S, 2), where
B = {bl,bz,b3,b4} andS = {Sl, S2, S3} with S1 = {bl,bz}, S2 = {bl,b4}, and
S3 = {b3, bs}. Our reduction then yields the instance (C, V, p, 2) of SP-AV-CCDC
with candidate set C = {b1, b,, b3, bs, p} and with V' consisting of the 51 ballots
shown in Table 10.2.

The ballots in the left column correspond to the first group, those in the mid-
dle column to the second group, and the ballots in the right column correspond

Table 10.2 Fifty-one ballots generated from a “yes” instance of HITTING SET

by by | b3 by p by by p | by by by | p by b3 by
by by | b3 by p by by p | by by by | p by b3 by
by by | by by p by by p | by by
by by | b3 by p by by p | by by by | p by b3 by
by by | b3 by p by by p | by by by | p by b3 by
by by | by by p by by p | by by
by | p by by by
by by | by by p by by p | by by by | p by by by
by by | by by p by by p | by by
by by | by by p by by p | by by by | p by by bs
by by | by by p by by p | by by by | p by by bs
by by | by by p by by p | by by
b] b4|b2 bgp bz b3p|b] b4 b] bz b3 b4 | P
by by by by | p
by by | by by p by by p | by by by by bs by | p
by by | by by p by by p| bs by by by by by | p
by by | by by p by by p | by by
by by | by by p by by p | by by p | by by by by
by by | by by p by by p | by by p | by by by by
by by | by by p by by p | by by p | by by by by
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to the third, fourth, and fifth groups. Note that (B, S,2) is a “yes” instance of
HITTING SET: Choose, for example, the two-element set B’ = {by, b4} and note
that B’ has a nonempty intersection with each of Sy, S», and S3, so B’ is a hitting
set of size two for S.

Our construction ensures that (C,V,p,2) is also a “yes” instance of
SP-AV-CCDC. In (C, V), p is approved by 21 voters and each b; € B is approved
by 24 voters, so p does not win. However, p can be made the unique SP-AV win-
ner by deleting two candidates from C'. In